
magazine

Java EE 5 in Practice
Exploring Java EE 5 with NetBeans 5.5

Not Just an IDE
Modular development with the NetBeans Platform

UML Modeling in Action
Using the NetBeans UML Modeling Project

BPEL Designer
Creating BPEL processes

and composite applications

Plug in to Google
Create a plug-in module with 3 lines of code

Java SE Web Services
Developing web services

productively using the IDE

NetBeans Worldwide
A global sampling of

the NetBeans community

November . 2006

N
et

B
ea

ns
 P

la
tfo

rm
 .

 P
lu

g-
in

 M
od

ul
es

 .
 U

M
L

M
od

el
in

g
.

Ja
va

 E
E

5
 .

 W
eb

 S
er

vi
ce

s
.

B
P

EL

magazine

EnterpriseEnterpriseEnterprise
Boosting

Productivity

Enterprise Success

K
eeping its tradition of offering seamless integration and extensive func-

tionality out-of-the-box, NetBeans reaches its second major release in

2006. It took the developer team just six months to create a product

that impresses by the sheer amount of new features it aggregates. Take

the new Enterprise Pack, for example. You have features ranging from

business process modeling to secure web services, to XML schema creation. Add to

that a complete UML modeler, plus the full Java EE 5 support and other enhancements

in the core IDE… and there’s a whole new NetBeans world to explore.

This edition of NetBeans Magazine covers a range of new features in NetBeans 5.5

and its main extensions while also delving into core Java technologies. A thorough

tutorial puts the new features in Java EE 5 through their paces, using NetBeans to

build a complete enterprise application with JPA persistence, EJB 3.0 components and

JSF. In it you see the way NetBeans IDE boosts productivity in enterprise development,

and how the new features in Java EE measure up in real-world scenarios. In two other

articles, you learn step by step how to use the new visual BPEL designer to create and

test a business process, and also how to develop web services starting from Java SE

projects.

Module development is one of NetBeans’ strongest points, and in this edition a quick-

start tutorial shows you how to develop a very useful plug-in module that connects to

Google Code Search (just add three lines of code and NetBeans does the rest). And a

comprehensive article about the NetBeans Platform presents the design ideas behind

NetBeans’ pluggable architecture. You see how to use the Platform to slash develop-

ment time while improving software quality. Also watch modular development in action

in an application that pushes the concept to the limit.

UML modeling is covered in a novel way. Instead of learning each feature mechani-

cally, you’ll see the modeling functionality at work by reverse-engineering a complete

Java application. Starting from a non-visual model, the tutorial builds a set of UML

diagrams that show all the relevant structure and behavior of an example app.

Finally, in our opening section, we highlight the pervasiveness of the NetBeans com-

munity, by showcasing a sampling of NetBeans-related proj-

ects and initiatives from around the world. NetBeans adop-

tion is expanding on all continents, and the community is alive

everywhere.

Happy coding!

Leonardo Galvão

magazine

Publisher & Editor-in-Chief
Leonardo Galvão
leonardo.galvao@gmail.com.br

Assistant Editor
Osvaldo Doederlein
opinali@gmail.com

Design and Layout
pH Design (phdesign.com.br)

Graphic Designers
Tarcísio Bannwart, Jaime Peters Jr,
Tersis Zonato, Lais Pancote

Illustrator
Felipe Machado

Contributors
Fernando Lozano
Geertjan Wielenga
Leonardo Galvão
Milan Kuchtiak
Sherry Barkodar
Osvaldo Doederlein
Tim Boudreau

Community Support
Robert Demmer
Geertjan Wielenga
Janice Campbel
John Jullion-Ceccarelli
Roman Strobl

NetBeans Magazine is
supported by NetBeans.org

Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and
other countries.

Although every precaution has been taken in the preparation of
this magazine, the publisher assumes no responsibility for errors
or omissions, or for damages resulting from the use of
the information herein contained.

Xxx Edition N 3

Enterprise Success

N
etBeans has come a long way. When a handful of students, back in

1996, started the project that was to become NetBeans, did they

know where it would all end? Aiming to write a Delphi-like Java IDE in

Java, they began the long journey that has now come to NetBeans

IDE 5.5. However, the most significant infrastructural change came

in the 4.0 release. The old “mount” system was replaced by a new project system,

fully based on Ant. Project tasks were carried out by Ant scripts, making them easily

extendable and freeing applications from lock-in in the IDE. The window system was

thrown out of... the window. It was rewritten, creating a state-of-the-art system that

was a joy to behold, and smooth and easy to work with.

Now, with the release of NetBeans IDE 5.5, another giant leap has been taken. Ini-

tially aiming to provide “only” full Java EE 5 support, the 5.5 release now also provides

“packs” that integrate the crown jewels of several other Sun tools into NetBeans IDE.

For example, together with the 5.5 release, we also have the final release of the SOA-

oriented Enterprise Pack, a preview version of the C/C++ Pack, and the Visual Web

Pack, which brings an award-winning set of visual tools for web development. On top

of that, UML modeling is supported and mobile developers have the Mobility Pack for

CLDC and Beta 2 of the Mobility Pack for CDC.

But, significantly, NetBeans is more than a set of tools. It is also a community, a

community which has grown exponentially over the past years. Many have testified

that the breadth of the package offered by NetBeans IDE is unsurpassed. And now,

while acquainting ourselves with the NetBeans IDE 5.5 release, we look forward to Net-

Beans IDE 6.0. The good rumors are many and the tension builds. Read through this

magazine and realize... there is even more in store in the coming period. NetBeans

has a lot to live up to and a growing community cheering it on.

Geertjan Wielenga

A Long Way

� N NetBeans Magazine

05

Contents
NetBeans Community
Worldwide
Leonardo GaLvão

A global sample of the sprawling
NetBeans community: people,
projects and places

08

18

22

36

Not Just an IDE
Tim Boudreau

Working with the NetBeans
Platform and the NetBeans
Module System – and the case
for modular development.

Plug in to Google
Code Search
GeerTjan WieLenGa

Create a plug-in module to
integrate Google Code Search
in NetBeans, with only three
lines of Java code

Java EE 5
in Practice
osvaLdo doederLein

A critical exploration of Java EE
5’s new productivity features,
focusing on EJB 3.0, JPA, and
NetBeans 5.5 tooling support

Java SE Web
Services

miLan KuchTiaK

Develop, consume and de-
ploy Java SE based web ser-
vices productively using the

NetBeans IDE

40

56

UML Modeling
in Action
Fernando Lozano

Learn to use the NetBeans
UML Modeling Project by re-

verse engineering a Java appli-
cation in the IDE

BPEL Designer
Kick Start

sherry BarKodar

Exploring visual design capabili-
ties in NetBeans to create, test
and deploy a BPEL process and

a composite application

Strategic Partners
maTT voLpi

Companies adding new
features and capabilities to
NetBeans amplify the value

to developers

54

NetBeans

Community
Worldwide

NetBeans has never been more global. The NetBeans community is growing at a fast pace in coun-

tries on six continents. And with a number of ongoing localization projects, the IDE and Platform

are ever closer to developers around the world. Here we show a sampling of international Net-

Beans-related projects and initiatives, with special focus on geographical distribution.

The maps in this section are stylized and abstract, not reflecting exact geographic locations and country limits.

7 N NetBeans Magazine 7 N NetBeans Magazine

In Egypt, the Plethora project, due out later this year,
will integrate NetBeans with Project Looking Glass,
the open-source 3D platform built with Java 3D. The
plug-in module, which is being developed by a group
of students in the American University in Cairo, will
provide code generation and a form editor.

Egypt
The Italian Blue Marine application (bluemarine.tidalwave.it)

is being ported to the NetBeans Platform. Providing features
for managing the digital photography workflow, this beautiful
open-source Java application goes beyond photo organization
tools, and is very extensible due to its modular design.

Italy

Kosovo, a small province
governed by a United Nations
mission, will soon have its lo-
calized NetBeans version, with
translation to Albanian moving
fast. And the Kosovo developer
community is already creating
national-scale projects using
the NetBeans IDE.

Kosovo

Prague, the Czech capital is the birthplace of NetBeans
and home to the core NetBeans development team. Many
evangelists and executives have adopted the city as their
home. The Mobility Pack is also developed here.

The recent NetBeans User Group Munich meeting brought inter-
national NetBeans evangelists and local NetBeans specialists to
Munich, Germany, where they delivered presentations to a packed
audience (why not create a NUG in your country too?). Also check
out the Munich NUG members’ Software Quality Environment
project (sqe.dev.java.net), which provides NetBeans integration for
software quality tools such as PMD, FindBugs and Checkstyle.

Germany

The popular French-language developpez.net portal hosts
a very active NetBeans forum and FAQ. This volunteer-driv-
en developer website counts among its members many
Java champions, and is a reference in the French-speaking
world, being featured as a Top-50 JUG at Java.net.

France/Belgium

Czech Republic

Second Edition N 8

Brazilian Portuguese has
been chosen as an addi-
tional “official language”
for NetBeans (the others
are English, Simplified Chi-
nese, and Japanese). By
the time you read this, the
Brazilian community, with
support from Sun and Sou-
Java, will be putting the
final touches on the trans-
lations. The developer
community in Brazil is very
active, having started sev-
eral successful NetBeans
projects, such as Green-
Box (greenbox.dev.java.
net), a plug-in module and
framework that generates
code based on Spring, Hi-
bernate, and JSF.

Brazil

While the core NetBeans develop-
ment is done in Prague, the lion’s share
of development for the Visual Web
Pack and the Enterprise and C/C++
Packs is done in the United States. And
this is where the NetBeans World Tour
kicks off every year, at JavaOne, San
Francisco.

U.S.A.

The Panama developer community has been ac-
tively adopting NetBeans are their main Java IDE,
using it both in university and commercial projects.
A sharp and up-to-date blog in Spanish, avbravo.
blogspot.com, highlights all things NetBeans.

Panama

Japanese speakers have an
official all-Japanese NetBeans
community at ja.netbeans.
org. Community members
can contribute their own con-
tent to the site and translate
web content from netbeans.
org. Sun provides support in
reviewing, coordination, and
CVS commits.

Japan

Russia was the first country to have a community-only localized release
of NetBeans 5.0. The leader of the Russian translation effort also co-
founded the fast-moving NetBeans Translation Project (translatedfiles.
netbeans.org). You can bring NetBeans even closer to your community by
helping out with the many ongoing localization projects, or by creating a new
one for your language.

Russia

In Azerbaijan, a large UNES-
CO-sponsored Java project
is being developed on the
Net Beans Platform. The Java
CDIS/ISIS project will allow
users to query UNESCO’s text
retrieval system, used for bib-
liographic and other databases
throughout the world, especial-
ly in developing countries.

Azerbaijan

The BlogTrader Platform (for-
merly Humai Trader – humaitrad-
er.dev.java.net), currently being
developed in Beijing, China, is a
standalone open-source applica-
tion built on top of the NetBeans
Platform, with source code or-
ganized as a NetBeans module-
suite project. The tool provides
features to track and analyze the
stock market, both from histori-
cal data and real-time feeds.

China

Working with
the NetBeans
Platform and the
NetBeans Module
System
Tim Boudreau

Not Just
an IDE

Not JustNot JustNot Just
an IDEan IDEan IDEan IDE

Not Just
an IDE

Not Just
an IDE

Not Just
an IDE

Not Just
an IDE

Not JustNot JustNot JustNot Just
an IDE

Second Edition N 9

Not Just an IDE

T
his article covers the basics

of NetBeans module devel-

opment and using NetBeans

Module System and NetBeans

Platform, and makes a gener-

al case for modular software development

as a methodology for improving quality

and productivity.

You’re probably familiar with the NetBeans

IDE as a development tool. It is also a

platform for building modular applications

– even non-GUI applications. The NetBeans

Platform is the underpinnings of the IDE.

Think of it as a “generic desktop applica-

tion”. Underneath the NetBeans Platform

sits the NetBeans Module System – the

engine that launches NetBeans, discov-

ers components dynamically and resolves

dependencies between modules. It’s the

NetBeans Module System that makes it

possible to download new modules and

hot-deploy/redeploy modules at runtime.

A module is simply a JAR file with some

manifest entries that allow the NetBeans

Module System to recognize it. All of the

APIs you can write to in NetBeans live in-

side modules. These are divided along func-

tional lines. So, for example, if you want

to change the status bar text at runtime,

you will use a class called StatusDisplayer.

StatusDisplayer is part of the UI Utilities API.

That API lives in a module (a JAR file) which

your code can depend on. Building on the

NetBeans Platform is essentially writing

code that interacts with these APIs, and

these APIs are implemented in modules

just like the ones you will create.

The case for
modular development

Dynamically linking applications at

runtime is an age-old problem. The historical solution is the fa-

miliar one: linking to libraries in native applications – or finding

JAR files on the classpath in Java applications. These approaches

work but have some drawbacks. First, there is no version man-

agement. An application linking itself together at runtime has no

idea what versions of the libraries it needs. It also has no way

to know if it is linking with a version which is old or incompatible

(perhaps you have heard the term “DLL Hell”). Second, this sce-

nario covers using libraries at runtime, but it makes no provision

for an application which is truly assembled at runtime – one which

discovers its libraries on the fly, and may want to unload and up-

date such libraries.

The NetBeans Module System solves these problems. It is a

runtime container specifically designed for applications which

discover (and can update) their components at runtime. And it

specifically handles inter-library dependencies very explicitly – so

the application cannot be started in a state where its dependen-

cies are not satisfied.

Of course, not everyone is writing an application that needs

to assemble itself at runtime. My point here, though, is that the

NetBeans Module System may be relevant to you even if you

are not writing such an application. There are benefits to modu-

lar development that go well beyond the capabilities of a runtime

container.

Consider how NetBeans itself is developed: by a community of

hundreds of people that spans several continents, time zones,

and teams. Our experience is that there are extraordinary ben-

efits to modular development unrelated to the runtime capabili-

ties of the NetBeans Module System. They have much more to do

with engineering culture and sustainability of the product. In other

words, these are benefits that may not apply to a one-off bit of

coding, but show up over time; benefits that improve the probabil-

ity of shipping a 2.0 after a 1.0, a 3.0 after the 2.0 and so forth.

See more about these benefits below.

Avoiding code-entropy

Many projects start out well designed, and that design gradually

decays as features are added. The system becomes more tightly

coupled as expedient implementation of features creates new

dependencies between parts of the application. This means it gets

harder and harder to fix bugs over time. Because as the code

pl
at

fo
rm

.n
et

be
an

s.o
rg The NetBeans

Platform Web
site is the main
entry point for
NetBeans de-
velopment on
the web, linking
to all other
development
documentation.
The tutorials
section (plat-
form.netbeans.
org/tutorials)
is particularly
useful.

ne
tb

ea
ns

.o
rg

/d
ow

nl
oa

d/
de

v/
ja

va
do

c The NetBeans
API Docu-
mentation: a
comprehensive
set of all docu-
mentation for
all classes in
public APIs in
NetBeans.

Not Just
an IDE

Not Just
an IDE

10 N NetBeans Magazine

N
et

B
ea

ns
 P

la
tf

or
m becomes more coupled, fixing a bug in one place is more likely to

create a bug somewhere else.

Enforcing API design

A module in the NetBeans Module System cannot reference

classes in another module without declaring a dependency on that

other module, and that other module agreeing that the classes referenced

are ones that are actual API. A NetBeans module by default has no

API – other modules can’t see its classes. Modules that have APIs

specifically say what packages they are exporting. Other modules

can only reference classes from other modules if those classes are

in packages the other module says it exports.

In practice what this means is that contracts between components in

the system must be planned out, not just developed in an ad-hoc way.

While ad-hoc development may be slightly faster, over the long haul,

when you factor in the cost of maintaining that code (usually this

is much more expensive than writing it in the first place), it pays

off to have a system that makes it hard to write dirty hacks and

encourages you to create good contracts between components.

Design hygiene

Since a module can hide most of its packages, this has the side

effect that you can essentially have public classes that are only public

within the JAR they live in. Think about this for a minute – how many

times have you piled an enormous number of unrelated classes into

one package, so those classes could use package-privateness to

hide their implementation details from the outside world? If you can

have public non-API classes (classes that can only be seen inside

their own JAR), you can write much cleaner APIs – even provide

packages that are pure API. Any API designed in this way has a

better chance of being understandable to the people who will have

to use it.

Comfort in deployment

With the NetBeans Module System you know that your applica-

tion can never be started if it cannot satisfy its dependencies. This

translates into greater peace of mind when you release a new version

of your software. Of course, you’ll want to make it easy for a user to

satisfy those dependencies, and hopefully you’re shipping something

that is compatible with itself. But in terms of upgrades, not to men-

tion nasty situations where some other application has put, say, a

buggy XML parser on all application’s boot

classpath, you know ahead of time that

your application will not have a problem.

Why build on NetBeans?
Whether or not you are convinced of

the benefits of modular development in

general, the NetBeans Platform can save

a huge amount of time for anyone devel-

oping a Swing application. In any desktop

application, there is a certain amount of

“plumbing” that must be written, such as

wiring up menu items and toolbar buttons

to actions, persisting settings, doing win-

dow management and data presentation,

accessing resources, saving state on

shutdown, and much more. None of these

things are the business logic of the appli-

cation – they are the overhead of writing

a desktop app. This is stuff that is neither

fun nor interesting to write, and can addi-

tionally be a source of bugs that drains off

development time better spent working on

logic that is the meat and potatoes of what

the application does.

With the NetBeans Platform, you get to

reuse all of this logic – and you are reusing

an implementation of it that has years of

engineering and quality assurance invest-

ed in it. The letter shown in the sidebar

in the opposite page was not empty

hyperbole (nor was it solicited). The Net-

Beans Platform can make the difference

between wondering how you will ever get a

project finished and being able to outpace

competitors with the speed of it.

Getting started in
module development

Getting started with NetBeans module

development is easy. There is not a great

wi
ki

.n
et

be
an

s.i
nf

o/
wi

ki
/v

ie
w/

Ne
tB

ea
ns

De
ve

lo
pe

rF
AQThe NetBeans

Developer FAQ:
a comprehen-

sive knowledge
base of Net-

Beans develop-
ment informa-

tion. In addition
to frequently

asked ques-
tions, it contains
many tips, tricks

and otherwise
hard-to-find
information,

along with sim-
ple descriptions

of common
API classes and
where to start

to do various
tasks. Since it is

a wiki, if you get
an answer to a

question that
is useful to you,
you are encour-

aged to add it
to the FAQ.

Second Edition N 11

Not Just an IDE

Platform Success

The lead developer of a team that had recently adopted the NetBeans Platform several years ago
had the following to say, one month into migrating to the NetBeans Platform. While this was said a while
ago, the Platform has only improved since then:

We estimate that we will manage to release a product by July, that is/has:

1. Faster time-to-market

2. More features

3. More stable

4. Lower R&D cost

5. Higher end-customer value

6. More extendible

7. Easier long-term maintenance

After the July release, we believe that we can exponentially increase our features, since existing

developers are now high on the learning curve and can mentor new developers joining us later. In fact,

the previous gloomy outlook of supporting all the features requested by the upper-management, are

now turned into optimistic enthusiasm to make the “Best Color Physics Software for the Textile industry

in the world”. And perhaps the “Color Physics” will be dropped when we include all the non-color related

features, and maybe “Textile industry” will be dropped when we support all color-sensitive industries,

such as plastics, printing, paint and food. Future will tell...

To all people out there, who are considering using NetBeans for non-IDE applications, I can only

recommend, the strongest, the OpenIDE Platform.

To all the NetBeans developers, working at Sun Microsystems, privately or elsewhere, thanks for bringing

to the world the most complete client-side framework I have ever seen.

12 N NetBeans Magazine

N
et

B
ea

ns
 P

la
tf

or
m

deal of difference between developing modules to install in the IDE,

to use in a standalone GUI application, or for use in a non-GUI appli-

cation that uses the NetBeans Module System. The only difference

between all these things is which other modules will be included in

the application.

The NetBeans IDE contains specific support that makes it easy

to build modules and applications, and then run, debug and deploy

them. Also, since all of this module building support uses Ant scripts

to do the work, setting up automated builds and other team sup-

port is easy – all the metadata are human readable and can be put

in a version control system such as CVS or Subversion. NetBeans

5.0/5.5 contains three module templates that can be used to create

a skeleton module (see Figure 1). These templates are:

Module Project – An ordinary single module, with build script

and manifest. This type of module may be standalone or part of a

suite of modules.

Module Suite Project – A container for a collection of modules

1.

2.

which are deployed together, and which

may have interdependencies. (Often

when implementing a single unit of func-

tionality, it is desirable to separate the

implementation into separate modules

which perform different functions.)

Library Wrapper Module – A wrap-

per module which allows you to embed

any regular JAR library in the NetBeans

Module System and call it. This will gen-

erate a wrapper module that contains no

logic, but simply exposes the packages

in the library via its manifest, so that oth-

er modules may call them.

The next step in the New Module Wizard

(Figure 2) is very straightforward. You de-

fine where on disk to put the module that’s

being created, and whether or not it should

be part of an existing suite of modules (you

can always add it to a suite later).

After this, you simply provide some basic

parameters that will identify your module

(see Figure 3). Each module has a unique

ID (Code Name Base). This is a string, and

by convention should match the base Java

package of your module, to avoid name

collisions. If your module exposes an API,

other modules will use this name to say

they depend on yours and should be grant-

ed access to your module’s public classes.

The Module Display Name property simply

provides a human-friendly name for your

module.

Expressing dependencies
between modules

It would not be much fun to develop mod-

ules if you needed to dig up the program-

matic code name of a module in order to

use its classes. The NetBeans IDE makes

this easy. Your module’s dependencies are

3.

Figure 2.
Setting up the
module name

and location

A
2A

Figure 1.
Creating a

new module
in the

NetBeans IDE

A
1A

Second Edition N 13

Not Just an IDE

a property of your module project, which

can be found in its properties dialog.

Since dependencies are between Java

classes, and you are probably reading the

JavaDoc documentation to find out about

them, you can simply add new dependen-

cies by class name. Just open the module

properties dialog, and click Library|Add

Dependency. You will see a dialog like the

one in Figure 4.

Making modular
development easy

The point here is that developing in a

modular environment requires some addi-

tional bookkeeping. One module must say

what other module it wants to use; it also

can specify the minimum version it wants,

etc. Such bookkeeping should not mean

laborious work for the programmer. The

NetBeans IDE’s support for developing

modules takes care of the bookkeeping

quite completely, and provides a GUI for

adjusting dependencies that uses the ele-

ments a developer needs to know about

anyway: Java classes.

Not just for IDE plug-ins,
or even GUI applications

As mentioned above, there is little dif-

ference between writing modules that en-

hance the NetBeans IDE, writing a GUI ap-

plication or writing a non-GUI application.

This too is a function of dependencies. By

leaving the IDE modules out, and adding

your own modules, you create a NetBeans

Platform-based application – one which

uses the infrastructure and GUI of the

platform, without any IDE-specific appear-

ance or functionality. By leaving out even

the core UI modules and just reusing the

bootstrap and module system infrastruc-

Figure 4.
Adding
dependencies

A4A

Figure 3.
Defining
module
properties

A
3A

ne
tb

ea
ns

.o
rg

/c
om

m
un

ity
/li

st
s The

dev@openide.
netbeans.org
mailing list is
the place to ask
questions – you
will reach the
entire NetBeans
development
team at Sun, plus
thousands of
developers who
are building their
own modules and
NetBeans-based
applications.

ture, you can create a modular application with no UI whatsoever.

Again, this is something that the NetBeans IDE makes simple. You

can, of course, use any IDE to develop NetBeans Platform-based

applications. The NetBeans IDE simply makes it easier. Creating the

skeleton of an application is as simple as creating a new Module

Suite using the project template shown before. Deciding whether it

will be a plug-in for the IDE or a separate application is a configura-

tion step which can be changed at any time. The UI for this is part of

the properties dialog of the module suite. The first step is specify-

ing if the suite is to be a standalone application (with its own splash

screen, name and other customizations), or just a set of modules

to drop into the IDE (see Figure 5).

The next step is deciding what modules should and should not be

part of the application. By default you are building against the copy

of NetBeans you are running, but you can also build against a differ-

1� N NetBeans Magazine

N
et

B
ea

ns
 P

la
tf

or
m distribution of your application (one click on

the suite’s popup menu will do that), this GUI

also determines what modules will be pack-

aged into your distribution. The UI for this is

the Libraries pane of the properties dialog.

Building the examples
NetBeans comes with some example

module code built in. In the New Project

Wizard, there is a category called Samples.

In it you can find two sample applications

built on NetBeans.

The Paint Application Sample App

In the NetBeans Module Projects cat-

egory you can see a sample called Paint

Application (see Figure 7). This is a pre-

built application consisting of three mod-

ules. The wizard allows you to unpack it

onto disk, build, run, debug and modify it.

The application’s functionality is simple.

It allows the user to draw on the screen

with the mouse, and save the result as a

PNG format image file. What is immediately

noticeable is that, while its UI is simple,

it is quite a polished application. It has a

splash screen, can save settings on exit,

supports editing multiple documents with

drag-and-drop windows, is fully localized,

has menus and toolbars that are well de-

signed and well behaved. And the initial

version of this application took all of 45

minutes to write!

If you look at the code, you will see that

the entire application’s logic is only four

Java classes, and two of those are trivial

Action implementations for creating new

documents and saving (see Figure 8).

The Paint Application sample (see it in ac-

tion in Figure 9) consists of three modules.

They are:

ent copy of NetBeans, such as the plain platform distribution. The GUI

for deciding what modules are used is also part of the suite proper-

ties dialog (Figure 6). When you generate a zip or Java Web Start

Figure 6.
Choosing

components of
an application

A 6A

Figure 5.
Creating a

standalone
application

A 5A

Figure 7.
Creating

the Paint
Application

Sample App

A 7A

Second Edition N 15

Not Just an IDE

The Module Suite – This contains no

code. It simply allows the modules it con-

tains to depend on each other and be de-

ployed as a unit.

The Paint Module – This is where the

business logic lives. It contains the actions

and GUI components that you see in the

application’s main window.

The ColorChooser Wrapper Module

– This is a no-code wrapper module for a

popup color chooser component (available

from colorchooser.dev.java.net) which is

used on the toolbar in the application.

Dependencies between components are

unidirectional – the Paint Module depends

on the color chooser library, but the color

chooser library knows nothing about the

Paint module. Generally it is worth thinking

about dependency relationships between

pieces of a system before starting to

code. Occasionally it will appear, in devel-

opment, that circular dependencies (one

JAR depends on a second JAR’s class and

that second JAR depends on the first one). Such situations usually

mean there is a third piece which is the common functionality both

need, and that should be factored out into a single module both of

the others depend on.

Modular development In action
To really get a sense of the power of the modular development

paradigm, and what you can do with the NetBeans Platform, there

is a much enlarged and enhanced version of the original Paint

Application tutorial. Its source code can be found at imagine.dev.

java.net. The Imagine application takes the painting application de-

sign to an extreme of creating an application with the potential to

include functionality similar to that of GIMP or Photoshop.

It starts from the same premise as the original paint applica-

tion, still uses the color chooser control and has a class called

PaintCanvas which is reminiscent of the Paint Sample Application.

But it goes much farther in having a powerful user interface, and

provides its own APIs to allow additional tools to be plugged in.

Imagine: a Modular Demonstration Application

Imagine is an image editor (see Figure 10). Much like other im-

age editors, it uses a model in which an image is constructed of

image layers, each of which is independently editable. It has a pal-

ette of tools which can be selected in order to use them to edit the

image. And it has a number of windows in its UI, including a layers

view, a customizer for the selected tool, a menu for effects that

can be applied to a selection or a layer, the image editor itself, and

an edit history browser window.

While this application is not ready to replace your favorite image

editor tomorrow, it is designed for extensibility, so that features can

be plugged in separately. And more importantly, it is designed so

that its component parts have well defined contracts between them.

It will be harder for a change in one

part of the application to break an-

other part. This is particularly use-

ful in the case that it would be de-

veloped by people not physically in

the same place. Building in an en-

vironment that encourages healthy

architectural practices has benefits

for the application’s maintainability.

Figure 8.
Structure
of the Paint
sample
application

A
8A

The NetBeans
Source Code: while
you don’t need the
sources to develop
your own code,
they can be an
invaluable source
of examples of
how to do things
right – simply
find a module that
does more or less
what you need to
do and see how it
works. All sources
are available via
anonymous CVS:
cvs -d:pserver:
anoncvs@cvs.
netbeans.
org:/cvs co
standard_
nowww will
download the
basic sources.

ne
tb

ea
ns

.o
rg

/c
om

m
un

ity
/s

ou
rc

es

Second Edition N 15

vironment that encourages healthy

architectural practices has benefits

for the application’s maintainability.

16 N NetBeans Magazine

N
et

B
ea

ns
 P

la
tf

or
m The way that Imagine breaks up into modules is the interesting

part. Each piece of UI you see – each window component (and,

incidentally, the effects menu), is implemented in a separate module

(Figure 11). Now, were this a production application, it might not

be broken up to quite this degree, but it demonstrates the power

of this approach very well. The editor in the center of the window

comes from one module. It can be removed from the system and

the system will still function (though it

won’t do very much). More importantly, it

could be replaced by a totally different edi-

tor that operated on, say, SVG – and with

the exception of the raster-based tools,

the rest of the application would not need

to change one bit. The tools palette lives

in a separate module; it contributes the

selected tool to a global selection context

which the editor component listens to. The

tool customizer is another module – one

which, like the editor, listens to the global

selection and if a tool appears in it, dis-

plays its customizer. The effects menu is

implemented in yet another module, which

locates all registered effects and provides

a UI for them. The editor window contrib-

utes the current image and its layers to the

global selection; the layers window listens

for this and displays the layers of the cur-

rent editor. And so forth...

The truly interesting thing to notice is that

none of the modules I have just mentioned de-

pend on (use classes from) each other. There

is a single module called Paint API which

defines Java classes such

as Tool, Layer, Layers, and

Effect (see Figure 12).

Each of the other mod-

ules either provides or

consumes instances of

these classes; the com-

munication mechanism

is the global selection,

which uses a NetBeans

API class/concept called

Lookup (which is essen-

tially a Map where the

keys are Class objects

and the values are one

10AFigure 10.
Imagine in

action

A

9A
Figure 9.

Running the
Paint sample

application

A

Second Edition N 17

Not Just an IDE

or more instances

of the Class key. All

of these modules

simply depend on

the Paint API mod-

ule’s classes. So

any piece can be

completely replaced

without the other

parts of the applica-

tion being disturbed

in the slightest.

If someone devel-

ops additional tools

or effects, they can

be distributed as a new module. There

is no need for recompiling the entire ap-

plication. The NetBeans Platform even in-

cludes the optional Update Center module

(autoupdate), which will let you deliver new

modules and new versions of modules as

simply as by putting some files on a web

server.

Role-based deployment
with Java Web Start

Where this sort of thing gets really excit-

ing is when it comes to applications that

are used by multiple types of users. The

showcase for this approach (and origina-

tor of it) is Nokia NetAct – an application

for managing cellular networks. The way it

works is this. You have an activity which

is information-based and involves many

people; those people will have different

roles and needs. Rather than optimize the

application for one set of users or create

multiple similar applications for different

roles, you create one application, with dif-

ferent sets of modules to provide the UI for

Figure 12.
Classes in the
Paint API

A

12A
Figure 11.
Modules of
the Imagine
image editor

A11A

varying roles. Then deploy it using Java Web Start (JNLP), on an

application server. The users log in to a web page; since they have

authenticated, the server knows who they are and what their job

is. The user clicks a link that starts the application via Java Web

Start. Depending on who they are, they will be delivered a different set of

modules. The underlying APIs and business logic may be the same

across all users, but the user interface pieces and what functional-

ity users have access to will vary depending on what they need to

do their job.

A similar scenario is one where an organization needs to produce

many different versions of an application with slight differences. For

example, imagine an application used for both individuals and busi-

nesses to calculate or pay their taxes. Much of the logic underly-

ing either a business’s or individual’s work will be the same. These

should be provided in modules common to the whole application.

There will be differences in the user interface, and in what function-

ality is made available. Imagine deploying such applications, sharing

all the code that should be shared between them, with no nasty

hacks, no duplication, no extra testing needed, because the archi-

tecture you’re building on is designed for this sort of scenario!

Conclusions
It is my hope that this article has whetted your appetite to learn

more about the NetBeans Platform and get some of the benefits of

it in your own code!

C
Tim Boudreau
(tboudreau@sun.
com) had his first
startup when he was
13, and has been
hooked since, with
brief departures to
play rock and roll,
write and play music
and do graphics
and photography.
He is the coauthor
of NetBeans, the
Definitive Guide
from O’Reilly and
Associates, was
part of the team
that open sourced
NetBeans and
currently works as
a developer on that
project. Originally
from Massachusetts,
he lives in his
adopted home city,
Prague, in Czech
Republic.

Integrating Google Code
Search in NetBeans

Geertjan Wielenga

Plug-inPlug-inPlug-inPlug-inPlug-inPlug-inPlug-inPlug-in
to Googleto Googleto Googleto Googleto Google

in 3 Lines

Second Edition N 19

Plug-in to Google in 3 Lines

Integrating Google Code
Search in NetBeans

Geertjan Wielenga

Figure 1.
Creating
the Module
Project

A
1A

T
The unofficial relationship

between Google and Net-

Beans IDE started when Sun

engineer Ludovic (“Ludo”)

Champenois created on Oc-

tober 5, 2005, a Google Search Toolbar

for NetBeans IDE. This Google integration

was so popular, and Ludo’s implementa-

tion so cool, that it formed the basis of

the very frequently used NetBeans Google

Toolbar Module Tutorial. Since then, sev-

eral enhancements have been built on top

of this toolbar. For example, NetBeans

user Ramón Ramos has added functional-

ity allowing the user to select alternative

search engines, or to provide (instead of

a textfield) a right-click popup action on

the selected line or word.

Now that the new Google Code Search

has been announced (and to celebrate the

one year anniversary of Ludo’s Google

toolbar), it’s time for something else

quite special. And here it is... you can

integrate Google Code Search in

NetBeans IDE with only three lines of

code. That’s all that you need to do. The

NetBeans APIs and NetBeans IDE module

development functionality (wizards and

tools in the Source Editor) do everything

else.

The NetBeans module
Follow along and you will be able to

send a selection of code to Google Code

Search, from a Java file open in the IDE’s

Source Editor. In this article I’ve written

the steps for the complete beginner, so

if you’ve never written a NetBeans mod-

2A Figure 2.
Adding a
conditional
action

A

to Google

ne
tb

ea
ns

.o
rg

/d
ow

nl
oa

d/
de

v/
ja

va
do

c NetBeans
APIs
documen-
tation

ule before, here’s your chance! This one could not possibly be

simpler.

1. Creating the project

Choose File|New Project. In the New Project wizard, choose

“Module Project” in the “NetBeans Plug-in Modules” category (see

Figure 1). Click Next. Name the project “GoogleCodeSearch”,

and browse to an appropriate location. Select “Standalone Mod-

ule” and “Set as Main Project” (if these are not already selected

by default). Click Next and then Finish.

Google
Code
Search

go
og

le
.c

om
/c

od
es

ea
rc

h

Pl
ug

-in
 M

od
ul

es

20 N NetBeans Magazine 20 N NetBeans Magazine

2. Adding and configuring an action

Right-click the project, choose New, and

then choose Action. Select “Conditionally

Enabled”, and in the Cookie Classes

drop-down choose “EditorCookie” (see

Figure 2). Click Next. In Category choose

Tools, then unselect “Global Menu Item”.

Select “Editor Context Menu Item”. Choose

“text/x-java” from the Content Type drop-

down list (this sets the MIME type, which

determines the type of file your new ac-

tion is applicable to) – see Figure 3.

Click Next. Type “GoogleCodeSearch” in

Class Name, and “Google Code Search” in

Display Name. Click Finish.

3. The first two lines

Right-click the project and choose

Properties. Select the Libraries category,

click Add and scroll to “Editor Library”

(see Figure 4). Click OK, and then OK

again. In the Source Editor, move to the

performAction() method, and remove the

line that you see generated; we won’t need

it in this module. Time for your first two

Figure 3.
Registering

the action in
the GUI

A 3A

NetBeans
Google
Toolbar
Module
Tutorial

pl
at

fo
rm

.n
et

be
an

s.o
rg

/
tu

to
ria

ls
/n

bm
-g

oo
gl

e.
ht

m
l

we
bl

og
s.j

av
a.

ne
t/b

lo
g/

lu
do

/a
rc

hi
ve

/
20

05
/1

0/
go

og
le

_a
nd

_n
et

b.
ht

m
lGoogle

Search
Toolbar for

NetBeans
IDE

Second Edition N 21

Plug-in to Google in 3 Lines

5A�A
Figure 4.
Adding editing
functionality

A

Figure 5.
Selecting the
menu item
sends the
selection to the
IDE’s default
browser,
opening it in
the Google Code
Search page.

A

C
Geertjan Wielenga
(geertjan.wielenga@
sun.com)
has been a software
technical writer for
the past 10 years,
working mainly on
rapid application
development and
IDEs, currently
on NetBeans, but
previously on UNIFACE
by Compuware and
SuperNova by the
now-defunct Four
Seasons Software.
He works for Sun
Microsystems as a
Technical Writer on
the NetBeans project.

lines of code! Add the following lines to

performAction():

JTextComponent editor=Registry.getMostActiveComponent();
String selection = editor.getSelectedText();

The first line becomes underlined in red,

because you need import statements.

Thanks to the dependency on “Editor

Library”, you can click the lightbulb and

choose org.netbeans.editor.Registry. Next,

click on the lightbulb again and choose

javax.swing.text.JTextComponent.

5. Completing the code

Now go back to the Project Properties

dialog box, and add a dependency on “UI

Utilities API”. Time for the final line of code!

Here it is, at the end of performAction():

URLDisplayer.getDefault().showURL(
 new URL(“http://google.com/codesearch?hl=en&q=”
 + selection + “&btnG=Google+Search”));

When prompted for import statements,

you will need java.net.URL and org.openide.awt.HtmlBrowser.

URLDisplayer.

A red underline will remain, because the URL constructor

throws MalformedURLException. Click on the lightbulb and let

the IDE surround the code with a try-catch block.

6. Installing and running

Hurray, you’re done! Right-click the module and choose “In-

stall/Reload in Development IDE” (then click OK). NetBeans

warns you that this action can be dangerous, but since this

module is so simple, there’s little risk that we have a crasher

bug here. So you can ignore the warning – the new module

will be hot-deployed and activated in the same NetBeans in-

stance you’re using. (The alternative would be loading a new

NetBeans instance for testing.) Now select something in a

Java file and choose the new menu item (see Figure 5).

Conclusions
Google Code Search is a powerful facility provided by Google.

In this article you’ve seen how easy it is to integrate it into

NetBeans IDE. Wizards did almost all the work, and you just

needed to add three lines, the first two for selecting code and

the last for sending the selection to your browser. However,

although this module is simple, you have created a complete

module that plugs into NetBeans and can be very useful in your

development work. Congratulations, and have fun with Net-

Beans module development!

Java EE 5
A critical exploration of Java EE 5’s new productivity features,
focusing on EJB 3.0, JPA, and NetBeans 5.5 tooling support

Osvaldo Pinali Doederlein

in Action with
NetBeans

Second Edition N 23

Java EE 5 in Action with NetBeans

T
he traditional J2EE platform

has long been regarded as

powerful but difficult to learn

and use: J2EE offers a mas-

sive number of high-end fea-

tures and it’s natural that these features

have costs in complexity of architecture,

APIs, and tools. Though NetBeans IDE

has been offering strong support for J2EE

development tasks for years, in an ideal

world tools should not have to mask the

inadequacies of frameworks. Frameworks

should be well designed with respect to

productivity – when this happens IDEs can

be “unloaded” from the automation of dumb

boilerplate code, and add an increasing

number of higher-end productivity features

without becoming, themselves, overloaded

with complexity.

You will see in this article, which shows

off both the new Java EE 5 functionality

and NetBeans 5.5 features, that this is

exactly the case for the next generation of

enterprise Java development. We have a

much easier, yet richer, framework, along

with an increasingly powerful but still

seamlessly integrated IDE, with effective

support for the entire Java EE stack.

This article puts the major productivity

enhancements of Java EE 5 through their

paces. We’ll look at annotation-driven APIs

in general, EJB 3.0, the Java Persistence

API (JPA), Dependency Injection, and

application deployment. All this while going

through a tutorial that develops a simple

but complete application with NetBeans

5.5 and Glassfish/SJSAS, and looking at

what NetBeans has to offer at the tool

support side of Java EE 5. But differently

from most tutorials that focus on teaching

new APIs or techniques, we’ll put some

Java EE 5
A critical exploration of Java EE 5’s new productivity features,
focusing on EJB 3.0, JPA, and NetBeans 5.5 tooling support

time into analyzing the effectiveness of key Java EE features, ex-

trapolating them to real-world projects.

Installing NetBeans and
the Application Server

As this is NetBeans Magazine, I’ll assume that you know how to

download, install and configure the IDE and a compatible application

server. At the time of writing, NetBeans offers support for SJSAS,

GlassFish, JBoss, WebLogic, and JOnAS (with the JOnbAS plugin),

besides Tomcat. This tutorial was developed with the Sun Java

System Application Server 9.0 (a.k.a. Java EE 5 SDK or Java EE

5 RI), but it’s application-server-portable. Except that the example

application uses SJSAS’s predefined jdbc/sample data source – so

in other servers, you may have to configure a database and data

source.

The JPM Application
The example application allows you to keep track of all Java plat-

forms, composed of JSR specifications and APIs grouped by pack-

ages – deserving the pompous name “Java Platform Manager”.

More specifically, the application manages a simple database, and

is implemented with the JPA, EJB and JSF APIs.

Granted, due to space limitations I provide only a tiny amount of

the potential functionality of such an app. But when you reach the

end, I hope you’ll be so impressed by the ease of development of

Java EE 5 with NetBeans 5.5, that you’ll enjoy coding the rest of

it.

Creating the Projects
Start by selecting File|New Project>Enterprise/Enterprise Application.

In the Name and location tab, set Project Name to JPM, change

the base directory to an appropriate location, and accept defaults

for the other options (see Figure 1). This creates the projects

JPM, JPM-ejb and JPM-war. NetBeans adopts a project structure

that mirrors the Java EE deployment structure, with one project for

each deployable module (respectively the EAR, EJB-jar, and WAR

modules).

You’ll notice that the deployment model is similar to the traditional

J2EE’s. But it was simplified, starting with the descriptor files, most

of which are now optional or much simpler. For example, though

NetBeans creates a JPM-ejb/Configuration Files/MANIFEST.MF and fills

jc
p.

or
g/

en
/js

r/d
et

ai
l?i

d=
2�

� Java EE 5
specification.

in Action with

2� N NetBeans Magazine

En
te

rp
ri

se
 D

ev
el

op
m

en
t

its Class-Path directive, this is often unnecessary. A Java EE 5 con-

tainer will add all JARs inside an EAR to the classpath of all modules

of that EAR without a Class-Path directive. For this tutorial, you may

remove the MANIFEST.MF file.

Configuration by Exception

In Java EE 5, you can omit most configuration items for which the

container can reasonably guess a default value. This is clearly the

case of MANIFEST.MF/Class-Path.

Explicit configurations are still supported, both for compatibility

and for cases where defaults are not good enough. For instance, if

you need to force a specific class lookup order among several JARs,

or if you want each module to import only the subset of JARs it really

needs, then Class-Path is still your friend. But these scenarios should

be rather the exception than the rule.

Even the traditional ejb-jar.xml is now optional. Look inside

JPM-ejb/Configuration Files. You won’t find any EJB descriptor, not

even after creating EJBs. On the other hand, you may still need pro-

prietary descriptors. For example, with SJSAS/Glassfish, the JPM/

Configuration Files/sun-application.xml file is required for settings such

as security role mappings. As it turns out, proprietary settings can-

not be moved from descriptors to code annotations. This is techni-

cally possible, but not a good idea. Annotations live in the source

code, and proprietary annotations would break portability.

Notice that the Configuration by Exception feature is not the same

as the tool-supported defaults we’re more familiar with. For exam-

ple, even with J2EE 1.4, NetBeans won’t require that you write the

ejb-jar.xml descriptor by hand. It provides a visual editor, and the

wizards and editor provide default settings,

e.g. Transaction Type=Container for all EJBs.

But the container still requires the XML de-

scriptor with all these settings written down

explicitly, thus polluting your projects with

additional files and redundant settings, and

making its maintenance harder.

Additionally, Java EE defaults are often

much smarter than simple fixed values for

missing properties. The automatic genera-

tion of classpaths is one example of non-

trivial default logic. A more sophisticated

example is DDL generation for persistent

entities.

Implementing the
Persistent Entities

Let’s start coding the JPM-ejb project,

starting with the persistent entities. The

application needs only three: Platform, JSR

and Package. These will be persisted by

the Java Persistence API (JPA).

The J2EE platform has been blamed for

requiring a heavy load of bureaucratic

artifacts even for simple tasks, so even

a three-entity design like ours would be

bloated with Entity Beans’ home and bean

interfaces, lifecycle methods and descrip-

tors. Not to mention code that’s not re-

quired (and not generated by IDEs) but is

often needed in practice: a layer of POJOs

to expose the Entity Beans to the outside

world, DAOs to encapsulate the use of that

code and convert between Entity Beans

and POJOs, a Service Locator to provide

resources like JNDI contexts, and so on.

This violates what I call Complexity

Scalability. Simple problems should

produce simple code, even if the frame-

work supports much harder requirements

like distributed transactions, clustering,

Figure 1.
Creating

the Java EE
projects.

A 1A

Second Edition N 25

Java EE 5 in Action with NetBeans

declarative security and other high-end

features of EJB. A good framework is “pay

as you go”, not requiring any code or con-

figuration that’s not really necessary. As a

corollary, a great framework will allow even

complex requirements to map to relatively

simple code: the bookkeeping overhead,

measured as a proportion of the “useful”

lines of code, should scale linearly.

So, if a very simple artifact (like a persis-

tent entity) can be programmed with 30

lines of code and 3 lines of overhead (like

descriptor, annotation, external O/R map-

ping, implementation of API interfaces, or

equivalent), then the framework’s overhead

is 10% and its complexity scalability looks

good – since a simple task is performed

with low overhead. For a much more com-

plex artifact, like a thousand-line persis-

tent class with many relationships, if the

overhead is kept at 10% (100 lines), the

complexity scalability is good; if it drops

proportionally, e.g. to 3% (30 lines), it’s

awesome.

It’s an interesting exercise to evaluate

APIs and frameworks by this criterion. Take

Hibernate, for example. The framework is

regarded as easy to program, but its base

overhead is high. The mapping files for

“dumb” persistent classes (with no busi-

ness logic) are often more complex than

the classes themselves, because there’s

no default logic at all. Every property and

relationship, however trivial, must be ex-

plicitly mapped, and the mapping is highly

redundant with the code. The same holds

for Spring applications. These often con-

tain so much XML metadata that one won-

ders how this is any easier than keeping

the same information in Java code. (Note

that I’m looking only at ease of program-

ming, not flexibility or other factors.)

In traditional J2EE, of course, we have the worst of the two

worlds: an Entity Bean requires both a lot of code and a great

deal of metadata. And its overhead scales linearly at best: complex

apps require increased amounts of settings – for example, lots

of resource references from beans to other beans, data sources,

queues etc. – and the framework does nothing to avoid the need

to declare settings explicitly. Thus complex apps easily end up with

numerous, long descriptors.

The Persistence Unit

Before we can create any persistent entity, the JPA requires defini-

tion of a Persistence Unit. A P.U. is a set of JPA configurations (in

other words, a descriptor). From the JPM-ejb project, run New>File/

Folder>Persistence>Persistence Unit (Figure 2).

The only interesting option here is Persistence Provider: for SJSAS

or GlassFish, select TopLink(default). TopLink is an O/R mapping

product from Oracle, but its Essentials version is open source. Users

of other application servers may have to select a different provider.

NetBeans comes preconfigured also for Hibernate and KODO.

You can also ignore your application server’s default JPA provider and install
a different one like Hibernate in SJSAS. This is a big advantage of Java EE 5: JPA
supports “pluggable” persistence providers, instead of forcing you to go with each
server’s built-in implementation like in EJB/CMP. The loosely-coupled design of JPA
goes even further: you can use it in Java SE (without an application server), and you
can make the Persistent Unit descriptor refer to external proprietary descriptors,
like Hibernate’s .hbm files. This helps immensely in migrating legacy code.
NetBeans supports this flexibility by offering multiple providers, and allowing you
to configure new providers if necessary.

The resulting Configuration Files/persistence.xml file is a minimal-

ist descriptor, only mandatory because it’s the only way to specify

“global” properties like the persistence provider.

You could fill persistence.xml with the names of all persistent

E

Figure 2.
Creating a
Persistence
Unit.

A2A

26 N NetBeans Magazine

En
te

rp
ri

se
 D

ev
el

op
m

en
t

classes, but this is not normally needed, as the default behavior is to

automatically find all such classes (which is always good enough if

your EJB module contains a single P.U.). Finally, the persistence.xml

could include detailed mapping information, but this is also optional

because we can do all the mapping with code annotations (or even

more easily with default JPA behaviors).

The Platform entity

From the JPM-ejb project, select New>Entity Class. This brings

up the dialog shown in Figure 3. Make Class Name = Platform,

Package = jpm.entity and Primary Key Type = String. This wizard

will generate the code in Listing 1. This is simply a POJO, but let’s

consider some important facts:

 The class uses some JPA annotations: @Entity makes it a

persistent entity, @Id selects the attribute used for the primary

key (PK), and @GeneratedValue declares that the value for this PK

should be generated automatically.

The entity must offer a default constructor, and JavaBeans-style

getters and setters for its persistent attributes or relationships.

Only the code in boldface is mandatory. The rest – hashCode(),

equals(), toString(), @Override annotations, implementation of

Serializable – is just bonus from NetBeans. They are good program-

ming practices, but not required by the JPA. We’ll omit most of this

non-required code to simplify future listings. The exception is imple-

ments Serializable: this is not required by the JPA but is necessary

in our application because we want to transfer the entity objects

through (possibly remote) EJB calls.

The entities will double as DTOs (data transfer objects)1. In fact,

one of the first advantages noticed when moving from a traditional

ORM tool to a POJO-based one is that there’s no need to write redun-

dant POJOs / Value Objects / DTOs. You also don’t need any code

to convert between persistent and non-persistent objects, nor the

structure (like the DAO pattern) to keep all that code organized.

JPA only requires two kinds of classes to be serializable: classes that map
composite PKs (with two or more columns), and the classes of attributes you may
want to map to a LOB column. Anyway, you’re better off if you follow the best practice
that all POJOs should be serializable.

The New Entity wizard always generates the @GeneratedKey anno-

tation, but our application uses only natural keys, so you must also

E

delete this annotation from the id attribute.

In fact, @GeneratedKey is illegal here be-

cause only numeric PKs can be auto-gener-

ated.

The entity’s hashCode() and equals() methods
are not necessary because the JPA will rely only on
the PK for identification and hashing of entities. But
if you use a custom class as primary key (which is
required to support multi-column keys), your PK class
must provide correct implementations of hashCode()
and equals().

JSR and Package entities

Using the same New Entity wizard, cre-

ate two new classes: JSR (Primary Key

Type = int) and Package (Primary key type

= String). In the generated code, start by

deleting the @GeneratedKey annotations.

Next, rename the id attributes of these two

classes to JSR.number and Package.name,

respectively. Rename the getter and set-

ters accordingly too.

You will notice that NetBeans balks at

the new attribute names, showing a warn-

ing marker in the source editor with the

hover message “The column name of the

persistent field is a SQL-99 keyword”. Yes,

too bad – number and name are reserved

SQL keywords, and this can cause prob-

lems in the generated tables because the

JPA engine will map each attribute to a col-

umn with the same name, by default. Fix

this by adding @Column annotations, e.g.

@Column(name=”package_name”) to the

name attribute, which will remove the warn-

ings.

Relationships

Our Platform entity has a many-to-many re-

lationship with the JSR entity (for example,

JSR-224, the JAX-WS API, is part of both

E

1 Remember, the term

DTO implies a role:

objects that can be

transferred through a

specific middleware;

whereas POJO implies

structure: objects whose

implementation does not

depend on specific APIs.

F

Second Edition N 27

Java EE 5 in Action with NetBeansJava EE 5 in Action with NetBeans

Java EE 5 and Java SE 6). Likewise, JSR

has a one-to-many by-value aggregation re-

lationship with Package. Both relationships

are bidirectional.

Start declaring a List<JSR> jsrs attri-

bute in Platform. Again NetBeans will show

a warning: “The multi-valued entity relation

is not defined”. If you left-click the attribute

name or select the warning marker and

right-click, NetBeans will offer two correc-

tions for the problem. Select Create bidi-

rectional “ManyToOne” relationship. This

shows the wizard in Figure 4.

A bidirectional relationship requires that

the entity in the other end, JSR, point back

to Platform. Accept the Create new field

option and Name = platforms. You must

add the getters and setters manually for

the new Platform.jsrs and JSR.

platforms relationships. It’s use-

ful also to have a constructor

that receives only the PK and

another receiving all attributes.

The result should be close to

Listing 2, where are highlight-

ed the parts introduced after

3A

Listing 1. Original code emitted for the Platform entity class (generated comments omitted).B�

package jpm.entity;

import java.io.Serializable;
import javax.persistence.*;

@Entity
public class Platform implements Serializable {
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private String id;
 public Platform() {
 }
 public String getId() {
 return this.id;
 }
 public void setId(String id) {
 this.id = id;
 }
 @Override
 public int hashCode() {
 int hash = 0;
 hash += (this.id != null ? this.id.hashCode() : 0);
 return hash;
 }
 @Override
 public boolean equals(Object object) {
 if (!(object instanceof Platform)) {
 return false;
 }
 Platform other = (Platform)object;
 if (this.id != other.id && (this.id == null || !this.id.equals(other.id))) return false;
 return true;
 }
 @Override
 public String toString() {
 return “jpm.entity.Platform[id=” + id + “]”;
 }
}

Figure 3.
Creating
an Entity
Class.

A

28 N NetBeans Magazine

En
te

rp
ri

se
 D

ev
el

op
m

en
t

creating the original entity code skeleton.

Note that the relationship wizard annotates Platform.jsrs with

@ManyToMany, and the new JSR.platforms with @ManyToMany(

mappedBy=”jsrs”). This mappedBy property is intended to avoid am-

biguities, should Platform contain multiple collections whose element-

type is JSR. In our code this is not the case, so you could get rid of

that mappedBy, unless you think it makes the code easier to read (in

this case, you could add mappedBy=”platforms” to Platform.jsrs’s an-

notation).

Now you can finish the JSR class by creating another bidirectional

relationship with Package. This relationship will have a OneToMany

cardinality, so JSR will have an attribute of type List<Package> but

Package will only need a simple reference to a JSR. Listings 3 and 4

show the final code for these classes. I added a couple of tweaks to

the relationship annotations (which will be explained later).

Testing the Deployment

The application’s persistent entities are

complete, so let’s test them. In the JPM

project run Deploy project. In a few sec-

onds you should see messages reporting

success in the console windows.

The deployment operation will also cre-

ate the necessary tables, because we have

set the Persistence Unit’s Table Generation

Strategy to Drop and Create (or Create). You

can check this by connecting to the project’s

data source. If you’re using the recommend-

ed JavaDB sample database in SJSAS, this

will be predefined in Runtime>Databases>

jdbc:derby://localhost:1527/sample [app

on APP]. Just run this node’s Connect com-

mand, log in with the password app, and you’ll

see the created tables. Notice, in particular,

that an associative table, PLATFORM_JSR, is

created to map the ManyToMany relationship

between Platform and JSR.

Annotations: Intelligence
and Limitations

As this article intends also to make a criti-

cal review of Java EE 5’s ease-of-use fea-

tures, we can’t stop here, implying that all

persistence-related work will always be as

easy as in our simple example.

Many developers starting to use annota-

tion-enabled APIs think that the new APIs

just shuffle things around – metadata that

used to be written in XML descriptors is

Figure 4.
Creating a

relationship.

A �A

Listing 2. The complete Platform class.B�

package jpm.entity;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.persistence.*;
import static javax.persistence.FetchType.*;
import static javax.persistence.CascadeType.*;

@Entity
public class Platform implements Serializable
{
 @Id
 private String id;
 @ManyToMany(fetch=EAGER, cascade={
 MERGE, PERSIST, REFRESH})
 private List<JSR> jsrs;
 public Platform () {
 }
 public Platform (String id) {
 setId(id);
 }
 public Platform (String id, JSR... jsrs) {
 this(id);
 setJsrs(new ArrayList<JSR>(Arrays.asList(jsrs)));
 }
 public String getId () {
 return this.id;
 }
 public void setId (String id) {
 this.id = id;
 }
 public List<JSR> getJsrs () {
 return jsrs;
 }
 public void setJsrs (List<JSR> jsrs) {
 this.jsrs = jsrs;
 }
}

Second Edition N 29

Java EE 5 in Action with NetBeans

now written in code annotations but

they have to be written just like before,

right?

Not really. As you can see in our ex-

ample, we don’t have to create annota-

tions for all metadata previously in de-

scriptors. For example, there are no an-

notations declaring that JSR.description

is a persistent property, nor declaring

the mapped table for each entity. And

we only needed two @Column annota-

tions for attributes whose names would

map to illegal SQL identifiers. We could

have been more verbose, writing code

like:

@Entity
@Table(name=”T_PLATFORM”, schema=”JPM”)
public class Platform implements Serializable {
 ...
 @Column(name=”PK_ID”, nullable=false,
 length=512).
 private String id;
 ...

But these annotations are all optional.

If they are missing, the JPA will look at

the names and types of classes and

attributes, so a class named Platform

becomes a table named PLATFORM; a

String attribute becomes a VARCHAR

column, and so on. (If you want an

entity class to contain an attribute not

mapped to any column, tag it with the

@Transient annotation).

In principle, a framework based in
descriptors, like EJB 2.1 or Hibernate, could
also infer default configurations from the
application classes. But the tight coupling of
code and annotations, plus the availability
of standard and built-in APIs and tools to
manipulate annotated classes, make this
strategy more robust, efficient and easy to
implement.

E

Our sample application is also simplified by completely automatic

DDL generation. Even if you have to write some annotations detailing

types, table and column names, nullability and other properties, you

Listing 3. The JSR class.B�

package jpm.entity;

import java.io.Serializable;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import javax.persistence.*;
import static javax.persistence.FetchType.*;
import static javax.persistence.CascadeType.*;

@Entity
public class JSR implements Serializable
{
 @Id
 @Column(name=”num”)
 private int number;
 private String description;
 @ManyToMany(mappedBy=”jsrs”)
 private List<Platform> platforms;
 @OneToMany(fetch=EAGER, cascade=ALL)
 private List<Package> packages;
 public JSR () {
 }
 public JSR (int id) {
 setNumber(id);
 }
 public JSR (
 int id, String description, Package... packages) {
 this(id);
 setDescription(description);
 setPackages(new ArrayList<Package>(
 Arrays.asList(packages)));
 }
 public int getNumber () {
 return this.number;
 }
 public void setNumber (int number) {
 this.number = number;
 }
 public String getDescription () {
 return description;
 }
 public void setDescription (String description) {
 this.description = description;
 }
 public List<Platform> getPlatforms () {
 return platforms;
 }
 public void setPlatforms (List<Platform> platforms) {
 this.platforms = platforms;
 }
 public List<Package> getPackages () {
 return packages;
 }
 public void setPackages (List<Package> packages) {
 this.packages = packages;
 if (packages != null) for (
 Package p: packages) p.setJsr(this);
 }
}

30 N NetBeans Magazine

En
te

rp
ri

se
 D

ev
el

op
m

en
t

never have to collect these pieces into a CREATE TABLE statement.

Thanks to automatic schema generation and SJSAS’s embedded

JavaDB database, we could write the whole app without even know-

ing that a relational database is being used! These features allow you

to go far in your coding before you start worrying about “real-world”

issues.

From Hello World to the Real World

Now, how realistic is the persistence code in this tutorial? In real

applications you often have to comply with strict rules for database

schemas; you may have to use legacy tables, or follow a style guide-

line that says something like “all tables should have the prefix ‘T_’”.

In the average case, you’ll be forced to tag every entity class with

a @Table annotation, and every property with @Column or related

annotations (@JoinColumn and @JoinedColumns, not used in this

article). In the worst case, you may have to give up on the DDL

generation feature, for example because your CREATE TABLE state-

ment must be highly tuned with fine-grained (and usually proprietary)

clauses, like physical allocation or partitioning options.

So in the worst case, our entity classes may be relatively polluted

by many annotations, or else we’ll have to

write DDLs and manually keep them in sync

with the classes. But this doesn’t mean the

JPA’s default behaviors are useless, but

only that you pay as you go. The JPA (and

other annotation-enabled APIs in Java EE 5)

requires a programming effort that’s pro-

portional to the complexity of the problem

being solved, and not artificially inflated by

bookkeeping artifacts that must be written

whether you need them or not.

Implementing the
Session Bean

Now that we’re done with persistence, the

next step is to create a Session Bean that

exposes methods to manipulate and query

the persistent entities.

From the JPM-ejb project, run New>Session

Bean. Make EJB name=JavaPlatformManager

and Package=business. Accept defaults

for Session Type=Stateless and Create

Interface=Local, but check Create Interface

=Remote. The wizard will create the skel-

etal sources for the Session Bean. These

include the class JavaPlatformManagerBean,

and the interfaces JavaPlatformManagerLo-

cal and JavaPlatformManagerRemote. You’ll

just need to fill the blanks to obtain the

code in Listings 5 and 6.

Listing 5 shows the local interface for

the JavaPlatformManager bean. We have a

@Local annotation, but we don’t need to

extend the interface EJBLocalObject any-

more. So we have a POJI (Plain Old Java

Interface).

The JavaPlatformManagerRemote inter-

face (not listed) is identical, except that

@Local is replaced by @Remote. When

you have both local and remote interfaces

2 Using a single

Java interface and

annotating it with both

@Local and @Remote

could be even easier,

but EJB 3.0 does not

support this further

simplification.

F

Listing 4. The Package class.B�

package jpm.entity;

import java.io.Serializable;
import javax.persistence.*;

@Entity
public class Package implements Serializable
{
 @Id
 @Column(name=”package_name”)
 private String name;
 @ManyToOne
 private JSR jsr;
 public Package () {
 }
 public Package (String name) {
 setName(name);
 }
 public String getName () {
 return this.name;
 }
 public void setName (String name) {
 this.name = name;
 }
 public JSR getJsr () {
 return jsr;
 }
 public void setJsr (JSR jsr) {
 this.jsr = jsr;
 }
}

Second Edition N 31

Java EE 5 in Action with NetBeansJava EE 5 in Action with NetBeans

for a Session Bean, EJB 3.0 allows you to

refactor all common methods to another

interface, which is extended by both the

Local and the Remote interfaces2. This is a

big improvement from EJB 2.x, where this

refactoring and type unification was impos-

sible because the remote interface was re-

quired to declare all methods with throws

RemoteException (EJB 2.0: 7.10.5) but the

local interface shouldn’t use this exception

(EJB 2.0: 7.10.7, 18.3.8, 18.6).

Listing 6 is the full implementation of

our Stateless Session Bean, qualified as

such by the @Stateless annota-

tion. Notice how this class imple-

ments both the local and remote

interfaces. In EJB 3.0, we finally

have the complete strong-typing

that EJB has lacked since its

first version.

Now let’s analyze the bean

implementation. The @Persis-

tenceContext annotation does

dependency injection for the

EntityManager, a JPA object that

stands behind a Persistence

Unit. When the JavaPlatform-

ManagerBean class is instan-

tiated by the container, the

EntityManager em attribute will

be initialized before any method

can be invoked.

The method listPlatforms() runs

a query that returns all Platform

objects that were found in the da-

tabase. These objects will have

their jsrs collections populated,

because we added the option

fetch = EAGER to the relation-

ship’s annotation. The EAGER op-

Listing 5. The Session Bean’s Local interface.B�

package jpm.session;

import java.util.List;
import javax.ejb.Local;
import jpm.entity.Platform;

@Local
public interface JavaPlatformManagerLocal
 extends JavaPlatformManager {
 void createPlatform (Platform plat);
 List<Platform> listPlatforms ();
}

Listing 6. The Session Bean’s implementation.B�

package jpm.session;

import java.util.List;
import javax.ejb.Stateless;
import javax.persistence.*;
import jpm.entity.Platform;

@Stateless
public class JavaPlatformManagerBean
 implements jpm.session.JavaPlatformManagerRemote, jpm.session.
 JavaPlatformManagerLocal
{
 @PersistenceContext private EntityManager em;
 public void createPlatform (Platform plat) {
 em.merge(plat);
 }
 public List<Platform> listPlatforms () {
 return em.createQuery(
 “select p from Platform p”).getResultList();
 }
}

Java EE 5 SDK/
SJSAS, the Java
EE 5 Reference
Implementa-
tion.

32 N NetBeans Magazine

En
te

rp
ri

se
 D

ev
el

op
m

en
t

32 N NetBeans Magazine

tion in our example, forces a Platform entity’s associated JSRs to be

read when the Platform is read (possibly through a single query with an

outer join, for better performance – a critical optimization if you need

the associated objects most of the time you need the parent object).

Likewise, the JSR.packages collections will also come initialized.

JPA versus EJB

The fetch = EAGER option is also important for correctness in the

example application, because we return the Platform objects through

a (possibly remote) EJB invocation. Entity instances associated with

an EntityManager are managed by the JPA. If we used fetch = LAZY

(the default), the query could return Platform objects with uninitialized

jsrs collections. These would be populated on demand, upon first

invocation of getJsrs(), but this only works for the original, JPA-man-

aged collections.

When you transfer these objects through an EJB call, the applica-

tion at the other side of the call receives different objects (recon-

structed through cloning or serialization/deserialization). The new

objects are not bound to an EntityManager. So when the receiver

invokes getJsrs(), the JPA engine won’t do its magic of intercepting

the call and fetching the collection on demand. In fact, the receiver

will often be an application – like our JPM-war – that doesn’t con-

tain a persistence unit, and hasn’t even access to the entities’ data

source.

This issue is well-known to users of other POJO-based ORMs like

Hibernate, and the solution is the same: eager fetching. (And just like

in Hibernate, instead of tagging the relationship with a fetch option

that affects all loads, you can write queries with a FETCH JOIN clause

that gives finer control over when this loading strategy should be

used.)

Who moved my lifecycle?

Just like for JPA, the “pay as you go” rule

also holds for programming EJB 3.0 compo-

nents. For example, our session bean didn’t

need to implement any of the traditional life-

cycle methods, such as ejbActivate(). But

that does not mean that lifecycle control is

gone from Java EE. You can still hook into

events like creation or activation, but these

are now specified by annotations rather

than interfaces. For example:

@PostActivate
public void postActivate (InvocationContext ctx)
{
 // Actions to execute after the activation
}

Annotations are finer-grained than inter-

faces like SessionBean: you can implement

only one of the lifecycle methods, ignoring

all others.

Differently from the JPA entities, however,

when programming EJBs you’ll find that

most optional methods and annotations are

rarely necessary, even in large, real-world

applications. In my experience with good

old J2EE, I rarely had to implement any of

these lifecycle methods (well, if you don’t

count paranoid-logging implementations

that just report “Bean XYZ was Activated”).

Figure 5.
The Web

GUI.

A 5A

in Hibernate, instead of tagging the relationship with a fetch option

that affects all loads, you can write queries with a FETCH JOIN clause

that gives finer control over when this loading strategy should be that gives finer control over when this loading strategy should be

these lifecycle methods (well, if you don’t

count paranoid-logging implementations

that just report “

5A

Second Edition N 33

Java EE 5 in Action with NetBeansJava EE 5 in Action with NetBeans

Listing 7. The Web GUI’s view implementation, index.jsp.B�

<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>
<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>

<html>
<head>
 <title>Java Platform Manager</title>
</head>
<body>
 <f:view>
 <h:form id=”CreateTestData”>
 <h:commandButton value=”Create Java SE data” action=”#{JPMClient.createJavaSE}”/>
 <h:commandButton value=”Create Java EE data” action=”#{JPMClient.createJavaEE}”/>
 </h:form>
 <h:dataTable value=”#{JPMClient.allPlatforms}” var=”platform” border=”1”>
 <h:column>
 <f:facet name=”header”>
 <h:outputText value=”ID”/>
 </f:facet>
 <h:outputText value=”#{platform.id}”/>
 </h:column>
 <h:column>
 <f:facet name=”header”>
 <h:outputText value=”JSRs”/>
 </f:facet>
 <h:dataTable value=”#{platform.jsrs}” var=”jsr” border=”1”>
 <h:column>
 <f:facet name=”header”>
 <h:outputText value=”ID”/>
 </f:facet>
 <h:outputText value=”#{jsr.number}”/>
 </h:column>
 <h:column>
 <f:facet name=”header”>
 <h:outputText value=”Description”/>
 </f:facet>
 <h:outputText value=”#{jsr.description}”/>
 </h:column>
 <h:column>
 <f:facet name=”header”>
 <h:outputText value=”Packages”/>
 </f:facet>
 <h:dataTable value=”#{jsr.packages}” var=”pack” border=”0”>
 <h:column>
 <h:outputText value=”#{pack.name}”/>
 </h:column>
 </h:dataTable>
 </h:column>
 </h:dataTable>
 </h:column>
 </h:dataTable>
 </f:view>
</body>
</html>

So the EJB 3.0 programming model re-

sults in much tighter code, even for real-

istic applications.

Implementing the
Web client

Our application’s back-end is ready. All

that’s missing is a GUI. I’m not much of a

GUI programmer, but life has taught me that

most people won’t believe my code does

anything useful otherwise, so I’ll provide a sim-

ple web GUI with the subproject JPM-war.

Start by configuring the NetBeans project

to enable JSF. In the JPM-war project’s prop-

erties page, select Frameworks>Add, and

pick JavaServer Faces. This will populate the

project with the minimum required configura-

tions (including sample JSPs we won’t use;

delete those).

The Web GUI contains a single JSP that allows

gl
as

sf
is

h.
de

v.j
av

a.
ne

t Project
GlassFish.

3� N NetBeans Magazine

En
te

rp
ri

se
 D

ev
el

op
m

en
t

you to create sample Platform objects, and shows the ones already pres-

ent in the database. Listing 7 shows the source for this JSP, which is

built with JSF component taglibs. Figure 5 shows the page in action.

The JSP requires a Managed Bean – a POJO that is registered in

the WEB-INF/faces-config.xml descriptor, so JSF-based pages can

access the bean’s properties and invoke their methods. Create it

with New>File/Folder>Web>JSF Managed Bean; set Class Name to

JPMClient and Package to jpm.web, accepting other defaults. This

bean will provide the following services to our JSP:

The property allPlatforms returns all Platforms (including child

JSR objects and Packages), that the page will dump as nested HTML

tables with JSF’s <h:dataTable> components.

The methods createJavaSE() and createJavaEE() are event han-

dlers for JSF’s <h:commandButton> component’s action events.

Each of these buttons triggers the insertion of one sample Platform

object in the database (after which the page will be updated).

Listing 8 shows a simple controller implementation. There’s no

need of JNDI code to look up the Session Bean: just annotate it with

@EJB, and dependency injection will do the rest. You don’t even

have to handle RemoteException, so the invocations to this EJB are

straightforward even though we’re using a

remote interface.

Looking again at Listing 6, check out the

implementation of the EJB’s createPlatform()

method. You only have to pass the Platform

object to EntityManager.persist(). The child

JSR and Package objects are persisted by

reachability. This happens because we de-

clared the relationship Platform.jsrs with

the option cascade = {MERGE, PERSIST,

REFRESH}, and JSR.packages with cascade

= ALL.

The cascade rule indicates which persis-

tence operations are propagated by reach-

ability to associated objects. For Platform.

jsrs we used MERGE (synchronization of the

object in memory with persistent records),

PERSIST (creation) and REFRESH (reloading

of persistent state to the object in memo-

ry). For JSR.packages we used ALL, which

combines all the former with DELETE (dele-

Listing 8. The Managed Bean.B�

package jpm.web;

import java.util.*;
import javax.ejb.EJB;
import jpm.entity.JSR;
import jpm.entity.Platform;
import jpm.entity.Package;
import jpm.session.JavaPlatformManagerRemote;

public class JPMClient {
 @EJB private JavaPlatformManagerRemote jpm;
 public void createJavaSE () {
 jpm.createPlatform(new Platform(“Java SE 5”,
 new JSR(176, “Java SE 5 Release Contents”,
 new Package(“java.lang”), new Package(“java.util”), new Package(“java.sql”)),
 new JSR(166, “Concurrency Utilities”, new Package(“java.util.concurrent”))));
 }
 public void createJavaEE () {
 jpm.createPlatform(new Platform(“Java EE 5”,
 new JSR(270, “Java EE 5 Release Contents”),
 new JSR(220, “EJB 3.0”, new Package(“javax.ejb”))));
 }
 public List<Platform> getAllPlatforms () {
 return jpm.listPlatforms();
 }
}

Second Edition N 35

Java EE 5 in Action with NetBeans

C
Osvaldo Pinali
Doederlein
(opinali@
gmail.com)
is a software
engineer and
consultant,
working with
Java since
1.0beta. An
independent
expert for the JCP,
he has served for
JSR-175 (Java
SE 5), and is
the Technology
Architect for
Visionnaire
Informatica,
holding a MSc in
Object Oriented
Software
Engineering.
Osvaldo is a
contributing
editor for Java
Magazine and
blogs at weblogs.
java.net/blog/
opinali.

tion of the persistent data).

The default is not to cascade any opera-

tion. You should of course use the most

appropriate option for each kind of rela-

tionship. Here, Platform↔JSR is a simple

association, so you could remove a JSR

from a Platform without destroying the

JSR, which is an independent entity (there

are some JSRs that are part of multiple

Platforms, and others that aren’t part of

any). But JSR↔Package is an aggregation

by value. If you delete a JSR, its Packages

should be deleted too.

Testing the complete application

Redeploy the application and load the

following URL in your browser: http://

localhost/JPM-war/faces/index.jsp. (The

URL will be different if you’ve installed the

application server to another HTTP port

than 80 or used a different name for the

JPM-war project). Click both buttons; after

each click a new Platform will be inserted

and displayed in the updated page. Don’t

click any button twice, as this would cause

a PK violation in the database.

Our job is not done, however, before

running the Verify project command on

all projects. This submits each project

to a massive number of Java EE-specific

validations (in the results window I recom-

mend selecting Display = Failures and

Warnings only). Make sure you’re clean on

these validations to ensure both correct-

ness and portability.

Look ma, no JNDI!

You may have noticed that we not only

avoided the JNDI APIs, but also didn’t even

have to specify JNDI names. This is because EJB 3.0 generates

default JNDI names for all beans and even for resource references

that are implicit in dependency injection annotations like @EJB.

You can ignore these defaults and force explicit JNDI names;

for example, @Stateless(name=”ejb/session/JPM”) and

@EJB(name=”ejb/session/JPM”). But once again EJB 3.0 default

behavior here is widely applicable. I’ve seen few EJB applications

in which JNDI names are complex enough as not to allow use of

Java EE 5 defaults. For example, for the JPMClient.jpm resource

reference, the system will generate the default JNDI name java:

comp/env/jpm.web.JPMClient/jpm, which, by combining the fully-

qualified class name and field name, should be unique enough not

to cause clashes.

Conclusions
Java EE 5 is a major ease-of-programming release, built around

many novel design ideas: configuration by exception, POJO-oriented

programming, annotation-driven APIs, dependency injection, a

state-of-the-art persistency API, and a streamlined component

model without hard-line rules like throwing RemoteException.

Nevertheless, Java EE is still a large, complex framework with

a boatload of features – and good IDE support still makes a big

difference. NetBeans 5.5 offers a full range of Java EE-specific

support: code-generation wizards; visual descriptor editors; code

completion, validation and automatic fixes for annotations; tight

integration with application servers and building of Java EE de-

ployment packages, as well as JSP debugging, support for both

Struts and JSF, and many useful utilities like database browsing

or HTTP monitoring. And we didn’t even get started with the really

advanced features, like SOA/BPEL tools in the Enterprise Pack. All

these features come out-of-the-box, without need of dealing with

third-party plug-ins.

The recent advances in the Java EE platform and the NetBeans

IDE should not only make enterprise-grade development simpler,

but also easier to learn and more incremental. Many tedious and

error-prone tasks of the past are now gone, have been rational-

ized, or are highly automated by powerful IDE support. This trans-

lates directly to higher productivity for all developers and a gentler

learning curve for beginners.

Create, consume and
deploy basic web
services productively
using NetBeans
Milan Kuchtiak

T
his article illustrates how a web

service can be created and

tested as a NetBeans standard

Java Project. The new NetBeans

5.5 integrated support for JAX-

WS 2.0 enables you to easily create and con-

sume web services.

Creating the web service
Start NetBeans 5.5, then create a

new Java Application project and name

it “GeometricalWS”. In the project’s Proper-

ties dialog select the Libraries category and

add “JAX-WS 2.0” (see Figure 1). This step

JAVA SE
WEB
SERVICES

Second Edition N 37

Java SE Web Services

is necessary only if you’re using Java SE 5

or lower. Java SE 6 already includes the JAX-

WS APIs.

Now create a Java class named

“CircleFunctions” with the code shown in

Listing 1. The @WebService annotation

makes the class a web service. The other

annotations declare the web service’s op-

erations and their parameters, influencing

the automatic generation of a WSDL docu-

ment for this class.

Using the javax.xml.ws.Endpoint.publish()

method, the web service can be deployed

to a simple web server provided by the

JAX-WS runtime. Update the project’s Main

class with the code from Listing 2. Notice that the publish() method

requires the URL address for the web service and an instance of the

CircleFunction class. The latter will be invoked to serve requests.

Run the application. The message in the output window will notify

you that the web service was published successfully:

Web service was published successfully.
WSDL URL: http://localhost:8765/GeometricalWS/CircleFunctions?WSDL

To check that the web service was really published, launch your

web browser and open the web service URL: http://localhost:8765/

GeometricalWS/CircleFunctions?WSDL. The browser should show a

WSDL file.

Steps to create a Client
Developing a web service client with NetBeans 5.5 is even simpler.

Listing 1. The CircleFunctions class, a full web service implementation.B�

package geometricalws;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebService;
import javax.jws.soap.SOAPBinding;

@WebService(name=”Circle”, serviceName=”CircleService”, portName=”CirclePort”)
@SOAPBinding(style=SOAPBinding.Style.RPC)
public class CircleFunctions {

 @WebMethod(operationName=”area”)
 public double getArea(@WebParam(name=”r”) double r) {
 return Math.PI * (r * r);
 }

 @WebMethod(operationName=”circumference”)
 public double getCircumference(@WebParam(name=”r”) double r) {
 return 2 * Math.PI * r;
 }
}

Figure 1.
Adding JAX-WS
support to a
common Java
project (only
necessary with Java
SE 5).

A
1A

ja
va

.su
n.

co
m

/ja
va

ee
/

do
wn

lo
ad

s/
in

de
x.j

sp Java EE 5
SDK/SJSAS,
Java EE 5’s
Reference
Implementa-
tion.

bl
og

s.s
un

.c
om

/p
bl

ah
a/

en
try

/
de

ve
lo

pi
ng

_w
eb

_s
er

vi
ce

s_
fo

r_
m

us
ta

ng Petr Blaha’s
blog:
Developing
Web services
for Mustang
in Netbeans.

JAVA SE
WEB
SERVICES

W
eb

 S
er

vi
ce

s

38 N NetBeans Magazine

W
eb

 S
er

vi
ce

s

Create another Java Application project

and name it (say) “ClientProject”. If you’re

using Java SE 5, add the JAX-WS 2.0 li-

brary to the project, as before.

Right-click on the project and choose

New>Web Service Client. Then fill the

WSDL URL field with the URL for the web

service we just published (see Figure 2).

Also set the package name for the client

artifacts (these are Java classes which will

be generated from the WSDL); I used “cir-

cle.client”. Click Finish, and a node named

CircleFunctions should be created under

Web Service References.

Open Main.java in the source editor,

expand Web Service References and lo-

cate the node CircleFunctions-CircleSer-

vice-CirclePort-area. Then drag it to the

editor inside the main() method in the

Main class. NetBeans will generate code

that invokes that operation (see Figure

3). Next, change the value for the web

service operation argument (r). Listing 3

contains the finished source (after tweak-

ing the generated code a little). Finally,

run the client project. For r = 10.0, the

following message should appear in the

output:

Listing 2. The Main class, a full web service server.B�

package geometricalws;

import javax.xml.ws.Endpoint;

public class Main {
 public static void main (String[] args) {
 String wsAddress = “http://localhost:8765/GeometricalWS/CircleFunctions”;
 Endpoint.publish(wsAddress, new CircleFunctions());
 System.out.println(“Web service was published successfully.\n”+
 “WSDL URL: “ + wsAddress + “?WSDL”);

 // Keep the local web server running until the process is killed
 while (Thread.currentThread().isAlive()) try {
 Thread.sleep(10000);
 } catch (InterruptedException ex) {}
 }
}

Figure 2.
Creating a

web service
client from

its live WSDL
document.

A

ja
va

.su
n.

co
m

/d
ev

el
op

er
/

te
ch

ni
ca

lA
rti

cl
es

/J2
SE

/ja
x_

ws
_2Robert

Eckstein
and Rajiv
Mordani’s

article about
JAX-WS 2.0

With the
Java SE 6
Platform.

2A

3A
Figure 3.

Creating the
web service

client invocation
interactively.

A

ww
w-

12
8.

ib
m

.c
om

/d
ev

el
op

er
wo

rk
s/

we
bs

er
vi

ce
s/

lib
ra

ry
/w

s-
wh

ic
hw

sd
l/Article com-

paring var-
ious (SOAP)

binding
styles.

Second Edition N 39

Java SE Web Services

C
Milan Kuchtiak
(milan.kuchtiak@
sun.com) has
worked six years for
Sun Microsystems
in the NetBeans
team, currently on
the IDE support for
Web application
development and
Web Services (JAX-
RPC and JAX-WS).

Result = 314.1592653589793

Deploying the service
in a Java EE container

As we’ve seen up to now, a Java EE applica-

tion server is not required to bring up a web

service. But what if we had to make the ser-

vice available in a Java EE container? We can

just create a “wrapper” Web application that

reuses all code written for our Java SE app.

Start by creating a Web app in NetBeans:

File|New Project>Web>Web Application.

Then set its target server to Sun Java

System Application Server (if asked). Go

to Properties>Libraries, click Add Proj-

ect and select the root directory of the

GeometricalWS project, as in Figure 4.

Deploy the web application to the

container, with the project’s Deploy Project

action. If you open SJSAS’s admin console,

the Circle web service should be among

the listed web services (Figure 5).

The Test button allows you to test the web

service from the admin console (Figure 6).

After invoking an operation, you can see its

request and response.

Conclusions
In this tutorial, we created a web service

with just a few lines of web-service spe-

cific code (like annotations in the service

implementation and publishing in the main

class). Then we created a client without

manually writing any code – just by using

NetBeans’ wizards and drag-and-drop fea-

tures. Finally, we deployed the same web

service in a Java EE server, again not hav-

ing to write additional code. This shows

how you can develop web services that are

reusable both in Java SE and Java EE envi-

ronments.

Listing 3. The client project’s Main class.B�

package clientproject;

import circle.client.Circle;
import circle.client.CircleService;

public class Main {
 public static void main(String[] args) {
 try { // Call Web Service Operation
 Circle port =
 new CircleService().getCirclePort();
 double r = 10.0;
 double result = port.area(r);
 System.out.println(“Result = “+ result);
 } catch (Exception ex) {
 // TODO handle custom exceptions here
 }
 }
}

�A

5A

6A

Figure 4.
Creating a Web
application that
depends on the web
service project.

A

Figure 5.
Inspecting the web
service, deployed
as a Java EE web
application in SJSAS.

A

Figure 5.
Testing the web
service with SJSAS’s
automatic test page.

A

Open-Source
UML Modeling
Learn to use the NetBeans UML Modeling Project
by reverse engineering a complete Java application

Fernando Lozano

Second Edition N �1

Java EE 5 in Action with NetBeans

Open-Source
UML Modeling

T
he UML Modeling Project

(uml.netbeans.org), which

started as a part of the

Enterprise Pack is now a

separate download provid-

ing full UML support in NetBeans IDE. This

article showcases NetBeans’ UML sup-

port, going through a case study where

we reverse engineer a working Java ap-

plication, highlighting the IDE’s modeling

features in the process.

UML and the Java developer
If you are an Agile Modeling advocate

like me, your first thought might be “why

should I care about UML support in a Java

IDE?” Today, leading software engineer

authors and even UML early adopters like

Martin Fowler and Scott Ambler stand by

“modeling on a napkin”: using models only

as sketches before building the “real soft-

ware” (i.e. the source code). Indeed some

developers today dismiss modeling as un-

necessary and bureaucratic.

However, UML modeling will be useful

at some point to most Java developers,

whether they’re involved in enterprise,

desktop or mobile projects. Modeling has

its role even in radical XP development,

as no significant piece of software can be

built with a minimum level of quality with-

out some planning and design. “Traveling

light” doesn’t mean you should not model

at all, but that you should do all the model-

ing that adds value to your project.

Not all Java developers are Agile Model-

ing converts though. Many prefer to em-

brace the MDA paradigm, at the other end

of the modeling spectrum. In Model-Driven

Architecture the idea is that your models

will generate most if not all source code,

and MDA tools like AndroMDA (andromda.org) have been quite suc-

cessful in the Java arena. MDA advocates will be happy to find that

the NetBeans UML modules provide many features absent from

other open-source CASE tools, and even come with an extensible

Design Pattern Catalog, including not only classical GoF patterns

but also many Java EE Blueprints out-of-the-box.

Installing NetBeans UML Modeling
UML Modeling is available as a feature from the NetBeans Update

Center (accessible through the IDE’s Tools menu). At the time of

writing, you had to check the NetBeans Update Center Beta (see

Figure 1) to download it, but readers will probably find the UML

Modeling Project on the stable NetBeans Update Center when this

edition is out.

In NetBeans, select UML Modeling in the Features category and

click Add (Figure 2). You’ll see there are many modules to install

Figure 2.
Selecting the
UML Modeling
feature

A2A

Figure 1.
Selecting the
Update Center
for modules
still in beta

A1A

um
l.n

et
be

an
s.o

rg NetBeans
UML Modeling
Project web
site

�2 N NetBeans Magazine

U
M

L
M

od
el

in
g

(Figure 3). After you agree to a few licenses, NetBeans starts

downloading. When the downloads are done, click Finish to install

the modules (see Figure 4). (If you are not the only user of your

development workstation, be sure to check the Global option for

all modules.) Finally, after restarting NetBeans you’ll find new UML

project templates and configuration options in the IDE.

UML features overview
The NetBeans UML Modeling Project supports ten standard UML

diagrams: Use Case, Class, Collaboration, Sequence, Activity,

State, Component, Deployment, Object and Robustness.

Even though they’re not displayed in the New Diagram wizard,

Object diagrams can be built as a Collaboration diagram, and

Robustness diagrams as Class diagrams (the standard stereotype

icons for Boundary, Control and Entity are provided).

Other features worth noticing are:

Java code generation – Java pack-

ages, classes and interfaces can be gen-

erated directly from the UML model;

Round-trip engineering – if a UML

project is linked to a Java project, chang-

es in code are automatically reflected in

the model;

Ability to nest diagrams and pack-

ages inside other model elements;

A Design Center, which provides an

extensible design pattern catalog;

Rich-text documentation for model

elements created directly inside the IDE;

Operations and attributes can be

shown in class elements using either

standard UML notation or Java syntax;

Generation of model reports in Java-

Doc format.

The Case Study
We’ll use the reverse engineering of an ex-

isting desktop application as a case study

for exploring NetBeans’ UML features. Dur-

ing the process, we also show hints that

are useful for forward-engineering projects

(from model to source). Readers are not

expected to be proficient in UML modeling

to follow this tutorial, but basic modeling

knowledge will be helpful.

The application used for the case study was

created for NetBeans Magazine Issue One.

It’s a simple Task Manager, similar to those

provided in a PIM suite. The “Todo” applica-

tion has two windows: a task list (Figure 5)

and a task editing form (Figure 6). The task

list window displays tasks ordered either

by priority or by due date, and it can filter

out completed tasks. Tasks are colored to

indicate completed, late or alert status. The

complete application is available as a down-

load in the NetBeans Magazine’s website.

Figure 3.
Modules to

install for the
UML Mod-

eling feature

A 3A

Figure 4.
Click Finish

to install
all UML

modeling
modules

A �A

um
l.o

rgOfficial
OMG site

dedicated to
UML, where

you can
download

UML specifi-
cations and

find about
other UML
CASE tools

and tutorials

Second Edition N �3

Java EE 5 in Action with NetBeans

Th
e

Un
ifi

ed
 P

ro
ce

ss
 E

xp
la

in
ed

, K
en

da
ll

Sc
ot

t How to use
UML as part
of a tradition-
al software
development
process

Our application is quite simple, so re-

verse engineering it won’t be a complex

task. Even so, it is complex enough for

us to demonstrate many of NetBeans’

UML features. We’ll work through the ap-

plication as if we didn’t know how it was

designed, using UML diagrams to under-

stand its structure and design ideas.

Creating the
reverse-engineering
project

Installing the UML modeling project adds

a new project category to NetBeans, with

three project templates (Figure 7).

Platform-Independent Model projects use

standard UML notation for class attributes

and operations, and do no code genera-

tion. This template is useful in the initial

stages of the development process, when

all models are “conceptual” and not “phys-

ical”.

Java-Platform Model projects use Java

syntax for class attributes and operations

and must be linked to a Java Application

or Library project. NetBeans will keep

both projects in sync: If you edit the code,

the UML model will change to reflect new

or changed classes, attributes and opera-

tions, and if you change the UML model,

the source code will be modified accord-

ingly.

We’ll use the third project template,

which populates a Java-Platform Model

from an existing Java project. Click the

New Project icon and choose the UML cat-

egory. Then select Java-Platform Model by

Reverse Engineering a Java Project. Accept

the defaults for the next step, except for

selecting the Todo Java project; then click

Finish (see Figure 8). NetBeans will scan

the sources and populate the project with model elements for Java

packages, classes and interfaces. (Note that for large projects

this may take a long time and eat up a large amount of memory.)

If you experience OutOfMemory errors while reverse engineering, you can
edit the file etc/netbeans.conf inside your NetBeans installation and change
the value for –Xmx, increasing the maximum heap size from 128M to 256M or
bigger.

While scanning, the IDE shows a log window detailing the prog-

ress for each source file. When the scanning finishes, click Done to

dismiss this window, and you’ll end up with a new UML project as

shown in Figure 9.

Anatomy of a UML Project
A UML project is organized into three containers: Model, Diagrams

and Imported Elements.

The Model container holds all elements created as part of the

model. Elements can be Classes, Interfaces, Packages, Actors,

E

Figure 6.
The task form
window

A

Figure 5.
The task list
window

A

6A

5A

�� N NetBeans Magazine

U
M

L
M

od
el

in
g

Diagrams, Notes, Data Types, As-

sociations and anything else that can

be defined as part of the UML project

itself.

The Diagrams container provides

quick access to all diagrams created

as part of the model. You may be surprised to see there are no

diagrams in our reverse-engineering project. That’s because a UML

model consists of model elements, which may or may not be shown

as diagrams. Every UML diagram is a partial view of a model, and

you’ll need to choose which details to show and which to leave

out. So NetBeans populates the reverse-engineered model with ele-

ments but leaves the diagram creation to the developer.

Finally, the Imported Elements container allows a model to refer-

ence elements created as part of another model (i.e. another UML

Project). This is useful for organizing large models as a set of UML

projects; for example one for business logic and another for GUI

elements. It’s also useful for reusing model elements in various proj-

ects. And it allows for a Platform-independent UML Model that’s

referenced by a Java Platform UML Model. This way, you can start

with conceptual modeling and then move

on to physical modeling, and keep track

of which physical elements realize which

conceptual elements1.

Exploring the
reverse-engineered model

Expand the Model container and you’ll see

that it includes both application-specific

and standard Java packages and classes

(Figure 10). As a UML model cannot ref-

erence anything it does not contain or im-

port, NetBeans creates model elements

for Java SE classes. (An alternative would

be having a UML model with the Java SE

API and import elements from it.)

Sometimes NetBeans will create dupli-

cates, like the many List<Task> elements

you see in Figure 10. It’s better to leave

them as they are, as removing them may

delete attributes from the Java project.

Generating a class
diagram

The Todo application has only a few

classes, all of which are inside the todo

package and its subpackages. It would be

possible to create a “complete” Class Dia-

gram, but for most real-world applications

the resulting diagram would be very hard

to read and therefore mostly useless. It’s

usually better to start by creating a class

diagram for each package, and then check

the dependencies between packages or

between a few important classes.

Let’s start with the todo.model package.

Select all its elements, right click on the

selection and choose Create Diagram from

Selected Elements from the context menu.

Then choose Class Diagram in the wizard

(see Figure 11).

Figure 7.
UML project

templates

A

9A

Figure 8.
Creating a

UML Project
for reverse-

engineer-
ing a Java

Project

A 8A

7A

1 A «realize» UML

relationship between

two model elements

states that one ele-

ment represents an

abstract concept in

the problem domain,

while the related

element represents

a software construct

implementing that

concept, making it

“physical” in the soft-

ware’s point of view.

F

Figure 9.
The new UML

project

A

Second Edition N �5

Java EE 5 in Action with NetBeans

Note that the “Namespace” combobox

lists what seem to be all the packages

in the current model. In fact, every UML

package (and most other UML elements)

corresponds to a UML Namespace. You

can use namespaces for any kind of mod-

el element. Leaving the class diagram for

the todo.model package inside the todo::

model namespace makes the diagram

easier to find. It also makes it clear that

the diagram refers to elements of that

package.

The resulting diagram is shown in

Figure 12. Note that NetBeans is pretty

smart in laying out its elements. But even

with an optimized layout and a small set

of classes, the generated diagram is quite

large. The fact is there’s too much detail,

especially if we just want to understand

the relationships between elements in the

package. Fortunately you can hide most

of the excess information.

A good start is hiding all private fields and

methods (Figure 13). Right-click on each

class and select Compartment>Customize,

then uncheck the entire “Attributes” com-

partment or expand it to select specific fields to hide. After hiding

an element’s details, you can right-click Resize Element to Con-

tents to optimally resize it (Figure 14). (You can also hide/show a

compartment by double-clicking the compartment separators.)

After these changes, the diagram will probably need some rear-

rangement. NetBeans can do this using four different auto-layouts,

accessible through the last four buttons in the Diagram Editor tool-

bar (see Figure 15). Click the first button, for Hierarchical Layout.

This is the default layout NetBeans uses when generating a dia-

gram from model elements. The results are shown in Figure 16.

Inferring meaning from
a generated diagram

Notice I deleted the List<Task> element from the diagram, as

well as all exception classes. When deleting an element, NetBeans

gives you the choice of removing it from the diagram only, or from

the diagram and the model (see Figure 17).

I’ve shown only public methods for Parameters and TaskManager,

Figure 10.
The new UML
project, showing
a few model
elements

A10A

11A
Figure 11.
Creating a
class diagram
from model
elements

A

m
ar

tin
fo

wl
er

.c
om

/a
rti

cl
es

.h
tm

l
ob

je
ct

m
en

to
r.c

om
/re

so
ur

ce
s/

pu
bl

is
he

dA
rti

cl
es

.h
tm

l
th

ou
gh

tw
or

ks
.c

om
/b

yli
ne

-a
rti

cl
es

.h
tm

l
Articles
about UML,
modeling,
application
design and
agile mod-
eling

�6 N NetBeans Magazine

U
M

L
M

od
el

in
g

and only attributes (all private) for

the Task class. That’s because I as-

sume Task is a DTO (Data Transfer

Obect) or Value Object, and show-

ing accessor methods wouldn’t help

in understanding the class. But for

Parameters the attributes do not map

exactly to the getters, so I assume

the class has some intelligence of

its own. I also assume TaskManager

is a DAO class, and that it uses Pa-

rameters to get JDBC connection

parameters.

As you can see, reverse-engineer-

ing a model from Java code involves

a lot of assumptions and common

sense. You’ll always be making edu-

cated guesses about the role played

by each element in the application,

and using these decisions to create

your diagrams to best effect.

Enhancing the
generated model

Based on the reverse engineering

done so far, we have identified the use

of common design patterns in the ap-

plication. UML provides a nice feature

to make these explicit in a model: ste-

reotypes2. A few standard stereotypes

are defined in the UML standard, and

you can create new ones freely. We’ll

create the «VO» and «DTO» stereotypes so

our interpretation of the purpose of each

class is explicit in the model.

To add a stereotype to a class, use the

properties window, as shown in Figure

18. An editor allows you to select existing

stereotypes or create new ones. Note that

an element can have many stereotypes, al-

though this is not common.

Figure 12.
The NetBeans-

generated
model for all

elements
inside the todo.

model name-
space.

A

Figure 13.
Hiding details

from classes

A

12A

13A

Figure 14.
Optimally resiz-

ing a class

A 1�A

UM
L

Us
er

 G
ui

de
, G

ra
dy

 B
oo

ch
, J

am
es

Ru

m
ba

ug
h,

 Iv
ar

 Ja
co

bs
onThe UML

standard,
by its

creators

Second Edition N �7

Java EE 5 in Action with NetBeans

Now, if our conclusions are OK, the model

generated by NetBeans is not entirely cor-

rect. There is no part/whole relationship

between TaskManager and Parameters, so

they should not be connected by an ag-

gregation. This should be changed to a

simple association. Right-click on the ag-

gregation (it should turn blue) and select

Transform>Remove Aggregate from the

context menu (see Figure 19).

I fact, you should expect NetBeans (or

any other UML CASE tool) to generate a

few “incorrect” associations when reverse

engineering Java sources. That’s because

UML associations have much richer se-

mantics than Java references. All struc-

tural associations between Java classes

originate from attributes referencing other

classes/interfaces (or collections and ar-

rays of these). Similarly to most other pro-

gramming languages, Java does not dis-

tinguish between composites, aggregates

and simple associations. Also, a reference

to an instance of another class could be

there just for convenience, and not be a

structural association at all.

Now, if TaskManager is a DAO class,

responsible for persisting instances of

Task, it’s clear that these two classes are

strongly coupled. Changes in Task fields

will probably require changes in TaskMan-

ager’s behavior. This can be made explicit

in a UML diagram by a Dependency re-

lationship, which is available in the UML

Class Diagram Palette in the Dependen-

cies category. Click on the Dependency

tool, then on TaskManager in the diagram

and on Task (also in the diagram). This

creates a dependency connecting the

two classes. The end result is shown in

Figure 20.

Generating Dependency Diagrams
From our understanding so far, it looks like TaskManager is the

main class of the todo.model package. But does our model show

everything important about this package and about TaskManager?

NetBeans helps us check this by generating a dependency dia-

gram, a type of class diagram that shows everything that’s refer-

enced by a given class. Right-click a class in either the Projects

window or the class diagram and select Generate Dependency Dia-

gram. The diagram generated for TaskManager is shown in Figure

21. It’s created inside the namespace defined by the class itself,

so it shows in the Projects window as a child node of the class.

You can see that the only elements in the diagram that are not in

our todo.model class diagram come from the Java SE APIs. You’d

Figure 17.
By default, deleting
an element from
a diagram doesn’t
remove it from the
model

A17A

Figure 16.
Class diagram
for the todo.
model package,
after hiding
details, deleting
elements and
applying an
auto-layout

A16A

Figure 15.
Auto-layout diagram
buttons from the
NetBeans diagram
editor toolbar

A
15A

2 A UML stereotype is

a label you can add to

elements to highlight

specific semantics.

You can think of a ster-

eotype as a subclass

or role of a kind of

model element.

F

�8 N NetBeans Magazine

U
M

L
M

od
el

in
g

get similar results with other classes from the same package, so it’s

safe to assume the class diagram built for the package has enough

information.

The dependency diagram for TaskManager is an example of a “dis-

posable diagram”. There’s no value in keeping it around after using

it to verify that other related diagrams have enough information. You

should delete the diagram from the model, and also the dependency

diagrams for other classes in the same package (if you generated

them). The key is not to pollute your model with useless diagrams.

NetBeans-generated dependency diagrams don’t take into account classes
referenced inside a method body. Only attribute and method declarations are
followed, so there will be cases when you’ll need to inspect the code to find
additional dependencies and add them manually.

The todo.controller package
The todo.controller package has only two classes. A class diagram

for this simple package would be of little use, but let’s see what a

dependency diagram tells us. Figure 22 shows the dependency

diagram for the ListEditTask class, already

“simplified” as we did with the todo.model

package class diagram.

Here we see many classes coming from

different packages. Either we have found a

crucial class for the application, or the ap-

plication design is a mess. Method signatures

may help us understand how these classes

are related to each other. They suggest ListE-

ditTasks is an event listener for both TaskList

and TaskForm. It looks like ListEditTasks reacts

to those events by calling TaskManager meth-

ods, acting as a workflow controller for the

application.

Note also that TaskList and TaskForm are the

two windows in the application. The fact that

both are connected to ListEditTasks strongly

suggests it’s the main controller class for the

application.

The dependency diagram for

CreateOpenTaskList shows connections to

TaskList and TaskManager, similar to the ones

from ListEditTasks. It seems CreateOpenTaskList

E

is the controller for some secondary usage

scenarios, so we should examine ListEdit-

Tasks the same way we did with TaskMan-

ager.

If we have found the main controller

class, the dependency diagrams for the

window classes should not add much new

information. Surprisingly, the dependency

diagrams for TaskList and TaskForm do not

show any connection with ListEditTasks. But

they do show a new connection with Action-

Figure 20.
Class diagram model

for the todo.model
package after chang-

ing associations
between elements.

Note the dependency
from TaskManager

to Task, and that the
association from
TaskManager to
Parameter is no

longer an aggrega-
tion. Note also the

stereotypes for Task-
Manager and Task.

A

Figure 19.
Transforming

an aggregation
into a simple

association

A 19A

Figure 18.
Adding a

stereotype to
a class

A 18A

20A

Second Edition N �9

Java EE 5 in Action with NetBeansJava EE 5 in Action with NetBeans

Support, which is a Swing ActionListener.

ListEditTasks is also an ActionListener, so

there may be some indirect connection

from the window classes to the main con-

troller class.

Event-driven programming is meant to

reduce coupling between classes, and it

succeeds so well that there’s no way, just

by analyzing Java method signatures and

attribute declara-

tions, to find a con-

nection from TaskList

(or TaskForm) to

ListEditTasks.

A diagram for the
application UI

Figure 23 shows what we’ve learnt (and guessed) so

far about the Todo application user interface. The diagram was

built by merging information from ListEditTasks, TaskList and Task-

Form dependency diagrams.

Starting with the ListEditTask dependency diagram, I added the

ActionSupport and Task by dragging these from the Projects window

to the diagram area. NetBeans automatically adds connections

to others elements in the diagram. Then I simplified the classes’

presentation, corrected associations and added new dependency

links, as done before for the todo.model package class diagram.

The finished diagram is more than just a ListEditTask dependen-

cies diagram, so I renamed it to CoreTodoDiagram and moved

it to the todo package. It gives us a pretty good picture of the

application structure, but

still doesn’t help understand-

ing how the ListEditTasks

class actually reacts to

user interface events from

TaskList and TaskForm. We

could guess ActionSupport

has a role in this, but so far

we don’t know exactly what

role. Perhaps it’s a utility

class that could be deleted

from the diagram…

The fact is, UML class

diagrams are good to show

static structure, but not dy-

namic behavior. Fortunately,

the UML provides other

diagrams that help us un-

derstand how an application

behaves at runtime.

Figure 22.
Dependency
Diagram for ListE-
ditTasks

A
22A

Figure 21.
Depend-
ency Diagram for
TaskManager

A21A

Ex
tre

m
e

Pr
og

ra
m

m
in

g
Ex

pl
ai

ne
d,

 K
en

t B
ec

k If you want to
use an Agile
Modeling
process
instead of a
“traditional”
one

50 N NetBeans Magazine

U
M

L
M

od
el

in
g

23A

Generating Sequence Diagrams
We’ve been working under the assumption that the window class-

es (TaskList and TaskForm) generate Swing Action events, which are

somehow dispatched by ListEditTasks. ListEditTasks should register

itself as an ActionListener for TaskList, and then TaskList should fire

Action events to ListEditTasks.

Note that ListEditTasks has only a constructor that receives a view

(ListTasks) and a model (the DAO class, TaskManager) as param-

eters. Looking at the constructor code in the source Java project

we can see this listener registration happening.

Who calls the ListEditTasks constructor? The application main()

method is a good candidate. Expand the todo.Main class node to

show the main() operation (UML calls “operation” what Java calls

“method”), then right-click and choose Reverse-Engineer operation.

In the wizard chose a Sequence Diagram and accept all defaults.

The result will be a new diagram node under the operation’s node.

Figure 24 shows the diagram that NetBeans creates.

An UML sequence diagram shows the message flow among a set

of objects during the execution of an oper-

ation. Note that it refers to class instances

and not to the classes themselves. A solid

arrow represents a message, that is, a

Java method call (in UML terms, an opera-

tion call). A dashed arrow is either a mes-

sage return or a “create” message, i.e. the

creation of a new object.

Again, the automatically generated dia-

gram comes with too much detail. Remov-

ing the args, length, err and System objects,

and moving the elements around should

solve this (see the result in Figure 25).

The diagram shows that main() just con-

structs instances of the classes we have

already identified as being the main ones

for the application, and that all are con-

nected by the ListEditTasks constructor. So

Figure 23.
Class diagram

for the Todo
application user

interface

A
bd

n.
bo

rla
nd

.c
om

/a
rti

cl
e/

0,
1�

10
,3

18
63

,0
0.

ht
m

l
sp

ar
xs

ys
te

m
s.c

om
.a

u/
UM

L_
Tu

to
ria

l.h
tmSome

freely
avail-

able UML
tutorials

Second Edition N 51

Java EE 5 in Action with NetBeans

far we’ve gleaned the same information

we had expressed in the class diagrams.

But it’s important to confirm our guesses.

The fact the main() operation creates

no instances of other classes, and that

it doesn’t call operations other than con-

structors and setVisible() for the TaskList

window, makes us confident of not miss-

ing any important class.

Interpreting
sequence diagrams

The main() method sequence diagram

shows connections made from ListE-

ditTasks to TaskManager and TaskList

(we’re ignoring the connections from

CreateOpenTaskList to TaskList and Pa-

rameters). But the diagram doesn’t show

connections going the other way, that is,

from TaskList to ListEditTasks to dispatch

Action events. We know a view class has

to send events to its controller, and that a

model class has no knowledge about its

controller – so there are no other missing

connections.

If you follow the code, you’ll see that the

ListEditTasks constructor calls TaskList.

addActionListener(), confirming that ListEditTasks handles Action

events generated by TaskList. This is the missing connection from

TaskList to ListEditTasks.

NetBeans won’t follow a nested class from one operation to

another. So the message addActionListener from ListEditTasks to

TaskList is missing in the sequence diagram. It’s helpful to add this

message manually, to get a complete picture of all connections

between the Todo application main classes.

NetBeans also won’t create a sequence diagram from multiple

operations (as it can from multiple classes). If it could, a sequence

diagram generated from both main() and the ListEditTasks con-

structor would show all connections that are being made. That’s

understandable, as a sequence diagram following nested calls

would probably be very big (how many levels down are enough?). It

would also probably create a diagram where one operation “sees”

the inner workings of others, violating OO encapsulation.

We still need a diagram showing event handling. We also need to

clarify the role ActionSupport plays in the Todo application. Again

looking at the code, we can see the window classes delegate all

Action event dispatching to the ActionSupport class. This is done

so the window classes themselves don’t have to manage multiple

event listeners. This way TaskList can send Action events to both

controller classes, ListEditTasks and CreateOpenTaskList.

By digging a little deeper into the code, we can see that each

button or menu item from the window classes provides a different

actionCommand string. The controller classes use this property to

know which operation was requested by the user and then execute

2�A
Figure 24.
Sequence dia-
gram generated
by NetBeans
for the main()
operation

A

Fu
nd

am
en

ta
ls

 o
f O

bj
ec

t-
Or

ie
nt

ed

De
si

gn
 in

 U
M

L,
 M

ei
lir

 P
ag

e-
Jo

ne
s About

UML
and OO
design

52 N NetBeans Magazine

U
M

L
M

od
el

in
g

26A

25A

U
M

L
M

od
el

in
g

25A

it. So they don’t need to know which Swing component

(from the window classes) generated which event.

This isolates the controller classes from the inter-

nal structure of the view (window) classes.

A hand-made diagram
We can’t fully automate reverse

engineering, but we can docu-

ment the knowledge gleaned

from the reverse-engineer-

ing process in the form

of UML diagrams, and

communicate it

more clearly to other developers. If you are

serious about reverse engineering applica-

tions, you’ll inevitably have to create some

diagrams on your own.

A “cross-level” sequence diagram is use-

ful in understanding complex interactions

among objects – like event handling for the

Todo application, which involves TaskList,

ListEditTask, ActionSupport and TaskMan-

ager. NetBeans makes it easy to create

such diagrams.

First, select the todo package, right-click

and select New Diagram. Choose Sequence

Figure 25.
Sequence

diagram for the
main() opera-

tion with excess
detail removed

A

Figure 26.
Sequence

diagram for
the event
handling
between
view and
controller

classes

A

it. So they don’t need to know which Swing component

(from the window classes) generated which event.

This isolates the controller classes from the inter-

We can’t fully automate reverse

engineering, but we can docu-

ment the knowledge gleaned

from the reverse-engineer-

ing process in the form

of UML diagrams, and

more clearly to other developers. If you are more clearly to other developers. If you are

serious about reverse engineering applica-serious about reverse engineering applica-

tions, you’ll inevitably have to create some tions, you’ll inevitably have to create some

diagrams on your own. diagrams on your own.

A “cross-level” sequence diagram is use-A “cross-level” sequence diagram is use-

ful in understanding complex interactions ful in understanding complex interactions

among objects – like event handling for the among objects – like event handling for the

Todo application, which involves Todo application, which involves TaskList,

ListEditTaskListEditTask, ActionSupport and TaskMan-

ager. NetBeans makes it easy to create . NetBeans makes it easy to create

such diagrams.such diagrams.

First, select the First, select the todo package, right-click

and select New Diagram. Choose Sequence

Second Edition N 53

Java EE 5 in Action with NetBeansJava EE 5 in Action with NetBeans

Diagram, and name it

ActionEventSequence.

From the Projects window,

drag the elements JButton (javax.

swing), ActionEvent (java.awt.event), Ac-

tionSupport (todo.view), ListEditTasks (todo.

control), TaskForm (todo.view), Task (todo.

model) and TaskManager (todo.model).

Connect these from left to right, using

either the Syncronous Message or the

Create Message from the Sequence Dia-

gram Palette. Then, for each message,

right-click it and select Operations from

the context menu to see all operations

supported by the message’s target.

The sequence of messages is create,

actionPerformed(), actionPerformed(),

getActionCommand(), getTask(), create,

isNewTask(), and finally addTask(). The

end result should be like Figure 26.

The diagram shows how the core class-

es collaborate to perform a user action.

As a sequence diagram should describe a

specific sequence of messages, we chose

the Save button (a JButton) from TaskForm

when it’s used to add a new task.

Clicking Save starts the sequence, and

the resulting event is routed by Action-

Support to ListEditTask, which queries the

actionCommand property from ActionEvent

object (e) for which operation to perform.

Then it asks the TaskForm for the updated

Task object, which is sent to the TaskMan-

ager to be saved to the database.

Although this sequence diagram was

created to describe a specific message

sequence (a click on the Save button)

C
Fernando Lozano
(fernando@lozano.eti.
br) is an independent
consultant and
has worked with
information systems
since 1991. He’s the
Community Leader of
the Linux Community
at Java.net, webmaster
for the Free Software
Foundation and
counselor to the
Linux Professional
Institute. Lozano helps
many open-source
projects and teaches
at undergraduate and
postgraduate college
courses. He’s also a
technical writer and
book author, as well as
Contributing Editor at
Java Magazine (Brazil)
and freelance writer
for other leading IT
publications.

it is represen-

tative of all other

Action events for the Todo

application. There’s no need to

build sequence diagrams for each remaining button or menu item.

If a developer understands this diagram and how the Save button

Action event is handled by the application, he can figure out how all

other Action events are handled.

This ends our case study. We now have a model rich enough so

any developer can understand and maintain the Todo application.

We could consider drawing other UML diagrams, like Use Case or

Deployment, but these would probably add little value in our case.

An important part of doing good modeling is knowing when to stop

modeling.

Conclusions
In the past, modeling was done using expensive proprietary tools

with steep learning curves. This prevented most development

teams to effectively use UML models and hindered adoption by

most small and medium shops. Modeling was performed mainly by

“Business Experts” and “System Analysts”, sometimes by a “Soft-

ware Architect”. And many of those never came close to real Java

source code. Also CASE tool developers were often unaware of

the state-of-the-art in enterprise software development in general

and the Java platform in particular.

All this is changing with the full open-source UML support in Net-

Beans. Having UML modeling seamlessly integrated in the IDE

encourages developers to use models and diagrams, improving

both communication between team members and the quality of

OO designs. The UML Modeling Project provides developers, from

Agile Modeling fans to MDA advocates, with a powerful toolset that

enables ubiquitous and effective modeling.

Introducing the

While NetBeans is a powerful IDE and platform all by
itself, companies adding new features and capabilities
via plug-in modules amplify the value to developers

Matt Volpi

5� N NetBeans Magazine

NetBeans
Strategic Partner
Program

A
s an open-source project, NetBeans relies on contributions

and feedback from the community to consistently meet the

needs and requirements of software developers in a number

of disciplines. Companies that have committed to support-

ing NetBeans by building plug-in modules and recommending

NetBeans to their developer communities now have a new set of benefits

for their contribution to the enhancement

and growth of NetBeans.

Program benefi ts
The NetBeans Strategic Partner Program

offers a unique set of technical and

Second Edition N 55Second Edition N 55

co-marketing benefits to qualifying com-

panies. Strategic Partners get access to

technical support, the opportunity to

sponsor and present at NetBeans events,

access to 4.5 million developers via the Sun

Developer Network, and NetBeans.org web,

e-mail properties and other co-marketing

opportunities. Strategic Partners are also

invited to exclusive briefings on NetBeans

plans and activities.

To qualify, Strategic Partners need only

meet the criteria of building a NetBeans

plug-in and/or recommending NetBeans

to a large external or internal developer

community. Individuals and companies

that use and endorse NetBeans are eligible

to become NetBeans Community Partners.

This provides a mention on the NetBeans.

org web site as well as usage of the Net-

Beans Community Partner logo.

Meet some of the
Strategic Partners

New Strategic Partners are joining the

program all the time and are featured on

the NetBeans web site. Here are some of

the companies that have already jumped

on the NetBeans bandwagon and are help-

ing NetBeans grow.

Sprint

Sprint Nextel (sprint.com) is one of the

largest U.S. Mobile operators and has

been a pioneer in bringing mobile Java

services to its business and consumer cus-

tomers. To help its application developer

community target its wide range of devices

in its portfolio, Sprint has worked with Sun

Microsystems to create a customized

version of NetBeans, NetBeans Mobility

Pack and the Sun Java Wireless Toolkit. This package, called the

Sprint Mobility IDE, is available from the Sprint Application Devel-

oper Program site.

InsiTech

InsiTech’s (insitechinc.com) emerging Java technology called XTT

is an application development framework for rapid creation of rich,

ultra-thin, Java interfaces. Solutions developed in XTT are distributed

applications that can be deployed and run without any modifications

from LAN to the Internet, on any operating system, and use a variety

of data sources (relational, object-oriented, multi-value, etc.). XTT is

a 100% pure Java application and plugs into the NetBeans IDE.

Sony Ericsson

Sony Ericsson (sonyericsson.com) is a top mobile device manufac-

turer and has collaborated with NetBeans around Java ME in a number

of areas. Developers targeting Sony Ericsson devices can use the Net-

Beans Mobility Pack and the Sony Ericsson SDK for the Java Platform

to create MIDP applications, as well as using Sony Ericsson’s new

Mobil JUnit testing utility. Additionally, developers targeting UIQ-based

Sony Ericsson smartphones can use the NetBeans Mobility Pack for

CDC to create Xlets and MIDlets for the CDC runtime.

TRIEMAX Software

TRIEMAX Software (triemax.com) is the manufacturer of Jalopy,

a source code formatter for the Java programming language. It

layouts any valid Java source code according to some widely con-

figurable rules allowing projects to meet a certain coding style with-

out putting a formatting burden on individual developers. Jalopy

includes a plug-in for the NetBeans IDE and aims to support the

widest range of coding styles and offers more than 400 distinct

configuration options accessible through a graphical customization

dialog, to let developers use their desired formatting output.

Conclusions
The above are just a taste of the many companies participating

in the NetBeans Strategic Partner Program. To read more about

the program, Strategic Partners, or apply for membership in ei-

ther the Strategic or Community Partner Programs, please visit

netbeans.org/community/partners.

C
Matt Volpi (matt.
volpi@sun.com) is the
Product Line Manager
for mobility tools at
Sun Microsystems
and is responsible
for the NetBeans
Mobility Pack.

Strategic Partner

Introducing the NetBeans Strategic Partner Program

Exploring NetBeans’ Visual Design
Capabilities to Create a BPEL Process
and a Composite Application

Sherry Barkodar

Designer
Kick Start

BPEL

Exploring NetBeans’ Visual Design
Capabilities to Create a BPEL Process
and a Composite Application

Exploring NetBeans’ Visual Design
Capabilities to Create a BPEL Process
and a Composite Application

Second Edition N 57

BPEL Designer Kick Start

T
his tutorial illustrates

deploying, executing and

testing a synchronous BPEL

process using NetBeans

5.5 with Enterprise Pack. A

synchronous BPEL process represents a

simple synchronous flow: it takes an input

message and sends that

message back synchro-

nously. A client starts the

synchronous process by

invoking a request-re-

sponse operation. After

invocation, the client is

blocked until the pro-

cess finishes and returns the result.

Confi guring the
environment

Before you can deploy your application,

the Sun Java System Application Server and

JBI runtime must be configured correctly

and running. To configure the environment:

Click the Runtime tab to open the

Runtime window, and expand the Servers

node.

If you have a default Enterprise Pack

installation the Servers node already con-

tains a Sun Java System Application Server

9 node. In the Runtime window, right-click

this node and choose Start. If the Start op-

tion is not available, the server is already

running and you can skip the next step.

Wait until a completion message

appears in the Output window (see

Figure 1). When the server is running,

the IDE displays a green arrow on the

Sun Java System Application Server 9 node.

1.

2.

3.

Sherry Barkodar

Creating the sample project
From the IDE’s main menu, choose File>New Project. In the

Categories list, select Samples>Service Oriented Architecture, and

then Synchronous BPEL Process (see Figure 2).

Click Next. In the Project Name field, type “SynchronousSample”

(this is the default value). Optionally in the Project Location field,

use Browse to select a different folder for the project files.

Figure 1.
A successful
server
startup.

A1A

2A
Figure 2.
Creating the
BPEL process

A

Figure 3.
Files in the
sample
application

A3A

B
P

E
L

&
 S

O
A

58 N NetBeans Magazine 58 N NetBeans Magazine

The Palette of BPEL elements is lo-

cated to the right of the Source Editor.

The Navigator window shows the

BPEL logical view of the BPEL process.

Exploring the WSDL Editor
The WSDL Editor enables you to cre-

ate and edit Web Services Description

Language (WSDL) files. It includes a Design

view and a Source view. To see the Design

View, in the Projects window double-click

the SynchronousSample.wsdl file. In this

view, the WSDL file appears as a tree com-

ponent where you can configure the file’s

elements and attributes (see Figure 5).

To see the Source View, click the Source

button. The underlying XML source code

appears, as shown in Figure 6.

Adding an If activity
In the Projects window, double-click on

SynchronousSample.bpel. The IDE displays

the SynchronousSample.bpel diagram in the

Design view. In the Source Editor, change

to the Design view (if you’re not there al-

ready). In the Structured Activities section

Figure 4.
Designing the

BPEL process

A 4A

Click Finish. The Projects window now contains two project

nodes: one for a BPEL project called SynchronousSample,

and one for a Composite Application project called

SynchronousSampleApplication.

Note that there is a broken reference in the

SynchronousSampleApplication node. This is expected. The

Composite Application has a dependency on the JBI Module. We’ll

resolve the broken reference later in the article, when we deploy

the project.

Exploring the BPEL Project
In the Projects window, expand the SynchronousSample node;

then expand Process Files. This node contains the following items

(see Figure 3):

SynchronousSample.bpel, the BPEL process

SynchronousSample.wsdl, the process web service

interface.

SynchronousSample.xsd, the schema file.

Double-click the SynchronousSample.bpel node (see Figure 4).

Notice the following:

The Source Editor has a tab for SynchronousSample.bpel.

The SynchronousSample diagram is shown in the Design

view. The Design view allows you to visually model a business

process. The BPEL Design tool automatically generates BPEL

code that corresponds to the visual design.

58 N NetBeans Magazine

Second Edition N 59

BPEL Designer Kick Start

Second Edition N 59

5A
Figure 5.
WSDL Editor
Design view

A

Figure 6.
WSDL Editor
Source view

A6A

7A
Figure 7.
Adding an If
activity

A

Second Edition N 59

B
P

E
L

&
 S

O
A

60 N NetBeans Magazine

of the Palette, select the If activity and drag it to the design area

between Start and Assign. The IDE provides visual cues showing

where you can drop the selection. This adds an If activity called If1

(see Figure 7).

In the Design view, click the new If1 activity. The BPEL Mapper

appears at the bottom of the IDE (see Figure 8). (If the BPEL Map-

per is not visible, choose Window>BPEL Mapper.) We’ll use the

BPEL Mapper to define the Boolean condition for the If. The sec-

tions at the top of the BPEL Mapper make up the Method Palette.

From the Method Palette, click Operator and select Equal

(). The Equal method appears in the middle portion of

the BPEL Mapper (the Editor). Click String and select String Literal

() from the drop-down list. The String Literal box

appears in the editor (you may need to drag it to the side). Type

“Hello World” in the String Literal and press Enter. Then move the

String Literal box and the Equal box to the middle of the editor

(see the current mapping in Figure 9).

Figure 10.
Completed

mapping

A 10A

9A

8A

Figure 9.
First step of

the mapping

A

Figure 8.
BPEL Mapper

window

A

Figure 11.
First Assign

activity

A 11A

In the left side of the BPEL Mapper, un-

der Variables, expand inputVar>inputType.

Drag paramA onto the any1 part of the

Equal method. Select the small square on

the right side of the String Literal box; then,

when the hand cursor is visible, drag a con-

necting line to the any2 part of the Equal

method. Finally, from the Equal method,

drag the return boolean section on to the

Result (in the rightmost part of the BPEL

Mapper).

Adding an
Assign Activity

In the Design view, drag the existing

Assign1 activity to the If1 activity. Place

the activity between the two large X icons

in the If1 activity area, as in Figure 11.

Open the Basic Activities section in the Pal-

ette and drag a new Assign activity to the

design area, placing it to the right of the

existing one (Figure 12).

Select the new Assign2 activity. From

the Method Palette of the Mapper, click on

Second Edition N 61

BPEL Designer Kick Start

Figure 12.
Adding a second
Assign activity

A12A

Figure 13.
Assign2
activity
mapping

A13A

16A

15A

14A

Figure 16.
Results for the
first test.

A

Figure 15.
Deployment
results for the
Composite
Application

A

Figure 14.
Adding a JBI
Module to the
Synchronous
Sample
Application

A

String and select concat (

) from the drop-down list. The concat

method appears in the editor. Double-

click the first field in the concat box

and type “Hello” followed by space,

in the first string. Then press Enter or

click outside the box.

In the left side of the Mapper, expand

inputVar>inputType. Drag paramA onto

the string2 part of the concat method,

the second field. On the right of the

Mapper, expand outputVar>resultType.

Drag the return string part from the

concat method onto the paramA under

outputVar>resultType. See Figure 13.

This concatenates the string Hello to

the input and copies the statement

into the output.

Deploying the project
Before you deploy the BPEL project,

you need to add the JBI module to the

deployment project. Deploying the

project makes the service assembly

available to the application server,

thus allowing its service units to be

run.

To add the JBI module, in the

Projects window, right-click the

SynchronousSampleAppl icat ion

project node and choose Add JBI

Module from the pop-up menu.

B
P

E
L

&
 S

O
A

62 N NetBeans Magazine

C
Sherry Barkodar
(sherry.barkodar@

sun.com) has
been with Sun

for 7 years, and
currently designs
and implements

Enterprise Pack
tutorials and

examples. She
holds an architect

degree from Tehran
University and a

MSCS degree from
SJSU. You can visit

her blog at blogs.
sun.com/barkodar.

Figure 18.
Results for the

second test.

A 18A

17A
Figure 17.

Confirmation
for saving

to an empty
Output.xml

A

Select the SynchronousSample project and click Add Project

JAR Files (see Figure 14). In the Projects window, expand the

SynchronousSampleApplication project node and then the JBI Mod-

ules node. Notice that a SynchronousSample.jar node has been

added.

To deploy the Composite Application, right-click the

SynchronousSampleApplication project node and choose Deploy

Project; then confirm the use of the SJSAS application server. You’ll

see a message like the one shown in Figure 15 in the Output window

(if the Output window is not visible, choose Window>Output).

Testing the composite application
You can enhance the Composite Application project by adding test

cases, binding to the operation, supplying input, and then using the

Tester.

In the Projects window, expand the SynchronousSampleApplication

project node, right-click the Test node, and choose New Test

Case from the context menu. The New Test Case wizard opens.

For Name, enter (say) “MyTestcase” and click Next. Expand

SynchronousSample-Process Files, select SynchronousSample.

wsdl and click Next.

Select operation1 and click Finish. Notice that in the project tree,

under Test, a new folder MyTestcase is created, containing two

files: Input and Output. Double-click Input and in the Body con-

tents replace <syn:paramA>?string?<syn:paramA> with <syn:

paramA>Sherry<syn:paramA>.

Then save the project.

Double-click Output.xml and no-

tice that before the test is run this

file is empty. Each time the test

is run, the current output is com-

pared to the contents of Output.

The Input will be copied to Output

when Output is empty.

Testing the
Synchronous
SampleApplication

In the Projects window, expand to

SynchronousSampleApplication>

Test>TestCase0. The TestCase0 node

contains two XML files: Input.xml and

Output.xml. Right-click the TestCase0 proj-

ect node and choose Run. A pass message

should be shown in the Output window (see

Figure 16).

Right-click the MyTestcase node, and

choose Run from the context menu. This

is a special case where the Output file is

empty, so the output is written to Output.

Before that, a confirmation dialog is dis-

played (Figure 17); click Yes. Notice the

failed message (Figure 18). Repeat the

last test. After the first run, the Output.xml

file is no longer empty, so its contents are

preserved and are not overwritten by the

new result. And the test passes.

Conclusions
In this tutorial, you’ve seen how to use

the NetBeans BPEL designer to create a

synchronous process, and how productive

developing, testing and deploying compos-

ite applications is with the new features in

the NetBeans Enterprise Pack.

