
ID
E

O
ve

rv
ie

w
 .

Pl
ug

-in
 m

od
ul

es
 .

Pr
of

ilin
g

. M
at

is
se

 .
G

ro
up

La
yo

ut
 .

W
eb

 d
ev

el
op

m
en

t

magazine

May . 2006

Writing Quality Code
Using rules and validation tools
to avoid common bugs

NetBeans Profiler
An in-depth tutorial about the
best profiling tool on the market

Matisse in Action
Using Matisse and more to

create a complete desktop app

Extending the IDE
Build your own plug-in
modules step by step

Practical Web Apps
Develop JSP & Struts applications

using the best of the IDE

Plug-in Showcase
Enrich your NetBeans

development experience

Exploring GroupLayout
Learn details about the layout
manager that powers Matisse

Bringing

to
Light
Development
Java

magazine Number One

T
he NetBeans project has been going through an unprecedented number

of changes, broadening its scope, increasing quality and usability, and

expanding communities and user adoption. In many areas, like Swing

building or JME development, NetBeans IDE is now the tool to beat, with

levels of functionality and productivity that match or exceed any other

tool, open source or commercial.

This special first edition of NetBeans Magazine showcases a wide selection of

IDE and extension features, from desktop and web development to plug-in module

creation. Beginners will learn how to develop a complete desktop application using

Matisse and other IDE facilities. Seasoned programmers will also benefit, knowing

details about the NetBeans Profiler, which introduces breakthrough innovations in

profiling tools, and further learn about GroupLayout, the layout manager that is the

core of Matisse. Also shown is how to use IDE features and modules to detect bug

patterns, enforce code conventions, and closely follow coding rules that promote

overall quality and reduce maintenance costs.

NetBeans IDE has always followed the “it just works” principle, aggregating all the

functionality developers need from day to day. But there’s always some little niche

necessity that has to be taken care of. The extensibility features of NetBeans come

to the rescue, and the recent versions of the IDE make creating plug-in modules a

breeze. Catering for the growing community of plug-in module fans, the magazine

includes a special section describing tens of little and great extensions, which enable

NetBeans developers to program in other languages, use new APIs and frameworks,

and squeeze more functionality out of standard IDE features. And if you just can’t

stand being in the user role for long, a tutorial shows how to create a new plug-in

module from scratch.

NetBeans has gone very far and very fast – but still the community manages to

increase the rhythm, with version 5.5 at the door and the first releases of 6.0 already

available. The best part is you don’t get only to watch. You can join in, and participate

in this movement that’s bringing light to Java development.

Happy coding,

Leonardo Galvão

Publisher & Editor-in-Chief
Leonardo Galvão
leonardo@javamagazine.com.br	

Assistant Editor
Osvaldo Pinali Doederlein
opinali@gmail.com

Design and Layout
phDesign (phdesign.com.br)

	Graphic	Designers
 Tarcísio Bannwart, Jaime Peters Jr,
Tersis Zonato, Lais Pancote

	 Illustrators
 Felipe Machado & Francisco Peixoto

Contributors
Fernando Lozano
Geertjan Wielenga
Gregg Sporar
Leonardo Galvão
Osvaldo Doederlein
Tomas Pavek

Editorial Support
Robert Demmer
John Jullion-Ceccarelli

NetBeans	Magazine	is		
supported	by	NetBeans.org	

Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and
other countries. NetBeans Magazine is independent of Sun
Microsystems, Inc.

Although every precaution has been taken in the preparation of
this magazine, the publisher assumes no responsibility for errors
or omissions, or for damages resulting from the use of
the information herein contained.

Produced in Brazil

First Edition N �

ID
E

O
ve

rv
ie

w
 .

Pl
ug

-in
 m

od
ul

es
 .

Pr
of

ilin
g

. M
at

is
se

 .
G

ro
up

La
yo

ut
 .

W
eb

 d
ev

el
op

m
en

t

magazine

May . 2006

Writing Quality Code
Using rules and validation tools
to avoid common bugs

NetBeans Profiler
An in-depth tutorial about the
best profiling tool on the market

Matisse in Action
Using Matisse and more to

create a complete desktop app

Extending the IDE
Build your own plug-in
modules step by step

Practical Web Apps
Develop JSP & Struts applications

using the best of the IDE

Plug-in Showcase
Enrich your NetBeans

development experience

Exploring GroupLayout
Learn details about the layout
manager that powers Matisse

Bringing

tototo
Light
Development

toto
LightLight
to
Light
toJava

Contents

04

19
Plug-in Module
Showcase
Enrich your development
experience with dozens of
NetBeans extensions

22

32
Writing Quality Code
with NetBeans IDE
Exploring rules, modules and IDE
features that increase code quality
and avoid common bugs

Plug-in Module
Quick Start
Build plug-in modules step by
step, using the new extensibility
APIs in NetBeans 5

44

Web Development
with NetBeans 5
Use the best of NetBeans to
develop and debug JSPs, Servlets,
and Struts applications

A Complete App
Using NetBeans 5
Using Matisse and more to
create a complete application,
from UI to database access

58

52
Exploring the

NetBeans Profiler
An in-depth exploration

and tutorial about the best
profiling tool on the market

Get to Know
GroupLayout

Learn details about the new
layout manager that powers the

Matisse GUI builder c

A

Learn NetBeans in

Practice using the

Matisse GUI Builder

Fernando Lozano

AppUsing NetBeans 5

Complete

First Edition N �

A Complete App Using NetBeans �

N
etBeans is not a

newcomer to the Java

arena. In fact, it is one

of the oldest Java

IDEs still available

on the market. But

the most exciting developments happened

in the latest releases, specially 4.0 and 5.0,

with the renewed commitment from Sun and

participation of an ever-growing community

of users and developers. In many respects,

such as desktop development, NetBeans

can be regarded as the most powerful and

most easy-to-use Java IDE

This article gives an overview of the

IDE while building a complete desktop

application. Instead of a hello-world kind

of app, we build a more “real-world”

application: a to-do list commonly found as

part of PIM suites. The application will use an

embedded relational database and require

customization of Swing components, so

it will be a small-scale real project except

only for the lack of help content and an

installer.

We won’t just demo the IDE features. The

project will also stick to Object-Ori-

ented best practices, showing

that you can develop GUI ap-

plications quickly and inter-

actively, without compro-

mising long-term main-

tenance and a sound

architecture. How-

ever, to keep the

tutorial short we’ll

skip some prac-

tices usually required

by corporate environments and

well supported by NetBeans, such

as test-driven development using JUnit

tests, and source-control systems like CVS.

The reader will need basic Swing and JDBC skills, beyond familiarity

with the Java language and Object-Oriented programming. We

start with the basic procedures to install and configure NetBeans,

including a quick tour of the IDE user interface. Then the sample

application is presented, followed by the steps to create it using the

IDE features.

The first part of this article will be more detailed, because the

visual design capabilities are among NetBeans’ strongest features.

As we move deeper into the application logic, the article will switch

to a higher level discussion. That way, this article aims for two

objectives:

1. Provide newbie developers with an introduction to using the

NetBeans IDE;

2. Provide more seasoned developers with useful insights about

GUI development best practices, while using the best of NetBeans

features.

The to-do application will be developed using a three-step process.

The first step prototypes the UI design, where NetBeans really shines.

The second step focuses on user interaction and event handling; it’s

actually a second prototype for the application. The third and last

step builds the persistence and validation logic. Readers familiar

with the MVC architecture will note these steps form a process that

starts with the View, then builds the Controller, and finally builds the

Model.

Installing NetBeans
Installing NetBeans, as with most Java-based applications, is easy.

Just visit netbeans.org and click on NetBeans IDE 5.0 under the

Latest Downloads category at the top-right corner of the page. You

can choose installers for your platform, including Windows, Mac OS,

Linux and Solaris.

Before installation, you’ll need a JDK 1.4.2 or higher installed and

configured for use at the command-line. NetBeans uses JDK tools

like the javac compiler, so a JRE won’t be enough. If you don’t yet

have a JDK, there are download options bundling the latest JDK with

the IDE.

I personally prefer to click on the link below Other distributions,

sources and extras after the download form, and download instead

the NetBeans IDE 5.0 Archive, choosing the .zip format. After all,

Complete

G
NetBeans
IDE home
page

ne
tb

ea
ns

.o
rg

� N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

NetBeans is a pure-Java application, so you can use the same archive

to install it on any platform with a suitable JDK. Just pick a directory

and unpack the archive, and NetBeans is ready to run.

Starting and customizing NetBeans
After installing/unpacking NetBeans, the folder bin below the IDE

installation folder will contain platform-specific commands to start the

IDE. Windows users will use the netbeans.exe file, while Linux users

will use the netbeans file. The IDE will open with a welcome page (see

Figure 1).

E If you have used the archive instead of the native installer, you’ll get a license
agreement dialog on the IDE’s first run. Don’t worry; the Sun Public License (SPL)
used by NetBeans is an OSI-approved open source software license.

At the top of the IDE window, you see the main menu and toolbar.

If you don’t like the big toolbar icons configured by default, righ-click

any empty spot in the toolbar and choose the Small Toolbar icons

menu entry.

A 2

A 1A
Figure 1

The NetBeans
main window
and welcome

page

The left area contains two navigational

panels. The top one is shared by the Projects,

Files and Runtime windows. The bottom

area contains the Navigator window, and

the right-center area is used for the many

editors included with NetBeans. Multiple

editors and windows can share the same

area; the IDE provides tabs for selecting the

one displayed.

Most of the time, you’ll use the Projects

window to browse and edit Java code. The

Navigator Window displays the structure of

the artifact being edited; for example for Java

code you’ll see class attributes and methods,

and for GUI design you’ll see the component

tree. The Files window is used when you

need to see the physical file structure of your

projects, and the Runtime window shows IDE

processes and other environment resources

like databases and Java EE servers.

To tweak your NetBeans environment,

the two most used tools are the Options

Window under Tools|Options on the main

menu, and the Library Manager also under

Tools. Figure 2 shows the pre-configured

libraries included with NetBeans 5.0, and

Figure 3 shows the first option I change

before starting GUI development: the idiom

for the code generated for Swing event

listeners.

Most Swing tutorials and samples from

books use anonymous inner classes (which

is the installation default for NetBeans), but

I find this idiom difficult to read and maintain.

You get giant methods containing the code

for handling many unrelated events. I prefer

instead to have each listener as a named

inner class, as shown in the figure.

The IDE provides a lot more customization

than is shown by the Options window. Just

click on the Advanced Options button and

A
Figure 2

NetBeans Library
Manager showing

default libraries
configured with

NetBeans 5.0

First Edition N �

A Complete App Using NetBeans �

priority, so users can focus first on higher-priority

tasks;

 Tasks should have a due date, so users can

instead focus on tasks with are closer to their

deadline;

 There should be visual cues for tasks that are

either late or near their deadlines;

 Tasks can be marked as completed, but this

doesn’t mean they have to be deleted or hidden.

Most applications will have longer lists of

requirements, and implementing even these simple

example is not a trivial task. Building prototypes of

the application UI helps end-users to state their

requirements, and that's one of the reasons visual

GUI builders became so popular. But even with a

GUI builder, a quick sketch on paper can be of

great help. We plan two main windows for the Todo

application: a tasks list and a task-editing form. A

rough sketch for both is shown in Figure 5.

After building the initial user interface prototype,

it’s important to show end-users a kind of functional

prototype, which helps discuss the dynamics of

user interaction in the application and the basic

business process involved (if you are developing an Information

System). This functional prototype reacts to user input but won’t

persist data.

That’s where Object-Oriented development helps, because it’s

easy to create an initial set of objects the prototype can manipulate,

and you can go very far developing the code to show and change

A 5

A 4

A 3

you’ll be presented with an expanded

options dialog, as shown in Figure 4. This

time you get a tree structure with hundreds

of options grouped into categories. Most

developers will want to enable anti-aliased

text rendering on the editors, as shown by

the figure, because this makes the code

more readable.

Developing
the sample app

Now that you had your first

try at NetBeans 5, let’s see

the sample application we’ll

develop in the rest of this

article. Here is a short list of

requirements for it:

 Tasks should have a

A
Figure 3
 NetBeans Options
window: changing
the default code-
generation style
for event listeners

A
Figure 4
NetBeans
Advanced Options
window, enabling
text anti-aliasing
for code editors.

A
Figure 5
A sketch for the
Todo user interface

� N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

these objects without the need of persistent storage. Only when you

have your functional specs and their implementation well advanced,

at the end of the development process, do you need to worry about

file formats or databases.

In my experience, this two-level prototyping approach improves

productivity, and mixes well with TDD and other Extreme Programming

practices, while keeping costs and schedule under control and meeting

user demands. That leads us to developing the Todo application in

three steps:

1. Build a “static” visual prototype of the user interface, using a

visual GUI builder.

2. Build a “dynamic” prototype of the application, coding user

interface events and associated business logic, and creating

customized UI components as needed.

3. Code the persistence logic.

Designing the tasks list window
Let’s go back to NetBeans. Any work in the IDE is done inside a

project. Click on the New Project toolbar icon and select the Java

Application entry in the General Category. Use “Todo” as the project

name and choose a suitable project location (anywhere in your hard

disk). Then click Finish.

NetBeans creates the project containing a Java package named

after the project name and with a class named “Main” (in our case,

todo.Main). Java conventions dictate that you should use your company

DNS name as a prefix for all your package names, but in this example

we’ll waive that to keep things simple.

Now right-click the todo package icon and choose New JFrame

A 6

Form (or choose File|New File from the main

menu, and then select the JFrame Form

from the Java GUI Forms category). Type

“TasksWindow” as the class name. Notice

that the IDE opens the visual form editor, as

shown in Figure 6; notice also the location

of the Projects, Navigator and Properties

windows, the Palette and the editor area.

An orange frame highlights the selected

component (the JFrame content pane in the

figure). The navigator displays all visual

and non-visual components on the JFrame,

which is handy when you need to change

the properties of a component hidden by

another or too small to be selected in the

drawing area.

To the right there’s a component palette,

which shows by default the standard Swing

components (you can also add third-party

JavaBeans), as well as the properties

windows. Properties are categorized to

ease access to the ones most commonly

used, and changed properties have their

names highlighted in bold.

To change the visual editor IDE layout, you

can drag each window to another corner

of the main window or even leave some

windows floating around.

The NetBeans 5 visual editor is unlike

other visual Java editors you may have

seen. Just click right-click inside the JFrame

and select the Set Layout menu item. You’ll

see the default choice is not a traditional

Swing/AWT layout manager; it’s something

named “Free Design”. This means you are

using the Matisse visual GUI builder, one of

the highlights of NetBeans 5.

Matisse configures the JFrame to use the

GroupLayout layout manager developed in

the SwingLabs java.net project, which will

be included as a standard layout manager

A
Figure 6

Visual editor with
an empty JFrame

G
NetBeans

plug-in
catalog

ne
tb

ea
ns

.o
rg

/c
at

al
og

ue

First Edition N �

A Complete App Using NetBeans �

in Java SE 6.0. (You can learn more about

GroupLayout in an article in this edition.)

If you choose any other layout, Matisse

will be disabled and you will have the old

NetBeans Visual Form editor. But of course

we’ll use Matisse, and you’ll see how it

brings a whole new meaning to “Swing

visual design”.

Select the Toolbar icon on the palette

and move the mouse over the drawing

area. You’ll notice that a placeholder for

the toolbar follows the mouse pointer, and

that the visual editor displays guidelines

when it’s close to the edges of the JFrame,

as shown in Figure 7.

These guidelines help you keep controls

aligned and spaced out

inside the container.

Matisse generates the

layout constraints to

maintain the positioning

of each component when

the container is resized

or when the Look and

Feel (LAF) is changed.

You design like you were

in a free-form drawing

area, but won’t loose

any of the advantages

of using a Java layout

manager.

A 7 As toolbars are usually attached to the window borders, move our

toolbar to the top left corner of the JFrame (another set of guidelines

will provide visual feedback helping component placement). Click to

attach the toolbar at the desired location, and drag the right border

so it becomes attached to the right JFrame border. Figure 8 illustrates

this process.

Repeat the process to insert a JLabel attached to the left, bottom

and right corners of the JFrame. This label will be used as a status

message area for the tasks window. Then insert a JScrollPane,

attaching it to the left and right corners of the JFrame and to the

bottom of the JToolbar and top of the JLabel. Just leave some spacing

between the JScrollPane and JFrame borders, the JToolbar and the

JLabel. The result so far should look like Figure 9.

Now try resizing the JFrame content panel (the drawing area). The

JToolbar, JLabel and JScrollPane should resize to keep the borders

attached to the JFrame’s corners and to each of the other borders.

Icons and Menus
By now you should have a pretty good idea about how to use

NetBeans 5 to rapidly design a Swing UI. After adding buttons to

the JToolbar and a JTable to the JScrollPane, the TasksWindow class will

start to resemble the sketch we saw earlier. JLabels are used as

separators between each group of JButtons inside the JToolbar (the

Swing JSeparator won’t behave as expected). Later on we’ll customize

the JTable.

NetBeans doesn’t come with a good set of icons for use by

A 9

A 8

A
Figure 7
Visual guidelines
help positioning
and sizing controls
in the visual editor

A
Figure 8
Positioning and resizing
the toolbar so it is attached
to the left, top and right
corners of the JFrame.
Notice the guidelines over
the drawing borders

A
Figure 9
Positioning the
JLabel and the
JScrollPane

10 N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

applications, so I borrowed some from a few other open

source projects; they are provided together with the

sources for this article (see the URL at the last page).

But instead of referring to the icons by file system paths,

which would lead to additional logic to find the icon files

on the user machine, I created an icons folder under

the project src folder (which corresponds to the Source

Packages item in the Projects window) and copied all icon

files there. The NetBeans Projects window will display

non-Java files inside the source folder, so you won’t need

to switch to the Files window just to see them.

Non-Java files inside the Source Package folder will be

added by NetBeans to the application jar file, and the

application will be able to refer to them as classpath

resources, no matter where the jar file is installed on the

user machine. As a bonus, the application code doesn’t

have to worry about platform-specific details like path

separators and drive letters.

NetBeans provides a customizer for editing a

component’s icon property. Click on the ellipsis button at

the right side of the icon property to open the customizer

shown in Figure 10. Use this customizer to configure the

icon for the component. After selecting the Classpath radio button,

the Select File button will allow you to browse the icon files and select

interactively the one to use (including icon files inside jar packages).

NetBeans also provide a customizer for JTable’s model property;

see Figure 11. We’ll use it to make the JTable appear in the visual

editor with correct column names and some sample data. This is

not the way the final

application will look

like. Typically, the

customization of

JTables will require

the development

of custom Java

classes like cell

renderers and

column models

– because JTables

are views for Java

objects, not just for

A 10

A 12

A 11

plain Strings like in other GUI toolkits.

But even if the customization done using

the NetBeans visual editor won’t be used

in the final application, it’s useful to do that

work. A prototype should display actual data

(or at least data a typical user would input,

instead of placeholder text). This will help

users understand the prototype and make

sure the UI allows for sufficient space for

displaying the actual data.

Now the prototype should look like

Figure 12. The main element still missing

is the application menu bar. To add it, select

the JMenuBar control on the palette and click

anywhere inside the drawing area (except

inside the JToolbar or its JButtons). To edit the

menu bar, you don’t use the component

palette or Matisse features. Just open the

JMenuBar context menu (right-click) and

A
Figure 11

JTable model
customizer after

adding a few
columns

A
Figure 12

TasksWindow UI
so far

A
Figure 10
NetBeans

customizer
for the icon

property Library
Manager, showing

default libraries
configured with

NetBeans 5.0

First Edition N 11

A Complete App Using NetBeans �

“Exit”). These are configured respectively by the

mnemonic and accelerator properties.

The meaning of each menu item should be self-

explanatory, given the application requirements and the fact

we’ll use a file-based database as persistent storage for tasks.

Designing the
task details dialog

Now we’ll create the TaskDetailsDialog. Right-click the todo Java

package and select New>File/Folder. Then choose JDialog Form in

the Java GUI Forms category. We start with a JLabel attached to the

left, top and right borders of the dialog, with no spacing. It will serve

as a message area for validation errors and the like. Set its opaque

property and the background color so it looks like a band at the top

of the dialog. Also add an EmptyBorder (border property) so there’s

empty space around the text and the band’s borders.

Now add three JLabels for the description, priority and due date

fields. Attach all three to the left of the JDialog internal area (the

drawing area). Leave some spacing between the components

and the border. Resize the two shorter labels to attach their right

borders to the right border of the larger one. Figure 15 illustrates

this procedure.

Then select the three labels (with shift + click) and change the

horizontalAlignment property to RIGHT. After

that, insert a JTextField, a JSpinner and a

JFormattedTextField at the left of each label.

Note that the guidelines keep the label

and text field baseline aligned, as shown in

Figure 16.

The JSpinner does not provide any property

to set a preferred or minimum width, while

the JTextField and JFormattedTextField use

the column property for this. But you can

resize the JSpinner and Matisse will set the

component’s preferred size in pixels.

E Sizing GUI components in pixels is not
guaranteed to work well in
different platforms, or if your users change the
default Swing LAF. Use this Matisse feature with
care!

A 14

A 13

choose Add JMenu. Then you can select

the new JMenu and configure its properties.

For the Todo application, we need to add

menus with labels “File”, “Edit”, “Options”

and “Help”.

Adding menu items follows a similar

procedure. You use the context menu for the

JMenu and open the submenu Add to select

between JMenuItem, JCheckBoxMenuItem,

JRadioButtonMenuItem, JMenu and JSeparator,

as shown in Figure 13.

The added menu items won’t be shown

in the drawing area, so they can’t be

selected directly for customization. But

the Navigator window allows access to the

items, and the Properties window reacts to

selection on the Navigator the same way it

does in the drawing area. Figure 14 shows

all menus to guide you in completing the

TasksWindow.

In the last figure you may have noticed

underlined characters (like the “F” in “File”)

and keyboard accelerators (like Alt-x for

A
Figure 13
Adding items do
a JMenu inside a
JMenuBar

A
Figure 14
Complete
menus for the
TasksWindow
JFrame

12 N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

the missing pieces, like package and import

statements.

You can then use command Run | Run Main

Project from the main menu, the toolbar

button or press F6 to run the prototype.

After checking that it looks as intended (it

does nothing besides displaying the two

windows) you can use either the menu item

Build | Build Main Project or F11 to create

an executable jar that can be deployed on

end user machines for prototype validation.

The jar package is created in the dist

project folder. You can verify this in the

Files window. NetBeans also creates the

folder dist/lib containing any libraries

used by the application, and configures

the jar manifest to point to the project’s

main class and libraries. Figure 19

presents the dist project folder as seen in

the NetBeans Files window, and Listing 2

shows the manifest file generated for the

Todo.jar archive.

Note the library swing-layout-1.0.jar

inside the dist/lib folder. This contains

the GroupLayout used by UIs built with

Matisse.

So all you need to do is copy the

contents of the dist folder to the user

machine (you don’t need to preserve

the file name dist), and then run java -jar

Todo.jar.

End of Step 1
This prototype is almost the finished

application from the UI design perspective,

but in real projects you shouldn’t spend too

much time perfecting its looks. Remember,

the prototype is a tool to gather and validate

user requirements and lessen the risk of

missing important application functionality.

The problem is the user often cannot un-

A 18

A 17

By now you should not

have problems positioning

and aligning the remaining

components in the

TaskDetailsDialog. Figure 17

shows its final appearance as

a reference to the reader.

Good UI design makes all

buttons from a logical group

the same size, and Matisse

can enforce this good practice.

Just select all desired buttons

(actually you can select any control you want) and right-click

any of the selected buttons. Then check the Same Size | Same

Width checkbox menu item. The drawing area will indicate that

the controls were configured to always have the same size, as

shown in Figure 18.

Deploying the first prototype
To finish the prototype, the todo.Main class needs code to create the

TasksWindow and make it visible. Besides, there should be an Action

listener in any toolbar button or menu item to show the TaskDetailDialog.

The code is shown in Listing 1. The reader should be able to fill

A
Figure 17

Finished
prototype for the
TaskDetailsDialog

A
Figure 18

The IDE’s visual
hint for same-size

components

A 16

A 15A
Figure 15
Sizing the

TaskDetailsDialog
labels

A
Figure 16

The “free design”
layout aligns

different kinds of
controls by the

text baseline

First Edition N 1�

A Complete App Using NetBeans �

The Napkin Look-and-Feel can give an important

“unfinished” look to your prototype. Follow these

steps to use it in the example application:

1. Visit the Napkin home page (napkinlaf.sf.net),

click on the link next to “latest release” and down-

load the archive napkinlaf-version.zip; unpack the

zip to a folder of your choice;

2. Right-click the Todo project icon on the Net-

Beans Project window and select the Properties

menu item.

3. Select the Libraries category and click

the button Add JAR/Folder, and browse for

the archive napkinlaf.jar inside the folder

where you unpacked the Napkin download.

4. Rebuild the application so the

napkinlaf.jar archive gets copied to the

dist/lib folder and the jar manifest gets up-

dated with a reference to the new library.

5. Add the following code to the start of the main

method:

UIManager.setLookAndFeel(
 “net.sourceforge.napkinlaf.NapkinLookAndFeel”);

As an alternative, include the command-line op-

tion -Dswing.defaultlaf=net.sourceforge.napkinlaf.Nap-

kinLookAndFeel when starting the application.

Figure S1 shows the look of the Todo app using

the Napkin LAF.

A S1

A 19 B Listing 1. Code to finish the first prototype.

todo.Main (todo/Main.java)
(...)
 public static void main(String[] args) {
 JFrame w = new TasksWindow();
 w.pack();
 w.setVisible(true);
}

todo.view.TasksWindow (todo/view/TasksWindow.java)
(...)
private void addButtonActionPerformed (
 java.awt.event.ActionEvent evt) {
 JDialog d = new TaskDetailsDialog(this, true);
 d.pack();
 d.setVisible(true);
}

B Listing 2. jar archive manifest file

(META-INF/MANIFEST.MF) generated by NetBeans

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.6.5
Created-By: 1.5.0_05-b05 (Sun Microsystems Inc.)
Main-Class: todo.Main
Class-Path: lib/swing-layout-1.0.jar
X-COMMENT: Main-Class will be added automatically by build

Using the Napkin LAF in a NetBeans project

A
Figure S1
Sketch for the
Todo user interface

A
Figure 19
Distributable files
for deploying
the prototype to
end-users

derstand that an “almost ready” UI is not an

“almost finished” application. That makes

many developers avoid prototyping during

development.

An interesting approach to mitigate this

problem is to use a custom look-and-feel

that makes the application look unfin-

ished. The Napkin Project at SourceForge

(napkinlaf.sf.net) provides such a LAF. See

the sidebar “Using the Napkin LAF in a Net-

Beans project” for details.

G
Napkin
custom
Swing LAF
home pagena

pk
in

la
f.s

f.n
et

14 N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

Todo Applicaton
Architecture
The second step – building

the “dynamic prototype”

– aims to implement as

much user interaction as

possible without using

a persistent storage or

implementing complex

business logic. It’s well

known that in most GUI

applications the event-

handling code accounts

for above 60% of the total application code. Therefore

it pays off to develop the UI code incrementally. Another reason to

build this second prototype is most users have trouble imagining how

an application should behave if there’s nothing they can click and see

results in.

This can be achieved by creating “mock” objects for business logic

and data access. Such objects should have the same public interface

as the real objects (and will help validate the intended interface before

it’s implemented and changes become too expensive), but will return

hard-coded data. You can use the Java collections API so the user can

A 20

change an object and see the changes until

the application is closed.

If you think of the TasksWindow as a black

box that can display a collection of task

objects, and of the TaskDetailDialog as a

black box capable of displaying a single

task object, it’s not hard to think in terms of

mock objects.

We’ll use two well-known design patterns

in the Todo application: DAO (Data Access

Object) and the MVC (Model-View Controller).

We’ll also define a VO (Value Object) named

Task for moving information between

application tiers. Therefore the view classes

(such as the TasksWindow and TaskDetailsDialog)

will receive and return either Task objects or

collections of Task objects. The controller

classes will transfer those VOs from view

classes to model classes, and back.

Figure 20 shows a UML class diagram for

the main application classes. Methods and

attributes were omitted, but we’ll describe

the most important ones. The full sources

A
Figure 20

UML class diagram
for the main

application classes

G
NetBeans

5.5 preview,
featuring

UML CASE
features

ne
tb

ea
ns

.o
rg

/c
om

m
un

ity
/re

le
as

es
/�

�/

First Edition N 1�

A Complete App Using NetBeans �

The finished application will contain more classes, some of

which can be considered “internal” to their respective packages.

Others play just an accessory role, such as exception classes.

Figure 21 shows all classes from the finished application in the

NetBeans Projects window.

Here’s the plan for building the second prototype:

1. Adjust column widths for the tasks list and display the visual

cues for late and completed tasks;

2. Handle selection events to enable and disable menu and

toolbar items;

3. Handle action events to sort and filter the tasks list;

4. Handle action events to create, edit and remove tasks.

Items 1 to 3 can be implemented and tested with a mock model

object (TaskManager) that always returns the same task collection.

Item 4 can be tested with a mock object that simply adds or removes

objects from that collection.

Customizing a JTable
In order to customize the Swing JTable so it displays a collection of

Task objects, we provide adequate column widths for each column in

the task list (which corresponds to Task attributes) and change each

row background colors according to the task status: red for late

tasks, yellow for tasks with an alert set, blue for completed tasks,

and white otherwise.

Most task list columns have a short content and can have fixed

width. Just the description column/attribute can have wider content,

so it should get whatever space is left after the fixed-width columns

are sized. To implement all these features, we need to create three

classes:

 The TasksTableModel class receives requests for data at a specific

row/column from the JTable control and returns a task attribute

value, such as the description or due date, for the task at the given

row. It also has the ability to filter the task collection to exclude

completed tasks, or to change the sorting criteria. Sometimes it

will be better to leave these sorting and filtering tasks to the model

(which can delegate them to the database) but if the dataset is

not too big, doing these operations in-memory will improve user

experience.

 The TaskColumnModel class adds columns to the JTable and

configures each column with its preferred width, label and

for the finished application are available for

download; see the link at the end of the

article.

E This UML model was drawn using ArgoUML
(argouml.org) a powerful open source software
CASE tool written in Java. Developers interested in
CASE tools can also check NetBeans 5.5 currently
in preview, which includes UML tools originally
developed as part of Sun Java Studio Enterprise.

Now we’ll create Java packages

corresponding to the MVC class roles:

todo.view, todo.controller and todo.model.

Create these packages by right-clicking

the Source Packages icon on the Projects

window, and selecting New|Java Package.

Then move the classes already created for

the first prototype to the todo.view package

by right-clicking each one and selecting

Refactor|Move Class. While nothing stops

you from using the Java code editor to

change the package statement for each

class (and even the class name), using the

Refactor menu automatically changes all

references in other classes.

A 21 A
Figure 21
All classes for the
Todo application

G
ArgoUML,
Open Source
UML CASE
tool written
in Java

ar
go

um
l.o

rg

1� N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

resizeability. It completely replaces at runtime the DefaultTableModel

created and configured by the NetBeans visual editor.

 TaskCellRenderer provides a Swing JLabel configured with the

correct background color for the task being shown. It also formats

the dueDate and completed attributes as strings.

Figure 22 shows the final appearance of the TasksWindow, with the

customized JTable.

Handling Internal Events
Having a display of tasks ready, it’s time to add some event-handling.

It will be useful to separate UI events into two mutually exclusive

categories:

1. Internal events, that affect just the view itself.

2. External events, which cause model methods to execute.

Among internal events, are selection changes and clicks on Cancel

buttons. These are handled by the view classes themselves, and

are not exposed as part of the view classes’ public interfaces. For

example, the selection of a task should enable the Edit task and

Remove task menu item, and the corresponding toolbar buttons.

ESwing itself was designed using the MVC architecture, but don’t be
confused: Swing “model” classes have nothing to do with application “model”

A 23

classes. Don’t make your model classes implement
Swing model interfaces, and don’t make them
subclasses of Swing classes. From the application
architecture point of view, Swing model classes
are part of the view	tier if the application uses
MVC.

To code an internal event handler, either

right-click on the control that is the event

source and select the desired event from

the Events sub menu, or select the Events

category from the Properties window. Both

the context menu and the Property window

will highlight in boldface the events that

already have a handler.

You can change the implementation of

an event-handler method, but you cannot

remove the method or change its name

in the source editor. To do this, you have

to use the Properties window. Figure 23

shows some event handlers in the source

editor.

Handling External Events
The category of events we call “external”

should not be handled by view classes.

They should instead be forwarded to

controller classes, which usually implement

the workflow logic for a specific use case

or a related set of use cases.

To help with this, the application includes

the todo.view.ActionSupport class. This

class simply keeps a list of ActionListeners

and forwards ActionEvents to them. But

ActionSupport is itself an ActionListener. This

is done to avoid having lots of event-related

methods, e.g. add/removeNewTaskListener(),

add/removeEditTaskListener() and so on.

Instead, view classes generate only an

ActionEvent. The ActionSupport classes capture

ActionEvents from the view components

and forward them to the controller, which

A
Figure 23

Event handler
declarations are

guarded (i.e. non-
editable) code
sections in the

source editor

A 22

G
Swing trail
of the Java

Tutorial

ja
va

.su
n.

co
m

/d
oc

s/
bo

ok
s/

tu
to

ria
l/u

is
wi

ng

First Edition N 1�

A Complete App Using NetBeans �

persistence logic, preferably using TDD. They can work in parallel

and join at the end, putting together functional view and controller

implementations with functional model implementations.

Most of the work in this step was just coding. NetBeans provides

nice code editors and a good debugger that eases the task

providing the usual benefits: code-completion, JavaDoc integration

and refactoring support. But it can go beyond: it’s very easy to build

in NetBeans 5 new plug-in modules to package your project coding

standards, such as project templates, controller class templates

and so on.

Model classes
The TaskManager class is a DAO (Data Access Object). Being the

only DAO on the application, it contains many methods that would

otherwise be in an abstract superclass. Its implementation is very

simple, so there’s lots of room for improvement.

There’s another model class: Parameter. It uses the Java SE

Preferences API to store configuration data such as the path to the

current tasks database. A desktop application should be as plug-

and-play as possible, so the application will initialize a default tasks

database if there isn’t one available. But it’s flexible enough to allow

the user to open task databases at other locations, and remember

the last one used.

The Todo application uses HSQLDB (hsqdb.org), an embedded

Java database. This allows the application to meet the ease-of-

deployment requirements for a typical desktop application. You just

need to download HSQLDB and add the archive hsqldb.jar to the

NetBeans project libraries.

Inspecting the Database
When developing and debugging persistence code, developers

usually need a way to tap into the database. Maybe they need to

check the effect of an update, or change some table definition.

NetBeans provides direct support for browsing any JDBC-compliant

database and submit SQL commands.

Switch to the Runtime window (it is normally hidden by the Projects

and Files windows) or open it from the Window menu. Expand the

Databases and then the Drivers categories. Right-click on the Drivers

icon, and select Add Driver. Fill the dialog’s fields with the location of

your hsqldb.jar archive, as shown in Figure 24. NetBeans will often

set the database driver class name by itself.

registers itself as a view ActionListener.

However, if the same ActionListener inside

the controller class receives ActionEvents

originated from multiple sources inside a

view class, how can the controller know

which operation is being performed by the

user? The “secret” is the actionCommand

attribute from the ActionEvent, which is

initialized from the actionCommand property

from the source component. So the

implementations of the controller classes

are basically a sequence of if/else if

statements checking for the actionCommand

string.

Many developers balk at this idea, claiming

this is not an “object-oriented” way of doing

things. But nothing prevents you to create

to a generic controller framework, where

the event dispatch information comes

from an XML configuration file and/or is

handled by an IoC controller.

End of Step 2
Now that we have fully functional view and

model classes, it’s time to start replacing

the mock implementations of the model

classes by real logic using persistent

storage.

In large application projects, you could

have a team working on the UI, building

the two prototypes in sequence as we did,

and another team working on business and

G
HSQLDB, an
Open Source
embedded
100%-Java
database

hs
ql

db
.o

rg

A 24

A
Figure 24
Configuring the
HSQLDB JDBC
driver in the IDE

1� N NetBeans Magazine

ID
E

O
ve

rv
ie

w
 &

 M
at

is
se

beyond visual development by supporting

coding activities with specialized editors

for Java, Ant, XML and other languages,

besides CVS, JUnit and refactoring support

and a database console. N

Now right-click the HSQLDB driver icon, and choose the Connect

using menu item. Provide the parameters to connect to your local

Todo database, using Figure 25 as a template. The default database

location is db/todo under the {user.home} folder, which is usually

/home/user under Linux or C:\Documents And Settings\UserName

under Windows.

Then you can open the connection and browse the database

catalog for tables, indexes and other database objects. Each item

has a context menu for operations like creating new tables, altering

columns and viewing data (Figure 26). Most operations

have easy-to-use wizards.

EThe Todo application uses HSQLDB in the stand-alone mode,
which locks the database files for exclusive access. So it won’t be
possible to use the NetBeans database console while the application
is running. However it’s possible to run HSQLDB in server mode
accepting concurrent connections from multiple clients, allowing the
inspection of a live task list database. Check the HSQLDB manual for
instructions on how to start and connect to the database server.

End of Step 3 & Conclusions
The Todo application is completed. Although simple

in scope and with only a few

classes, it demonstrates many

practices that could improve

your desktop Java applica-

tion quality and development

speed.

Also shown were many

features that NetBeans

provides to increase developer

productivity. NetBeans goes

A 26A
Figure 26

Executing SQL
statements

A
Figure 25

Connecting to
the Todo task

database

A 25

C
Fernando Lozano

(fernando@lozano.eti.br)
is an independent con-
sultant with more than

10 years experience do-
ing IS development and
network integration. He

has many professional
certifications, and is also

a technical writer and
open source software

advocate, serving as
Linux.java.net commu-
nity manager, LPI Brazil

Technical Director and
GNU Project webmaster

in charge of Brazillian
Portuguese translations.

netbeans.org/community/
magazine/code/nb-completeapp.zip
G

Enrich your NetBeans experience
Showcase

Plug-in
NetBeans has been designed to fulfill most developer needs

out of the box, but the number of IDE extensions is growing

fast. This section presents a wide selection of NetBeans plug-

in modules, that can enrich your development experience with features

that go from simple search utilities to far-reaching extensions that

change the face of the IDE.

For each module, we provide the project website URL and indicate

how to install it, as follows:

•	 Update Center configuration: <fileName.nbm> – This means a

module needs to be installed to configure downloads and updates.

Download the NBM file and install with Tools>Update center>Install

Manually Downloaded Modules (.nbm files). The NBM will create a

new automatic Update Center entry; you need to do this only once

for a given update site. Then, go to the Update Center, make sure the

new entry is selected, and proceed with the default option: Check the Web for

Available Updates and New Modules.

•	Update Center URL: <URL> – In this case you just nedd to add an URL. Go through

Tools>Options>Advanced Options>IDE Configuration>System>Autoupdate

types>New>General Update Center. Add a new Update Center entry,

and change its Server URL property. Then continue with the automatic

update as above.

•	Otherwise (if only the project’s URL is given), go to the project's down-

load page, download the NBM file manually, and install it with Tools>Update

center>Install Manually Downloaded Modules (.nbm files).

Module

Vvv

ing method names. Jackpot is a feature of upcoming

NetBeans 6.0, so you need to install a recent daily- or

Q-build to test it.

Local History
jroller.com/page/ramlog

Update Center URL: http://people.freenet.de/ramon.

ramos/nb/updates.xml

The Local History module remembers the last changes

made to files in your projects, eliminating the need to

connect to a version control system (VCS) or performing

check-ins. Similar to a persistent undo facility, this module

allows you to roll back sources to a previous known good

state even after forgetting a commit to the VCS.

ThinNB
thinnb.dev.java.net

Update Center Configuration: https://thinnb.dev.java.

net/nonav/net-java-dev-thinnb.nbm

The ThinNB module provides full support for Thinlet

development, including a visual GUI builder. (Thinlet is a

lightweight, XML-based GUI framework.)

Coyote
coyote.dev.java.net

The Coyote Module provides support for dynamic

and scripting languages for the Java SE platform.

The current version supports both Groovy and

Jython, but a common framework for other languages

is planned. Some features provided are syntax coloring,

script execution and

support for unit tests

written in Jython or Groovy.

Ant Explorer
yworks.com/en/products_antexplorer_netbeans.htm

yWorks AntExplorer supports visualization and execu-

tion of Ant buildfiles, providing graphs that show depen-

dencies between targets and property definitions. Graphs

are zoomable and it’s possible to focus on a target,

show its dependencies, and navigate to its source. To

activate the plug-in, righ-click an Ant buildfile and select

“Visualize”.

Jackpot
jackpot.netbeans.org

The Jackpot project develops tools for code reengineer-

ing, which goes beyond standard refactoring addressing

the needs of complex changes in large amounts of code.

This is accomplished by user-definable transformation code

or rules that can match and change code.

You could use Jackpot, for example, to remove all uses

of a deprecated method, replacing them for equivalent

code, even if the change is not as easy as replac-

ThinNB: A
complete
environment
for Thinlet
development

Ant Explorer:
exploring Ant
buildfiles visually

Coyote: Groovy
script editing and

execution

Local History:
remembering
last changes in
code

Vvv

Mark Occurrences

Highlights every
occurrence of an identifier
selected in a Java editor.

JavaScript Editor
and CSS code completion

Essential for Web
developers, these support
syntax-highlighting and
code completion.

Execution Profile

Allows configuring
different launch options
(application and JVM
arguments) for your
projects’ main classes.

Desktop Sampler

A color sampler and
screen magnifier tool;
useful for GUI developers.
The modules work well
together, as it’s easier
to sample colors of
individual pixels in the
magnified view.

Java Type Hierarchy

Opens a popup with
the full hierarchy of
classes and interfaces
(descendants or
ancestors) for a Java
class.

ByteCode Browser

Allows browsing the
contents of .class files,
to inspect bytecode and
class metadata. For real
hackers.

nbextras.org
Update Center Configuration: http://updatecenter.nbextras.

org/5.0/org-netbeans-modules-nbextras-updatecenter.nbm

NBExtras is a special case. This portal provides a blog and an up-

date center for a collection of plug-in modules that enhance standard

NetBeans features. Here is a selection of the modules available.
Extras

NB

•	 JAD decompiler front-end: Invokes the JAD bytecode

decompiler, showing the generated Java sources in the IDE.

•	Line Tools: Augments the editor with operations like moving

a line or group of lines up or down, sorting a group of lines, and

removing duplicated lines.

•	Java File Structure: Opens a popup window detailing the

structure of a Java file, with every possible detail (modifiers,

javadocs, fully qualified names etc.).

•	 Regular Expression Highlighter: Typing a regular

expression in this module’s toolbar selects all matches in the

editor.

•	 	 CVS Report / SVN Report: These generate various

statistical reports on source code repositories.

•	Keytool / CryptoServices: Facilities to work with the JDK’s

security utilities.

•	 Launch4J: Integrates support for Launch4J, a tool that

produces native launchers for Java applications.

•	SystemProperties: Shows the system properties for the

running JVM (the one executing NetBeans itself). Useful for

module developers.

•	 Recently Opened Files: Makes NetBeans’ File menu

remember the most recently opened files.

•	FreeForm Project Extras: Adds extra features for FreeForm

projects (which use arbitrary structure and Ant build scripts).

•	Code Template Tools: Makes it easier to work with code

templates in editors.

•	Filesystem-based code completion: When editing string

literals, does completion based on the project’s classpath. Very

useful for working with resources.

•	Jump to next error: Creates an editor action that jumps

to the next compilation error.

•	Google Search toolbar: Adds a toolbar that triggers a

Google web search.

•	Project Packager: Exports one or more projects to a ZIP

file, filtering out non-transferable files like CVS state.

•	Run Terminal: For command-line fans – opens a

system terminal, with the current directory set to the

project directory selected in NetBeans.

Mark Occurrences

JavaScript Editor and CSS
code completion

Execution Profile

Desktop Sampler

Java Type Hierarchy

ByeCode Browser

Web
Development

with NetBeans 5.0
A Quick Start in Basic Web
and Struts Applications
Geertjan Wielenga

First Edition N 2�

Web Development with NetBeans �

Web
Development

with NetBeans 5.0

T
his tutorial takes you

through the basics of

using NetBeans IDE 5.0 to

develop web applications.

First you create, deploy,

and execute a simple web

application using a JSP and a JavaBean.

Then you learn in detail how to use the

best of NetBeans features to create Struts

applications.

Setting Up a Web
Application Project

Before you begin, you need to have

installed NetBeans IDE 5.0 and a JDK

version 1.4.2 or 5.0 (or newer). Optionally,

you can download the Sun Java System

(SJS) Application Server, JBoss, or

WebLogic. However, the Tomcat Web

Server that is bundled with the IDE provides

all the support you need for two-tier web

applications such as those described in

this tutorial.

Registering the
Server with the IDE

The bundled Tomcat Web Server is

registered with the IDE automatically.

However, before you can deploy to the SJS

Application Server, JBoss, or WebLogic,

you have to register a local instance with

the IDE. If you installed the NetBeans IDE

5.0/SJS Application Server bundle, a local

instance of the SJS Application Server is

registered automatically. Otherwise, do the

following.

Choose Tools|Server Manager from the

main window. Click Add Server, select

the server type and give a name to the

instance. Click Next. Then specify the

server information, the location of the local

instance of the application server, and the domain to which you want

to deploy.

Creating a New Web Application Project
We start by creating a new web application. Choose File|New

Project. Under Categories, select Web. Under Projects, select Web

Application and click Next.

Under Project Name, enter “HelloWeb”. Notice that the Context

Path is “/HelloWeb”. Change the Project Location to any directory

on your computer. From now on, this directory is referred to as

$PROJECTHOME.

Select the recommendations to which your source structure will

adhere, which is purely a personal preference:

	Java BluePrints. For more information, see java.sun.com/

blueprints/code/projectconventions.html.

	Jakarta. See jakarta.apache.org/tomcat/tomcat-5.0-doc.

Select the server to which you want to deploy your application.

Only servers that are registered with the IDE are listed. Leave the

Set as Main Project checkbox selected. Click Finish.

The IDE creates the $PROJECTHOME/HelloWeb project folder. The

project folder contains all of your sources and project metadata,

such as the project’s Ant build script. The HelloWeb project opens

in the IDE. You can view its logical structure in the Projects window

and its file structure in the Files window.

Creating and Editing
Web Application Source Files

The IDE provides a wide range of tools that can fit any developer’s

personal style, whether you prefer to code everything by hand or

want the IDE to generate large chunks of code for you.

Creating a Java Package and a Java Source File
Expand the Source Packages node. Note that this node only

contains an empty default package node. Right-click the Source

Packages node and choose New>Java Class. Enter “NameHandler”

in the Class Name text box and type “org.me.hello” in the Package

drop-down. Click Finish.

In the Source Editor, declare a field by typing the following line

directly below the class declaration:

String name;

G
NetBeans
tutorials,
guides and
articles

ne
tb

ea
ns

.o
rg

/k
b

24 N NetBeans Magazine

JE
E

/
W

eb
 D

ev
el

op
m

en
t

Add the following line in the nameHandler() method:

name = null;

Generating Getter and Setter Methods
Right-click the word name in the field declaration at the start of

the class and choose Refactor>Encapsulate Fields. Click Next to run

the command with its default options, and then click Do Refactoring.

Getter and setter methods are generated for the name field and its

access level is changed to private. The Java class should now look

similar to Listing 1.

Editing the Default JavaServer Pages File
Expand the HelloWeb project node and the Web Pages node. Note

that the IDE has created a default JavaServer Pages file, index.jsp,

for you. When you create the project, the IDE opened the index.jsp

file in the Source Editor.

Select the index.jsp Source Editor tab.

The JSP file now has focus in the Source

Editor. In the Palette on the right side of the

Source Editor, expand HTML Forms and

drag a Form item below the <h1> tags

(see Figure 1). Set the following values:

Action: response.jsp; Method: GET; Name:

“Name Input Form”. Click OK. The Form is

added to the index.jsp file.

Drag a Text Input item to just before the

</form> tag. Set the following values:

Name: name; Type: text. Click OK. The Text

Input is added between the <form> tags.

Drag a Button item to just before the

</form> tag. Set the following values:

Label: OK; Type: submit. Click OK. The

Button is added between the <form>

tags.

Type “Enter your name:” in front of the

<input> tag and change the text between

the <h1> tags to “Entry Form”. The

tags between the <body> tags now look

as follows:

<h1>Entry Form</h1>
 <form name=”Name Input Form” action=”response.jsp”
 method=”GET”>
 Enter your name:
 <input type=”text” name=”name” value=”” />
 <input type=”submit” value=”OK” />
</form>

Creating a JavaServer Pages File
Expand the HelloWeb project node and the

Web Pages node. Right-click the Web Pages

node and choose New>JSP; name the JSP

file “response”, and click Finish. The new

response.jsp opens in the Source Editor.

In the Palette on the right side of the

Source Editor, expand JSP and drag a

Use Bean item right below the <body>

tag in the Source Editor. Set the following

values: ID: mybean; Class: “org.me.hello.

NameHandler”; Scope: session. Click OK.

B Listing 1. First version of the NameHandler class

package org.me.hello;

public class NameHandler {
 private String name;

 /** Creates a new instance of NameHandler */
 public NameHandler() {
 setName(null);
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
}

A 1A
Figure 1

Adding a HTML
form to the

index.jsp	

First Edition N 2�

Web Development with NetBeans �

The Use Bean item is added below the

<body> tag.

Add a Get Bean Property item and a Set

Bean Property item from the Palette. Then

change the code so that the tags between

the <body> tags look as follows:

<jsp:useBean id=”mybean” scope=”session”
 class=”org.me.hello.NameHandler” />
<jsp:setProperty name=”mybean” property=”*” />
<h1>Hello, <jsp:getProperty name=”mybean”
 property=”name” />!</h1>

Building and Running
a Web Application Project

NetBeans uses an Ant build script to build

and run your web applications. It generates

the build script based on the options you

enter in the New Project wizard and the

project’s Project Properties dialog box.

Choose Run>Run Main Project (F6) from

the main menu. The IDE builds the web

application and deploys it, using the server

you specified when creating the project.

Enter your name in the text box on your

deployed index.jsp page, as in Figure 2.

Click OK. The response.jsp page should

open and greet you; see Figure 3.

Moving to Struts
The following sections take you through

A 2

A 3

the basics of using NetBeans IDE 5.0 to

develop web applications that make use of

the Struts framework.

The Struts framework enables you to

create maintainable, extensible, and

flexible web applications based on standard

technologies, such as JSP pages, resource

bundles, and XML. Struts works with a Model-

View-Controller (MVC) framework, but focuses on the

controller – a servlet, which is included in the Struts libraries that the

IDE provides and automatically registers in the web.xml deployment

descriptor when you indicate that you want to use Struts.

The Struts servlet uses the struts-config.xml file to map incoming

requests to a Struts “action” class. An action class receives a Struts

“actionform bean” class as input, which serves as a transfer object

between the action class and the view. This is typically a JavaServer

Pages (JSP) page. Because many web applications use JSP pages

for the view, Struts provides custom tag libraries which facilitate

interaction with HTML forms.

Setting Up a Struts Application
In NetBeans, a “Struts application” is nothing more than a

normal web application accompanied by the Struts libraries and

configuration files. You create a Struts application in the same way

you create any other web application in the IDE – with the additional

step of indicating that you want the Struts libraries and configuration

files to be included in your application.

Choose File|New Project. Under Categories select Web. Under

Projects select Web Application and click Next. In the Name and

Location panel under Project Name, enter “LoginPage”. Change the

Project Location to any directory on your computer. As before, this

directory will be referred to as $PROJECTHOME.

Select the server to which you want to deploy your application.

Notice that the Context Path is /LoginPage. Click Next. In the

Frameworks panel, select Struts 1.2.7 (see Figure 4).

Do not change any of the values in the lower section of this panel.

They serve the following purposes:

	Action Servlet Name. Hardcoded specification of the name

of the servlet entry for the Struts action servlet. The web.xml

deployment descriptor contains a servlet entry for the action

servlet, specifying the appropriate Struts specific parameters, such

A
Figure 2
Testing the
HelloWeb app

A
Figure 3
Greetings from
HelloWeb

2� N NetBeans Magazine

JE
E

/
W

eb
 D

ev
el

op
m

en
t

application has all of the Struts libraries

on its classpath. Not only are they on the

application’s classpath, but they are also

included in the project and will be packaged

with it when you build it later.

The LoginPage project opens in the IDE.

The Projects window should now look as in

Figure 5. In the Configuration Files node,

the application includes all the Struts-specific

configuration files, of which struts-config.

xml is the most important. You will use this

configuration file throughout this tutorial.

Also in Configuration Files, to handle Struts

processing, the Struts servlet (i.e., the

controller in the MVC paradigm) is mapped

in the web.xml deployment descriptor (see

Listing 2).

 Here the Struts servlet (org.apache.

struts.action.ActionServlet) is specified as

the servlet that will control all requests

for the mapping .do. In addition, the

web.xml file specifies that the Struts

servlet is configured by means of the

struts-config.xml file that is found in the

WEB-INF folder.

as the name of the servlet class and the path to the struts-config.xml

configuration file.

	Action URL Pattern. Allows the appropriate patterns which

should be mapped to the Struts action controller to be specified.

This generates a corresponding web.xml servlet mapping entry to

map the specified URI pattern to the action servlet. By default, only

the *.do pattern is mapped.

	Application Resource. Lets you specify the resource bundle

which will be used in the struts-config.xml file for localizing messages.

By default, this is com.myapp.struts.ApplicationResource.

	Add Struts TLDs. Lets you generate tag library descriptors for

the Struts tag libraries. A tag library descriptor is an XML document

which contains additional information about the

entire tag library as well as each individual tag. In

general this is not necessary, because you can refer

to URIs rather than local TLD files.

Click Finish. The IDE creates the $PROJECTHOME/

LoginPage project folder in your

filesystem. As with any

web application in the

IDE, the project folder

contains all of your

sources and the IDE’s

project metadata,

such as the Ant build

script. However, in

addition, your web

A
Figure 4

Initial Struts
configuration

in NetBeans

A 4

B Listing 2. Struts servlet mapping in web.xml

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml
 </param-value>
 </init-param>
 <init-param>
 <param-name>debug</param-name>
 <param-value>2</param-value>
 </init-param>
 <init-param>
 <param-name>detail</param-name>
 <param-value>2</param-value>
 </init-param>
 <load-on-startup>2</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

First Edition N 2�

Web Development with NetBeans �

Using Struts Custom Tag Libraries in a JSP Page
Many web applications use JSP for the view in MVC, so Struts

provides custom tag libraries which facilitate interaction with HTML

forms. These can very easily and smoothly be set up and used in a

JSP page in the IDE. See how, following these steps:

Right-click the LoginPage project node, choose New>JSP, and call

the new JSP page “loginForm”. Click Finish. In the Source Editor,

change the default content of the <h1> tag to “Login Form” and

do the same for the text in the <title> tags.

Copy these first two taglib directives from the welcomeStruts.jsp

file to the top of your new loginForm.jsp file:

<%@ taglib uri=”http://jakarta.apache.org/struts/tags-bean” prefix=”bean” %>
<%@ taglib uri=”http://jakarta.apache.org/struts/tags-html” prefix=”html” %>

In loginForm.jsp, below the <h1> tags, add the following:

<html:form action=”login”>
 <html:submit value=”Login” />
</html:form>

Notice that when you type the Struts tags, the IDE helps you by

suggesting different ways of completing the code, and further helps

you by providing Struts Javadoc; see Figure 6.

Whenever you finish typing in the Source Editor, you can neaten the

code by right-clicking in the Source Editor and choosing Reformat

Code.

In the Component Palette on the right side of the Source Editor,

within the HTML section, drag the Table item to just above the

<html:submit value=”Login” /> line. The Insert Table dialog box

pops up. Set both the Rows and Columns to 1, so that you’ll create

a table consisting of one row and one column. Click OK.

In between the <th> tags, type the following:

<bean:message key=”login.name” />

In between the <td> tags, type:

<html:text property=”name” />

The body of loginForm.jsp is now as shown in Figure 7.

In the Projects window, expand the Source Packages node,

expand the com.myapp.struts node, and double-click the

ApplicationResource.properties file so that it opens in the

Source Editor. Add “login.name” as a key, anywhere in the

Developing a
Struts Application

Developing a Struts application is similar

to developing any other kind of web

application in the IDE. You use components

such as JSP pages, servlets, listeners, and

filters. However, you complement your web

development toolkit by using the facilities

provided by Struts via the IDE.

For example, you use templates in the

IDE to create Struts action classes and

Struts actionform bean classes. On top

of that, the IDE automatically registers

these classes in the struts-config.xml file

and lets you extend this file very easily via

menu items in the Source Editor’s pop-up

menus.

A 5 A
Figure 5
Logical
structure of
the LoginPage
project

G
Struts
Framework

st
ru

ts
.a

pa
ch

e.
or

g

2� N NetBeans Magazine

JE
E

/
W

eb
 D

ev
el

op
m

en
t

ApplicationResource.properties file, and add a meaningful message.

For example, “login.name=Name”.

Using Struts to Validate a Field in a JSP Page
A Struts “actionform bean” class represents data shared

between the view (in this case, a JSP page) and the Struts action

class. An actionform bean class is available both for populating

the view and for providing input to an action class; it may also

implement a validate() method to allow input mapped from the

view to be verified.

Right-click the LoginPage project node and choose New>File/

Folder. In the Web category choose Struts

ActionForm Bean and click Next. Notice that

your actionform bean class will be called

“NewStrutsActionForm”. Leave the default

name for purposes of this tutorial. In a real

application, you would give the class a new,

meaningful name. Select com.myapp.struts

in the Package drop-down list and click

Finish.

The class opens in the Source Editor. By

default, the IDE provides it with a string

called name and an int called number. Both

fields also have getters and setters defined

for them.

Open struts-config.xml in the Source

Editor and note that it contains, among

other things, the following:

<form-beans>
 <form-bean name=”NewStrutsActionForm”
 type=”com.myapp.struts.NewStrutsActionForm”/>
</form-beans>

Hold down the Ctrl key and move your

mouse over the fully qualified class name

of the actionform bean class. A hyperlink

appears. Click it to navigate to the

actionform bean class.

Now browse through the actionform bean

class in the Source Editor. Look at the

validate() method that the IDE created for

you:

public ActionErrors validate(ActionMapping mapping,
 HttpServletRequest request)
{
 ActionErrors errors = new ActionErrors();
 if (getName() == null || getName().length() < 1) {
 errors.add(“name”,
 new ActionMessage(“error.name.required”));
 // TODO: add ‘error.name.required’
 // key to your resources
 }
 return errors;
}

Notice that the field called name is

validated by default. If validation fails,

A
Figure 7

LoginForm.jsp	
body after first

changes

A 7

A
Figure 6

The IDE
provides code

completion and
documentation

for Struts
taglibs

A 6

First Edition N 2�

Web Development with NetBeans �

is therefore now “/login”). Click Next. In the step “ActionForm

Bean, Parameter”, notice that the IDE suggests that you associate

the action class with the actionform created in the previous

step. In Input Resource, browse to your loginForm.jsp page.

Click Finish.

Open struts-config.xml in the Source Editor and note that it

contains, among other things, the following:

<action-mappings>
 <action input=”/loginForm.jsp”
 name=”NewStrutsActionForm”
 path=”/login” scope=”session”
 type=”com.myapp.struts.NewStrutsAction”/>
 <action path=”/Welcome”
 forward=”/welcomeStruts.jsp”/>
</action-mappings>

Supposing you want the action class to function per request,

instead of per session, put the cursor in the scope attribute and

press Ctrl-Space (see Figure 8).

Choose Request. Hold down the Ctrl key and move your mouse

over the action class’s fully qualified class name. Click the hyperlink

to navigate to the action class.

Browse through the action class and look at the execute()

method:

public ActionForward execute(ActionMapping mapping, ActionForm form,
 HttpServletRequest request, HttpServletResponse response) throws Exception
{
 return mapping.findForward(SUCCESS);
}

Notice the definition of SUCCESS, at the top of the

NewStrutsAction:

private final static String SUCCESS = “success”;

This specifies that this action class forwards to the output view

called “success”. You need to define a page that will be displayed

when this output view is called. So, create another JSP in the same

location as loginForm.jsp and call it “loginSuccessful”. In the Source

Editor, change the default content of the <h1> tags in the new

A 8

which happens when no name is

entered in the JSP page, a message

that is identified by error.name.required

is returned.

Following the TODO instruction that the

IDE put in the validate() method for you,

add error.name.required as a key to the

ApplicationResource.properties file with a

meaningful message. For example: “error.

name.required=Enter a name!”.

At the top of the file, to customize the

formatting of your error message, change

the first four keys to the following:

errors.header=
errors.prefix=
errors.suffix=
errors.footer=

Specify where you want the error message

to be rendered, by adding the following line

in loginForm.jsp, right above the closing

</html:form> tag:

<html:errors />

Using Struts to
Navigate between JSP Pages

A Struts “action” class is executed in

response to a user request and commonly

interacts with the model through a business

delegate. The responsibility of an action

class is to provide navigation and forward

control to the appropriate view.

Right-click the LoginPage project node

and choose New>File/Folder. In the Web

category choose Struts Action and click

Next. In the Name and Location panel,

notice that your action class will be called

“NewStrutsAction”. Leave the default name

for purposes of this tutorial.

Select com.myapp.struts in the

Package drop-down list. Type “login” in

Action Path (the content of Action Path

A
Figure 8
Using code completion
to change an action
class scope

G
Java EE
Technologies
at Sun

ja
va

.su
n.

co
m

/ja
va

ee

�0 N NetBeans Magazine

JE
E

/
W

eb
 D

ev
el

op
m

en
t

Right-click the project node and choose

Properties. In the Project Properties dialog

box, click the Run node and in Relative URL

type login.do. Click OK. (Remember that

you mapped the .do mapping to the Struts

controller servlet. Now, when you run the

application and the .do mapping is used,

the Struts controller servlet knows it has to

handle the request.)

Choose Run|Run Main Project (F6)

from the main menu. The IDE builds the

application and deploys it, using the server

you specified when creating the project. The

browser opens to display the loginForm.jsp

page (see Figure 11).

Only if field-level validation succeeds, so

that the action class’s execute() method

returns the success output view, does

Struts call the loginsuccesful.jsp page.

To pass validation, all that you need to do

is add any value to the Name row in the

loginForm.jsp page. Then, loginSuccessful.

jsp is displayed.

Of course, this is not a complete login

form; it merely shows you what the basis

of such a form could look like in Struts. The

following section shows you how the form

can be extended with a variety of standard

functionality.

Adding More Functionality
to the Struts Application

Struts simplifies and organizes an

application in many more ways than can be

listed here. However, here are some simple

extensions possible to ouexisting login

page, using Struts.

Using Struts to Add
“Cancel” Functionality

In loginForm.jsp, below the <html:submit>

JSP files to “Login Successful!” and do the same for the text in the

<title> tags.

Open struts-config.xml in the Source Editor; right-click anywhere

in the /login action mapping, and choose Struts>Add Forward (see

Figure 9).

In the Add Forward dialog type “success” in Forward Name, and

browse to loginSuccessful.jsp in Resource File. The dialog box should

now look as in Figure 10.

Click Add. Notice that struts-config.xml now shows the following

(the new code is in bold):

<action-mappings>
 <action input=”/loginForm.jsp”
 …
 <forward name=”success” path=”/loginSuccessful.jsp”/>
 </action>
…
</action-mappings>

Building and Running the Struts Application
NetBeans uses an Ant build script to build and run your web

application. The IDE generated the build script when you created the

app, basing it on the options entered in the New Project wizard and

the project’s Project Properties dialog box.

A
Figure 9
Adding a

forward in
struts-config.xml

A 10

A 9

A
Figure 10

Setting forward
options

First Edition N �1

Web Development with NetBeans �

Run the application again

and notice the new Cancel

button. Click it and the new

loginCancel.jsp page is

opened in the browser.

Using Struts to
Add “Logout”
Functionality

In loginForm.jsp, below

the <h1> tags, create the

Logout link by adding the

following:

<html:link action=”/logout”>
 Logout</html:link>

You need to define a page

that will be displayed when

the Logout link is clicked. So, create another JSP in the same location

as loginForm.jsp and call it “loginOut”. In the Source Editor, change

the default content of the <h1> tags in the new JSP files to “Have a

Nice Day!” and do the same for the text in the <title> tags.

Open struts-config.xml in the Source Editor; right-click anywhere,

and choose Struts>Add Forward/Include Action. The Add Forward/

Include Action dialog box opens. Type “logout” in Action Path and

browse to loginOut.jsp in Resource File. Then click Add. Notice the

changes in struts-config.xml:

<action-mappings> <action input=”/loginForm.jsp”
 …
 </action> <action forward=”/loginOut.jsp” path=”/logout”/>
…
</action-mappings>

Run the application again and notice the new Logout link (see

Figure 12). Click it, and the new loginOut.jsp page is opened in

the browser.

Summary
In this tutorial you learned to create a simple webapp. You also

saw, step by step, how to set up and develop a Struts application

in NetBeans and how to build and run it, using the most of the IDE’s

features. N

line, create a Cancel button by adding the

following:

<html:cancel />

Add these lines to the execute method in

org.myapp.struts.NewStrutsAction:

if (isCancelled(request)){
 return mapping.findForward(CANCEL);
}

Press Ctrl-Space within the isCancelled()

method and then read the Javadoc to

understand the method. Declare the

definition of CANCEL at the top of the

NewStrutsAction class, right below the

definition of SUCCESS:

private final static String CANCEL = “cancel”;

You need to define a page that will

be displayed when CANCEL is called.

So, create another JSP in the same

location as loginForm.jsp and call it

loginCancel(). In the Source Editor, change

the default content of the <h1> tags in

the new JSP files to “Login Cancelled!”,

and do the same for the text in the

<title> tags.

Open struts-config.xml in the Source

Editor, right-click anywhere in the /login

action mapping, and choose Struts>Add

Forward. The Add Forward dialog box

opens. Type “cancel” in Forward Name.

Browse to loginCancel.jsp in Resource File

and click Add. Notice the change in struts-

config.xml:

<action-mappings>
 <action input=”/loginForm.jsp”
 …
 <forward name=”success”
 path=”/loginSuccessful.jsp”/>
 <forward name=”cancel”
 path=”/loginCancel.jsp”/>
 </action>
 …
</action-mappings>

A 11 A
Figure 11
Login form
after entering
an empty name

A 12 A
Figure 12
New Login
Form, with
cancel and
logout
functionality

C
Geertjan Wielenga
(geertjan.wielenga@	
sun.com)
has been a software
technical writer for the
past 10 years, working
mainly on rapid ap-
plication development
and IDEs, currently on
NetBeans, but previ-
ously on UNIFACE
by Compuware and
SuperNova by the now-
defunct Four Seasons
Software. He works for
Sun Microsystems as a
Technical Writer on the
NetBeans project.

Writing

Learn about tools and best
practices that help increase
the quality of your code

Osvaldo Pinali Doederlein

with NetBeans

Quality
Code

First Edition N ��

Writing Quality Code with NetBeans

M
odern IDEs like

NetBeans have

great source code

editors, debug-

gers, profilers, vi-

sual builders and

other tools that help producing application

that are complete, correct and efficient.

But this is not enough: source code should

also be well organized and well structured,

easy to read and maintain, and compliant

with a myriad of “best practices” that help

to deliver these qualities and avoid prob-

lems. In other words: your code should be

above suspicion.

Unit tests and code reviews help make

sure your code is well written. But you can

also get help from several tools that check

code formatting, detect bugs, improve

OO style, automate tests – and generally

relieve you from at least part of the manual

work of code quality assurance.

In this article we look at several tools

supported by NetBeans, either out of the

box (JUnit, refactoring and the NetBeans

Profiler) or through plug-in modules

(Checkstyle, PMD and FindBugs). We can

only provide an introduction to each tool,

but the take-home message is that you can

improve significantly your Java software

construction process without a huge

investment in effort.

Learning to use these tools well –

configuring, combining and matching their

capabilities under the integrated platform of

NetBeans – will let you add important items

to your programming discipline without

large costs in additional development time.

In fact, the proper use of good tools has

the potential to reduce total effort, by

saving you from hunting difficult bugs, or

by making your source code better structured, and easier to read

and evolve.

Defensive Programming
When I started programming in the late 80’s, any coding mistake

would result in a cryptic error code or a system crash. But few

veterans should miss compilers from the eighties as much as they

do for Atari 2600 games. Modern compilers like javac produce clear

diagnostics for dozens of errors that are statically verifiable. In Java

SE 5, new language features (remarkably generic types) expand the

number of errors that can be caught at compile time, and this is a

Good Thing.

However, we can always use more of a good thing. Even though

runtime technologies like exception handling and a safe memory

model in the JVM, or ACID transactions in a DBMS, handle runtime

errors gracefully and prevent disastrous results, the right time to

“catch” any bug is development time. Techniques like unit testing

help, but the more static diagnostics, the better.

There are of course tools that go beyond javac, and attempt to

detect code anti-patterns: snippets of code that despite not being

forbidden by the Java Language Specification (JLS), are fingerprints

of bad code. Here “bad” might mean buggy, slow, unstructured,

or just difficult to understand and maintain. PMD and FindBugs

are perhaps the most popular of the open source offerings, and

NetBeans plug-in modules make their use a breeze in the IDE: you

will hardly notice that you are reviewing code for dozens of potential

programming issues.

Using PMD

We will start by looking at PMD. Its NetBeans plug-in can

be fetched by the Update Center (from

www.nbextras.org). Once

installed, Figure 1 shows

the configuration dialog

for the PMD plug-in

module, and one of PMD’s

over 180 rules. After everything

is set up (to get started, you can use

the plug-in’s installation defaults), select

a project’s Source Packages folder and run

Tools|Run PMD.

G
Code con-
ventions
from Sun.

ja
va

.su
n.

co
m

/d
oc

s/
co

de
co

nvQuality

�4 N NetBeans Magazine

C
or

e
Te

ch
ni

qu
es

The ReturnFromFinallyBlock rule illustrated in the figure is a good

example of the kind of diagnostics PMD performs: it says it’s a bad

thing to have a return statement inside a finally block. The Example

pane illustrates the problem, and the Information pane explains it.

Such returns shortcut any exception thrown or leaked by the try/catch

structure, discarding exceptions that were supposed to be delivered

to the caller (or by an outer try/catch). This is a bug pattern, because

it’s not a very intuitive or useful programming style. In fact many

programmers will ignore that the Java language will behave that way.

In addition, exceptions are of course supposed to be handled by a

catch block – so we can condemn as bad style even the rare code

written with the “return inside finally” idiom on purpose.

Validating the validator

Not all PMD rules are so crystal-clear to pick, however. Some are

even documented as controversial. For example, the UnusedModifier

rule flags redundant modifiers, such as a public method in an interface

(since all interface members are public). I like this rule; it makes

declarations simpler and not redundant. But others may prefer their

source code to be as explicit as possible.

There are other reasons to disable rules, like false positives in

some rules with less than perfect detection, or rules that are relevant

for some projects but not for others. A good example of both is

the rule NonThreadSafeSingleton, which finds Singletons with non-

synchronized getter/initializer methods. This rule may mistake some

regular methods for a Singleton getter, or be irrelevant for single-

A 1A
Figure 1

PMD
Configuration

in NetBeans

threaded appsF1. However, most of the

time this rule will catch real bugs, and when

it does so, you will be very glad to have

enabled it.

In short, you have to decide which rules

should be enforced or not. This is a difficult

balance. Having more rules activated

increases the chances that PMD catches

important problems in your code, with no

effort from you. But too many rules may

produce a smorgasbord of warnings that

require too much work to review, ultimately

making people stop using the tool.

The code-review process must be light

enough so you can do it often and quickly.

You shouldn’t let one week of construction

pass without re-checking all the new-or-

updated code (if not the entire project), at

least for the most important smoking guns.

Here’s a tip to help adoption of PMD (and

similar tools). Start with a “pet project”

whose source code is of high quality and

small volume. Then activate all of PMD’s

rules, run it on the project’s sources, and

check the resulting warnings. You will have

a clear idea of which rules are inadequate

for your personal programming habits.

Disable these rules, and run PMD with the

same configuration on a larger project

– one written by many developers with

different skills, with

lots of legacy and

hacked bug fixes

– and check if

the number

of warnings

is reasonable

enough so you can

start enforcing

those rules in the

project.

F1 Not that it makes
much sense to write
any non-thread-safe

code today, with
multi-core CPUs be-
coming commodity.

First Edition N ��

Writing Quality Code with NetBeans

	ForLoopShouldBeWhileLoop: Detects for loops that could

be rewritten as simpler while loops.

	PositionLiteralsFirstInComparisons: Prefer “literal”.

equals(str) to str.equals(“literal”), because the former will never

throw a NullPointerException.

	AbstractClassWithoutAbstractMethod: Often indicative

of weak OO design. An abstract class with no methods should

rather be an interface. And if it contains only concrete methods,

perhaps it should not be abstract. Great abstract classes are those

that implement design patterns like GoF’s Template Method, with

a combination of abstract methods and concrete methods that

depend on subclasses implementing the former.

	UnsynchronizedStaticDateFormatter: A SimpleDate

Format object that is often used with the same format cannot

be initialized once, be stored in a static variable, and then be

reused by multiple method invocations that use the same format.

The problem is that this API is not thread-safe, so concurrent

invocations will break it.

Using FindBugs

FindBugs does essentially the same as PMD, so why use two very

similar tools? Because each tool has different strengths. PMD’s

scope is broader and it is easier to extend. You can create your own

rules with relatively little effort (see the sidebar mentioned above),

which is also the reason that PMD supports more rules (twice as

many as FindBugs) out of the box.

Remember that this is mostly a one-

time effort for legacy projects. Once

all programmers are disciplined to run

PMD regularly, and code is written since

Revision-1 with a chosen ruleset in mind,

the project tends to keep a small or empty

set of warnings as it grows. The reviewing

process consequently becomes very easy

and incremental.

Showing off PMD

Figure 2 shows the NetBeans source

editor with a Java class analyzed by PMD.

This class was never checked before and

all rules are active, so the PMD Output

window shows quite a large number of

warnings. This output includes some

warnings many wouldn’t agree with and

disable (excessively long variable names?!),

as well as one that is hugely important, and

which is further commented in the sidebar

“The fi modifier and refactoring: towards

functional-style Java”.

Here is a very small sample of interesting

rules supported by PMD:

	 SwitchDensity: Finds switch

statements that have too much code per

case, in average. You should consider

refactoring large case blocks into

separate methods.

 	InsufficientStringBufferDeclaration:

Even if you build complex strings with

StringBuffer (or StringBuilder in JSE 5),

your code is not optimal if it uses these

classes’ default constructors, which

initialize the buffer with a small size,

forcing reallocation as data is appended.

This rule even recommends a minimum

initial size for the buffer, looking at the

sizes of all literal strings appended by

your code.

A 2

G
Aggregates
dozens of
NetBeans
plug-ins,
including
PMD and
FindBugs.

ww
w.

nb
ex

tra
s.o

rg
A
Figure 2
PMD in action,
warning about
violations of
the selected
rules.

�� N NetBeans Magazine

C
or

e
Te

ch
ni

qu
es

On the other hand, FindBugs has a more advanced architecture,

enabling more sophisticated and precise detections. Instead of

pattern matching, its “detectors” are implemented on top of bytecode

scanning and dataflow analysis. This enables FindBugs to locate

such problems as infinite loops, as well as many subtle null-pointer

bugs, and even security issues like JDBC code allowing SQL injection

attacks. All that with a very small number of false positives. (As a

trade-off, you would face a steep learning curve to create detectors

for your own rules.)

Showing off FindBugs

FindBugs’ plug-in can be downloaded from the same Update

Manager site as PMD. Figure 3 shows that FindBugs’ plug-in for

NetBeans is prettier, with a custom view that helps to review warnings.

The selected warning is for the bug rule “FE”, or “Test for floating

point equality”. In Java (and any language using floating-point types),

you should avoid comparing floating point values (float, double) with

[in]equality operators (== and !=), like explained by the command

pane of the plug-in.

In another example, FindBugs sees two violations of DLS (Dead

Local Store): redundant assignments to variables that are never read.

The flagged variables are exception arguments of catch blocks, so

FindBugs actually found that I’m ignoring these exceptions silently,

which is of course a bad practice (at least the exception should be

logged somewhere).

In Figure 4 we can see FindBugs’ settings. In addition to a full list

of individual rules in the “Configure Detectors” page, you can set

up FindBugs more easily with the Feature-

oriented page. In my experience, setting

the Level option to Medium (excluding

only the rules with Experimental status

and Low severity) is enough to keep the

number of violations small enough to start

using the tool, even in large projects that

were never before massaged by a code

validation tool.

Here is a list of particularly valuable

detectors of FindBugs:

	BC (Impossible Cast)

Finds code that if executed will always fail

with a ClassCastException.

	BIT (Incompatible bit masks)

Finds code like “if (A & B == C)” that will

always result false, because either B and C,

or A and C, have no 1 bits in common.

	 DMI: Code contains a hard coded

reference to an absolute pathname

This goes in the category “I did that while

prototyping/debugging, but forgot to clean

up later…”.

	 EC: Invocation of equals() on an

array, which is equivalent to ==

Unfortunately, the Java platform does

not define proper behavior of equals() for

primitive arrays (like int[]), but programmers

often forget this.

	IC: Initialization circularity

This is a very insidious bug, when class

A has static initialization code that depends

on class B, and B’s initialization likewise

depends on A’s initialization.

A real-world case study

	NP: Load of known null value

This is a very useful detector, and it just

found an important but elusive bug in the

project I’m currently working on. Look at

this real-world code:

A 3A
Figure 3
FindBugs
in action,

identifying
embarrassing
code from the

author.

First Edition N ��

Writing Quality Code with NetBeans

private Map headers = new HashMap();
public void putHeader (String id, String value) {
 if (value == null)
 headers.remove(value);
 else
 headers.put(id, value);
}

Where is the null-pointer bug? This code

will never throw NullPointerException; the

problem is more subtle. My intention was

that putHeader(id, null) would remove the

header id; but I mistyped the code as

headers.remove(value) – it should have

been headers.remove(id).

FindBugs finds this bug because it doesn’t

make sense to use a variable whose content

is known to be null, in lieu of the literal null

value. If I really wanted to remove the null

value from my HashMapF2, I should instead

write headers.remove(null).

A bug like this is very hard to find

because nothing looks wrong on a cursory

examination. No exception will ever be

thrown; and no obvious functional problem

will happen (in my app, the only effect of

A 4 A
Figure 4
Easy
configuration
of FindBugs’
rules.

keeping unwanted data in this Map would be a brief memory leak).

What is even more vicious is that the method looks so simple –

being a thin wrapper over a Map – that I didn’t bother to write a unit

test for it.

Fortunately, tools like FindBugs or PMD don’t fail in discipline. They

will review your code without missing even the “too easy to need

testing” code.

Programming with Style
Besides fixing bugs, most programmers also care about

keeping their source code well indented and formatted,

making it easier to read and modify. Opinions differ about

many style rules, but most people will agree that any style is

better than no style.

Checkstyle can check all sorts of style rules, like indentation,

spacing, naming conventions, modifier usage, curly braces and so

on. It can also find violations of several programming best practices

and potential bugs, so there’s some intersection of functionality

with PMD and FindBugs, which can also check some style-related

problems. In general, Checkstyle is much better on style rules, and

the latter tools are more powerful otherwise. My recommendation is

to enable all tools, but configure their respective configurations to

not have overlap (otherwise your reviewing effort will increase with

the duplicated warnings).

Checkstyle’s NetBeans plug-in must be downloaded from the

project site, and installed from the local NBM file. The plug-in doesn’t

currently offer a GUI for choosing rules. You must first configure a

XML file that specifies style rules, like theseF3 :

<!— Formatting rule: Open ‘{‘ in a new line -->
<module name=”LeftCurly”/>
 <property name=”option” value=”nl”/>
</module>

You don’t actually have to write such a file, as Checkstyle

comes with standard configurations, the most popular being

sun_checks.xml (conventions from Sun Microsystems). You can

start with such a default configuration and tweak a few rules for a

perfect match with your preferences (detailed documentation for

each rule is provided by Checkstyle’s docs).

Figure 5 shows the output from Checkstyle for a test class that

purposefully violates many of my personal style rules: no javadocs

for public methods and no package.xml file; equals() without

F2 Remember that this col-
lection supports a null key.
�

F3 PMD and FindBugs vwork
the same way, with XML
configuration files, although
their GUIs hide these. But
even with the GUI plug-ins
you may want to access
the XML files, for example
to add the configuration
to your version control
system, to copy it to other
projects, or to reuse them
in Ant or Maven scripts.

�� N NetBeans Magazine

C
or

e
Te

ch
ni

qu
es

Unit testing

Unit tests (of course) are runtime tests

that cover fine-grained code artifacts:

classes and individual methods. These

tests are sometimes classified as “white-

box tests”, because writing them requires

intimate knowledge of the code: you

should invoke all important methods

directly, and know which parameters are

required and what results are expected for

every call.

In the Java platform, JUnit is the

de facto unit testing framework, and

most if its success should be attributed

to simplicity: writing test cases require

using a minimalist API and following very

simple conventions, remarkably that a

test case is a method with signature like

“public void testName ()”. But the integrated

JUnit support in NetBeans makes it even

simpler for beginners.

Suppose you have written a class like that

shown in Listing 1. This class is part of a

library of several implementations of a Date-

parsing interface (for a fixed input format),

with successive optimization refinementsF4.

Now, optimization is a risky business, so I

will sleep better if these methods are tested.

With NetBeans, you can select the class and

call Tools>Create JUnit tests. This wizard

will create a class (in the project’s Test

Packages) with several methods like the

one shown in Listing 2.

You must only fill in the blanks providing

some real input and output data, like in

Listing 3 (where I also trimmed the code

a little). Then you only have to run the unit

tests with Run>Test “project name”, and

check the outcome in the JUnit Test Results

view (Figure 6). Writing and performing

tests was never easier!

hashCode(); non-final parameter; class name not compliant with Java

naming convention (starting with lowercase); and finally, opening a

curly brace the Wrong Way (in my book, anyway)!

Any good developer is able to keep her own source code neatly

formatted, but in large projects with many coders, often including

people with different experiences, contractors etc., it’s easy to loose

control and let the codebase become a mess. A tool like Checkstyle

is remarkably important and effective to enforce a minimal standard

of code style.

Fearless Programming
Not every coding problem can be detected by static analysis tools,

so you still have to plan, implement, and execute runtime tests.

Fortunately, there are other tools that automate many testing tasks,

and NetBeans helps you further by integrating these in a seamless

environment.

In this section, we’ll review NetBeans’ integration with JUnit and

explore how your unit testing efforts can be reused for fundamental

performance testing.

F4 I wrote this code for
another article, focused

on code optimization.
The full code is not

relevant to the present
discussion, but it is avail-

able electronically for
the curious reader.

B Listing 1. A class with sample functionality to be tested.

public static class HardcodedParser extends Parser {

 public Date parse (String s) {

 return new GregorianCalendar(1970,

 Integer.parseInt(s.substring(2, 4)) - 1,

 Integer.parseInt(s.substring(0, 2)),

 Integer.parseInt(s.substring(4, 6)),

 Integer.parseInt(s.substring(6, 8)),

 Integer.parseInt(s.substring(8, 10))).getTime();

 }

 }

}

A 5A
Figure 5

Results of
executing

Checkstyle
from inside

NetBeans

First Edition N ��

Writing Quality Code with NetBeans

Unit Profiling

Notice that JUnit reports not only whether

each test has passed, but also its execution

time. This suggests we can reuse unit tests

for performance testing. Unfortunately, a

single execution of a simple method like my

parse()s may be too fast for the precision of

JUnit’s timer (see the “0,0s” result for most

tests in Figure 6). Not to mention other

difficulties with Java microbenchmarks, like

the need of warm-up time to let dynamic

JIT compilers work. But you can fix this by

instrumenting the test code, adding loops

to run long enough to allow performance

measurement, like in Listing 4.

Notice that because we’re repeating

each tested method 100.000 times, the

result timing printed by JUnit should be

interpreted as hundredths of milliseconds.

Also you should run your performance

tests with the same JVM options that are

expected to be used in production; server-

side programs will typically use at least the

-server option to enable the HotSpot Server

JVM (edit this in the project’s Properties>

Run>VM options).

You can see the result of this

performance test in Figure 7. Now

the difference in performance between

the various parsing algorithms is

very clear (the SDF algorithm is the

A 6 A
Figure 6
Unit test
results.

standard invocation of SimpleDateFormat.parse(); the others are

increasingly optimized).

Being able to reuse JUnit tests for performance benchmarking is cool:

you don’t have to write timing code with System.currentTimeMillis() (or

nanoTime() in JSE 5) before and after runs; neither print formatted

B Listing 2. Skeleton unit test, generated by NetBeans.

public class HardcodedParserTest extends TestCase {

 /**

 * Test of parse method, of class HardcodedParser.

 */

 public void testParse() {

 System.out.println(“parse”);

 String s = “”;

 HardcodedParser instance = new HardcodedParser();

 Date expResult = null;

 Date result = instance.parse(s);

 assertEquals(expResult, result);

 // TODO review the generated test code and

 // remove the default call to fail.

 fail(“The test case is a prototype.”);

 }

}

B Listing 3. Complete unit test.

public class HardcodedParserTest extends TestCase {

 public void testHardcoded() {

 Date expResult = new SimpleDateFormat(

 “ddMMHHmmss”).parse(“3112235959”);

 Date result = new HardcodedParser().

 parse(“3112235959”);

 assertEquals(expResult, result);

 }

}

B Listing 4. Unit tests, instrumented for performance measurement.

public class ParserPerfTest extends TestCase {

 private static final int LOOPS = 100000;

 public void testHardcoded() {

 HardcodedParser instance = new HardcodedParser();

 Date expResult = new SimpleDateFormat(

 “ddMMHHmmss”).parse(“3112235959”);

 Date result;

 for (int = 0; i < LOOPS; ++i)

 result = instance.parse(“3112235959”);

 assertEquals(expResult, result);

 }

}

40 N NetBeans Magazine

C
or

e
Te

ch
ni

qu
es

O
f all PMD rules, some of my top favorites
are LocalVariableCouldBeFinal,
MethodArgumentCouldBeFinal and
ImmutableField. The rules suggest

declaring local variables, parameters and fields
as final whenever possible. Many programmers
follow this recommendation solely for fields that
are initialized only by constructors. The final tag
prevents bugs where a method would inadvertently
update the value of a field that should be constant
over an object’s lifeycle, such as a person’s date
of birth.

But what’s the deal with final parameters and
locals? Check this code:

// Before:
Employee lookupByPhone (String phone) {
 // Normalizes the phone number
 phone = removeNonDigits(phone);
 Employee employee = findEmployeByPhone(phoneNorm);
 logger.debug(“lookupByPhone(“ + phone + “) = “ + employee);
 return employee;
}

// After:
Employee lookupByPhone (final String phone) {
 final String phoneNorm = removeNonDigits(phone);
 final Employee employee = findEmployeByPhone(phoneNorm);
 logger.debug(“lookupByPhone(“ + phone + “) = “ + employee);
 return employee;
}

The method lookupByPhone() shows the value of
final modifiers. First off, they explicitly segregate
three semantically distinct entities, which happen
to be implemented by a single “local variable”
construct in the Java language: Parameters, Local
Variables, and Local Constants.

Using final where appropriate delivers three main
benefits:

1. Avoids misusing a parameter as a local
variable (e.g., as a for loop counter).

This is confusing, especially for debugging: if
you break into the middle of a method’s execution,
you won’t see the original value of parameters that
are later assigned to. Even clicking back in the
call stack may not reveal parameter values easily,
because these may originate from expressions
that weren’t stored in variables by the caller (e.g.,
f(g() + h())). With final parameters, the inputs for a
method or constructor are always preserved.

2. Shows clearly which identifiers are
constants (names for fixed values or shared
sub-expressions), and which are real variables
(data whose values vary with time).

The ability to see constants is important because
the fixed binding of a name/value pair is an invariant
that you can rely on when analyzing the behavior of
complex code.

3. Results in clearer, self-documenting code.
In the example, the original code was modifying

the phone parameter; to make this parameter final,
we had to introduce a new local variable, phoneNorm.
The good thing is that we can encode the meaning
of this change in the new variable’s name: the
phone number without non-digit characters is a
normalized phone number (i.e., compatible with
PKs in the database, keys in Maps, etc.). But we
don’t have to write a comment like “Normalizes the
phone number”, because the new identifier conveys
this information – not only in its declaration, but
anywhere else it appears.

Notice that phoneNorm is also declared final,
because it’s the single transformation we have to
do to the phone data. Indeed, most of the time
we can replace a variable by multiple constants.
This in turn leads to a “functional-style” of Java
programming, one that uses as few destructive
assignments* as possible.

The final modifier and
refactoring: towards
functional-style Java

First Edition N 41

Writing Quality Code with NetBeans

A second example illustrates better the benefits
of such a programming style:

final Employee employeeToEvaluate =
 company.detDepartment(depID).getEmployees().get(empName);
if (employeeToEvaluate.calcProductivity() < 7.5)

 company.fire(employeeToEvaluate);

Notice that the employee variable is redundant:
it exists with the sole purpose of avoiding the
duplication of a long expression. This variable
is really a simple alias to a navigation path in
our object graph (company → department[depID] →
employees (a Map) → get(empName)). Coding this
expression into a final variable, i.e. a constant,
implicitly documents this fact.

Another interesting aspect of final variables
is their interaction with refactorings. If you have
duplicated expressions in a method, you can use
NetBeans’ Introduce Variable refactoring to remove
this duplication. But Figure B1 shows the right
way to use this refactoring: checking the option
“Declare Final”. It’s there for a good reason.

If you buy my idea of functional-style Java, there
are other tricks that allow even more variables to
be eliminated or replaced by finals. For example,
what to do with a piece of code that uses multiple
assignments to a variable, due to different paths
of execution?

double raise = 1.0; // default
if (employee instanceof Manager)
 raise = 1.1;
else if (employee instanceof CEO)
 raise = 1.25;
 else if (employee instanceof JavaProgrammer)
 raise = 1.6;
employe.setSalary(employee.getSalary() * raise);

The answer is easy: use NetBean’s Extract
Method refactoring to move the if/then/else
structure to a new method,
say calcRaise(Employee). (A good
OO programmer will further
promote this to a polymorphic
method of Employee, overridden
by each subtype, instead of

using instanceof tests.) The resulting code is much
simpler:

employee.setSalary(employee.getSalary() * calcRaise(employee));
...
double calcRaise (Employee emp) {
 if (employee instanceof Manager)
 return 1.1;
 else if (employee instanceof CEO)
 return 1.25;
 else if (employee instanceof JavaProgrammer)
 return 1.6;
 else
 return 1.0; // default
}

Notice that the Extract Method refactoring will
not do the transformation of assignments to the
raise variable to return statements; you have to
do that yourself to obtain the code above. We
also invoked this new method directly from the
employee.setSalary(…) expression instead of using
a final variable to hold that temporary value. We
can not only make a variable final, but eliminate it
completely! Notice we don’t loose any code clarity,
because the same semantic information encoded
in the name of the raise variable is now encoded
in the name of the calcRaise() method. Notice also
that calcRaise() is a “purely functional” method: it
contains no destructive assignments and no side
effects, and exhibits the monotonic property (if
invoked repeatedly with the same input values,
it will deliver the same results, and not affect
anything else in the system).

These properties are very interesting for a
number of reasons. Now, I won’t sell you the full
Functional Programming paradigm (I don’t practice
it either), as it includes harder deals, like forcing
the replacement of all iteration by recursion. My
point is just snatching into Java an easy part of
that paradigm that delivers many of the benefits.

A B1 A
Figure B1
Refactoring
duplicated
expressions? Use
final variables.

* Assignments that overwrite a previous
value, bound to the same identifier by a
past assignment.

42 N NetBeans Magazine

C
or

e
Te

ch
ni

qu
es

The transformation we just demonstrated shows
more interesting benefits:

	Code is more modular.
Having lots of small methods is usually better than

a few big ones. Even if the new methods are one-
trick ponies that don’t lead to any reuse, they help
making your code self-documenting. Picking good
identifiers for these methods and their parameters
will embody information that is not always present
in equivalent code inside a monolithic method.

Of course, these “extracted methods” will usually
be private. A class with a large number of public
methods is ugly, but the number of private methods
is not important. If the class as a whole is too big,
the excess complexity is independent of its internal
structure. And the fix for that complexity is breaking
the class into more pieces (e.g. via inheritance or
delegation) – not faking less complexity by packing
code into fewer, tighter methods.

	Unit testing is much easier.
It’s hard to argue with this: simpler methods that

do less things are much easier to test. In the new
version of our code, we can write a set of JUnit tests
that target calcRaise()* and exercise all possibilities

of its algorithm: employees of multiple types and
states, including the null parameter. It’s much
harder to do that if your interface with the code is
just a higher-level method that sets the raises (the
employee may not be an immediate parameter of
that method). Indeed, the refactored code allows
you to black-box test a class (i.e. test it knowing
only a minimal interface). You don’t have to dig
inside the source code of each method to analyze
every possible execution path and laboriously
derive the input data that will force execution of
each path.

Conclusions
The purpose of this discussion was to show that

tools like PMD and refactoring are powerful enough
even to help enforce sophisticated programming
idioms and paradigms. Even if you don’t like the
concept of “functional-style Java”, you may have
other ideas of recommended practices, and
perhaps rely on these tools to realize such ideas.

It’s worth notice that PMD is easy to extend. Many
kinds of rules can be programmed in XML ruleset
files, with XPath expressions – often one-liners
– that match Java abstract syntax tree nodes. Not
trivial but much easier than getting acquainted with
the complex API of a tool like FindBugs.

Another goal of this discussion was revealing
that many recommended rules are worth more
than their face value. PMD’s documentation for the
LocalVariableCouldBeFinal rule is a mere “A local
variable assigned only once can be declared final”.
But this definitely doesn’t capture its potentially
profound implications.

results, or create main() methods that invoke all tests

of a “suite”, not to mention other

features of JUnit. When you’re not

interested in testing performance

but only in correctness, just set

the LOOPS control variable to 1 (this

could be done more dynamically, by a

JVM property).

Using the NetBeans Profiler

The section on performance testing couldn’t

end here of course, because we are

using NetBeans, which includes a very

powerful Profiler. This feature requires an

independent installation, but it’s a “standard

extension” (see details about the tool in the

article “Exploring the NetBeans Profiler” in

this edition)

Having the Profiler installed, don’t start

it with the standard option Profiler>Profile

Main project – because this will run the

application’s main class. Instead, follow

*Not possible if calcRaise() is a private method, so standard practice
for unit-testers is using package-private instead. But even if you
don’t want to do relax your member access, the decomposition
of code into more methods makes it much easier to analyze it
and plan tests that, by entering your class only through public
methods, will cover all important code.

First Edition N 4�

Writing Quality Code with NetBeans

as projects grow and evolve. Refactoring and code templates can

not only save you typing time, but spare you from bugs caused by

inane editing tasks – like fixing all calls to a method with a default

value to a new parameter, or typing the thousandth “for (int i = …)”

loop header in a project. In the runtime and building side, NetBeans’

integrated support for Ant is unparalleled, allowing further automation

of tasks like compilation, packaging and deployment. (There is a

plug-in for Maven, too: Mevenide).

A Version Control System is another must for any self-respecting

project, even single-developer ones. NetBeans supports several

VCSs, including CVS and Subversion. But don’t miss important

extras, like the Local History and CVS/SVN Report (see the special

section Plug-in Showcase in this magazine).

Conclusions
The NetBeans IDE contains many powerful, high-level features

that go beyond basic editing and debugging capabilities, and even

beyond eye-catching GUI tools like wizards and visual builders. Built-

in tools include support for refactoring, unit testing and profiling.

Extra tools include FindBugs, PMD, Checkstyle and many others,

all integrated into the open, extensible architecture of the IDE. It’s

a real sin to miss all the productivity and quality benefits of adding

these tools to your daily routine. It will save much more time in

the long run than the few days you’ll need to invest in learning and

customizing the tools, even those that provide many dozens of

complex validation rules. N

these steps:

	Change the LOOPS counter to a smaller

value like 100, because execution is

slower under the profiler (if you don’t filter

out any code).

	Select the unit test class and execute

"Profile file". Select Analyze performance

> Entire application, and execute it.

	Wait a few seconds until the process

terminates.

Figure 8 shows the results of a

simple profiling session. We can see the

performance of each tested method, and

also the breakdown of their executions

into invoked APIs and subroutines. The

HotSpots view shows a global ranking of

the higher-cost methods, and the NetBeans

Profiler offers many other tools to analyze

and visualize the performance of your code

(see the article NetBeans Profiler, in this

edition, for additional details and features).

This combination of unit testing and

profiling saves effort and also gives

you freedom to program incrementally,

experimenting new ideas, performing fixes,

reviews and refactoring, all without fear of

breaking some code or making it slower.

Additional Tools
Other facilities of NetBeans are important

for writing good code, and keep its quality

A 8 A
Figure 8
Running the JUnit
performance
benchmark under
NetBeans Profiler.

A 7 A
Figure 7
Using JUnit
to measure
performance.

C
Osvaldo Pinali
Doederlein
(opinali@gmail.com)
is a software architect
and consultant, working
with Java since 1.0beta.
He is an independent
expert for the JCP,
having participated in
the JSR-175
(JSE 5) effort. He is also
a contributing editor for
the Brazilian
Java Magazine.

44 N NetBeans Magazine

N
et

B
ea

ns
 P

ro
fil

er

N
etBeans Profiler is an

optional feature of

the NetBeans IDE. It

is a powerful tool that

provides important

information about

the runtime behavior of an application.

Imposing relatively little overhead, the

NetBeans Profiler tracks thread state, CPU

performance, and memory usage. It uses

innovative technology to allow you to tightly

control exactly which parts of an application

are profiled, resulting in reduced overhead

and easier to interpret results. The profiled

application can run locally or on a remote

system. And by being tightly integrated

into the IDE workflow the NetBeans Profiler

makes it easy to identify performance

problems and memory leaks.

Installing the
NetBeans Profiler

The NetBeans Profiler can profile

applications running on the following JVMs:

	 A customized JFluid VM, based on

the standard JDK 1.4.2 VM. This

customized JVM is available as

a separate NetBeans module

download.

	 A standard JDK 5.0_

04 VM or newer.

	A standard JDK 6 (also

known as Mustang) Early

Access VM starting from build 26.

Here are the steps for

installation:

1. Download the profiler pack

installer for your platform from

the NetBeans Profiler homepage.

2. If you have a previous version of

Exploring
the NetBeans

Profiler
Gregg Sporar*

From Installation to a Practical
Profiling Example*

* Reprinted with
permission from
JavaPerformanceTuning.com

+ This article also incorporates material
from the NetBeans Profiler help text.

First Edition N 4�

Exploring the NetBeans Profiler

the Projects window and then select Set Main Project.

3. Choose Profile|Profile Main Project from the main menu.

4. Choose a profiling command from the list in the Select

Profiling Task dialog box.

5. Click Run.

When you click Run, the target application launches and the

selected profiling command starts. The NetBeans Profiler Control

Panel opens in the IDE.

To see the results of the profiling command, click the Live Results

button () in the Profiler Control Panel. This opens the Profiling

Results tab. To stop the profiling command, choose Profile|Stop

from the menu or click the Stop button (). If you start the

application with the NetBeans Profiler, when you stop the profiling

command the application also stops.

Profiling Tasks
The Select Profiling Task dialog box (Figure 1) is the main

interface for selecting and running profiles. The dialog box gives

you five different ways of profiling the target application. The first

four are predefined profiling commands. The last command, Run

Custom Profiling, allows you to create your own custom profiling

configuration.

When you click on a profiling command the box expands,

displaying a brief explanation. For some tasks it also allows you to

set some profiling options. Clicking Run at the bottom of the dialog

box launches the target application and starts the selected profiling

command.

Only one task, i.e.

one kind of profiling,

can be active for

the profiled applica-

tion at any given

time (monitoring is

always active how-

ever, even when an-

other task is chosen,

since its overhead is

very low). Note that

while profiling you

can switch between

A 1 A
Figure 1
The Select
Profiling Task
dialog is the
main interface
for selecting and
running profiles

the NetBeans Profiler installed, uninstall

it first – see the instructions on the

download page.

3. Launch the downloaded installer.

4. Proceed through the steps of the

installer wizard to install the module.

5. (Re)Start the NetBeans IDE.

Once installed, the module adds the

Profile menu item to the menu bar. The

Profile menu allows you to start profiling

and work with the results. The module

also adds two toolbar buttons that are

shortcuts to the Profile command () and

the Attach and Profile command ().

Getting Started
The NetBeans Profiler provides a number

of internal settings that let you tune

profiling to your needs. For example, you

may decrease the profiling overhead at

the cost of some reduction in the amount

of generated information. However, it

may take some time to understand the

meaning and use of the numerous settings

available.

For most applications, certain default

settings are sufficient. For this reason, the

NetBeans Profiler offers two major profiling

options. You can start profiling by choosing

a simple predefined profiling task, which

has most of the settings preset to optimal

values and therefore requires little or no

tuning. Alternatively, you can create your

own custom profiling configuration, where

you are free to modify any of the available

settings.

To start profiling an application:

1. Open your project in the NetBeans

IDE.

2. Right-click your project’s entry in

G
NetBeans
Profiler

ne
tb

ea
ns

.o
rg

/p
ro

du
ct

s/
pr

of
ile

r

4� N NetBeans Magazine

N
et

B
ea

ns
 P

ro
fil

er

profiling tasks without stopping and restarting your application.

You can choose from the following profiling tasks:

Monitor Application

This command displays high-level information about several

important properties of the target JVM, including thread activity and

memory usage.

Analyze Performance

Profiles method-level CPU performance (execution time). You can

choose to profile the entire application or a part of the application.

Detailed filters can be set to control exactly which methods get

profiled, allowing the rest of your application to run at full speed.

	Entire Application: In this mode, the NetBeans Profiler

instruments all of the methods of the profiled application. Threads

emit the “method entry” event when entering a method and generate

the corresponding “method exit” event when exiting the method.

Both of these events contain timestamps. This data is processed

in real time.

	Part of Application: In this mode, you can instrument and

profile a limited subset of the application’s code. When partial

application profiling is used, profiling data is not collected until one

of the application’s threads enters a user-selected root method.

Profiling a limited subset of the application’s code may greatly

reduce the profiling overhead. Furthermore, for some programs this

option may be the only way to obtain any detailed and/or realistic

performance data at all – because the amount of generated data

when the entire application is profiled can be so high as to render

the application unusable or even cause it to crash (for example,

due to unexpected timeouts).

Application Startup

Use this mode when you want to analyze application startup time.

Analyze Code Fragment Performance

This command measures the time it takes to execute an arbitrary

piece of code within one method, or the whole method. By analyzing

a code fragment rather than the entire application, the profiling

overhead is greatly reduced. The absolute results that you obtain

in this mode are closest to the real runtime performance, since the

instrumentation is the most lightweight.

Analyze Memory Usage

When you analyze memory usage, the

profiling results displayed depend on which

of the following options you choose:

	Record both object creation and

garbage collection (Object Liveness):

This option provides information about

how many objects of each type are still

alive, as well as data on live objects.

	Record object creation (Object

Allocation): Gives you information about

the number, type, and location of objects

that have been allocated. This profiling

mode is a functional subset of object

liveness profiling. The reason for having

both modes is that pure object allocation

profiling has a smaller performance and

memory overhead.

By default only ten percent of all objects

for each class are tracked by the NetBeans

Profiler. This statistical approach has

been shown to deliver results that are as

accurate as when all objects are tracked,

but with the benefit of greatly reduced

profiling overhead.

Run Custom Profiling

This command is for running custom

profiling configurations. You can create,

edit, and save these custom configurations,

allowing you to control all the internal profile

settings.

Control Panel
The profiling control panel is displayed in

the left pane of the IDE when you run the

NetBeans Profiler (see Figure 2). You can

open the control panel by choosing Window

|Profiling>Profiler Control Panel. It contains

controls that do the following:

G
Articles

and news
about Java

performance
tools and

techniques

ja
va

pe
rfo

rm
an

ce
tu

ni
ng

.c
om

First Edition N 4�

Exploring the NetBeans Profiler

information. The VM Telemetry Overview is always displayed

when the Monitor Application command is chosen. To

display it at any other time, select Profile|View>Telemetry

Overview.

See an example in Figure 3. In the graph on the left the red shading

indicates the allocated size of the JVM heap. The purple overlay

indicates the amount of heap space actually in use. In the example

the allocated heap size at the last update was over 300 Mb. Of that

about 20 Mb is actually being used to hold Java objects.

	The graph on the right shows the count of active threads

in the JVM.

	The graph in the center shows two important heap statistics.

	The blue line is the percentage of execution time spent by the

JVM doing garbage collection and is graphed against the y-axis on

the right edge of the graph. Time spent by the JVM doing garbage

collection is time that is not available for it to run your application.

So if the blue line indicates a large percentage you may want to

consider tuning the JVM by configuring a larger heap size (refer

to the -Xmx parameter documentation) or perhaps switching to a

different garbage collection algorithm.

	The red line is surviving generations and is graphed against the

y-axis scale on the left edge of the graph. The count of surviving

generations is the number of different ages of all the Java objects

on the JVM's heap, where "age" is defined as the number of

garbage collections that an object has survived. When the value

for surviving generations is low it indicates that most of the objects

on the heap have been around about the same amount of time. If,

however, the value for surviving generations is increasing at a high

rate over time then it indicates your application is allocating new

objects while maintaining references to many of the older objects

it already allocated. If those older objects are in fact no longer

needed then your application is wasting (or "leaking") memory.

A 3

	 Control the profiling task

	 Display the status of the current

profiling task

	 Display profiling results

	 Manage profiling results

snapshots

	 Display basic telemetry

statistics

Displays
The NetBeans Profiler

provides several displays of

A 2 A
Figure 2
The NetBeans
Profiler Control
Panel

A
Figure 3
VM Telemetry
Overview

4� N NetBeans Magazine

N
et

B
ea

ns
 P

ro
fil

er

Thread State

Thread state is optionally displayed when the Monitor Application

command is chosen. It contains the following tabs:

	Threads (Timeline): Shows current and historical thread state,

updated as the application runs.

	Threads (Details): Shows a summary of thread state

information for a single thread.

A sample timeline graph is shown in Figure 4. Color coding is used

to display thread state:

	Green: the thread is either running or is ready to run.

	Purple: the thread is sleeping; for example it called

Thread.sleep().

	Yellow: the thread is waiting in a call to Object.wait().

	Red: the thread is blocked while trying to enter a synchronized

block or method.

Live Results

Clicking the Live Results button () in the control panel will open

the Profiling Results tab. Depending on the profiling command that is

running, this tab will display either performance or object allocation

and liveness statistics.

The NetBeans Profiler will update the displayed profiling results

automatically at short intervals (about 2 seconds) if the Update

Results Automatically button () in the toolbar is clicked.

A 4

CPU Snapshot

The CPU Snapshot captures data on

method call chains, times, and invocations

when profiling CPU performance, either

from the Analyze Performance predefined

task or when running a custom CPU profile.

The CPU Snapshot is displayed when you

click the Take Snapshot button () in the

control panel. See an example in Figure 5.

The CPU Snapshot contains the following

tabs:

 Call Tree – The Call Tree tab displays

the Calling Context Tree (CCT) showing the

method call chain and the time/number

of invocations for executing threads and

methods in each context. (A context is a

unique chain of method calls leading to

the method’s invocation.)

 Hot Spots – The Hot Spots tab shows

the total execution time and number of

invocations for each method, irrespective

of the context.

 Combined – The Combined tab

displays the CCT information in the upper

half of the window and the Hot Spot data

in the lower half.

 Info – The Info tab displays data on

when the snapshot was taken, where it is

saved, and the profile settings used.

Memory Snapshot

The Memory Snapshot captures data

on object allocation and liveness when

profiling memory usage with the Analyze

Memory Usage command or when doing

memory profiling in a custom profile. Like

the CPU Snapshot, the Memory Snapshot is

displayed when you click the Take Snapshot

button () in the control panel.

The Memory Snapshot contains the

following tabs:

A
Figure 4
Timeline

graph
example

First Edition N 4�

Exploring the NetBeans Profiler

A 6

A 5

Memory Results

This tab displays a list of classes (including

array classes), with statistics on the total

size and number of instances allocated

as of the time you took the snapshot (see

an example in Figure 6). The specific

information provided includes:

	Allocated Objects is the number of

objects that the NetBeans Profiler is actually

monitoring. By default this number will be

approximately ten percent of the value of

total allocated objects. By monitoring only

a subset of the created objects

the NetBeans Profiler is able to

dramatically reduce the overhead

it places on the JVM, which then

allows your application to run at

close to full speed.

	Live Objects is the number

of the Allocated Objects that

are still on the JVM’s heap

and are therefore taking up

memory.

	The two Live Bytes columns

show the amount of heap memory

being used by the Live Objects.

One column displays a graph; the

other displays text.

	The Avg. Age value is calculated

using the Live Objects. The age

of each object is the number of

garbage collections that it has

survived. The sum of the ages

divided by the number of Live

Objects is the Avg. Age.

	The Generations value is

calculated using the Live Objects.

As with Avg. Age, the age of an

object is the number of garbage

collections it has survived. The

Generations value is the number

of different ages for the Live Objects. An increasing value for

Generations indicates a possible memory leak.

In the Memory Results tab, you can right-click any class and select

Show Allocation Stack Traces. The stack traces for the selected class

are displayed in the Allocation Stack Traces tab.

	Allocation Stack Traces

This tab displays a reverse call graph with all call paths leading to

object allocations for the given class.

	Info

The Info tab displays data on when the snapshot was taken, where

it is saved, and the profile settings used.

A
Figure 5
CPU Snapshot
showing Calling
Context Tree
information
and Hot Spot
data

A
Figure 6
The Memory
Results tab
shows statistics
on the total size
and number
of instances
allocated

G
Project
Mustang
(Java SE 6.0)

m
us

ta
ng

.d
ev

.ja
va

.n
et

�0 N NetBeans Magazine

N
et

B
ea

ns
 P

ro
fil

er

The following example demonstrates one

important feature of the NetBeans Profiler: the ability

to quickly identify CPU performance problems. The

example is a web application that calculates prime

numbers. When attempting to find performance

bottlenecks, you typically know which features are

running slowly. That allows you to narrow down the

search for the bottleneck to a top-level method for

that feature. The NetBeans Profiler supports this

by allowing you to specify a root method for

profiling.

1. A profiling session begins by selecting

a project as the IDE’s Main Project. Then

Profile| Profile Main Project is chosen from

the IDE menu.

2. The Select Profiling Task dialog is

displayed.

3. The Analyze Performance button is

clicked.

4. The Part of Application radio

button is clicked. Then the Select

button is used to select the class

that contains the root method. In this

case the class is demo.Performance

and the method is processRequest()

– see Figure 7. This means that the

demo.Performance.processRequest()

method and all methods that it calls, and

all methods that they in turn call (and

so on) will be profiled. Starting from

demo.Performance.processRequest(), the

Profiler does analysis of the method call

graph to determine which methods need

profiling. Only those methods are profiled – the

rest of the application will continue to run at full

speed with no profiling overhead.

5. Particularly when profiling web or enterprise

applications, there are usually large blocks of code

that you do not want to profile. In this example,

the web server is Tomcat and there is no need to

do profiling of Tomcat’s code. So in the Analyze

A 9

A 8

A 7
A

Figure 7
Selecting

methods to
profile

A
Figure 8

Filtering out
methods from

apache.org and
child packages

A
Figure 9
An initial

snapshot of the
performance

results

Profiling example

First Edition N �1

Exploring the NetBeans Profiler

Performance window, the Quick Filter is used

to specify methods that should not be profiled.

The string “org.apache” is specified so that all

methods in the org.apache package (and child

packages) will not be profiled – even if they are

called from the root method that was selected

(see Figure 8). This reduces profiling overhead

and filters out information that is not relevant.

6. Clicking the Run button in the Select

Profiling Task window starts the profiling

session. The IDE will start Tomcat and display

the web application’s index.jsp page in a web

browser window. At the same time, the Profiler will

run in the background.

7. The portion of the web application that causes

the root method to run is then invoked by interacting

with the application’s user interface.

8. After the application responds, the Profile|Take

Snapshot of Collected Results command is selected

in the IDE. The Profiler displays the performance

results, as illustrated in Figure 9.

9. The top window shows the complete method

call graph beginning with the root method. The

bottom window is a flatter depiction; it shows the

Hot Spots in the application – those methods that

took the most time to execute.

10. To examine and interpret the results, notice

that the processRequest() method ran for a total of

4308 milliseconds (ms). Note, however, that very

little time was spent running the instructions of the

processRequest() method itself – the “self time”

for processRequest() is only 10.1 ms. The vast

majority of the time was spent in methods called

by processRequest(). The Hot Spots displayed in

the bottom window are sorted by “self time.” By

looking at that list you can see that the calculate()

method took up 97.8% of the execution time. This

is not surprising given the amount of work the

calculate() method has been given to do and the

inefficient way it goes about doing that work.

11. To help you decide how your application

can be optimized, the NetBeans Profiler helps

you identify bottlenecks in your code that were

not expected or that will prevent your application

from scaling well. From here, it is possible to

right-click the calculate() entry and choose Go To

Source in order to examine the source code. As

a comparision to calculate()’s runtime, the Profiler

output of an optimized algorithm in a method called

calculate2(), is shown in Figure 10. Notice that the

processRequest() method ran for only 107ms and

the calculate2() method took up less than 10% of

the execution time!

A 10

the runtime behavior of an application. It can be used to identify

thread state problems, CPU performance bottlenecks, and memory

usage bugs. N

Gregg Sporar
(gregg.sporar@sun.com)
has been a software
developer for over
twenty years, working
on projects ranging
from control software
for a burglar alarm to 3D
graphical user interfaces.
He has been using Java
since 1998 and his
interests include user
interfaces, development
tools, and performance
profiling. He works for
Sun Microsystems as a
Technical Evangelist on
the NetBeans project.

C

Conclusions
The NetBeans Profiler is a powerful tool

that provides important information about

A
Figure 10
Profiler results
after method
optimization

T
his document takes you

through the basics of using

NetBeans IDE 5.0 to develop

NetBeans plug-in modules.

You develop NetBeans

plug-in modules for one of

two reasons:

	 To extend the NetBeans IDE. You

can very easily extend the IDE’s func-

tionality with new features. For example,

you can write plug-in modules that make

your favorite technologies available to the

NetBeans IDE.

	 To build an application on top of

the NetBeans Platform. You can use

the core of NetBeans as a

platform on top of which you

develop rich client applica-

tions. You can save a lot of

development time by reusing

features readily available in

he platform.

Mainly the first scenario

above is covered in this tuto-

rial, although the principles

addressed here also apply

to the second. Here you will

create and install a simple

NetBeans plug-in module

which will add a new menu

Extending NetBeans 5
Geertjan Wielenga

Plug-in
Module

Quick Start

First Edition N ��

Plug-in Module Quick Start

that the localizing bundle and the XML layer will be stored in the

package org.myorg.myfirstmodule. These files do the following:

	 Localizing Bundle. Specifies language-specific strings for

internationalization.

	 XML Layer. Registers items such as menus and toolbar

buttons in the NetBeans System Filesystem (see the sidebar

“Plug-in Module Terms”).

Click Finish. The IDE creates the MyFirstModule project,

containing all of your sources and project metadata,

such as the project’s Ant build script.

The project opens in the IDE. You

can view its logical structure in the

Projects window (Ctrl-1) and its file

structure in the Files window (Ctrl-2).

See Figure 1.

In addition to the localizing bundle

and the XML layer, the project also

includes the following important files:

	Module Manifest. Declares that the

project is a plug-in module. In addition, it

sets some module-specific settings, such

as the location of the XML layer, the loca-

tion of the localizing bundle, and the module

version.

	Build Script. Provides a place where you can create

your own Ant targets and override those that are specified in nbproj-

ect/build-impl.xml.

	Project Metadata. Contains information such as the

project’s type, contents, platform, classpath, dependen-

cies, and mappings between project commands and targets

in Ant scripts.

		NetBeans Platform

Config. Contains prop-

erties used by the IDE or

Platform.

•	Per-user NetBeans

P l a t f o r m C o n f i g

Contains properties

specific to your installa-

tion of the IDE.

item and a toolbar button to the IDE.

When you select the menu item or toolbar

button, a DialogDisplayer, provided by the

NetBeans APIs, with the text “I’m plugged

in!” will be shown.

Setting Up a Plug-in
Module Project

NetBeans provides a wizard that sets

up all the basic files needed for a plug-in

module.

Creating a NetBeans
Plug-in Module Project

In NetBeans, choose File|New Project,

and under Categories select NetBeans

Plug-in Modules. NetBeans plug-in module

support provides three project types:

	 Module Project. Creates a template

for a standalone plug-in module.

	 Library Wrapper Module Project.

Creates a plug-in module for an external

JAR file required by one or more plug-in

modules.

	 Module Suite Project. Creates a

template for a set of interdependent plug-

in modules and library wrapper modules,

which you want to deploy together.

Select Module Project and click Next.

In the Name and Location panel, type

“MyFirstModule” in Project Name. Change

the Project Location to any directory on

your computer, such as c:\mymodules.

Leave the Standalone Module radio button

and the Set as Main Project checkbox

selected. Click Next.

In the Basic Module Configuration panel,

replace “yourorghere” in Code Name Base

with “myorg”, so that the whole code name

base is “org.myorg.myfirstmodule”. Notice

A 1 A
Figure 1
Logical
structure of the
new plug-in
module

�4 N NetBeans Magazine

Pl
ug

-in
 D

ev
el

op
m

en
t

Creating a Menu Item and
Toolbar Button

You use the NetBeans plug-in module file

templates to create the basis of the module’s

functionality. When you use a file template,

the IDE registers the item

that you create in the

layer.xml file. After

using a wizard

to create the

file template,

you use the

Plug-in module terms

The basic terms used in plug-in module
development are as follows:

NetBeans Platform. The skeleton application
that provides everything most applications need
and little of what they don’t. The NetBeans Platform
provides an application’s common requirements
– such as menus, document management,
and settings – right out of-the-box. Building an
application “on top of NetBeans” means that,
instead of writing applications from scratch, you
only provide the parts of your application that the
NetBeans Platform doesn’t already have. At the
end of the development cycle, you bundle your
application with the NetBeans Platform, saving you
time and energy and resulting in a solid, reliable
application.

System Filesystem. The general registry that
contains NetBeans configuration information,
built from the layer.xml configuration files of the
registered modules. NetBeans stores a wide
variety of configuration information in the System
Filesystem. For example, the System Filesystem
contains a folder called Menu, which contains
subfolders with names such as File and Edit. These
subfolders contain files that represent Java classes

which implement the actions that appear in the File
and Edit menus in the IDE.

Plug-in Module. A group of Java classes that
provides an application with a specific feature.
The Java classes use the manifest.mf file to
declare the module and the layer.xml configuration
file to register their functionality in the System
Filesystem. In NetBeans terminology, “plug-
in” is an adjective while “module” is a noun.
There is no discernible difference in meaning
between them.

NetBeans APIs. The public interfaces and classes
which are available to module writers. They are
divided into specific APIs for dealing with different
types of functionality. The contents and behavior of
the Java source packages and its subpackages, as
specified in the API reference documentation, are
the APIs.

Module Suite. A group of interdependent
modules that are deployed together. The IDE helps
you to brand the suite – for example, you can
add a splash screen, and also specify the parts
of the NetBeans Platform that you don’t want your
application to provide.

For example, if you are sharing the project over VCS, any prop-

erties you set in this file are not checked into the repository. You

can copy a property from NetBeans Platform Config into this

file and give the property different definitions in each file. The

definitions in this file take precedence over those in NetBeans

Platform Config.

You will not need to modify any of these files during this tutorial.

Note that the important files shown before are the logical views of the

following files in the Files window: manifest.mf, build.xml, nbproject/

project.xml, nbproject/platform.properties, and nbproject/private/

platform-private.properties, respectively.

G
NetBeans
Platform

ne
tb

ea
ns

.o
rg

/p
ro

du
ct

s/
pl

at
fo

rm

First Edition N ��

Plug-in Module Quick Start

	Category. Specifies where the action will be

located in the Keymap section of the Options

window.

	Global Menu Item. Specifies the menu where

the action will be registered as a menu item. The

position of the menu item within the existing items

in the menu can also be set here.

	Global Toolbar Button. Specifies the toolbar

where the action will be registered as a button.

The position of the toolbar button within the exist-

ing buttons in the toolbar can also be set in this

section.

	 Global Keyboard Shortcut. Specifies a key

stroke that will invoke the action.

	File Type Context Menu Item. Specifies the

MIME type of the file type where the menu item will appear.

The position of the menu item within the existing menu items and its

separators can also be set here.

	Editor Context Menu Item. Specifies the MIME type for the

editor where the menu item will appear. You can also set here the

position of the menu item within the existing menu items and

its separators.

Click Next. In the Name, Icon, and Location panel,

type “MyFirstAction” in Class Name and type “My

First Action” in Display Name. In Icon, browse to

a 16x16 pixel icon in your filesystem. For

example, you can find some

16x16 pixel icons at the follow-

ing location within your

NetBeans IDE 5.0 installa-

tion directory:

enterprise2\jakarta-tomcat-5.5.9\
 server\webapps\admin\images

Click Finish. The IDE

creates MyFirstAction.java in

org.myorg.myfirstmodule and

opens it in the Source Editor.

Listing 1 shows what you

should see.

A 2

NetBeans API List (see links) to continue

developing the module.

Using the Action Wizard

In the Projects window, right-click the

project node and choose New>File/Folder.

In the New File wizard, choose NetBeans

Module Development under Categories,

and Action under File Types. Click Next.

In the Action Type panel, accept the

defaults and again click Next. In the GUI

Registration panel, select Global Menu

Item, and then Global Toolbar Button. Set

the following values:

	Category: Tools

	Menu: Tools

	Position: Tools - HERE - <separator>

	Toolbar: Build

	 Position: Run Main Project - HERE

- Debug Main Project

Select Separator Before and Separator

After in the Global Menu Item section. You

should now see Figure 2.

Note the following about the sections in

the GUI Registration panel:

A
Figure 2
Plug-in
module GUI
Registration

�� N NetBeans Magazine

Pl
ug

-in
 D

ev
el

op
m

en
t

A 3

G
NetBeans

API List and
documenta-

tion

ne
tb

ea
ns

.o
rg

/d
ow

nl
oa

d/
de

v/
ja

va
do

c
B Listing 1. Action class registration in layer.xml

<filesystem>
 <folder name=”Actions”>
 <folder name=”Tools”>
 <file name=”org-myorg-myfirstmodule-MyFirstAction.instance”>
 <attr name=”instanceClass”
 stringvalue=”org.myorg.myfirstmodule.MyFirstAction”/>
 </file>
 </folder>
 </folder>

 <folder name=”Menu”>
 <folder name=”Tools”>
 <attr name=”org-openide-actions-ToolsAction.instance
 /org-myorg-myfirstmodule-MyFirstAction.shadow”
 boolvalue=”true”/>
 <file name=”org-myorg-myfirstmodule-MyFirstAction.shadow”>
 <attr name=”originalFile”
 stringvalue=
 ”Actions/Tools/org-myorg-myfirstmodule-MyFirstAction.instance”/>
 </file>
 <attr name=”org-myorg-myfirstmodule-MyFirstAction.shadow/Separator1.instance”
 boolvalue=”true”/>
 </folder>
 </folder>

 <folder name=”Toolbars”>
 <folder name=”Build”>
 <attr name=”org-netbeans-modules-project-ui-RunMainProject.shadow
 /org-myorg-myfirstmodule-MyFirstAction.shadow”
 boolvalue=”true”/>
 <file name=”org-myorg-myfirstmodule-MyFirstAction.shadow”>
 <attr name=”originalFile”
 stringvalue=
 ”Actions/Tools/org-myorg-myfirstmodule-MyFirstAction.instance”/>
 </file>
 <attr name=”org-myorg-myfirstmodule-MyFirstAction.shadow
 /org-netbeans-modules-project-ui-DebugMainProject.shadow”
 boolvalue=”true”/>
 </folder>
 </folder>
</filesystem>

In the Source Editor, fill out the

performAction() method as follows:

public void performAction() {
 String msg = “I’m plugged in!”;
 NotifyDescriptor d = new NotifyDescriptor.Message(
 msg, NotifyDescriptor.INFORMATION_MESSAGE);
 DialogDisplayer.getDefault().notify(d);
}

A
Figure 3
Adding a

module
dependency

As specified in the GUI Registration panel, the IDE registers the

action class as a menu item and as a toolbar button in the layer.xml

file. See Listing 2.

First Edition N ��

Plug-in Module Quick Start

The line with the calls to

NotifyDescriptor and Dialog

Displayer are underlined and

marked as an error. This is

because the related packages

have not been declared yet. In

the Projects window, right-click

the MyFirstModule project node and choose

Properties. In the Libraries pane, click Add.

Type “notifyd” and notice that the returned

list narrows until the package that contains

“NotifyDescriptor” is displayed (see Figure 3). Click OK. The

Dialogs API is added to the Module Dependencies list. Click

OK to confirm and exit the Project Properties dialog box.

In the Source Editor, click Alt-Shift-F. Two new import state-

ments are added to the top of the source file and the red

underlining disappears:

import org.openide.DialogDisplayer;
import org.openide.NotifyDescriptor;

The plug-in module is now complete. Next, you need to

install and use it.

Installing and Using
the Plug-in Module

The IDE uses an Ant build script to build and install your plug-in

module. The build script is created for you when you create the

plug-in module project.

Installing the Plug-in Module

In the Projects window, right-click the MyFirstModule project and

choose Install/Reload in Target Platform.

The plug-in module is built and installed in the target platform.

The target platform is set in Tools>NetBeans Platform Manager.

The target platform opens so that you can try out your new plug-in

module. The default target IDE or Platform is the installation used by

the current instance of the development IDE.

Using the Plug-in Module

In the newly opened IDE’s menu bar, you should see the new menu

and menu item, together with the icon you specified in the Action

wizard; see Figure 4.

Choose the menu item to invoke the performAction() method in

MyFirstAction.java. You should see the JOptionPane with its message,

as shown in Figure 5. Click the toolbar button. It calls the same

action and so has the same result. It should look something like

Figure 6.

Summary
This tutorial showed how to create a simple plug-in module project,

including a new menu item and a toolbar button. You also saw how

to install and use the new module. N

A 6

A 5

A 4 A
Figure 4
The new menu item for
the plug-in module

A
Figure 5
The plug-in
module in action

A
Figure 6
New toolbar
button for t

�� N NetBeans Magazine

D
es

kt
op

 D
ev

el
op

m
en

t

Dissecting the Matisse Core
Tomas Pavek

GroupLayoutG
et

 t
oKnow

First Edition N ��

Get to Know GroupLayout

GroupLayout

each component needs to be defined twice in the layout. (You’ll

find out if you forgot to do this, because GroupLayout will generate

an exception.)

This dimension independence is quite a powerful concept. It is

similar to SpringLayout, because it provides flexibility other layouts

can’t offer. We’ll get back to this topic later; but first let’s see what

makes GroupLayout different from SpringLayout and other layout

managers.

Layout organization: hierarchical groups
GroupLayout uses two types of arrangements – sequential and

parallel, combined with hierarchical composition. These principles

are quite basic and well known from Swing.

1. With sequential arrangement, the components are simply

placed one after another. Just like BoxLayout or FlowLayout would

do along one axis. The position of each component is defined as

being relative to the preceding component. This is important for

platform-independent layout.

2. The second way places the components in parallel, on top

of each other in the same space, and aligned along a common

reference point. For example, the components can be right-aligned

along the horizontal axis, or baseline-aligned along the vertical

axis, etc.

Usually, components placed in parallel in one dimension are in

a sequence in the other, so they don’t overlap. See the examples

below.

What makes these two principles powerful is that they can be

combined (nested) hierarchically. For this purpose GroupLayout

defines layout groups. A group is either sequential or parallel

and may contain components, gaps and other groups. The size

of a sequential group is the sum of the sizes of the contained

elements, and the size of a parallel group corresponds to the size

of the largest element.

Defining a layout means defining how the components should be

grouped by combining the sequential and parallel arrangements.

This resembles nested panels with BoxLayout, but the groups are

quite lightweight compared to panels. There is also a difference

in the independent dimensions as described above. Panels do

nesting in both dimensions at once, while groups can be nested as

needed, for each dimension separately.

G
roupLayout is a new layout

manager that was developed

as a Swing Labs project in

conjunction with Matisse, the

new GUI builder in NetBeans

5.0, and is now part of

the Mustang project. Though the layout

manager was originally designed to suit the

GUI builder needs, it is also quite handy for

manual coding. This article will help you get

up to speed with how GroupLayout works

and shows you how you can start building

GUIs using it, whether you choose to use

NetBeans GUI Builder or write your own

code.

In this article, I’m going to cover some

of the theory behind GroupLayout and

create a complete example with detailed

explanation.

Design principle:
independent dimensions

The first thing you need to know about

GroupLayout is that it works with horizontal

and vertical layout separately. This is not

that uncommon, but unlike other layout

managers GroupLayout does not use a single

constraints object or method to completely

specify a component’s layout; the layout is

defined for each dimension independently.

This might seem a bit unusual at first, but

it actually makes things easier because

the definition is simpler. When defining the

horizontal layout, you don’t need to worry

about the vertical dimension, and vice versa.

The layout along the horizontal axis is quite

independent of the layout along the vertical

axis. By focusing just on one dimension

at a time you only have to solve half the

problem; the other dimension can be solved

later. The downside of this approach is that

�0 N NetBeans Magazine

D
es

kt
op

 D
ev

el
op

m
en

t

That’s enough theory for now. Let’s take a look at how it works

in practice with a simple example.

Simple example
Let’s start with something really simple, just three components

in a row, as shown in Figure 1.

We would like to express this layout using groups. Starting with

the horizontal axis it’s easy to see there is a sequential group of

three components arranged from left to right. Along the vertical

axis there is a parallel group of the same three components (at

the same coordinate); let’s say they are aligned along a baseline.

See Figure 2.

In pseudo code, the layout specification might look like this (the

real code is shown later):

horizontal layout = sequential group { c1, c2, c3 }
vertical layout = parallel group (BASELINE) { c1, c2, c3 }

A 3

Note this illustrates a principle I mentioned

earlier: components grouped sequentially in

one dimension usually form a parallel group

in the orthogonal dimension.

Now let’s add one more component, C4

(Figure 3). Along the horizontal axis the

new component forms a parallel group

with C3 (because it occupies the same

horizontal space as C3), let’s say we want

the components left aligned. Along the

vertical axis C4 forms a sequential group

with the original parallel group of the three

components (see Figure 4).

In pseudo code, the layout specification

now looks like this:

horizontal layout = sequential group {
 c1, c2, parallel group (LEFT) { c3, c4 } }
vertical layout = sequential group {
 parallel group (BASELINE) { c1, c2, c3 }, c4 }

Now that you understand the principle of

groups, you know the most important thing

about designing layouts with GroupLayout.

There are some more details to explain,

though: how to add gaps, how to define

resize behavior, how to write real code, etc.

Gaps
A gap can be thought of as an invisible

component of a certain size. Gaps of

arbitrary size can be added to groups just

like components or other groups. Using

gaps you can precisely control the distance

between components or from the container

border.

GroupLayout also defines a symbolic

default gap that corresponds to a preferred

distance between neighboring components

(or between a component and container

border). The size of such a gap is not

defined by an explicit number, but computed

dynamically based on the look-and-feel the

A

Figure �
Adding a

component to the
layout

A 2A

Figure 2
Horizontal and
vertical groups

A 1A

Figure 1
A simple

component layout

First Edition N �1

Get to Know GroupLayout

application is using (the LayoutStyle class is

used for this).

There are two advantages to using

preferred gaps: you don’t have to specify

the pixel sizes of the gaps, and they

automatically adjust to the environment

the UI runs in, reflecting the actual

platform guidelines.

GroupLayout distinguishes between (a) the

preferred gap between two components and

(b) the preferred gap between a component

and the container border. There are

corresponding methods in the GroupLayout

A 4 A

Figure 4
Left aligning
components

API for adding these gaps (addPreferredGap()

and addContainerGap()). There are three types

of component gaps: related, unrelated and

indented (see Figure 5). The LayoutStyle

class defines corresponding constants

(to be used as the first parameter of

addPreferredGap()): RELATED, UNRELATED and

INDENT. The difference between related and

unrelated gaps is just in size (the distance

between unrelated components is a bit bigger).

Indented represents a preferred horizontal

distance of two components, where one of

them is positioned underneath the second

with an indent.

To make things easier, GroupLayout can insert

gaps automatically. If you don’t add your own gaps explicitly, it adds

the related preferred gaps for you. This is not the default behavior,

you have to turn this feature on by invoking setAutocreateGaps(true)

and setAutocreateContainerGaps(true) on the layout. Then you’ll get

correct spacing almost for free!

How to write code
Now, let’s take a look at the actual code to create the layout

described above. We’ll assume we have a container named panel and

four components (c1, c2, c�, c4) which are already set up. First, we

create a new GroupLayout object and associate it with the panel:

GroupLayout layout = new GroupLayout(panel);
panel.setLayout(layout);

We specify automatic gap insertion:

layout.setAutocreateGaps(true);
layout.setAutocreateContainerGaps(true);

Finally, we define groups and add the components. We establish

a root group for each dimension using setHorizontalGroup() and

setVerticalGroup(). Groups are created via createSequentialGroup()

and createParallelGroup(). Components are added to groups by using

a variant of the add() method.

layout.setHorizontalGroup(layout.createSequentialGroup()
 .add(c1)
 .add(c2)
 .add(layout.createParallelGroup(GroupLayout.LEADING)
 .add(c3)
 .add(c4))
);

A 5 A
Figure �
Types of
component
gaps

�2 N NetBeans Magazine

D
es

kt
op

 D
ev

el
op

m
en

t

 layout.setVerticalGroup(layout.createSequentialGroup()
 .add(layout.createParallelGroup(GroupLayout.BASELINE)
 .add(c1)
 .add(c2)
 .add(c3))
 .add(c4)
);

Note that default alignment must be specified for parallel groups.

It can be one of the following constants defined in the GroupLayout

class: LEADING, TRAILING and CENTER. These constants are used for

both dimensions; in the horizontal dimension LEADING means “left”,

while in the vertical dimension it means “top”. Similarly TRAILING

maps to “right” or “bottom”. The BASELINE alignment is valid only in

the vertical dimension.

Some notes about the code:

	Components are not added to the container directly, they are

added to groups. GroupLayout adds the components to the container

automatically for you.

	Note the chained calls of the add() method used to fill the groups.

add() always returns the group on which it is called. Thanks to this you

don’t need to use local variables to hold the groups.

	It is a good idea to indent the code so it is easy to see the

hierarchical structure of the groups. Give each component a new

line, add one level of indent for each new group in the hierarchy.

A decent source editor will help you with pairing the parenthesis

to close the createXXXGroup() methods. By following these

simple rules it is easier to add a new component, or remove

an existing one.

Size of components
and resizability

The size of each component

in a GroupLayout is constrained

by three values; minimum

size, preferred size and

maximum size. These sizes

control how the component

resizes within the layout. The

GroupLayout.add(...) method

allows the size constraints to

be specified. There is no limit

on the number of resizable

components in a layout.

If not specified explicitly, the layout asks

the component for its default sizes (by

using the component’s getMinimumSize(),

getPreferredSize() and getMaximumSize()

methods). Thus you don’t need to specify

anything for most of the components, e.g.

to make JTextField resizable or JButton fixed,

because the components have the desired

resizing behavior as default. On the other

hand, you can override the default behavior.

For example you can make a JTextField fixed

or JButton resizable.

GroupLayout defines constants that provide

precise control over resize behavior. They can

be used as parameters in the add(Component

comp, int min, int pref, int max) method. Here are

two examples:

1. To force a component to be resizable

(allow shrinking and growing):

 group.add(component, 0, GroupLayout.DEFAULT_SIZE,
 Short.MAX_VALUE) ...

This allows the component to resize

between zero size (minimum) to any size

(Short.MAX_VALUE as maximum size means

“infinite”). If we wanted the component not to

shrink below its default minimum size, we’d

use GroupLayout.DEFAULT_SIZE instead of 0

in the second parameter.

2. To make a component have a fixed size

(suppress resizing):

group.add(component, GroupLayout.PREFERRED_SIZE,
 GroupLayout.DEFAULT_SIZE,GroupLayout.PREFERRED_SIZE)
...

In these examples the initial size of

the component is not altered; its default

size is the component’s preferred size.

If we wanted a specific size for the

First Edition N ��

Get to Know GroupLayout

The underlying mechanism works as follows:

1. The size of the parallel group is set to

the preferred size of the largest element;

so to the preferred size of c4 in our

example.

2. Resizable elements are

stretched to the size of the

group. In our example, only c�

is effectively stretched, the size

of c4 already corresponds to the size of

the group.

As a result, c� and c4 would have the same width. The

components would not resize further because the parallel group itself

is not resizable (see Figure 6).

A question for attentive readers: Why do we define both components

in the parallel group as resizable in this example? It seems enough to

have just c� resizable since c4 is not stretched anyway...

The answer is simple: because of platform and localization

independence. Otherwise we would have to rely on the fact that the

c4 component is always bigger than c�. But this may change when

the application runs on a different platform or is translated to another

language. By having both components resizing, they adjust to each

other, no matter which one is bigger at the moment.

Same component size
The previous case is special because the components are in the

same parallel group. But what if we wanted unrelated components to

have the same size? Clearly, the same size can’t always be ensured

by grouping. The OK and Cancel buttons in a row at the bottom of a

dialog are a good example. For this purpose GroupLayout provides a

linkSize method. This method allows the size of arbitrary components

to be linked, regardless of where they are placed. The resulting size of

component, we would specify it in the

second parameter instead of using

GroupLayout.DEFAULT_SIZE.

Resizable gaps
Specifying size and resizability applies to

gaps as well, including the preferred ones.

For example, you can specify a preferred

gap between two components that acts

like a spring pushing the components away

from each other (to the opposite sides of the

container). The preferred distance of the two

components is only used as the minimum

size of the gap. See the following snippet:

layout.createSequentialGroup()
 .add(c1)
 .addPreferredGap(LayoutStyle.RELATED,
 GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .add(c2);

Justified layout
Resizable elements placed in a parallel

group are stretched to fill the space of the

group determined by the largest element

in the group; so they end up aligned with

the same size. GroupLayout also provides

control over whether the enclosing parallel

group itself should resize. If group resizing

is suppressed, it prevents the contained

elements from growing over the preferred

size of the group. This way you can make

a block of components align on both sides,

or constrain individual components to have

the same size.

Let’s try to achieve the same size for two

components from our example (c� and c4

in the horizontal dimension):

layout.createParallelGroup(GroupLayout.LEADING, false)
 .add(c3, GroupLayout.DEFAULT_SIZE,
 GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE)
 .add(c4, GroupLayout.DEFAULT_SIZE,
 GroupLayout.DEFAULT_SIZE, Short.MAX_VALUE);

A 6 A
Figure �
Components
C3 and C4 will
have the same
width

�4 N NetBeans Magazine

D
es

kt
op

 D
ev

el
op

m
en

t

 layout.setHorizontalGroup(layout.createSequentialGroup()
 .add(label)
 .add(layout.createParallelGroup(GroupLayout.LEADING)
 .add(textField)
 .add(layout.createSequentialGroup()
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(caseCheckBox)
 .add(wholeCheckBox))
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(wrapCheckBox)
 .add(backCheckBox))))
 .add(layout.createParallelGroup(GroupLayout.LEADING))
);

Note we want the text field to be resizable,

but that happens automatically since

JTextField returns the right maximum size by

default.

The remaining group on the right is

trivial: it contains just two buttons. We

don’t even need the picture. Here’s

the code:

the linked components is set according

to the largest component. For example:

 layout.linkSize(new Component[] {
 c3, c4 }, GroupLayout.HORIZONTAL);

Note that in this example the size

is linked selectively for the horizontal

dimension.

Next I will show how to create a

layout for a sample dialog, with detailed

explanation of each step, illustrations

and code samples.

A real example
Having provided the theory behind

GroupLayout, now it’s time to try it on a real example. So let’s create

a layout for a sample dialog, shown in Figure 7.

A good way to analyze the layout is to use top-down decomposition.

I’ll describe the procedure that proved useful to me; step by step to

make it clear. Once you get used to “group thinking”, you’ll be able to

proceed much faster.

Horizontal layout
Examining the horizontal dimension from left to right, we can see

there are three groups in a sequence. The first one is actually not

a group, just a component – the label. The second one is a group

containing the text field and the checkboxes (we’ll decompose it

later). And the third is a group of the two buttons. As illustrated in

Figure 8.

Let’s sketch out the sequential group in code. Note that

GroupLayout.LEADING corresponds to left alignment in the horizontal

dimension. Also note we don’t specify gaps, assuming the gap auto-

insertion feature is turned on.

 layout.setHorizontalGroup(layout.createSequentialGroup()
 .add(label)
 .add(layout.createParallelGroup(GroupLayout.LEADING))
 .add(layout.createParallelGroup(GroupLayout.LEADING))
);

Now let’s decompose the group in the middle. This is the hardest

one. There’s a text field in parallel with a sequence of two parallel

groups each containing two checkboxes. See Figure 9.

Let’s add the corresponding code:

A 8

A
Figure �

Decomposing
the middle

group

A
Figure �

Breaking the
layout into

groups

A 9

A 7A
Figure �
Example

dialog to show
GroupLayout in

practice

First Edition N ��

Get to Know GroupLayout

 layout.setVerticalGroup(layout.createSequentialGroup()
 .add(layout.createParallelGroup(GroupLayout.BASELINE)
 .add(label)
 .add(textField)
 .add(findButton))
 .add(layout.createParallelGroup(GroupLayout.LEADING))
);

Now let’s look at the bottom group. Note the Cancel button

is not on a shared baseline with the checkboxes; it is aligned

at the top. So the second parallel group comprises the button

and a sequential group of two baseline groups with checkboxes

(see Figure 11).

The corresponding code looks as follows:

 layout.etVerticalGroup(layout.createSequentialGroup()
 .add(layout.createParallelGroup(
 GroupLayout.BASELINE)
 .add(label)
 .add(textField)
 .add(findButton))
 .add(layout.createParallelGroup(GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .add(layout.createParallelGroup(
 GroupLayout.BASELINE)
 .add(caseCheckBox)
 .add(wrapCheckBox))
 .add(layout.
 createParallelGroup(GroupLayout.BASELINE)
 .add(wholeCheckBox)
 .add(backCheckBox)))
 .add(cancelButton))
);

So, that’s it. We’ve created a complete layout including

resize behavior without specifying a single number in

pixels. That’s a true cross platform layout! Note

that we don’t need to specify gaps between

components; we get correct spacing

automatically and according to the look-

layout.setHorizontalGroup(layout.createSequentialGroup()
 .add(label)
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(textField)
 .add(layout.createSequentialGroup()
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(caseCheckBox)
 .add(wholeCheckBox))
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(wrapCheckBox)
 .add(backCheckBox))))
 .add(layout.createParallelGroup(GroupLayout.LEADING)
 .add(findButton)
 .add(cancelButton))

);

And finally we’d like the buttons to have

always the same size, so let’s link them:

layout.linkSize(new Component[] {findButton, cancelButton},
 GroupLayout.HORIZONTAL);

Now we are done with the horizontal

dimension. Let’s switch to the vertical

dimension. From now we’ll only need to think

about the y axis.

Vertical layout
In the vertical dimension, we examine the

layout from top to bottom. We definitely want

all the components on the first line aligned on

the baseline. So along the vertical axis there

is a sequence of the baseline group, followed

by a group of the remaining components.

See Figure 10.

Let’s sketch out the code. First, we need

to define two parallel groups. Note that

GroupLayout.LEADING corresponds to the top

alignment in the vertical dimension.

 layout.setVerticalGroup(layout.createSequentialGroup()
 .add(layout.createParallelGroup(
 GroupLayout.BASELINE))
 .add(layout.createParallelGroup(GroupLayout.LEADING))
);

We can fill the baseline group right away:

A 10

A 11

A
Figure 10
Grouping
components
top to bottom

A
Figure 11
Second
parallel group

�� N NetBeans Magazine

D
es

kt
op

 D
ev

el
op

m
en

t

B Listing 1. Find.java: Complete code for the example dialog

import java.awt.Component;
import javax.swing.*;
import org.jdesktop.layout.*;

public class Find extends JFrame {
 public Find() {
 JLabel label = new JLabel(“Find What:”);;
 JTextField textField = new JTextField();
 JCheckBox caseCheckBox =
 new JCheckBox(“Match Case”);
 JCheckBox wrapCheckBox =
 new JCheckBox(“Wrap Around”);
 JCheckBox wholeCheckBox =
 new JCheckBox(“Whole Words”);
 JCheckBox backCheckBox =
 new JCheckBox(“Search Backwards”);
 JButton findButton = new JButton(“Find”);
 JButton cancelButton =
 new JButton(“Cancel”);

 // remove redundant default border of
 // check boxes - they would hinder
 // correct spacing and aligning (maybe
 // not needed on some look-and-feels)

 caseCheckBox.setBorder(BorderFactory.
 createEmptyBorder(0, 0, 0, 0));
 wrapCheckBox.setBorder(BorderFactory.
 createEmptyBorder(0, 0, 0, 0));
 wholeCheckBox.setBorder(BorderFactory.
 createEmptyBorder(0, 0, 0, 0));
 backCheckBox.setBorder(BorderFactory.
 createEmptyBorder(0, 0, 0, 0));

 GroupLayout layout = new GroupLayout(
 getContentPane());
 getContentPane().setLayout(layout);
 layout.setAutocreateGaps(true);
 layout.setAutocreateContainerGaps(true);

 layout.setHorizontalGroup(
 layout.createSequentialGroup()
 .add(label)
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(textField)
 .add(layout.createSequentialGroup()
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(caseCheckBox)
 .add(wholeCheckBox))
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(wrapCheckBox)

 .add(backCheckBox))))
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(findButton)
 .add(cancelButton))
);
 layout.linkSize(new Component[] {
 findButton, cancelButton },
 GroupLayout.HORIZONTAL);

 layout.setVerticalGroup(
 layout.createSequentialGroup()
 .add(layout.createParallelGroup(
 GroupLayout.BASELINE)
 .add(label)
 .add(textField)
 .add(findButton))
 .add(layout.createParallelGroup(
 GroupLayout.LEADING)
 .add(layout.createSequentialGroup()
 .add(layout.createParallelGroup(
 GroupLayout.BASELINE)
 .add(caseCheckBox)
 .add(wrapCheckBox))
 .add(layout.createParallelGroup(
 GroupLayout.BASELINE)
 .add(wholeCheckBox)
 .add(backCheckBox)))
 .add(cancelButton))
);

 setTitle(“Find”);
 pack();
 setDefaultCloseOperation(
 WindowConstants.EXIT_ON_CLOSE);
 }

 public static void main(String args[]) {
 java.awt.EventQueue.invokeLater(
 new Runnable() {
 public void run() {
 try {
 UIManager.setLookAndFeel(UIManager.
 getSystemLookAndFeelClassName());
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 new Find().setVisible(true);
 }
 });
 }
}

C
Tomas Pavek

(tomas.pavek@
sun.com)

is a software
engineer at Sun

Microsystems who
has been working

on the NetBeans IDE
since 2000. He is

the lead developer
of the GUI builder
in NetBeans, now

primarily focused on
the project Matisse.

Tomas lives in
Prague, Czech

Republic.

and-feel guidelines. Listing 1 shows the complete code

for the Find dialog (it is available for download in the

magazine’s website).

You can compile this file and run it against the Swing

Layout Extensions library. Try resizing the dialog

horizontally to see how the layout automatically adjusts

to the new size.

Conclusions
Now you should know enough about GroupLayout to

start using it! The easiest way to test GroupLayout

is to use it with NetBeans 5.0 where it is bundled

(just make sure “Swing Layout Extensions” library

is added in the libraries of the working project).

The layout manager and related extensions are

hosted on swing-layout.dev.java.net as one of the

Swing Labs projects. N

netbeans.org/community/magazine/code/
Find.Java
G

May 16

2:00 PM LAB-8105 NetBeans Enterprise Pack: Basic UML
Modeling

May 17

2:45 PM LAB-5250
Building Production Quality GUI
Applications using NetBeans 5.0 GUI
Builder (Matisse)

May 18

9:45 AM LAB-4255 AJAX: Riding the Web Application Horse a
Little Further

11:30 AM LAB-5106 NetBeans 5.0: Plug-in Development
2:45 PM LAB-8125 NetBeans Enterprise Pack: BPEL

May 19

10:45 AM LAB-5120 Application Monitoring and Management
with NetBeans 5.0

3:45 PM LAB-6205 Mobile Applications: Visualize it, Build it,
Deploy it to Many Devices

NetBeans Related Hands-On Labs

NetBeans-Related Sessions and BOFs
May 16

5:45 PM TS-3361 Java EE 5 Platform: Even Easier With Tools

9:30 PM BOF-2496 Building Development Tools on Top of the NetBeans IDE

10:30 PM BOF-0678 Meet the “Java Posse”

May 17

11:00 AM TS-4255 MHP/OCAP iTV Applications In a Nutshell

12:15 PM TS-4916 Creating Professional Swing UIs Using Matisse GUI Builder

1:30 PM TS-1293 Best Practices for Building Optimized Wireless Solutions for Web Services

2:45 PM TS-4589 Good Morning, Buenos Dias, Dobry Den: Mobile Internationalization in Action

8:30 PM BOF-2340 Creating NetBeans Plug-ins for Integration With JavaServer Faces, Hibernate, Spring, and EJB™ 3.0 Technology

9:45 PM TS-1387 Twelve Reasons to Use NetBeans Software: Episode 2

May 18

9:45 AM TS-1278 Creating and Deploying Custom Jackpot Queries and Transformers

1:30 PM TS-1878 Debugging Across Tiers: Advanced Techniques

2:45 PM TS-1549 Debugging and Profiling J2EE /Java EE 5 Platform-Based Applications

7:30 PM BOF-2559 Discovery and Dependency Injection Patterns in Modular Architectures

7:30 PM BOF-2807 Java Persistence API in the NetBeans IDE

8:30 PM BOF-2417 Memory Leaks in Jav Technology-Based Applications: Different Tools for Different Types of Leaks

9:30 PM BOF-2835 Creating an IDE for your favorite web framework

9:30 PM BOF-2461 Use the Tools to Generate Mobile Business!

10:30 PM BOF-2031 Experience Self-Organized and Ad Hoc Collaborative Development With the NetBeans IDE

NetBeans is Everywhere
at JavaOne 2006

Don’t miss out on Labs,
Sessions and BOFs
covering IDE features,
Matisse, Plug-in Modules,
Wireless Development,
Enterprise pack, success
cases and more.

anuncio_nbday.indd 2 11/05/2006 18:03:13

