
June 2016 £5.99 Printed in the UK

METAL GURU
ROBERT ‘R0ML’ LEFKOWITZ

Literacy, history and
coding as a way of
thinking – prepare to
expand your mind.

BBC MICRO:BIT
NANO PI

Coming soon to a
school near you – the
tiny machine to make
Britain great again!

32 PAGES OF TUTORIALS

VAGRANT › OPENBSD › RUST › GIT & MORE!

GIMP Why this Free Software image editor is more than just a daft name
PYTHON Write an image gallery controlled though a web app
MICROSOFT Has it really made its own Linux distribution?

But its reign
didn’t last for
long, and it

faded into the
background…

… and quickly
became

synonymous
with the word

Linux.

The world’s
favourite Linux
distro launched

in 2004…

… and now
Ubuntu is
coming to

take back your
desktop!

It’s #1 in the
cloud, with

business and
on the server…

Now Ubuntu is
back, and it’s

come to reclaim
its crown…

It’s better, it’s bigger, it’s back!

June 2016 www.linuxvoice.com

RASPBERRY PI!

Minecraft +
Sonic Pi =

hours of
geeky fun

PROUDLY INDEPENDENT SINCE 2013

UBUNTU 16.04

LV027 001 Cover.indd 1 14/04/2016 15:43

FOSSTALK LIVE
2016

A free evening of live Linux Podcasts
Saturday 6 August 2016

The Harrison, 28 Harrison Street, Kings Cross, London, WC1H 8JF
Doors 5pm

Plus Stuart Langridge and Dave MegaSlippers

http://www.fosstalk.com/tickets/

LV027 002 Inside Front Cover.indd 2 14/04/2016 11:45

www.linuxvoice.com

ISSUE 27 WELCOME

3

The June issue

LINUX FOR BEING HUMAN

There’s an emphasis on Ubuntu this month, in part to
celebrate the release of 16.04 LTS. We often forget how
important Ubuntu is for users and for the broader technology

industry – it’s still a term synonymous with making Linux easy to
use. Yet, to its credit, Ubuntu is always changing, unafraid to try new
ideas. It’s difficult to imagine what the Linux landscape would look
like without that garish brown and orange.

On the subject of embracing change, this is going to be my last
issue of Linux Voice as the editor. I’ll still be contributing, writing and
doing the podcast, but I’ll no longer be chasing Simon Phipps for his
(admittedly wonderful) words on print deadline day. From next
month, Ben will have that honour. I know it’s a cliché to say great
things about one’s successor, but Ben’s subtle understanding,
sceptical insights and unbridled zeal for all things Linux and open
source leaves me with no doubt he’ll do an amazing job.
Good luck Ben!

Graham Morrison
Editor, Linux Voice

What’s hot in LV#027
ANDREW GREGORY
What is Microsoft up to? It’s
provided lots of open source
behind the Microbit (p42). But it’s
also re-aliging its business,
becoming more Linux-friendly.
We’ve delved into the details.
p22

A free software advocate
and writer since the late
1990s, Graham is a lapsed
KDE contributor and author
of the Meeq MIDI step
sequencer.

GRAHAM MORRISON

 Linux Voice is different.
Linux Voice is special.
Here’s why…

THE LINUX VOICE TEAM
Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Games editor Michel Loubet-Jambert
michel@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com
Malign puppetmaster Nick Veitch
nick@linuxvoice.com
Editorial contributors:
Mark Crutch, Sebastian Göttschkes,
Vincent Mealing, Simon Phipps,
Les Pounder, Mayank Sharma,
Valentine Sinitsyn

BEN EVERARD
It’s easy to think that sysadmin is
a specific set of difficult to learn
skills, but our tutorial on
automating stuff with Vagrant
shows that’s not always the case.
It can actually be easy!
p80

MIKE SAUNDERS
In my opinion, Valentine’s
in-depth look at Linux is always
incredible. There’s always
something new to learn, and this
month he really nails the
technical side of using Bash.
p94

1 At the end of each financial year we’ll
give 50% of our profits to a selection of
organisations that support free
software, decided by a vote among our
readers (that’s you).

2 No later than nine months after first
publication, we will relicense all of our
content under the Creative Commons
CC-BY-SA licence, so that old content
can still be useful, and can live on even
after the magazine has come off the
shelves

3 We’re a small company, so we don’t
have a board of directors or a bunch of
shareholders in the City of London to
keep happy. The only people that matter
to us are the readers.

SUBSCRIBE
ON PAGE 56

LV027 003 Welcome.indd 3 15/04/2016 12:59

www.linuxvoice.com

CONTENTS ISSUE 27 JUNE 2016

4

Contents
Bliss was it in that dawn to be alive, but to be a geek, very heaven!

News 06
One Debian fracas is cancelled out by an
outbreak of sensibleness elsewhere, SCO vs
IBM returns yet again, and Linus Torvalds in
happiness shocker!

Distrohopper 08
An alternative to Linux written in Rust,
Ubunt built on BSD and a distro made to
resemble Google’s Chromium OS.

Speak your brains 10
What we’ve done wrong, what we’re doing
right, and what we should be doing in
future. Plus games!

Subscribe! 12/56
Save money, get the magazine delivered to
your door and get access to 27 issues of
Linux Voice, in lovely DRM-free PDFs.

FOSSPicks 58
Free as a bald eagle soaring over the
Grand Canyon, listening to Hotel California,
clutching a free beer in its mighty talons.

Core Tech 94
Bash! Understanding it is fundamental
to the role of a sysadmin, but many of us
bodge through without understanding it.
Not Dr Valentine Sinitsyn though!

Geek Desktop 98
For the first time in our collective living
memory, our Malign Puppet Master,
Nick Veitch, writes about a device doing
something.... right!

Regulars Cover Feature

Ubuntu used to be synonymous with Linux – until Mate took its place.
Can Ubuntu 16.04 bounce back? Of course it can!

The reports of a Linux distribution from Microsoft have been
greatly exaggerated. OR HAVE THEY?!?!?!?

Interview

The man better known as R0ml opens our
eyes to the wider world of coding.

Robert Lefkowitz

Feature

MS and SQL Server

FAQ Group Test

Servo 32
Mozilla’s got a brand-new
browsing engine, and it eats
multi-core CPUs for breakfast.

Instant messaging clients 50
Waste time chatting to your
colleagues when you should
be ignoring them.

SUBSCRIBE
ON PAGE 56

34

SECRETS OF GIMP
TURN TO PAGE 26

14

22

UBUNTU 16.04
It’s back – and it’s brilliant!

LV027 004 Contents.indd 4 15/04/2016 12:03

www.linuxvoice.com

ISSUE 27 JUNE 2016 CONTENTS

5

It’s the biggest tech trade fair in the world – and it’s full of Free Software.
Mike goes to Cebit

Tutorials

28

Ubuntu Mate 16.04 44
Linux is made for tinkerers; but if you want a
working environment that just works without your
having to mess about, Mate could be for you.

OpenBSD 5.9 45
Your common or garden Linux is secure, but
OpenBSD takes that security to another level.
Is it ready for general desktop use? Find out!

Reviews

After the success of the Raspberry Pi,
the BBC has finally developed its own
educational computer, to be given out
free to year 7 pupils in the UK. But is it
any good for home hackers?

Micro:bit

Gaming on Linux 46
Payday 2: rob banks without the risk of incurring
Her Majesty’s displeasure, in glorious multiplayer
runny jumpy shooty technicolour.

Books 48
Design without the frustrations of CSS padding or
having to take different browsers into account; and
delve into the history of computer science.

Feature

OpenBazaar 66
Peer-to-peer shopping on the internet
without the middle man taking your money.

Build a photo web app 68
Photo sharing without having to let Mark
Zuckerberg et al snoop on what you’re doing.

Minecraft & Sonic Pi 72
Teach young minds how to program with a
combination of two fantastic projects.

GNU MediaGoblin 76
Add videos to your site without going
having to jump through YouTube’s hoops.

Vagrant 80
Keep a clean development environment by
installing Python 3 in a web browser.

Coding

Git 90
Introduce all elements of your life to the
joys of version control with Git.

Rust 84
Code more secure applications – here’s an
example using Mozilla’s Rust language.

42

LV027 004 Contents.indd 5 15/04/2016 12:03

www.linuxvoice.com6

NEWS ANALYSIS

The Linux Voice view on what’s going on in the world of Free Software.
NEWSANALYSIS

Simon Phipps
is ex-president of the
Open Source Initiative
and a board member
of the Open Rights
Group and of Open
Source for America.

I ’m writing while attending the tenth
instance of an unusual conference. The
FSFE Legal and Licensing Workshop

may not sound an exciting proposition
(despite being held this year in Barcelona),
but it’s a tremendous indicator of the
progress that the Free Software and Open
Source movement has made.

The event gets a huge range of legal
experts attending from the global
community, both lawyers and specialists in
the dynamics of software freedom. They
gather to share their experiences supporting
communities and businesses in their use of
open source software, exploring new ideas
and chewy problems together and sharing
and improving tools and techniques that
make things better for everyone. It’s an
expression of the principles of open source,
but for legal work and other non-code
aspects of software freedom.

Lawyers are not known for collaboration
or for freely sharing ideas and resources, but
in the slightly safe environment of the
Workshop (which is conducted under the
Chatham House Rule so the proponents of
ideas can’t be identified outside the event),
they implement the open source approach

very effectively. As lawyer Amanda Brock
(once general counsel to Canonical) said
to me, “If lawyers can make this work,
anyone can”.

This is all by way of suggesting that, now
open source is so mainstream that it’s used
by almost every business, now open source
as a generalised principle is being applied to
so many other fields, we have to ask what it
actually means beyond licensing and code.
What are the attributes of open source we
are actually pursuing when we practice it?

While Stallman’s Four Freedoms articulate
how we can retain our liberty in connection
with software, there has to be more. Indeed,
Stallman just published an essay about
“trapped software” (“When free software
depends on nonfree”) which recognises that
the lifecycle of usage, the practices of
supporting vendors and other factors have
to be considered beyond the licensing of the
code itself.

It’s not just the code
The need to define open source beyond
licensing is also visible at the Open Source
Initiative, where a new working group (called
Beyond Licensing) has been formed to
discuss the attributes of open source
projects that we should watch to know the
freedoms we get from open source licences

have not been abridged by community
governance. There are more places this is
happening too – the Open Source Hardware
movement is also interpreting open source
beyond code, for example.

So what is the essence of open source
that all these examples are pursuing? I think
a primary goal is the unexpected innovation
that arises from encounters with people,
ideas and technologies outside your own
bubble. Having software freedom is a key
pre-condition, but the real win is the

unexpected innovation that arises when
others take your code, improve it and share
their improvements – enabling others to
then amplify them by building on them. It’s
also a crucial external indicator that the
software freedom in a project is real.

That’s also why the cult of open data that
exists in the UK government’s industry and
innovation functions is such a problem.
Innovate UK and its associated Catapult
organisations are keen proponents of open
data, but hardly mention open source and
frequently display a shallow understanding
of it. Open data is a good thing, as it creates
both transparency and opportunities for
reuse, but without open source it leads to
isolated implementations. With no
opportunity for collaboration or for
innovation amplification, the scope for
unexpected uses is limited to the
imaginations of isolated parties. The UK
government needs to discover open source
not just in its internal administration but also
in its innovation investment strategy. The
reasons go well beyond code and licensing.

Opinion

Open Source beyond code & licensing
Licensing Free Software is only the start of helping FOSS to flourish in the real world.

While Stallman’s Four Freedoms articulate
how we can retain our liberty in connection
with software, there has to be more

The real win is the unexpected innovation
that arises when others take your code,
improve it and share their improvements

LV027 006 News.indd 6 15/04/2016 09:16

www.linuxvoice.com 7

ANALYSIS NEWS

 Ubuntu • Skype • Torvalds • SCO vs IBM • Gnome • Tablets • Firefox

Summarised: the biggest news
stories from the last monthCATCHUP

Ubuntu comes to…
Microsoft Windows?!
What a strange world we live

in. Microsoft spent years bashing and
fighting Linux, but recently has changed
its tune enormously. The company has
been working with Canonical to create
a system-call compatibility later (rather
like Wine) which lets unmodified Ubuntu
binaries run on Windows. That means
you can use Apt, SSH, Grep, Perl, Apache,
GCC, Vim, Emacs and many other tools
without needing to download native
Windows binaries. Full details here:
http://tinyurl.com/jdk9lk7

1
XScreenSaver developer
grumbles at Debian
Imagine you’ve written some

software and it gets included in Debian
GNU/Linux – pretty cool, right? Well, not
if Debian’s version is very much out of
date, and users are complaining about
bugs that you’ve long since fixed. This is
what happened with XScreenSaver, and
its developer, Jamie Zawinski, decided
to jump into a bug report and request
that his software be removed from the
Debian distribution. This kicked off a bit
of a debate, as you can read here:
http://tinyurl.com/j3xpk2o

2
Skype for Linux – resting
or dead forever?
Just a heads-up if you’re

running Skype on Linux: the software
hasn’t received updates in a while, and
some users are reporting that it won’t
connect to the network. Time to find an
alternative VoIP application…

3

Torvalds: “I am very happy
with the Linux desktop”
Linux is everywhere: mobile

gadgets, embedded devices, servers
and much more. But it still hasn’t made
a big impact on desktop PCs. Still, that
doesn’t bother kernel creator Linus
Torvalds – in a recent interview, he
claimed to be “very happy” with the
state of Linux on the desktop, and said
that after working for 25 years to bring
the OS this far, he’ll keep going for
another 25. “I’ll wear them down” he
added, referring to the competition.
http://tinyurl.com/hc9veqg

4
SCO vs IBM lawsuit
returns from the dead
Just when you thought the

legal battles between SCO and IBM
were truly, finally, completely finished –
after 13 years of wrangling – SCO
comes back for another round. Back in
the day, SCO claimed that Linux
infringed its intellectual property and
sued IBM for megabucks. In the end,
SCO didn’t win anything, but keeps
dragging IBM in front of the courts.
Nobody is quite sure why, or where
(what remains of) SCO is getting the
funding from…

5
Gnome 3.20 released
Codenamed “Delhi”, the
new version of the Gnome

desktop brings a bunch of new
features, including: the ability to
install OS updates via the Software
app, improved support for Wayland,
editing functionality in Photos, and new
“shortcut windows” that list keyboard
shortcuts and multi-touch gestures in
Gnome’s various apps. Expect it in the
next round of distro updates, and for
the full list of changes, check out the
release notes: https://help.gnome.org/
misc/release-notes/3.20

6

Canonical’s convergence
tablet up for pre-order
“A tablet when you want it,

a PC when you need it” – that’s the
slogan behind the Aquaris M10 Ubuntu
Edition. It’s the “world’s first convergent
tablet”, which means you can use it as
a mobile device on the go, but when
you connect a mouse and keyboard, its
interface switches into a more familiar
desktop mode. Will it take off? That
remains to be seen, but we’ll give credit
to Canonical for having a stab at this
potentially useful type of device.
http://tinyurl.com/jdryjcz

7
Debian Iceweasel browser
reverts name to Firefox
Debian GNU/Linux has

included Firefox for many years, but due
to licensing issues with the browser’s
name and logos, the Debian team
rebranded it as Iceweasel. This was
potentially confusing for new users,
but now the Mozilla and Debian teams
have got together and ironed out their
differences. The Firefox logo has been
released under a free licence that’s
compatible with Debian’s guidelines, so
in future releases of the distro, Iceweasel
will be revert to the Firefox name.

8

LV027 006 News.indd 7 15/04/2016 09:16

www.linuxvoice.com8

DISTROHOPPER LINUX DISTROS

Antergos
Arch-based elegance.

Antergos, previously called Cinnarch,
is an Arch-based distribution
focusing on aesthetics and a

comprehensive all-round desktop experience
for the average user, with the flexibility of
Arch. The distribution is available in two
editions: a minimal one with a 530MB ISO
and “Antergos Live”, which is 1.6GB in size.
These are both offered in 32-and 64-bit
versions, while the choice of desktop
environment is given upon installation, with
all the major environments covered in its
very nifty Cnchi installer instead of the
default Cinnamon and Gnome preferences
previously offered.

The installer is one of the biggest selling
points and offers several extras ranging
from the usual proprietary packages to
things like Steam and PlayOnLinux, as well
as some extra customisability. One of those
options is support for ZFS in its partition
options during install, adding to its
customisability but also raising some
concerns recently voiced among the Linux
community.

Like Arch, the distro uses the rolling
release model and provides a new snapshot
every month or so. Antergos is very
aesthetically pleasing, in part thanks to the
developers teaming up with the Numix
project, which delivers some nice and
consistant icons and themes. Also attractive
is the notion of having a prebuilt Arch
system with a simple installer and variety of

Cub Linux 1.0
Easier to pronounce than Chromixium OS.

The Ubuntu-based distro designed to
look like ChromiumOS is back and
has been renamed Cub (Chromium

+ Ubuntu = Cub) Linux. Version 1.0 of the
operating system is based on Ubuntu 16.04
LTS, and given the stability of the long-term
support releases, this seems like a good
place to start anew.

The operating system itself uses none of
the main components of ChromiumOS
except for the browser (and obvious ones
like the kernel), and focuses more on
obtaining a visual affinity to the distribution

rather using it as a base, with the added
advantage of being able to use things like
LibreOffice or Steam which aren’t otherwise
usable on Chromium. This all makes a lot of
sense for Chromebook users who like the UI,
but want to get a little extra mileage out of
the hardware.

The distro uses Compton for rendering,
Openbox as the window manager and other
aspects of the desktop environment are
pieced together from pieces of Xfce, LXDE
and Gnome. Despite this sounding like a bit
of a mess, the layout is slick and differs

Cinnarch previously used Cinnamon by default, then Gnome and now leaves it to the user.

What’s hot and happening in the world of Linux distros (and BSD!).

DISTROHOPPER

Cub Linux looks almost identical to
ChromiumOS, but with the added flexibility of
traditional Linux.

desktop environments to choose from out of
the box. While there are a few prebuilt Arch
systems out there, none quite have the
appeal and ease of use of Antergos, which
seems to combine the flexibility of the base
system for those who want that control,
with the usability of the big Debian-based
distros for those who just want a no-fuss or
beginner-friendly desktop.

visually from Chromium mainly in that
right-clicking the desktop gives access to
another menu with traditional desktop Linux
applications, but on the surface appears to
look exactly like ChromiumOS minus
Google’s logo.

LV027 008 DistroHopper.indd 8 14/04/2016 14:20

www.linuxvoice.com 9

LINUX DISTROS DISTROHOPPER

News from the *BSD camps
What’s going on in the world of FreeBSD, NetBSD and OpenBSD.

I f you think you’ve seen it all before, think
again. UbuntuBSD is a project that aims
to provide the ease of use and familiarity

of Ubuntu with the stability of the FreeBSD
kernel. The project – whose slogan is a
rather cheeky “escape from Systemd” – is
still in the beta stage, but it does indeed look
promising, providing an Ubuntu back-end for
BSD users. Similar things have been
attempted with Gentoo, Arch and the like
with little success, but Canonical has said
that it intends to treat UbuntuBSD as part of
the Ubuntu community, so that may help it
buck the trend.

While the name suggests it uses Unity, it
actually uses the Xfce desktop environment
by default, along with the ZFS filesystem.
The system comes with the Ubuntu
repositories and official packages and uses
APT, so even simple terminal commands like
installing packages should be familiar to an
Ubuntu user. This looks like an excellent
choice for less advanced Linux users looking
to take their first steps into BSD without
being too overwhelmed, though those users
will also want to wait until it’s out of beta.

Installation isn’t done through the graphical
installer, but one more akin to that used for
Debian or Ubuntu server.

On the more mainstream side of things,
OpenBSD has dropped support for the VAX

UbuntuBSD running the Xfce desktop environment and Ubuntu software centre.

Rethinking Linux with Redox OS

architecture, resulting in owners of
cupboard-sized computers from the 1970s
and 80s being left out in the cold or
migrating to NetBSD, which still supports it.
Also gone from OpenBSD is Linux emulation
through COMPAT_LINUX, which was very
out of date and supported only 32-bit
architecture, so developers have decided to
stop maintaining it. FreeBSD 10.3 has also
been released in the run up to 11.0, which is
expected in July.

Redox is an operating system written in Mozilla’s Rust language, intending to
provide a Linux alternative. Immediately there are a few very noticeable
differences from Linux, such as the use of a microkernel, use of the MIT licence
as well as its developers very clearly stating that they will not repeat what they
call “bad design choices [...] made by Linux, Unix, BSD, HURD and so on”.

This very new project aims to be a “next-gen” operating system, taking the
radical approach of doing away with many established Linux traditions, rather
than simply re-writing those aspects. For instance, rather than treating every
item as a file like in *nix systems, Redox treats every item like a URL,
simplifying handlers for events. At the same time, it aims to keep as much
compatibility with Linux as possible in order to offer a useful and easy-to-use
alternative, attempting to provide support for a lot of software as-is.

The OS comes with an optional in-house GUI called Orbital, and though in the
early stages, it can already run on a decent amount of existing hardware as well
as VirtualBox and Qemu, while work is underway in supporting the ZFS
filesystem. The ISO is just 26MB in size, and the developers state that Rust is
used primarily for security reasons, since it enables many vulnerabilities to be
mitigated by enforcing memory safety statically. Another security measure is
running drivers in userspace. Redox takes some fascinating approaches in
operating system design, and it’s well worth checking out the “Redox book” for
more details: tinyurl.com/hau92lk

Redox OS breaks from many long-standing Linux traditions that the
developers see as drawbacks.

Ubuntu BSD looks like an excellent choice
for less advanced Linux users looking to
take their first steps into BSD

LV027 008 DistroHopper.indd 9 14/04/2016 14:20

10

MAIL YOUR LETTERS

Got an idea for the magazine? Or a great discovery? Email us: letters@linuxvoice.com

YOUR LETTERS
I think your magazine is great and also the website, I’ve
just been listening to the podcast season 4 episode 4 in
which you cover the case of the FBI vs Apple, which is in
itself an interesting topic. However you introduce the item
by saying some guy was arrested and they got hold of his
iPhone, when in fact the individual concerned was shot
dead by police in a shootout after a terrorist attack where
14 innocent people lost their lives and 22 others were
injured. You then carry on the piece in a jovial manner
making jokes etc. If you’re going to cover something like
this on your podcast I feel you should a) Use the relevant
facts of the issue and b) show a bit more respect to the
people who lost their lives through the behaviour of the
individual concerned. I hope you all the best for the future.
Sorry if this seems to be nit picking.
Thomas Allen

Andrew says: Nit picking? Not at all. The
perpetrators of the San Bernardino attack were
killed during rather than arrested afterwards,
which is a huge difference.

I believe that our point stands that giving the
security services the power to investigate all of

A SERIOUS POINT

STAR
LETTER

I’ve recently subscribed to the magazine and have all the
earlier PDF editions which I have now read and enjoyed.
However I occasionally want to reread an article because I
am doing something new and I know that the one I seek is
buried in that mass of PDFs.

Can we please have an index of all the articles?
Preferably updated at least every six months. It should be
possible to generate one from your database(s) and

I STILL HAVEN’T FOUND WHAT I’M LOOKING FOR

It turns out that the FBI paid hackers to crack the San
Bernardino perpetrator’s iPhone – Apple’s hands are unsullied.

Damn, look at
all this reading
matter. We’d
better get an
index or search
system shaped
up so we can all
find what we’re
looking for.

divided into topics if possible
Ken Riley

Andrew says: You know, this is an excellent idea.
Now that we have over two years’ worth of back
issues all free to download for subscribers, we
should hack something together. It won’t be pretty,
but it’ll be better than nothing.

our data by default makes us less safe, not more,
as it creates a single point of failure that could be
exploited in future – whether by other terrorists or
by future governments, which will wish to restrict
our freedoms even if we can assume that their
motives are benign. We should, however, have
discussed the events leading up to the technical
question with more respect than we did, and for
that, I apologise. Thank you for pointing this out.

LV027 010 Mail.indd 10 14/04/2016 14:50

www.linuxvoice.com 11

YOUR LETTERS MAIL

A word of warning – I ordered some stuff from the Free
Software Foundation’s website on 20 January. After a few
months it still hadn’t arrived.

So I contacted their sales office, with a view to sorting
out lost package compensation. The FSF sales office said
I had to apply for compensation. The Royal Mail said that
the sender (FSF) had to apply for compensation. Not very
good. This means that when you buy stuff from the FSF
and it gets lost in the post, you are out of luck.

Fortunately my package arrived today. It looks like they
mis-typed my country as “Gabon” instead of “GB” – and
yes, I have checked my receipt and I definitely gave the
destination country as “GB”.
Ian

Andrew says: Is this an illustration of the dangers
of autocorrect, not sanitising data input, or
something more sinister? Answers on a postcard.

CAVEAT EMPTOR

Support the Free Software Foundation – it does a lot of work for the essential
liberties that our digital lives depend on. Just remember that GB ≠ GAB.

Dear Linux Voice, I wanted to thank you for the latest
issue, specifically the coverage on FOSS, open source and
indie games! That’s just what I want to find out more
about (especially with the state of consoles like the Xbox
One… oh dear).
Stephen Bell

Andrew says: Games are a big deal, a massive
industry and a huge drag on Linux adoption that is
rapidly shrinking thanks to the increasing quality
of gaming on Linux. That’s why gaming gets a
regular space in the magazine – should this be
larger, or are we getting the balance right?

PLAY ON Bang! Whizz!
Pop! Bleep!

LV027 010 Mail.indd 11 14/04/2016 14:50

www.linuxvoice.com

SUBSCRIBE

12

Subscribe
shop.linuxvoice.com

Get many pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

SUBSCRIBE TO

TODAY!

 Gives 50% of its profits
back to Free Software

Get your regular dose
of Linux Voice, the
magazine that:

1-year print & digital: £95
12-month digital only: £38

 Licenses its content
CC-BY-SA within 9 months

US/Canada subs prices

LV027 012 Subs US 1sb.indd 12 14/04/2016 15:54

www.linuxvoice.com

SUBSCRIBE

13

All subscribers get access to every
single digital back issue –
that’s about 1,000,000 words of
tutorials, reviews and free software
hackery at your fingertips

Overseas subs prices
12-month print & digital:
Europe: £85
US/Canada: £95
Rest of world: £99 DIGITAL

SUBSCRIPTION*

ONLY £38
*WHEREVER IN THE WORLD YOU
ARE – IT’S DIGITAL, SO THERE ARE

NO POSTAGE COSTS

LV027 012 Subs US 1sb.indd 13 14/04/2016 15:54

… and quickly
became

synonymous
with the word

Linux.

Now Ubuntu is
back, and it’s

come to reclaim
its crown…

It’s #1 in the
cloud, with

business and
on the server…

… and now
Ubuntu is
coming to

take back your
desktop!

UBUNTU 16.04
It’s back – and it’s brilliant.

The world’s
favourite Linux
distro launched

in 2004…

But its reign
didn’t last for
long, and it

faded into the
background…

www.linuxvoice.com14

FEATURE LET’S MAKE UBUNTU GREAT AGAIN!

Once, the word Ubuntu was
synonymous with Linux. For many
people, it represented the pinnacle

of what Free Software could be; technical
excellence married with ease of use. From the
first release (Warty Warthog in 2004) until the
end of the decade, Ubuntu continued to grow
in terms of popularity and mindshare. Then, in
2011, something changed. For the first time
in its history, Ubuntu slid down the Google
Search trends, and it lost the top spot on the
Distrowatch chart to Linux Mint.

It would be easy to look to Ubuntu to see
what changed to lose users, but the truth
behind its slide in popularity is a little more
complicated. 2009–2011 marked a turning
point in the history of computing, and a whole
array of things changed quickly at almost
every level of computing. Smartphones
changed from curiosities to almost
ubiquitous powerful computers; PC sales

started to drop for the first time; and cloud
computing became a popular way of
managing servers. At the same time, the user
experience on most Linux distributions had
improved to the point where it was difficult
for any distro to stand out from the crowd.

A change is gonna come
In Ubuntu, mature, well-understood, but aging
technologies have made way for newer, less
established tech. Releases 11.10 to 15.10 fell
into the middle ground where the
advancements weren’t yet mature enough to
pay off, but the older tech had already gone.

This can’t go on forever, and in order for
Ubuntu to stay relevant, it needs something
to show for all this effort. With long-term
support releases coming out every two years,
if 16.04 doesn’t deliver, will anyone remember
the name Ubuntu by the time 18.04 comes
around? We have our own ideas…

Ben Everard fell out
of love with Ubuntu –
but the latest release

has him well and truly
convinced again.

LV027 014 Cover Feature.indd 14 15/04/2016 09:57

Searches in
Unity’s Dash no
longer include
online results.
Sense prevails!

If you like to tweak things to make
them unique to you, there’s nothing
for you in Unity – and that’s OK

LET’S MAKE UBUNTU GREAT AGAIN! FEATURE

www.linuxvoice.com 15

There are two things about Ubuntu
16.04 that may make Ubuntu-haters
reconsider their position: online
searches are no longer included in the
Dash; and Gnome 2 (in the form of
Mate) is included for the first time for in
an LTS launch since 10.04).

While Mate is an official spin, we’ll
look at Unity first, as this is still the
default desktop environment. The

biggest new feature of Unity in 16.04
is some added customisation. You
can now change the position of the
launcher from the left side for the
screen to another edge, set it to auto-
hide and change the size. Let’s be
honest, Unity is never going to appeal to
tinkerers. If you like to tweak things to
make them unique to you, then there’s
nothing for you in Unity – and that’s OK.

16.04 ON THE DESKTOP
A visual return to form.

Many words have been written, said and shouted about the
future of display servers on Linux over the past five years.
The short version is that the old X Windows system is being
replaced, and most Linux distros are moving to Wayland while
Ubuntu is creating its own graphics server called Mir. However,
it’s very early days for both Wayland and Mir, and most stable
distros – including Ubuntu 16.04 – are still using X.

If you want to try out Mir (and Unity 8), there’s a package in
the repository called unity8-lxc that installs a containerised
version for you to try. This is available in all Ubuntu versions
since 15.04, so you don’t have to upgrade to the latest version
to try it out.

At the time of writing, Mir is expected to be the default
display server in Ubuntu 16.10, but Mir’s release has been
pushed back in every release since 13.10, so we’re not overly
confident that it will come out in 2016. Users should hardly
notice, but the change in display servers is such a big change
behind the scenes that we’d rather the devs take their time.

Mir

The Unity Dash
enables you to search
applications and files
from the same place.

LV027 014 Cover Feature.indd 15 15/04/2016 09:57

The official
Kubuntu release of

16.04 is the first
LTS release to use

Plasma 5.0

www.linuxvoice.com16

FEATURE LET’S MAKE UBUNTU GREAT AGAIN!

The driver stack for AMD graphics cards is shifting from
closed source drivers to an open source driver stack. The
launch of 16.04 falls in the middle of this process with the
older closed source drivers not supporting newer software but
the open source stack not yet fully capable. The result of this
is that AMD graphics cards won’t be quite as quick or capable
(particularly with regards to newer OpenGL features and
OpenCL) in 16.04 as they were in older releases of Ubuntu.

This should only be true until the work has finished on
the AMD open driver stack which should be towards the end
of 2016. At this point, the newer drivers will be brought into
Ubuntu 16.04, and AMD cards should work as well as they did
on older Ubuntu releases. If you rely on an AMD GPU, it’s worth
waiting for this work to finish before switching to 16.04.

AMD graphics

Unity’s real strength is creating
a desktop that’s both simple for
beginners and complex enough
for power users. Beginners are
accommodated through the simple
Launcher and Dash combination,
while power users are accommodated
through the key combinations that
enable you to do almost anything
without moving your arms off your
wrist rest. This keyboard navigation
goes beyond simple window
management and permeates the
applications themselves through the
Head Up Display (HUD). Tap the Alt key
and you’ll get a text-search box for the
current application’s menus.

This means no more searching
through hierarchical menus trying to
find the option that you’re sure you
remember seeing somewhere, but
doesn’t seem to be where you expect
(LibreOffice Calc graphs, we’re looking at
you – why aren’t you in the Data menu
like the pivot table?).

The launcher bar combines
application shortcuts with the task
manager in a way that makes it easy
to launch common applications and
switch windows with the keyboard.
Alt + <num> opens the corresponding
window counting down from the top.
Since the applications with shortcuts
are always locked to their position on
the launcher regardless of what other
applications are open, this makes it
really easy to switch. On this writer’s
setup, for example, Firefox is the second
icon on the launcher, so Alt+2 will
always switch to Firefox. These aren’t
new features in 16.04, but they’ve been
added gradually and, when combined
with the new flexibility, make an
impressive desktop.

A bigger software ecosystem
The only major change in the
applications that come with Unity is the
switch from the Ubuntu App Store to
the Gnome Software Centre. The new

The new software centre
looks much better and
makes it easier to find

great applications.

If you don’t like the
launcher on the left of

the screen, simply move
it to the bottom.

LV027 014 Cover Feature.indd 16 15/04/2016 09:57

Having Mate as a first-class
desktop will go a long way to
appeasing desktop traditionalists

LET’S MAKE UBUNTU GREAT AGAIN! FEATURE

www.linuxvoice.com 17

Software Centre works in much the
same way as the old store – it enables
users to browse and review software
– but it looks nicer and seems to be
attracting more developer attention.

This release is the first LTS Ubuntu to
launch with a Mate spin (this desktop
has since been added to 14.04). This
is symbolically important because

Mate is a continuation of Gnome 2, and
the removal of Gnome 2 from Ubuntu
(replaced by Unity in 11.04) brought
much criticism from the community.
Although Unity is still the default
interface, having Mate as a first-class
desktop in the Ubuntu family will go
a long way to appeasing desktop
traditionalists.

In almost all cases, Linux distros’ security works on a per-user
basis. There is one or more user, and each user has particular
permissions – they can execute certain pieces of software
and alter particular files and directories. Any software runs
with the permissions of the person running it. In this way, any
software you run can alter any files in your home directory, or
access the network.

For along time this has been the way most operating
systems – not just Linux or other Unix-like systems – have
managed permissions. However, many mobile OSes – most
famously Android and iOS – work in a slightly different way.
They require applications to explicitly state the type of activity
they want permission to use and everything else is blocked.
For example, a word processor may need access to the
Documents folder, but not network access.

The Snappy packaging system works in a very similar way
to these phone OS software managers; in fact, it’s derived
from the Click packaging system built for Ubuntu Touch. With
Snappy, software that you install doesn’t integrate with the
whole system, but remains standalone and can only perform
the actions explicitly allowed by the package.

With Snappy, packages include all the libraries needed
along with the executables into a single package that can be
installed. Upgrades to this package are atomic, which means
that if anything goes wrong, the upgrade can be easily rolled
back to a working version.

Snappy has both good and bad points when compared
with the traditional packaging method. The downside is that
if there’s a vulnerability discovered in a library, every package
that uses the library needs to be updated. The upsides are
that a package will never get broken by an update to some
other part of the system, and the increased security focus
will mean that a compromised package will not mean a
compromised system.

Snappy is available on all versions of Ubuntu, although
it’s most widely used in Ubuntu Core, which is a minimalist
version of Ubuntu designed for Internet of Things (IoT)
devices, which are less likely to receive software updates than
desktop computers. That said, there are quite a few pieces
of software available for Snappy (https://uappexplorer.com/
apps?type=snappy) that are for server and desktop use.

Snappy

Mate isn’t a fork of Gnome 2, it’s
a continuation. It’s still getting

updates and new features, but it’s
keeping the tried and tested look.

With KDE applications
version 15.12, Kubuntu

16.04 brings the Qt-based
desktop bang up to date.

LV027 014 Cover Feature.indd 17 15/04/2016 09:57

www.linuxvoice.com18

FEATURE LET’S MAKE UBUNTU GREAT AGAIN!

When it comes to Linux servers, there
are two types of people. Firstly, there
are those who like servers to continue
to work as they have for the last couple
of decades or so. These people run web
servers or database servers and have
an unholy knowledge of the syntax of
the configuration of every piece of
server software ever released.

The second type is chasing the latest
server tech. They like OpenStack,
Docker and containers. To this sort of
person, a computer is never just a
computer, it’s a hive of many virtual
machines, and a part of the cloud. Here
at Linux Voice, we’re not going to judge,
because we understand that both of

these types of people have and
important role to play. We run our own
servers in a traditional style, but we can
certainly see the benefits of the new
style, at least in certain types of servers.

The biggest bit of news will be
a boon to both types of sysadmin:
Ubuntu 16.04 will be the first major
Linux distribution to come with the
ZFS filesystem installed and ready to
go. There isn’t a default filesystem for
Linux, but there are two next-generation
filesystems that are starting to be more
widely used: ZFS and BTRFS. Sun
Microsystems originally developed ZFS
for OpenSolaris, while BTRFS is written
specifically for Linux. Both are copy-

ON THE SERVER
Software running in the cloud.

The Linux kernel is released under the GPL v2 and ZFS is
released under the CDDLv1 licence. Both of these are open
source licences, because with both of them you can modify
the source code and redistribute your changes. However,
with the CDDL you are permitted to include non-open source
code in a derivative product, provided that the parts originally
covered by the CDDL are still open source. With the GPL, this
isn’t allowed. The GPL also requires the entire work to be
covered by the GPL exclusively, so licences aren’t compatible
with the GPL unless they allow the work to be relicensed under
the GPL, which the CDDL doesn’t. It’s therefore a breach of the
licence terms to combine CDDL and GPL software in the same
software product.

Canonical claims that ZFS is an entirely separate piece of
software to the Linux kernel, and the fact that it’s loaded by
the kernel is irrelevant to this. It doesn’t really matter what
the lawyers at Canonical think or what the authors of the GPL
thought when they wrote the GPL – it only matters what a
judge or jury think should the case come before a court. The
arguments both ways depend on subtle interpretations of the
technical situation as well as the wording of a licence that’s
never been tested in court before.

From a user’s point of view, it’s important to realise that
the terms of both licences only kick in when the software is
distributed. This means that whatever the outcome of this, no
one using ZFS in Ubuntu will find themselves in legal trouble.

ZFS and the law

Juju makes installing
server software as
simple as clicking a few
buttons.

Ubuntu 16.04 will be the first major
Linux distro to come with the ZFS
filesystem installed and ready to go

LV027 014 Cover Feature.indd 18 15/04/2016 09:57

The first version
of Ubuntu,

codename Warty
Warthog, launched

in October 2004

LET’S MAKE UBUNTU GREAT AGAIN! FEATURE

www.linuxvoice.com 19

on-write filesystems that enable you
to create snapshots of the filesystem
(or a portion of it) at a point in time in a
way that’s very efficient with both time
and space. They both also manage
filesystems across multiple physical
storage devices far better than older
filesystems.

Both BTRFS and ZFS are very
capable filesystems, and both are
significantly better than the other
options for Linux. The biggest
difference between them is that ZFS
has been widely used in production
for several years while BTRFS only
just on the cusp of becoming stable in
2016. In 2016, we consider ZFS to be
the better choice because it’s far more

production-tested than BTRFS. Having
this filesystem included by default in
Ubuntu is a major advantage to this
distro, and one that will put Ubuntu at a
significant advantage over other distros
until either they ship ZFS or BTRFS
becomes more stable.

While the inclusion of ZFS is an
update that differentiates Ubuntu from
the majority of Linux distros, another
change brings them into line with the
general consensus among enterprise
distros. Systemd has been around for a
couple of releases, but, let’s be honest,
no one runs non-LTS releases of Ubuntu
server, do they? Ubuntu 16.04, then, will
be the first release of Ubuntu Server
that’s widely used to ship with Systemd.

Canonical (the company that develops Ubuntu) has joined
forces with Microsoft to create a version of Ubuntu that runs
on top of Windows. This uses an emulation layer to enable
the binaries for Ubuntu command line tools (including
the Bash shell) to run on Windows 10. If you open Bash in
Windows, you’ll see the familiar commandline environment,
and a Linux-like directory structure. Windows filesystems can
be mounted in the /mnt directory as though they were on a
separate partition.

This whole setup allows Windows users access to the whole
Gnu toolset running natively on Windows. At the moment, this
supports primarily command line tools (including apt-get). We
wouldn’t like to speculate whether support will ever come to
graphical tools, but at the very least, this isn’t likely to happen
soon. This is great news for Windows users, who get access
to a whole new set of powerful tools, and it’s good to see Free
Software spreading, even if it is only as applications on top of
a closed-source kernel.

Ubuntu on Windows

Ubuntu is the
world’s most
popular platform
for OpenStack.

LV027 014 Cover Feature.indd 19 15/04/2016 09:57

www.linuxvoice.com20

FEATURE LET’S MAKE UBUNTU GREAT AGAIN!

When it comes to modern computing
devices, Ubuntu officially supports
more platforms than any other Linux
distro. You can run it on your server,
desktop, small-board computer or
phone. The only other distro that
comes close to this is Arch, which also
runs on just about everything, but
almost all builds other than x86 and
AMD64 are unsupported community
versions.

At the time of writing, Ubuntu ships
on three different phones with a fourth
shipping soon. There’s also a tablet
device currently on pre-order. Of the
three recent Linux-based phone OSes,
Ubuntu is gaining the most traction.
Firefox OS is no longer being developed
for phones (though we may see it
again in other devices), Sailfish OS is
still under development and a phone
is available for purchase, but Jolla
(the company behind it) has failed
to deliver crowdfunded tablets – a
refund is underway – and has had
to lay off a large portion of its staff.
Ubuntu is still progressing and the

long-promised convergence is due to
debut in the tablet version. In this, you
can connect your device to a monitor,
mouse and keyboard and the interface
will transform from a touch-based
system into the full Unity desktop.
Microsoft currently offers a similar
experience with Continuum, and Google
is developing similar capabilities for
Android, but both of these are restricted
to running mobile apps and only the
display changes to take account
of the larger screen, while Ubuntu
convergence will enable you to run all
the usual Ubuntu applications.

Ubuntu pie
The Raspberry Pi Foundation
recommends only two desktop Linuxes
for its tiny machines: Raspbian and
Ubuntu Mate. And for good reason:
the Ubuntu Mate team have done
a great job of not just getting their
distro to run on the Raspberry Pi, but
doing the job well. Unlike Raspbian,
the installer prompts you to choose
a username and password, so you

DEVICES
Beyond the PC.

No distro can please everyone, so in the interests of fairness,
we searched the Linux Voice server room looking for our
grumpiest team member. We stalked him through the pre-
dawn haze before he’d had coffee in order to catch him at
his weakest and found out his thoughts on the new Ubuntu
release. Here’s what he had to say:

“I’ve just checked my calendar and it really is 2016. I had
to make sure because we’re praising a desktop environment
for allowing users to move the launcher to different parts of
the window. Yes, it’s a good feature – I really liked it when it
came to KDE some time in the late 90s. And while we’re here,
let’s just take a minute to consider that we’re talking about
the removal of spyware as a good thing and not running
screaming because it was put there in the first place.

“Now, a lot of people are getting excited about ZFS, but
really, why is Ubuntu sticking in a potentially illegal filesystem
rather than contributing to the effort to complete the next-
generation Linux filesystem BTRFS? Yes, ZFS is good, but
BTRFS will be better, and it’s GPL, it will work across all Linux
distros and it’s almost production ready. If Canonical put
engineers to work on BTRFS in the same way they’ve put
lawyers to work on ZFS, we’d all be better off.

“Juju and Snappy? Have we as sysadmins really
deteriorated to the point where we need a fancy GUI to install
applications? Since when was ./configure && make && sudo
make install too hard to type? Need to replicate a procedure
across a wide range of machines? Then write a script you lazy
sod! All these things – Docker, Juju, Snappy and the rest – are
just more layers to obfuscate the code that’s running on your
server, and if you don’t know what’s running, how are you
supposed to fix things?”

He’s a bit gruff our angry reviewer, but he does make some
good points. While all these are legitimate criticisms, none of
them are really about Ubuntu. If you don’t like Unity, that’s fine,
don’t use it. There are plenty of other options on Ubuntu. The
same goes for Juju and Snappy – they’re options for us to use
not things being thrust upon users (we would like to see more
love for BTRFS though).

Angry Tux

Ubuntu is the second-most popular
operating system for the most
popular British computer ever made.

Raspberry Pi
has sold 5m units

– and a healthy
slice of them run

Ubuntu Mate

The long-promised convergence
will transform a touch-based tablet
system into the full Unity desktop

LV027 014 Cover Feature.indd 20 15/04/2016 09:57

16.04’s code
name is the Xenial
Xerus (apparently
a xerus is a bit like

a meerkat).

LET’S MAKE UBUNTU GREAT AGAIN! FEATURE

www.linuxvoice.com 21

won’t get into trouble if you forget to
change the default and make the Pi
publically addressable (as you can with
Raspbian), and the default selection
of software is more suited to a home
user. Mate also seems to find the right
balance of eye candy and computing
power for the Raspberry Pi 2’s quad-
core ARMv7 processor.

Almost all single-board computers
come with Ubuntu, including the
ODroid, Banana Pi, Orange Pi and Udoo
(the only major exception to this is
the CHIP, which currently has its own
customised version of Debian as the
only recommended OS).

There are actually two forms of
Ubuntu that run on the Pi. We’ve talked
about Snappy’s potential on the server
and the desktop earlier, but the area
it’s moving into first is the Internet of
Things (IoT). There’s now an Ubuntu
spin called Snappy Ubuntu Core,
which just contains a very basic OS
with Snappy installed on top of it. It’s
designed for small devices such as the
Raspberry Pi or Beaglebone.

From desktops to servers to devices,
16.04 is the most important release of

Ubuntu for many years, and it will be
the release that, we think, will define
Ubuntu long after the next LTS release
comes out. In order to stay relevant,
this release needs to regain some
slipping market share, or at least stop
the decline, and it needs to achieve
this in an increasingly competitive
Linux marketplace. On the desktop,
Elementary, Solus, Mint, Arch and
others are better than they’ve ever
been. Meanwhile on the desktop,
CentOS is now aligned with Red Hat
to offer an alternative enterprise-class
distro backed by a major company, and
CoreOS is pushing cloud computing in
new directions.

With 16.04, Ubuntu is rising to these
challenges, and at the same time,
pushing into new areas. Whether you
love or hate Ubuntu, it’s great news,
because a strong Ubuntu makes for a
better world for Ubuntu as a whole.

In the competitive, fast-changing
and fickle world of Linux distributions,
nothing is certain, but if it can continue
this level of progress, this release will
mark the beginning of a glorious new
period for Ubuntu.

Traditional desktop PCs and laptops aren’t about to disappear,
but other computer devices are growing rapidly and account
for an ever increasing amount of computer usage. If Linux is
going to stay relevant in this new world of phones, tablets and
the Internet of Things, then it needs a distribution to champion
it. Yes, there’s Android, but this is so different from other Linux
distros that it’s barely relevant.

Ubuntu – more than any other distro – is not just running
on other devices but adapting to the way they’re used and
becoming a great distro far beyond its desktop and server
roots. This is good for all Linux users, not just those that use
Ubuntu, because it brings more people into the Linux fold, and
the more people we have within the community, the easier it is
to get hardware manufacturers to support Linux, and the more
users there are to test and develop software.

One Linux to rule them all

Mobile phones
outsell PCs 4 to
1, so even with
a small market
share, the Ubuntu
phone could be
huge.

LV027 014 Cover Feature.indd 21 15/04/2016 09:57

www.linuxvoice.com22

FEATURE MICROSOFT AND LINUX

Many human languages provide an idiom
saying “never”. In English, it’s “when pigs
fly”, my mother tongue has something that

literally means “when a crayfish whistles on the hill”.
Inside the Linux community, we often used “when
Microsoft come to Linux”, or words to that effect. That
happened early spring 2016, and hell is probably
frozen now. It generated a lot of buzz, naturally, which
made it difficult to sort the wheat from the chaff. We
did it and are happy to share our findings with you.
First, let us begin with some background.

Many of us have a home wireless router. Often, it
runs a specialised embedded Linux distribution, so
many people across the globe use Linux without even

Has Microsoft really made a Linux distribution, and should you
apt-get install sql-server? Valentine Sinitsyn finds out.

noticing it. Typically, such routers combine a relatively
slow ARM or MIPS CPU with an Ethernet switch and a
Wi-Fi access point. Packet switching and routing code
(usually the Linux kernel) runs on the CPU alongside
other components like a PPPoE client or a DHCP
server. You configure these routers manually, and their
settings change rarely, if ever.

Inside the data centre
Most home networks are simple, and all-in-one
devices work well. Things change drastically at data
centre level. Data centre switches are dedicated boxes
with dozens of ports operating at impressive 10 or 40
Gbps. Even a powerful x86 CPU won’t cope with such

LV027 022 Feature Microsoft.indd 22 14/04/2016 11:49

www.linuxvoice.com 23

MICROSOFT AND LINUX FEATURE

high rates, and they are only made possible with
application-specific integrated circuits (ASICs). A
typical setup may involve hundreds of switches
whose settings are highly dynamic to deliver the
performance and reliability that internet users
demand.

Now, think of the switch that only runs pre-installed
software. To make it work the way you want, you
contact the vendor, put in a feature request, and wait.
There are no guarantees, though. The OpenFlow
protocol, once synonymous with Software Defined
Networks (SDN), adds more flexibility. It decouples
routing logic (the control plane) from vendor-specific
packet switching code (the data plane). This facilitates
custom routing algorithms, managed from one
central location. But in some cases, you need even
more control. Perhaps you want to run existing
server-based tools, like Chef or Puppet. Or you don’t
want features (and associated bugs) that you won’t
use. Running your own software on the switch is the
ultimate answer. If you ever used custom firmware on
your home router, you’ve got the idea.

Today, data centre operators can buy a bare-metal
switch and install whatever Network Operating
System (NOS) they need. If this NOS is open source,
this adds the usual benefits. But it’s somewhat
impossible to build an open-source NOS if the
interfaces to program the ASIC are proprietary.
Historically, this was the case, but a few years ago

things changed, thanks to Broadcom’s OpenNSL and
Switch Abstraction Interface (SAI), led by Microsoft.
Around the same time, Facebook launched Facebook
Open Switching System (FBOSS), which is “a set of
applications, not an operating system”. HP started an
ill-named OpenSwitch project (www.openswitch.net)
which aims to build a full-fledged community-based
NOS (and not to be confused with Open vSwitch).
The Open Compute Project (OCP) made the Debian-
based Open Network Linux (ONL) available at http://
opennetlinux.org. For Microsoft, which operates large
data centres for the Azure cloud, it was probably only
a matter of time to join them.

What Microsoft did
Back in September 2015, Microsoft announced
and showcased Azure Cloud Switch (ACS). Yet it
wasn’t available to the public until March 2016,
when Microsoft kicked off the SONiC project (http://
azure.github.io/SONiC). SONiC stands for “Software
for Open Networking in the Cloud”. According to
Microsoft, SONiC is ACS but without the company’s
internal cloud management applications.

You may now think that Microsoft has released a
Linux distribution, perhaps a specialised one. Many
news sites suggest the same. That’s not true. Like
FBOSS, SONiC is a collection of services that run on
top of existing Linux system. Currently, it’s Debian
Jessie. Future versions may use ONL (also Debian-

Above left: Many vendors
today produce bare-
metal switches that are
specifically designed to
run an OS of your choice.
Above: In case you
managed to miss the
fact that SONiC comes
from Microsoft, here is a
fat hint: the docs are in
OOXML format.

Separating switching logic from the hardware is important, but
eventually, both ends need to meet each other. This implies
an API to handle port configuration and link state monitoring,
fill switching tables and forward selected packets to CPU for
analysis.

OpenNSL (https://github.com/Broadcom-Switch/
OpenNSL) and SAI are this API. OpenNSL provides support for
Broadcom switching ASICs. SAI is generic, and most current
implementations are really wrappers around vendor-specific
APIs. For example, the Broadcom SAI (https://github.com/
Broadcom-Switch/SAI) builds on OpenNSL, and the Mellanox

SAI (https://github.com/Mellanox/SAI-Implementation) relies
on custom SwitchX APIs.

While the interfaces themselves are open (often under
Apache 2.0), their implementations have no such obligation.
The situation largely resembles graphics drivers in Linux:
OpenGL is an open standard, but it is implemented in a
proprietary Nvidia driver. OpenNSL, for instance, provides
GPLv2 Linux drivers (Broadcom ASICs are PCI devices)
and free (as in speech) header files, but the library itself is
generally available in binary form only. Open interfaces are a
big step in right direction, but there is still a long way ahead.

SAI and OpenNSL in a nutshell

LV027 022 Feature Microsoft.indd 23 14/04/2016 11:49

www.linuxvoice.com24

FEATURE MICROSOFT AND LINUX

based) or even Ubuntu. It doesn’t make SONiC a
distribution: if you Dockerise some application on top
of an Ubuntu base image, this doesn’t count as an
Ubuntu derivative. So, Microsoft has not released its
own Linux flavour (yet). And unlike Facebook, which
designed the Wedge switch to run FBOSS, Microsoft’s
SONiC is purely a software offering. It runs on
commodity hardware such as the Dell S6000 or Arista
7050 switches. Yet it’s really free, as in speech: the
sources (mostly C++ and Python) are released under
Apache 2.0 licence.

This being said, some essential SONiC bits were
missing at the time of writing, though this doesn’t
mean they won’t be released eventually. Most likely,
Microsoft was in a hurry to have something ready
for the OCP Summit 2016. The architecture is well
documented (not surprisingly, in the DOCX file) and
the code is unencumbered and easy to understand.

SONiC is all about building high-level abstractions,
so the user can concentrate on network applications
logic, not hardware and low-level stuff. To that end, it
has a bunch of daemons that listen to various events
and maintain switch state in a key-value database
(currently, Redis). Those events may come from
the Linux kernel (if cable was plugged or IP address

Another Microsoft crown jewel coming to Linux is SQL Server
2016. While this isn’t going to happen until mid-2017, you can
already apply for the private preview. It should start around
the time you read this, but we already know enough to have a
good idea of what’s going to happen.

In the beginning, SQL Server will be available for Ubuntu
(with Red Hat likely on the horizon) or as a Docker image.
Microsoft embraces Docker at large: it’s a first-class citizen in
Azure and found in many company’s projects, including SONiC
and ASP.NET. SQL Server on Linux leverages existing open-
source offerings in the field, like the FreeTDS protocol driver
(www.freetds.org). Client libraries are available for many

languages, including Python, JavaScript/Node.js, and Ruby,
and are free (as in speech). This doesn’t mean that SQL Server
itself would become free, of course.

Why is Microsoft doing this? The reasons are likely
pragmatical. Linux is strong in clouds, including Microsoft’s
own Azure, which we have to keep reminding ourselves is
intimately bound with Linux. And it’s obviously an opportunity
to grab a slice of Oracle’s pie, whose proprietary database has
run on Linux for many years. With Docker gaining popularity
as a deployment tool, people want SQL Server Dockerised as
well. Finally, this move completes the ASP.NET stack on Linux,
expanding its reach and bringing Microsoft new developers.

SQL Server on Linux

added), or other network applications. Say, Microsoft
employs the Quagga suite (www.nongnu.org/quagga)
and BGP protocol for dynamic routing in Azure data
centres. Routing table updates are application events
which end up in the key-value store. SONiC doesn’t
currently include an OpenFlow agent, as it isn’t
deemed necessary. If they have it, the agent would
also be the source of events.

Free as in… err, kind of
There is another SONiC component, which subscribes
to database updates and applies changes to the
switch hardware. This is where SAI comes into play.
ASIC is the most important to manage, but not the
only one. Switches contain LEDs, fans, power
supplies, transceivers and other “platform devices”.
You want to configure and monitor this equipment, so
SONiC should provide tools for that.

As it stands, SONiC is not rocket science, and
it won’t probably make big news if it weren’t from
Microsoft. It’s relatively small and simple, and tailored
for specific requirements that Microsoft has for Azure
data centres. But as it is free, things may change
quickly if Microsoft builds a vibrant community
around the project.

LV027 022 Feature Microsoft.indd 24 14/04/2016 11:49

LV027 025 Ad AE.indd 25 14/04/2016 14:53

www.linuxvoice.com26

SECRETS GIMP

When it comes to free software image editors, there’s one
name that always comes to mind, partly because it’s a
great bit of software and partly because it’s a wildly

inappropriate name: The Gnu Image Manipulation Program (Gimp).
Since 1995, this has been the go-to application for Free Software
lovers who need to make changes to images, however large or small.

Gimp is a complex program. Here at Linux Voice, we think that it’s
well worth spending a little time becoming familiar with it. The skills
we’ve learned have paid off time and again in tweaking and
modifying images, and not just because we run a magazine –
personal photos and graphics of all descriptions can be improved
with a little knowledge.

01Configurable user interface
Gimp is suited to a wide
range of image manipulation

tasks – it’s equally adept removing
red-eye from photographs as it is
creating sci-fi fantasy images from
scratch (in the right hands that is), and
each use case requires a different set
of tools.

Perhaps you want one big window
focused on the image you’re working
on, for example, or perhaps you want to
split the display between two monitors
with one showing the image and one
showing the tools. You can hide,
display, rearrange, dock and align

almost everything to build just the
interface you need without any
unnecessary clutter.

02Plugins
There are a huge number of
features in Gimp, but no

software can provide everything that
everyone will need. If you need
something that isn’t in the default
version, you can usually find a plugin.
Go to Help > Plugin Browser to see
what’s available. If you switch to Tree
View, you’ll see them laid out in the
menus that the new features will
appear in, so filters are under Filters,

edit options are under Edit, and, well…
you get the idea.

03Layers
Images can be built up of
different components.

There might be a background, a
foreground, and a series of changes to
the foreground. All these components
can go in different Gimp layers so that
you can treat them as individual images
when editing, but render them together
for the final picture. Layers enable you
to make changes to one aspect of an
image without altering the whole thing.

04Filters
Filters are used to make
automatic transformations

to an image. For example, the blur and
sharpen filters can be used to make an
image look less or more in focus. They
can be used to generate images as well
as modify them, and the Filter > Render

Your pictures will never be the same again after you’ve gimped them up!

SECRETS OF

GIMP
01 02

LV027 026 Feature Secrets.indd 26 14/04/2016 11:50

www.linuxvoice.com 27

GIMP SECRETS

submenu includes options for creating
things including clouds and lava.

05Batch mode
What’s the point of a fancy
user interface if you’re an

elite Linux user? Well, actually, there are
plenty, but there are also times when it’s
better to run on the command line. If
you launch Gimp from the terminal with
the -b flag, it’ll start in batch mode,
which runs operations from the
command line. Usually, this is in the
form of scripts. You can even use blobs
to run the same action on a range of
files at once. With great power comes
great responsibility, so be careful with
this and don’t convert all your holiday
snaps into sepia without a backup.

06Maths in size boxes
Images are sized in pixels,
but you might not always

know the exact size you want. For
example, you might know that it’s going

to be displayed at 278x278 pixels, but
want the image to be twice this size for
display on retina screens. You could
work this out and type in the answer to
the Gimp size box, but there’s no need:
just enter the size as 267*2 and it’ll
calculate the correct size for you.

07Python
If you want to make a very
specific set of adjustments

to an image, it can be a waste of time to
click around with the mouse, and it can
be better to write a simple script. Gimp
covers this with a choice of its own
scripting language and Python. There
are consoles for both, so you can code
interactively from within the main
application. Go to Filters > Python-fu >
Console to get started.

08Portability
Gimp is easy to install on
Linux, but we don’t always

have the luxury of having our own Linux

machine available. The Windows
version can come as a portable app
which means that all the necessary
files can be stored in a single place,
such as on a USB drive. You can
download the application from
http://portableapps.com/apps/
graphics_pictures/gimp_portable.
Open this in Windows and Gimp runs
with no installation necessary. If you
need image-editing capabilities, you can
carry this with you in the knowledge
that any PC you use can be turned into
an image-editing workstation.

03 04

06

05

07

08

LV027 026 Feature Secrets.indd 27 14/04/2016 11:50

www.linuxvoice.com28

SHOW REPORT CEBIT 2016

The world’s largest computing expo took place in Hanover in
March, and Linux Voice was there to check out the Linux and

FOSS-related stands.

There’s a growing trend for companies to take
Free Software and add value on top (such as long-term
support options) while the core product remains free

2016
CeBIT is all about superlatives. It’s the world’s

biggest computer show, held at the world’s
largest fairground. At the height of the

dot-com booth it received a staggering 850,000
visitors – but in recent years the attendance has
been more subdued at “just” 330,000.

While CeBIT is very much about besuited business
types impressing one another with shiny booths and
even shinier business cards, this year’s event also
played host to various open source projects. Now,
given that most of the companies exhibiting at

CeBIT are based on proprietary technology and
software, does it make sense to have open source
there? Or is it a clash of cultures? Well, in our
experience it’s a positive thing. Attendees can see
that open source isn’t just the domain of bedroom-
dwelling geeks, but actually produces professional
and highly regarded software that’s used around the
world. Many businesses are using and contributing
to open source – even if the bulk of their work is
proprietary – so it makes sense to have FOSS
represented at CeBIT.

LV027 028 Feature Cebit.indd 28 29/04/2016 11:35

www.linuxvoice.com 29

CEBIT 2016 SHOW REPORT

In this age of almost constant internet connections,
the whole idea of a computer expo where people meet
up in the flesh may appear arcane and unnecessary.
But sometimes communication is so much more
effective when done face-to-face rather than online.
If your company is looking to buy some new kit or
software, what’s better: sitting on the end of a phone
waiting to speak to some faceless sales rep, or
actually being able to see the product in question
being demonstrated and ask questions directly in
front of someone?

Money talks
So we went to Hanover to see how the GNU/Linux,
Free Software and open source ecosystems are
being represented at these big events. And CeBIT
certainly didn’t fail to disappoint on the wow
factor – clearly a lot of money goes in to making
shiny booths and even shinier presentations.
Sometimes it boggled the mind that companies
would invest so much for something that only
lasts for one week, but if it results in some major
contracts being won, it’s worth it…

While most space in the gargantuan expo
halls was devoted to proprietary products and
software, a sizeable area in one hall dedicated
itself to FOSS and was known as the “open
source park”. Many of the companies that
had booths there were active primarily in the
German market, such as B1 Systems, which
offers training, consulting and development
services for Linux and other open source
projects. Similarly, Arogorum was present with
open source document management software.

Some big-name open source projects showed their
faces as well. LibreOffice had a small team from The
Document Foundation along with supporters from
the wider community, answering questions, handing
out flyers and trying to spread awareness of the
project. We were told that many people who visited
the stand simply wanted to say thanks for working on
the software, while others were still using the (largely
dormant) Apache OpenOffice version and weren’t
aware of the mighty strides LibreOffice is making.

LibreOffice’s stand was part of a larger booth from
CIB, a German software and consulting company
that has been very active in LibreOffice development
recently. This reflects a growing trend in the open
source world: commercial companies taking FOSS,
adding value on top (such as long-term support
options or paid-for features) while the core product
remains free. Of course, in an ideal world everything
would be completely free (as in both beer and
speech), but this seems like a healthy balance to us –

The Document Foundation
had a small stand
answering questions about
LibreOffice and handing
out flyers.

The Open Source Park
had plenty of booths
devoted to companies
that develop and support
FOSS projects.

LV027 028 Feature Cebit.indd 29 29/04/2016 11:35

www.linuxvoice.com30

SHOW REPORT CEBIT 2016

FOSS gets better and developers can still put bread on
their tables at the end of the day.

Shiny hardware
Other open source projects that had booths at
CeBIT included MariaDB (the community-developed
fork of MySQL), while on the hardware front Tuxedo
Computers was present with a bunch of laptops to
try out. Linux on laptops has always been a bit of a
thorny issue – although it has gotten a lot better in
recent years as hardware has standardised. But it
has always been frustrating to find a decent, well-built
laptop that runs Linux flawlessly. There are usually
one or two niggling things that don’t quite work as
expected (eg Wi-Fi or suspend/resume), or you have
to download a poorly maintained proprietary blob,
which defeats the point of using open source in the
first place.

The Bavaria-based Tuxedo Computers had
laptops of varying sizes on show, each of which
runs Linux out of the box (customers have a choice
of Ubuntu, Kubuntu, Xubuntu or OpenSUSE). Each
model is supplied with a two-year guarantee, and
although the company is based in Germany and its
website (www.tuxedocomputers.com) is currently
only available in the German language, it’s possible to
order laptops with international keyboard layouts. We
will try to get some laptops in to review in Linux Voice
– so watch this space.

Along with the stands and booths there were a
number of open source-related presentations given
in front of seated audiences. Jon “Maddog” Hall,
the Executive Director of Linux International, gave a
speech explaining why Free Software is important,
how it’s developed and where it’s going – nothing new
to long-term GNU/Linux fans, but useful for CeBIT

Jon “Maddog” Hall gave
an entertaining speech
explaining the history of
Free Software and why it’s
important.

Sadly, B1 Systems wasn’t
selling these large plush
penguin toys. They
could’ve made a fortune,
we reckon…

LV027 028 Feature Cebit.indd 30 29/04/2016 11:35

www.linuxvoice.com 31

CEBIT 2016 SHOW REPORT

visitors who were still wary or even sceptical about
FOSS. Maddog did a good job of explaining both the
philosophical and practical benefits of Free Software.

Then there were some more technical talks, such as
the one from Thorsten Behrens, a prolific LibreOffice
developer. Behrens outlined some of the design
changes being made in the suite, while Italo Vignoli
from The Document Foundation gave a talk about
migrations to LibreOffice in Italy – focusing especially
on the bumper 150,000 PC migration of the Italian
Ministry of Defence.

Ein Weißbier, bitte
There was plenty of fun to be had at the end of each
day as well. An Oktoberfest-esque beer hall was set
up for plenty of boozing fun (certainly appreciated by
many visitors from the Far East who didn’t have time
to travel down to Munich), and the centre of Hanover
was fairly easy to reach with a 20-minute tram ride.

So on the whole, Linux and Free Software was
represented pretty well at CeBIT, even though it wasn’t
the main attraction. It would have been nice to see
more Linux distributions present, handing out DVDs
so that visitors could try the operating system on their
own machines, but we were told that the booth prices
are extremely expensive. But it was good to meet
some familiar faces from FOSS projects and hopefully
the talks from Maddog and co managed to convince
some attendees that open source works, it’s beneficial
to all, and it’s here to stay.

Would we recommend visiting CeBIT next year to
Linux Voice readers? If you’re Stateside or in Australia
then no – it’s a long way to travel for an event where
FOSS only plays a small part. But if you can reach
Hanover within a few hours, keep an eye on www.
cebit.de later in the year for news about the 2017
event. If it looks like a lot of FOSS projects and related
companies will be present, it’s worth going along –
even just to be wowed by the sheer size of all the
halls. And who knows, maybe there will be even more
robots next year…

This has nothing to do with
Linux, but we thought this
assistant robot was rather
cool.

LV027 028 Feature Cebit.indd 31 29/04/2016 11:35

www.linuxvoice.com

FAQ SERVO

32

Servo
The new browser engine from Mozilla built for security and speed.

Actually, I know this. A servo
is kind of like a motor except it

enables you to rotate to a particular
point. I remember them from your
walking robot tutorial in issue 18

Well, yes, those are servos, but
the Servo (note the capital S)

we’re talking about today is Mozilla’s
new browser framework that’s going to
bring parallelisation to web browsing.

Wait, bring parallelisation?
This is 2016 and I’ve had a

multicore processor for the last
decade. Are you telling me that I’ve
been only using one core for all that
bleedin’ time?

If you’ve been using Firefox then
yes, you’ve only been using a

single core for your web browsing,
wasting all that processing power.
Chrome (and Chromium) are multi-
threaded and balance multiple tabs
across many cores of a CPU. Firefox, on

the other hand, runs everything on a
single CPU core.

Everything?

Well, almost everything. Some
plugins – such as Flash – run in

separate processes, but everything else
runs on just a single core. This can lead
to poor performance when you’ve got a
lot of tabs open.

How bad the performance is
depends a lot on your CPU: if you’ve got
a powerful desktop CPU, then it can
probably open quite a few tabs without
a significant slowdown; however, if
you’ve got a slower CPU then the
slowdown can happen quite quickly.
Servo is being developed by Mozilla
with support from Samsung with a
view to it working on Android and Arm
processors. These less powerful
processors stand to gain more by being
able to split the load across cores.

Chrome splits up the
processing load by running

each tab in a different thread. Does

Servo break down the task in the
same way?

No. Servo breaks down the
processing load in a more

fine-grained way. Individual tasks within
each page are handled separately. For
example, HTML parsing, image
decoding and layout can all be handled
by different threads.

But isn’t it also a good idea to
break down the different tabs

into different processes?
Yes it is, and Mozilla has a
separate project for this called

Electrolysis. You can try out Electrolysis
if you’re using one of the developer
versions of Firefox (either Nightly or
Aurora). Open Preferences and check
the “Enable Multi-Process” checkbox,
then restart your browser.

Servo is being built with support for
Electrolysis, so as well as the
performance improvements in Servo,
you’ll get these benefits as well.

You’ve talked quite a lot about
potential speedups, but not

mentioned just how much quicker it
is. What sort of performance can
you get out of Servo?

This is quite a hard question to
answer. Most browser

benchmarking focuses on JavaScript

BEN EVERARD

Individual tasks within each page are handled
separately… HTML parsing, image decoding and
layout can all be handled by different threads

LV027 032 FAQ.indd 32 14/04/2016 14:56

www.linuxvoice.com

SERVO FAQ

33

performance, but this isn’t the main
area that Servo will speed up. It should
speed up the entire process of
rendering a website. A more significant
problem is that we found that the
current version of Servo struggled to
render many complex websites
correctly, which means that the sort of
situation that we would expect to see
Servo perform particularly well in, we
can’t yet try.

When splitting load across more than
one core, performance rarely improves
linearly. In other words, if you split a
task across two cores, it doesn’t usually
run twice as quickly, because there are
overheads in coordinating tasks
between the different threads. The
actual speedup depends a lot on the
particular task and the design of the
application. If we were a gambling
magazine, we’d bet on a 2–3 times
speedup across a four-core CPU, but
this really is just speculation.

Other than improved
performance, are there any

other reasons to use Servo?
Speed is important for web
browsers, and in order to be

quick, browsers tend to be written in
quite low-level languages that give you
a lot of control over what’s running on
your machine, and especially, how
memory is handled. Firefox, for
example, is mostly written in C++. The
problem with low-level languages is
that they tend to be prone to security
problems, particularly around memory
management. Problems like buffer
overflows can enable attackers to
run malicious code and missing
bounds checks that can lead to
information leaks.

Mozilla developed the Rust language
specifically to solve the problem that
browsers have in that they need to be
both fast and secure. Without wanting
to be too technical, Rust enforces rules
around memory ownership that prevent
many security problems while at the
same time don’t compromise
significantly on the amount of control a
programmer has. These same rules
also help multithreaded performance
because they ease the way data is
shared between different threads.

Servo is written in Rust, so in
principal, Servo should be more secure.
However, Firefox is mature and is has

been heavily tested in the crucible that
is the open web. Many security bugs
have been found and fixed and now
Firefox is very secure. Even with the
additional security that comes through
using Rust, it’s unlikely that Servo will
be as secure as Firefox initially, because
security bugs can be subtle and take
time to find. In theory, however, Servo
should eventually mature into a
browser that’s more secure than Firefox.

So far it’s been all good news
about Servo. I get the feeling

that there’s some bad news you’ve
been avoiding telling me?

With all the potential changes
coming with Electrolysis and

Servo, Mozilla has taken the drastic
step of changing the way add-ons work,
and is in the process of bringing them
into line with Chrome and Opera by
using the WebExtensions API. This
interface gives the developer less
power than the XUL approach used
previously, and the decision to change
has met with ire from some within the
add-ons community.

An easy way to tell if the extensions
on which you rely will be affected is to
see if there’s currently an add-on for
Chrome that does the same thing. If
there is, then there’ll almost certainly
continue to be a Firefox add-on to do
the job. If not, you could be out of luck
once the change happens.

This doesn’t just affect Servo, but it’s
coming to all versions of Firefox

Hmm, I can cope with that. I
think it’s time for me to switch

over and get started.
Hold your horses – Servo isn’t
even in Alpha testing yet. Or, at

least it’s not as we’re discussing this. By
the time you read this it might be, and
the first testing versions are expected in
June 2016.

We’re a bit skeptical of the release
date, but you can compile the
development from source even before it
reaches Alpha. There are detailed
instructions for all major platforms on
the project’s GitHub page:
https://github.com/servo/servo. You’ll
need a couple of gigabytes of disk
space (the exact amount changes from
day to day as it is being constantly
updated).

Rust, the language of Servo, only
reached the first stable version in May
2015, so the whole technology stack
down to the code is very young, and
there’s plenty of possibilities for
road-bumps along the way. Work on
Servo is being undertaken as an
experiment to see if it works, and only if
it does prove to be superior will it be
considered as a replacement for the
Firefox rendering engine. Therefore,
there’s no planned release date for a
stable browser based on Servo.

Servo can display its own test page, but can’t manage the project’s GitHub site.

LV027 032 FAQ.indd 33 14/04/2016 14:56

INTERVIEW R0ML

From linear algebra and
nuclear physics to Wall
Street and Haskell, all via

the Massachusetts Institute of
Technology. Robert M Lefkowitz is a
programmer who has been working
with computers since the 1970s. He’s
a proponent of both open source and
new development methodologies,
mostly from the unique perspective of
working within proprietary companies.

He’s also one of our favourite
people. He’s got some brilliant ideas
about how programming fits into a
grander literary landscape, and how
we seem to be entering an age of
immutability. The only problem he had
was getting him to admit whether this
was a good or a bad thing…

There are programmers of the mundane and then there are astral philosophers.
Graham Morrison finds an old-school hacker who inhabits both spheres.

R0ML
AKA ROBERT M LEFKOWITZ

34 www.linuxvoice.com

The important bit isn’t the explanation
but the equation – once you’ve read the
explanation you can throw it away

LV027 034 Interview.indd 34 15/04/2016 16:11

www.linuxvoice.com 35

ALAN POPE INTERVIEW

LV027 034 Interview.indd 35 15/04/2016 16:11

36

INTERVIEW R0ML

www.linuxvoice.com

You’ve spoken before about
how you think technology

should make this the fourth age of
publishing, where readers are also
the publishers. Do you think this is
still happening?
r0ml: My thinking changed when I read
Deborah Brandt [professor emerita of
English at the University of Wisconsin-
Madison]. Her research area is around
the distinctions between reading and
writing, the history of literacy, but
differentiating between reading for
specific things and writing for specific
things. We often conflate the two but in
fact, reading and writing often are
different and many of the changes
associated with the literacy landscape
are related to the change in the balance
between reading and writing that has
happened recently and that is related to
what is called “The rise of writing.”

Strangely enough, that intersects
with my interest in Haskell. But the
original conceit that I was working
along was not only the idea of reading
and then reading versus writing, which
threw a monkey wrench into it, but also
the idea of ‘literacy.’ There is a strong
current going back to [Gerald Jay]
Sussman and [Donald] Knuth that
writing software is a literary activity, and
certainly in the open source community
we encourage that specifically because

we use copyright on the Free Software
side to be the instrument of defence, if
you will. It’s the weapon of choice in
staking out the landscape, and we see
things through this copyright filter. We
can boil it down to ‘Patents Bad’,
‘Copyright Good.’ And we worry about
copyrighting software licences, and
there’s a lot of interest and activity
around copyright as it pertains to
software, which only makes sense if we
view software as a literary, or
expressive, activity.

Yet copyright is relatively unfit
for purpose, and the people

who need to change it are those who
benefit most from it’s current state.
r0ml: But what if – and this is one of
my interests in Haskell – Haskell is not
a ‘literary programming language.’ It is a
mathematical programming language,
and so the sensibilities are completely
different. In every programming text, in
chapter one there is a section that goes
into the importance of naming things
properly, that you need to name your
functions and your variables for
legibility, so that it’s understandable.

In real-world Haskell, there’s a line
where they say, “Always choose
extremely short names as it enhances
readability.” And I thought, “Wow! That’s
an interesting take on that.” And the

reason for that is that if you say it’s not
a literary activity, it’s a mathematical
activity, when you do equations, you
don’t want descriptive words: it’s not
the words that are important, it’s the
structure that’s important. It’s thing 1
and then thing 2. You want to be able to
manipulate the structure to create
equivalences. So you can say, “If we
take this thing, and then we change it in
this way, we have this thing which we
have proven is exactly the same as that
thing.” If you approach programming in
that way (and Haskellers tend to
approach it that way) it’s manipulating
symbols where the symbols do not

necessarily have to have any
relationship to reality, so you can be
manipulating abstract symbols. There
was a British study where they were
looking at this notion of whether
everybody can be taught how to
program. What they did was, for people
how had taken a programming class,
they gave them a test before they did
anything, and then gave them a test
afterwards, and then based on the

The essence of open source: “I’m working on
stuff, what you’ve done doesn’t do exactly what
I want but rather than patching and changing
yours, I’ll just copy the bits I need and bring
them over to mine and keep going.”

Programming is not a
literary activity, it’s a
mathematical activity

You want single-letter
things, and if you don’t
have enough single letters,
you’ll borrow from the
Greeks to get single
glyphs to express
concepts which you then
explain separately. You
say, so theta stands for
the angle of incidence, and
then you can use theta
having explained its
purpose.

LV027 034 Interview.indd 36 15/04/2016 16:11

37

R0ML INTERVIEW

www.linuxvoice.com

people who had learned stuff – was
there anything about the test they had
given first to predict who was going to
learn and who wasn’t before they took
the class. The test was of the form, “A is
assigned 3. B is assigned 2. B is
assigned to A. What’s the value of B.”

Half the people don’t get that
right. It may be obvious, but there’s a
huge body of people who don’t find
it obvious. The conclusion was that
there are people who want it to make
it sense. They want something to work
a certain way and they build a mental
model that’s associated with the things
they’re familiar with, and in the absence
of that mental model, they’re guessing.

That’s what people do!
r0ml: Right! So Haskell is for

people who don’t care – B doesn’t have
to stand for anything. A doesn’t have to
stand for anything. But you re-arrange
the symbols and you move the thing
inside the A to the thing inside the B
and what’s in B and A, I don’t know, but
it doesn’t matter because it’s a game
where you’re rearranging symbols.

That’s what programming is, and it’s
not a literary activity, it’s a mathematical
activity. And then – copyright doesn’t

apply! You can not copyright a different
expression of an equation, since you
can show mathematically that they’re
all equivalent. I

But that’s what we’ve all
thought for a long time.

r0ml: I would say that there are two
different sensibilities. You read the
introduction to Structure and
Interpretation of Computer Programs
[Gerald Jay Sussman, 1st ed. 1985], or
Knuth’s work, and they start out by
saying that programming is not about
talking to the machine: programming is
about explaining your algorithm to
other humans so that they can
understand it. So there’s this literacy
ethos, and in fact, Knuth’s book was
literate programming.

How do you write things so that
they’re publishable and understandable
as texts? The mathematical [way] says,
“It can be extremely dense and bizarre
Greek symbols laid out on the page in
some way that then needs some
explanation so you can figure it out.”
But nevertheless, the important bit isn’t
the explanation but the equation, so
that once you’ve read the explanation
you can throw it away, because you

have it now, and you can see it in the
symbols. If the code is the symbols and
the mathematical explanations,
copyright doesn’t apply. What does that
mean for our concept of open source?

In the absence of needing to license
copyrights, what’s the difference
between open source and not open
source, and how do you differentiate
between the two? There’s a cultural
thing about how we want it to be
literary, but what if it’s mathematical?

We wouldn’t think there was a
single answer to this. Not

everyone who understands Python
needs to understand Calculus. But
there is a profound difference in the
procedural approach of Python and
the functional approach of Haskell.
r0ml: You’re right. It’s not necessarily
that there’s a right and a wrong answer
– that it’s all one or all the other. But
then if you look at it in the literacy vein,
we do say “Everybody should be literate
and everyone should learn arithmetic.”
There’s some level of mathematics that
everybody needs to learn and there’s
some level of mastery of their native
language that everybody needs to learn
and both of these are good.

Should everyone be a
programmer? No!

LV027 034 Interview.indd 37 15/04/2016 16:11

38

INTERVIEW R0ML

www.linuxvoice.com

Maybe that’s sufficiently similar that
we can take it from there, but what
does that imply for a long-range view?
Does it mean there are different kinds
of programming languages or
programming languages about maths?

There’s a programme that the United
Nations is trying to achieve called
Universal Literacy – do we have a
programme to achieve universal
numeracy and how do we define
numeracy? Literacy is more binary –
you can or you can’t. Numeracy is a
little fuzzier because people can count
on their fingers, but is that enough? Or
should people be able to add and
subtract three-digit numbers. Where do
you draw the line?

This is a similar question to the
one we asked Tim O’Reilly

– should everyone be able to code?
He said no. But he also said
everyone should be able to change
the way their computers worked.
r0ml: In order to find the middle road, I
think we need to understand whether
we’re trying to find a road that’s more
like literature or a road that’s more like
maths, and if it’s more like maths then

possibly we’re going about it the wrong
way, because a lot of the easy-to-learn
languages are less mathematically
rigorous and more, I would say, literary
oriented. You have to learn what the
words mean and what the libraries
means and it’s about understanding a
large vocabulary of built-in libraries as
opposed to understanding how to
manipulate symbols.

Why do you think functional
languages have become so

popular recently?
r0ml: In my nth age of computing idea,
I think the underlying theme that is
taking hold in computing across the
spectrum is immutability. That once it
is writ, the hand moves on! I would
struggle with the idea of ‘Big Data’, and
my new definition of big data is
immutable data – it’s data that you
never update values, you only append
as new information comes in. So all of
the three or four Vs of big data (Volume,
Velocity, Variety and Variability) had
nothing to do with bigness. In fact,
you’d see 1.5MB data sets that they
would argue were big data, so I think
the attribute that is the essence of big

data is ‘append only. “Once it is writ, the
hand moves on.”

Functional languages are all about no
variables. Once you have bound a name
the hand has writ and you move on.
You can create a new one but you can
never change the old one. Docker, the
containerisation, it’s all about creating
this environment that you can deploy
as an immutable thing without making
changes to it. And git, in some sense,
is that as well. You never change stuff;
you always apply the patch and branch
again so you start from nothing, and
it’s all a sequence of patches that are
appended to the nothing until you arrive
at the current state, managing the path
that you have to take to arrive at your
destination, although there might be a
little conflict resolution. All of these are
all about immutability.

You said you were joking
earlier, but could this a threat

to the future of open source?
r0ml: I believe the way I phrased it was,
“It’s a threat to our current conception
of open source.” My interest in open
source, since the beginning, was the
educational value, and I subscribe to
those literary interpretations of
software. If I were attempting to solve a
problem and other people had written
software to do that, I could read that
software and I could learn from that. I
believe the way we teach it is – you
have a blank piece of paper, write me a
program that does X. Starting from
there you never have to read old code,
you just have to understand how the

symbols manipulate, you make your
program, you run it against the test
stuff, it works – you’re a programmer.
Nobody does that anymore. What you
really have is vast quantities of
software, and you have to navigate it
and figure out where [to change it].

We have this big mass of software
and we have to go there and change it
because it was immature and
everything was growing quickly. So
another thing that functional

My interest in open source,
since the beginning, was
the educational value

R0ml switched to Vim after
32 years of using Emacs. His
fingers must hate him.

LV027 034 Interview.indd 38 15/04/2016 16:11

39

R0ML INTERVIEW

www.linuxvoice.com

programming tries to encourage is
‘one-liners,’ functional expressions that
can be composed. That way I don’t
have to understand all of those bits, I
just have to say, “I want this bit, and this
bit, and this bit, and I’ll make my thing
which is a different composition of
those things that solves my problem.”

As we move to the idea of whether
it’s data or code, the way we make new
things is by composing these bits and
we in general have a distaste for
modifying things, it’s all about making
another thing atop that previous thing.
Our concept of open source – which is
people contributing patches, and
working to modify a codebase over
time – it instead becomes this
conception of things that have been
written and once writ the hand moves
on. If you never have to look inside, the
source has no value. So you wouldn’t
need to do that in order to build
software, although you might need to
do that in order to understand software.

Does that mean a severance
with the old political ideology

behind Free Software?
r0ml: The political ideology might shift.
If it’s software that is deciding when to
brake or swerve in your self-driving car,
does it need to be publicly posted so
that people can evaluate it and so the
code is available for court cases? Is it a
legal requirement because of the way it
intersects with reality? You could argue
for public health reasons, or for voting
machines – to have it be closed is like

having a closed society – going into a
room and picking the next leader, kind
of thing. If it’s going to be open it needs
to be open and possibly the
mechanisms need to be auditable.

Do you think there are any new
freedoms that come with

modern development?
r0ml: Security and privacy are rising
concerns, and how they intersect with
this immutability notion, but this
immutability intersects with the right to
be forgotten. At a technical level, we’re

exploiting immutability more and more,
and that becomes the threat. In privacy
and security terms, things become
immutable and can’t be forgotten and
can’t be changed – there’s a good side
to that and a dark side to that. We’re
giddy with the prospects of the good
side, and the dark side is slowly
revealing itself.

But there’s nothing unnatural
for the current generation

when they think about Facebook’s
immutability and their online lives
living forever on the internet.
r0ml: But if there are dark
consequences that are not clear yet, in
the long term. As a young child I
remember my mother taught the
history class… One of the stories she
told (which Wikipedia disagrees with,
but I grew up with) was this notion that
what caused the downfall of the
Roman Empire was plumbing. They
developed plumbing and they brought
water to the houses of the rich and
powerful, and it’s called plumbing
because it’s made from plumbum –
lead – so this poisoned the upper
classes and led to the fall of the Roman
Empire. So is plumbing a good thing or
a bad thing? They had some activity
that they felt was benign, or even good,
which turned out to be the thing that
caused the downfall of civilisation.

“The sense of the age is
immutability, and functional

programming fits into that
whole paradigm.”

R0ml is a guru. Just out of shot
were gathered multitudes come
to listen and learn.

LV027 034 Interview.indd 39 15/04/2016 16:11

LISTEN TO THE PODCAST

WWW.LINUXVOICE.COM

BUY MUGS AND T-SHIRTS!

shop.linuxvoice.com
LV027 040 Ad Merchandise.indd 40 14/04/2016 15:08

www.linuxvoice.com 41

INTRO REVIEWS

REVIEWS
The latest software and hardware, rigorously bashed against a wall by our crack team.

Andrew Gregory
Is afraid of frosts in April and so is late getting
his potatoes in the ground.

The Linux desktop has changed
beyond recognition over the last
five years, when Gnome 3 was

released in April 2011. There are swishy
panels, full-screen by default, and new
ways of finding applications that
involve something more innovative
than using a boring old menu. But have
humans changed that much over the
last five years? Of course not. We all put
so much effort into doing whatever else
we need to do that learning a new
interface is always at the bottom of our
priority list.

Back to the future
Hats off then to the Mate team for
delivering such a superb desktop.
Ignoring trends and looking extremely
like a bunch of luddites at first, they
stuck to a system that was tried and
trusted and have made it better slowly,
gradually, at a pace that our tiny human
brains can handle. That’s Linux for
human beings, and it’s why Ubuntu
Mate makes so much sense. Not all
change is good – remember that the
next time you see someone praising
modernisation for its own sake.
andrew@linuxvoice.com

On test this issue . . .

At last, the BBC is using some of its vast
wealth to foster computing in schools.
And by the looks of it, this little device
may well end up in a few sheds, garages
and workshops too.

BBC Micro:bit

Group test – Instant messaging clients 50
Low bandwidth, no-fuss communication ideal for
working from home/the pub. No wonder we love
instant messaging (and you should too).

Booooooooooooooks!!!! 48
Juxtapose the vast bleakness of space with the
claustrophobia of living on board ship, LibreOffice
and computer science in our papery trio.

Group test and books

42

Ubuntu Mate 16.04 44
Take Ubuntu, add the user-friendly Mate desktop.
Marriage made in heaven or unholy alliance?

OpenBSD 5.9 45
The latest desktop offering from the non-handholdy,
ultra-secure Unix flavour, OpenBSD.

LV027 041 Reviews Intro.indd 41 15/04/2016 13:04

REVIEWS BBC MICROBIT

www.linuxvoice.com42

BBC Microbit
Ben Everard investigates the first BBC computing device in 22 years.

The layout of the
Microbit is well suited to
making simple games.

The Microbit is a microcontroller developed by
the BBC to help children learn to program. It’s
a bare circuit board about half the size of a

credit card, with an array of buttons, LEDs and output
connectors (three programmable, a 3-volt and a
ground). Flip it over and there’s a micro USB
connector, reset button and a battery connector.

The board is powered by a small ARM Cortex M0
processor, which is designed for embedded
applications and doesn’t have the features needed
to run a full operating system such as Linux or
Windows. There are no ports to plug in your mouse,
keyboard or monitor, so you need to write your code
on a different computer and upload the compiler
output to the Microbit.

There are four officially supported languages: Code
Kingdom’s JavaScript; Microsoft Block; Microsoft
Touch Develop; and Python. They all run in the
browser through microbit.co.uk, so there’s nothing
to install or set up. On that website, you can write
code, compile it, and download the result as a HEX
file. Of the four languages, only Python is traditional
in the sense that you write code in text. In the Block
language, you drag and drop bits of code together and
you can create programs without ever needing to use
the keyboard. Code Kingdom’s JavaScript is about
halfway between this graphical approach and writing
code, because although you drag and drop blocks,
these blocks contain real JavaScript. Touch Develop
has an on-screen keyboard that changes depending
on what it expects you to type next. If the cursor is
next to a variable name, for example, the keyboard will
display all the options that could go next such as +, =,
> , etc.

But there’s no Basic!
Our inner geek is a little disappointed that BBC Basic
(the language of the much-loved BBC Micro used by
most British school children in the 80s and early 90s)
isn’t available for the Microbit, but it’s much better for
today’s programmers to learn with modern languages
rather than relics from the past. The four languages
do complement each other well, and between them,
they give a good range of options for all levels of
programmer. We’re a little concerned that half of the

Website www.microbit.co.uk
Developer BBC
Price Free to year 7 school
children

LV027 042 Review MicroBit.indd 42 15/04/2016 09:23

BBC MICROBIT REVIEWS

www.linuxvoice.com 43

The Block language enables children to code without
having to remember syntax.

Really easy to use and great way to get children
interested in computing.

recommended programming tools come from
Microsoft, but the languages are open source and
available through Microsoft’s GitHub account.

The initial setup of the hardware is just as easy
as the software: you just plug the board into your
machine via USB and it’ll appear as a USB storage
device. Just copy any compiled code (a HEX file)
into the mounted storage, and the Microbit will run
your program. There’s nothing to install, and it works
on any modern OS. As well as USB, you can upload
programs via Bluetooth from phones and tablets
using the Microbit app from Samsung (available for
Android version 4.4 and up and iOS version 8 and up).

The HTML interface that enables the Microbit it to
work on most computers also runs on phones and
tablets, but performance is poor. The development
environments struggle to run on modest hardware,
and don’t work particularly well with touch input.

We’d recommend sticking with the desktop for
development if at all possible.

While the software setup is excellent and the
hardware works well, the board is limited. With
just two buttons and a five by five grid of LEDs, an
interested child could quickly run out of things to play

with. There are also options using the compass and
accelerometer, though these are still held back by
the lack of output hardware. Along the bottom of the
Microbit, there are an additional 16 GPIO pins that
could be used in more complex projects, but in order
to access them, you need additional hardware. There
will, no doubt, soon be a healthy market for add-on
boards to bring more features.

The Microbit doesn’t feel like a board to teach a few
students a lot about computing – it feels like a board
to teach a lot of students a bit about computing.
It’s an introductory device that many students will
outgrow, and that’s fine. There are loads of platforms
that students can use to grow the skills they first
learn on the Microbit. Getting children interested is the
hardest part of teaching anything, and the Microbit is
an exciting device for kids to play with.

Above left: The main pins
are large enough for
crocodile clips or banana
plugs.
Above: Labelling the parts
on the board makes it less
intimidating than a bare
circuit board.

It’s much better for today’s programmers
to learn with modern languages rather
than relics from the past

LV027 042 Review MicroBit.indd 43 15/04/2016 09:24

REVIEWS LINUX DISTRO

www.linuxvoice.com44

Ubuntu Mate 16.04
With more features than a Yamaha DX7, Graham Morrison has got this one covered.

Bundling a tweak tool that
gives you much finer
control over the display is
a brilliant idea.

We know this is a rather Ubuntu-centric
issue, but this release of the Mate edition is
definitely worth the extra attention. In the

12 months since it became an official member of the
Ubuntu family, the distribution has been crammed full
of new features and usability improvement, making it
one of our absolute favourite Linux distributions.

At its core is Mate’s continuation of the Gnome 2.x
desktop, and this version, 1.12.1, is another reminder
that Gnome really was on to something with its
original twin-panelled desktop. Everything looks and
feels so intuitive. The unification here of GTK, GTK 3
and Qt applications, means they all look almost
identical in their theming. And we’re big fans of the
default – it’s consistent, polished and professional,
and it’s the theme we’ve found anyone dumping
Windows 10 feels most comfortable with. But the
desktop is also configurable, and this release bundles
the (ironically named?) ’Mutiny’ layout that turns Mate

into an Ubuntu Unity look-alike, complete with a
launch panel on the left. More than a joke, this layout
will help people who have by now become used to
Ubuntu’s default configuration and want a lighter
desktop. Lighter is emphasised in the distribution’s
breadth too, with added support for both the
Raspberry Pi 2 and Raspberry Pi 3, complete with
video acceleration for VLC, FFmpeg and Kodi.

We didn’t have a multi-touch trackpad handy, but
we have tried an earlier beta running on Entroware’s
excellent Apollo laptop, where the new touchpad
tweaks make a huge difference. The ability to perform
one-click PPA package installs via the human-curated
‘Software Boutique’ is also unique, where adding even
proprietary software, like Spotify, is simple (although is
there really no ‘Search’ function?).

We love the desktop’s integrated tweaks tool, the
monster list of settings and all the new panels. It’s
also worth mentioning that the team’s primary
objective is to make Ubuntu Mate “Accessible to all,
regardless of language and physical ability,” and
there’s improved support for braille displays with the
new language packages adding 400MB to the size of
the ISO image. The overwhelming feeling is that this
release comes from a team that genuinely cares.

Not too taxing on your system or your brain,
Ubuntu Mate is becoming the perfect distro for
people who like to get things done.

Web https://ubuntu-mate.org
Developers Martin Wimpress
and an awesome team.
Licence Various open source

LV027 044 Review Mate.indd 44 15/04/2016 12:06

OPERATING SYSTEM REVIEWS

www.linuxvoice.com 45

OpenBSD 5.9
It’s free, Unixy and ultra secure – but how does OpenBSD 5.9 match up to Linux?

Every OpenBSD release
has a variant on the Puffy
mascot – and songs as
well!

Whenever a new OpenBSD release comes
out, we rush over to the FTP mirrors, grab
the ISO and install it in VirtualBox. And one

thing always impresses us: the OS remains consistent
and stable despite all of the changes that go on under
the hood. OpenBSD is an open source Unix flavour
that runs pretty much everything you get on Linux (at
least FOSS), but it’s incredibly hardened out of the box
with security features that are optional bolt-ons in
most Linux distros (and the other BSDs).

OpenBSD doesn’t hold your hand: its simple text-
mode command-driven installer assumes you know
exactly what you want to do, and gets out of your way.
After installation you have a very minimal bare-bones
Unix flavour – it’s your job to set it up as you like it.

So what’s new in this release? It arrived slightly
earlier than expected, possibly to provide a longer
development cycle for the next version (which may
have some big changes to multi-processor support).
The biggest change is the integration of the pledge
system call, which restricts the system calls that a
program can make for improved security.

On multi-processor (SMP) machines (ie pretty
much anything from the last few years) the network
stack’s performance has been improved, and then
there are the usual small updates and bugfixes (see
www.openbsd.org/59.html for the full list). But SMP
is still an issue on the desktop, though, making the

likes of Firefox (especially when watching video)
choppier than when using Linux. The OpenBSD team
recognises this as an issue. Similarly, releases are only
supported for 12 months, and there’s no system of
binary updates built-in as standard.

Still, OpenBSD is a very well curated Unix flavour
that mixes simplicity with useful security-oriented
features. Tune in next month for a full tutorial…

An elegant, well-engineered OS at the forefront
of security technology. Some issues with
performance and long-term support though.

Web www.openbsd.org
Platforms x86, amd64, SPARC,
ARM, PowerPC
License BSD (some parts GPL)

LV027 045 Review OpenBSD.indd 45 14/04/2016 15:11

www.linuxvoice.com46

REVIEWS GAMING

Payday 2
BREAKING THE LAW! BREAKING THE LAW!

The tastiest brain candy to relax those tired neurons
GAMING ON LINUX

ROB HALFORD RULES!

Things have been moving along
quickly with the Vulkan API,
and AMD has now released a

Vulkan driver. This comes shortly
after the fglrx driver was dropped
from Ubuntu, a decision which now
makes more sense. This should
hopefully also mean that AMD
graphics card owners should start to
see performance shift towards what
is seen on Windows, curbing the
number of developers who simply
don’t support the cards on Linux.

To make it three out of three
vendors, Intel has also gotten in on
the act, showcasing its open source
graphics drivers with Vulkan on Dota
2 and some benchmarks comparing
Vulkan with OpenGL and OpenGL ES,
with some very hefty performance
increases in the region of 30% and
close to a threefold performance
increase on mobile. Wine gamers will
be pleased to know that it has also
added Vulkan support.

Meanwhile, many developers have
come out and expressed support for
the Vulkan API along with numerous
engines. With DirectX 12 only
supporting Windows 10 and the
recent controversy over the Universal
Windows Platform initiative, which
garnered a very negative response
from developers and the press, the
conditions do seem favourable for
Vulkan to become the API of choice.

There are 1.2 million Linux users
on Steam, up from around 630,000 in
October 2013, and this isn’t including
SteamOS. The percentage has
dropped slightly, but this is due to the
increasing number of Steam users,
which has doubled in recent years.

Michel Loubet-Jambert is our Games
Editor. He hasn’t had a decent night’s
sleep since Steam came out on Linux.

Take hostages and crack
safes or simply blow up
everyone and everything.

Graphically, the game does its job and should run
well on older machines.

At its best, when played with others online,
Payday 2 is deeply exhilarating

Website http://store.steampowered.com/app/218620
Price £14.99

Payday 2 is one of the most popular
multiplayer games around, allowing up to
four players to carry out intricate heists or

simply go guns blazing when it all inevitably goes
wrong. The customisability is deep in this game,
with unlockables and perks allowing the player to
specialise or tweak equipment depending on the
heist. Seeing the player’s safehouse expand and
upgrade over time also provides a nice sense of
progression on top of the levelling system,
keeping the game interesting and allowing for
many hours of gameplay.

On the surface, Payday is simply a shooter, but
more experienced players will uncover a
multitude of strategic options, such as scouting
out locations and disabling security mechanisms
before donning the mask and going in.

The game is essentially an exclusive
multiplayer experience, and while there is an
offline mode, the AI does little more than serve
as some extra firepower, and there’s no story

mode to keep things interesting. In fact, more
complicated missions can be nearly impossible
to complete in single player. However, at its
best, when played with others online, Payday 2
is deeply exhilarating, aided by its soundtrack,
which changes in intensity to match the situation.

If you’re looking for a strictly single-player
experience then it’s best to give this a miss
since it has little to offer in that regard. However,
Payday 2 is a great deal of fun played with
friends, through communication and tactics can
be somewhat more limited.

LV027 046 Gaming.indd 46 15/04/2016 09:29

www.linuxvoice.com 47

GAMING REVIEWS

Payday 2
Out of the Park Baseball 17
This is worth picking up for fans of the sport
management genre. However, if you already
have one of the older games you should note
that the new installment consists mostly of a
roster update, though there is a new 3D
ballpark view. If you haven’t tried the series,
and want a change from the likes of Football
Manager, this is for you.
http://store.steampowered.com/app/402430

ALSO RELEASED…

Deponia Doomsday
An unexpected encore.

Those who played the hugely
successful Deponia adventure
game trilogy will know that the

ending was divisive among fans and a
sequel has been demanded for a long
time in order to amend this. Out of
nowhere, Deponia Doomsday was released,
with the unfortunate precedent of creative
vision succumbing to fan pressure.

Although the game comes close to
needless fanservice, it ties everything
together nicely while surpassing its
predecessors in many areas. The game’s
protagonist had been criticised for being
amoral and unintelligent, and this has
been toned down, while puzzles are more
streamlined, addressing concerns with the
previous titles.

The game won’t make a huge deal of
sense if you haven’t played Deponia: The
Complete Journey, and is intended as a
tongue-in-cheek love letter, delivering
more laughs, more characters and a
bit of closure and doing most of these
better than before. Deponia Doomsday has
turned out to be a very decent addendum
to a fantastic series, bringing its lovable
characters back to life.

Villagers
A delightfully old-school city builder.

C ity building god games seemed to
have died out some 15 years ago,
after the likes of Populous, The

Settlers and the like were extremely
popular. Villagers recreates that feel, even
down to its simple graphical style.

The game has received a fair bit of
flak for being similar to Banished, a game
whose Linux port is in the works but as yet
uncompleted. This seems something of a

moot point since neither game is original,
and as such, there is nothing particularly
groundbreaking here as the player builds
up a settlement while contending with the
elements, famine, wolves and disease.

Nevertheless, it’s great to see a return
of this genre and Villagers does well
in breathing new life into it, keeping
it simple and not overloading it with
forced additions. There’s also a story
mode, which is worth playing through to
get to grips with the mechanics before
embarking on a full sandbox mode.

Dog Mendonça & Pizzaboy
This beautiful point-and-click adventure game
– based on the comic book of the same name
– is the first major game to use the FOSS
Godot engine. If that alone isn’t reason enough
to get it, it’s also worth noting that this has
some of the best visuals seen in an adventure
game, with its amazing pre-rendered
backgrounds. There’s also a nice film noir vibe
and a variety of intriguing characters.
http://store.steampowered.com/app/330420

Sheltered
The nuclear apocalypse has wiped everything
out and now it’s time to build and manage a
bunker, ensuring the survival of family
members and potential drifters. Like other
such games, Sheltered starts off simple
enough, building and upgrading items in the
shelter, but quickly turns into a hugely
addictive exercise in multitasking as it grows.
It isn’t as deep as This War of Mine story-wise,
but it’s far less depressing.
http://store.steampowered.com/app/356040

Villagers is both graphically
and mechanically reminiscent

of a bygone age in gaming.

The plot centres heavily on time travel, but
manages not to be too chaotic.

Website http://store.steampowered.com/app/412460
Price £14.99

Website http://store.steampowered.com/app/421050/
Price £23.99

LV027 046 Gaming.indd 47 15/04/2016 09:29

www.linuxvoice.com

REVIEWS BOOKS

48

Ben Everard is a machine that converts noodle soup into words.

Technically, several machines made that book,
but we aren’t going to be pedantic.

Computer science is an odd subject.
It’s not really about how computers
work, or how to use them. The

introduction to this book quotes Edsger
Dijkstra as saying “Computer science is no
more about computers than astronomy
is about telescopes.” Instead computer
science is a highly theoretical subject
dealing with the very nature of computation.
That, of course, is a wholly unsatisfying
explanation of the subject, but we simply
don’t have enough space to explain it fully. A
Machine Made This Book tries to explain the
fundamental principals of computer science
to a non-technical audience.

John Whitington tackles this by looking
at the various bits of computation involved
in putting a book together. This covers

everything from rendering fonts to text
layout, and each task to be completed
needs a separate computational solution.
There’s no programming involved (computer
science isn’t about programming), but
instead, Whitington looks at the underlying
ideas behind the tasks. He also covers some
of the history of the subject.

A Machine Made This Book is entertaining
to read and gives a good basic introduction
to the subject for anyone who hasn’t studied
computer science. It won’t make you a
better computer user, but it will open your
eyes to a new way of looking at computing.

A readable foray into the often opaque
world of computer science.

Author John Whitington
Publisher Coherent Press
Price $19.99
ISBN 978-0957671126

Designing With LibreOffice
Can LibreOffice styles save Ben Everard from CSS madness?

L ibreOffice can be thought of as a
communications tool. It can perform
other tasks, but mostly it conveys

information from one person to another,
whether in the form of a letter, a slide show
or a spreadsheet. Good design makes this
communication clearer and more attractive
to your audience. LibreOffice provides many
tools to help you with this, such as the style
manager and templates. Use these well, and
creating good-looking documents is easy.

Designing With LibreOffice shows you
how to make the most of all the software
in LibreOffice (except Base), though over
two thirds of the book focuses on Writer. At
almost 500 pages long, it’s a bit daunting,
but the text is well structured, so you don’t
have to go through the whole thing in one
go. By going through a chapter at a time, you

can gradually build up your LibreOffice skills
without having to commit weeks to
the effort.

You can download the source files for the
book (in the Free and non-DRM-encumbered
ODT format, naturally) to take a look at
how the author, Bruce Byfield designs his
own documents. These source files are
licensed CC-BY-SA so you can also make
changes and release them if you wish. The
French LibreOffice documentation team are
currently working on a translation, so if you
have time on your hands and would like
to join them, download the files and start
spreading the word.

You no longer have any excuses for sloppy-
looking documents.

A Machine Made This Book

If you use LibreOffice, this book will save you time and
make your work look better.

Author Bruce Byfield
Publisher Friends of OpenDocument, Inc.
Price Free or £15.08
ISBN 9781921320446

LV027 048 Review Books.indd 48 15/04/2016 14:05

www.linuxvoice.com

BOOKS REVIEWS

49

Also released…
Aurora
Graham Morrison cancels his ticket for Elon Musk’s starship.

In space, no one can hear you scream or
read your bad book reviews.

As regular readers will know,
we’re partial to a little science
fiction, and we’re not alone.

Tim O’Reilly has a vast personal
collection, and he even became friends
with Dune author, Frank Herbert, while
writing a book about him. The last
sci-fi book we reviewed in Linux Voice
was The Martian, a book recommend
to us at OggCamp, and we loved it.
Aurora comes with similar praise. It’s
an award winning novel from an award
winning novelist with glowing reviews.
It even has a somewhat similar
premise to The Martian. It’s set inside
a ‘generational starship,’ designed to
accommodate several generations as
they travel for 200 years to colonise
Tau Ceti. But despite this interstellar
setting, the story quickly becomes
one of resources and resourcefulness,
and depressingly, the fragile art of
community. Perhaps the reason why
The Martian’s biologist, Mark Watney,
was able to accomplish so much
alone on Mars was precisely because
he was alone. Put 2,000 people on a
ship, it seems, and no one ever makes
a reasonable decision again.

Sadly, we found this all-too-earthly
premise all too familiar. Aurora could
have been set anywhere – on a small
island, on a transatlantic voyage, in
Cambridge. The science fiction feels
like a beautifully hung backdrop, like
a Hubble image glimpsed through
the starship’s dimly lit interior at
night. There is plenty of science –
we’re constantly reminded about
the incredible balancing act required
to maintain life, where biodiversity
rules and where any change in one
of a million unknowable feedback
cycles can and will have catastrophic
consequences. But most of the book
surrounds the humans and how
they arrange themselves for such an
arduous journey.

Predictably, there are parts similar
to William Golding’s Lord of the Flies

A Machine Made This Book
Author Kim Stanley Robinson
Publisher Orbit
Price £8.99
ISBN 978-0356500485

balanced against parts similar to
Prime Minister’s Questions in the UKs
Parliament. There’s lots of diplomacy,
lots of drama and lots of strategising.
For us, there’s too little classic sci-fi
escapism. In particular, we were
expecting a story more like Arthur C
Clarke’s, Fall of Moondust, in which a
Lunar tourist vessel becomes stuck
and submerged in a moon crater, or
even Clarke’s Rendevouz with Rama,
where a feeling of alien isolation
pervades every sentence as the silly
humans break into an unknown craft
passing through the solar system.

Bustle in your hedgerow
Our main problem with Aurora is
simple: we found it mundane. In all the
various trials faced by the on-board
population ,travelling light years from
one star system to another, through
the vast inky blackness of space, for
the first time in human history, there
was too little awe at the cosmos.
However, there was plenty of apathy,
an all-too earthly trait. The in-flight
human machinations are far more
probable, and may be interesting to
some, but we wanted more simple
adventure and less political intrigue.
And sadly, we didn’t get it.

A play in two acts that could have been
set anywhere.

The world wide web has
been around for a while
now, and yet it’s littered
with poor design. Making
sure products work the
way your users expect
them to seems like a
simple task, and yet it’s
almost impossible. This is
the premise of this book
– now in its second
edition – and we can only
hope more designers and
web developers take its
message to heart.

Bring back GeoCities!
(only joking).

Designed for Use

The full title of this book
is Designing Machine
Learning Systems with
Python, and it’s incredible
to see how popular Python
has become. This has
happened quietly, as a
new generation of
developers discard
compilers and
complicated build
systems. And machine
learning is another trend
that’s just discovered the
same thing.

Teach the machines to
think for themselves!

Designing Machine Learning Systems

Soldering components
and building electronic
things is a physical
process. It’s difficult to
use a screen at the same
time, so having a physical
encyclopedia to the
components you’re using
is very helpful, especially
when it comes from a
publisher with the clout of
Make. Books like this also
make the perfect birthday
gift, so we’d suggest
leaving this page open… Build something now!

Electronic Components vol 3

May 2016

LV027 048 Review Books.indd 49 15/04/2016 14:06

www.linuxvoice.com

GROUP TEST INSTANT MESSAGING CLIENTS

50

Instant messaging is probably
more prolific than email. It
started as a means for sending

simple text-only messages. But over
the years IM has evolved into a
full-fledged feature-rich medium of
communication that involves
images, audio and even video.

There are two very distinct
settings for the use of IM, which
have a direct bearing on its features.
The primary users of IM are
individual home users who use it
for touching base with their friends
and family. Increasingly, IM is also
being adopted by institutional users
inside the corporate environment.
These of users have slightly different
requirements. One key differentiator
between the two types of user
bases is the choice of IM protocol.
For home users, the choice of
protocol isn’t usually a conscious

one. Rather it’s determined by the
messaging service they choose to
use for the correspondence. For this
reason, a majority of home users
would prefer to use an IM client that
enables them to communicate on
multiple different services.

Some corporate environments
prefer a protocol that excels at
transmitting audio and video, while
others would be willing to accept
a lag as long as the protocols
guarantees security and privacy.

In this Group Test we’ll look
at some of the best IM clients
that’d best serve both of these
kinds of users. Besides their core
functionality and support for
multiple protocols, we’ll also be on
the lookout for the IM client that you
can use in all sorts of environments
and for all kinds of uses, be it
personal or corporate.

Mayank Sharma is as stingy as a Yorkshireman the day before pay day, and would
rather test different instant messaging clients than pay for a real phone.

Instant messaging clientsOn test
URL www.gajim.org
Licence GNU GPL v3
Latest release 0.16.5
Can the lightweight app hold a
candle to the biggies?

Gajim

URL www.jitsi.org
Licence Apache
Latest release 2.8
A Java-based IM client that began
life to facilitate VoIP.

Jitsi

URL http://kopete.kde.org
Licence GNU GPL
Latest release 1.7.2
It might be on the way out, but it
still packs quite a punch.

Kopete

URL www.pidgin.im
Licence GNU GPL
Latest release 2.10.12
Can one of the oldest IM clients stave
off competition from the young ’uns?

Pidgin

URL https://github.com/tux3/qTox
Licence GNU GPL v3
Latest release 1.3.0
The only client in this group test that
doesn’t route IMs via a central server.

qTox

URL www.wickr.com
Licence Proprietary
Latest release 2.6.0
A proprietary software for secure
communications sounds oxymoronic…

Wickr

GROUP TEST

Protocol stew
Before IM clients can stream your text,
audio or video over the internet, they
need to first process and transform them
into a form that is suitable for passing
over the network. This conversion is
handled by bits of code called codecs.
There have been several attempts to
create a unified standard for instant
messaging, including IETF’s Session
Initiation protocol (SIP), SIP for Instant
Messaging and Presence Leveraging
Extensions (SIMPLE) and the XML-based
Extensible Messaging and Presence

Protocol (XMPP). Despite their popularity
in certain use cases, the majority of
free IM services by popular networks
continue to use their own proprietary
protocol. That said, many services have
taken steps to enable users on their
network to communicate with users on
another network. None of the protocols,
however, has received the same level of
acceptance as XMPP, popularly known as
Jabber. Designed to be extensible, XMPP
has taken on new features and is today
one of the best all-round IM protocols.

The primary users of IM are home
users who use it to touch base with
their friends and family

LV027 050 Group Test.indd 50 14/04/2016 15:15

www.linuxvoice.com

INSTANT MESSAGING CLIENTS GROUP TEST

51

The Java-based Jitsi IM client runs on
multiple desktop platforms and is
easy to install. When you launch it

for the first time, Jitsi opens up a window
where you can enter authentication
information for several different services and
protocols including Google Talk, Facebook
and XMPP. Furthermore, Jitsi is a full-fledged
VoIP client as well and also lets you make
calls using the Session Initiation Protocol
(SIP). Unlike the other clients in this group
test, Jitsi started out as a SIP client (and was
in fact initially named the SIP
Communicator) and was later renamed
because of its enhanced protocol support.

The client supports one-to-one and multi-
user conference chats on the supported
services. You can use Jitsi to make audio
and video calls to one user or to several
users on both SIP and XMPP networks.
During such an audio/video call, Jitsi can
mute calls, put them on hold, transfer them,
and can also record them. Again this feature
is available for SIP and XMPP networks
depending on whether the service being
used supports the feature. One of the best
features of the client is its ability to make
registrar-less SIP calls to other Jitsi users on
the local network.

Jitsi also has some of the best security
features. Not only does it store your login
details in an encrypted warehouse, it can
also authenticate the identity of a contact
via their unique fingerprint. If your friends
are using another client, Jitsi can also use
the standardised Off-The-Record (OTR)
extension to encrypt instant messages

Jabber came to life in 1998 and was
formalised as the XMPP protocol by
the Internet Engineering Task Force

(IETF). It is by far the most popular IM
protocol and is implemented by several
instant messaging servers. Google Talk also
uses XMPP. However, the service dropped
XMPP federation in 2004, though users can
still connect to their GTalk account using
third-party XMPP clients.

Jitsi
One with everything.

Go grab a Jabber
It’s free and interoperable.

VERDICT
The only thing you can
hold against this client is
that it’s resource hungry.

over all the supported networks. Jitsi is also
one of the few clients that can also encrypt
the audio and video calls as well using the
SRTP and ZRTP protocols over both SIP and
XMPP connections.

Sharing is caring
One of Jitsi ’s unique features is its ability
to stream and share your desktop without
using any of the traditional desktop
streaming mechanisms such as VNC.
Jitsi also lets you stream either the entire
desktop or a portion of the screen. You can
even enable your contact to remotely control
your desktop. Moreover, users at both ends
of a call can share their desktops with the
other person at the same time.

Jitsi enables you to select contacts that
you want in a conference call. The good
thing about Jitsi ’s conference call is that it
lets you add contacts from different services
and protocols and join them in a single
conference call. One useful button is Record,

which lets you save the audio from the call
as an MP3. You also get buttons to create
a conference call or transfer a call, both of
which open a dialog box to select contacts.

The Jitsi developers have also created an
XMPP component called Jitsi Videobridge
that enables multi-user video calls. Jitsi
Videobridge receives video from every
participant and relays it to the others. The
app also has a range of narrowband and
wideband codecs, including the G.722, Speex
and Skype’s SILK codec. Jitsi integrates
nicely with the desktop. You get pop-up
messages to indicate when a contact is
writing a message, as well as the message
itself if the message window isn’t open. The
app also has enterprise-friendly features,
such as support for LDAP directories.

Federation is one of the best things about
XMPP/Jabber. Users registered with one
Jabber service can interact with users on
another Jabber service without any issues.
There are several XMPP servers on the
internet that enable you to register a free
account. Jabber.org is the original XMPP
service. Although it currently isn’t registering
any accounts, the website hosts a list of
other XMPP services that allow public

registrations (https://xmpp.net/directory.
php). Besides the link to the service, the
directory also grades the services based on
a number of factors including their country
of origin, the Certification Authority and
the XMPP server that powers the service.
While you can register with any of the listed
services directly by visiting their webpage,
several IM clients in this group test also allow
you to register with a public XMPP server.

Jitsi can help you create temporary and permanent private chat rooms.

LV027 050 Group Test.indd 51 14/04/2016 15:15

www.linuxvoice.com

GROUP TEST INSTANT MESSAGING CLIENTS

52

T he well-known Pidgin IM client
quite possibly supports the
largest number of networks. It

features a tab-based interface for
hosting multiple conversations
simultaneously. You can use Pidgin to
sign into multiple accounts and
services at the same time. On these
services, the app supports all the typical
IM features such as file transfers, away
messages, buddy icons, custom
smilies, and typing notifications.

The default user interface of Pidgin is
easy to navigate. Settings that influence
the app can be configured from the
app’s main window, while settings
pertaining to a particular chat can be
tinkered with from the chat window.

One of the client’s best features is
buddy pounce. Using the feature you
can configure Pidgin to perform an
action when a buddy does something
like sign-in or send a message and
so on. One of Pidgin’s strengths is

Pidgin
The ageing padawan.

its plugin infrastructure. Most Pidgin
installations come with a handful of
useful plugins, including an auto-accept
plugin for file transfers, and a psychic-
mode plugin, which pops up a window
as soon as someone is typing out a
message to you. There’s even a plugin
that hooks up Pidgin with Rhythmbox
and updates your status automatically
with the title of the track you’re currently
listening to. One useful plugin is the
History plugin, which displays your last
conversation with a contact whenever
you open a new IM window.

Third-party add-ons
Besides the ones supported officially,
there are tons of third-party plugins
linked to on the project’s website.
However, be aware that not all of them
work on Linux. One useful plugin that is
often available as a separate package
on most distros is the Pidgin-OTR
plugin for encrypting the chat sessions.

Some of Pidgin’s features work best
if the contact at the other end is also
using the same client. This includes
everything from minor features such as
the ability to buzz your contact to grab
their attention to audio and video calls.

Pidgin developers are quick to fix vulnerabilities in the app
as well as in its libpurple library.

Gajim supports Bonjour/Zeroconf to discover other users
on the local network.

This is another small but
powerful XMPP/Jabber client. If
you aren’t already registered,

Gajim is aware of a large number of
Jabber services and can help you set
one up with ease. However, the client
doesn’t let you add accounts on
popular services such as MSN, ICQ,
AIM and others. To use it to connect
with buddies on these popular
networks, you’ll have to rely on IM
transports and gateways – but not all
services support transports to other
networks. Gajim includes the Discover
Services option to list all supported
transports on the connected service.

Like Pidgin, Gajim has a simple
interface with a tabbed chat window.
It too offers group chats, file transfers
and other common IM features, such
as emoticons and avatars, that you’d
expect from any full-fledged IM client.
Gajim lets you set status messages,
manage contacts, customise

Gajim
The bantamweight pugilist.

appearance, log conversations and
change themes and skins with ease.
Head to Help > Features to get a list
of all the supported features that can
be used in your setup. If some of the
features aren’t available, the window
will point you to the libraries you need
to install to get that feature to work.

Make a noise and make it clear
You can also use Gajim to have voice
and video chat sessions with your
contacts. However, while Gajim works
on Windows as well, the multimedia
ferrying sessions work best if both
clients are on Linux. One of the app’s
strong suits is its settings screen, which
enables you to configure almost every
single bit of the app such as preset
messages, notifications, and the port
used for file transfers.

Gajim also features an impressive
list of plugins, including a version of
the OTR plugin written in Python. For

more security, Gajim also supports an
experimental plugin for the OMEMO
encryption, which as per the developers
gives better encryption features than
OTR. Another benefit Gajim has over
Pidgin is that it lets you store passwords
in Gnome Keyring or KDE Wallet.

VERDICT
A wonderfully feature-rich
and versatile IM client
especially for XMPP users.

VERDICT
A long-time Linux
mainstay that’s ideal for
texting across networks.

LV027 050 Group Test.indd 52 14/04/2016 15:15

www.linuxvoice.com

INSTANT MESSAGING CLIENTS GROUP TEST

53

Functionally speaking, both instant
messaging and VoIP appear the same.
You can use both to exchange text

messages and files and make audio and video
calls. But in technical terms, the comparison is
akin to comparing apples and oranges. To
better understand the differences (and
similarities) let’s compare their protocols. The
main IM protocol is XMPP, while SIP does the
same job for VoIP.

Both XMPP and SIP are what are known
as signalling protocols. They are designed to
establish channels that allow two clients to
communicate packets of data with each other.
However, neither SIP nor XMPP technically
carry the actual voice/video data. This is left
up to other protocols, which are negotiated by
the signalling protocol.

The one major difference between the two
is in terms of their design – SIP is a peer-
to-peer protocol and XMPP is client–server.
Furthermore, the two protocols have evolved
differently. SIP was designed primarily with
just signalling as a goal, while XMPP was
designed primarily with messaging and
presence as a goal.

Over time both have gradually extended into
each others’ realm though: XMPP added an
extension called Jingle for session negotiation
and SIP added an extension called SIMPLE to
support IM and presence.

All said and done, primarily due to their
pedigree, SIP is particularly suited for
telecommunications, and is offered by vendors
for trunk services to and from the PSTN while
XMPP is primarily used for federated IM.

IM vs VoIP

Use the Tor Messenger to route OTR-encrypted
messages via the Tor network.

Kopete lets you have video chats, but only over Yahoo’s IM service.

Kopete supports a wide variety of
protocols including AIM, ICQ,
MSN, Yahoo, IRC and Jabber. The

first step once you’ve installed the client is
to add an account. This populates the
interface with your list of contacts. The
interface also has easily accessible
buttons to change your status, add new
contacts, and show all contacts. The chat
window is also pretty much like the other
clients. There are options to insert smileys
and send files. If you’re in a group chat, the
window will show a list of all participants.

True to its name, Kopete is your
typical KDE app and lets you customise
virtually all aspects of the client. The
panel for configuration of notification
is overwhelming. Unlike the other
clients, Kopete has a highly useful
account management scheme. The app
encourages you to first create identities
for your different circles of friends, such
as work, family, and friends. Next up, you
should associate each identity with as
many accounts on any of the supported
networks. This scheme lets you sign into
multiple accounts and add people from
different services in such a manner so as
to never crowd the interface.

Unlike Pidgin and Gajim, Kopete doesn’t
have many plugins, since the app itself
is so tweakable. There’s a plugin that
does on-the-fly spell checking while
another aggregates statistics about your
conversations. There’s also a Contact
Notes plugin for adding personal notes to
each contact.

Kopete
Kollect kall.

Talking of contacts, Kopete can group
different contacts that correspond to
the same person on different networks
into one single meta-contact. So if you
have a friend who is on several networks,
instead of him hogging the app’s interface,
you can group all his identities into one
single entry. Kopete can also stop all
notifications, except those of selected
contacts. Then there’s the Highlight plugin,
which will call for your attention when
a message in a group chat matches a
specified regular expression. Geekier
users will recognise the benefit of such a
feature, especially in an IRC chat room.

In terms of security. Kopete can encrypt
your conversations once you’ve enabled
the OTR plugin. In Kopete the OTR plugin
offers four different enabling policies. The
default policy labelled Opportunistic works
best for a majority of users and will only
start the OTR session automatically but
only if the user on the other end also uses
the plugin. There’s also the Privacy plugin,
which helps filter certain messages.
Kopete determines which messages to
filter by dividing your contacts into a
whitelist and a blacklist. You can also filter
messages by specifying a list of words
and ask Kopete to drop messages that
support either some of these words or all
of them.

Two side of the same coin?

VERDICT
A highly konfigurable IM
client with exceptional
contact management.

LV027 050 Group Test.indd 53 14/04/2016 15:15

www.linuxvoice.com

GROUP TEST INSTANT MESSAGING CLIENTS

54

There are several apps designed
to protect different facets of
your online life from unwanted

prying eyes. Wickr and qTox are two
popular apps that help safeguard IM
communication.

Wickr enables users to exchange
end-to-end encrypted messages that
besides text can include photos, videos,
and file attachments. Unlike the other
apps in this group test, Wickr enables
users to set an expiration time for their
encrypted communications. The app
is available for all major mobile and
desktop operating systems.

The service encrypts all
communications locally on each device
with a new key generated for each new
message. Furthermore, although Wickr
communication is routed through a
server, the service is designed so that
Wickr itself does not have access to
your passwords, encryption keys nor
the messages. For further privacy,
Wickr strips metadata from all content
transmitted through its network.

You can get started with the service
without giving out your name or
even your email address: just pick a
username and password and you’re
good to go. But if you do give it your
email address, the service can search
your contacts for people you know who
also use Wickr and automatically adds
them to your contacts list. Besides
one-to-one chats, Wickr lets you chat
securely with a group of up to 10 users.

qTox vs Wickr
Messengers for the post-Snowden internet.

Like Wickr, the Tox protocol also does
end-to-end encryption of text, audio
and video messages. However, Tox
addresses the shortcomings of Wickr –
it’s open source and doesn’t route your
messages via a central server.

Detox chatter
The Tox protocol uses the same
peer-to-peer technology used by
BitTorrent to provide direct connections
between users. Instead of usernames,
every user in a Tox network is
represented as a string of bytes, which
is their Tox ID. Also all chats are
encrypted using the NaCl encryption
library. Since there’s no central server,

users can simply fire up their Tox client
and add friends without signing up with
a service or configuring an account.

Tox offers a couple of different clients
for all the popular desktop and mobile
platforms. The basic usability is pretty
much the same across the clients. You
launch the client and assign yourself
a nick that generates a Tox ID that you
can then pass on to friends. When your
friends add you, you get a notice, which
you’ll have to accept after verifying their
Tox ID, before you two are connected.
If your friends are using a Tox mobile
client, you can save and send them a
copy of the QR code image generated
by your Tox client. The Tox mobile
clients can scan the QR Code and add
users automatically.

Not all Tox’s features are available
across the clients. Text-based IM works
across all supported platforms and
their users can also securely share
images and screenshots. Additionally
desktop users across the clients can
make audio and video calls to each
other without any noticeable delay and
can also host group chats with others
users of the desktop clients.

Wickr gives each message a live countdown so you know how long you have until it disappears.

The Tox protocol also supports the use of custom ‘tox:’ URIs to create links that’ll launch
a user’s Tox client and automatically add you as a contact.

VERDICT
WICKR The best option
for sending amnesiac
instant messages.

QTOX Ideal client for
exposing the best
features of the new
P2P protocol.

LV027 050 Group Test.indd 54 14/04/2016 15:15

real shortcoming is its inability
to do real-time audio and video
conversations. But if you wish
to send snapchat style self-
destructing messages, there’s no
better secure option than Wickr.

On the other hand, the Tox
protocol is open source and uses
P2P technology instead of a
centralised server. Like Wickr, Tox
also has clients for desktop and
mobile OSes. Unlike Wickr, however,
you can use the Tox desktop clients
to have voice and video calls.

That leaves us with Jitsi, which
includes the best features of all
the other clients. It’s open source,
supports multiple popular public
networks and protocols including
XMPP and SIP, and can be used to
send files. On top of this, Jitsi can
host individual as well as group
voice and video chat sessions. The
app also implements the ZRTP
security protocol designed by the
creator of PGP, Phil Zimmermann.
Jitsi scales well and can be used for
everything from short text-based
chats to full-fledged multi-user
video sessions.

There’s very little to choose
between Pidgin, Kopete and
Gajim. All three are

wonderful Jabber/XMPP IM clients
and each has its own unique
features. Many distros have
replaced Kopete with Telepathy, but
some like OpenSUSE continue to
stick with the old but solid app that
still works as advertised.

Similarly, Pidgin and Gajim are
exceptionally well performing
IM clients that can take on new
features thanks to their diverse
list of plugins. While Pidgin is
convenient for connecting with
friends on well-known public
services, Gajim scores for being an
all-round XMPP client.

Similarly, there’s little to choose
between Wickr and qTox. Wickr
is closed source and uses
a proprietary algorithm but
comes from a developer with
impressive security creds and
has been audited by several
reputable organisations. In fact,
Wickr’s bounty for discovering
a vulnerability in the app is still
lying unclaimed. The app’s only

www.linuxvoice.com

INSTANT MESSAGING CLIENTS GROUP TEST

55

1st Jitsi

Killer feature: ZRTP secured video calls.
https://jitsi.org
An exceptional IM client that works well for all kinds of users.

2nd qTox

Killer feature: Full featured peer-to-peer IM sessions.
https://github.com/tux3/qTox
The only IM client to avoid routing sessions via a central server.

3rd Wickr

Killer feature: Encrypted messages with an expiry date.
www.wickr.com
Designed for paranoid users who prefer to put their privacy over
any other feature.

4th Gajim

Killer feature: Lightweight but with all the bells and whistles.
https://gajim.org
Implements the best features of XMPP but works well only when
all parties are using the same client.

5th Pidgin

Killer feature: Supports a wide range of networks and
protocols.
https://pidgin.im
Works well for traditional IM services, but getting audio and video
to work is a black art.

6th Kopete

Killer feature: Helps curb account proliferation.
https://userbase.kde.org/Kopete
A tweaker’s haven with its best days behind it.

You can host video conferences on your own infrastructure by
deploying JitMeet.

OUR VERDICT
Instant messaging clients

Your own private IM server
If you’re sold on the idea of offering an
IM service to users on your network, it’s
best to roll your own IM server.

Just like the clients, there’s no
dearth of open source XMPP-based
IM servers. Some of the popular ones
include Ejabberd, Prosody and Openfire.
All these servers offer IM services based
on the XMPP protocol but come with
their own unique set of features that
make them suitable for different kinds
of deployments. The feature-rich and
very extensible ejabberd is one of the
most deployed servers. If you’re looking
for a server for a small team, there’s

Prosody, which can even be run on a
Raspberry Pi. The Java-based Openfire is
resource-hungry but also offers its own
cross-platform clients.

Deploying an IM server is pretty
similar to deploying any other server
software. The Turnkey Linux project also
produces a ready-to-roll JeOS appliance
for the ejabberd server (https://www.
turnkeylinux.org/ejabberd). You can
use this appliance to evaluate the
server or even deploy it on a production
environment inside your network or on
virtual and internet-based infrastructures
such as Docker and OpenStack.

Jitsi implements the ZRTP security
protocol designed by the creator of
PGP, Phil Zimmermann

LV027 050 Group Test.indd 55 14/04/2016 15:15

Get 100 pages
of tutorials,

features, interviews
and reviews
every month

Access our
rapidly growing

back-issues archive
– all DRM-free and
ready to download

Save money on
the shop price

and get each issue
delivered to
your door

Payment is in Pounds Sterling. 12-month subscribers will receive 12 issues of Linux Voice a year. 7-month
subscribers will receive 7 issue of Linux Voice. If you are dissatisfied in any way you can write to us to cancel your

subscription at subscriptions@linuxvoice.com and we will refund you for all unmailed issues.

 Gives 50% of its profits
back to Free Software

Introducing Linux Voice,
the magazine that:

 Licenses its content
CC-BY-SA within 9 months

12-month subs prices
UK – £55
Europe – £85
US/Canada – £95
ROW – £99

7-month subs prices
UK – £38
Europe – £53
US/Canada – £57
ROW – £60

DIGITAL
SUBSCRIPTION
ONLY £38

Subscribe
shop.linuxvoice.com

www.linuxvoice.com

SUBSCRIBE

56

LV027 056 Subs UK.indd 56 15/04/2016 13:01

www.linuxvoice.com

NEXT MONTH

57

NEXT MONTH IN

LINUX VOICE IS BROUGHT TO YOU BY

EVEN MORE AWESOME!

The recent change in
attitude from
Microsoft towards
Linux has left us
confused, bemused
and bewildered. Is it
real love, or are we
being used?

MS + Linux 4 ever

Editor Graham Morrison
graham@linuxvoice.com
Deputy editor Andrew Gregory
andrew@linuxvoice.com
Technical editor Ben Everard
ben@linuxvoice.com
Editor at large Mike Saunders
mike@linuxvoice.com
Creative director Stacey Black
stacey@linuxvoice.com

Editorial consultant Nick Veitch
nick@linuxvoice.com

All code printed in this magazine is licensed
under the GNU GPLv3

Printed in the UK by
Acorn Web Offset Ltd

Disclaimer We accept no liability for any
loss of data or damage to your hardware

through the use of advice in this magazine.
Experiment with Linux at your own risk!
Distributed by Marketforce (UK) Ltd, 2nd
Floor, 5 Churchill Place, Canary Wharf,
London, E14 5HU
Tel: +44 (0) 20 3148 3300

Circulation Marketing by Intermedia Brand
Marketing Ltd, registered office North Quay
House, Sutton Harbour, Plymouth PL4 0RA
Tel: 01737 852166

Copyright Linux is a trademark of Linus
Torvalds, and is used with permission.
Anything in this magazine may not be
reproduced without permission of the editor,
until January 2017 when all content is re-
licensed CC-BY-SA.
©Linux Voice Ltd 2016
ISSN 2054-3778

Subscribe: shop.linuxvoice.com
subscriptions@linuxvoice.com

The former president
of the Open Source
Initiative, advisor to
approximately 47%
of all Free Software
projects and
all-round good egg
pops in for a chat.

Simon Phipps

For bulletproof
security, a sensible
filesystem and a
pretty decent set of
native applications,
why not give this
alternative operating
system a try?

OpenBSD

If you use Linux, you’re an admin – even it
it’s just one machine with one user. Join us,
and discover the power at your fingertips.

SYSADMIN 101

ON SALE
THURSDAY

26 MAY

LV027 056 Subs UK.indd 57 15/04/2016 13:01

www.linuxvoice.com

FOSSPICKS

58

Sparkling gems and new
releases from the world of
Free and Open Source SoftwareFOSSpicks

Hugin 2016.0.0
Photo stitcher

Our benevolent editorial overlord Graham Morrison tears himself away
from updating Arch Linux to search for the best new free software.

We’ve been using Hugin for
a long time. It’s the best
open source software

we’ve found for stitching together
multiple photos taken at an offset
and for turning them into a single
panoramic image. It does this
brilliantly, working with 16 bits per
colour channel to dynamically
adjust brightness, colour, angle,
vignetting (brightness and darkness
at the edge of an image) plus
various chromatic and visual
distortions, creating an output
that’s not just seamlessly stitched
together, but also of a higher quality
than any one of the single images

used to make the composite. Hugin
is also capable of some rather
clever projection mapping, such as
with vertical control points and can
generate high-dynamic range
photography.

It does all this by offering dozens
of control options via lots of
different panels. But these options
can be cleverly culled by allowing
the user to select between Simple,
Advanced and Expert views in the
GUI. ‘Simple’ is never going to be as
simple as the point-and-click of
your smartphone’s camera
application, but Hugin’s output is
always better, at least in our

experience, especially when you
zoom in and examine the details of
a join. With a little tweaking in Hugin,
you can’t see them.

A stitch in time
We’ve found that you can generate
excellent panoramas by simply
importing a group of images,
playing slightly with the alignment,
and generating the large output file,
with no specialist skills necessary.
In Simple mode, to stitch a couple
of photos together into a panorama,
use the Add Images button to insert
your images and click on the Align
button. This process should
automatically detect and anchor
control points within the overlapped
parts of your images. You can then
play with the projection and the
cropping and generate the output.

Hugin is also an exceptional
application if you want to dive into
the details. There are major
improvements in this version to the
way colour profiles are managed
and used by the many command
line tools that augment Hugin’s GUI
functionality. There are lots of
bugfixes too, and this version is
noticeably more stable when
manipulating groups of massive
images. We also really like the
align_image_stack command for
merging bracketed images,
although the internal Align works
just as well. Nothing comes close
to Hugin for its stitching quality and
output for panoramic or mosaic
photo composition.

1
2

3

4

5

6

7

1 Simple Mode Import photos, click on Align, and mess around with the projection, crop and preview
2 Tabbed Windows Assist Mode will help with importing your photos 3 White Balance Each panel has a View Options –

White Balance for the preview 4 Panorama Editor More complex editing can be done from a different window, including
masks and manual stitching 5 Control Points Editable in either view, you can change how and were photos are welded
together. 6 Photo List Hugin works as well with two images as it does with 20, although everything takes longer
7 Projection Even single images can be projected onto spheres.

Project website
http://hugin.sourceforge.net

LV027 058 Fosspicks.indd 58 14/04/2016 15:16

www.linuxvoice.com

 FOSSPICKS

59

We know of no other command that will reveal which icon set
you’re using from the terminal!

We often find ourselves
using a variety of
commands to retrieve

basic system information, whether
we’re trying to work out which
version of Ubuntu we’re using, the
type of kernel running, or how much
RAM there is on the system.

There are lots of tools that
provide this information, especially
from the GUI, but it’s more common
for us to need these facilities from
the command line, where we can
probe the status of a machine
remotely. Neofetch is one of the
nicest of these commands we’ve
found, providing all the information
you need with just a simple
command, and presenting the data
it gathers in a very photogenic way.
At its most basic, for example,
typing neofetch will draw a logo for
your chosen distribution, tell you
about the kernel, RAM, CPU, GPU

and your terminal’s colour palette,
but it’s also capable of a lot more. It
can tell you what music the
machine is playing, for example,
and even display the cover art (and
other images) within the terminal.

The many arguments that can be
used when launching are used to
change almost everything about
what and how the data is displayed,
from the colour of the output and
the kind of information displayed. If
you need the same modified output
every time you run the command,
you can put all those arguments
into a configuration file which will
be used as the default when you
run the command without further

arguments. You can even change
the order of the output and the
formatting, as well as remove
information from the output you
don’t need.

Neofetch 1.5

We could fill an entire issue on how to use SystemTap – it’s
capable of displaying almost every little thing about your system.

Techniques like probing the
/proc virtual filesystem and
tools like Neofetch, above,

are great if you need quick and
accessible information about your
Linux system. But if you need more
control and more data, you need a
more ambitious tool.

SystemTap does this and more
with the emphasis on ‘complexity’.
It’s akin to Sun Microsystem’s
revolutionary (and complex) DTrace.
SystemTap translates its own
scripts into native C so that your
system’s C compiler can run the
script as a kernel module. This
means SystemTap can get
completely inside the running state
of your system, from network
packets and process latency to the
kernel and scheduler – like a series
of nanorobots for your system. It’s
best supported on Fedora, although

we had little difficulty getting the
tools installed and running on Arch.
In particular, you need to make sure
you build the kernel module against
your kernel version, using the
staprun command, after which you
can run the script embedded within
the module with the stap
command.

Power, absolute power!
It’s perhaps best suited to a
developer debugging their system
applications, or an embedded Linux
engineer, but it’s also useful for
systems running containers or
many different Linux instances, as
you can monitor system resources
outside of their execution
environments. Despite this
complexity , you may never need to
write your own scripts, as there’s a
brilliant community and some

excellent online documentation. In
particular, the official website
contains 156 examples, and
includes samples on how those
scripts can be run and used, as well
as how to interpret the output.

SystemTap 3.0
Uber system monitoring

System information

Neofetch provides all the
information you need in a
very photogenic way Project website

https://github.com/dylanaraps/neofetch

Project website
https://sourceware.org/systemtap

LV027 058 Fosspicks.indd 59 14/04/2016 15:16

www.linuxvoice.com

FOSSPICKS

60

Use this simple command line utility to test your internet speed,
and even automate speed checks over a period of time.

We would all like to think
that, in this world of
super-fast broadband,

the specific speed you get isn’t as
important as it used to be more.
Unfortunately, this isn’t the case.
Even if you’ve got the best
connection possible, ensuring you
get what you pay for is just as
important today as it was when you
had to listen out for the Hayes
initialisation string to execute on
your modem.

Your connection may be being
throttled or the speed may be way
off what you were sold. Bandwidth
may also fluctuate throughout the
day, or week, or month, and without
proper monitoring, you have neither
feedback nor recourse with your
ISP. This is particularly true in the
UK, where the hyper-competitive
market for ‘unlimited broadband’
means ISPs often try to

transparently adjust broadband
speeds according to demand or
usage levels.

The solution is to use a speed
checker, and there are many. The
most common are either web
pages or apps for a mobile device,
but Speedtest-cli is one you can run
from the command line. It’s as
simple to use as typing its name,
although a handful of arguments
enable you to change the testing
server, choose between bytes and
bits and share your results via
speedtest.net.

By default, after a few seconds
(depending on the speed of your
connection), you’ll be presented

with both a download and upload
speed. But the best thing about this
simple utility is that using nothing
more than cron, you can automate
this test and simply log these
speeds so you can see how the
bandwidth available to you changes
over time.

Speedtest-cli 0.3.4

There’s not much to see, but FATSort will turn random lists of files
into files properly ordered by file name.

This is a brilliant little tool, and
we owe a huge thanks to
james_olympus on our IRC

channel for its discovery. He
submitted this as a Find for our
podcast, and it’s one of those small,
simple utilities that makes you
wonder how you ever did without it.

It fixes a small but annoying
problem with the way some devices
read file names off FAT12, FAT16 or
FAT32 partitioned storage. Mostly,
that means USB sticks and SD
cards being read by music players,
such as those found in cars or
home stereos. But it also applies to
lots of internal storage found on
MP3 players. The problem is that
while FAT is widely used, thanks to
its history with Microsoft Windows,
the filesystem itself is very simple,
and most implementations of the
filesystem are even simpler. So

simple, in fact, that many devices
will read the filenames off a device
in the order that they’re written to
the blocks on the device, rather
than sorting their names into
something more logical. This is the
order your files were physically
written or copied, rather than
something sensible such as their
actual file name.

This is particularly important with
MP3 players, because many of us
arrange our music collections into
folders for each album, and prefix
each track name with the number
order of each track, such as 01, 02,
03. This means that when filename

ordering is ignored, so too is the
original ordering of the album.
FATSort solves this problem, and all
you have to do is enter the device
name following the command itself
– fatsort /dev/sda. Brilliant.

FATSort
USB file sorting

Performance monitor

Speedtest-cli is a broadband
speed checker you can use
from the command line

We owe a huge thanks to
james_olympus on our IRC
channel for this discovery

Project website
https://github.com/sivel/speedtest-cli

Project website
http://fatsort.sourceforge.net

LV027 058 Fosspicks.indd 60 14/04/2016 15:16

www.linuxvoice.com

 FOSSPICKS

61

Extraterm is esoteric but
powerful, and worth a look if
you want a new terminal

Forgive us for running a
GTK 3 terminal emulator
under KDE, but it was all
we had to hand.

We’ve noticed a
resurgence in all things
command-line. Perhaps

it’s to avoid the constant distraction
of the internet via a browser, or the
way command line tools are
generally engineered to do one
specific job. Either way, many of us
are replacing gargantuan desktop
applications with simple utilities
rendered in 12-point Courier.

We too are more productive with
these single-task tools, and
because many have been around
for so long they have unrivalled
stability, support and third-party
integration. Terminix is a terminal
emulator for these tools that acts
like a tiling window manager,
enabling you to easily manage
multiple terminal sessions in the
same way you would using
something like Xmonad on the
desktop. Unlike Xmonad, though,

Terminix is thoroughly modern and
easy for any beginner to use. It’s
built atop GTK 3/Gnome 3, which
makes it particularly well suited for
desktop users looking for a
powerful interface to the command
line, and it can replace your
standard terminal without causing
you any transitional pain.

Two worlds collide
You can easily spawn new
sessions, splitting the display either
horizontally or vertically, all without
remembering a single keyboard
command, and all with Gnome’s
lovely transitions. Sessions
themselves can be saved and
restored via simple Json-formatted
configuration files, and there’s full
support for terminal profiles, as well
as light and dark themes for the
remainder of the interface. A
thumbnail overview enables you to

skip between open sessions and
everything works quickly and
without clutter. If you find yourself
using the terminal often, especially
if you’re a Gnome user, we can’t
recommend Terminix enough.

Terminix 0.56

Extraterm is built using
the Electron web
platform, which means
it’s mostly JavaScript
and you get all the
debugging tools for
free.

Keeping with the terminal
upgrade theme (see above),
Extraterm is a new terminal

that attempts to power-up the old
model. Like Terminix, it supports
splitting the view vertically and
tabbed sessions, but this layout
frippery isn’t its only trick.

There’s the selection mode, for
instance: press Ctrl and space
together and a blinking cursor
appears. You can now move this
around the console and use the
Shift key to select areas of text. The
usual shortcuts can be used to
copy and paste, with the Ctrl+Space
combination used to go back to
normal edit mode. It reminds us of
a similar mode on the Commodore
64 where you could use the
shortcuts printed on the lower side
of the keys to move the cursor
away from its editing position –

although you couldn’t copy and
paste back then.

There are also customisation
options for Bash, Zsh and the
up-and-coming Fish shells. These
come packaged within a Zip file
downloaded from the project’s
GitHub page, and you can load their
settings by typing source followed
by the name of the file
corresponding to your shell –
source setup_extraterm_bash.sh,
for example. With this done,
commands are now framed by
coloured backgrounds, which is
useful for clarity. You can also pop
the output into a new tab, or close

the output completely. There’s also
additional show and from
commands. The first will prettify the
display of a file, including syntax
highlighting for code and embedded
images for pictures, whereas from
lets you easily use the output from
one command as the input to
another. It’s all quite esoteric, but
powerful too, and worth a look if
you’re considering a new terminal.

Extraterm 0.6.0
Super-powered terminal

Tiling Terminal Emulator

Project website
https://github.com/gnunn1/terminix

Project website
https://github.com/sedwards2009/extraterm

LV027 058 Fosspicks.indd 61 14/04/2016 15:16

www.linuxvoice.com

FOSSPICKS

62

Despite the plethora of photo viewers for Linux, we feel there’s still
space for a minimal, quick, and accurate tool like PhotoQt.

We know there are lots of
photo viewers available
for the Linux desktop.

Many of them are very good. But
like music players, we feel there’s
always a place for something that’s
different or attempts to fill a niche
not covered by the alternatives.

PhotoQt is a viewer that’s
designed to be “good looking, highly
configurable, yet easy to use and
fast,” according to its website. We
downloaded, built and installed the
latest version, and the first thing
you notice when you run the
application is that it’s full screen!
This isn’t unusual for photo viewers,
especially of the Adobe variety, but
it’s still a shock to our windowed
brains, which by nature and training
are fractured into different areas.

Fortunately, you can use the
hover menu that appears in the
top-right of the display to change

this setting, along with plenty of
other options. Full-screen or
windowed (better without the
window borders), PhotoQt is
sublime. Move the cursor down to
the bottom of the window, and the
current folder’s thumbnails appear.
Move it to the left and you get the
EXIF metadata for an image. Move
it to the right, and a quick settings
panel slides in.

Pretty as a picture
You can also scale, flip and rotate
images with an editable context
menu that can also send the image
to your pre-configured editor of
choice, and you can easily set an

image as wallpaper or trigger a
slide-show.

PhotoQt does everything you
need in a quick, concise and visually
appealing way, and leaves the
largest part of its display area to the
most important job – viewing your
photos.

PhotoQt 1.3

Quod Libet is one of the best players we’ve found for taking
advantage of tags embedded within your music files.

This is a major update to a
music player that’s been
around for a long time.

Picking up our dusty ‘Latin for
Dummies’ book off the top shelf, it
reveals quod libet is Latin for
‘whatever you wish,’ which also
happens to be an old style of music
containing more than one melody.
All of which is a modest way of
saying this is a music player and
management application. It’s
designed to ‘Just Play Music,’ rather
than get between you and your
collection, and it does this mostly
by being quick and easy to use.

On first launch, you need to say
where your music files are stored.
After your library has been scanned,
you can start listening to music. We
love the user interface. It’s simple
while remaining powerful enough
for our needs. It’s also album-

centric, defaulting to playing an
entire album in order rather than
constantly adding to a dynamic
playlist, but different views let you
construct playlists, browse internet
radio stations or use the powerful
tag system to find the music you’re
looking for.

Power up with Python
The Python plugin system is
especially impressive, listing dozens
of different add-ons, including lyrics,
equalisation, Squeezebox-export,
song-lookup via acoustic fingerprint
and lots more. Its main audio
back-end is GStreamer, which

makes it compatible with almost
any file type and desktop, although
it did have trouble with a few of our
FLAC files.

However, if you’re looking for a
new music player with few
dependencies and a powerful
minimal user interface, this latest
version is highly recommended.

Quod Libet 3.6.1
Music player

Image viewer

Full-screen or windowed
(better without the window
borders) PhotoQt is sublime

Quod Libet defaults to
playing an entire album in
order rather than a playlist

Project website
http://photoqt.org

Project website
https://quodlibet.readthedocs.org

LV027 058 Fosspicks.indd 62 14/04/2016 15:16

www.linuxvoice.com

 FOSSPICKS

63

https://launchpad.net/pybik/

Back in the old days, before
the internet, before
anonymous trolling and

the Snooper’s Charter, friends
would gather in a single place –
not to talk conspiracies, but to
watch and play video games with
each another. Now that kids can
no longer go outside, the modern
analogy is watching other people
playing video games online, and
the most popular service that
facilitates this video game
voyeurism is called Twitch.

Twitch is actually quite
compelling, with games like
Rocket League and Counter Strike
attracting the same online
viewing devotion that you might
expect at a football match. The
only problem with Twitch,
especially for us Linux users, is
the lack of a non-Flash version on

the website. Livestreamer is a
command line tool that grabs audio
and video data from websites like
these and sends them on to your
favourite video player, and
Livestreamer Twitch GUI does
exactly what it says – it’s a simple
interface to the content available on
Twitch that when selected will open
the stream in your favourite player.

It’s brilliantly simple to use, and
much, much easier than trying to
do the same thing in your standard
browser. With the video extracted
from a browser and pushed into
something like VLC, Twitch
becomes much more responsive

and far less demanding of your
CPU. Whether watching other
people watching video games is
a good use of your own time, we
wouldn’t like to say!

FOSSPICKS Brain relaxers

Twitch is great for watching video games, but some crazy
people use it to stream live from their Linux desktop too (thanks
to Ioangogo for this find!)

Livestreamer Twitch GUI 0.12

We know there can’t be
many people who
haven’t tried

ScummVM already. It’s a
wonderful system that runs on
almost everything – from a
Raspberry Pi to any humble
Android device, and it enables
you to play many of the point-
and-click classic games from the
80s and 90s that have never
been surpassed.

Think of classics like Monkey
Island 2, or Day of the Tentacle, or
the free Beneath a Steel Sky, or the
older Kings Quest, Space Quest
and Manhunter series. You make
your way by selecting items and
verbs and clicking through the
artwork. It sounds simple, but
there are few genres that can
compete with this form of

gaming entertainment. Most
importantly, these adventures are
just as good today as when they
were made, and have been lovingly
re-framed to work within
ScummVM, saving you from
swapping floppy disks on a
30-year-old Amiga 500.

Like the developers of interactive
fiction interpreters and arcade
machines emulators, we’re
supremely grateful that these
experiences aren’t being lost to
posterity. Which is why we’re
highlighting this release, the first
major update for a year.

There’s a graphical overhaul to
the subsystems used to render
games and support for 10 new
titles, including ‘The Lost Files of
Sherlock Holmes,’ ‘Broken Sword 2.5’
and two of the last Zork games. But

of course, it still works brilliantly
playing ‘Maniac Mansion,’ a game
which our friend Richard Cobbett
once described as ‘one of the
most intricate and important
adventure games ever made.’

The very latest version of ScummVM adds support for Myst.
Now if only the game itself could be updated for virtual reality.

ScummVM 1.8.0
Retro game player

Gameplay streaming

This is a simple interface
to open streams from Twitch
in your web browser

Project website
https://github.com/bastimeyer/livestreamer-
twitch-gui

Project website
http://scummvm.org

LV027 058 Fosspicks.indd 63 14/04/2016 15:16

LV027 064 Ad Code Club.indd 64 14/04/2016 15:17

www.linuxvoice.com 65

INTRO TUTORIALS

TUTORIALS
Warning: excessive Linux knowledge may lead to fun and more efficient computing.

Ben Everard
Looks deep into the tea leaves and sees an
open source future.

Every one of the world’s major
computing companies produces
open source code, as do almost

all the world’s major governments.
Almost every company uses FOSS to
some degree, and soon, every major
web browser will be open source. While
people who use exclusively Free
Software are still rare, almost every
person uses it so some degree, whether
consciously or not.

There wasn’t some big moment that
suddenly tipped the scales in favour of
open source. The situation we have
today is the result of hundreds of
thousands of small decisions. Every
time anyone makes the decision to use
FOSS rather than some proprietary
software, they tip the balance ever so
slightly in the right direction. Every line
of open source code written and every
bug report filed has added to the cause
and collectively, all these decisions have
changed the world. As long as people
keep choosing open source, and keep
supporting the cause, the world will
keep changing for the better. Victory is
in sight – we just need to keep doing
what we’re doing and the future will be
a freer place.
ben@linuxvoice.com

In this issue . . .

Peer-to-peer internet shopping promises
trustworthy sites without centralised control.
Ben Everard grabs his bag and goes browsing.

Decentralised
online shopping

Minecraft Mashup 72
Les Pounder uses Sonic Pi to
create a musical instrument
inside a virtual world.

Mediagoblin 76
Mayank Sharma uses Gnu’s
sharing platform to keep his
media away from Google.

Vagrant deployment 80
Hide your mess in virtual
machines. Sebastian GÖttschkes
keeps his main install tidy.

Coding

66

Recreate Tee in Rust 84
Mozilla’s new language makes
safe programs. Amit Saha beats
hackers one command at a time.

Getting started with Git 90
Never lose code again with
Graham Morrison’s guide to
versions control in Git.

Building a photo sharing web app doesn’t have to
be complicated. Ben Everard starts a series on
mixing Python with Bootstrap.

Personalised photo
sharing for your events

68

Get access to every Linux Voice tutorial ever published in our digital library of back-issues available exclusively to subscribers – turn to page p56 to join.

LV027 065 Tutorials Intro.indd 65 15/04/2016 09:31

TUTORIAL OPENBAZAAR

www.linuxvoice.com66

BEN EVERARD

DECENTRALISED SHOPPING
WITH OPENBAZAAR
Convert your Bitcoin stash into a collection of stuffed toys without the middle-man.

WHY DO THIS?
• Buy stuff without lining

PayPal's pockets.
• Make money.
• Keep the wheels of

commerce turning.

Websites such as Amazon and Ebay enable
small businesses to set up shops and sell
through their channels. Because we can

trust the large company not to lie to us, we can put
some trust in the user ratings and reviews of these
small businesses in a way we wouldn’t be able to if
they were on the business’s own website.

However, by allowing a company to control the
ecosystem, we allow them to decide what can be sold

1 Install the software
The first step, as always, is to grab the software. If
you’re using Ubuntu or any other Debian derivative,
you can just download the Deb files from
https://openbazaar.org/download.html. By the time
you read this, there might also be install files for other
distros there, so it’s worth checking even if you’re not
on a Debian derivative. If aren't, it’s going to be more
difficult to set up. The easiest option here is to create
a Debian or Ubuntu virtual machine and install
OpenBazaar in there. If you want to build from source,
you’ll need two parts, the server (written in Python)
and the client (running on Node.JS). Grab the server
from https://github.com/OpenBazaar/OpenBazaar-
Server and the client from https://github.com/
OpenBazaar/OpenBazaar-Client. Both of these
repositories include build instructions, but neither
appears to have been well tested on any distro other
than Ubuntu. Hopefully this will change as the project
becomes more mature.

STEP BY STEP: BUY AND SELL
2 Create a profile

When you first go online, you’ll need to create a profile.
This can contain a lot or a little information about you.
The very least it needs is your language and your
timezone, but you can also build up a full profile
including picture and biography if you want to.
OpenBazaar is almost a combination of shopping
platform and social network, so how much
information you choose to put on will vary depending
on how you intend to use the site.

All the details of your profile are stored in
the .openbazaar folder in your home directory.
OpenBazaar is decentralised, and there’s no one to
help you if you lose this, so it’s a good idea to keep this
file backed up. If you want more than one account,
just create a new user on your Linux system and you’ll
get a new user in OpenBazaar as well.

(and what can’t be), and to take a chunk of the money
for themselves.

OpenBazaar is a decentralised online marketplace
that enables us to find small shops and buy things
without any centralised control. At the same time,
if we trust the network, we can trust the ratings of
a seller and avoid any malicious parties. In theory
at least, this gives us the benefits of a centralised
system without the control. Now let’s buy some tat!

LV027 066 Tutorial OpenBazaar.indd 66 14/04/2016 15:19

OPENBAZAAR TUTORIAL

www.linuxvoice.com 67

DECENTRALISED SHOPPING
WITH OPENBAZAAR

6 Set up a store.
With OpenBazaar, anyone can set up a store, and that
includes you! There are no setup fees (or, indeed any
fees at all except optional moderator fees). Go to your
profile (click the avatar icon in the top-right of the
screen), and press Become A Store. You’ll need to
enter your store name and a description of yourself,
then click Next. The final step is to select which
moderators (if any) you want to trust. Once you’re a
store, you just need to enter the details of the items
you’re selling. Another option for the business-minded
is to become a moderator. These are the people
responsible for solving and disputes that arise
between buyers and sellers. Click on your avatar and
select Become a Moderator. The only information you
need is the fee you’ll charge to solve any problems.
Once this is set up, sellers will be able to add you as
an option for buyers.

5 Buy something
Once you’ve found something you want to buy, the
final step is actually purchasing it. There are no
shopping carts, only the Buy Now button. First, you’ll
be asked if you have a Bitcoin wallet, and since all
payments are in Bitcoin, it’s essential that you get one
before you can complete the transaction. The second
step is to choose either a direct or moderated
payment. If it’s direct, the money goes directly to the
seller; if it’s moderated, the money is first held by a
trusted third party.

Anyone can set themselves up as a moderator, so
make sure that you find one you trust before using
this payment option. They each charge different
fees to resolve disputes, so there’s also a secondary
market for trusted moderators that are cost efficient.

Finally, you just have to enter your payment details
and shipping information.

3 Find goods and services
OpenBazaar is structured with a lot of small stores, but
you can also search all the products from a single
search bar. Click on the eye in the top-right corner to
enter Discover mode. Here you can type in whatever
you want to find. By default, OpenBazaar only shows
results from shops that you follow, and when you first
start, this won’t be anyone. Change Filtered Listings to
Off and you can see results from all the stores. There
aren’t many now, but the number is increasing quickly.

While OpenBazaar is decentralised, it’s not
anonymous, so while there are items of varying
legality for sale, you are exposing your IP address
if you buy them. Everything’s charged in Bitcoin at
the moment, so there’s no problem with currencies
around the world. If you put an address in your profile,
you’ll see shipping details for each product.

4 Research a seller
Shops on the internet trade on their reputation. If you
see a store on the web, or on OpenBazaar, you need to
know you can trust them before parting with any
money. In time, sellers will be able to build up a
reputation on OpenBazaar, and you can see reviews of
products in the items page. However, in the early days,
it will be hard to know who to trust. Do a little research
to see what other people are saying about them.

The safest bet will be companies that exist outside
of OpenBazaar and already have a reputation, so check
the profile of anyone you’re thinking of buying from
to see if they link to a website (and make sure that
the website also links back to the OpenBazaar page
as there’s no security on this). If you’re still unsure
about someone, you can use a trusted third party to
moderate the transaction (See next step).

LV027 066 Tutorial OpenBazaar.indd 67 14/04/2016 15:19

TUTORIAL TORNADO

www.linuxvoice.com68

This summer I’m getting married! Naturally, we
want guests to be able to share their photos of
the day with us, and each other. There are

proprietary options for this – such as Facebook – and
there are ready-made open source options such as
MediaGoblin (see page 76 for more on this excellent
media platform). However, we wanted a web app
personalised to us that enabled people to share their
images as well as giving useful information about the
day. The solution was obvious: we'd write our own.

Python is a great choice for this task, because it
helps us develop quickly and easily. We don’t want to
worry about the nitty gritty, and with Python, we don’t
have to. The Tornado web framework will provide the
HTTP server, and give us the tools to build our web
app with just a few templates.

This is a three-part tutorial. In this first part, we’ll
look at the main web app that enables people to
browse and upload pictures. In part two we’ll look at
making the pages look better, and in part three we’ll
build a photobooth that will push pictures straight to
the web app from a camera with the help of a Wi-Fi-
enabled SD card.

First, let’s install Tornado. The easiest option is to
grab it via pip, the Python installer.

sudo pip install tornado
Tornado is an HTTP server and web app framework

in one, so we don’t need any additional software (as
we would with, say, PHP), and this also means that
everything is controlled from a single place.

A web app in Tornado consists of one or more
classes, and each class is bound to a web address.
When a browser requests that address, Tornado
creates an object of the corresponding class, and this
object serves the page. This method enables Tornado
to create multiple objects to handle requests. A really
simple website could be served by Tornado with the
following code:
import tornado.ioloop
import tornado.web
class MainHandler(tornado.web.RequestHandler):
 def get(self):
 self.write("<h1>Hello world</h1>")
def make_app():
 return tornado.web.Application([
 (r"/", MainHandler),
])
if __name__ == "__main__":
 app = make_app()
 app.listen(8888)
 tornado.ioloop.IOLoop.current().start()

The make_app function creates a tornado.web.
Application object with a list containing all the
different web addresses we want our app to serve,
and the classes that will be used to serve them. In
this example, we only want one address (/), and it’s
served by the class MainHandler. The MainHandler
class inherits most of the functionality it needs from
the tornado.web.RequestHandler class, and the only
thing we need to define are methods that correspond
to the HTTP verbs we want that address to respond
to. For normal web pages, this will just be get, which is
called when a web browser requests a page, but we’ll
also use post, which is used to handle data sent to the
web server through forms in the web page.

As you can see, this allows us to use Python to
put together the web page we want to return. In this
case, it just returns Hello World when you visit the root
of the website. Start the server running with python
website.py, then point your browser to localhost:8888
to see the result.

Friendfeed (owned by
Facebook) developed
Tornado in 2009. Yes, we
are aware of the irony of
using this social media
technology to avoid social
media.

BEN EVERARD

BUILD A PHOTO WEB APP
WITH TORNADO
Share photos without sending all the data to an advertising company.

WHY DO THIS?
• Share your images with

family and friends…
• …without sharing them

with Mark Zuckerberg.
• Amaze your in-laws!

LV027 068 Tutorial Photoshare.indd 68 15/04/2016 09:33

TORNADO TUTORIAL

www.linuxvoice.com 69

If we just wanted to render the same website
every time someone visited our site, we could just
use a normal web server and not have to bother with
Python. The power of Tornado (and other frameworks)
is that it enables us to tailor the site depending
on what the visitor does. We’ll do this by passing
arguments between the web browser and the web
server (arguments are part of the URL that come after
a question mark). If we want to expand our simple
hello world example to greet visitors by name, we
just need to change the MainHandler class to the
following:
class MainHandler(tornado.web.RequestHandler):
 def get(self):
 name=self.get_argument("name","world")
 self.write("<h1>Hello "+name+"</h1>")

The get_argument method takes two parameters:
the first is the name of the argument and the second
is the default value. This will return a string containing
the text from the URL. If you make this change,
then restart the Python program, you can get a
personal greeting from your web browser by going to
localhost:8888/?name=Ben.

This is the basic mechanics of Tornado – we create
a class to craft a web page for the visitor based on
the arguments supplied in the URL. There is just one
more thing to make the code a little cleaner. Most
web pages are quite long, and often have well over
a hundred lines of HTML. We don’t want to include
all that in our Python code, so we use templates.
Templates are a way of combining HTML and Python
in a way that’s easy to maintain.

Templates are basically normal HTML files, but
with bits of Python code interspersed. If you just
want to insert a value from a variable, you can put
the name of the variable inside double braces. The
following example would give us the same result as
the previous code:
<h1>Hello {{name}}</h1>

This same syntax can be used to put the result of
any Python expression directly into the website.

Additionally, you can put more advanced bits of
code such as loops inside {% %} blocks. Since HTML
doesn’t follow the same indenting as Python, you

need to explicitly finish with {%end%}. Let’s now look
at how we want our web app to work. You’ll see these
work a little later.

There will be three main pages: the front page, the
gallery page and the upload page. The first one we
need to get working is the upload page, because until
this works, we won’t have any images with which to
test the other pages.

The UploadHandler class consists of two parts.
The first is the get method, which returns a web page
with a form to upload the picture; and the second is
the post method, which takes the uploaded picture,

saves a copy of it and also makes a thumbnail.
The code for this is:

class UploadHandler(tornado.web.RequestHandler):
 def get(self):
 self.render(web_root+"templates/upload.html", app_
title=app_title)
 def post(self):
 file_body = self.request.files['file1'][0]['body']
 fname = str(uuid.uuid4())
 img = Image.open(StringIO.StringIO(file_body))
 img.save(web_root+"images/"+fname+"."+img.format,
img.format)
 img.thumbnail((128,128))
 img.save(web_root+"thumbnails/"+fname+"."+img.
format, img.format)

URL parameters are the
link between the browser
and the server, and you
can use them to create a
personalised web page.

Security
Whenever you let a user send data to your web app, you need
to be aware of the potential security risk. The first example,
in which we took a user's name via a URL parameter, created
a cross-site scripting vulnerability, because the user can send
data that we include directly in the website, and this can
include JavaScript. They could then use this to make your
website appear however they wanted. If we put this on the
public web, we’d need to add some checking before we passed
the string on to the template.

File uploads can also present problems, because a hacker
could upload a malicious file. In our program, we run the
uploaded file through the Python Image Library which should
filter out any malware.

The power of Tornado is that it enables
us to tailor the site depending on what
the user does

Cross-site scripting vulnerabilities account for more
reported vulnerabilities than any other type of attack.

LV027 068 Tutorial Photoshare.indd 69 15/04/2016 09:33

TUTORIAL TORNADO

www.linuxvoice.com70

 self.redirect("/")
First let’s look at the get method. This does no

processing and just renders a template. If you want
to use variables in templates, you have to pass them
across from the main page, and in this case we
pass app_title to a variable of the same name in the
template.

The template stored in templates/upload.html is:
<h1>{{app_title}}</h1>
<form enctype="multipart/form-data" action="/upload"
method="post">
<input class="btn btn-lg btn-success" type="file"
name="file1" accept="image/*"/>

<input class="btn btn-lg btn-success" type="submit"
value="upload" />
</form>

For space reasons, we’ll only include the body of
the HTML templates we’re using. These will render
properly on most web browsers, but if you’re using
templates for real work, they should include the full
HTML header as well.

We’re storing all our data in the filesystem rather
than a database, so at this point we need to define
our directory structure to stop things getting lost.

Inside the main root directory, we’ll have a templates
folder, an images folder and a thumbnails folder. In
Tornado, these don’t have to correspond to the URLs
that we use to serve the files (as these are defined in
the make_app function), however, it can make it easier
to see what’s going on if the directories do match.
For the image upload to work, you need to create the
images and thumbnails folders.

We’re using uuid to create a random name for
the image. Used in this way, it’s not completely
guaranteed to be unique, but the chances of it

generating the same name twice are tiny, so we’re
prepared to accept the small risk and save on the
effort (and processing time) of checking to make sure
this doesn’t already exist.

The self.requests.files variable holds all the files
that are uploaded by the user. In our template, we
called the file-input-box file1, so this is the name
we’re looking for. All we need is the body of the first
file uploaded in the box. You could put in more error
checking at this point to respond sanely if there were
a problem, but we’ll omit this for brevity. The Python
Image Library is then used to resize the file and save it
to the appropriate places.

As well as this class, we need a couple of bits to
make the upload work properly. First we need to
import some new modules and set a global variable.
All this can be done at the start of the file by adding
the following lines below the import lines already there
(we’ve put all the import and global variable lines here
even though some won’t be needed until later):
import Image
import StringIO
import uuid
import os
import math
app_title = "Photo share"
pics_per_page_gallery = 4
webroot = "/home/ben/weddingtutorial/"

Second, we need to change the make_app function
to include the URL for the upload page.
def make_app():
 return tornado.web.Application([
 (r"/", MainHandler),
 (r"/upload", UploadHandler),
])

You can now restart the Python command
running the website and go to localhost:8888/
upload and upload an image. Once it’s completed
successfully, you’ll be redirected to the main page
(which should still display 'hello world'). To make
sure that everything’s gone successfully, make sure
that the image has uploaded to both the images and
thumbnails folders.

The next stage is building a gallery to display the
uploaded images. Before doing this, upload about 10
images through the uploader to make sure there are
some to display in the gallery. This time, let’s look at
the template for the gallery first:
<h1>{{app_title}}: Gallery</h1>
<p class="lead">Add pictures to the gallery: <a class="btn
btn-lg btn-success" href="/upload" role="button">Upload
Pics</p>
{% for pic in pics %}
<img src="/thumbnails/
{{pic}}">
{% end %}
{% if page > 0 %}
<p><a href="/gallery?page={{page-1}}"
role="button">Previous Page</p>

It may not look good, but
it works: our online photo
sharing site. You’ll need a
public-facing web server
to share this with the real
world.

Our really simple photo sharing app
is built and ready to go. It’s simple,
functional, and easy to use

LV027 068 Tutorial Photoshare.indd 70 15/04/2016 09:33

TORNADO TUTORIAL

www.linuxvoice.com 71

Ben Everard is a sensitive troubador who also builds robots,
writes books (including the best-selling learn Python with
Raspberry Pi) and brews his own cider.

{% end %}
{% if page < final_page %}
<p>Next
Page</p>
{% end %}

This needs four variables passed from the main
code, app_title, pics, page and final_page. The first
of these is simply used in the title, and we store it in
a variable to enable us to easily change it across all
pages of the web app.

The pics variable contains a list of all the filenames
for the images to display. Images have the same
names as their thumbnails, they’re just stored in
different directories, so the name of an item in pics
refers to both.

Tornado inserts the lines between {% for pic in pics
%} and {% end %} once for every entry in the pics list.
Therefore, this code block will create a thumbnail that
links to the main image for every picture that we pass
across in pics.

We could just send every uploaded image across,
but this would mean the gallery web page quickly got
very large. Not only would this make it hard to view,
but it would increase the load on our server, because
each thumbnail has to be sent. Instead, we’ll only
display a small number of images and enable the user
to move forwards and backwards through the gallery.
We’ll do this using a URL parameter called page. To
avoid the user scrolling out of the gallery, we need to
hide the Next Page and Previous Page buttons when
the user reaches the end of the gallery. This is done
using the two {% if … %} blocks. Now, let’s take a look
at the code that makes all this work:
class GalleryHandler(tornado.web.RequestHandler):
 def get(self):
 page=int(self.get_argument("page", 0))
 files = get_thumb_files()
 final_page = int(math.ceil(len(files)/float(pics_per_
page_gallery))) - 1
 self.render("templates/gallery.html",
 page=page, final_page=final_page, app_
title=app_title,
 pics=files[((page)*pics_per_page_
gallery):((page+1)*pics_per_page_gallery)

This grabs the URL argument called page
(defaulting to 0, the first page, if there is none).
Then it calls a function called get_thumb_files. We’ll
create this below, but it gets a list of all the filenames
of thumbnails with the most recently modified at
position 0. The last bit of information needed is the
total number of pages, which is calculated using the
global variable pics_per_page_gallery (we set this to
four to make testing easier, but will increase it before
going live). The pics variable sent to the template is
the appropriate section of the thumbnail files for the
page the user is requesting.

Now, let’s take a look at the get_thumb_files
function. This links together a few features of the os
module to find the files in the thumbnails directory.
The sort uses a lambda function to extract the

modified time for each file and perform a reverse sort
based on this.
def get_thumb_files():
 search_dir = "thumbnails/"
 os.chdir(search_dir)
 files = filter(os.path.isfile, os.listdir(search_dir))
 files.sort(key=lambda x: os.path.getmtime(x),
reverse=True)
 return files

In order to make this work, we need to add the
appropriate lines to the make_app function:
 (r"/gallery", GalleryHandler),
 (r"/thumbnails/(.*)", tornado.web.
StaticFileHandler, {'path': webroot+"thumbnails/"}),
 (r"/images/(.*)", tornado.web.StaticFileHandler,
{'path': webroot+"images/"}),

This sends the /gallery path to the GalleryHandler,
but it also creates paths for /thumbnails and /images.
In both of these cases, we just want to serve the
images, so rather than create a new handler class, we
can use the built-in StaticFileHandler class to serve
up the files we’ve stored in the directory.

There we have our really simple photo sharing
app built and ready to go. It’s simple, functional,
and easy to use. I showed it to my fiancée, and was
told in no uncertain terms that if we were going to
have a custom-written photo sharing website for
our wedding, it’d have to look quite a bit better than
this. Next month, then, we’ll look at using Twitter’s
Bootstrap library to make things prettier.

60 lines of Python is all it takes to share pictures without surrendering them to an
advertising company.

LV027 068 Tutorial Photoshare.indd 71 15/04/2016 09:33

TUTORIAL LINUX FOR LEARNERS

www.linuxvoice.com72

M inecraft is addictive – there, we said it. You
have a world that can be shaped and
changed using blocks which are one metre

cubed. You can build a house, a bridge or a fire-
breathing dragon! Anything is possible with a little
patience and planning.

Sonic Pi is the live coding music phenomenon that
has gripped coders of all ages and musical abilities.
With Sonic Pi you can write any form of music using a
simple-to-understand language based upon Ruby.

These two fantastic projects have one thing in
common: they can both make computer science
interesting to children and adults.

In a series of four tutorials we shall use both of
these projects to create and shape Minecraft worlds
and produce music, jingles and noise that interacts
with the code we write.

Over the course of the tutorials we will be
introduced to coding concepts such as

 Loops To repeat the code sequences.
 Variables To store information such as individual
co-ordinates.
 Tuples To store comma separated values such as
x,y,z co-ordinates.
 Functions Used to group a sequence of code and
recall it using a name.
 Floats Numbers that have a decimal place.
 Integers Numbers that have no decimal place.
 Strings Characters of text, including numbers that
can be displayed on screen.
Sonic Pi is also a really clever way to teach musical

composition. Musically minded children can use
Sonic Pi along with music theory to compose pieces
in any style of music. The fact that Sonic Pi uses MIDI
(Musical Instrument Digital Interface) means that a
learner can transfer that knowledge to and from the
application.

Minecraft is also rather sneaky. 3D co-ordinates are
not an easy subject to grasp in class but by using
Minecraft as a delivery method kids can latch on and
understand this confusing subject.

So let's get hacking!

Project 1 – Teleport Jingle
Teleportation is no longer the preserve of Star Trek; in
Minecraft we can also send our avatar to anywhere in
the world, instantly. This simple project serves as an
introduction to using Sonic Pi with Minecraft. Before
we start you will need Sonic Pi open and Minecraft
should be open and your player in a world.

In Sonic Pi use any empty buffer. We shall start by
finding out our position in the world. To do this we use
the mc_get_pos function, which will return three
values (our x,y and z co-ordinates) which tell us where
we are in the world. We shall save these co-ordinates
to a tuple, a list of comma separated values, called
pos.
pos = mc_get_pos()

Now we need to split the values in pos into separate
x,y,z variables, as it makes them easier to work with.
We use slicing to precisely remove the values that we
need from the tuple.
x = pos[0]

Unlike some code editors, Sonic Pi has a clean interface
that enables users to concentrate on their work. It is
highly configurable and very easy to learn.

When you first use
Minecraft you will see the
world through the player's
eyes. To change this press
Escape and click on the 3rd
person button.

LES POUNDER

MASH UP MINECRAFT
WITH SONIC PI
Combine Sonic Pi and Minecraft to build a world of music!

WHY DO THIS?
• Learn Sonic Pi.
• Learn Ruby.
• Use lists to organise data.
• Use tuples to store values.
• Store data in variables.

TOOLS REQUIRED
• Any model Raspberry

Pi running the latest
Raspbian release.

• All of the code for this
project can be found
at https://github.com/
lesp/Linux-Voice-27-
Minecraft-Mashup/
archive/master.zip.

LV027 072 Tutorial Minecraft.indd 72 29/04/2016 11:33

LINUX FOR LEARNERS TUTORIAL

www.linuxvoice.com 73

y = pos[1]
z = pos[2]

With the co-ordinates split into their corresponding
axes we shall now play a little jingle that will indicate
that transport is under way. The jingle is comprised of
three notes played in rapid succession, with 0.2
seconds between each note. We play the notes C, D
and G as they are complimentary to each other.
play_pattern_timed [:c,:d,:g],[0.2]

Now we shall use the co-ordinates that we learnt
earlier. We shall keep the x and z co-ordinates as is.
But the y co-ordinate we shall change by 30 blocks,
roughly 30 metres, so that our avatar is teleported into
the air, ready to fall back to the ground.
mc_teleport(x,y+30,z)

Our last two lines for this project create a delay of
one second before printing a message to the Minecraft
chat window.
sleep(1)
mc_message("Teleportation!!!")

With the code complete, click on Run in the top-left
of the Sonic Pi window. Now quickly switch to
Minecraft to see the poor little character fall to the
ground with a little jingle.

Project 2 – The world at your feet
Have you ever wanted to have a Minecraft block follow
you around, but above your head? Well in this project
we shall do just that. For this project it would be
prudent to use another buffer in Sonic Pi.

Our goal for this project is to replicate the block that
we are standing on, but have it hover above our head.
This shows that we can detect the type of block at our

feet, so we can “get” the block type and then “set” the
block above us.

We start by using a live_loop, which is a way of
running multiple loops in Sonic Pi. Each of these loops
can be run simultaneously. A live_loop needs a name,
and we called our first loop “duplicator” as it handles
duplicating the blocks.
live_loop :duplicator do

Just as in project 1, we shall use a tuple to store the
location of our player before saving each of the
co-ordinates as a separate variable.
 pos = mc_get_tile
 x = pos[0]
 y = pos[1]
 z = pos[2]

So now that we know where we are, let's create a
variable that will store the block type we are standing
on, which is 1 block beneath us; in other words “y-1”,
so to find out the block type.
below = mc_get_block(x,y-1,z)

So now that we know what the block beneath our
feet is, let's change the block that is above our head to
match. Our player is two blocks tall, so to give us a
little space let's have the block appear one block
above us. To do this we “set” the block and pass it four
arguments: the type of block and our three co-
ordinates in the world, but with our y co-ordinate
altered by three blocks. We then add a short sleep to
pace the speed of the project. Finally for this section
we close the loop using end:
mc_set_block(below ,x,y+3,z)
sleep 0.1
end

For our next live_loop we will create a simple
melody to play as we walk around the world. Again we
name the loop, this time we use the name beat.
live_loop :beat do

For our beat we shall use one of the many
instruments built in to Sonic Pi. In this case the blade
instrument replicates the violin drone heard in the
Blade Runner movie theme.
use_synth :blade
Now that we have the instrument, lets write some

Teleportation is the “Hello
World” of Minecraft hacks.
It offers something more
interesting that simply
printing text. How high can
our little man fly?

What is Sonic Pi?
Sonic Pi is the creation of Dr Sam Aaron from the University
of Cambridge Computer Laboratory. Sam is a gifted coder
and musician who regularly plays to audiences across the
world. Sam teamed up with the Raspberry Pi Foundation’s
Education Pioneer, Carrie Anne Philbin, to produce an
application that was easy enough for children with no
coding experience to use, while remaining flexible for
professional musicians to use.

Sam’s knowledge of code and music enabled him to
add features that benefited all users. One area that is
particularly hard for children to grasp is indentation, a vital
method to learn for languages such as Python, and so
Sonic Pi has an alignment tool that will scan your code and
correct your alignment. Sam has also written a 30,000-
word book that is located in the help system, enabling
quick reference to coding concepts, language syntax and a
plethora of example scripts that can be copied and pasted
into a blank buffer for a quick hit of inspiration.

But the biggest feature of Sonic Pi is the live coding
element. Live coding is where you use the computer as an
instrument – rather than manipulate an instrument, you
manipulate code in real time. In our projects we used the
live_loop to have code repeat inside of a loop, and any
changes made to the code inside the loop can be instantly
updated by clicking on Run during the playback cycle. This
is great fun for instant feedback on your composition.

LV027 072 Tutorial Minecraft.indd 73 29/04/2016 11:33

TUTORIAL LINUX FOR LEARNERS

www.linuxvoice.com74

music. We are going to use the play_pattern_timed
function and repeat the C,D,G pattern from before, but
now we shall alter the timings for each note, giving us
a subtle change to the music.
play_pattern_timed [:c,:d,:g],[0.3,0.1,0.1]

Finally for this project we use a sleep to delay the
pace of the code and then end the beat loop.
sleep 0.5
end

With the code complete, click on Run to launch the
code and you should hear the beat play. Switch to
Minecraft and go for a walk; you will see blocks above
your head. If you have a desert in your world, make
sure you walk very quickly.

Project 3 – Walking through the air
The goal for this project is to have a block appear at
our feet, enabling us to walk through the air and never
get our feet wet.

To start, use a new buffer. We are going to reuse the
live_loop structures from Project 2, but this time we

shall call the loop diamond as we shall be walking on
a bridge made of diamonds.
live_loop :diamond do

We will now get the tile position of the player. This is
a very coarse value when compared to get_pos, which
provides precise values using floats. get_tile returns
three integers that are rounded to the nearest tile
position.
pos = mc_get_tile

Next we split the values stored in the pos tuple so
that we have individual values.
x = pos[0]
y = pos[1]
z = pos[2]

Next we create a variable called below that will
store the block under our feet.

below = mc_get_block(x,y-1,z)
For the last section of this loop we set the block

under our feet to be a diamond block – yes, we can
have diamonds fall at our feet! We will then use a
sleep to delay the code before closing the loop.
 mc_set_block(:diamond_block ,x,y-1,z)
 sleep 0.1
end

For our final loop in the project we reuse the beat
loop from Project 2 but change the synth instrument
to fm, a suitably synthetic noise. We also changed the
notes played in the pattern to give a different sound
when walking in the air.
live_loop :beat do
 use_synth :fm
 play_pattern_timed [:a,:e,:g],[0.3,0.1,0.1]
 sleep 0.5
end

And with the code complete, click Run and the
switch back to Minecraft. Go for a walk, soar into the
sky by double-tapping the Space bar. To go higher,
press and hold the Space bar; to go lower, press the
Shift key while moving forward.

Project 4 – Walking randomly
For our fourth and final project we will go a little
further and use random choice to change aspects of
our code. The goal of this project is to play random
notes as we fly through the air on a path of diamonds
or wood.

Use a new buffer in Sonic Pi. We start by upping the
tempo of our music. We will now be playing our beats
at 120 beats per minute (BPM).
use_bpm(120)

We are now going to do something new – we're
going to create a series of functions, groups of code
that can be run just by calling their name. Our first
function is called bell, and we start by defining its
name
def bell;

In the previous project we used instruments to
inject a little noise into our code. But Sonic Pi also
comes with a series of samples – pre-recorded audio
files – that can be inserted into our project. In this
function we shall use an electronic bell sample. We
can control the rate of playback for a sample, with 1
being normal speed, 2 double speed and -1 being

Duplicating blocks above
our head is a great way
to understand how to
detect the block that you
are standing on and then
change the block above
your head.

Building a bridge through the air is a fun project that
shows how easy it is to automatically build anything in
Minecraft.

Four projects in Minecraft and we've
covered quite a few coding concepts
with very little code

LV027 072 Tutorial Minecraft.indd 74 29/04/2016 11:33

LINUX FOR LEARNERS TUTORIAL

www.linuxvoice.com 75

Les Pounder divides his time between tinkering with
hardware and travelling the United Kingdom training teachers
in the new IT curriculum.

reverse playback at normal speed. It would be cool to
set the rate of playback, but perhaps we should use a
little random choice to mix it up? The rates to be used
are stored in a list (identified by []). By adding .choose
to the end of the command we can let the Raspberry
Pi choose the rate of playback.
sample :elec_bell, rate: [-1,1.5,0.5].choose

Finally we add a delay to our code before ending the
function.
 sleep 0.1
end

For our second function we use the fm synth to
play a randomly chosen note from a list of D5, C5 or
G5. We then sleep for a brief time before ending the
function.
def fm;
 use_synth :fm
 play [:d5,:c5,:g5].choose
 sleep 0.1
end

For our third function we replace the single-note
instrument with a modulating note; again, we pick a
note at random and play it for only a tenth of a second
before the function ends.
def plinky;
 use_synth :mod_pulse
 play [:d5,:c5,:g5].choose
 sleep 0.1
end

We reuse the duplicator code from Project 3 to
create a path at our feet. Again the code is contained
in a live_loop to constantly run the code, but enabling
us to edit the code on the fly, if we so wish.
live_loop :duplicator do
 pos = mc_get_tile

 x = pos[0]
 y = pos[1]
 z = pos[2]
 below = mc_get_block(x,y-1,z)

So far the code is the same as Project 3, but now
we add a new line, which will choose the block to be
used as our pathway. In this project we only used two
block types in our list, but your list can be as long as
you wish. In fact adding more items to the list will yield
more random results.
mc_set_block([:wood,:diamond_block,].choose ,x,y-1,z)

Lastly for this loop we control the pace with a sleep
and then close the loop.
 sleep 0.2
end

We now create another live_loop that will control
the music playback. In this loop we call each of the
functions that we created earlier. Feel free to change
the instruments, synths and samples used in the
functions to make the music your own.
live_loop :beat do
 plinky
 bell
 fm
end

With the code complete, click on Run and you will
hear lots of random noise, which sounds almost like
an amusement arcade. Switch to Minecraft and go for
a walk. The blocks that fall at your feet will be
randomly chosen from the list of blocks that you
entered in the loop.

So there we have it: four projects in Minecraft and
we’ve covered quite a few coding concepts with very
little code – oh, and we had some fun making lots of
noise and hacking our own Minecraft world.

Use this code as a basis for experimentation,
change the instruments and co-ordinates and see
what happens.

After running project 4 for a while your world will be littered with lines of blocks – try
changing the block type to flowing_lava for a little destruction!

Block types
Minecraft is an ordered world and has some similarities
to our own planet. First we have gravity, an attraction
between two bodies. In the instance of project 1, our player
is attracted to the world and will fall towards it. The world
is made up of a bedrock mantle with grass, deserts and
bodies of water upon the crust of the world. Water flows
following the path of least resistance, as does lava, with
both being capable of causing great destruction to a world.

There are many different types of blocks that can be
used to build with; stone_brick, wood_planks and glass can
be used to build a home. There are even special blocks to
add that personal touch to a home such as bed, door_wood
or door_iron. Rare blocks such as Nether_Reactor_Core
and Obsidian are typically mined at great expense, but with
a little Sonic Pi code we can generate many instances of
these blocks on a whim.

Blocks such as sand, water_flowing and lava_flowing can
be quite troublesome to use as they obey the law of gravity,
meaning that if they are placed high up in a world, they will
inevitably flow around the world. Try using these blocks in
project 2, duplicator, to see how powerful they can be.

This is your Minecraft world and while it may obey
certain laws of science, using Sonic Pi and Ruby we can
change our perception of this world, bending and shaping it
to our will. How will you wield that power?

LV027 072 Tutorial Minecraft.indd 75 29/04/2016 11:33

TUTORIAL MEDIAGOBLIN

www.linuxvoice.com76

Edward Snowden’s NSA leaks saw a meteoric
rise in the demand for and usage of privacy-
first software. The GNU MediaGoblin project

was able to capitalise on this and managed to fund
itself through two successful crowdfunding
campaigns. The project is spearheaded by two
veteran Free Software advocates, Deb Nicholson and
Chris Webber, who wanted a platform that enabled
the discerning user to host, and more importantly
share, their media without agreeing to the fine print on
the popular centralised platforms.

GNU MediaGoblin (GMG) is written in Python and
can be deployed easily on any Linux server. Once it’s
up and running, you can upload and share videos,
images, audio, PDF documents and other types of
digital media. One of the key features of GMG is its
federation layer, which enables you to sync and share
content across different GMG installations.

Everything you need to deploy GMG is available
in your distro’s official repositories. We’ll be setting

up the server atop an Ubuntu Server installation, but
these instructions will work on any other distro with
appropriate tweaks.

Begin by installing the dependencies with
sudo apt-get install git-core python python-dev
python-lxml python-imaging python-virtualenv npm
nodejs-legacy automake

Besides Python, we’ve installed the python-lxml
package to enable Python to parse XML ,and the
Python Imaging Library for processing images.
There’s also git for downloading a copy of GMG.

GMG houses its data inside a database and
supports both PostgreSQL and SQLite. The latter is the
default option and works well for smaller installations.
If you are planning to have more than a couple of
users uploading and viewing content, it’s best to
switch to PostgreSQL, which is what we’ll use in this
tutorial. You can install the database server with
sudo apt-get install postgresql postgresql-client
python-psycopg2

Users can create a
MediaGoblin account to
upload media or comment
on existing ones.

MAYANK SHARMA

GNU MEDIAGOBLIN:
YOUR MEDIA, YOURTUBE
Share and stream your media without losing control.

WHY DO THIS?
• Learn a platform designed

for sharing media.
• Supports a variety of

popular formats and file
types.

• Offers the convenience
of popular media sharing
platforms without
relinquishing control.

LV027 076 Tutorial MediaGoblin.indd 76 14/04/2016 15:21

MEDIAGOBLIN TUTORIAL

www.linuxvoice.com 77

The installation process will automatically create
a new system user named postgres for managing
the database. However, to keep things streamlined
and secure, we’ll create a new database user with
restricted privileges, named mediagoblin, and a new
database named mediagoblinDB owned by the
new mediagoblin database user for our MediaGoblin
instance.

First, switch to the postgres system user with
sudo su - postgres
and then create a new database user with
 createuser -A -D mediagoblin
After bringing the user to life, create the database with
sudo -u postgres createdb -E UNICODE -O mediagoblin
mediagoblinDB

Next we’ll create an unprivileged system user
named mediagoblin, which we’ll use for the sole
purpose of running MediaGoblin. The user named
mediagoblin can be underprivileged, because
MediaGoblin doesn’t need any privileges to run.
Controlling the server via an underprivileged user also
helps make the system secure. The command
sudo useradd -d /var/lib/mediagoblin -m -r -g www-data
mediagoblin
will create a user named mediagoblin and assign
it to a group that is associated with the web server
(www-data). This will ensure that the web server can
read the media files (images, videos, etc) that users
upload. No password will be assigned to this account,
and you will not be able to log in as this user, but you
can switch to it.

Next up, you’ll need to create a working directory for
MediaGoblin. This is where the Git repository will be
downloaded. Create the directory and give it the right
permissions with:
sudo mkdir -p /srv/mediagoblin.example.org
sudo chown -hR mediagoblin:www-data /srv/
mediagoblin.example.org

We’re now all set to clone GMGs online repository
into this folder. First switch to the mediagoblin user
we created earlier with
sudo su mediagoblin -s /bin/bash
and then change the directory to the working directory
we just created with
cd /srv/mediagoblin.example.org
and mirror the latest stable release with
git clone git://git.savannah.gnu.org/mediagoblin.git -b
stable

This will create a directory named mediagoblin.
Switch to this folder (cd mediagoblin) and then
initialise the repository with
git submodule init
followed by
git submodule update

After it’s done we’ll deploy GMG via the bootstrap
scripts, which make use of the virtualenv tool to
create isolated Python environments. First make sure
you’re in the correct directory
(/srv/mediagoblin.example.org/mediagoblin) before

issuing the
./bootstrap.sh
command. When it’s done type ./configure and
finally, compile all components with the make
command. While you are here, create a directory
named user_uploads, which is where we’ll be storing
all the uploaded media files with
mkdir user_uploads

Also remember to make sure it has the proper
permissions with
chmod 750 user_uploads

The MediaGoblin developers recommend using
the FastCGI protocol to route requests from the web
server to MediaGoblin. This is done via a Web Server
Gateway Interface (or WSGI) and one of the most
popular ones is the Python module named Flup. The
latest version of Flup seems to only
support Python 3 and newer versions,
which is why we’ll install an older version
of the library with
 ./bin/easy_install
flup==1.0.3.dev-20110405

Get set GMG
Now that GMG is installed, we will edit its
configuration file as per our requirements. The main
configuration file is named mediagoblin.ini and is
housed under the /srv/mediagoblin.example.org/
mediagoblin directory. Begin by making a copy of the
file called mediagoblin_local.ini in the same directory.
Then open the file in a text editor and scroll down to
the [mediagoblin] section. Add the
following line here to instruct GMG to
use the PostgreSQL database we’ve set
up for the server.
sql_engine = postgresql://mediagoblin@
localhost/mediagoblinDB

That’s all for now. Save the file and
exit the editor. Before proceeding further,
populate the data with

By default, GNU
MediaGoblin will
automatically transcode
all videos to WebM
format. Refer to the
documentation to disable
this behaviour and save
time and processing
power.

PRO TIP
For easier management, turn the
MediaGoblin deployment into a service
with these init scripts (https://github.com/
joar/mediagoblin-init-scripts).

PRO TIP
If Nginx complains while installing, before
anything else make sure you don’t have
another web server (such as Apache)
running on port 80.

LV027 076 Tutorial MediaGoblin.indd 77 14/04/2016 15:21

TUTORIAL MEDIAGOBLIN

www.linuxvoice.com78

Mayank Sharma has been messing with technology for
decades, and spends his spare time burning rubber/getting
lost in his own personal Wacky Races.

./bin/gmg dbupdate
That’s it. Now bring the server online with

./lazyserver.sh --server-name=broadcast
You should now be able to connect to the GMG

installation by pointing the browser to localhost:6543.
You can also replace localhost with the IP address of
the server to connect to the GMG server from other
computers on the network. Advanced users can refer
to the documentation on the project’s website and
hook up GMG with a webserver like Nginx or Apache.

Before you start using the GMG installation, you’ll
have to create an account. When you do so, the server
will display the link to authenticate the account on
the terminal. Click on it to verify your account. You

can also manually add users from the
command line by issuing the
 ./bin/gmg adduser
command from under the
/srv/mediagoblin.example.org/
mediagoblin directory.

Add media
You can now log into your GMG account and start
adding media. Click the button labelled Add Media and
use the Browse button to point to the file you wish to
upload. Then define the title of the media, add a brief
description and a comma-separated list of tags.
Finally, use the pull-down menu to select the
appropriate licence for this media file before you click
the Add button to upload it.

By default, the GMG server only allows image
uploads; support for other media types is bundled as
plugins. Enabling them is a two-step process. First
you’ll have to install the required dependencies. For

example, to upload audio files, install the necessary
components with
sudo apt-get install python-gst-1.0 gstreamer1.0-
plugins-{base,bad,good,ugly} gstreamer1.0-libav
python-numpy python-scipy libsndfile1-dev libasound2-
dev

Once the dependencies have been installed, open
the mediagoblin_local.ini configuration file, scroll
down to the [plugins] section and in a new line add
[[mediagoblin.media_types.audio]]. Now save the file
and apply the changes with the
./bin/gmg dbupdate
command. The audio plugin also needs a Python
library to display spectrograms for the audio files. You
can install it with
./bin/pip install scikits.audiolab
and then run the dbupdate command again.

Similarly, to enable support for video files, first
install the dependencies, which are pretty the same as
the ones for the audio plugin. Then add [[mediagoblin.
media_types.video]] under the [plugins] section in the
mediagoblin_local.ini file and run the
./bin/gmg dbupdate
command.

That’s all there’s to it. You should now be able to
upload audio and video files to the GMG installation.
Refer to the documentation on the project’s wiki
(https://wiki.mediagoblin.org) to further customise
and expand your MediaGoblin instance to host other
kinds of media files as well.

You can browse media
uploaded by other users
and arrange them along
with your own uploads into
collections.

PRO TIP
To minimise spam disable user
registration by changing the
allow_registeration = true line to
allow_registeration = false in the
mediagoblin_local.ini file.

LV027 076 Tutorial MediaGoblin.indd 78 14/04/2016 15:21

SUBSCRIBE

shop.linuxvoice.com

The only Linux magazine available
as DRM-free PDFs and ePub

LV027 079 Ad ePub.indd 79 14/04/2016 16:13

TUTORIAL VAGRANT, JUPYTER & IPYTHON

www.linuxvoice.com80

Getting started with Python is fairly easy if your
OS has Python pre-installed. But what about
using Python 3 instead of 2, installing various

libraries that may conflict with other projects you are
working on, and software not available for your distro?

Installing all those pieces can be a daunting task
and, depending on your OS, might require a good
deal of knowledge. With Vagrant you can put all those
parts into a virtual machine and not care about them
anymore. This VM does not need to run any specific
OS, so it can be any OS which makes it easy to install
the software you need (like Ubuntu does). You don't
need Vagrant to boot up a virtual machine, install
Ubuntu and add the software you need, but Vagrant
handles the tedious parts of virtual machines by
providing base images, taking care of booting them
correctly and provisioning, which means installing the
software you want onto the machine. As you script
all steps needed, they can be executed over and over
again and also shared, making it possible to have the
same environment available on different machines.

IPython (https://ipython.org) is a tool for running
Python interactively that's more powerful than the
standard Python interpreter. When combined with

Jupyter (https://jupyter.org), you get a web-based
Python environment that lets you easily experiment
with Python code and share the results in HTML.

To run both IPython and Jupyter with Python 3
without touching the host system, we’ll first set up a
development environment inside a virtual machine
with Vagrant and then use the IPython notebook in our
browser.

Vagrant is configured using one file containing the
details about the virtual machine, the base image to
be used and the code to be run after the machine
is booted. This file can be shared and used to make
(almost) identical virtual machines on many hosts.
You don’t need to mess with VirtualBox manually any
more or copy virtual machine images to different
physical machines.

To get started, you need to have Vagrant installed
as well as one virtualisation provider. Vagrant can
be installed from the project homepage at www.
vagrantup.com or through your distro's repository.
The most prominent virtualisation provider is
VirtualBox, which can be installed through the
repositories as well or downloaded from
https://www.virtualbox.org.

Both Vagrant and
VirtualBox run on your
host, with the Browser
and a shell accessing the
virtual machine using http
and ssh. Inside the VM,
the Jupyter server runs the
IPython notebook.

SEBASTIAN
GÖTTSCHKES

GET NUMPY WITH
JUPYTER AND VAGRANT
Run Python 3, IPython and NumPy in your browser all without installing them!

WHY DO THIS?
• Have a clean development

environment ready in
minutes.

• Write Python code and
run it, all in your browser.

• Install different versions
of programming
languages and libraries.

LV027 080 Tutorial Vagrant.indd 80 14/04/2016 15:23

VAGRANT, JUPYTER & IPYTHON TUTORIAL

www.linuxvoice.com 81

Afterwards, you should be able to run
vagrant --version
in your terminal and get back the version. For this
tutorial, version 1.7.4 is assumed, but everything
should run with Vagrant 1.5 and higher. The installed
VirtualBox version is 5.0.8, but Vagrant should be able
to work with Version 4 just as well.

Now, let’s create a folder for our project called
python-nb. Open up a terminal, navigate to this
directory and run
vagrant init bento/ubuntu-15.04

This tells Vagrant to create a configuration file
(which is called Vagrantfile) that has the base box
bento/ubuntu-15.04 already mentioned. Base
boxes are images of virtual machines created with
the provider you are using (in this case, VirtualBox).
Vagrant downloads them automatically so they are
available for usage and imports the image to create
a new virtual machine. You can either use pre-build
base boxes (like we do in this tutorial) which you can
find at https://atlas.hashicorp.com/boxes/search,
or create your own (the Vagrant documentation has a
good introduction at https://docs.vagrantup.com/v2/
boxes/base.html).

The next step would be to boot that box by
executing
vagrant up
and waiting while Vagrant is downloading the base
box, importing it and setting everything up for you to
use. Afterwards you can access your virtual machine
by running
vagrant ssh
which opens an SSH connection into your VM.
You could go ahead and install all the software you
need by hand now, but if you do this your setup is
not reproducible, and next time you remove the box
and create a new one, you'll just get the base image
again. That’s why Vagrant comes with provisioning,
which means you can write down the steps you want

to execute inside the virtual machine and Vagrant
executes them.

We can use a sequence of shell commands to get
us from base image (the Ubuntu base box) to our final
state. The provisioning part inside a Vagrantfile looks
like this:
config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y build-essential python3-dev python3-
pip
 pip3 install ipython jupyter numpy
SHELL

Put this before the last /end statement in your
Vagrantfile and run vagrant provision. What
happens is that Vagrant executes every statement
in the provision block. After updating the apt-cache,
it installs a few apt packages we need for Jupyter
and NumPy and afterwards uses pip to install the
packages from pypi. It’s important to point out that
by default, Vagrant executes those commands using
sudo. This is fine for us as both apt and pip need sudo
and it saves us a few characters.

If you SSH into your box (again, using
vagrant ssh
and run the iPython notebook server with
ipython notebook
you’ll see the server starting and listening on
localhost:8888. If you go to this address using your
favourite browser, you’ll not have any luck. Remember,
this isn’t running on your localhost but inside a virtual
machine, so there are two things needed to make it
accessible from outside.

First, we need to tell Vagrant to forward the port
8888 from our host to our guest. This can be done
with one line in our Vagrantfile:
config.vm.network "forwarded_port", guest: 8888, host:
8888

Place this line somewhere below the
config.vm.box = "bento/ubuntu-15.04"
line inside your Vagrantfile.

We can forward any port on the host to any port on
the guest. They do not need to match, but it’s often
easier to forward to the same port so you don’t get
confused. We need to restart the virtual machine so

You can see your virtual
machines in the VirtualBox
GUI, and even interact with
them if you like.

Vagrant vocabulary
Vagrant comes with a set of commands used to interact
with a virtual machine. It’s a good idea to know what they
mean:
• vagrant up Boot the virtual machine. If the box doesn’t

exist yet, it’ll be created as well.
• vagrant provision Run the provisioning scripts. This is

done automatically if the box is booted for the first time.
• vagrant ssh Establish an SSH connection with the VM.

This will take care of SSH configuration (the port and SSH
key) automatically.

• vagrant halt Shut down the virtual machine.
• vagrant reload Reboot the virtual machine. This is the

same as a vagrant halt && vagrant up.
• vagrant destroy Remove the virtual machine completely.

This will also destroy the virtual hard drive used, so all
data inside the VM is removed!

There are more commands to interact with Vagrant. You
can view them using
vagrant help

LV027 080 Tutorial Vagrant.indd 81 14/04/2016 15:23

TUTORIAL VAGRANT, JUPYTER & IPYTHON

www.linuxvoice.com82

Vagrant can pick up these changes. Run
vagrant reload
on your host to do that.

The second thing we need to do is tell the IPython
notebook server to run on host 0.0.0.0, which is
essentially telling it to accept connections from
anywhere. This is important because “localhost”
on the guest means that the server only listens to
requests from inside the VM and even with the port
forwarded, the request is still coming from your host
machine.

Let’s SSH into the VM once more and run
ipython notebook --ip=0.0.0.0 --no-browser
and try to go to http://localhost:8888 in the browser.
You should see the IPython notebook homepage,
which means you can now run Python 3 with NumPy
(and any other package you install) in your browser by
creating a new notebook (click on New in the top-right
corner and select Python 3 under the Notebooks
heading) and writing code.

There is still one problem though: say you have
written some awesome code and you want to share
your notebook (it’s a text file intended to be shared
after all). It’s stored inside the VM in the same
directory you were in when you started the IPython
notebook server, which is most likely:
home/vagrant
This path isn’t accessible from your host. Worse, if you
destroy your VM, your notebooks are gone as well!

Vagrant comes with shared folder support, which
means you can mount folders from your host
machine inside the guest and use those to exchange
files. It’s common to mount a directory containing the
project code into the virtual machine. On your host,
create a folder called notebooks inside your project
directory. Add the following code to your Vagrantfile
below the
config.vm.network
line:
config.vm.synced_folder "notebooks", "/opt/notebooks"
This tells Vagrant to mount the folder notebooks on

our host (this is a relative path to our Vagrantfile) at
/opt/notebooks inside the virtual machine. Do a
vagrant reload
on your host once more to restart the virtual machine
so Vagrant can mount that folder. Execute
vagrant ssh
again and cd to /opt/notebooks. You should see an
empty directory. If you run the command to start the
IPython server from above again and create a new
notebook, you’ll see it turn up both inside your VM and
on your host.

If you're done for the day, you can halt the VM using
vagrant halt

If you want to start all over, run
vagrant destroy
which removes the virtual machine and start from
scratch with
vagrant up

Of course you can tailor your environment on your
guest machine just as you would a physical machine.
To try this, let’s create an alias for starting the IPython
notebook server with the correct parameters already
set so you don’t need to remember them. On Ubuntu,
this can be done by writing into the ~/.bash_aliases
file. Let’s add another shell provisioner to our
Vagrantfile:
config.vm.provision "shell", privileged: false, inline:
<<-SHELL
 echo ‘alias ipy="ipython notebook --ip=0.0.0.0
--notebook-dir=/opt/notebooks/ --no-browser
--port=8888"’ > /home/vagrant/.bash_aliases
SHELL

This time, the shell command is run as the
vagrant user without sudo as we pass the privileged
parameter. We do this so the .bash_aliases file has
the correct permissions and because it’s not needed
to run this command as root. To provision an already
existing VM use:
vagrant provision
This will execute all provisioner steps once again. If
you have any shell command that fails the second

The final IPython notebook in a browser window.

LV027 080 Tutorial Vagrant.indd 82 14/04/2016 15:23

VAGRANT, JUPYTER & IPYTHON TUTORIAL

www.linuxvoice.com 83

Sebastian Göttschkes felt the pain of different development
environments early in his career and, looking for a solution,
found Vagrant. He now runs a VM for every project!

time they are run (eg creating a symlink), you will have
to change them. It’s a good idea to write provisioning
scripts in a way that they can be run any number of
times and only execute code that’s needed. This can
be done by checking whether a symlink already exists
before symlinking, for example.

The complete Vagrantfile (with all comments
removed for readability) would look like this:
-*- mode: ruby -*-
vi: set ft=ruby :

Vagrant.configure(2) do |config|
 config.vm.box = "bento/ubuntu-15.04"
 config.vm.network "forwarded_port", guest: 8888, host:
8888

 config.vm.synced_folder "notebooks", "/opt/notebooks"

 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install -y build-essential python3-dev
python3-pip
 pip3 install ipython jupyter numpy
 SHELL
 config.vm.provision "shell", privileged: false, inline:
<<-SHELL
 echo ‘alias ipy="ipython notebook --ip=0.0.0.0
--notebook-dir=/opt/notebooks/ --no-browser
--port=8888"’ > ~.bash_aliases
 SHELL
end

After this setup works, we can now go ahead and
work with a new IPython notebook. After you have
SSH’d into your VM and run ipy to start the iPython
notebook server, go to http://localhost:8888 and
create a new notebook on the right by clicking New
and selecting Python 3. You are redirected to a new
screen which represents your notebook. Start writing
some code in the textfield next to In []:
print("Hello World!")
Clicking the Run button will execute this line of code,
show you the result and move the cursor to the
next cell.

All modules that are available in Python will also
work inside an IPython notebook. As we've installed
NumPy already, we can use it without further changes.

Put this in your second cell:
import numpy as np
a = np.array([[1,2,3],[4,5,6]])
a

After running the cell, you’ll see the NumPy
array printed. The IPython interpreter takes care of
outputting the result of the last line automatically
without the need to put a print statement. In fact, the
interpreter outputs many datatypes much more nicely
than a simple print statement would.

We can use the variable a in another cell as well. In
Cell 3, let’s try putting
a.shape
and see if this works. It does and prints (2, 3) to tell us
that the shape of the multi-dimensional NumPy array
is 2 rows, 3 columns.

The great thing about IPython notebooks is that
you can add Markdown cells and mix those with your
code. Use the Cell Type Dropdown in the toolbar to
change the type of a cell from Code to Markdown.
Markdown is a simple way to annotate your text with
just a little bit of styling while maintaining readability
of the text at the same time. Let’s add a headline as
well as some text:
This is a iPython notebook
It can be used to test stuff or write small pieces of
software which can be run in the browser.

If you hit run again, you can see that the layout
changes a bit and the hash sign is gone. The
markdown has been converted to HTML, with the
headline now being a h1. Move the cell up to the top
by clicking it and then clicking the up arrow in the
toolbar until the cell is at the top.

Now that you've seen how to create a virtual
machine for IPython using Vagrant, you can apply the
same techniques to manage almost any server-side
software. Doing this, you'll gain the benefit of having
reproducible machines that are easy to manage.

Add version control

Different ways to provision

Both the Vagrantfile and the provision scripts are text
files, which make them perfect for storing in a version
control system. You can use Git, Mercurial or SVN to hold
the versions of the files that build your virtual machine.
This makes it possible to destroy a virtual machine; go
back to a previous commit and build the box using those
instructions. You can also share your environment using a
code repository.

Just make sure to exclude the .vagrant folder as it
contains information about your host system. Having
this inside version control will mess things up for others
checking out your code!

In this tutorial, the only provisioner we use is the shell
provisioner, which executes shell commands or scripts.
There are many more provisioners built into Vagrant that
have advantages over using shell commands. For example,
they’ll take care of all the details by providing modules
or plugins to interact with apt. They might also offer a
templating system so you are able to provide templates for
configuration files which are automatically put in the right
place inside your virtual machine.

If you want to start using a more sophisticated
provisioning provider, try Ansible (www.ansible.com). This
tool keeps things simple while still providing powerful
features. Ansible is a tool to execute commands on
remote systems, so it’s possible to set up your staging and
production environment and your development machine
using the same tool and achieve a similar configuration.

LV027 080 Tutorial Vagrant.indd 83 14/04/2016 15:23

www.linuxvoice.com

CODING RUST

84

The Rust programming language (www.
rust-lang.org) is a systems programming
language which aims for three things – safety,

speed and concurrency. If you are not familiar with it,
one way to look at it is considering using it where
perhaps the C programming language would be
otherwise suitable, but you want something safer. A
few ways it leads to safer programming is by
disallowing usage of uninitialised variables, variables
defaulting to being immutable and the notion of
ownership. Remarkably, all of these are achieved at
compile time.

In this article, we will write a program that will
perform functionality similar to the tee program
(http://linux.die.net/man/1/tee). Figure 1 illustrates
the functionality of the tee program. During the course
of writing the program, we will learn about some of
Rust's features I mentioned earlier. In addition, we will
learn about Cargo, Rust's project management tool.
Let's get started!

Installation and setting up
Before we can write our first program, we will need to
install the Rust compiler (rustc) and cargo. We will be
installing Rust 1.7, the latest stable release. Download
the Rust static binary for Linux from https://static.
rust-lang.org/dist/rust-1.7.0-x86_64-unknown-
linux-gnu.tar.gz (or if you are using 32-bit Linux, the

32-bit version from https://www.rust-lang.org/
downloads.html) and extract the gzipped tarball and
run the install.sh script:
$ tar -zxvf rust-1.7.0-x86_64-unknown-linux-gnu.tar.gz
$ cd rust-1.7.0-x86_64-unknown-linux-gnu
$./install.sh
...
Rust is ready to roll.

Let's verify that we have installed the tools we need
correctly:
$ rustc --version
rustc 1.7.0 (a5d1e7a59 2016-02-29)
$ cargo --version
cargo 0.8.0-nightly (28a0cbb 2016-01-17)

Hello world
We will now write our first program in Rust. We don't
need to use cargo for a hello world program in Rust,
however it is a scalable approach, especially when we
are working on non-trivial projects. Hence, we will get
familiar with the absolute basics of cargo in this
tutorial. The first step is to create a project:
$ cargo new helloworld --bin

The new sub-command creates a new project, with
the --bin switch specifying that we want to create an
executable crate, rather than a library crate. (We
discuss crates later on in the article.) When you
execute the command above, a new sub-directory,

Figure 1: Illustration of
the functionality of the tee
command

AMIT SAHA

WRITE A PROGRAM TO
TEE OUTPUT USING RUST
Learn the latest technology to come from the clever chaps and chapesses at Mozilla.

WHY DO THIS?
• Reduce segfaults.
• Get a new job in Silicon

Valley.
• Banish dangling pointers!

Read from
standard input

Print to
standard
output

Write to all
other files

LV027 084 Coding Rust.indd 84 14/04/2016 15:24

www.linuxvoice.com

RUST CODING

85

helloworld, is created having a src/ sub-directory and
a Cargo.toml file:
helloworld/
 Cargo.toml
 src
 main.rs

You will notice that helloworld is initialised with git
version control. Thus, when the time comes, you can
easily push your code into a remote repository. We will
ignore Cargo.toml for now, since it gets interesting
only when our project is dependent on others, or we
plan to publish our library. Let's see what is generated
in the src/main.rs file:
fn main() {
 println!("Hello, world!");
}

Since Rust is a compiled language, we first have to
compile it. To do so, we will use the build sub-
command of the cargo tool from the helloworld
directory:
$ cargo build
..

Now that our program is compiled, we can run it,
using the run command:
$ cargo run
..
Hello, world!

Congratulations, you have successfully run your
first program. In the project directory, you will find a
new file, Cargo.lock and new sub-directory, target has
been created. The .lock file created becomes
important when we are using external libraries, so
once again we will ignore that for now. The target
sub-directory contains the executable for our program
(target/debug/helloworld) along with other files.

Let's now understand the program we wrote above.
The first line declares the main() function – the entry
point to our program. The main function doesn't take
any parameters, nor does it return any data. A
function that accepts arguments or returns any result
will be defined differently (Figure 2).

Curly braces ahoy!
The function body starts with an opening brace, ({)
and ends with a closing brace (}). In the function body,
we have a single line: println!("Hello, world!");, which
prints the string "Hello, world!" to the standard output
followed by a new line.

println!() is a macro that prints a string to the
standard output. For our purposes here, we will focus
on just using this macro and not get into what a
macro means in Rust and how you can define your
own. In general, however, when you come across a
function call where the "function name" has a trailing !
mark, you should know that it is a macro.

Note how the line above is terminated by a
semicolon? Most of our lines will be terminated by a
semicolon. In Rust, every line is an expression and
returns a value. When we don't care about the

returned value, we use a semicolon (;) to terminate the
expression and the expression is referred to as an
expression statement. The other type of statement is
a declaration statement, which we will get to in our
next program.

User input, data types and handling results
In our second program, we will write a program which
upon execution will take a line of input from the user
and simply print it back.

Create a new project using cargo new input_string
--bin, which will generate a main.rs file in the input_
string/src sub-directory. Next, we will type in the

following program and save it.
use std::io;

fn main() {
 let mut line: String = String::new();
 let stdin: io::Stdin = io::stdin();
 let res: io::Result<usize>;
 res = stdin.read_line(&mut line);

 if res.is_ok() {
 // Unwrap the result to extract the value
 let nbytes: usize = res.unwrap();
 println!("{}({} bytes read)", line, nbytes);
 } else {
 res.unwrap();
 }
}

There are a bunch of new things we've introduced
above. Let's start off with the first line, use std::io. To
understand what we are doing here, we have to very
briefly discuss 'crates' and 'modules' in Rust.

A crate in Rust is equivalent to a package in Python
or a library in C. Each crate in turn consists of a main
module and other modules. A crate can be either a
binary crate or a library crate. We will only be
discussing binary crates in this article. In addition, all
our crates consists only of the main
module. The statement, use std::io; thus
tells the Rust compiler that we will be
using the io module from Rust's
standard (std) library in our program.

The first statement in our main()
function:
let mut line: String =String::new()
declares a new mutable variable binding, line of the
type String and its initial value is an empty String
(which we can then append to later). By default,
variables in Rust are immutable, meaning you cannot
assign a value to it more than once. To be able to do

We will write a program that upon
execution will take a line of input
from the user and simply print it back

PRO TIP
Using 'cargo run', we can combine the
building and running steps into one. For
example, we can build and run the above
project using 'cargo run'.

LV027 084 Coding Rust.indd 85 14/04/2016 15:24

www.linuxvoice.com

CODING RUST

86

so, we need to declare it as mutable. Rust supports
type inference, which means we could have omitted
the type annotation from our earlier statement for
brevity.

In the second statement, we obtain a reference to
the standard input for reading using the stdin()
function in the io module. This function returns a
reference of Stdin type defined in the io module,
hence we declare a variable binding stdin to refer to
this returned reference.

The next statement declares a new variable binding,
res of io::Result<usize> type. The Result type defined
in the io module is used to return the result of any IO
operation which may result in an error. It is worth
mentioning here that the Result type is an
enumeration with the two variants, Ok and Err
representing success and error respectively. A
successful result encapsulates a data item used to

store the result of the operation. Thus,
when we declare a variable binding of
this type, we also need to specify the
data type of this result. This data type
will depend on the result we want to
store in this variable. In this case, it turns
out to be usize.

The read_line() function reads a single line of input
from standard input and returns the number of bytes
represented as data item of usize type. The bytes it
read will be stored in line. Note how we pass a
mutable reference to line when we call the read_line()
function. This is our way of telling that we allow the
read_line() function to modify what is stored in line.

Now that we have a result in res, we need to check
if the call to read_line() was successful. We do so
using the if statement. The is_ok() function returns
true if the result corresponds to a success and false if
there was an error. If the read_line() function returns

successfully, we execute the following statements:
// Unwrap the result to extract the value
let nbytes: usize = res.unwrap();
println!("{}({} bytes read)", line, nbytes);

The first statement in this block is a demonstration
of how we can write a comment in Rust. Rust also
supports block comments:
/* This is a comment split over
multiple lines
*/

The next statement in the above block extracts the
number of bytes returned as a result returned by the
read_line() function using the unwrap() function and
assigns the value to the nbytes variable. Next, we print
the line we read and the number of bytes we read
using the println!() macro. We call the macro with a
string that has two "placeholders", {}. This will be
substituted by the value of the variables that follow
the string in order.

Let's now build and run the above project:
$ cargo run
Hello
Hello
(6 bytes read)

We can of course even pipe the output from
another command to our program and it will print the
first line it read:
$ cat src/main.rs | cargo run
..
Running `target/debug/input_string`
use std::io;
(13 bytes read)

Using pattern matching to handle errors
Using the if statement as above to check if the result
was a success or an error works, but Rust has
something more elegant for such tasks: the match

PRO TIP
The "let" keyword in Rust is used to
declare a new variable binding. It's generic
syntax is illustrated in Figure 3.

Figure 2: A function in Rust
(please refer to the section
on functions in the Rust
reference: https://doc.
rust-lang.org/reference.
html#functions to learn
more).

Function name

Parameters

//function body

Return type

fn myfun(var1: type1, var2: type 2..) -> return_type {

{

LV027 084 Coding Rust.indd 86 14/04/2016 15:24

www.linuxvoice.com

RUST CODING

87

expression. Let's create a new project, input_string_
match and then type in the following code into the
src/main.rs file:
use std::io;
fn main() {
 let mut line: String = String::new();
 let stdin: io::Stdin = io::stdin();
 let res: io::Result<usize>;
 res = stdin.read_line(&mut line);
 match res {
 Ok(nbytes) => {
 println!("{}({} bytes read)", line, nbytes);
 }
 Err(err) => {
 println!("{}", err);
 }
 }
}

We can see that the only difference between our
previous code and this is how we handle the result
returned by the read_line() function. Here, we use the
match expression to perform different actions based
on the result. If the result returned is a success, it
matches the Ok() block, else it matches the Err()
block. The match expression also takes care of
creating the variable binding to the data returned upon
success or an error – nbytes and err respectively.

Vectors and iterators
Vectors in Rust is a growable list of elements of the
same type and is created using the vec! macro. Let's
see an example – create a new project using cargo
new vectors --bin and replace its src/main.rs by the
following program:
fn main() {
 let mut v = vec![1, 2, 3];
 v.push(4);
 for elem in v {
 println!("{}", elem);
 }
}

The first statement let mut v = vec![1, 2, 3] creates
a new mutable variable binding, v to vector, [1, 2, 3].
Note how we did not declare any type of the elements
that will be in the vector, but it was inferred from the
elements we initialised it with. We create a mutable
variable binding so that we can add and remove
elements from the vector later on. In the next
statement, we use the push() function to append
another element to the vector.

Next, we use a for loop to iterate over the vector, v
and print each of the elements, elem. When you build
and run the program, you will see the following output:
1
2
3
4

Command line arguments
The most basic functionality we need to have in a

command line program like tee is to be able to read
user input supplied as command line arguments. We
will create a new project, read_cmdline_args using
cargo new read_cmdline_args --bin and replace the
generated code in main.rs with the following:
use std::env;
fn main() {
 for arg in env::args() {
 println!("{}", arg);
 }
}

The command line arguments supplied to a
program upon execution can be accessed using the
args() function in the env module of the standard
library. Hence, we start our program with the use
std::env statement.

In the main() function, we directly iterate over the
result of calling the env::args() function using a for
loop and print each argument.

If we run the project using cargo run arg1 arg2 12, it
will print the path to the executable followed by arg1,
arg2 and 12 on separate lines:

$ cargo run arg1 arg2 12
..
arg1
arg2
12

If we don't supply any arguments, it prints only the
path to the executable:
$ cargo run
target/debug/read_cmdline_args

Creating and writing to files
There is one missing piece left before we can write our
program to implement the functionality of the tee
program – writing data to files.

We will create a new project using cargo new
file_write --bin and write the following program into
the src/main.rs file:
// Write some data into a file
// Usage: cargo run <file path> string
use std::io::Write;
use std::fs::File;
use std::env;
fn main() {
 let args: Vec<String> = env::args().collect();
 if args.len() < 3 {
 panic!("Usage: cargo run <file path> string");
 }
 let file_name = args[1].clone();
 let contents = args[2].clone();
 match File::create(file_name) {
 Ok(mut f) => {

The most basic funtionality in a
command line program is the ability to
read user input specified as arguments

LV027 084 Coding Rust.indd 87 14/04/2016 15:24

www.linuxvoice.com

CODING RUST

88

 match f.write_all(contents.as_bytes()) {
 // _ is a throwaway variable since we don't
 // have anything to do if write_all() was
successful

 Ok(_) => {}
 Err(error) => {
 println!("Error writing to file: {}", error);
 }
 }
 }

 Err(error) => {
 println!("Error when creating file for writing: {}",
error);
 }
 }
}

In the first statement of the program, we import the
Write trait from the std::io module. A trait in Rust is
roughly equivalent to a behaviour certain types share.

Next, we import the File type from the std::fs
module and the std::env module.

In the first statement of the main() function, we are
creating a vector of Strings from the command line
arguments passed to the program. We do so using
the collect() function.

Next, we check the length of the vector using the
len() function, and if it is less than 3, we want to print a
message and exit. We do so using the panic!() macro.
This prints the supplied string and exits the program.

Next, we create two new variable bindings,
file_name and contents corresponding to the second
and third command line arguments.

We then use the create() function to open the file
for writing. If the file specified exists, it is truncated. If
the file was opened successfully, we write to it using

the write_all() function. Since the write_all() function
expects the data as bytes instead of a string, we
convert the string to bytes using the as_bytes()
function.
$ cargo run /tmp/file.txt hello
Running `target/debug/file_write /tmp/file.txt hello`
The file /tmp/file.txt should contain the string hello.

Note how we don't worry about closing the file
explicitly in the above program. Rust automatically
closes the file when all references to it go out of
scope.

The tee program
Now using all that we have learned so far, we are
ready to write the program to implement the basic
functionality of the tee command. You can find the
entire program at https://github.com/amitsaha/
linux_voice_2/blob/master/tee/src/main.rs. We will
discuss the program in two snippets.

We have a number of use statements at the top of
the program – where we import different modules
and types from the standard library. Next, the first
block of the main function opens the standard output
for writing and any additional files that were specified
as command line arguments:
let mut stdout = io::stdout();
// Process any additional files specified
let args: Vec<String> = env::args().collect();
let mut files = Vec::new();

if args.len() > 1 {
 for file_name in args {
 match File::create(file_name) {
 Ok(f) => {
 files.push(f);
 }
 Err(error) => {

Figure 3: Generic syntax
of declaring a variable
binding in Rust.

Optional, declares that this is a mutable binding

Optional, type annotation

let <mut> variable_name: type = initial_value

LV027 084 Coding Rust.indd 88 14/04/2016 15:24

www.linuxvoice.com

RUST CODING

89

 println!("Error creating file for writing: {}", error);
 }
 }
 }
}

The first statement in the above block calls the
stdout() function in the io module to obtain a
reference to the standard output. A mutable variable
binding, stdout is created to refer to it later on.

Next, we initialise an empty vector using the new()
function and create a mutable variable binding, with
files to refer to it. Next, we check if any files were
specified. We open each of these files for writing, and
if successful, we save the opened file object to the
files vector.

The next block of code reads from the standard
input endlessly, and for each line it reads, writes it to
the standard output and any of the additional files that
was specified:
// Read from standard input and write to all the files
let mut line = String::new();

loop {
 match io::stdin().read_line(&mut line) {
 Ok(n) => {
 // Have we read all the lines, if yes, break
 if n == 0 {
 break;
 }
 // Write to standard output
 match stdout.write_all(line.as_bytes()) {
 Ok(_) => {}
 Err(error) => {
 println!("Error writing to stdout: {}", error);
 }
 }

 // Write to any additional files
 // We obtain a mutable reference to the file from the
vector
 for f in &mut files{

 match f.write_all(line.as_bytes()) {
 Ok(_) => {}
 Err(error) => {
 println!("Error when writing to file: {}", error);
 }
 }
 }
 // Clear the line we just read so that we don't keep
 // appending
 line.clear();
 }
 Err(error) => {
 println!("Error reading from stdin : {}", error);
 }
 }
}

An infinite loop in Rust is created by enclosing the
loop body within loop {} as follows:
loop {
 // This statement will be executed endlessly
}

The read_line() function we use to read from
standard input keeps appending the lines read into the
variable, line, hence we call the clear() function above
to empty the string.

To execute the code for our tee program, clone the
repository from https://github.com/amitsaha/
linux_voice_2, change the directory to the tee
directory, and use cargo run to run the program. Of
course, we can specify any additional files as

command line arguments. For example, the following
will execute the who program, print the output to the
standard output and to the file /tmp/who.output:
$ who | cargo run /tmp/who.output

Conclusion
In this article, we learned just enough of the Rust
programming language while writing a program to tee
output. However, our program lacks one major feature
– the option append to existing files. You can perhaps
consider that an exercise to try next.

You can find all the Rust projects we created in
the article at https://github.com/amitsaha/linux_
voice_2.

The resources section above lists a number of
resources where you can learn more about Rust
including and beyond all the features we have learned
about and used in the article.

Amit Saha is the author of Doing Math with Python
(No Starch Press) and a software engineer. He blogs at
https://echorand.me, tweets @echorand and can be reached
via email at amitsaha.in@gmail.com

Resources
• The Rust programming language book https://doc.rust-

lang.org/book.
• Crates and Modules https://doc.rust-lang.org/book/

crates-and-modules.html.
• Cargo http://doc.crates.io/guide.html.
• Primitive types in Rust https://doc.rust-lang.org/book/

primitive-types.html.
• Standard library modules http://doc.rust-lang.org/

std/#modules.
• Reference https://doc.rust-lang.org/reference.html.
• Rust by example http://rustbyexample.com/index.html.
• Rust for C/C++ programmers https://github.com/nrc/

r4cppp.
• Error handling https://doc.rust-lang.org/book/error-

handling.html.
• Linux coreutils written in Rust https://github.com/uutils/

coreutils.
• Rust learning https://github.com/ctjhoa/rust-learning.

We have a number of use statements
at the top of the program – where we
import different modules and types

Optional, declares that this is a mutable binding

LV027 084 Coding Rust.indd 89 14/04/2016 15:24

www.linuxvoice.com

CODING GIT

90

1 What is Git?
Even if you don’t have any interest in development,
you must have noticed that Git has taken over the
world of version control. Before Git, there was a fragile
ecosystem where Subversion, BitKeeper, Perforce and
even the venerable CVS co-existed in quiet harmony.
Git changed that, especially for open source projects.

When Linus Torvalds wrote Git his goal was to
create something to replace the proprietary BitKeeper
while keeping BitKeeper’s main advantage. That
advantage was being decentralised so that 1,000
developers didn’t have to wait for a server while
orchestrating a kernel release. This is what makes Git
different from Subversion; in Subversion, the server is
the gatekeeper to progress. With Git, every developer
gets their own copy, or repository, and they work on
this independently. The clever bit happens when all
these parts are merged together.

2 Client Installation
Most distributions will either include the Git client or
make it very easy to install, and this is all you need to
communicate and collaborate with any other Git
repository. Without a doubt, the most popular online
repository is now GitHub, which has become a huge
social network for developers. As of April 2016, it
contains 35 million repositories serving 14 million
project collaborators who use it both for code
collaboration and for its wider infrastructure, such as
issue tracking and documentation. You can make
your own copy of any public project using the git
clone command directly followed by the project’s URL
(git clone https://). This will copy all the files into a
new local folder with the same name as the repository
on the end of the URL, and you’ll be able to explore its
contents, build the project and make your own edits to
the code, all without accessing the server again.

Version control (also known as source control
management) systems perform two essential
tasks. First, they let you track changes to a file

so that mistakes can be reversed. Second, they enable
lots of people to edit those files at the same time,
while maintaining an independent track of all those
changes. Mostly, those files and projects revolve
around programming and development, but
development needn’t be the only case.

In this issue’s interview, for example, old school
hacker ‘r0ml’ is convinced that version control could
be the enabler, allowing you to tinker and change

GRAHAM MORRISON

GET INTO VERSION
CONTROL WITH GIT
Git is taking over! Don’t get left behind: run your own server for fun and profit.

WHY DO THIS?
• Control all aspects of your

computer setup.
• Make it easier to chare

code (and work on other
people's).

things, whether that’s a live website or your own
configuration files. Being able to change things is one
of the principles behind open source, and there’s no
reason why this magical ability shouldn’t be confined
to just programmers. There are even tools that put
your entire /etc folder under version control, for
instance, enabling you to roll forwards and backwards
through any system changes, which is perfect for
precarious servers with their finely balanced Apache
and Postfix configurations. We’re going to install,
configure, serve and start using Git, most popular
version control system around.

STEP BY STEP: SET UP GIT

LV029 090 Tutorial Git.indd 90 15/04/2016 09:35

www.linuxvoice.com

GIT CODING

91

3 Terminology
Before we can start playing with this Git revolution, we
should first cover some of the words used by Git to
explain its functions. If you’ve used some other
version control system, these terms can seem
counterintuitive, so here are 10 of the one that we feel
are the most important:

 branch In Git, this is a label used to delineate a
revision of a repository.
 clone As we’ve just shown, this is a copy of an
existing Git repository.
 commit The process of saving your changes to
your local copy.
 fetch Grabs changes from the online repository
without merging them.
 master The definitive branch for a project, usually
used for releases.
 merge Combines the changes from one repository
with those in another (usually your local copy).
 pull Grabs changes from the online repository and
merges them with your local repository.
 pull request Mostly used collaboratively to notify
the maintainer of a repository to merge a
developer’s new change.
 push: sends your local changes to the online
repository.
 staging This is a half-way point between a commit
and a simple save, useful for partially implemented
work.

4 File structure
Linus wanted Git to remain simple, and while its scope
and capabilities have become complicated, the way it
works is still straightforward. Most of the magic
happens with the help of a .git folder hidden within
any repository you download. This folder contains
everything Git needs to keep track of changes. config
holds the local configuration, for example; HEAD will
contain a reference to the branch you’re currently
working in; while Index contains data on files you’ve
saved to the staging area.

The objects directory holds links to everything Git is
managing, while refs and tags both hold references to
branches and tags, with tags being more like a
snapshot of a branch at one moment in time rather
than an isolated developmental revision. By default,
the hooks folder contains sample scripts that can be
modified to trigger events after a commit and
becomes very powerful when you link Git against your
other systems.

5 How Git tracks changes
You may have noticed we’ve made lots of references
to what we call ‘references’. These references are at
the core of how Git works. Unlike other systems, Git
doesn’t store changes specifically. Instead, it acts
more like a filesystem for all your variations, with the
key to each of those changes being a checksum of
the content. This checksum is a SHA-1 hash, and is
generated whenever you use git commit to finalise or
stage your changes. You can see an ordered list of
these hashes by typing git log, a command that
shows the various commits made on your repository
up to that point. You can show the details of any
specific commit by typing git show followed by the
first eight or so characters of the hash – whatever is
enough to uniquely identify it. GitHub displays these
values too, and the output from any change is the
same as the output from the diff command.

6 The anatomy of a ‘diff’
The output of git show, with its lines starting with
‘+++’,’---’ and ‘@@’, can be confusing. This is because
the output uses the unified format of the GNU/Linux
stalwart diff command, where + is used to denote
additional lines, - is used to show removed lines, and
@ outputs the chunk of code that’s been affected by
each change. You can even see this command being
executed early within the Git output (look for diff --git
a/ b/) before the diff changes start to appear.

You can see these changes much more clearly in
GitHub, where clicking on a commit’s SHA-1 reference
displays the differences for each file; this output is
coloured and grouped together to show the
differences in each file. If you ever really want to get
into the details, we’d recommend using a graphical
diff tool, such as Kompare, to check the differences
between any two files.

LV029 090 Tutorial Git.indd 91 15/04/2016 09:35

www.linuxvoice.com

CODING GIT

92

7 Set up a server
One of the biggest hurdles to using Git is getting
practical experience of its commands and processes
without breaking anything. You could set up your own
experimental online repository with a service such as
GitHub, but we’ve found the best option is simply to
install a Git server locally and play with it yourself.
That way you can set up a repository, import some
code, make all the changes you need, and then look at
how this affects both the server and the local storage.
If you can do this with one of your own projects, even
better, but you could just as easily import another
project or simply play around by editing text files. We
installed Ubuntu Server 14.04 into a virtual machine
with SSH already running, but you could use a VPS or
real hardware too.

8 Installing Git-o-lite
Installing the git-core packages on Ubuntu is almost
enough to get you a working server, but it won’t give
you enough control or enough capabilities to manage
different users and repositories, which is the main
reason for installing a Git server in the first place. For
that reason, we’d recommend installing gitolite
instead. This makes it much easier to get complete
control over your new system and turn your server
into a fully fledged secure source code repository with
multiple projects and users. On the Ubuntu Server, the
main packages can be installed by typing sudo
apt-get install gitolite, and we need to add a user to
run the server, which can be accomplished by typing:
sudo adduser --shell /bin/bash --system --group --home
/home/git git

9 Setting up SSH
Most configurations use SSH to deliver access
credentials to a Git server. We’ve covered SSH quite a
bit before, but essentially, typing ssh-keygen -t rsa on
your client will generate a key pair, where one key is
private and the other is public. Renaming the public
key to something closer to your username will help
with gitolite permissions configuration.

Administrator authentication needs the public part
copied onto the server – use sftp if you have trouble
with this – and we need the public key to complete
the gitolite configuration. With the .pub key accessible
on the server, type sudo su git to switch to the git user
we created earlier, and type gl-setup id_rsa.pub.
Change the path and filename so it points to the
location and name your public key. By adding the key
in this way, you can use the account with the private
key as the gitolite administrator.

10 Configure gitolite
The configuration process continues and first asks
where to to put the configuration file before then
asking you for your favourite text editor. This is
important because the following step will open the
configuration file in this editor, and you’ll need to be
able to navigate the text, save and close, so don’t be
tempted to choose Emacs unless you know Emacs.

It’s worth looking through the file, but we got a
working configuration without changing any of the
options. Save or exit to quit back to the command line
as the git user, and exit from this too. You should now
be able to access gitolite from the account and
machine that generated the SSH key pair, which is
where we need to go next to instantiate gitolite’s own
Git-based management interface.

LV029 090 Tutorial Git.indd 92 15/04/2016 09:35

www.linuxvoice.com

GIT CODING

93

11 Checkout the configuration
The great thing about gitolite is that itss configuration
is managed by Git itself, and your first step should be
to check out this configuration from the account
whose public key you’ve used by entering the
following (changing the IP address to match that of
your server):
git clone git@192.168.1.82:gitolite-admin.git

This will download a configuration file within its
own folder, which can now be changed locally, and
another folder called keydir which can be used to add
the public keys of any other users you’d like to give
access to. Any changes you do make to either will
need to be committed (staged) and pushed
(uploaded) before they can become active, and you
can do this by first adding new files, committing them
and pushing them back to the online repository:
git add keydir/graham.pub
git commit -m “adding grahams key”
git push

12 Creating a new repository
The configuration file within the conf folder needs to
be edited to add a new repository, and each new
addition needs to be entered in the following format:
repo meeq
 RW+ = graham
 RW = andrew
 R = mike

The format is easy to understand, and gitolite’s
permissions system is powerful, allowing for groups
and fine control over branches and tags. Our
repository is for a project called ‘meeq’, which Graham,
Andrew and Mike have various degrees of access to.
The + allows a user to go backwards through the
commits, while the unused - symbol can deny access.
Thse usernames need to correspond to the names of
the public keys you need to add to the keydir folder
– Andrew’s should be andrew.pub, for example,
allowing him to access the repository. For users, the
private key needs to be the first one selected by SSH.

13 Initialise your repository
To make sure you’ve got the correct rights, it’s easier
to use a different account with a separate private key.
Even if the public key is graham.pub, its private key
can be the default id_rsa as long as it’s the first
chosen by SSH. If everything is working correctly, you
can check out the new and empty repository with git
clone git@192.168.1.82:meeq.git and switch to this
new empty directory. You can now import your code,
not forgetting to use git add so that files can be
tracked, and create a new file for your new project. As
shown earlier, typing git commit -m “comment” will
add those changes to the local staging environment
with a comment on the update, with git push
uploading them to the server. When you now edit
those files, you just need to commit and push for your
modifications to be tracked and uploaded. If you want
to see the differences between your last two edits, just
use the git diff command without any arguments.

Start playing with Git
You can now start experimenting with your Git
configuration and projects, safe in the knowledge that
you won’t be affecting any other server installation.
This means you can learn to fork, tag, release and
update your code, or even experiment with projects
that aren’t code, such as monitoring your configuration
files or even part of your home directory. If you want to
make things a little easier, try using a GUI Git client,
such as gitk. Typing this in a project folder will open a
GUI that lets you browse the branches and commits,
including details like the SHA-1 hash. If you want to
take this further, there are several tools. Our favourite is
git-cola, which should be easily installable from your
distribution. When it starts, select Open and point the
requester at one of your Git project folders. Not only
will it make visualising differences much easier, but
you can perform almost all the same actions as Git
with just a click of a menu.

14

LV029 090 Tutorial Git.indd 93 15/04/2016 09:35

CORETECHNOLOGY

www.linuxvoice.com

Valentine Sinitsyn develops
high-loaded services and
teaches students completely
unrelated subjects. He also has
a KDE developer account that
he’s never really used.

94

Imagine you just typed something at a shell
prompt and pressed Enter. First, the shell splits
your input into words. Expansion is the next step,

and it comes in several forms.
One expansion type you already know is the

pathname expansion. Recall ls *.txt? If there are files
that end with .txt in the current directory, Bash puts
their names instead of the wildcard. If there are none,
*.txt remains as is. So, if you forget to escape an
asterisk in a command like find . -name *.txt, it may
or may not work as expected. Besides *, Bash also
understands ? (matches a single character) and [a–z]
(matches any character in a group). With the extglob
shell option enabled, you get some modifiers as well.
Say, you can negate an expansion: ls !(*.txt) lists all
files that **do not** end with .txt.

Brace expansion is like pathname expansion,
although "file names" do not have to exist. Curly
braces expand to the list of their comma-separated
contents. So, diff -u /etc/foo.conf{,.new} shows
the difference between current config and a new
(perhaps, package-provided) one. Curly braces may
also enclose a sequence expression:
$ echo file_{a..e}.txt
file_a.txt file_b.txt file_c.txt file_d.txt file_e.txt

{1..5} would also work, and you can use another
pair of dots to specify an optional step increment.
Brace expansions occurs before any others, and they
can be nested. For example, ls /usr{/bin/{*.py,*.pl},/
sbin/{*.py,*.pl}} lists Perl and Python scripts under
/usr/bin or /usr/sbin.

Parameter expansion is perhaps the most
frequently used expansion in Bash. Does the $PATH
expression look familiar? It expands to the value of
PATH variable, and is really parameter expansion in its
simplest form. You may enclose parameter name in
curly braces. It's optional here, but consider this:
$ hello=world
$ echo ${hello}_1
world_1
$ echo $hello_1

Braces are often seen in more complex expansions,
like ${cmd:-/bin/bash}. This expands to the value
of cmd if it is set and non-empty. Otherwise, /bin/
bash is used. ${cmd:=/bin/bash} is similar, but it also
assigns to cmd the value specified. Both constructs
are common across command line arguments
processing code. Two others, ${parameter#word}
and ${parameter%word} remove the matching prefix
or suffix, as in pathname expansion. They may look
counter-intuitive, yet are easy to remember. Hash
marks usually come before numbers, so they are for
prefixes; percentage signs comes after, and they are
for suffixes. By default, the operation is non-greedy (a
shortest match is removed); use ## and %% to ask for
the longest match instead.

Not all of these may sound practical, so here
are some examples. ${path%/*} is like a dirname:
it strips everything after the last slash, including it.
${path##*/} is a reverse: it strips everything up to
the last slash, like basename. If the path is /boot/
grub/grub.cfg, the former yields /boot/grub; the
latter is grub.cfg. As you've probably guessed, these
expansions are common across path handling code.

Sometimes, you want not to strip, but to substitute
some part of the parameter value. Imagine you need
to rename all .JPG files to .jpeg. The rename tool will
do that, but you may not have it installed. A simple for
loop does the same in pure Bash:
for name in *.JPG; do
 mv ${name} ${name/.JPG/.jpeg}
done
Here, we look for a constant substring, but it could be
a pattern as well.

CORE
TECHNOLOGY
Prise the back off Linux and find out what really makes it tick.

Bash beyond the basics

The bash(1) man page
is a long read, but also
an ultimate guide to the
powers of Bash.

LV027 094 CoreTech.indd 94 14/04/2016 15:26

 CORETECHNOLOGY

www.linuxvoice.com 95

There are many other expansions in Bash. Say you
can get a substring instead of substituting it. Or, it is
possible to embed basic arithmetic expressions with
$((...)). Bash doesn't support floating point, and if you
need it, consider using external tools like bc. With
command substitution ($(...) or just backticks), you
can grab bc output into a variable: sine_pi_2=$(echo
's(2. * a(1))' | bc -l). Remember not to put spaces
around equals sign, or Bash would get confused.
Many more possibilities are detailed in bash(1) under
the EXPANSIONS section.

Terms and conditions
Sequential scripts are good for the simplest tasks.
Anything more or less advanced demands conditional
execution and branching. Many general-purpose
languages provide one or two constructs (say, if and
switch/case) for that purpose. Bash offers somewhat
more idioms to explore.

Bash branches on whether a command executed
successfully (exit code 0) or not:
if grep -q Linux file.txt; then
 # Linux is in file.txt
fi

From here, it feels natural to introduce a specific
command that tests conditionals and returns 0 (true)
or 1 (false). This command is test, and it also has a
well-known synonym, [. Both are Bash built-ins, but
you may also find the [executable lying around for
compatibility reasons:
$ whereis [
[: /usr/bin/[/usr/bin/X11/[/usr/share/man/man1/[.1.gz

When you encounter a construct like if ["$x" = "yes"
]; then ... fi, remember that brackets aren't special
syntax. They are just an ordinary command, albeit [
forces you to supply the closing] (test doesn't).

You specify conditions to check as test command-
line arguments. All basic comparisons are understood,
and you can combine expressions with parenthesis (),
logical AND (-a) and OR (-o). ! negates the expression's
value, as in C. Remember that parenthesis have
special meaning in the shell, so you'd probably want
to escape them (\(). Also remember that strings and

numbers use different comparison operators: = and
!= (strings) vs -eq/-ne/-gt/-lt etc for integers. Perl
borrows these semantics, but if your background
is in some other language, it could be the source of
hard-to-find bugs. Another subtle detail is that you
should quote variables. If x is unset or empty, test $x
= "yes" sends test two arguments: = and yes; the first
operand is missing. With test "$x" = "yes", it will receive
an empty string, = and yes, which is just false. Should
you want to test if something is empty (or non-empty),
use -z "$x" or -n "$x" (remember it like this "length
zero/**n**on-zero").

Bash is a special-purpose language, so test also
provides numerous filesystem-related operators.
You can check if the file exists (-e) and whether it is
a regular file (-f) or a directory (-d). Other operators
check whether the file is readable (-r), writeable (-w)
or executable (-x). You can find a complete reference
in the man page, but be careful: test(1) refers to the
external test command, whereas Bash uses a built-in
described in bash(1).

Let's have some examples. [$i -lt 10] checks that
$i (which must be set) is less than ten. Another way
to do it is $((i < 10)), but it expands to 1 (true) or 0
(false) literally, while test yields an exit code. [-n "$file"
-a -x "$file"] checks that $file stores a non-empty
string which refers to some executable. For a wrap-up,
["${file#.*}" = "zip"] checks that the file's extension
is .zip (case-sensitive). Note that spaces after [and
before] are required.

Often, you want to check that the file exists, and
complain if not. While certainly doable
with if, Bash favours a somewhat more
compact idiom for such one-liners. The
&& and || shell operators are short-
circuit: they only execute operands
required to compute the final value. Now,
consider [-e $file] || exit 1. If the file
exists, [yields 0, and regardless what
exit 1 will return, the expression will be true. So Bash
won't execute exit 1 unless the existence test fails.
Similarly, [-d "$backups"] && cp *.bak $backups
copies backups to some directory, if it exists. && are
left associative, so expr1 && expr2 || expr3 works like
if-then-else.

Besides the test built-in command, Bash also
supports a conditional expression, [[...]]. It's called
"new test" sometimes. It also evaluates expressions
and returns the status of 0 or 1. So, what's the

If you are serious about
Bash programming,
remember to bookmark
http://wiki.bash-hackers.
org.

What's the $#@*?
Bash has many predefined variables and special parameters
with cryptic names that you may find useful in your scripts.
Here are some highlights:
• $0 | Expands to the name of the shell or shell script.
• $1, $2, ... $n | Positional parameters. Expand to the script

or function arguments (see "Functions").
• $# | The number of positional parameters.
• $*, $@ | All position parameters together. The difference is

that the quoted "$*" expands to single word, and "$@" to
multiple ones.

• $? | Last foreground command exit status.
• $$ | The shell's process identifier (LV023).
• $HOME | The current user's home directory.
• $PS1–$PS4 | Command prompts templates.
• $RANDOM | Expands to a random number. Unset and re-

create to make it a normal variable.

PRO TIP
The `readonly` keyword marks variables
(and functions) immutable at or after
creation. This helps to prevent accidental
modification of important constants.

LV027 094 CoreTech.indd 95 14/04/2016 15:26

CORETECHNOLOGY

www.linuxvoice.com96

difference? First, [[...]] is not portable – there are
shells that don't understand it. Second, it's not a
command. It has its own parse context, so you don't
have to quote arguments anymore. Third, conditional
expressions are more advanced; for example, you
can do pattern-matching with the = operator: [[$file
= *.zip]]. Even regular expressions are available with
=~. If the supplied regular expression is syntactically
incorrect (as per regex(7)), the conditional expression
returns status code 2.

Functions
As in many programming languages, Bash lets you
wrap reusable pieces of code as functions. Each
function stores a sequence of shell commands to
execute, and acts much like a command by itself. For
instance, the syntax for calling a function and running
a command is exactly the same. You supply function
arguments the same way you supply arguments
for the command. Moreover, positional parameters
and $# (see the boxout) in a function are overridden
to reflect the values and the number of arguments
passed to it.

Defining a function in Bash is straightforward:
function read_pid()
{
 local pidfile
 # TODO: Check $# first
 pidfile=/var/run/$1.pid
 if [-r "$pidfile"]; then
 # do something
 else
 return 1
 fi
}
usage: read_pid apache2

There are a few things to note here. First, the
leading function keyword is optional; read_pid() { ... }
works just the same. Second, one can define function-
local variables with the local keyword to prevent name
clashes. Local variables aren't shared between the
function and outer context, even if they have the same
name. Third, the return keyword is used to terminate
the function; the value you pass to it is returned as
a status code. If there is no return, the function exits
successfully (status code 0). Note that Bash functions
(as well as commands) can't return strings or any

other types. To emulate this behaviour, you can
echo in a function and grab its standard output with
command substitution, like this:
say_hi() { echo hi; }
if ["$(say_hi)" != "hi"]; then
 # oh, really?
fi

Some functions are specific to the containing script;
others are more general-purpose. The latter are often
organized as libraries. In Bash, a library is a mere
shell script which doesn't happen to contain anything
except functions and (maybe) some bootstrapping
code. There are no namespaces, imports, header files
or whatever. Your system is likely to have a number of
Bash libraries lying around. For example, check if
/lib/lsb/init-functions exists, and peek into it. You'll
see functions like start_daemon() or pidofproc()
defined inside. Traditional Unix initscripts rely on
these to start daemons and perform other tasks in a
consistent fashion. Try grep -R init-functions /etc/
init.d to see how the library is included. Bash provides
the source keyword for that, but an idiomatic way is to
use . /path/to/script.sh, which is a synonym.

Bash also calls some predefined functions in
response to various events. If you ever worked with
Ubuntu, you may recall a friendly note appearing when
you type a command that is not currently installed:
$ emacs
The program 'emacs' can be found in the following
packages:
 * emacs24
 * ...
Try: sudo apt-get install <selected package>
(yup, I don't have Emacs on my laptop). When Bash
is unable to find a command in $PATH, it invokes the
command_not_found_handle() function, passing the
original command line as the function arguments. In
Ubuntu, it calls into the command-not-found tool (see
it yourself with type command_not_found_handle),
which does all heavy lifting. It's easy to author a poor
man's variant though:
$ command_not_found_handle() { echo "Sorry pal, you

Shell options
Bash understands quite a few options affecting the shell's
operation. We already met one of them, extglob, at the
beginning of this Core Tech. Its cousin, dotglob, includes
hidden files (they start with .) in pathname expansion, so
wildcards like * cover them as well.

Other options pertain to usability. cdspell tries to
correct minor spelling errors (like missing or transposed
characters) in directories you cd into. With autocd, you
can omit cd altogether: typing just directory name will be
enough. progcomp enables programmable completion you
call with the Tab key.

To control all these options, use the shopt built-in
command. When called with no arguments, it prints valid
options and their statuses (on or off). You can also see
which options are enabled for the current session in the
$BASHOPTS variable. To enable (or set) an option, use
shopt -s optname; shopt -u optname does the reverse.

Bash scripts aren't solely
about the command line –
you can make dialog-based
interfaces as well.

LV027 094 CoreTech.indd 96 14/04/2016 15:26

 CORETECHNOLOGY

www.linuxvoice.com 97

don't have $1 installed"; }
$ emacs
Sorry pal, you don't have emacs installed

Your script can even define custom signal handlers.
Bash provides trap built-in for these purposes. The
syntax is like this:
handle_sigusr1() { echo "Got SIGUSR1"; }
trap handle_sigusr1 SIGUSR1

To see which handlers are currently defined,
use trap -p. Handler could be any shell command,
not necessarily a function, although the latter is
a common choice. The trap mechanism extends
beyond Unix signals. DEBUG is breakpoint-like trap
which executes before each command in a script. You
may use it to watch how selected variables change
during the script's lifetime. RETURN is called when a
function returns. EXIT – you guessed it – runs on the
shell exit, which is handy for cleanup tasks.

Arrays
Believe it or not, Bash also supports arrays. Arrays
in Bash are one-dimensional, yet Bash 4 introduced
support for associative arrays (or hashes). Numeric
array indexes start at 0, as you'd expect. Associative
arrays are indexed with arbitrary strings. There is
more than one way to create an array in Bash:
x[0]="The first one"
declare -a y=("And this is the second" "And the 3rd")
declare -A z=([roses]=red [sky]=blue)

Explicit declaration is required only for hashes,
indexed arrays are usually created in place. To retrieve
an element, use ${x[0]} or ${z[roses]}; braces are
required. "$y[*]" and "$y[@]" expand to all elements in
the array: either as one word (the former) or multiple
words (the latter):
$ for i in "${z[*]}"; do echo $i; done
red blue
$ for i in "${z[@]}"; do echo $i; done
red
blue

Similarly, ${!y[@]} expands to all keys (or indexes) in
the array. ${#z[@]} yields the number of elements.

Arrays aren't something you do in Bash every day.
You don't want an array when you just need to iterate
over a set of elements: use a string and let Bash do
word splitting for you. Yet you may find arrays useful
in more complex scenarios. The following example
comes from a fictional backup system which asks the
user to choose compression level:
declare -a comp_opt=("tee" "bzip2" "xz")
tempfile=$(mktemp)
dialog \
 --menu "Please select compression level:" \
 10 50 8 \
 0 "No compression" \
 1 "Normal compression" \
 2 "Maximum compression" \
 2> "$tempfile" || exit 1
choice=$(<"$tempfile")
tar --create $src | ${comp_opt[$choice]} >$backup

dialog is a common tool to create interactive text-
mode dialogs in shell scripts. In this case, it prints
either 0, 1 or 2 to stderr. We redirect this stream to a
temporary file and read it back as dialog finishes to
learn the user's choice. Finally, we call tar and pipe its
output to the desired command. tee is used to pass
the tarball as is if no compression was chosen. $src
and $backup are presumed to have their values set
outside this snippet.

Want someone to explain
what the command does?
www.explainshell.com is
here to answer.

Command of the month: shellcheck
How do you hunt for a bug in a Bash script, if it doesn't
behave the way intended? Perhaps the most popular
answer would be "with echos", but Bash also has
some debugging aids and source code checkers. You
already know about the DEBUG trap, but your first
stop should be set -ex. set is a built-in command to
tweak various low-level options. -e asks Bash to exit
as soon as an error occurs (so you'd be certain where
it was). -x prints source lines of your script expanded.
Expansions could be tricky, but with set -x you'll know
what Bash tries to run. Just add set -ex to the
beginning of your script, and you'll be able to trace its
execution from Bash's point of view.

You'd probably agree that preventing a disease
is better than curing it. Many languages have static
analysers or similar tools which detect "smells" in
your code. These could be common mistakes, or
constructs that are likely not to work the way you
think, code that is known to break under certain
conditions and so on. Bash also has one: ShellCheck.
It's written in Haskell, and you may have tough times
compiling it. Better use your package manager or give
the whole thing a try online. Visit www.shellcheck.
net, paste your script, push the button – and you'll get
detailed analysis within seconds! Now you have one
less excuse for not quoting your variables properly.

LV027 094 CoreTech.indd 97 14/04/2016 15:26

www.linuxvoice.com98

/DEV/RANDOM/ FINAL THOUGHTS

Final thoughts, musings and reflections

Normally I blather on here about how
other people are idiots and they are
doing things wrong. Maybe it is

sleep deprivation, or the very nice gin I
picked up in South Africa, but I think I want
to break with tradition and blather on about
things that people have been doing right!

I have been playing around with the
Particle (formerly Spark) Photon for a while
and while I like it (a lot) it does annoy me a
tiny tiny bit. The Photon, in case it passed
you by, is basically a tiny Wi-Fi enabled
Arduino-alike. In fact if anyone can be said
to have made a “better Arduino” this is
probably it.

Cunning firmware means, through its
cloud portal, you can do Wi-Fi updates to
your device, which is very handy if your
device now happens to be in the attic
somewhere under a box where a scary
spider lives. But I will still have to brave the
spider and find the right box when it comes
to change the batteries. Boo!

The problem with Wi-Fi is that it uses
power. You don’t have to have it on all the
time, but even turning it on and off to send
data to the cloud and listen for updates
wastes precious ergs. That’s why I got a
Photon-sort-of-compatible Redbear Duo too
(https://goo.gl/jlzCfX).

A Bluetooth LE radio in addition to Wi-Fi
means I can send data on minuscule
amounts of power, and still turn on Wi-Fi to
reflash the device if I want. The similarish
Bluz DK (http://bluz.io) does away with
Wi-Fi altogether, and uses a separate
gateway device (basically a Redbear Duo) to
sync with the Particle cloud. It may be years
before I have to see that spider again…

Nick Veitch
was the original editor
of Linux Format, a
role he played until he
got bored and went
to work at Canonical
instead. Splitter!

MY LINUX SETUP
PETE CAVE
Readers, send us words and pictures of your Linux dens!

Epson
scanner V300

Linux Mint 17.2 Mate, main
PC dual-booting with Manjaro
Xfce (a trial - I like it!).

Four-port USB
switch – Lacie
500GB – Card reader
– Samsung external
DVD recorder

Home build Asus
E45M1-I Deluxe
mobo – ITX.

Monitor – RPi2 – Wacom tablet
Bamboo – Wired KB & mouse to
RPi2 when needed – Wireless KB &
mouse – 2 PCs, a P4 1.7GHz & an
Athlon 2800 box.

What version of Linux are you
currently using?
Linux Mint, Manjaro and OpenSUSE
13.1.

And what desktop are you using at
the moment?
Mate, Xfce, and I loved #crunchbang
[which used the Openbox window

manager].

What was the first Linux setup you
ever used?
Ubuntu 2004. Can’t remember why I
didn’t stick with Knoppix.

What Free Software/open source
can’t you live without?
LibreOffice, Gimp, Bluefish, Filezilla,
the Firefox web developer add-ons

and Inkscape.

What do other people love but you
can’t get on with?
I only stuck with Unity for months,
because of setting everything up

again. (If I could save my settings easily, I
would have changed distro within two
weeks.) I’m trying to improve my spelling,
writing and my of reading speed, and Unity
does not help. I love a good menu.

Monitor connected to
RPi2 – via Dvi socket
when needed.

LV027 098 Geek Desktop.indd 98 15/04/2016 12:10

This is what we’ve done in the last 24 issues.
Subscribe to the next 12 from just £38.

shop.linuxvoice.com

Every subscription includes access to every PDF, ePub and audio edition we’ve ever published.

LV027 099 Inside Back Cover.indd 99 14/04/2016 15:46

LV027 100 Back Cover 1sb.indd 100 14/04/2016 15:47

