
Search the blackness
of space for comets

ASTRONOMY
PYTHON

Build a distress beacon for
when the zombies come

HARDWARE
RASPBERRY PI

Embed blinkenlights
in your cycling jacket

FASHION
LILYPAD

GOOGLE APP SCRIPTING Share even more data with Google
LXDE Upgrade your desktop from dowdy to dashing
LIBVIRT Manage virtual machines with Python

TURING
OLDE CODE

FREEDOM!
FIDEI DEFENSOR

Programmer, code
breaker, genius

Inside the Free
Software Foundation Europe

32+ PAGES OF TUTORIALS

June 2014 £5.99 Printed in the UK

June 2014

The magazine that gives back to the Free Software community

114 PAGES
OF NEURAL
ENHANCEMENT!

LV003 001 Cover.indd 1 11/04/2014 14:02

LV003 002 Inside Front Cover.indd 2 11/04/2014 14:02

WELCOME

www.linuxvoice.com

The June issue

Command and conquer

Linux Voice is different.
Linux Voice is special.
Here’s why…

It’s truly remarkable that despite an almost infi nite expansion in
bandwidth and computing power since the 1970s, the humble
command line has remained relevant, and perhaps, become

even more relevant. We were promised voice input and Minority
Report-style gesture control, and in some technology that’s what
we’ve got. But whatever advancements have come along, whether
it’s the mouse or drag-and-drop, the direct and indivisible connection
between your words and the command prompt cannot beaten.

Which is why there has never been a better time to take the
plunge. It’s not diffi cult, and you can experiment safely from a
new user account or a virtual machine without any worry of
wayward arguments deleting important fi les. Even when you
go back to your desktop, there’s something very empowering
knowing that, if you needed to, you could drop back to a
prompt, regardless of your distro, hardware or connection,
and perform almost any task. And there’s no other operating
system that gives you that kind of power.

Graham Morrison
Editor, Linux Voice

What’s hot in LV#003

1 At the end of each fi nancial
year we’ll give 50% of our

profi ts to a selection of
organisations that support free
software, decided by a vote among
our readers (that’s you).

2 No later than nine months
after fi rst publication, we will

relicense all of our content under
the Creative Commons CC-BY-SA
licence, so that old content can
still be useful, and can live on even
after the magazine has come off
the shelves.

3 We’re a small company, so
we don’t have a board of

directors or a bunch of
shareholders in the City of London
to keep happy. The only people
that matter to us are the readers
(you again).

THE LINUX VOICE TEAM
Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Liam Dawe
liam@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Mark Crutch, Juliet Kemp, John Lane,
Vincent Mealing, Simon Phipps,
Jonathan Roberts,
Mayank Sharma, Valentine Sinitsyn

ANDREW GREGORY
Attack ships off the Shoulder
of Orion! Well, almost. Discover
comets from the comfort of your
Linux box p86

Looking for a new Linux PC? We
went into real shops and asked
them about Linux support. Their
responses were surprising p26

A free software advocate
and writer since the late
1990s, Graham is a lapsed
KDE contributor and author
of the Meeq MIDI step
sequencer.

BEN EVERARD
Even though it’s something I’ve
written, I’m really pleased with
my Arduino-based cycling jacket.
I’ve not had a crash yet! p80

MIKE SAUNDERS

GRAHAM MORRISON

3

SUBSCRIBE
ON PAGE 64

LV003 003 Welcome.indd 3 15/04/2014 12:04

www.linuxvoice.com4

CONTENTS

REGULARS

We are all in the gutter, but some of us are searching for comets

Peek under the
surface of your
Linux box and reveal
the power within

How one ordinary genius
came to develop the
single most important
computer ever made.

Ju
ne

 LV
00

3

SUBSCRIBE
ON PAGE 64

SHOPPING
How to buy a Linux box
on the high street.

FAQ Bad guys want
to DDOS your server.
But why, and how?

SYSADMIN
Jon Roberts fi nds a
better fi lesystem.

18

38

26

06

42 66

Bitesize facts to lodge in our
receptive brains.

News

Distrohopper
What’s rolling off the Linux
production line this month?

Gaming
Portal 2, The Dark Mod, Oil
Rush, Wasteland 2 and more.

Speak your brains
Ideas, criticisms, suggestions
and book review confusion.
LV on tour
Brighton, Bristol, Manchester
and Munich get a visitation.

Group test
Reach out and touch your
shiny new Linux desktops.

My Linux desktop
Mr KDE Plasma tablet Aaron
Seigo shows us around.

Masterclass
Get deep into Inkscape and
ImageMagick. Arty!

Open Cores
A hardware architecture that’s
open to hack about with.
Interview
Damian Conway – one of the
founding fathers of Perl.

110

114

08

10

12

16

34

44

58

Master the
command line

LV003 004 Contents.indd 4 11/04/2014 18:29

www.linuxvoice.com 5

Customise the
LXDE desktop

Hunt comets with
Python and open data

Raspberry Pi: build an
emergency beacon

Make smart clothes
with an Arduino Lilypad

Bitwig 1.0 In one bound, audio
production and editing on Linux
became a lot more interesting,
and cheaper, and better. Win!

REVIEWSTUTORIALS

Make your Raspberry Pi a lot
prettier, by enhancing its default
desktop environment.

Filter image data in the search
for Thargoids comets, from the
comfort of your Linux machine.

Stay safe in the event of disaster
by broadcasting the theme from
Star Wars from a lunch box.

Sew a wearable circuit into
clothing to turn your clothing
into an electronic canvas.

Ju
ne

 LV
00

3

78

86 90

80

Ruby: Why absolutely,
positively, everything
is an object

Code 101 Genetic
algorithms: create
life with Python

Get your head around object-
oriented to the nth degree.

Programming done backwards,
for people like Ben and NASA.

Gnome 3.12 This ‘next
generation’ desktop came in
for a lot of criticism on its 3.0
release – has it improved?

Udoo Do you love playing with
your Raspberry Pi, but feel like
it’s lacking in grunt? If so, this
quad-core ARM device awaits.

Roundcube 1.0 If you think
webmail is all about selling your
details to advertisers, you could
be in for a pleasant surprise.

53

54

Pibrella In our day toys were
lumps of junk that taught only
disappointment. The world has
got a lot better since then.

Books Ada Lovelace, Nine
Algorithms That Changed the
Future, and the scribblings of
some chap called Everard.

55

56

104

52

50

106Control virtual machines
with Python and libvirt
Dispense with the GUI for the
awesome power of virtual
machines commanded by Python.

94

LV003 004 Contents.indd 5 11/04/2014 18:29

ANALYSIS

www.linuxvoice.com6

The Linux Voice view on what’s going on in the world of Free Software.
NEWSANALYSIS

Simon Phipps
is president of the
Open Source Initiative
and a board member
of the Open Rights
Group and of Open
Source for America.

Birth of a party
Calm down Mr Farage: there’s some actual politics happening in Brussells!

As society changes, so can European-
level politics. The formation of the
European Pirate Party this weekend

was thus an event of unique interest.
Responding to the emergence of the
meshed society, geeks of all flavours
realised there was no one speaking up for
the reality they saw.

The treatment of the Pirate Bay was the
catalyst. Instead of considering its existence
as civil disobedience arising from market
failure, politicians sided with the legacy
media intermediaries in treating it as
organised crime akin to drug dealing or
currency counterfeiting.

The result was outrage, at least in the
more socially coherent communities of
Scandinavia and Germany. Political parties
formed almost spontaneously in those
countries, dedicated to bringing about a just
society for the digital age. The smirks of
derision of the incumbent politicians in
those countries faded as they discovered
this was not just a protest movement but
was electorally viable. In 2009 Christian
Engström was elected representing Sweden
in the European Parliament, as was the
brilliant Amelia Andersdotter. Then in

Germany, the party gained seats in various
elections. The movement spread, chaotic
rabble though it often appeared, until this
year it became clear it was present
throughout Europe.

Which brings us to here. This weekend,
the grassroots movement from all of Europe
assembled in Brussels for the next stage of
organisation. Some present were concerned
that the whole new thing was getting too
much like the old thing it wanted to replace.
But those few bit their lip and savoured the
moment as a rabble of smart geeks (many
an open source committer among them)
became the newest political party in Europe.

Bright beginnings
Not all was shiny. The opening keynotes for
the event were frankly disappointing for an
outsider, with little sign of a coherent
intellectual framework being propounded by
the speakers and no speech from Amelia
Andersdotter, the clear leader of the party at
this juncture. But there were flashes of
promising insight. Keynote speaker (and
later Plenary chair) Julia Rede said “I want a
Europe more like the internet -- connected,
collaborative and a community of peers.”
This is a visionary statement, which could
provide a prototype for a policy framework.

Rede also recognised that a Pirate Party
needs to be more than just a movement
comprising Linux sysadmins, as well as
tackling current issues like the Transatlantic
Trade and Investment Partnership (TTIP):
“The greatest fear of TTIP is that it will raise
corporations to the same status as states”.
She is a candidate in the upcoming

European Elections and it’s clear that the
European Pirate Party needs her elected.

And that name. It turns out that people
with English as a second language have
fewer problems with it, picking up the
humour and Disneyesque romance. But the
negative implications, both from the real
meaning of the word “pirate” and its cynical
misuse in connection with unauthorised
copyright usage, tend to make it become a
slur to many with English as a first language.
This doesn’t have to be a problem though.
It’s a word true to the origins of the
movement, and there is a historic precedent
for adopting the slurs of one’s detractors as
a name. The Tories did it (the term originally
meaning a mugger); before them the Whigs
did it; even Christianity did it. With time, the
name Pirate Party will become a strength
rather than a weakness.

This is not a political movement funded
from the deep pockets of corporations or
unions. There was no expensive partying, no
glitz or glamour, no side meetings funded by
sponsors, no exhibition to gain fees. But
there was broad attendance from across
Europe by party members and supporters of
all ages. The Pirate Party is a voice we all
need in Europe. Welcome!

Opinion

“The Pirate Party needs to be more than just a
movement comprising Linux sysadmins.”

The European Pirate Party was founded in
March 2014, and should have a great future.

LV003 006 News.indd 6 15/04/2014 12:05

ANALYSIS

www.linuxvoice.com 7

Summarised: the eight biggest news
stories from the last monthCATCHUP

Windows XP EOL pushing
companies to try Linux
It’s official: Windows XP

is dead. The OS had an incredibly
long life, but even Microsoft got sick
of supporting it. However, with an
estimated 70% of businesses still
running at least one XP machine, what
can they do? Buy new hardware and
upgrade to the UI nightmare that is
Windows 8? Or switch to Linux? Well,
various surveys are suggesting that
between 10 and 30% of businesses
are now considering moving to Linux.
That’s millions of new users coming…

1
Quake III ported to the
Raspberry Pi
Hang on – Quake III came

out in 1999. So that’s hardly impressive,
eh? Well, it is when it’s part of a
$10,000 bounty. In February, Broadcom
announced a wealth of documentation
for the graphics chip in the Pi, and
provided a driver for a similar chip.
Then the Raspberry Pi foundation
offered $10,000 to the first person to
port the driver to the Pi’s own GPU and
show Quake III runnning silky-smooth
on it. Long-time Pi hacker Simon Hall
managed it, and bagged the loot.

2
QR codes considered for
kernel crash messages
Kernel panic text isn’t useful

to many people, but if non-technical
users could send a QR code containing
the information to the relevant
developers, that could help everyone.

3

GOG.com announces plan
to support Linux
Formerly known as Good

Old Games, GOG.com is a rather
spiffing site that sells (mainly older)
games without DRM and other such
horrible nonsense. The company has
announced plans to support Linux in
the near future, focusing on Ubuntu and
Mint, with 100 games in the pipeline.
There aren’t many other details right
now, but for some gamers, it will be one
fewer reason to reboot into Windows.
Read the full announcement here:
http://tinyurl.com/kcdozjz

4
Major GnuTLS bug leaves
“secure” websites open to
eavesdropping

It’s easy to become complacent as a
Linux user, given the overall reliability
and security of the operating system.
But vulnerabilities do happen, and
now a Red Hat researcher has found
a problem with GnuTLS, a library that
implements TLS and SSL support for
websites. The vulnerability affects
certificate verification, potentially
showing unsecure, spied-on
connections as secure. Distros are
scrambling to push out fixed packages.

5
Linus Torvalds refuses
to accept any more code
from prominent hacker

Linus doesn’t mince his words,
especially when someone breaks his
beloved kernel. Kay Sievers, one of
the developers of systemd, managed
to bring Linus’s blood to a boil over a
complication with the “debug” flag on
the kernel command line. (As if systemd
weren’t controversial enough…) “I will
not be merging any code from Kay into
the kernel” until fixes are made, said
Linus. Check out the the full email:
http://tinyurl.com/linusrage

6

Microsoft Office released
for Linux – well, Android
But Android is a flavour

of Linux, right? It was an unusually
cold day in Hell when Microsoft
announced this, but yes, you can now
get mini versions of Word, Excel and
PowerPoint for your Android device.
The reviews so far aren’t very positive,
with users complaining of problems
opening desktop Office files. Which is
especially ironic, as Microsoft always
championed its supposed cross-app
and platform file compatibility. Anyway,
the suite is also available for iOS.

7
$2,400 ‘Introduction to
Linux’ course made free
This is jolly generous of The

Linux Foundation. Its ‘Introduction
to Linux’ course, previously available
for a wallet-bursting $2,400, will soon
be freely available for everyone. The
Foundation plans to release it as part
of a MOOC (Massively Open Online
Course), so if you’re fairly new to Linux
and still trying to fathom your way
around the operating system, it could
help you enormously. Here’s the full text
of the announcement:
http://tinyurl.com/lskhx8u

8

LV003 006 News.indd 7 15/04/2014 12:05

DISTROHOPPER

www.linuxvoice.com8

Porteus
Lightning-fast live Linux.

Porteus is a distribution designed for
running directly off a USB stick. Big
deal – almost every distribution can

do that these days, so you may wonder if
there’s still room for a distro like Porteus.

However, there’s plenty that’s unusual
about it. Porteus doesn’t have a download
link like you may expect, but a build service
where you can customise your own version
of Porteus. You can select things like the
desktop environment, the web browser
and word processor, and in the Advanced
options you can set things like the system
passwords and boot behaviour.

The second unusual thing about Porteus
is how quickly it boots. On our test system,
Porteus Mate got from Grub to the desktop
in under 10 seconds, and this was in a
virtual machine. The VM was allocated two
cores of the i7 processor, but to put it into
context, OpenSuse took just over a minute.
This speed is incredible for a live distro. We
ran the test again with the KDE version of
Porteus, and even with the heavyweight

distro, it took just 15 seconds. On the down
side there is quite a limited choice for the
applications you can install, and there’s
little else other than those you select in the
build system. This means that Porteus is

Kali 1.0.6
Hindu Goddess and pen-tester’s best friend.

Kali Linux is undoubtedly the premiere
penetration testing Linux distro. It’s
packed full of all manner of

security-focused software, such as the
Metasploit Framework. It’s also got a lot of
software that is not usually thought of as
security focused, but has its place in the
hacker’s arsenal, such as the Arduino IDE.

Much of the security software is
command line-based, but the developers
have still included it in the applications menu
to make it easy to find. When you click on
the menu item, it opens a terminal window

and outputs the help from that command.
It’s a nice way of doing things that combines
the power of the command line with the
discoverability of a graphical system, and is
a trick that quite a few other distros would
do well to learn.

In addition to 32- and 64-bit PCs, there
are builds available for Amazon Machine
Images (AMI), Google’s Compute Engine,
and nine different ARM systems (including
the Raspberry Pi).

Finally, we can’t help but wonder if the
artwork in Kali has been deliberately

Porteus Kiosk has a bounty scheme where you can donate money towards certain features.

We’ve tapped GCHQ’s communications to find out what’s going on in distro land.

DISTROHOPPER

If you’re not a security expert, browsing the Kali
menu can be an eye-opening experience.

targeted very firmly at people who want
a minimal live distro. Of course, this isn’t
really a problem, because there are loads of
alternative options for people who want a
heavyweight live desktop.

designed to make it look edgy. The stylised
dragon on the desktop seems to be there to
remind you that the software running is the
digital equivalent of a private ninja army.

LV003 008 Distros.indd 8 11/04/2014 18:28

DISTROHOPPER

www.linuxvoice.com 9

KWheezy
Can Debian look good with KDE?

We call this section Distrohopper,
and we talk about the different
distros we try out. However, what

really constitutes a Linux distribution as
opposed to a mere respin? It’s a complicated
question, and Kwheezy is a perfect example
of why. It’s based on Debian 7 (Wheezy) with
KDE. It does have its own repositories, but
these only hold a few pieces that aren’t in
mainline Debian.

However, it would be a mistake to think
that just because it’s not a standalone distro,
it doesn’t have any value. The Kwheezy
website describes it as ‘A well configured
Debian KDE installer’, and this is probably
the best way to think about it. Once it’s up
and running, what you have is just a Debian
system with the Kwheezy settings, but it can
be difficult to set up KDE well, so in terms of
effort, it’s actually much more than that.

The download is 4GB, and so the distro is
bundled full of software. For instance, there
are two full office suites (LibreOffice and
Calligra). This would be annoying if you were
installing it on a machine with limited hard
drive space, but as long as you know what
you’re getting, choice is good. The extra
software comprises a few things that aren’t

in Debian (such as Firefox), and a small
collection of Kwheezy-specific tools for
changing settings such as the keyboard or
applications started on bootup.

There are, frankly, too many distros with
KDE that just use the unattractive default
settings of the desktop and don’t unleash its

DISTROHOPPER

The KDE setting are much improved from the defaults, but the dreaded blue glow remains.

NixOS And now for something completely different

Nix is a package manager, and it’s the basis for
NixOS. Not many distros tout their package
manager as their best feature, but then there isn’t
another package manager quite like Nix. It’s a little
hard to explain, so bear with us.

Firstly, packages are written in a functional
language that describes how to compile the
software and where to download it. When you
install a package, it compiles it and places it in a
new directory in /nix. This directory is given a name
generated by a hash of all the inputs to the
compilation (including the source code and the
compiler options).

New versions of packages don’t automatically
overwrite the older versions, so multiple versions
can quite happily co-exist on the same system – so
too can multiple versions of the same package
compiled with different options. You can roll back
changes that haven’t played out as expected, and
even choose to boot into different versions of the
OS from Grub. You can remove older versions to
save space, but it isn’t necessary, and can be done
after the newer version has been thoroughly tested.

Equally intriguing is the way that the package
files for different versions detail all the information

about how to build a file, but don’t include the
actual source files themselves (these can be
fetched from upstream sources as described in the
package file).

As well as being able to install packages, Nix
enables you to specify in a declarative language a
state that you want. For example, you could state
that you want an SSH server running and
accessible. The package manager would then
download and compile everything as necessary, and
set this up.

There are a couple of useful effects of this. It’s
very easy to deploy a custom version of NixOS with
specially configured packages across a number of
machines. Although it’s yet to see wide-spread
adoption, it definitely has potential as a cloud OS
because of this. In fact, there are some tools to
make this easy.

To ease the load of compiling everything from
scratch, there’s a NixOS repository, which holds
pre-compiled versions of particular software. When
you go to install software, if there’s a pre-compiled
version with the same options you want then the
package manager will download that; otherwise, it
will compile the software from scratch.

We Like NixOS, and wish the project well.
However, at this stage, there are too few packages
available for us to recommend it for most users.
Tinkerers looking for a new challenge who aren’t
afraid of getting their hands a little dirty will find
NoxOS an intriguing project with lots of potential.

full power. Although Kwheezy isn’t fully to
our tastes – there’s a bit too much Debian
pink for our tastes, and it doesn’t have the
best-looking KDE desktop – we welcome an
effort to add a bit of glamour to this
powerful desktop. KDE is crying out for
customisation, so bravo Kwheezy!

We like Nix – it’s a revolutionary package
manager, but is the world ready for a package
management revolution?

LV003 008 Distros.indd 9 11/04/2014 18:28

GAMING ON LINUX

www.linuxvoice.com10

Portal 2
Prepare to return to the Aperture Science Labs.

What is left of the labs!

The tastiest brain candy to relax those tired neurons

Look out puzzle fans
– here comes a big
one! Valve, our new

benevolent gaming overlord,
has unleashed the Linux
beta version of its highly
praised sequel to Portal, and
appropriately named this
beast Portal 2. It was originally
released in 2007, and Linux
users now get to join in on
the fun as Valve pushes more
games our way.

Something important to
remember is the fact that it is
in beta, so there will be certain
bugs and issues you may
come across, but it is still well
worth a look.

GAMING ON LINUX
TENTACLES OF CTHULU

SteamOS, from Valve, is a Linux
distribution aimed solely at
gaming, with Valve’s own

patches included to increase
performance of various systems
within the distribution. SteamOS was
one of the major announcements that
Valve made in September 2013,
alongside its own gaming controller
(the Steam Controller), and also its
console-like Steam Machines. The
distribution will be pre-installed on
Steam Machines, removing a barrier
to Linux adoption.

SteamOS has gained positive
feedback from quite a few big names
in the indie gaming scene, including
Markus “Notch” Persson, creator of
Minecraft, and DICE, the creator of
the Battlefield series of first person
shooters. But the really fantastic
thing about Valve pushing Linux so
profusely is that it has led the leading
graphics card manufacturers (Nvidia
and AMD) to improve their graphics
driver performance.

Valve has recently open sourced
two internal projects, the first being
its Direct3D to OpenGL translation
layer, which could prove useful for
other big name developers in saving
time when porting to Linux.

The second of these big projects is
the new OpenGL debugger named
“Vogl”, which should help developers
boost performance and find
bottlenecks in their OpenGL
rendering. To put it simply,
performance of games for us Linux
gamers in future should improve if
they use Vogl. Onwards and upwards!
Liam Dawe, gamingonlinux.com

Portal 2 is a first-person
puzzle game involving a
special gun that opens portals
between two places for you to
jump through and overcome
obstacles. This sequel includes

a co-op mode too, so you can
solve puzzles with your friends
– we suggest playing the
single-player first.
http://store.steampowered.
com/app/620

The Dark Mod
Did you just see something move? Nah, just my imagination…

Peekaboo!
Oh wait, I’m
supposed to
be stealthy!

Open-source developers
are at it again! The
Dark Mod has finally

released a stable version and
it is simply fantastic. The Dark
Mod is inspired by the Thief
series of games and plays a
lot like the older games in the
series. It was originally a mod
for Doom 3, before it became a
standalone game.

The game is all about stealth:
you play a hooded ninja-like
figure who is on a mission
hunting valuables. You have
to be careful though – the
swordsmen of the land don’t
take too kindly to thieves.

The Dark Mod is set in a
Gothic steampunk city and

looks simply beautiful. It is
easily one of the best-looking
free and open-source games
around at the moment.

You can even create and
download mission packs for

The Dark Mod, as it doubles as
a friendly toolkit as well as a
game, so be sure to share your
favourite packs with us on the
Linux Voice forum.
www.thedarkmod.com/main

Liam Dawe is our Games Editor and
the founder of gamingonlinux.com,
the home of Tux gaming on the web.

LV003 010 Gaming.indd 10 15/04/2014 12:07

GAMING ON LINUX

www.linuxvoice.com 11

Paper Dungeons
Paper Dungeons is a brand-new mix of RPG,
Rogue-like and a board game. It mixes dice
throwing into combat, and it’s a hard game to
master. It features 155 levels, three different
game-modes, five different classes and more
content! It manages to keep things fresh with
unlockable sets of dice and characters, and it
also gives you the ability to create and
download levels too.
www.desura.com/games/paper-dungeons

ALSO RELEASED…

Oil Rush
Prepare your tactical warfare skills for
when the oil runs out.

Wasteland 2
Massive robo-scorpions and other nasties await you.

The original Wasteland was released in 1988,
and has since been re-released for Linux.

RPG fans, get ready to be excited,
as Wasteland 2 – one of the
biggest crowdfunded projects

ever, having raised over $2.9m on
Kickstarter from 61,290 backers – is
making its way onto a computer near you.
Wasteland 2 is also the project that helped
to get a Linux export option in the Unity3D
game toolkit, so the developers do of
course plan a Linux version as well as
OS X and Windows versions.

Wasteland 2 is a post-apocalyptic
turn-based RPG game with beautiful
graphics and solid-looking gameplay. We
don’t have many good RPG games like it,
so it’s a welcome addition to our game
library. It is a direct sequel to the 1988
game Wasteland, which also has a Linux
version now.

The Linux version of Wasteland 2 hasn’t
landed yet, but it is expected soon, as it
has only recently become part of Steam’s
Early Access program, although if you do

buy it now and consider it a pre-order of
sorts you will get a copy of Wasteland 1
for free, which is quite the classic.
http://wasteland.inxile-entertainment.com

OpenXcom is why we love open source. It
has revived a true classic – UFO: Enemy
Unknown, a strategy game from another
era in computing, originally released in
1994 for DOS and Amiga.

You will need the game files from
somewhere like gog.com, but it will be well
worth the minor effort involved.

UFO: Enemy Unknown pits humans
vs aliens in a mix between real-time
strategy on a planetary view and turn-
based tactical combat when you shoot
a UFO down. You will need to capture
and research the aliens while keeping the
world happy with funding you raise from
the nations of the world.
http://openxcom.org

OpenXcom
An open source engine for one of the
greatest games ever made.

I hope you don’t get sea-sick! Oil Rush
may have been out for a while, but it’s still
not the best-known game. It’s sad
because it’s actually quite brilliant.

Oil Rush is a mix of a real-time strategy
and a tower defence game, set in a world
ruined by nuclear war changing the planet
forever. It was an early supporter of the
Linux platform, and when it came out it
was one of the most graphically intensive
games we had (it is still easily in the top
10 in that respect).

There is no micro-management to be
had; you don’t even control the units
directly during battle, so it’s easy to get
into, but hard to master.
http://oilrush-game.com

Stranded
You like pointing & clicking, right? Good.
Stranded has just been released, promising to
make you scratch your head while you wave
your mouse around.

It has a nice sci-fi setting where you have
wound up ‘Stranded’ on an unnamed planet
with nothing to guide you but your own will.
Join us in being confused – you know you
want to!
www.petermoorhead.com/stranded

Natural Selection 2
Dust off those graphics cards: Natural
Selection 2 is a seriously demanding hybrid of
first person shooter and real time strategy
games that pits humans vs aliens.

You can play as a traditional shooter or be a
team commander, whereupon the game turns
into a real time strategy in which you
command other members of your team.
www.naturalselection2.com

LV003 010 Gaming.indd 11 15/04/2014 12:07

MAIL

www.linuxvoice.com12

MIGRATION HERO

Got something to say? An idea for a new magazine feature?
Or a great discovery? Email us: letters@linuxvoice.com

YOUR LETTERS

I found it interesting
listening to various podcast
discussions regarding
installing Linux for other
users of Windows and would
like to share my experiences.

I have installed Linux on
behalf of about 12 users in

LINUX VOICE STAR LETTER

Linux Mint (in Cinnamon or Mate) makes a great desktop system for
users who just want to do the basics with their computer.

an attempt to spread the
good word. I usually install
Mint (Cinnamon), Mint
(Mate) or Xubuntu, all LTS
versions, depending on the
computer type, power of
machine and if there are any
installation diffi culties.

It is important to
check with the user as
to their expectations and
requirements – Linux is not
the best for syncing iTunes!
I always put the programs
I think the user will use on
the desktop along with a
ReadMe fi le detailing the
Linux equivalents of the
Windows software, how to
fi nd and install software,
update the computer and
details of where and how
to look for help should they
need it. I like to run through
the setup with them so that
they know how to connect
to the internet etc, and this
gives them the opportunity
to ask any questions.

Once I have packed
them off home, I have been
surprised by the total lack
of support that has been

When there’s a great distro, we’ll put it on the DVD; when there
aren’t any big releases, we won’t bother with the DVD.

I’ve just got a copy of Linux
Voice issue 2. You are rightfully
receiving many plaudits for the
work you have done to set up this
magazine, however, one thing
seems to have been missed in the
congratulations – it is the glue.
You have managed to get a glue
that fi rmly holds the DVD to the
magazine, but when you take the
DVD off, the remnants of the glue
roll off nicely leaving no residue at
all. This is a fantastic achievement,
keep up the good work.

Charles Barnwel, Birmingham,
UK

Andrew says: Like penicillin and
WD-40, sometime the best things
are discovered by accident. We can’t
claim that Mike has been working on a
secret formula for the perfect glue; it’s
just what we were given by default by
our distributors. Things do seem to be
working out well so far, but if anyone
has feedback about the magazine or
the physical quality of the magazine
please do get in touch.

I’M STICKING WITH YOU

requested, the only exception
being the odd printing issue but
once that’s resolved I get nothing.
I ask them how’s it going only to
be told that it’s all fi ne and how
much quicker it is now. It just
does what they need. I get far
more cries for help from Windows
users than Linux ones.

My point is that should
anybody be deciding whether or
not to install Linux for a family
member or friend and is worried
that the user will need constant
support my experience indicates
the exact opposite, just make
sure you do your homework fi rst.
Charlie Ogier, Guernsey

Andrew says: As Roy Keane once
said: “Failure to prepare is preparing
to fail.” You’re completely right to
ask what your users want out of their
Linux boxes, and we salute you for
your work.

LV003 012 Mail.indd 12 11/04/2014 14:13

MAIL

www.linuxvoice.com 1313

Some audio apps, such
as Bitwig, are fantastic
– it’s the underlying
sound architecture in
Linux that causes the
problems.

UNSOUND
I am by no means a newbie since I
have been using Linux as my
operating system of choice since
2000, but sound always seems to
be a problem. Banshee and other
players work OK and hide the
difficulties from you but if you ever
step outside the music player area
it is a nightmare. Sound settings in
PulseAudio and ALSA are arcane.

Despite this I thought I would try
Ubuntu Studio as a dual boot
option on my main PC. I assumed
that the good folks at Canonical
would have everything set up just
so… I started Audacity and tried
recording my voice. Selecting an
input device proved to be the first
problem. Audacity listed 26 input
devices, and when I decided to
Rescan Audio Devices the list of
input devices increased to 36. I
have no idea which of these
options refer to the microphone I
plugged into the sound card.

I can eliminate the USB options
since I suspect that they refer to
my webcam and I could try each of
the other options till I find which
one gets a response on the meter
but life is short, especially when
you get to my advanced years.
And then I would have to do the
same with the output devices.

I doubt if you can sort the
problem but it would be nice to
have some sort of guidance on

how to know which ‘device’
corresponds to which piece of
hardware.
John Paton

Graham says: We have a lot of
sympathy for your situation, John.
One of our audio devices is a
Focusrite Saffire Pro 40, and this lists
20 separate inputs and 20 separate
outputs, with no indication of which
channel does what or goes where. The
only solution is trial and error.

The reason for this is lack of
manufacturer support – many Linux
drivers are created blind by developers
trying their best to bring as wide
hardware compatibility as possible.
This is wonderful, but they often don’t
even have access to the hardware
they’re writing drivers for. What’s
needed, we think, is some way to
create sensible default configurations
for hardware. And perhaps that’s
something we, as a community, could
help with.

I very much enjoyed the text editor
comparison in the May issue.
However, I have an addition and an
objection.

The objection first: take a look at
TextAdept. You are really missing
a nice cross-platform editor. I
use it on Linux and MacOS and I
always have the installer ready in
the event that I need to work on a
Windows machine. It’s open, free
and completely extensible. What
more do you want?

The addition: I really like Gedit. In
fact, I used the text editor control
to learn Python. I got a nice clone
with additional features I missed.
I was even thinking of embedding
the Evince viewer in order to
have a clone for TexWorks. It
should not be that difficult, being
as there is a lot of code floating
around. That could be an idea for a
Python programming tutorial that
produces useful tools along the
road…
Pedro A Aranda, Madrid

Ben says: Hi Pedro! We did include
one cross-platform application in the
shape of Sublime Text, which is a
superbly polished piece of software
and could easily have been declared
the Group Test winner. As for Gedit,
we like it too. We’re just spoiled for
choice when it comes to text editors.

GEDIT

LV003 012 Mail.indd 13 11/04/2014 14:13

MAIL

14

Security concern aside, FileZilla is a
fantastic FTP tool.

Congratulations on your second
issue; you seem to have the
contents about right for the
greatest number of readers.

I would just like to mention that,
although an excellent piece of
software in many respects, Filezilla
does have a potential security
problem for some users. The login
information that is entered into
the Site Manager is stored in an
XML fi le in ~/.fi lezilla as plain text,
including any passwords. Probably
not a problem for a home user, but
something others may need to be
aware of.
Chris Whelan

PLAIN TEXT PASSWORDS

Ben says: For home users, as you
say, this isn’t such a big deal, but it
does serve as yet another reminder
not to use the same password on
multiple sites, because it only takes
one to leak and you’re compromised
all over the place.

Debian running
without a graphical
server is a perfect
choice for a
netword attached
storage (NAS) box.

Having just read the article from
issue 2 on “Filing Effective Bug
Reports,” I thought I’d comment
on how you’re striking quite a nice
balance between newb-friendly
content and more advanced stuff.
The bug report article has probably
assuaged many readers’ fears on
the topic and it might have done
many open source projects quite a
nice favour.

Speaking of newb-friendly
content, I have a question: Over
the couple of years that I’ve been
messing around with Linux, I’ve
seen a few articles on NAS, often
on FreeBSD and how to set up an
NAS device. For me, this begs that
question, what is the difference
between using, say, a 2TB box
and putting NAS4Free on it, vice

WHAT NAS BOX?
putting a full-fl edged distro like
Debian on it? In both cases, can’t
the box be used for exactly the
same thing, network storage?
Wouldn’t the difference just be in
setting up the Debian distro as a
fi le server?

Congratulations on the
magazine, and keep the great
content coming.
Roy Birk, Maryland, USA

Andrew says: Debian is an excellent
OS for a NAS, and it’s even used by
some commercial products. NAS4Free
is based on FreeBSD, so it’s the
best way to get the advanced ZFS
fi lesystem. You can’t go wrong with
either – just make sure to uninstall
any services you’re not using, as each
one is a potential vulnerability.

Debian running
without a graphical
server is a perfect
choice for a
netword attached
storage (NAS) box.

and putting NAS4Free on it, vice one is a potential vulnerability.

LV003 012 Mail.indd 14 11/04/2014 14:13

MAIL

www.linuxvoice.com 15

You have mentioned in both
magazines about running linux on
MAC. Just wondering if you will
throw a tutorial in for installing
Linux on the late 2013 macbook
pro(11,1) in an upcoming issue?
I’d really like to get Linux up and
running on my new laptop and use
it as my main OS. Any help would
be greatly appreciated.
Brian Meyers

Andrew says: I’m a big fan of the
construction quality of Apple
hardware, in particularly the battery
life of the laptops. Linus Torvalds
uses a Macbook running Fedora, Mike
uses one running Xubuntu, and all the
geeks at OSCON seem to have a shiny
Apple device running some sort of
Linux. It would be remiss of us not to
try sone sort of dual-booting tutorial,
so look out for it soon.

It’s amazing to look at the
historical code tutorials and
understand exactly what’s going
on. But after Ada Lovelace in
LV001, Grace Hopper in LV002:
who’s next?
Brian Meyers

Andrew says: Alan Turing’s next,
that’s who, but as the Bletchley Park
stuff isn’t all that hands-on we’ve
moved him into the features section
this issue; he’ll be reinstated to the
tutorials when Juliet gets onto the
work he did around prime numbers.
There’s also Von Neumann and Konrad
Zuse in the pipeline, so stay tuned.

MANY IDEAS

MORE IDEAS!

Ah, the Debian flying
pig. A joke devised by
our esteemed Mr Nick
Veitch, who now dwells
on page 114.

PAST AGES
For the fi rst time in my life I am
writing to a magazine, which is
mind blowing considering I’ve
been collecting various mags
since the late 80s when my
parents opted to give me pocket
money. While my friends bought
sweets I saved mine and bought
Metal Hammer Magazine or some
other publication in that vein. but
as I plod my way through my 30s
I’ve started collecting magazines
once more. I literally started buying
them again last month with Linux
Voice as previously I just used the
internet for all my needs from the
mid 2000s to now.

The last publication on Linux
I bought was Linux Format back
in September 2005. While I don’t
have that magazine I recently
found the DVD that came with it
in an old box of odds and sods
that I found at my parents’ place.
I include a picture of the DVD
cover for no real reason other than
nostalgia. In short your magazine
is so good it has rekindled my
interest in Linux and got me
buying magazines again.

I had an idea for a long-term
tutorial that could be covered from
issue to issue where you detail
the building of a Linux distribution,
using Linux From Scratch. Each
month you dedicate a few pages
(maybe 10 or so) to building the
Linux Voice Distro (or whatever
you want to call it). This could
be really cool as a tutorial for
everyone and get a lot of people

involved in creating the distro. It
could be a real community project
and the timing is good with the
release of Ubuntu 14.04 imminent,
so there’s a nice fresh LTS Distro to
fork from.

The tutorial could cover a lot of
issues and really generate interest
among the Linux Voice reader
base, as learning how to build an
OS from nothing is something I’m
sure everyone would like to know
how to do.I’m sure you would also
see a jump in users on the forums.

Think about it. How cool would it
be to put your own distro out on a
future DVD release and also to see
it on Distrowatch.com?
Well I hope you take the time to
read this and would love if you ran
with my idea and did it.
PJ

Ben says: That’s an awesome idea,
thanks PJ. We’ll think of you when
we’ve taken over the world and we’re
drinking fresh mango juice.

For a review of the
worst book in the world

ever, turn to page 56.Issue 2 is great. But oh no –
there’s a gaffe on page 27!

The author of A Computer
Called LEO is Georgina Ferry
However, on the front cover, at
the bottom, there’s a quote by a
Brenda Maddox. Keep Ben off of
the cider this month! I shall not
be cancelling my subscription
however as I consider it money
well spent!
John Evans

ILLITERACY

If you’ve ever dabbled in Assembly
language, Ada Lovelace’s code for
the Analytical Engine should look
familiar – even though she wrote it in
the 1840s.

There’s also Von Neumann and Konrad
Zuse in the pipeline, so stay tuned.

LV003 012 Mail.indd 15 11/04/2014 14:13

LUGS ON TOUR

www.linuxvoice.com16

LUGS ON TOUR

Open-Source-Treffen
Mike Saunders strapped on his Lederhosen for a meetup in Munich.

S trictly speaking, the Open-
Source-Treffen isn’t a LUG,
as it covers much more than

just Linux. But like any good LUG, it
meets up regularly (the last Friday
of each month), everyone brings
laptops to do some impromptu
hacking, and there’s plenty of beer
to go round. It’s an informal event
held in a cafe near Munich’s main
train station – just a few minutes’
walk away – and newbies are

welcome. Although most of the
regulars have been using Linux and
Free Software for many years, we
had a good chinwag with some toe-
dipping experimenters who were
there to see how open source could
benefit them.

In March’s meetup, Maximilian
Batz gave a great presentation (in
German) about “the outlook for
development of computers and
users”. It started off looking at

general technological advances to
come – eg more powerful hardware
and better cryptography – and
then focused on medical and social
issues, such as artificial organs and
implants to track people.

Although most of the discussion
was in German, everyone was well-
versed in English too. So if you’re
ever in that neck of the woods and
fancy some FOSS banter, pop by:
www.opensourcetreffen.de.

FLOSSUK Spring Conference
Josette Garcia likes to be beside the seaside; specifically, Brighton.

In 1783, the Prince Regent,
played by Hugh Laurie in
Blackadder, (later King George

IV) made his first visit. He then
spent much of his leisure time in
the town and constructed the Royal
Pavilion during the early part of
his Regency.

So what’s a bunch of Unix
System administrators doing in
Brighton? They did not come for the
German sausage – they came to
learn, network and find out different
ways to improve their workload.
It seems they are always looking
out for more automation that will
reduce human error.

Tutorials and talks
The conference started with a day
of tutorials, covering LDAP for Linux
Admins, Ansible, Learning Perl
Together, and Caching and tuning
fun for high scalability.There was
also a full-day Google Workshop –
Large-Scale System Design.

The wide selection of talks
(covering three tracks over the
two-day conference) covered topics

from configuration management
and automation, security,
performance improvements, as well
as updates on the development of
key free software projects.

The opening keynote was
delivered by Paul Downey from
Government Digital Services –
“Make things open, it makes them
better”. I feel this philosophy is not
only for techies but is applicable to
plenty of other situations.

Kris Buytaert presented two talks:
‘Building and Deploying MediaSalsa’
and ‘Continuous Delivery of your
Infrastructure’. The premise of this
was that software developers are
adopting continuous delivery for
their software, and infrastructure
people can do the same.

Other subjects covered
included the latest news from the
PostgreSQL database project, a
look at some of the new projects
going on in Perl and the wonderfully
named ‘Incident Response or
When you find that you’ve lost your
paddle and you are up the creek’.
No conference can be without

Dammit Blackadder,
Why is it that no matter
how many millions of
pairs of socks I buy, I
never seem to have any?

the dinner, which was held at
the Alfresco Bar and Restaurant
on the seafront. After-dinner
entertainment was provided by
the LHS Bikeshed, members of
the London Hackspace. The LHS
Bikeshed is an interactive sci-fi
space shuttle simulator – not for
the faint hearted! You can find out
more on lhsbished.tumblr.com.

Watch out for the videos on
http://flossuk.org. The next
FlossUK Spring Conference will be
held in March 2015 in York, which I
am told is a wonderful city!

LV003 016 LUGS.indd 16 11/04/2014 17:58

LUGS NEWS

www.linuxvoice.com 17

Digimakers Bristol
Ben Everard goes to Bristol’s four-times-a-year children’s geek-fest.

Ben taught ‘Interactive cartoons with Scratch’ at the March
Digimakers to 54 fledgling Linux users.

Every three months,
Digimakers comes to
@Bristol (the awkwardly

named science exhibition centre).
It’s a day of geeky fun for all the
family (actually, it’s designed for
children and teenagers, but in our
experience, the adults enjoy it just
as much). The basic premise is
simple: the University of Bristol
takes over a floor of the @Bristol
centre and invites local techies to
run sessions to help kids with tech.
It’s not exclusively Linux focused,
but there’s a strong Raspberry Pi
focus to many of the events.

For the past two Digimakers,
Linux Voice’s Ben Everard has run
sessions first on the Raspberry
Pi camera module, and secondly
on Scratch programming. There’s
a very hands-on approach, with
sessions on Arduino robotics,
making Lego Mindstorms dance,

shrimping, Sonic Pi… the list goes
on and on. As well as teaching
sessions, there are a few stands
showing off some of the latest
tech. The MagPi team are usually
present (and usually have sweets),
and earlier in the year, you could try
out an Oculus Rift. Recent events
have proved popular with local
teachers as well who have been
keen to brush up on the latest skills.

Get involved!
The next event is on 14 June 2014
(unfortunately, Linux Voice won’t be
attending this one). Keep up to date
with what’s happening on their
Facebook page (www.facebook.
com/digimakersbristol). You have
to keep an eye on this, as spaces
in the sessions are limited and
require attendees to sign up
beforehand. They usually fill
up a few days before the event.

Manchester Raspberry Jam
Jack Kelly reports on a rapidly growing success story.

This month’s Manchester
Raspberry Jam was a
little different from the

norm. Thanks to the University
of Manchester’s School of
Computer Science – where I am an
undergraduate student – we traded
our usual chaotic assembly for a
lab fully set up for 70 Raspberry Pi’s
and a lecture hall for talks.

We had our usual hack session;
People of all ages gathered to make
and share their creations in Scratch,
Python and even Minecraft. We had
Simon Walters showing off another
set of new Scratch-powered robots,
and Simon Duffy demonstrated
various methods of home network
hacking with Pi’s. Pete Lomas from
the Pi Foundation also attended,
giving talks about the design of
the Pi and the objectives of the
Foundation, as well as answering
questions from the event’s
attendees.

As always, we continue to be
astounded by the projects that
attendees bring to our Jams, as
well as their willingness to share
and help others. As an event
organised primarily by myself, it’s
great to see people so enthusiastic
about introducing people to the
Raspberry Pi.

The challenge we face running
the Jam from here is adapting to
a changing range of attendants.
While the Manchester Jam started
as a simple user group, where
enthusiasts could share their
projects and ideas, more and
more attendees turn up at Jams
with intrigue alone – having never
owned or even used a Pi before,
wondering what all the fuss is
about – and we’re still figuring out
how to deal with that in the best
way. But we look forward to the
challenge; our goal is to make sure
everybody who attends the Jam

There must be something in the water in the North West of
England – it’s a hive of hacker activity.

gets the absolute most they can
out of their Pi.

Anybody and everybody is
welcome to a Raspberry Jam. If
you’re interested in attending, our
Jam runs monthly throughout the
year. To see when our next Jam will
be held visit mcrraspjam.org.uk or
follow @McrRaspJam on Twitter.

LV003 016 LUGS.indd 17 11/04/2014 17:58

FEATURE THE COMMAND LINE

www.linuxvoice.com18 www.linuxvoice.com18

You know how in fi lms, when they want to
portray a computer genius/nerd/hacker at
work, they always show someone tapping

incomprehensible gobbledygook into a command
line? Sometimes it’ll be a green-on-black text
terminal from the 1980s, accompanied by various
beeping noises, just to add to the mystique. And
thanks to stereotypes like these, many non-
technical people assume that the command
line is a weird and arcane tool, only to be used if
there’s no pointy-clicky GUI goodness at hand.

Now, as a Linux user, you already know

that that’s nonsense, and the command line
interface has its benefi ts. But have you really
delved deeply into it? Have you discovered all its
hidden tricks? And have you been able to ditch
the mouse and start working more quickly? Over
the next seven pages we’ll show you how the
command line interface (CLI) can do certain jobs
much more effi ciently than GUI applications,
making your day-to-day Linux life smarter, easier
and faster. Even if you’ve been using the CLI for
a while, you’ll fi nd plenty of new gems in here, so
let’s get started.

If you haven’t mastered the command line, you’re missing
out on the most powerful features of Linux. Mike Saunders

has tips galore for both newbies and old-timers...

“The command line can do certain jobs
much more effi ciently than GUI apps.”

LV003 018 Feature Power.indd 18 15/04/2014 12:09

THE COMMAND LINE FEATURE

www.linuxvoice.com 19

THE COMMAND LINE THE COMMAND LINE THE COMMAND LINE THE COMMAND LINE FEATUREFEATURETHE COMMAND LINE FEATURE

Essential tips
If you’re new to the command line, here are
some things you absolutely need to know. In
most Linux distros, the CLI is accessible in your
desktop’s program menu as Terminal, XTerm or
Konsole.

 ls/cd/rm/mv The most common commands
(list fi les, change directory, remove fi le and
move/rename fi le). Each command has a
manual page (eg man ls – hit Q to quit the
viewer). Many commands have extra options;
for example, ls -la lists all fi les, including
hidden ones, with details.
 Tab Hit the Tab key to automatically complete
a fi lename or directory. If you want to delete
foobarlongfi le.txt, for instance, enter rm foo
and hit Tab, and it should be completed.

 History Use the up and down cursor keys to
navigate through previous commands. You
can edit them as well.
 ~ Your home directory (eg /home/bob/)
 > and >> sends output of a command to a fi le,
overwriting (>) or appending (>>). Eg ls -l >
list.txt.

Dolphin, Nautilus, Thunar and co.
are OK for simple drag-and-drop
jobs, but in all honesty they don’t

compare to the CLI. As soon as you need
to do something complicated, you end
up with a horribly long workflow involving
countless mouse clicks until your wrists get
overloaded with RSI.

Let’s take a complex job and see how
it can be made simpler with some CLI
magic. Even though you might not need this
specifi c command on a day-to-day basis,
you can break out the component parts and
use them on your Linux travels in future,
saving you heaps of time. So: imagine
that you have a bunch of fi les without any
extensions, and you don’t know what’s
inside them. (You can see hundreds of these
in Firefox’s cache, for example.) They look
like this:
3F7DFd01
E64C7d01
C42F9d01
F0887d01
...

Let’s say you want to open the 10 biggest
JPEG fi les in Gimp to have a look at them.
Think about how you’d do that in your
graphical fi le manager – if it’s even possible.
Providing that your fi le manager can peek
inside the contents of fi les to determine their
format, you might be able to click around
and somehow sort the list by fi le format and
size simultaneously (very few fi le managers
can do that), and then click and drag to
select the top 10, and right-click on the
selection to open them in a program, then
click down the list to fi nd Gimp… Ugh.

Now check this command out:
fi le * | grep JPEG | sed s/:.*// | xargs ls -S | head -n10
| xargs gimp

It’s a beast, isn’t it? But actually, it’s
a bunch of smaller commands linked
together, done in such as way that you can
understand what each part does.

First, the fi le * part looks at every fi le in the
current directory, and works out the fi letype
from the bytes contained inside. So you get

Better fi le management
GUI fi le managers are clunky and slow. Here’s how to work at light speed.

lines like this:
CBD2Fd01: JPEG image data, JFIF standard 1.01
D0488m01: raw G3 data, byte-padded
DB54Ad01: gzip compressed data, max compression

We only want JPEG fi les, so we take the
output from the fi le * command via a pipe
(|), then grep to just retrieve lines containing
JPEG. After this point we don’t need any
information other than the fi lename, so
we pipe the text to sed, the stream editor,
which does a replacement. It takes a colon
: followed by any sequence of characters
(.*) and replaces it with nothing (// – ie
nothing between the slashes). So it gets rid
of everything but the fi lenames.

Then, using xargs ls, we bundle together
all the fi lenames we’ve got so far and list
them, sorting by size (-S). The head part
retrieves the top 10 items of the list, and
then using xargs again, we bundle up all the
fi lenames into a single string and tell Gimp
to open them.

It might take a few re-reads to really grok
all this, but once you have your head around

Using pipes and multiple commands, you can narrow down to just the fi lenames you need, all
without hundreds of tedious mouse clicks.

it, you can see how powerful the CLI is for
working with fi les. (For instance, you could
replace xargs gimp with xargs rm to delete
those 10 biggest JPEG fi les.) Try adding
your own components to the command, and
making new ones using parts of it.

“Once you have your head around it, you can see
how powerful the CLI is for working with fi les.”

LV003 018 Feature Power.indd 19 15/04/2014 12:09

FEATURE THE COMMAND LINE

www.linuxvoice.com20

Vim’s commands look weird and cryptic, but
when you piece them together they make
more sense. For instance, in Vim-speak d is
delete, a means around an object, and P
refers to a paragraph. Hit dap and voila:
delete text around a paragraph (that is, text
inside the paragraph and trailing spaces).

It’s also worth customising the .vimrc fi le
in your home directory to make the editor a
bit friendlier. Here’s what we have:
set number ruler laststatus=2 hlsearch ignorecase
title
syntax on
This adds: line numbering; a ruler showing
the current line number; a status line with the
fi lename; highlighted searches; case-
insensitive searches; more information in the
terminal window title; and syntax highlighting
for various programming languages.

Advanced Vim tricks
Vim is chock-full of keyboard shortcuts and
commands that make life easier. Want to
search for the next instance of the word
under the cursor? Hit * (asterisk). Doing

A well-tuned ~/.vimrc fi le makes Vim more attractive, informative and welcoming.

some programming, and want to fi nd a
matching bracket or brace? Move the cursor
over the bracket and hit %. Want to quickly
go back to the last place you entered text?
Use gi.

Earlier we mentioned using dap to delete
a whole paragraph. This is an example of
using a text object, and this is where Vim is
ridiculously powerful. For instance, das
deletes a sentence, while ci” (C-I-double
quotes) changes text inside a pair of double
quotes. Say you have this text:

To change the fi lename: move the cursor
anywhere inside the quotes, and hit ci”. Vim
will remove all text inside the quotes and
place you in insert mode, so you can type in
some new text and hit Esc when you’re
done. And this opens up possibilities for the
equally awesome . (dot) command.
Basically, . repeats the last text editing action
– both the command(s) you used in Vim
and the text you typed. So if you move the
cursor into another <img src… line, between
the quotes, and hit . then the text will be
replaced again, exactly like the fi rst time.

This is tremendously useful if you need to
do a lot of quick replacements: do the
command once, then jump around to other
places and tap . where necessary. Because .

“Vim is chock-full of keyboard shortcuts and
commands that make life easier.”

 THE COMMAND LINE THE COMMAND LINE THE COMMAND LINEFEATUREFEATURE THE COMMAND LINE THE COMMAND LINEFEATUREFEATURE

Better editing
Learning a good text editor on the command line is essential.

We can’t stress enough how
important it is to learn a good
text editor. It really makes a vast

difference to how you work – even if you’re
not a programmer. Some GUI text editors
are well-specced with plenty of features, but
when you’re working with plain text, why
should you keep moving your hands away
from the keyboard to grab the mouse?

The two most notable text editors are
Emacs and Vim. They both have their
strengths and weaknesses, but we’ll focus
on the latter here because it’s installed in
nigh-on every Linux distro by default.

This isn’t a guide to the basics – we did
that in issue 1. If you don’t have that issue
and you’ve never used Vim before, see the
“Micro guide” box and then do the vimtutor.
Here we’ll explain why it’s well worth
learning, and if you’re a regular Vim user,
we’ll show you some tricks that you might
not have come across.

How to love Vim
Many people try Vim and come away
frustrated, because they don’t spend time
getting into the right mindset. Some people
use it often but never learn to enjoy it. That’s
fair enough – it’s not a very welcoming
program. But bear these in mind and you’ll
learn to love it:

 Always switch back command mode
(with Esc) straight after editing. Make
command mode your default mode. Vim is a
modal editor, which means sometimes
you’re editing text, and sometimes you’re
giving commands. You should only be in
insert mode when you’re editing text, so
always hit Esc as soon as you’re done. You’ll
learn commands better this way, instead of
accidentally adding them to your text.

 Use the H, J, K and L keys to navigate.
These are on the home row, ie under your
fi ngers, so you don’t have to move your
hands down to the cursor keys. They really
help you work faster – although it might
take a few days to get used to them.

 Treat commands as a language. At fi rst,

LV003 018 Feature Power.indd 20 15/04/2014 12:09

THE COMMAND LINE FEATURE

www.linuxvoice.com 21

New to Vim? Here’s a micro guide

Enter vim newfi le.txt to edit a new fi le. Hit I and
you’ll see -- INSERT -- at the bottom, which means
you’re in the Vim mode for adding text. Type in a
few lines. When you’re done, hit Esc to return to
command mode.

Use the H/J/K/L keys to move around. Hit X
to delete a character under the cursor and DD
to delete a line. Use 0 (zero) to go to the start of
a line, and $ to jump to the end. Type a number

and press Shift+G to go to that line. Hit Ctrl+G
to view the current line number and U to undo an
operation.

To save, make sure you’re in command mode
(hit Esc to be sure) and type :W. To quit, use :Q.
To quit without saving, :Q!. Those are the basics –
now enter vimtutor and follow the more detailed
guide, which will take about 20 minutes. Then
you’ll be ready to use the tips here.

Although the Vimtutor doesn’t make you an expert in Vim, it gets you well-versed with the
basics of this powerful, flexible text editor (and its many offshoots).

includes a whole text action, it can even be
used to repeat editing operations with
backspaces inside.

Imagine you have some function
prototypes copied from a header fi le:
int foo(int a, int b);
void bar(char *d);
void baz(int a, bool d);

Now you want to implement the functions
themselves. Go to the fi rst line (int foo) and
tap A (capital) to append text onto the end of
the line. Hit Backspace to remove the
semi-colon, Enter (for a newline), {, Enter
again, }, and Enter once more. Then hit Esc
to get back to command mode. Now the
fi rst line has changed into this:
int foo(int a, int b)
{
}

So, we’ve converted a prototype into a
proper function. Now move the cursor to the
second prototype line (void bar), hit . and
voilà, it is also converted, using the exact
same editing action as before. You can then
hit . again to convert the third line. It’s a
massive time saver.

Globalisation
Another hugely powerful (and not well
known) command is :g – the global
command. Take this for instance:
:g/someword/m0

This takes all lines containing the word
someword and moves them to line zero, ie
the top of the fi le. Or you could use :g/
someword/d to delete all lines containing
someword.

An especially useful add-on option for :g is
norm, which puts Vim into normal

(command) mode, and then executes the
commands as written. For instance, say you
have some Python code and you want to
comment out all lines containing DEBUG by
putting hash marks at the start:

:g/DEBUG/norm 0i#
Here, for each line containing DEBUG, Vim

executes 0i# – that is, go to the start of the
line, switch to insert mode, and add a hash.
How cool is that? And then you can even
add Esc keystrokes when entering a :g
command by tapping Ctrl+V and then Esc.

Save time and energy
Imagine you want to add C-like comments
to DEBUG lines, so that:
printf(“DEBUG: Blah blah”);
becomes:
/* printf(“DEBUG: Blah blah”); */

Use this:
:g/DEBUG/norm 0i/* ^[A */

(Again, use Ctrl+V followed by Esc to input
the ^[escape character here.) This goes to
the start of the line, inserts /* followed by a
space, then Escapes back out of insert
mode, goes to the end, and adds */.

Just like we said – ridiculously powerful.
And more fun than using dreaded regular
expressions. (PS: Turn to the inside back
cover of this very magazine for a great
cheat-sheet for Vim commands!)

Vim’s learning curve, jocularly depicted at http://tinyurl.com/nfbj3mv (“Why I use Vim” by Pascal
Precht). There’s a huge amount to learn at the start, but it all makes sense with time.

Vim learning curve

cli
m

bi
ng

 up

sliding down

LV003 018 Feature Power.indd 21 15/04/2014 12:09

FEATURE THE COMMAND LINE

www.linuxvoice.com22

Convert, resize, flip, crop and add captions to hundreds of images in seconds, thanks to ImageMagick.

“Image Magick is monumentally versatile and
supports over 100 different fi le formats.”

 THE COMMAND LINE THE COMMAND LINE THE COMMAND LINEFEATUREFEATURE THE COMMAND LINE THE COMMAND LINEFEATUREFEATURE

Better image editing
Huh? The CLI is good at editing pictures? Surely you can’t be serious…

I am serious, and don’t call me Shirley.
Yes, there are many cases where it’s
easier and faster to edit images at the

command line, rather than doing them in
pointy-click fashion via a graphical tool like
Gimp. This is especially true if you want to
perform editing or processing operations
on multiple fi les at the same time – in other
words, batch processing.

The suite of programs we’re using here is
ImageMagick, which you’ve probably heard
of if you’ve been on the Linux scene for a
while, because it has been in development
since the early 90s. ImageMagick is
monumentally versatile and supports over
100 different fi le formats – so it will handle
nigh-on anything you throw at it.

The most commonly used tool in
ImageMagick is convert, which works like
this example command:
convert image.png image.jpg
Pretty simple, right? This just makes a JPEG

version of the PNG fi le. Of course, when
you’re generating JPEGs you’ll often want to
alter the quality:
convert -quality 90 image.png image.jpg

Resizing is possible as well. The fi rst
command here specifi es a percentage of
the original size, while the second uses
exact dimensions:
convert -resize 75% image.png image.jpg
convert -resize 300x300 image.png image.jpg

Don’t be so square
Something interesting happens with the
second command, and it’s to do with aspect
ratios. If the source image isn’t a square,
the resulting image will be 300 pixels wide
and however many pixels tall to match the
original aspect ratio. If you want to force the
image to be 300 x 300 pixels and ignore the
aspect ratio, add blackslash-exclamation to
the dimensions, like so:
convert -resize 300x300\! image.png image.jpg

Along with fi le format conversions and
resizing, another common job is to crop an
image – that is, only save a portion of the
original. This is fairly straightforward too:
convert -crop 250x100+20+40 image.png image.jpg

This takes a 250-pixel-wide and 100-pixel-
high chunk of the original picture, from 20
pixels across and 40 pixels down, and saves
it into image.jpg. For crop operations you
might not want to convert the fi le – instead,
you just want to overwrite the original.
You can do this by changing the convert
command to mogrify and omitting the
destination fi le:
mogrify -crop 250x100+20+40 image.png

Another useful option is rotate, which
takes the amount of degrees (clockwise):
mogrify -rotate 90 image.png

Lightning fast batch jobs
So far so good, but these commands aren’t
much quicker than doing the same jobs in
a graphical editor. But! When we add some
command line scripting into the mix, it all
becomes a lot more effi cient. Say you have
200 .png fi les in the current directory, and
you want to shrink them all to 50% of their
original sizes:
for f in *.png; do mogrify -resize 50% $f; done

Here we create a loop, saying that for
every fi le in the current directory that has
a .png extension, we perform a mogrify
operation on that fi le (the fi lename is
contained within the $f variable).

What about if you want to convert all
the PNGs to a different format? You could
do this:
for f in *.png; do convert $f $f.jpg; done
But the resulting fi lenames are a bit ugly
here – foo.png becomes foo.png.jpg, blah.
png becomes blah.png.jpg, and so forth.
However, using a command line trick called
parameter substitution, we can remove the
.png from the destination fi lenames:
for f in *.png; do convert $f ${f%.png}.jpg; done

Here, the ${f%.png}.jpg bit does the clever
work, removing .png and then adding .jpg
on to the fi lename stem. (You can also use
mogrify to convert images and replace their
extensions, but it’s worth knowing these
tricks for the future.)

So, with the convert tool and some
command line scripting, you can do

LV003 018 Feature Power.indd 22 15/04/2014 12:09

THE COMMAND LINE FEATURE

www.linuxvoice.com 23

Better calculating

Doing calculations at the command line makes much more sense than clicking
loads of little buttons, over and over and over. With Qalc, part of the Qulculator
suite (which also includes GUI tools) you can do some very funky stuff. On
Debian/Ubuntu/Mint-based systems, grab the command line tool with sudo
apt-get install qalc. The program’s manual page is disappointingly small, and
there’s little else in the way of documentation, so the best way to learn it is via
examples. Like so:
qalc “((78*30)+(13*19))/2”

Fair enough, that’s a normal calculation. But Qalc is capable of a lot more:
qalc “addDays(2014-06-18, 50)”

This asks Qalc to perform its internal addDays routine - you can guess what
that does. In our case, we tell it to add 50 days onto the 18th of June, and it
spits out the result:
addDays(“2014-06-18”, 50) = “2014-08-07”
When you fi rst run Qalc it downloads exchange rate information from the
internet, so you can do:
qalc “500 EUR to GBP”

The program also understands lots of other units and conversions:
qalc “1300 feet to metres”
qalc “70 mph to kmh”

It’s especially useful for doing bandwidth calculations:
qalc “10Gibyte / 300(Kibyte/second) to hours”
This tells us how many hours it will take to download 10GB at 300k/sec. Qalc’s
data fi les are stored in the /usr/share/qalculate/ directory, so it’s well worth
having a nosey in there to see what other units are supported. You can even do
calculations with planets and atomic elements…

conversion, resizing and cropping jobs on
hundreds of images in a matter of seconds.
If you had to do all the alterations by hand,
it’d take hours or even days. ImageMagick
has more cunning features though, so let’s
take a closer look.

If you’re working with batches of photos,
you’ll often need to correct their brightness
and contrast settings. The convert and

mogrify tools have an option for this:
mogrify -brightness-contrast 20x-30 image.jpg

This improves the brightness of the
image by 20%, and reduces the contrast by
30%. Again, you could include this mogrify
command in a ‘for’ loop as discussed earlier,
to fi x hundreds of images at once.

ImageMagick is packed full of fi lters, such
as blurring:

mogrify -blur 5x2 image.jpg
The fi rst number here is the radius, while the
second is the sigma (the actual amount of
blurring). Try playing around with different
values. You may not think it, but you can
even turn pictures into charcoal drawings
with a single command:
mogrify -charcoal 5 image.jpg
Another tool included in ImageMagick is
montage, which creates a single image from
a bunch of images. It’s also useful for adding
captions onto images, like so:
montage -label “My caption” image.jpg -geometry
+0+0 -pointsize 30 newimage.jpg
This adds the words “My caption” in 30 point
font to the bottom of the picture, without
resizing the picture (hence the +0+0), and
writes out the result to newimage.jpg.

Command-line line drawing
One of ImageMagick’s most powerful
features is its set of drawing commands.
You can add all kinds of shapes to images
via the command line, which is also useful
when you’re doing batch processing jobs
and want to add labels or diagrams to
individual images. Take a look at this simple
example:
mogrify -fi ll white -stroke black -draw “rectangle
30,10 200,100” fi le.png

This creates a white rectangle with a
1-pixel black border, 200 pixels wide and 100
pixels tall, and places it at 30 pixels across
and 10 pixels down on fi le.png. Many other
options are available for drawing circles,
polygons and Bézier curves – see the
full list at www.imagemagick.org/script/
command-line-options.php.

Use shellpic (https://github.com/larsjsol/shellpic) to view images in the terminal – handy if
you’re SSHed into a remote server and want a quick preview of an image fi le.

Qalc is part
of Qalculate,
a bigger suite
of tools that
include fancy
GUI front-
ends.

LV003 018 Feature Power.indd 23 15/04/2014 12:09

FEATURE THE COMMAND LINE

www.linuxvoice.com24

you’ll see keyboard shortcuts displayed at
the top of the screen.

Interestingly, Mutt doesn’t include its own
editor; instead, it uses one already installed
on your system. So if you reply to a mail (or
hit m in the message list to create a new
mail), you’ll be thrown into Vim by default.
But you can change the editor in your ~/.
muttrc like so:
set editor=”nano”

(Or you could change that to “emacs”, or
even “gedit” if you need some GUI love.)

Macho macros
So Mutt is great: it’s lightning fast, looks
good, and has loads of keyboard shortcuts
so you don’t have to mess around with the
mouse. But it has some brilliant advanced
features too. Instead of using / to search, hit
L and then type a word. This is the “limit”
command, and it narrows down the
displayed messages to match your
specifi cations. You can set some very
specifi c limits:
~N|~d<7d

The Mutt email client makes decent use of colour in the terminal, and like everything in this
venerable application, these colours are highly confi gurable.

This tells Mutt to display only new
messages (~N) or messages less than 7
days old (~d<7d). The pipe (|) character is
used in the middle to create the “or” part.
To switch back to the full message list, hit L
and then type all. (Mutt’s documentation has
a detailed list of all the options – see
http://tinyurl.com/yzwbrur.)

Additionally, Mutt has excellent support
for macros – that is, pre-determined
sequences of actions. For instance, in the
message composition view, after you’ve
entered the text in your editor and Mutt is
asking if you’re ready to send, you can hit the
A key to attach a fi le. Enter a fi lename, hit
Enter, and the fi le will be attached. But you
could create a macro for this in your .muttrc:
macro compose \cb ‘<attach-fi le>fi le.txt<enter>’

This means: in the compose view, if the
user hits Ctrl+B, the attach-fi le command
will be executed. The word fi le.txt is inserted
automatically, and a virtual Enter key is
pressed. So Ctrl+B now does the whole
action at once – useful if you frequently
attach the same fi le to a message.

This is just one example; Mutt supports
hundreds of functions that you can use in
your macros, and really speed up your
day-to-day work. See http://tinyurl.
com/677feer for the full list.

“Mutt has loads of keyboard shortcuts, so you don’t
have to mess around with the mouse.”

 THE COMMAND LINE THE COMMAND LINE THE COMMAND LINEFEATUREFEATURE THE COMMAND LINE THE COMMAND LINEFEATUREFEATURE

Better email
“All mail clients suck. This one just sucks less.” This is the motto for Mutt…

G iven that most emails are plain text,
you don’t lose much by switching
from a GUI to a CLI mail client. And

indeed you gain a lot more, especially if you
choose a client like Mutt. Like many of the
programs we’ve covered in this feature, Mutt
has been around for most of Linux’s history
– its fi rst release was in 1995. And although
it might look old-fashioned and complicated,
in the right hands it’s a superb program, and
it’s available in almost every distribution’s
package repositories.

Before starting Mutt for the fi rst time,
you’ll need to create a .muttrc fi le in your
home directory. This contains the program’s
settings, and an example for connecting to
an IMAP server (with SMTP for sending) is:
set spoolfi le=”imaps://user:password@server.com/
Inbox”
set folder=”imaps://server.com/Inbox”
set smtp_url=”smtp://user:password@server.com:25”
set ssl_starttls=yes
set from=”name@domain.com”
set use_from=yes
set record=”=Sent”
set postponed=”=Drafts”
Change user, server.com, name and domain.
com here to match your mail server settings.
If you access your mail via POP3, see the
relevant section of the Mutt documentation
at http://tinyurl.com/64j7tzp.

Now enter mutt to start the program, and
it’ll retrieve the headers for your emails. Right
away you can see that Mutt does a decent
job given the limits of text mode: it uses
colours and highlighting effectively, and even
displays threaded conversations via red
arrow symbols.

To select a message, use the up and
down cursor keys (or J and K in proper Vi
fashion) and then hit Enter. The mail
contents will be displayed – hit D to delete
the mail, R to reply, and I to go back to the
message list. Use / (forward slash) and
enter a word to search for a mail, and N to
repeat the search. In the main list view,
tapping Q quits the program and returns you
to the command line. And in most views,

LV003 018 Feature Power.indd 24 15/04/2014 12:09

THE COMMAND LINE FEATURE

www.linuxvoice.com 25

tried it, you’ll never go back to using plain old
top again.

After all of the command line goodness of
the last seven pages, wouldn’t it be great if
you could record your favourite tricks and
share them with others? You could use
some screen recording software and upload
the results to YouTube, but a more elegant
solution is Asciinema (www.asciinema.org).
You can get it on Debian/Ubuntu like so:
sudo apt-get install python-pip

A sprinkling of ASCII art provides an at-a-glance overview of network activity in Slurm.

Htop is a process monitor like the standard ‘top’
command, but literally a jillion times better.

sudo pip install --upgrade asciinema
(The package might have another name
than python-pip in other distros.) Now enter
asciinema rec, do some work, and type exit
when you’re done. Asciinema will offer to
automatically upload the recording of your
session to its website, and provide you with
an URL you can then share with others. For
instance, here’s a recording of us
demonstrating the mighty power of Figlet:
http://asciinema.org/a/8746

Better downloads

The download dialogs included in web browsers
are very limited, and although more featureful
standalone GUI alternatives exist, sometimes it’s
best to go straight to the CLI. Aria2 is arguably
the best command line download manager in
existence, supporting a gigantic range of features
and options. For instance, say you want to grab an
ISO image that’s hosted on two servers, and they’re
both rather slow:
aria2c -s2 http://foo.com/blah.iso http://another.
com/blah.iso

Here Aria2 downloads one half of the fi le from
foo.com, and the other half from another.com,
simultaneously, so you get the fi le much more
quickly than you would using a single connection
to one server.

It’s possible to limit download speeds, so adding
--max-download-limit=100K to the command line
will restrict Aria2 to using 100KB/second of your
bandwidth. And you can even tell it to give up if a
connection becomes too slow:
--lowest-speed-limit=10K

(So if the bandwidth drops to less than 10KB/
sec, Aria2 quits.) Other useful options include
--on-download-complete=command, which
automatically performs a command after a fi le has
been downloaded. There’s also the --on-download-
error argument, which is handy for dealing with
connection failures.

See Aria2’s website at http://aria2.sf.net for
the full documentation – it’s immensely powerful
when you include it in Bash scripts.

THE COMMAND LINE THE COMMAND LINE THE COMMAND LINE THE COMMAND LINE FEATUREFEATURETHE COMMAND LINE FEATURE

Better administration
Keep tabs on your Linux boxes, wherever in the world they are.

I t goes without saying that the command
line is the best way to administer a Linux
box. Sure, there are some decent GUI

tools, but if you’re working with mail, web or
database servers, chances are they don’t
have anything graphical installed and you’re
logged in via SSH. Or even on your desktop
Linux box, if X goes down you’ll need some
way to fi x and monitor things.

Slurm (https://github.com/mattthias/
slurm) is a great little network bandwidth
monitor. Start it by providing the name of a
network interface, eg:
slurm -i eth1

If you don’t know the name of the network
interface(s) on your Linux box, enter ifconfi g
for a list. Slurm displays textual information
about the current data send and receive
rates, along with the total number of
transmitted packets and megabytes. It also
shows a colourful graph of bandwidth using
ASCII characters – so if you’re administering
multiple machines, you can leave it running
in an SSH session on one, and quickly check
it to see if it’s being maxed out.

Monitor machine activity
Htop (http://htop.sf.net), meanwhile, is a
souped-up version of the top utility. Like top,
it displays information about currently
running processes, but with much more flair
and interactivity. As the program is running,
hit F4 to fi lter processes based on name
– or hit F5 to switch to a tree view, so you
can see which processes were launched by
other ones.

A series of bar charts at the top shows the
current usage of your RAM banks and CPU
cores, and you can hit F2 to confi gure
various settings in the program. Once you’ve

LV003 018 Feature Power.indd 25 15/04/2014 12:09

www.linuxvoice.com26

F ifteen years ago, buying a Linux computer was
a challenge. Back then, few people had heard of
it, and even fewer knew what installing it

entailed. The web was
still in its youth, internet
shopping wasn’t as
popular as it now is,
Linux still came in boxed
sets and hardware
support was patchy.

There hasn’t been a single watershed moment, but
things have gradually improved. We went undercover
to fi nd out how much things have changed.

Since the world isn’t yet fully digital, we started by
visiting the local shopping complex to see if we could

get any help there. The only major computer chain left
in the UK is PC World, so we wandered in and started
poking around at PCs until one of the sales staff

approached us.
“Hello there, do you

need any help?”
“Yes, I was

wondering if you had
any machines that
ran Linux.”

“Oh, um, hang on, I’ll just go and ask someone.”
At this point, the sales assistant (a young man in his

mid twenties) scampered off to the support area
where a group of similarly aged young men poked
around at the innards of computers. A few minutes

Can you buy a Linux computer on the high street?
Ben Everard investigates.

LINUX
COMPUTER

BUYING A

“We wandered into PC World and
poked around at PCs until one of
the sales staff approached.”

LV003 026 Feature Shopping.indd 26 15/04/2014 12:10

BUYING A LINUX COMPUTER FEATURE

www.linuxvoice.com 27

later he came back with the information that we were
looking for.

“Any of these computers will run Linux, but you
might not get all of the features of the hardware on
some of them. The best thing to do is have a look
online to see which manufacturers have the best
Linux support, and go with that. You’ll also have to
install Linux yourself.”

“Is that diffi cult?”
“Very. I wouldn’t do it myself. In fact, there’s only one

person in the store I’d trust to do it.”
This was a bit of an overstatement. Installing a

modern distro shouldn’t be too much of a headache
as long as your hardware is supported, but the rest of
the information I’d received was pretty good.

Bare-bones option
“Is it possible to get one of these machines without
Windows? I don’t really want to pay for it if I’m not
going to use it.”

“We do bare-bones computers without operating
systems, but we don’t have them in store. They’re only
on the website. I can show you…”

We went over to one of the Windows machines and
he pointed the web browser to the PC World website,
but there was a problem with the internet connection.
We continued chatting for a bit.

“Do many people come in asking for Linux?”
“Not many, but a few do. We get a lot of people

asking about alternative operating systems.”
“What do they want?”
“Anything other than Windows 8.”
“What do they get?”
“Windows 8. It’s the only option.”
We left it there, and went on our way. We looked up

the bare bones PCs on the PC World website back in
the offi ce. There are only four options listed, and of
these, just one is available for sale (a low-end desktop
for £209). Not particularly impressive since PC World
has 50 Windows PCs.

Second-hand computers
Unless you need cutting-edge performance, a second-hand
machine can also be a good choice. The majority of second-
hand machines are old corporate laptops by HP, Dell or
Lenovo. There are some great bargains to be had, especially
if battery life isn’t critical to you.

Perhaps the best thing is that these slightly older laptops
have been tried and tested with Linux for a few years, so it’s
easy to fi nd out what’s compatible with Linux. A quick web
search should bring up what works and what doesn’t on a
particular make and model.

Some companies sell refurbished computers with Linux
installed, and one of these that deserves a particular
mention is gluglug.co.uk. It sells refurbished ThinkPad
laptops with Linux installed, but not only that, it flashes the
fi rmware with Libreboot, so the laptop has no proprietary
software on it. It’s the fi rst (and at the time of writing, only)
computer vendor to earn the Free Software Foundation’s
‘Respects Your Freedoms’ certifi cation. Laptops start at
£168 including shipping to Europe, USA or Canada.

PC World in Gloucester. It’s
not glamorous and they
don’t sell Linux computers,
but the staff there did offer
some useful advice.

27

BUYING

A LINUX

COMPUTER

SALE!

SALE!

PC World may be the last of the major PC retailers
in the UK, but it’s not the only place to get computer
parts. The next stop on my shopping trip was Maplin.
This is an electronics retailer that sells everything
from remote control cars to transistors, and it has
been a major retailer of the Raspberry Pi. Maplin
doesn’t sell assembled PCs, but it does have ‘bundles’,
which include motherboard, processor, memory, hard
drive, etc. Essentially, a flat-packed computer. Perhaps
they’ll guide us to a Linux desktop.

Again, we waited to be approached.
“Can I help you?”
“Yes. I’m hoping to build a Linux computer, and I

was wondering if you knew which components would
work best.”

“Ah. Umm. I don’t actually know too much about
Linux. Hmmm. Let’s go and ask the manager. He
knows a lot about most things”

“This gentleman wants to build a Linux computer.
Do you know parts he should use?”

“All the parts we have should work under Linux, but
the drivers for some of them might not be as good as
the Windows ones. It’s been a few years since I last
used Linux, so I don’t know what’s best. There’s loads
of advice on the internet. If you do a search, you
should fi nd some forums where people can give you
better advice than I can.”

So far this was almost identical to our experience at
PC World, though the chap in the shop did suggest
that we should be able to install Linux “easily enough”.
It would be nice to have people more knowledgeable
about Linux in shops, but the advice they were giving
was actually pretty good.

Heading online
Of course, fewer and fewer of us do our shopping in
real shops any more, so we decided to see what the
state of the online Linux computer market place is
now. If you’re in the US, ZaReason and System76 both

LV003 026 Feature Shopping.indd 27 15/04/2014 12:10

www.linuxvoice.com28

Intel has been pushing smaller computers with its
Next Unit of Computing (NUC). With motherboards
measuring just 4 x 4 inches, these almost fit into the
palm of your hand, yet can be kitted out with a spec
that would put many desktops to shame.

From a Linux user’s perspective, there are two great
things about the NUC: it uses Intel hardware, so is well
supported, and operating systems cost extra. This
last point is good because it makes people see the
cost of having Windows installed on their computer,
and it means that you don’t have to pay for Windows
if you don’t want it.

Intel was far from the first company to make
computers in this form factor though. There have
been small home servers for several years, and even
computing heavyweights such as Apple (the Mini)
built little computers.

Mint machines
Embedded PC makers Compulab teamed up with
Linux Mint to create the Mint Box, a small fanless PC.
It’s been available in America for some time, but has
only just launched in Europe. This would be another
great option for Linux users this side of the Atlantic,
except it was such a good option that it promptly sold
out. The Mint team assure us that more units are on
their way, so should be for sale (on Amazon.de and
possibly Amazon.co.uk) by the time you read this.

These smaller computers make great Linux boxes.
The one major downside to the form factor is that
they’re not as upgradeable as traditional ATX
machines. You usually have some ability to put in
more memory, or replace the hard drives, but typically
not the processor. Whether or not this is a problem
really depends on you. Here at Linux Voice Mansions,
we can’t remember the last time we upgraded a CPU,
so are inclined to say it’s not an issue. However, other
people may feel differently.

There’s a special type of small form-factor
computer that’s been around for a long time – the
games console. While Linux has run on some of them,
none of the previous ones could have been called
Linux Friendly. All this is about to change with the
anticipated launch of SteamBoxes later in 2014.

This has excited gamers of all OS persuasions, but
it could also be of interest to Linux computer

Three of the four ‘No OS’ computers from PC World are
not available. Perhaps they’re sold out because all the
other computers run Windows 8.

Most NUC sellers offer
Windows as an option
rather than installing it
as standard. Is this a sign
that the once powerful
Windows-Intel alliance is
faltering?

“On Amazon, the top three best-
selling laptops all run Linux, in
the form of ChromeOS.”

build computers specifically for Linux, so you can be
sure that the hardware will be well supported.
Unfortunately for us this side of the pond, ZaReason
doesn’t ship across the Atlantic, though it has
promised us a UK store soon. System76 does ship
internationally, though the shipping costs and import
duty add to the bill, and not everyone is happy about
ordering expensive items like computers
internationally, as it complicates the returns process if
anything goes wrong.

There aren’t any specialist Linux vendors in the UK,
but we do have a few companies that custom build
computers, such as pcspecialist.co.uk and
cyberpowersystems.co.uk. While these won’t ensure
your system is fully compatible with Linux, or even
install Linux for you, they do enable you to select
everything that goes into your computer so that you
can make sure that everything’s Linux compatible.

Perhaps a little surprisingly, the desktop PC niche is
the hardest computing market in which to find Linux
support. On Amazon, the top three best-selling laptops
all run Linux. They’re running it in the form of

ChromeOS rather than
a more traditional
GNU/Linux system, but
from a hardware
perspective this isn’t a
problem, because it
means that all of the

hardware will work with the kernel, so will work with
other distributions as well, and there are a few
projects – such as Crouton – that make installing
Linux on Chromebooks easy.

The flexibility of Linux makes it a great system for
building non-desktop, or slightly unusual desktop
hardware. In the last few years, we’ve seen plenty of
new takes on computing where manufacturers have
created something a little different from a traditional
desktop or laptop computer. More often than not,
these computers have either run Linux exclusively, or
supported it as an option. Closed source systems
can’t hope to have the same level of flexibility as open
source ones, and this flexibility is essential when
designing things that don’t fit into traditional modes of
computing.

LV003 026 Feature Shopping.indd 28 15/04/2014 12:10

BUYING A LINUX COMPUTER FEATURE

www.linuxvoice.com 29

shoppers. After all, SteamOS is built on Debian, so
anything that works with SteamOS should also work
with other Linuxes (at this stage, we use the word
‘should’ because it’s still possible that Valve will do
something to stop this working – though this seems
unlikely). There is really no difference between a
SteamBox and a PC except the form-factor. There still
aren’t many hard details on the specifi cations of the
SteamBoxes, but several of the ones announced have
been listed as having confi gurable hardware. We’ll
have to wait to see exactly what this means, but it
looks like it could soon be another excellent option for
buying a computer that’s guaranteed to work with
Linux regardless of whether you want to use it as a
games console.

Perhaps the most famous small computers haven’t
been high-powered x86 machines, but lower-powered
ARM ones. The Raspberry Pi is an obvious example,
but it’s not alone in this category. The Udoo (reviewed
on page 53) and the Cubie board are just two more of
an ever-growing range. Almost without exception,

Open hardware

Some people like the flexibility of using Linux; some
people like the concept of open source software;
and some people like freedom. For these latter
people, free software is only part of the solution. In
a truly free computer, both the hardware and the
software should be free. This not only means no
binary drivers, but also that the full schematics of
the computer should be available too. This way, the
user has the same freedoms with the hardware that
they have with free software.

Perhaps the biggest success story of open
hardware is the Arduino microcontroller board.
While these are several orders of magnitude less
complex than PCs, their success shows the power
of the idea. Because they combine open hardware
and open software, people have been able to take
the idea and convert it into new boards.

Back in 2012, Bunnie Huang set out to build a
laptop based on the same principals. He aimed for a

working computer built from plans that anyone
could download and copy. These plans include
everything from the mainboard upwards. Early in
2014, he showed off the laptop in a working state.
He plans to launch a crowdfunding campaign for
people looking for a similar computer this year.

Bunnie’s laptop is impressive, but it doesn’t go all
the way to truly free hardware, since it still relies on
commercial chips with closed designs.

It might seem crazy to try to design an open
source chip, especially one as complex as a CPU.
Perhaps it is crazy, but that hasn’t stopped people
from doing it. The OpenRISC 1000 is an open
source CPU written in Verilog. Verilog is a hardware
description language that can be loaded onto Field
Programmable Gate Arrays (FPGAs).

The OpenCore community, which developed
OpenRISC, is hoping to go one better and is
currently running a fundraiser to develop an

OpenRISC-based SoC and implement it in an
Application Specifi c Integrated Circuit (ASIC). This,
for the fi rst time, will mean you can buy a
completely open source board that will run Linux.
See www.opencores.org/donation for more details.

We have no idea what this is, but it’s part of
the schematic for Bunnie’s laptop.

While they don’t have the raw processing power of x86,
ARM chips are getting more powerful and are starting to
become an option for desktop computing.

29

BUYING A LINUXCOMPUTER

SALE!

SALE!

“In the modern world, it’s the
PC shops that are struggling to
keep up, not Linux.”

these run Linux (either a traditional desktop, or
Android). There really isn’t a credible alternative OS for
small ARM boards. The disadvantage here, though, is
that the hardware isn’t as standardised as it is on x86
systems, so just because it runs one version of Linux,
you can’t be sure it’ll run another. This is why, for
example, you can run
Ubuntu on the Udoo,
but not the Raspberry
Pi, and vice versa with
Raspbian. It’s also why
you can’t easily replace
Android with desktop
Linux on most devices.

Welcome to the new reality
While it can sometimes be a little depressing to walk
into a PC shop and see Windows machines all around
you, the truth is that, in the modern world, it’s these PC
shops that are struggling to keep up, not Linux. If we
really are moving into a post-PC world, then it’s a world
that Linux is poised to dominate. No other OS has the
depth of hardware support and flexibility to enable it to
run on so many different devices. It could be Android
on embedded devices, an XBMC system running on a
Home Theatre PC (HTPC), or an NUC that dual-boots
SteamOS and desktop Linux. It’s hard to see any other
OS catching up to the lead Linux has when you look
across all these computing platforms.

This writer, though, is highly sceptical of the term
‘post-PC world’. It seems that the new devices that are
coming out almost every day aren’t replacing PCs and
laptops, but supplementing them. If this is the case,
Linux support is bound to increase as more of the
non-PC computing devices use Linux, but it’ll take
a long time to supplant Microsoft on the desktop.

Whatever happens in the future, right now is a
 great time to buy a new Linux computer, and
it’s only likely to get better in the future.

LV003 026 Feature Shopping.indd 29 15/04/2014 12:10

FEATURE FSF EUROPE

www.linuxvoice.com30

Ever since FSFE was founded in 2001, creating
public awareness for Free Software has been
at the heart of what we do. Today, there are

more groups than ever before that really understand
Free Software, and that are working to promote it. We
talk to a lot of different audiences: developers, public
sector people, businessfolks, students, police, church
groups, and even the military – basically, we’ll go
anywhere where people need to hear about Free
Software. And on most of those occasions, we still
need to start off by explaining what Free Software is
and why it matters.”

These are the words of Karsten Gerloff in his reply
to a question about how you measure the success of
the Free Software Foundation, and more specifically,
its European counterpart, the FSFE.

“Being able to reach all these audiences is a huge
success. Seeing all the groups that have sprung up to
promote Free Software in their specific environment is
very satisfying. But there is so much left to do.”

In the beginning…
Richard Stallman has done many great things.
Without him, there’d be no GNU, no GPL and no
Emacs, and arguably, no Linux in the way that we
know it. If the free software ecosystem existed
without RMS, it wouldn’t be half as effective without

his idealism, insight and intelligence. Which is why,
among those other accomplishments, he also
founded the Free Software Foundation in early
October 1985, just as Dire Straits’ Money for Nothing
was to lose its reign at the top of the US singles chart.

But what many people don’t realise is that there are
several sister organisations to the Free Software
Foundation, including the Free Software Foundation
Europe – or FSFE, as it’s better known. FSFE is far
more than a local mirror for the US-based FSF. It’s
been a significant third party in the European Union’s
antitrust case against Microsoft by helping to put the
case forward that competition in the file/print server
market (thanks to Samba) is essential. At the end of
March, the foundation also published an open letter to
the EU Parliament and the European Commission
asking for the support of open standards.

We had a chance to speak to Karsten Gerloff and
Matthias Kirschner, President and Vice President of
the Free Software Foundation Europe, about the
European branch of their organisation, and Sam Tuke,
its Campaign Manager, who writes a great report on
this year’s Document Freedom Day over the page.

First, we asked whether there are any policy
differences between the FSF and the FSF Europe. .

“No”, answered Karsten, “We share the goal of
promoting Free Software, and do so by similar means.”

We discover what this bastion of digital
rights in Europe is doing for all of us.

FREE SOFTWARE
FOUNDATION: EUROPE

“

LV003 030 Feature FSF Europe.indd 30 15/04/2014 12:10

FSF EUROPE FEATURE

www.linuxvoice.com 31

For us, that begs the question of why a European-
centric FSF is important.

 “Being based and rooted in a specifi c region, in our
case in Europe, makes it easier to be effective as
advocates, by adapting to the local cultures and
circumstances.”

Shared goals
“We frequently work together [with the FSF, FSF India
and FSF Latin America] to come up with shared
approaches to fundamental issues. These internal
discussions tend to be very thorough, and quite
productive. In organisational terms, however, all FSFs
are fully independent of each other. FSFE has its own
legal entity, employees, independent governance
structure, and raises its own funds.”

Raising your own funding under the umbrella of a
perhaps more widely known organisation must be a
diffi cult task. We wanted to know how you measure
the success of the FSFE, rather than the wider
organisation, to be able to attract funding.

“That’s a tough call to make. We have had a lot of
success in all three areas!” Karsten told us.

“In the legal fi eld, FSFE has achieved something
unique. Through eight years of careful work, we have
built the world’s largest network of legal experts on
Free Software. There are currently over 340 lawyers
and engineers in this group,
including many of the
very best people in the fi eld.
They are helping each other
learn more about Free
Software and about how
their respective companies
and organisations are using it, and remove fear,
uncertainty, and doubt. This has given us a great set
of contacts to many of the companies that build Free
Software. For the companies, this exchange of

Income and expenses

Karsten Gerloff, protector
of Free Software and
President of FSFE.

Help the FSFE
We asked Karsten how best we the community might help.

“There are many different ways how people can
contribute to FSFE.” he told us.

“We have a page (http://fsfe.org/contribute/contribute.
en.html) that outlines most of them. If you’re passionate
about Free Software, and want to work with others who
care for the same thing as you, there will be a place for you.
One of the reasons FSFE is doing so well is that we try very
hard to identify each person’s speciality, and help them use
it for Free Software in the most effective way. In the UK
especially, we would love to get more local groups going,
with regular meetings and occasional events. People
who are interested should write to fellowship@fsfeurope.
org, or simply contact anyone they know in FSFE!

2012
INCOME
Donations €197,420.59
Fellowship/membership contribs €106,411.08
Paid services €26,036.85
Merchandise €13,493.84
Interest/currency exchange gains €15.16
Total €343,377.52

EXPENDITURE
Basic infrastructure costs €92,830.45
Public awareness €96,626.77
Fellowship €47,411.87
Legal work €69,877.86
Policy work €50,158.26
Merchandise €14,262.61
Total €371,167.82

“We have built the world’s
largest network of legal
experts on Free Software.”

LV003 030 Feature FSF Europe.indd 31 15/04/2014 12:10

FEATURE FSF EUROPE

www.linuxvoice.com32

Balloons litter the floor, cream smeared plates
pile high on tressel tables, beside which the
crowd of participants fi le out of the auditorium

door. “Give us a chance – choose Open Standards”
reads the Spanish posters adorning the walls, and a
typical Document Freedom Day event ends.

An animated band of students and professors have
been debating the video fi les that Grenada University
uses for publishing research in Southern Spain.
They’ve been here all afternoon, and in a few hours
their pictures will join hundreds of others that have
been streaming out of cafes, lecture halls and
hackerspaces around the world the last 24 hours.

Freedom to read, write, and create requires freedom of formats, writes Sam Tuke.
Here’s how one campaign brought open standards to 51 locations in 22 countries.

Document Freedom Day 2014

As well as baking cakes,
volunteers took the word
of document freedom out
into the streets.

www.linuxvoice.com

knowledge means that they better understand
their obligations when using Free Software, leading to
fewer licence violations.”

“We have always invested a lot of time and effort in
policy work, whether it was about keeping software
patents out of Europe, helping the European
Commission to bring Microsoft to book for its
anti-competitive behaviour, promoting Open
Standards like ODF, or changing public procurement.
These issues often take many years to bring to a
conclusion -- that is, if they ever end. FSFE is one
of very few organisations, and almost the only one
specialising in Free Software, that has the skills and
resources to stay on the ball for as long as it takes.”

We love the way Karsten says “for as long as it
takes”, as we think that’s the vital component in the
FSF’s strategy – an unrelenting approach to Free
Software advocacy and adoption. You know it’s not
going to sell out or dilute its vision in the face of
commercial pressure. And that’s an important
differentiator between Free Software and other
development models. It’s channelling spirit of Stallman
through the foundation he created 30 years ago.

“When companies lose the fear of putting Free
Software into their products, and ideally give users the
possibility to change it on their devices, that is
success for us.” Karsten told us.

This is just as important today, now that Windows
XP is no longer supported, as it was when Microsoft
was more confrontational and the FSF was trying to
side-step the FUD being thrown. But times have
defi nitely changed.

“When the European Commission gives Microsoft a
record antitrust fi ne, along with a clear message that
their behaviour isn’t acceptable around here, that is
success for us,” Karsten began.

“When the UK government goes ahead and opts for
ODF as a default format for its documents, in the face
of fi erce resistance from the incumbent IT suppliers,
that is success for us. We don’t always get everything
we want. But often we’ll get most of what we push for.”

“The biggest challenge for the next 10 years will be
making sure that we can be in control of our own
computing. That’s really what a lot of the fi ghts we are
fi ghting today are about: Can you be trusted to control
your own computer?”

32

Document Freedom Day is when people celebrate
freedom from data format tyranny and the systems
that preserve it. On the last Wednesday of March
every year groups like GALPon in Granada University
(“Grupo de Amigos de Linux de Pontevedra”) take the
opportunity to run events that explain why these
freedoms are important, and share the knowledge and
tools necessary for citizens to take them back.

Some events are big, like the 300-attendee speech
at Istanbul Turkey. Some are small, like the group of
sixteen friends who discussed Open Document
Format (ODF) in Yuli Township, Taiwan. Others are run
by governments, like the Brazilian Federal Government
CISL Committee. And a few take place in schools, like
Maltepe Nezahat Aslan Ekşioğlu Primary in Istanbul.
All are organised at a local level by independent
community leaders.

Open as standard
While DFD is about people, events, and not a little
cake, many of the issues addressed are necessarily
technical. What you can do with a fi le once it’s been
saved depends on the format of the data inside. What
governs such formats are loosely called standards.
And similarly to software applications, some
standards protect freedoms while others prohibit
them. Unlike software however, generic licences like

LV003 030 Feature FSF Europe.indd 32 15/04/2014 12:10

FSF EUROPE FEATURE

www.linuxvoice.com 33

the GPL don’t exist for standards. The two serve
fundamentally different purposes, and what makes a
fi le format useful is more nuanced than what make
software free. For example ,the future development of
a standard can be just as important as its past. When
LibreOffi ce forked OpenOffi ce, the result was two
separate, independently useful applications. But if a
fork of their native fi le format, ODF, had also been
made, it would have been far less useful, as no other
applications would have been able to understand it.
Standards provide a platform of data compatibility
upon which software is built and competes.

So instead of a license, criteria are used to identify
freedom-respecting standards. The ones that pass
the test are “Open Standards”, and the rest are
“closed”. Some governments, including the European
Union, have their own defi nition. Document Freedom
Day uses FSFE’s fi ve-point version, and while the
variations are the subject of heated political debate,
most agree on core requirements that the standard
may be used by everyone, that technical details are
freely available, and that modifi cations to the standard
are set by an impartial group.

While the politics of fi le extensions may be
fascinating to power-users and freedom fi ghters,
getting the message to everyone else can be
challenging. Highlighting the importance of Open
Standards to mainstream society is a core goal of
Document Freedom Day, and talking direct is a fun
and effective way to achieve this.

In 2012 we raised eyebrows and headlines by
sending steel handcuffs to politicians and public
fi gures whose websites endorsed closed standards.
European Commission Vice President Neelie Kroes

All this year’s DFD
materials and source
code are hosted online
under copyleft licenses.
Recipes, origame,
certifi cate templates and
forms for claiming back
expenses are all in public
repositories.

even showed hers off during a keynote speech
(www.guardian.co.uk/technology/2012/
apr/19/digital-handcuffs-ec-vice-president).

Last year netizens reported popular
websites that used Adobe Flash instead of HTML5
technology for streaming video. Educational packs
were duly delivered to the appropriate webmasters,
together with a pair of blacked-out “plugin required”
glasses illustrating the downgraded experience of
users missing closed standard browser extensions.

In March, MEPs were challenged to reconsider
Parliamentary security when a panel of experts
debated surveillance in the European Parliament for
Document Freedom Day 2014, and on the same day
an open letter to EU Institutions confronted their
captivity to Microsoft.

My job as campaign manager is to empower local
people to serve their own communities. Our small
team in Berlin can’t be in 51 places at once, but our
network of freedom
fi ghters can. Nor could
we generate the
enormous creative
energy that marks the
campaign each year. A
monkey hitting a
typewriter infi nite times may fi nally write Shakespeare,
but it’s doubtful the otherwordly sounds produced in
last year’s DFD Zurich open audio jam could have
come from a centralised campaign.

And when getting involved can be so much fun, it’s
easy to ask others to participate, so why not run your
own event? Join us next year in the campaign for
document freedom!

“Highlighting the importance of
open standards to mainstream
society is a core goal of DFD.”

LV003 030 Feature FSF Europe.indd 33 15/04/2014 12:10

FEATURE OPENCORES: DIY CPUS

www.linuxvoice.com34

For some years (the need for a few binary blobs
in the kernel excepted) many readers have run
an entirely Free Software stack on their servers,

laptops, desktops, and even tablets and phones. But
at the silicon level it’s another story, with open source
hardware limited to a few embedded boards like the
Arduino. The good news is that not only are there
open source designs for CPUs and Systems-on-Chip
(SoC) nowadays, but that it’s not too hard to learn to
design and make your own. Indeed, there are projects
designed to get you started doing just this.

One such of these is OpenCores, which bills itself as
“the #1 community within open source hardware
IP-cores”, backing the claim with a statistic of more
than 200,000 registered users. It hosts projects
ranging from relatively simple UARTs (universal
asynchronous receiver/transmitter) and Ethernet
MAC (Media Access Control) LAN implementations
right up to the complexity of full OpenRISC chips.

That reference to “IP-cores”, rather than CPU cores
is an abbreviation for so-called “intellectual property”,
and is a telling reflection of the proprietary nature of

Designing and implementing your own CPU or System-on-Chip
brings benefits to thousands of researchers and forward-looking

businesses, and is being adopted by a growing number of
hobbyists. Richard Smedley finds freedom

in configurable silicon.

LV003 034 Feature OpenCores.indd 34 11/04/2014 18:37

OPENCORES: DIY CPUS FEATURE

www.linuxvoice.com 35

most work cast into silicon. The fast growth of
OpenCores shows that there’s enthusiasm and a
business need for a more open alternative. Naturally,
the opportunity that OpenRISC presents to gives
playing with the design of a full-blown modern
microprocessor makes OpenRISC useful in
universities, and the freedom to explore means
another field opened to hobbyists. But what’s really
driving development is a number of businesses taking
advantage of a flexible, cost-effective route to
specialist markets.

RISCing it
So, why pursue open CPU architecture, and why go
the RISC route? The latter question is the simplest to
answer. The case for RISC (Reduced Instruction Set
Computing) was well made by IBM researchers in the
late 1970s, and producers of the first RISC1 chip at
the Unversity of California, Berkeley 30 years ago.
Reducing the operation code instructions in silicon (by
a factor of 10 at the time), not only simplifies design
but frees up space for more registers and cache.
Efficient compiler design of the time took away the
need for most instruction operation code, and the
situation is unchanged today.

OpenRISC is a family of 32- and 64-bit processors
with optional floating point and vector processing
support. It’s a free, open source RISC architecture with
DSP (digital signal processor)features and a complete
set of free, open source software development tools,
libraries, operating systems and applications. The
reference design, the snappily titled OR1K (OpenRISC
1000) is implemented as OpenRISC 1200 (OR1200), a
synthesisable CPU core released under the GNU
Lesser General Public Licence (LGPL).

Writing your own design (for an OpenRISC chip)
consists of using a Hardware Description Language
(such as Verilog) to describe the chip at the most
basic level. Then comes synthesis – conversion to the

list of logic gates and connections used in your
chosen FPGA. This latest acronym is a Field
Programmable Gate Array, which is a kind of chip that
isn’t yet set in stone. One FPGA costs a lot more to
make than the equivalent processor, but the extra
flexibility means that if the design doesn’t work the
way you want it to, you can simply change it (that’s
the Field Programmable part).

Free as in almost
The netlist produced is a gate level description, which
then usually uses the chip manufacturer’s proprietary
software to produce the programmed FPGA. For
anyone wanting 100% Free and Open Source
hardware and design there doesn’t seem to be a way
around this at the moment. As Embecosm founder
and OpenCores stalwart Dr Jeremy Bennett told Linux
Voice: “The back-end tools are proprietary to the FPGA
manufacturers. Since these tools depend on intimate

Space RISC

Dr Jeremy Bennett of
Embecosm showing
the OpenRISC SoC
implementation on
FPGA at an Open Source
Hardware Users Group
meeting in 2011.

OpenCore has gone beyond earth-bound applications, after
students at San Jose State University – funded by NASA’s
Ames Research Center – designed a 1U satellite, TechEdSat,
to evaluate ÅAC Microtec’s implementation of OpenRISC, and
perform communications experiments.

The satellite, which was deployed from the International
Space Station in 2012, cost less than US$30,000 to build
thanks to the combination of OpenRISC and off-the-shelf
hardware selected to be rugged enough for space use.

According to engineers from ÅAC Microtec, the standard
OpenRISC design was modified with fault-tolerant features
and toolchain modifications invisible to the end-user software
as different from standard OpenRISC spec. The great thing
about using an open specification is that these modifications
have no barrier in terms of licensing or configuration
information, while the flexibility of FPGAs makes prototyping
quick and (relatively) easy.

At these prices it’s now conceivable that with savvy
sponsorship, even schools could launch a satellite with their
own custom CPU. However, don’t forget you can send a

Raspberry Pi to near-space from your school for 1% of this
cost, as David Akerman did when he launched his Pi and a
camera on a balloon into the skies over Berkshire.

OpenCores in space: the OpenRISC powered TechEdSat
is deployed from the International Space Station.

©
 2

01
1

An
dr

ew
 B

ac
k

LV003 034 Feature OpenCores.indd 35 11/04/2014 18:37

FEATURE OPENCORES: DIY CPUS

www.linuxvoice.com36

knowledge of the device, it is hard to see how there
could be a free and open source implementation,
unless the manufacturer chose to do so.”

Given the growth of understanding in the
advantages of open source methodology, this is not
an impossible wish. Meanwhile, we accept that we
live in an imperfect world, and continue to make it
better – or at least more interesting – to the best of
our abilities. At least the Linux-compatibility of the
tools is good.

Fabulous Fabless
Designing and fabricating semiconductors is an
expensive business. You don’t get many opportunities
to create prototypes of designs that have tens of
millions of transistors in them, and this has led to
notable bugs such as the Pentium FDIV bug, which
caused the processor to return incorrect results in
floating point calculations (Intel eventually had to

recall the chip, but not
before considerable
damage to its
reputation). With even
giants like Intel having
rationalised its range of
offerings in the last
decade to concentrate
resources on the most
profitable lines, OpenRisc
is a disruptive

technology, enabling semiconductor companies to
develop chips for embedded markets like network
devices, personal entertainment hardware, and niche
industrial applications – without having to spend
money on operating their own factories.

Much of the active development on OpenRISC
comes from companies like Swedish design house
ORSoC, which also sponsors the OpenRISC project

directly. Many other small companies make chips and
boards based on OR1K, including ÅAC Microtec,
which has had its product put into orbit. The fast
development offered by open hardware also makes it
great for larger companies playing in fast-moving
markets: Samsung ships OpenRISC chips in the
system-on-chips used in its digital TVs.

Any curious hacker or maker can experiment with
FPGAs and OpenRISC. Delving into chip design
enables you to grapple with all sorts of tasty problems
involving Fused Multiple Accumulator (FMAC)
arithmetic, bus design, and optimal register numbers.
If you’ve ever programmed at a low level, and cursed
the decisions made by chip designers at Intel, now is
your chance to show the world a better way!

Anyone wanting to join in the fun will find many
resources online, but also meetings and chances to
learn the process of programming your own FPGA
through the Open Source Hardware Users Group
(OSHUG), which conducts meetings in and around
London but also ventured north for last year’s Open
Source Hardware Camp at the Wuthering Bytes
festival in Hebden Bridge.

Open to all
Working with OpenCore designs is challenging but
rewarding. “Inexperienced users should be warned
that the OpenRISC processor is quite a difficult
processor,” warns Patrick Pelgrims of the Belgian De
Nayer Instituut, in his tutorial on designing and
implementing an OpenRISC-based embedded
system. But we don’t want that to put you off – the
reference design is a good place to start, and as with
learning programming through playing with existing,
working code, so with hardware.

We asked Dr Bennett about the difficulties involved.
He pointed out that it’s “a relatively simple and well
documented architecture. It has a pipeline (more
difficult), but only a five-stage pipeline in the standard

Browsing the hardware

While the idea of building your own CPU
appeals to many of us, perhaps you are
looking for a way of testing the waters
without all the kit. Sebastian Macke of
simulationcorner.net has written jor1k – the
JavaScript OpenRisc 1000 emulator –
which gives you the chance to try out open
hardware design in that most familiar and
comfortable environment, your web browser.

jor1k works with Firefox and Chrome,
though if running locally with the latter you
need to run the browser with the command
--disable-web-security.

The emulated OpenRISC CPU is around
1000 lines of code – a neat introduction to
emulation, the OpenRISC architecture, and
JavaScript programming all in one! It’s also a
handy sandbox to test OpenRISC ports, and
you could try modifying the emulator to test
out ideas for modifying OpenRISC away from
the standard implementation.

The project’s GitHub pages –
https://github.com/s-macke/jor1k/ – include
a wiki with useful and interesting notes on
some of the JavaScript optimisations used
in the code, as well as speed differences
between browsers and a list of the many
demonstrations available in the Linux image
on the emulator.

If your emulated OpenRISC goes wrong
you can just scrap it and start again.

Inside the OpenRisc 1200 CPU – configuration at the
silicon level, with Free and Open Source Hardware.

“It is well within the grasp of
a competent hobbyist. And of
course modifying an existing
design is always easier than
designing one from scratch!”
Dr Jeremy Bennett.

OR1200 CP

Optional/Configurable Minimal Configurable

Instr.
MMU

Instr.
Cache

Wishbone
I/F

Timer

Power
Mgmt.

Debug I/F

Interrupts

Wishbone
I/F

Data
Cache

D

S

P

Data
MMU

Fetch

Decode

Execute

Memory

Writeback

LV003 034 Feature OpenCores.indd 36 11/04/2014 18:37

OPENCORES: DIY CPUS FEATURE

www.linuxvoice.com 37

implementation (so not that difficult).” He summed it
up as: “more complicated than some, but a lot less
complicated than many. The bottom line is that
processor design is not trivial. On the other hand it is
well within the grasp of a competent hobbyist. And of
course modifying an existing design is always easier
than designing one from scratch!”

Chip Hack & getting involved
OSHUG runs an annual event called Chip Hack, which
is a weekend of learning to create embedded
hardware, building and making, and taking home your
own OpenRISC SoC:

If you can’t get to Chip Hack you can still give it a try
yourself: you could use a browser-based emulator to
explore OpenRISC (see boxout, above-left), but getting
the toolchain installed on your PC to get started can
be as simple as:
$ git clone git://openrisc.net/jonas/toolchain
$ cd toolchain
$ git submodule update --init
$ make -j3 PREFIX=~/openrisc/toolchain
$ export PATH=PREFIX=~/openrisc/toolchain/bin;$PATH
For an optimum make -j value, double your number of
CPU cores, and add one. The destination directory can
be anywhere you have permission to put it. After
setting up your cross-compile environment and
building a Linux kernel (see http://openrisc.net/

toolchain-build.html) you can test-run your OpenRISC
environment in a VM with:
or1ksim -f arch/openrisc/or1ksim.cfg vmlinux

Next, you’ll need an FPGA development board. This
year’s Chip Hack event will use the DE0-Nano board,
but there are plenty of others listed on the OpenCores.
org website, including some recent developments. As
noted earlier, you will need proprietary Quartus
software from Altera installed to turn the Verilog HDL
file into something that can be loaded onto the FPGA.
Before that you’ll need the Verilog file itself – the
OpenRISC site has an OpenRISC Reference Platform
System-on-Chip in the flavour you need.

Environmentally friendly
Low power consumption has always been an
important selling point for RISC chips, enabling them
to quietly conquer the embedded space in the 1990s,
and thus be the big winners in the rise of the mobile
device. Given the huge power consumption of data
centres on a worldwide scale, it’s no surprise to find
OpenCore developers at UK-based Embecosm, which
did much of the work on GCC and the GNU toolchain
for ORSoC. Adapteva (developers of “a revolutionary
many-core embedded computing platform for
applications requiring ultra
high floating-point
performance with minimal
power consumption”), is
also doing work funded by
the UK Technology Strategy
Board (a UK government
innovation agency), to
optimise GCC for compiling binaries with a lower
power draw.

As we go to press, the Chip Hack Cambridge event,
providing an introduction to FPGA programming, is
already sold out “but a key part of the idea is that he
resources are open, so others can run the course
themselves,” Dr Bennett tells us. Get on the Chip Hack
mailing list, and you should get early news of other
events and training opportunities.

You’ll need an FPGA development board to get started
which, while not cost-free, is orders of magnitude less
expensive than building a CPU plant!

“Low power consumption has
always been an important
selling point for RISC chips.”

DIY chips on the web
 Introduction to FPGA programming event.
http://chiphack.org
 Good beginners’ introduction.
www.rte.se/blog/blogg-modesty-corex/openrisc-1200-
soft-processor

 Julius Baxter’s Masters Thesis on the OpenRISC Project.
http://juliusbaxter.net
 Paper covering all the chips from OpenSPARC to the
European Space Agency’s LEON project:
http://ur1.ca/gyitc
 jor1k – OpenRisc 1000 in your browser.
http://s-macke.github.com/jor1k
 Open Source Hardware User Group
http://oshug.org
Also, there’s a supportive community on the #opencores

channel on freenode IRC.

You could build an entire
OpenRISC toolchain
yourself, but as the hard
work’s already been done,
just grab it with Git and get
on with the fun.

LV003 034 Feature OpenCores.indd 37 11/04/2014 18:37

FEATURE ALAN TURING, COLOSSUS, AND TURING MACHINES

www.linuxvoice.com38

A lan Turing was born in London in 1912,
studied mathematics at King’s College,
Cambridge, and was elected a fellow there in

1935. He worked on the Entscheidungsproblem, then
spent two years studying maths and cryptology at
Princeton. While there he also built part of an
electro-mechanical binary multiplier. This type of
machine – a computer, but not a programmable one
– was the state of the art in computer hardware at the
time. In 1938, Konrad Zuse would complete the Z1,
the first mechanical binary programmable computer,
in Berlin, although the Z1 was not a general purpose
machine as it had no loop capacity.

When WWII began, Turing, who was already
working part-time with the Government Code and

Cypher School (GC&CS), reported to Bletchley Park to
work full time on cryptanalysis. His work on
deciphering Enigma, on the Bombes, and his
contributions to the development of Colossus, were a
hugely valuable part of the history of early computing;
they also remained secret until the 1970s.

Turing machines
In 1928, mathematician David Hilbert posed the
Entscheidungsproblem (Decision Problem): does an
effective procedure exist that would demonstrate
whether or not a given mathematical statement is
provable from a given set of axioms? In 1931, the
Austrian mathematician Kurt Gödel demonstrated
that any arithmetic system must be incomplete (that

We’re taking a break from our Olde Code series this issue to get
some background on a man who was in the news as recently as

last year. Juliet Kemp looks back at the early works of Alan Turing.

LV003 038 Feature Turing.indd 38 15/04/2014 12:13

ALAN TURING, COLOSSUS, AND TURING MACHINES FEATURE

www.linuxvoice.com 39

is, it is possible to construct a statement that can be
neither proved nor disproved), but did not tackle the
provability problem.

In 1936, Turing wrote “On Computable Numbers
with an Application to the Entscheidungsproblem”,
which showed that no such procedure exists. He used
the idea of an “a-machine”, now known as a “Turing
machine”. This is a hypothetical computing device,
which reads an infinite tape. At any one moment the
machine reads a single symbol from the tape. It may
alter that symbol, and the symbol may (combined
with the machine’s instruction table) affect its
behaviour. The tape moves backwards and forwards,
so any symbol may eventually be read by the
machine. Turing equated the problem of deciding
whether a Turing machine halts on a given algorithm
to the Entscheidungsproblem. He proved that some
processes will never halt; and thus that the answer to
the Entscheidungsproblem is ‘no’.

A universal Turing machine is one that can compute
any computable sequence. Modern computers are all
universal Turing machines, and we take this idea for
granted now. At the time, however, it was a huge
breakthrough, which arguably led to the idea of
stored-program computers.

Bombes and Enigma
One of the simplest ciphers is a substitution cipher:
each letter is substituted with another letter. This is
readily breakable, but it becomes less so if you use a
different substitution alphabet for each letter of the
message. The Enigma machine, invented at the end
of WWI, had a system of rotors which both
mechanised this process (making it easier to operate),
and increased the number of cipher alphabet options.
Each rotor had 26 positions, and they were connected
in series, so each letter was transformed multiple
times. Further, the rings stepped onwards for every
letter (how often the rotors stepped varied, but at least
one rotor would step at least once for each letter).
This meant that each letter was encrypted with an
entirely new cipher from a huge number of options.
Finally, a ‘plugboard’ swapped some pairs of letters
before they were output to confuse matters further
(though in fact, contrary to expectation, this made
breaking it slightly simpler).

Before WWII, the Poles had already had some
success with breaking Enigma messages with their
bomba cryptologiczna machine. However, as the

Germans introduced more rotors and more plugboard
settings to their Enigmas, these machines couldn’t
keep up. The Bletchley Park codebreakers needed to
up their game to decrypt Enigma traffic.

On the shoulders of Polish giants
Turing took the bomba cryptologiczna and improved
on it to create the Bombe. A standard British bombe
contained rotors to the tune of 36 Enigma equivalents,
enabling it to work very rapidly. The bombe input was
a crib (a fragment of probable plaintext), which was
tested against the ciphertext. The bombe
electronically performed various logical deductions
based on this, and if a contradiction arose (which it
would do with most possible settings), that crib could
be discarded. Only a few settings would then be left
for the cryptanalysists to look at in more detail. This
was an electronic computer in one sense, but it wasn’t
programmable; it performed just one task. The cribs
were obtained by taking advantage of various
regularities in the messages transmitted, such as
weather reports and message setting information.

Turing’s colleague, Gordon Welchman, later
implemented the ‘diagonal board’) improvement. The

Turing was also an
accomplished athlete,
with a personal best
marathon time of 2 hours
46 minutes.

“A universal Turing machine
is one that can compute any
computable sequence. Modern
computers are all universal
Turing machines, and we take
this idea for granted now.”

LV003 038 Feature Turing.indd 39 15/04/2014 12:13

FEATURE ALAN TURING, COLOSSUS, AND TURING MACHINES

www.linuxvoice.com40

bombes were immensely successful, but initially
Turing and his colleagues could not get the resources
for more bombes and more people. Eventually they
went against military procedure and contacted
Churchill directly; resulting in Churchill giving the
highest priority to support for the codebreaking team
at Bletchley Park.

Turing also worked specifically on naval Enigma,
which he started on “because no one else was
interested in it so I could have it all to myself”. The
chief difficulty here was that the sender enciphered
the message settings (the information about which
rotor settings the message was encrypted with) twice,
once by Enigma and once by hand using ‘bigram
tables’ (tables of letter pairs). Turing deduced how this
system worked, but was not able to move further

before the Royal Navy
got hold of some actual
bigram tables.

The Colossus
machine was designed
by Tommy Flowers to
help with the
cryptanalysis of the
Lorenz cipher. The
Lorenz cipher machines

were used for high-level wireless traffic between
German High Command in Berlin and army
commands throughout Europe, during World War II,
whereas, as discussed above, the more portable
Enigma machines were used for other German army
and naval messages. It has often been stated that
Turing was involved with the development of
Colossus; in fact, this was true only in that his
statistical methods were part of its ancestry and the
cryptanalysis methods that prompted its building.

Rotor encryption
Lorenz worked in a similar way to Enigma, with
multiple moving wheels producing a ciphertext.
Similarly, one of the routes in to the cryptanalysis was
the ‘indicator’ (showing the start position of the

wheels) sent at the start of the message. Being able
to identify when two messages had used the same
wheel settings gave the codebreakers access to
messages in ‘depth’, which is crucial in codebreaking.

A colleague of Turing’s, John Tiltman, managed to
identify the cipher used (the Vernam stream cipher)
from studying intercepted ciphertexts, and after this,
Bill Tutte worked out the logical structure of the
machine from further ciphertext study, without ever
seeing a Lorenz machine – a hugely impressive
achievement. Tutte and his colleagues correctly
determined that the machine had two sets of wheels,
chi and psi. The chi wheels all moved on one position
with each character. The five psi wheels also all
moved together, but at a different rate, controlled by
two ‘mu’ motor wheels. This gave a huge number of
machine settings and cipher alphabets, which
changed in a complicated way.

Turing’s main contribution was a process known as
Turingery. This revolved around ‘differencing’, in which
he XORed successive characters to emphasise any
points at which the characters moved away from a
uniform distribution. The next step was a complex
statistical analysis of the ciphertext, in which the
cryptanalyst tried out a huge number of possibilities
and compared the resulting patterns with one another.
Eventually, the chi wheel settings could be deduced,
and from there the psi and mu settings.

Turingery was a hand method, and slow. Tutte used
it as a basis for his own ‘1+2 break in’. This required
trying all possible combinations of the chi wheels
against the ciphertext, and looking for subtle
statistical evidence of non-uniformity. This used
differencing to amplify the effect, and it worked well --
but it was only practical if it could be automated.

Construction time again
So in 1943 Max Newman, with Frank Morrell and
Tommy Flowers from the Post Office Research
Station, produced a machine known as ‘Heath
Robinson’, using valves and paper tape. It was
Flowers who realised that this could be improved on
by building an entirely electronic machine (using an
electronic key stream rather than reading off paper
tape; although the message was still fed in on tape).
Most people argued that this would be far too
unreliable to be useful, but, supported by the Controller
of Research at the Post Office, Flowers went ahead
and built it. It first ran in December 1943 and was
operational by early February 1944.

This was, then, Colossus, the first programmable
(but not general purpose) digital computer. It had four
main parts:

 Tape transport and reading mechanism Read the
message tape in at 5000 characters per second,
using the sprocket holes as a clock signal.
 Key generation unit Generated an electronic key
(chi) stream.
 Combining unit Implemented the logic of the 2+1
method.

“Information about Colossus
began to emerge in the late
1970s, and GCHQ released a
1945 report on the breaking
of the Tunny cipher in 2000.”

Colossus Mark 2 being
operated by Dorothy Du
Boisson and Elsie Booker.
The tape transport is
shown on the right of the
photo.

LV003 038 Feature Turing.indd 40 15/04/2014 12:13

ALAN TURING, COLOSSUS, AND TURING MACHINES FEATURE

www.linuxvoice.com 41

 Counting unit Counted the dots in the output and
printed it out if it was over a given total.
It was so successful that they immediately began

building more in place of the Robinsons. The
Colossuses, and Colossus II (in operation from June
1944, the week before the Normandy landings), were
vital for the remainder of the war effort, but after the
war, all evidence of the project, physical and paper
notes, were destroyed, for security reasons. Despite
this, the number of people who had worked on the
project and who went on to work in early computers
meant that Colossus and the other Bletchley projects
did have a significant indirect impact.

Post-war: the Pilot ACE
After the war, Turing worked on the design of the
Automatic Computing Engine (ACE) at the National
Physical Laboratory. The resultant paper, in 1946, was
the first detailed design of a stored-program computer.
The ACE implemented subroutines, and even
something called Abbreviated Computer Instructions,
which was a sort of programming language.

In the ACE, instead of a CPU, memory locations and
temporary stores had specific logical functions
associated with them. So transferring two numbers to
a particular memory location, for example, added
them. To speed up executing, Turing suggested that
instructions should be stored at specific locations,
with each instruction pointing to the next, in such a
way as to optimise instruction access. (Experienced
UNIVAC programmers did something similar to get
around the limitations of mercury delay line memory
– see LV002’s tutorial on Grace Hopper and UNIVAC.)
He also included a small fast-access memory for
storing frequently used numbers or ones that needed
to be stored temporarily.

Turing and his team, as well as sketching versions
of the ACE, also wrote ‘instruction tables’. Their aim
was for programmers to be able to select groups of
standard instructions and link them together with
other cards, and they prepared in detail ‘instruction
routines’ including division, extracting square roots,
and logarithms. This echoes the work later done by
Grace Hopper on UNIVAC, but sadly in Turing’s case,
his instructions only ever existed on paper.

Turing knew that what he proposed was feasible,
and wanted Tommy Flowers to be involved. However,
since no one who hadn’t been at Bletchley knew about
the Colossus, everyone else thought his proposal far
too ambitious, and Flowers wasn’t recruited. Instead,
they eventually built the smaller Pilot Model ACE. This
had 1,450 vacuum tubes and 12 mercury delay lines
as its memory (each storing 32 bits – again, see the
UNIVAC for more on mercury delay lines). Its clock
speed was 1MHz, which at the time it first ran (10
May, 1950) was the fastest in the world, and around
10 times faster than its contemporary, the
Manchester Mark 1.

The ACE design was also used for the MOSAIC
(1952) which calculated aircraft trajectories from

radar data (further information is still classified). The
first personal computer (well, arguably; it was a small
single-user machine), the G-15, built in 1954, also used
ACE principles. The commercial version of the Pilot
ACE, the DEUCE, was available from 1955 until 1964,
and used various languages including one called
GEORGE (1957) which used reverse Polish notation
and had a 12-position stack. It was sold with an
extensive program library of subroutines – perhaps
the descendants of Turing’s on-paper versions for his
full ACE.

ACE program example
Wilkinson’s Progress Report on the Automatic
Computing Engine (April 1948) includes this code
example to calculate squares and cubes of n by
iteration until n = m (m is stored in tank TS1):
A1 zeros+ zeros -> TS2 Imm 1, A
A3 zeros+ zeros -> TS3 Imm 1, A
A5 zeros+ zeros -> TS5 Imm 1, A

A7 TS2 + TS3 -> TS3 Imm 1, A i.e. n2 + n -> TS3
A9 TS3 + TS4 -> TS4 Imm 1, A i.e. n3 + 3(n2 + n)
-> TS4
A13 TS2 + P1 -> TS2 Imm 1, A i.e. n + 1 -> TS2
A15 TS3 + TS2 -> TS3 Imm 1, A i.e. (n2 + n) + (n + 1) -> TS3
A17 TS4 + P1 -> TS4 Imm 1, A i.e. n3 + 3(n2 + n)
+ 1 -> TS4
A19 TS2 != TS1 -> DISC Imm 18, A If new n = m, return to A7,
else A6

A6 END

The temporary TS tanks are used for quick access.
TS2 holds n, TS3 holds n2, and TS4 holds n3. The first
three instructions simply zero the tanks TS2, TS3, and
TS4 (so n, n2, and n3 are all, correctly, zero). The
following steps calculate the values iteratively, as
described; by step A19, TS2, TS3, and TS4 will all hold
their new values. (These are all discarded rather than
saved, as this code was for demonstration only.) Imm
1 means an immediate transfer with timing number 1,
that is, it goes straight to the next instruction. For
more detailed information, check out the full paper.
And that, dear readers, is where we’ll have to leave him
for now. We’ll get to Turing’s work in Manchester in a
forthcoming issue of Linux Voice.

The Turing Bombe rebuild
project at Bletchley Park.
Photograph by Mike Peel
(www.mikepeel.net).

LV003 038 Feature Turing.indd 41 15/04/2014 12:13

FAQ DDOS

www.linuxvoice.com

DDOS
The internet attack of choice for gangsters, governments and bored geeks.

Another acronym! First things
fi rst, how do I pronounce it?

Dos? D’dos? Dee-dos? And how is it
different from MS-DOS?

For once, there seems to be a
fairly accepted pronunciation:

Dee-dos. It stands for Distributed Denial
Of Service, and it’s a way that bad
people attempt to mess with your
computer systems – so it’s nothing at
all to do with Microsoft’s venerable Disk
Operating System.

The idea behind a denial of service
attack is that a bad guy wants to
interrupt your service. Typically, this
means ‘take your website offline’, but it
could mean stop users from accessing
anything such as email or the database
back-end for a mobile app.

It’s still possible in some cases for a
single computer to take a website
offline, but most of the time, denial of
service attacks are carried out by large
numbers of computers spread out

across the world. These are distributed
denial of service attacks.

Often these DDOS attacks are carried
out by networks of PCs infected with
malware (botnets), but not always. For
a while it became common for people
to volunteer to use their computers to
DDOS sites for Anonymous.

Right, I think I understand
what it is, but how do the bad

guys go about doing it?
Whatever server you use to
provide your service has a

number of fi nite limitations. It only has
so much bandwidth, memory, CPU
power, etc. If you can overload any one
of these, then the server will no longer
be able to function properly.

Perhaps the simplest form of DDOS
is to overload the network. In this sort
of attack, you just send loads and loads
of data to the server. The aim is simply
to clog up their network port so much
that legitimate traffi c starts to time-out.

But surely most big servers
can cope with so much traffi c

that a few virus-infected PCs won’t
have any impact?

True. However, the targets aren’t
always the largest sites. Also, a

cunning DDOS attacker can use what’s
called an amplifi cation attack. This is

where they use some way of increasing
the amount of data that your computer
can send. A DNS amplifi cation attack is
quite a common way of doing this.

A Domain Name Server (DNS) is
what computers use to lookup
information about a particular domain
name. For example, if you type www.
google.com into your browser, it sends
a request to your DNS server asking
what IP address is associated with
www.google.com; then it sends an
HTTP request to that IP address.
However, DNS servers can be asked to
return more than just the IP address.
There’s also a text fi eld associated with
domain names, which can hold up to
4,000 bytes. A DNS amplifi cation attack
works like this:

 A malicious computer sends a DNS
request that will return a 4,000-byte
text fi eld to a DNS server, but spoofs
the IP address.
 The DNS server responds with the
4,000-byte fi le. It doesn’t send it to the
malicious computer, but to the
spoofed IP address (the victim server).

These two steps take a 60-byte DNS
request, and turn it into a 4,000 byte
packet that’s sent to the server. These
DNS packets won’t make any sense to
the server, and it’ll just reject them once
they arrive, but the damage will have
already been done.

42

“You may remember
Anonymous’s DDOS attacks
on fi nancial institutions.”

BEN EVERARD

LV003 042 FAQ.indd 42 15/04/2014 12:40

DDOS FAQ

www.linuxvoice.com

This form of amplification allows a
fairly modest collection of computers to
exert a huge force on a server.

An alternative is to work smart
instead of hard. In this, you don’t
overwhelm the server with so much
data that it can’t function, but you use
data such that a small amount can do a
very large amount of damage.

Perhaps the most famous attack of
this kind is the SYN flood. Whenever
you start a connection to a web server,
you do a three-way handshake. This is a
simple way of establishing a TCP
connection over which you can send
and receive data. It has three steps.
Firstly you send a SYN packet to the
server, then the server responds with a
SYN-ACK packet, then finally, you
respond to that with an ACK packet.

A SYN flood abuses this process. The
attacking computers send loads of SYN
packets with the IP address spoofed.
The server then responds with a
SYN-ACK packet, but it doesn’t respond
to the malicious computer’s IP, instead
it send it to the spoofed IP. This
computer won’t respond, because it
didn’t send the SYN packet.

However, the server will hold this
half-open TCP connection while it waits
for a response. This half-open
connection will lock up some of the
resources of the server. If there are
enough of them, even if the network
isn’t overloaded, the server will stop
accepting new TCP connections.

These are examples – there are
many more ways to lock up resources
and stop a server working properly.

But why do it? What’s in it for
the attackers?
That varies. The most famous
attacks have been politically

motivated and were a show of force to
try and punish organisations that the
attackers felt were harming them. For
example, you may remember
Anonymous’s DDOS attacks on
financial institutions that refused to do
business with Wikileaks.

One increasing area is digital
extortion. In this, some internet bandits
launch a DDOS attack against a site,
and then tell the site that they’ll only
stop the attack if the site pays.

Other times, it’s a business trying to
cripple a competitor, or just bored geeks
with a grudge. There are lots of reasons.

Hang on; people are setting up
botnets to target their

competition? That’s a bit extreme!
Actually no (well, a few people
probably are). You can rent

botnets set up for DDOS attacks, or pay
people to do the DDOS for you. It’s
becoming quite a large industry.

Wow. That’s scary. How bad
can these attacks be?
That really depends on how you
define ‘bad’. They can quite easily

cripple even quite large operations.
These days, a moderate volumeteric
attack is measured in gigabits per
second, a large one in tens of gigabits
per second, and a huge one in hundreds
of gigabits per second. Once they get to
that size, they can be pretty damaging.

Another way of looking at it is how
long they last. The largest attacks burn
themselves out, because few people
can sustain that level of bandwidth for
long. However, experience shows that
there are botnets capable of sustaining
large attacks for several days or longer,
which is long enough to dent the
finances of a web-based company.

What can you do to stop these
from happening?
If (for example) you’re under a
DNS amplification attack, you

need to filter out all the rogue DNS
packets, but you need to do this as far
upstream as possible. The internet isn’t
just a randomly connected web; it has

some structure, and different
connections have more bandwidth than
others. The key to mitigating a network
volume attack is to block it before it
gets to a bottleneck. This means
adjusting the filtering rules on routers at
the data centre, or sometimes even at
internet exchange level.

If it’s some other form of attack, it
means making sure that you don’t
waste resources on malicious packets,
and again, this means identifying them
and filtering them out before they do
damage. Sometimes you can do this at
server level, but it often means getting
help from the people running the
datacentre or your internet connection.

But my server isn’t in some
fancy datacentre. Is there

anything else I can do?
There is another way, and that’s
to route all your traffic through a

very high bandwidth router that does
the filtering and sends on the
appropriate requests with the malicious
traffic filtered out. While this may sound
exactly the same as the option above,
the difference is that the router doesn’t
have to be physically between your
server and the internet.

This is known as a scrubbing centre,
and it’s part of what a content delivery
network (CDN) does (there’s much
more as well). There are a few that you
can use without having to change the
way you host your site, such as
CloudFlare, Incapsula, and SkyFaster.

43

www.digitalattackmap.com shows a live feed of DDOS attacks, and can replay big ones from the past.

LV003 042 FAQ.indd 43 15/04/2014 12:40

DAMIAN CONWAY INTERVIEWINTERVIEW DAMIAN CONWAY

www.linuxvoice.com44

Damian Conway is one of the
Guardians of Perl (our term)
and one of Perl 6’s chief

architects. But he’s chiefly a computer
scientist, a brilliant communicator
and an educator. His presentations
are often worth crossing continents
for. He was the Adjunct Associate
Professor in the Faculty of Information
Technology at Melbourne’s Monash
University between 2001 and 2010,

and has run courses on everything
from Regular Expressions for
Bioinformatics to Presentation Aikido
(and of course, lots of Perl). Which
is why, when we discovered he was
making a keynote at this year’s QCon
conference in London in March, we
braved train delays and the sardine
travelling classes of the London
Underground to meet him opposite
Westminster Abbey.

The main reason we wanted to
talk to you is that we want to

try to simplify people’s experience of
programming and computers. John
Horton Conway said recently that
his Game of Life is the blight of his
life because he had gone on to do so
much more interesting and
important work. But what struck us
by what he said about the attraction
to the game is its simplicity and the
fact that that goes on to teach
things that you could not possibly
imagine. So with that in mind, is
there something like that for
programming, how does that fit with
Perl, and is Perl for people that think
like that in the first place?
Damian: That is a huge question! There
is almost an industry in making
programming seem more difficult than
it is. Programming doesn’t have to be
really complicated. The problems we
solve are complicated, and at the scale
we have to code things become
complicated, but the basic tools of
programming are not complicated
things. And learning the patterns of use
of those tools that work, that scale, that
are robust, reliable and maintainable,
isn’t really that difficult. This is really not
rocket science. This is not quantum
mechanics. This is not that difficult.

But it can be. There was pride
in the Perl community when

you showed the Turing machine
running in this much [gesticulation
to show a tiny thing] code.
Damian: Sure, but that’s a game. To
me, that’s just that I make this happen
in that kind of way. It’s been very
interesting for me. I’ve recently been
starting to put together classes on Perl
6, the new language in the Perl family.
And the thing about Perl 6 is that it just
feels like it’s a lot more polished and
smooth than Perl 5 ever was.

I mean, I love Perl 5 dearly, I do
almost all my work in Perl 5, but Perl 6
has all of the same features but with
the rough edges kind of knocked off of
them. And what it gives you is the same
thing that Perl 5 has always given,
which is exactly the right tools to do the
job you want to do and not get in your
way. What I find when I change to
programming in JavaScript or C++ or C♯
is that the language itself gets in the
way of my using the language.

I spend all my time coding around
either limitations in the language or a
particular mindset that makes you do it
in one particular way, and that’s equally
true in Perl 5 on occasion. Perl 5 has
got real deficiencies that are only just, in
this very year, finally being addressed.

It’s insane, for example, that in Perl 5,
until the release that’s probably coming
out in May, we haven’t had parameter
lists. Now this is an advanced
technology that was pioneered, what,
60 years ago, and we still haven’t got
them. And so everyone who’s writing
subroutines in Perl spends most of their
time simulating the behaviour
necessary for a parameter list. So
finally, with Perl 5.20 coming out this
year, we have parameter lists.

Every language that I code in, I find
these issues. A really good one is, this
afternoon I’m talking about regular
expressions, and I went through 20
different languages that supply regular
expression mechanisms. And in about
18 of them, the regular expression
mechanism is bolted on the side, so
you can’t write a regular expression, you
have to write a string, which then gets
translated into a regular expression.

“Programming doesn’t
have to be complicated.
The problems we solve are
complicated, but the basic
tools of programming are
not complicated things.”

DAMIAN
CONWAY
We meet the creator of a programming language
based on Klingon and one of the architects of
Perl 6. If only we could tell them apart…

LV003 044 Interview.indd 44 11/04/2014 18:35

DAMIAN CONWAY INTERVIEWINTERVIEW DAMIAN CONWAY

www.linuxvoice.com 45

And that irritation leads to mistakes too.
You don’t put the right number of
backslashes in, ’cause it’s a string, and
you’ve got to backslash all the
backslashes to get a single backslash.

But, to many of us, Perl looks
like a regular expression.

Damian: [laughs] Yeah, but this is kind
of the same thing. If I had just gotten up
on stage this morning and just shown
you Klingon sentences without
explaining the structure of them, the
syntax of them and how they come
together, then it would just look like line
noise. Alphabetic line noise, but line

noise. And the thing about Perl is, in the
very early design of Perl, a decision was
made that there would be lots of
syntactic differentiation. In most
programming languages, there’s only a
relatively small amount of syntax. There
are identifiers, there are a couple of
operators and there’s probably a
method call mechanism, and then we
do everything with that.

In Lisp it’s even more extreme. In Lisp
there’s just comments and atoms,
basically. But in Perl the decision was
made very early on that we would use
as much of the keyboard as possible,
so that once you knew what a particular
element in the Perl syntax meant, it
would stand out for you immediately.
So when I read Lisp, and I can read Lisp
and write Lisp, and I’ve taught Lisp, but
there’s always this mental gear shift
that has to go on because the language
isn’t helping me see what the different

components are. And I find that equally
true in Python, which is a lovely
language and has many many benefits.
But to me, in Python, everything looks
like a method call, because everything
is a method call. Losing that syntactic
distinction makes it really really hard for
me to pick up on what’s going on.

Now, the problem with that is that it
only works if you know the distinction in
the syntax. So people coming into Perl
get lost in this sea of ampersands and
stars and all sorts of other symbols that
we use in the language. And until you
get past and it sort of goes into your
hind brain and it just translates
immediately, ‘ah yes, that’s a scalar
variable’, ‘ah yes, that’s a type blah, blah,
blah’, it doesn’t make sense. It looks like
line noise, and I fully agree.

So do you think it’s better for
people who want to learn

“In most programming
languages there’s a relatively
small amount of syntax.”

LV003 044 Interview.indd 45 11/04/2014 18:35

DAMIAN CONWAY INTERVIEWINTERVIEW DAMIAN CONWAY

www.linuxvoice.com46

programming to dive into Perl
straight away?
Damian: I don’t think it is. To be
perfectly honest, I think Perl 5 at least is
a lousy first language. And the reason I
think that is that learning to program
isn’t just about learning syntax. It’s
about learning at six or seven different
levels at the same time. So the purely
lexical level of what character do I type
here, the syntactic level of what that
means, the semantic level of what does
the construct that this represents
mean, the algorithmic level of how do I
put these things together to make
things work… for me it’s like when I was
learning to juggle or to drive a car or any
other complicated multi-level activity. If
you think about learning to drive a car,
it’s not just about how do I steer or how
do I push the accelerator pedal, it’s also
about how aware I am on the road, how
I’m aware of what the car is doing, how
do I anticipate what’s happening next,
how do I navigate at the same time and
how do I listen to the radio as well. And
for me, coding is exactly like that.

For nearly a decade, I taught the
introductory programming class at our
university, and I was forced to teach it in
C and C++ and Java and whatever it

was. But the key is always the same.
You have to give them a way of
focusing on one level of abstraction at a
time. And so the more syntax that the
language that they’re using has, the
harder it is for them to focus on the
level of what does this mean, what
does it do and how do I make it do what
I want. I think from that point of view
there have been many CS programs
over time that have taught Lisp as their
first language. I think, in one sense,
that’s a really good thing, because I can
tell you the syntax of Lisp in three
minutes, and from then on it’s just
trying to understand how the
mechanisms work and how the
algorithms work.

So I don’t think Perl 5 is a good
language for that. I think Perl 6 is a
better language because Perl 6 doesn’t
need as much syntax to get the basic
stuff done. There’s of acres of syntax in
the background but you don’t need it
early on.

The UK government has
decreed this year as the Year

of Code. Its representative said that
it was possible to learn some code
in an hour. Talking to Robert

Lefkowitz on the subject, he thought
that programming is at a similar
stage to when spaces were
introduced between words in Latin
script, which opened up reading to
more people. And, similarly, stirrups
were fundamental to the feudal
system because they enabled riders
to wield a sword and shield.
Damian: Or the zero in the number
system.

Yes, exactly. So is that a
relevant question for Perl, or is

it better suited to Python or
JavaScript, say, and should we just
be teaching people concepts before
we teach abstraction?
Damian: Wow!

Sorry, I’ve had too much coffee
this morning.

Damian: No, these are fantastic and
deep and important questions. Let’s go
back to the very beginning. Anyone who
believes you can teach programming in
an hour has no idea about what
programming is. I think that I finally
thought that I was a confident
programmer maybe about four or five
years ago, so after about a quarter of a
century of coding. I felt that I was an
ordinary good programmer by that
stage. I don’t think you can even teach
HTML in an hour, to be brutally honest.

That’s one of the very
examples they gave.

Damian: No, no. So there’s a
fundamental misunderstanding about
how complicated a task it is that we do
when we do programming and how
quickly one ought to be able to do that
task. And I think we do a disservice if
we try and throw people in at the deep
end. And a lot of language choices
throw people in the deep end. I would,
for example, put JavaScript or Java in
that same category.

If you try to teach people Java, just
think about the Java ‘Hello World’
program, you see it online all the time.
The Java ‘Hello World’ program has a
class declaration and then it has a
method declaration, it has the loading
of libraries that make the thing work, it
then has the method call chain to
actually do that. And in order to even
understand the presumably simplest of
all programs, you have to understand

“Never settle for just being a Perl
programmer or just being a Java
programmer or just being whatever.”

LV003 044 Interview.indd 46 11/04/2014 18:35

DAMIAN CONWAY INTERVIEWINTERVIEW DAMIAN CONWAY

www.linuxvoice.com 47

Java at about four different levels of
abstraction. You have to understand a
lot of very sophisticated concepts,
including things as simple as what’s the
difference between static and non-
static. Now, a lot of good programmers
would not be able to tell you what the
difference between static and non-static
really is. So, a language like that, which
is often touted as being a relatively
simple language, actually isn’t.

So you can just dive in a
change things?

Damian: Yeah, and that’s what people
do. They don’t learn to program, they
learn to evolve or mutate existing
programs, and that’s not the same skill
set. And, frankly, a lot of Perl developers
are like that as well. Their only exposure
to Perl is in existing large-scale scripts
on which their entire organisation
depends. And all that they’re asked to
do is go in and make a small change to
that. They’re not asked to develop, to
design, to build, to implement. It’s
strictly about “let’s twiddle”.

When you’re looking for a language to
actually get people up and running, you
need a language that doesn’t get in
their way, that allows them to think

about the abstractions of how to
express this series of instructions
clearly and unambiguously. In Perl or
Perl 6, Hello World is literally “say ‘Hello
World’”. The thing is, I can teach
someone to do that in 30 seconds, not
an hour, and I can go from there if I’m
very very careful about what I introduce
them to next. There are other
languages where you don’t have to be
quite as careful because there just
aren’t that many constructs, and they
have pitfalls as well.

What’s important is that we do need
good programmers, we do need people
who can do this stuff, because our
entire society will utterly fall apart if we
do not have people that can maintain
our software. We are not a society that
can survive if our software goes down.
But to think that we can teach them in
an hour, or a day, or a week, or a month
or even a year, or the three years of the
standard program, is highly optimistic.

Does that mean that, in some
way, computer science has

failed if we still want people to
become expert scientists, when the
future promised us some pseudo-
code that we could just transfer our
thoughts to the computer?
Damian: Yes. The future promised us a
lot of things, didn’t it! I’m still waiting for
my flying car.

But should programming become a
commodity? Eventually, for a large
number of people, it will be. We will find
ways whereby people can set up their
environments and have the behaviour
they want. But there’s a fundamental
mistake there in thinking things that are
that complicated can be reduced down
to something so simple.

Considering the context of the
conversation, what do you

think is the ideal path? Is there an
ideal language to start with? How
would you recommend people get
started if you want to take them to
Perl nirvana?
Damian: Perl nirvana! I can probably
only go by my own path and by the
paths that I’ve shown to my of students
over time. And for me, the most
important thing was diversity. Not being
stuck thinking this is one way that we
code. And I don’t care if it’s the one way
of Python, or the one way of Ruby, or

the one way of JavaScript, or of Java, or
C♯, or C++ or anything. I think the
important thing is that if you want to
become an experienced programmer,
you need to be exposed to an
enormously wide range of ways of
thinking about coding. You need to be
exposed to functional programming
systems and imperative programming
systems and object-oriented
programming systems and declarative
programming systems and concurrent
programming systems. Because it’s
only by opening up your mind to these
different views on the same reality that
you really see.

It’s like back in the early days of
physics where everyone either just
thought of light as particles or just as
waves, and there was this enormous
fight over which one is it. Well, the
answer is both. And is programming a
purely functional activity or a purely
object-oriented activity or a purely
imperative activity or a declarative
activity? It’s all of them. And what I try
to do in all of the syllabuses that I ever
put together and what I try to do for
myself in my own ongoing learning is
find new ways of thinking about what it
is that I do. How can I do functional
programming in C, for example? How
do I do object orientation in C? Well you
can do that it. It’s not easy, but you can
do it. So, for me, it doesn’t matter what
tool I’m looking at, what I want to know
is how can I think of this problem in a
way that makes the solution obvious
and simple and correct and robust. And
often that’s just I need to look at it
entirely differently. And so what I would
encourage every young programmer,
and every old programmer as well, is
never give up.

Look at the new languages that are
coming out. Look at the Clojures, and
the Scalas and the Darts and the Gos,
and all of the different languages that
are constantly coming up. See what
they have to give you in the way of
insights about what programming
actually is. Because the only way you’re
going to eventually understand what
this elephant looks like is if you feel the
various parts of it individually and
realise that they are simply parts of a
greater whole.

Brilliant. Thanks Damian.
Damian: My pleasure.

“Anyone who believes you can
teach programming in an hour
has no idea about programming.”

“Ruby on Rails makes it possible for
not very strong developers to build
fairly sophisticated systems.”

LV003 044 Interview.indd 47 11/04/2014 18:35

72

LISTEN TO THE PODCAST

WWW.LINUXVOICE.COM

LV003 048 Ad Podcast.indd 48 11/04/2014 14:27

 INTRO REVIEWS

www.linuxvoice.com 49

The latest software and hardware for your Linux box, reviewed
and rated by the most experienced writers in the business

REVIEWS

Andrew Gregory
//ART NOTE//Please run the shave and haircut
fi lter over this photo//END NOTE///

Last week, I fi xed my mum’s
laptop. Being of adequate
intelligence with a good standard

of linguistic comprehension I can
normally muddle through most IT fi xes,
but this question (non-functioning
wireless, which had apparently turned
itself off) had me stumped. Google
eventually told me that you can get a
Start menu in Windows 8 by pressing
the WIndows key and X together, which
is appalling – not since the early days
of Gnome 3 have we seen such a silly,
non-intuitive way to perform an
essential function.

If you need an instructional video
telling your users how to turn a
machine off (http://windows.
microsoft.com/en-gb/windows-8/
how-shut-down-turn-off-pc), there’s
something seriously wrong with your
design. At least with Linux, users have a
choice, and a voice, and developers
have to listen very quickly unless they
want to see their projects abandoned.
Gnome 3 came very close to irrelevance
last year, but Darwinian inevitability has
driven the project to improve. Fixes are
implemented quickly, rather than
grudgingly as with Microsoft’s belated
restoration of the Start menu. Gnome 3
is back to where it was: a usable
desktop for anyone. I just need to
persuade my mum to start using it.
andrew@linuxvoice.com

Bitwig Studio 1.0

On test this issue...

We say it often, but this really is a game-
changer. Audio editing and production on
Linux just got deliciously better.

Udoo
Four times the power of a
Raspberry Pi, at around 3.5
times the price. Value?

52

Gnome 3.12
If you have a shiny new Dell XPS 13 and
you need a desktop to take advantage of
your lovely pixel density, try this.

Roundcube 1.0
The convenience of Gmail
without the ads or NSA
surveillance. Email bliss.

Pibrella
A big red button, a buzzer
and three LEDs for Pi
hacking. What’s not to like?

54 55

BOOKS AND GROUP TEST
Touchscreens are the future. I know, because Tom
Cruise told me so in Minority Report, and a Mexican
friend of ours still makes swishing noises and waves
his hands about any time he’s trying to convey
anything futuristic. You too can be just like Tom
Cruise by using a touchscreen Linux – just read our
Group Test fi rst to fi nd out which one’s right for you.

Books are the past. I know, because self-appointed
media ‘experts’ keep telling me. Still, they remain a
popular medium for information – none more so than
the excellent Learning Python with Raspberry Pi.

50

53

LV003 049 Reviews Intro.indd 49 15/04/2014 12:41

BITWIG STUDIO 1.0 REVIEWSREVIEWS BITWIG STUDIO 1.0

www.linuxvoice.com50

Bitwig Studio 1.0
Graham Morrison pulls himself out of rapture to write not nearly as many words as
he wanted to.

Partner packages provide
an instant hit of sounds
that can be dragged and
dropped into your own
compositions.

This is a day-one Linux release of a market
changing desktop music composition
application. On Apple’s OS X and Microsoft

Windows, Bitwig Studio is causing a stir because it
implements a similar workflow to an industry
standard, Ableton Live. Instead of creating music by
recording onto tracks, an arrangement is created by
recording a sequence of triggered loops of audio and
MIDI, often live and augmented with bucketloads of
effects, automation and processing.

There’s simply nothing like this for Linux. Bitwig
Studio is a refined, minimally styled and powerful
application. It’s capable of full-blown music production
and is a joy to work with. It’s occasionally frustrating
and slightly unstable – mostly because this is the
first release – but it’s constantly capable of the kind
of audio gymnastics that a certain kind of music
producer can’t live without.

Jack your body
The only officially supported Linux platform is Ubuntu
12.04 LTS, which is unambitious but understandable.
You can activate up to three installations, the idea
being that you have a workstation at the studio and a
laptop for travel, and you can activate an instance for
a single session, which is useful if you’re using
someone else’s machine.

With our i5 CPU, the Pro 40 and the Jack audio
layer, we got ultra-low latencies of 2.9ms running with
a Frames/Period buffer of 64. That was fast enough
for realtime effects processing and monitoring on
incoming audio, plus MIDI software synthesiser
playback, without any hint of latency, at least to our
ears. A slightly larger buffer did significantly reduce
the CPU overhead of polling the audio interface, which
we’d recommend if your CPU is a few years old. We
also tested latency on the Dell XPS 13’s internal audio,
and found it perfectly acceptable for playback, being
in the region of 12ms, making Bitwig and Linux a great
gigging combination.

The brilliant thing about Bitwig Studio is that it
features an arrangement view and a clip view that can
be opened side-by-side. The arrangement view is how
Audacity, Ardour, Rosegarden, Cubase, Cakewalk,
Apple’s Logic and countless others manage their
multitrack productions. Each track of MIDI or audio is
a different horizontal bar on the screen, and a mixer
view usually handles effect sends and processing for
each track. The clip view is where you create loops of
either audio or MIDI, putting variations on the same
track and arranged into groups you want triggered at
the same time.

Thanks to Jack, we found the process of creating
audio input and output channels, send and return

DATA
Web
www.bitwig.com
Developer
Bitwig GmbH
Price
£259.99

THE BITWIG INTERFACE
Transport control
Play, rewind, record,
and enable the
various latch modes
for controlling the
application with
remote hardware.

Channel inspector
Colorise and
manage device
assignment for
each channel, as
well as the effects
sends, volume and
channel I/O.

Edit mode
Switch between the
arrangement, clip
and edit views and
create screen sets.

Clip view
Uniquely, Bitwig
can place the clips
alongside the
arrangement view.

Device panel
Create chains of devices
made up from instruments
and effects then control
their parameters using your
mouse or an external MIDI
device. It’s also possible to
script your own controllers.

Sound preview
Listen to clips, sounds
and instruments through
separate output.

Browser
All instruments, clips, loops
and effects are accessible
through a single panel. You
can also build your own
collection of sounds and
presets and access them
from here.

Arrangement
Traditional DAW
functional for audio,
MIDI and hybrid
tracks.

LV003 050 Review Bitwig.indd 50 15/04/2014 12:41

BITWIG STUDIO 1.0 REVIEWS

www.linuxvoice.com 51

LINUX VOICE VERDICT
Amazing. A top-tier audio workstation
released for Linux. Look out for a
Paldandy gig near you.

“If you have any interest in
music composition or production,
you need to try the demo.”

effects channels, external instruments and MIDI
surprisingly straightforward. Tracks can be armed for
recording and enabled for input monitoring. When
recording and editing loops, the markers used to
delineate duration and loop points were intuitive and
easy to modify. The pitch-shifting algorithm sounds
good, though maybe not that creative at extremes. We
missed MIDI recording quantisation, but post-
recording quantisation worked well, and the
automation control on tracks was brilliant, right down
to the per-note level for built-in devices.

Wired for sound
Bitwig Studio comes with a lot of sounds, instrument
and effects devices, all navigable through a context
search enabled browser panel on the right of each
view. We don’t particularly enjoy the building block
approach to creating music, where bass, drums and
melody loops are dragged into the clip view to be
reconstituted into a new piece of music, but it works
well in Bitwig, and you’ll be plundering commercial
sample banks and libraries before you can say
‘Rhythm Is A Dancer’.

Far better for us were the drum machine and synth
samples, which can be used to construct your own
kits using a drum kit device or quickly added to your
project as a pre-built configuration. Every drum in a kit
can have its own send control and dynamism, and
you often find you can unfold instruments to reveal
further parameters, and you can fold racks together in
the same way. We found the remaining sounds a little
uninspiring, but as karma dictates you should build
everything from the ground-up using your own loops
and samples in the comprehensive sampler device,
this isn’t problem for us. We’re also certain that it
won’t be long before Bitwig’s community starts
sharing sound packs.

Alongside the samples, the loops, drum kits and
effects, there’s also a small selection of virtual
instruments. There’s a lovely analogue-styled
polyphonic synth, a four operator FM synth, several
drum sound generators and a drawbar organ, all with
a considerable amount of control. Combined with the
effects modularity, you can create both bread-and-
butter sounds and more experimental timbres. But
this is where we hit the biggest problem for this first
release – Bitwig only supports plugins compiled
against Steinberg’s VST API, even on Linux. This is
good for VST
developers who want
to create cross-
platform versions of
their instruments and
effects, but not so
good for native Linux
developers. We’d love to see LV2 supported in a future
release, without having to go through Jack re-routing
hoops, and can we also ask for a loop-building effects
plugin and a way of filtering MIDI input by channel?

We’ve barely scratched the surface. All we can say is
that there’s nothing like Bitwig Studio on Linux. If you
have any interest in music composition or production,
you need to try out the demo. It is relatively expensive
(though not compared with its competitor), but it’s the
result of many years of beta testing and development.
From a music production perspective, Bitwig feels like,
finally, Linux has come in from the cold.

Hardware configuration

Bitwig Studio enabled us to make best use of our audio
hardware by allowing us to create virtual inputs and output
that pointed to their hardware counterparts. We would have
appreciated some input monitoring to make assignments
without the guesswork, but reassignments could be done
without starting the audio engine.

MIDI was picked up and handled automatically, but you
have to create a generic MIDI device to handle standard USB
ports before they’ll work. We’ve also got two MIDI controllers
– a Behringer BC2000 and BCF2000. These are devices with
lots of knobs and sliders, and Bitwig Studio comes with two
patches that can be loaded into both to allow you to control
the application remotely.

With the MIDI devices enabled, one of Bitwig’s best
features is its remote control provision. You can right-click
on almost any control on the screen and then move a remote
MIDI controller to make a quick and easy assignment. This
is perfect for adjusting the equaliser without looking at the
screen, for example, or turning the BCR2000 into a hardware
controller for the built-in synth, and it obviously helps when it
comes to creating a clip-launching environment, which many
performers will want to do for their live work.

Our audio device has 20 individual inputs and outputs,
but Bitwig is able to make sense of this configuration
with only a little help from us.

LV003 050 Review Bitwig.indd 51 15/04/2014 12:41

REVIEWS GNOME 3.12

www.linuxvoice.com52

Gnome 3.12
Do you have a shiny touchscreen laptop? Ben Everard thinks
he may have found the right desktop environment for you.

Application folders in
Gnome 3.12 could herald
the start of a shift back to
a hierarchical application
menu.

Gnome 3.12 is the latest stable incarnation of
the Gnome 3 desktop environment, which
includes the Gnome Shell desktop and a range

of core applications, most of which have seen some
form of improvement.

One of these integrated apps is the Videos
application, which has been given a thoroughly
modern look with floating controls and links to online
video sources. In fact, integration with online services
seems to be a focus point for the Gnome team at the
moment. Support for the Pocket app, which is a way
for users to save online content for later perusal, has
been added in a number of places, and Photos now
supports importing pictures from online sources such
as Facebook.

Better integration
It seemed to take a long time to migrate the Gedit text
editor from the old Gnome 2.x style to Gnome 3, but
it’s there now. This means it fits in better with the rest

of Gnome 3 and users of the
desktop environment should
feel more at home in it. Of
course, it does mean that
Gedit now looks out of place
on other desktop
environments, but as it’s part

of the Gnome suite, we can’t really criticise it for that.
The Gnome lust for simple names has really

reached a zenith (or nadir, depending on your point of
view) with the naming Software. This isn’t a generic
term for the stuff that runs on your computer; instead
it’s the name of the Gnome software centre, which

has received an overhaul and is getting closer in terms
of function to the Ubuntu Software Centre, which in
our opinion is the best of such applications for Linux.
It still has a little way to go, but it’s looking good so far.

Support for high resolution (HiDPI) screens is
significantly better than in 3.10, and it’s certainly worth
taking a look at if you’re struggling to get the best out
of your expensive monitor. This comes as the Gnome
team have been doing excellent work in making the
desktop look more beautiful. We may even go so far
as to say that Gnome 3.12 has the most attractive
default state of any Linux desktop.

Tip-top for tablets
Using the Gnome 3 live CD released by the Gnome
foundation should be the best way to try out the
desktop environment. However, unfortunately we
found it a terrible experience. It completely crashed on
us on several occasions forcing a reboot. Hopefully
this won’t be an issue once it’s made its way onto
mainstream distros, but we can’t yet say for sure.

Gnome 3 divided opinion on its release. This
reviewer really didn’t like Gnome 3 when it first came
out, but it’s now maturing into a usable system. It’s at
its best on touchscreen devices (desktops and
laptops rather than tablets and phones), which might
seem a little excessive now but given the large
proportion of computers selling now with touch
screens, it’s good to see that one Linux desktop
environment is taking on the challenge.

Of course, the majority of Linux machines still have
traditional non-touch screens. The Gnome team have
managed to create a desktop that works well with
both mouse and touch. Unfortunately, it’s usually
compared to desktops that work really well on one or
the other (such as Cinnamon with a mouse or Android
with touch). Those have both had a head start, but
Gnome 3 is catching up in both areas. For some
people, it’s already the best option and we can see
why, but none of us at Linux Voice are quite impressed
enough to make the switch yet. Everything still seems
to take one or two more clicks than it does on other
desktops, and that’s still enough to put us off.
However, it has reached the stage where we’re now
considering it as an option, and that’s something we
didn’t think would happen when Gnome 3 came out.

LINUX VOICE VERDICT
Gnome 3.12 doesn’t contain enough
to persuade us to switch, but users
will appreciate the improvements.

DATA
Web
www.gnome.org
Developer
The Gnome Project
Price
Free under the GPL

“Gnome 3.12 has the most
attractive default state of
any Linux desktop.”

LV003 052 Review Gnome.indd 52 15/04/2014 12:42

REVIEWS UDOO

www.linuxvoice.com 53

Hardinfo benchmarks. This compares a single core
of the four-core Udoo against the only core on the
Raspberry Pi.

Udoo vs RPi performance

Benchmark Udoo RPi normal RPi max overclocked
Blowfi sh 47.43 99.00 68.58
Cryptohash 22.39 9.07 13.28 *
Fibbonachi 11.49 26.07 18.16
N Queens 41.64 84.97 69.07
FFT 48.94 149.16 101.19
Raytracing 49.02 130.38 89.84

* More is better. For all others, less is better

Udoo
You do like small ARM computers? So does everyone
these days, it seems, including Ben Everard.

An Udoo is almost
exactly twice the size of a
Raspberry Pi, and it packs
many more connectors
into that space.

The Udoo is a small ARM-based machine that
runs Linux (both traditional desktop Linux and
Android), and has some programmable input/

output pins exposed. If that sounds familiar, it’s
because that’s exactly what the Raspberry Pi is. The
Pi has proven extremely popular, but for all its uses, it’s
a little lacking in hardware grunt. That’s the niche that
the Udoo is aimed at: simple, accessible Linux-based
hacking, on a board that packs a little more punch
than its fruit-based counterpart.

The CPU is a quad-core 1GHz ARM v7 (a dual-core
version is also available). See the box below for
benchmarks – these show that each of the Udoo’s
cores is more powerful than the Raspberry Pi on its
own. While benchmarks provide quantitative data,
qualitative data about computer performance is harder
to capture. The Udoo has enough power to make the
desktop feel snappy, and tasks that swamp the Pi (like
browsing JavaScript-heavy websites or unzipping
packages) are handled with relative ease. Put simply, it
feels an order of magnitude quicker than the Pi.
However, it’s still no match for most x86 machines.

The Udoo uses a separate microcontroller to handle
the inputs and outputs. In fact, the microcontroller and
pin layout is identical to the Arduino Due, with 76 IOs
including 12 analogue inputs and two analogue
outputs. However, unlike most Arduino boards, the
Due (and Udoo) use 3.3 volts rather than 5, so
hardware designed for 5V boards won’t work.

Connectivity doesn’t just come in the form of IO
pins: the Udoo also has a SATA connector (quad-core
version only) to allow regular hard drives to connect;
an LVDS connector for touchscreens (especially good
if you want to build your own tablet – Udoo sells
7- and 15-inch screens); and a USB OTG connection. It
also has a camera connection (camera module sold

separately). Network access is accounted for with
Wi-Fi and Gigbit Ethernet on the Quad-core version.

The extra power of the Udoo comes at a cost. It’s
more expensive, bigger and draws more power than
the Pi. All of these make it a signifi cantly worse option
for projects where the board will be included into the
project physically.

Desktop replacement?
The comparison to the Pi, though, is a bit unfair. The
Udoo is more than three times the cost, and while it is
still cheap compared to a PC at around £110
(including taxes and shipping to the UK), that takes it
out of the impulse buy range for many people.

Boards like the Udoo live or die based on whether
they get enough mindshare. If there are plenty of
tutorials and books available, it becomes easy to work
around the limitations and compromises that are
essential to all small board computers. If they don’t,
using them becomes more hassle than not. A quick
Google search brings up about 40,000 results for
‘Udoo tutorial’, compared with 180,000 for
‘Beaglebone tutorial’ and over seven million for
‘Raspberry Pi tutorial’. That’s a lot less, but then the
Udoo is the youngest of the three. The Udoo website
explicitly pitches it as a competitor to the Raspberry
Pi, and it’s hard to ignore that, but we can defi nitely
see a useful future for this device on its own merits.

LINUX VOICE VERDICT
The Udoo is good value for money
if you’re ready for a home hacking
board with more power than a Pi.

DATA
Web
www.udoo.org
Developer
SECO USA Ltd and Adilab
Price
€73–99

LV003 053 Review Udoo.indd 53 15/04/2014 12:43

REVIEWS MAIL IN A BROWSER

www.linuxvoice.com54

Roundcube 1.0
How well does this webmail client fare against desktop apps?
Mike Saunders investigates.

This is how Roundcube
looks with the Preview
Pane enabled; otherwise
you just get a message list
in the default setup.

If you’re not a fan of the stock dark theme, a lighter (and
more retro looking) alternative is available.

In the early 2000s, webmail used to be regarded as
pretty rubbish compared to desktop applications.
Searching facilities were limited, the interfaces

were slow and clumsy, and you couldn’t read your
mail when you were disconnected. Then Google Mail
came along and changed everything: it was fast, had
excellent searching capabilities, and its Ajax-heavy
interface made it feel somewhat like a native app

But for all its strengths, Google Mail is closed
source and proprietary. If you want to implement your
own webmail system, you’ll need an alternative – and
one of the best is Roundcube. Here at Linux Voice HQ,
we’ve been using Roundcube extensively for the last
few months, pushing it to the limits from different
corners of Europe. Now version 1.0 has finally arrived,
so what does it have to offer?

Fortunately, installation is straightforward: the main
requirements are a web server (eg Apache) with PHP
enabled. With the files in place and the right
permissions set, we pointed our web browser at the

installer/ directory,
which guided us
effortlessly through the
setup process.
Roundcube can use
MySQL to store its
data, or SQLite as an

easier-to-set-up alternative.
Because Roundcube is just a webmail client, and

not a complete solution with a mail transfer agent, you
need to point it to an IMAP server for retrieving
messages, along with an SMTP server for sending.
Configuring the client to talk to Google’s mail servers

was a doddle – we were up and running in seconds.
On the whole, the installation is impressively quick and
polished, so Roundcube scores full points here.

Interface and docs
By and large, Roundcube works like a typical desktop
mail client: there’s a folder list down the left, message
list on the right, and a toolbar on top (with buttons for
composing, deleting, marking as unread) and so forth.
The interface doesn’t make much use of large
displays by default, though, as you have to double-
click a message to view it. But via Settings > Mailbox
View > Show Preview Pane you can see the contents
of messages from the main screen.

Feature-wise, Roundcube includes: decent search
facilities (based on subject, from, message body and
other fields); spell checking; drag-and-drop for moving
messages between folders; both plain text and HTML
composition; and an address book that can import
contacts in vCard and CSV formats, or hook up to an
LDAP server. It has pretty much everything you’d need
in a desktop client, and a plugin system is available for
some bolt-on features.

What lets Roundcube down, however, is its
documentation. For an end user, it’s pretty bad and
limited to some scraps of information on the project’s
wiki. There’s no comprehensive handbook or getting
started guide – and this caught us out when trying to
enable certain features. It’s a shame, because
otherwise Roundcube is a superb piece of work.

LINUX VOICE VERDICT
Easy to install, polished and loaded
with impressive features – but the
lack of documentation is a problem.

DATA
Web
www.roundcube.net
Developer
Roundcube team
Price
Free (open source
licences)

“Installation is impressively
quick and polished, so
Roundcube scores points here.”

LV003 054 Review Roundcube.indd 54 15/04/2014 12:43

REVIEWS PIBRELLA

www.linuxvoice.com 55

Pimoroni & Cyntech Pibrella
No, it has nothing to do with Rihanna, but Les Pounder
lets us stand under his Pibrella… ella

You can use the Pibrella’s extra IO methods to create
simple projects such as traffi c lights or a reaction timer.

There’s easily £10 worth of weekend hardware hacking
packed into this little Raspberry Pi add-on.

P imoroni, the Sheffi eld-based company of
makers and tinkerers, has become the place
to go to for Raspberry Pi-related kit. Fresh

from the success of its popular PiGlow add-on board
comes the new kid on the block: the Pibrella, which
is a partnership with Cyntech Components, the
company behind the Raspberry Pi logo-shaped hub.

The Pibrella is a simple add-on board that is placed
on to the GPIO pins of the Raspberry Pi, and provides
the user with extra methods of input and output. At
fi rst glance you can easily see two forms of output in
the shape of a red, a yellow and a green LED, as well
as one buzzer. There’s also a big red button that looks
as though it’s come from the leftovers of a nuclear
decommissioning programme.

If you look a little closer you’ll see two banks of
female connections on either side of the button.
The left bank provides four extra methods of input,
whereas the right bank provides four methods of
output. These extra IO ports provide you with an easy
way to extend the functionality of the Pibrella via the
use of sensors and motors.

Pibrella can be used with two programming
languages – Python and Scratch – using Simon
Walters’ ScratchGPIO (http://cymplecy.wordpress.
com). Pibrella comes with its own Python library
courtesy of Pimoroni’s GitHub repo (https://github.
com/pimoroni/pibrella). The library is a sheer delight

to use, and it really helps newcomers quickly hack
together a project with minimal fuss.

Python library
The board itself is simple to use. By importing the
library into your Python code, you can easily turn lights
on and off by colour using a simple line of code, so to
turn the red light on and off you can use pibrella.light.
red.on() and pibrella.light.red.off(). The library also
provides ingenious ways to make LEDs blink and use
pulse width modulation (PWM) to create a fading
effect. The use of the
extra IO ports is also
handled via the library,
and when a port is in
use the corresponding
LED is lit up to indicate
as such, enabling you
to quickly diagnose any faults.

It’s possible to connect motors, servos and
solenoids to the Pibrella, but they require a little more
power than a standard Raspberry Pi can provide –
have no fear though, as the team have considered this
issue and incorporated a separate micro USB port to
provide the additional power.

The Pibrella is the answer to a lot of our problems.
It provides an easy-to-use device that enables anyone
to create fun projects in Python and Scratch. The
expansion possibilities are tremendous, and we
can see this board becoming very popular indeed –
particularly in education, as it will easily slot into the
UK’s secondary school curriculum.

LINUX VOICE VERDICT
The right features for all levels of
users coupled with the right price
makes this a must-have piece of kit.

DATA
Web
http://pibrella.com
Developer
Pimoroni vs Cyntech
Price
£10

“Pibrella can be used via
two programming languages
– Python and Scratch.”

LV003 055 Review Pibrella.indd 55 15/04/2014 12:44

REVIEWS BOOKS

www.linuxvoice.com56

Learning Python with Raspberry Pi
Graham Morrison absolutely hates this book. It’s rubbish. Honestly.

Whatever you do, don’t buy this book.

F irst, a little disclosure. We have a
vested interest in the failure of this
book. Its co-author, Ben Everard, is

a co-founder of this very magazine. He’s
one of its most technical, most entertaining
and most erudite authors. If this book is a
success, he’s going to want to write another,
and another, and another. He’ll no longer
have time to sew LEDs into his bike jacket,
or brew alcoholic ginger beer, or cycle
across minefields. Before we know it, he’ll
be packing his bags and jumping on the first
stage coach out of the Shire to make his
fortune in Wolverhampton. And Linux Voice
will have lost one of its best contributors.

Despite all this, we can’t help but admit
that Learning Python With Raspberry Pi
has its moments. To start with, it hits the
potential target audience straight on the
head; you’ve bought your first Raspberry
Pi, you want to start using it for your own
projects. Python is to the Raspberry Pi what
BASIC was to Acorn’s BBC. It’s the lingua
franca of the Pi generation, which we know
isn’t a coincidence.

Python has a similar immediacy to BASIC,
and rewards experimentation. It’s fun and
it’s forgiving. And like the Pi itself, Python
can scale far beyond humble beginnings.
Just take a look at our guide to controlling
virtualisation (p94), or Ben’s own tutorial
on genetic algorithms (p104) – both use
Python because it’s the best tool for the job.
Python may flatter by starting off simple, but
there’s no limit to where the language might
take you.

The (very) few good bits
We love the way the book jumps straight
into practical examples, forgoing the
ceremonial respect usually given by
describing a language by its syntax and
conditional statements. Within the first two
dozen pages, you’re writing code that does
stuff and draws things on screen, while
at the same time, teaching you essential
concepts about programming. We can only
imagine this was Alex Bradbury’s idea.

It’s also the way the majority of the book
continues. Any theory is always backed up
by practical examples, which slowly get
more advanced as they dive into more and
more of the Raspberry Pi’s potential.

For us, this is the best way of learning a
language, because there’s very little theory
without an example, and as a reader, you
want to expand upon what you’ve learnt.
Each new concept comes as part of a
project that teaches you something about
the Raspberry Pi; develop your own web
browser, write a platform game, generate
OpenGL 3D graphics and script Minecraft.

Later chapters deal with networking,
hardware interfaces and debugging,
basically covering every aspect to
programming in Python without labouring
in theory or too much detail. Each chapter
finishes with some suggestions for taking
things further, and sometimes a few
exercises, as well as a summary of what’s
been covered. Even if you’ve never done
any programming before, you should find
everything easy to follow, and we also think
the book will work well if you go through the
examples with an older child, for example, or
as part of a Python and Pi primer course.

Lousy food, and such small portions
If there’s a criticism, it’s that we think the
book could go further. It won’t take too
long to work your way through its 270
pages, and there’s perhaps a little too much
emphasis on gaming. But it’s something of
a compliment to say you want each chapter
to give you more. It’s not enough to write a
speech recognition program in 10 lines of
code - we want to spend Friday evenings
chatting politics with our Raspberry Pi! We
want to play chess! We want more than a
paragraph on robots!

It also ends quite abruptly, and while both
the internet and this very magazine are full
of new projects to try, we can’t help but feel a
little sympathy for the Python beginner who
dutifully works their way through the book
only to be dumped unceremoniously out of
the end with little more than a link to
http://docs.python.org/3 for comfort.

But really, we only wrote that section
to inject a little pseudo objectivity into the
review. What we want from a book like
this is for it to pique your interest without
scaring you off, and to capture the essence
of what both the Raspberry Pi and Python
are capable of. Learning Python With
Raspberry Pi does both and leaves you

An excellent book for beginners to both the
Raspberry Pi and the Python language.

LINUX VOICE VERDICT
Author Alex Bradbury and Ben Everard
Publisher Wiley
ISBN 978-1-118-71705-9
Price £17.99/US $29.99/CAN $35.99

wishing the authors had written more, which
we suppose leaves open the potential for
slightly more advanced sequel.

Don’t give up the day job
Until now, there wasn’t an easy, entertaining
and educational resource that would do
justice to the pairing of Python and the
Raspberry Pi. It’s perhaps no coincidence
that one of the early chapters in this book
deals with Turtle graphics. We fondly
remember getting an Acorn Electron in the
early 80s, and it came with two books – one
was Start Programming with the Electron,
and the other was entitled Turtle Graphics.
Together they encapsulated the same sense
of wonder and exploration as Ben and Alex’s
book, nurturing a new generation of coders
in the process. This book might do the same.

Just don’t tell Ben.

LV003 056 Reviews Books.indd 56 15/04/2014 12:44

REVIEWS BOOKS

www.linuxvoice.com 57

Ethernet: The Definitive Guide
Cities, airports and rail stations are so often
judged on their free WiFi, but the backbone to
all networking is still Ethernet and that’s not
about to change. Good job that its definitive
guide has just had an upgrade then, and the
2nd edition should be a great bit of research.

ALSO RELEASED…

Learn all about
Ethernet and
give yourself
job security
for life.

Nine algorithms that changed the future:
The ingenious ideas that drive today’s computers
Ben Everard wonders if all nine are required to look at Facebook.

How does John
MacCormick know
that the future’s been
changed?

This book is written to bring the
idea of algorithms to the masses.
Without assuming any computing

knowledge, John MacCormick takes the
reader through nine algorithms such as
PageRank, Zip compression, and digital
signatures in just over two hundred pages.

To achieve this the book simplifies – a
lot – and sometimes it just changes
algorithms to suit his purpose. For
example, the chapter on public key
cryptography actually deals with the Diffie-
Hellman key exchange, which is private
key cryptography.

Nine Algorithms… tries hard to deliver
a simple description of how algorithms
work to a non-technical audience. In
this aim, it succeeds. It walks the reader
through the algorithm and explains their
basic function in a very readable manner
without challenging the reader much.
However, the writing is so overtly non-
technical that it’s off-putting to people with

even a slight interest in computing.
As an introduction to a fascinating

subject, though, it’s great.

Ada Lovelace was
simply a genius. It’s a
little unfortunate that
this book feels the
need to qualify this
with the adjective
‘female’.

This is a book about Ada Lovelace
the person, not her contributions
to computer science. This isn’t

a criticism, just a fact that we feel needs
stating, especially as the subtitle How Ada
Lovelace, Lord Byron’s Daughter, Started
the Computer Age implies otherwise. It
actually covers almost everything about
her life other than the technical details of
her work.

Linux Voice readers, of course, will
already be well versed in the mathematical
aspects of her life from a tutorial in issue
1, so this book is the perfect companion
to that. It chronicles her life from a baby
growing up in the shadow of her father’s
scandalous life, to her untimely death.
In doing this, it adds some colour and
context to the cold, dry mathematics for
which she is most famous.

Some people may feel that the details of
a scientist’s life aren’t important, and only
their contribution to the subject should be

A thorough exploration of the Countess of
Lovelace’s life, this book tells the story of
how the computer age almost started early.

LINUX VOICE VERDICT
Author James Essinger
Publisher Gibson Square
ISBN 9781908096067
Price £14.99

Testing in Scrum
Agile is one of those ideas that seems to have
found itself into all kinds of management
structures, regardless of whether they have
anything to do with development. This is book
promises practical help on testing and QA, and
includes several case studies. Now sit down.

Scrum: the
chance to
laugh at co-
workers every
single day.

Designing Multi-Device Experiences
These days, we expect our web experience to
be similar to the supporting app experience,
which is similar again to the desktop
experience on all platforms. That’s a tough
challenge, and this book promises a practical
approach to developing your own framework.

Linux is
everywhere.
Unfortunately,
KDE has yet to
follow.

An easy to read introduction to algorithms
for a non-technical audience

LINUX VOICE VERDICT
Author John MacCormick
Publisher Princeton University Press
ISBN 978-0-691-15819-9
Price £11.95

A Female Genius: How Ada Lovelace,
Lord Byron’s daughter, started the computer age
Ben Everard is building a difference engine out of papier maché.

considered – this isn’t a book for people
like that. We, however, enjoyed it greatly.

LV003 056 Reviews Books.indd 57 15/04/2014 12:44

GROUP TEST TOUCH DESKTOPS

www.linuxvoice.com

THE CRUCIAL CRITERIA
Our target is the standard x86 PC, rather
than pure touch devices. We’re using
Dell’s XPS 13, as reviewed last issue
and as lent to us by www.apt-net.co.uk
(thanks Alan!).

As such, any desktop can be made
to work with a touchscreen, but we’re
not going to look at every desktop.
We’re going to pick those we’ve found
to be the most effective. Gnome 3.x and
Ubuntu’s Unity are two obvious choices,
because while they’re not designed

specifically for touch, the borrow heavily
from the full-screen design of Android
and iOS. We can also look at Android
itself. The latest x86 release of Android
4.4 works brilliantly and offers the
other side of the touch coin – a touch
desktop shoehorned into a laptop. For
the others, we’re going to use a base
of Ubuntu as this ensures hardware
configuration isn’t the differentiator –
only the way the desktops are designed
to interact with touch input.

This is a technology that is
still on the very cutting edge
of what Linux desktops can

do – desktops designed to be used
with a touchscreen. There are
several important reasons why
we’re doing this now, rather than
waiting an indeterminate amount of
time for the technology to mature.

The first is that it’s fun. New
technology, and new ways of
interacting with it, is exciting, and
Linux is going to have to find a way
to work with touch. The second
important reason is that the
technology is already here, not just
in the form of Android tablets, but
increasingly in our laptops. Thanks
to Microsoft’s emphasis on touch
for Windows 8, many new laptops
now come with a touchscreen by
default, and if you install Linux on
one of these devices, you’ll want
to know which desktop is going to

work best. The third reason is that
the touch interfaces of Apple’s iOS
and Google’s Android have shaken
up the old launch menu and file
management desktop metaphor,
and many newer Linux desktops
have incorporated some of their
features already.

Even if they’re not designed
specifically for touching, it’s good
to know whether the new style of
design works with new hardware,
or whether touch gets in the way.
Which is exactly the challenge we’ve
set ourselves for this group test.

We spent a few weeks with our
multi-boot system playing with
each desktop as we would a
desktop in a real production
environment. That meant we
missed the latest Gnome release
(see p52 for our review), but it also
meant we took a pretty ruthless
view on whether touch worked.

Graham Morrison and his trusty touch laptop explore
the cutting edge of Linux desktops.

GROUP TESTTOUCH
DESKTOPS

Don’t let your touchscreen go to waste.

“New technology, and new ways of
interacting with it, is fun.”

58

URL www.ubuntu.com
Version 7.1.2
Licence L/GPL v3
Promised touch
enhancements didn’t make
it into 14.04, but does
Unity still do enough?

Unity

Touch DesktopsOn Test

URL www.gnome.org
Version 3.9
Licence L/GPL
Gnome looks a little like
Unity, but without the
tablet and smartphone
emphasis.

URL http://plasma-
active.org
Version 4
(from Kubuntu daily)
Licence GPL
It’s KDE with added touch
and less KDE.

URL www.kde.org
Version 4.13 beta
(Kubuntu)
Licence L/GPL
It’s KDE.

URL www.android-x86.org
Version 4.4 RC1
Licence Apache 2
It’s just like the phone and
tablet OS, only it’s running
off your laptop.

Gnome

Plasma Active

KDE

Android x86

LV003 058 Group Test.indd 58 15/04/2014 12:47

TOUCH DESKTOPS GROUP TEST

www.linuxvoice.com

Plasma Active is tricky to install on x86. We used Unetbootin and a recent Kubuntu daily image.

The Plasma Active and Android
desktops we’re looking at are so
cutting-edge that they can’t be

installed in the way you may be used to.
Not only that, you’re going to need a more
traditional Linux distribution installed
alongside for those times when you don’t
want to be dealing with what are ‘works in
progress’. You won’t have these problems
with Unity, Gnome or KDE, but it is
something you have to deal with when
installing Plasma Active and Android, as
both are different to most Linux desktops.

Plasma Active is best described as a
remix of KDE for touchscreens. But it’s not
just a skin. It takes over the entire system
and doesn’t work particularly well installed
alongside other KDE Plasma workspaces
(as they’re called), at least not in the way
it’s currently distributed.

Needs attention
Plasma Active in general suffers from a
lack of love, despite early success, and it’s
a struggle to find a working configuration.
As such, installation is best done through
a custom Kubuntu re-spin, or by adding
package repositories to vanilla Ubuntu or
OpenSUSE. We went for the Kubuntu spin
written to a USB stick before committing it
to a section of the hard drive. Similarly, we
dropped the USB image of Android 4.4
onto a USB stick booting with Easy2Boot,

The Android-x86 build has come a
long way since we first tried it a
couple of years ago. It might initially

seem counter-intuitive to install something
designed for tablets onto what is essentially
a touchscreen laptop, but we really enjoyed
the results. It’s like a very fast Nexus with
built in keyboard. All the gestures from your
smartphone work instantly, from sliding down
notifications, or swiping across desktops,
to pinch zoom, rotation with no further
configuration. It’s tough to write about Android
as a legitimate alternative to a more traditional
Linux distribution, but if it brings extended
functionality to your touchscreen and you
enjoy using it, we don’t see the problem. It’s
still Linux.

Second to Android this time is Unity. This is
because it does some sensible things to take
into account the touch input. You can scroll up
and down lists, for example, resize a window
with three fingers and the cursor is hidden
when you touch the screen. Those features
alone put it in a different class. Plasma Active
is pretty good, as you’d imagine, and KDE is
acceptable, but not without modifications.
Gnome running off both Fedora 20 and
Ubuntu almost manages it. But only some
window title bars register a touch, leaving
certain windows unable to move without
resorting to the touchpad.

Installation and
configuration
Working at the cutting edge isn’t always easy.

59

Touch
input
You’ve got the touch.

VERDICT
Android
Unity
Gnome
KDE
Plasma Active

VERDICT
Android
Unity
Gnome
KDE
Plasma Active

and it worked amazingly well from there,
including both multitouch from the screen,
keyboard control and WiFi (an important
consideration for Android), as well as
touch control when needed.

For other desktops, the challenge is
getting the touchscreen to work well, as
most will be able to use touch as a mouse
cursor. The best strategy is to find the very
latest version of a distribution, as this will
include the latest drivers. This approach
worked for the Haswell XPS 13 for all the
distributions and desktops we tried,
especially as the XPS 13 Developer Edition
originally shipped with Ubuntu 12.04, but
this will also depend on your hardware.

Our touchscreen presents itself to the
system as a multitouch Synaptic
touchpad, which means it works out of the
box. But this can also add complications if
you’re using a genuine Synaptic touchpad
alongside the screen. When you combine
these two aspects together, Ubuntu’s Unity
is the only desktop to have taken both the
installation and configuration into
consideration, by its nature, with Android
coming a close second.

Android comes closest to just working.

LV003 058 Group Test.indd 59 15/04/2014 12:47

GROUP TEST TOUCH DESKTOPS

www.linuxvoice.com

Android x86’s cutting-edge
nature means not everything
works – Netflix, for example.
But the touch experience is
second to none.

Here’s the rub (sorry!) – just
because your hardware has a
touchscreen, it doesn’t mean

you should feel duty-bound to use it. If
you are going to use it, the desktop has
to make it worthwhile. We have used
touch and keyboard devices for a few
months, especially when travelling, and

our conclusion is that a touchscreen
can genuinely help in some very specific
cases, and the amount that they help
is down to the desktop. In Android, for
example, a gesture to open the settings
makes a lot of sense. And Unity is
obviously working on phones. But that’s
where all the others need most work.

Android
Not surprisingly, Android excels at touch.
After all, input has been designed around
fingers rather than mouse and keyboard
input. But what most surprised us is that it
feels very natural behind a laptop
form-factor. You find yourself
automatically launching apps and swiping
through running processes by touching
the screen, while at the same time using
the keyboard or even reverting to the

touchpad (it works!). And using the
computer in this way is quicker and more
efficient than doing similar gestures the
old fashioned way, or even though a
launcher such as Gnome Do. As a laptop
operating system, it feels much more
mature than Chrome/Chromium OS.
Though we’re loath to use the word,
there’s some synergy between the
touchscreen and the keyboard.

60

Usability
Does a touchscreen actually add anything?

The point of this group test is to see which
desktop environments have implemented
features that best work with touch. But it’s
also possible to change a great deal about
how they look and behave even if they don’t
support touch. KDE comes out best because
there’s just so much you can change. You can
dramatically increase the width of the
scrollbars making them much easier to grab
and move with your fingers. You can change
the size of the title bar, and replace the icons
with much more finger-friendly options.

A cut-down number of options is also
available to Plasma Active users. Android is
seriously restricted by not running traditional
Linux applications, but this can be helped a
little by using an open source repository such
as F-Droid, or dual-booting your machine.
Gnome has plenty of plugins and themes that
can help, while there’s not too much you can
change in Unity.

Plasma Active also has a complete set of
widgets that can be added to a specifically
designed fullscreen background. These
widgets, like the ones you find in Android,
are a great way of creating something of the
tablet experience with a Linux desktop, and
they work well with touch and the widescreen
form factor. We should also be able to pull
down a task manager in Plasma Active, but in
the three different x86 installations we tried,
this doesn’t work. Instead, we had to rely on
KRunner to launch and configure the desktop.

In Unity, however, swiping down over the
top-right corner of the display was enough
to reveal the options of whatever icon we
happened to touch. This was probably a side
effect of touching the icon, but it’s very similar
in behaviour to the latest Ubuntu Touch builds
running on phones, where you can slide
down and horizontally to switch between
the settings for those widgets running. Unity
definitely has the best potential, and we just
hope that the work that’s gone into the mobile
version isn’t lost on x86 users, even if it’s
through a third-party repository.

Customisation
If it’s not great, just what can
you do to make things better?

Without customisation, the
touch KDE experience is
difficult and clunky. You’re
better off with a mouse.

KDE
By default, most things in KDE are small.
This makes them difficult to use from a
touchscreen. Clicking on an app to launch
from the menu is difficult, for example,
and resizing windows is almost
impossible, although moving windows is
slightly easier and is the only mouse
function with any touch advantage
potential. The single-click option for

launching an application associated with
a file is useful, and KDE is perhaps the
strongest desktop when it comes to
configuration options. You can change
almost anything about the desktop to
make it more touch friendly. But perhaps
because it’s an area the KDE team might
feel is covered by Plasma Active,
concessions to touch in KDE are very few.

VERDICT
Android
Unity
Gnome
KDE
Plasma Active

LV003 058 Group Test.indd 60 15/04/2014 12:47

TOUCH DESKTOPS GROUP TEST

www.linuxvoice.com 61

This is going to depend on what you need to
do. Android, for instance, is hobbled by not
being a traditional Linux distribution. You can’t
install many of the applications you may be
used to, and many tasks are impossible. There
are no tools for specific kinds of software
development, or 3D animation, or any number
of other tasks. But there are many everyday
tasks such as web browsing, writing words,
staying on top of emails and playing Angry
Birds that are arguably better accomplished
on Android that on a Linux desktop.

Even the Rotate Screen feature was useful,
as it was a perfect way of proofing pages for
this very magazine. We’d love to see an
Android mash-up where you had X11 desktop
functionality and package compatibility.
However, touch on other desktops can be
more productive. Web browsing in Plasma
Active, file management and app launching
from Unity, and cursor placement in all of
them makes a touchscreen worthwhile.

Plasma Active has a lock screen designed
for touch, so you can easily slide open the
screen when you want to resume a session.
Android does the same, obviously, but it feels
like the right thing to do – much better than
flicking the Caps Lock on the keyboard, which
is what we usually do to resume a sleeping
laptop. The problem with Plasma Active is
that everything is just too half-finished to be
useful. Which is disappointing, because when
we tried earlier versions actually running on a
tablet, usability was top-notch. The problem
we had then was with performance and
efficiency, not usability, while running on an
ARM CPU.

Gnome had a problem where we couldn’t
move the settings windows with the touch
screen. This might have been a hardware
issue, but as we experienced the same
problem on both Fedora and Ubuntu, it might
be a deeper issue with the different ways
Gnome handles window management, or it
might be interpreting touch differently.

Touch
potential
Can touch help you do more?

Most icons in Unity are large
enough to prod, especially
when it comes to restarting or
shutting down your machine.

Unity 14.04
Hitting the scroll bars at the side of the
Unity desktop is a problem, as too is
resizing a window from the bottom right
corner. However, one of Unity’s best
features is multitouch support, and this
works on the screen. Place three fingers
on a window and you can move it around,

resize it using large anchor points or
maximise and minimise without any
difficulty. Tap three fingers and you can
switch applications. A four finger tap will
open the dash or bring the launcher back
from a hidden state. These gestures
transform Unity’s touch possibilities.

Gnome is hampered by some
of the window borders not
working in the same way that
others do.

Gnome
Gnome has some of the advantages of
Unity, thanks to its launcher and panel.
Applications and icons are easy to locate,
and the application launcher view, along
with its containers for other applications,
is an excellent mechanism for navigating
to the tools you want to run. It’s difficult to
close and resize windows without

changing the theme, and Gnome is really
missing the multitouch features of Unity,
but it’s better than KDE because the shell
makes more sense from a touch
perspective. Thanks to the click zones
being up against the edge of the top panel,
you can also swipe down on the screen to
do things like logout or open the settings.

Plasma Active has plenty
of potential, but a lack of
development is holding it
back from being a usable
desktop.

Plasma Active
There are many things to like about
Plasma Active. It’s the only big Linux
desktop, bar Android, to have been
designed for touch devices, so it has the
potential to be the best of both worlds. By
default, window management is easy
thanks to the large icons and scroll bars,
although there’s nothing as

comprehensive as Unity’s multitouch
support. The large widgets you can place
on the background can go some way to
make Plasma Active feel like Android, and
there’s a primitive settings dialog that
presents its options in large, slidable
controllers. There’s a customised version
of KDE’s web browser too.

VERDICT
Android
Unity
Gnome
KDE
Plasma Active

LV003 058 Group Test.indd 61 15/04/2014 12:47

GROUP TEST TOUCH DESKTOPS

www.linuxvoice.com62

Android made a shockingly good, and surprisingly
productive, laptop operating system.

During the course of this and the
previous issue, we spent a
considerable period of time

with each desktop, doing the stuff that
we normally do. We wanted to see
whether the presence of a touchscreen
would change the way we interact with
the Linux desktop.

We’ve probably written more words
about Android in this group test than
we have about the other desktops, and
that’s because Android has surprised
us by being remarkably productive.
When you pull it out of the CPU- and
memory-restrictive environment of a
smartphone or a tablet, and put it onto
a fully fledged Intel Core i7 CPU with
8GB of RAM, it flies.

Of course, the problem is that it’s only
going to be good for certain tasks. In
particular, it doesn’t make much sense
when you can pick up a tablet for very
little money in comparison to a laptop.
It’s not a stable operating system, and
has quite specific hardware
requirements, so it’s not going to be a
good choice for most people. If you’re
using a computer with a touchscreen,

Productivity
Is touch a gimmick, or can it help you do real work?

the chances are you want to do some
serious computing with it, so while
Android is great at certain mobile-
friendly jobs, it wouldn’t be our desert
island desktop.

Multitouch FTW
Thanks to its multitouch support, the
issues of resizing and moving windows
don’t affect Unity, as you can just push
three fingers across the screen to do
what needs to be done. The same
configuration can be made to work with
other desktops, but that requires some
tinkering. One slight hitch might be
whether multitouch makes its way to
the Mir display server, but considering
Canonical’s big push on mobile and
tablets, it’s more likely that touch will
get better rather than worse for future
versions of Unity.

We were able to work with both KDE
and Gnome, but these desktops were
used almost 99% of the time through
the mouse and keyboard, reverting to
touch only for cursor placement and
occasionally to launch an app or editor
in KDE. It’s still better than nothing, but

hardly worth buying a laptop with a
touchscreen for. Finally, there’s Plasma
Active. The biggest problem we had
with this was stability, so while some
aspects were better than other
desktops – such as the browser and
settings support – we couldn’t rely on
the desktop enough to do any real work.
Our time was better spent trying to
make KDE look more like Plasma Active.

Ubuntu does a great job at making touchscreen input a
central part of its desktop experience.

There are many things you
can do to make any of these
desktops more friendly to

touch. Gnome, Unity and KDE can
quickly improve the touch experience
in Firefox by installing the ‘Grab & Drag’
extension, for example. This replaces
Firefox’s default action of left-click
text selection with a hand that grabs
and scrolls the web page. It can even
add momentum for the full tablet
experience, and there’s simple support
for page up and page down gestures.
This extension alone transforms the
non-Android desktops. Even an on-
screen keyboard can help, when you
don’t want to move your hand down to
the keyboard.

Our favourite was Ubuntu’s, which
can be launched by typing onboard in

Third-party support
Can we make the touch experience more accessible?

the shell. It was touch enabled without
any further modification and can be
latched onto the edge of the screen.
It also has some useful features such
as snippets and typing assistance/
auto-correction. The keyboard can also
be hidden automatically, and quickly
brought back to life by keeping a
hovering icon on-screen.

We also liked Gnome’s ‘Florence’
keyboard . It’s scalable, has a
touchscreen input mode, and you
can clearly see when you’ve hit the
key you’re aiming for thanks to the
focus zoom feature. Both Florence
and Onboard can be set to have a
transparency, so they don’t have to
get in the way of the remainder of the
display, and while it may sound slightly
crazy when there’s a perfectly usable

real keyboard beneath the display, we
found an on-screen keyboard to be
almost essential for some tasks. Finally,
we’d describe KDE’s own on-screen
keyboard as functional rather than
useful for touchscreen users.

VERDICT
Android
Unity
Gnome
KDE
Plasma Active

VERDICT
Android
Unity
Gnome
KDE
Plasma Active

LV003 058 Group Test.indd 62 15/04/2014 12:47

TOUCH DESKTOPS GROUP TEST

www.linuxvoice.com

Touch hasn’t changed our
desktops in the way we
thought it might, but touch

input is something developers and
users still need to consider.
Microsoft, for example, got things
spectacularly wrong with its unified
touch interface with Windows 8,
backtracking to a more traditional
appearance with each update. The
open source community has taken
a more pragmatic and sober
approach, which we think has paid
off, despite early versions of both
Gnome 3.x and Unity seemingly

embracing the idea. Touch isn’t
going to change the desktop
overnight, but nor is it going to be a
passing fad. The technology is
seeping into standard PC/laptop/
hardware, and Microsoft’s hardware
partners are determined to push for
more tablet/PC convergence. As
such, there’s still a long way to go
for the Linux desktop to be
considered touch friendly.

We had highest hopes for
Plasma Active, because it seems to
be the only mainstream based
Linux desktop taking touch
seriously. But so little has happened
over the last 12 months that we

1st Unity
Licence GPL & LGPL v3 Version 7.1.2

www.ubuntu.com
Ubuntu is perhaps the distribution with the greatest motivation
to make touch a central part of its desktop. And it shows.

OUR VERDICT
had to check to make sure it was
still being developed. There’s no
easy way to install it, and very little
documentation on using it. It could
be a great initiative, but unless
there’s some reason for developers
to get behind it – such as Aaron
Siego’s wonderful Spark tablet idea
– it’s not going to happen.

KDE comes next, although a
properly configured KDE desktop
for Linux would score higher. This
result is purely because there’s very
little evidence of any changes being
made to accommodate touch. Next

comes Gnome. Finding and
launching applications is good, as
too is the on-screen keyboard, but
there are some gotchas – such as
some of the windows not
responding in the same way to
touch control.

Despite our falling for Android
x86 4.4, we’ve only ranked it
second. This is because Android
x86 has no crossover with a
traditional Linux distro. Unity wins
because there were no big
problems, the launcher, on-screen
keyboard and panel all work well
with touch, and the multitouch
module makes all the difference.

2nd Android x86
Licence Apache 2 Version 4.13 beta (Kubuntu)

www.kde.org
We loved Android on a laptop. If only there were a way of
installing the applications we’re more used to, it would win.

3rd KDE
Licence GPL & LGPL Version 4.13 beta (Kubuntu)

www.kde.org
Just pulls ahead of Gnome because it’s more configurable, and
when you make the scrollbars large, it’s very usable.

4th Gnome
Licence GPL & LGPL Version 3.9

www.gnome.org
Despite looking like Unity, there’s no particular touch
consideration in the GUI, but it has lots of potential.

5th Plasma Active
Licence GPL Version 4 (from Kubuntu daily)

http://plasma-active.org
We feel bad putting this last. We’ve used a build on an ARM
tablet that worked brilliantly, but x86 is lacking love.

63

Unity is still easily the best Linux desktop for a touchscreen.

Touch desktops

“The Unity launcher, on-screen keyboard
and panel all work well with touch.”

YOU MAY ALSO WISH TO TRY…
Any Linux desktop is going to be malleable
enough to work with a touch interface. They
can all be configured to use larger buttons, or
place large launch icons in places that fingers
will find easier to hit. Mate and Cinnamon, for
example, both work well in out tests, as
would XFCE. But there’s nothing specifically
touch friendly about them, which is why we

didn’t make them part of this group test.
Google recently announced a new
Chromebook, the Acer C720P, and it comes
with a touchscreen. It’s running Google’s own
browser-centric Chrome OS, an OS that falls
into the same category as Android for being
non-standard in the way other Linux desktops
are. But there is an open source build of the

operating system and we spent a
considerable about of time getting this to
work on the XPS 13. As almost everything is
browser based, touch helps when scrolling
around and hitting links, but doesn’t offer
anything beyond Firefox with a touch plugin,
but it may be worth a try if Android has given
you a taste of cutting-edge touch desktops.

LV003 058 Group Test.indd 63 15/04/2014 12:47

www.linuxvoice.com

SUBSCRIBE

Not all Linux magazines are the same

Each month Linux Voice includes 114 pages of in-depth tutorials,
features, interviews and reviews, all written by the most

experienced journalists in the business.

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfi ed in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profi ts
back to Free Software

shop.linuxvoice.com

Introducing Linux Voice,
the magazine that:

SUBSCRIBE

 Licenses its content
CC-BY-SA within 9 months

12-month subs prices
UK – £55
Europe – £85
US/Canada – £95
ROW – £99

7-month subs prices
UK – £38
Europe – £53
US/Canada – £55
ROW – £60

64

DIGITAL
SUBSCRIPTION
ONLY £38

LV003 064 Subs-Next Month.indd 64 15/04/2014 12:47

http://shop.linuxvoice.com/

NEXT MONTH

www.linuxvoice.com

The world’s favourite Linux distro has
evolved to the next level. We look at the spin-
offs that have grown up and flown the nest –
Kubuntu, Elementary OS, Trisquel and more.

NEXT MONTH IN

ON SALE
THURSDAY
29 MAY

LINUX VOICE IS BROUGHT TO YOU BY

THE BEST UBUNTU RESPIN

EVEN MORE AWESOME!
Random numbers,
DNA, nuclear
weapons, the fi rst
reprogrammable
computer and more
– John von
Neumann had his
fi ngers in many pies.

Old Code

Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com

Editorial consultant Nick Veitch
nick@linuxvoice.com

All code printed in this magazine is licensed
under the GNU GPLv3

Printed in the UK by
Acorn Web Offset Ltd

Disclaimer We accept no liabiliy for any
loss of data or damage to your hardware

through the use of advice in this magazine.
Experiment with Linux at your own risk!
Distributed by Marketforce (UK) Ltd, Blue
Fin Building, 110 Southwark Street, London,
SE1 0SU
Tel: +44 (0) 20 3148 3300

Circulation Marketing by Intermedia Brand
Marketing Ltd, registered office North Quay
House, Sutton Harbour, Plymouth PL4 0RA
Tel: 01737 852166

Copyright Linux is a trademark of Linus
Torvalds, and is used with permission.
Anything in this magazine may not be
reproduced without permission of the
editor, until January 2015 when all content
(including images) is re-licensed CC-BY-SA.
©Linux Voice Ltd 2014
ISSN 2054-3778

Subscribe: shop.linuxvoice.com
subscriptions@linuxvoice.com

Build a Mars Rover
with a Raspberry Pi*;
seek out new words
and civilisations.
(*This is an artist’s
impression of Ben’s
Mars Rover.)

Life on Mars

Internationalisation
is a massive reason
for Linux adoption
– get involved,
translate something
and quite literally
spread the word.

No speako lingo

LV003 064 Subs-Next Month.indd 65 15/04/2014 12:47

SYSADMIN

www.linuxvoice.com66

In our third and final look at new
technologies making their way to Linux,
we’re going to explore Btrfs (which in

my head I’m pronouncing butter-eff-ess).
Btrfs is a new copy-on-write filesystem for
Linux, which aims to deliver advanced
features such as volume management,
snapshots, checksums and send/receive
of subvolumes.

If you’re not already a filesystem expert,
many of those terms might sound alien to
you, but continue reading and we’ll do our
best to explain what these features do, why
you want them, and when you’ll get them.

Stability
Let’s start with that final question, as any
one who’s paid even a little attention to news
about Btrfs has heard horror stories about it
destroying data and may well think it’s a long
way from production.

As it stands now, OpenSUSE plans to be
the first major distribution to use it by
default in its November 13.2 release,
indicating that they believe it’s stable enough
for daily use. Facebook, too, which has
recently hired many Btrfs developers, has
announced plans to begin using Btrfs in its
production web tier, where it can test

performance and stability on real, albeit
easily recoverable, workloads.

This anecdotal support from distributions
and large production environments, along
with the official wiki claiming that the on-disk
format is now stable, suggests that if you
want to start testing, now is the time to do
so. It might not be making its way in to the
next round of enterprise distribution releases
as default, but it will be there for those users
who really need it.

So, if you want to try some of the features
we’ll describe in the rest of this article, make
sure you have automatic and tested
backups running. Do that, and even if the
‘experimental’ status of Btrfs does lead to
data loss, you won’t be left cursing.

Getting started
With that word on stability out of the way,
let’s get to work and create a new Btrfs
filesystem. Once we have the filesystem in
place, we’ll start working through some of its
core features, showing what they do, why
they’re great and how to use them.

For our simple experiments, we’re going to
use some plain files mounted as loop
devices. So, to start, first create an empty
3GB file, use losetup to create a new loop

Among developers, ‘test driven
development’ has become trendy once
more. It’s certainly not a new idea, as
similar practices are described in The
Mythical Man Month, which was originally
published in 1975, but it is as popular now
as it has ever been.

The idea is simple. Developers write
automated tests to check that functions
and features they’ve implemented work.
Usually, these tests take the form of
simple functions that call the code to be
tested, and compare the output to an
expected value, using an assert statement
or similar. If the expected and actual value
match, the test passes; if they’re different,
the test fails.

In TDD, this is taken one step further,
and advocates argue that the developer
should first write a failing test for the
function they’re about to implement, and
then they can keep working until it passes.

What’s this got to do with system
administration? Well, I would argue that
operations teams should take a similar
approach when building out the
infrastructure for a new product.

Tests can take the form of checks in
monitoring software such as Check_MK or
Nagios. Ensure that, after your provisioning
servers, your monitoring server is the first
thing you install. Then, for each subsequent
server to be installed, first add it and all
necessary checks (process checks for
Apache, MySQL server status checks etc)
to your monitoring software.

Then you can begin building it. At first,
all the checks will be red. But as you boot
it, and then run your configuration
management recipes, you’ll see check
after check turn green. If any stay red by
the time Puppet etc has finished, you
know you need to tweak your recipes.

Btrfs
The filesystem that’s better (or butter) in so many ways.

Creating a btrfs filesystem is just like any other – easy. In this tutorial, we’ve used loopback
mounts to experiment, but this would all work just as well on a real disk .

System administration technologies brought to you from the coalface of Linux.
SYSADMIN

Jonathan Roberts
dropped out of an MA
in Theology to work
with Linux. A Fedora
advocate and systems
administrator, we hear
his calming tones
whenever we’re stuck
with something hard.

LV003 066 Sysadmin.indd 66 15/04/2014 12:48

SYSADMIN

www.linuxvoice.com 67

Some of the tools you’ve used in the past, such as df, won’t take into account metadata and other
features of Btrfs, so it has its own tools, such as btrfs filesystem df /path (the substitute for df).

SYSADMIN
device, and then create a new Btrfs
filesystem:
dd if=/dev/zero of=/home/jon/btrfs1 bs=1024
count=3072000
losetup /dev/loop0 /home/jon/btrfs1
mkfs.btrfs /dev/loop0

That’s all there is to it. You can then mount
/dev/loop0 as you would any other
filesystem, examine it with tools like df etc.

As with any filesystem, there are a host of
options you can specify at mount time to
change the way that it works. With Btrfs, one
useful option is compress, which enables
you to turn on compression using either zlib
or lzo:
mount -o compress=lzo /dev/loop0 /mnt/btrfs
While compression brings the obvious
advantage of letting you store more data on
disk, in some circumstances it can also
bring a performance benefit too. On most
systems without solid state storage, there
are often CPU cycles to spare, while disk I/O
can be a real bottleneck. By asking the disks
to pull back less data, but asking the CPU to
do some more work uncompressing that
data, you can improve your performance.

Subvolumes
Now that you have a Btrfs filesystem
available, let’s look at the second (after
transparent compression) feature of
interest: subvolumes. A Btrfs filesystem can
be divided into multiple roots that can each
be treated as a filesystem in its own right
(unlike logical volumes, these independent
roots are not separate block devices):
btrfs subvolume create /mnt/btrfs/images

If you inspect the mounted filesystem at
this point, you’ll see what appears to be a
new directory. You can cd in to it, you can
create files within it etc. What happens,
however, if you try to create a hard link
between a file in this subvolume and the
parent btrfs file volume?
ln /mnt/btrfs/images/screen1.png /mnt/btrfs/
screen1.png

That operation fails, just as if you’d tried to
create a hard link between two different
mount points.

OK, so what can you do with subvolumes?
Well, when creating a subvolume, you can
make it a snapshot of another Btrfs volume:
btrfs subvolume snapshot /mnt/btrfs/images /mnt/
btrfs/ss-images

Because Btrfs is a copy-on-write
filesystem, this snapshot could be an exact
replica of a 300GB filesystem and it would
still have been created instantly. Btrfs only
needs to copy data when information in the
snapshot or the original volume actually

changes, making them fast to create and
remove as well as extremely space efficient.

What really makes subvolumes useful,
however, is that you can mount individual
subvolumes without mounting their parent.
First, list all of the subvolumes in your Btrfs
volumes to find out their ‘subvolume IDs’:
btrfs subvolume list /mnt/btrfs

Then, assuming the ss-images snapshot
created above has volume id 258, umount
the Btrfs filesystem before remounting with
the following options:
mount -o subvolumeid=258 /dev/loop0 /mnt/btrfs
When you list the contents of /mnt/btrfs,
you’ll only see the contents of that
subvolume. This feature is particularly
important because it means, for example,
you can snapshot your root volume before

an upgrade, and if things go awry, remount
the snapshot as your root and get back to a
working state straight away.

Multiple volumes
As well as having these LVM-like features,
Btrfs also shares features with traditional
RAID, too. A Btrfs filesystem can be spread
across multiple devices, and you can
configure it to distribute the data across the
devices according to one of several
common RAID levels:

 RAID 0 Striping, in which data is striped
across disks, leading to improved read
and write speeds. Btrfs also supports an
extension of RAID 0 in which disks do not
have to be the same size, known as
‘single’.

 RAID 1 Mirroring, in which data is
mirrored across two or more disks of the
same size. Can be faster for reads, but
will slow down writes, as data has to be
written twice.

 RAID 10 Mirrored striped, in which data is

striped across a pair of drives, which is in
turn mirrored to another pair of drives.
Aims to give the benefits of RAID 0 and 1.

 RAID 5 and 6 Stripe data, as in RAID 0, but
sacrifice some space for ‘parity’
information. This parity information allows
the array to lose one disk in RAID 5 or two
disks in RAID 6.
To set up a multi-device Btrfs filesystem

like this, first create a second loop device:
dd if=/dev/zero of=/home/jon/btrfs2 bs=1024
count=3072000
losetup /dev/loop1 /home/jon/btrfs2

Then use the mkfs.btrfs command again,
but with the following options:
mkfs.btrfs -d raid0 /dev/loop0 /dev/loop1

You can check the man page for mkfs.
btrfs to see other options for the -d switch.

Self healing
We’re close to the end of this month’s
overview, and there’s so much we haven’t
touched on – file cloning, filesystem
mirroring with send/receive, online
rebalancing (aka changing RAID levels) and
much more. Before finishing this month’s
section, there’s one other aspect of Btrfs
that I’d like to draw to your attention: Btrfs
aims to be self healing.

Btrfs records checksums for each block
that it writes. When it reads the data, it
compares the data to its checksum, and if
there’s a difference, it automatically tries to
re-read the data from one of your redundant
copies or parity information – eg if you’re
using RAID1/10, 5 or 6 and Btrfs reads a bad
block, you’d never know it happened unless
you were to take a look in the logs.

That’s all we have space for, but I hope
you’ll start thinking about all you could do
with Btrfs when it does eventually hit your
favourite distribution.

“A Btrfs filesystem can be divided into roots that
can each be treated as a filesystem in its own right.”

LV003 066 Sysadmin.indd 67 15/04/2014 12:48

www.linuxvoice.com

CLOUDADMIN

68

V irtualisation is a key technology that
helped give birth to the modern
cloud as we understand it. It helps

run the services on the cloud and often
helps build clouds too. But virtualisation is
also important to developing tools to run
clouds. As our foray into the ‘dev’ part of
devops has already led us to look at how
continuous integration is used (see LV002)
we should also take a look at the
virtualisation technologies commonly in use,
their alternatives, and how they may differ
from your experience on the desktop.

KVM
KVM works on top of Qemu, so for the
purists, when we talk about KVM here we
mean KVM/Qemu. KVM is a Linux-only
virtualisation technology, parts of which are

included in the mainline kernel. The software
relies on kernel modules to interface with the
host CPU’s virtualisation extensions – as
such it will only run on CPUs that support
(for example) Intel VT or AMD-V extensions
(there is also an ARM port).

Popularity of KVM has not been driven by
the desktop – it still lacks a lot of the snazzy
configuration tools of VirtualBox – but it is
very very popular for ‘serious’ use due to
factors such as kernel integration and the
unambiguous open source nature of the
code (not to mention that it works very well).

Although it lacks somewhat in terms of
graphical tools, VMs are controllable from
the command line (and therefore, also easily
by scripts and other software which uses
the libvirt API – see our tutorial on page 94)
to a greater degree than pretty much anyone

Virtualisation: the options
There are many shades of hypervisor.

Virt-manager is a useful graphical front-end for KVM, but you should really familiarise yourself with
the virsh commandline tools, especially if you need tricky network setups.

A popular choice for desktop users, Oracle’s
VirtualBox has some good things going for it in
the developer space too.

Running make-believe boxes is virtually compulsory, suggests Nick Veitch.
CLOUDADMIN

“Vagrant was originally developed to work with
VirtualBox, but a system of plugins enable it to
work with numerous hypervisors.”

could ever want. As well as being a great
tool for development, it is also widely used
for spinning up VMs within clouds (eg
OpenStack).

VirtualBox
VirtualBox came to prominence by virtue of
it being a very featureful, well performing VM
hypervisor that worked cross-platform and
had an easy to understand management
interface. The software has a colourful
history – the original company that created
it, Innotek, was acquired by Sun
Microsystems, before many parts of the
disintegrating Sun empire were snapped up
by Oracle. As a largely open source project
(there is a non-open source version, which
makes use of proprietary device drivers for

VMWare
No, we didn’t forget about VMWare.
Although it has been in the vanguard of
virtualisation technologies for some time,
VMWare is not open source. Although that
doesn’t exclude it from consideration in
the world at large, it does tend to make
it less relevant to the emerging cloud
platforms, and certainly a little out of the
scope of this FLOSS-loving publication.

LV003 068 DevOps.indd 68 15/04/2014 12:48

www.linuxvoice.com

CLOUDADMIN

69

Vagrant is an effective tool for provisioning
VMs and working collaboratively.

Linux containers are not a VM, and that is the
whole point!

CLOUDADMIN

graphics, and the open source version
seems to be stuck on an LGPLv2 licence) it
sits a little ill at ease in the Oracle stable.

Nevertheless it is a mature and
competent environment for running VMs. It
relies a lot on paravirtualisation – special
drivers that allow a more efficient
throughput of data to and from the host OS.
These do bring performance benefits, but
rely somewhat on the co-operation of the
guest OS, so if you are running custom
kernels on strange distros you may not reap
the full benefits.

It does have the huge advantage of also
running on Mac OSX and Windows (and
even Solaris), which can be beneficial in
some collaborative environments.

Vagrant
Vagrant isn’t a virtualisation engine, but it is
most definitely worth talking about. The idea
behind vagrant is that it becomes a sort of
meta-manager for virtualised instances.
Vagrant was originally developed to work
with VirtualBox, but a system of plugins
enable it to work with numerous hypervisors.
Once you have installed Vagrant, you can
fetch virtual machine images (which in
Vagrant terms are known as ‘boxes’) and use
them to bring up virtual machines.

You may ask yourself “What on earth is
the difference between this and just creating
a machine in VirtualBox)?”. The answer, at
least at the system level, is “not much”. Start
up your box, and it behaves pretty much like
any other VM you have initiated with

VirtualBox (or Qemu/KVM if you use that as
the back-end).

The real difference is in provisioning. If you
spend your life testing software, bringing up
a clean VM is only part of the day-to-day
grind. You then have to prepare that system
for use. This ranges from the mundane
installation of dependency packages to the
more annoying repeatedly setting up options
like host configuration or adding SSH keys
so you can access the VM you created.

Yes, you can do this once in something
like VirtualBox and create a snapshot image.
Before you know it though you have half a
dozen different snapshots that all differ in
subtle ways, and aside from taking up loads
of disk space, it can get pretty confusing. By
using Vagrant to provision systems from a
common set of boxes, you can reduce
changes to your install to just changing
some options in the Vagrant file that the
software uses to bring up the VM. Of course,
you can still create your own boxes, and
there is a new service specifically for sharing
those images in the cloud, so collaboration
is much easier than trying to shift gigabytes
of VM filestorage around.

Linux containers (LXC)
LXC is not a hypervisor for virtual machines.
It is better than that; well, at a lot of things
anyhow. LXC uses some very useful
user-mode kernel features to containerise an
implementation of a Linux OS – think chroot,
but taken to extremes. Like a virtual machine,
the container is able to carry out its business
independently of the host OS, even to the
point of running a different OS entirely. What
you get is a self-contained running instance
that is separate from the host OS, but which
can dynamically share resources – there is
no need to pre-allocate RAM and disk space
for example, because the LXC container will
simply consume what it needs just like any
other process. LXC also plays nicely with
libvirt, so you can use the same tools to

control containers as you may use with VMs
(though to be fair, there are some
peculiarities of LXC that aren’t adequately
addressed by libvirt, but you can also use the
comprehensive LXC command line tools).

As there is no CPU or hardware
virtualisation, there is a much lower overhead
to running containers than VMs – there are
no virtualisation layers to go through, so
things like file access are much faster, and
the scalable resources also mean that more
efficient use can be made of hardware.

There are of course, disadvantages to
using containers. For a start, you can only
run Linux-based containers. It can even
sometimes be tricky to run completely
different distributions without additional
tinkering. Added to that, the lack of
virtualisation also means no virtual
hardware – which can be a pain when it
comes to configuring networking. For
simple networks, LXC makes use of a
bridged driver, which means the container
can access an external network through the
host’s network setup, but complicated VLAN
topologies become more troublesome.
There can also be some nagging suspicions
that what may work in a container could
behave differently on real hardware. Gosh,
not that anyone has real hardware!

LXC arguably has the most mature
support on Debian and derivative distros,
and is well worth experimenting with.

The virtual future
It sometimes seem mad that we run an OS
on virtual machines through cloud software,
which itself can be running on virtual
machines, which themselves can be running
on the very same OS. Don’t think about it too
much, it hurts. The point is that VMs (and
containerisation) provide the essential
flexibility of cloud implementations, and as
the overhead associated with them gets
smaller, they become more and more
important enablers of future technologies.

Further reading
 Why Vagrant? https://docs.vagrantup.
com/v2/why-vagrant/index.html
 Stephane Graber’s LXC primer
https://www.stgraber.org/2013/12/20/
lxc-1-0-blog-post-series
 Using KVM with Ubuntu https://help.
ubuntu.com/community/KVM
 VirtualBox homepage
https://www.virtualbox.org

Docker
Missing from this VM get-together
is Docker. Like LXC, Docker is a
containerisation solution, and we have
left it out because we will be having a very
detailed look at it next issue!

LV003 068 DevOps.indd 69 15/04/2014 12:48

FOSSPICKS

www.linuxvoice.com70

Here’s diagram.txt being viewed in a plain text terminal, and
Asciida’s SVG conversion shown in Firefox. Nicely done.

Asciida can convert
other types of plain
text diagram, such as
directory trees.

Sparkling gems and new
releases from the world of
Free and Open Source Software

Mike Saunders has spent a decade mining the internet for free
software treasures. Here’s the result of his latest haul…

Plain text is excellent, and
much more versatile than a
lot of people give it credit for.

Take Markdown syntax, for one
simple example:
Heading
=======
Some **bold** text
* This
* is a
* list
Although this is good old plain text,
the extra formatting here is easy to
understand, and the Markdown
tools convert this text into decent
HTML with just one command.

Asciida does a similar job, but it
focuses on creating diagrams from
plain text fi les. In other words, you
create images in a plain text editor
using regular characters, run
Asciida, and get a proper vector (or
bitmap) version.

As Asciida is written in PHP, you’ll
need the php5-cli package installed
to run it. Extract the tarball, cd into

FOSSpicks

the resulting directory, and there
you’ll see the program: asciida.php.
The best way to learn how Asciida
works is with an example fi le, and
fortunately a few are supplied in the
test directory. Have a peek at test/
diagram.txt, for instance – it looks
like classic ASCII art (see the
screenshot), but Asciida is clever
enough to work out the shapes and
signs contained therein.

Words and pictures
To convert test/diagram.txt into a
vector (SVG) image, enter this:
./asciidia.php -t diagram -i test/diagram.
txt -o svg:diagram.svg

Asciida doesn’t provide much in
the way of feedback, but its silence
at the command line shows that
the conversion has worked. Now

open diagram.svg in a vector
graphics editor such as Inkscape
– or you can even open it in Firefox
if you don’t have a vector editor to
hand. And voilà: there’s a fancier
version of the ASCII art diagram,
with everything in its right place.

Asciida can also generate bitmap
images providing that the convert
tool from ImageMagick is installed.
For some reason, on our Ubuntu
13.10 test box Asciida complained
that the MAGICK_HOME
environment variable wasn’t set, so
we had to run the program like this:
export MAGICK_HOME=`which convert`
./asciidia.php -t diagram -i test/diagram.
txt -o png:diagram.png

Note the -o png option here to
produce PNG output. Asciida can
generate fi les in other formats too
– see README.md for the details.

Asciidia 0.3.2
Create images from ASCII diagrams

PROJECT WEBSITE
https://github.com/aurora/asciidia

“Asciida does a similar job to
Markdown, but focuses on creating
diagrams from plain text fi les.”

LV003 070 Fosspicks.indd 70 15/04/2014 12:49

FOSSPICKS

www.linuxvoice.com 71

Use the plus and minus magnifying glass buttons in the top-right
of the window to change the thumbnail sizes.

Zawinski’s Law of software
development, from Mozilla
and XEmacs hacker Jamie

Zawinski, states: “Every program
expands until it can read mail.”
While this law is used in jest to
mock programs like Emacs that
have stretched way beyond their
original purposes, it makes a good
point: bloat and feature creep are
everywhere in free software.

In contrast, we love it when a
program has a very clear goal, as in
the case of Phototonic. It manages
your images – nothing else. It
doesn’t try to link to social media
websites, or provide advanced
editing facilities, or wash your car.
All it does is help to view and
organise your pictures, and
consequently it’s fast and reliable.

Phototonic is written in C++ with
Qt 4 as the front-end, so you’ll need
the libqt4-dev and qt4-qmake
packages installed (that’s in Debian
and Ubuntu – in other distros they
may have different names). After
extracting the tarball and cding into
the new directory, enter:
qmake-qt4
make

This builds the source code, and
you can enter sudo make install to
copy the binaries into your
filesystem. Then just enter
phototonic to start the program.

At first glance, Phototonic looks
somewhat like a regular file
manager, with a tree view of the
filesystem down the left, and a pane
containing thumbnails on the right.
Navigate into a directory containing
images, and you’ll see them on the
right-hand side. You can right-click
on directories and images to
rename them; this is how you’re
meant to organise your images in
Phototonic. It doesn’t try to do
anything fancy with tags or
metadata, but trusts that you can
achieve what you want with a good
old-fashioned directory tree.

Click on an image to highlight it
(11 file formats are supported), and
information about the image’s file
format, file size and dimensions is
displayed in the bottom status bar.
Double-click a picture to view it
close-up, and press Escape to go
back to the main screen.

Under the View menu you’ll find
options to change the sizes of the
thumbnails along with the sort
order, while the toolbar at the top of
the window lets you navigate like in
a web browser.

Phototonic includes basic image
editing facilities (rotating, flipping
and cropping) along with a
slideshow view that shows a new
image every five seconds. This
default duration, along with other
aspects of the program including
default keybindings, is configurable
in the Preferences panel. In all, it’s
exactly what a standalone image
manager should be: simple, fast,
stable and not overloaded with
buggy features that should be
implemented in separate apps.

Phototonic 0.93
Image manager

“Photonic is exactly what a
standalone image manager
should be: simple, fast and stable.”

How it works: Editing an image

Select
Double-click on an image to display it in full.

In this view, use the Page Up and Page Down keys to
navigate through images.

1 Transform
Right-click on the image and go into the

Transform menu. There you’ll find options for
rotating, flipping and cropping the image.

Save
Right-click again and choose Save, then press

Esc to return to the thumbnail view. Hit F5 to refresh
the thumbnails to reflect your changes.

2 3

PROJECT WEBSITE
http://oferkv.github.io/phototonic

LV003 070 Fosspicks.indd 71 15/04/2014 12:49

FOSSPICKS

www.linuxvoice.com72

It’s not pretty, but it’s
extremely lightweight
(68k for the executable)
and very useful when
you need to poke
around inside binary
files.

Nobody forgets their first
encounter with the Vi(m)
text editor. Compared with

most “normal” editors, where you
can simply type in text and press a
key combination to save your work,
Vi initially seems bizarre, with its
arcane system of modes and
commands like :wq. Yet after
spending a while with Vi, many
people find it to be incredibly
efficient and powerful – hence its
huge army of dedicated fans.

If you’re one such Vi supporter,
you might like Bvi: it’s a similar
editor geared towards working with
binary files. To install it, you’ll need
GCC and the ncurses development
files (eg the libncurses5-dev
package in Debian/Ubuntu). After
you’ve built the source code you
can open a file with bvi filename.

Now, Bvi splits the screen into
four sections: the left-hand panel

shows the addresses (ie locations)
of bytes in the file, in hexadecimal
(base 16) format. The middle panel
shows the contents of those bytes
in hexadecimal format, while the
right-hand panel shows the ASCII
representations of those bytes.
Finally, a status line at the bottom
shows the filename along with the
currently highlighted byte in binary,
octal, hex and decimal formats.

Vi-like commands
Move around using the cursor keys
(or in more traditional Vi style,
H/J/K/L), and hit Tab to switch
between the hex and ASCII panels.
To replace a byte, hit R. By default
you can’t insert or delete bytes - use
the :set memmove command to
enable these operations, and then i
and d to do them. Saving a file and
quitting is just like in Vi as well, with
:w and :q respectively.

Bvi has many more commands
taken from Vi, along with a few
useful extras such as the ability to
edit a specified range of bytes in a
file, instead of the whole file. Its
minimal requirements mean that,
like Vi, it will run almost everywhere,
so it’s on our list of “things to install
by default in a new distro” now.

Bvi 1.4.0rc
Vi-like hex editor

Here’s the FOSSpicks
screenshot from the
Pybik review, now
14% smaller thanks to
OptiPNG.

Many of the new Free
Software programs that
get released are easy to

ignore, performing piffling little jobs
that perhaps only the developer
finds useful. At first glance, one
such is OptiPNG. Wow, so it
reduces PNG file sizes by 10–15%;
who cares? In this day and age of
terabyte hard drives and blazingly
fast internet connections, do such
trivial reductions really matter?

Well, they do in some
circumstances – and they matter a
lot. If you’re hosting a very popular
website serving up thousands of
PNG images every minute, even the
smallest reductions can add up
over time, making your website
faster and ultimately reducing your
bandwidth costs.

OptiPNG performs lossless
compression on PNG images; that

is, it tries to reduce their file sizes
using various compression
algorithms and without removing
any pixel data. The end result looks
exactly the same as the original
image. Using it is very simple:
optipng file.png

OptiPNG spits out some
information as it works, overwrites
the original file with the smaller one,
and shows you the reduction
percentage. We did a bunch of tests
using screenshots from this very
FOSSpicks section, as generated by
Gimp. Occasionally we saw
impressive reductions of 25–30%,
but by and large the shrinkage was
in the 10–15% range.

While the default options do a
decent job, OptiPNG has some
extra settings for choosing the
optimisation level and PNG delta
filters. The program’s website also
has an excellent explanation of how
PNG optimisation works under the
hood: http://tinyurl.com/a9wprt.

OptiPNG 0.7.5
PNG file compressor

“Even the smallest reductions can
make your website faster.”

PROJECT WEBSITE
http://bvi.sourceforge.net

PROJECT WEBSITE
http://optipng.sourceforge.net

LV003 070 Fosspicks.indd 72 15/04/2014 12:49

FOSSPICKS

www.linuxvoice.com 73

Here’s SeaMonkey
from 2014, showing a
screenshot Netscape
4.04 from 1997. Not a
lot has changed, has it?

I f you were around on the web in
the late 90s, you’ll certainly
remember Netscape, a suite of

programs including a browser
(Navigator), email client and web
page editor. After Netscape’s
demise, much of its source code
was refactored by the Mozilla
project, and today we see the
results most famously in the form
of Firefox. But while Firefox is a
standalone browser, the internet
suite project has also continued
under the name SeaMonkey. In
recent years it looked like
SeaMonkey development was
stagnating, but as more users
become dissatisfied with Firefox
the suite is getting more attention.

And it’s really easy to try: grab the
33MB .tar.bz2 file from the
SeaMonkey website, extract it, jump
into the resulting directory and run
the seamonkey executable inside.

That’s it – you don’t need to install it
system-wide if you don’t want to.
(Note that the program stores its
data in .mozilla/seamonkey/ in
your home directory.) Prepare for a
blast of nostalgia when you first
start the app, because the interface
has hardly changed since Netscape
4. A few things have been removed
or clumped together, but otherwise
it’s quite similar.

Because SeaMonkey shares the
same underlying HTML and
JavaScript engines as Firefox, it
works largely the same for web
browsing, albeit with a more
traditional interface. But we like the
fact that it has been consistent over
the years, not whimsically

integrating every questionable
change from self-styled “user
experience designers” (ugh).

New features in version 2.25
include VP9 video decoding,
support for Opus audio in WebM,
and the Gamepad API (so that web
games and apps can access USB
or Bluetooth joypads).

SeaMonkey 2.25
Internet suite

“We like the fact that SeaMonkey
has been consistent over the years.”

So far there’s not much
to distinguish Neovim
from the original
version, apart from an
extra line on the startup
screen.

There’s something of a Vi(m)
theme to this month’s
FOSSpicks, what with Bvi’s

appearance on the facing page.
Now we have Neovim, a fork of the
regular Vim editor. But given that
Vim is under active development,
has masses of fans and a well
respected lead developer, what kind
of madman would want to fork it?

Well, that madman is Thiago de
Arruda Padilha from Brazil, and he
has some compelling arguments:
Vim’s codebase is old, complicated
and full of cruft that could be
removed, he says. It’s difficult for
new contributors to get involved. So
it’s time for Vim to undergo a major
source code overhaul.

This isn’t an easy task, and
Padilha has set up a crowdfunding
project to get started. At the time of
writing, he had raised over $32,000

to fund his work on Neovim – an
impressive sum, given that his
original goal was $10,000.

Plus ça change…
Although there’s still a huge amount
of work to be done on the editor,
you can try it out right now to get a
feel for it. To get the dependencies
on Debian/Ubuntu:
sudo apt-get install libtool autoconf
automake cmake libncurses5-dev g++

Then grab the master .zip file
from GitHub (https://github.com/
neovim/neovim), extract it and run
make cmake && sudo make install
in the resulting directory. After
compilation, you’ll be able to run the
editor with nvim.

Right now it looks, feels and
smells like regular Vim – and that’s
the intention. Neovim won’t look
too different on the surface, as all of

the important work will take place
under the hood. Padilha wants
Neovim to have a simpler build
system, more platform-independent
code, and a more versatile plugin
system. It should also be easier
to embed the editor into other
programs, and create GUI front-
ends for it on multiple platforms.

Neovim 2014-Mar-23
Editor reborn “for the 21st century”

PROJECT WEBSITE
www.seamonkey-project.org

PROJECT WEBSITE
www.neovim.org

LV003 070 Fosspicks.indd 73 15/04/2014 12:49

FOSSPICKS

www.linuxvoice.com74

Many Python features
begin life as PEPs, or
“Python Enhancement
Proposals”, which are
discussed and reviewed
by the community.

Maintaining a
programming language
is a tricky business.

Python 3 was a bold step, breaking
compatibility with Python 2
programs, but it was regarded as a
necessary move to clean away a lot
of cruft that had built up. There was
plenty of controversy at the time,
but Python 3 is maturing well, and
now we have the 3.4 release. A
bunch of new modules have been
included, such as pathlib, which
provides an object-oriented API for
filesystem paths. For instance:
p = Path(‘/home/mike/foo/bar.py’)

With this, p.name contains bar.
py, p.suffix contains .py, and p.
parts contains a tuple with every
element in the path. You can join,
split and compare paths, and query
them (eg to find out if a path is
relative). If you’re doing cross-
platform coding, there are ways to

handle Windows paths as well,
including the drive letter and colon
combinations at the beginning.

Another new module is asyncio,
which provides asynchronous I/O
via a pluggable event loop and
coroutines. Then there’s enum
(provides support for enumerated
data types), tracemalloc (a
debugging tool to trace memory
allocation) and ensurepip (a
cross-platform way to install the
PIP package manager into an
existing Python setup).

Many security improvements
have been implemented as well: for
instance, there’s now TLS 1.1 and
1.2 support in the SSL module.
These are just the main new

features in 3.4, and lots of work has
been done on other modules to
squish bugs and add general
improvements. The changes have
been very well documented too –
something that’s often lacking with
new language release, so kudos to
the Python team.

Python 3.4
Programming language

“Python 3 is maturing well, and now
we have the 3.4 release.”

TreeLine stores its data
in (optionally encrypted)
XML format, and can
export to HTML and
plain text.

At the start of this issue’s
FOSSpicks we heaped
spoonfuls of praise on plain

text, but sometimes it can get out
of hand. Take notes.txt for instance,
the text file used for planning this
section of the magazine: it started
off well, with clearly defined
sections and tidy presentation. But
after a while it ended up as a
morass of ideas, links, compilation
instructions and other random bits
and bobs. What we really need is a
souped-up note taking and list
compilation app – and thank
$DEITY, TreeLine provides it.

Essentially, TreeLine could be
described as an outliner, note-taker
or PIM program. It’s hugely versatile
and isn’t designed to work with
specific types of information; it will
handle anything you can put in a
tree-like structure.

TreeLine 1.9.4 is a development
release on the road to 2.0, and is a
complete rewrite of the earlier 1.4
series. It’s written in Python with Qt
providing the interface, so you’ll
need PyQt installed to run it. When
you start the app, you’re presented
with a two-pane view: the left-hand
side contains the tree of items, and
the right-hand side shows the data
for individual items.

It’s in the trees! It’s coming!
The best way to understand
TreeLine is to open the
documentation, which, brilliantly, is
made in TreeLine itself. Click Help >
Full Documentation in the menu,
and a new TreeLine window will
open. Click the arrows on the
left-hand side to open up nodes in
the tree, and green or red items to
read them on the right.

TreeLine supports custom data
types with a range of fields (eg text,
numbers, dates) so you can easily
customise it for nigh-on any type of
information. It’s hugely configurable
and didn’t exhibit any major bugs in
our testing, so from now on it’s our
go-to app for FOSSpicks planning.

TreeLine 1.9.4
Information organiser

PROJECT WEBSITE
www.python.org

PROJECT WEBSITE
http://treeline.bellz.org

LV003 070 Fosspicks.indd 74 15/04/2014 12:49

FOSSPICKS

www.linuxvoice.com 75

https://launchpad.net/pybik/

PROJECT WEBSITE
https://launchpad.net/pybik

Frontier: Elite II provided a
giant universe to explore,
together with open-ended

gameplay where you could
trade, mine, fight or work for the
military. It provided months of
fantastic entertainment – and all
on the Amiga. That’s an incredibly
rich game running on a 7MHz
CPU backed with 1MB of RAM.

Today, people carry mobile
phones that are several thousand
times more powerful than the
Amiga 600, and yet the most
popular mobile games are so
utterly trivial it makes us rage.
Take Flappy Bird, for instance:
it’s brain-shutdowningly tedious,
and yet it was making its author
$50,000 a day at its peak.

Anyway, in true FOSS style,
someone has come up with

a free clone: Openflap. The
gameplay is equally as minimal,
and compiling it actually takes
more brainpower (see the README
file for instructions). The only
dependencies you need are SDL
and its various bolt-on libraries – so
once you have it installed, just enter
openflap to play.

Tapping tedium
If you’ve never seen Flappy Bird (or
its million clones) before, here’s how
you play: tap Space. A ball is falling
from the top of the screen, and
tapping space bounces it upwards.
But! The ball is also moving to the
right, and you have to tap space to
help it through gaps in pipes. And
that’s all there is to it.

Your high score is shown on
the right, as an incentive to keep

playing, but what really prompted
us to include Openflap is the
source code. It’s clear and easy
to read – a good resource for
snippets and ideas if you want to
make your own C++/SDL game.

FOSSPICKS Brain Relaxers

Bounce the ball, miss
the gaps – that’s it.
But the code is useful
for learning how to do
graphics, sound and
input in SDL.

Openflap 1.0
Flappy Bird-like game

Some people find Rubik’s
Cubes maddenly
frustrating; others find

them a good form of grey-matter
stimulation. If you enjoy the odd
session of “cubing” (as the cool
kids call it) but you don’t want to
have a cube by your desk in case
your boss thinks you’re wasting
time, then you can get by with a
computerised version.

Pybik is written in Python, with
its interface provided by Qt. So
you’ll need PyQt4 to install it –
see the INSTALL file in the tarball
for full instructions.

Once you’ve built it, you can run
it in place with ./pybik. The
presentation is gorgeous: the
cube is rendered in shiny 3D, with
lovely light effects and impressive

detail to show the plastic parts onto
which the coloured labels are stuck.
OK, you might argue that visual frills
are unimportant in a game like this,
but if you’re going to be staring at
the cube for a while as you solve it,
why not make it look good?

Pretty colours3

Click and drag on the cream area
around the cube to rotate it, and
hover the mouse cursor over a
piece to see how it will rotate when
you click it (the mouse pointer
changes direction).

A number of challenges are
available, eg prompting you to solve
a cube in under 10 moves, while the
“Pretty patterns” list generates
funky-looking cube layouts for you
to solve. There’s also a library of

moves along with some solving
algorithms. It’s a remarkably
good substitute for a real cube,
although you can’t throw it
against the wall when you get
annoyed with it. Oh well.

The lighting effects are
a nice touch, although
at some angles the glare
is a bit over the top.

Pybik 1.1.1
Rubik’s Cube game

PROJECT WEBSITE
https://github.com/jazztickets/
openflap

LV003 070 Fosspicks.indd 75 15/04/2014 12:49

Email andrew@linuxvoice.com to advertise here

LV003 076 Ad Here.indd 76 11/04/2014 14:27

TUTORIALS INTRO

www.linuxvoice.com 77

PROGRAMMING

Ruby
98

Everything is an object! It’s
a popular saying amoug

object-orientated programmers,
but what does it mean, and how
does it affect the way you
program? We delve in and fi nd the
answer, or at least the Ruby
version of the answer, and then
set you readers a challenge.

Genetic algorithms
104

Programming involves
breaking a problem down

into its constituent parts, then
assembling a step-by-step method
of fi nding the answer. Wouldn’t it
be much easier if you could just
say what answer you wanted and
let the computer work it out? With
genetic algorithms, you can.

Google script
106

 The cloud offers loads of
options for running

software. EC2 or VPSes allow you
to run virtual machines almost
anywhere in the world, but
sometimes you want something a
bit lighter. Google Apps Scripting
is a way of running simple
programs on Google’s servers.

LXDE
Bored with the default LXDE desktop?
Beautify this lightweight environment
by following Ben Everard’s easy steps.

Hunt Commets
Using Python and public
data, Andrew Conway
chases down comets.

78 80

Wearables
The Jean Paul Gaultier of Linux,
Ben Everard, sews electronics into
clothes to make himself super cool.

Pi Beacon
Les Pounder, the BA
Baracus of Linux, escapes
trouble with a Ras Pi.

Libvirt
Valentine Sinitsyn masters
his virtual machines using
Python scripts.

86 90 94

In this issue…

Dip your toe into a pool full of Linux knowledge with eight
tutorials lovingly crafted to expand your Linux consciousness.

TUTORIALS

Ben Everard
has his fi rst batch of alcoholic ginger ale
bottled and ready to drink.

F ree software is a ideal close to
many of our hearts, but it’s not
an isolated cause -- it’s under the

wider umbrella of digital rights. After
all, what advantage is having control of
the software on your computer if the
authorities block the content you want
to see? This is exactly the issue facing
internet users in Turkey and China.
What good is a free offi ce suite if the
documents you need to access are in
an obfuscated proprietary format?

Free software is booming, but other
areas of digital freedoms aren’t doing as
well. There have been some successes
in open document standards, and the
Snowden revelations have shocked a
few people, but they still haven’t had as
much attention as FOSS. Now is the
time for the weight of the free software
movement as a whole to come down
on the forces that try to restrict our
freedoms, whether that’s in closing off
our ability to modify software, or closing
off other basic digital rights.

Linux succeeded despite some of the
largest companies in the world trying to
stop it, so there’s no reason to think that
we can’t get similar levels of success
with other digital freedoms. However,
we have to fi ght for them. If we just
focus on free software and not on other
digital rights, we may end up winning
one battle but losing the war.
ben@linuxvoice.com

LV003 077 Tutorials Intro.indd 77 15/04/2014 12:49

TUTORIAL LXDE

www.linuxvoice.com

The Lightweight X11 Desktop Environment – or
LXDE as it’s more commonly known – is
popular for its ease of use and low use of

system resources. It’s the desktop of choice for the
Raspberry Pi, and is an excellent option for replacing
Windows XP on older machines. However, in its
default form it is a little ugly. Everything works as you
expect it to, but it doesn’t show off the Linux desktop
experience as well as it could. Fortunately, it’s quite
easy to whip the default confi guration into something
that looks good and is a little more user friendly.

A desktop environment has a large stack of things
that are really just images. These are the icons, the
bits that make up the widgets (such as buttons), and
the desktop background. These can all be easily
swapped around provided you have new images to go
in their place.

Get new wallpaper
There’s no one single place for LXDE themes, but
there is for Gnome, and they’re mostly compatible.
Head to www.gnome-look.org to see a fantastic
range of user-submitted work. There are some
great-looking things on there, and there are some truly
terrible ones too, so take a little time to fi nd ones you
like. By default, the website shows the most recently
added items, and the quality is variable. You usually
need to switch to Highest Rated or Most Downloaded
to fi nd the good choices.

To switch desktop wallpapers, just save the image
fi le that you want to use, then right-click on the
desktop and choose Desktop Preferences in the
menu. This will then give you the option to browse to
the image fi le you want.

Icons and themes take a little more to change, but
are still quite straightforward, since there’s a tool
called LXAppearance to help. First you need to
download the theme. We started with the Elementary
icons at www.gnome-look.org/content/show.php/
elementary+Icons?content=73439, though most icon
themes should work.

Follow the download link to DeviantArt, then
download the Zip fi le. In principal, it is possible to
install the icon theme with LXAppearance, but in
practice it’s a little awkward since it only supports tar.
gz and tar.bz fi les. We found it quite unstable when
installing anything. All installing does, though, is place
the fi les in the appropriate directories, so it’s quite
easy to do it without an automatic installer.

Install new icons
Icon themes should be placed in a folder called
.icons in the user’s home folder. The easiest way to do
this is with the PCManFM fi le manager that comes
with LXDE. Just open up your home folder and make
sure hidden folders are displayed (you should tick the
box in View > Show Hidden). If there isn’t already a
folder called .icons, you need to create it (right-click >
Create New > Folder). Then just unzip the icon theme
that you’ve downloaded (right-click it in the fi le
manager, then select Extract To and in the folder path
enter /home/ben/.icons – with your username
instead of ben).

To activate the icons, you’ll need to use
LXAppearance. Depending on your setup, you might
fi nd this in the Applications menu under Preferences >
Customise Look And Feel. If it’s not there, you’ll have
to run it by typing lxappearance in the terminal. In the
Icon Theme tab, you should now fi nd the Elementary
theme (or whichever Icon theme you installed).

This is our LXDE desktop
after tweaking. You may
notice we’ve also changed
the menu icon. This is
done by right-clicking on
the old icon and selecting
Menu Settings.

The standard LXDE desktop: it’s functional and easy to
use, but with a little effort we can do much better.

CUSTOMISE THE
LXDE DESKTOP
Get a fantastic desktop environment without
overloading your system’s hardware.

 TUTORIAL

BEN EVERARD

78

LV003 078 Tutorial LXDE.indd 78 15/04/2014 12:50

LXDE TUTORIAL

www.linuxvoice.com

The same basic method can also be used to add
new widget themes. In gnome-look.org, these are
under the GTK 2.x menu in the left-hand column of the
screen. We went for BSM Simple (www.gnome-look.
org/content/show.php/BSM+Simple?content
=121685) These have to be downloaded and
extracted into the folder .themes, and then they’ll
appear in the Widget tab in LXAppearance.

The eagle-eyed of you may notice that after
installing, it looks a little different to how the theme
looks on the main website. We’ll come back to that in
a minute, but for now, we’ll go on with adding a dock.

Building a dock
LXDE comes with a panel along the bottom that holds
most of the basic desktop utilities, such as the
applications menu, window list and system tray. It can
get a little cluttered, so we like to have an application
launcher on the side of the desktop to provide quick
access to the programs we use most frequently.

This is really just another panel, but we’ll use a few
tricks to make it function better for our needs. First,
right-click on the bottom panel and select Create New
Panel. This will add the new panel and open the Panel
Preferences window. The first thing to do is get it in
position on the left side. We put ours in the middle of
the left-hand edge of the screen, taking up 40% of the
edge, 54 pixels wide with icons 50 pixels big.

In the Panel Applets tab, add an Application
Launcher Bar, then double-click on the entry in the list
to open Add Applications To The Launcher. Once
you’ve selected your favourites, you can set the
appearance. In Appearance, select Solid Colour (with
Opacity), then click on the colour and scroll the opacity
down to 0. The final thing to keep it out of the way is
to select Minimise Panel When Not In Use in the
Advanced tab.

This means it won’t take up any screen space
normally, but you can just move the mouse to the left
edge of the screen when you want to open up an
application, enabling you to have nice big application
launcher buttons without spoiling the look of the
bottom panel with loads of clutter.

On gnome-look.org, you’ll see that most themes
have rounded corners on the windows, but when you
install them, you get square corners. This isn’t a huge
deal, but you’ll also find a few other things that don’t
quite look as well as they could. The reason for this is
the window manager.

Under new management
By default, LXDE uses the Openbox window manager.
This is lightweight, and serves most purposes quite
well. Openbox looks its best with very minimal
windows, and a very clean design. A lot of people like
this, but there’s also a place for slightly more
substance to the windows. For this, a better look can
be achieved with other window managers.

Our favourite is Metacity. This is the Gnome 2
window manager. Of course, there’s a trade off to this.
Metacity will use a little more screen space than
Openbox, and a little more CPU and memory. The
difference shouldn’t be much though: we tested both,
and Openbox used about 0.5–1 % of the CPU time,
and 1% of the memory, while Metacity used 2–3% of
the CPU and 2% of the memory. By comparison, in
both cases, the underlying X Windows System used
10–15% of the CPU and 6% of the memory, so while
Metacity does increase the window management
overhead, in most cases it won’t be significant.

To switch to Metacity, first make sure it’s installed.
On Debian-based systems, this is done by typing the
following at the terminal:
sudo apt-get install metacity

You can then make the change. Go to the
Applications Menu > Preferences > Desktop Session
Settings, and in the Advanced tab, change Window
Manager to Metacity. You’ll need to log out and back
in again (or reboot) for the changes to take effect.

As you’ve seen, there are loads of things you can do
to improve the default look of LXDE. None of these
things really change the way you use the system, but
they can make it a little more pleasant. We’ve shown
you how we like it, but with a bit of experimentation,
you should find a setup that works well for you.

We think that the nice-
looking Metacity windows
are well worth the extra
few clock cycles they take
to render.

79

Configuration files

Almost all of the configuration we’ve done has been either
by installing work other people have done, or via point-
and-click settings. This is a simple way of getting access
to a huge range of settings, and you can create wonderful
desktops doing just this. However, the ultrageeks among
you may be itching to exert ultimate control over everything
on your desktop. Fortunately, you can.

If you want to change the appearance of the windows,
you’ll need to dive into the theme. Creating a new
theme from scratch is a daunting task, but it’s pretty
straightforward to modify an existing one. The Gnome wiki
has details of what the various bits are (https://wiki.gnome.
org/Attic/GnomeArt/Tutorials/GtkThemes), and you’ll find
everything in text files in the folder that you extracted into
the .themes directory.

Ben Everard is a Pi enthusiast and the co-author of the
best-selling Learning Python With Raspberry Pi.

LV003 078 Tutorial LXDE.indd 79 15/04/2014 12:50

TUTORIAL ARDUINO

www.linuxvoice.com

Over the last decade, it has become much
easier to make electronic gadgets. The
Arduino revolution has made the micro-

controllers easier to use, and at the same time, much
more hardware and software has been created. You
can now plug a few shields into an Arduino and get a
mobile phone, or a GPS navigator with a touchscreen,
or, well, almost anything you can imagine.

Most of the time, these gadgets use traditional
circuit-making methods, such as PCBs, breadboards
and strip boards. However, that doesn’t have to be the
case. With a little ingenuity, you can create circuits in
all sorts of ways – such as by sewing conductive
thread into clothes. As an example, we’ll create a
cycling jacket that has some LEDs to make it a bit
more visible than most, but the techniques we use
could easily be used to make all manner of items such
as light jewellery, or digital art.

There’s nothing to stop you stitching any circuit
board into clothing. In fact, you could be forgiven for
thinking that a small headerless microcontroller board
such as an Arduino Pro is ideal. However, there are a
few disadvantages to using general-purpose boards.

The connections tend to be too close together (thread
is less precise than soldered wire) and they have
smaller contacts, which can be troublesome for use
with e-textiles.

There are two lines of microcontroller boards that
are designed to correct these problems, and both are
perfect for wearable projects: the Lilypad and the
Flora, from Adafruit Industries. They’re both based on
the Arduino, and are mostly compatible with each
other in terms of code and hardware. The biggest
difference between them from a Linux user’s
perspective is that the Lilypad boards work on Linux
with the official Arduino IDE, while the Flora (and the
smaller Adafruit Gemma board) don’t. There is some
guidance on the Adafruit website that may help you
get the Flora working under Linux, but it’s known to
have some problems (particularly the Gemma
variant). Because of this, we opted to base our project
on the Lilypad.

Choose your controller
There are a few different types of Lilypad. Most don’t
come with USB integration, and need an external FTDI
board in order to program them. The original Lilypad is
the largest. There is also the smaller Lilypad Simple,
and the Lilypad Simplesnap, which can easily be
removed to allow the clothing to be washed. The
Lilytiny is the smallest, though it is a little harder to
program. The easiest to get started with is the Lilypad
USB, which has everything onboard, and this is the
one we’ve used in our project.

The Lilypad USB is supported by the Arduino IDE
from version 1.0.2 onwards, though we used version
1.5 in this project. If your distro comes with an earlier
version, you’ll need to download the latest from
www.arduino.cc. Once you’ve got it, you just need to
unzip the archive, then run the arduino script in the

Fig 2: These two resistors
make the switch work, and
they’re the most fiddly bit
to fit into the jacket.

Fig 1: The first row of neopixels can be attached entirely
with conductive thread.

MAKE SMART CLOTHES WITH AN
ARDUINO LILYPAD
Add a microcontroller to your cycling jacket and take one more
step along the road to pervasive computing.

 TUTORIAL

BEN EVERARD

80

Input pin

R2
32k
Ohms

R2
6.2k
Ohms

+ve

-ve

WHY DO THIS?
• Be the best-dressed

cyclist in town
• Learn how to program

clothing
• Get started with the

neopixel and add
colourful LEDs to your
projects

LV003 080 Tutorial Pi Jacket.indd 80 15/04/2014 12:50

ARDUINO TUTORIAL

www.linuxvoice.com

new directory, and everything should work as long as
you’ve got Java installed.

The microcontroller is the brains of the project, but
it’s useless without additional components for input
and output. We’re going to use a few extra pieces to
give us the functionality we need.

Flora neopixels from Adafruit give us light. As you
may have guessed from the name, they’re designed to
work with the Flora board, but you can equally use
them with the Lilypads (or, for that matter, other
Arduino-compatible boards). Neopixels are chainable
RGB LEDs, which means that one pin on the controller
board can drive many lights – an especially useful
feature on sewable boards, as these tend to have
fewer pins than most.

Neopixels take power separately from the data
input. See figure 1 for details of how to wire them up.
In order to use them you’ll need the library from
Adafruit. You can find details of how to install this on
the official website (http://learn.adafruit.com/
adafruit-neopixel-uberguide/arduino-library).

The best way to prototype wearable projects is with
alligator clip leads – these are the breadboards of the
wearables world. In order to make sure everything’s
working properly, you can connect up your neopixels
as shown in figure 1, and run the strand test example
sketch that comes with the neopixel library. You’ll
need to adjust the number of neopixels, and the pin
that they’re on in order to run it. It’s best to use just
two neopixels in a test, for reasons we’ll explore later.

You’ll see in a bit that we actually split the neopixels
up into two strips of two. This is just to make the
sewing a little easier.

Connecting the circuit
The purpose of this project is to create a cycling jacket
with improved visibility. We used four neopixels sewn
into the back of the jacket to flash red. In addition, we
added switches to enable the outermost of the pixels
to be turned into indicator lights. In order to do this, we
need a way to tell the microcontroller that we want to
turn. The easiest way to do this is switches. There are

all manner of switches available, but we needed some
that are on-off (that is, you press them once to go on,
and a second time to go off), and suitable for
wearables. The best ones we found were from
Adafruit at www.adafruit.com/products/1092.

You can’t just put a switch between positive voltage
and an input pin on the microcontroller and use it as
an input. When it’s on you’ll get too much current
flowing into the input pin, and you could damage the
microcontroller. When it’s off there’s no input to the
pin. You may think that no input is the same as an off
input, but it’s not. No input is a sort of floating state
that can go either way, and while it’ll usually go to off,
it’ll flash on, and create all sorts of problems. The
solution to both of these problems is a resistor,
though in slightly different ways.

Wire up the switch
Take a look at figure 2 for details of how to wire up a
switch. When the switch is open R1 stops too much
current damaging the input pin. R2 allows a little
current to leak away, but since it’s quite a large
resistor, this isn’t too much. When the switch is closed,
R2 connects the pin to ground, and this is enough to
make sure that the input always reads off.

The final piece of input and output hardware we’ll
use is a piezo buzzer. This will buzz to let the wearer
know when there’s an indicator on, so they don’t forget
to turn it off. You can get sewable buzzers, but we
used an ordinary piezo element. It’s not very loud, but
it doesn’t need to be, because it’s just there to remind
the cylist that the indicator’s on.

The most unusual thing about wearable electronics
isn’t the hardware, it’s how they’re connected together.
You could use wires, and sew them onto the fabric,
but the downside to this is that it’ll make the fabric
stiff, particularly if there are a lot of wires. Most
wearable projects use some form of conductive
sewable. There are sewable ribbon cables and
conductive fabrics, but by far the most popular option
is conductive thread.

Sewable thread comes in different grades, and
most should work with this project. This is a really
small wire of twisted stainless steel strands. You don’t
need any special equipment to use it, as it can be cut

81

PRO TIP
A multimeter will make
your life a lot easier when
testing the integrity of
your circuit.

Fig 3: The blue wires are
conductive thread sewn in;
all others are wire.

Power supplies

The easiest way to power the Lilypad USB is through the
JST connector. This can take a lithium polymer (LiPo)
battery with an output of 3.7V, and run everything off that.
There’s even a charging circuit built into the Lilypad USB, so
you can recharge the battery by plugging the Lilypad into
your computer. This means you can tuck the battery into
some inaccessible place and not worry about it.

There are other batteries that can connect via JST; for
example, you can get holders for three AA or AAA batteries,
or for two CR2032s.

A third option is to use a USB power source. You can get
battery packs designed to give mobile phones extra power,
and these should work when plugged into the USB port. It’s
probably only worth doing this if you happen to have one of
these lying around, as they’re bigger and more expensive
than the alternatives without having any real advantages.

LV003 080 Tutorial Pi Jacket.indd 81 15/04/2014 12:50

TUTORIAL ARDUINO

www.linuxvoice.com82

with scissors and sewn with ordinary needles. We
used three-ply and got through about 30 feet
(including wastage and mistakes).

Perhaps the biggest consideration when laying out
a wearable circuit with conductive thread is that none
of the connections can cross, because the wire isn’t
insulated. If you’re using thick fabric you could try
crossing on opposite sides of the cloth, but there’s a
pretty good chance that you’ll run into problems. Good
circuit design should minimise the number of times
that two threads need to cross, and in simple circuits,
it may not have to happen.

We solved the
problem by using short
lengths of insulated
wire when paths had to
cross. In principal, you
could probably get
away with lengths as

short as an inch just to act as a bridge if flexibility is
critical, though we used lengths a few inches long to
make it simpler.

In terms of circuitry, our design is simple. Perhaps
the most important decision for layout is where to
place the Lilypad itself, because this will affect how
everything else connects together. Since we’re going

to have components symmetrically laid out over both
sides, we opted to put it in the middle. The four
neopixels are in a line across our upper shoulders.
This makes them more visible to drivers, and also
shows the width of the cyclist. There’s a very bright
light on the front of our bike, so we didn’t add any
additional LEDs to the front, though you could easily
do this. The buttons are on either side of the chest
making them easy to press with either hand.

You could put the buzzer anywhere on the jacket,
but we added it to the collar so it is close to the
Lilypad and easy to hear.

Assemble the wearable circuit
The full circuit can be built up bit by bit. The first step
is to get the lights working properly, and to do this you
need to decide where the LEDs should be. This may
sound simple, but it can be surprisingly confusing to
work out what goes where when the jacket isn’t being
worn. It’s easiest to put the jacket on, and get an
assistant to mark the right places with a pen or pencil.

Because we’ve arranged the neopixels in two strips
of two, the wiring gets a little convoluted right from
the start. If you want, you could simplify this by having
a single strip, and have the Lilypad on one side of the
jacket, though this may cause complications with the
buttons. See figure 3 for details of how we laid it out.

The sewing itself is straightforward. If you’re feeling
fancy, you can alternate the lengths of the stitches so
that those on the outside are shorter than those on
the inside, to make the conductive thread less visible.
However, we wear our electronics like a badge of
honour. Similarly, we’ve mounted all the circuitry on
the outside; this could go inside, but it could chafe if
you weren’t careful with placement.

The tricky parts of sewing is making the
connections at either end – the key is to loop through
the hole several times, and make sure it’s tight. We
used a drop of glue on to stop the thread coming
loose, but better stitchers may not need this. Be
careful not to use too much glue, as it can get
between the thread and the contact and be counter-
productive. On the neopixel positive and negative
points, you need to continue the rail after the first
pixel. It’s easiest to do the full rail in one thread, and
continue after sewing in the first neopixel. This is
because the holes are quite small, and it can be hard
to sew in a second time. We did manage to sew in
again when we needed to, so it’s not too big a problem
to do it in two threads.

Make sure that you trim the ends quite short, as it
will cause problems if two threads touch each other.
Beyond these minor points, it’s no different from
sewing anything else, so if you know a good sewer,
you may wish to ask for a little help as they will be able
to keep it neat.

Already there are sections that need wire, and we
have a few options: you could solder the wires onto
the Lilypad before you start sewing, or you could
always take thread off the Lilypad, then loop into the

Introducing Arduino
If you’ve not heard of the Arduino, then
you’re missing out on a revolution in
microcontrollers. They’re simple boards that
allow a wealth of input and output options.
The exact options depend on the board, but
range from 20 IO pins on the Uno and Micro
to over 50 on the Due and Mega.

They don’t have full CPUs, but instead
AVR microcontrollers. You can think of these
a bit like really simple System On Chips
(SoCs). They have a bit of flash storage
for programs, and a bit of RAM to hold
variables, and a simple processing core. It’s
not enough to run an operating system, so
instead you program them directly with no
OS underneath.

The real innovation of the Arduino system
was in making them really easy to program.
There’s a huge library of code that you can
use to quickly build quite advanced projects,
and they can be programmed directly from
USB with no special hardware.

Arduinos are programmed in a dialect
of C++. All programs have at least two
functions: setup() and loop(). setup() is
called at the start, then loop() runs in, well,
a loop. If you’re at all familiar with C or
C++, you should find it easy to pick up from
looking at the examples that come with the
IDE. If you’re not, then there are loads of
great books and online resources to help you
get started.

“The circuit can be built up bit
by bit – the first step is to get
the lights working properly.”

The first neopixels sewn
in. We got the alignment
a little wrong so the
conductive thread takes a
longer path than it needs
to, but it still works.

LV003 080 Tutorial Pi Jacket.indd 82 15/04/2014 12:50

ARDUINO TUTORIAL

www.linuxvoice.com 83

wires later. We chose to sew the wires onto the board.
This was easy to do and gave the wires more flexibility
than if they’d been soldered on. First we stripped about
half to three-quarters of an inch of the wire, then we
looped this through the hole on the Lilypad, making
sure that the end of the wire poked away from the
person wearing the jacket. Then we took some thread
and looped it through to make sure there was always a
good contact between the wire and the Lilypad.

To keep the wire in place, we then sewed it in with
some cotton (non-conductive) thread along its whole
length. We bent one end of the wire into a circle (you
could add a drop of solder to help it stay in shape), and
stitched in the thread. These were the most
troublesome contacts, so make sure you loop the
thread around the wire a few times as well as sewing it
in. If you find your circuit isn’t working at any point, use
a multimeter to make sure all the contacts are good.

Programming your jacket
A word of warning before we get started. There are
three LEDs in a neopixel (for red, green and blue). Each
of these can draw 20mA on full brightness. So, for full
white light, that’s 60mA per pixel or 240mA altogether.
The regulator on the Lilypad can cope with a peak
current of 500mA, but a continuous current of only
200mA, and this has to supply the microcontroller,
buttons and buzzer. This means that if you put all the
pixels on white, there’s a good chance you’ll burn out
the controllers. There are two solutions to this. Either
you can power the neopixels separately with another
battery (or separate leads from the same battery that
don’t go into the Lilypad), or you could program the
Arduino to not have too many of them on at once.
We’ve gone for the latter approach to keep the design
as simple as possible, and we’ve kept our code quite
cautious. If you want to experiment with brighter
lights, either power the neopixels separately, or be
careful not to blow your regulator.

With that warning in place, let’s get started
programming the jacket. If you’ve not used an Arduino
before, take a look at the boxout on the facing page.

The following code will simply test that everything’s
working properly, and cycle through a few colours.
#include <Adafruit_NeoPixel.h>

Adafruit_NeoPixel strip1 = Adafruit_NeoPixel(2, 2, NEO_GRB +
NEO_KHZ800);
Adafruit_NeoPixel strip2 = Adafruit_NeoPixel(2, 3, NEO_GRB +
NEO_KHZ800);

void setup() {
 strip1.begin();
 strip1.show();
 strip2.begin();
 strip2.show();
}

void loop() {
 strip1.setPixelColor(0,50,0,0);
 strip1.setPixelColor(1,50,0,0);
 strip2.setPixelColor(0,0,50,0);
 strip2.setPixelColor(1,0,50,0);
 strip1.show();
 strip2.show();
 delay(1000);
 strip1.setPixelColor(0,0,50,0);
 strip1.setPixelColor(1,0,50,0);
 strip2.setPixelColor(0,50,0,0);
 strip2.setPixelColor(1,50,0,0);
 strip1.show();

The complete setup with
the battery hanging down.
This lights the cyclist
higher up than traditional
bike lights and make the
rider much more visible at
night.

The wires coming off the Lilypad make it a little messy,
but you can’t feel this when you wear the jacket.

LV003 080 Tutorial Pi Jacket.indd 83 15/04/2014 12:50

TUTORIAL ARDUINO

www.linuxvoice.com84

 strip2.show();
 delay(1000);
You’ll find it this code at www.linuxvoice.com/code/
wearable.tar.gz as jacket_test.

To upload the code, first plug the Lilypad into your
computer, then go to Tools > Boards and select
Lilypad Arduino USB (It must have USB at the end). If
that’s not an option, it means you don’t have the latest
version of the Arduino software. You’ll need to update
this before continuing.

The first line of the code just includes the library
(make sure you’ve installed this first – instructions
above). You then need to set up the strips with a call
to Adafruit_NeoPixel(). The first parameter is the
number of pixels in the strip, the second parameter is
the pin number they’re on, and the final parameter is
set depending on the version of the neopixels you’re
using. The above is for version two, which are the only
ones currently available.

There are three methods that you can call on the
strips that you’ve set up: begin() has to be called at
the start to set everything up; show() has to be called

any time you make
a change to a
pixel’s colour,
otherwise the
change won’t
be sent to the
pixel; and

setPixelColor() is used to change the colour of the
pixel. This last method takes four parameters: the
pixel number (starting with 0, the closest to the
Lilypad), and the R,G and B values respectively.

At this point, we found that our board emitted a
high-pitched hum due to a noisy power supply. It
wasn’t a huge problem, but it was a little annoying. We
added a 220μF capacitor between the positive and
negative rails to stop this.

Add buttons to the circuit
Once you’ve got everything working, it’s time to move
on to the second stage: adding buttons. These are
slightly more difficult because you need to solder on
the resistors first. See figure 2 for details about how to

solder them. Other than that, it’s just a case of sewing
them in place. It’s best to position them in such as
way that the resistors won’t get bent repeatedly, as
this could lead to metal fatigue and breakage.

Once this is done, you can upload the final code.
Even though the hardware isn’t quite finished yet (we
haven’t added the buzzer), the rest of the code will
work, and the buzzer will start working as soon as it’s
put in place.

The code is fairly simple, though a bit long-winded:
#include <Adafruit_NeoPixel.h>

Adafruit_NeoPixel strip1 = Adafruit_NeoPixel(2, 2, NEO_GRB +
NEO_KHZ800);
Adafruit_NeoPixel strip2 = Adafruit_NeoPixel(2, 3, NEO_GRB +
NEO_KHZ800);
int count;

void setup() {
 strip1.begin();
 strip2.begin();
 strip2.show();
 strip1.show();
 pinMode(10, INPUT);
 pinMode(9, INPUT);
 pinMode(11, OUTPUT);
 count = 0;
}
void loop() {

 if(digitalRead(9)){
 if(count < 8){
 analogWrite(11,100);
 #left indicator on
 }
 else {
 analogWrite(11,0);
 #left indicator off
 }
 }
 else if(digitalRead(10)){
 if(count < 8){
 analogWrite(11,100);
 #right indicator on
 }
 else {
 analogWrite(11,0);
 #right indicator off
 }
 }
 if(digitalRead(9)==LOW && digitalRead(10)==LOW){
 analogWrite(11,0);
 if(count < 4){
 #flash one red light
 }
 else if(count < 8){
 #flash next red light
 }
 else if(count < 12){
 #flash next red light

Washable and weather-proof

None of the parts we’ve used are officially
weather-proof or washable. That means if
you get them wet, and they break, you can’t
return them. That said, there’s nothing that
should get into much trouble if it gets a bit
damp (the piezo buzzer may not fare too
well, and the battery should be kept as dry as
possible). If you do encounter a spot of rain,
just turn it off, and hopefully, it will survive.
Let it drip dry fully (including the inside of
the switches) before turning it back on.

Waterproofing isn’t easy, but it should be
possible to make it at least stand up to some
rain. The first stage would be waterproof

housing for the battery and buzzer.
Waterproof switches are available, or you
could put the ones we’ve used inside some
flexible plastic cases.

With this done, you would still need to
power it off during rain because the water
could short out some of the connections.

The Lilypad and neopixels should stand
up to a dunking (though there aren’t any
guarantees). Adafruit is working on making
fully waterproof wearables (see a test here:
www.youtube.com/watch?v=P42MzjuEPig)
though at the time of writing, there isn’t
anything available for purchase.

“Once you’ve got everything
working, it’s time to move on to
the second stage: adding buttons.”

LV003 080 Tutorial Pi Jacket.indd 84 15/04/2014 12:50

ARDUINO TUTORIAL

www.linuxvoice.com 85

 }
 else {
 #flash final red light
 }

 }

 if (count < 16) {
 count++;
 }
 else{
 count = 0;
 }
 delay(100);
}
Some of the code has been replaced with comments
for brevity. You can find the full code at
www.linuxvoice.com/code/wearable.tar.gz as
jacket_final. Each of the sections with comments is
replaced by a section of setPixelColour() and show()
calls to the various strips.

The loop uses the variable count to keep track of
things flashing. The two new pieces in this are the
digital inputs and the analog writes. You should be
able to see what’s going on here. You have to first set
the pinMode() in setup with the pin number and the
mode you want the pin in. This allows you to read or
write to the pins.

You should now have a working cycling jacket!

Make some noise
The buzzer was simple to attach. We used a drop of
glue to attach it to the collar of the jacket, then sewed
the positive lead onto pin 11 and the negative lead
onto a ground thread. Sewing onto an already stitched
thread is just like sewing onto a wire loop or a resistor.

The analogWrite() function that we’ve used to
control the buzzer is a bit misnamed. It’s not really
setting an analogue value, but a digital pulse width
modulation (PWM) value. This means it emits a
square wave that’s on for the proportion of time you
set it to be (out of 255). So analogWrite(11,0) sets pin
11 to be off. AnalogWrite(11,1) sets pin 11 to switch
on for one 255th of the cycle. analogWrite(11,100),
then, sets pin 11 to be on for almost half of the cycle.
The frequency of the PWM is dependent on the timers
of the Arduino. These can be changed, but it’s a little
complicated and can have effects on other functions.

Since we just want to make a noise to alert the
cyclist to the fact that the indicators are on, we won’t
bother interfering with it. The code as written should
produce a high-pitched beep. If you want something a
little more tuneful, there are some example of coding
melodies in Files > Examples > Digital in the Arduino
IDE. The buzzer makes it much easier to check you
haven’t accidentally left the indicator on.

We’ve created a cycling jacket, but exactly the same
techniques could be used to produce all sorts of
wearable designs. If you’re a pop star embarking on a
world tour and need something to wear, or feel like
making your own Tron constume, this project is an
excellent place to start.

Ben Everard cycled across Somalia once, and says it wasn’t
as dangerous as the time he cycled across Wales.

Equipment

You need surprisingly little equipment to produce wearable
computers. In fact, it’s possible that you could do it with
nothing but a needle and conductive thread. We only used
two pieces of electronics equipment in producing the
tutorial: a soldering iron and a mulitmeter.

There’s a wide range of soldering irons available in a
wide range of price brackets. The soldering in this project
is about as simple as it comes, so any old iron should do
the job. If getting a soldering iron for the first time, it’s
well worth getting a stand and tip cleaner as well. They
shouldn’t cost much, and make soldering a lot easier.

Usually in electronics tutorials, you’ll see multimeters
listed as useful but not essential equipment. However, in
wearable projects using conductive thread, getting contacts
is far more problematic than in most projects. Without a
multimeter, trying to find what’s causing the problem would
have taken us a long time. Because of this, we’re inclined to
say that a multimeter is an essential tool for wearables. A
good multimeter will have a continuity indicator that beeps
if there’s a connection between two points. This enables
you find the problems with contacts without having to keep
looking at the screen. This isn’t essential, as you can use the
resistance meter to do the same job, though the latter way
requires you to look away from the circuit to get a reading.

The author has yet to be
hit by a car when wearing
the jacket despite cycling
around the mean streets of
Gloucester at night.
NB: Linux Voice strongly
recommends wearing
a helmet while cycling,
as brains are soft and
squishy.

LV003 080 Tutorial Pi Jacket.indd 85 15/04/2014 12:50

TUTORIAL PYTHON

www.linuxvoice.com

Would you like to discover a comet? Of
course you would. But perhaps the
thought of staring into the void with giant

binoculars or a telescope, night after freezing night, for
years on end, to find just one, tiny smudge might be
less appealing. How about discovering a comet while
sitting in a warm room wearing only your underwear,
or better still, getting your computer to do it?

It may surprise you, but we cannot predict when
comets will appear in our skies. Halley’s Comet, and
a few others, are exceptions to the rule. Most comets
are spotted by chance as faint specks moving through
the stars, and that’s what we’ll be looking for using
a proven source of images: the LASCO instrument
on the SOHO satellite (SOlar and Heliospheric
Observatory). Its image data is released under public

domain, as with almost all NASA data, and although
it’s only looking at a few degrees of the sky around the
Sun, this is a good place to find comets, as explained
in the Sungrazers boxout, right. LASCO actually has
several cameras, but we’ll be using its C3 camera, as
its smaller field of view makes it easier to work with.

In a typical LASCO image, there’s a circle in the
centre representing the disk of the Sun (called
the photosphere in astronomers’ lingo) but that’s
deliberately blotted out by a larger disk so we can see
fainter objects around the Sun. The fuzzy stuff is the
corona, the outer atmosphere of the Sun and the start
of the solar wind – LASCO’s main purpose is to study
that. The SOHO spacecraft is in orbit around the Sun,
and LASCO keeps it in the centre of its view, which
means that stars, planets and comets will all be seen
moving across the image.

Spot the difference
Finding a comet does not involve frightening physics
– it’s more like a game of spot the difference using
many images. It’s tricky because there are lots of
objects that can be confused with a comet.

The easiest objects to rule out are planets. Mercury,
Venus, Mars, Jupiter and Saturn are all very bright and
so easy to spot, as shown in the blue LASCO C3
image (left). Uranus and Neptune and a host of other
objects such as Pluto and asteroids are much fainter,
but they too can be ruled out because we know where
they are going to be at any time. The Earth doesn’t
make an appearance in SOHO images because it is
always behind the satellite.

Stars can be easily identified because their
movement over time is predictable: they march
across the image in formation from left to right, at
about three pixels per hour in LASCO C3. Comets
usually move diagonally, and at a different rates.

So once stars and planets are ruled out, anything
that’s left must be a comet, yes? Unfortunately not.
There are many comet-like smudges on all SOHO
images that are caused by cosmic rays. These are
high energy particles from anywhere in the cosmos
that strike the detector and fool it into thinking that
light has been detected. Fortunately, these are easy to
rule out because they only affect one image. If the
smudge is present in one image, but completely gone
in the next, then it’s a cosmic ray.

Before automating any task, it’s informative to try it
manually. Thankfully that’s easy to do here because

A view from SOHO’s LASCO C3 camera that shows many stars, including the Pleiades star
cluster (1) along with four planets, which are overexposed with horizontal lines running
through them. From left to right: Mercury (2), Saturn (3), Jupiter (4) and Venus (5). Also, the
Sun is blowing off a Coronal Mass Ejection (CME) to the top left (6). Most of the blobs are
not stars or planets or comets, but are in fact cosmic rays striking the detector.

HUNT COMETS WITH
PYTHON AND OPEN DATA
Hunt for celestial bodies from the comfort of your own home,
with the SOHO satellite and the power of Python.

 TUTORIAL

ANDREW CONWAY

86

MY GOD… IT’S FULL OF STARS

1

2

6

5

4

3

LV003 086 Tutorial Python.indd 86 15/04/2014 12:52

PYTHON TUTORIAL

www.linuxvoice.com

some test examples are available at the sungrazer
comet page at the US Naval Research Lab (yes, the
US military let their staff research comets… but why is
a long story!). If you go to http://sungrazer.nrl.navy.
mil/index.php?p=guide and scroll down you’ll fi nd a
section called Strategy And Tips and in that is a list of
Zip fi les that you can download so you can hone your
comet-hunting skills. Inside each Zip fi le you will fi nd a
series of LASCO images, and a cheat-sheet telling you
where the comet is (you’re not going to peek fi rst, are
you?) Download the Zip fi le and open up the fi rst
image in the series using your image viewer. Click on
the Next button (the default image viewers in Ubuntu/
Unity and Slackware/KDE both have one) and look at
the sequence of images. Unless you have the visual
acuity of Robocop, you will not see a comet, but
instead gain an appreciation for how diffi cult it can be
to fi nd one, even when you know it’s there!

Manual experience
Take a deep breath. Pour yourself a relevant beverage
(I like coffee or Raspberry Pi brewed beer) and read
the instructions on the sungrazer page more carefully.
There’s one important clue that will narrow down your
search: most comets approach the Sun from a
particular direction that depends on time of year. Have
a look at this page to get an idea of where to look and
when http://sungrazer.nrl.navy.mil/index.
php?p=comet_tracks. Even with this information, you
might still fi nd yourself tearing your hair out, because
some comets are very faint. Try the example named
soho1264, because that comet is relatively bright. If
you flick back and forth between the images taken at
1718 and 1742, you should be able to see the comet
in the bottom-left corner moving towards the centre of
image. (Did you have to peek in the cheat-sheet? It’s
OK, I did too fi rst time round.)

You should now be able to appreciate our plan: 1)
load a pairs of images; 2) difference them; 3) clean the
differenced image; 4) identify objects; 5) repeat and
track objects in subsequent images. We’ll concentrate
on 1–4, because if these are done right, step 5 is
relatively easy.

Automating with numpy, scipy and matplotlib
First, install the new Python modules we’ll need. On
Debian-based distros:
sudo apt-get install python-numpy python-scipy python-
matplotlib

Numpy is a numeric library for Python that provides
lots of new ways to work with arrays. Scipy is a library
that performs all kinds of science-related data
processing, and Matplotlib will make short work of
displaying the images. We’re going to use numpy and
Scipy to load up an image fi le and turn it into a 2D
array of numbers. You can put the following
commands in a fi le called comet.py, save it and enter
python comet.py on the command line, or you can
just enter python on the command line and type them
in line by line. First, we’ll load up the fi rst image of the
soho1264 that shows the comet:
import scipy
image1=scipy.misc.imread(‘full_soho1264_070205_1718.gif’,
flatten=1)
import matplotlib.pyplot as plt
imgplt=plt.imshow(image1)
imgplt.set_cmap(‘gray’)

87

PRO TIP
These techniques are
useful for things besides
comet hunting, such as
image processing.

This image shows the difference between images taken at
17.18 and 17.42 on 5th Feb 2007 by SOHO LASCO/C3. Red
blobs show features present at 17.42 but not at 17.18 and
vice versa for blue blobs. The broad line in the top-right of
the image is the pylon holding the central coronagraph disk
in place. The inset shows the area around the comet.

Comets and sungrazers

Comets are often described as dirty
snowballs. They are lumps of loosely
bound ice, rock and dust, left over from the
formation of the Solar System. Most of them
hang around in what’s called the Oort cloud,
which is well beyond the orbit of all the Sun’s
planets. Once in a while, something disturbs
the cloud and a comet is sent into the inner
Solar System, and then we might see it.

Some comets, called sungrazers, pass
very close to the Sun, which has a surface
temperature of about 5500°C and is chucking
out energy in the form of electromagnetic
radiation (ie light) with a power of about
3.8×1026W (yes, that W means watts, the
same unit used for lightbulbs!) Each square
metre of the solar surface emits energy at
a rate equal to 62,000,000 W – think 62,000
bars of an electric fi re. Even if these numbers
boggle your mind, I’m sure it’s clear that
this is going to cause a problem for an icy
object like a comet. In fact, many comets
don’t survive a close encounter with the
Sun. In December 2013, Comet ISON looked
promising, but it perished in the intense solar
radiation. Other sungrazers fare better, but
are much disrupted, such as comet Lovejoy
in 2011, pictured. Luckier ones will be
fragmented into many small pieces, and each
one will become a comet in its own right.

It’s thought that a big comet broke up back
in the year 1106 AD and fragments of that
have provided us with many great sungrazing
comets over the centuries. This group is
called the Kreutz sungrazers, and 85% of
comets found by SOHO are in this group.

Kreutz sungrazer comet Lovejoy only
just survived its close encounter with
the Sun in late 2011.

LV003 086 Tutorial Python.indd 87 15/04/2014 12:52

TUTORIAL PYTHON

www.linuxvoice.com88

plt.show()
You should now see a LASCO C3 image in a

Matplotlib window. We’ve loaded the image using
imread and flattened it, which means each pixel
becomes a brightness value with no colour
information. Each value will be a float between 0.0
and 255.0 inclusive and is stored in the Numpy array
called image,1 which has dimensions 1024 by 1024.
We then display the image with the ‘gray’ colour map.

Next, we’ll take a difference of two images. Close
the first image window and enter the following in the
same interactive Python session (or into your .py file):
image2=scipy.misc.imread(‘full_soho1264_070205_1742.gif’,
flatten=1)
import numpy as np
diff=np.subtract(image2,image1)
imgplot=plt.imshow(diff)
imgplot.set_cmap(‘bwr’)
plt.show()

We’ve loaded the image taken 24 minutes later at
17.42, then used Numpy’s subtract function, which
takes each pixel in the second image and subtracts
the value of the pixel at the same co-ordinates in the
first image and returns the result to a new array we
call diff. We then display diff using the colour map
bwr, which stands for blue-white-red. This means that
features that only appear in the second image show
as red; features that only in the first image show as
blue; and areas of no difference are white.

If you look closely at the difference image, you’ll see
that there are many isolated blue or red blobs that
correspond to cosmic ray artefacts only present in
one or other image. In a few places there is a red spot
immediately to the right of a blue spot – these are
stars. If you look very carefully at the bottom-left of
the image, and if your monitor is very clean, you might
just see the comet: a faint red smudge above and to
the right of the a similar blue smudge. The fact that
this smudge is moving diagonally across the image

towards the Sun is strongly suggestive of a comet,
but based on two images alone we can’t be sure that
it’s not just a happy coincidence of cosmic rays.

Clean and identify
Starting with the diff image we obtained above, we’ll
now produce a cleaned image containing only objects
that showed up blue:
x=diff[824:924,100:200].astype(int)
xt=np.where(x<-50, x,0)
d1=np.where(xt==0, xt,-1)

First we convert the diff array to type int and select
a 100 by 100 square in the lower-left corner. This may
seem like a cheat, but the sungrazer site tells us that’s
where a Kreutz sungrazer would enter the image in
February. On the next line we use Numpy’s where
command to set all pixels that are greater than -50 in
value to zero. It works by testing each pixel for the
condition specified in the first argument, x<-50: if true,
the second argument is used to fill the value in new
pixel array, and if not, the third argument is used. The
resulting array will only contain strong blue blobs, that
is, features prominent in image1 but not image2. We
then use the where command again to set all
remaining non-zero pixels to -1, which will make
identifying the blobs much easier. We are being rather
brutal here and throwing away a lot of data, eg
assuming pixels between -50 and 0 are uninteresting
noise, but we can fine-tune parameters later if we
suspect we’re missing comets.

We now have an image d1 in which each pixel is
either 0 or -1. Next, we use Scipy’s cunning label
function to identify all blue blobs, which are just
groups of pixels with value -1:
from scipy.ndimage import label
l1, n1 = label(d1, scipy.ones((3,3)))

There’s a lot going on in that second line. We give
the label function the cleaned differenced image d1
and also scipy.ones((3,3)), which is a 3 by 3 array in
which all elements are 1. This is asking label to look at
all possible 3 by 3 grids within the image, and if it finds

Scipy’s label function

Left: A 4 by 4 image, in which three pixels
(shown in cyan) have the same value, is
given to label to be scanned with a 3 by 3
grid. Right: No 3 by 3 grid can be drawn

containing the top left two pixels and the one
at bottom right, so label will return a 4 by 4
array labelling them as two separate blobs,
here labelled as 5 and 6.

The label function groups adjacent pixels with the same value into numbered blobs.

Comet Lovejoy (officially C 2011 W3) nearing the Sun, as
seen by SOHO LASCO’s C2 camera.

LV003 086 Tutorial Python.indd 88 15/04/2014 12:52

PYTHON TUTORIAL

www.linuxvoice.com 89

two pixels with the same non-zero value inside a 3 by
3 grid, it assigns them to the same blob.

Next, we repeat all of the above to label red blobs,
except with a threshold of +50:
xt=np.where(x>50, x,0)
d2=np.where(xt==0, xt,1)
l2, n2 = label(d2, scipy.ones((3,3)))
The end result is that n1=11 (11 blue blobs) and
n2=15 (15 red blobs). The l1 array is a 100 by 100
array in which each element is zero (nothing there), or
is a number between 1 and 11 indicating which blue
blob that pixel belongs to, with the l2 array being
similar except that it contains 15 blobs.

Great success
We’ve now narrowed down our search from many
thousands of blobs to about a dozen. That’s pretty
good going!

It’s worth visualising our cleaned difference images
to appreciate how good (or brutal) our clean-up has
been. To do this, add together the cleaned red and
blue images with imshow(d1+d2) and use the bwr
colour map, as described above. You should be able
to see a few pairs of red and blue blobs that are stars,
and another pair moving diagonally – our comet!

We now need to pair red and blue blobs that are
within a certain radius of each other. The sungrazer
website says that Kreutz group comets typically move
less than 10 pixels per hour in C3 images, and we
know that stars move even more slowly than that, so
let’s set our search radius to a little more than that, at
15 pixels per hour. There’s a 24-minute time difference
between our two images, so our search radius will be
(24/60)*15=6. Next we’re going to look at all pairs of
blobs and see which red and blue blobs are within our
search radius:
import scipy.ndimage.measurements
pairs=list()
centres1=scipy.ndimage.measurements.center_of_
mass(d1,l1,range(1,n1+1))
centres2=scipy.ndimage.measurements.center_of_
mass(d2,l2,range(1,n2+1))
for c1 in centres1:
 for c2 in centres2:
 if (c1[0]-c2[0])**2 + (c1[1]-c2[1])**2 < 6*6:
 pairs.append((c1,c2))
print len(pairs)

This code uses Scipy’s center_of_mass function to
calculate the centres of all the blobs. Then it loops
through all possible pairs and if two blobs are within a
circle of radius 6 pixels they’re appended to the pairs
list. The result is that there are 10 pairs.

To investigate further we’d need to repeat the above
procedure for the next two images in the sequence,
generating a new list of pairs. Since our new image1
is just our old image2, we can expect the new blue
blobs to have the same centres as our old red blobs.
In this way, we can match up new and old pairs and
track objects as they move from image to image.
After we’ve tracked them over several images, all

cosmic ray coincidences should be ruled out and we’ll
be left with tracks of stars and, hopefully, comets.

With just a few more lines of code it’s possible to
produce the tracks shown based on seven images
from 17.18 to 20.42. The comet is now pretty obvious
because of its diagonal motion. The code we’ve
outlined above could do with a lot of refining because
it’s probably doing too good a job of rejecting false
positives, to the point where it might be missing real
comets. The best way to improve it is to try it out on
other image sequences with known comets in them
and experiment with some choices we’ve made, such
as the noise threshold of 50, the 3 by 3 label search
grid and the 100 by 100 sub-image.

Go discover comets, and more…
You can download SOHO data from here
http://sohowww.nascom.nasa.gov/data/realtime-
images.html for any time period, including near
real-time images. Images are now provided as JPEG
files rather than GIFs, but all the code above will still
work. If you do think you’ve spotted a comet, read the
instructions on the sungrazer comets page on how to
report it. In the same way that a well-constructed bug
report is more likely to get attention from a developer,
professional scientists are more likely to accept your
discovery if it’s presented to them in a way that shows
you know your stuff.

Don’t stop at comets; you can apply the principles
introduced here to look in other data sets, to hunt for
asteroids or sunspots, for example. You could also
analyse satellite images of the Earth’s surface, or even
turn your attention to medical images. The human
race is drowning in data, especially image data, and so
there’s every chance that, with a bit of hard work, you
could make a real contribution to research by honing
and applying basic image processing skills.

Tracks of objects for
LASCO C3 images on 5 Feb
2007. Dots shown show
positions starting at 17.18
(light red) and ending at
20.42 (white). The time
intervals vary, eg there’s an
hour between the fourth
and fifth image. The comet
is moving diagonally, and
stars horizontally.

Andrew Conway is interested in computers, science, writing
and humans, and has been a happy Linux user since 1995.

LV003 086 Tutorial Python.indd 89 15/04/2014 12:52

TUTORIAL PiBEACON

www.linuxvoice.com

YOU WILL NEED:
• Raspberry Pi (Model A

or B can be used).
• Battery with integrated

solar cell (or you could
use the Pi powered from
the mains).

• PiGlow (Available from
Pimoroni.com).

• Buzzer/piezo speaker.
• Soldering iron (optional

– I’ve breadboarded the
example diagram for
this tutorial).

• Jumper wire (female
to male, from Pi to
breadboard and male
to male for breadboard
connections.

• 100 ohm resistor
• Momentary switch

(push button).
• Breadboard.
• Insulation tape.
• Micro USB to USB lead

(to power the Pi).
• 20cm of wire (shielded,

but you could use a
female to male jumper
wire).

• An FM radio tuned in to
103.3MHz.

The background to this project is that I’ve been
working with a class at Mereside Primary
School in Blackpool. The children were

learning about natural disasters such as tsunamis
and earthquakes. During the course of their lessons
they learnt that one of the first issues faced by the
victims was a loss of communication as mobile
phone towers were quickly damaged. The children
worked as a team to understand the impact that this
would have and how they could make a difference.

Their idea was to create a beacon that attracts help
in three ways.

 An FM radio transmitter, that can be tuned to work
on many different frequencies.
 An LED unit, to visually attract people to the beacon.
 A buzzer, to attract people using audio output.
The beacon must be completely self supporting

and have its own self-charging power source. To
accomplish this we found a cheap USB battery pack
with a built-in solar cell on Amazon, but for the
purposes of this tutorial you can just plug into the
mains.

To keep the project as simple as possible we'll use
only one method of input, which is a single push
button that when pressed will launch the Python code.
Finally, the project must be weatherproof, and at this

prototype stage the best solution was every
Raspberry Pi hacker's best friend, a plastic lunchbox.

The PiBeacon was entered into PA Consulting's Pi
Awards event on 2 April 2 2014. I am proud to say that
my team came second in their year group and really
proved how far they had come in such a short time. I’d
like to say a very big “well done” to the hackers from
Mereside Primary School.

Pin reference
Throughout this tutorial, I will refer to the GPIO pins of
the Raspberry Pi via their board reference. With pin 1
being the top-left pin, nearest the SD card slot, and pin
2 being directly to pin 1’s right. Please refer to the
guide, right, for the location of 3.3V, 5V and ground
pins. Don't use use these pins unless instructed to do
so, but you can use any other pin in your program.

The only user with permission to use the GPIO pins
in Raspbian is root, so in order for you to use the GPIO
in Idle, open a terminal and type
sudo idle

Type in your password (by default in Raspbian this
is raspberry) and press Enter. In a few seconds the
editor for our Python code will be on the screen. By
launching Idle in this manner you will be able to
access the GPIO pins – just remember to open any
Python programs using the File > Open menu option.

Building the project
This build is not complex but it does have four areas
that need to be carefully wired together. If you are
unsure about your wiring, please ask someone to
check before you connect any power to your Pi or
attached components.

 Antenna This is the most simple section of the
build. All you will need to do is attach a maximum of
20cm of wire to pin 4 of your Raspberry Pi. The
greater the length of wire, the larger your antenna,
but also the greater your signal may become.
Please refer to the section on radio transmissions
for safety instructions.
 Button I used a momentary switch, attached to pin
8 to act as the only method of input. The switch is
attached to 3V power from pin 1 and a resistor is
used inline with Ground to ensure that the switch
does not accidentally trigger from a slight press.
 Buzzer A simple buzzer is attached to pin 26 and
Ground (pin 20). This buzzer is used as an audio
output that will send a message in Morse Code.

The finished PiBeacon
project encased inside its
protective lunchbox shell.

RASPBERRY PI: BUILD
AN EMERGENCY BEACON
Combine simple Python modules with hardware
programming to build your own emergency distress beacon.

 TUTORIAL

LES POUNDER

90

WHY DO THIS?
• Keep relatively safe from

natural disasters.
• Program components

connected to the
Raspberry Pi's
GPIO pins.

• Learn code concepts
including loops, data
storage and conditional
statements.

LV003 090 Tutorial PiBeacon.indd 90 15/04/2014 12:52

PiBEACON TUTORIAL

www.linuxvoice.com

 PiGlow Rather than use just one LED, we used 18
super-bright LEDs courtesy of Pimoroni’s tiny board.
Normally this board covers all the GPIO pins, but

thanks to a phone call with Jon and the team we
worked out the minimum number of pins necessary,
and these are as follows:

 Pin 1 3V3 Logic level voltage.
 Pin 2 5V LED source current.
 Pin 3 SDA i2c Communications.
 Pin 5 SCL i2c Communication.
 Pin 14 Ground (GND).
 Pin 17 Logic level voltage.
Remember when inserting the wires into the PiGlow

that you will need to work out where each pin should
be inserted. When the board is attached to the GPIO,
the “P” of PiGlow should be near the SD card slot.
Once you have located Pin 1 of PiGlow, insert a red
jumper wire to help you remember that Pin 1 is 3.3V
power, and refer to the diagram for more information.

Set up PiGlow, i2c and PiFM
PiGlow uses something called i2c to control the 18
onboard LEDs, and by using i2c PiGlow is able to use
far fewer wires than a conventional series of 18 LED
would require. I2c was developed by Philips in the
1980s as a means to send data to multiple devices
using the a minimal number of wires. It's useful, but
the Raspberry Pi does not have i2c set up by default.

To set up i2c on your Raspberry Pi, download a
copy of Michael Rimmican’s excellent setup script
from GitHub: https://github.com/heeed/pi2c.

Open a terminal, navigate to where you downloaded
the file and then used chmod to make it executable:
chmod +x pi2c.sh
Then run the script using sudo or as root:
sudo .pi2c.sh

After a few minutes your Pi will be reconfigured to
use i2c; at this time it would be prudent to reboot your
Pi to ensure that the configuration is complete.

Now you will need to download the Python library
for PiGlow, and luckily Jason Barnett has created a
great library for us to use, which is available here:
https://github.com/Boeeerb/PiGlow.

For this project, piglow.py will need to be in the
same directory as our beacon.py code. With these
files downloaded, try out some of the examples to
ensure that your PiGlow board is working correctly.

Our final requirement is PiFM, a library of code
that we can easily drop in to our project to add an
FM transmitter. You can download the library from
www.icrobotics.co.uk/wiki/index.php/Turning_the_
Raspberry_Pi_Into_an_FM_Transmitter. Extract the
files to the same directory as your beacon.py and
piglow.py files. I kept the example audio file – the Star
Wars theme – as the audio to play over the airwaves.
You could also use any 16-bit mono WAV file.

Coding the project
You can download the code for this project from my
GitHub repository: https://github.com/lesp/PiBeacon.

We coded this project in Python 2.7 due to its
mature collection of libraries and documentation.
Libraries enable us to reuse code that other people
have written. I used four libraries in my code: PiFM to
control the radio transmitter; RPI.GPIO for GPIO
access; time to add a delay function to my code; and
PiGlow to control the PiGlow LED board.

Import the libraries into our code like so:
import PiFm
import RPi.GPIO as GPIO
from piglow import PiGlow
from time import *

91

PRO TIP
Project files for the
PiBeacon are available at
https://github.com/lesp/
PiBeacon .

Diagram of the completed
setup. Remember to pay
careful attention to the
GPIO pins for PiGlow.

Pin diagram for Model B
Raspberry Pi.

LV003 090 Tutorial PiBeacon.indd 91 15/04/2014 12:52

TUTORIAL PiBEACON

www.linuxvoice.com92

Next I created two variables: button_pin and buzzer,
and in each one I stored the value of the GPIO pin
used for each, respectively 8 and 26. Variables are
great, as they enable our program to retain
information and act as a data storage system.
Variables are used to replace hard coded values in our
code. For example I could’ve used the integers 8 and
26 throughout my code, but if I wanted to change
those numbers to something else, then I would have
to go through every line of code to make the change.
Because we're using a variable, we can simply
change the value of that variable once and that

change is reflected
whenever we refer to
the variable name.

In order to use the
GPIO we need to tell
Python how we want to
use it:

GPIO.setmode(GPIO.BOARD)
This tells the Pi that I wish to use the numbering as

per the earlier diagram.
GPIO.setup(button_pin , GPIO.IN)
GPIO.setup(buzzer , GPIO.OUT)

These two lines tell the Pi that our button, attached
to pin 8, is an input and that our buzzer on pin 26 is an
output. Remember that the variables button_pin and
buzzer both contain the pin reference for each.

To make it easier for me to use the PiGlow function,
PiGlow(), I next create a variable called piglow:
piglow = PiGlow()
Later on I use the code
piglow.all(128)
to set all of the LEDs to half brightness, but I’ll cover
that in more detail later.

Now we come to the main part of the program. In
order to control the program we use an infinite loop,
which in Python is 'while True:'. This is the simplest
kind of loop, and for the purpose of this project, is the
most practical. Any code contained in this loop will
run over and over until it is stopped.

The next line is a conditional statement that checks
to see if the button has been pressed. This, coupled
with our infinite loop, enables the program to
constantly check for user input via the button:
while True:
 if GPIO.input(button_pin)==1:

So now that we have a conditional statement, what
do we want it to do if the condition is true? Well firstly I
want it to print “Button Pressed”, for debugging
purposes, so that I can see that the code has worked.
Then I want the code to start PiFm and play the Star
Wars theme. The code is as so:
 print(“BUTTON PRESSED”)
 PiFm.play_sound(“/home/pi/sound.wav”)

Once PiFm has finished playing the audio I want to
then start a loop that iterates three times. Inside this
loop I want the buzzer and PiGlow to provide output in
the form of Morse code – more specifically the
internationally recognised SOS message (… - - - …).

To create the iterated loop I used a 'for' loop with a
range that starts at zero and ends before three, so it
goes 0,1,2. A 'for' loop is a loop that will iterate through
a list, range or tuple until complete, giving us a the
limited number of loops that we require. This gives us
the three iterations that we require. Here's the code:
for i in range(0,3):

You might be wondering where the i came from?
Well, this is a variable that we've declared “on the fly”.
You could replace i with x, y or z if you wished. The
range(0,3) bit instructs the for loop to start at 0 and
count to 2, as 3 is the limit of our range. By counting
from 0 to 2 we have 3 loops.

Send signals
Now to make the buzzer and PiGlow come to life. We
have to tell the GPIO to send electricity to the buzzer,
and to do that we use the Boolean term “True” to say
that we want to turn the power on. Remember I earlier
set up the GPIO pin 26 as an output and used a
variable called buzzer to represent this. So now to
send the power to the pin I use the following code.
GPIO.output(buzzer, True)

To turn the buzzer off I change the True to False.
For PiGlow it is a little bit different but by no means

a challenge. To illuminate all of the LED on the board I
use piglow.all. Now as you will see in the code there is
a number contained in brackets. This number is the
brightness of the LED, with 0 being off and 255 being
full brightness. I used 128, which is the halfway point
between the two. A word of warning: PiGlow is
extremely bright, so be careful with your eyes. Here's
how to turn the LED on.
piglow.all(128)

“Variables enable our program
to retain information and act as
a data storage system.”

 Radio transmissions
This project uses a Python library called PiFM,
which is available from www.icrobotics.co.uk/wiki/
index.php/Turning_the_Raspberry_Pi_Into_an_
FM_Transmitter. This library is what powers the
PiBeacon’s radio transmissions. It's very versatile,
with extra functionality such as broadcasting in
stereo and using a microphone connected to your
Pi to broadcast live audio over the airwaves.

Transmitting radio signals is not to be taken
lightly, and great care should be taken when using
this project. Make sure that you are not operating

on any frequencies that are reserved for emergency
services or aviation, otherwise you will get in
trouble with the authorities. Please refer to the
official guidance available from http://stakeholders.
ofcom.org.uk/enforcement/spectrum-enforcement/
law, as there are certain regulations that must be
followed when using radio transmitters.

The FM transmitter is also very powerful – so
powerful in fact that if used incorrectly it can cause
interference. Best practice would be to reduce the
length of wire used in the build so that the effect is

localised. The use of SOS audio messages or SOS
Morse code is also not to be broadcast on the radio
spectrum, so please just play the theme from Star
Wars or Transformers and save the emergency for
the real thing.

If you are still unsure then the best resource to
use is your local amateur radio group (basically a
LUG for those interested in radio related topics). A
quick Google search will find your local group, who
will be able to answer any questions that you may
have. Remember: hack responsibly.

LV003 090 Tutorial PiBeacon.indd 92 15/04/2014 12:52

PiBEACON TUTORIAL

www.linuxvoice.com 93

And to turn off the LED we create a new line, which is
identical to before but with the (128) changed to (0).

To control which letter is being communicated in
Morse I used a delay function, which in Python is
called sleep(). To create a dot, which is a short beep in
Morse I kept the delay to a minimum and set it to 0.5,
which is half a second. To create a dash, which is a
longer sound, I used a delay of 1, which is 1 second. In
code the delays look like this.
sleep(0.5) # For a DOT
sleep(1) # For a DASH

The last section of code is the else statement.
When using a conditional such as if, we can use an
else statement to capture any unexpected conditions.
In this case the else statement is used when no user
input is detected, it will print “Waiting for input” over
and over. As soon as user input is detected, the else
condition is no longer true and the if condition, when
the button is pressed, is now true.

Before you test your project it would be prudent to
check all of the connections and wiring before you
start the program. Once you're happy that everything
is as it should be, run your code. You can do this in Idle
via the Run > Run Module menu item.

Grab your radio and tune in to 103.3MHz FM, which
is the default frequency that we will be using for this
project. You should now see the shell printing “Waiting
for input” so go ahead and press the button. A
moment later you should hear the theme from Star
Wars playing through your FM radio. A few minutes
later, once the music has finished, your buzzer and
PiGlow will start emitting a message in Morse code.
Congratulations: you have built a working PiBeacon!

Bonus points – change your message
In this project we use sleep() to control the delay for
our beeps and flashes, with half a second for a dot
and one second for a dash. So using just dots and
dashes we can communicate text and numbers.

Instead of broadcasting SOS, let's say “Linux Voice”.
First of all we'll refer to a chart of Morse Code.
L DOT DASH DOT DOT
I DOT DOT
N DASH DOT
U DOT DOT DASH
X DASH DOT DOT DASH
V DOT DOT DOT DASH
O DASH DASH DASH
I DOT DOT
C DASH DOT DASH DOT
E DOT
Why don’t you try altering the example code to output
this message instead?

Here’s how to write L in Morse using Python
#The letter L in Morse code.
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)

piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)
#DASH
GPIO.output(buzzer, True)
piglow.all(128)
sleep(1)
GPIO.output(buzzer, False)
piglow.all(0)
sleep(1)
#End of DASH, now a 1 second pause
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)
piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)
#DOT
GPIO.output(buzzer, True)
piglow.all(128)
sleep(0.5)
GPIO.output(buzzer, False)
piglow.all(0)
#End of DOT, now a 1 second pause
sleep(1)

So what have we accomplished here?
 We have built the hardware that powers our project.
 Using Python and libraries from external sources
we have created the code that controls the
components in the beacon.

We also used programming concepts such as Loops,
to control the flow of our program and to repeat
repetitive tasks; variables, to store the values of GPIO
pins in one section of code, enabling us to quickly
make changes to one value that are reflected
throughout the program; and conditionals to control
the flow of our program by using logic. The next step
is to play with the lights on the PiGlow – you could
even create an animation.

Assembling the final
prototype and soldering
the connections was
essential to qualify for the
PA Consulting competition.

Les Pounder is a maker and hacker specialising in the
Raspberry Pi and Arduino. Les travels the UK training
teachers in the new computing curriculum and Raspberry Pi.

LV003 090 Tutorial PiBeacon.indd 93 15/04/2014 12:52

TUTORIAL PYTHON & libvirt

www.linuxvoice.com

WHY DO THIS?
• Automate virtual

machine maintenance
and management
processes.

• Batch-create virtual
appliances for clouds,
integration testing and
so forth.

• Get to know the de-facto
standard virtualisation
toolkit for Linux.

I f you read Linux Voice, you are probably a Linux
user. And if you use Linux, you most likely know
what virtualisation is. Many mainstream

distributions include KVM and virt-manager these
days, and you can easily install Oracle VM VirtualBox,
Xen or such like. Usually, they provide some form of
GUI, so why on the Earth would you want to try
virtualisation from a Python script?

If you just want to try out a new distro, you probably
wouldn’t. However, if you use several virtual machine
managers (VMMs, or hypervisors) in parallel, or create
pre-configured virtual machine appliances (say, for a
cloud deployment), Python may come in handy.

Meet libvirt
Born at Red Hat as an open-source project, libivrt has
become an industrial-grade toolkit that provides a
generic management layer on top of different
hypervisors, using XML as a mediation language.
It’s been adopted by many Linux vendors (if you have
virt-manager, you have libvirt) and has bindings for
many programming languages, including Python
(version 2 and, starting with libvirt-python 1.2.1,
Python 3). Libvirt can create (or “define”, in its
parlance), run (“create”) and destroy virtual machines
(called “domains” here), provide them with storage,
connect them to virtual networks that are protected
by network filters, migrate them between nodes and
do other smart things.

However, libvirt has no convenient tools to work
with XML, so you’ll need to know the format
(described at libvirt’s website, www.libvirt.org) and
use xml.etree or similar. Let’s see it in action. Install
libvirt’s Python bindings (usually called python-libvirt

or alike) and open an interactive Python shell (>>>
denotes prompts in the listings below). No root
privileges are initially required, but you may be asked
to obtain them when needed.
$ python
>>> import libvirt
>>> conn = libvirt.openReadOnly(‘qemu:///system’)

Here, we import the libvirt module and open a
connection to the hypervisor specified by the URI (note
the three slashes). In this tutorial we’ll work with
Qemu/KVM, which is probably the most ‘native’ VMM
for libvirt. /system means we connect to a local
system-level hypervisor instance. You may also use
qemu:///session to connect to the local per-user
Qemu instance, or qemu+ssh:// for secure remote
connections. We are not going to define new domains
now, so the restricted read-only connection will suffice.

For starters, let’s check what your host is capable of
when it comes to the virtualisation:
>>> xml = conn.getCapabilities()
>>> print xml
<capabilities>
 <host>
 <uuid>20873631-dad7-dd11-885a-08606eda31ae</uuid>
 <cpu>
 <arch>x86_64</arch>
 <model>Westmere</model>
 <vendor>Intel</vendor>
 <topology sockets=’1’ cores=’4’ threads=’1’/>
 <feature name=’vmx’/>
 ...
</capabilities>

You see how the XML is used to describe the host’s
capabilities. Libvirt identifies objects (hosts, guests,
networks etc) by UUIDs. My host is a 64-bit quad-core
Intel Core i5 with hardware virtualisation (VMX)
support. Your results will likely be different.

The XML is quite long (note the ellipsis). Here’s how
you can use xml.etree to get supported guest domain
types and corresponding architectures from it:
>>> from xml.etree import ElementTree
>>> for guest in tree.findall(‘guest’):
... arch = guest.find(‘arch’).get(‘name’)
... domain_type = guest.find(‘arch/domain’).get(‘type’)

My stock Ubuntu 13.10 supports Qemu domains
only. However, since Qemu is a generic emulator, I can
virtualise almost anything including s390x or SPARC
(albeit at a performance penalty). x86_64 and i686 are
of course supported, too.

Depending on the settings,
you may be asked to enter
the root password to use a
system connection.

CONTROL VIRTUAL MACHINES
WITH PYTHON AND LIBVIRT
Learn ways to automate VM management when GUIs
and simple shell scripts aren’t enough.

 TUTORIAL

VALENTINE SINITSYN

94

LV003 094 Tutorial Libvirt.indd 94 15/04/2014 12:55

PYTHON & libvirt TUTORIAL

www.linuxvoice.com

It’s good to know that you can create a domain for
any conceivable architecture, but how do you actually
do it? First of all, you’ll need some XML to describe the
domain. For simple cases, it may look like this:
<?xml version=”1.0”?>
<domain type=’qemu’>
 <name>Linux-0.2</name>
 <uuid>ce1326f0-a9a0-11e3-a5e2-0800200c9a66</uuid>
 <memory>131072</memory>
 <currentMemory>131072</currentMemory>
 <vcpu>1</vcpu>
 <os>
 <type>hvm</type>
 <boot dev=’hd’>

 </os>
 <devices>
 <disk type=’file’ device=’disk’>
 <source file=’/path/to/linux-0.2.img’/>
 <target dev=’hda’>
 </disk>
 <interface type=’network’>
 <source network=’default’/>
 </interface>
 <graphics type=’vnc’ port=’5900’/>
 </devices>
</domain>

Speak the domain language
Here, we create a Qemu/KVM (hvm) virtual machine
with one CPU and 128MB of RAM. It has a hard disk at
IDE primary master (hda), from which it boots (I’ve
used the tiny Linux 0.2 image from the Qemu Testing
page). It is connected to the “default” network
(NAT-enabled 192.168.122.0/24 attached to virbr0 at
the host side), and you can use VNC at port 5900/tcp
to access its screen (try vinagre localhost:5900 or
similar). Note that the <source file=”...”/> must contain
an absolute path to the image, and the image format
must be supported by the hypervisor. libvirt is not a
tool to create disk images, however you can use
pyparted, ubuntu-vm-builder or similar to automate
this process with Python.

Domains in libvirt are either transient or persistent.
The former exist only until the guest is stopped or the

host is restarted. Persistent domains last forever and
must be defined before start. A transient domain will
do for now, but as we are going to create something, a
read-only connection is no longer sufficient.
import libvirt
xml = “””domain definition here”””
conn = libvirt.open(‘qemu:///system’)
domain = conn.createXML(xml)

Yeah, that’s all. However, if you try to execute this
script, you may get this response:
libvirt: QEMU Driver error : internal error: Network ‘default’ is not
active.

This is because the XML references the “default”
network, which won’t be active unless there are
domains using it already running, or you have marked
it as autostarted with virsh net-autostart default
command. Insert the following code just before
conn.createXML() call to start the network if it is not
already active:
net = conn.networkLookupByName(‘default’)
if not net.isActive():
 net.create()

First, we get an object representing the “default”
network. libvirt can look up objects by names, UUID
strings (ce1326f0-a9a0-11e3-a5e2-0800200c9a66)
or UUID binary values (UUID(‘ce1326f0-a9a0-11e3-
a5e2-0800200c9a66’).bytes). Corresponding method
names start with the object’s type (except for domains)
followed by “LookupByName”, “LookupByUUIDString”
or “LookupByUUID”, respectively.

Network objects provide other methods you may
find useful. For instance, you can mark a network as
autostarted with net.setAutostart(True). Or, you can
get an XML definition for the network (or any other
libivrt object) with XMLDesc():
>> print net.XMLDesc()
<network>
 <name>default</name>
 <uuid>9d3c0912-6683-4128-86df-72f26847d9d3</uuid>
 ...
</network>

If we were going to create a persistent domain, we’d
change conn.createXML() to:
domain = conn.defineXML(xml)
domain.create()

95

There and back again

libvirt is essentially a sophisticated translator from
a high-level XML to low-level configurations specific
to hypervisors. Sometimes you may want to see
what libvirt generates from your definitions. You
can do this with:
>>> print conn.domainXMLToNative(‘qemu-argv’, xml)
LC_ALL=C PATH=... QEMU_AUDIO_DRV=none /usr/bin/
qemu-system-x86_64 -name Linux-0.2 ... -m 128 ... -smp
1,sockets=1,cores=1,threads=1 -uuid ce1326f0-a9a0-11e3- a5e2-

0800200c9a66 ... -vnc 127.0.0.1:0 -vga cirrus...

Other times, you may be unsure how to express

some VM configuration in XML, or you may have the
configuration autogenerated by another front-end.
libvirt can convert a native domain configuration to
the XML with:
>>> argv=”LC_ALL=C PATH=... QEMU_AUDIO_DRV=none /usr/bin/
qemu-system-x86_64 -name Linux-0.2 ... -m 128 ... -smp
1,sockets=1,cores=1,threads=1 -uuid ce1326f0-a9a0-11e3-a5e2-
0800200c9a66...”
>>> print conn.domXMLFromNative(‘qemu-argv’, argv)

<domain type=’qemu’ xmlns:qemu=’http://libvirt.org/schemas/
domain/qemu/1.0’>

 <name>Linux-0.2</name>
 <uuid>ce1326f0-a9a0-11e3-a5e2-0800200c9a66</uuid>
 <memory unit=’KiB’>131072</memory>
 <currentMemory unit=’KiB’>131072</currentMemory>
 <vcpu placement=’static’>1</vcpu>
 <os>
 <type arch=’x86_64’ machine=’pc’>hvm</type>
 </os>
 ...
</domain>
You can also use virsh domxml-to-native and virsh
domxml-from-native commands for the same
purposes.

LV003 094 Tutorial Libvirt.indd 95 15/04/2014 12:55

TUTORIAL PYTHON & libvirt

www.linuxvoice.com96

(remember that persistent domain creation is a
two-phase process). To gracefully reboot or shutdown
the domain, use domain.reboot() and domain.
shutdown(), respectively. However, the guest can
ignore these requests. domain.reset() and domain.
destroy() do the same, albeit without guest OS
interaction. When the domain is no longer needed, you
can remove (undefine) it like this:
try:
 domain = conn.lookupByUUIDString(‘ce1326f0-a9a0-11e3-
a5e2-0800200c9a66’)
 domain.undefine()
except libvirt.libvirtError:
 print ‘Domain not found’
lookup*() throws libvirtError if no object was found;
many libvirt functions do the same. If the domain is
running, undefine() will not remove it immediately.
Instead, it will make the domain transient. It is an error
to undefine a transient domain.

When you are done interacting with the hypervisor,
don’t forget to close the connection with conn.close().
Connections are reference-counted, so they aren’t
really closed until the last client releases them.

Get’em all
A libvirt system may have many domains defined, and
there are several ways to enumerate them. First,
conn.listDomainsID() returns integer identifiers for the
domains currently running on a libvirt system (unlike
UUID, these IDs aren’t persisted between restarts):
for id in conn.listDomainsID():
 domain = conn.lookupByID(id)
 ...

If you need all domains regardless of state, use the
conn.listAllDomains() method. The following code
mimics the behaviour of the virsh list --all command:
print ‘ Id Name State’
print ‘-’ * 52
for dom in conn.listAllDomains():
 print “%3s %-31s%s” %\
 (dom.ID() if dom.ID() > 0 else ‘-’,
 dom.name(),
 state_to_string(dom.state()))

For domains that aren’t running, dom.ID() returns
-1. dom.state() yields a two-element list: state[0] is a
current state (one of libvirt.VIR_DOMAIN_*
constants), and state[1] is the reason why the VM has
moved to this state. Reason codes are defined
per-state (see virDomain*Reason enum in the C API
reference for the symbolic constant names). The
custom state_to_string() function (not shown here)
returns a string representation of the code.

Domain objects provide a set of *stats() methods
to obtain various statistics:
cpu_stats = dom.getCPUStats(False)
for (i, cpu) in enumerate(cpu_stats):
 print ‘CPU #%d Time: %.2lf sec’ % (i, cpu[‘cpu_time’] /
1000000000.)
This way, you get a CPU usage for the domain (in
nanoseconds). My host has four CPUs, so there are

four entries in the cpu_stats array. dom.
getCPUStats(True) aggregates the statistics for all
CPUs on the host:
>>> print dom.getCPUStats(True)
[{‘cpu_time’: 10208067024L, ‘system_time’: 1760000000L,
‘user_time’: 5830000000L}]

Disk usage statistics are provided by the
dom.blockStats() method:
rd_req, rd_bytes, wr_req, wr_bytes, err = dom.blockStats(‘/path/
to/linux-0.2.img’)

The returned tuple contains the number of read
(write) requests issued, and the actual number of bytes
transferred. A block device is specified by the image
file path or the device bus name set by the devices/
disk/target[@dev] element in the domain XML.

To get the network statistics, you’ll need the name
of the host interface that the domain is connected to
(usually vnetX). To find it, retrieve the domain XML
description (libvirt modifies it at the runtime). Then,
look for devices/interface/target[@dev] element(s):
tree = ElementTree.fromstring(dom.XMLDesc())
iface = tree.find(‘devices/interface/target’).get(‘dev’)
rx_bytes, rx_packets, rx_err, rx_drop, tx_bytes, tx_packets, tx_err,
tx_drop = dom.interfaceStats(iface)
The dom.interfaceStats() method returns the number
of bytes (packets) received (transmitted), and the
number of reception/transmission errors.

A thousand words’ worth
Imagine you are making a step-by-step guide for an
OS installation process. You’ll probably do it in the
virtual machine, taking the screenshots periodically. At
the end of the day you will have a pack of screenshots
that you’ll need to crop to remove VM window
borders. Also, it’s pretty boring to have to sit there
pressing PrtSc. Luckily, there is a better way.

libvirt provides a means to take a snap of what is
currently on the domain’s screen. The format of the
image is hypervisor-specific (for Qemu, it’s PPM),
however, you can use the Python Imaging Library (PIL)
to convert it to anything you want. To transfer image
data from the VM, you’ll need an object called stream.
This provides a generic way to exchange data with
libvirt, and is implemented by the virStream class.
Streams are created with the conn.newStream()
factory function, and they provide recv() and send()

Your mileage may vary

You may expect libvirt to abstract all hypervisor details
from you. It does not. The API is generic enough, but
there are nuances. First, you’ll need your guest images
in a hypervisor-supported format (use qemu-img(1) to
convert them). Second, hypervisors vary in their support
level. Qemu/KVM and Xen are arguably the best supported
options, but we had some issues (like version mismatch or
inability to create a transient domain) with libvirt-managed
VirtualBox on our Arch Linux and Ubuntu boxes.

The bottom line: libvirt is great, but don’t think you can
change the hypervisor transparently.

LV003 094 Tutorial Libvirt.indd 96 15/04/2014 12:55

PYTHON & libvirt TUTORIAL

www.linuxvoice.com 97

methods to receive and send data. To get a stream
containing the screenshot, use:
stream = conn.newStream()
dom = conn.lookupByUUID(UUID(‘ce1326f0-a9a0-11e3-a5e2-
0800200c9a66’).bytes)
if dom.isActive():
 dom.screenshot(stream, 0)

Here, we lookup the domain by a binary UUID value,
not a string (the UUID class comes from the uuid
module). We check that the domain is active
(otherwise it has no screen) and ignore other possible
errors. Now we need to pump the data to the Python
side. virStream provides a shortcut method for this
purpose:
 buffer = StringIO()
 stream.recvAll(writer, buffer)
 stream.finish()

Here, we create a StringIO file-like object to store
image data. stream.recvAll() is a convenience
wrapper that reads all data available in the stream.
writer() function is defined as:
def writer(stream, data, buffer):
 buffer.write(data)

Its third argument is the same as the second
argument in recvAll(). It can be an arbitrary value, and
here we use it to pass the StringIO() buffer object.

All that remains is to save the screenshot in a
convenient format, like PNG:
 from PIL import Image
 buffer.seek(0)
 image = Image.open(buffer)
 image.save(‘screenshot.png’)

PIL is clever enough to autodetect the source image
type. However, it expects to see the image data from
byte one, that’s why we use buffer.seek(0).

You can easily wrap this screenshotting code into a
function and call it periodically, or when something
interesting happens to the VM.

You’ve got a message
When something happens to a domain, for example it
is defined, created, destroyed, rebooted or crashed,
libvirt generates an event that you can subscribe to
and act appropriately. To be able to receive these
events, you’ll need some event loop in your code.
libvirt provides a default one, built on top of the
blocking poll(2) system call. However, you can easily
integrate with Tornado IOLoop (LV1) or glib MainLoop
(LV2), if needed.

Default event loop is registered at the very
beginning, even before the connection to libvirt
daemon is opened:
libvirt.virEventRegisterDefaultImpl()
conn = libvirt.open(‘qemu:///system’)

Next, you subscribe to the events you are interested
in. Let’s say we want to receive events of any type:
cb_id = conn.domainEventRegisterAny(None, libvirt.VIR_
DOMAIN_EVENT_ID_LIFECYCLE, event_callback, None)

The first argument is the domain we want to
monitor; None means any. The second argument

specifies the event “family” to subscribe to. Here, we
are interested in lifecycle events (started, stopped, etc),
but there are many others (removable device changed,
power management occurs, watchdog fired, and so
on). The last argument is an arbitrary value to be
passed to the event_callback() function (remember
stream.recvAll() and writer() we saw earlier?).

Event handler is defined as follows:
def event_callback(conn, domain, event, detail, opaque):
 print ‘Event #%d (detail #%d) occurred in %s’ % (event, detail
domain.name())
event and detail are integer codes describing what
happened. For lifecycle events, they are defined in the
virDomainEventType and virDomainEvent*DetailType
enums; the constants (libvirt.VIR_DOMAIN_EVENT_
STARTED etc) are named the same as enum fields.
while True:
 libvirt.virEventRunDefaultImpl()

This is the main loop. In a real application, you will
probably run it in a separate thread. The call blocks
until a subscribed event (or a timeout) occurs, so even
exiting with Ctrl+C takes some time.

When the subscription is no longer needed, you can
terminate it with:
conn.domainEventDeregisterAny(cb_id)

Events notification opens many interesting
possibilities. For instance, you can start domains in
the particular order (one after another), or use the
Tornado framework to create a lightweight web-based
virt-manager alternative.

And there’s more…
This concludes our quick tour of the features of libvirt.
We’ve barely scratched the surface, and there is much
more than we’ve seen so far: storage pools,
encryption, network filters, migrations, nodes, Open
vSwitch integration and the rest. However, the APIs
you’ve learned today form a solid foundation to build
more advanced libvirt skills for your next project. Let
the computer do the repetitive work for you, and have
fun with Python in the meantime!

You can take a screenshot
of the VM as early as you
want, even before a guest
kernel is booted.

Dr Valentine Sinitsyn has committer rights in KDE but spends
his time mastering virtualisation and doing clever things
with Python.

LV003 094 Tutorial Libvirt.indd 97 15/04/2014 12:55

CODING RUBY

www.linuxvoice.com

Ruby is an interpreted object-oriented
programming language that has gained
popularity in recent years, perhaps due to

the popularity of the Ruby on Rails web application
framework. Its basic syntax is easy to learn and
programmers adopting the language quickly become
comfortable writing Ruby code.

As a new Ruby programmer (Rubyist), however,
you’re immersed in a world of classes, objects,
methods and class methods, instance variables and
class instance variables, class variables, singleton and
proxy classes, procs, lambdas and blocks. You can be
forgiven for appearing dazed and confused.

Some of the basic concepts are easy to understand:
terms like classes and instances are easily
understood by anyone with some object oriented
programming experience. But all this terminology
boils down to one basic model, and understanding
that model can bring clarity and understanding of
everything else, making you a better Rubyist.

We’re going to focus on one key fact about
Ruby – that everything is an object – and learn
what this means for us as Ruby programmers. By
understanding what an object is we can unleash
Ruby’s power and understand some of those
concepts that might at first appear confusing.

If you have done your homework you will know
about two kinds of object: an instance and a class; the
latter being like a blueprint used to create the former.

The four freedoms
All objects have four characteristics in common:
identity, state, being an instance of some class and
the ability to receive messages. We’ll explain each of
these in turn.

Each object has a unique identity, it’s object ID,
which you can reveal it with its object_id method.
 > “hello”.object_id

 => 24750480
 > 0.object_id
 => 1

Inside Ruby the object ID is a pointer to the location
in memory where the object is stored. Following
a pointer has more overhead than accessing data
directly so, for performance reasons, there are a few
kinds of object that encode their data within their
object ID. They’re explained in the Small Objects
boxout on page 100. For most objects, however, the
ID refers to a location in memory that contains some
internal flags, a table of variables and a pointer to the
class that the object is an instance of.

Ruby variables contain object IDs, and this means
that they behave like pointer variables in other
languages, as the following example illustrates:
a = “abc”
b = a
a.upcase!
puts b # => “ABC”
The object’s state is represented by its table of
variables. You can peek into any object and see these
instance variables:
puts myobject.instance_variables

The object’s class pointer points to the class that
the object is an instance of. You can ask an object
what its class is:
puts “abc”.class # => String

An object receives a message when a method is
called on it. In this sense, we talk about the object as
the receiver and express the message as a method
call like this:
myobject.a_method(parameters)

But our object definition didn’t mention methods.
What happens when an object receives a message is
that it follows its class pointer to find the method.

The method is defined on the class so that all its
instances can use it. Despite this, it is usual to say that
“myobject has a method called my_method “instead
of “MyClass has a method called my_method” even
though that’s the reality.

To clarify that methods defined on a class are called
on an instance, we call them instance methods and
this can be expressed in Ruby:
“my string”.methods == String.instance_methods

We can summarise our understanding of an object
as being an instance of a class with its own instance
variables and the use of the instance methods defined
by its class.

Instances and classes are objects and
all objects are instances of a class.

EVERYTHING IS AN
OBJECT IN RUBY
Everything in Ruby is an object. Even procs, includes, lambdas,
classes, singleton classes, superclasses and everything else…

CODING TUTORIAL

JOHN LANE

98

my_object

an instance of
MyClass

MyClass

an instance of
Class

LV003 098 Code Ruby.indd 98 11/04/2014 14:24

RUBY CODING

www.linuxvoice.com

Going back to our ‘everything is an object
philosophy’, it follows that a class is an object too.
This means that everything that we have said so
far also applies to classes: a class is an instance of
another class. It can, therefore, have its own instance
variables and can also use instance methods defined
by its class.

A class is an instance
Ruby allows a class to be derived from another: it
supports single inheritance. Such a class is a
subclass of the one it inherits, which is its superclass.
Its upward chain of superclasses is called its
ancestors and you can peek into a class to see them:
puts String.ancestors
The chain of ancestors is used to locate a method
when an object receives a message. It looks first in its
class and, if it finds nothing in there, iterates through
its ancestors until it is found. Thus, a class can define
new methods or redefine methods already defined by
one of its ancestors. If no method is found then the
object is sent a new message called method_missing.

When a method executes, it does so in the context
of the receiver, which we call the current object, and
uses its instance variables (as you would expect). The
current object has a special name in Ruby: self.

Summarising our understanding of classes, we can
say that a class is an object that can be instantiated
and can have instance methods and a superclass. But
there’s another very important kind of class that you
need to understand – the Singleton class.

In a class of its own
We explained that a class can define new methods or
redefine those already defined by its ancestors. The
singleton class enables an instance to do the same,
allowing it to have methods that other instances of its
class do not have. You can do this:
a = “abc”
def a.rot13
 tr ‘A-Za-z’,’N-ZA-Mn-za-m’
end
a.rot13 # => nop

We just defined a method called rot13 on an object,
a, which is an instance of the String class. We know
that the methods accessible to an object are in its
class, which is String. But if we defined the method in
the class then it would be accessible to its instances,
which isn’t the case:

b = “def”
b.rot13 # => NoMethodError: undefined method `rot13’ for
“def”:String

So, where is it? Well, it’s in a singleton class. What
Ruby does is create a new anonymous class that
becomes the object’s class and its actual class
becomes the superclass of the anonymous class. The
singleton class is invisible, however:
a.class # => String

Singleton classes are everywhere in Ruby; just very
well hidden. It’s common practice to create class
methods using a construct like this:
class MyClass
 def self.class_method
 “hello”
 end
end
MyClass.class_method # => hello

This is exactly the same as our rot13 example
– a method called class_method is created in the
singleton class for the object, MyClass, which lies
between that object and its visible superclass, Class.

The singleton class is sometimes referred to as a
metaclass, virtual class or eigenclass; Eigen being
a German word meaning one’s self. That fact helps
explain the way we just used the self keyword.

We already mentioned that self refers to the current
object. We now extend our definition to say that the
current object becomes the class being defined when
inside a class definition. In the example above, self
refers to the class, MyClass, that is being defined.

Another common idiom in Ruby is to open a
singleton class and code directly inside it. We could

A class can be a subclass as well as an instance. They can have instance variables and
instance methods. An object’s accessible instance variables and instance methods
are shown in the same colour as its name. If a method isn’t defined by its class, move
upwards through its ancestors to find it.

99

PRO TIP
You can try the code
snippets yourself in irb or
try http://rubyfiddle.com.

Everything is an object

Some experienced Rubyists may prefer to say that almost
everything is an object because you can’t define something
entirely in terms of itself. Ruby’s syntax is not an object
and variables aren’t objects. So while it may technically
make more sense to say that every value is an object, for
the purpose of understanding objects, this fact can be
overlooked. ruby-lang.org says that everything is an object
so that’s good enough for us.

Animal
an instance of
Class
instance variables

instance methods

my_cat
an instance of
Class
instance variables

Class
an instance of
Class
instance variables

instance methods

instance variables

Cat
an instance of
Class
an instance of
Class

instance methods

LV003 098 Code Ruby.indd 99 11/04/2014 14:24

CODING RUBY

www.linuxvoice.com100

have written the above example like this:
class MyClass
 class << self
 def class_method
 “hello”
 end
 end
end
which you may prefer when defining lots of class
methods together. And an example that really shows
off self’s changing persona is this eigenclass method:
class Object
 def eigenclass
 class << self
 self
 end
 end
end

It adds a new method to the Object class, an
ancestor of all classes and a good place to define
methods that should be available everywhere. Inside
the eigenclass instance method, self is the current

object, the one that the method was called on. It uses
class << self to open the current object’s singleton
class, and the second use of self is inside that and,
therefore, the method returns the singleton class.
Ruby 1.9 introduced a new method called singleton_
class into the Object class that does this.

The magic of modules
There is another kind of object that is very similar to a
class; so similar in fact that the only real difference is
that it cannot be instantiated: the Module. Everything
we’ve said about instance variables and instance
methods apply equally to modules, but they differ
from classes in the way they are used.

You don’t inherit modules – you include them, and
you can include many modules.This is how you can
achieve the effect of multiple inheritance in Ruby.
When a module is used within a class, it is called a
mixin, because it is mixed in to the class.
class MyClass
 include UsefulModule
 include AnotherUsefulModule
 ...
end

Including a module is another occasion when Ruby
creates an anonymous class that, in this case, is
known as an include or proxy class. It is inserted into
the ancestor chain of the including class, becoming
its superclass. The proxy class points to the module’s
instance methods. Proxy classes enter the ancestor
chain in the order that modules are included into the
class, so this ordering is significant in the event that
modules contain methods with the same name.

The fact that we said instance methods is
important – when you include a module you don’t
get class methods, because although, like any other
class, a module has a singleton class, it does not get
included. That is to say, if you do
module MyModule
 def self.class_method
 end
end
and include that module in a class, the method will not
be available. Any object can, however, include a
module’s instance methods into its singleton class.
When a class does this they become class methods.
module MyModule
 def class_method
 “hello”
 end
end
class MyClass
 class << self
 include MyModule
 end
end
puts MyClass.class_method # => hello

Because this is a common idiom, Ruby provides the
extend method to do just that. This is more succinct.
class MyClass

Small objects
Some kinds of objects are not represented
by an object structure, because the data they
contain takes up less space than a reference
to an object structure would. Instead, they
encode their data within their object ID, and
they do so for performance reasons.

Because memory addresses are always
aligned with the word length of the CPU
(32-bit systems have a 4-byte word length,
and it’s 8 bytes on 64-bit systems), all the
least significant bits of a pointer are always
zero. Ruby uses this space to identify small
objects, which is demonstrated nicely by
small integers:
 > 20.object_id
 => 41
 > 20.object_id >> 1
 => 20

By small integer, we mean any signed
integer that can be held in the space
reserved for an object ID, less one bit (so on

a 64-bit machine this means a 63-bit signed
integer). The reserved bit is used as a flag
that tells Ruby what the object is. The value
is stored bit-shifted left and with the least-
significant bit set to 1. In this way, all object
IDs that are odd numbers represent integer
objects. In Ruby, these numbers are the
FixNum class. Ruby 2.0 introduced a similar
encoding on 64-bit architectures for some
small Float values that it calls Flonums.

Another small object is the symbol.
These are used every day in Ruby, as keys
to hashes among other things. They are
immutable strings, meaning that they cannot
be modified once created.

Ruby creates symbol objects whenever
new symbols are referenced. Variables and
other references to the same symbol all
refer to the same symbol object. Comparing
symbols is more efficient than strings,
because it’s only necessary to compare their
object IDs.

For a class, the superclass
of its singleton class is
the singleton class of its
superclass!

MyClass
instance variables

instance methods

Object

my_object
instance variables

my_object
singleton class

instance methods
instance variables

My Class
singleton class
class instance
variables

class methods
 class method

Object singleton

LV003 098 Code Ruby.indd 100 11/04/2014 14:24

RUBY CODING

www.linuxvoice.com 101

 extend MyModule
end

If you want both class and instance methods in the
same module then you have to resort to some trickery
that uses callbacks and a sub-module. The idea is
that you create a sub-module and put the to-be class
methods there. You then rely on an included callback
(a method in your code that is invoked when the
module is included in a class) to extend the class with
the sub-module:
module MyModule
 def self.included(including_class)
 including_class.extend ClassMethods
 end
 module ClassMethods
 def class_method
 “class method”
 end
 end
 def instance_method
 “instance method”
 end
end
class MyClass; include MyModule; end
puts MyClass.class_method # => class method
my_object = MyClass.new
puts my_object.instance_method # => instance_method

Another use for modules is name-spacing, which
allows classes or modules with the same names to be
used without conflict. The :: scope resolution operator
allows constant definitions (classes and modules
have object IDs that are constants) to be nested.
module Custom
 class String
 end
end
puts Custom::String == String# => false

You may also see modules used to implement the
singleton pattern, which is often confused with the
singleton classes we’ve previously explained, but just
means a class that can only be instantiated once.
Modules can be used to model these, and a typical
example is a logging object.
module Logger
 def self.log(msg)
 @@log ||= File.open(“log.txt”, “a”)
 @@log.puts(msg)
 end
end

You can then include Logger wherever logging is
needed and get a log method at your disposal.

An object you can call
The last group of objects that we need to cover are
callable objects. You’ve seen this construct before:
(0..10).each { |n| puts n }

The bit between the braces is a block (you can also
use do and end) – a chunk of Ruby code that can be
passed into a method. A method can take one block
that can use the mystical yield to execute it. Here is a

simple example:
def my_method
 yield if block_given?
end
my_method { puts “I’m a block!” }

We use block_given? to ensure we have a block
before we yield to it. If we didn’t do this, Ruby would
raise a LocalJumpError if the method was invoked
without one. The block must be given after, and
outside, the method’s argument list. It can optionally
take arguments.

A block is not an object, but it can be converted
into one called a Proc. This happens if the method
specifies a last parameter that is preceded with an
ampersand (&). This assigns the block to a variable,
which requires that it is an object. Proc objects may
be assigned to variables but blocks can’t, hence the
conversion. Because they aren’t converted to objects,
blocks enjoy a slight performance advantage. They
respond to yield, whereas a Proc must be called:
def my_method(&proc)
 proc.call
end
my_method { puts “I’m a block!” }

You can explicitly create Proc objects and pass
them as regular parameters.
def my_method(proc)
 proc.call
end
proc = Proc.new { puts “I’m a proc!” }
my_method(proc)

A neat feature of a block or Proc object is that
it’s a closure – a fancy term which means that it
remembers the environment that existed when it was
created, even if that environment no longer exists.
That means that the state of all variables in scope
when it was created are remembered, even if they
have since ceased to exist.

A variation on a Proc is the lambda or anonymous
method, created like this:
l = lambda { |n| puts “Hello #{n}, I’m a lambda” }

Proxy classes point to
module methods.

Module Proxy
include MyModule

instance_method

Object Object singleton

MySuperClass MySuperClass
singleton class

my_object
methods:
 instance_method

MyClass
include MyModule
extend MyModule
methods:
 class_method

MyModule
instance_method

ClassMethods
class_methods

Module Proxy
extend MyModule
(includeClassMethods)

class_method

MyClass
singleton class

LV003 098 Code Ruby.indd 101 11/04/2014 14:24

CODING RUBY

www.linuxvoice.com102

 Challenges
Test your skills by writing Ruby code to solve the following puzzle

This is a small Ruby program to test knowledge of
the Ruby Object Model. It creates one superclass,
two subclasses and two instances of each of
those. The superclass includes a module that
defines instance variables and their accessors. In
total there are eight objects and eight variables.
All the variables have the same name, @var, and
accessors called var and var=.

The variables are
 Module instance variable.
 Class instance variables.
 Instance variables.
The module assigns default values to each

variable. There is a different default value for each
of the three types. This program refers to those
defaults as DEF_MIV, DEF_CIV and DEF_IV and
tests their assignment.

The program uses the accessors to assign
values to the variables and applies a series of
tests to check which variables are the same
or different. The test methods are coded in a
separate file, tests.rb.

The module is coded in my_module.rb. It is
your challenge to write this module. Extra brownie
points can be scored if the program still works
after changing the superclass to use extend
instead of include (line 35) without modifying
anything else, including your module.

Ruby 1.9 or later should be fine. This was
written with ruby-2.0.0-p353.
require_relative ‘my_module’
require_relative ‘tests’

class MySuperClass; include MyModule; end
class MyClassA < MySuperClass; end
class MyClassB < MySuperClass; end

my_object_a1 = MyClassA.new
my_object_a2 = MyClassA.new
my_object_b1 = MyClassB.new
my_object_b2 = MyClassB.new

 Show default values
dump(MyModule,MySuperClass,MyClassA,MyClas
sB,my_object_a1,my_object_a2,my_object_b1,my_
object_b2)

 Test default values
different(MyModule::DEF_MIV,MyModule::DEF_
CIV,MyModule::DEF_IV)
same(MyModule::DEF_MIV,MyModule.var)
same(MyModule::DEF_CIV,MySuperClass.
var,MyClassA.var,MyClassB.var)
same(MyModule::DEF_IV,my_object_a1.
var,my_object_a2.var,my_object_b1.var,my_
object_b2.var)

 Assign values
MyModule::var = “this is a module instance
variable”
MySuperClass.var = “this is a class instance
variable in MySuperClass”
MyClassA.var = “this is a class instance variable in
MyClassA”
MyClassB.var = “this is a class instance variable in
MyClassB”

my_object_a1.var = “this is an instance variable in
my_object_a1”
my_object_a2.var = “this is an instance variable in
my_object_a2”
my_object_b1.var = “this is an instance variable in
my_object_b1”
my_object_b2.var = “this is an instance variable in
my_object_b2”

 Show assigned values
dump(MyModule,MySuperClass,MyClassA,MyClas
sB,my_object_a1,my_object_a2,my_object_b1,my_
object_b2)

 Test assigned values
different(my_object_a1.var,my_object_a2.
var,my_object_b1.var,my_object_b2.
var,MyModule::var,MySuperClass.var,MyClassA.
var,MyClassB.var)
same(my_object_a1.class.var,my_object_a2.class.
var)
same(my_object_b1.class.var,my_object_b2.class.
var)
different(my_object_a1.class.var,my_object_b1.
class.var)
different(my_object_a2.class.var,my_object_b2.
class.var)
same(my_object_a1.class.superclass.var,my_
object_a2.class.superclass.var,my_object_b1.
class.superclass.var,my_object_b1.class.
superclass.var)

Or, since Ruby 1.9, with an alternative syntax:
l = ->(n){puts “Hello #{n}, I’m a lambda” }
The one you use is a matter of personal taste.
Although still Proc objects, there are a couple of
behavioural differences to be aware of.

First, you will notice that a Proc is not sensitive to
the number of arguments given – if insufficient are
given, the missing ones become nil. Lambdas, on the
other hand will raise an error in this scenario (as any
method would).

The other difference is how they behave when
called. A Proc behaves like it has been inserted into
the calling method and, so, a return in a Proc will
cause the surrounding method to return. Because the
lambda is a method, a return inside one will just return
control to the surrounding method.To summarise
their differences, remember that “Proc” behaves like a
block and “lambda” behaves like a method.

The final object we’re going to mention is one we’ve
been using all along. Methods are objects too. You
can get any method as an object and use it in place of
a proc or lambda.
def foo() “foo” end
def bar(m) m.call end
m = method(:foo) # => #<Method: Object#foo>
puts bar(m) # => foo

And that’s the object of Ruby. Understanding what
Ruby’s objects are and how they work will help to
clarify what makes the language tick and, hopefully,
will lead to some wonderful coding experiences. Here
be no dragons!

John Lane is a technology consultant with a penchant for
Linux. He helps new business start-ups make the most of
open source.

LV003 098 Code Ruby.indd 102 11/04/2014 14:24

RUBY CODING

www.linuxvoice.com 103

When we set a competition in
Linux Voice issue 1, we had no
idea what would happen. While

it seemed like a good idea to us, there was
always the chance we’d get no entries, and
have to sheepishly admit that here instead
of announcing results. These fears were
quickly assuaged when the first entry rolled
in the same day the issue first arrived with
subscribers (Thanks Jose!).

To refresh your memory, the competition
was to write a Bash script that used grep
to solve a crossword. There were two
categories: the smallest script, and the
fastest execution. The best entry in each
category wins an exclusive Linux Voice
winner’s T-shirt.

The smallest
The prize for the shortest solution goes to
Steve Engledow, creator of this ingenious
one-liner.
s=`cat -`;for i in `cat /usr/share/dict/words|grep
^...`;do echo $s|grep -o “$i”;done

To make it a bit more readable, here it is
with some white space:
s=`cat -`
for i in `cat /usr/share/dict/words|grep ^...`
do
 echo $s | grep -o “$i”
done
The first line concatenates all the input lines
into a single string. Then the for loop goes
through every line in the words file that’s
longer than three letters.

The grep match is a little different to how
most people solved the problem. Rather
than create a regex based on the text in the
wordsearch and try to find a match in the
words file, it uses the words file and tries to
find a match in the wordsearch. Normally
this wouldn’t work, since grep would output
the line in the wordsearch, which would
include text either side of the word. However,

LINUX VOICE ISSUE 1
COMPETITION RESULTS
The fastest and smallest solutions to our
crossword-solving puzzle from Linux Voice issue 1

This could be yours! The exclusive Linux Voice
leet T-shirt is only available to the winners of
the Linux Voice challenges. Take a look at the
opposite page for details of how to enter this
month’s competition.

this program gets around this by using
the -o flag. This means it just outputs the
section of the text that matches the regular
expression, and not anything else.

The fastest
There was one script that ran faster than the
rest. Much faster. It was:
#!/bin/bash
for line in `cat | python gen_regexs.py`; do
 egrep “^$line$” /usr/share/dict/words
done
exit 0

This needs the file gen_regexs.py, which
is here:
import sys

def get_regex(word):
 regexs = []
 for i in range(0, len(word)-2):
 for j in range(i+3, len(word)+1):
 regexs.append(word[i:j])
 return regexs

def make_regex(word):
 return “(%s)” % (“|”.join(get_regex(word)))

if __name__ == “__main__”:
 for word in sys.stdin:
 print make_regex(word.strip())

This is obviously not just a Bash script;
it’s a Bash script and a Python script. This
is certainly stretching the rules quite a bit,
so we had to decide whether or not to allow
it. The rules stated that the program had to
be a Bash script that matched using a form
of grep. There’s no denying that this is what
this does. The Python code only generates
the regular expression against which the
Bash script looks for matches.

After much deliberation, we decided
that while this stretched the rules, it didn’t
actually break them. After all, sed, perl and
awk scripts are regularly included in shell

scripts, so why not Python? It’s within the
spirit of Bash programming to include other
tools in this way.

This entry ran in a little under 0.1 seconds
on our machine. This was more than 2,000
times faster than the shortest entry, and a
couple of times faster than its nearest rival.

The panel of expert judges were delighted
to see two very different approaches to the
problem solve it in two very different ways,
and get very different results because they
were optimised for different things.
Congratulations to Richey Delaney for
winning this aspect of the competition.

In future competitions, feel free to e-mail
us if you’re unsure about a point on the rules,
and we’ll give a ruling.

We’ll end with a massive thank you to
everyone who entered, with such diverse
approaches to the problem. We hope that
everyone had some fun and learned a bit
along the way.

LV003 098 Code Ruby.indd 103 11/04/2014 14:24

CODING CONCEPTS

www.linuxvoice.com

Computers follow a series of instructions step
by step until they get to the end. This series of
instructions is called a program. However,

what if something can’t be calculated with a series of
step-by-step instructions? Or what if the series of
step-by-step instructions would take so long to
complete that running them is impractical?

In these cases, we need a method that side-steps
the main problem, but still attempts to find an answer.
One way to do this is to use genetic algorithms. This
mimics the natural process of evolution to attempt to
solve a problem through a combination of
randomisation, selection and combination.

The basic method goes like this:
 Create a random set of data in the right format to
solve the problem.
 Apply some test to see which of the data solve the
problem best.
 Combine the best pieces of data, throw in a little
randomness and go back to step two.
In the real world, this is how we became us. Initially,

there were some primeval organisms with some DNA
and not much else.
This was step 1. The
weakest of these
organisms died off
leaving only the
strongest. This was
step 2. These

remaining organisms reproduced. This is step 3. The
final two steps have been repeating ever since life on
earth started, and we are the result, as are all the other
living things.

To model this computationally, the key thing we
need is a fitness selector. This is the test that we’ll
apply to the data to see if it should pass on its
characteristics to the next generation, or if it should be
pruned from the evolutionary tree leaving stronger
data to go forward.

Essentially, it’s this function that defines your
genetic algorithm and what data it will search for – it
turns programming around, so that you write a
program specifying what the solution should look like,
then leave the computer to work out what it is.

Genetic square roots
Let’s take a look at an example. There isn’t actually an
easy way to calculate square roots, however, it is very
easy to go the other way around and calculate the
square of a number. So, this is the sort of problem that
genetic algorithms are good at. We’ll program it in
Python using the pyevolve module. This may be in
your distro’s repositories in the python-pyevolve
package, or you can get it with
 pip install stallion

The evaluation function for our square root finder is:
def eval_func(chromosome):
 score = 0.0
 for value in chromosome:
 score += 100000000-abs(((square_root_of-(value*value))))
 return score
This function will be passed a list of data that
represent the organism that you’re evaluating. In the
case of our square root calculator, this will have just a
single value, but in other cases, it could hold many
values representing different aspects of the organism.

It returns a value that the genetic algorithm will
attempt to maximise. In this case, it will try to
maximise 100000000-abs(((square_root_of-
(value*value)))). abs() returns the absolute value of a
number – this means that it just removes the negative
sign on negative numbers, so abs(10) is 10, and
abs(-5) is 5. The abs() call in this function, then, will
return a larger number the further the value is from
the actual square root. However, our algorithm will try
to maximise the result, so we want this number to get
smaller the further it is from the square root. To do
this, we take the result away from 100000000.

We said that this function effectively defines the
genetic algorithm, and this is true. However, we do
need a bit more code to define the environment that
the evolution will take place in. Since genetic

NASA use genetic
algorithms to find the
best antenna designs for
spacecraft.

GENETIC ALGORITHMS:
CREATE LIFE WITH PYTHON
Everything’s easy in Python. Even things that aren’t easy to solve
can be evolved with a little generic magic.

CODING TUTORIAL

BEN EVERARD

104

“Genetic algorithms mimic the
natural process of evolution to
solve a problem.”

LV003 104 Code Concepts.indd 104 15/04/2014 12:57

CONCEPTS CODING

www.linuxvoice.com

algorithms rely on a certain amount of randomness to
find the right values, there’s no guarantee that they will
ever find the right value. You can increase the chances
of them working correctly by tweaking the
environment for the particular problem you’re trying to
solve. The full code we’ve used is as follows:
from pyevolve import *

square_root_of = 1000

def eval_func(chromosome):
 score = 0.0
 for value in chromosome:
 score += 100000000-abs(((square_root_of-(value*value))))
 return score

genome = G1DList.G1DList(1)
genome.evaluator.set(eval_func)
genome.setParams(rangemin=0, rangemax=int(square_root_
of/2))
genome.crossover.set(Crossovers.G1DListCrossoverUniform)

ga = GSimpleGA.GSimpleGA(genome)
ga.setPopulationSize(square_root_of)
ga.setGenerations(50)
ga.evolve(freq_stats=10)

print ga.bestIndividual()
This code will attempt to find the square root of 1000,
which is a little unfair since the software only works
with integers. If it works correctly, it should find the
closest whole number to the square root of 1000.

The variable genome holds an instance of G1DList.
The parameter we gave when creating this is the
number of items in the list. Once this variable is
created, you can set certain attributes about it. The
only thing that has to be there is the call to evaluator.
set(). This tells the genome what function to use to
test the fitness.

The other two things we’ve set aren’t essential for it
to work, but make it much more efficient. We’ve
limited the range to between 0 and half of the number
we’re trying to find the square root of. The smaller we
can keep the range, the less work the genetic
algorithm will have to go in order to find the square
root. Since we’re dealing with integers, and this rounds
up, it doesn’t stop us getting the right answer.

The crossover is the way in which strong pieces of
data are combined. There are quite a few options in
pyevolve, but not all of them work with lists containing
just one element.

The final block of code creates a genetic algorithm
that takes this genome and evolves it. Again, there are
some settings we can tweak to make the environment
conducive for getting the right answer. The key value
here is the population size. This is the number of
organisms we create each cycle by combining the
most successful from the previous cycle (and adding
some mutations). We found that larger square roots
required larger population sizes because the number

of values in the range is larger. Therefore, we set the
population size to be the number of which we’re trying
to find the square root. There wasn’t any clever
calculation that drew us to this setting. We just tried a
few different options, and this one seemed to work
out the best.

You can also change the number of generations.
This is, pretty obviously, the number of times you
repeat the selection and recombination. Again, we
came across the setting for this after a bit of trial and
error. When you run the code, you’ll see that it outputs
the fitnesses every 10 generations, so you can easily
see how quickly it’s getting to the solution (or getting
stuck at the wrong solution).

Now go and clone some dinosaurs!
That’s all there is to it! This code is quite general-
purpose, and you should be able to adapt it to your
own problems. There is a certain amount of science/
art/luck/witchcraft in finding the right values for the
environment to produce a good result, and even with a
good environment, there’s no guarantee of getting the
right answer. In fact, if you run this a few times, you’ll
probably get the wrong answer occasionally.

Genetic algorithms aren’t great at every problem,
but they can produce surprisingly good results to very
complex problems as long as a good fitness function
can be created. Essentially, it’s a method of searching
through a data set that’s too large to exhaustively
search, and where a simpler search (like binary
search) won’t work. Incidentally, binary searches do
work well for finding square roots, and we’ve only
used genetic algorithms here as an example.

If you want to experiment further with genetic algorithms, the pyevolve module is well
documented at http://pyevolve.sourceforge.net.

105

Ben Everard is the best-selling co-author of the best-selling
Learning Python With Raspberry Pi.

LV003 104 Code Concepts.indd 105 15/04/2014 12:57

CODING GOOGLE SCRIPT

www.linuxvoice.com

You can keep on top of your finances from your phone,
your tablet or your laptop with equal ease.

GOOGLE SCRIPT YOUR
GROCERY BUDGET
Forget boring accounting software. Code your own
cloud-enabled budgeting script instead.

CODING TUTORIAL

GRAHAM MORRISON

106

We’re the first to admit we feel
uncomfortable with the amount of data
that Google is gathering on every aspect of

our lives. Many of us on the team are making a
concerted effort to move away from some of their
services – especially when it comes to location
tracking, context searches and personal information
(facial recognition, social interaction and profile
analysis). But we’re also not the types to throw babies
out with their bath water. Google has done, and still
does, many good things for Free Software, and many
of its services are genuinely useful.

And one of the most useful is its scripting engine,
known colloquially as Google Apps Script, and there
are two reasons why we think it’s worth the effort of

using. The first is that the scripts themselves are easy
to write. The language is very similar to JavaScript,
and while we accept that JavaScript is just as difficult
as any other language if you want to become a
master, for casual use it can be straightforward, quick
and easy. It’s widespread enough that many people
will have come across it while hacking their own
websites, and Google has also done a good job at
documenting the various APIs that allow its scripting
engine to access and process your data.

The second redemptive excuse we’re offering is that
you can schedule scripts to run automatically at any
time, and unlike your network attached storage box,
your Raspberry Pi or low-end-Linux machine, Google’s
servers rarely suffer outages and come for free.

PROJECT ORIENTATION

To help illustrate what Google’s Apps Script is capable
of, and how you might best be able to use it, we’re
going to create a budgeting system for managing
grocery expenditure. The idea is simple; set yourself a
budget for each month, and whenever you go to the
shops and buy something from your budget, you log
the amount. The remaining budget is calculated and
is sent via a weekly report telling you how much
you’ve spent and how much you’ve got left to spend.

Thanks to Google, lots of the complexity is
handled for us. To log spending we’ll use a Google
spreadsheet. These work extremely well from most
smartphones, and from any Android device in
particular, so it’s no hassle adding totals as you go
along. As it’s a Google spreadsheet, you can also
share it with other people, who will then be able to add
and manage spending themselves. This is a great
solution for a typical household.

We’ll construct the spreadsheet in such a way
that the data we place into it is easily accessible
(through Google’s APII) to the script we’ll write to tie
everything together. We’ll then write the script to take
the important parts of this data, such as the total,
the budget, when the cash was spent and how much
you’d like to spend, and then write some simple logic
around the calculation before outputting a verdict
on your spending. The whole script can then be
scheduled to run and email one or more people with
the results at a specific time.

We feel bad writing this, but you’ll need a Google
account first. From there, you’ll need to click on your

1

LV003 106 Code Google.indd 106 15/04/2014 12:58

GOOGLE SCRIPT CODING

www.linuxvoice.com

Use the ‘show help’ field
to give your friends a little
clue about what you want
entered.

107

PRO TIP
We used the new version
of Google’s spreadsheet
for this tutorial – released
early March, but it should
also work on the older
version.

CREATING THE SPREADSHEET
From the Google Drive page, click on the large Create
button at the top-left and select ‘Spreadsheet’. A few
moments later, a blank untitled spreadsheet will
appear in your browser window. We’ve called ours
simply lv_groceries by clicking on the unnamed value
at the top. Our solution has two sheets – one for
logging day-to-day expenditure and the other for
making the various calculations and for holding our
budget values. The first sheet is very easy to create,
and the best place to start is by giving the first three
columns a title each – ‘Date’, ‘Amount’ and ‘Where’.
You might also want to highlight these cells by
changing the justification, using a bold font or perhaps
a different background colour. This is the page you’re
going to use to enter your expenditure, sometimes
from your laptop and sometimes from your phone or
tablet, so a clear layout will help you to be accurate.

Arrange your data
As you can tell from the three column names, the first
column is going to hold the date of the purchase.
Google spreadsheets have a data validation feature
that does two things for you.

 It will only allow a valid date to be entered. This
stops any rogue data creeping into our scripts,
obviating the need to write code to handle the
subsequent errors.

 The convenience of date formatting as you get a
pop-up calendar from which you can choose your
date. This is much easier to use than typing in a date
manually, and avoids any confusion over how a date
should be formatted.

To enable data validation, Shift+select every cell in
the first column beneath the title, and either right-click
and select Data Validation or select the Validation
option from the Data menu. A window will appear

showing the cell range you’ve selected so you can
make sure the selection is correct (the first column is
‘A’, and beneath this you need to select your criteria for
validation). Click on the first pop-up menu button and
select Date from the short number of input formats
that can be validated. Secondly, in the second pop-up
menu, make sure that ‘Is A Valid Date’ is the logical
operation automatically set for you. On the following
line, you can now choose to either show a warning if a
value isn’t a date, or reject the input. We went for the
first option, as the second can be a little restrictive,
especially if you just want to delete a date completely,
as this isn’t accepted as a standard date.

We don’t make any formatting constraints for the
other two columns, although theoretically we could for
the second column, which is going to hold the value of
each expenditure. We don’t use the third column,
‘Where’, but we find this information is useful for
monitoring where you spend the most money and for
problem solving if you need to cross-check a purchase
against a bank statement. This is only the first sheet,
however, and we’re going to create a lot more
functionality in the second sheet, which you can create
by clicking on the ‘+’ symbol at the bottom of the page.

2

DATA PROCESSING

Before moving on to creating the second sheet, we
need to give them both names that are going to make
moving between them easier. We called our first sheet
Receipts, as the values were mostly read off grocery
receipts after buying something, and Budget for the
second sheet, which is what we’re going to explain
now. You rename sheets by right-clicking on the tab at
the bottom of the current spreadsheet.

We’re going to create four columns in the second
sheet, all of which are going to be for the convenience
of our script rather than for direct use – although
they’ll also provide a good overview of your annual

and monthly spending. To make sure everything
works, we’d highly recommend creating some dummy
data back on the first sheet so that when we add
some calculations (and eventually the script), they’ll
have some real numbers to work on and you can
judge on the feedback whether everything is working
correctly. After you’ve done that, switch back to the
second sheet. The first two columns will hold a
reformatted month string and the total expenditure
during that month, and we can create both using a
formula. Double-click on the A1 cell (the first one on
the sheet), and enter the following:

3

Google Drive button or go to http://drive.google.com.
This is Google’s shared storage service that is now the
central repository for Google Docs too. We imagine
most readers will have a Google account already,

so this shouldn’t be too much of an issue, but we
promise to revisit the subject if enough people would
like to see a solution using an open source service,
such as OwnCloud, rather than a Google service.

LV003 106 Code Google.indd 107 15/04/2014 12:58

CODING GOOGLE SCRIPT

www.linuxvoice.com108

Google doesn’t provide
much error feedback, so
you need to make sure all
brackets and quotation
marks are correct when
entering a query.

WRITING THE CODE

The final step is to write the JavaScript-like code to
take the data from our spreadsheet and email it to
ourselves. To create a script from the spreadsheet,
choose ‘Script Editor’ from the Tools menu. This
opens a new editor window containing a simple
template function called ‘myFunction’. Here’s the first
bit of code – place all this code between the curly
brackets of the function:
var sheet = SpreadsheetApp.openById(“1dWqQha3E”);
var budget = sheet.getSheetByName(“Budget”);

All this code is doing is opening the spreadsheet we
opened earlier. The value within the double quotes is
the reference to the spreadsheet, and you need to get
this from its URL – it’s the value that appears where
the **** is in the following line, but this might depend
on the version of sheets that you’re using. Either way,
the unique identifier for your spreadsheet should be

fairly obvious within your spreadsheet’s URL:
https://docs.google.com/spreadsheets/d/****/
edit#gid=1426067592

The next few lines of code are going to make a few
assignments to get the current date and implement
an offset. We’re assuming your budgeting starts in
January, but if it doesn’t, change the first startmonth
value to your start month number. You’ll also need to
offset the word list on the spreadsheet.
var startmonth = 0;
var date = new Date();
var month = date.getMonth();
month = (month - startmonth) + 2;

We’re now going to grab some data from the
spreadsheet, first by using the getRange method with
the month variable to specify the row and ‘3’ for the
‘Remaining’ column. This value will then be appended

4

=query(index(Receipts!A:B), “select
year(A)+(month(A)+1)/100,sum(B) where A is not null group by
year(A)+(month(A)+1)/100 label year(A)+(month(A)+1)/100
‘Month’,sum(B) ‘Total’ “)

If you’re familiar with spreadsheets, and Google’s in
particular, you’ll know that you can access data
contained within its sheets using a ‘select’ statement,
just as you would a database. And that’s exactly what
we’re doing here. The reason why we’re doing it this
way is because it gives us greater flexibility in how we
handle the return values. Here’s what it does, broken
down into chunks of functionality:
=query(index(Receipts!A:B),

This basically grabs an array of values from both
the A and B columns of the ‘Receipts’ sheet on your
spreadsheet. ‘Receipts’ need to be the same the name
of your first sheet. The data from the two columns, A
and B, is then passed on to the ‘select’ statement, for
first part of which we’ll tackle next:
select year(A)+(month(A)+1)/100,sum(B) where A is not null

Date formatting
For our eventual script to work without any extra
effort, we need the month to be formatted in a specific
way: 2014.05, for May 2014, for example. Not only
does this help with sorting, but it’s easier to process
as it appears as a floating point number.

The above command creates that formatting by
taking the year and month from the first column (A),
and pushing the numeric value for the month through
a division by 100 to push the two digits to the right of
the decimal place. We’re also selecting the
corresponding value in the adjacent column.

group by year(A)+(month(A)+1)/100 label
year(A)+(month(A)+1)/100 ‘Month’,sum(B) ‘Total’ “)
This is the remainder of the query. The group by
makes sure that the same months are grouped
together and with a label that’s the same as the
calculation – this will be the value itself. And to the
right of this we place the total sum(B) for all the
expenditure from that month, along with two titles for
the two columns that are created. If you’ve created
dummy data on the first sheet, you should see an
entry in the first column for each month of
expenditure, along with a total for that month in
column B.

We now need to add three extra columns. In
column 6, or ‘E’ on the sheet, we’re going to type the
word for each month starting with January in E2 and
ending with December in E13. This is a cheat, so we
can email the word for the month from the script. In
the column to the left of this, ‘D’, enter the budget you
want your spenders to adhere to for each month.
We’ve done this for each month separately in case
you wanted more budget for Christmas or birthdays.
Finally, to the left of the budget column, we’re going to
enter a calculation to work out how much money
you’ve got to spend in each month. This is as simple
as subtracting the contents of the cell to its left (the
total for the month), from the contents of the cell to its
right (the overall budget for that month). To do that,
double-click in the second cell in column C and type
=SUM(D2-B2). You can easily copy and paste the
formula so that it changes to reflect the left and right
cells of each new position by dragging the blue border
surrounding the cell down the column.

PRO TIP
You can show all
formulae running on a
spreadsheet by selecting
the option from the ‘View’
menu, making problem
solving a little easier.

LV003 106 Code Google.indd 108 15/04/2014 12:58

GOOGLE SCRIPT CODING

www.linuxvoice.com 109

PRO TIP
Use the ‘Share’ button to
allow other people to add
expenditure, and don’t
forget to add their emails
to the script if you want
them to get a notification.

Google’s script editor has
syntax highlighting and an
effective debugger, which
can help if you find any
errors.

RUNNING THE SCRIPT

You’re now at the point where you can run the script.
To do this, just click on the small black ‘Play’ button in
the script editor toolbar. The first time you run the
script, you’ll be asked to authorise its access to the
spreadsheet and to your email account, which is
where the email will appear to originate from. With a
bit of luck, a few moments after validation the script
will execute and you should see an email like this:
Subject: Grocery Budget Remaining: 217.50
Month: April
Total spend: 182.5
Budget: 400
Great work! We’re under budget!

Congratulations! It works! All that’s now left to do is
schedule the script to run at a time that makes best
sense for you. This is accomplished through Google’s
trigger system, which can be enabled by going to the
script editor, clicking on the ‘Resources’ menu and
selecting ‘Current Project’s Triggers’. A wide window
will include the text ‘Click Here To Add One Now’, and
when you click on that, you can select a ‘Time-driven’
event to run on a ‘Week Timer’, ‘Every Sunday’ at a
specific time, or whatever day/time work best for you.

You can even use a trigger to send an email whenever
the spreadsheet is opened or changed, giving you
the awesome cloud control for your budget, and
ultimately, more money to spend on beer.

5

to a string we’ll use as the subject line in the email, as
well as within the body of the email later:
var dataRange = budget.getRange(month,3);
var data = dataRange.getValues();
var remaining = parseFloat(data);
remaining = remaining.toFixed(2);
var subject = “Grocery Budget Remaining: “ + remaining;

We’ll cheekily use the same trick to add the text
string for the month, taken from the fifth column in
the spreadsheet:
dataRange = budget.getRange(month,5);
data = dataRange.getValues();
var message = “Month: “ + data + “\n”;

Add to the body of the message by grabbing the
total spend value and putting this in along within the
message before adding the total budget for the month:
dataRange = budget.getRange(month,2);
data = dataRange.getValues();
var total = data;
dataRange = budget.getRange(month,4);
data = dataRange.getValues();
message = message + “Total spend: “ + total + “\n\n”;
message = message + “Budget: “ + data + “\n\n”;

Now we’ve got all the variables together, we can
write a quick conditional expression that changes
the text of the message depending on whether
you’re under or over budget, leaving the final step to
be the sending of the email itself. This is remarkably
simple from Google App Script, as you simply call
the sendEmail method from MailApp, using an email
address with both the subject and message variables
to handle everything else. Obviously, you’ll want the

email address to be your own, entered carefully,
because the nightmare of being blacklisted for mail
bombing your budgets from Google’s servers isn’t
worth the potential embarrassment:
if (total < data)
 message = message + “Great work! We’re under budget!\n”;
else
 message = message + “Oh no! We’ve gone over budget!!\n”;
MailApp.sendEmail(“graham@linuxvoice.com”,subject,
message);

You’ll need to give your
script permission to
access your spreadsheet
and to use your email
account.

Graham Morrison left eBay off this budget spreadsheet
to hide the amount he spends on vintage synthesizers.

LV003 106 Code Google.indd 109 15/04/2014 12:58

MASTERCLASS INKSCAPE

www.linuxvoice.com110

To quote its website, Inkscape is professional-
quality vector graphics software that is
used by design professionals and hobbyists

worldwide to create a wide variety of graphics such
as illustrations, icons, logos, diagrams, maps and web
graphics. Inkscape uses the W3C open standard SVG
(Scalable Vector Graphics) as its native format, and is
free and open-source software.

Let’s unravel that. Scalable Vector Graphics is an
alternative to raster (also called bitmap) graphics,
in which images are composed from dots, or pixels.
SVG’s main advantage is that it is scalable, meaning
that enlarging a drawing does not reduce its quality,
unlike raster images that become blocky and lose
focus and sharpness as their size increases.

A vector image is defi ned in terms of geometrical
elements such as lines, curves and polygons that are
themselves based on mathematical expressions that
can be rendered at any size without loss of detail.

Open fi le format
The name SVG also refers to a fi le format and mark-
up language for describing two-dimensional graphics.
The XML-based fi le format is royalty-free, vendor-
neutral and defi ned as an open standard by the World
Wide Web Consortium (W3C). It is Inkscape’s primary
fi le format. Inkscape is an open-source alternative to
Adobe Illustrator and it’s available in the repositories of
most distributions.

GET TO KNOW INKSCAPE
Get into scalable vector graphics with the best of its class on Linux.

When launched, Inkscape presents a single window
with the ubiquitous menu and toolbar across its top
and the canvas, where you will draw, presented in the
centre between further toolbars on the left and right-
hand sides as well as the status bar at the bottom. All
of these areas are optional – anything that you don’t
need can be hidden with View > Show/Hide. It’s worth
keeping the status bar, because it often displays hints
that can make the many tools easier to use.

You can zoom the canvas in and out and, when it’s
zoomed larger than the window, you can move it (or
pan) around, either using the scroll bars, dragging with
the middle mouse button or, using the keyboard, with
Ctrl+arrow keys.

The Toolbox is displayed down the left-hand side
of the main window and contains the main drawing
and editing tools. The Tool Controls toolbar displays
the controls for the selected tool beneath the menu
bar. You’ll fi nd the usual tools for drawing shapes

BEN EVERARD

JOHN LANE

Learn more

Inkscape’s drawing tools create paths: a
series of two or more nodes connected
by Bézier curves. The Pencil (F6) and
Calligraphy (Ctrl+F6) tools allow you to do
this with a free hand but the Pen (Shift+F6)
is somewhat different because, instead of
drawing, you place nodes and use handles to
shape the curves.

Handles are the points at the end of control
lines that extend from a node. There is one
handle for each curve connected to the node.
The curve bulges towards the handle before

arriving at the node lined up with the control
line (geometrically, the control line is the
curve’s tangent line at the node).

Intermediate nodes can be smooth,
making curves flow together, or cusp, which
gives a hard corner. When a node is smooth,
its control lines form one straight line.

Getting to grips with Bézier curves will
take a little experimentation and practice. If
you really want to understand the underlying
mathematics, http://bit.ly/bezcurve uses
interactive examples that explain it well.

so
ur

ce
:h

ttp
://

en
.w

ik
ip

ed
ia

.o
rg

/w
ik

i/F
ile

:V
ec

to
rB

itm
ap

Ex
am

pl
e.

sv
g

Essential Linux tools explained – this month, say hello
to the Inkscape vector editor and the ImageMagick suite.

MASTERCLASS

What enlargement does to an image – Vector vs Bitmap.

LV003 110 Masterclass.indd 110 15/04/2014 12:58

INKSCAPE MASTERCLASS

www.linuxvoice.com 111

and lines, adding text, filling and erasing, but the way
they work will feel strange if you’re new to this way
of drawing. Hover the mouse over each one to reveal
a descriptive tooltip and the associated keyboard
shortcut. We’ll mention the keyboard shortcuts as we
tour the application.

In addition to the toolbars, you can display various
sub-windows (or modeless dialogs, meaning that you
can do other things while they are visible). You can
leave the ones that you frequently use on the screen
so they are accessible and you can quickly toggle all
of those on or off with the F12 key.

Cutting shapes
Let’s start by creating some shapes with the rectangle
(F4), circles and ellipses (F5), stars and polygons (*)
and spirals (F9) tools. They all work in a pretty intuitive
way: click on the canvas and drag the mouse to the
size of shape that you want. The shape has handles
that you can drag to resize or alter its appearance; you
can easily round a rectangle’s corners or reduce a
circle into a segment. Each shape that you lay down is
a separate object with its own attributes, like colour.

Use Fill and Stroke (Shift+Control+F) to work with
colour. Fill is the colour inside an object and Stroke
is the colour of its outline. You can specify colours
in various ways including RGB and CMYK and there
are tools for gradient-fill and stroke styling that allow
control over stroke thickness, style (solid or broken
lines) and end-points like arrow-heads.

Use the Text (F8) tool to create text objects. These
enable you to type text onto the canvas and select
fonts, sizes and effects. You can manually kern, which
is to adjust the spacing between characters, and
move them vertically too. You can also make text flow
along a path or within a bounding box.

The pencil and pen are the tools for drawing lines,
which Inkscape calls paths. Start by drawing freehand
with the pencil (F6) using the same click-and-drag
action that worked for shapes. Alternatively, click two
points to get a straight line between them. Each path
is a separate object.

A Path is actually a series of nodes connected by
Bézier curves, and you can see these nodes with
the Edit Paths By Nodes (F2) tool. You can click and
drag each node to adjust the line or simplify (Ctrl+L)
it, reducing the number of nodes. You can edit paths
with F2, and it’s also possible to convert non-path
objects, even text, into paths and gain better control
over them.

Once you’ve laid down some objects, be they
shapes, text or paths, you will probably want to tweak,
adjust and otherwise edit them. Inkscape comes
to the rescue and places a number of tools at your
disposal, the most useful probably being Select and
Transform (F1 or Space).

Click any object with this tool selected and you’ll see
it highlighted by a bounding box with handles at its
corners that you can drag to resize the shape. If you
click again, the handles change to enable you to rotate

and shear. In each case, holding down Ctrl restricts
certain movements (eg to lock on to horizontal or
vertical). You can use the Controls toolbar to fine-tune
the object’s size and position.

All of these transformations can be applied to a
group of objects that have been selected together. A
Shift+click adds an item to those already selected.
You can drag the selected objects to move them or
use Align and Distribute (Shift+Ctrl+A) to control their
relative positioning.

Group objects
As a drawing becomes more complex, it can be useful
to logically separate or combine related objects. You
can Group (Ctrl+G) and work them as one or you can
use layers to separate related objects – imagine the
canvas as a stack of transparencies. You can control
the stacking, or Z-order, of layers, groups and individual
objects, moving them above or below others.

Inkscape is packed with features – so many that
you can be perfectly productive without even knowing
half of them. But if you ever find yourself wanting for
more, there are many extensions available (http://bit.
ly/inkext) and, if they aren’t enough, you can always
write your own or even edit your drawing’s underlying
XML directly. Shift+Ctrl+X opens a live XML editor -
any changes made, either via Inkscape’s tools or by
editing the XML by hand, are reflected in the other.
That is the ultimate flexibility, albeit a little more than
most users would ever need.

PRO TIP
The notifications area
displays hints as you edit
paths.

PRO TIP
There are keyboard
shortcuts for just about
every action. See
http://inkscape.org/doc/
keys.html.

Inkscape does text, and
not always in straight
lines. And straight lines
can be reshaped with
Bézier handles.

Inkscape’s main window
showing some basic
shapes.

LV003 110 Masterclass.indd 111 15/04/2014 12:58

www.linuxvoice.com

MASTERCLASS IMAGEMAGICK

112

Working with images is a task that you’d
naturally expect would require a graphical
user interface. But there are some tasks

that can be completed more effi ciently without one
– as you’ll have seen in our cover feature! We only
scratched the surface of ImageMagick there though,
so let’s go deeper now.

ImageMagick, or just “IM”, is a collection of
command-line tools and APIs that can be used to
work with images in various formats. They enable
you to perform many editing operations without a
graphical environment. It’s been available for many
years and should be a straightforward install from
your usual package repository.

Because a GUI isn’t required, IM is well suited to a
server environment and can support web and other
applications that receive and process image fi les.
It can be used in scripts to quickly and effi ciently
perform similar operations on large numbers
of images. Tasks like bulk format conversion or
thumbnail creation are easy to perform when handled
this way.

The API supports many popular programming
languages including C, C++, Java, PHP, Perl, Python
and Ruby as well as a good number of lesser-known
ones. If you need image processing in an application,
the APIs most likely have you covered.

The ImageMagick suite comprises 11 command-
line tools that accept similar command-line
arguments and parameters, so knowledge of one tool
is transferable to the others. The best tool to start with
is called convert.
convert image.jpg image.png
That’s probably the simplest ImageMagick command
and it does as it says: converts the image from JPEG
format into PNG, leaving the original fi le intact.

ImageMagick supports myriad formats including
those you’re most likely to need (PNG, JPEG and GIF).
You can list the supported formats:
convert -list format

Some formats are real whereas others are pseudo
formats prepared via an algorithm or input/output

GET TO KNOW IMAGEMAGICK
Who said you need a GUI to edit images…

devices. We’ll see some of these in action as we look
at various commands.

Another useful command is identify. It displays
information about an image in a one-line summary
identify my_image.png
 my_image.png PNG 320x240 320x240+0+0 16-bit sRGB
71.4KB 0.000u 0:00.000

Add the -verbose option to get a very detailed
information report.

Geometric argument
You perform transformations while converting by
giving appropriate command-line arguments. Resizing
is a common task of this kind.
convert image.jpg -resize 600x400 image.png

This gives you a PNG image that is a maximum of
600 pixels wide and 400 pixels high. It preserves the
aspect ratio and won’t stretch, compress or otherwise
distort the image.

You can specify image size, called geometry,
in various ways: as a percentage, either applied
uniformly to the width and height (50%) or separately
(50x75%), but doing so does not preserve aspect ratio.

Explicit values, as we saw, are maxima by default
but you can use a caret (^) to reverse this:
convert image.jpg -resize 600x400^ image.png

In this case, the resized image will be at least 600
pixels wide and 400 pixels high and the aspect ratio
is preserved. You can use an exclamation mark (!) to
force the geometry and ignore the aspect ratio. You
can give maximum (>) or minimum (<) sizes and the
image will only resize if they are exceeded.

Geometries can also be specifi ed as one dimension.
ImageMagick calculates the other dimension so
that the image’s aspect ratio is maintained. A single
dimension is assumed to be the width unless prefi xed
with an x. You can even specify a maximum number
of pixels with the @ operator.

Transmogrifi cation sequence initiated
If you want to overwrite the original fi le, say because
you’re resizing but not changing the format, you can
use mogrify. This is similar to convert except that it
doesn’t require an output fi le but instead overwrites
the original.
mogrify -comment “LinuxVoice example” *.png

You would use mogrify for tasks where you want
to modify the original fi le, which will happen unless
processing changes the format. It’s better to use
mogrify for simple in-place image processing tasks,
especially when batch processing. But convert is
more suitable for more complex image processing
and transformations, because it can perform multiple
commands and works well in command-line pipes.

A montage of resized
images. We used identify,
convert, montage and
mogrify to produce this
image.

PRO TIP
jqmagick.imagemagick.
org is a free online image
manipulation service.

LV003 110 Masterclass.indd 112 15/04/2014 12:58

www.linuxvoice.com

 IMAGEMAGICK MASTERCLASS

113

John Lane is a technology consultant with a penchant for
Linux. He helps new business start-ups make the most of
open source.

An alternative…

GraphicsMagick is a fork of ImageMagick that was made
in 2002 and continues under active development. It has
an MIT licence instead of one based on the Apache 2.0
licence. It cites higher performance and multiprocessor
support as advantages along with name-spaced commands
equivalent to ImageMagick’s but with a gm prefi x (such as
gm convert...). GM is used by large sites including
www.flickr.com.

Because the fork was over a decade ago and there is no
collaboration or code-sharing between the two, divergence
is unavoidable and you will notice minor variations between
the two. GraphicsMagick recognises fewer colour systems.

All of our examples work in GraphicsMagick – just prefi x
the command with gm.

As well as resizing, you can perform image
transformations (like crop, chop, rotate, shear and roll)
and enhancements (colour, contrast and brightness)
or apply various special effects. All of these are
controlled using command-line options and they are
described in full on the ImageMagick website
(http://bit.ly/imopts).

Magick Draw
You can use convert to create images from scratch.
To draw an image you start with a blank canvas that
you can create using a pseudo image fi le format
called xc (a historical reference to X Window Colour)
with an optional colour that defaults to white:
size 100x100 xc: # white (default)
size 100x100 xc:wheat # off-white
size 100x100 xc:none # transparent
As well the plain xc canvas, other choices are gradient
and plasma.

When an option requires a colour, you can supply
it in a number of ways, either as a colour name
or in decimal or hexadecimal notation like this
rgb(255,128,0) or #EF9CB0. You can list colour
names with
convert -list color
The documentation describes other supported colour
systems like hue-saturation and Lab colour space.

You use drawing primitives to ‘draw’ on the canvas;
there are various options including circles, rectangles,
irregular polygons, Bézier curves and text. You use
them with the draw command-line option:
convert -size 100x60 xc: -stroke black -fi ll red -strokewidth 2 \
 -draw ‘circle 50,30 50,55’ circle.png

You can also draw using SVG primitives read from a
SVG fi le; convert can render from SVG.

I didn’t know you could do that...
ImageMagick has a few extras that you may fi nd
useful. There are pseudo formats that acquire images
from a scanner, either the default
convert SCANX: image.png
or a specifi c one:
convert SCAN:’hpaio:/net/scanner?ip=192.168.1.5’ image.png

You can embed secrets inside images. This is called
Steganography, and hides a smaller image inside a

larger one. Just for fun, however: it’s hardly secure
and it’s very brittle (don’t try it with a lossy format like
JPEG). First, make a message:
convert label:”Linux Voice” message.png
and embed it with composite. This overlays images to
produce a single composite. Here, we use rose, which
is one of a few default images that ImageMagick
can generate, but you could also use your own. The
-stegano option does the embedding and starts a
given number of pixels into the image:
composite message.png rose: -stegano +27 rose_message.png

Decoding requires knowledge of both the offset and
the dimensions of the embedded image (make a note
of this with inquire message.png).
display -size 66x15+27 stegano:rose_message.png

Beyond the command line
There are some commands
that require a graphical
environment because they
display images – useful if
you want to see the fruits
of your efforts.

display is a very basic
X.Org application that displays one or more images. A
left-click opens a menu with commands for viewing
and modifying the image and the right button pops up
giving quick access to the main ones. It’s by no means
a replacement for Gimp or Inkscape but does give you
a way to visually complete some tasks.

animate is for viewing image sequences
(slideshows). Still basic, but can be useful to see
something quickly:
animate -delay 100 *.png

import takes screenshots straight into the format of
your choice. It has known bugs, sometimes showing
black areas when capturing windows above others.
import screenshot.png

ImageMagick also has its own Magick Scripting
Language, or MSL, that you can execute using the
conjure command. The only other command that
we haven’t mentioned is compare and it shows
differences between images. Try it with our stegano
example:
compare -metric PAE rose: rose_message.png rose_diff.png

Draw onto an image with
graphics primitives. In this
example, we drew some
simple shapes, some text
and a Bézier curve.

“As well as resizing, you can
perform image transformations
and enhancements.”

LV003 110 Masterclass.indd 113 15/04/2014 12:58

www.linuxvoice.com

/DEV/RANDOM/

Final thoughts, musings and reflections

My Linux setup Aaron J Seigo

114

I have a box full of cables under my bed. To be
specifi c, it is full of USB cables. Well, cables
and associated adaptors, extensions,

converters, powered hubs, unpowered hubs. And
chances are if I am looking for a specifi c cable, I
can untangle it from in there somewhere. The
rest of the time, the cables sleep, like some
Gorgon’s nest of failure, a monument to failed
ideals and shattered promises.

I understand that the ‘U’ in USB stands for
‘Universal’ in terms of the communication bus
itself, not the myriad plug/socket combinations
required to connect any one thing to any other.
But really? I still need old A–B cables for my
venerable LaserJet. One of my cameras uses a
mini-B plug. I have a camera that uses some
off-the wall variation (I know, non-standard so I
can’t blame the USB guys for that), I have a
music-playing device that I now can’t use
because the micro-B port on it has broken in
some way, probably related to me trying to
attach it to the wrong cable.

Is this what the future was meant to be? Are
the dying hours of humanity to be spent
drunkenly trying to connect your phone charging
cable the wrong way up? But lo! The type-C
connector approaches (www.usb.org/
developers/USB-Futures.pdf). It brings with it,
apart from another indistinguishable-when-drunk
format change, some good stuff – for a start it
doesn’t care which way up it goes. And better
than that, it makes a nice click when connected.

I don’t really care if I have to get a bigger box,
these are the things that should have formed
part of the standard in the fi rst place – hardware
designers, please note that usable-after-a-
double-Hendricks is a more precious feature
than speed increases, and one for which we are
happy to pay extra implementation £££.

Nick Veitch
was the original editor
of Linux Format, a
role he played until he
got bored and went
to work at Canonical
instead. Splitter!

The project leader of KDE Plasma welcomes us to his habitat.

Thinkpad (my daily workhorse)

Clipboard with open
streetmap walking
papers (which I
take with me when
I’m out, to record
missing details)

2 Improv ARM boards

Knuth’s The Art
Of Computer
Programming
volumes 1-3, holding
up my monitor

Cat

Audio mixing
board use for
my Luminosity
of Free Software
videocasts

What version of Linux are you
using at the moment?
KDE Plasma, both Desktop and
Active, on various devices (Intel and

ARM; laptops, ARM project boards such
as the Improv and tablets) on top of
OpenSUSE and Mer OS.

What was the fi rst Linux setup
you ever used?
Slackware. I found it on a CD in the
back of a book while browsing in a

bookshop. I was there to buy a book
regarding the then-new Solaris, which cost
CAD$80… and it wasn’t even that thick. I
picked up the book titled Slackware and
when I saw it claimed to have a full
UNIX-like OS on the CD in the back I
checked the price of the book and just
about choked: it was half the price of the
thin little Solaris book. I couldn’t believe
that I had a UNIX-ish system on a
computer that cost a fraction of the price

of any “real” UNIX box. When I fi gured out
it came with source code I fell off my chair
with delight.

What Free Software/open source
can’t you live without?
Kontact, for email and calendaring;
any one of a number of web

browsers as so much happens on the web
these days; my development toolset
including GCC, GDB, Kate and Konsole; dev
environments like node.js and workhorse
server software like PostgreSQL (of which I
am a complete fanboi ;).

What do other people love but
you can’t get on with?
Artistically devoid pop stars, religion,
bitcoin, funnelling personal

information through private interests who
happily violate our trust and our rights,
papayas and the proliferation of desktop
environment projects in the last few years.

LV003 114 Back Page.indd 114 15/04/2014 12:58

A quick reference to Vim commands

LV003 115 Inside Back Cover.indd 115 11/04/2014 14:02

LV003 116 Back Cover.indd 116 11/04/2014 14:03

