
Core NetBeans 6.0 Features
Know in depth what’s coming in the new release

Introducing C/C++ Pack
Leverage NetBeans for native development

The blueMarine Project
NetBeans Platform development in the real world

OpenOffice.org Integration
Create add-ons and components to interface with OOoProject Schliemann

Opening the IDE to other languages

Mobility Pack in Practice
Learn the basics and reduce device fragmentation

New UI Design Features
Upgrade your desktop productivity with NetBeans 6.0

Visual Web Development
Rapid web application design and implementation

May . 2007

Re

le
as

e
6.

0
. J

SF
 .

M
at

is
se

 .
C/

C+
+

 .
M

ob
ilit

y
. N

et
Be

an
s

Pl
at

fo
rm

 .
Sc

rip
tin

g
La

ng
ua

ge
s

magazine

Reach Out
with the IDE and Platform

nb03.indb 1 4/5/2007 20:29:08

Reaching Out

Here we are at another NetBeans Day – the largest one in history. NetBeans 6.0 is

coming, and the IDE and Platform teams are certainly keeping the rhythm, introduc-

ing new high-impact features and revamping traditional functionality at full throttle.

All with the help of an expanding and vibrant community that reaches five continents.

The first anniversary issue of NetBeans Magazine goes along with the IDE’s ever-widen-

ing scope. In eight in-depth articles you’ll see what’s upcoming in many areas and learn

how to best use what’s available today. We cover a lot of ground here: from native pro-

gramming with C/C++ to scripting language support and OpenOffice.org integration – to

mobile, Platform-based, and web development.

Strong competition in the Java ME arena is increasing demand for mobile productivity

and tool support, and that’s an area where NetBeans shines. You’ll see a fast-moving

introduction to the Mobility Pack, and learn how to develop for two very different devices

while using the same codebase. Here the IDE helps reduce device fragmentation through

the powerful project configurations feature.

The C/C++ Pack provides full native development support with IDE niceties like syn-

tax highlighting, code completion and more. Our open-source software specialist takes

you through all the necessary steps to get your environment ready for cross-platform

development with the Pack. He also tackles a typical scenario demonstrating how to cre-

ate a native library and integrate it with a Java application.

The Schliemann Project has been gathering a lot of attention lately, due to the power of

expansion it will bring to NetBeans. With a simple but expressive new language, you’ll be

able to add editor support for almost any scripting language. See how this works in an

article by a top NetBeans evangelist, giving a broad view that prepares you for what’s to

come in this young and promising project.

And what about the core Java IDE itself? We’ve got it covered with two articles that

explore the new features in NetBeans 6.0 in detail. Through the eyes of a language and

compiler specialist, you’ll learn what is behind the new code editor features and the IDE’s

extended refactoring support (both internal and Jackpot-based). Another article examines

the upcoming features in Release 6.0 for GUI development and related activities.

The NetBeans Platform is given plenty of space in this issue, with an article that delves

into the NetBeans extension APIs and shows how they were used to build and extend a

complex desktop application. The author writes about how his project benefited from a full

redesign to make use of Platform features; he also highlights how the growing maturity of

Swing components kept the project alive.

Additionally, we have a very practical article that demonstrates the main features avail-

able for visual web development with NetBeans, from the pen

of an experienced technology writer who has coauthored sev-

eral books in the Java Series. And you’ll learn straight from

the source about the brand new plugin module for building

OpenOffice.org and StarOffice extensions with NetBeans

and Java.

Happy coding!

Leonardo Galvao

magazine

Publisher & Editor-in-Chief
Leonardo Galvão
leonardo.galvao@gmail.com

Assistant Editor
Osvaldo Doederlein
opinali@gmail.com

Design and Layout
pH Design

Graphic Designers
Tarcísio Bannwart
Jaime Peters Jr
Tersis Zonato

Illustrator
Felipe Machado

Contributors
Anatole Wilson
Beth Stearns
Fabrizio Giudici
Fernando Lozano
Geertjan Wielenga
Kay Koll
Osvaldo Doederlein
Wade Chandler

Community Support
Robert Demmer
Bruno Souza
Geertjan Wielenga

NetBeans Magazine is
supported by NetBeans.org

Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States
and other countries.

Although every precaution has been taken in the preparation of
this magazine, the publisher assumes no responsibility for errors
or omissions, or for damages resulting from the use of
the information herein contained.

May . 2007

nb03.indb 2 4/5/2007 20:29:10

Issue Three N �

04

Contents
New Core
NetBeans 6.0
Features in Depth
Osvaldo Doederlein

From editing to browsing, to versioning,

building and profiling, there is great

news for everybody in the new

NetBeans release.

17

22

30

40

Schliemann: Integrating
Scripting Languages in
NetBeans 6.0
Geertjan Wielenga

See how a 19th century explorer called Heinrich

Schliemann is inspiring the IDE to become fluent

in many languages.

User Interface Design
in NetBeans 6.0
Wade Chandler

Beans Binding and Swing Application Frame-

work support, and features you’ve probably

been dreaming about having in your IDE

Write Once,
Deploy Anywhere
Anatole Wilson

Writing applications for mobile devices and

reducing device fragmentation with

NetBeans Mobility Pack

Swing and the
NetBeans Platform in

the real world
Fabrizio Giudici

See how the NetBeans Platform and

advanced Swing components have made it

easier to develop a complex desktop applica-

tion and the lessons learned in building it.

52

72

Introducing
NetBeans

C/C++ Pack
Fernando Lozano

Prepare your environment for cross-platform

C/C++ development with NetBeans, and put

the C/C++ Pack to work creating a

native library for Java applications

Visual Web
Application Design

with NetBeans
Beth Stearns

Exploring some of the many exciting

features for visual web application

design and implementation in NetBeans

OpenOffice.org
NetBeans Integration

Kay Koll

Using a new OpenOffice.org plugin module

to create, build, deploy and debug

OpenOffice.org/StarOffice extensions

and client applications

60

16 A New Handbook for
NetBeans Platform
Development
Dig into the Platform with the help

of three NetBeans veterans.

nb03.indb 3 4/5/2007 20:29:11

NetBeans

New features and improvements in the next
release of NetBeans make it a better IDE for
any kind of developer. From editing to browsing,
versioning, building, debugging, profiling or visual
design, there are great news for everybody.

New Core
Features in
Depth
Osvaldo Doederlein

6.0

nb03.indb 4 4/5/2007 20:29:19

Issue Three N �

NetBeans 6.0: New Core Features in Depth

NetBeans I
t’s that time again. A major, dot-

zero release of NetBeans will be

available soon – about a year and

a half after 5.0, which introduced

significant new features like the

Matisse GUI builder, and extensive

improvements in CVS integration, web

services and module development, to cite

but a few. In contrast, version 5.5 focused

outside the core IDE by supporting several

new Packs that increased NetBeans’ over-

all functionality to a level still unmatched

by any other open-source IDE. Now, is

NetBeans 6.0 worthy of the bump in the

major version number? You bet it is, and in

this article we’ll look at some of the most

important and interesting new features in

the core IDE.

Javac-powered
Let’s begin by looking not at an end-user

feature but at a core IDE technology that

provides the foundation for many enhance-

ments. Past releases of NetBeans, like

many other programming tools, contained

custom code to parse Java sources and

assist in code understanding and manipula-

tion tasks (like refactorings, hints and fixes,

outlining, etc). The result was sometimes

limited functionality: simple highlighting,

non-bulletproof refactorings, and the lack

of support for features like code comple-

tion everywhere Java code appears.

The obvious solution would be reusing the

mature technology of the javac compiler to

do all Java source processing. But javac was

not designed to support the requirements of

a modern IDE: it was written and tuned for

batch execution, and to accept as input full

compilation units, perform a complete com-

pilation and produce .class files as output.

IDEs have very different requirements, among which the most criti-

cal is working in memory only. Suppose that after each character

you type, the IDE wants to analyze the entire class again so it can

update syntax error indications, perform highlighting, and provide

other features that depend on the code structure. One option would

be to write the editor’s current content to a temporary file, invoke

javac and parse the resulting .class files. But this would be very

inefficient.

A much better solution is to call javac in the same process (as a

local library), then pass the current sources as an in-memory param-

eter and receive in return the data structures containing the same

information that would be present in the class files (which wouldn’t

need to be created). Up to Java SE 5, this solution would be pos-

sible, but only using the proprietary – and often unstable – internal

APIs of a Java compiler.

This situation changed with Java SE 6, which introduced JSR 199

(Java Compiler API) and JSR 269 (Pluggable Annotation Process-

ing API). The Java Compiler API enables tight and efficient integra-

tion with javac (and other Java source compilers), and JSR 269

– although initially designed for annotation processing – provides

a source-level equivalent of reflection metadata. Working together,

these new APIs allow IDEs and other tools to dig deeply into the

structural information that javac extracts from source code. Addi-

tionally, javac’s implementation was enhanced and tuned for embed-

ded and interactive use.

NetBeans was heavily updated to integrate with these new capa-

bilities, enabling many improvements in the IDE (discussed below).

The changes also promise future benefits: when Java SE 7 comes

out with a new set of language enhancements, you should expect

NetBeans’ toolset to catch up very fast.

A new editor
Common sense says no product can be perfect in everything it

does, but NetBeans is getting closer each day. Historically, Net-

Beans users have been proud of the IDE’s complete coverage of

Java platforms from ME to EE, its support for effective GUI building,

and its intuitive UI and open architecture. On the other hand, the IDE

lagged in certain areas, like in the code editor or refactoring. This

could put off programmers very focused in source code… types

who’ll pick emacs over visual designers any day. Well, these prob-

lems are no more with NetBeans 6.0.

6.0

Issue Three N �

ja
ck

po
t.n

et
be

an
s.o

rg The Jackpot
project.

ww
w.

ne
tb

ea
ns

.in
fo

/d
ow

nl
oa

ds
/d

ev
.p

hp NetBeans 6.0
development
builds.

nb03.indb 5 4/5/2007 20:29:24

Co
re

 ID
E

� N NetBeans Magazine

AST-based selection

Selecting words or lines is good enough for text editors, but when

working with sources you often need to work with ranges of text that

form coherent pieces of code. Say you want to copy all the code

inside a for loop body1 in order to paste it in another loop with similar

logic. Just place the cursor in any blank position inside the loop body,

press Alt+Shift+Up and you’re done. The editor selects the innermost

range of text that includes the cursor position, and delimits a node of

the source’s Abstract Syntax Tree.

The Java compiler (as do most compilers) parses source code into an
intermediary representation, which is structured as a tree. Each node in this data
structure (called an Abstract Syntax Tree) represents a code element: a class,
method, statement, block, identifier, operator, literal, etc. Though code processing
tools usually manipulate programs as ASTs, many use a simple parser that produces
only a basic tree. The “full” AST produced by a complete compiler like javac, which
is capable of semantic analysis and code generation, will contain very detailed and
reliable information about each node. For example, the node for an identifier holds
not only its name but also its type and its ”definite assignment” status (whether
the identifier is guaranteed to be initialized at a given point); it can even hold
its statically-calculated value (when applicable). Tools that work on top of a full
AST are much more powerful and reliable. The difference won’t be noticeable for
a simple selection feature, but it may be very significant for more sophisticated
functionality like refactorings.

E

Pressing Alt+Shift+Up again expands the

selection to the next outer node, in this case

the complete for statement; then a new key-

stroke may select the entire method, and so

forth. Alt+Shift+Down will retract the selection

to an inner node. Figure 1 shows this feature

being used to select a multi-line statement

easily and precisely. I bet you will quickly be

hooked on this feature and forget about all the

other selection shortcuts! There’s nothing like

a code editor that groks code, not text.

Semantic highlighter

The editor’s syntax highlighter was pro-

moted to a semantics-aware highlighter.

It can apply styles based not only on the

types of tokens (like identifiers, operators

or comments), but also based on different

meanings that akin tokens may have – for

instance, an identifier may be a class name

or a local variable name, a parameter, a

constant field, etc.

1 Depending on your
bracing style, this

may not be as easy
as selecting a few full
lines. There are many
other examples, like
selecting a complex

expression that spans
multiple lines.

Figure 1

Several new
editor features

in action.

A

Semantic
highlighting
(e.g.,
identifying
usages of
getImage(),
and static
variables in
italics)

Keyword
completion
at a
method’s
parameter
list.

Hierarchy view
(opened on
PaintCanvas)

AST-based
selection

nb03.indb 6 4/5/2007 20:29:25

Issue Three N �

NetBeans 6.0: New Core Features in Depth

One benefit of semantic highlighting is

that it helps you take extra care when as-

signing to static fields (since many thread-

safety and memory-leak bugs involve stat-

ics). Figure 1 shows this off; notice that

static fields (and references to these) ap-

pear in italics.

There are other powerful uses for the new

highlighting engine:

 Identifying usages – Select any identi-

fier, and the editor highlights all its uses

in the same compilation unit. Again,

Figure 1 exemplifies this: clicking on a

method name, all invocations to it are high-

lighted.

 Flagging “Smelly code” – The new editor

highlights unused variables and imports, as

well as usage of deprecated classes and

methods. You don’t need to perform a build

or run a code lint tool to detect these sim-

ple (but frequent) problems anymore.

 Exit and throw points – Selecting a

method’s return type will highlight all return

statements. Selecting an exception in the

method’s throws list will flag all throw’s of

that exception type. All invocations to other

methods that may throw the same excep-

tion are also flagged.

Better code completion

The bewildering amount of APIs you have

to use these days makes code completion

one of the most critical features of any

modern code editor. NetBeans 6.0 has

learned many new tricks here:

 Keyword completion – If you’ve just

typed a package declaration in a new source

file (for example), Alt+Space will bring only

the keywords that are legal in that position:

abstract, class, enum, final, import, inter-

face and public. Figure 1 shows another

example: after the opening parenthesis of a method declaration, the

preferred completions are all primitive types.

 Type-based variable names – Completing at “ConfigurationFile _”,

the editor will offer the variable names cf, configurationFile and file.

(I’m using “_” to represent the cursor position.)

 Generics-aware completions – When assigning a variable with a

generic type to a new expression, the editor will offer all compatible

types, including generic arguments. For example, at “Map<String,

Integer> m = new _”, code completion lists all implementations of

Map, each with the same <String, Integer> parameters.

 Annotation-aware completions – When completing after “@”,

you’ll be offered all the annotations that can be used in the given

scope. And if the selected annotation requires parameters the editor

will provide completions for these too.

 Passing parameters – At “x = m(_”, the top completions will be

values in scope that are compatible with m()’s first parameter. If

the method’s parameter names are available and there are variables

with similar names in scope, this is used to sort the completions

further. You’ll also be offered full completions with the parameter list

filled with those variables.

 Common constructors – When you invoke code completion with

the cursor positioned between class members, you’ll be offered to

create a constructor without arguments and one that receives initial

values for all fields (if these constructors don’t already exist).

 Catching exceptions – Completion at “catch (_” will only offer ex-

ceptions that are thrown in the corresponding try block, but haven’t

been handled yet by previous catch blocks.

New browsing views

The editor introduces several new views for source code browsing.

The Members view shows the members of a Java type together with

their javadocs, making it easy to find a particular method, field or

inner class. The Hierarchy view shows the inheritance tree of a Java

type. Figure 1 demonstrates this view; notice the filter buttons that

let you toggle between supertypes or subtypes and between simple

and fully qualified class names. You can also choose whether or not

to show inner classes and interfaces.

The Declaration view summarizes the declaration of the selected

Java element (type, method or field). Despite its name, this view

also shows the inspected element’s source code if it’s available. The

Declaration View is especially useful when invoking code still under

AST-based
selection

nb03.indb 7 4/5/2007 20:29:25

Co
re

 ID
E

� N NetBeans Magazine

2A

development, not yet documented with javadoc. Finally, the Javadoc

view shows the javadocs for the selected Java element.

Editable Diff and Inline Diff

The editor’s improved architecture makes it easier for various fea-

tures that handle source code to integrate editor functionality. This is

noticeable in the new Diff (opened, for example, by selecting a source

file and choosing Subversion>Diff). When it’s showing a local file, the

right pane is editable, providing the full set of editor features – seman-

tic highlighting and code completion included.

The new Diff adds other interesting tricks, like one-click merging and

word-level diff (if a single word is changed in a line, only that word is

highlighted). Check out these improvements in Figure 2.

You can also enable an Inline Diff feature, which creates a Diff side-

bar, highlighting updated sections of a versioned file. The sidebar lets

you visualize or rollback changes, and open the full Diff view.

Javadoc hints

You always document all your code, right? Well, if you don’t, Net-

Beans will complain about missing and incorrect javadoc tags. The

IDE can help you with automatic fixes that add the missing tags, only

asking you to fill in the blanks. And while you’re doing that, you can

use the new Javadoc view for convenient previewing.

Javadoc checking is active by default, but it’s not intrusive: the edi-

tor will report missing javadoc tags just for the selected line; only

incorrect tags will be reported everywhere. You can customize these

and related options through Tools|Options>Java Code>Hints.

Other features

The new editor and its framework include other general features, like

reusable editor tabs. These are useful for

the debugger, to avoid cluttering your envi-

ronment with editors opened by breakpoints

or step-into’s. There’s also a new Generate

Code dialog that automates the creation of

constructors, getters and setters, equals()

and hashCode(), and delegate methods.

Refactoring and Jackpot
NetBeans 6.0 improves the existing refac-

toring support extensively. There is a new

internal language-independent refactoring

API that will allow implementing refactorings

for code other than common .java sources

(e.g., XML or JSF files). The new API also

allows Java refactorings to precisely update

dependent non-Java elements. This should

make the current refactorings safer and

easier to use.

The big news here, though, is the break-

through new technology from project Jack-

pot, which has been available for some time

but is only reaching maturity now. With its

inclusion in NetBeans 6.0, Jackpot will be

promoted to a standard feature and be

more closely integrated with the IDE.

You may have heard that Jackpot is

a new refactoring tool, but this really

doesn’t make it justice. Jackpot is actu-

ally a comprehensive framework for gen-

eral code understanding and manipula-

tion. You can use it as a replacement or

foundation for several kinds of features:

refactoring support, advanced searching

and browsing, quality inspection, macro-

like automation of complex editing tasks,

and more.

Using Jackpot

Before taking a more in-depth look at Jack-

pot, let’s show how easy it is to use. The new

Figure 2

The Local History
and the new Diff:

editing capability,
semantic

highlighting and
word-level diff.

A

nb03.indb 8 4/5/2007 20:29:26

Issue Three N �

NetBeans 6.0: New Core Features in Depth

4A

3A

Query and Refactor command will show a

dialog like Figure 3, where you can pick a

Jackpot query or query set. Some queries

have options that you can set to preferred

values. Click Query, and any matches for

the selected queries will appear in a view

that details each match. Also, if the query

involves code changes, you can preview

and confirm these changes by clicking on a

Do Refactoring button.

Jackpot rules

Jackpot’s full power comes from its open-

ness. This requires learning a new language

but when you realize Jackpot’s full potential

you will see that the learning curve quickly

pays off.

For example, here is a Jackpot query that

detects an inefficient code pattern – the use

of equals(“”) to check if a String is empty

– and rewrites the matching code:

$s.equals(“”) => ($s.length() == 0) ::
 $s instanceof java.lang.String;

The syntax is pattern => replacement ::

condition, where the $ character identifies

meta-variables that will bind to any Java

program element (identifier, statement,

operator, literal, etc.). Let’s analyze each

clause:

1. The pattern $s.equals(“”) matches

invocations to the equals() method that

pass an empty string as argument.

2. The condition is the only optional part

of a rule in Jackpot’s rule language, but it’s a critical

part in this particular rule: $s instanceof java.lang.String

makes sure that the rule only fires when $s is a String.

That’s an important constraint, since our rule is spe-

cific to uses of java.lang.String.equals(), and not to just

any implementation of equals().

3. Finally, the replacement – ($s.length() == 0) – re-

writes the matching code.

There’s a lot of sophistication behind this apparently simple

behavior. For one thing, look at Jackpot’s instanceof operator. It

walks and quacks like Java’s instanceof, but it’s not the same thing.

Java’s instanceof is a runtime operator whose left-hand operand

is an object reference. Jackpot’s instanceof, however, is a com-

pile-time (static) operator; its left-hand operand is any node of the

program’s AST.

Because Jackpot – like the new editor – relies on javac’s source

analysis engine, it’s able to fully attribute all types in the processed

code. This includes the most complex cases, like inferred generic

types. Other code analysis tools often resort to heuristics that

approximate types but might fail to calculate types for some ex-

pressions.

You could even try to do our refactoring (replacing s.equals(“”) by s.length()

== 0) using plain regular expressions: search for (\w*)\.equals\(\”\”\) and

replace it with $1.length() == 0. But regexes are rigid and dumb; they won’t

E

Figure 3
Jackpot’s Query
and Refactor
dialog.

A

Figure 4
Jackpot’s
Refactoring
Manager.

A

nb03.indb 9 4/5/2007 20:29:26

Co
re

 ID
E

10 N NetBeans Magazine

even exclude text that’s inside comments or string literals, and a simple line break
will prevent detection. This is obviously a straw man example (other tools, like
PMD and FindBugs, are much smarter than regexes – although not up to javac-like

precision), but it shows the value of smarter tools/features.

There are Jackpot operators without Java counterparts, from

simple ones like isTrue(node), which matches boolean expressions

that can statically be proven to always evaluate to true – to more

powerful operators like isSideEffectFree(node). The latter matches

a statement, block or method that doesn’t modify any variable out-

side its scope.

Again, such detections resemble existing code inspection tools,

which detect problems like “dead code”. But Jackpot’s reliance on

the full javac technology results in fewer false positives in detec-

tions, and higher safety in automatic replacements.

You can also write Jackpot queries in plain Java, using Jackpot APIs and
NetBeans’ module development features. This is necessary for complex rules that
go beyond the capabilities of Jackpot’s rule language. But as this language evolves,
fewer and fewer queries should require implementation in Java. Performance, by
the way, is not an issue: queries written in the Jackpot rule language are converted
to Java and execute as compiled code.

Figure 4 shows Jackpot’s Refactoring Manager. This configura-

tion dialog allows you to inspect all installed queries and organize

them into query sets. You can also import new queries. If you write

a new query script, just click Import and the new query will be avail-

able in the Query and Refactor dialog.

Usage and perspectives

Jackpot ships with a library of predefined queries, containing many

rules for code clean-up and detection of common programming mis-

takes or code anti-patterns, as well as migration of deprecated API

usage.

As I write this, Jackpot has just been integrated

into NetBeans. So we have a hybrid system with

Jackpot co-existing with traditional refactoring and

code manipulation features. This means that com-

mands like Rename method are still implemented

in the old-fashioned way, even though they could

be implemented by a Jackpot rule. The same holds

for code validations (“hints”) and their automatic

fixes. Some of this functionality will certainly be re-

E

5A

implemented on Jackpot in the future. Also,

because Jackpot makes the development of

such things much easier, you should expect

an increasing number of refactorings, vali-

dations and other code-crunching features

to be added to the IDE.

Extended Ant
and JUnit support

Ant support in NetBeans 6.0 has been up-

dated to Ant 1.7.0, a major new release that

adds such features as support for JSR 223-

compatible scripting languages. There’s

also a new progress indicator for Ant pro-

cesses.

The IDE’s JUnit support now handles the

annotation-driven test cases of JUnit 4. Old

JUnit 3.8 test cases are still supported.

Also, the project properties editor is im-

proved with classpath entries specific to

unit tests.

Project and build features
Editing code is fundamental, but for

most non-trivial projects a well-structured

and powerful build system is critical too.

NetBeans’ project management and build

system was improved with many new fea-

tures.

In addition to its Ant support, NetBeans

can open and understand Apache Maven 2

projects. Though the new Maven-based proj-

Figure 5
Multiple

Configurations
and support for

Java Web Start in
the new Project

Properties dialog’s
Run page.

A

nb03.indb 10 4/5/2007 20:29:27

Issue Three N 11

NetBeans 6.0: New Core Features in Depth

ect support is not intended to replace Ant

projects anytime soon, it will be welcome

to Maven fans or to anybody needing to

build a project that requires Maven.

Also, now you can specify packages or

classes to exclude from the source tree.

This is useful for working with large proj-

ects, when you’re not interested in seeing

or running all of their code and a partial

build is viable.

If you have many correlated projects, you

can organize them into Project Groups, so

certain operations like opening projects

can be applied to the group as a whole.

And if you write Java SE projects with many

entry points (classes with main() methods),

or with command-line parameters that re-

quire frequent edits of the project proper-

ties, the Run Configurations feature will

make your life easier. The project proper-

ties’ Run page shows a new Configuration

option. Each configuration allows you to

define the main class, arguments and VM

options, independently of other configura-

tions. See an example in Figure 5.

Furthermore, the new Java Web Start sup-

port automates the creation and mainte-

nance of JNLP files, and makes it easier to

run tests without needing a browser. In the

Project Properties, check Application>Web

Start>Enable WebStart, and off you go.

Java Web Start support integrates with the

Run Configurations feature, by creating a

Web Start configuration. So you can test

the same project with or without JAWS.

Version control
Robust version control is an essential fea-

ture, even for simple projects written by one

developer over a weekend. For one thing,

it’s critical to enable “fearless program-

ming”, e.g. using techniques like refactoring (manual or automatic)

without worry. NetBeans 6.0 brings plenty of news in this area too.

CVS

NetBeans has traditionally supported the CVS version control sys-

tem and this support was already excellent in NetBeans 5.5. Version

6.0 adds several updates in usability, like exporting a diff patch of

files selected in the Search view; a new command to open a specific

revision, tag or branch; and an improved history search feature with

new Summary and Diff views. There are also new advanced opera-

tions like changing the CVS root and doing a partial merge.

Subversion

The biggest news for many users, though, is support for the in-

creasingly popular Subversion version control system. NetBeans

6.0 is the first release to integrate complete first-class support for

SVN. Even though NetBeans 5.5 now offers a Subversion module

in the Update Center, you really want version 6.0 if you are a heavy

Subversion user.

Local History

No matter which Version Control System you prefer, you’ll love the

new Local History feature, already depicted in Figure 2. NetBeans

6.0 automatically keeps an internal history of recent changes to

project resources. Every time you save a file, this is registered as

a “commit” of a new version of the file in the local history. So file

changes are tracked with fine granularity – somewhat like a persis-

tent undo feature. You can inspect the “versions” in the local history

and diff them against the current files.

Be warned, however, that this feature is mostly useful for undoing

mistakes that escape the editor’s undo capacity, e.g. after closing

the editor or restarting the IDE. You can then revert to a previous

state that you haven’t yet committed to a safer VCS repository, per-

haps because the new code was still rough and untested. The Local

History feature is powerful and is sometimes a lifesaver, but it’s not

a full replacement for a real VCS.

Debugging
The debugger is of course among the most critical features of an

IDE, and NetBeans is already very complete in this area. So what’s

left to improve in 6.0? First off, the Java SE 6 release contains two

nb
i.n

et
be

an
s.o

rg The new
NetBeans
Installer. As of
this writing,
you must follow
a link to a
directory where
you’ll navigate
to the installer
page for a
specific build

nb03.indb 11 4/5/2007 20:29:27

Co
re

 ID
E

12 N NetBeans Magazine

important new JVM debugging features which require an updated de-

bugger to use. (The debuggers from NetBeans 5.5 or older releases

won’t benefit from these even if you run them on top of Java SE 6.)

There are also other debugger improvements that are not dependent

on the JRE version, so you’ll benefit even if you are chained to some

stone-age Java runtime like 5.0 or, heavens forbid, 1.4.2.

Forcing return values

Suppose you’re stepping anywhere in a method and you’d like to

force it to return immediately and produce a specific return value.

This is now supported in the 6.0 debugger, letting you check “what-

if” scenarios and reproduce bugs more easily. You won’t need hacks

like patching the source code with return statements (and having to

unpatch it later). As I write, this feature is not yet implemented, but it

should be before the final release.

Expression stepping

Expression stepping is another smart timesaver. In complex expres-

sions containing method calls, you can step into individual invoca-

tions, and when such a call returns you can see the returned value

even it’s not assigned to any local variable. You no longer have to

break expressions into simple parts and introduce temporary locals

for the single purpose of helping debugging. Also, the Local Variables

view will show the value returned by invoked methods.

Expression stepping will work in any Java runtime, but showing val-

ues returned by invoked methods requires Java SE 6.

Multithreading support

Another new feature that’s very useful is Debug current thread: you

can instruct the debugger so that only a given thread will stop in

breakpoints. This is crucial for debugging concurrent applications

that have several threads running the code of interest.

Since we developers are not multithreaded, we’re eas-

ily overwhelmed when setting a breakpoint causes the

debugger to stop twenty threads at once!

Other features

There are also general improvements to other features,

like better handling of broken breakpoints (e.g. with incor-

rect conditions), and a command to copy call stacks to

the clipboard.

6A

New Profiler features
In NetBeans 6.0, the Profiler becomes

part of the core distribution, and there’s a

range of important improvements.

 Better performance – Performance is

good anywhere but it’s always a critical is-

sue in profilers. The NetBeans Profiler, which

derives from Sun’s JFluid research project,

pioneered a new technology that allows pro-

filing apps nearly at full speed by dynami-

cally instrumenting code. Also, the Profiler

itself should be fast to analyze and present

data collected from the JVM – especially

online data that’s constantly updated as the

program runs. The new release improves

significantly the performance of the Live Re-

sults categorization and drill down, so you’ll

find yourself using this feature more often.

 Classloading telemetry – The VM Te-

lemetry view now shows the number of

loaded classes together with the number of

threads.

 Memory snapshot comparison – Your

application has a method that’s suspect of

leaking? Take heap snapshots before and af-

ter running it then diff the two snapshots.

 Heap Walker – The ultimate tool for leak

hunting and any kind of memory allocation

analysis. You can load a heap dump and vi-

sualize the full object graph in the heap (see

Figure 6).

Figure 6

The Profiler’s Heap
Walker, inspecting

a particular
instance of
BigInteger.

A

nb03.indb 12 4/5/2007 20:29:28

Issue Three N 13

NetBeans 6.0: New Core Features in Depth

2 Incidentally, several
menu options were sim-
plified in NetBeans 6.0;
for instance, Java Plat-
form Manager became
Java Platforms.

 Load generation – The Profiler supports

integration with load generation tools (cur-

rently only Apache JMeter is supported but

more is to come).

 Profiling Points – These are a profiler’s

equivalent of debugger breakpoints. You

can define places in your source code

where the profiler should start/stop the

clock, reset profiling results or take a snap-

shot. The Profiling Points feature removes

most bureaucratic profiling work: never

again will you need to step or pause code

to get snapshots in critical events; you also

won’t need to tweak code to measure the

latency of a region that doesn’t coincide

with a full method.

GUI and usability
An IDE should have a beautiful, efficient

and productive GUI as much as any other

application. NetBeans 6.0 makes new

strides in this direction.

Linux and Solaris users will certainly wel-

come the much improved GTK L&F, which

is now activated by default on these plat-

forms. The activated-by-default part de-

pends on Sun’s JRE 6 Update 1 (or better),

which contains its own share of important

GTK updates. NetBeans will respect all

settings from the active GTK theme.

The new NetBeans Installer (NBI) makes

installation easier and faster. In the down-

loads page, you can select which packs

you want (e.g. Enterprise, Mobility). Then

you’ll be offered a custom installer that

includes all chosen features and will in-

stall these in a single go. NBI is especially

convenient for system administrators that

need to install the same IDE configuration

in multiple machines, and for trainers who

often land in unprepared laboratories.

NetBeans also includes redesigned icons, and the SDI window-

ing option (a relic from ancient NetBeans releases) was removed.

Now you have undockable/floating windows. Finally, in the QA front,

the new Report Exception tool streamlines reporting of detailed er-

ror data to NetBeans’ developers, while the UI Gestures Collector

can submit data about your IDE usage patterns. This data is useful

not only for research, but also to implement a kind of “tip of the

day” hint system not based on Math.random(). I tested this, and

the NetBeans Analytics site offered me a tutorial about profiling

multithreaded programs, which was highly correlated with the tasks

I had been performing in recent days.

Matisse and visual web development
There are only two core IDE features I’m not covering here. Both

are award-winning tools and top reasons for many developers hav-

ing moved to NetBeans: the Matisse visual editor, and the Visual

Web Pack. NetBeans 6.0 brings significant updates to both. For

Matisse, check out the article “UI Design in NetBeans 6.0” in this

issue, where you’ll find detailed information about what’s new.

Currently, the most important changes in the Visual Web Pack

refer to its integration into the NetBeans core. Actually, there won’t

be an external Web Pack for 6.0. The IDE already offered support

for web application development, so it was a little odd to have some

of that in the core and the rest in an external Pack. Historically, this

happened because the Web Pack technology was originally devel-

oped as a separate product (Sun’s Java Studio Creator), which was

based on a fork of a very old NetBeans version. So its implementa-

tion became partially redundant with NetBeans’ web tooling. Now

this chasm is closed and there will be no more duplicate code or

effort. The merge results in a simpler IDE for all users: from visual-

design lovers to tag-writing diehards.

There are several new features in the integrated web tooling but

as we write they are still under heavy development, so it wasn’t

viable to cover the new functionality in this issue. However, don’t

miss the article “Visual Web Application Design with NetBeans” for

an updated tutorial on the last stable version.

Plugin Manager
NetBeans’ open, extensible architecture is one of its core advan-

tages and it’s also very easy to use and integrate with. You may be

surprised that the Tools>Update Manager has disappeared, though.

nb03.indb 13 4/5/2007 20:29:28

Co
re

 ID
E

14 N NetBeans Magazine

7A

But just look again, at Tools>Plugins2, and you’ll see Figure 7.

The new UI unifies and better organizes the old Update Center (see

the Updates, New Plugins, Downloaded and Settings tabs), and also

the old module manager (see the Installed tab). There are new fea-

tures too: for example, when you select a plugin (like we did for the

JMeter Module in Figure 7), a Required Plugins node will appear if

applicable; you can expand it to see any dependencies that must

also be installed.

Conclusions
NetBeans 6.0 comes with a massive number of new and improved

features and certainly deserves the major version bump. If NetBeans

5.5 was wide, NetBeans 6.0 is also

deep. Developers upgrading to the lat-

est version will have not only extensive

support for all kinds of Java develop-

ment but also a best-of-breed feature set

in every important functionality area.

Many NetBeans power users may have

gone through this article and found fea-

tures that were already available for pre-

vious versions via additional modules.

From several editor enhancements to

Run Configurations, to the Local History,

you could find an nbm file that would

provide some level of support for your

need. However, you can now just install

the core IDE and have all these features

out of the box – and they’re superior,

more polished and better integrated than

what’s provided through external modules.

This happens of course with every new

release, but NetBeans 6.0 makes a very

noticeable effort to catch up with its RFEs,

embracing a large number of improvements

that first surfaced as contributions from

the broader community. This can only be

viewed as great news, and as evidence of

a project that moves fast in the direction us-

ers want.

C�
Osvaldo Pinali

Doederlein
(opinali@gmail.com)

is a software engineer
and consultant,

working with Java
since 1.0 beta. He’s an

independent expert for
the JCP, having served

for JSR-175 (Java SE
5), and is a Technology
Architect at Visionnaire

Informatica. Osvaldo
has an MSc in Object

Oriented Software
Engineering, is a

contributing editor for
Java Magazine and
maintains a blog at

weblogs.java.net/
blog/opinali.

Figure 7

The new Plugin
Manager.

A

Co
re

 ID
E

v
A

1

nb03.indb 14 4/5/2007 20:29:38

v
A

With this third issue, NetBeans

Magazine is completing its first

anniversary. Kudos and thanks to the

NetBeans developer community for

enabling us to spread the word even

more about this wonderful IDE and

Platform!

1Ye
ar

netbeans.org/community/magazine

magazine

Core NetBeans 6.0 Features
Know in depth what’s coming in the new release

Introducing C/C++ Pack
Leverage NetBeans for native development

The blueMarine Project
NetBeans Platform development in the real world

OpenOffice.org Integration
Create add-ons and components to interface with OOo

Project Schliemann
Opening the IDE to other languages

Mobility Pack in Practice
Learn the basics and reduce device fragmentation

New UI Design Features
Upgrade your desktop productivity with NetBeans 6.0

Visual Web Development
Rapid web application design and implementation

May . 2007

Re
le

as
e

6.
0

. J
SF

 .
M

at
is

se
 .

C/
C+

+
 .

M
ob

ilit
y

. N
et

Be
an

s
Pl

at
fo

rm
 .

Sc
rip

tin
g

La
ng

ua
ge

s

magazine

Reach Out
with the IDE and Platform

nb03.indb 15 4/5/2007 20:30:00

Schliemann

Integrating syntax coloring, code completion,
and other editor features into the IDE used

to be a lot of work. Not anymore! This article
describes how a 19th century explorer called

Heinrich Schliemann is inspiring the IDE to
become fluent in many languages.

Easy Integration of
Scripting Languages

in NetBeans 6.0
Geertjan Wielenga

nb03.indb 16 4/5/2007 20:30:05

Issue Three N 17

Schliemann: Easy Integration of Scripting Languages in NetBeans 6.0

Schliemann

Integrating syntax coloring, code completion,
and other editor features into the IDE used

to be a lot of work. Not anymore! This article
describes how a 19th century explorer called

Heinrich Schliemann is inspiring the IDE to
become fluent in many languages.

Easy Integration of
Scripting Languages

in NetBeans 6.0

T
raditionally, when creat-

ing editor support for a

new programming lan-

guage in the IDE, a vast

variety of NetBeans APIs

must be implemented. By

“editor support”, we typically mean syntax

coloring, code completion, and the source

navigation features provided by the IDE’s

Navigator. Other examples include code

indentation and brace matching. Out of the

box, the NetBeans IDE provides this kind

of support for several languages and tech-

nologies, such as Java (of course), JSP,

and HTML.

There are many NetBeans APIs that one

needs to implement to provide editor sup-

port for a programming language. This is

unfortunate for two reasons. Firstly, the

domain knowledge that a language pro-

grammer typically brings to the table is

the language itself, not the versatile knowl-

edge of the NetBeans APIs required to pro-

vide the necessary features. Secondly, the

underlying infrastructure for editor support

is the same for all languages. For example,

the only difference between the Navigator

for Java and the Navigator for HTML is the

actual code, not the container. For these

reasons, the language programmer should

only need to provide the content of the lan-

guage in the form of tokens that are com-

municated in regular expressions. Nothing

more than that should be needed.

Given the tokens and an indication of

where they should be used, the NetBeans

Platform should be able to figure out how

to hook the tokens to the support features.

Not only would this approach simplify the

process of integrating a new language into

the IDE, but it would leverage the current

knowledge of the language programmer – rather than requiring a

steep learning curve of acquiring new knowledge before coding can

even begin.

Enter Schliemann
This, in sum, is what the new Schliemann project (languages.

netbeans.org) is all about. And why is it called Schliemann? Heinrich

Schliemann was a 19th century explorer who had a gift for languages.

He traveled the world while keeping a diary in the language of the

country he happened to be in. In the spirit of Schliemann, the

6.0 release of the NetBeans Platform envisages the IDE as being

Schliemannesque, able to pick up languages very quickly and then

being able to communicate in them fluently.

The project is especially pitched towards scripting languages, be-

cause the Schliemann project does not provide compilation support,

which is not required by scripting languages – and because script-

ing languages, in particular, are increasingly in vogue today. In this

article, we will explore the main facets of the Schliemann project and

touch on some contrasts with the traditional NetBeans API approach

to providing the editor features it supports.

Everything in a single file!
A central contrast between the traditional API approach and the

Schliemann approach is that the latter lets you specify all editor

features declaratively in one single file. This file has the .NBS file ex-

tension, which stands for NetBeans Scripting. To get a quick flavor

of some typical content of an NBS file, let’s examine a code snippet

– see Listing 1.

This template is what you are given when you use the new Generic

Languages Framework wizard, which is part of NetBeans IDE 6.0. It

gives you a single NBS file with sample content, which begins with

the definition of four tokens. These tokens are named “keyword”,

“operator”, “identifier” and “whitespace”. Within brackets, in the

same line as the name of the tokens, a regular expression is used

to define them.

Right away, one can see the power of this new approach to lan-

guage support provision: a regular expression language, rather than

Java, is used to define tokens. As a result, programmers outside

the Java ecosystem can integrate their programming languages into

the NetBeans IDE. Not needing to know Java, at least for the sim-

pler integrations of languages, is a central benefit of the Schliemann

Issue Three N 17

The Schliemann
page in the
NetBeans Wiki

wi
ki

.n
et

be
an

s.o
rg

/w
ik

i/v
ie

w/
Sc

hl
ie

m
an

n

The official
Schliemann
project page on
netbeans.org

la
ng

ua
ge

s.n
et

be
an

s.o
rg

nb03.indb 17 4/5/2007 20:30:08

Be
yo

nd
 Ja

va

18 N NetBeans Magazine

project.

Once tokens are defined, one can already begin assigning features.

For example, this single statement would fill the Navigator with the

values provided by the “keyword” token:

NAVIGATOR:keyword

Readers who are familiar with the NetBeans Navigator API can only

be amazed at this drastic simplification! However, normally you would

like more robust support for a language and to provide a grammar

in addition to tokens. The grammar that the Schliemann approach

requires is also highly simplified. It is comparable to JavaCC or AntLR.

Ideally, one would wish that the grammar provided by JavaCC and

AntLR could be directly integrated into NetBeans IDE. Unfortunately,

however, these grammars are not tailored to usage within an IDE. For

this reason, a conversion process needs to take place, from AntLR or

JavaCC (or from a similar approach) to the Schliemann NBS format.

Early experiments have shown that both a manual and an auto-

matic solution for this process is feasible. However, this aspect of

the Schliemann project is definitely the area

where most work needs to be done. A uni-

fied, simple approach to integrating gram-

mars provided by AntLR, JavaCC, and the

like, is needed in order for the Schliemann

project to reach its full potential.

In the NBS code shown before, you can

see, in addition to the tokens, that the gram-

mar forms the basis of both the Navigator

implementation and the code folding imple-

mentation. In the case of code folding, the

Block grammar definition determines each

code fold, while the Navigator is populated

by values conforming to the WhileStatement

definition.

Finally, notice that the code also shows

how brace completion and indentation is

defined, all within the same single file, and

that one can fine-tune further by specifying

that white space should be skipped by the

parser.

Hence, when the NBS file in Listing 1 is

associated with a MIME type, documents

corresponding to the MIME type immedi-

ately have the following features:

 Syntax coloring

 ���������Navigator

 ������������ Code folding

 �������������� Brace matching

 �����������Indentation

In similar ways, a wide range of other

language-support features can be created,

including code completion, which is fre-

quently very high up on the list of features

that language programmers want to provide

support for.

Getting started
Now that we have a general flavor of

the Schliemann approach, let’s put it into

Listing 1. NBS file snippet.B�

#
NBS Template
#

definition of tokens
TOKEN:keyword:(“while” | “if” | “else”)
TOKEN:operator:(“{“ | “}” | “(“ | “)”)
TOKEN:identifier:([“a”-”z”] [“a”-”z” “0”-”9”]*)
TOKEN:whitespace:([“ “ “\t” “\n” “\r”]+)

parser should ignore whitespaces
SKIP:whitespace

definition of grammar
S = (Statement)*;
Statement = WhileStatement | IfStatement |
ExpressionStatement;
WhileStatement = “while” “(“ ConditionalExpression “)”
Block;
IfStatement = “if” “(“ ConditionalExpression “)” Block;
Block = “{“ (Statement)* “}”;
ConditionalExpression = <identifier>;
ExpressionStatement = <identifier>;

code folding
FOLD:Block

navigator support
NAVIGATOR:WhileStatement:”{$ConditionalExpression}”

brace completion
COMPLETE “{:}”
COMPLETE “(:)”

indentation support
INDENT “{:}”
INDENT “(:)”
INDENT “\\s*(((if|while)\\s*\\(|else\\s*|else\\s+if\\
s*\\(|for\\s*\\(.*\\))[^{;]*)”b

Blog by Jan
Jancura, the

lead NetBeans
engineer for
Schliemann

bl
og

s.s
un

.c
om

/h
an

z

nb03.indb 18 4/5/2007 20:30:09

Issue Three N 19

Schliemann: Easy Integration of Scripting Languages in NetBeans 6.0

4A

completed the wizard, you have a single new file, in

which we will do all our coding for this module (see

Figure 4).

Now, let’s begin! Unlike in the previous section, the

syntax we are dealing with here has the notion of state.

By state we mean that if we know in which token we

find ourselves, we can always know where we are in

relation to all the other tokens. So, for example, if we

are in the “key” part of a key/value statement in a Man-

ifest, we know that when we reach the colon we are

entering the “value” part of the statement. As a result, we can define

our tokens in the context of their states. Below you see how this is

done. Not much of this should be foreign to you if you are familiar

with regular expressions:

TOKEN:key:([^”#”] [^ “:” “\n” “\r”]*):<VALUE>

3A

practice and create an NBS file for Java

Manifests. Manifests, as you know, are

constructed from key/value pairs. In the

IDE, there is no language support for Mani-

fests, not even syntax coloring. Let’s pro-

vide that... and a lot more besides.

We begin as one always does when cre-

ating a plug-in for the IDE: by creating a

new module project (see Figure 1). Next,

in the New Project wizard, name the proj-

ect “ManifestEditorFeatures” and specify

“org.netbeans.modules.manifesteditorfea-

tures” as the Code Name Base. At the end

of the wizard, after having clicked Finish,

you’ll see that the IDE has created a basic

source structure, as it does for every Net-

Beans module (see Figure 2).

Next, we can use the Generic Languages

Framework wizard to generate the NBS

template discussed in the previous section.

This template is found in the NetBeans

Module Development section in the New

File wizard (see Figure 3). Once you’ve

2A

1A
Figure 1
Creating a new
module project.

A

Figure 2
Result of the New
Projects window:
Plugin Source
Structure

A

Figure 3
Generic Languages
Framework
Template.

A

Figure 4
Result of the New
File wizard: One
additional file!

A

nb03.indb 19 4/5/2007 20:30:19

Be
yo

nd
 Ja

va

20 N NetBeans Magazine

6A

5A

7A

C�
Geertjan Wielenga
(geertjan.wielenga@

sun.com) is a technical
writer for NetBeans
IDE and a co-author

of the book “Rich
Client Programming:

Plugging into the
NetBeans Platform”.

He is passionate about
NetBeans and blogs

about it daily at
blogs.sun.com/geertjan.

<VALUE> {
 TOKEN:whitespace:([“\n” “\r”]+):<DEFAULT>
 TOKEN:operator:(“:”):<IN_VALUE>
}
<IN_VALUE> {
 TOKEN:whitespace:([“\n” “\r”]+):<DEFAULT>
 TOKEN:value:([^ “\n” “\r”]*)
}

Notice that we start out by saying that we are not in a key if the first

character is a hash (#). In that case we are, in fact, in a comment. It

would also be good to provide a specific syntax color for comments,

so let’s define a token for comments:

TOKEN:comment:(“#” [^ “\n” “\r”]* [“\n” “\r”]+)

Right now, without going any further, we can already assign colors.

Again we do so declaratively:

COLOR:key: {
 foreground_color: “blue”;
}
COLOR:operator: {
 foreground_color: “black”;
}
COLOR:value: {
 foreground_color: “magenta”;
}

Apart from the foreground color, there are many other attributes

that we can set per token, such as the style and background color.

Without going much further, though, we can already install our mod-

ule and then we’ll have syntax coloring (see Figure 5)! It couldn’t be

much simpler. Before we do so, however, we need to create a MIME

type resolver, which is a small XML file that specifies the file extension

of the files we want to deal with.

If you use the New File Type wizard, you

can let the IDE generate such a MIME type re-

solver for you. You then need to register both

the resolver and the NBS file in the XML layer

file and declare a dependency on the Generic

Languages Framework API. Eventually, the

Generic Languages Framework template will

do all of this for you, one imagines; but at the

time of writing this is not the case.

After installing the module, we can develop

it further. To help you, NetBeans 6.0 will pro-

vide a number of developer tools, such as

the new AST window (see Figure 6), which

lets you analyze a file, based on the tokens

you have assigned to its MIME type. Ultimate-

ly, for Manifests, you could create a very

detailed Navigator (see Figure 7), among

other useful features for the end user.

Conclusions
Hopefully this broad introduction gives

you a flavor of what NetBeans 6.0 will do

for scripting languages. Quickly and with-

out much fuss, language developers will

be able to integrate their favorite script-

ing languages into the IDE, thus turning

NetBeans more and more into their own,

customized development environ-

ment. In short, just like Heinrich

Schliemann, NetBeans IDE will be

able to pick up new languages

and expand its usefulness across

more and more development

communities.

Figure 5

A Manifest
file with

syntax
coloring.

A

Figure 6

AST window.

A

Figure 7

 Navigator.

A

nb03.indb 20 4/5/2007 20:30:20

Issue Three N 21

Schliemann: Easy Integration of Scripting Languages in NetBeans 6.0

“W
elcome to the world

of rich client devel-

opment on the Net-

Beans Platform.”

So begins the new book on the NetBeans

Platform, called “Rich Client Programming:

Plugging into the NetBeans Platform”. Writ-

ten by three stalwarts of the NetBeans IDE,

Tim Boudreau, Jaroslav Tulach, and Geert-

jan Wielenga, this new title from Prentice

Hall introduces you to the central concepts

of the NetBeans Platform.

The book begins by discussing the ratio-

nale for modular programming. “Loose cou-

pling”, whereby spaghetti code is avoided

through a set of related but independent

modules, is discussed with reference to a

set of concrete examples. Gradually, the

need for this approach to robust program-

ming is introduced and, piece by piece, the

authors highlight NetBeans’ responses to

this need. The tooling for modular program-

ming since the release of NetBeans IDE 5.0

has proven its value to numerous program-

mers, and the reasons for this quickly be-

come clear in the book. Typical stumbling

blocks that new developers come across,

such as “nodes” and “cookies” are explored

in detail.

The second part of the book deals with

a set of concrete NetBeans API scenarios.

How, for example, can one provide code

completion? Or hyperlinks in the Source Editor?

And what about palettes with items that can be

dragged and dropped? These and other scenar-

ios are discussed in detail. Each chapter travels

through a very specific example scenario, based

on the example in the CD that accompanies the

book. At the end of this part, the reader should

understand some of the basic APIs that are typi-

cally implemented by developers making use of

the NetBeans Platform.

The book closes with two chapters contributed

by two developers with years of experience with the Net-

Beans Platform. First, Jens Trapp, from Germany, discuss-

es how he integrated the HTML Tidy project into NetBeans

IDE. In doing so, he brings together many of the principles

and APIs discussed in the preceding chapters. Next, US-

based Rich Unger describes a complete application built

on top of the NetBeans Platform, for editing WAV files.

Typical concerns involved in creating Platform-based applications are

discussed in this chapter. Together Jens and Rich provide the two “use

cases” of the NetBeans Platform – allowing you to extend NetBeans

IDE with new features, and creating completely separate applications,

which in turn could constitute the platform of still other applications.

This is the first book since Tim Boudreau’s and Jesse Glick’s “Net-

Beans: The Definitive Guide” – the popular title from some years ago

which had a large section on the NetBeans Platform – to cover the

length and breadth of the NetBeans Platform. Judging from the level of

interest shown in the Safari Rough Cuts version of the book, which pro-

vides an early draft in PDF format, “Rich Client Programming: Plugging

into the NetBeans Platform” promises to take the Swing development

world by storm. If you want to leverage the full potential of the Net-

Beans Platform, this is definitely not a book that you want to miss!

Rich Client Programming:
Plugging into the
NetBeans™ Platform

Tim Boudreau,
Jaroslav Tulach,
Geertjan Wielenga
(Prentice Hall)
ISBN-13: 978-0-13-235480-6
640 pages

A New Handbook for
NetBeans Platform
Development

Bo
ok

s

nb03.indb 21 4/5/2007 20:30:23

Wade Chandler

UI
Beans Binding and Swing
Application Framework
support, and other new
features you’ve probably
been dreaming about
having in your IDE

in NetBeans 6.0
Design

nb03.indb 22 4/5/2007 20:30:33

Issue Three N 23

UI Design in NetBeans 6.0

opers gain more from the Swing Application Framework enhance-

ments in NetBeans, but Platform developers should not feel left

out. The latter already have a Swing-based application framework

in the NetBeans Platform, with many more features than JSR 296

provides. All gain much with Beans Binding support, however.

Beans Binding support

Beans Binding allows you to escape the common monotony of

writing code to copy data from user interface components to data

classes or JavaBeans and vice versa. With the new Beans Binding

enhancements, you can right click on a UI element and access

the Bind context menu item. For instance, selecting this item for

a javax.swing.JTextField will show the preferred bound property of

text (see Figure 1). Other properties can be accessed through the

UI
1AO

ne of the most talked

about and innovative

features since Net-

Beans 5.0 is Project

Matisse or the Form

Editor. Many would

agree that Matisse is the best user inter-

face designer across different IDE catego-

ries and technologies. A good number of

developers will start or have started using

NetBeans because of it.

With software, there is never-ending room

for improvement and growth. In NetBeans

6.0, familiar and new developers will find

many new Matisse features to help im-

prove Swing application development, as

you’ll see in this article.

Beans Binding and
the Swing Application
Framework

Building on the recent JCP specs Beans

Binding (JSR 295) and Swing Application

Framework (JSR 296), desktop develop-

ers have a few new cards up their sleeve;

they’ll also benefit from more efficient de-

velopment. Plain Swing application devel-

Design
2A

Figure 1
The Beans Binding
menu item.

A

Figure 2
Setting Beans Binding
options for a JTextField.

A

fo
rm

.n
et

be
an

s.o
rg Matisse/Form

Editor project
home page

nb03.indb 23 4/5/2007 20:30:39

GU
I D

ev
el

op
m

en
t

24 N NetBeans Magazine

property inspectors Binding tab (Figure 2).

Once you’ve chosen the property to bind, a dialog is displayed,

where you can select the target JavaBean. You can then enter an ex-

pression using the Beans Binding Expression Language. The syntax

is much like the JSP EL. Aside from entering the expression by hand,

a nifty selector, accessed as a drop-down list or combo box, allows

developers to quickly build the expression by drilling down through

properties and sub-properties.

When the application is run, the selected UI component updates its

bound component when focus is lost or the user presses Enter. The

main point is that the developer no longer has to manage this and

other operations with a load of event handling code.

Swing Application Framework support

The Swing Application Framework provides mechanisms to quickly

build complete desktop applications. NetBeans 6 takes it further

with integrated support for the framework in the IDE, while providing

a set of standard icons such as Copy, Paste, and Cut. This is better

than piece milling an application from Swing components, and com-

ing up every time with a separate solution for starting an applica-

tion or shutting it down, basic actions or events, custom icons, a

resource manager, session storage, etc.

To create a Swing Application Framework project in NetBeans 6,

select File|New Project and, under the General category, choose

the new Java Desktop Application project template. At the time of

writing, there are two application templates available: Basic and Da-

tabase (see Figure 3). Others will be included in future releases. For

example, thought is being given to templates for creating web client

applications based on the Swing Applica-

tion Framework.

The Basic template generates a regular

Swing application with simple features

such as Cut, Copy, Paste, Save, and New.

Simple applications like Notepad or KWrite

can be easily created with this template

(see Figure 4).

The Database template allows users to

create CRUD database applications. Along

with Apache Derby/JavaDB or HSQLDB, this

can be like Microsoft Access on steroids.

To me, the Swing Application Framework

support works best for developing simpler

applications. This may get better in the fu-

ture with JSR 277 (Java Module System).

However, a module system alone does not

provide a framework with all the components

and utilities offered by the NetBeans Plat-

form. For more complex applications, I ad-

vise you to build on the NetBeans Platform.

A path from Swing Application Framework-

based applications to Platform-based apps

is being pondered, but nothing is concrete in

this regard at the time of writing.

The Swing Application Framework and the
NetBeans Platform are both Swing frameworks. The
Swing Application Framework provides application
lifecycle management, session management (e.g.

E

4A

3A
Figure 3
Choosing
a desktop

application
template.

A

Figure 4
Example

application
generated

with the Basic
template.

A

nb03.indb 24 4/5/2007 20:30:40

Issue Three N 25

UI Design in NetBeans 6.0

windows are stored in the same locations when the
application restarts), a resource manager, actions,
storage, an application context, and synchronous and
asynchronous tasks. The NetBeans Platform provides
all these plus numerous other features, including
a powerful module/plug-in system which allows
modules to install their own UI menus, actions, and
services, among other application items.

More new features
Additional new features in NetBeans 6

include a new visual menu designer, pro-

tected code customizer enhancements,

centering of components and improved

Free Design preferred-gaps and copy-

paste support.

Other features added to version

6 have been made available for

NetBeans 5.5 developers as

an update. These include

automatic international-

ization, visual local-

ization, a preview

with look and

feel support, rela-

tive font definitions, and

dragging of components from the

projects explorer to the UI

– as well as a context-sensi-

tive help bar, and a pre/post

declaration code editor. In

the upcoming IDE release,

all these features will be fully

integrated, and come out of

the box.

Visual Menu Designer

Previous versions of Matisse had limited application menu de-

sign support; you needed to use the Inspector window to create

menu items and sub-menus. Now menu components can be

selected and edited visually in the UI designer. This helps

in a couple Java Desktop Application ways: it’s clearer

which menu and menu item is being edited, and the

form doesn’t have to be previewed or the appli-

cation run to see what the menu will look like

at runtime. See the Visual Menu Designer in

action in Figure 5.

Protected Code Customizer
Enhancements

NetBeans uses the concept of protected code.

This is used by Matisse so that the generated code is not

changed and possibly broken by the developer, allowing

the visual designer to continue working. Sometimes, though, this is

a little too strict, and restrictions on protected code are a common

complaint in the NetBeans mailing lists.

In NetBeans 6 this will be much better, and you’ll be able to

change the protected code sections in many ways. These help you

get around issues of timing actions and method calls, with initializa-

tion and property/bean configuration, for example.

Here are some options for modifying protected code, all acces-

sible through the Properties window Code tab

5A

6A
Figure 6
Protected Code
Customizer
enhancements.

A

Figure 5
New Visual Menu
Designer.

A

wi
ki

.n
et

be
an

s.o
rg

/w
ik

i/v
ie

w/
Ne

tB
ea

ns
Dr

ea
m

Te
am NetBeans

Dream Team
Wiki/home
page

nb03.indb 25 4/5/2007 20:30:45

GU
I D

ev
el

op
m

en
t

26 N NetBeans Magazine

vv

(also see Figure 6):

 Post-Listener-Code – Included after all properties of all beans

are set and all listeners are added.

 Pre-Adding Code and Post-

Adding Code – Included before

and after the component is add-

ed to the parent container such

as a JPanel or JFrame.

After-All-Set Code – Included after

the component is completely set-up.

The new Pre/Post Declaration

Code Editor is more of a must-have

than a development boost. As of

Java 5, developers can now anno-

tate different things in Java source

code, and for libraries or technolo-

gies requiring annotations, Matisse

must allow the developer to some-

how set these annotations. Annota-

tions can also be added through the

Properties window's Code tab, in

the Pre-Declaration Code field; and

there’s a Post-Declaration Code field

available.

NetBeans 6 comes with a new

code customizer, which lets you

inject source code more easily into the

protected sections. It’s accessible by right

clicking on the UI form in the designer and

7A

8A

Figure 8

Free Design
preferred gap support

– three offsets instead
of one

A

Figure 7

Code
Customizer

Dialog

A
bl

og
s.s

un
.c

om
/ro

um
en

/e
nt

ry
/

sw
in

g_
ap

pl
ic

at
io

n_
fra

m
ew

or
k_

sw
in

g_
da

ta
bi

nd
in

g

Swing
Application

Framework and
Beans Binding

demo by
Roman Strobl

GU
I D

ev
el

op
m

en
t

nb03.indb 26 4/5/2007 20:30:55

Issue Three N 27

UI Design in NetBeans 6.0

ap
pf

ra
m

ew
or

k.
de

v.j
av

a.
ne

t

A JSR 296 Swing
Application
Framework
implementation

vv

selecting Customize Code. A dialog with

a Java editor pops up. See Figure 7 for

an example.

Centering of components

Aligning components along a center

axis just got easier. Matisse now allows a

group of selected components to be cen-

tered down the axis of the first selected

component. Horizontal and vertical center-

ing are available. Currently, more than one

component must be selected; then all are

centered on the widest selection. Another

option will allow centering components

horizontally and vertically in their parent

container.

More gaps

Before NetBeans 6, the Free Design

layout manager supported a single pre-

ferred gap for component placement. In

6.0, three preferred gaps are supported.

A preferred gap is the preferred spacing

between components, and is available on

all sides of a component for quick and el-

egant placement, as shown in Figure 8.

For developers who may like more con-

trol over spacing between components,

having three choices comes in handy.

Better copy/paste support

While using the Free Design layout,

copying and pasting produces a horrible result in versions before

6.0. It places all copied components, no matter the number se-

lected, at location [0,0] on the UI form. This problem has now been

solved. Instead of messing up the layout, copies are now pasted to

a manageable offset of the original components. The components

also keep their layout after copying (see Figure 9).

Automatic Internationalization and Visual Localization

Previous releases of NetBeans required a few extra steps to in-

ternationalize and localize a UI. Now the process is streamlined.

In previous versions, you had to setup each individual UI element

to pull values from the correct resource bundle. Then to actually

localize the bundle you needed to create separate bundle files or

localized entries manually, enter the text for the correct locale,

and format the file accordingly (using a different encoding, for ex-

ample).

In NetBeans 6.0, you can now ask Matisse to automatically inter-

nationalize the application during UI design. This means that for

each resource that would normally be internationalized by hand

Matisse automatically adds the value supplied in the UI designer to

a resource bundle. This is done for all UI elements.

The visual localization feature works in harmony with automatic in-

ternationalization. You can right click the top form node in the tree

of the Inspector window, locate the Design Locale combo box in

the Properties window, and then select a locale or add a new one.

Once the Design Locale is selected, you can simply edit the text

10A

9A

Figure 10
Access the Automatic
Resource Management
combo box to
set the resource
management style to
Internationalization,
and Design Locale to set
the locale used while
editing the UI in Matisse.
Change the locale and
re-edit the UI to localize
the user interface. Nice
and easy!

A

Figure 9
Improved copy/paste
support in Free
Design (components
were pasted
multiple times).

A

wa
de

ch
an

dl
er

.n
o-

ip
.c

om
/~

wc
ha

n Wade
Chandler’s
home page

nb03.indb 27 4/5/2007 20:31:02

GU
I D

ev
el

op
m

en
t

28 N NetBeans Magazine

11A

Figure 11
 Context-

sensitive help
bar

A

fo
rm

.n
et

be
an

s.o
rg

/u
pd

at
es

/u
pd

at
e55

.
ht

m
l

NetBeans 5.5
Matisse update

feature page

in the UI as if normally editing a form. The localization for the Design

Locale takes place automatically with the values entered into the UI.

The locale can be changed and the form re-edited to set the values

for the newly selected locale. It is as simple as it sounds to create a

fully internationalized UI with NetBeans 6 (see Figure 10).

Preview with look and feel support

Before NetBeans 6.0, there was no mechanism to allow the proj-

ect’s look and feel to be set in the designer for a regular Swing ap-

plication. It was left to the developer to add the appropriate code to

set the application look and feel.

Setting the look and feel of a regular Swing application

with source code is quite simple. However, without the Form

Editor allowing the design look and feel to be set, the developer has

no way to see how the application will look at runtime with different

look and feels. This will no longer be a problem.

In NetBeans 6.0, forms can be previewed with any available look

and feel. In the Inspector window, the developer right clicks on the

form containers node, or on the node on the same level as the Other

Components node and just below it (its sibling), which has the name

of the forms extended class such as JFrame, JDialog, or JPanel. Then

the Preview Design sub-menu is rolled over and the look and feel

is selected. The form is then previewed with the chosen look and

feel.

A right-click on the form in the UI designer also makes the Preview Design sub-
menu accessible.

Relative font definitions

Have you ever wanted to define your UI fonts just a little larger

or smaller than the overall system or application font? This would

E

come in handy in that

fonts would not have to

be set for each compo-

nent. Instead, fonts for

specific components

could be set to a differ-

ent relative size, or have a different style

than the main application or system font.

In the latest version of Matisse this is

quick and simple. You select a UI compo-

nent on a form, and in the Properties win-

dow click the button to the right of the font

property. The font editor appears. There,

you can select the checkbox “Derive the

font from the default font” and choose the

font style. The font can be sized relative to

the default font; the size can also be made

absolute. Regardless of the size, the font

is not hard-coded and will be determined

nb03.indb 28 4/5/2007 20:31:11

Issue Three N 29

UI Design in NetBeans 6.0

C�
Wade Chandler
(hwadechandler-nb
@yahoo.com) is a
software engineer
working for Decision
Dynamics, Inc. and
an independent
software developer.
He began his career
in 1997 and has
been involved
with the NetBeans
community since it
was known as Forte
for Java, and with
Java since JDK 1.0.
Wade contributes
to the NetBeans
project, and is a
member of the
NetBeans
Dream Team.

at runtime. This feature uses

the Font.deriveFont() method.

Dragging components from
Project Explorer to the UI

In previous versions of NetBeans, the

developer had to install UI components

from developing projects into the Form Ed-

itor’s Palette to use them in UI forms. This

created different issues with modifications

to the components, and complicated using

components from sub-projects in project

UIs. Things have gotten better, however.

Now you can work on a library as a sub-

project or dependency. You create a new

form in the parent project, and the sub-proj-

ect UI controls/ c lasses

can then be dragged from the

project hierarchy and dropped

onto a form without adding them to the

palette or the global IDE. This is essentially

project-level palette items: a nicer and cleaner solu-

tion.

Context-sensitive Help Bar

Who says you can’t teach an old dog new tricks? The new con-

text-sensitive help bar (see Figure 11) can help new and familiar

developers alike. New users will probably find it more useful, as it

can quickly bring them up to speed with the Matisse features. The

new help bar provides contextual hints about what can be done

with the selected component or current feature being used. Even

seasoned users may find new shortcuts or features they did not

know existed.

Conclusions
Matisse is part of the reason for the NetBeans community’s

recent growth spurt, and it gets better and better with each re-

lease. The 6.0 release is no different, and the latest features

are a great boost to Swing application development efficiency.

Everyone should try it.

NetBeans 6.0 Matisse feature development is ongoing, and oth-

er features are currently in the works. Most notably, the possi-

bility to fix refactorings for generated UI code should be ready

in the final version, along with many other new features and

improvements.

nb03.indb 29 4/5/2007 20:31:27

Write

Writing Applications
for mobile devices
and reducing device
fragmentation with
NetBeans Mobility Pack

Deploy
Once
Anywhere

Anatole Wilson

nb03.indb 30 4/5/2007 20:31:34

Issue Three N 31

Write Once, Deploy Anywhere

T
ake a look around you in just about any location – your of-

fice, walking down the street, the movies, even your own

household – and it won’t take a marketing genius to tell

you that if your application is useful to people on the go

but hasn’t been ported to phones or PDAs, you’re miss-

ing a pretty large market, potentially millions of users. Of

course, that same look around will tell you that your game or widget had

better be able to work on mobile devices of all names and sizes, or you’ll cut

out a large portion of your potential customer base.

Sure, it sounds like a lot of work. But in this article, we’ll show you how

to use the NetBeans Mobility Pack 5.5 for CLDC/MIDP to create a simple

application suitable for cell phones and then deploy it to two very different

devices. Best of all, you’ll do it using only a single set of code instead of

creating and managing a separate code base for each device.

In addition, we’ll take a quick look at the Mobility Pack 5.5.1 for CDC and

show you how you can use it to develop applications for larger devices, like

set-top boxes, PDAs, and the new generations of “smart” phones.

A brief overview of the Mobility Pack
With NetBeans 5.5, there are now two separate versions of Mobility Pack

– one for each of the standard configurations that specify the minimum re-

quirements for memory, Java language features, JVM support, and runtime

libraries.

In Mobility Pack 6.0, the CLDC/MIDP and CDC Packs will be merged.

The Mobility Pack for Connected, Limited Device Configuration / Mobile

Information Device Profile (CLDC/MIDP) serves developers who create ap-

plications targeted at smaller mobile devices with limited resources, such as

mobile phones, PDAs, and two-way pagers.

The Mobile Information Device Profile is one of two profiles that works “on

top” of CLDC (the other profile being the Information Module Profile). MIDP

provides graphical interfaces for interactive applications and is the standard

profile for mobile telephone development under the JSR 185, Java Technol-

ogy for the Wireless Industry (JWTI) specification, and more recently also the

Mobile Service Architecture (MSA) spec, JSR 248.

The Mobility Pack for CDC provides a development environment for de-

velopers who are creating applications for larger devices, such as set-top

boxes, embedded devices, high-end or smart phones, and PDAs. The CDC

Pack supports development for all the current CDC Profiles, including the

Foundation and Personal profiles, as well as the AGUI toolkit. It also supports

development for the Windows CE platform.

E

Once
Anywhere

ne
tb

ea
ns

.o
rg

/k
b/

tra
ils

/m
ob

ili
ty.

ht
m

l The Mobile
Applications
Learning
Trail guides
you through
a structured
approach to
learning about
the Mobility
Pack.

Issue Three N 31

nb03.indb 31 4/5/2007 20:31:42

M
ob

ile
 D

ev
el

op
m

en
t

32 N NetBeans Magazine

How the two Java ME configurations fit into the Java “family” is

shown in Figure 1.

In the next section, we’ll create a MIDP application, or MIDlet, using

the Mobility Pack for CLDC/MIDP. Then we’ll look at how you can cre-

ate an application using the Mobility Pack for CDC. It’s worth noting

here that with version 6.0, the two Packs will be integrated into a

single Mobility module.

Creating a MIDlet
We’re going to start with a very simple

“Hello World” MIDlet. Although this is about

the simplest MIDlet you can create, it will

let us demonstrate the Mobility Pack with-

out too much focus on writing code.

To begin working with the Mobility Pack,

you create a new project just as

you would with any Java applica-

tion, only selecting a Mobile proj-

ect type.

In the NetBeans IDE, as you

know, all Java development has

to take place within a project. The

IDE builds its project infrastructure

directly on top of Apache Ant, and

stores all the information about

your project in an Ant script, a

properties file, and a few XML con-

figuration files. This means that

you can build and run your proj-

ects outside of the IDE in exactly

the same way as you would inside

it. As you can see in the source

tree shown in Figure 2, however,

a MIDP project differs from a Net-

Beans/Java SE project in several

ways.

 When a MIDP project is created,

the IDE creates folders to hold

the files after they are compiled

and preverified. (Preverification is

a Java ME-specific building step

that augments .class files with

extra information that makes byte-

code verification and classloading

much simpler and faster on the

resource-restricted JVMs of ME

devices.) The preverified files are

packaged into the distribution JAR

of your project. If you use project

2A
Figure 2
The Hello

MIDlet
Application .

A

1A

Figure 1
Java ME and the
Java technology

landscape.

A

nb03.indb 32 4/5/2007 20:31:45

Issue Three N 33

Write Once, Deploy Anywhere

configurations for different device types

(we’ll get to that soon) or use obfuscation,

the IDE creates folders to hold the differ-

ent versions of the source files.

 Now let’s create the Hello MIDlet project.

Choose File>New Project and in the first

step of the wizard select the Mobile cate-

gory and Mobile Application for the project

type. Then click Next. Change the project

name to “TestMIDlet.” Click Next again to

see the default Emulator Platform, which

is the J2ME Wireless Toolkit. The default

device is the DefaultColorPhone.

Click Next to see some other project

configurations you can choose to set. The

IDE checks all of the platform emulators

you have installed and creates a configu-

ration template for each device emulator

available. Check the “MediaControlSkin_

template” box. Click Finish and you’ve just

created your first working MIDlet, containing a simple form named

helloForm, that displays the familiar “Hello, world!” message. Now

Choose Run>Run Main Project to see the MIDlet in action. You’ll see

a device emulator like the one shown in Figure 3.

Designing flow and UI
in the Visual Mobile Designer

The screenshot in Figure 2 also shows you the flow of our MIDlet

in the Visual Mobile Designer (VMD). You can click the Source but-

ton and edit the code manually, but the VMD is a very powerful tool

for designing both the page flow and individual screens.

 Let’s look at the flow first. If you start with the mobile device on

the screen, it’s pretty easy to follow the arrows and understand the

flow of the MIDlet. When a command is entered (the Start Point),

the helloForm is opened. When the exit command is chosen from

this form, you close your application (Exit Point) and return to the

mobile device’s application launcher.

Now, you might want to add a splash screen to display your logo

or development credits before the application starts running. Let’s

add a simple one to this application. (To provide a graphic, we’ve

added mobileduke.png to our <project_source>/src directory. The

3A

4A
Figure 4
A splash screen
in the Screen
Designer.

A

Figure 3
Hello MIDlet in
action.

A

nb03.indb 33 4/5/2007 20:31:46

M
ob

ile
 D

ev
el

op
m

en
t

34 N NetBeans Magazine

IDE automatically makes it available to us from the Resources folder

in the Navigator window, on the lower left side of the IDE.) Drag a

SplashScreen component from the Tools Palette on the right of the

window on to the Flow Designer. Next, Drag the image1[Image] from

the Navigator window and drag it on top of the splash screen.

Presto! Our splash screen has been created. You can look at it

by double-clicking on the SplashScreen component, which takes

you into the Screen Designer. The splash screen should look like

Figure 4.

Now let’s make the splash screen part of the application flow. Click

the Flow Design button to go back to the Flow Designer. Grab the

tip of the Start Point Arrow and drag it over to the splashScreen1

component. Click on the orange square next to Dismiss and drag

the arrow over the helloForm component. The flow should now look

something like Figure 5.

Let’s just make one more quick change to the program to illustrate

the Screen Designer. Double click on the form component. In the

Screen Designer, click on the “Hello, World!” text and change it to

something else, say “Hello, Universe!”

Now go ahead and run the MIDlet again. Click the button under

“Launch,” and the emulator displays the splash screen as shown in

Figure 6. Then you see the new message.

That was just a simple example of how

you can quickly design the screens and flow

of your application in the VMD. The Splash-

Screen component is one of three custom

components, along with WaitScreen and

TableItem, created by the NetBeans Mobil-

ity Pack team and added to the palette to

make visual programming easier. You can

also create your own custom components

and add them to the palette.

Another important VMD feature is its sup-

port for Scalable Vector Graphics (SVG).

SVG is an XML-based standard defined

by the W3C and supported by MIDP 2.0

through JSR 226. The compact size and

consistent appearance across different

platforms and screen resolutions makes

it an attractive graphics format for mobile

developers. SVG also enables scripting and

animation that allows users to interact with

Figure 6

Splash screen
in the device

emulator.

A

Figure 5

Application
flow with a

splash screen.

A 5A

6A

ne
tb

ea
ns

.o
rg

/k
b/

55
/m

ob
ili

ty.
ht

m
lMobility Pack

for CLDC/MIDP
documentation

index

nb03.indb 34 4/5/2007 20:31:47

Issue Three N 35

Write Once, Deploy Anywhere

the visual content. To use SVG, you’ll need

the Sun Java Wireless Toolkit 2.5, which

is currently available as a module from

NetBeans Update Center, and is bundled

with the Mobility Pack starting with version

5.5.1.

In the VMD, you can add an external SVG

editing tool, such as Hyperion or Ikivo, and

use it to create your initial SVG graphic.

Like we did in the example we just looked

at, you can create a splash screen, an in-

teractive menu, or a wait screen by drag-

ging and dropping components into the

Flow Designer. You can drop the graphic or

animation on the component, and inspect

the behavior of the graphic or animation as

the application is run.

Figure 7 shows the VMD inspecting an

animated SVG menu. You can use the VMD

flow designer interface to link each menu

item to a separate screen that would be

called when the menu item is selected.

Reducing fragmentation
with project configurations

One of the most difficult aspects of de-

veloping applications is device fragmentation. Mobile devices differ

in a variety of attributes, such as screen size, color depth, and the

proprietary or optional APIs they support. These differences often

require special code or project settings for successful deployment.

One solution is to create separate source code for each device

you’re programming to, which is almost guaranteed to be a logis-

tics nightmare. We’ve already touched on the Mobility Pack solution

for device fragmentation – project configurations.

 Project configurations enable you to define the execution environ-

ment for each target device. With project configurations and code

pre-processing, you can write an application and – using a single

set of source code – customize, debug, and deploy a separate

distribution JAR for each target device. If you need to customize

your MIDlet for more devices, you add a new configuration for each

device, modify the project properties, add some pre-processing

code, then build and deploy the application. In most cases, you

should create one configuration for each distribution JAR you plan

to build for your project. For example, if you are planning to support

three different screen sizes using two sets of vendor specific APIs,

you should create six configurations.

 Before we look at deploying our MIDlet to different devices, let’s

examine the three main concepts behind project configurations.

The Emulator Platform

 An emulator platform simulates the execution of an application on

one or more target devices. It enables you to understand the user

Figure 7
An interactive
SVG-based
menu.

A7A

The Sun Java Wireless Toolkit 2.5

The Sun Java Wireless Toolkit 2.5 includes all of the advanced
development features found in earlier versions, such as MIDlet
signing, certificate management, integrated OTA emulation,
push registry emulation, and more. New features include
support for the Mobile Service Architecture (JSR-248) platform.
Although this JSR does not define any new APIs, it does
standardize many existing ones into a common API stack, to
increase interoperability and make mobile development easier.
There are also many new APIs supported, such as Security and
Trust Services (JSR 177), Location (JSR 179), SIP (JSR 180),
Content Handler (JSR 211), Scalable 2D Vector Graphics (JSR
226), Payment (JSR 229), and several others.

Mobility Pack for
CDC Quick Start
Guide

ne
tb

ea
ns

.o
rg

/k
b/

55
/q

ui
ck

st
ar

t-m
ob

ili
ty

cd
c.

ht
m

l

nb03.indb 35 4/5/2007 20:31:48

M
ob

ile
 D

ev
el

op
m

en
t

36 N NetBeans Magazine

experience for an application on a particular device, and to test the

portability of the application across different devices. As you have

seen, the J2ME Wireless Toolkit 2.2, bundled with Mobility Pack 5.5

for CLDC/MIDP, provides several sample devices, like the Default-

ColorPhone (and you can easily update to WTK 2.5).

It is important, however, to remember that an emulator can only

approximate a device’s performance. Environmental variables like

processing speed or the strength of the wireless signal can affect

performance on a real device, and should be taken into account.

A very important feature of the Mobility Pack is its ability to work

with the emulators provided by major man-

ufacturers, such as Nokia, Sony Ericsson,

Siemens, and Motorola. Using the Java

Platform Manager (see Figure 8), you can

easily add any emulator that supports the

Unified Emulator Interface (UEI) standards.

Simply choose Tools>Java Platform Man-

ager, select the J2ME Platform, and the

wizard detects the emulator platforms in-

stalled on your system. Other emulators

can also be added with a little more effort.

Project properties

We can use the project properties to de-

fine many aspects of the program. As you

can see in Figure 9, the property catego-

ries are on the left, and the properties for

that category are on the right. A short list

of things you can do in properties includes:

defining the emulator platform, setting/

checking Configuration and Profile versions

and optional APIs the device supports; add-

ing or removing the contents of the JAR and

JAD files; setting the Push Registry; setting

obfuscation and optimization levels; add-

ing signing and security certificates; and

setting deployment options. The Abilities

shown in Figure 9 list attributes that might

be shared by different devices, and there-

fore might be shared when you are adding

pre-processing code.

Let’s take a look at this using the two con-

figurations we’ve created for our TestMIDlet.

The first is the DefaultConfiguration we’ve

been using so far. The second is the Me-

diaControlSkin that you selected when first

creating the project. Before we discuss

project properties and pre-processing

code, let’s take a quick look at the Media-

ControlSkin device emulator.

To switch configurations, choose the

9A
Figure 9

Abilities page.

A

8A
Figure 8

The Java Platform
Manager.

A

nb03.indb 36 4/5/2007 20:31:49

Issue Three N 37

Write Once, Deploy Anywhere

MediaControlSkin from the Configuration

drop-down menu in the IDE toolbar. Then

choose Run>Run Main Project. It’s the

same TestMIDlet as before, but this time

the device emulator and its display are

thinner – so we lose a little bit of the splash

screen, as shown in Figure 10.

Preprocessing code

 Preprocessing modifies the code in your

source files before the code is parsed by

the compiler. The preprocessor modifies

the code according to preprocessor di-

rectives you insert into the code as code

blocks with beginning and ending direc-

tives. These code blocks are marked visu-

ally in the Source Editor and are included

(or excluded) when you build the JAR for a specific project configu-

ration or ability. You can use these code blocks to create, manage,

and track code that is specific to one or more project configura-

tions or abilities.

 Now that we’ve defined the key concepts of project configura-

tions, let’s go back to our example and say now that we want to

use a different graphic for the MediaControlSkin device. We already

have our two project configurations defined, so what we need to

do is add some pre-processing code so that the compiler knows

it should use one image for DefaultConfiguration and another for

MediaControlSkin.

Click the Source button to view the TestMIDlet source code. Then

scroll down to the get_image1() method. Notice that some sections

have a blue background – these are “guarded blocks” that are gen-

erated by the VMD, and cannot be edited. Highlight the code be-

ginning with “//Insert pre-init code here and ending with “//Insert

post-init code here.” Right click on the selection and choose Prepro-

cessor Blocks>Create If/Else Block. A menu with all the available

configurations and abilities appears. Double click on DefaultCon-

figuration. Your code should look like Figure 11.

Notice that the //#else directive has a pink background. This

code can be edited. Change the graphic name “/mobileduke.

png” to the name of another graphic (such as “/veryproudduke.

10A

11A
Figure 11
Preprocessor
code.

A

Figure 10
The
MediaControlSkin
Emulator.

A

ne
tb

ea
ns

.o
rg

/k
b/

55
/m

ob
ili

ty
cd

c.
ht

m
l Mobility

Pack for CDC
documentation
index

nb03.indb 37 4/5/2007 20:31:50

M
ob

ile
 D

ev
el

op
m

en
t

38 N NetBeans Magazine

png”). Now, when you run our MIDlet using the DefaultConfigura-

tion, the emulator will display the “mobile duke” image. When

you run the MIDlet using the MediaControlSkin configuration, or

any other configuration you add later, the emulator will display

the second graphic. This is a very simple example of what’s pos-

sible with preprocessor blocks, but it hopefully gives you a taste

of what they can do.

Deploying to
multiple devices

 Now that you have an application that works with two devices, it’s

time to deploy it. The deployment property page shown in Figure 12

shows the different deployment methods available.

Because deployment is set in the project Properties, you can de-

fine a different deployment for each configuration. When you have

chosen your deployment method, choose Build>Build All Main Proj-

ect Configurations. Then you’ll have a JAR for each target device

you’re programming for.

Other features
Our example was purposefully kept simple to focus on the design,

configuration, and deployment features of the Mobility Pack for

CLDC. But there are two other important

features we’d like to mention quickly before

we move on to the CDC Pack.

The End-to-End Bridge technology is a set

of two wizards that enable you to quickly

modify your MIDlet to consume Web

Services. The J2ME Web Service Client

creates a client-side proxy that connects

directly to Web Services that support the

JSR-172 (J2ME Web Services) specifica-

tion. The Mobile Client to Web Application

Generator generates a servlet that con-

nects to a web application that includes a

Web Service client.

Another important feature is JMUnit test-

ing support. The Mobilty Pack for CLDC pro-

vides built-in JMUnit support for generating

and executing unit tests for MIDP/CLDC ap-

plications. You can generate and navigate

to tests by selecting any class or package

node in the Projects window and choosing

from the Tools>JUnit menu.

12A
Figure 12

Deployment
properties.

A

nb03.indb 38 4/5/2007 20:31:55

Issue Three N 39

Write Once, Deploy Anywhere

C�
Anatole Wilson
(anatole.wilson@
sun.com) lives
in Pittsburgh,
Pennsylvania and
has been the Senior
Technical Writer for
the Mobility Pack
since its inception.
He has worked for
various high-tech
companies, including
IBM and Oracle, and,
as a freelance writer,
has written articles
for publication in
various magazines.

NetBeans
Mobility Pack for CDC

The Mobility Pack for CDC (Connected

Device Configuration) makes it possible to

create, test, and deploy applications for

several CDC platforms including the Sun

Java CDC Toolkit, Sony Ericsson CDC Plat-

form 1, Nokia S80, SavaJe and Ricoh MFP,

as well as Windows CE using NSIcom’s

CrEme CDC virtual machine. Although it

is not yet as complete as the MIDP/CLDC

Pack, many new features will be added

when Mobility Pack 6.0 is released.

You create CDC projects in the same

manner as MIDP/CLDC projects, using the

New Project Wizard. Before you begin, you

will want to install the Sun Java Toolkit for

CDC or an emulator platform from one of

the growing list of manufacturers the Mo-

bility Pack supports. You can find this list in

the NetBeans Mobility

Pack for CDC Quick Start Guide.

To get started on a project, Choose File>New Project. Choose the

category CDC, project type CDC Application. The wizard will guide

you through the rest of the steps for creating your Main Project.

Once you’ve created a project, you can use the Matisse GUI Build-

er with either the AGUI toolkit or the Personal Profile 1.0, in the

same way you would use it for regular Java SE development. For

Personal Profile GUI development, right click the Main.java form in

the GUI Builder, and choose Set Layout>Free Layout. Then drag

and drop components from the Palette window into the Design Area

of the GUI Builder. You can also take advantage of JUnit testing and

other key features of the NetBeans IDE when developing CDC ap-

plications in the Mobility Pack for CDC.

What’s coming in NetBeans
Mobility Pack 6.0

The NetBeans Mobility Pack has many dramatic changes coming

up. One of the most significant changes, as we’ve mentioned be-

fore, is that the CLDC/MIDP and CDC Packs will be merged into a

single UI, making it easier to create end-to-end applications. Other

exciting new features include:

 New custom components to simplify programming, including

a File Browser, an SMS Composer, a Login Screen and a Personal

Information Manager (PIM) Browser

 VMD support for the MIDP 2.x Game API that allows creating

tiled and animated layers for environment design, and support for

animated character and sprites.

 Improved VMD UI, including support for non-visual components

and a design analyzer.

 CDC support for project configurations and pre-processing

blocks.

Conclusions
This article was intended to give you a hands-on sense of the

capabilities of the Mobility Pack for CLDC/MIDP and CDC, and a

running start on building your first mobile application. You can learn

more about the Mobility Pack by reading the tutorials and articles

on the NetBeans website, joining the NetBeans community of devel-

opers, and most importantly, by going out there and creating great

mobile applications!

nb03.indb 39 4/5/2007 20:32:01

Pain to

Developing rich desktop
Java applications has
been historically a painful
experience; but now you
have new advanced Swing
components and a complete
application framework in the
NetBeans Platform. See how
the Platform has made it much
easier to develop a complex
desktop application and the
lessons learned in building it.

From

Fabrizio Giudici

Swing and the NetBeans
Platform in the real world

Gain

nb03.indb 40 4/5/2007 20:32:12

Issue Three N 41

From Pain to Gain: Swing and the NetBeans Platform in the Real World

Developing rich desktop
Java applications has
been historically a painful
experience; but now you
have new advanced Swing
components and a complete
application framework in the
NetBeans Platform. See how
the Platform has made it much
easier to develop a complex
desktop application and the
lessons learned in building it.

L
ike most people working

with Java since its early

beginnings, my first expe-

rience with the technology

was with (small) desktop

applications: some re-

search stuff during my doctorate and a

simple control panel for a healthcare call

center. It was the age of AWT, and you really

couldn’t do much more. So I soon moved

to the server side, where things appeared

more robust and promising. They were in-

deed, and I stayed there for long and be-

came a J2EE Architect.

A few years later, I was attracted to the

desktop again because of a rising passion

for digital photography. I still encountered

many problems, but just before I threw the

sponge, Sun and the developer commu-

nity came to the rescue with SwingLabs,

java.net and new versions of NetBeans. Now

I am enjoying a (possibly) promising open-

source application – blueMarine – which is

based on the NetBeans Platform.

In this article, I’ll tell you more about

blueMarine’s story and review some of the

main NetBeans extension APIs. I’ll show

how these APIs are used and customized,

while pointing out the problems I faced and

how they were fixed. If you know just a little

about NetBeans and you’re involved with

rich client applications, I think you will enjoy

this article.

The beginning
The first time I ever wrote some Java code

for managing my photos was around 2001,

after getting bored with the OpenOffice

spreadsheet I was using. I exported

everything to XML and, by means of an

XSLT transformation, defined my own da-

tabase format which was managed by a very simple GUI based on

Swing.

In summer 2003 I made the “big jump” into the world of digital

cameras, buying a Nikon D100 (a professional SLR). It was one of

the century’s hottest summers in Italy, so I was forced to minimize

the number of photo trips: walking outside was simply a pain. Being

forced to stay at home, although in the relaxing environment of the

Tuscany countryside, I spent most of my holidays studying the NEF

format.

NEF is a “RAW file format” that at the time was mostly undocu-

mented. A RAW file format holds the unprocessed data straight from

the camera’s CCD sensor and requires processing for being trans-

formed into a quality picture; this processing is often seen as the

digital counterpart of the old wet darkroom photo development. Hav-

ing never owned a wet darkroom, I was intrigued about the possibility

of “digitally developing” my photos, and started writing some Java

code for this.

At the end of the summer I had created a simple thumbnail naviga-

tor with the capability of showing my own photos – blueMarine was

born. A year later, the project had the capability of tagging photos

with a catalog facility and of publishing galleries on the web.

However, I was irked by the fact that I needed more than a single

piece of software to perform tasks such editing, printing, cataloging,

archiving and web publishing. So I set about implementing all this

workflow in a single application. Also, I decided it was high time I

publicly released blueMarine, and so the first alpha release went on

SourceForge under the GPL License (later changed to Apache 2.0).

You can see one of the first versions in Figure 1.

Another force was pushing me on: the challenge of trying Java

for digital image processing on a desktop computer. To me it was

already evident that Java was good for scientific image manipula-

tion; one example was that engineers at NASA were successfully

using JAI, an advanced imaging API. But what about desktop pro-

cessing for the casual photographer? To demonstrate that Java is

good for a wide range of applications is something that I’ve always

been pursuing since I started working as a Java consultant more than

ten years ago.

The frustration
Notwithstanding the initial enthusiasm, at the end of 2005 I was

pretty frustrated with the project. Performance wasn’t much of an is-

Swing and the NetBeans
Platform in the real world

Gain
ae

rit
h.

de
v.j

av
a.

ne
t Aerith

bl
og

s.s
un

.c
om

/g
ee

rtj
an Geertjan

Wielenga’s
blog

The
blueMarine
Project

bl
ue

m
ar

in
e.

tid
al

wa
ve

.it

nb03.indb 41 4/5/2007 20:32:19

42 N NetBeans Magazine

Ne
tB

ea
ns

 P
la

tfo
rm

sue but I was facing difficulties in developing a rich GUI application us-

ing plain Swing. Swing is an excellent API, but when you start using it

to build a complex app you discover there’s still a lot of stuff to add.

Implementing the missing pieces is no rocket science, but that work

wastes a lot of time better spent elsewhere. Re-instantiate the prob-

lem for things such as building menus, having actions enabled in

a context-sensitive fashion, defining a flexible and working docking

mechanism for internal windows... and you’ll find yourself spending

most of your time writing generic GUI components, instead of work-

ing on the core of your application.

Until recently, there were few open-source libraries dealing with

such issues, and most were unsatisfactory and cumbersome to in-

tegrate. There were also the early releases of NetBeans, but I was

unsatisfied with their performance. Eclipse and SWT were an option,

but I decided I wasn’t really going to study a completely alternative

and nonstandard API, with a very low learning ROI and a cumbersome

way to integrate with Swing.

Summing up, I was seriously thinking about giving up with

blueMarine – maybe Java wasn’t yet ready for desktop development

after all.

The Renaissance
However, there were a few concurrent events that saved the proj-

ect: my participation at JavaPolis at the end of 2005, and the release

of NetBeans 5.0 in early 2006.

At JavaPolis, I breathed the community atmosphere that I had mostly

1A forgotten (three years had passed since my

last JavaOne). This renewed my enthusiasm,

which was piqued further by Romain Guy’s

presentation showing how effective GUIs

can be built with Swing. I started looking at

Romain’s blog and by following links I got to

other blogs such as Joshua Marinacci’s, and

from there to all the java.net and JavaDesk-

top stuff. I discovered there was a great

deal of new interest in Swing; good quality

Swing components such as at SwingLabs,

cool demos – lots of material that I could

use. But I still needed a platform.

A few weeks later, NetBeans 5.0 came

out. The new release looked like it had final-

ly fixed the traditional problems of the Plat-

form, so I decided to give it a try. I started

disassembling blueMarine, extracting only

the imaging code and redesigning it to use

the NetBeans Platform. After a few months,

the first Early Access builds were ready to

be delivered, and I had started using the

tool for my own photo management. In the

meantime, the zero-issues switch from my

former PPC Apple iBook to the new Intel

MacBook Pro was a strong sign that my

choice had been right.

Today I’m working on making the new blue-

Marine stable and usable. New early access

builds are available, and I’m running the re-

quired quality tests (the complete redesign

obviously broke some of the stability of the

previous release; that was the price to pay).

Figure 2 shows the Platform-based version

of blueMarine at work.

The power of the
NetBeans Platform

Now that you know the origins of

blueMarine, I’ll show an overview of the many

benefits that NetBeans and Swing brought to

Figure 1

The old
blueMarine

main window,
developed on

plain Swing.

A
ww

w.
cu

rio
us

-c
re

at
ur

e.
or

gRomain
Guy’s blog

nb03.indb 42 4/5/2007 20:32:21

Issue Three N 43

From Pain to Gain: Swing and the NetBeans Platform in the Real World

packed in nbm files, and users can set up their own “update center”

for downloading updates from the Internet. Individual modules can be

digitally signed and the system automatically pops up their license for

approval if required.

The blueMarine project takes full advantage of this organization. The

core APIs of the application are defined by a relatively small set of

modules implementing a workspace manager, photo and thumbnail

management and simple thumbnail and photo viewers. The more

advanced features, such as the Catalog, the Gallery Manager, and

geo-tagging functionality, including the Map Viewer, are implemented

in separate and mostly independent modules that act as “clients” of

the core APIs.

DataObjects, Nodes and ExplorerManagers

ExplorerManagers, Nodes and DataObjects are probably the most

3A

2A

its development, as well as some problems

I faced and how I fixed them.

First point: it’s Swing!

To me, the fact that the NetBeans Platform

is based on regular Swing is a huge advan-

tage over competitors such as Eclipse RCP.

If you look around, you can find a much

broader choice of Swing components (in-

cluding “cool” ones which implement anima-

tions and effects).

I concretely realized this advantage last

June, when Joshua Marinacci released the

source of an Aerith Swing component capa-

ble of rendering maps, named JXMapViewer

(Aerith was one of the hottest demos at

JavaOne 2006). I had been waiting for that

moment for several weeks, as one of the

features of blueMarine is geo-tagging (as-

sociating a geographical position to each

photo so they can be shown over a map).

Integrating JXMapViewer into blueMarine re-

quired just a few hours of work; you can see

the result in Figure 3. The Swing choice

was indeed rewarding.

The Module System

A NetBeans Platform application is natu-

rally organized into modules – in fact, it’s a

set of modules bound together. Each mod-

ule has a name, a set of version tags, its

own classpath, and a list of declared depen-

dencies. The developer can control which

subset of the public classes is exposed to

other modules, and the platform enforces

the dependencies among modules (for in-

stance, preventing a module to be installed

if any of the required modules is not present

or is too old).

Furthermore, an application can be extend-

ed at a later time by publishing new modules

Figure 2
The main window of
the new blueMarine
application,
developed on the
NetBeans Platform.

A

Figure 3
The Map Viewer
with geo-tagged
photos uses the
JXMapViewer
component.

A

nb03.indb 43 4/5/2007 20:32:26

44 N NetBeans Magazine

Ne
tB

ea
ns

 P
la

tfo
rm

useful APIs in NetBeans. With DataObjects you can implement your

application-specific entities that are mapped to a file on the disk. For

instance, blueMarine’s basic entity is PhotoDataObject, which repre-

sents a photo in the database.

While DataObjects contain all the status and behavior of your enti-

ties, Nodes can be bound to them for visualization purposes. They

can also be aggregated in many different ways (as collections or

graphs). The NetBeans Platform provides GUI components, such

as tables and lists, which can use a set of Node objects as their

model; among the most common are BeanTreeView, ContextTreeView,

and ListView. Finally, an ExplorerManager controls selections and

tree navigation.

Yes, this is nothing more than a sophisticated MVC implementation

(see Figure 4), but an implementation where a lot of boilerplate code

has been already written for you. For instance, the Platform APIs take

care of things like drag-and-drop support (with such fine details as

visual cues during the drag operation), cut-and-paste operations, and

context menus.

The Lookup API

The NetBeans Platform components have a platform-controlled life-

cycle (much like EJBs in a container), so they are not directly instanti-

ated. In order to retrieve a reference to an existing module, you use

the Lookup API. This API is very similar to other lookup mechanisms.

You get a reference to an object starting from its “name”, which is not

a string but the corresponding Class object.

For instance, let’s suppose we have a module called it.tidalwave.

catalog.CatalogImpl (implementing an interface it.tidalwave.catalog.

4A

Catalog). First you “register” the module by

putting a special file in the classpath, un-

der the META-INF/services directory. The

file must be named after the implemented

interface and contain the name of the im-

plementation class. Whenever a module

is loaded, NetBeans scans for these spe-

cial files, instantiates the objects and puts

them into the “default” Lookup object, from

where any other piece of code can later

retrieve it.

I usually wrap the lookup code using the

Locator pattern, as shown in Listing 1, and

then perform lookups like this:

Catalog catalog = CatalogLocator.findCatalog();

This mechanism not only favors decou-

pling, but it also creates pluggable behavior.

For instance, let’s look at the map-rendering

capability of blueMarine. As you know, there

are many map providers around, such as

Google Maps, Microsoft Visual Earth, NASA,

and others. I want people to be able to ex-

tend blueMarine by plugging new code into

it for handling additional map providers. The

solution is simple: first define an interface

– MapProvider – which declares all the re-

quired capabilities, then write alternate im-

plementations, each one in its own module,

e.g. GoogleMapProvider, MicrosoftVisua-

lEarthMapProvider, etc.

Each implementation is registered

in the default Lookup instance, using

the same “name”: MapProvider (mul-

tiple registered objects for the same

name are allowed). Now, retrieving the

objects becomes an easy task. An ex-

ample is shown in Listing 2. You can

add modules with new map providers,

and the retrieval code will find them at

runtime.

Figure 4

NetBeans MVC
components.

A

nb03.indb 44 4/5/2007 20:32:48

Issue Three N 45

From Pain to Gain: Swing and the NetBeans Platform in the Real World

installed as add-ons. I can also easily add new viewers. For instance,

I was able to include a Filmstrip Viewer as a completely decoupled

component that can be used by itself or together with the original

Thumbnail Viewer (see Figures 6 and 7).

The Lookup API has many other uses, as many types of objects

(including Nodes themselves) have their own local Lookup instance.

I’ve only shown the “tip of the iceberg” here.

The FileSystem API

Java offers just a bare-bones approach for file management

through the java.io.File class, which wraps a file name and provides

attribute access, basic operations and

directory listing. This approach is re-

ally poor, since there’s no concept of

a filesystem; furthermore, File objects

are bound to local, physical files/direc-

tories. What if you need to represent a

virtual or remote directory tree? I faced

this problem a few years ago, and in

the end I solved it by extensively sub-

classing File – not a neat design, even

though it worked.

5A

The Lookup API also
promotes decoupling

The default Lookup instance also contains

the current set of selected Node objects.

This makes it possible to design an effec-

tive and loosely-coupled mechanism also

for inter-module communication. It’s based

on the Observer pattern: some modules

publish their node selection to the default

Lookup, while others listen for changes.

And by implementing some filtering related

to the kind of information associated to

the changed nodes we get to the Publish/

Subscribe design pattern.

For example, in blueMarine there are

many ways to navigate the photo database

and show a set of thumbnails – by exploring

folders, the calendar, photos that share a

tag, photos in the same gallery, and so on.

The “explorer” modules just publish a selec-

tion of Nodes bound to PhotoDataObjects

to the default Lookup; a Thumbnail Viewer

receives notifications and updates itself ap-

propriately (see Figure 5).

The explorer components do not depend

on the Thumbnail Viewer. Actually they are

completely decoupled from it (we’re apply-

ing Inversion of Control here). With this de-

sign I can add as many explorers as I want,

even in independent modules that can be

Listing 1. A Locator that uses the Lookup class. B�

public class CatalogLocator {
 public static final synchronized Catalog findCatalog() {

 final Lookup lookup = Lookup.getDefault();
 final Catalog catalog =
 (Catalog)lookup.lookup(Catalog.class);

 if (catalog == null) {
 throw new RuntimeException(
 “Cannot lookup Catalog”);
 }
 return catalog;
 }
}

Listing 2. Retrieving registered objects.B�

private DefaultComboBoxModel mapProvidersModel =
 new DefaultComboBoxModel();

private void searchMapProviders() {
 Result result = Lookup.getDefault().lookup(
 new Template(MapProvider.class));

 for (Object provider : result.allInstances()) {
 mapProvidersModel.addElement(provider);
 }
}

Figure 5
The role of Node
objects for
inter-module
communication.

A

jra
wi

o.
de

v.j
av

a.
ne

t The jrawio
Image
I/O plugin
for RAW file
formats

sw
in

gl
ab

s.o
rg SwingLabs

nb03.indb 45 4/5/2007 20:33:03

46 N NetBeans Magazine

Ne
tB

ea
ns

 P
la

tfo
rm

7A

6A

NetBeans’ FileSystem API fills this gap. There’s a whole set of

FileSystem classes that can be used to represent different types of

filesystems: local, remote or even virtual. (NetBeans’ inner configura-

tion settings, including those of your custom code, are stored in such

a virtual file system.) The only caveat is that you must use a NetBeans-

specific instance of FileObject instead of File, but converting one into

the other is easy:

FileObject fileObject = ...;
File file = ...;
file = FileUtil.toFile(fileObject);
fileObject = FileUtil.toFileObject(file);

blueMarine has a strict requirement for managing files. Each file

must be associated with a unique id stored in a local database. The

id is later used to build relationships between each photo and other

entities such as thumbnails, metadata, galleries, editing settings, and

so on. It’s a rather common design for this kind of application, allowing

you to later move or rename photos without

too many changes in the database. It also

lets you work with remote volumes such as

external disks and DVDs. In other words,

even when you don’t have the file available

in the system, you can look at its thumbnails

and metadata.

A good starting point for tweaking the file-

system management is the LocalFileSystem

class, which represents a tree of files with a

single root (for systems with multi-root hier-

archies like Windows you just need to put a

few LocalFileSystem objects together).

The LocalFileSystem class includes

AbstractFileSystem.Attr and AbstractFileSys-

tem.List. Attr lets you manipulate a set of

attributes for each FileObject, and List lets

you customize a directory listing. (Attributes

are just simple properties which are bound

to a FileObject and can be manipulated with

getters and setters.)

I started by writing a simple subclass of

LocalFileSystem that installs decorators of

Attr and List, as shown in Listing 3. The

AttrDecorator class retrieves the unique id for

each file path (the FileIndexer is just a sort of

DAO for this data), and makes it available as a

special attribute of FileObject (ID_ATTRIBUTE).

The code is shown in Listing 4.

While AttrDecorator would be enough to

satisfy the functional specs, there’s still the

problem of batch loading. The readAttribute()

method would be called quite randomly,

thus preventing any effective batch policy

(FileIndexer is able to do batching by lazy

loading, but to be effective it needs to have

a good number of entries to batch!).

Here ListDecorator helps us, as it inter-

cepts children files after they are listed from

a parent directory (see Listing 5). Calling

createIndexing() immediately on the set

Figure 6

The Thumbnail
Viewer and

the Film Strip
Viewer must

show the
same nodes

– with the same
selection too.

A

Figure 7
 Multiple,

synchronized
views are

implemented by
just listening to

the same Node’s
changes.

A

nb03.indb 46 4/5/2007 20:33:12

Issue Three N 47

From Pain to Gain: Swing and the NetBeans Platform in the Real World

of listed files allows the FileIndexer to

batch the retrieval of their ids.

Actions and Menus

Actions and Menus (together with

auxiliary components such as toolbars)

are the main facilities for interacting with

the user. Swing provides basic support

for them, but you soon realize that this

is not enough, especially if you are de-

signing a modular application.

Menus are organized hierarchically

and grouped according to intuitive cri-

teria. So a pluggable module will need

to place its own menu items in the prop-

er places (for instance, under a global

“Edit” or “View” item in the menu bar),

and possibly respect some meaningful

sequence (e.g. “menu items of module

C should appear between those of mod-

ules A and B”). Also you might like to

introduce menu dividers to group some

menu items together.

Swing actions can be enabled and dis-

abled with a simple attribute change;

but the implementation of the decision

whether to enable or disable them is up

to you. Often this is done by a special

method that computes the states of a

set of actions and is invoked after any

change made by the user, as in:

private void setEnablementStatus() {
 myAction1.setEnabled(/* condition 1 */);
 myAction2.setEnabled(/* condition 2 */);
 ...
}

This approach works, but it’s neither

modular nor easily maintainable. And

one must consider that in most cases

the boolean conditions (condition 1,

2, etc. in the previous code) are just a

Listing 3. Plugging decorators into the LocalFileSystem class.B�

class LocalIndexedFileSystem extends LocalFileSystem {
 public LocalIndexedFileSystem() {
 attr = new AttrDecorator(attr, this);
 list = new ListDecorator(list, this);
 }
}

Listing 4. Retrieving registered objects.B�

class AttrDecorator implements AbstractFileSystem.Attr {
 private static final FileIndexer fileIndexer =
 FileIndexerLocator.findFileIndexer();

 private AbstractFileSystem.Attr peer;
 private LocalIndexedFileSystem fileSystem;

 public AttrDecorator(AbstractFileSystem.Attr peer,
 LocalIndexedFileSystem fileSystem)
 {
 this.peer = peer;
 this.fileSystem = fileSystem;
 }

 public Object readAttribute (String path, String name) {
 if (IndexedFileSystem.ID_ATTRIBUTE.equals(name)) {
 String path2 = fileSystem.findCompletePath(path);
 Serializable id = fileIndexer.findIdByPath(path2);

 if (id == null) {
 fileIndexer.createIndexing(path2, false);
 id = fileIndexer.findIdByPath(path2);
 }
 return id;
 }
 else {
 return peer.readAttribute(path, name);
 }
 }
 ...
}

Listing 5. Decorating directory scanning.B�

class ListDecorator implements AbstractFileSystem.List {
 private static final FileIndexer fileIndexer =
 FileIndexerLocator.findFileIndexer();
 private AbstractFileSystem.List peer;
 private LocalIndexedFileSystem fileSystem;

 public ListDecorator (AbstractFileSystem.List peer,
 LocalIndexedFileSystem fileSystem)
 {
 this.peer = peer;
 this.fileSystem = fileSystem;
 }

 public String[] children (String path) {
 String[] result = peer.children(path);

 if (!fileSystem.disableChildrenIndexing) {
 String path2 = fileSystem.findCompletePath(path);
 if (result != null) {
 for (String child : result) {
 fileIndexer.createIndexing(path2 + child, true);
 }
 }
 }
 return result;
 }
}

su
bs

ta
nc

e.
de

v.j
av

a.
ne

t The Substance
look and feel

ja
i.d

ev
.ja

va
.n

et JAI – Java
Advanced
Imaging

nb03.indb 47 4/5/2007 20:33:15

48 N NetBeans Magazine

Ne
tB

ea
ns

 P
la

tfo
rm

function of the set of objects currently selected by the user – e.g., you

can run “Edit” or “Print” only if a photo is selected.

Managing Menus and Actions with plain Swing in a clever way doesn’t

require rocket science, but you’ll get a headache if it needs to be done

from scratch for a sophisticated, modularized application. Fortunately,

the NetBeans Platform also helps you in this area.

First, the Platform provides richer classes than Swing’s Action. Some

of the most commonly used are:

 NodeAction – A generic action that changes state when a new

set of Nodes is selected. The programmer must subclass it and over-

ride an enable(Node[]) method, which evaluates the proper boolean

expression for activating the action.

 CookieAction – This is an action whose state depends on the cur-

rently selected Node, and on it being bound to a given object (usually a

specific DataObject). It also deals with different selection modes such

as “exactly one”, “at least one”, etc.

After having implemented your action using the proper class, you

declare it in your module’s layer.xml, which acts as a generic configu-

ration file (it models a “virtual file system” structured as the contained

XML DOM).

Usually you don’t have to do this manually: the NetBeans IDE offers a “New
action” wizard that asks for the required information and both generates skeleton
Java code and updates the relevant part of layer.xml. In fact, most of the XML in the
following examples can be generated or manipulated through the IDE.

This approach works for both actions that should appear on contex-

tual menus (see Figure 8) and for actions that need to be attached

to a “regular” menu. In layer.xml you can also declare

toolbars, where groups of buttons are logically bound

to actions, and define keyboard shortcuts.

The Windowing API

The NetBeans Platform provides a specific window-

ing component named TopComponent. This compo-

nent models a rectangular portion of the main window,

which can be resized and docked in different areas

of the screen (these areas are called “modes”). For

instance, the Explorer mode is a vertical column at the

left side; the Properties mode is a vertical column at

the right side; the Editor mode is the remaining space

E

at the center (see Figure 9).

Also, a TopComponent can be activated

or deactivated, has its own mechanism for

keeping persistent state (which is automati-

cally restored on restart), and can request

attention by flashing its tab.

Docking areas can be resized with the

mouse, or programmatically. You can assign

TopComponents to different areas by drag-

ging them with the mouse or through code.

You can define your own docking areas as

well. For instance, I needed a component

called “Film Strip” that should be placed

at the bottom of the window. So I defined

a docking area called “strip” and bound the

Film Strip to it (see Figure 9 again).

While this flexibility is great for some types

of applications, such as an IDE or a CAD sys-

tem, so much control could be distracting to

some classes of users. For blueMarine I pre-

fer not to have such flexible docking: a fixed

scheme is used, offering just a bit of control

through menu commands that let you swap

the components in the Explorer and Proper-

ties modes.

The tabs and the control code which allows

docking with the mouse has been removed

in blueMarine by specifying a special Tab-

8A

Figure 8

Each thumbnail is
a rendered Node

object bound to a
PhotoDataObject

and can pop up
a menu with

contextual
actions. The grid

arrangement
and the look of
thumbnails are

implemented
by means of

a customized
ListView.

A

ne
tb

ea
ns

.o
rg

/c
om

pe
tit

io
n/

lo
ok

-a
nd

-fe
el

.h
tm

l Look-and-feel
examples with

the NetBeans
IDE

nb03.indb 48 4/5/2007 20:33:20

Issue Three N 49

From Pain to Gain: Swing and the NetBeans Platform in the Real World

9A

DisplayerUI (the visual component for each

mode). I implemented programmatic con-

trol with the code in Listing 6.

Indeed it was not hard at all to implement the
TabDisplayerUI trick, but only because I discovered
the solution on Geertjan Wielenga’s blog; without
that help it would have taken much longer. I found
that programmers can enjoy excellent support from
the NetBeans community, both in the mailing list
and in the evangelists’ blogs – I recommend you to
bookmark these!

The Look & Feel

The predefined Java look and feels are

getting better with each JDK release, but

sometimes you need a special LAF. For in-

stance, dealing with photography you need

a clean GUI that doesn’t distract the user,

and a darkish theme (where all the used

colors are rigorously shades of gray), so

as not to disturb a correct perception of

colors.

Since JDK 1.4, the UIManager class al-

lows you to plug different look and feels

with minimal or no impact on existing code.

As the class is a part of the standard Swing

API, there are a lot of compatible LAFs that

can be easily plugged into your app.

If you find a look and feel that you like,

E

you can install it into NetBeans (and of course into

your NetBeans Platform application) with a simple

command-line switch:

--look-and-feel <name of the L&F class>

After some tests, I decided to keep the native

look and feel for every piece of the GUI except for

the main window, where I just changed the com-

ponent colors (Mac OS X is a special case; see

below). The typical blueMarine look and feel is il-

lustrated in Figure 10.

As you know, changing the colors of a Swing

component is usually a matter of c.setForeground()

and c.setBackground(). Since the NetBeans Platform is Swing-based,

things aren’t much different. But there are a few exceptions. For in-

stance, these standard methods don’t work on ListView (one of the

most used view components for Node objects). In blueMarine, this

was fixed with the code in Listing 7, which first retrieves the inner

JList and then changes its properties as needed. Similar code works

with tree-based components (which share the same problem).

I found another problem with tree-based components: even with

the code shown before, tree cells were rendered in black and

white. Again, inspecting the sources, it was easy to find the cause:

NetBeans’ trees usually have a special cell renderer which does many

things, such as supporting HTML rendering (so you can use multiple

text styles); the cell renderer also chooses a color scheme that con-

trasts well between the foreground and the background. This is a

clever idea in most cases, but not when you want to fine-tune your

colors. The workaround was implemented by the few lines shown in

Listing 8. Here’s how you install the patched renderer:

PatchedNodeRenderer nodeRenderer = new PatchedNodeRenderer(tree.getCellRenderer());
tree.setCellRenderer(nodeRenderer);

we
bl

og
s.j

av
a.

ne
t/b

lo
g/

jo
sh

y Joshua
Marinacci’s
blog

Listing 6. Programmatic component docking.B�

TopComponent topComponent = ...;
String newMode = “explorer”;
Mode targetMode =
 WindowManager.getDefault().findMode(newMode);

if (targetMode != null) {
 component.close();
 targetMode.dockInto(component);
 component.open();
 component.requestVisible();
}

Figure 9
Modes in the
main window of
blueMarine – “strip”
is a custom mode;
each mode contains
a TopComponent.

A

nb03.indb 49 4/5/2007 20:33:25

50 N NetBeans Magazine

Ne
tB

ea
ns

 P
la

tfo
rm

Regarding the look and feel, Mac OS X raised some particular issues.

Mac users, who are really picky about aesthetics, noticed some time

ago that even the Java implementation created by Apple does not ac-

curately reproduce the oper-

ating system look and feel.

This prompted the creation

of a third-party product,

named Quaqua, which

fixes all the problems and

implements a pixel-accu-

rate Aqua GUI. (Actually the

problems go beyond pixel

accuracy: for instance the

Java JFileChooser under Ap-

ple’s Mac OS LAF is terrible

in comparison to the native

one.) As Quaqua is a regu-

lar look and feel handled

by the UIManager class, its

integration in blueMarine was not a problem,

with the exception of a few Quaqua issues

that were quickly fixed by the project’s de-

veloper.

Other extensions needed

A little more work was necessary with

ListView, since the thumbnail-rendering com-

ponents required a custom renderer (to pro-

vide the “slide” look and for overlaying extra

information). Also needed was a grid layout

with a predefined cell size. See Figure 9.

The standard JList makes these things

quite easy to achieve. It’s a matter of setting

a few properties:

jList.setCellRenderer(...);
jList.setLayoutOrientation(JList.HORIZONTAL_WRAP);
jList.setFixedCellWidth(150);
jList.setFixedCellHeight(150);

But unfortunately NetBeans Platform de-

velopers left these methods out of ListView

(much like the control of colors). With a

similar workaround to the one used for the

colors problem (i.e. accessing the inner

JList), it was easy for me to add the missing

Listing 7. An enhanced ListView.B�

public class EnhancedListView extends ListView {
 protected JList jList;

 @Override
 protected JList createList() {
 jList = super.createList();
 jList.setOpaque(isOpaque());
 jList.setBackground(getBackground());
 jList.setForeground(getForeground());
 return jList;
 }

 @Override
 public void setBackground (Color color) {
 super.setBackground(color);
 if (jList != null) {
 jList.setBackground(color);
 }
 }

 @Override
 public void setForeground (Color color){
 super.setForeground(color);
 if (jList != null) {
 jList.setForeground(color);
 }
 }

 @Override
 public void setOpaque (boolean opaque){
 super.setOpaque(opaque);

 if (jList != null) {
 jList.setOpaque(opaque);
 }
 }
}

Listing 8. A patched cell renderer for controlling colors in JTree’s.B�

class PatchedNodeRenderer extends DefaultTreeCellRenderer {
 private TreeCellRenderer peer;

 public PatchedNodeRenderer (final TreeCellRenderer peer) {
 this.peer = peer;
 }

 @Override
 public Component getTreeCellRendererComponent (
 final JTree jTree,
 final Object object, final boolean selected,
 final boolean expanded, final boolean leaf,
 final int row, final boolean hasFocus)
 {
 final Component component = peer.getTreeCellRendererComponent(
 jTree, object, selected, expanded, leaf, row, hasFocus);

 component.setBackground(selected ? getBackgroundSelectionColor() :
 getBackgroundNonSelectionColor());
 component.setForeground(selected ? getTextSelectionColor() :
 getTextNonSelectionColor());

 return component;
 }
}

we
bl

og
s.j

av
a.

ne
t/b

lo
g/

fa
br

iz
io

gi
ud

ic
i

ww
w.

tid
al

wa
ve

.it
/b

lo
gThe author’s

blogs

qu
aq

ua
.d

ev
.ja

va
.n

et

The Quaqua
look and feel

nb03.indb 50 4/5/2007 20:33:27

Issue Three N 51

From Pain to Gain: Swing and the NetBeans Platform in the Real World

class, named Visualizer, to retrieve the Node asso-

ciated to the current object to render, as shown in

Listing 10 (the usual JList approach, that is a cast

applied to the value parameter, would not work).

Conclusions
Well, what can I say... blueMarine has survived

its crisis, and its open-source “advertising” has

already brought me a business opportunity for

an application related to photo management

(which reuses some of the back-end compo-

nents of blueMarine – track my blogs if you

want to know more about it). And without Net-

Beans, I would have dropped blueMarine and

missed this opportunity.

What about blueMarine itself? When this article is published, the

project should be very close to the first Release Candidate of its

second life. Redesigning around the NetBeans Platform required

some time, of course. It’s likely

that you’ll need to deeply

redesign an existing applica-

tion if you want to take full ad-

vantage of all NetBeans Plat-

form features (even though

you could choose a lower-im-

pact, more incremental way

of working than I did). But

I’m quite pleased with the

results, and now I can add

new features much faster

than before.

To me, this means that

Swing and the NetBeans

Platform are now mature

technologies for the desk-

top. I’m no longer forced to

waste time reinventing the

wheel. On the contrary: I can

move very rapidly from an

idea for my application, to an

effective implementation.

10A

methods to EnhancedListView, as you see

in Listing 9.

As a final point, custom ListCellRender-

ers must add an extra step through a utility C�
Fabrizio Giudici
(fabrizio.giudici@
tidalwave.it) has a
Ph.D. in Computer
Engineering from
the University of
Genoa (1998), and
begun his career
as a freelance
technical writer and
speaker. He started
up a consultancy
company with two
friends and since
2005 is running
his own company.
Fabrizio has been
architect, designer
and developer in
many industrial
projects, including a
Jini-based real-time
telemetry system for
Formula One racing
cars. He’s a member
of the NetBeans
Dream Team, the
IEEE and JUG Milano.

Listing 9. New methods in ListView.B�

public class EnhancedListView extends ListView {
 ...
 public void setCellRenderer (ListCellRenderer listCellRenderer) {
 jList.setCellRenderer(listCellRenderer);
 }
 public void setFixedCellWidth (int size) {
 jList.setFixedCellWidth(size);
 }
 public void setFixedCellHeight (int size) {
 jList.setFixedCellHeight(size);
 }
 public void setLayoutOrientation (int layoutOrientation) {
 jList.setLayoutOrientation(layoutOrientation);
 }
}

Listing 10.Retrieving the Node object from a custom cell renderer.B�

import org.openide.explorer.view.Visualizer;

public class ThumbnailRenderer extends JComponent
 implements ListCellRenderer
{
 final public Component getListCellRendererComponent (
 JList list, Object value, int index,
 boolean isSelected, boolean cellHasFocus)
 {
 this.hasFocus = cellHasFocus;
 this.selected = isSelected;
 this.index = index;
 Node node = Visualizer.findNode(value);
 thumbnail = (Thumbnail)node.getLookup().lookup(Thumbnail.class);
 return this;
 }
...

Figure 10
Using a dark color
scheme in the
main window and
a regular scheme
in popups.

A

nb03.indb 51 4/5/2007 20:33:32

OpenOf fice.org
Using a new OpenOffice.
org plug-in module to
create, build, deploy and
debug OpenOffice.org/
StarOffice extensions
and client
applications

Integration
NetBeans

Kay Koll

nb03.indb 52 4/5/2007 20:34:41

Issue Three N 53

OpenOffice.org NetBeans Integration

OpenOf fice.org
Java with its huge community have several similarities; both, for

example, are multiplatform and open source. But a tool to combine

both worlds was missing. That’s where the new OpenOffice.org

plugin module for NetBeans comes into the game.

In this article we will show you how to use the new module to

build Java components which extend OpenOffice.org’s general

functionality; we also create a new Calc function and a client ap-

plication that accesses OOo features. (StarOffice won’t be men-

tioned explicitly in the article, but everything shown here

works for StarOffice as well.)

Overview
The OpenOffice.org

plugin module for Net-

Beans provides four

wizards which let you

create general Add-Ons,

Calc Add-ins, Components and

Client Applications:

 An Add-On is widely available and not limited to a certain

document type. It can also implement its own toolbars and menus.

Add-ons are typically used for implementing new features that are

directly accessible to users.

 A Calc Add-In implements a new Calc function for the Function

Autopilot in spreadsheet documents. A Calc function requires a dif-

ferent set of attributes than those covered by the general Add-On

wizard – like function parameter definitions.

 Components can be used to extend the OpenOffice.org API

and be accessed through scripting languages. Components can

also extend OOo’s charting functionality.

 Finally, external Client Applications can use OpenOffice.org’s

Integration
NetBeans A

utomating office tasks,

implementing docu-

ment-based workflows

or building corporate

solutions are common

tasks that can benefit

from using the API of an Office suite. Ope-

nOffice.org with its millions of users, and

wi
ki

.se
rv

ic
es

.o
pe

no
ffi

ce
.o

rg
/w

ik
i/O

pe
nO

ffi
ce

_N
et

Be
an

s_
In

te
gr

at
io

n The project’s
homepage
on the
OpenOffice.org
Wiki

nb03.indb 53 4/5/2007 20:35:40

54 N NetBeans Magazine

P
lu

gi
n

M
od

ul
es

functionality to create, convert, print or manipulate documents.

Thus, OpenOffice.org can be used as powerful rendering and print-

ing engine within a larger solution.

The new wizards create NetBeans projects with all necessary con-

figurations, such as links to the OpenOffice.org Java libraries. They

also define build targets, perform remote debugging setup and gen-

erate Java code skeletons, among other operations.

Requirements, installation and
configuration

To use the NetBeans OOo plugin module you need NetBeans 5.5

or newer, and either OpenOffice.org 2.0.4 or StarOffice 8 PU4; also

needed is the OpenOffice.org SDK 2.0.4 or newer.

The wizards are provided in a common NetBeans module that

can be installed and updated via the Update Center. Just down-

load the file api.openoffice.org/Projects/NetBeansIntegration/

org-openoffice-extensions.nbm and use Run>Update Center>Install

Manually Downloaded Modules (.nbm Files)1.

Setup is straightforward. There are just two configuration items

available: the paths to the OpenOffice.org installation and to the

SDK. These are accessible during installation and also via the Tools

>Options>Miscellaneous dialog.

Creating OOo extensions
All four extension types are packed as OOo packages. This pack-

age format was introduced in OpenOffice.org 2.0.4 and uses the

file extension .OXT. A corresponding MIME type is registered in

OpenOffice.org, which enables users to install extensions simply by

double clicking.

Add-Ons

The File>New Project dialog

provides a new OpenOffice.org

category that opens the Add-

On wizard. Start the wizard, and

enter “myAddOn” for both the

project and add-on names. Set

the Java package to “org.openof-

fice”; provide the project folder,

and check the Create Menu and

1A

Create Toolbar checkboxes.

Click Next and you’ll be able to specify

the add-on commands. Each command

can have an icon assigned to it on the

toolbar. Ideally, you should provide four

different icons (two different sizes in two

contrast levels), but it’s possible to use the

same image for all icon types. If you do

this OpenOffice.org will scale the image

accordingly.

You also need to enter a display name

for the command. This name is used for

the menu and toolbars and can be differ-

ent from the command name. Note that

only the display name can be translated:

the wizard lets you define different locales,

but the command name is the same for all

locales.

In the next step you define the menu

structure. This is optional, as not all add-

ons have their own menus. Figure 1 shows

the menu definition wizard page.

The next step is also optional: the defini-

tion of a toolbar to call the add-on’s com-

mands (see Figure 2). The icons in the

toolbar preview should look familiar, as

they were specified in step three. Set the

names as “myAddOn”, define the icons and

set the category.

After you click Finish, the wizard creates

two configuration files and a Java class

Figure 1

Defining the add-on’s
menu structure.

A

1 By the time you read
this, it’s possible that the

module will show up in
the Update Center, mak-

ing the manual down-
load unnecessary.

ap
i.o

pe
no

ffi
ce

.o
rg

/D
ev

el
op

er
sG

ui
de

/D
ev

el
op

er
sG

ui
de

.h
tm

lOpenOffice.
org Developers

Guide

nb03.indb 54 4/5/2007 20:35:41

Issue Three N 55

OpenOffice.org NetBeans Integration

dispatch() method each time the

protocol handler routes com-

mands. The fully implemented

dispatch() method, which adds

the “Hello World” message to

the current document is shown

in Listing 2. Note that only the

lines in bold are new; the rest

were part of the skeleton. The

code basically determines the

current document and then

adds text to it. Notice also that

the aURL parameter uses the

OpenOffice.org specific com.sun.star.util.URL class instead of the

java.net.URL class.

Since all commands fired by the user interface are passed

through the dispatch() method, it’s necessary to filter explicitly for

the namespace org.openoffice.myaddon, which represents the

commands of our add-on. Finally, myAddOn is the command that’s

fired when the user calls the add-on via the toolbar or menu.

Our add-on is now ready to deploy. Right click the project name

and choose Deploy Office Extension from the context menu. Net-

Beans compiles all necessary files, creates an OpenOffice.org ex-

tension package file, and deploys it. Depending on the setup of

the add-on, a new top-level menu and/or a toolbar are displayed in

2A

skeleton. The AddOns.xcu configuration

file includes the add-on parameters, and

ProtocolHandler.xcu defines the proto-

col handler configuration. Protocol han-

dlers are part of OpenOffice.org dispatch

framework; they bind user-interface con-

trols, such as menu or toolbar items, to

the functionality of OpenOffice.org. Every-

thing reachable through the user interface

is described by a command URL and cor-

responding parameters.

The structure of the ProtocolHandler.

xcu file defines a namespace

for the add-on (org.ope-

noffice.myaddon, for our

example). All commands

defined by the same add-

on use this namespace.

See Listing 1.

The Java code skeleton

looks more complicated

than it really is. Most of

the methods are neces-

sary only for OpenOffice.

org internal implementa-

tion reasons and don’t

need to be changed at all.

OpenOffice.org calls the

Figure 2
Defining the
toolbar for the
add-on.

A

Listing 1. Excerpt from the ProtocolHandler.xcu configuration file. B�

<node oor:name=”HandlerSet”>
 <node oor:name=”org.openoffice.myAddOn” oor:op=”replace”>
 <prop oor:name=”Protocols” oor:type=”oor:string-list”>
 <value>org.openoffice.myaddon:*</value>
 </prop>
 </node>
</node>

Listing 2. dispatch() method example.B�

public void dispatch(URL aURL, PropertyValue[] aArguments)
{
 if (aURL.Protocol.compareTo(“org.openoffice.myaddon:”) == 0) {
 if (aURL.Path.compareTo(“myAddOn”) == 0) {
 XTextDocument xDoc = (XTextDocument) UnoRuntime.queryInterface(
 XTextDocument.class, m_xFrame.getController().getModel());
 xDoc.getText().setString(“Hello World”);
 return;
 }
 }
}

nb03.indb 55 4/5/2007 20:35:43

56 N NetBeans Magazine

P
lu

gi
n

M
od

ul
es

5A

OpenOffice.org. For our example both should show up (see the new

menu in Figure 3).

Developing more complex add-ons will probably require an exten-

sive debugging session. However, as the add-ons run in OpenOffice.

org’s JVM, NetBeans’ built-in debugger won’t work. We need remote

debugging.

The OOo plugin module adds a command to the project’s context

menu for starting a remote debugging session, which means that

a manual setup of the client JVM or the remote debugger is not

required. To use this feature, set a breakpoint within the dispatch()

method, then call Debug Extension in Target Office as displayed

in Figure 4. An OpenOffice.org instance will start automatically.

Choose My Command from the add-on’s menu and the debugger

will stop at the breakpoint.

Calc Add-Ins

Let’s now see how to create a Calc Add-In extension, which imple-

ments OpenOffice.org Calc functions. These functions are tightly

integrated with the Calc application, so users will not recognize the

differences between a standard function and one provided by an

add-in; there are no new menus, toolbars or other evidences of an

extension.

The Calc Add-In wizard is also located in the StarOffice/

OpenOffice.org category of the File>New Project dialog. Start the

wizard and enter a name and location for the NetBeans project.

We’ll use “myAddIn” for both names and “org.openoffice” again as

the package name; also make sure Create backward compatible

Calc Add-In is unchecked.

Click Next to enter the

name and parameters of

the Calc functions.

The definition of a Calc

Add-In function requires

specifying the following

parameters:

 The name of the Java

method which implements

the Calc function.

 The data type of the re-

sult of the new function.

 The exception the Java

implementation throws in case of errors.

An additional dialog provides access to all

available exceptions. (This property is op-

tional.)

 The Category where the function is

listed within Calc's Function Wizard.

 The function’s display name. This can

be different from the name of the corre-

sponding Java method.

Figure 5 shows how the wizard presents

these parameters.

There are some additional parameters,

which are all localizable. Calc functions are

usually localized, having different names

for each language; for example, the func-

tion Sum() in the English-language Calc is

Figure 3

The new add-
on menu.

A

Figure 4

Remote
debugging

context
menu item.

A

Figure 5

Defining a function
and its parameters
in the Calc Add-In

wizard.

A

3A

4A

nb03.indb 56 4/5/2007 20:35:45

Issue Three N 57

OpenOffice.org NetBeans Integration

6Anamed Summe() in German Calc releases.

The Description parameter indicates the

purpose of the function, and is displayed

in Calc’s Function Wizard. Compatibility

Name is necessary to deal with Microsoft

Excel integration; it’s optional and usually

not necessary. Finally we have the optional

parameters of the Calc function. They re-

quire a specification of the data type, the

implementation name, and the displayed

name and description.

To create our simple Calc Add-In, set

Name to “doubleValueImpl” and Type

to double; leave the Exceptions section

empty; set Category to “Add-In” and Dis-

played Name to “doubleValue”. Change

Displayed Description to “Simple Calc

Add-In: Doubles the given value”, and

set Compatibility Name to “doubleValue”.

Then provide the following values for the

first parameter:

 Name – “doubleValue”

 Type – double

 Displayed Name – “Value”

 Displayed Description – “Value to be

doubled”

Click Finish and several add-in-related

files will be created. The most important

is the Java class for the add-in implemen-

tation. There’s also the configuration

file CalcAddin.xcu, which holds the

add-in’s parameters. Functions

exported by the add-in need to

be defined in a new interface.

The function names in this

interface, together with the

add-in’s service name, are

used internally to identify

an add-in function. The

myAdd-In.idl and XmyAddIn.idl files

define this service and the inter-

face. They are used by tools and

compilers available in the OpenOf-

fice.org SDK, which build Java

source and header files; but this

process is hidden by the OOo plu-

gin module.

Most of the initial skeleton code need not be changed. Our

doubleValueImpl() method is called by the add-in and provides the

implementation of its functionality. The implementation is really

simple; it just doubles all values given by the user:

public double doubleValueImpl(double doubleValue) {
 return doubleValue * 2;
 }

NetBeans will complain that the XmyAddIn interface is missing,

which is true so far. The reason is that the interface is defined in

a UNO IDL (Interface Definition Language) file and not as a Java

class. The plugin will create Java code based on this IDL file as

well as other add-in related services and interfaces automatically

when the project is compiled.

UNO (Universal Network Objects) is OpenOffice.org’s component technology.

That’s all. The Calc Add-In is fully implemented and ready

to deploy. This can be done easily through the project’s

context menu: choose Deploy Office Extension (see

Figure 6) and NetBeans compiles all project-related

E

Figure 6
Deployment
context menu

A

nb03.indb 57 4/5/2007 20:36:19

58 N NetBeans Magazine

P
lu

gi
n

M
od

ul
es

files, builds an OXT extension package and installs it in OpenOffice.

org.

You can test the new add-in by starting a Calc instance and cre-

ating a new spreadsheet document. Then call the Calc’s Function

wizard, where you’ll see the new function listed under the Add-In

category. To verify that our new function works, enter in any cell

the formula “=doublevalue(3)”. As expected, Calc will produce 6 as

the result.

Client Applications

A client application is an external solution that makes use of the

OpenOffice.org functionality instead of extending it. It can use OOo

to convert or process any document supported by the office suite.

The Client Application wizard is also available in a OpenOffice.

org New Project category. You just need to start the wizard and

enter the name and location of the NetBeans project; no further

settings are required. Click Finish, and the wizard creates the Java

skeleton.

As a client application is not an integrated part of OpenOffice.org,

most of the configuration and IDL files are not necessary. The Net-

Beans project consists of just a Java class and classpath settings

for OpenOffice.org Java libraries.

You’ll notice that the code skeleton for a client application is quite

small in comparison to the add-in and add-on skeletons. It is basi-

cally not much different from the Java class code generated by the

general Java Class wizard. The implementation of the main() method

contains a single line of code (besides exception handling):

XComponentContext xContext = Bootstrap.bootstrap();

The generated class works as a client of an OpenOffice.org pro-

cess, with OpenOffice.org acting as a serv-

er with its own component context. The

client program initializes the Universal Net-

work Objects technology (UNO) and gets

the component context from the OOo pro-

cess. This initialization process establishes

a pipe connection to a running OpenOffice.

org process (starting a new process if nec-

essary) and returns the remote component

context.

The getServiceManager() method from the

component context obtains the remote

service manager from the OpenOffice.org

process, which allows access to the com-

plete office functionality available through

the API:

XMultiComponentFactory xMCF =
 xContext.getServiceManager();

Having the service manager, we can ob-

tain the OpenOffice.org Desktop, which

handles application windows and lets you

load and create documents. The com.sun.

star.frame.Desktop service represents this

Desktop:

XDesktop xDesktop = (XDesktop) UnoRuntime.
queryInterface(XDesktop.class,
 xMCF.createInstanceWithContext(
 “com.sun.star.frame.Desktop”,xContext));

Listing 3. Creating a text document.B�

XComponentLoader xComponentLoader =
 (XComponentLoader) UnoRuntime.queryInterface(
 XComponentLoader.class, xDesktop);

PropertyValue xEmptyArgs[] = new PropertyValue[0];

XComponent xComponent =
 xComponentLoader.loadComponentFromURL(
 “private:factory/swriter”,
 “_blank”, 0, xEmptyArgs);

XTextDocument xTextDocument =
 (XTextDocument) UnoRuntime.queryInterface(
 XTextDocument.class, xComponent);

do
wn

lo
ad

.o
pe

no
ffi

ce
.o

rg
/s

dk
.h

tm
lDownload

page of
the latest

release of the
OpenOffice.org

SDK

nb03.indb 58 4/5/2007 20:36:28

Issue Three N 59

OpenOffice.org NetBeans Integration

Now we have an instance of the Desktop

without a document; but a text document

is necessary to display our greeting. The

XComponentLoader interface exports the

loadComponentFromURL() method to load

and create a document. See it in use in

Listing 3. The private:factory/swriter

URL creates a new text document.

The new document will show a cursor

waiting for input. This input has to come

from the client application. The OOo API

uses a text cursor abstraction to add

text to the document, represented by the

XTextCursor interface:

XText xText = xTextDocument.getText();
XTextCursor xTextCursor =
 (XTextCursor) xText.createTextCursor();

The blinking cursor in the document and
xTextCursor are independent of each other. Open-
Office.org Writer uses MVC to separate the
content/model from the view. The text cursor is
the view in this context, and the cursors created by
createTextCursor() are the model. You can create
several models for text cursors.

Finally, the method insertString() adds

the message to the document:

xText.insertString(xTextCursor, “Hello World”, false);

Components

OpenOffice.org can be extended by

Components. These are shared libraries

or JAR files with the ability to instantiate

E

C�
Kay Koll
(kay.koll@sun.com)
is responsible for the
technical marketing
of StarOffice/
OpenOffice.org. He
has been working
in various positions
for StarOffice since
1995. Kay lives in
Hamburg, Germany.

objects that can integrate themselves into the UNO

environment. A Component can access existing features

of OpenOffice.org, and be used from within the office suite

through the object communication mechanisms provided by UNO.

In fact, the add-ons and add-ins described before are nothing more

than specialized UNO components.

Components created by the Component wizard do not require

access to a menu or to toolbars, nor do they extend the Calc func-

tion repository. They can be used to implement new interfaces and

services. This flexibility and power makes it impossible to create a

simple “Hello” component, and creating a fully working Component

would go beyond the scope of this article. There are many excel-

lent articles and documents available which describe the creation

of new OpenOffice.org interfaces and services. Specifically, we

refer you to Chapter 4 of the OpenOffice.org Developer Guide,

which is a good source of examples.

Conclusions
In the past, writing components to integrate with OpenOffice.org re-

quired an extensive setup of the NetBeans infrastructure, with steep

learning curves. Everything was documented somewhere but put-

ting this information together took far too much effort. This has

changed with the new OpenOffice.org plugin module we’ve covered

in this article. The module takes care of integration chores and lets

developers concentrate on the implementation of their extensions.

Also, the module’s remote debugging capabilities make it much

easier and faster to debug applications based on OpenOffice.org.

If you need to integrate with OpenOffice.org or StarOffice, give it

a try!

The next releases of the plugin will integrate Java more

closely into the OpenOffice.org scripting framework,

and will let you use Java for typical scripting related

tasks, combining the advantages of an inte-

grated scripting language with the power of

NetBeans and Java technology.

nb03.indb 59 4/5/2007 20:36:49

Introducing
NetBeans

Prepare your environment
for cross-platform

C/C++ development with
NetBeans, and put the

C/C++ Pack to work
creating a native library

for Java applications

 C/C++

Fernando Lozano

Pack

nb03.indb 60 4/5/2007 20:37:16

Issue Three N 61

Introducing NetBeans C/C++ Pack

ne
tb

ea
ns

.o
rg

/p
ro

du
ct

s/
cp

lu
sp

lu
s NetBeans

C/C++ Pack
home page

Introducing
NetBeans

Prepare your environment
for cross-platform

C/C++ development with
NetBeans, and put the

C/C++ Pack to work
creating a native library

for Java applications

 C/C++
W

hen NetBeans

5.5 was re-

leased in late

2006, it radically

changed its own

value proposition

by offering first-class support for a lan-

guage that doesn’t run inside a JVM. The

NetBeans C/C++ pack provided to C/C++

programmers most features Java develop-

ers were already used to: advanced source

editing with syntax highlighting and code

completion, built-in CVS support, hyperlinks

to navigate function declarations, a class

hierarchy browser, an integrated debugger,

and integration with the make tool.

This article focuses on how the C/C++

pack can help Java developers. Although

I’m sure you all would like to code the

whole world in pure Java, reality frequently

challenges us to interface with native code,

be it legacy systems, a device vendor SDK

or a high-performance math library. Also,

sometimes we need to use native code to

improve the user experience, by means of

tighter integration with the underlying oper-

ating system. Wouldn’t it be better to do all

this from the same IDE we already use for

Java development?

We’ll show how to leverage NetBeans

and the C/C++ Pack to develop portable

native libraries using C/C++, and how to

integrate them with Java code in a way that

eases deployment in multiple platforms.

NetBeans C/C++ Pack is more than

just C/C++ coding support for the Java

developer. It also suits many native code

projects very well. The sidebar “Other

open source C/C++ IDEs” compares

the Pack with some popular open-source

IDEs for C/C++.

Installing NetBeans C/C++ Pack
Installing the C/C++ Pack per se will be a no-brainer for most us-

ers. No matter if you’ve installed the NetBeans IDE using the zip

package or one of the native installers, you only need to run C/C++

Pack’s installer and point it to your NetBeans IDE installation direc-

tory. (Note that, although the C/C++ Pack is mostly Java code with

just one tiny native library, there’s no multiplatform zip archive like the

ones provided for the IDE.)

The installer itself will work the same for all supported platforms:

Windows, Linux and Solaris. But configuring your environment for

using C/C++ Pack may not be so easy. Just like the core NetBeans

IDE needs a compatible JDK installation, the C/C++ Pack will require

a C/C++ compiler and standard libraries and headers. So you need

to install and configure these in advance.

To meet the Pack’s prerequisites, we’ll rely on the popular suite

formed by the GNU C Compiler (GCC), GNU Binutils, GNU Make and

GNU Debugger (GDB). This is the suite that received most of the

QA effort of the C/C++ Pack developer team1, and it’s portable to

Windows, Linux and Solaris environments.

Using the same compiler suite for all platforms greatly simplifies

dealing with portable (and even non-portable) C/C++ code, as you

won’t need to spend time fighting compiler directives, runtime library

inconsistencies and language dialects. Besides, you’ll find that in

most cases the GNU toolset competes head-to-head with other C

compilers in both speed and optimization quality.

Installing the GNU toolset on Linux

Linux users should have no problem obtaining the GNU toolset for

their preferred platform. Mine is Fedora Core 6, and as I installed

a “development workstation” using Anaconda I already had every-

thing ready for NetBeans C/C++ Pack. Users who didn’t install Linux

development tools when configuring their systems should have no

problem using either yum, up2date, yast or apt to install the GNU

toolset.

Stay clear of CD-bootable mini-distros like Knoppix for real development work.
Instead, install a full-featured distro in a native Linux partition in your main hard
disk. The few additional gigabytes used will prove to be a small cost for all the
hassle you’ll avoid.

Solaris users will also find it easy to install the GNU toolset; there

are detailed instructions on the NetBeans Web site. But be warned:

E

1 The only other com-
piler suite supported
so far is the Sun Studio
product for Solaris
and Linux.

Pack

nb03.indb 61 4/5/2007 20:37:34

C/
C+

+
 P

ac
k

62 N NetBeans Magazine

if you think you’d be better served by the native platform C compiler

(Sun Studio), think again. This is because NetBeans C/C++ Pack’s de-

bugger needs the GNU Debugger, and GDB has some issues running

code generated by Sun compilers. So you can use Sun’s compiler

to produce final code, but you’d better use the GNU toolchain for

development.

Installing the GNU toolset on Windows

Windows users won’t be able to use native C/C++ compilers

from Microsoft, Borland or Intel, and will have to stick with a Win-

dows port of the GNU toolset. There are two options: Cygwin

and MinGW.

The C/C++ Pack’s docs at netbeans.org provide detailed instruc-

tions for using Cygwin, but I strongly advise you to use MinGW in-

stead. The reason is that Cygwin relies on a Unix emulation layer, while

MinGW uses native Windows DLLs for everything. Code compiled with

Cygwin uses the standard GNU runtime library (glibc) on an emulation

of Unix system calls, and semantics like mount points, pipes and path

separators. But code compiled with MinGW will use standard Micro-

soft runtime libraries such as MSVCRT.DLL.

Cygwin has its uses, as many Linux and Unix software (specially

open-source software) that has not yet been ported to Windows is

easy to run under Cygwin without virtualization overhead. But I doubt

you’d want to compromise stability and compatibility with the native

platform when developing native libraries for use with Java applica-

1A
Figure 1

Verifying that
the GNU toolset
is installed and

configured
correctly, and is

using compatible
releases.

A

tions. So MinGW is the way to go. The side-

bar “Installing MinGW” provides detailed

instructions.

Checking prerequisites

Whatever your platform of choice, you

need access to the GNU toolset from your

operating system command prompt. It may

be necessary to configure the system PATH

before using NetBeans C/C++ Pack. You

can check that you have all prerequisites

are available before proceeding by using

the commands displayed in Figure 1. (Al-

though this figure shows a Windows com-

mand prompt, you’ll be able to run the

same commands from either the Linux or

Solaris shells.) If you get software releases

older than the ones shown, consider up-

grading your GNU toolset.

When pure
Java is not enough

Now that you have NetBeans C/C++ in-

stalled and its prerequisites configured,

let’s present this article’s use case. You’re

nb03.indb 62 4/5/2007 20:37:40

Issue Three N 63

Introducing NetBeans C/C++ Pack

developing a desktop Java application with

cryptographic features, which saves sen-

sitive data such as key rings and private

keys in a local file system folder. You want

to be sure that only the user who’s running

the application can read (and of course

write) files to that folder.

The standard Java libraries provide meth-

ods in the java.io.File class for checking

if a file can be read or written by the cur-

rent user, but these methods don’t check

if other users can also read or write the

same files. There are new methods in Java

SE 6 that deal with file permissions, and

work in progress under JSR 293; but if

your application has to support Java 5 or

1.4, there’s no escaping from native code.

So our application will use native system

calls to verify local folder permissions dur-

ing initialization, and refuse to start if it

finds the folder is not secure.

Java doesn’t provide an easy way to de-

clare external methods, like Free Pascal or

Visual Basic, but it does of course provide

the Java Native Interface, a standard and

portable way to call native code from Java

and vice versa. With the above use case

in mind, we have to design an abstraction

that hides platform details and the corre-

sponding native code from the higher ap-

plication layers. In the end, the apparent

complexity of dealing with JNI may actually

be an advantage, because it forces us to

design the interface between Java and na-

tive code, instead of just going ahead and

invoking operating system APIs directly.

The Java wrapper code
Let’s get our feet wet. Start NetBeans,

create a Java Class Library Project, and

name it “OSlib”. This project will contain all

interfaces between our hypothetical application and the native op-

erating system. Then create a new class named “FilePermissions”,

with the code shown in Listing 1.

The native keyword, you’ll remember, means that the method’s

implementation will be provided by a native dynamic library. That li-

brary in our code is loaded by a static initializer in the class itself.

Following Test-Driven Development practices, I’ll create unit tests

instead of creating a test application for the OS interface. Right

click Test Packages in the Projects window and select New>Test

for Existing Class to generate a skeleton for testing the native

method. Then change this skeleton to make it look like Listing 2.

The unit tests use a properties file (shown in the same listing) to

get each test’s target filesystem path. This way, all file paths can

be easily changed to comply with native-platform naming conven-

tions, without needing to recompile the tests themselves. Also,

don’t forget to create the target files and give them appropriate

permissions.

If everything is fine so far, running the tests (by selecting the

FilePermissionsTest class and pressing Shift+F6) should give the

output shown in Figure 2. The Unsatis-

fiedLinkError exception is thrown

because we haven’t yet

provided the native

method implemen-

tation.

os
ix.

ne
t/m

od
ul

es
/a

rti
cl

e/
?id

=
67

0 A tutorial
about how to
develop native
GUI Windows
applications
using MinGW

nb03.indb 63 4/5/2007 20:37:43

C/
C+

+
 P

ac
k

64 N NetBeans Magazine

Other open-source C/C++ IDEs

C and C++ are of course much older than Java, and
are still the languages of choice for many high-profile
open-source projects. Based on that, on could guess
there would be many other strong cross-platform and
open-source C/C++ IDEs. You’ll find that NetBeans C/
C++ Pack may be the strongest one around, however.
Let’s look at some C/C++ Pack’s competitors.

DevCPP
DevCPP is very popular among Windows developers.

It’s lightweight, well supported, and, like NetBeans,
relies on external make tools and C/C++ compilers.
Additionally, it supports a wide variety of C/C++
compilers. Though DevCPP is written using Borland
Delphi, an attempt to port it to Linux (using Kylix) failed.
So DevCPP is not an option for cross-platform C/C++
development.

OpenWatcom
The Watcom C/C++ compiler is cross-platform but

offers no Unix support; it targets Windows and OS/2.
Though not very user-friendly, it comes with an integrated
debugger and a help system. It was once the compiler
of choice for high-performance C/C++ applications,
with its enhanced code optimizer and support for all
Intel processor variants. When Sybase bought Watcom,
though, the C/C++ compilers and IDEs fell into
obscurity. Later the tools were released as open-source
software. Nowadays, it looks like the community project
is going well, but there’s still no support for Unix and
Linux systems. This makes OpenWatcom essentially a
Windows-only IDE and not suitable for our purposes.

Anjuta
Anjuta is based on the complete GNU toolset for C/

C++ development. In addition to the tools supported by
C/C++ Pack, it supports the GNU Autotools, a set of
scripts that simplifies generating Makefiles for multiple
operating systems and compilers. It’s also focused on
GNOME development, so it provides templates for GTK,
Gnome and Glade applications.

While DevCPP and OpenWatcom are Windows-only,
Anjuta and KDeveloper (see next) are Unix-only. Some
users have reported success running both under
Cygwin, but they are still far from providing robust

support for compiling and debugging native Windows
applications.

For Unix developers, Anjuta provides integrated
access to man pages and GNOME documentation. Its
integrated debugger, like C/C++ Pack, relies on GDB.
The latest releases provide integration with Glade, the
Gnome visual UI builder.

KDevelop
Everything said before about Anjuta applies to

KDevelop, if you just replace GTK/Glade/GNOME with
Qt/QtDesigner/KDE. Anjuta and KDevelop are strong
C/C++ IDEs for open-source desktops, but they don’t
cut it as cross-platform IDEs.

Eclipse CDT
C/C++ development support in Eclipse is almost as

old as Eclipse IDE itself, but it has not matured as fast
as the support for Java. Although currently labeled as
release 4.0, Eclipse CDT doesn’t provide many features
beyond those in NetBeans C/C++ Pack (which is
younger).

Also like NetBeans, Eclipse CDT doesn’t integrate
yet with visual development tools for Gnome, KDE or
Windows. It has the advantage of supporting compilers
other than the GNU compilers, but this won’t be a real
plus if your goal is developing cross-platform C code.

Red Hat is developing GNU Autotools and RPM
generation plug-ins which, when they are released
as production level, may become Eclipse CDT’s real
advantage over NetBeans C/C++ Pack (at least for
Unix/Linux users). On the other hand, NetBeans is the
development IDE for Open Solaris, so don’t expect it to
fall short in enhancements for Unix developers.

Conclusion
The only flaw one would find in C/C++ Pack,

comparing it to other open-source alternatives for
C/C++ development, is the lack of operating-system
and third-party library documentation support in the
help system. That would be also its main drawback
when compared to proprietary C/C++ IDEs. But if
you evaluate alternatives for cross-platform C/C++
development, the strongest (and only) competitor for
NetBeans is also its main competitor in the Java space,
that is, Eclipse.

jn
im

ak
er

.d
ev

.ja
va

.n
etMKO JNI

Stub Maker,
a NetBeans
plug-in for

generating JNI
headers

nb03.indb 64 4/5/2007 20:37:58

Issue Three N 65

Introducing NetBeans C/C++ Pack

The native code project
Our unit tests are ready, but getting na-

tive code working alongside Java code is

not trivial. We’ll mock the native method

implementation so we can focus on how

to build a native library that can be called

by Java code. Start by creating a C/C++

Dynamic Library Project, as shown in Fig-

ure 3. Name the project “NativeOSlib” and

clear the “Set as main project” checkbox.

New C/C++ projects are created emp-

ty, except for a generated Makefile (see

Figure 4), and are structured in virtual

folders organized by file type – not by

package names like Java projects. You’ll

be pleased to know that NetBeans C/C++

Pack includes a Makefile editor (even

though there’s still no support for running

arbitrary Makefile targets as there is for

Ant buildfiles).

Generating JNI Stubs

We’re ready to begin writing our C code.

First remember that all JNI-compliant na-

tive methods should use the declaration generated by JDK’s javah

tool. You could turn to the operating system command prompt

to generate the C JNI stubs, but there’s a better solution. It’s the

JNI Maker project, a plug-in module that adds a context menu for

generating JNI header files from Java classes. Just get the nbm

package from jnimaker.dev.java.net and install it using NetBeans’s

Update Center. After restarting the IDE, you should see a new menu

item as shown in Figure 5.

Before generating JNI stubs, make sure you’ve built the Java project. JNI Maker
uses the distribution JARs.

Now select Generate JNI Stub from the FilePermissions class’s

context menu. NetBeans shows a standard File Save dialog, where

you can select a folder to save the generated FilePermissions.h

header file. Move into the NativeOSlib project folder and create a

new src folder (C/C++ Projects do not have a default file structure

with separate source and test folders like Java projects do). Save

the header file there. The output window will look like Figure 6 if

the operation is successful.

JNI Maker Release 1.0 will only work correctly under Windows, but the
generated code will compile and run fine on Unix/Linux. The project developers
have been contacted about the module’s cross-platform issues and by the time you
read this there should be a new release that will work on all platforms supported
by NetBeans C/C++ Pack

Using the JNI Maker module has the same

effect as running the following command

from the operating system prompt, assum-

ing the OSlib project folder is the current

directory and NativeOSlib project folder is

a sibling:

$ javah -classpath dist/OSlib.jar -jni -o ../NativeOSlib/src/
FilePermissions.h
 org.netbeans.nbmag3.util.FilePermissions

E

E

Listing 1. FilePermissions.java – Utility class with a native method.B�

package org.netbeans.nbmag3.util;

import java.io.File;

public class FilePermissions {

 static {
 System.loadLibrary(“NativeOSlib”);
 }

 public FilePermissions() {}

 // Checks if a file or folder can only
 // be read/written by the current user
 public static native boolean isPrivate(String path);
}

ja
va

.su
n.

co
m

/ja
va

se
/6

/d
oc

s/
te

ch
no

te
s/

gu
id

es
/jn

i Java Native
Interface
specification
and related
tips

m
in

gw
.sf

.n
et MinGW, the

native GNU
toolset for
Windows

nb03.indb 65 4/5/2007 20:38:19

C/
C+

+
 P

ac
k

66 N NetBeans Magazine

Listing 2. Unit tests for FilePermissions native methodsB�
sf

.n
et

/p
ro

je
ct

/s
ho

wf
ile

s.p
hp

?g
ro

up
_i

d=
24

35SourceForge
file releases
for MinGW

cy
gw

in
.c

omCygwin, a GNU
toolset for
Windows.

bl
oo

ds
he

d.
ne

t/d
ev

cp
p.

ht
m

l,
 o

pe
nw

at
co

m
.o

rg
,

an
ju

ta
.sf

.n
et

, k
de

ve
lo

p.
or

gOther
open-source
C/C++ IDEs

Installing MinGW

The MinGW project provides a native port
of the GNU toolset for Windows platforms.
Included in the base distribution are GNU C,
C++, Objective-C, Ada, Java and Fortran
compilers, plus an assembler and a linker;
there’s also support for dynamic libraries
and Windows resource files. Additional
packages provide useful tools like Red Hat
Source Navigator, Insight GUI debugger
and a handful of Unix ports like the wget
download manager.

MinGW stands for “Minimalist GNU for
Windows”. But it’s “minimalist” only when
compared to the Cygwin environment.
(Cygwin tries to emulate a full Unix shell,
complete with bash scripting, user
commands and a Unix-like view of the
filesystem.)

In fact, MinGW is complete to the point
of providing Win32 API header files, and
many popular open-source applications
like Firefox have their Windows releases
compiled using it. (Recent Cygwin releases
include many MinGW enhancements as
a cross-compiling feature, showing how
Windows development is “alien” to MinGW
alternatives.)

If you check the project’s website, it looks
like MinGW development has been stalled
for quite a few years; the problem is that the
site was automatically generated by a script
that read the project’s SourceForge area,
and developers simply got tired of catching
up with sf.net’s design changes. However,
MinGW is a very healthy project with active
mailing lists and frequent file releases.

There is an installer for the base
distribution named mingw-x.x.exe that
downloads selected packages from
SourceForge and installs them. The same
installer can be used to update an existing
MinGW installation.

Individual packages are downloaded to
the same folder where the installer was

FilePermissionsTest.java

package org.netbeans.nbmag3.util;

import java.util.Properties;
import junit.framework.*;
import java.io.File;

public class FilePermissionsTest extends TestCase {
 Properties paths = null;

 public FilePermissionsTest(String testName) {
 super(testName);
 }

 protected void setUp() throws Exception {
 paths = new Properties();
 paths.load(this.getClass().getResourceAsStream(
 “/paths.properties”));
 }

 protected void tearDown() throws Exception {}

 public void testIsPrivateOk() {
 String fileName = paths.getProperty(
 “FilePermissions.test.privateOk”);

 assertTrue(“File does not exist”,
 new File(fileName).exists());

 boolean result = FilePermissions.isPrivate(fileName);
 assertEquals(true, result);
 }

 public void testCanReadButNotWrite() {
 boolean result = FilePermissions.isPrivate(
 paths.getProperty(
 “FilePermissions.test.readButNotWrite”));
 assertEquals(false, result);
 }

 public void testCanBeReadByOthers() {
 boolean result = FilePermissions.isPrivate(
 paths.getProperty(
 “FilePermissions.test.readByOthers”));
 assertEquals(false, result);
 }

 public void testCanBeWrittenByOthers() {
 boolean result = FilePermissions.isPrivate(
 paths.getProperty(
 “FilePermissions.test.writtenByOthers”));
 assertEquals(false, result);
 }
}

paths.properties

For testing under Linux / Unix
FilePermissions.test.privateOk =
 /home/fernando/privateOk
FilePermissions.test.readButNotWrite =
 /home/fernando/readButNotWrite
FilePermissions.test.readByOthers =
 /home/fernando/readByOthers
FilePermissions.test.writtenByOthers =
 /home/fernando/writtenByOthers

For testing under Windows
#FilePermissions.test.privateOk = C:\\test\\privateOk
#FilePermissions.test.readButNotWrite =
 C:\\test\\readButNotWrite
#FilePermissions.test.readByOthers =
 C:\\test\\readByOthers
#FilePermissions.test.writtenByOthers =
 C:\\test\\writtenByOthers

nb03.indb 66 4/5/2007 20:38:21

Issue Three N 67

Introducing NetBeans C/C++ Pack

Installing MinGW

started. This allows you to later copy the entire folder
to another workstation and install MinGW there without
the need of an Internet connection. Most extra packages
provide their own installers or can simply be unpacked
over an existing MinGW installation.

To satisfy C/C++ Pack’s prerequisites, you’ll need to
download and install three MinGW packages: the base
distribution itself, the GDB debugger, and the MSys
distribution.

Installing MinGW
Download MinGW-5.1.3.exe (or newer) from the

project’s current file releases at sf.net/project/showfiles.
php?group_id=2435, then launch it to see a standard
Windows installer.

On the third step of the wizard (the second screen in
Figure S1) you only need to select “MinGW base tools”
and optionally “g++ compiler”. Also, the Java Compiler
may be interesting to play with, because of its ability to
generate native machine code from Java sources and
bytecodes, but it’s not supported by NetBeans yet.
Interestingly, the g77 (Fortran) compiler will be officially
supported very soon.

After downloading all selected packages, the installer
will ask for the destination directory and unpack
all packages there. It’s left to the user to configure
environment variables so that MinGW tools can be used
from the Windows command prompt.

Installing GDB
As we’ve seen, NetBeans C/C++ Pack needs GDB to

be able to debug C programs. The MinGW distribution
packages GDB as a stand-alone installer.

At the time of writing, the latest stable MinGW package
for GDB was release 5.2.1, which won’t refresh the
NetBeans debugger’s Local Variables window correctly.
To solve this, download gdb-6.3-2.exe (or newer) from
MinGW Snapshot Releases to a temporary folder and
run it. Though you don’t need to install GDB over MinGW,
your life will be easier if you do, as you won’t need to
add another folder to your PATH system environment
variable.

Installing MSys
The MinGW base distribution already includes a make

tool named mingw32-make.exe, but NetBeans C/C++
Pack won’t be happy with it. MinGW’s make tool is patched
to be more compatible with other native Windows C
compilers, and NetBeans expects a Unix-style make
tool. NetBeans generated Makefiles even expect to find
standard Unix file utilities such as cp and rm.

The MinGW MSys package satisfies these
dependencies. It is a “Minimal System” that provides a
Unix-style shell and file utilities, and allows open-source
projects based on GNU Autotools to be easily built using
MinGW.

Download msys-1.0.10.exe or newer to a temporary
folder and start it. At the final installation step, a batch
script configures the integration between MSys and
MinGW. You will still have to add the MSys programs
folder to the system PATH (in my case, E:\MSys\1.0\bin),
as you did for the MinGW base distribution.

That’s it. After running three installers and downloading
about 23 MB, we are ready to develop C/C++
applications and libraries using the NetBeans IDE and
C/C++ Pack on Windows.

S1A

The MinGW project provides a native port
of the GNU toolset for Windows platforms.
Included in the base distribution are GNU C,
C++, Objective-C, Ada, Java and Fortran
compilers, plus an assembler and a linker;
there’s also support for dynamic libraries
and Windows resource files. Additional
packages provide useful tools like Red Hat
Source Navigator, Insight GUI debugger
and a handful of Unix ports like the wget
download manager.

MinGW stands for “Minimalist GNU for
Windows”. But it’s “minimalist” only when
compared to the Cygwin environment.
(Cygwin tries to emulate a full Unix shell,
complete with bash scripting, user
commands and a Unix-like view of the
filesystem.)

In fact, MinGW is complete to the point
of providing Win32 API header files, and
many popular open-source applications
like Firefox have their Windows releases
compiled using it. (Recent Cygwin releases
include many MinGW enhancements as
a cross-compiling feature, showing how
Windows development is “alien” to MinGW
alternatives.)

If you check the project’s website, it looks
like MinGW development has been stalled
for quite a few years; the problem is that the
site was automatically generated by a script
that read the project’s SourceForge area,
and developers simply got tired of catching
up with sf.net’s design changes. However,
MinGW is a very healthy project with active
mailing lists and frequent file releases.

There is an installer for the base
distribution named mingw-x.x.exe that
downloads selected packages from
SourceForge and installs them. The same
installer can be used to update an existing
MinGW installation.

Individual packages are downloaded to
the same folder where the installer was

Figure S1
Screens from
MinGW’s base
distribution
installer.

A

nb03.indb 67 4/5/2007 20:38:23

C/
C+

+
 P

ac
k

68 N NetBeans Magazine

(The command is broken to fit the column width, but it should be

typed in a single line, of course.)

Now add the generated C header file to the NativeOSlib project.

Right click Header Files inside the NativeOSlib project folder in Net-

Beans’ Projects window, and select Add Existing Item. Then browse

to the file src/FilePermissions.h and open it. The code will look like

Listing 3.

Mocking native code

Due to space constraints, we won’t show

you the final C code for the FilePermissions.

isPrivate() native method, but the sources

available for download will provide working

implementations for both Windows and Unix

(Posix) systems.

To create the C implementation file, right

click Source Files and select New>Empty

C File, then type “FilePermissions.c” as the

file name and “src” as the folder name. A

new node named FilePermissions.c should

be created under Source Files.

5A

4A

Copy the C stub function declaration

from FilePermissions.h to FilePermis-

sions.c and change it to include the

header file. Also add parameter names.

The code should look like Listing 4.

(Listing 3 highlights the declaration you

have to copy, and Listing 4 highlights

the changes after copying.)

At this point, Unix and Linux users

should be ready to build the native code

and run unit tests again2. But Windows

users first have to change a few proj-

ect properties to make MinGW gener-

ate Windows-compatible JNI DLLs. The

sidebar “JNI and MinGW” details these

configurations.

3A

2A

Figure 2

Running JUnit tests for
the unfinished native

method.

A

Figure 3

Creating a C/C++
Project in NetBeans.

A

Figure 4

The new C/C++
project in

NetBeans’ Projects
window.

A

Figure 5

Generating a JNI
stub using the

JNI Maker plug-in
module.

A

nb03.indb 68 4/5/2007 20:38:26

Issue Three N 69

Introducing NetBeans C/C++ Pack

not created target test folders or forgotten

to setup their access permissions. Anyway,

the first test should fail because it takes an

extra step to check if the target file path

actually exists.

Managing platform-specific
compiler settings

NetBeans C/C++ Pack puts object files in

the build and dist folders, inside subdirecto-

ries named after the target platform, for ex-

ample GNU-Linux-x86 or GNU-Windows. But

it won’t save different compiler options for

each target, forcing you to have a different

project for each platform if there’s a need for

platform-specific compiler settings.

Right click the NativeOSlib project and

select Clean and Build Project. If there are

no errors, you should see make’s output

as in Figure 7.

Running unit tests again

You need to set the OSlib project’s

java.library.path system property be-

fore running it, or you’ll still get Unsat-

isfiedLinkError exceptions. Open the

project’s Properties dialog, select the

Run category and change VM Options to

specify the full path to the NativeOSlib

project’s platform-specific native-library

folder, which is inside the dist folder

(see Figure 8). In Linux, this will be

PROJECT_HOME/dist/Debug/GNU-Linux-

x86; in Windows, PROJECT_HOME\dist\

Debug\GNU-Windows.

Now run the unit tests again. The result

should be as shown in Figure 9. Since

the mock native code always returns

true, some tests pass even if you have

6A

Listing 3. FilePermissions.h – JNI Stub for native methods in
the FilePermissions class.
B�

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class
 org_netbeans_nbmag3_util_FilePermissions */

#ifndef _Included_org_netbeans_nbmag3_util_FilePermissions
#define _Included_org_netbeans_nbmag3_util_FilePermissions
#ifdef __cplusplus
extern “C” {
#endif

/*
 * Class: org_netbeans_nbmag3_util_FilePermissions
 * Method: isPrivate
 * Signature: (Ljava/io/File;)Z
 */
JNIEXPORT jboolean JNICALL
Java_org_netbeans_nbmag3_util_FilePermissions_isPrivate(
 JNIEnv *, jclass, jobject);

#ifdef __cplusplus
}
#endif
#endif

Listing 4. FilePermissions.h – JNI mock implementation for the
FilePermissions native methods.
B�

#include “FilePermissions.h”

JNIEXPORT jboolean JNICALL
Java_org_netbeans_nbmag3_util_FilePermissions_isPrivate(
 JNIEnv *env, jclass clazz, jstring path)
{
 return JNI_TRUE;
}

2 At least if you use JDK
packages compatible
with your distro package
manager, like the IBM
and BEA JDKs provided
by RHEL and SuSE En-
terprise, or the RPM
Packages from jpackage.
org. If not, you’ll have
to add your JDK include
folder to the GNU C com-
piler include directory.
The configurations will
be similar to the ones
presented in the “JNI and
MinGW” sidebar, but you
won’t need to change
either the linker output
file name or additional
compiler options.

Figure 6
Output from
the Generate
JNI Stub
command.

A

7A

8A

Figure 7
Building the
NativeOSlib project
under Linux.

A

Figure 8
Configuring the java.
library.path property so
unit tests can find the
native code library on
Linux.

A

nb03.indb 69 4/5/2007 20:38:28

C/
C+

+
 P

ac
k

70 N NetBeans Magazine

9A
Figure 9

Running unit
tests using a
mock native

implementation.

A

JNI and MinGW

Unix and Windows native C/C++ compilers
use different conventions for mangling function
names1*, exporting global symbols from libraries
and setting up stack frames. JNI on Windows
uses Microsoft conventions for Windows DLLs,
while GCC uses its own conventions for dynamic
libraries. This means that if you simply try to
compile and link a dynamic library, MinGW will
stick to its Unix origins and produce a DLL that
is incompatible with native Windows C/C++
compilers. The JVM won’t be able to get native
method implementations from that library and will

generate more UnsatisfiedLinkExceptions.
The solution is to add a few command-line

options when compiling C/C++ sources: ‑D_JNI_

IMPLEMENTATION -Wl,--kill-at. Open the C/C++
Dynamic Library Project properties and expand C/
C++>Command Line, then type these options in
the Additional Options text field (see Figure S1).

You also need to add your JDK include
folders (JAVA_HOME\include and JAVA_HOME\
include\win32) to the project properties. Open
C/C++>GNU C Compiler>General and change
the Include Directories field as shown in Figure
S2.

You need one last change in the C/C++ Dynamic
Library Project properties so you can generate
a JNI-compatible DLL. By default, NetBeans
chooses a library name that corresponds to
Cygwin conventions, but we need to use native
Windows conventions. So you need to enter the
Linker>General category and remove the “cyg”
prefix from the Output field (Figure S3).

S1A

S2A

S3A

You can solve this using NetBeans C/C++

Pack’s multiple configurations feature.

Open NativeOSlib’s project properties and

notice the Configuration combo box on the

top of the window (Figure 10). The default

configurations are meant to save different

compiler settings for Debug and Release

1“Mangling” is the process used for generating public C++ function

names in object files. It’s needed because the C language doesn’t sup-

port function overloading, and, to keep backward compatibility, C++

compilers generate a function name that encodes parameter types.

Figure S3

Changing the output file
name for compliance with

Windows DLL naming
conventions

A

Figure S1

MinGW compiler
options for generating

JNI-compatible DLLs

A

Figure S2

Configuring JDK
include folders for

MinGW

A

nb03.indb 70 4/5/2007 20:38:32

Issue Three N 71

Introducing NetBeans C/C++ Pack

named Debug-Windows. Doing this lets

you change the Windows configuration to

include all options needed by MinGW for

generating JNI-compatible DLLs, while

keeping the default settings for the Linux

configuration.

NetBeans-generated Makefiles provide

many extension points (like the Ant build-

files generated by the IDE), and they can

be used outside the IDE. For example, for

building the Debug-Windows configuration

you’d type the following command at the operating sys-

tem prompt:

make CONF=Debug-Windows

Thus, you could have Continuous Integration serv-

ers for many platforms, all being fed by the same

CVS or Subversion source tree. And thanks to

GNU C cross-compiler features it would be pos-

sible to have a “compile farm” that generates na-

tive binaries for multiple platforms, without the need

for multiple OS installations. For example, a Linux

server could generate both Windows and Solaris

SPARC binaries.

Conclusions
NetBeans C/C++ Pack provides a rich environment for develop-

ing C and C++ applications and libraries. It’s useful for Java de-

velopers that need to interface with native code and, of course,

for developing fully-native applications. Compiler configuration may

pose some challenges for Windows developers if they never tried

GNU compilers before, but the effort will certainly pay off because

of the increased portability of both code and Makefiles.

10A

11A

C�
Fernando Lozano
(fernando@lozano.eti.
br) is an independent
consultant and has worked
with information systems
since 1991. He’s the
Community Leader of the
Linux Community at Java.
net, webmaster for the
Free Software Foundation
and counselor to the Linux
Professional Institute.
Lozano helps many
open-source projects and
teaches at undergraduate
and postgraduate
college courses. He’s also
a technical writer and
book author, as well as
Contributing Editor at Java
Magazine (Brazil) and
freelance writer for other
leading IT publications.

Figure 11
Creating,
renaming
or copying
configurations.

A

Figure 10
Combo box for
changing compiler
configurations for a
C/C++ project.

A

builds, like keeping symbol information

for Debug builds and optimizing code for

Release builds. So if you want platform-

specific configurations, you may need to

create Release and Debug variants for

each platform.

The Manage Configurations button to

the side of the combo box lets you cre-

ate new configurations either from scratch

or as a copy of an existing configuration

(see Figure 11). You’ll notice I renamed

the generated Debug configuration to

Debug-Linux and copied it to a

new configuration

nb03.indb 71 4/5/2007 20:38:39

Design
Beth Stearns

with
NetBeans

Visual

The NetBeans IDE has many exciting
features for visual web application
design. This article introduces some
of this functionality and shows how it
makes it easy to develop for the web.

Web
Application

nb03.indb 72 4/5/2007 20:39:19

Issue Three N 73

Visual Web Application Design with NetBeans

Design

Visual T
he NetBeans IDE incorpo-

rates many features for

visual web application de-

sign, a number of which

have been available as

part of the NetBeans IDE

Visual Web Pack 5.5 module. NetBeans 6.0

integrates these visual design features di-

rectly into the IDE and adds more features

to the mix.

This article gives you a quick overview

of the feature highlights of the NetBeans

visual web design environment, including

the Visual Designer, Page Navigator, Que-

ry Editor, and Style Editor. We also show

some of the things you can do easily and

quickly with these tools when developing a

web application.

Highlights
One of the best aspects of the NetBeans

visual development environment is its flex-

ibility. You can develop an application by

first designing its individual pages, for

which the IDE provides a Visual Designer

with a palette of visual and non-visual com-

ponents. You can add other elements to the

palette, such as AJAX-enabled components

you develop yourself or obtain from third

parties, using the Component Library Man-

ager. The Style Editor provides a graphical

interface for perfecting the look of the dif-

ferent components.

You might prefer to first map out the ap-

plication’s logic flow instead of beginning

with page design. If that’s the case, you

can start application design with the Page

Navigator. Using the Page Navigator func-

tions, you can create empty pages as stubs

or placeholders and link them together in

the Navigator window to define the applica-

tion processing, and add the individual page layout and functionality

later. You can even go back and forth between the Navigator and

Visual Designer modes as you develop your application.

NetBeans also makes it simple for a web application to access a

database. You can use the Query Editor functions to form complex

SQL queries for applications that need to retrieve data from data-

base tables or update a database. Other visual functions make it an

easy matter to handle the display of data retrieved from database

tables.

Although much is generated for you, there are still times you have

to write your own custom code. When you are ready to write code,

you can draw on the palette of generic code clips to help. You also

have available all the shortcuts and other helpful features, such as

code completion, that the Java source editor provides.

NetBeans 6.0 will introduce more visual design features, including

the ability to develop portlets, add Enterprise JavaBeans compo-

nents to applications, and incorporate web services. These features

will rely on and extend the preexisting visual capabilities, so the

learning curve for them should be minimal.

Using Components
to Develop Web Application Pages

Page design is of course an important part of developing a web

application. NetBeans provides a palette of visual design compo-

nents that you drag and drop onto a page in the Design window, to

set up your page quickly with the desired look and feel. In addition

to these visual components, the IDE supports themes, which let you

apply a predefined set of styles to visual components throughout a

project, thus enabling you to change an application’s entire appear-

ance with a single mouse click.

As you design the underlying business logic, you can use the non-

visual components – such as the converter, validator, and data pro-

vider components – to generate code. When you’re ready to write

the business logic, you can incorporate generic code snippets into

your page bean by simply dropping code clips from the palette onto

your bean code in the Java source code editor. All you need to do is

add the correct variable names to these code clips.

You can easily create your own code clips too, just by selecting a snippet of
code in the source editor and dragging it to the palette.

NetBeans displays the palette of components in a logical and in-

E

Web
Application

ne
tb

ea
ns

.o
rg

/k
b/

55
/v

wp
-in

de
x.h

tm
l�������������������

do
wn

lo
ad

s/
in

de
x.j

sp NetBeans
5.5 Visual
Web Pack
Documentation
main page.

nb03.indb 73 4/5/2007 20:39:26

W
eb

 D
ev

el
op

m
en

t

74 N NetBeans Magazine

tuitive manner. The palette appears only when you’re work-

ing on a web page for a project. When designing a web

page – that is, when you have the page open in the De-

sign window – the palette displays the components used to

build the page, like the visual design components (buttons,

drop-down lists, checkboxes, tables, etc.), as well as layout

components, converters, validators, and data providers. If

you used the Component Library Manager to add a set of

components, you may have designated that they appear in

their own separate category.

To illustrate, we use a sample media management project called

PhotoAlbum, which is a web application through which users can

manage different types of media (photos and audio data) stored in

a local or remote database. You can use this application to organize

media data into albums, such as photo albums. For example, if you

want to organize a set of images, you can create multiple photo al-

bums, upload these images into the different albums, and view the

images as thumbnails or singly in a preview mode. (See the article

“Developing a Media Management Application” at netbeans.org/

kb/55/photoalbum.html for instructions on downloading this project

zip file and installing and running the application.)

We opened the AlbumList page in the Design window and the pal-

ette displays the components we can use to build this page (see

Figure 1). You add components to a page merely by dragging and

dropping them on the page – or onto other components, such as in

the case of validators and converters. The IDE ensures that no rules

are broken, such as dropping a validator on the wrong type of com-

ponent. Notice, too, that themes are not in the palette but are specific

to individual projects and thus appear in the Projects pane.

At any time, you can go to the Outline pane to see the components

added to a page. If you are unsure of a component’s type, hover

the mouse over it in the Outline pane to get more information. Or

1A

match its icon with the Palette icons (see

Figure 2).

While you work on the page design and

layout, you also can switch to editing the

page’s underlying Java code. To see the

code in the Java editor, double click on the

page background or select the Java view.

When you change to the Java view, the Pal-

ette displays the available code clips (see

Figure 3).

To work on a particular method, such as an
action handler for a button, double click the button
component in the Design window, and NetBeans
displays the source code in the Java editor positioned
at the button’s action handler.

Designing pages
Let’s examine how you might design a web

application page using the visual compo-

nents. The components in the Basic section

of the Palette are typical GUI components:

buttons, drop-down lists, checkboxes, hy-

perlinks, text areas, hyperlinks to images,

and so forth. You use these components

to add basic behaviors to your web

pages.

These components provide proper-

ties to determine their appearance and

behavior, and you can customize them

using the component’s Properties sheet

or through dialogs. Although hand-edit-

ing a page’s JSP code is possible (click

E

2A

Figure 1

 Palette
of design

components
for a Web page

A

Figure 2
Viewing

components
in the Outline

Pane

A

nb03.indb 74 4/5/2007 20:39:28

Issue Three N 75

Visual Web Application Design with NetBeans

the JSP view to see and potentially modify

the code), it is far easier and less error-

prone to modify component properties in

the Properties sheet.

The Layout components help you orga-

nize the appearance or layout of your page.

Use them to add tab displays, alert boxes,

grids, and forms – essentially to control

the placement and alignment of other com-

ponents on the page.

To give you an idea how all this works,

let’s take a closer look at some page-de-

sign issues frequently encountered by web

application developers: setting up a consis-

tent look across multiple pages of an ap-

plication and aligning text and components

on a page. Three of the layout components

– Grid Panel, Layout Panel, and Page Frag-

ment – handle this nicely.

Establishing a consistent
look across pages

Use page fragments when you want

to set up a consistent look to multiple

pages of a web application. Page frag-

ments are particularly useful for estab-

lishing uniform web page headers, foot-

ers, and sidebars. You design the page

fragment once, then place it where ap-

propriate on different web pages.

For example, you might want a consis-

tent banner across all application pages.

You define this look in a single page

fragment, then include that fragment on

the application pages. For a banner or

masthead, you place the page fragment

at the top of each web page. If you later

make changes to it, these changes au-

tomatically appear on all the pages that

include the page fragment.

Suppose you want to create a mast-

head banner for an application. Create a new page fragment: in the

Projects pane, right click the project’s Web Pages node and select

New>Page Fragment. Then design your masthead by placing com-

ponents in the fragment. Designing and building the page fragment

is much the same as building a web page.

To add the masthead to other pages, drop a Page Fragment Box

on a page, select the specific page fragment from the dialog, and

position it where you want it to appear – at the top of the page in

this case (see Figure 4). Fragments can also be copied and pasted

among projects.

Controlling page layout

Grid Panel and Layout Panel components are useful for arranging

text and other components. When you drop a Grid Panel on a page,

it creates a table to which you then add other components. The

added components display starting from left to right and from top

to bottom. By default, a Grid Panel has one column and as many

rows as needed to accommodate components dropped on it. You

can change the number of columns and the display direction in the

Grid Panel’s Properties sheet.

3A

4A

Figure 3
Palette code
clips

A

Figure 4
Adding a page
fragment to a Web
page

A

nb03.indb 75 4/5/2007 20:39:29

W
eb

 D
ev

el
op

m
en

t

76 N NetBeans Magazine

Grid Panel components can also be nested within other Grid Panel

components, giving you even finer control to position components on

a page. To nest Grid Panels, drop a Grid Panel on top of a Grid Panel

already placed on a page.

When dropping one component on top of another, be sure that the component
already on the page is highlighted with a blue outline.

 You can resize a Grid Panel directly on the page. For greater con-

trol, use the Style Editor, which you open by clicking the Grid Panel

component’s style property. You can use this property to set back-

ground color, margins, size, position, and so forth (see Figure 5).

The Style Editor allows you to fine-tune the appearance of all the

visual components.

The example MastheadFragment shown in Figure 6 uses several

Grid Panel components to control the display of its two hyperlinks

(Home and Help) in the bottom panel. We used Grid Panels to place

these links on the right, bottom side of the page. First, we dropped

a Grid Panel (which we called “bottomPanel”) on the page. Then we

resized its width to match the top banner and its height to a size that

would accommodate the images and text. Also, we set its columns

property to two columns and set a background color.

Next, we dropped two Grid Panels on top of bottomPanel. Since

E

bottomPanel displays two columns and

the display direction is left-to-right, these

two Grid Panel components display within

bottomPanel from left to right. Also, the bot-

tomPanel background color carries through

as the background color for the components

dropped onto it.

Of the two additional Grid Panels, the one

in the left column (highlighted in yellow here)

is a placeholder, and its width is set to cov-

er the left half of the page. The Grid Panel

on the right side holds the two links (see

Figure 6). Since we want the links to dis-

play side-by-side, we changed the columns

property to two for this Grid Panel.

After getting everything in position, we

dropped two Image Hyperlink components

onto the right panel. For each, we went to

its Properties sheet and set its text property

to the label – “Home” or “Help” – that we

wanted to appear on the page. We also set

each component’s imageURL property to

suitable image files for the display

icons. In our application, these files

are in the project’s /resources folder,

but the imageURL property can point

to wherever the files are located, of

course.

We use the textPosition property to

ensure that text is positioned to the

right of the image associated with

the hyperlink. (The text, textPosition,

and imageURL properties are in the

Properties sheet Appearance sec-

tion.) We set the hyperlink’s url prop-

erty (found in the Behavior section)

to the appropriate web page, so that

a user is taken to that page when the

link is clicked.

A Layout Panel component is much

like a Grid Panel – you place a Lay-

5A

6A

Figure 6
Controlling
layout with

multiple Grid
Panels

A

Figure 5

Style Editor
with Grid

Panel

A

de
ve

lo
pe

rs
.su

n.
co

m
/p

ro
dt

ec
h/

ja
va

to
ol

s/
js

cr
ea

to
r/r

ef
er

en
ce

/in
de

x.j
spA listing of

reference
articles

and tips for
Java Studio
Creator IDE.
Most of the

information
applies to the
NetBeans 5.5

Visual Web
Pack.

nb03.indb 76 4/5/2007 20:39:32

Issue Three N 77

Visual Web Application Design with NetBeans

out Panel on a page and then drop compo-

nents onto the Layout Panel. But a Layout

Panel gives you more flexibility in arranging

components. Whereas a Group Panel can

be placed on the same line as other com-

ponents, a Layout Panel always appears on

its own line, separated from components

above and below it, when the page is ren-

dered at runtime.

A Layout Panel lets you arrange added

components in a flow or grid layout. When

flow layout is used, the IDE places compo-

nents dropped on a Layout Panel starting

in the top left corner, adding components

to the panel from left to right, across the

top row of the panel until that row is filled.

Subsequent components are added from

left to right in the next row down, and so

forth. You can drop a new component to

the left of another component by hovering

over the previously added component until

a vertical mark appears to the left of that

component.

A Layout Panel works in grid layout

mode only if the Snap to Grid op-

tion is set. You set this option from

the Tools>Options>Visual Designer

settings; at the same time, you can

also customize the grid pattern size.

When set to grid layout, added com-

ponents appear in the panel aligned

to the grid location at which they

were added. Click the Align pop-up

menu option for a Layout Panel (or for

a component within a Layout Panel)

to position components in the panel

relative to the nearest grid corner.

Controlling user input
The Visual Designer includes a fea-

ture, called virtual forms, which lets

you limit the portions of user input that are

processed when a page is submitted.

This is useful because you may have

linked a number of input fields to vali-

dators (which means that the user-en-

tered data in these fields is validated

against some criteria when the page

is submitted); but, given the application

logic, you don’t want all fields validated every

time the page is submitted.

Let’s look at how you might use virtual forms for a page. Our exam-

ple page (see Figure 7) defines two virtual forms – deleteSelected

and selectAll. Several components are included in these forms. No-

tice that the buttons, drop-down lists, and checkboxes for selecting,

moving, and deleting files from an album are outlined in green or

blue. Components outlined in green are part of the selectAll virtual

form, while those outlined in blue are part of the deleteSelected vir-

tual form.

A solid outline indicates an input component that participates in the

virtual form, and a broken or dotted outline indicates a submission

component, which is a component that, when clicked, submits the

virtual form for processing. (To see the virtual forms legend for a

page, toggle the virtual forms display icon at the top of the Design

window, as shown in Figure 7)

7A
Figure 7
Virtual forms
displayed on a
page

A

nb03.indb 77 4/5/2007 20:39:57

W
eb

 D
ev

el
op

m
en

t

78 N NetBeans Magazine

You add components to a virtual form via the dialog that opens

when you click a component’s pop-up menu Configure Virtual Forms

option. The Configure Virtual Forms dialog shows that the Drop Down

List component albumList participates in the deleteSelected virtual

form. You can change whether a component participates or submits

for any virtual form on the page by double clicking in the appropriate

row and column. The Participate and Submit column entries display

a Yes/No pull-down list if the selected component is of the right type,

since only certain types of components can submit a page for pro-

cessing. The New button in the dialog lets you create a new virtual

form for the page (see Figure 8).

When the web page user interacts with a virtual form’s submission

component, such as by clicking the Move Selected to button, process-

ing affects only the virtual form’s input or participant components and

ignores other input components on the page. In this manner, you can

confine certain application operations to selected files or database

table rows. For example, a user might check the boxes of several

media files from the displayed list, then click the Move Selected to

button with a target album designated from the drop-down list. The

virtual forms feature ensures that subsequent processing moves only

the selected files from the current album to the designated album.

Retrieving and displaying database data
The Visual Designer simplifies displaying tabular data on a page,

and especially makes it easy to retrieve and display database data.

To display tabular data, first drop a Table component from the Palette

onto your page. The Visual Designer creates a generic three-column,

multi-row table display (see Figure 9).

To have this component display data from a database table, you

only need to drop the database table onto

the generic table component on the page.

(Database tables appear in the Runtime

pane, beneath the Databases node. You

must connect to the particular database or

subschema before you can see its individual

tables.)

After you drop a database table on top of

a generic table component, the Visual De-

signer binds the database table to the com-

ponent and creates a default SQL query to

retrieve the table data. The table display on

the page changes to reflect the columns in

the database table, while the rows indicate

the type of data (again, see Figure 9).

When you bind a database table to a Table

component, the IDE adds a RowSet to the

project’s Session Bean. (Every project has,

in addition to its individual pages, a Session

Bean and an Application Bean. The Session

Bean maintains session scope variables,

while the Application Bean is used for proj-

ect-wide variables.) The RowSet includes a

default SQL statement selecting all the col-

umns in the database table. NetBeans also

places the query’s SQL statement in the

Session Bean’s constructor using the meth-

od rowset.setCommand (String sqlCommand).

Here, rowset is the RowSet for the table

dropped on the page and sqlCommand is

the query SELECT statement. Thus, you

8A

9A
Figure 9

Generic Table
component and

displaying a
database table

A

Figure 8

Configuring
virtual forms

A

nb03.indb 78 4/5/2007 20:40:01

Issue Three N 79

Visual Web Application Design with NetBeans

can edit the query in the Session Bean Java

source code in the Java editor as well as

through the Query Editor.

Customizing table data display

When you drop a database table on a

Table component, the component display

changes to show all columns from the da-

tabase table in the same order they are

returned from the database, and the data-

base column names appear for the column

headings. You can change the display us-

ing the Table Layout dialog, which you open

from the Table’s pop-up menu.

The Table Layout dialog consists of two

tabs. These together give you options to

remove columns, modify column headings,

change column order, and even add new

columns beyond what’s in the database.

From the Columns tab, use the Up/Down

buttons to change the column display or-

der, and use the left arrow to remove a se-

lected column from the display (the double

left arrow removes all columns). Use the

right arrow to add available columns and

New to create a new column. You can

also modify column header text, column

width, alignment, and sort capabilities (see

Figure 10).

Setting the sortable option for a column
enables users to sort the table data in real time by
clicking the arrows in the column heading.

From the Table Layout Options tab, you

can do such things as enable pagination,

establish the page size (number of rows

per page), and configure navigation but-

tons (select all rows, deselect all rows,

clear sort, and so forth). These are auto-

matically provided for you; no manual cod-

ing is required for the paging buttons.

E

Customizing SQL queries

The Query Editor provides a graphical

interface through which you can edit and

customize the SQL SELECT statement

contained in a table’s RowSet component.

The Query Editor has four panes in which you

can right click to bring up appropriate pop-up

menus (see Figure 11). These are, from top to

bottom:

The Diagram Pane graphically represents the que-

ry. Each table dropped on the page appears as a box

that indicates all the columns within the table, along

with the table’s primary and foreign keys. Checked columns

are retrieved when you run the query.

The Grid Pane displays a multicolumn table for setting various

query conditions, such as sort order and selection criteria, for

each table dropped on the page.

 The SQL Pane displays the actual SQL query syn-

tax. Changes made in either of the top two panes

are automatically reflected in all three panes. You can

change the SQL query directly. The pane has a pop-up menu

Parse Query option to update the other two panes. Use the Run

Query option to test the query.

 The Results Pane at the bottom displays the results of a query you

tested via Run Query.

10A
Figure 10
Table Layout
dialog

A

nb03.indb 79 4/5/2007 20:40:15

W
eb

 D
ev

el
op

m
en

t

80 N NetBeans Magazine

What are some of the query customizations you can do using the

Query Editor? The Output column (in the grid pane) lets you select the

columns to retrieve from the database and display. The Alias column

lets you insert an AS clause into the SELECT clause. You can also

control the sort order of the retrieved data.

The Diagram Pane’s Add Table pop-up menu option lets you include

additional tables in the query, essentially adding a JOIN clause to the

SQL. The Group By option lets you group results by data type, which

adds a GROUP BY clause to the query.

You can also limit a query to return only selected rows that meet

some specified criteria. Use the Add Query Criteria pop-up menu op-

tion to open a dialog through which you add conditions for the query

selection. You can select rows using comparison operators (such

as equal to, greater than, less than, not equal to, and so forth), in

addition to LIKE and IN. You can apply selection criteria to multiple

table columns and specify the order to evaluate these criteria. Also,

when you test a query for which you have specified selection crite-

ria, a dialog prompts you to enter data for the selection

parameters.

Defining application flow
Use Page Navigation to define the pro-

cess flow of an application. Page Navigation,

accessed from the Projects pane, lets you visu-

ally design the application flow by drawing links be-

tween the application pages and thus model

the interactions of the application.

You can use the Page Navigation feature

at any point in the application development

process, and you can revisit Page Naviga-

tion to fine-tune interactions among pages,

particularly when you want a specific action

component on one page to link to another

page.

Typically, you start to define the appli-

cation flow by working at the page level,

linking one page to another. Then, as you

implement application details on the various

pages – that is, place buttons, links, and

so forth – you can return to the Navigation

window and create navigational links at the

component level within individual pages.

You can even add buttons and other links to

pages directly in the Navigation window.

The Navigator indicates the linkage be-

tween the pages of an application. (We illus-

trate the linkage between pages using the

PhotoAlbum application, which includes sev-

eral pages: AlbumView.jsp, AlbumList.jsp,

UploadFile.jsp, among others. As with any

application that has multiple pages, there

needs to be a defined navigation between

the pages.)

Click an individual page, such as we did for

AlbumList.jsp, and the Navigator expands

the page icon to show the individual linkable

components on the page and where they

link to, if anywhere (see Figure 12). Click

and drag from one page to another to cre-

ate a link between the two pages. Similarly,

drag from a page’s individual components,

such as buttons, to another page to create

links from the specific component on the

first page to the second page. The Naviga-

tor adds the backing code to the pages and

component action handler methods.

11A

Figure 11
Query Editor
with sample

SQL query

A

nb03.indb 80 4/5/2007 20:40:28

Issue Three N 81

Visual Web Application Design with NetBeans

cate the event in the JavaScript section of its

property sheet; then enter the JavaScript code

directly, or click the “...” button to open an editor

window.

To illustrate, suppose you want the user to

confirm an action connected to a button click.

First select the button component; then, in the

JavaScript section of the component’s Proper-

ties sheet, open the editor window of the target

event, which in this case is onClick. You might

enter the following JavaScript code:

return confirm (“Are you sure?”)

When you’re finished, the component’s Properties would look like

Figure 13.

One good use of JavaScript code is to obtain confirmation from

a user for an operation. For example, an application might bind

JavaScript code to a delete button, to compel the user to respond

to a confirmation message before the deletion occurs. JavaScript

can also be used for actions that change component state, for vali-

dation checks, and for setting file names when retrieving data. The

JavaScript code can be fairly complex, such as code for a button’s

validation checks (see Figure 14). Such complex code is best add-

ed using the Properties editor window.

The JavaScript you enter through the editor window is inserted

into the JSP code for the component. For example, the JavaScript

code for the button’s onClick property shown in Figure 14 appears

as follows in the JSP:

<ui:button action=”#{AlbumView.btnMoveSelected_action}”
 binding=”#{AlbumView.btnMoveSelected}”
 id=”btnMoveSelected”
 onClick=”var i;
for (i=0;i<document.forms[0].elements.length;i++)
 {
 if (document.forms[0].elements[i].checked){

 return true;
 }
}
alert("
 No items selected");
return false;”
 text=”Move Selected to”/>

When you use the Properties editor window to enter JavaScript

code, the Visual Designer handles inserting the JavaScript into the

JSP page with the proper tags and formatting. Of course, you can

always edit the JSP yourself and manually add JavaScript code.

There are other ways to use JavaScript in an application. You can put

Working with
JavaScript code

Many web application developers want

to work closely with JavaScript code. The

Visual Designer makes it easy to invoke Ja-

vaScript from within an application. As you

know, JavaScript code can be embedded

within the JavaServer Pages code, where it

is identified by its own set of tags.

When you work with JavaScript code,

you bind the code to a component event

so that the code is invoked when the event

occurs. You can do this binding through

the JavaScript section of a component’s

properties. Select the component and lo-

12A

13A

Figure 12
Page Navigation

A

Figure 13
Editing
JavaScript
properties

A

de
ve

lo
pe

rs
.su

n.
co

m
/p

ro
dt

ec
h/

ja
va

to
ol

s/
js

cr
ea

to
r/

re
fe

re
nc

e/
pd

f/c
re

at
or

_p
ro

g_
gu

id
e.

pd
f PDF

compilation
of the Java
Studio Creator
reference
articles and
tips.

nb03.indb 81 4/5/2007 20:40:29

W
eb

 D
ev

el
op

m
en

t

82 N NetBeans Magazine

C�
Beth Stearns
(beth.stearns@

sun.com) has been
writing developer
articles and books

concerning the
Java language

since 1995. She has
written extensively
on Java Enterprise,

JavaBeans, and Java
Native Interface
technologies as
well as the Java

Studio Creator
and NetBeans

development tools.
Beth has co-

authored numerous
books in the Java

Series, most recently,
Designing Web

Services with the
J2EE 1.4 Platform

and Applying
Enterprise JavaBeans,

Second Edition�.

the code in a separate file and then use the Script component to bind to

that file. First, enter the code to a file, giving it a .js extension, and then

add the file to the project. (Place the file in a subdirectory of the project

directory.) Next, drop a Script component, found in the Advanced sec-

tion of the Palette, onto a page, and bind the Script component’s url

property to the .js file.

You can also drop the Script component onto the page and add

your JavaScript code directly in the JSP editor. When added to a

page, a Script component does not display but you should see the

following line added to the JSP page:

<ui:script binding=”#{AlbumView.script1}” id=”script1”/>

You can then insert your JavaScript code within that tag, being sure

to include the ending </ui:script> tag. For the simple confirmation

shown before, for example, you might have:

<ui:script binding=”#{AlbumView.script1}” id=”script1”
 return confirm(“Are you sure?”)
</ui:script>

Although it is more

complicated to use

the Script compo-

nent, it allows you

14A to add generic JavaScript code that is not

bound to an event.

Conclusions
This introductory article should have given

you a good idea of how easy it is to develop

visual web applications with NetBeans and

its Visual Designer tools. The Visual De-

signer provides a palette of customizable

components that you use to design web

pages, along with a Style Editor to help you

fine-tune their appearance. In addition, non-

visual components provide user-input valida-

tion and conversion code automatically, plus

a virtual forms feature that simplifies user

input processing. There is also a palette of

sample code clips that you can use when

you have to write backing code. And if you

are comfortable with JavaScript code, the

Visual Designer facilitates writing JavaScript

for different components.

You also have available to you a set of

components for specifically working with

database tables and tabular data, and these

components make it a straightforward mat-

ter to retrieve and display database data.

The Query Editor provides a graphical in-

terface to help you develop more elaborate

SQL queries.

Page Navigation is another feature that

helps you design the flow your applica-

tion. You use this interface to link pages

together, either at the page level or at the

component level.

All in all, these tools take care of many

of the page layout and coding chores

required to develop a web application.

You can concentrate on getting the right

look for your application’s web pages

and its business logic, and leave the

rest to NetBeans. �

Figure 14
JavaScript
for button
validation

check

A

nb03.indb 82 4/5/2007 20:40:44

nb03.indb 83 4/5/2007 20:40:44

magazine

nb03.indb 84 4/5/2007 20:40:54

