
Advanced Profiling
Real-world explorations with

the NetBeans Profiler

Schliemann in the Field
People and projects working to

multiply language support

Creative uses of
the Visual Library
Explore the graph handling and

visualization Platform API

December . 2007

magazine

your

The Best Ruby IDE
Dynamic web development and the
IDE’s Ruby features

Fluent in NetBeans
How global localization efforts are
expanding the IDE’s reach

Module Development
with Maven

A powerful alternative for building
NetBeans extensions

Creating RESTful
Web Services

A comprehensive tutorial on
extensions for REST development

Horizons
Expand your development

with NetBeans 6.0

M

od
ul

es
 .

Vi
su

al
 L

ib
ra

ry
 .

M
av

en
 2

 .
Ru

by
 .

Pr
ofi

lin
g

. W
eb

 S
er

vi
ce

s
. L

oc
al

iz
at

io
n

. S
ch

lie
m

an
n

New Horizons

Happy coding!

Leonardo Galvao

magazine

Publisher & Editor-in-Chief
Leonardo Galvao
leonardo.galvao@gmail.com

Assistant Editor
Osvaldo Doederlein
opinali@gmail.com

Design and Layout
pH Design

Graphic Designers
Tarcísio Bannwart
Jaime Peters Jr.
Tersis Zonato

Illustrator
Felipe Machado

Contributors
Emilian Bold
Fabrizio Giudici
Geertjan Wielenga
Janice Campbell
Masaki Katakai
Osvaldo Doederlein
Peter Liu
Roman Strobl

Community Support
Robert Demmer
Bruno Souza

NetBeans Magazine is
supported by NetBeans.org

Java and all Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and
other countries. Although every precaution has been taken in
the preparation of this magazine, the publisher assumes no
responsibility for errors or omissions, or for damages resulting
from the use of the information herein contained.

December . 2007

Release 6.0 is finally here, and the NetBeans Community continues to grow

both in the programming and the natural language dimensions. This issue

showcases the ever-expanding scope of the IDE and Platform, covering topics

from Web 2.0 development to module construction and IDE translations.

One of the main highlights in the roster of new 6.0 features is Ruby development sup-

port, which is already attracting major new blood to the NetBeans community. The

opening article gives you a thorough overview of the many features already available,

which have been making quite an impression among Ruby developers.

 However, you don’t need to wait for new releases to use other languages in the

IDE. There’s always the Generic Languages Framework, or Project Schliemann. A new

article by Schliemann’s most enthusiastic evangelist shows how this once exploratory

but now production-quality framework is being used to add language support in areas

varying from essential to niche.

 As I write, there are NetBeans releases localized to more than 15 languages,

and the number is growing. Though English is the modern lingua franca, non-English

speaking developers feel much more at home in an IDE in their native language – espe-

cially those from developing countries or regions, who in general have less access to

foreign-language instruction. An article by one of the leaders of the localization efforts

at Sun shows how this is happening, the challenges encountered, and what you can do

to help out.

 This issue also brings two articles from world experts on the NetBeans Platform.

You’ll see how the new Visual Library API is being used in the Platform-based blueMa-

rine application as the basis for sophisticated image management components. And

another in-depth article covers all you need to know in order to use the IDE, Maven 2

and plugins to build your NetBeans modules – an alternative to the standard Ant-based

harness.

 Finally, don’t miss the detailed article on profiling. By analyzing aspects of a com-

plex project, the author shows how to use the NetBeans Profiler (including its top new

features) to gain insights into the workings of your Java applications. You then see how

to use this information to identify optimization opportunities and act on them, while

keeping tradeoffs and potential problems in context.

Issue 4 N �

Building RESTful Web
Services in NetBeans
Peter Liu

Rapid code generation and testing, in-
voking 3rd-party services using RESTful
components and building client apps with
generated JavaScript client libraries

Advanced Profiling:
real-world explorations
OsvaLdO dOederLein

Using the major new Profiler features
in NetBeans 6.0, and applying profil-
ing techniques and best practices in a
real-world tutorial

04

Contents
Dynamic Web
Development with
NetBeans and Ruby
rOmam strObL

Exploring the main Ruby features in
the IDE: syntax highlighting, code
completion, refactoring, full Rails
support, and more

10

Module
Development
with Maven 2

emiLian bOLd

Fully enabling Maven-based
module creation: from basic aspects

to building help modules, module
suite construction, and branding

22

30

Project Schliemann
in the Field

Geertjan WieLenGa

People and projects that are
using the Generic Languages

Framework to add
to NetBeans’ variety

Spreading the IDE
to Many Worlds
janice camPbeLL

How a global community is
making NetBeans more accessible to
non-English speaking developers – one
language at a time

38

Creative uses of
the Visual Library

FabriziO Giudici

Using the graph manipulation and
visualization API newly introduced

in NetBeans 6.0 to solve prob-
lems beyond its basic scope

47

51

Exploring the main Ruby
features in NetBeans,

from highlighting, code
completion and refactoring,

to full Rails support

Roman Strobl

D
yn

am
ic

 W
eb

 D
ev

el
op

m
en

t

Ruby
NetBeans 6
with

an
d

Issue 4 N �

Dynamic Web Development with NetBeans 6 and Ruby

N
etBeans has always sup-

ported the latest Java

standards, and the devel-

oper community around

the tool and Platform

consists largely of Java developers. But

as time progresses, a growing number of

developers are realizing the advantages

of using more than just one language.

In some domains, this is actually a must

– for example if you want to talk directly to

the underlying hardware. NetBeans takes

care of that with its C/C++ support.

In some other domains, using a different

language is not essential but can bring

advantages, such as faster development

and quicker turnaround, or better adapta-

tion to requirement changes. There are

various scripting languages that have been

popular in the web development space for

years, like PHP and Perl. Developers who

use these love their speed of develop-

ment and ease of deployment. However,

building larger and maintainable web ap-

plications with such languages has always

been a challenge. You can get things done

fast as a single developer, but it’s harder

to work in a team or take over someone

else’s code. Indeed, most developers will

agree that Java is better for building large-

scale, well-designed and maintainable web

applications.

Java SE 6 brought interesting changes

in this area. From that release on, as you

know, scripting languages are officially

supported on top of the Java platform.

JDK 6 already bundles the Rhino scripting

engine for JavaScript, and the JVM is

opening up to a variety of other scripting

languages. Times are especially exciting

for open-minded Java developers, who

Exploring the main Ruby
features in NetBeans,

from highlighting, code
completion and refactoring,

to full Rails support

wi
ki

.n
et

be
an

s.o
rg

/w
ik

i/v
ie

w/
Ru

by Wiki for Ruby
support in
NetBeans

now have the possibility to mix and match a variety of languages,

and can count on tooling support that’s quickly improving.

For example, you can use Groovy, a very dynamic language that

compiles to Java bytecode; or choose Ruby and run it on top of

the JVM thanks to the JRuby runtime. The trend continues with

the Java SE 7, which will bring further improvements, like a new

invokedynamic bytecode (JSR-292) for increasing the performance

of dynamic languages compiled into Java bytecode.

These changes in the platform create many new possibilities.

You can benefit from the large amount of Java libraries and the

JVM itself, while using a dynamic approach to developing web ap-

plications. Frameworks such as Ruby on Rails or Grails (Groovy’s

equivalent to RoR) greatly simplify web development by using a

large number of defaults (“convention over configuration”). They

also provide powerful code generators, scaffolding, and more. So

you can, for example, use Java for the back-end code (where Java

really shines) and use a dynamic language for the web front end.

Unlike some of the older dynamic languages, Ruby and Groovy

are both very cleanly designed, with object orientation in mind

since their birth. And I would argue that they are more suitable for

larger applications and for team development, too. Add this to the

possibility to use Java APIs easily, and they become very compel-

ling to Java developers. Note that these scripting languages are

interesting not only in the web space, where they get most of

the interest, but can also be used to script Swing GUIs or glue

different applications together.

NetBeans and language support
Java developers spend most of their time in their IDEs and many

can’t do without the comfort these tools provide. When Java de-

velopers want to try a new language or framework, the first thing

they will probably do is search for a plugin for their favorite IDE, to

simplify the learning process and get productivity from the start.

So it’s important for NetBeans to support new scripting languages,

especially as they become more popular among Java developers.

When discussing language support in NetBeans it’s worth talking

about Schliemann. This project (new in NetBeans 6.0) allows you

to define a programming language and integrate it with the IDE.

You can define what parts of the language should be displayed in

the navigator and how to indent, fold and highlight code, plus many

other features. (You can learn more about the framework in the

la
ng

ua
ge

s.n
et

be
an

s.o
rg Project

Schliemann

Ruby

6 N NetBeans Magazine

R
ub

y

two articles by Geertjan in this and the previous issues of NetBeans

Magazine.)

I realize that not everyone is interested in writing language support

into NetBeans, so let’s look at which languages are currently sup-

ported. NetBeans 6.0 provides first-class support for Ruby and the

Ruby on Rails (RoR) framework. JavaScript is also supported, with

features such as syntax highlighting and code completion. In addi-

tion, there’s work being done on a PHP plug-in; its first beta version

will be published together with the NetBeans 6.0 release.

Work is being done on plug-ins for Groovy, Velocity Template

Language, Scala, and several other languages. And more projects

are probably being started as you read this text. You can search the

plug-in manager and plug-in portal for your favorite language, and

if it’s not supported, don’t forget that NetBeans is an open-source

project, and that contributing by writing support for a new language

can be an ideal way to give back to the community!

Ruby on Rails – What is the Buzz About?
Ruby was started by Japanese developer Yukihiro “Matz” Matsumoto

in 1993, and had its first release in 1995. The language’s creator

has said that Ruby is designed for programmer productivity and

fun, following the principles of good user interface design. But Ruby

has not really become widely popular until another guy – David

Heinemeier Hansson, “DHH” – created an MVC framework called

Rails, which is focused on ease of development.

Rails provides features such as scaffolding, object-relational

mapping and code generation. Many other frameworks provide

such features as well, but Ruby on Rails is quite unique in making

common development tasks as easy to do as pos-

sible, and thus making developers more productive.

With strong emphasis on configuration by exception,

as well as powerful code generators and clean APIs, it

can indeed help developers with most mundane tasks.

But Rails wouldn’t be as good if there was no Ruby

behind it. Many lines of code can be saved thanks to

Ruby’s dynamical nature – generating code on the fly

is a commonly used technique in RoR, for example to

handle object-relational mapping. Almost every Java

framework requires some code duplication, which RoR

avoids by letting you configure application parameters

in a single place.

Editing Ruby
code in NetBeans

One of the most important features in any

IDE is code completion, of course. If you

write Java code, you probably can’t imagine

your life without it. Implementing code

completion for Ruby is harder than it may

seem, however. The reason is that there

are no static types in the Ruby language,

so the IDE needs to “guess” them, unlike in

Java where types are always known.

NetBeans uses sophisticated heuristics to

offer the best options in the code comple-

tion window (see Figure 1). Code comple-

tion helps not only by showing possible

methods, classes or modules, but also by

providing access to documentation, which

is extremely useful if you are learning the

language and it’s APIs (see Figure 2).

Like in Java code, you can see all occur-

rences of a variable by moving your cursor

over it. You can also change these occur-

rences easily by pressing Ctrl+R (a feature

called Instant Rename); Figure 3 shows an

example. As you can notice, many of the

features of the new Java editor in NetBeans

6.0 are also available for Ruby editing.

Syntax highlighting is also very advanced

ru
by

.n
et

be
an

s.o
rgRuby

NetBeans
homepage

Figure 1.

Code
completion in a

Ruby test case

A

JRuby
homepage

jru
by

.c
od

eh
au

s.o
rg

1A

Issue 4 N �

Dynamic Web Development with NetBeans 6 and Ruby

starts up and your web application opens in

a web browser. (Webrick is a simple Ruby

library that provides web server services.)

The turnaround speed is pretty fast with

Ruby, since the build and deploy steps are

omitted. You can do any updates in the IDE

and just refresh the web browser to see the

changes in the application.

The Webrick server is intended mostly for

development (it’s written in Ruby), however

it’s easy to switch, for example, to Mongrel, a production-quality

server that can be used to host the final web application.

Debugging
The debugging experience in Ruby is very similar to that using

the Java debugger. You can set breakpoints, browse the call stack,

add watches, evaluate expressions, and more. When running the

code in the debugger you can step into, step out, step over… So

5A

3A

2A

for Ruby, as Figure 4 shows.

You can use many other features Java

developers are accustomed to, such as

hyperlinking (Go to Declaration), code

folding, a navigator, code templates, etc.

But what will surprise even the biggest

skeptics is the possibility to refactor Ruby

code (see Figure 5). You can search for

usages and use the Rename refactoring,

and other refactorings are currently in

the works.

Ruby on Rails Support
NetBeans 6.0 includes first-class sup-

port for Ruby on Rails through special

project templates, as you can see in

Figure 6. Traditionally Rails develop-

ment was done from the command line:

developers launched different commands

– called generators – which created

different folders and files. NetBeans

integrates all the Rails generators into

different wizards, so you don’t have to go

outside the IDE to execute them (though

you can still do that if you prefer). See

one of these wizards in action

in Figure 7.

Once you’re done with devel-

opment of the Rails applica-

tion, you can simply hit the

Run button: the Webrick server

Figure 2.
Viewing
documentation
while editing in a
Ruby class

A

Figure 3.
Instant renaming

A

Figure 4.
Ruby syntax
highlighting

A

Figure 5.
Comparing results
before refactoring

A

4A

� N NetBeans Magazine

R
ub

y

if you’ve used a graphical debugger before, you’ll know how to use

the Ruby debugger. You can also debug RHTML files (RHTML is a

dynamic page system much like JSP 1.0), as seen in Figure 8.

Unit testing
Unit testing support is very well integrated too. For instance, when

you create a new model, a unit test is automatically generated for

you. This is a feature of Ruby on Rails; its philosophy is that testing

is so important that it should not be omitted.

You can also run tests right from the editor and navigate to test classes.

If you are really into testing, you can install the “ZenTest” Ruby Gem (use

Tools|Ruby Gems). This adds an AutoTest item to your project’s context

menu. When invoked, it will launch AutoTest on your project, which will

run unit tests automatically whenever you modify a file. In many cases,

AutoTest can figure out which unit tests need to be run – this is especially

true for Rails projects. If not, it will run all unit tests.

7A

6A Ruby hints
Ruby hints (also known as quick fixes) are

indicated as light bulbs at the side of the

editor window and help you resolve issues

with your code. They can show that some

code might have unintentional side effects,

or tell you that a deprecated API is being

used. Another Ruby hint helps you reformat

a long line of code into multiple lines.

Many additional hints are in development,

being available through the plug-in man-

ager. Their development was started after

feature freeze so they couldn’t be part of

the official release. They are very worth a

look and will make your Ruby development

even more comfortable.

JRuby or native Ruby?
NetBeans comes with the JRuby runtime,

which is used by default for all Ruby-related

tasks. JRuby, an implementation of Ruby

written in Java, can both interpret Ruby

sources and compile them into Java by-

tecode that will run efficiently on a JVM.

You can easily switch to the native Ruby

interpreter if you prefer to use it (e.g. for

performance reasons). Just change the

Ruby binary in Tools|Options>Ruby to your

native Ruby interpreter.

The biggest advantage of using JRuby in-

stead of “pure” Ruby is that you can easily

invoke Java code from Ruby programs.

This gives access to a large amount

of Java libraries allowing you to

leverage your existing

Java infrastructure.

NetBeans goes even

further in its Ruby sup-

port. It fully supports

two full Ruby stacks.

The first choice, the

Figure 6.
Selecting

Ruby and Rails
projects in the

New Project
wizard

A

Figure 7.

Wizard-based
Rails code

generation

A

bl
og

s.s
un

.c
om

/to
rTor Norbye’s

blog

Issue 4 N �

Dynamic Web Development with NetBeans 6 and Ruby

C�
Roman Strobl
(roman.strobl@
sun.com) works at
Sun Microsystems
as technology
evangelist with focus
on development
tools. He has many
years of experience
doing software
development in
Java and all sorts of
dynamic languages,
and is a frequent
speaker at Java
conferences and
Java User Group
meetings around the
world. He is also a
passionate blogger
and producer of the
NetBeans Podcast.
Roman is co-founder
of the Czech Java
User Group and
enjoys working
with open source
communities. He is
always available to
discuss NetBeans,
Java, open source
and related topics
over a glass of beer.

8Astandard toolchain used by tradi-

tional Ruby and RoR programming,

includes other items like the gems

package manager (accessible

through a wizard in NetBeans), the

Webrick and Mongrel web servers,

and the Rake build manager.

In the second alternative, a Java

platform-oriented stack, the JRuby

runtime is complemented by JDBC

support (a boon because JDBC

drivers are superior and available

for many more products than Ruby’s

own database drivers). There’s also

support for deployment in Java EE servers

like GlassFish V2.

Additional
features and plug-ins

There are many other features available

which were not discussed in this article.

You can create your own live templates

to speed up coding and there is a spell

checker for RubyDoc available from the

plugin manager. Also, as Ruby developers

are very editor-centric, we provide a set

of different plug-ins focused on a variety

of editing tasks, such as rectangular se-

lection, highlighting of trailing spaces and

tabs, quick file choosing, etc. You can find

out more about additional plug-ins at wiki.

netbeans.org/wiki/view/RubyPlugins.

Conclusions
This article introduced various fea-

tures for Ruby development available

in NetBeans 6. Many Ruby developers are very excited about this

new functionality. Indeed, you’ll find quite a few blog entries from

developers saying they’ve switched to NetBeans just because of

its Ruby support.

I believe this is just the beginning of the “dynamic language

journey” for NetBeans. Large parts of the code in the Ruby feature

set are language independent, thus in future NetBeans releases

we can expect better tooling for Groovy, PHP, Python and other

popular languages. NetBeans is on its way to becoming a very

useful tool for more and more developers, regardless of which

programming language they choose.

Figure 8.
RHTML
debugging

A

Explore the latest Profiler features
of NetBeans 6.0 and review profiling
techniques and best practices in a

real-world tutorial
Osvaldo Pinali Doederlein

Advanced

Theory in Practice
with NetBeans

Profiling

Issue 4 N 11

Advanced Profiling: Theory in Practice with NetBeans

pr
of

ile
r.n

et
be

an
s.o

rg More
information
about the
NetBeans
Profiler

I
n this article, I’ll walk you through

a series of best practices in Java

code profiling, using NetBeans 6.0.

The approach is to show a realistic

session of profiler-driven code opti-

mization, using the NetBeans Profiler as

the core tool.

Hunting for a
real-world example

Too many articles, including most

of my own production, are limited by

sample projects that must “fit”. But

using real-world code adds a whole new

dimension of meaning – and readers

don’t need to trust the author when he

concludes that techniques shown through

a contrived example will be effective in

real applications.

So I picked a real project: iText, a

popular open-source Java library for PDF

generation and manipulation. Many de-

velopers will be familiar with it or use it

indirectly (for example, iText is a depen-

dency of many Java report generators

and other tools that output PDF). Also, the

work performed by iText is both complex

and CPU-bound, so it’s a good profiling

test bed.

My principle here is to use profiling

techniques to learn something interesting

about a complex project. And if we’re

lucky, find performance problems and

investigate their solution, with the help of

these techniques and in particular of the

NetBeans Profiler. Moreover, I selected

a project that I knew only as a user, but

whose source code I’ve never read before

and an internal architecture I’m not familiar

with. Thus I’ll not be in advantage over the

reader, and we can learn together.

The right tool for the right job
The NetBeans Profiler is not the ideal tool for every optimization-

related task. This is not due to any limitations, but because profilers

are best for fine-grained or low-level performance investigation.

Imagine a Java EE reporting application that’s not scaling well.

The bottleneck could be some inefficient algorithm, but it can also

be due to bad application server tuning, inefficient SQL queries,

excessive use of remote calls, and many other factors. At this

stage of the investigation, you’ll often prefer different tools. For ex-

ample, GlassFish offers detailed monitoring capabilities, and most

database servers provide tools to spot heavy queries. A profiling

tool can still help here though; the NetBeans Profiler integrates

well with application servers. But in my experience this integration

is more suited to profiling sections of Java EE code that are hard

to test outside the container.

Once you’ve narrowed the bottleneck to a specific subsystem,

at the very least to your own application code or, hopefully, some-

thing more specific like “the front-end report generation code”,

then it’s the time to start using a code profiler.

Identifying a problem – and
benchmarking it

If you plan to follow this article’s step by step, you need to first set

up your environment as explained in the box “Installation and setup”.

In the project, open the class examples/com.lowagie.examples.ob-

jects.tables.AddBigTable. This is one of iText’s standard samples

and was selected because it’s complex enough to be interesting

for our purposes. Indeed, this sample creates a ~120Kb, 26-page

PDF file filled with a very big table. Not your average HelloWorld

sample!

A good profiling session should be like any good scientific exper-

iment. You must isolate the code you want to test from other code,

and also avoid interference from environment “noise”. This sample

is already well isolated. It does nothing beyond creating the PDF file;

also there’s no alien code involved: no database access, no mid-

dleware. There is a potential source of environment noise, however:

file I/O. The sample program writes the document to a PDF file,

but this I/O operation is not relevant to what we are measuring. A

larger application that uses iText would probably compose the PDF

to a memory stream and serve it to some GUI, perhaps store it in a

cache; but most likely it wouldn’t write it to a disk file.

ww
w.

lo
wa

gi
e.

co
m

/iT
ex

t iText, the PDF
manipulation
library that’s
the victim of
this article’s
experiments

Profiling

12 N NetBeans Magazine

Pr
of

ili
ng

Installation and setup

You can follow the steps in this article with any release
of NetBeans 6.0 that supports Java development. The

Profiler is a built-in feature. Start by creating a project using
New Project>Java>Java Class Library. Then visit iText’s
download page at SourceForge (sf.net/project/showfiles.
php?group_id=15255) and from the iText group get the itext-
src-2.0.6.tar.gz file (or the equivalent zip). Unpack it and copy
the top-level com directory into your NetBeans project’s src
folder. At this point some classes will report compilation
errors due to missing dependencies. To solve that, in the
same download page go to the extrajars group and download
the files bcmail-jdk14-137.jar and bcprov-jdk14-137.jar. Add
those to the project’s libraries, and NetBeans should compile
the whole project without errors.

Now we just need to add the sample code. Again in the
download page, go to the tutorial group and get the file
tutorial.tar.gz. Unpack it and copy the folder examples to the
NetBeans project root. In the project’s Properties (Sources/
Source Package Folders), click Add Folder and select the
examples folder.

After the rebuild, you’ll notice that four packages contain
compilation errors; these are examples that use other
dependencies, like JFreeChart or the Servlet API. We’re
not going to use this part, so you can just delete the four
packages, and we’re ready to go.

The first step towards our profiling goal, then, is to get rid of

the file I/O. This is easy to accomplish. I changed the AddBigTable

class, replacing “new FileOutputStream(…)” with “new ByteArray

OutputStream(…)”. Notice that the memory stream is big enough

to hold the entire finished PDF content, so

there won’t be reallocations of this buffer

to spoil benchmarking precision. Check

out the resulting code in Listing 1 (with

changed parts in bold); Figure 1 shows

the project loaded in NetBeans.

Benchmarking

Profiling and benchmarking are of course

related disciplines, so before continuing

it’s interesting to go through an exercise

in benchmarking1. The basic requirement

is avoiding the “Two Deadly Sins of Java

Benchmarking”: dead code and short

runs.

Dead code happens when a benchmark

is so simple that smart optimizers notice

some code is computing data which is

never used – so they just eliminate that

code and execution times drop to the floor.

This is not the case with our current code,

however. Even though I don’t use the

produced ByteArrayOutputStream for any

purpose, I know that the path from iText’s

core through multiple layers of I/O objects

(like its PdfWriter), and into the byte array

stream, is very complex – complex enough

that the optimizer in the JVM won’t kill it.

However, the program is still guilty of

short run: short programs will run mostly

in interpreted mode, so the measured

results will be meaningless. From the

command line, I measured 1.890 seconds

with HotSpot Client 6.0u3 on a Pentium-

IV 2,4GHz, which is not too bad. Ideally

though, total execution time would be in the

range of tens of seconds to a few minutes,

to allow for JVM warm-up (initialization,

classloading and dynamic optimization).

This is easy to fix: just add a loop that

repeats the test several times. I renamed

1 Profiling is the
investigation of a

program’s runtime
behavior, specifically

for this article, per-
formance behavior, i.e.
finding out how much

computing resources
are used and breaking

up this use into specific
regions or activities of
the program. Bench-

marking is assessing a
program’s performance
against some baseline.
In application projects,

you might create
benchmarks for regres-

sion tests: if today’s
build is 10% slower

than yesterday’s build,
that’s a performance
regression. Profiling
and benchmarking

share some common
issues, like avoiding

dead code. The major
technical difference is
that benchmarks run

at full speed, while
profiling typically im-

pacts the performance
of the measured pro-
gram. That’s because
profiling must report

fine-grained informa-
tion about the subject,

and this requires sig-
nificant resources.

Listing 1. Initial updates to the AddBigTable classB�

public class AddBigTable {
 public static void main (String[] args) {
 // step1
 Document document = new Document(
 PageSize.A4.rotate(), 10, 10, 10, 10);
 try {
 // step2
 PdfWriter writer = PdfWriter.getInstance(
 document, new ByteArrayOutputStream(120000));
 // step3
 document.open();
 // step4
 // ... omitted for space: build the document
 } catch (Exception de) {
 de.printStackTrace();
 }
 // step5
 document.close();
}

Issue 4 N 1�

Advanced Profiling: Theory in Practice with NetBeans

Table 1.I�

in… That, however, is not a very productive approach. I’ve

spent too much time doing exactly this and waiting for the

right moment to click “Reset data”, “Take snapshot” or similar

buttons in several profilers. What we really need is data from

an “area of interest”, and to have it discretized per iteration of

the test, not accumulated for multiple iterations (the first itera-

tions often have meaningless “cold start” performance). That’s

why my top new profiling feature in NetBeans 6.0 is Profiling

Points.

In AddBigTable.java, go to the test() method’s first line, right

click it and choose Profiling>Insert Profiling Point. Select the

Reset Results type, accept the defaults for other options and finish

the original main() method to test(), and

added a new main() that takes the repeat

number from the arguments. See the new

method in Listing 2.

To set up and run this benchmark, go

to the project’s Properties>Run>Main

Class, click Browse and select our

AddBigTable class. In the same page

make Arguments=10. Confirm changes

and run the project. I did that for a few

recent Java virtual machines; Table 1

shows the results. For CPU-bound work,

the increasing sophistication of JVM tech-

nology continues to extract more and

more from the same hardware. In this

particular test, HotSpot Server 6.02 saves

20% of your CPU, compared to release

1.4.2 of the same JVM, or 10% when

compared to 5.0.

Profiling CPU usage
We’re a couple pages into the article

and yet no use of the NetBeans Profiler.

This is an important best practice though:

planning before profiling. Now we are at

the point where powerful tools should

really help (and not just entertain us with

beautiful data visualizations).

Booting the Profiler is easy. Just run

Profile>Profile Main Project and sit com-

fortably while watching the results come

2A

2 To test with
HotSpot Server,
set VM Options
to --server in the
project properties’
Run page.

Figure 1.
The iText project in
NetBeans

A

Figure 2.
Creating a Profiling
Point

A

1A

Runtime Performance
HotSpot Client 1.4.2u16 843ms

HotSpot Server 1.4.2u16 703ms

HotSpot Client 5.0u13 750ms

HotSpot Server 5.0u13 625ms

HotSpot Client 6.0u3 672ms

HotSpot Server 6.0u3 562ms

Listing 2. New method main() for AddBigTableB�

public static void main (String[] args) {
 int times = Integer.parseInt(args[0]);
 for (int i = 0; i < times; ++i) {
 long t = System.currentTimeMillis();
 new AddBigTable().test();
 t = System.currentTimeMillis() - t;
 System.out.println(t);
 }
}

Table 1.
 iText’s benchmark
on Sun JVMs from
1.4.2 up to 6.0;
results are best of
10 cycles of
each test

I

14 N NetBeans Magazine

Pr
of

ili
ng

the wizard. Then go to the last line of the same method, and create

a Take Snapshot profiling point. Figure 2 shows the first page of

the Profiling Point creation wizard.

Having created the two profiling points, we’ll collect a snapshot of

each run of the test() method. Since the AddBigTable program loops,

invoking this method several times, the Reset Results profiling point

is important to avoid accumulation of an execution’s performance

data with that for the previous one. There are other very useful

types, like Stopwatch (which prints the execution time of a code

section) and Timed Take Snapshot (for taking a snapshot at a fixed

time after reaching the profiling point).

Now start the profiler with Profile>Profile Main Project. Select

CPU and make sure the Entire Application and Use defined

Profiling Points options are checked; also set the Filter option

to Profile only project classes (see Figure 3).

With these settings we instruct the Profiler to observe code

execution performance only for classes from our project.

As profiling has a significant probe effect (it slows down

the observed program), the Profiler allows you to minimize

this through several filtering options. The Advanced settings

dialog also lets you fine-tune profiling precision. For this ex-

periment, however, the default settings will do, and you can

click Run to start the

profiling session.

 The result of this

session should be

similar to Figure 4,

with ten new snapshots

collected. Just look at

the last snapshot, which

is already “good” (fully

optimized execution).

You can inspect the

results in the Call Tree

page (top-down view),

in the Hot Spots page

(bottom-up view), or in

the Combined page,

which is split between

these two views.

The ByteBuffer.format-

Double() method’s “hot spot” can be easily

identified. Apparently, this method alone

takes ~20% of all the running time of the

test, which is surely too long for a single

method in a project as complex as iText.

So, like vultures over rotting meat, let’s

dive into the code, hoping to find some-

thing that can be optimized.

Double click the formatDouble() method in

the Call Tree page to show its source code

(see Listing 3). This method’s purpose

is no rocket science: it just formats a

4A
Figure 4.

The NetBeans Profiler,
focusing on method

execution time

A

3A
Figure 3.

Starting the
profiler

A

Issue 4 N 1�

Advanced Profiling: Theory in Practice with NetBeans

jects are not thread-safe, so reuse opportunities are limited. The

result is that any multithreaded application – even those with con-

tainer-managed threads like Java EE apps – are forced to continu-

ously recreate formatters, what can be very expensive.

The best is enemy of the good

Voltaire was hardly thinking about computer programming when

he wrote this famous quote, but it serves us well. In the context

of code optimization, almost any code can be enhanced a little

further – but once any sufficiently complex code is “good enough”,

the additional optimization effort increases exponentially as you

slowly approach the ideal of perfect, fastest-possible code.

The developer who noticed that SimpleDateFormat was chewing

an insane amount of cycles may have jumped too early to the

“perfect” solution: an extremely optimized, customized code that

performs the required formatting as efficiently as physically pos-

sible in Java3. But is this really necessary? Aren’t there alternative

solutions which wouldn’t lead to a method that’s so massive and

hard to maintain?

Analyzing iText’s ByteBuffer class4, you can see that it’s not

double value into a String, with up to six

digits of decimal precision. But the code

is huge. If a static flag, HIGH_PRECISION,

is set to true, the method just relies on

Java SE’s DecimalFormat class. But if

HIGH_PRECISION==false (the default),

there follows a slab of code that’s guar-

anteed to violate every size and complexity

limit enforced by code validation tools.

Now, the obvious – and ironic – fact is

that we’ve landed in code that was obvi-

ously optimized before. This is after all a

mature project. What happens, one may

ask, if HIGH_PRECISION is set to true? Not

a pretty outcome. With HotSpot Server

6.0u3, the best individual running time

goes from 562ms to 1,610ms! As in the

original code, formatDouble() takes 20%

of the total time, that means 112ms

out of the total 562ms. With HIGH_

PRECISION==true, as no other code is

affected by this flag (I checked this),

formatDouble() is consuming 72%

of the total time. There’s a 1,030%

slowdown for a single method, and a

186% slowdown for the whole test.

The usual suspect

It’s not surprising to find that

DecimalFormat is a bottleneck. It’s

a well-known fact that java.text’s

formatters are broken performance-

wise. DecimalFormat objects are very

expensive to create since their con-

structors compile the format strings

into an optimized representation that

makes each parsing/formatting op-

eration very fast.

This is only good, though, if you

can reuse each formatter for a large

number of operations; but these ob-

4 From iText’s com.
lowagie.text.pdf
package; no rela-
tion to java.nio.
ByteBuffer.

3 I don’t know the
history of iText’s
development, so
this is really just
a hypothesis that
serves my reason-
ing here.

Listing 3. The suspected ByteBuffer.formatDouble() (edited for space)B�

public static String formatDouble (double d, ByteBuffer buf) {
 if (HIGH_PRECISION) {
 // “Straight” formatting code
 DecimalFormat dn = new DecimalFormat(“0.######”, dfs);
 return dn.format(d);
 }
 // else... 200 lines(!) with custom formatting code.
}

Listing 4. Optimized ByteBuffer.formatDouble()B�

public class ByteBuffer extends OutputStream {
 ...
 private static final DecimalFormatSymbols dfs =
 new DecimalFormatSymbols(Locale.US);
 private DecimalFormat dnCached =
 new DecimalFormat(“0.######”, dfs);
 ...
 public static String formatDouble(double d, ByteBuffer buf){
 if (HIGH_PRECISION) {
 if (buf == null) {
 DecimalFormat dn = new DecimalFormat(“0.######”, dfs);
 return dn.format(d);
 }
 else {
 buf.append(buf.dnCached.format(d));
 return null;
 }
 }
 ...
}

16 N NetBeans Magazine

Pr
of

ili
ng

thread-safe, because of several mutable fields and no synchroni-

zation. This is the common design of most buffer-esque objects:

they are not often shared, and if they are, they’re better synchro-

nized in upper layers. But this means that the optimization shown

in Listing 4 is valid. Here I created a shared DecimalFormat object,

limiting the sharing to multiple invocations on the same ByteBuffer in-

stance. As the buffers are never shared, the thread-safety limitation

of DecimalFormat is meaningless. I performed the tests again with

HIGH_PRECISION==true. The result was 1,047ms; much better than

the original result with this option set, but still a significant slowdown

(86% worse) over the score for HIGH_PRECISION==false.

This formatDouble() method is tricky: though static, it can be in-

voked with a ByteBuffer argument – an “optional this”. If a buffer is

received, the formatted value is appended to the buffer; otherwise

(i.e. null is passed), the formatted value is returned. So a good hy-

pothesis is that I didn’t obtain all the speedup I wished for, because

there are many invocations with buf==null, and I couldn’t optimize

this case to reuse the formatter.

Back to the Profiler

Profilers are not only good for finding bottlenecks and perfor-

mance bugs. They are also great for validating and refining your

findings in an iterative and interactive process that should lead to

the desired code enhancement.

In the same Call Tree page shown in Figure 4, right click the

formatDouble() method and choose Show Back Traces. Now you

have a new tab labeled “Back traces for: formatDouble”, showing

all code paths that end in that method (see Figure 5). You’ll see two

branches. The top one shows traces where the immediate caller of

formatDouble() is the append(double) instance method, which passes

this to its parameter buf. In the bottom branch, the caller is a static

method formatDouble(double), which passes null for this parameter.

We could imagine that the second branch is guilty for the re-

maining slowness; but a quick look at the numbers proves this not

to be true. Even though each invocation in the “slow path” is very

expensive, there are very few such invocations – a total of 130,

compared to 157,532 invocations in the “fast path”. The “Time [%]”

column in the same tab confirms that virtually all execution time

goes to the fast-path branch.

This means that the remaining slowness is not caused by an ex-

cessive number of DecimalFormat instantiations. It comes from the

execution of this object’s format() method,

which is still slower than the highly cus-

tomized code that ByteBuffer.formatDouble()

has for the HIGH_PRECISION==false

case.

Correct? Perhaps. There is one potential

flaw in this conclusion: we don’t know

how many ByteBuffer objects are being

created. Consequently we don’t know how

many times our optimized instance field

(DecimalFormat dnCached) is being created.

It’s time for a different profiling strategy.

Profiling memory
allocation

Start the Profiler again, now with

Profile>Profile Main Project, Memory.

Accept the defaults for all options and run

a new profiling session. Now we have more

interesting results: each test iteration allo-

cates 9,440 instances of ByteBuffer and

9,571 instances of DecimalFormat (this

is after optimization – remember that the

shared formatting object is only used for

one of two possible code paths into for-

matDouble()). The original unoptimized

code would allocate 166,973 instances of

DecimalFormat per iteration.

I managed to cut 95% of these alloca-

tions (as well as the expensive construc-

tions involved), so my instincts say there’s

not much to be gained by cutting the

remaining 5%. The remaining cost of the

simpler formatting code should come from

the execution of DecimalFormat.format(),

not from the construction of DecimalFormat

objects.

That’s game over for our analysis of

formatDouble(). The method is already

very close to an optimum implementation

if DecimalFormat is to be used. See the

5 Remember that Java
5’s enhanced-for does

not avoid iterators;
it only hides them

from you: for (T item:
items) will walk the

items collection with
an iterator. Inciden-

tally, iterators are
great candidates to be

“lightweight objects”.
This new language

feature may appear
in future JVMs; see
John Rose’s Multi-

language VM proposal
at mail.openjdk.java.

net/pipermail/an-
nounce/2007-

October/000016.html.
Another solution

(specific to iterators
and other objects that

are typically used in
local scope) is auto-

matic stack allocation
(driven by escape

analysis), an optimi-
zation the HotSpot

team is researching
but which has not

been implemented in
production JVMs from

Sun up to now.

Issue 4 N 1�

Advanced Profiling: Theory in Practice with NetBeans

box “Next step for formatDouble()?” for

additional findings that are a final part

of the optimization of that method – but

follow me here in the investigation of the

NetBeans Profiler.

The Memory Results view in Figure 6

shows the top allocations, which may be

good enough for solving some perfor-

mance diagnostics.

Sometimes you’ll also

need to consider the

containment relation-

ships between several

classes: for example,

most char[] objects

are private fields of

String or StringBuffer/

StringBuilder objects,

and all HashMap$Entry

objects are used inside

HashMap instances.

So you can easily

spot some common

behaviors of iText; for

example it creates a

large number of Strings
– which is not surprising

since it’s a document-

processing library. What

seems less natural is

that iText also allocates

a good number of

AbstractList$Itr objects.

This doesn’t look like an

unavoidable cost of the

task being performed.

We’ve found a place

that deserves further

inspection. We’ll need

require additional pro-

filing data: run a new

memory profiling session, this time activating the option Record

stack trace for allocation. Now, for each class listed in the Memory

Results tab, the NetBeans Profiler enables a context menu item:

Show Allocation Stack Traces.

In Figure 7 you can see all code locations where iterators are

allocated. Java’s iterators often cause performance problems,

because they are heap-allocated objects. They create additional

costs as well: their “fail-fast” behavior makes their implementation

Figure 6.
Top allocated
objects by heap
usage

A6A

5A
Figure 5.
The Back
Traces tab

A

1� N NetBeans Magazine

Pr
of

ili
ng

more complex, re-

quiring additional

indirections and poly-

morphic calls inside

loops. That’s why, in

performance critical

code, I avoid iterators

like the plague5.

Most iterators iden-

tified in Figure 7 are

being created gratu-

itously, in methods

like Phrase.getC-

hunks() and PdfLine.

toString(). The static

type of iterated collections is always ArrayList, and iterators are

used just for walking the collections (there are no other operations,

like remove()). This shows that iText is optimized to avoid using col-

lection interfaces (like List), when such flexibility is not necessary. In

this case, why use iterators? Using loops with get() and size() would

be faster.

A good excuse for iterators is dealing with collections whose static

type is an interface, because you either don’t have access to more

specialized access methods, or aren’t sure of their performance

traits. In particular, iterating an arbitrary List with indexing is a po-

tential disaster, because if the list happens to be a LinkedList, the

random access methods are available but they’ll crawl, of course.

Both of these top iterator-allocating methods could benefit from in-

dexed access and other optimizations. See Listing 5. The toString()

method has two small problems. First, it uses StringBuffer (instead

of the much better StringBuilder API of Java

SE 5.0+); this is probably a concession to

compatibility with older runtimes. Second,

toString() does not preallocate the size of

the buffer, which is difficult to estimate,

because each PdfChunk.toString() may

return a string with a different size. But in

my experience, even a very raw and con-

servative estimation – say line.size()*16,

where 16 is a (somewhat arbitrary) small

size per chunk – is much better than no

estimation at all (which often causes ex-

cessive reallocation).

There’s a similar problem in the

getChunks() method: the new ArrayList

that accumulates elements taken from the

current object (Phrase itself is a list) lacks

preallocation. This case could also benefit

from a conservative estimation, e.g. new

ArrayList(size()).

So there you go – no less than five opti-

mization opportunities in just two methods

totalling 14 lines of code. Should we go

ahead and execute all five? This requires,

as usual, some additional thought. Of

course I’d need to have more experience

with the iText codebase to determine

Listing 5. Methods deserving small optimizationsB�

// class PdfLine:
public String toString() {
 StringBuffer tmp = new StringBuffer();
 for (Iterator i = line.iterator(); i.hasNext();) {
 tmp.append(((PdfChunk) i.next()).toString());
 }
 return tmp.toString();
}

// class Phrase:
public ArrayList getChunks() {
 ArrayList tmp = new ArrayList();
 for (Iterator i = iterator(); i.hasNext();){
 tmp.addAll(((Element) i.next()).getChunks());
 }
 return tmp;
}

7A
Figure 7.
Allocation

stack traces
for list

iterators

A

Issue 4 N 1�

Advanced Profiling: Theory in Practice with NetBeans

Next step for formatDouble()?

In the investigation of iText summed up in the
body of the article, I was able to optimize
ByteBuffer.formatDouble()’s “straight” formatting

code significantly (using SimpleDateFormat). But not
enough to compete with the performance of the
existing optimized formatter.

Profiling and optimization are hard, but even more
difficult is making tradeoffs. Specifically, is the
optimized code good enough to be preferable – if
not by default, then at least in some circumstances
– over the existing custom formatter? There’s no
easy answer.

The original straight code was clearly
unacceptable. You’ll notice, if you read iText’s full
ByteBuffer.java, that the HIGH_PRECISION flag has
its value hardwired. The shipping iText binary is
compiled with HIGH_PRECISION==false, and this
option can only be changed by editing the source
code and recompiling the library.

Now, the optimized straight code makes my
benchmark only 86% slower (instead of 186%) than
the custom format code. This is still significantly
slower, so certainly iText users would prefer to
keep using the existing optimized formatter. Or
not? Speed is not everything, and the name of the
HIGH_PRECISION flag implies of course that when
it’s set to false some loss of precision is expected.
Indeed, the optimized formatter performs some
approximations like this one (edited):

if (Math.abs(d) < 0.000015) {
 return “0”;
}

This truncates many close-to-zero numbers,
killing their sixth decimal position (plus roughly one
bit of the fifth). There are additional approximations
in the code.

An experiment talks louder than any hypothesis,
so I executed the program twice, first with HIGH_
PRECISION set to false and then setting the flag to
true – with both runs writing the PDF content to a file
as the original code did. The default low-precision
setting produced a document with 119,262 bytes,
but the high-precision document was significantly
bigger: 135,007 bytes. Then I instrumented the
program to format each value with both algorithms
and dump the results. To my surprise, I saw that

the optimized algorithm used only two decimal
digits of precision for all numbers! Here’s a typical
output for this instrumented run:

hi: 91.333344, lo: 91.33
hi: 18, lo: 18
hi: 1, lo: 1
hi: 333.818176, lo: 333.82

I discovered that my comparison is not fair. I’m
comparing an algorithm that formats with six
decimal digits of precision against one that goes
only to two decimal places.

I fixed this by simply changing the format string
to “0.##”. Touché: the PDF was created with
119,262 bytes, identical to the optimized formatter
(which is also a good validation of our new code
if we consider DecimalFormat as the “canonical”
formatter). As a result, the execution time went
down to 984ms. This is still 75% worse than the
optimized formatter, so it doesn’t change matters
a lot…

Unless the full precision is useful. If PDF files
contain a large number of floating-point numbers,
I’d expect additional precision to have an impact
on the quality of the documents. I tried to measure
this, but without success; the “high-precision”
PDF looked identical to the “low-precision” one
to my bare eyes (on 1280x1024 resolution and
using Adobe Reader 8.1).

Perhaps the problem is that the test document is
too simple for us to detect the difference – it’s just
a huge table with heading and borders, and loads
of dummy alphanumerical data filling the cells. But
a program that produces PDFs with complex, high-
precision graphics – say, a CAD tool – may result
in a perceivable advantage for the high-precision
flag, especially when printing the PDF on a high-DPI
printer or plotter. I will have to leave this conclusion
to iText’s developers and advanced users.

If we consider that the high-precision output
could be useful in some scenarios, the enhanced
formatter might be a good option even with a
significant speed hit. In this case I’d leave HIGH_
PRECISON==false as default, but provide some
means of changing it. (It’s also possible that I
picked a sample that depends on formatDouble()’s
performance much more than usual.)

20 N NetBeans Magazine

Pr
of

ili
ng

selecting the Classes view. This shows

a tabulation of instance counts and heap

sizes per class, similar to the Memory

Results tab of the memory profiling snap-

shots. The difference is that now you can

select a class and right click Show in

Instances view.

This brings a three-pane view. The

Instance pane lists every single instance

of the class (instances may be grouped

in blocks of 500). Select any individual

instance, and you see its fields in the

Fields pane and the objects that point to

it in the References pane. This information

about references is usually the most

interesting.

For example, when inspecting a random

Phrase object from iText, you’ll be able

to see the whole tree of objects forming

the PDF document’s object model. You

can verify that a certain Phrase object

is contained by a PdfPCell[] array, which

is in a PdfPRow object, and so forth. The

structure below the PdfPCell[] array seems

to be a simple tree (each object having a

single parent). Were I an iText developer,

I would of course know this tree structure

beforehand and wouldn’t be surprised with

this piece of the heap dump. On the other

hand, if I got a different dump than ex-

pected, e.g, with several live references

if each of these optimizations is worth its cost (e.g., the cost of

having less maintainable/readable code, if you think that iterators

are better than explicit indexed access).

In any case, this is a good opportunity to remember that efficient

programs are not created only with a handful of super optimiza-

tions with order-of-magnitude gains (also known as “having fun”).

They are also created with hundreds of tiny optimizations which in

aggregate can make a very significant difference.

Walking the heap

The Heap Walker is another major new feature of the Profiler

in NetBeans 6.0. Performance problems can often be diagnosed

on a relatively high-level, with coarse summary information like

“too many instances of X are being allocated”. But sometimes

this isn’t enough; you need finer-grained data like “too many in-

stances of X are allocated as fields of Y”. This leads to diagnostics

like “perhaps I should lazy-initialize these fields since they’re

rarely used”.

To help handling these situations is the role of the Heap Walker. In

order to test this feature, run a new profiling session (any profiling

mode will do) and in the middle of the program’s execution run

Profile>Take Heap Dump. Pick Profiled project as the destination,

stop the profiling session and open the heap dump (it’s available in

the Saved snapshots window). Heap dumps will be opened by the

Heap Walker, as in Figure 8.

The Heap Walker’s default Summary view shows some basic sta-

tistics, like the total number of bytes in the whole heap. But this

tool is more valuable for collecting very fine-grained data. Start

Issue 4 N 21

Advanced Profiling: Theory in Practice with NetBeans

facility.)

As you could see from our sample profiling sessions, code pro-

filing and optimization can be a laborious, trial-and-error process.

You may need to write new code just to support this work, even if

you have access to the best tools; then you’ll spend most of your

time thinking about the consequences of each code tweak. In my

experience, the actual code optimization is often the easiest part.

It’s often obvious, once you fully understand the problem.

Writing high performance code is difficult, but it is much

easier with good tools. And the NetBeans Profiler is one of the

best tools anywhere for that job: it automates repetitive tasks like

taking snapshots at the right moment, runs efficiently so as to not

break your creative mood with long pauses, and makes a lot of

data easily accessible through clear visualizations.

If you go through the steps in this article following it as a tutorial,

you’ll notice that the time spent in the Profiler (e.g., running a par-

ticular command) is minimal. That’s the mark of a great tool: not

getting in your way – because you’re paid to build engines, not to

use screwdrivers.

to the same PdfPRow object, this could

be evidence of some problem, such as

a memory leak or bugs in the document

construction algorithms.

Indeed, heap walking tools are often as

useful for debugging as they are for pro-

filing, if not even more handy.

Conclusions
The focus of this article was to il-

lustrate profiling techniques on a real-

world example and concentrate on the

major new features in the NetBeans 6.0

Profiler: Profiling Points and the Heap

Walker. (Incidentally, there are many other

improvements we didn’t cover, such as

comparison of memory snapshots, drill-

down graphs, integration with JMeter, and

support for JDK 6’s dynamic attachment

C�
Osvaldo Pinali
Doederlein
(opinali@gmail.com)
is a software
engineer and
consultant, working
with Java since
1.0beta. He is
an independent
expert for the JCP,
having served
for JSR-175 (Java
SE 5), and is the
Technology Architect
for Visionnaire
Informatica. Holding
an MSc in Object
Oriented Software
Engineering, Osvaldo
is a contributing
editor for Java
Magazine and has a
blog at weblogs.java.
net/blog/opinali.

8A
Figure 8.
The Heap
Walker

A

Fluent
in NetBeans

How a global
community is making
NetBeans more
accessible to non-
English speaking
developers – one
language at a time

Janice Campbell

Spreading the IDE
to Many Worlds

Issue 4 N 2�

Fluent in NetBeans: Spreading the IDE to Many Worlds

1AFluent T
he greatest asset NetBeans has is its community.

They are the end-users who contribute to its excel-

lence by giving back to the product in so many ways.

One community group is making a big difference by

bringing NetBeans to the non-English speaking world.

Developers with multilingual skills contribute translations, consult

on terminology, and offer their technical expertise to deliver the

IDE to China, Brazil, Russia, Indonesia, Belgium, Panama, Burkina

Faso... In short, they reach out to developers on nearly every

continent of the globe.

What follows is a history of how the project started and where it’s

going; who the pioneers were; some problems encountered and

how they were solved; and how to participate

or get started translating NetBeans into your

language.

How did it all start?
A long way back, at the time of NetBeans

version 3.4 or 3.5, a couple of motivated

NetBeans aficionados realized that the tool had

the potential to reach and benefit a much wider

user group if it were translated into languages

other than English. That’s how the TranslatedFiles

(translatedfiles.netbeans.org) community project

got started. It was born out of the vision of Vincent Brabant (now

NetBeans Dream Team member and Java Champion) and Maxym

Mykhalchuk, who produced French and Russian versions, respec-

tively. At version 4.0, Dutch-speaking Java Champion

Manfred Riem joined the effort, adding another

language to the mix.

Since that time, modules of the NetBeans IDE 5.0,

5.5, or 5.5.1 have been translated into Albanian,

Simplified and Traditional Chinese, Azerbaijani,

Czech, French, German, Spanish, Korean, Dutch,

Russian, Brazilian Portuguese, Swedish, Indonesian,

Italian, and Japanese.

Now, with the launch of NetBeans 6.0 translations,

contributors from new languages such as Bulgarian,

Turkish, and Polish have recently joined the project.

Figure 1 gives a hint of the various translated

versions of NetBeans IDE releases.

Figure 1.
NetBeans 5.0, 5.5,
5.5.1 and 6.0 in
Simplified Chinese,
Portuguese, Italian,
Korean, Albanian,
Japanese, Russian,
French and German

A

ne
tb

ea
ns

.o
rg

/c
om

m
un

ity
/a

rti
cl

es
/z

h-
tw

��
-r

el
ea

se
.h

tm
l The Traditional

Chinese team
and NetBeans
release 5.5

Issue 4 N 2�

24 N NetBeans Magazine

Lo
ca

liz
at

io
n

Who is carrying on the legacy?
The Software Globalization business unit at Sun joined the project

around NetBeans 4.x in order to support the Japanese and Simplified

Chinese versions. Translations were added for Help files, tutorials,

and product and web documentation.

With each new version of NetBeans,

more and more community members

with linguistic skills joined the project

and grew the number of languages

being worked on. Over time, translation

contributions were being received for the

various netbeans.org community pages

as well as product documentation.

Thanks to the strong influence of

SouJava, Brazil’s largest Java User

Group, a Brazilian Portuguese team

expanded this year to be the largest

in membership size. This led to a

pioneering collaboration between Sun

translators and the Brazil community

contributors. A highly-motivated and

dedicated team of in-country developers, translating during their

spare time, succeeded in releasing a high-quality NetBeans 5.5 in

Brazilian Portuguese on the same schedule as the official Sun multi-

lingual version. Figure 2 shows a core set of the team.

To get a feel for the people behind the scenes, let’s take a closer

2A

look at some of the teams.

• German – Whenever Ruth Kusterer

isn’t doing her day job as a member of the

netbeans.org web team, she’s recruiting

new members to the German

localization group and

helping in the translation,

review, and CVS commit

activities, alongside Peter,

Holger, Jake and others. The

half dozen or so members

hail from Germany, Austria

or Switzerland, and have

contributed translations for

the IDE as well as the UML

module.

• Spanish – The Spanish-

language team goes back

a couple of releases, even

before Argentinean Diego

Gil and Spaniard David

Álvarez León created the Spanish mailing

list. More recently, the PanamaJUG, under

the leadership of Aristides Villarreal, has

been instrumental in growing the Spanish-

language community throughout Latin

Figure 2.

Some Brazil team
members in

attendance at Sun
Tech Days São Paulo

A

“Participating in this commu-

nity is a way to help spread

NetBeans among Spanish-

speaking developers and

students. It has also allowed

me to meet and be a part of a

translation team that includes

members from other countries

such as Colombia, Mexico,

Spain, Argentina, Cuba, Gua-

temala, Peru, Chile, Venezu-

ela, and of course, Panama.”

Aristides Villarreal, NetBeans Dream

Team member and PanamaJUG

founder

Issue 4 N 2�

Fluent in NetBeans: Spreading the IDE to Many Worlds

compels people to seek association with like-

minded individuals who enjoy sharing ideas

and experiences, and building communities and

friendships.

When asked about their reasons for participating

in these community projects, some TranslatedFiles

contributors said they were strongly committed

to the free and open-source software ideology. Others believe

that it is only fair to give back to a community from which one has

derived benefits.

Most would agree that making the tool more accessible

to developers – rendering it in their native languages – is

a key rationale for joining the project. For example, trans-

lating, at a minimum, the NetBeans

Platform allows developers to

write modules and build rich-client

applications on top of a localized

version of the Platform. The appli-

cation is then ready to be deployed

in the native language.

Henrique Meira said it best

in a motivational e-mail to his

Brazilian team members, when he

enumerated the benefits of contrib-

uting to NetBeans 6.0 translations:

“We have Sun’s management

support and free access to

worldwide events, technical assis-

tance and a social community, and awards are given to collabo-

rators – but most importantly we give back to NetBeans because

of its excellence.”

What problems do they face?
Time is the single most difficult constraint that all the contrib-

utors face. It is assumed that everyone participating is a full-time

developer, employee, student, or maybe professor with jobs,

families and a social life. That means most of the work has to be

accomplished in between commitments. As is the case in many

collaborative projects, the more members one can bring to the

project, the more workload that can be spread over a larger pool

of people, so that no single individual feels responsible for making

America and Spain. A Spanish-language

version has been released for NetBeans

5.5 and 5.5.1; NetBeans 6.0 Spanish is

in progress.

• Polish – The Polish team is one

of the newest localization groups.

Magda Niedzwiecka Goldyn recently joined

Sun and started immediately making

contacts with universities and Java User

Groups in Poland. She created a NetBeans

discussion list (nbdiscuss_pl@netbeans.

org) and met a number of enthusiastic

Polish subscribers, like Paul, Jacek,

Leszek and others,

who were already

organizing to start

a translation effort for

NetBeans 6.0. Figure 3 shows

a translated NetBeans

6.0 dialog.

What bodes for the future? As

government entities and public

universities around the world

migrate to open source software,

we are sure to see an increased

interest in new localized versions

for NetBeans. With each new

release, teams expand and the number of

languages grows.

Why do they contribute?
If joining and contributing to a project

requires a lot of extra time outside work,

studies, and home life, why do people do

it? Numerous reasons can be cited. Some

people enjoy the creative and challenging

process of developing software; while

others are interested in building a

reputation and expertise in related technol-

ogies. And of course, community affiliation

“I like to participate in the

project because it’s an op-

portunity to get to know

new people from Brazil and

other countries. Exchang-

ing experiences always

improves our technical and

personal skills. People feel

proud to take part.”

Jefferson Prestes, Brazilian

contributor since version 5.0

tra
ns

la
te

df
ile

s.n
et

be
an

s.o
rg NetBeans

localization/
translation
community
project

ne
tb

ea
ns

.o
rg

/c
om

m
un

ity
/a

rti
cl

es
/in

te
rv

ie
ws

/if
nu

-b
im

a-
in

do
ne

si
a-

nu
g.

ht
m

l Article about
the Indonesian
NetBeans
Users Group
and the
NetBeans
localization
efforts of NUG
members
Ibrahim F.
Burhan and
Thomas Edwin
Santosa

Fluent in NetBeans: Spreading the IDE to Many Worlds

26 N NetBeans Magazine

Lo
ca

liz
at

io
n

3A

or breaking the project.

This leads to a second challenge: how to recruit new team

members and keep them interested in the project. One or two team

members usually volunteer to take on a leadership role, or are

nominated by the other members. They are the ones who organize

the work, create instructions and make sure all of the tasks are

assigned. And they come to understand the importance of their

role in keeping a team connected, encouraged and interested in

contributing something for which

there is no tangible reward.

How to ensure an acceptable

level of product quality is a third

challenge, especially when there

is more than a handful of team

members or a high turnover of

contributors. Writing style and

terminology usage need to be

consistently maintained across all

components and modules of the

product. One

way to achieve

this is by using

translation editing tools, such as OmegaT (see the box

“Maximizing translation reuse”), and sharing the trans-

lation memory output among all team members.

Additionally, Sun shares any existing

style guides and term databases with the

community. The contributors need to be

in constant dialogue, so they use mailing

lists in their language or the NetBeans

collaboration module to discuss discrep-

ancies and doubts. Team activities,

progress, and decisions are documented

on team wiki pages. And those with more

linguistic and technical expertise take on

the role of reviewing the translations of

other less-experienced contributors, or

provide linguistic consulting.

How to participate
If you are inspired to get involved in local-

izing the NetBeans IDE, the TranslatedFiles

project home page explains how to get

started. The first step is to subscribe to

the project mailing list, introduce yourself

to the other contributors, and check if a

team for your language

already exists. (Before you

are granted commit rights

to the workspace, you will

need to sign and submit a

Contributor Agreement.)

If translations are available

from a previous version,

instructions outline how to

migrate these from one

version to the next, so

that an open-source trans-

Figure 3.

Polish
translation

of NetBeans
6.0 Advanced

Options
window)

A

“I am a free software fan, and Net-

Beans offers many qualities I was

looking for in an IDE: it’s intuitive,

productive, extensible, has a well-

organized community behind it,

and the support of a company that

likes open source. I’ve been using

NetBeans for years and want it to

be the best and most popular IDE

in Burkina Faso.”

Nacer Adamou Saidou,
Network and Systems Engineer

26 N NetBeans Magazine

Issue 4 N 2�

Fluent in NetBeans: Spreading the IDE to Many Worlds

Maximizing translation reuse

Imagine that each time there is a new version

of NetBeans you have to translate all the

messages and user interface from scratch.

That doesn’t seem like such a problem until you

realize that you’ve seen many of these messages

before, or perhaps that other members of your

translation team are coming across the same set

of messages as you are – and possibly making

different translations of the same items. The good

news is that the old translations can be reused or

shared in new versions.

One solution is to make use of translation

memory tools. These tools store the bilingual

versions of translated segments and allow you

to retrieve them later when translating software

messages or documentation that contain the

same or similar segments as previous versions.

A segment is a unit of text divided at the sentence

level; most tools have the option of adjusting

segments to the phrase or paragraph level too,

depending on the requirements of the project.

One of the most popular translation editing tools

for open-source translation projects is OmegaT

(omegat.org), an open-source application

written in Java. As the

translator works, the

tool will search the

database for matching

pairs of segments.

When a match is found

the translator is offered

the option of accepting

or rejecting one or more

previous translations.

An example can be

seen in Figure B1.

An English segment

is highlighted in green

on the left side. The tool has found two possible

matches in the Spanish translation database. One

match is exact or 100%. The second is a fuzzy

match, or 30% match between the old and new

English strings.

There are many benefits of using translation

memory tools. If substantial matches are found

from previous translations, then less time is

required to localize the product. This is because

translators only have to handle a segment once,

assuming it is repeated elsewhere within the same

product, across other products, or in subsequent

releases. Moreover, the translators do not need

to be familiar with a wide range of file formats, nor

do they need to own the software for processing

them. For example, you might need a number of

different editors or word processors to be able

to process formats such as HTML, DOC, XML,

etc. The translation memory tools convert these

to a standard format that can be easily read by a

number of translation editing tools. Finally, a high

level of quality and consistency is maintained when

translators can share and improve on terminology

across many related projects.

B1A

Figure B1. Using
the OmegaT
translation editor
(in Spanish) to
check for matches
from previous
translations

A
ne

tb
ea

ns
.o

rg
/c

om
m

un
ity

/a
rti

cl
es

/e
s-

de
-lo

ca
liz

at
io

n.
ht

m
l Article about

the Spanish
and German
teams and
NetBeans
release 5.5.1

2� N NetBeans Magazine

Lo
ca

liz
at

io
n

lation editor can be used to leverage and preserve the reusable

translation memory. The Sun engineers prepare the localization

kits, which consist of the localizable elements – .properties, .xml

and .html files. Once the translations are completed, reviewed by

others on the team and committed to the CVS, it is time to test and

verify the localized strings. The Sun Build

Engineering team will eventually make

weekly development builds available

on the netbeans.org site for review and

testing purposes. It’s also possible to

build a local version of the localized IDE

when official builds are not yet available

(see the box “How to build a localized

NetBeans 6.0”).

There are other ways to contribute

translations, especially for those who

have a particular interest in website

content or product documentation.

The netbeans.org community page for

localization (netbeans.org/community/

contribute/localise.html) lists a variety of

opportunities for submitting translations.

The most visible pages to contributors

are the community page translations

(netbeans.org/community/contribute/localisation-status.html).

Contributors are continually sought to help keep the twenty-eight

languages in sync with the regular updates of the English release.

Additionally, the community docs

project (wiki.netbeans.org/wiki/view/

CommunityDocs) offers the possibility

to contribute content in English or other

languages. Community members have

submitted translations of

tutorials and other NetBeans

products and release

documentation. They have

also created original flash

demos, white papers,

and articles in various

languages.

Three NetBeans

portals exist currently

in languages other than

English: ja.netbeans.org,

zh-cn.netbeans.org and

fr.netbeans.org. You can

contribute original or trans-

lated content to these sites

to spread knowledge about

NetBeans to developers in

countries or communities

where these languages are spoken.

All of these projects are ways to

contribute to NetBeans as the IDE of

choice worldwide. It is a way to share

your skills and expertise with others, and

help reach developers who might not be

aware of the great features offered by

NetBeans. The benefits of contributing to

the TranslatedFiles translation project are

numerous. You can make the IDE more

accessible to international developers,

and, in the process, enjoy the camara-

derie of sharing knowledge, experiences,

and social interaction with other people

who love NetBeans and believe in the

open source ideology.

“Translating NetBeans to

Bahasa Indonesian, will help

people learn to use the IDE

more easily in our country.

There is increasing attention

to NetBeans in Indonesia. In

a developing country with

more than 230 million popu-

lation, NetBeans’ contribu-

tion is important for us to

acquire new technology

without great cost.”

Ibrahim F. Burhan, Information Tech-

nologist for an Indonesian mining

company and NetBeans user

since version 3.5

ne
tb

ea
ns

.o
rg

/c
om

m
un

ity
/a

rti
cl

es
/tr

an
sl

at
io

ns
.h

tm
l Article about

NetBeans
Russian

community
contributor

and
TranslatedFiles

founder,
Maxym

Mykhalchuk

Issue 4 N 2�

Fluent in NetBeans: Spreading the IDE to Many Worlds

by Masaki Katakai

Building a localized NetBeans 6.0

Once the translations of the message files are

completed, they will need to be committed

to the CVS and then integrated into the build

environment. At this point, it is important to validate

the quality, accuracy, and completeness of the

translated strings, by reviewing them in the context

of the actual product. Development builds for testing

might not be available on netbeans.org until later in

the development cycle, but contributors can still build

a local version with the translations, as follows.

Before beginning, make sure that Apache Ant

1.7, JDK 1.5 and a CVS client are installed on

your local machine. Then set up your environment

and checkout the NetBeans source files from

the CVS (see wiki.netbeans.org/wiki/view/

WorkingWithNetBeansSources for details). We’ll use

BUILD_HOME to refer to the top-level directory.

You must build the entire IDE before you can build

the localized version:

% cd BUILD_HOME/nbbuild

% ant build-nozip

The NetBeans IDE will be built under nbbuild/

netbeans. You can start NetBeans from nbbuild/

netbeans/bin/netbeans.

Next, you need to checkout translatedfiles/src

from CVS (the checkout steps in the Wiki mentioned

above will not grab them):

% cd BUILD_HOME

% cvs co -r release60 translatedfiles/src

If the translated message files (HTML, XML,

properties, etc.) have been integrated already into

the translatedfiles/src directory of the CVS, you

can use them as they are. If you prefer, however,

to validate and check your translations before

integrating them in to the CVS, then make sure

to put them into the translatedfiles/src directory

on your local machine where you will do the

local build. The next step is to build the localized

JAR files:

% cd BUILD_HOME/nbbuild

% ant -Dlocales=<lang> build-nozip-ml

Here is an example using “ja” (for Japanese).

% ant -Dlocales=ja build-nozip-ml

After the build process is done, the

*_<lang>.jar files will be created under the

nbbuild/netbeans directory. Now it’s time to start

the localized version of NetBeans:

% BUILD_HOME/nbbuild/netbeans/bin/netbeans

If your operating system’s locale is different from

the locale in which you will run NetBeans, use the

- -locale option to specify the language:

% BUILD_HOME/nbbuild/netbeans/bin/netbeans
 --locale <language[:country[:variant]]>

Here is an example using Brazilian Portuguese:

% BUILD_HOME/nbbuild/netbeans/bin/netbeans --locale pt:BR

You can now proceed to test the translations

in the localized build environment. If there are

multiple team members for your language, you can

distribute the *_<lang>.jar files to the other team

members. They’ll just need to unzip these files into

the NetBeans installation directory.

C
Janice Campbell
(janice.campbell@sun.
com) is a Globalization
Program Manager at
Sun Microsystems, Inc.
For the last year and a
half, she worked with a
Sun team of localizers
in Japan, China and the
Czech Republic, and
with an ever-changing
and growing team of
community contributors
from all parts of
the globe.

ne
tb

ea
ns

.o
rg

/c
om

m
un

ity
/a

rti
cl

es
/b

ra
zi

l�
�-

re
le

as
e.

ht
m

l About the
Brazil team
and NetBeans
release 5.5

Building

RESTful

Rapid code generation based on
patterns and JPA entities, easier
testing with Test Client, invoking
third-party services with RESTful
components and building client
applications using generated
JavaScript client libraries

Peter Liu

Web Services
in NetBeans 6.0

Issue 4 N �1

Building RESTful Web Services in NetBeans 6.0

RESTful component palette.

• Generation of JavaScript client stubs from RESTful web services

for building client applications.

• Test client generation for testing RESTful web services.

• A logical view for easy navigation of RESTful web service imple-

mentation classes in your project.

In this article, we will outline the steps to use these features to

create RESTful applications.

Getting the RESTful Web Services Plugin

Since we are tracking JSR-311 which is still an unfinished specifi-

cation at the time of writing, the RESTful Web Services plugin is only

available via the NetBeans 6.0 Plugin Manager from the Update

Center. To download it, you need to have installed NetBeans 6.0

in the Web and Java EE

or Complete releases.

Once in the IDE, go to

Tools>Plugins and install

the plugin, as shown in

Figure 1. You’ll then

be ready to explore the

various features avail-

able for developing and

testing your RESTful

applications.

The RESTful Web Services
Plugin comes bundled with
the latest Jersey libraries, so
you do not need to install the
Jersey runtime in your applica-
tion server in order to run your
applications.

E

3A

2A

1A

R
epresentational State

Transfer (REST), you will

recall, is an increasingly

popular architectural style

for distributed hypermedia

systems such as the Web. Central to the

RESTful architecture style is the concept of

resources identified by universal resource

identifiers (URIs). Resources can be ma-

nipulated using a standard interface, such

as HTTP, and information is exchanged

using representations of these resources.

Building web services using the RESTful

approach is emerging as a popular alterna-

tive to using SOAP-based technologies for

deploying services on the Internet, due to

its lightweight nature.

NetBeans 6.0, with the addition of a

specialized plugin, supports the rapid

development of RESTful web ser-

vices using JSR-311 (Java API

for RESTful Web Services

– JAX-RS) and Jersey, the

reference implementation

for JAX-RS. The IDE sup-

ports building and

testing services,

as well as creat-

ing client applica-

tions that ac- cess these services,

and generating code for invoking web

services (not only RESTful but also SOAP-

based). The following are the RESTful

features provided:

• Rapid creation of RESTful web services

from Java Persistence API entity classes

and patterns.

• Fast code generation for invoking web

services such as Google Maps, Yahoo

News Search, and StrikeIron services, by

drag-and-dropping components from the

RESTful
Web Services

Figure 1.
Downloading
the RESTful Web
Services Plugin
from the Plugin
Manager

A

Figure 2.
Pattern Selection
Panel

A

Figure 3.
Setting up
resource classes

A

in NetBeans 6.0

�2 N NetBeans Magazine

W
eb

 S
er

vi
ce

s

A first RESTful Web Service

Start by creating a Web project with the type Web Application and

default settings. From the Web project node, choose New>RESTful

Web Services from Patterns. Figure 2 shows the first panel of

the wizard. As you’ll see, three patterns are currently supported:

Singleton, Container-Item and Client-Controlled Container-Item (see

more about these in the “RESTful patterns” box). We will use the

Singleton pattern to create a “Hello World” service. Click on the Next

button to go to the panel shown in Figure 3.

In this panel, you can specify the package and resource names, and

the MIME type for your resource. Enter “helloworld” in the Resource

Package text field, and in Resource Name enter “HelloWorld”. The Class

Name and URI Template fields will default to “HelloWorldResource” and

“helloWorld”, respectively. Select text/html for the MIME Type, and

click Finish to generate the code.

After the HelloWorldResource class is generated, the RESTful Web

Services logical view will appear, as shown in Figure 4. Double click

on the getHtml() method node,

and the IDE will take you to

the method in the Java editor.

Modify the method as shown

in Listing 1, to return an

HTML document displaying

“Hello World!”.

Taking a closer look at the gen-

erated HelloWorldResource.

java class shown in Listing 1,

notice the @UriTemplate(“/hel-

More on REST

RESTful web services are much simpler than the
traditional SOAP-based ones. There is of course no

SOAP and no WSDL, and definitely no WS-* standards – just
simple message exchange over HTTP using any format you
want: XML, JSON, HTML, etc. RESTful web services are
really just a collection of web resources identifiable by URIs,
which can be manipulated by a small number of operations
– GET, PUT, POST and DELETE (corresponding to commons
actions you can specify in a HTTP header). Because of this,
“resource” is used throughout the article to mean a RESTful
web service.

loWorld”) annotation on the class definition.

This annotation is what determines the URI

for the resource. The @HttpMethod(“GET”)

and @ProduceMime(“text/html”) annotation

on the getHtml() method indicates to the

Jersey runtime that this method should be

called when an HTTP GET request is sent to

the resource with text/html as the desired

MIME type.

The HelloWorld project we created in this sec-
tion is one of the sample applications bundled with the

plugin. You can create the sample by choosing File>New

Project>Samples>RESTful Web Services>Hello

World.

We’ve completed our minimal service.

In the next section we demonstrate how

to test the service using the Test Client

facility.

Testing the service

To test the HelloWorld service, right click

on the project node and select Test RESTful

Web Services. This action will deploy the ap-

plication and bring up the test client in your

browser, as shown in Figure 5. To test the

service, click on the helloWorld node on the

E

4A

Listing 1. HelloWorldResource.java B�

@UriTemplate(“helloWorld”)
public class HelloWorldResource {
 ...
 @HttpMethod(“GET”)
 @ProduceMime(“text/html”)
 public String getHtml() {
 return “
 <html>
 <body>
 <h1>Hello World!</h1>
 </body>
 </html>”;
 }
 ...
}

Figure 4.

RESTful Web
Services Logical

View

A

Issue 4 N ��

Building RESTful Web Services in NetBeans 6.0

base, leveraging the JPA support in NetBeans. To do this, we will

need to generate the JPA entity classes from a database in the web

project.

First create a web project called “CustomerDB”, keeping GlassFish

V2 as the default server. From the project node, choose New>Entity

Classes from Database and select jdbc/sample for Data Source

from the drop-down list. A list of tables will appear in the Available

Tables column. Select the CUSTOMER and DISCOUNT_CODE tables

and click Add to include them in the Selected Tables column. Click

Next to go the panel shown in Figure 6. Enter customerdb for

Package. Next, create a persistence unit by clicking on the Create

Persistent Unit button (you can leave everything as default in the

dialog and click Create). Click Finish to generate the entity classes.

After generation, you should see two Java classes, Customer and

DiscountCode, in the customerdb package.

You are now ready to generate RESTful web services from the

entity classes. Right click on the customerdb package node and

choose New>RESTful Web Services from Entity Classes to bring

up the New RESTful Web Services from Entity Classes wizard as

shown in Figure 7. In this panel, simply click on Add All to include

both entity classes for code generation. Click Next to go the next

panel, shown in Figure 8.

7A

6A

left-hand panel and click Test. Switch to

the Raw View to see the HTML document.

The Tabular View extracts all the URIs in

the result document, and displays them as

links. We will show an example of this later

in the article. The Headers view shows all

the information in the HTTP headers, and

the HTTP Monitor, as expected, displays

HTTP request and response messages.

The Test Client generates its content based on
the generated WADL (Web Application Description
Language) file which is a description for all the
RESTful resources in your project.

Generating RESTful
web services from a database

In addition to generating code from

RESTful patterns, you can generate a fully

functional RESTful application from a data-

H

5A

More on Jersey

Jersey is more than just the reference
implementation for JAX-RS. It’s an

open source project meant to foster a
community of users and developers and
is developed to be of production quality.
On top of the support for the JAX-RS
API, Jersey provides APIs and extension
points. For example, you can extend
Jersey to support additional languages
such as Groovy and Scala, and to
support different MIME types beyond XML
and JSON.

Figure 5.
Test Client for
our minimal
web service

A

Figure 6.
Entity Class
Setup Panel

A

Figure 7.
Entity Class
Selection
Panel

A

�4 N NetBeans Magazine

W
eb

 S
er

vi
ce

s

9A

This panel displays a preview of the classes to be generated.

The IDE uses the Container-Item pattern to generate the resource

classes. For example, for the Customer entity class, the IDE gen-

erates a container resource called CustomersResource and an

item resource called CustomerResource. Also, for each resource

class, NetBeans creates a converter class which is used for

generating the resource representation from the corresponding

entity instance, e.g. CustomersConverter and CustomerConverter.

Note that there are additional converter classes, e.g.

CustomerRefConverter, for representing relationships.

Click Finish to generate all the classes indicated in the Preview

area. You can test the generated RESTful web service by fol-

lowing the steps outlined in the previous section. Figure 9

shows an example output. The Tabular View displays a listing

of all the URIs embedded in the returned document; you can

navigate to them by clicking on each link.

Taking a closer look at the CustomersResource class

(shown in Listing 2), notice that the getCustomer

Resource() method has a @UriTemplate(“{customerId

}”) annotation. This method is called a “sub-resource

locator”, because it is used to return an instance of the

CustomerResource class to handle the HTTP request,

after the Jersey runtime matches the customerId in the

URI to the pattern specified in @UriTemplate. For ex-

ample, the URI /customers/1 will be matched to this

method because /customers is first matched to @

UriTemplate(“/customers”) in the CustomersResource

class and “1” will match the @UriTemplate(“{customer

Id}”) annotation for the getCustomerResource() method.

Also notice in the get() method, also shown in

Listing 2, that there are two parameters,

start and max with @QueryParam annotations

on them. These annotations are used by the

runtime to inject values of the query param-

eters specified in a URI into the method pa-

rameters. For example, /customers?max=20

would cause the max parameter for the get()

method to be set to 20 at runtime. The

@DefaultValue annotation is used to specify

default values if no query parameters are

specified in the URI. The runtime will con-

vert the value to the type specified by the

method parameter.

Listing 2. CustomersResource.java B�

@UriTemplate(“/customers/”)
public class CustomersResource {
 ...
 @HttpMethod(“GET”)
 @ProduceMime({“application/xml”, “application/json”})
 public CustomersConverter get(
 @QueryParam(“start”) @DefaultValue(“0”) int start,
 @QueryParam(“max”) @DefaultValue(“10”) int max) {
 ...
 }
 ...
 @UriTemplate(“{customerId}/”)
 public CustomerResource getCustomerResource() {
 return new CustomerResource(context);
 }
 ...
}

Figure 8.
Resource

Class Setup
Panel

A

Figure 9.

Testing
RESTful Web

Services
Generated from

Entity Classes

A

8A

Issue 4 N ��

Building RESTful Web Services in NetBeans 6.0

10A

Google Map and Yahoo News Search components are both REST-based; all
StrikeIron components are SOAP-based. Currently, you can add components to the
palette by creating modules with metadata information in a specific format (the
format for such modules is beyond the scope of this article, however).

To demonstrate how to use these components, drag and drop the

Google Map component into your CustomerResource class. A dialog

will appear (see Figure 11), where you can customize the Google

Map component. For the apiKey, enter the key which you obtained

from Google (by visiting google.com/apis/maps/signup.html). You

should also uncheck the Map to QueryParam checkbox for the

apiKey, so it does not appear as a query parameter.

 Click Ok and the plugin will generate a sub-resource locator called

getGoogleMap() in the CustomerResource class. The plugin also

generates a GoogleMapResource class with pre-generated code for

invoking the Google Map API.

To have the Google Map keyed to the address of the customer, you

need to modify the code as shown in Listing 4. Run Test RESTful

Web Services again to test the modified application. Figure 12

shows the Test Client page. Notice that a new URI, /customers/1/

googleMap is added to the Customer resource. If you click on the

link, you’ll see the map shown in Figure 13.

H

11A

Now take a look at the CustomerResource

class shown in Listing 3. Notice the

@UriParam(“customerId”) annotation for

the id parameter on the get() method.

What this annotation does is tell the

Jersey runtime to extract the customerId

from the URI and inject its value into the

id parameter. The runtime will convert the

customerId to an Integer, as specified by

the parameter type.

The generated RESTful web services sup-
port both XML and JSON MIME types. You can
specify which MIME type to use by selecting the
appropriate one from the Method drop-down
list.

RESTful components

In addition to generation of RESTful web

services from patterns and JPA entity

classes, the plugin supports generating

code to access other web services – both

RESTful and SOAP-based. This is done

using the RESTful components available

in the component palette. To bring up the

palette with the relevant items, simply

open up a RESTful resource class, e.g.

CustomerResource. Figure 10 shows

the RESTful components currently avail-

able. (If the palette does not come up,

you can open it with Window|Palette or

CTRL+Shift+8.)

E

Listing 3. CustomerResource.java B�

public class CustomerResource {
 ...
 @HttpMethod(“GET”)
 @ProduceMime({“application/xml”, “application/json”})
 public CustomerConverter get(
 @UriParam(“customerId”) Integer id) {
 ...
 }
 ...
}

Figure 10.
The REST
Component
Palette

A

Figure 11.
Customizing
the GoogleMap
Component

A

�6 N NetBeans Magazine

W
eb

 S
er

vi
ce

s

15A

12A REST Patterns

Client library generation

To facilitate building client applications that access

RESTful web services, the plugin supports generation

of client libraries written in JavaScript. The generated

libraries can contain three layers of abstraction. At the

bottom layer is plain JavaScript code which can be con-

sumed by JavaScript clients. The next layer provides sup-

The RESTful plugin currently supports
three patterns. The Singleton pattern

is useful for creating RESTful wrapper
services around other services such as
SOAP-based web services. For example,
you can use this pattern to REST-enable
existing SOAP-based services. This
pattern has many additional uses.

The Container-Item pattern is typically
used for representing resources that
have relationships, such as a database.
We use this pattern to generate code
from JPA entity classes.

This “plain” Container-Item pattern lets
you create an item resource using the
POST method. The URI for the newly
created item resource is determined by
the container resource.

The Client-Controlled Container-
Item pattern is a slight variation. The
difference is that there is no POST
method on the container resource class
for creating item resources. Instead,
item resources are created using PUT on
the item resource class. It’s called Client-
Controlled because the URI for the item
resource is determined by the client and
not by the container resource. Amazon’s
Simple Storage Service (S3) uses the
Client-Controlled Container-Item pattern.

Figure 12.
Testing the
GoogleMap

Resource

A

Figure 13.

Google Map for
Customer 1

A

Figure 14.

Adding
the jMaki

Framework

A

Figure 15.

New RESful Web
Service Client Stubs

Wizard

A

13A

14A

Issue 4 N ��

Building RESTful Web Services in NetBeans 6.0

port for the Dojo Ajax toolkit. The generated

code is organized in a structure understood

by Dojo and contains code for the Dojo

store and widget abstractions. On the top

is the jMaki layer, which is a wrapper around

the Dojo layer.

In order to generate all three layers, you

need to first install the jMaki plugin available

in the download area of the ajax.dev.java.net

website. This plugin will automatically install

the Dojo libraries so you do not need to install

these separately. (If you do not install the jMaki

plugin, you’ll only be able to generate plain

JavaScript code.)

To create the client library, you need to first

create a web project, say “CustomerDBClient”.

Also, make sure you add the jMaki framework

as shown in Figure 14. Next, right click on the project node and invoke

New>RESTful Web Service Client Stubs, to invoke the wizard shown

in Figure 15.

Click on Add Project and select the CustomerDB project you cre-

ated. Make sure the Create JMaki Rest Components checkbox is se-

lected and click Finish. The plugin will generate all the necessary files

in the project’s web folder.

You can test the generated client library by running the

TestResourcesTable.jsp page, in the web/resources/dojo/rest folder

(simply right click on the file and choose Run File). Figure 16 shows

the result.

You can also install the generated client library as a jMaki component

in the jMaki palette. In the root directory for the CustomerDBClient

project, there should be a CustomerDB.zip file already created

when you create the client library. You can see it in the Files view

of the IDE. Next, choose Tools>Palette>Add jMaki Library and

select CustomerDB.zip. The jMaki plugin will add the jMaki com-

ponents contained in this file to the jMaki palette, as shown in

Figure 17. Finally, to test the component, simply drag and drop it

into a JSP file such as index.jsp, and run it

from the IDE.

Conclusions

In this article, we gave you an introduc-

tion to the world of RESTful web services,

and the current efforts by JAX-RS and

Jersey to standardize on a Java API for

building such web services. We also show-

cased the RESTful Web Service plugin for

NetBeans 6.0, which provides end-to-end

support for building complete RESTful

web services.

17A

16A

C
Peter Liu
(peter.liu@sun.com) is
a staff engineer at Sun
Microsystems, Inc. leading
the RESTful Web Services
tooling effort for
NetBeans 6.0.

Listing 4. getGoogleMap() methodB�

 @UriTemplate(“googleMap/”)
 public GoogleMapResource getGoogleMap(
 @UriParam(“customerId”) Integer id)
 {
 try {
 x.Customer entity = getEntity(id);
 String apiKey = null;
 String address = entity.getAddressline1() + “ “ +
 entity.getAddressline2() + “ “ +
 entity.getCity() + “ “ +
 entity.getState() + “ “ +
 entity.getZip();
 Integer zoom = null;
 return new GoogleMapResource(apiKey, address, zoom);
 } finally {
 PersistenceService.getInstance().close();
 }
 }

Figure 16.
Example
using jMaki

A

Figure 17.
 jMaki palette

A

Maven 2
Creating a Module Suite
with Apache Maven and
Mevenide – from basic
Platform API features to
JavaHelp support and
branding

Emilian Bold

NetBeans
Development with

Platform

Issue 4 N ��

NetBeans Platform Development with Maven 2

1A

A
pache Maven, you all

know, is widely used as a

build system and for many

other activities. A great

thing about Maven is that

its “build script” is actually no script at

all but a completely declarative configu-

ration file called a POM (Project Object

Model). Maven’s design will look familiar

to NetBeans Platform developers: it’s ba-

sically constructed from a core “platform”

supporting versioned plugins that can be

automatically downloaded from a central

repository.

This article will show that NetBeans is

starting to have excellent Maven support,

and how to use this as an alternative to

the IDE’s built-in Ant integration – for ev-

ery aspect of NetBeans Platform devel-

opment. We start from simple issues like

dependency declaration and go all

the way to the building of module

suites, branding, and help module

construction.

Meet Mevenide
NetBeans does not yet

support Maven 2 proj-

ects out of the box.

Luckily though, we have Mevenide, a certified NetBeans plugin

that provides extensive Maven integration. You can use existing

Maven projects directly from the IDE as Mevenide provides execu-

tion and debugging support, auto-completion for many Maven-

specific files, and more. All projects created with Mevenide will

be standard Maven 2 projects that can also be built with the com-

mand-line mvn command.

But if your projects will be standard Maven 2 projects, there’s

nothing actually forcing you to use the NetBeans IDE; so what’s

to gain as a Platform developer? Well, by standardizing on Maven,

members of your team could use different IDEs or even plain text

editors to do the development. In particular, you can build Net-

Beans Platform applications with whatever tools you prefer.

The downside to using Mevenide and Maven 2 projects is that,

while you do get independence from the IDE and an arguably bet-

ter build system than Ant, you lose some IDE integration. For

example, some of the wizards are gone regardless of the project

type. For Platform development in particular, you’ll have to hand-

edit some of the properties or XML files (the layer.xml file being

the prime candidate). In some cases the loss of integration is

partial; for example, the form editor will work but you won’t be

able to edit the layer using drag and drop.

All that said, keep an eye on the update center as the missing wizards are
slowly coming to Maven-based projects.

Mevenide can be easily installed by selecting Tools|Plugin,

choosing “Maven” from the list of plugins (see Figure 1), and

going through the normal installation steps.

C

Maven 2

Figure 1.
The Plugins
window after
manual selection

A

Sample NBM
Maven Plugin
descriptors

m
oj

o.
co

de
ha

us
.o

rg
/n

bm
-m

av
en

-p
lu

gi
n/

de
sc

rip
to

r.h
tm

l

40 N NetBeans Magazine

M
od

ul
e

D
ev

el
op

m
en

t

3A

2A

The first module
Let’s start creating a Maven-based NetBeans module. The first

steps are the same for any Maven project: select File>New Proj-

ect, open the Maven category and choose Maven Project. We’ll use

the Quickstart Archetype (see Figure 2) for this module.

An Archetype is basically a project generator in the Maven world. It produces the
initial folder layout and the files to build upon.

In the final step, we define the Group Id, Artifact Id, and Version,

as well as the project name (see Figure 3). These pieces

of information together identify each artifact generated and

manipulated by Maven (including the project itself), and will go into

the project’s POM. The Group Id is basically a namespace – it’s

common practice to use company, domain or application names

C

here. The Artifact Id is the name for this

particular module. The Version is used for

example for configuration management.

As a result, we have a new project in Net-

Beans, shown as “tutorial (jar)”. You will

also notice a package under the Source

Packages node and another under Test

Packages (see Figure 4). Additionally,

you’ll have a simple example class and a

test, JUnit as a test library (a dependency),

and the pom.xml file under Project Files.

The first strange thing you’ll notice if

you’ve never used Maven before is that

the project seems to have some errors.

The reason in this case is that Maven

doesn’t come by default with JUnit. JU-

nit is treated like any other dependency

and will need to be downloaded from a

repository. Maven takes care of this and

any all other dependencies the first time

you build the project. It will download the

needed artifacts and cache them locally

(the default repository being repo1.ma-

ven.org).

The POM

Let’s now open the Project Files/pom.xml

file, through which you can control all as-

pects of the project. Changes in the POM

will be reflected in the project in the IDE.

For example, by changing the <name/>

element and saving the file, you’ll notice

that the name of the project changes.

Next we need to change the

<packaging/> element (whose value is

shown in parentheses to the right of the

project name). That’s because, of course,

a NetBeans module isn’t distributed as a

simple JAR file but as a NBM. So change

the packaging to nbm and try to build the

project. You’ll see that it fails miserably.

Figure 2.

Selecting a
Maven Archetype

A

Figure 3.

Artifact id, Group
id and Version

definition

A

Issue 4 N 41

NetBeans Platform Development with Maven 2

4A

The reason is that no default Maven plu-

gin knows how to handle the nbm packag-

ing. We need to add the nbm-maven-plugin

(which I’ll call “NBM Plugin” from now on)

inside the <build/> element in the POM.

See Listing 1.

Now the project will build successfully.

After the build, switch to the Files tab and

you’ll notice in the target folder all the ex-

tra artifacts, including the generated NBM

file (see Figure 5). At this point we have

a working module project; by clicking Run

you’ll get a new IDE running, which should

include our module among many others.

You might get errors related to Windows paths
while trying to run the project. Make sure you don’t
have spaces in these paths, as these are usually
the culprits.

Adding an Action

We will now create a new

Platform Action using the

New Action wizard. The

purpose of this Action will

be just to inspect that a

given service exists and

show a dialog. The wizard

automatically generates

the Bundle.properties file

in the proper Maven-friend-

ly folder, as well as the Ac-

C

tion class. It also changes the layer file and adds the

corresponding dependency to the POM.

At this point, any build using Platform APIs will fail,

as the Maven project doesn’t have a dependency on

the needed Platform-specific artifacts. First we need

to declare the repository where the NetBeans arti-

facts are located; see Listing 2. Next we include a

dependency on org-openide-util, which is the module

providing the Platform’s Actions API. See Listing 3.

This is equivalent to a dependency added to a normal

Platform module. The NBM Plugin will detect that this artifact

is a module and configure the proper dependency in the gener-

ated build artifact. As before, the project won’t initially compile

without the dependency; this will be resolved when the files are

downloaded on the first build.

Regarding Listing 3, if the version RELEASE60 doesn’t work for you, try
RELEASE60-BETA2 as the new bits might not yet have reached the Maven
repository when you read this.

C

Listing 1. Build configuration for the NBM PluginB�

<project>
 ...
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>nbm-maven-plugin</artifactId>
 <version>RELEASE</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
 ...
 </project>

Listing 2. Declaring a default repository for NetBeans artifactsB�

<project>
...
 <repositories>
 <repository>
 <id>netbeans</id>
 <name>Repository for hosting NetBeans API artifacts</name>
 <url>http://deadlock.netbeans.org/maven2/</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 </repositories>
</project>

Figure 4.
New Maven project,
with errors that will
be solved with the
first build

A

42 N NetBeans Magazine

M
od

ul
e

D
ev

el
op

m
en

t

Now right click on the project node and create an Action with

default options. Upon building the project, you might get a warning

about Java sources being 1.4 due to some @Override annotations

which are 1.5 specific. You can just delete the annotations.

All the basic Platform modules have the groupId org.netbeans.api and the
JAR name as the artifactId. If you don’t know the groupId/artifactId for a module,
you can try finding it in the repository at http://deadlock.netbeans.org/maven2.

Other NetBeans
Platform specific settings

So far our module does little to interact with the NetBeans Plat-

form. Sure, by adding a dependency on org-openide-util we can al-

ready use the lookup service for example, but we can’t yet declare

a service in the global lookup.

The standard NetBeans way in this case is to place a text

file under META-INF/services. Luckily this is almost the same

under Maven, with a twist: while the Java source files sit un-

der src/main/java, all resources must be under src/main/

resources.

This Maven-specific separation of resource files from Java source files means
extra work if you plan to migrate an existing project to Maven. You’ll have to
write a script that splits the files that were together in the older project (or do
it by hand).

The resources folder may be created

outside the IDE, or inside it from the Files

tab (under src/main). It will also be au-

tomatically created by the Actions wiz-

ard. After this, you should see another

node in the Projects window called Other

Sources, containing your resource files

(see Figure 6).

The resources folder only
holds resources that belong to
the artifact. It does not contain
for example the POM file or
other Maven configuration files.

The contents and name

C

C

C

of the file under META-INF/services are

the same as usual. Respectively: the

service base class or interface; and the

fully qualified name of the implementing

classes, each in its own line.

The layer file

Now, in order to have menu items or

toolbars we need a layer file. The nec-

essary configuration task is letting the

build plugin know which is your layer file.

In order to do this, you need to create a

plugin configuration file (an NBM descrip-

tor), which defines the module metadata

you’d expect: cluster name, module type,

update center URL, codebase, manifest,

etc.

First, create the src/main/nbm folder.

This is where you’ll put the descriptor as

a special configuration file (and not in the

resources folder). In the new folder, cre-

ate a file called module.xml with contents

similar to Listing 4.

Listing 3. Adding openide-util as a dependencyB�

<project>
...
<dependencies>
...
 <dependency>
 <groupId>org.netbeans.api</groupId>
 <artifactId>org-openide-util</artifactId>
 <version>RELEASE60</version>
 </dependency>
 </dependencies>
...
</project>

Listing 4. NBM Plugin descriptor file: module.xmlB�

<nbm>
 <moduleType>normal</moduleType>
 <codeNameBase>ro.emilianbold.nbmagazine.tutorial/1</codeNameBase>
 <cluster>nbmagazine</cluster>
 <manifest>src/main/nbm/manifest.mf</manifest>
 <distributionUrl>http://emilianbold.ro/nbmagazine/</distributionUrl>
 <licenseName>GNU GPL 3</licenseName>
 <licenseFile>src/main/nbm/license.txt</licenseFile>
</nbm>

bi
ts

.n
et

be
an

s.o
rg

/d
ev

/ja
va

do
cBleeding edge

NetBeans API
docs

Issue 4 N 4�

NetBeans Platform Development with Maven 2

The NBM descriptor is capable of holding
a lot more data. Please see the NBM Plugin
documentation for the full schema.

Next we have to edit the manifest file

and declare the layer in the OpenIDE-

Module-Layer section. While the NBM

Plugin lets you declare some module

metadata, it currently supports only the

manifest file but not the layer. Thus, the

src/main/nbm/MANIFEST.MF file defined

in module.xml should be created with this

line content (in a single line):

OpenIDE-Module-Layer:
 ro/emilianbold/nbmagazine/tutorial/layer.xml

We know that anything that isn’t a Java

source class must be placed in the re-

sources folder; the layer file is no excep-

tion as it will also be part of the final build

artifact. Now it’s time to rebuild and re-run

the project. You’ll be happy to notice that

the layer is properly registered, that our

Action is working, and also that we can

declare services in META-INF/services.

With the configuration done so far, the

manifest, layer and NBM descriptor files,

plus some dependencies, we have cov-

ered about 90% of the Platform develop-

ment cases. Next we’ll talk about Java-

Help modules, branding and suites, which

should bring us to 100%.

Help modules
The NetBeans Platform

has excellent Java-

Help support via

NetBean’s standard

build harness; the

NBM Plugin also

supports building

E

modules with JavaHelp documentation.

First, you’ll need a new empty Maven project configured like the

previous one (but without the Action), containing a NBM descriptor

and an empty layer file. I’ll assume “ro.emilianbold.nbmagazine.

tutorial” as groupId and “help” as artifactId. Also, the layer must

declare the reference to the JavaHelp docs (see Listing 5).

The helpset.xml file (see Listing 6) just contains a reference to

the location of the helpset configuration. The reason for doing

this is that the documentation won’t actually be in the main JAR

artifact but in a separate JAR (the kind of JAR you see in the docs

folder in the cluster).

Now we get to the actual JavaHelp files. First we need to create a

new folder: src/main/javahelp/${groupId}/${artifactId}/docs (with

our groupId/artifactId, that would be src/main/javahelp/ro/emil-

Listing 5. layer.xmlB�

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE filesystem PUBLIC “-
 //NetBeans//DTD Filesystem 1.1//EN”
 “http://www.netbeans.org/dtds/filesystem-1_1.dtd”>
<filesystem>
 <folder name=”Services”>
 <folder name=”JavaHelp”>
 <file name=”helpset.xml” url=”helpset.xml”>
 <attr name=”position” stringvalue=”1000”/>
 </file>
 </folder>
 </folder>
</filesystem>

Listing 6. helpset.xmlB�

<?xml version=”1.0” encoding=”UTF-8”?>
<!DOCTYPE helpsetref PUBLIC “-
 //NetBeans//DTD JavaHelp Help Set Reference 1.0
 //EN” “http://www.netbeans.org/dtds/helpsetref-1_0.dtd”>
<helpsetref
 url=”nbdocs:/ro/emilianbold/nbmagazine/tutorial/help/docs/hs.xml”/>

m
ev

en
id

e.
co

de
ha

us
.o

rg
/m

2-
si

te
/in

de
x.h

tm
l Mevenide

NetBeans
integration
modules

5A
Figure 5.
NBM artifact in
target folder

A

44 N NetBeans Magazine

M
od

ul
e

D
ev

el
op

m
en

t

6A ianbold/nbmagazine/tutorial/help/docs.) Then create

the various JavaHelp files (see Listing 7). Compile and

run the project, and you’ll see that the help works (see

Figure 7).

OK, remember you shouldn’t copy-and-paste? This is exactly
what I did to bootstrap this module and get the JavaHelp files. After
you obtain the base files, you just need to add the new HTML files
and entries to the map.

Library wrappers
So far we’ve seen how to declare a normal mod-

ule and add dependencies. How-

ever, a module may also “wrap”

an existing JAR and export part

or all of its packages. Let’s see

how to do this.

Adding a dependency to a third-

party JAR can be done the normal

Maven 2 way (see Listing 8). You

just need to remember to have a

repository declared in the POM

if the JAR is not in the standard

repository.

The NBM Plugin will automatically

add the JAR to the NBM, but there

will be no public packages so far, so

it can only be used internally. Sadly,

the public packages will have to be

manually added to the manifest (see

Listing 9), which is quite painful but

should be a one-time job.

Remember that the manifest file is

quite finicky with line lengths, so you

might need to break it into multiple

lines (each one starting with a single

space).

Normally leaving an empty OpenIDE-
Module-Public-Packages means that

C

E

Listing 7. JavaHelp filesB�

Map (map.xml)
<!-- ... XML/DOCTYPE header -->
<map version=”2.0”>
 <mapID target=”about” url=”about.html”/>
</map>

Table of contents (toc.xml)
...
<toc version=”2.0”>
 <tocitem text=”Maven2 in NetBeans ?”>
 <tocitem text=”About” target=”about”/>
 </tocitem>
</toc>

Index (idx.xml)
...
<index version=”2.0”>
 <indexitem text=”About Maven2 Javahelp” target=”about”/>
</index>

Helpset (hs.xml)
...
<helpset version=”2.0”>
 <title>Help</title>
 <maps>
 <homeID>about</homeID>
 <mapref location=”map.xml”/>
 </maps>
 <view mergetype=”javax.help.AppendMerge”>
 <name>TOC</name>
 <label>Table of Contents</label>
 <type>javax.help.TOCView</type>
 <data>toc.xml</data>
 </view>
 <view mergetype=”javax.help.AppendMerge”>
 <name>Index</name>
 <label>Index</label>
 <type>javax.help.IndexView</type>
 <data>idx.xml</data>
 </view>
 <view>
 <name>Search</name>
 <label>Search</label>
 <type>javax.help.SearchView</type>
 <data
 engine=”com.sun.java.help.search.DefaultSearchEngine”>
 JavaHelpSearch
 </data>
 </view>
</helpset>

Figure 6.

Other Sources
node

A

Issue 4 N 4�

NetBeans Platform Development with Maven 2

all packages will be public. Note that though
this is good for normal modules, it won’t work
for library wrappers.

The module suite
We’ve already seen how to create in-

dividual modules, module wrappers and

documentation modules, but we still need

to put them somehow in a suite. The solu-

tion is to rely on Maven again and use an

aggregating project. This must have the

POM packaging and list each of the con-

tained sub-modules (see Listing 10).

While the NBM Plugin is able to generate

the whole suite cluster with the cluster

goal, you still have to configure it to run

during the build project (see Listing 11).

Note that the <module/> elements point

to the actual disk folders, as opposed to

the normal way of using groupId:artifactId:

version for dependencies.

In the configuration file in Listing 11,

I first register the NBM Plugin as a build

plugin extension. Then I define the enabled

clusters, as well as the brandingToken

(needed for branding) and keystorealias.

All this information is used by the cluster

goal, which is responsible for generating

the Platform-compatible cluster. Next,

with the <execution/> element, I register

the plugin to run during the build and

execute the cluster goal.

This way, the plugin will run each time

I build the aggregating project and gener-

ate the proper cluster. You can run the

application now and notice that it’s quite

simple (it only uses the Platform cluster),

has the help working, and even our little

Action which uses the Lookup service

works (see Figure 8).

Listing 8. A non-NBM (plain JAR) dependencyB�

Listing 9. MANIFEST.MF for holding the public packagesB�

Manifest-Version: 1.0
...
OpenIDE-Module-Public-Packages: org.jdesktop.layout.*
...

Listing 10. Aggregating projectB�

<project ...>
 <modelVersion>4.0.0</modelVersion>
 <groupId>ro.emilianbold.nbmagazine</groupId>
 <artifactId>suite</artifactId>
 <packaging>pom</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>suite</name>
 <modules>
 <module>../help</module>
 <module>../tutorial</module>
 </modules>
...
</project>

Listing 11. NBM Plugin configurationB�

<project ...>
...
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>nbm-maven-plugin</artifactId>
 <version>LATEST</version>
 <extensions>true</extensions>
 <inherited>false</inherited>
 <configuration>
 <keystorealias>nbmagazine</keystorealias>
 <brandingToken>nbmagazine</brandingToken>
 <enabledClusters>
 <enabledCluster>platform7
 </enabledCluster>
 <enabledCluster>nbmagazine
 </enabledCluster>
 </enabledClusters>
 </configuration>
 <executions>
 <execution>
 <id>cluster</id>
 <phase>process-resources</phase>
 <goals>
 <goal>cluster</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
</project>

<project ...>
 ...
 <dependencies>
 <dependency>
 <groupId>net.java.dev.swing-layout</groupId>
 <artifactId>swing-layout</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>
 ...
</project>

ww
w.

em
ili

an
bo

ld
.ro The author’s

homepage

46 N NetBeans Magazine

M
od

ul
e

D
ev

el
op

m
en

t

8A

9A

7A
Branding

The last piece of the puzzle is branding. Support via actual wiz-

ards is totally missing to this date, so it’s back to manual work

or copy-pasting from another project. You’ll need a src/main/

nbm-branding folder where all the brand-

ing sources will reside. The folder’s struc-

ture should be the same as the one used

by the Ant-based build harness. Also, the

POM must be changed to configure the

nbm:branding goal as in Listing 12. The

end result is a branded application as

seen in Figure 9.

Conclusions
Using Maven to build NetBeans Platform appli-

cations is no longer an obscure task. The current

integration makes Maven-based projects almost

on par with standard IDE projects and the gap is

narrowing. So, if you like Maven but couldn’t use

it before with NetBeans IDE, or you do NetBeans

Platform development but can’t use the IDE for

some reason, rest assured that there’s a good

and rapidly improving solution now.

C
Emilian Bold

(emilian.bold.public@
gmail.com) is a Java

and NetBeans Platform
consultant from

Timisoara, Romania, as
well as member of the

NetBeans Dream Team.
He has been working

with the NetBeans
Platform since version

3.6, starting with
a project at Alcatel

Romania (now Alcatel-
Lucent) and owns a
NetBeans Platform-

focused consulting
company.

Listing 12. Running the branding goal in the process-resources phaseB�

<project ...>
 <build>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>nbm-maven-plugin</artifactId>
 <version>RELEASE</version>
 <extensions>true</extensions>
 <configuration>
 <brandingSources>${basedir}/src/main/nbm-branding</brandingSources>
 <brandingToken>nbmagazine</brandingToken>
 <cluster>nbmagazine</cluster>
 <nbmBuildDir>${project.build.directory}/nbm</nbmBuildDir>
 </configuration>
 <executions>
 <execution>
 <id>branding</id>
 <phase>process-resources</phase>
 <goals>
 <goal>branding</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 ...
 /plugins>
 </build>
 ...
</project>

Figure 8.

Module suite
with Help

A

Figure 9.

The branded
splash screen

A

Figure 7.

Our help content
registered in the

main Platform
help

A

In-depth, no-fl uff
articles for the full
gamut of NetBeans
developers

Check out previous issues at
netbeans.org/community/magazine

magazine

Advanced ProfilingReal-world explorations with
the NetBeans Profiler

Schliemann in the FieldPeople and projects working to multiply language support

Creative uses of the Visual LibraryExplore the graph handling and visualization Platform API

December . 2007

magazine

your

The Best Ruby IDEDynamic web development and the IDE’s Ruby features

Fluent in NetBeansHow global localization efforts are expanding the IDE’s reach

Module Development with MavenA powerful alternative for building NetBeans extensions

Creating RESTful Web ServicesA comprehensive tutorial on extensions for REST development

HorizonsHorriiizzon
Expand your development

with NetBeans 6.0

M
od

ul
es

 .
Vi

su
al

 L
ib

ra
ry

 .
M

av
en

 2
 .

Ru
by

 .
Pr

ofi
lin

g
. W

eb
 S

er
vi

ce
s

. L
oc

al
iz

at
io

n
. S

ch
lie

m
an

n

Platform APIs
Java SE development
Profi ling
Mobility
Dynamic languages
Modules
Visual Web
Web Services
Matisse
C/C++
SOA
Java EE development
Ruby
UML
Community

Creative uses of
Creative uses of Creating RESTful

Creating RESTful Web Services
Module Development with MavenA powerful alternative for building NetBeans extensions

Web ServicesA comprehensive tutorial on
A comprehensive tutorial on extensions for REST development

extensions for REST development

Core NetBeans 6.0 Features

Know in depth what’s coming in the new release

Introducing C/C++ Pack

Leverage NetBeans for native development

The blueMarine Project

NetBeans Platform development in the real world

OpenOffi ce.org Integration

Create add-ons and components to interface with OOo

Project Schliemann
Opening the IDE to other languages

Mobility Pack in Practice

Learn the basics and reduce device fragmentation

New UI Design Features

Upgrade your desktop productivity with NetBeans 6.0

Visual Web Development

Rapid web application design and implementation

May . 2007

Re
le

as
e

6.
0

. J
SF

 .
M

at
is

se
 .

C/
C+

+
 .

M
ob

ilit
y

. N
et

Be
an

s
Pl

at
fo

rm
 .

Sc
rip

tin
g

La
ng

ua
ge

s

magazine

Reach Out
with the IDE and Platform

calhau_04.indd 47 29/11/2007 23:47:14

Geertjan Wielenga

Schliemann
Overhyped or a
Practical Basis for
Language Editors?

in the Field

Issue 4 N 4�

Schliemann in the Field

1A

I
n the previous issue of the Net-

Beans Magazine, we highlighted

a new and simplified approach to

providing syntax highlighting, code

completion, and other language-sup-

port features for programming languages.

Instead of a multi-file Java-based approach

using complex NetBeans APIs, we have a

“new way” known as Schliemann. The idea

behind it is to have a simple set of decla-

rations in a single file, written in the form

of regular expressions that describe the

language tokens and grammar, together

with their assignment to features in the

IDE. Using these declarations, the IDE is

then able to do the lexing and parsing for

you, so there’s no need to provide such

functionality yourself.

But how viable is this approach? Can it

be used in real-life scenarios? Or is it just

a fuzzy story without real usage in the

workplace? In this article, we investigate

a number of actual Schliemann-based

implementations by NetBeans developers

around the world.

At the time these implementations were

started, the day was still young for the

Schliemann framework, which was creat-

ed for NetBeans 6.0. Despite that, several

language developers who liked living on

the edge had already started working with

milestones and daily builds, writing editors

for their favorite languages even before

the framework on which they were basing

their project was actually complete.

There are dangers in this, of course, but

Schliemann has been stable enough to

allow it, judging by the advanced results

some of these implementations already

provide. Each implementation is briefly

discussed below, in the context of the

developer who implemented it, and accompanied by some screen-

shots to give you an impression of the achievements thus far.

Erlang Language Support,
by Caoyuan Deng

Erlang is a Functional Programming language with many dynamic

features, such as being dynamically typed, with hot code swapping.

“Erlang is ideal for soft real-time, heavy concurrent-load network

applications,” says Caoyuan Deng, who is adding Erlang support

to NetBeans. In Figure 1 you can see a segment of the editor that

Caoyuan has created, showing syntax coloring and code folding.

When asked about the usability of the framework, Caoyuan says

that, “with Schliemann you define a grammar file for a new lan-

guage and you not only get features like syntax highlighting, in-

dentation and code-folding, but also a visual incremental AST tree.

This is helpful for writing IDE support for new languages. When

you’re typing code, Schliemann parses the syntax incrementally in

real-time, and you know immediately a lot of context information

about the code, such as whether there is a variable in the current

function’s scope.”

OpenGL Shading Language Support,
by Michael Bien

OpenGL Shading Language (GLSL) is a language for graphical

effects, such as lighting, fog, water, reflections, and refraction. It

defines how an element is rendered in an OpenGL scene. Michael

Bien created an editor for this language as part of his recently

released NetBeans OpenGL Pack (see it at work in Figure 2).

 “I am currently working on a Schliemann-based language valida-

Figure 1.
Editing Erlang
in NetBeans

A

Schliemann
Overhyped or a
Practical Basis for
Language Editors?

in the Field

wi
ki

.n
et

be
an

s.o
rg

/w
ik

i/v
ie

w/
Sc

hl
ie

m
an

n Schliemann
Wiki

la
ng

ua
ge

s.n
et

be
an

s.o
rg Generic

Languages
Framework
(Project
Schliemann)

�0 N NetBeans Magazine

La
ng

ua
ge

 s
up

po
rt

tor for GLSL in combination

with the NetBeans Lexer

API, for an alternative to

validation via compilation,”

says Michael. “This is an

important feature because

GLSL shader programs are

compiled by the VGA driver,

and this can lead to different

results on different hardware (or even driver versions).”

About his experience with Schliemann, he says that

the declarative language the framework supports

is very intuitive and provides access to most of

the features you would expect from an

IDE’s editor, without limiting the

developer. He also high-

3A

2A lights that you can call Java code from in-

side the Schliemann definition file.

D and MiniD Language
Support, by Björn
Lietz-Spendig

Giving his reasons for creating editor sup-

port for D and the MiniD scripting language,

Björn says: “I don’t like C++, especially its

preprocessor and template language. But,

despite being a database developer who is

used to working with RAD tools, I have a

need for low-level programming. And now

we have a stable D 1.x, including a module

system, single inheritance, interfaces, gar-

bage collector, design by contract, class

invariants, in addition to templates as a

natural part of the language.” Figure 3

shows the results so far for a simple MiniD

code fragment.

Commenting on the future of his editor

support, Björn says: “The D implementa-

tion could open new horizons to NetBeans

developers. Can you imagine being able to

use a C++ class directly from Java and

vice versa? With the D language plugin you

can call D classes (via TioLink) and D

can call Java classes. You have the

power to create platform-independent

eye-candy applications based on the

NetBeans Platform, while having

seamless integration with D”.

3DSL Support, by
Max Calderoni &
Marco Thiele

“We are currently developing

a plugin supporting an internal

format for a file that in our in-

dustry (oil) is currently edited by

hand,” says Max Calderoni. “It’s

Figure 2.

GLSL
support

A

Figure 3.

MiniD
programming

in action

A

Issue 4 N �1

Schliemann in the Field

tion for 3DSL files”. And

they are well on that

track using Schliemann

(see Figure 4).

TorqueScript
Support, by
Mohamed el
Shami

TorqueScript is the

scripting language of

the Torque Game Engine and the Torque Game Builder (TGB), by

GarageGames. TorqueScript has a C++-like syntax and includes

features like Datablocks, Objects, and Namespaces. “What I’ve

done so far with TorqueScript is only a start,” says Mohamed.

“Since I’ve been learning along the way, I’m firstly working to com-

plete the grammar rules. Then I’d like to add support to run ning

the game from within the editor.” Figure 5 shows an example with

TorqueScript.

“I’d also like to add a project template for a new TGB game proj-

ect which creates the game project structure,” says Mohamed.

“Later, the plan is to include advanced features like debugging,

refactoring, and a dynamically populated auto-complete list from

the game engine APIs.”

JFugue Support, by the author
JFugue notation provides the music strings that let you spec-

ify notes, chords and instruments when you use the JFugue

API for music programming. The notation is simple, but syntax

coloring is always useful. In the example shown in Figure 6,

the formatting is applied to a JEditorPane. This is simple to do,

by assigning the MIME type as the value of the ContentType

property. As a result, the notes and their duration can be dis-

tinguished from each other, and from the instrument selection

(shown in yellow).

Conclusions
Despite its youth, the Schliemann framework is proving ex-

tremely useful in a number of varying scenarios. It is easy to

use and the results are surprisingly effective. Why not take it

for a spin?

6A

the input file for a numeric simulator, not

a programming language, and is called

3DSL. The simulator is used for oil reser-

voir analysis”. Such input files, the authors

continue, are difficult to edit even for ad-

vanced users, “so it would be a blessing

to have code folding, code completion,

syntax highlighting and inline documenta-

5A

C
Geertjan Wielenga
(geertjan.wielenga@sun.com)
is a technical writer for
the NetBeans project. He
mainly focuses on the
NetBeans Platform and is
a co-author of the book
“Rich-Client Programming:
Plugging into the
NetBeans Platform”. He
lives in Prague, in the Czech
Republic.

4A
Figure 4.
Support for 3DSL in
complex, structured
input files

A

Figure 5.
TorqueScipt
editing, with
syntax coloring
and code
folding support

A

Figure 6.
Syntax-colored JFugue
notation

A

The Visual Library is a
NetBeans component for
creating and drawing graphs
and diagrams, such as UML
artifacts, navigation schemes
for MIDP and others. But with
a little effort it can have many
more creative uses

Fabrizio Giudici

Creative

Library
of the

Uses
Visual

Issue 4 N 53

Creative Uses of the Visual Library

used to implement a virtual version of a photographer’s “Light

Table” – a place where photos can be laid out and rearranged

(see Figure 1). It’s also the basis for an advanced geotagging

component (Figure 2). In this article I’ll describe the Light Table,

which is the simpler of the two Visual Library-based components,

but complex enough that we can show in practice many features

of the API.

Though all the examples illustrated in this article refer to a NetBeans Platform
application, you can use the Visual Library in plain Swing apps by adding a couple
of JAR files to the classpath.

C

2A

1A

The Visual Library is a
NetBeans component for
creating and drawing graphs
and diagrams, such as UML
artifacts, navigation schemes
for MIDP and others. But with
a little effort it can have many
more creative uses

T
he Visual Library has been

conceived mainly for build-

ing, handling and rendering

graphs, including flow and

UML diagrams (it has been

originally developed for the NetBeans Mo-

bility Pack, but from NetBeans 6.0 on it’s

part of the NetBeans Platform APIs). I like

to think of the Visual Library more gener-

ally, however, as an API for creating inter-

active “whiteboards” where you can place,

move, and rearrange items visually.

From this perspective, the Visual Library

reveals all its power, as modern UIs are

each day more focused on the concept

of modeling “real-life” objects that can be

moved around. Thus it found its way into

blueMarine, an open-source photo man-

agement application I created which is

based on the NetBeans Platform (see my

article in Issue 3 of NetBeans Magazine

for more about this tool).

In blueMarine, the Visual Library is

gr
ap

h.
ne

tb
ea

ns
.o

rg Homepage
for the Visual
Library

Figure 1.
The Light
Table

A

Figure 2.
The Geotagging
Component

A

Visual

54 N NetBeans Magazine

Pl
at

fo
rm

 A
PI

s

Basic concepts
Let’s first introduce some key concepts of the Visual Library.

Widgets (the org.netbeans.api.visual.widget.Widget class and its

descendants) represent a diagram’s nodes. A widget can consist of

a simple drawing, a piece of text, an icon, or a group of these basic

elements. It can also wrap a Swing component. You may need to

subclass Widget for special purposes, but in most cases you’ll be

fine with one of the provided widget classes such as ImageWidget

and LabelWidget.

Connection widgets, in particular, represent arcs that con-

nect pairs of other widgets. They are usually drawn as arrows

(with some graphic variants for line caps). Also, their paths can

be “routed” using different algorithms, for example to avoid clutter

in diagrams.

Other essential elements are Actions and ActionFactories.

You probably won’t be satisfied by just creating a diagram and

staring at it, so there’s plenty of support for making diagrams

dynamic and interactive. It’s possible to create, delete and se-

lect widgets, and have them change appearance when you

hover over them. You can additionally drag, connect and dis-

connect widgets. The Visual Library provides Actions and cor-

responding factories to perform these tasks, and allows you to

customize their behavior.

Finally, a scene (org.netbeans.api.visual.widget.Scene) is the con-

tainer for everything (in my initial analogy it represents the actual

“whiteboard”).

In this article I assume the reader is quite confident with these

basic concepts. There are already vari-

ous tutorials available on the library’s

website where you can learn the es-

sentials. Here I present a more ad-

vanced, let’s say “creative”, use of the

library.

Getting the code
You can download the full working code

described in this article by using Subver-

sion:

svn checkout \ https://bluemarine-incubator.dev.java.net/svn/
 bluemarine-incubator/trunk/src/LightTable -r 232 \
 --username guest

Revision 232 is the one matching the

code listings in this article.

The Light Table
The Light Table lives inside a TopComponent

(in a plain Swing application you would use

a JFrame or a JPanel).

If you’re not familiar with the NetBeans Platform, a

TopComponent is sort of a hybrid between a JFrame and a JPanel. It

is normally docked, thus behaving as a JPanel, but can be undocked

and float around like a JFrame. It is usually the container used for a

user interface in NetBeans Platform applications.

 A number of required objects are

initialized in the LightTableTopCom-

ponent (see Listing 1):

• scene – An instance of Ob-

jectScene, a class that keeps as-

sociations between widgets and

the objects that model them. This

facility is quite useful for implement-

ing the MVC pattern.

• view – A Swing JComponent that

renders the objects in the scene.

You obtain it by asking the scene

object for its creation.

• mainLayer – The Visual Library

E

Listing 1. Basic objects for the Visual Library in LightTableTopComponent.java B�

private final ObjectScene scene = new ObjectScene();
private final JComponent view = scene.createView();
private final LayerWidget mainLayer = new LayerWidget(scene);
private final JComponent satelliteView = scene.
createSatelliteView();

Listing 2. Initializing components in LightTableTopComponentB�

spScrollPane.setViewportView(view);
pnLayeredPane.add(spScrollPane, JLayeredPane.DEFAULT_LAYER);

// pnSatelliteView is a JPanel wrapping the satelliteView
pnLayeredPane.add(pnSatelliteView, JLayeredPane.PALETTE_LAYER);
scene.addChild(mainLayer);
scene.getActions().addAction(ActionFactory.createZoomAction());

Issue 4 N 55

Creative Uses of the Visual Library

Adding and removing objects

We also need to include a couple of methods for adding and

removing photos in the Light Table; see Listing 3. In this code,

when a new DataObject is added we perform the following steps

(inside the internalAdd() method):

1. Create the widget that represents the DataObject in the scene

(the ThumbnailWidget, discussed below).

2. Assign its initial position (with some code needed to convert

a Swing Point to a proper value in the Visual Library’s scene

model coordinates).

3. Add the widget to the layer.

4. Add the widget and the DataObject to the scene (which binds

them together).

5. Define the dynamic behavior of the widget by adding some ac-

tions. Many actions are created through ActionFactory, while

others can be instantiated with specific methods of the scene

object.

6. Finally, call scene.validate(). After one or more widgets are

changed, the scene needs to be revalidated. The Visual Li-

usually organizes widgets in different layers.

This can be handy especially for improving

performance of graphs with connections.

Our Light Table does not need connections

so we’re fine with a single layer.

• satelliteView – This JComponent will ren-

der a “bird’s eye view” of the scene, useful

if you’re going to create a large scene that

extends beyond the screen size.

Listing 2 shows how the initialization is

completed. You usually need to place the

scene in a JScrollPane, to allow users to

navigate it. We also use a JLayeredPane

to render the satellite view above the

scene in a corner. In the last line we en-

able zooming by creating a “zoom action”

through the ActionFactory class and adding

it to the scene.

Listing 3. Adding and removing objects from the Light TableB�

public void addDataObject (final DataObject dataObject) {
 internalAdd(dataObject, new Point(100, 100)); // default coordinates
}

public void removeDataObject (final DataObject dataObject) {
 internalRemove(dataObject);
}

private void internalAdd (final DataObject dataObject, final Point viewLocation) {
 final ThumbnailWidget widget = new ThumbnailWidget(scene, dataObject.getNodeDelegate());
 final Point sceneLocation = scene.convertViewToScene(viewLocation);
 final Point localLocation = mainLayer.convertSceneToLocal(sceneLocation);

 widget.setPreferredLocation(localLocation);
 widget.setUnselectedBorder(EMPTY_BORDER);
 mainLayer.addChild(widget);
 scene.addObject(dataObject, widget);

 // resizeStrategy is described in Listing 4
 widget.getActions().addAction(ActionFactory.createResizeAction(resizeStrategy, null));
 widget.getActions().addAction(ActionFactory.createMoveAction());
 widget.getActions().addAction(scene.createSelectAction());
 widget.getActions().addAction(scene.createObjectHoverAction());
 // bringToFrontAction is described in Listing 5
 widget.getActions().addAction(bringToFrontAction);
 scene.validate();
}

private void internalRemove (final DataObject dataObject) {
 final List<Widget> widgets = scene.findWidgets(dataObject);
 scene.removeObject(dataObject);

 //removeObject() does not remove widgets
 for (final Widget widget : widgets) {
 widget.removeFromParent();
 }
}

we
bl

og
s.j

av
a.

ne
t/b

lo
g/

fa
br

iz
io

gi
ud

ic
i &

 w
ww

.ti
da

lw
av

e.
it/

bl
og The author’s

blogs

56 N NetBeans Magazine

Pl
at

fo
rm

 A
PI

s

brary usually does this automatically, but as we’re writing cus-

tomized Swing code that performs a change we need to do

this manually.

Before we go on, let me discuss some basic concepts about the

way the NetBeans Platform implements the MVC pattern. In the Plat-

form, the DataObject class is used to model a domain object, and an

associated class – Node – is used to model its representation inside

a view (a list, a tree, etc.). For example, Nodes contain a text label,

an icon, and a list of associated actions which can be activated by

a popup menu.

It’s a very good thing to have two distinct classes, since you

can have multiple Nodes for each DataObject. This lets you create

different representations of the same domain object. You usually

subclass DataObject and add your application-specific logic. For

example, blueMarine defines a PhotoDataObject class which con-

tains code for reading and writing an image. However, you won’t

see this class in the code in this article because I’m following a

best practice of keeping models as gen-

eral as possible, by working with plain

DataObjects and delegating everything to

the related Node classes. Thus, I could

use the same code, e.g. for rendering

movies (with a MovieDataObject) or other

visual documents.

Now let’s go back to the LightTableTop-

Component.

Widget behavior

We want users to be able to select our

widget, resize it by dragging its borders,

and move it by dragging its contents. Also,

the widget should change appearance

when the mouse hovers over it, and come

to the top of the stack when clicked. For

movement, selection and hovering, adding

Listing 4. Providing a custom ResizeStrategy for preserving aspect ratioB�

private final static ResizeStrategy resizeStrategy = new ResizeStrategy() {
 public Rectangle boundsSuggested (final Widget widget,
 final Rectangle originalBounds,
 final Rectangle suggestedBounds,
 final ResizeProvider.ControlPoint controlPoint)
 {
 final Rectangle result = new Rectangle(suggestedBounds);
 final Thumbnail thumbnail = widget.getLookup().lookup(Thumbnail.class);

 // We could compute aspectRatio from originalBounds,
 // but rounding errors would accumulate.
 if (thumbnail != null) {
 // isImageAvailable() doesn’t guarantee the image is online
 final BufferedImage image = thumbnail.getImage();

 if (image != null) {
 final Insets insets = widget.getBorder().getInsets();
 final int mw = insets.left + insets.right;
 final int mh = insets.bottom + insets.top;
 final int contentWidth = result.width - mw;
 final int contentHeight = result.height - mh;
 final float aspectRatio = (float) image.getHeight()/image.getWidth();
 final double deltaW = Math.abs(suggestedBounds.getWidth() - originalBounds.getWidth());
 final double deltaH = Math.abs(suggestedBounds.getHeight() - originalBounds.getHeight());

 if (deltaW >= deltaH) { // moving mostly horizontally
 result.height = mh + Math.round(contentWidth * aspectRatio);
 }
 else { // moving mostly vertically
 result.width = mw + Math.round(contentHeight / aspectRatio);
 }
 }
 }
 return result;
 }
};

wi
ki

.n
et

be
an

s.o
rg

/w
ik

i/v
ie

w/
Ru

byWiki for Ruby
support in
NetBeans

Issue 4 N 57

Creative Uses of the Visual Library

explicit class casts (for example, as the method boundSuggested() is general,
it deals with a Widget rather than with my ThumbnailWidget). Instead, I’ve
used a Lookup, a very useful class from the NetBeans Platform (which is also
available for use in plain Swing projects). It acts as a container of custom objects,
which can be retrieved by specifying their class name. In Listing 4, you see that
the thumbnail is retrieved by getLookup().lookup(Thumbnail.class). When we
discuss the ThumbnailWidget class we’ll see how the Thumbnail object was
made available.

Listing 5 shows the code for bringing the widget to the front.

This is an example of how you can define new actions. I’ve extend-

ed the WidgetAction.Adapter class, which gets invoked by mouse

and keyboard listeners, and overridden the relevant method.

Actions are bound to the widget by defining a “pipeline” to which

mouse and keyboard events are delivered. Sometimes an event is

propagated through the whole pipeline; in other cases a certain ac-

tion consumes it definitely. The propagation of events is controlled

by returning some specific flags such as State.CONSUMED (which

stops the propagation).

The ThumbnailWidget
Now it’s time to take a look at the widget’s code. While the Visual

Library already provides an ImageWidget class which renders a ge-

neric Image, we need something more complex, for the following

reasons:

• First and most important from a performance perspective,

reading an image from a file needs some time, and a Light

Table can contain tens of images. For instance, twenty im-

ages requiring 50ms each would lead to a full second of load-

ing time. We can't spend all this inside the event thread, or the

Light Table would be sluggish. blueMarine deals with this by

means of a ThumbnailRenderer class that manages image load-

ing on demand and renders placeholders while images

are not ready.

• Also, blueMarine will soon support im-

age manipulation, and I’ll need to update

all representations in real time when such

changes happen (e.g. by painting specific

decorations when a thumbnail is not up to

date). This is solved using the Node class’s

capability of firing events that notify up-

dates – and then ThumbnailRenderer will

do all the required work.

predefined actions suffice. For resizing

support though, the ActionFactory.creat-

eResizeAction() method won’t do: it lets

you arbitrarily change the widget’s dimen-

sions, but the photos need to have a fixed

aspect ratio. In such cases you can cus-

tomize widget actions with special strate-

gies.

See an example of a strategy in Listing 4.

The widget’s boundsSuggested() method is

called by the Visual Library while we are

dragging the widget; it’s passed both the

original and current bounds. By returning

a freshly computed Rectangle we can over-

ride the default settings. The code first

gets the image’s aspect ratio and then

computes the height from the new width

or vice versa. This calculation takes into

account the widget’s borders: if we draw

a fixed-size border around the photo its

thickness must not affect the aspect ratio

calculation.

In blueMarine, preview images are wrapped by
a Thumbnail class. Similarly, in your applications
you’ll usually have a specific class containing the
data you want to render in the widget. The problem
is how to bind a widget to a data model. While the
simplest solution appears to be to create specific
getter/setter methods in ThumbnailWidget, this
would introduce specific dependencies and require

E

Listing 5. Customized action for

bringing a widget to the front with a mouse click

B�

private static final WidgetAction.Adapter
 bringToFrontAction = new WidgetAction.Adapter()
{
 @Override
 public State mouseClicked (final Widget widget,
 final WidgetMouseEvent event)
 {
 if (event.getButton() == MouseEvent.BUTTON1) {
 widget.bringToFront();
 return State.CONSUMED;
 }
 return State.REJECTED;
 }
};

pl
at

fo
rm

.n
et

be
an

s.o
rg

/tu
to

ria
ls

/6
0/

nb
m

-v
is

ua
l_

lib
ra

ry
.h

tm
l A good

starting point
for learning
the Visual
Library

bl
ue

m
ar

in
e.

tid
al

wa
ve

.it The
blueMarine
Project

58 N NetBeans Magazine

Pl
at

fo
rm

 A
PI

s

Listing 6. The ThumbnailWidgetB�

public class ThumbnailWidget extends Widget {
 private final Node node;
 private final Thumbnail thumbnail;
 private ThumbnailRenderer thumbnailRenderer = DEFAULT_THUMBNAIL_RENDERER;
 private final Lookup lookup;

 private final PopupMenuProvider popupMenuProvider = new PopupMenuProvider() {
 public JPopupMenu getPopupMenu (final Widget widget, final Point location) {
 return node.getContextMenu();
 }
 };

 public ThumbnailWidget (final Scene scene, final Node node, Dimension size) {
 super(scene);
 this.node = node;
 thumbnail = thumbnailManager.findThumbnail(node.getLookup().lookup((DataObject.class)));
 size = new Dimension(size);
 lookup = new ProxyLookup(node.getLookup(), Lookups.fixed(node, thumbnail));
 final BufferedImage image = thumbnail.getImage();

 if (image != null) {
 final int width = image.getWidth();
 final int height = image.getHeight();
 final double hScale = size.getWidth() / (float)width;
 final double vScale = size.getHeight() / (float)height;
 final double scale = Math.min(hScale, vScale);
 size.setSize(Math.round(scale * width), Math.round(scale * height));
 }

 setUnselectedBorder(DEFAULT_UNSELECTED_BORDER);
 setSelectedBorder(DEFAULT_SELECTED_BORDER);
 setBorder(unselectedBorder);
 final Insets insets = getBorder().getInsets();
 size.width += insets.left + insets.right;
 size.height += insets.bottom + insets.top;
 setPreferredSize(size);
 setMinimumSize(DEFAULT_MINIMUM_SIZE);
 getActions().addAction(ActionFactory.createPopupMenuAction(popupMenuProvider));
 }

 @Override
 public Lookup getLookup() {
 return lookup;
 }
 ...
}

instance. Now, in Listing 6, you can see

how the Lookup instance is prepared. A

ProxyLookup is a NetBeans Platform class

that “merges” two existing instances of

Lookup – the one coming from the Node

(required for the context menus to work)

and a new one that contains both the Node

and the Thumbnail.

To paint a custom widget, we add

code to the paintWidget() method (see

Listing 7). The obvious part here is that

the image rendering is delegated to my

thumbnailRenderer.paint() method. Less

trivial is managing the scaling (remember,

a scene can be zoomed in and out).

• Lastly, it’s necessary to implement a context menu for the wid-

gets, which must be coherent with the rest of the application.

Nodes again provide support for this. (See the result in Figure

3).

Considering all this, it seems obvious that we need to implement

a special widget class that delegates the implementation of

context menus to the Node class and the rendering operations

to ThumbnailRenderer. Let’s first concentrate on the widget’s

creation.

In the code shown in Listing 6, I set some fields to refer to the

Node and Thumbnail; then I adjust the user-specified

size to comply with the photo’s aspect ratio. I’ve

previously mentioned the role of the Lookup class

in linking a widget to its model, and shown how to

extract the model from a properly prepared Lookup

Issue 4 N 59

Creative Uses of the Visual Library

This is done by controlling the scale of

Graphics2D.

Listening for node changes

Changes in the representation of

photos are handled by firing events

on the relevant Node. So that our

ThumbnailWidget updates correctly, we

need to setup a NodeListener, which you

can attach and detach in the notifyAdded()

and notifyRemoved() methods (see Listing

8). These are called when the widget is

added to or removed from a scene (you

can think of them as a kind of life-cycle

control).

Now take a look at the doRepaint()

method in Listing 9. Notice that

it must cope with the usual Swing

threading issues, since Node events

can be fired by an arbitrary thread.

Also, after a widget has been

changed (in this case by calling its

repaint() method), the scene must

be validated. Otherwise you won’t

see any updates.

Handling borders

The cream on the cake is adding

visual cues to the widgets. We want

to render different borders around

the photos according to their selec-

tion state: no border for unselected

widgets, a white border if selected,

and a special “resize border” when

you hover over the photo (see Fig-

ure 4).

First, we need to override the no-

tifyStateChanged() method, which is

called whenever the widget changes

state (see Listing 10). It receives

two parameters representing the

Listing 8. Listening for changesB�

private final NodeListener iconChangeListener =
 new NodeAdapter()
{
 @Override
 public void propertyChange(final PropertyChangeEvent event) {
 if (Node.PROP_ICON.equals(event.getPropertyName())) {
 doRepaint();
 }
 }
};

@Override
protected void notifyAdded() {
 super.notifyAdded();
 node.addNodeListener(iconChangeListener);
}

@Override
protected void notifyRemoved() {
 super.notifyRemoved();
 node.removeNodeListener(iconChangeListener);
}

Listing 7. Rendering the custom widgetB�

@Override
protected void paintWidget(){
 final Graphics2D g = getGraphics();
 final AffineTransform transformSave = g.getTransform();
 final Rectangle bounds = getClientArea();

 thumbnailRenderer.setThumbnail(thumbnail);
 g.translate(bounds.x + 1, bounds.y + 1);
 bounds.width -= 1;
 bounds.height -= 1;
 thumbnailRenderer.setBounds(bounds);
 final double zoomFactor = getScene().getZoomFactor();
 g.scale(1 / zoomFactor, 1 / zoomFactor);
 thumbnailRenderer.paint(g);
 g.setTransform(transformSave);
}

3A
Figure 3.
Context menu
for a widget

A

old and the new state. We use the isSelected() and isHovered()

methods to choose the proper border.

There’s a subtle problem here: borders can vary in thickness. By

default the Visual Library preserves the overall size of a widget,

60 N NetBeans Magazine

Pl
at

fo
rm

 A
PI

s

so setting a different border thickness

would change the space reserved for the

photo. To preserve the size of the pho-

tos, we just need to compute the change

in the border and adjust the widget size

(also in Listing 10).

Some final words about borders. The

Border class for Widget is different

from the usual Swing Border classes

(see Listing 11). Widget borders are

more complex. Also, there’s a similar

BorderFactory which provides some preset

borders useful in most cases. In the

Light Table, the default borders are just

rectangles with rounded corners that

can be created with BorderFactory.

createRoundedBorder(). You can

create several common borders

similarly: for instance, BorderFactory.

createResizeBorder() gives you a standard

“resize border” that is painted as a

dashed line with “control handles”. In

some special cases, we can write code to

define customized borders. For instance,

Listing 12 shows how to implement a

“compound border” which sticks two

borders together.

Conclusions
In this article, we’ve seen many fea-

tures of the Visual Library and a “cre-

ative use” for it that goes a little outside

its most common scope. This provides

us some examples for understanding

how the library can be extended to com-

ply with your needs. We’ve only scratched

the surface, however. For instance,

we didn’t explore connection widgets,

which are another powerful feature.

But that would be material for

another article!

Listing 10. Reacting on widget state changesB�

@Override
protected void notifyStateChanged(final ObjectState
 oldState, final ObjectState newState)
{
 super.notifyStateChanged(oldState, newState);
 final boolean isResizableBorder =
 newState.isHovered();
 final Dimension size = getPreferredSize();
 final Insets o = getBorder().getInsets();

 setBorder(newState.isSelected()
 ? (isResizableBorder ? resizeSelectedBorder :
 selectedBorder)
 : (isResizableBorder ? resizeBorder :
 unselectedBorder));

 // Preserve client area size
 if (size != null) // null at initialization {
 final Insets n = getBorder().getInsets();
 size.width += n.left + n.right - o.left - o.right;
 size.height += n.top + n.bottom -
 o.top - o.bottom;
 setPreferredSize(size);
 }
}

Listing 11. Widget BordersB�

private static final int BORDER_THICKNESS = 8;
private static final Color NORMAL_COLOR =
 new Color(200, 200, 200);
private static final Color NORMAL_GLOW_COLOR =
 new Color(200, 200, 200, 100);
private static final Color SELECTION_COLOR =
 new Color(255, 255, 255);
private static final Color SELECTION_GLOW_COLOR =
 new Color(255, 255, 255, 128);
private static final Color RESIZE_COLOR =
 new Color(220, 220, 220);

private static final Border DEFAULT_UNSELECTED_BORDER =
 BorderFactory.createRoundedBorder(
 BORDER_THICKNESS, BORDER_THICKNESS, NORMAL_COLOR,
 NORMAL_GLOW_COLOR);
private static final Border DEFAULT_SELECTED_BORDER =
 BorderFactory.createRoundedBorder(
 BORDER_THICKNESS, BORDER_THICKNESS,
 SELECTION_COLOR, SELECTION_GLOW_COLOR);

Listing 9. Forcing the repaint of a widgetB�

private void doRepaint() {
 //The Nodes API can fire events outside the AWT Thread
 if (SwingUtilities.isEventDispatchThread()) {
 repaint();
 getScene().validate();
 //required or repaint() doesn’t work
 }
 else {
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 repaint();
 getScene().validate();
 }
 });
 }
}

60 N NetBeans Magazine

Issue 4 N 61

Creative Uses of the Visual Library

4A

Listing 12. Creating a custom, compound BorderB�

import org.netbeans.api.visual.border.Border;

public class CompoundBorder implements Border {
 private final Border border1;
 private final Border border2;

 public CompoundBorder (final Border border1, final Border border2) {
 this.border1 = border1;
 this.border2 = border2;
 }

 public Insets getInsets() {
 final Insets i1 = border1.getInsets();
 final Insets i2 = border2.getInsets();
 return new Insets(Math.max(i1.top, i2.top), Math.max(i1.left, i2.left),
 Math.max(i1.bottom, i2.bottom), Math.max(i1.right, i2.right));
 }

 public void paint (final Graphics2D g, final Rectangle bounds) {
 // You should actually check if the insets are different...
 border1.paint(g, bounds);
 border2.paint(g, bounds);
 }

 public boolean isOpaque() {
 return border1.isOpaque() || border2.isOpaque();
 }
}

C�
Fabrizio Giudici
(fabrizio.giudici@
tidalwave.it) has a Ph.D.
in Computer Engineering
from the University of
Genoa (1998), and begun
his career as a freelance
technical writer and
speaker. He started up
a consultancy company
with two friends, and
since 2005 is running his
own company. Fabrizio
has been architect,
designer and developer
in many industrial
projects, including a
Jini-based real-time
telemetry system for
Formula One racing cars.
He’s a member of the
NetBeans Dream Team,
the IEEE and of JUG
Milano.

Figure 4.
Visual cues for
photos in the Light
Table (normal,
selected and
resizing)

A

magazine

