
ODROID
Magazine

I/O Shield access • Install and learn the basics of Rebol now!

Year One
Issue #2
Feb 2014

GIANT
TABLET

Turn your ODROID into a:

And create
the ultimate

Android
experience!

• Meet an Odroidian
	 Mauro Ribeiro, Senior Software engineer

• Linux Gaming - emulators

• The art of multi boxing

• 811.02ac router with odroid XU
Get up to 433mbit/sec

High Performance
computing at home
Creation and fine granular control

• Estimating Radio net interference:
	 Using Java mutithreading

• Start programming right away!

• USB Gadget drivers
	 Dominate your device ports to do everything

ODROID MAGAZINE	 3
ODROID MAGAZINE	 3

EDITORIAL

A service to the world-wide ODROID and Open Source communities, Hard
Kernel is proud to present its newest contribution to ARM technology:
ODROID Magazine, a free monthly PDF e-zine!

This cutting-edge online publication brings you the latest ODROID news, as well
as featured articles from the expert community that has grown around the amazing
ODROID family of micro-powerhouse computers.

Intended for all levels of expertise from beginner to guru, ODROID Magazine
features definitive guides for new owners, with easy-to-follow steps in setting up your
ODROID, installing operating systems and software, and troubleshooting common
issues. For more technical users, each month will feature expert tips, hacker discus-
sions, cutting-edge projects, and technical articles to explore new ways of making
your ODROID even more versatile.

Hard Kernel’s ODROID Magazine is an ideal opportunity for our community
to come together to share and contribute articles, so that everyone can be successful
with their ODROID.

Each month, a series of article topics will be posted for consideration, and all
community members are encouraged to send submissions in exchange for monthly
rewards for those selected for publication.

The best articles are those that walk the reader through complex concepts and
procedures in a simple-to-read format. At least one picture or graphic per article is
required, and should be between 500-2000 words.

In this issue, we show you how to turn your ODROID into an enormous 42”
touchscreen Android tablet, suitable for kiosks, digital signage, gaming, accessibility,
and just plain fun. You’ve never played Fruit Ninja like this!

ODROID
Magazine

Rob Roy, Chief Editor

I am a computer programmer living
and working in Silicon Valley, CA,
USA, designing and building websites
such as Vevo, Hi5, Dolby Laboratories
and Hyundai. My primary languages
are jQuery, Angular JS and HTML5/
CSS3. I also develop pre-built operat-
ing systems, custom kernels and opti-
mized applications for the ODROID
platform based on Hardkernel’s official
releases, for which I have won several
Monthly Forum Awards. I own a lot of
ODROIDs, which I use for a variety of
purposes, including media center, web
server, application development work-
station, and gaming console.

Bo Lechnowsky, Editor

I am President of Respectech, Inc., a
technology consultancy in Ukiah, CA,
USA that I founded in 2001. From my
background in electronics and com-
puter programming, I manage a team
of technologists, plus develop custom
solutions for companies ranging from
small businesses to worldwide corpora-
tions. ODROIDs are one of the weap-
ons in my arsenal for tackling these
projects. My favorite development
languages are Rebol and Red, both of
which run fabulously on ARM-based
systems like the ODROID-U2. I have
deep experience with many unique op-
erating systems.

Bruno Doiche, Art Editor

Spent his last vacation doing nothing.
And didn’t manage to do the half of it.

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian. • Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang,
Gyeonggi, South Korea, 431-815 • Makers of the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE architecture based single board computer.
Join the ODROID community with members from over 135 countries, at http://forum.odroid.com, and explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

http://magazine.odroid.com/
http://forum.odroid.com/
http://www.hardkernel.com/

ODROID MAGAZINE	 4

Touch screens are common in de-
vices such as smartphones, game
consoles, all-in-one computers and

tablets. They also play a prominent role in
the design of digital appliances such as dig-
ital signage, Point of Sale (POS) systems,
satellite navigation devices, mobile phones,
video games and some e-books.

The Android OS, one of the main
operating systems for the ODROID,
has an intuitive user interface designed
for use with a touch screen. This article
describes how to use an ODROID to
change any monitor or TV into a giant
Android tablet.

Infrared vs
Capacitive touch
screen

Touch screens primarily use either
infrared or capacitive technology. Ca-
pacitive touch screens are more popu-
lar for smartphones and tablets, but are

also more expensive, especially when
the screen size is larger than 20 inches.
A capacitive screen can only be acti-
vated with an exposed finger (no gloves
or pointers), and can experience opera-
tional difficulties if the monitor is not
correctly mounted into a metal housing
due to the electrical field. Considering
its ease of use and lower cost, the in-
frared-type touch screen is better suited
for this project.

Infrared(IR) Grid
touch screens

An infrared touch screen uses an array
of X-Y infrared LED and photodetec-
tor pairs around the edges of the screen
to detect a disruption in the pattern of
LED beams. These LED beams cross
each other in vertical and horizontal pat-
terns, which helps the sensors pick up
the exact location of the touch. A major
benefit of the infrared system is that it
can detect essentially any input, including
a finger, gloved finger, stylus or pen. It
is generally used in outdoor applications
and point of sale systems which cannot
rely on a conductor (such as a bare fin-
ger) to activate the touch screen.

Unlike capacitive touch screens, in-
frared touch screens do not require any
patterning on the glass, which increas-
es durability and optical clarity of the
overall system. However, infrared touch
screens are sensitive to dirt and dust
that can interfere with the IR beams,
and suffer from parallax in curved sur-
faces and accidental touch notifications

CONVERTING A MONITOR TO
A GIANT ANDROID TABLET
Justin Lee and Charles Park

Principle of IR (Infrared) touch screen

ODROID MAGAZINE	 5

MAKE YOUR GIANT ANDROID TABLET

if the user hovers his/her finger over
the screen while searching for the item
to be selected.

How to Choose an
Infrared touch screen

You can make your own touch screen
by following guides found on the Inter-
net, but it is not easy to implement the
complex multi-touch algorithm and well
aligned IR emitter/receiver pairs.

Before purchasing an infrared touch
screen, it’s important to evaluate its com-
patibility with Android. It must meet at
least one of the following requirements:

1) Is your touch screen listed in the Linux
multi-touch compatibility table?
http://lii-enac.fr/en/ar-
chitecture/linux-input/
multitouch-devices.html
If yes, it will be very easy to activate your
touch screen.

2) Is your touch screen Windows 8 compatible?
If yes, you need to add a few lines in the Kernel
driver and an input configuration file.

3) Does your touch screen manufacturer sup-
ply specific Android driver source code?
If yes, you need to follow their porting in-
struction.

A touch screen which meets the first
requirement was not available in our lo-
cal Korean or Chinese markets. Some
touch screen manufacturers in China of-
fered to supply the driver source code
for their products, but the sample code
was not useful in the real world. The
best alternative was a touch screen that
supported Windows 8 HID-compliant
Plug & Play.

It’s important to check whether the
touch screen is really Windows 8 com-
patible or not. True Plug & Play de-

vices do not require
a separate driver
to be installed on a
Windows PC. If the
touch screen needs a
specific device driv-
er, it is not natively
compatible with
Windows 8 and will
be less likely to work
with Android.

There are 4 steps to using the touch
screen with the Android OS in a
nutshell:

1) Get the Vendor ID and Product ID from the
touch screen USB interface.
2)Modify the files hid-ids.h and hid-
multitouch.c, both located in kernel/drivers/
hid/
3) Build the kernel with the HID-MULTITOUCH
option enabled, and transfer the kernel image
to the ODROID.
4) Create an IDC (Input Device Configuration)
file.

Step 1: Check the
VID and PID

Plug the touch screen into any Linux
PC, then find the VID and PID by typing
lsusb in the terminal as below right.

To determine which device entry
is associated with the touch screen, list
the devices before connecting the touch
screen, then list them again after connect-
ing it. The new entry will correspond to
the touch screen device.

During our project, when the
23-inch touch screen was con-
nected, an entry of VID:03FC,
PID:05D8 appeared in the de-
vice list, which represents a touch
screen made by Elitegroup Com-
puter Systems. With the 42-inch
touch screen connected, an entry
of VID:1870, PID:0119 appeared
to represent a touch screen from

Nexio Co., Ltd. Other touch screens will
report different VID, PID and vendor
information.

Step 2: Modify
hid-ids.h and hid-
multitouch.c

After downloading the appropriate
Android kernel source from dn.odroid.
com, navigate to the kernels/drivers/hid/
directory, then add the VID and PID to
the end of the hid-ids.h header file.

Also, add the new ID in the hid-
multitouch.c source file. It must be
placed in the hid_device_id mt_devices
structure define.

Principle of IR (Infrared) Multi-touch screen

Reading the VID and PID of the USB
touchscreen using a Linux PC

Example PID and VID values added to
kernels/drivers/hid/hid-ids.h

Example of adding the touch screen ID to
kernels/drivers/hid/
hid-multitouch.c

http://lii-enac.fr/en/architecture/linux-input/multitouch-devices.html
http://lii-enac.fr/en/architecture/linux-input/multitouch-devices.html
http://lii-enac.fr/en/architecture/linux-input/multitouch-devices.html

ODROID MAGAZINE	 6

Step 3: Build the
kernel with the HID-
MULTITOUCH
option enabled

Type “make menuconfig” to config-
ure the kernel, then go to
Device Drivers > HID Devices
> Special HID drivers > HID
Multitouch panels and select it as
an embedded driver (*), as seen below.

Then, set another two options as an em-
bedded driver, indicated with an asterisk (*)

Device Drivers > Input de-
vice support > touch screens >
USB touch screen Driver

and:
Device Drivers > Input de-

vice support > touch screens >
GeneralTouch touch screen de-
vice support

Save the Kernel configuration and
compile it to make a zImage.

Transfer the zImage to your
ODROID via fastboot protocol in the
u-boot.

Step 4: Create an
IDC (Input Device
Configuration) file

If you don’t make a proper IDC file,
the resolution of the touch screen will
not match the HDMI resolution. Create a
plain text file as below:

touch.deviceType = touch-
Screen
touch.orientationAware = 1
device.internal = 1
keyboard.layout = qwerty
keyboard.characterMap = qwer-
ty2
keyboard.orientationAware =
1
keyboard.builtIn = 1cursor.
mode = navigation
cursor.orientationAware = 1

The file name must be Vendor_xxxx_
Product_yyyy.idc (xxxx: Vendor
ID, yyyy: Device ID). I made two
files for Elitegroup and Nexio. The filename
is case sensitive.

Vendor_03fc_Product_05d8.idc
and

Vendor_1870_Product_0119.idc

Copy the IDC files to your ODROID
with the below commands.

adb remount
adb push Vendor_03fc_
Product_05d8.idc /system/
usr/idc/.
adb push Vendor_1870_
Product_0119.idc /system/
usr/idc/.
adb reboot

How to Attach the
42-inch Touch Panel
to the TV Screen.

Carefully attach the touch screen to
align the viewing window.

Test the touch screen. Our touch
screen could detect up to 6 points.

This smaller 23-inch touch screen
panel came with 4 velcro belts and it was
relatively easy to assemble.

Conclusion
Besides gaming and personal use, the

ODROID is ideal as the core computing de-
vice for kiosks, digital signage, human inter-
face research, and more, because of its high
performance computing power, relatively
low cost, and open platform which allows
modifications such as this touch screen.

A video of the results of this project,
is on http://www.youtube.com/
watch?v=HDsnuxchxtU, and for more
giant action, http://www.youtube.
com/watch?v=n8_cV_NeWQ8.

Configuring the touch screen with an embed-
ded driver in the kernel configuration.

Configuring the touch screen with an embed-
ded driver in the kernel configuration

MAKE YOUR GIANT ODROID TABLET

Preparing the touch screen: Attaching the
double-sided tape to the touch screen frame

Testing the touch screen - 6 points guarantee
the sensor integration with the software.

23-inch touch screen panel with velcro belts
playing Fruit Ninja on android.

http://www.youtube.com/watch?v=HDsnuxchxtU
http://www.youtube.com/watch?v=HDsnuxchxtU
http://www.youtube.com/watch?v=n8_cV_NeWQ8
http://www.youtube.com/watch?v=n8_cV_NeWQ8

ODROID MAGAZINE	 7

INSTALLING ANDROID ON AN ODROID

This moment finds you in your fa-
miliar laboratory, hunched over
your lab counter, illuminated

by the soft glow of your plasma dis-
play, network indicator lights, catalyzing
chemicals in various test tubes, and such.
Before you lays a brand new ODROID-
U3 which you are in the process of mod-
ifying into a combination superphone/
world-domination device.

On another ODROID inches to your
right plays an inspiring YouTube video
of The Ben Heck Show while you hack
old IDE ribbon cables and connect your
U3 to various items on your worktop like
batteries and miniature displays.

Upon completing the last solder con-
nection, you look up with a menacing
smile of accomplishment and say, “Flip
the switch!” After a brief moment of
inactivity, you remember that you still
don’t have a lab minion. Not only that,
but there is no switch to flip. However,
there is an on/off button on the U3!

You power on your U3, but then real-
ize after another brief moment of inac-
tivity that you don’t have an OS on your
SD or eMMC card. You decide that you
should probably install Android as it is
the best choice for the superphone por-
tion of your invention, and you can run
Linux in parallel with Android for the
world-domination half of your inven-
tion, as explained in the January 2014

issue of ODROID Magazine. Handily,
you printed out and bound the entire last
issue of ODROID Magazine for easy
reference. Sometimes, it’s just nice to
feel paper between your fingers.

After a few cobbled attempts at down-
loading the latest Android release for the
ODROID, you actually slow down and
study the proper way to do it.

As the U3 is – for most intents and
purposes – identical to the U2, you fol-
low the procedures for installation on
the U2. You find the latest full version
of Android for the U2 is the Android
Beta 1.6, and the newer versions are sim-
ply updates to that version.

You download Android_Beta_1.6 for
the U2 from http://dn.odroid.com/
Android_Beta_1.6/U2/ and write it
to your SD/eMMC card as explained
in the January 2014 issue of ODROID
Magazine. Once it has completed, you
plug the card into your ODROID and
yell, “PUSH THE BUTTON!”, this
time remembering that you have neither
a minion nor a flippy-type switch. You
catch yourself cackling in glee as the AN-
DROID logo appears across your mini
display connected to your U3.

You find instructions for updating
to a newer version of Android on the
odroid.com blog, and you make some
changes to bring it up to the current ver-
sion, like so:

INSTALLING ANDROID
ON AN ODROID
THE MAD SCIENTIST CHRONICLES CONTINUE
Bohdan Lechnowsky

Check that your OS
version is higher than
Beta 1.6

(Settings > System > About
Tablet)

The Build Number has a date code,
and should be April-2013 or later. This
image is 24-April-2013.

Download the Android update file.
Visit http://dn.odroid.com/An-

droid_Beta_1.8.0/U2/ (for other
models of ODROID, leave off the “U2”
at the end). Select the SD or eMMC im-
age, depending on the card that you have
installed, and start the download.

Create the updater directory.
Create the directory /sdcard/up-

dater using File Explorer that should
be included in your Apps list.

Move the update file to the updater
folder.

Copy the downloaded .zip file con-
taining the Android Beta into the /sd-
card/updater folder.

Start the update process.

(Settings > About Tablet >
ODROID)

http://dn.odroid.com/Android_Beta_1.6/U2/
http://dn.odroid.com/Android_Beta_1.6/U2/
http://dn.odroid.com/Android_Beta_1.6/U2/
http://dn.odroid.com/Android_Beta_1.6/U2/

ODROID MAGAZINE	 8

In the previous issue of ODROID
Magazine, we discussed the ben-
efits of using ODROIDs for High

Performance Computing (HPC), in
addition to various discoveries while
working with XU+E’s related to set-
ting up our own cluster in a com-
mercial setting. But what about the
home user that wants to experiment
with HPC? In part one of this multi-
part series, we outline the setup and
configuration of a basic “headless”
cluster with the end goal of running
parallel programs based on message
passing, using the Message Passing
Interface (MPI) parallel programming
model in particular.

In subsequent articles, we plan to
expand on this setup to build a cluster
with a centralized head system or node,
complete with services such as Puppet,
NFS, and LDAP, a configuration that
is capable of supporting a much larger
number of ODROID systems (nodes)
configured as an HPC cluster. For ex-
ample, in part two, we will cover basic
networking configuration of the head
node, including dnsmasq, NAT, and
adding more nodes to the cluster, while
in part three (and further installments),
we will cover additional services such
as LDAP, NFS, Autofs and Puppet.

Installing the
Operating System

There are a number of prebuilt Linux
operating systems available for ODROID
boards from http://dn.odroid.in. To get
started, download the Ubuntu Server im-
age for your ODROID model and extract
the .IMG.XZ archived image using an ar-
chiving tool such as 7zip on windows, or
by typing “xz” from the Linux command
line. Finally, you can copy to the medium
of your choice, such as an SD card or
an eMMC module, using the “dd” com-
mand on Linux/OS X systems or the
Win32DiskImager.exe for ODROID on
Windows. For more detailed instructions
on copying over the OS, please refer to
Bohdan Lechnowsky’s article titled “In-
stalling an OS on an ODROID” from
the January 2014 issue of ODROID
Magazine. We recommend using the
eMMC modules available from Hardker-
nel for better performance, but SD cards
work well too.

Connecting to your
Odroid and User
Configuration

Since we opted to use the Ubuntu
Server image for our ODROIDs, we can
connect to our XU-E systems (we’ll call

them nodes for simplicity from now on)
via the ssh protocol using Terminal (or
Putty if running Windows) in order to
continue setting up our cluster. Because
of potential initial hostname and MAC
address conflicts that we will resolve in
the next section, we will need to boot the
first ODROID and set a few settings be-
fore starting the second.

[Editor’s Note: If one is available, a develop-
ment machine running Linux or Windows is
recommended to more easily setup and reboot
the cluster, troubleshoot hardware problems,
and other necessary debugging. An alterna-
tive to using a separate computer is to plug a
USB keyboard and HDMI cable into the
first ODROID and use it directly to boot-
strap the cluster instead of via SSH as de-
scribed in the next few paragraphs. Press
Ctrl-Alt-F1 to use the framebuffer console
if X11 is not running.]

HIGH
PERFORMANCE
COMPUTING
AT HOME
COMPUTE LIKE YOU
NEVER DID BEFORE
Cooper Filby and Anthony Skjellum -

Runtime Computing Solutions LLC

HPC AT HOME

If this doesn’t make you want to make a Voltron
based cluster using five ODROIDs, we cannot
be held responsible for the giant robots that
may someday take over your hometown.

http://dn.odroid.in

ODROID MAGAZINE	 9

I n
order to

connect to
your ODROID,

you’ll need to discover the
hostname or IP address of the board.

For the Ubuntu server image we used
on our XU+E cluster, the default host-
name is “odroid-server”, while for other
images we’ve used, it’s been “odroid”.
Most home networks should support
DNS by default, which will allow you to
connect simply by the hostname. If this
fails, you can alternatively connect using
the IP address assigned to the ODROID
by your router instead. If neither of the
hostnames resolves for you, check your
router’s lease table to search for the IP
address, often labeled as the DHCP cli-
ent table in the router’s admin panel.

Since we used identical copies of the
same image on both nodes, by default
they had a hostname conflict, which we
resolved by bringing them online one
at a time, then changing the individual
network settings. If you don’t have ac-
cess to the router’s admin panel, you can
also make use of the nmap command to

scan your network for hosts to find the
ODROIDs, if you know your network

information. For example: “nmap
192.168.1.0/24”. Look for a host
that has port 22 open.

Power on one of the
ODROIDs, then enter “ssh
odroid@ubuntu-server” (or
“ssh odroid@xxx.xx.xx.xxx”,
if using the IP address) in the
Terminal or Putty window of
the host computer, which will
establish a secure connection
to the ODROID. To login, type
“odroid” as the password.

Once the command prompt
appears, you may want to run

“sudo apt-get update && sudo apt-
get upgrade” to ensure that your OS

is up to date. Furthermore, we recom-
mend you run the “passwd” command
and change the password for the odroid
user to something a little more secure,
or creating new user accounts with the
“adduser” command, such as by running
“sudo adduser kilroy”. (Generally speak-
ing, do three things key with your node
passwords: make them long, make them
hard to guess, and store it in a secure lo-
cation.)

Configuring
Networking

Before getting both ODROIDs on-
line, we need to change a few settings as
to eliminate hostname and MAC address
conflicts that may occur on your home
network with an ODROID cluster. To
change the hostname, we will need to
edit two files, /etc/hostname and /etc/
hosts, changing “odroid-server’ to the
hostname of your choice and reboot-
ing the machine so the changes take
effect. For the purposes of this article
we will use odroid-server0 and odroid-
server1 to refer to the first and second
ODROID respectively. Alternatively, if
your operating system supports it, you
can also type “sudo odroid-config” to
change the hostname. You can use other
names of your choice; they have to be

unique to each node.
The MAC address conflict was a sub-

tle issue that we encountered when we
first set up multiple ODROID XU+E’s.
We found that, by default, the onboard
ethernet devices all shared the same
MAC address, which made it impossible
to work on a single ODROID if multiple
were powered online and on the same
network. If the two ODROIDs you’re
working have identical MAC addresses,
there are two straightforward ways to
resolve this: 1) configure one (or both)
of the ODROIDs to use a different
MACaddress, or 2) setup USB ethernet
dongles, which should all have unique
MAC addresses. The specific values you
choose really don’t matter, as long as you
keep them unique on your Local Area
Network (LAN).

To change the MAC address of the
onboard device, edit /etc/network/
interfaces with your text editor of
choice, and add the line “hwaddress
ether newmac”, where newmac is an ad-
dress in the format “b6:8d:67:7b:cb:e0”
underneath the following labels:

auto eth0

iface eth0 inet dhcp

Then, reboot the ODROID so the
changes take effect. Make sure to verify
the new address using the ifconfig com-
mand. Alternatively, you can opt to plug
your USB Ethernet adapters into the
USB 3.0 slot, and then run “ifconfig -a |
grep eth”, which should yield a list simi-
lar to this:

eth0 Link encap:Ethernet
HWaddr b6:8d:67:7b:cb:e0

eth2 Link encap:Ethernet
HWaddr 00:13:3b:99:92:b1

By default, eth0 will be the onboard
10/100 ethernet connection, while the
second ethernet device (in this case,
eth2) will be the USB Ethernet Adapter.
If only eth0 shows up, try reseating your

HPC AT HOME

ODROID MAGAZINE	 10

USB Ethernet adapter and/or verifying
that it works on another machine. To
set up the adapter for using DHCP on
boot to get an IP address, we will need to
modify /etc/network/interfaces
and add the following two lines between
the entries for auto lo and auto eth0:

auto eth2

iface eth2 inet dhcp

Use the appropriate ethernet device
id previously found with ifconfig (in
this case, eth2). Then, power down the
ODROID, put the ethernet cable that
was attached to the the onboard device
into the USB ethernet adapter, and pow-
er the ODROID back on. If, for some
reason, you aren’t able to connect, try
plugging the cable back into the onboard
slot and verifying that the USB ethernet
adapter is still showing up using the “if-
config -a” command. It’s also possible
that the ethernet device ID itself has
changed if the adapter is unseated, in
which case you can update the /etc/net-
work/interfaces file accordingly.

At this point, the ODROID should
be configured and accessible on the net-
work. Before heading on to the MPI
section, configure the second ODROID
using the same steps described above.

Message Passing
Interface (MPI)

Now that we have two nodes con-
figured appropriately, we can now
start looking towards how we can
execute HPC jobs on our two-node
cluster. A parallel programming en-
vironment such as MPI helps you
do this. MPI takes care of start-
ing up the processes that make up
the parallel programming model,

and provides a standardized appli-
cation programming interface (API)

for those cooperating, communicating
sequential processes to use to make the
parallel program work. To accomplish
this, we will make use of MPI, or Mes-
sage Passing Interface, which provides
an API that allows nodes to send and
receive messages while processing jobs.
A command called either mpirun or mp-
iexec will start all the processes needed
across your ODROIDS under your
control. There are two common open
source MPI implementations available
for download - MPICH and OpenMPI.
For ODROID clustering purposes over
Ethernet, both work equally well. Both
of these MPI implementations are avail-

able through apt-get.
To install MPICH, run “sudo apt-get

install mpich2”, or run “sudo apt-get in-
stall openmpi-bin” to install OpenMPI
as an alternative.

What you can do
once you’ve loaded MPI:

1) Run test applications that
use multiple cores on a single
ODROID

2) Run example programs that
use both ODROIDS and a total of
8 cores.

3) Learn how to build your own
MPI programs.

In this article, we’ve focused on show-
ing you how to do the first and the sec-
ond approaches. You can read the exam-
ple programs that come with OpenMPI
and MPICH to learn more. There are
also a number of excellent online tutori-
als and a few good books on program-
ming MPI, such as “Using MPI” from
MIT Press (one of us co-authored that
book).

Building it Better
The content of this article represents

just a fraction of what we will be able
to do with our cluster down the line.
While this setup is more than adequate
for handling two nodes and only a few
users, if we want to grow our cluster,
we will want to make use of a dedicated
head node to better handle a larger num-
ber of users and nodes. In addition to
allowing us to hide cluster traffic from
the rest of the network, this head node
will also host services that will streamline
cluster management, such as LDAP for
user management, Puppet for content
management, NFS for file sharing, and
various networking services.

In part two of this series, we will
begin to convert odroid-server0 into a
proper head node.

HPC AT HOME

Yeah, we are serious when it comes to gi-
ant robots taking over your hometown, but
Voltron always wins.

ODROID MAGAZINE	 11

POWER CONTROL ON ODROID CLUSTERS

Our team has experimented re-
cently with a number of new
energy-saving techniques avail-

able to server system administrators and
managers of High Performance Com-
puting (HPC) clusters. Our specific ex-
periences come in the form of testing a
mini-cluster of ARM Cortex-A9 boards
running the development Ubuntu ver-
sion targeted at that platform.

In addition to the Hardkernel-rec-
ommended default install of the OS
and concurrent headless server applica-
tion suite (including MPI discussed on
the last article), we installed cpufrequtils,
WattsUp, and PowerNap and then up-
dated the systems accordingly. These
packages are mainly what we will discuss
in this article, since they are where the
bulk of our power / energy savings and
reporting are attained.

The power savings are considerable
in clusters that have significant reduced
usage periods, and an aggressive power-
saving schedule yielded no negative re-
sults in our findings. Even if you do not
have big.LITTLE enabled apps (which
we do not have on our U2 / U3 cluster),
you can tune your performance require-
ments with rules written against pack-
ages like Slurm, which is currently one
of the most popular queueing systems /
schedulers in the HPC world.

FINE-GRAINED POWER
CONTROL ON ODROID
CLUSTERS
24 HIGH PERFORMANCE
CORES FOR 35 WATTS
Kurt Keville

The big takeaways
from this project
Server hibernate is of decreasing utility since
poweroff and reboot is just as quick in our
usage. Governer invocation is now the stan-
dard.

The Powersave governor is of considerable
value and should be used as a default in HPC
clusters.

And manual processor affinity is no longer
necessary if you are using modern kernels on
your ODROIDs.

We have boot times on our eMMC
fitted U2 and U3s of less than 10 sec-
onds so there is no argument you can
make for suspend / resume or hibernate
/ thaw that isn’t better exemplified by an
on / off solution or a scripted governor
call in embedded HPC.

In an academic datacenter, you are
quite often utilizing 100% of your most
restrictive computational resources in
your applications, or waiting for a job

to be initiated. Because of conventional
standard practices of “nice” level man-
agement and queueing system usage,
most systems are fully in use if you
organize your jobs correctly. We there-
fore investigated fully-on, fully-off and
almost-off systems with an eye towards
energy savings relative to the various op-
tions available to us that don’t involve a
full power-down.

Cold boots time for our demo cluster
was less than 10 seconds and therefore
validated this model. A more likely sce-
nario for traditional datacenters, how-
ever, would include systems that are
rarely powered down since they need to
respond to requests quicker than a pow-
er-on would allow. For those scenarios
we investigated suspend and resume and
the novel PowerNap acpi modes.

Datacenter sysadmins have always
had a way to do a “safe” managed shut-
down of their servers in case of a power
outage. The UPS vendor APC, in partic-
ular, has been a leader in this field when

A big problem of early software engineering
was not how much power those old dinosaurs
demanded, but the lack of safety hats.

ODROID MAGAZINE	 12

POWER CONTROL ON ODROID CLUSTERS

they introduced their “SmartUPS” line.
The original software application that
shipped with these UPSes utilized a seri-
al (RS-232) connection that would allow
the system to initiate a shutdown script
on a server when the UPS detected that
it was no longer getting charged. Since
the original releases there have been
many improvements to this approach,
affording substantial scripting flexibility
to the sysadmin and introducing alter-
native hardware options, like USB and
SNMP connections.

The open-source community has
also added many new options to this
functionality, progressively in the form
of software support for the nut and
upsd code bases (see http://www.net-
workupstools.org). We can now “hook”
the invocation of this script into a user-
defined usage, in our case tied to a drop
in processor usage below 20%. NUT is
compatible with Ganglia and Nagios in
that it affords quite a few scripting op-
tions, so sysadmins familiar with adding
ad-hoc functionality to their cluster man-
agement tools should have little problem
integrating it with their custom setup.

Additionally, cpufrequtils and pm-
utils are very handy sets of tools that
are compatible with the Linux kernel, at
least as recently as 3.2. PowerNap lets
you manage this via a script interface.
You can lock your board into its high-
est speed setting by invoking “cpu-
freq-set –g performance” from
the command line or by hooking it into
PowerNap’s config scripts if you prefer
a degree of automation.

Note the ODROID U3 output above
right, when your processors are set to
“performance” mode (one report for
each processor core normally).

When you set the U3 proces-
sor frequency to the stock maximum
of 1.7 Ghz and run the workload at
http://openbenchmarking.org/
result/1401173-UT-1309189UT21,
you can successfully peg the processors
at close to maximum utilization. Our
power peaked at 6.3 Watts and aver-

aged 5.6 per node over the course of the
benchmark suite run. It is interesting to
note that while these particular bench-
marks managed to keep the CPUs busy,
it did not fully utilize available memory,
which is also reflected in power usage.

root@odroid:~# cpufreq-info

cpufrequtils 008: cpufreq-info (C) Dominik Brodowski 2004-2009

Report errors and bugs to cpufreq@vger.kernel.org, please.

analyzing CPU 0: driver: exynos_cpufreq

 CPUs which run at the same hardware frequency: 0 1 2 3

 CPUs which need to have their frequency coordinated by software:
0 1 2 3

 maximum transition latency: 100.0 us. hardware limits: 200 MHz
- 2.00 GHz

 available cpufreq governors: conservative, userspace,
powersave,performance

 current policy: frequency should be within 200 MHz and 1.70 GHz.
The governor “performance” may decide which speed to use within
this range.

 current CPU frequency is 1.70 GHz (asserted by call to hard-
ware).

 cpufreq stats: 2.00 GHz:0.00%, 1.92 GHz:0.00%, 1.80 GHz:0.00%,
1.70 GHz:93.58%, 1.60 GHz:0.01%, 1.50 GHz:0.00%, 1.40 GHz:0.00%,
1.30 GHz:0.01%, 1.20 GHz:0.00%, 1.10 GHz:0.01%, 1000 MHz:0.00%,
900 MHz:0.00%, 800 MHz:0.00%, 700 MHz:0.00%, 600 MHz:0.00%, 500
MHz:0.00%, 400 MHz:0.00%, 300 MHz:0.01%, 200 MHz:6.38% (66)

top - 09:00:58 up 2:52, 6 users, load average: 2.41, 0.74, 0.29

Tasks: 154 total, 2 running, 152 sleeping, 0 stopped, 0 zombie

%Cpu(s): 99.1 us, 0.0 sy, 0.0 ni, 0.8 id, 0.0 wa, 0.0 hi, 0.1 si,
0.0

KiB Mem: 2071512 total, 884916 used, 1186596 free, 111884 buffers

KiB Swap: 0 total, 0 used, 0 free. 421392 cached
Mem

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COM-
MAND

6306 root 20 0 69660 43248 644 R 394.9 2.1 3:59.17 lu.A

6311 root 20 0 4708 1236 836 R 0.7 0.1 0:00.11 top

Some benchmarks represent usage as
400% of one process rather than 100%
of 4 processes depending on wheth-
er they are initiated as MPI jobs. We
tracked the power use using an FTDI-

connected WattsUp meter. Clearly the
XU-E is much better suited to this ex-
periment not to mention the substan-
tially better performance with the big.
LITTLE architecture.

cpufreq-info will show this 4 times, but if you
go for powersave or conservative, get ready
to see less active processors when idle.

top command sampling a lu.A benchmark

http://www.networkupstools.org
http://www.networkupstools.org
http://openbenchmarking.org/result/1401173-UT-1309189UT21
http://openbenchmarking.org/result/1401173-UT-1309189UT21

ODROID MAGAZINE	 13

POWER CONTROL ON ODROID CLUSTERS

Our test setup
We wanted a demo micro-cluster

that captured the power being used by
six (6) ODROID-U2 computers. Those
items were connected to our WattsUp
meter, which allowed us to measure rel-
atively small power fluctuations, since
they aggregated. We captured this
with the Linux utility described below.
Additionally, we measured single node
numbers on an ODROID U3. Baseline
power usage on boot (note that boots
put us into ”ondemand” mode at ini-
tially 200 Mhz) was negligible. While a
range from 200 MHz to 1.7 GHz were
available speed options for our boards
(without overclocking), as a practical
matter we only used the lowest and
highest speeds.

We measured the following scenari-
os; All boards at peak freq, all boards at
minimum freq while retaining all cores,
all boards with 2 CPUs on at min, and
all boards with 1 CPU on at max.

PowerNap, in our conventional us-
age, controlled cpufreqd to dial down
the CPU speed to its factory-enabled
minimum when an idle period is de-
tected. An idle period can be user de-
fined, as well as other parameters as-
sociated with reporting, grace periods
and other functionalities.

Our recommendations are to ig-
nore hibernate in a server scenario;
if you need immediate shutdown just
power off underutilized cores at a
board level. Rebooting takes ~10 sec-
onds each in our configurations. While
the U3 might not compete with the
XU on FLOPs per Watt, it does on
FLOPs per dollar. It is cheaper than
an Intel Galileo and compares favor-
ably in the openbenchmarking tests by
that standard.

Moreover, it appears that power ef-
ficiency scales superlinearly with fre-
quency and core count. So you if you
have a power budget, and few time re-
strictions, you can script your cpufreqd
to make that a priority, and aggressive
manage your power use.

References

PowerNap Tutorial http://ti-
nyurl.com/PowerNapTutorial

Slurm Integration http://
tinyurl.com/SlurmIntegration

Power Use Logging http://ti-
nyurl.com/WattsUpLinuxUtil

Governor setting versus watt utilization

Governor (freq)	 Avg. Watts for 6 boards

Performance (1.7 Ghz)	 33.6

Userspace (700 Mhz)	 21.0

Powersave w / 2 core*	 3.6

Performance w / 1 core	 23.4

* via a PowerNap script that invokes “echo 0 > /sys/devices/
system/cpu/cpu2/online” and cpu3. Actually, if you set any fre-
quency below 700Mhz on the U3, it will turn off 2 cores.

Lower bars = less wattage usage

The SoC Drawer and SoX BoX clusters dis-
assembled, those guys pack quite a punch

The power use
logging setup on
using the Odroid
U3.

http://tinyurl.com/PowerNapTutorial
http://tinyurl.com/PowerNapTutorial
http://tinyurl.com/SlurmIntegration
http://tinyurl.com/SlurmIntegration
http://tinyurl.com/WattsUpLinuxUtil
http://tinyurl.com/WattsUpLinuxUtil

ODROID MAGAZINE	 14

USB GADGET DRIVERS

W hen developing applica-
tions for the ODROID, its
often necessary to trans-

fer files and commands from a main
host PC to the development comput-
er. This can be performed via FTP or
SSH through the Ethernet port, but it
can be also be done over USB, to sim-
plify the setup. This article describes
how to use the USB device port on
your ODROID to communicate with
your host PC. To get started, a micro-
USB cable is required to make a physi-
cal connection between ODROID and
your host PC.

By connecting the ODROID to a PC
using its USB port, it can be "enumerat-
ed" to appear as another common USB
device, depending on the type of com-
munication desired:

Serial communication device

Network device

Mass storage device

You can also use the USB cable to
emulate each of these data connections
at the same time, as a multi-function link.

Installation
In order to use the Gadget drivers,

first verify that the following modules
are present on the ODROID system:

Mass storage emulation
/lib/modules/`uname -r`/kernel/

drivers/usb/gadget/

g_mass_storage.ko

Serial emulation
/lib/modules/`uname -r`/kernel/

drivers/usb/gadget/g_serial.ko

Ethernet emulation
/lib/modules/`uname -r`/kernel/driv-
ers/usb/gadget/g_ether.ko

Mass storage + Serial + Ethernet
/lib/modules/`uname -r`/kernel/driv-
ers/usb/gadget/g_multi.ko

USB GADGET

DRIVERS

MAKE YOUR ODROID

COMMUNICATE WITH YOUR

OLDSCHOOL PC

Kevin Kim, Hardkernel Developer

Gone are the days when notebooks came
with Ethernet and COM ports. What do you
do if you are stranded with nothing but a USB
cable?

ODROID MAGAZINE	 15

USB GADGET DRIVERS

If the drivers aren’t initially present,
the Kernel and driver modules need to be
updated. Type the following commands
into a Terminal window to upgrade:

$ mkdir update-kernel && cd
update-kernel

$ wget http://builder.mdrjr.
net/tools/kernel-update.sh

$ chmod +x kernel-update.sh

$ sudo ./kernel-update.sh

In the following code examples, the
green characters show the Terminal win-
dow running on the ODROID, and the
blue characters show the Terminal on
the Host PC.

Emulating a mass
storage device:
Storage over USB

Load the g_mass_storage mod-
ule with a storage node which will be
mounted on your host PC.

mount

/dev/mmcblk0p1 on /media/boot
type vfat (rw,nosuid,nodev,fl
ush,umask=000)

sudo umount /dev/mmcblk0p1

sudo modprobe g_mass_stor-
age file=/dev/mmcblk0p1

Launch dmesg and find the Mass_
Storage Function gadget driver message.

… gadget: Mass Storage Func-

tion, version: 2009/09/11

… gadget: Number of LUNs=1

… lun0: LUN: file: /dev/

mmcblk0p1

… gadget: Mass Storage Gad-

get, version: 2009/09/11

… gadget: userspace failed to

provide iSerialNumber

…gadget:g_mass_storage ready

… g_mass_storage

gadget: high-speed config #1:

Linux File-Backed Storage

Connect the ODROID’s micro-USB
cable to your PC and switch to using the
Linux host.

On the Linux Host:

If a recent Linux distribution is in-
stalled, the device should be automati-
cally mounted. Otherwise, follow these
steps to manually add it to the host PC:

As root, launch dmesg and find
the /dev/sdX device assigned to the
ODROID:

.. scsi 56:0:0:0: Direct-
Access Linux File-CD Gadget
0308 PQ: 0 ANSI: 2

.. sd 56:0:0:0: Attached scsi
generic sg2 type 0

.. sd 56:0:0:0: [sdc] 262144
512-byte logical blocks: (134
MB/128 MiB)

.. sd 56:0:0:0: [sdc] Write
Protect is off

.. sd 56:0:0:0: [sdc] Mode
Sense: 00 00 00 00

.. sd 56:0:0:0: [sdc] Asking
for cache data failed

.. sd 56:0:0:0: [sdc] Assuming
drive cache: write through

.. sd 56:0:0:0: [sdc] Asking
for cache data failed

.. sd 56:0:0:0: [sdc] Assuming
drive cache: write through

.. sdc:

.. sd 56:0:0:0: [sdc] Asking
for cache data failed

.. sd 56:0:0:0: [sdc] Assuming
drive cache: write through

.. sd 56:0:0:0: [sdc] At-
tached SCSI disk

Then, mount the device and enjoy
the file sharing:

$ sudo mount /dev/sdc /mnt/
tmp

$ cd /mnt/tmp

To emulate
a serial link :
Serial over USB

Load the g_serial module on the
ODROID:

sudo modprobe g_serial

Launch dmesg and find the Serial
Function gadget driver ready message.

dmesg

… gadget: Gadget Serial v2.4

… gadget: g_serial ready

… g_serial gadget: high-speed
config #2: CDC ACM config

ls –al /dev/ttyGS*

crw-rw---- 1 root dialout
248, 0 Dec 31 1999 /dev/
ttyGS0

Connect the Micro-USB cable be-
tween the host PC and the ODROID,
which should give the following message
on the host:

$ dmesg

… usb 1-1.2.4: new high-speed
USB device number 3 using
ehci_hcd

… cdc_acm 1-1.2.4:2.0: This
device cannot do calls on its
own. It is not a modem.

… cdc_acm 1-1.2.4:2.0: tty-
ACM0: USB ACM device

$

$ ls –al /dev/ttyACM*

crw-rw---- 1 root dialout
166, 0 Jan 22 00:29 /dev/
ttyACM0

Data should now be transmitted
through /dev/ttyACM0 (PC), and
/dev/ttyGS0 (ODROID):

ODROID MAGAZINE	 16

$ sudo chmod 666 /dev/tty-
ACM0

$ echo qwerty > /dev/ttyACM0

cat /dev/ttyGS0

qwerty

Emulating a ethernet
storage link:
Ethernet over USB

Load the g_ether module on the
ODROID:

sudo modprobe g_ether

Launch dmesg to get the Ethernet
Function gadget driver ready message, and
details about the ethernet connection.

dmesg

… gadget: using random self
ethernet address

… gadget: using random host
ethernet address

… usb0: MAC
e2:53:36:a5:8f:38

… usb0: HOST MAC
76:42:28:9e:9f:eb

… gadget: Ethernet Gadget,
version: Memorial Day 2008

… gadget: g_ether ready

… g_ether gadget: high-speed
config #1: CDC Ethernet (EEM)

ifconfig

usb0 Link encap:Ethernet
HWaddr e2:53:36:a5:8f:38

 inet6 addr:
fe80::e053:36ff:fea5:8f38/64
Scope:Link

 UP BROADCAST RUN-
NING MULTICAST MTU:1500
Metric:1

 RX packets:106
errors:0 dropped:0 overruns:0
frame:0

 TX packets:82

errors:0 dropped:0 overruns:0
carrier:0

 collisions:0
txqueuelen:1000

 RX bytes:22645 (22.6
KB) TX bytes:18987 (18.9
KB)

Connect the Micro-USB cable be-
tween the host PC and the ODROID
and which should show the follow-
ing messages on the host after typing
“dmesg”:

$ dmesg

… usb 1-1.2.4: new high-speed
USB device number 12 using
ehci_hcd

… hub 1-1.2:1.0: unable to
enumerate USB device on port
4

… usb 1-1.2.4: new high-speed
USB device number 13 using
ehci_hcd

… cdc_eem 1-1.2.4:1.0: usb0:
register 'cdc_eem' at usb-
0000:00:1a.0-1.2.4, CDC EEM
Device, 62:19:ce:95:e0:9f

$ ifconfig

usb0 Link encap:Ethernet
HWaddr 62:19:ce:95:e0:9f

 inet6 addr:
fe80::6019:ceff:fe95:e09f/64
Scope:Link

 UP BROADCAST RUN-
NING MULTICAST MTU:1500
Metric:1

 RX packets:3 errors:0
dropped:0 overruns:0 frame:0

 TX packets:4
errors:0 dropped:0 overruns:0
carrier:0

 collisions:0
txqueuelen:1000

 RX bytes:488 (488.0
B) TX bytes:624 (624.0 B)

$ sudo ifconfig usb0
192.168.100.1

$ ifconfig

usb0 Link encap:Ethernet

HWaddr 62:19:ce:95:e0:9f

 inet addr:192.168.100.1
B c a s t : 1 9 2 . 1 6 8 . 1 0 0 . 2 5 5
Mask:255.255.255.0

 inet6 addr:
fe80::6019:ceff:fe95:e09f/64
Scope:Link

 UP BROADCAST RUN-
NING MULTICAST MTU:1500
Metric:1

 RX packets:21 errors:0
dropped:0 overruns:0 frame:0

 TX packets:33
errors:0 dropped:0 overruns:0
carrier:0

 collisions:0
txqueuelen:1000

 RX bytes:4677 (4.6
KB) TX bytes:8394 (8.3 KB)

Now the ODROID will be able
to send and receive data through the
usb0 port:

sudo ifconfig usb0
192.168.100.2

ifconfig

usb0 Link encap:Ethernet
HWaddr e2:53:36:a5:8f:38

 inet addr:192.168.100.2
B c a s t : 1 9 2 . 1 6 8 . 1 0 0 . 2 5 5
Mask:255.255.255.0

 inet6 addr:
fe80::e053:36ff:fea5:8f38/64
Scope:Link

 UP BROADCAST RUN-
NING MULTICAST MTU:1500
Metric:1

 RX packets:594
errors:0 dropped:0 overruns:0
frame:0

 TX packets:434
errors:0 dropped:0 overruns:0
carrier:0

 collisions:0
txqueuelen:1000

 RX bytes:120002
(120.0 KB) TX bytes:98616
(98.6 KB)

USB GADGET DRIVERS

ODROID MAGAZINE	 17

ping 192.168.100.1

PING 192.168.100.1
(192.168.100.1) 56(84) bytes
of data.

64 bytes from 192.168.100.1:
icmp_seq=1 ttl=64 time=0.348
ms

64 bytes from 192.168.100.1:
icmp_seq=2 ttl=64 time=0.254
ms

^C

--- 192.168.100.1 ping sta-
tistics ---

2 packets transmitted, 2 re-
ceived, 0% packet loss, time
999ms

rtt min/avg/max/mdev =
0.254/0.301/0.348/0.047 ms

$ iperf –s

Server listening on TCP port
5001

TCP window size: 85.3 KByte
(default)

[4] local 192.168.100.1
port 5001 connected with

192.168.100.2 port 34764

[ID] Interval Transfer
Bandwidth

[4] 0.0-10.0 sec 193
MBytes 162 Mbits/sec

iperf –c 192.168.100.1

Client connecting to
192.168.100.1, TCP port 5001

TCP window size: 20.7 KByte
(default)

[3] local 192.168.100.2
port 34764 connected with
192.168.100.1 port 5001

[ID] Interval Transfer
Bandwidth

[3] 0.0-10.0 sec 193
MBytes 162 Mbits/sec

Wow! 162Mbps is faster than normal
100Mbps Ethernet!

Emulating a multi
function link:
The full package

A multi-function link emulates a mass
storage, serial and ethernet connection
using only one combo g_multi module:

mount

/dev/mmcblk0p1 on /media/boot
type vfat (rw,nosuid,nodev,fl
ush,umask=000)

sudo umount /dev/mmcblk0p1

sudo modprobe g_multi file=/
dev/mmcblk0p1

After connecting the ODROID’s
Micro-USB cable to the PC, all three
functions listed above may be used si-
multaneously.

USB GADGET DRIVERS

Being able to work alongside network, stor-
age and serial, will save your life more often
than you think.

ODROID MAGAZINE	 18

LINUX GAMING
ON ODROID
THE RIGHT SYSTEM FOR YOUR GAMES
Tobias Schaaf

When it comes to gaming, ev-
eryone has different tastes.
There are many gaming

genres, including First Person Shooter,
Role Playing, Arcade, Adventure, Simu-
lation, Real Time Strategy, and many
more. Some games are better suited for
consoles, while others are only playable
if you have a mouse and keyboard avail-
able. Since the ODROID platform can
run many types of games, choosing your
gaming system really depends on per-
sonal preference.

It also depends on whether you like to
play on your own (single-player mode),
with others (team or competition mode),
on the internet (network mode), or with
a friend in the same room in front of
your TV (multi-player or split screen
mode). It also depends on whether you
want the old classics with the original
beeping sounds, or prefer high fidelity
audio and video with orchestral sound-
tracks and stunning 3D graphics.

This month, I give an overview
of the gaming opportunities that the
ODROID platform offers, giving you
some ideas regarding what games you
might like to explore.

Finding the right
system

Since the ODROID offers so many
emulators and games, it’s hard to figure
out what system to choose from. So,
I want to examine some of the gam-
ing systems that the ODROID is able

The Amiga desktop. This was the system that
made all of your friends jelly, and you feeling
like the coolest kid in school. No kidding!

to emulate, and compare their pro and
cons are to help you decide which is the
best choice for you. This will somewhat
reflect my own opinion, and might differ
from other people’s opinion, so please
consider this article more as a sugges-
tion than hard facts.

If you have already downloaded
and installed my ODROID GameSta-
tion Turbo image, available for free on
the ODROID forums, you have a good
idea of what systems the ODROID is
able to emulate.

First on the list is the Amiga. I had
a few Amigas back in the day, and really
loved to play games on it. In the 1990s,
the Amiga was very popular. Compared
to other PCs of the day (Apple //GS,
Color Macintosh and IBM PC), it had
improved graphics and far better sounds
than most of the PC ports of that time.
I never had an actual console like a Su-
per Nintendo Entertainment System or a

Sega Genesis, so I’m
not able to compare the
Amiga to other contempo-
rary systems.

In my opinion, the Amiga
was far ahead of its time. With
games that took 15 disks or more, multi-

GAMES

ODROID MAGAZINE	 19

tasking, the ability to use
hard drives to store games

and programs, and the Work-
bench Graphical User Interface,
it was very impressive.

There are some emula-
tors that run Amiga games

well, but it takes lots of
configuration to get the
games to run, and often

you have to switch between
Kickstart disks (the BIOS of

the Amiga). Simply switching
through the many disks can also

get somewhat annoying. Although
the graphics of the Amiga was outstand-
ing it can hardly compare to other con-
soles now.

I use retroarch in my ODROID
GameStation Turbo image to run Ami-
ga games, but unfortunately, not all of
them run in full speed. So, I consider the
Amiga an unstable system to actually use
on the ODROID. There are some emu-
lators that can run directly (for example,
E-UAE and FS-UAE), which give better
performance than the retroach port, but
they require advanced configuration, and
won’t run easily with gamepads, which
the retroarch port does well. There are
some beautiful games on the Amiga, but
most of them have been ported to other
consoles or to the PC, which can be em-
ulated more successfully.

The benefit of the Amiga is that it

actually has some
games that can

be played to-
gether with

a friend, so
I consider

it a great
mu l t i p l ay e r

system. Games
like Banshee or

The Chaos Engine
are really awesome to play with a friend.

Next on the list
of emulators is
the Nintendo
E n t e r t a i n -
ment Sys-
tem (NES), the
Super Nintendo
Entertainment Sys-
tem (SNES) and the
GameBoy Advance
(GBA). If people talk about Nintendo,
and especially about retro games, you are
going to hear about NES and SNES con-
soles. The NES is rather old for a console,
but it introduced some legendary classics
that changed gaming history. Titles such
as Legend of Zelda or Super Mario are
games that will probably
never be forgotten,
and are one of the
most important of
Nintendo’s fran-
chises.

The SNES
was a great im-
provement over
the NES, since it
had more colors and
offered a lot more pos-
sibilities than the
NES, and was, for a
very long time, THE
gaming console for
people, including
professional gamers.

The SNES was a big improvement com-
pared to the NES and other consoles, but
that is not a big surprise if you compare
the specs of the two consoles:
The NES had only about 2KB of RAM and
2KB of Video RAM, and a maximum of 25
colors simultaneously (out of 48 colors
and some grays).
Its successor, the SNES, could use up to
15bit colors (32,768 possible colors), and
had 128 KB of RAM and a large amount of
Video RAM (64 kB main RAM, 512 + 32 bytes
sprite RAM, 256 × 15 bits palette RAM).
The ROM size of games from the NES were
between 8 KB to 1MB
 On the SNES, the ROM size was between

256KB and 6MB.

It was possible to pack much
more data on a SNES cartridge,

which allows for more con-
tent, and made games look
a lot better, as seen in a di-

rect comparison between the
NES and the SNES:

The SNES also used video
rendering layers, which allowed

more effects and content to put in a
single scene, and had a higher resolution
than its predecessor.

Left: Banshee, a great Amiga shooter
Right: The Chaos engine

GAMES

Zelda, Mario and Kirby, the
best of Nintendo’s golden age

ODROID MAGAZINE	 20

Another advantage of these consoles
was that they were made for two con-
trollers, which resulted in a large library
of games that could be played competi-
tively or cooperatively with friends. Be-
tween all of the consoles covered in this
article, I consider the SNES to be the
best console for multiplayer games.

In my opinion, GBA is often over-
looked when it comes to retro gaming
and Nintendo. The GBA was a handheld
console from Nintendo, very much like
the GameBoy (GB) and GameBoy Color
(GBC), and was actually compatible with
both GB and GBC games. It even had
a second processor specifically for back-
wards compatibility, so that GameBoy
owners could still play their older games
on the newer console. Otherwise, it was
very much like the SNES, which made
the small handheld device very powerful
for its time.

The GBA also had 15-bit color, and the CPU
was 32-bit, as compared to the 16-bit pro-
cessor of the SNES.
It also offered 32KB + 96KB of Video RAM
(internal to the CPU) and 256 KB WRAM
(outside the CPU).

If you compare these specs, the GBA
was a better system than the SNES in
nearly every aspect. The only advantage
that the SNES had over the GBA was the
resolution, which was only 240x160
pixels. Even with the lower resolu-
tion, the cartridge size went from
1MB up to 32MB.

More size equals more content and
once again, the GBA was a big improve-
ment when it came to content. It of-
fered movie cut-scenes, beautiful music,
and very nice graphics, which is why
I prefer GBA emulation over SNES.
Many games that existed on the SNES
were ported to the GBA, and they not
only look much better, but in many cas-
es, have additional content.

Although the GBA is, in my opinion,
a far better console than the SNES, it
has a downside. The GBA is a handheld
console, and although it had multiplayer
capabilities between two consoles via a
connection cable, it makes it impossible
to play GBA games with a friend on the
same machine.

However, if you prefer single-player
mode, you should definitely take a look
at GBA games. You can also see if your
favorite SNES games exist for GBA, and
maybe get a newer, better experience
from your game. If you’re looking for
a new game to try, you should definitely
check out the GBA game library.

Overall, I really like the GBA, and
I routinely play some GBA, since they

have very attractive graphics
and immersive gameplay. All
of the Nintendo systems (GB,
GBC, GBA, NES, SNES) run fine on the
ODROID using the emulators provided
on ODROID GameStation Turbo.

I prefer to run SNES in retroarch
and play the other Nintendo emulators
using mednafen since mednafen per-
forms better than retroarch for these
platforms, and allows software scalers
such as hq2x or super2xsai, which can

enhance the picture quality and make
the games look more “modern”

than they really are.
If you are a fan of retro

Arcade machines, you’ll prob-
ably enjoy MAME, NeoGeo

and NeoGeo Pocket, which
are available for the ODROID.

MAME and NeoGeo are available
on retroarch, and NeoGeo Pocket is

available on mednafen.
NeoGeo Pocket is similar to

the GBA, and is somewhere be-
tween a GBC and GBA, but
it was not very popular, and

lacks the large game library of
its competitors. Still, it’s similar to

the other Arcade machines, and of-
fers some challenging action games.
MAME and NeoGeo have a lot of

fast action games like Street Fighter 3

Final Fantasy IV
SNES vs GBA
side by side.

GAMES

GBA’s
Riviera

Promised
Land

ODROID MAGAZINE	 21

3rd Strike and 1944 The
Loop Master.
Arcade games vary from

those that have simple graph-
ics, to 3D games, to some with

sprite technology, like the previous
mentioned 1944 The Loop Mas-
ter. If you like a lot of action

and expert gameplay, the Arcade games
that the ODROID can run is what you
are looking for, especially when playing
with friends.

However, the Arcade genre is limited,
and implies fast action games. You will
rarely find the RPG, Adventures or Sim-
ulation genres on an Arcade machine.
It’s hard to compare Arcade games with
a SNES or Sega, since the Arcade games
evolved a lot, and so did the hardware
that was supporting these games. Some
Arcade games have NES-quality graph-
ics, while others have resolution as good
as a PlayStation.

The ODROID platform can run

most of these games without issue, and
for this, it’s really nice to have. There
even is a project documented on the
forum where someone built their own
Arcade Machine at home with a U2:
http://bit.ly/1cmrgjK.

Another big company back in the
earlier days of console gaming was Sega,
which directly competed with Nintendo.
The Sega team had very good ideas, but
in the end, upset a lot of developers and
publishers, and now Sega only produces
games for other consoles.

The Sega MasterSystem, Sega
Genesis (Mega Drive), and the Sega
GameGear are the emulators that I in-
cluded in the ODROID GameStation
Turbo image, and are probably their

most well-known
consoles. They

also produced a
couple more

systems like

the Sega 32X,
Sega Mega-CD,
Sega Saturn and
the Sega Dreamcast,
which was actually a
really nice console,
but it’s hard to
find emula-
tors to run
these Systems
on Linux and
ARM so they are
not included in the
image (yet).

If you want to
compare the different Sega systems to
others of its time, you could say the
Sega Master System is comparable to
the NES, the Sega Genesis is similar to
the SNES, and the Sega GameGear was
also a Handheld like the GBA or GBC.

Sega Systems always tried to be just
a little bit better than the Nintendo
consoles. The Sega Master System had
more RAM and more colors than the
NES, and was slightly faster. The most
popular game was not actually Sonic the
Hedgehog, but Alex Kidd in Miracle
World. Still, Sonic was Sega’s answer to
Mario and it worked well for Sega.

If you compare the games
available for the NES and Sega

Master System side-by-side, you
can see that the Sega actually looked a
lot better than the NES. If your favor-
ite game on the NES is also available
for the Sega Master System, I recom-
mend playing the Sega Master System
version instead.

Street Fighter 3 3rd Strike
1944 The Loop Master

(NeoGeo)
Sonic the Hedgehog

Alex Kidd in Miracle World
(Sega Master System)

Double Dragon
(NES)

Double Dragon
(SMS)

GBA’s
Summon
Night
Swordcraft

GAMES

http://bit.ly/1cmrgjK

ODROID MAGAZINE	 22

GAMES

The next generation,
called the Sega Genesis, wasn’t
as good as the SNES, since it
had less colors to choose from,
and developers had a hard time
porting games to the Genesis
since Nintendo did not allow
its companies to produce

for any console other than Nintendo.
Still, there were quite some nice games
for the Genesis, and they look great.

Although you can see more details in
the SNES version of the game, the Sega
Genesis had better game mechanics and
included a sword, which was not in the
SNES version. Interestingly, Disney il-
lustrators were involved in creating the
animations in the Sega Genesis version,
which made them look much better.

Sega tried to reach older gamers as
well, and wanted to appeal to profes-
sional gamers. For this, the uncensored
version of Mortal Kombat was pub-
lished on the Genesis, which had blood
and other effects that had been removed
from the SNES version. Genesis also
published many sports games that were
very popular among adults.

Overall, the
SNES had better
hardware, and
games looked

more impres-
sive than the Sega

Genesis, but Genesis
tried to counter that

with better game me-
chanics and more

serious games and
gameplay.

The Sega
GameGear was

meant to be a
superior handheld

device and the di-
rect competitor of the

GameBoy (GB), but it was far more
than that. In fact, the Sega GameGear
was even more powerful than the Sega
Master System, and had an adapter to
watch TV.

The Sega GameGear is somewhere
in between the Sega Master System and
the Sega Genesis. It actually had even
more colors than the Genesis, but the
downside of the GameGear is that the
resolution was rather low even for its
time, but that wasn’t important for a
handheld console. There were about
300 games available for the GameGear,
and if it ran on the Sega Master System,
there is a good chance that it was ported

for the GameGear as well. Even some
of the Genesis games were published
for the GameGear, so give it a try and

see what you like best.
The next console on the mar-

ket to make an impact on gaming
was Sony with its PlayStation, al-

though by now it’s considered retro as
well. The PlayStation has an advantage
over the previously mentioned con-
soles, because it’s from a newer gen-
eration, but still it offers some console
game classic that were updated for the
new platform.

Looking at the quality of the PS1
games, there are beautiful movies,
narrative speech, and high resolution
graphics. The PS1 outranks all the
previous named consoles, and if you
find a game that was originally made
for the SNES or Sega Genesis, you
can expect the PS1 version to have
lots of additional content like movie
cut-scenes and probably better music.

Although the retroarch port of
PS1 uses a software renderer to dis-
play its graphics, they perform flu-
ently on the ODROID. Classics
like Final Fantasy 7, 8 and 9 offer
a few examples of its high resolu-
tion graphics. Even better, the PS1
was designed for multiplayer, which
means you can play with some friends
on the same TV.

Finally, we reach the most impres-
sive emulator on the ODROID so
far: PPSSPP, which can play Play-
Station Portable (PSP) games on the

A comparison of
SNES and Genesis graphics.

Can you tell which system is which?
Earthworm Jim 2

Aladdin SNES vs. Aladdin
Mortal Kombat

ODROID MAGAZINE	 23

GAMES

ODROID. The PSP runs a large
collection of games that offer
beautiful 3D graphics with
movie cutscenes and real
voice acting.

Although PPSSPP runs
best on a PC running Win-
dows, Linux or Android, I
also successfully ported it to
the ODROID. There are lots of
PSPgames that run quite nicely
on the ODROID in an X11 en-
vironment using PPSSPP.

The Sony age, PS One’s Final
Fantasy VIII, and the PSP
games of Little Big planet,
Soul Calibur, Fifa Soccer
2011, Wipeout Pure and

Naruto Shippuden are not far
from your ODROID

If we compare the different systems
by their power, look and feel, consid-
ering color depth, game content, mu-
sic fidelity, and hardware technology,
line up nicely from least powerful to
most powerful:

Not included in this ranking is the
Amiga, which is more like an old time
PC, despite its variety of games and
other options. Amiga games ranged
from very simple to spectacular, offers
beautiful music and even more colors
than an SNES or GBA - up to 24bit.

Also missing are the Arcade ma-
chines: NeoGeo Pocket, NeoGeo
and MAME, since these systems of-
fer a variety of games from the clas-
sic Pac-Man up to Tekken 6 for the
PS1. Of these consoles, I prefer

NeoGeo, since its games look the
best and have an awesome look and
feel, in my opinion.

Another way of deciding what
games to try, might be whether the
emulators offers the opportunity to

to play with other people together in
front of your TV. For multiplayer
gaming, the best consoles are MAME,
NeoGeo, SNES and the PS1. There
are also multiplayer games for Sega
Master System and Sega Genesis as
well, but I encountered them rather
rarely, so I think that SNES would be
the best choice if you want to play
with a friend.

Although handheld devices such
as the GBA might be the best single-
player gaming console, they normally

lack the ability to play together with
someone else, unless you connect
with a friend over the Internet or
through your home network using
two computers.

Each system that I covered

in this article has its own charm.
They all have some unique and en-
gaging games, and it’s usually the
gameplay, not the graphics, that
makes a particular game so enjoy-
able. With an ODROID, you have
the possibility of experiencing all
of them just by switching from one
emulator to another. And, with
ODROID GameStation Turbo, you
have all of these emulators already
set up, ready to play games with
your favorite controller.

GB < GBC < NES < SMS < GAMEGEAR < GENESIS < SNES < GBA < PS1 < PSP

WHAT EMULATOR AND
WHAT SYSTEM IS BEST FOR YOU?

ODROID MAGAZINE	 24

The project described in this ar-
ticle involves the estimation of
radio network interference using

a multi-threaded Java application. How
does the ODROID compare to other
computers performing the same work?

If some tasks can be parallelized,
then each additional thread shortens
the execution time of the whole job.
Given that there is an execution pro-
cess available for performing each add-
ed thread, let’s say that it takes 8 units
to do some work sequentially. Adding
one new thread shortens the time to 4
units, while adding a third thread fur-
ther shortens to 2.67 units, and the 4th
additional thread lessens the time to 2
units. If the work is not fully paral-
lelizable, there is always some portion
that must be done in sequence by one
thread, and that part of the work can-
not be accelerated by adding threads.

Let’s start with the assumption
that the non-parallelizable work takes
2 units to perform, and assume that
adding more threads does not incur
any extra cost. Then, we add up to 12
threads. The whole work should then
be done in constant time from the 4th
to the 12th thread. With this informa-
tion, we can draft an expectation mod-
el, as shown by the square dotted solid
line to the right.

TECHNICAL ARTICLE

ESTIMATING RADIO
NETWORK
INTERFERENCE
WITH MULTI-THREADED JAVA
Jussi Opas

Expectation model; theoretical performance
curves for multi core processors.

It is of interest to see that adding
even more equally performing cores
shortens the used time, but not by much,
as shown by the dashed line. The se-
quentially done 2-unit work throttles the
overall performance. If the full benefit
of all cores is the goal, then also the pre-
viously sequential work should be paral-
lelized. The compilation time of Linux
kernel on ODROID XU demonstrates
this expectation model well at right.

Our sample application, called Poiju,
computes estimation of radio network
interference at the beginning of next
page. To do the estimation, combined
coverage and service area of each radio
cell must be calculated. Then, at each
pixel, the field strength of interfering
cells is computed. This is done over the
service area of carrier cells. Computa-
tion is made on pixels of size from 30 to
350 meters. The size of radio cells may
vary from 200 meter to 50 kilometers.

The computational challenge is expo-
nential in its nature, as the amount of pixels
to visit and to compute grows in potency
when a more accurate resolution is used.

The characteristics of the program
are that it uses only RAM (no file ac-
cess), and all work can be done by the
CPU, since no GPU-related work is
performed. Parallelization has been
designed so that, for each cell, service
area is computed first sequentially, and
after that interference is computed
with many threads for cell specific
closest candidates.

Physical cores and/or hyper threads
are visible as available processors
[LEA99]. Java threads hide underly-
ing operating system and hardware, so
the same program can be used on all

platforms whereever a virtual
machine is available. To imple-
ment threads, we used Java’s
modern concurrency package.

A typical development ses-
sion with the application Poiju
is shown on the next page. The
prediction parameters dialog
is shown in the front, and the
main window of the Poiju ap-

Compilation time of Linux kernel on XU, the
time unit in minutes.

ODROID MAGAZINE	 25

TECHNICAL ARTICLE

plication is below it. Also shown are the
htop terminal and the lowest application is
the development environment called Iltel-
liJ IDEA.

The ODROID-XU’s ARM proces-
sor offers 4 power efficient A7 cores
and 4 high performance A15 cores
[ARM13]. At any one time, either a
cluster of little cores or a cluster of
big cores is working, known as big.
LITTLE architecture. Hence, there are
4 processes available. The Poiju appli-
cation is using only the big cores while
intensive computations are made.

The performance of application is
measured with self made instrumenta-
tion by taking core-specific times prior
to doing something, and then the next
time right after doing the task:

We are doing all tests with 10,000 ra-
dio cells at each time. The performance

measurement results
with OpenJDK and
OracleJDK are shown
below right.

The first obser-
vation is that our
theoretical model, as
presented before, is
being partially fol-

lowed. Each added thread is
speeding up the program ex-
ecution, until the 4th thread.
The first added thread yields
the best performance boost.
This is partially affected also
by Just In Time (JIT) compila-
tion. JIT improves execution
performance when same byte
code is executed repeatedly.

Adding the 3rd and the 4th threads
predictably improves performance,
while the addition of the 5th thread de-
creases performance. We guess here that
thread scheduling and context switching
does not come for free, when there are
many threads waiting for execution time.
When we know this, it is better to limit
the number of threads to 4 in the ap-
plication program. That can be done by
calling the Runtime.getRuntime().avail-
ableProcessors() method. We see also
that OracleJDK is performing better

than OpenJDK. OpenJDK is
the default installed
Java on Ubuntu, so
the user must manu-
ally install Oracle
JDK. Fortunately,
it is freely available
from the Oracle De-
veloper website.

The perfor-

mance of the ap-
plication on XU is
practically identical
between 4 different
Linux distributions,
Debian, Xubuntu, Fe-
dora and Ubuntu with
Mate desktop. There
is a small, but hardly
visible, improvement

in JDK releases 1.6, 1.7, and 1.8. It is
also of interest to see how performance
is improved when frequency is changed
from 1.6 to 1.8 GHz, as shown in at end
of this page.

With htop and vmstat we see that
more than half of the time is used by
kernel instead of user space. This is a
major problem that we so far noticed
only on XU. What is wrong in the ap-
plication? If there is some internal er-
ror in a program and a lot of exception
are thrown and treated silently, it would
affect the performance significantly.
However, that should not be visible as
kernel time. After several other similar

Running times on 4 A15 core XU board with
two different JDKs.

Over-clocking improves performance, but
dropping usage of self-made instrumenta-
tion improves it significantly.

Poiju in development session on ODROID
XU on a monitor via display port.

 final long t1 = System.
nanoTime();

 final double distance =
SpatialMath.computeProjectedDi
stance(carrier, candidate);

 instrument.
incrementDistanceTime(System.
nanoTime() - t1);

ODROID MAGAZINE	 26

guesses and trials we were not able to
find the reason. Finally, we commented
self-made detailed instrumentation that
was being generated with Java’s nano-
Time method. As a result, two-thirds of
the computation time disappeared.

We can expect that nanoTime inef-
ficiency and any other similar feature
of Java on ARM will be streamlined in
future, as there is news of co-operation
[JAC13]. Since we let the ARM proces-
sor do the work that traditionally has
been assigned to desktop computers, we
also made a comparison with two laptop
computers, one having a Celeron pro-
cessor at 2GHz and another having an
i5-2520M at 2.5GHz. The Celeron has
one core while the i5m has 2 cores with
2 hyper threads. We refer to these pro-
cessors as x64 to signify that they are 64
bit x86 processors. The comparison is
shown above.

With this different scale in the graph,
it is obvious that something starts to
throttle the performance from the 5th
thread on. Adding more threads, up to
12, does not seem to degrade the per-
formance of the one core Celeron at all.
Meanwhile, we see that the application
performance at XU is being degraded

when 5 and more threads are
used. From the vmstat output
we can produce a graph, where
user space time and idle time
is shown together with perfor-
mance, see the figure at bot-
tom left.

We don’t know the actual
reason for the behavior, but
we can guess things like con-

text switching is not efficient,
or work load is not even but
unbalanced, or the share of
sequential work is large, or
something similar. The first
guess can be sorted out with
the following reasoning: 1)
there are no problems in
multi-threaded Linux ker-
nel compilation, 2) literature
search shows that context
switch time should be at maximum
0.4 % of overall time [DAV07], and
3) the development environment -
IntelliJ IDEA - uses multiple threads
flawlessly. We leave the cause
as a puzzle to be solved.

For an alternative ap-
proach, we implemented
threading differently, and
also made a couple of other
changes. Now, cells are or-
ganized into as many work
lists as there are threads to
be used. Both service areas
and interferences are com-
puted in parallel, so there are N cells
being computed at same time. The
work is now fully, or almost fully,
parallelized, and the performance of
the application clearly improved. The
Performance graph follows now our

expectation model. Multi-
threading uses the whole
capacity of the XU board.
In this comparison, the
ODROID-XU was used at
1.6 GHz with the perfor-
mance governor option.

To make a more legible
comparison, we take times at

the 4th thread and put the numbers of
partially and fully parallel runs into one
illustration below.

In this test, the multi-core ARM
processor is doing its jobs much faster
than the one core Celeron processor.
With 4 threads, the performance is
1.8x better. Meanwhile, the mobile i5
processor is 3.3x faster than the XU.
Fully parallel thread configuration

changes these numbers to 2.5x and
3.2x respectively. In this comparison,
the XU does 1/3rd of the work that
an I5 can do at the same time.

Summary
The ODROID XU board performs

the same Java tasks for which desktop
computers have been traditionally used.
Although it can’t compete against the
brand new (and more expensive) x64 pro-
cessors, it can be used as a replacement for
a mobile i5. The ODROID-XU is clearly
better than an older single-core x64 com-
puter, and Java applications benefit signifi-

Performance profile when the application is
fully parallelized.

Comparison of i5, XU and Celeron when 4
threads are used.

Processor is not loaded, instead there is
free capacity.

TECHNICAL ARTICLE

ODROID MAGAZINE	 27

cantly from the usage of multiple threads.

The default on-demand governor of Linux is
biasing performance test results, because
the CPU’s clock frequency is being changed
automatically. Therefore, in Linux, one should
use performance frequency scaling governor
during performance tests.

The System.nanoTime method costs a lot of
kernel time. The nanoTime method problem
affects both Celeron and ARM processors,
while the mobile i5 processor does not suffer
from it as much. The call to nanoTime should
be commented out in production code.

When high work load is given to parallel
threads, then an equal amount of threads to
the number of available processors should be
used. The Runtime.getRuntime().
availableProcessors() method can
be can be used for this purpose.

Use Linux tools like vmstat and htop to vali-
date loading and kernel time. For profiling
an application, jvisualvm in JDK’s bin di-
rectory can be used. Don’t trust self-made
instrumentation without a backup mea-
surement tool.

Through this exercise, the per-
formance of the Poiju on other plat-
forms was improved by 40%. On the
ODROID-XU alone, the improvement
was huge from the initial design stage.
In general, desktop Java applications can
be improved when they are also tested
on the ARM-based XU. The ODROID
computes interference estimate to 10,
000 radio cells in 9.6 seconds by using
pixel based computation and multi-
threaded Java.

This exercise has been made as an ad-
hoc, BYOD type project. The content
here as such does not imply anything
about actual products of NSN.

References
[DAV07] David F. M., Car-

lyle J. C., and Campbell R.

H. Context Switch Overheads on

Mobile Device Platforms. Uni-

versity of Illinois at Urbana-

Champaign 201 N Goodwin Ave Ur-

bana, IL. 5 pp. 2007. http://

www.cs.huji.ac.il/~feit/exp/

expcs07/papers/136.pdf

[LEA99] Lea Doug. Concur-

rent Programming in Java, De-

sign Principles and Patterns,

Second Edition. Addison Wes-

ley. ISBN 0-201-31009-0. 411

pages. November 1999.

[ARM13] ARM Limited. Multi-

threading technology and the

challenges of meeting perfor-

mance and power consumption

demands for mobile applica-

tions. 9 pages, 2013.

[JAC13] Jackson Joab. Ora-

cle and ARM to tweak Java. 2

pages. 2013. http://www.java-

world.com/article/2078833/en-

terprise-java/oracle-and-arm-

to-tweak-java.html

7/24/13 vi-vim-cheat-sheet.gif (1024×724)

www.viemu.com/vi-vim-cheat-sheet.gif 1/1

D
ea

r r
ea

de
r:

 I
ho

ne
stl

y h
av

e t
o

do
 a

 b
ett

er
 ch

ea
t s

he
et

th
an

 th
is

on
e,

bu
t t

hi
s f

ell
ow

 o
ne

 h
elp

ed
 m

e o
n

co
un

tle
ss

tim
es,

 a
nd

 b
eli

ev
e m

e i
t w

ill
 h

elp
 yo

u
im

m
en

sly
 fo

r o
ur

 n
ex

t p
ag

e a
rti

cle
. S

in
cer

ely
 B

ru
no

 D
oic

he

TECHNICAL ARTICLE

http://www.cs.huji.ac.il/~feit/exp/expcs07/papers/136.pdf
http://www.cs.huji.ac.il/~feit/exp/expcs07/papers/136.pdf
http://www.cs.huji.ac.il/~feit/exp/expcs07/papers/136.pdf
http://www.javaworld.com/article/2078833/enterprise-java/oracle-and-arm-to-tweak-java.html
http://www.javaworld.com/article/2078833/enterprise-java/oracle-and-arm-to-tweak-java.html
http://www.javaworld.com/article/2078833/enterprise-java/oracle-and-arm-to-tweak-java.html
http://www.javaworld.com/article/2078833/enterprise-java/oracle-and-arm-to-tweak-java.html

ODROID MAGAZINE	 28

Rebol (Relative Expression
Based Object Language)is a
revolutionary advancement in

programming language emerging from
over thirty years of language research.
It offers enormous flexibility and
power, with a focus on intuitive lan-
guage patterns that promote new ways
of thinking about software tasks.

Follow these steps to install open-
source Rebol 3 with GUI support:

 Open a web browser and navigate to
http://development.
saphirion.com/experimen-
tal/builds/android/
 Download r3-droid.apk (amazingly,
it’s smaller than 2MB).
 When finished, double-click on the down-
load icon (usually by the clock) and grant in-
stallation permissions.
 Go to the apps list, and click the icon for
R3/Droid.

Additional
Android notes:

 When using the Android Termi-
nal app, it is almost always necessary
to have root permissions. To login
as root, enter “su” at the command
prompt. This needs to be performed
each time Terminal is opened.

On my installation of Android, I
commonly get a message when I try
to create a new file, stating “Read-only
file system”. To overcome this, enter
“mount -o remount /” at the command
prompt. This needs to be performed
each time Terminal is opened.

To edit a script using Terminal, en-
ter vi myscript.r where “myscript.r” is

HOW TO
INSTALL REBOL
A BEGINNER’S GUIDE
by Bohdan Lechnowsky, Editor

HOW TO INSTALL REBOL

the name under which you
want your script to be saved
(see “vi cheat sheet” above
for some basics on how to
use it).

After editing your script,
you will need to change the permissions
so it can be accessed by Rebol 3 (exam-
ple: chmod 755 myscript.r)

vi Cheat Sheet
“vi” was created back in the days

when there were very few special keys
on computer keyboards. Keys like
“Esc” (escape) and the arrow cursor
keys didn’t even exist. One of the
great advantages of the vi editor is that
it is available on nearly any unix-based
operating system, including Android.

Because of the early limitations of
computer keyboards, vi was designed to
have two modes. The first is the input
mode, and the other is the command
mode. On the Android version of vi,
these two modes are toggled by press-
ing CTRL and [(more simply referred
to as CTRL+[). During input mode, any
key you type is entered at its face value.
During command mode, here are some
helpful commands:

i Insert at current position

I Insert at beginning of line

a Append at current position

A Append at end of line

dd Delete current line

yy Yank (copy) current line

. Repeat last command

cw Change current word

dw Delete current word

p Paste yanked data

: Enter extended command mode.

Here are a few extended commands:

w Write (save) the file

q Quit (don’t save) the file

wq Write and quit

q! Quit, even if the file has

been changed since last write

/ Search forward for the text

following the slash

? Search backward for the text

following the slash

There are much more in-depth vi
cheat sheets online, but the above com-
mands should allow you to edit just about
anything you need in vi. Although it
may seem uncomfortable to use at first,
seasoned vi users can often edit more ef-
ficiently than users on any other editor,
graphical or not.

On Ubuntu/ARM
As open-source Rebol 3 is still in

very active development, the graphi-
cal port of Rebol for ARM has not yet
been released. According to the devel-
opers at Saphirion, they predict a work-
ing ARM port of Rebol 3 with graphics
to be available sometime in February
or March 2014. Keep checking the
http://development.saphirion.
com/experimental/builds directory

http://development.saphirion.com/experimental/builds/android/
http://development.saphirion.com/experimental/builds/android/
http://development.saphirion.com/experimental/builds/android/

ODROID MAGAZINE	 29

for an ARM port. The graphical ver-
sion for Linux x86 is already available,
but it won’t work on your ODROID.
The Linux ports are being helped heav-
ily by a partnership with Saphirion and
other commercial interests, so expect a
lot of movement in this area over the
next few months.

In the meantime, Rebol 3 is avail-
able in the non-GUI variety from
http://rebolsource.net, and
can work wonders as a replacement to
bash, perl, PHP, Python and other lan-
guages that don’t have a native GUI.

Follow these steps to install Rebol
3 on Ubuntu/ARM:

Open a browser and navigate to http://re-
bolsource.net.
Locate the download for Linux ARM. It comes
in two variants: hard float and soft float. Either
should work fine, but if you have trouble, the soft
float version is likely more compatible with most
systems.
After downloading, open Terminal and rename the
downloaded file to “r3” for ease-of-use (example:
sudo mv r3-linux-arm-g4d9840f r3)
Also, change permissions to allow executing the
file (example: sudo chmod 755 ./r3)
To run it, enter sudo ./r3. To execute a
script located in a file, enter sudo ./r3
myscript.r. You can even execute scripts
located on the Internet like this: sudo ./r3
http://mysite.com/myscript.r.

If opening Rebol 3 without launch-
ing a script, you can now type any Rebol
commands at the command prompt.

PROGRAMMING WITH REBOL

PROGRAMMING
WITH REBOL
REDUCING COMPLEXITY IN DEVELOPMENT
by Nick Antonaccio and Bohdan Lechnowsky, Editor

Why Rebol?
Modern software development tools

are overly complex. Creating even a
small program to allow users to com-
plete the most basic computing task
typically requires the installation of a
complex Integrated Desktop Environ-
ment (IDE), a bloated Software Devel-
opment Kit (SDK), and other support-
ing tools. Developers need a working
knowledge of diverse chains of tools
patched together, along with library
Application Programming Interfaces
(API), database systems, and more just
to create a simple application.

For most developers, the thought
of building mobile apps, desktop GUI
programs, and web applications repre-
sents mastering a tremendous variety
of in-congruent work flow patterns,
incompatible data formats, and incon-
sistent development methodologies that
sap productivity at every turn. For these
developers, it’s an unavoidable part of
the job.

We live in a time when ubiquitous
and inexpensive handheld wireless de-
vices and ODROIDs connect us all to
an enormous world of useful data re-
sources. Those devices enable critical
data management, communications,
business transactions, entertainment,
and other practical benefits which deep-
ly affect the nature and quality of our
daily lives.

The primary frustrations of device
ownership have been eliminated by new
generations of technology. Users don’t
need to know how networks work to
connect to the Internet. Cameras, mi-

crophones, speakers, GPS and other
sensors are built into every tablet, phone,
netbook, and desktop PC, and they work
transparently without having to install
hardware, drivers, or OS patches.

Tiny form factors, like ODROID,
and inexpensive cellular network con-
nections, enable new types of applica-
tions that weren’t practical, even on
laptop machines, a few years ago. The
high-speed quad-core ODROID pro-
cessors, not to mention even the least
expensive modern phones and tablets,
run circles around the best desktop PCs
of a decade ago. Deep data content of
every sort, in every field of study and
interest, is available instantly online to
anyone around the globe. Mainstream
handheld hardware is tiny, the interfaces
are beautiful, standard formats exist for
virtually every type of data (images, au-
dio, video, structured tables of text and
numeric data, etc.), and well known op-
erating systems and software all function
in a relatively uniform and familiar way,
so that everything just “works” the way
that users expect.

Being able to use the amazing pro-
grammable network-connected comput-
ing power in our pockets, and all around
us, makes available enormous cultural
potential that has never before been
available, and gives us the ability to cre-
ate custom applications which leverage
that tremendous power will only con-
tinue to grow in importance for future
generations.

This situation is fantastic for users
of “apps”, but for software develop-
ers, the current landscape of tools is a
painful mess. The remnants of every

http://rebolsource.net

ODROID MAGAZINE	 30

legacy software and hardware solution
still haunts and infects the process of
writing modernized code. Numerous at-
tempts to standardize on different com-
mercially-motivated platforms and for-
mats have led to the need to support a
huge variety of data structures, language
syntaxes, and tool sets.

To even begin creating a typical “hello
world” app for Android, you need to install
hundreds of megabytes of software onto a
desktop computer, including an Integrated
Development Environment (IDE), a Soft-
ware Development Kit (SDK), a device
emulator, and any “productivity enhanc-
ing” tools that help ease the wildly com-
plex process of writing an applications.

Even for seasoned developers, modern
application development is a weighty en-
deavor. If you also intend to port your ap-
plications across mobile, desktop and web
platforms, you need truly deep experience,
skill, and lots of time.

It’s not uncommon to see teams of
professional engineers devote themselves
to building and supporting a single appli-
cation. Despite the fact that Android is an
open platform, today’s devices feel closed,
or at least cumbersome, for developers.
The hurdles to learning how to program
are too much for all but full time develop-
ers. Gone are the days when even hobby-
ists could write useful custom applications
for their personal and business computing
devices.

There was a time in our history when
this activity was just as popular, accessible
and even fun for users as running com-
mercial apps. It’s a shame, because never
before has there been such a tremendous
variety of knowledge and useful comput-
ing capability sitting at our fingertips.

Rebol
On All Platforms

For more than a decade, a small
group of developers, coding in Rebol,
have known what it means to be truly
productive, using a single simple tool to
create applications of all types, for ev-
ery popular platform that has come and

gone, includingmore than 40 hardware
platforms and operating systems so far,
and the web.

All the core components that make
modern computing possible - graphic
user interfaces, network connectivity,
manipulation of standard data formats,
etc. are handled in Rebol using the sim-
plest possible syntax, and implemented
using a tiny interpreter that runs exactly
the same way on every operating system.
Rebol was designed from the ground up
to eliminate complexity caused by patch-
ing together disparate tools, and it suc-
ceeds brilliantly in that regard.

Rebol side-steps most of the mess
that has evolved over the years in main-
stream software development technolo-
gy, and for a wide range of common de-
velopment tasks, it “just works” quickly,
easily, and more simply than can be
imagined by anyone mired in the mess
of traditional programming tools.

Rebol has a special ability to wrap
new capabilities into simple language
structures (also known as “dialects”,
domain specific languages, or “DSL”s)
which control multiple layers of com-
puting functionality. It goes far beyond
the abilities promised by old, rigid Ob-
ject Oriented Programming (OOP) ap-
proaches, and it has a proven record of
reducing complexity in widely varied de-
velopment tasks.

Recently, Rebol version 3 (“Rebol 3”
or “R3”) was released by Carl Sassenrath
as an open source project, and a version
for Android named “Saphir” is forked
and maintained by the Saphirion group.
Saphirion is a commercial application
development company that uses Rebol
as their primary development tool. Free,
open source R3 Saphir releases also exist
for Windows, Mac, and Linux desktop
operating systems, and R3 server ver-
sions enable easy and portable web de-
velopment strategies.

In most cases, Saphir R3 download
sizes range between 0.5 and 1.5 mega-
bytes, with GUI, networking, and all
other required components included,

and it’s shockingly simple to learn and
use. An entire development toolkit for
R3 requires less than a minute to install,
since absolutely no hefty SDK or IDE
installations are required, even for An-
droid development.

Rebol works the exact same way on
every platform, without any changes
to code or workflow routine. Even
people who spend the majority of
their time doing things other than writ-
ing code can learn to create powerful
custom business and personal applica-
tions with it, quickly and easily, on any
chosen platform.

Despite its extremely simple na-
ture, R3 is not a hobbyist toy or lim-
ited learning environment. Rebol is a
powerful and deep professional tool
which has proven itself in numerous
critical commercial projects, across
a wide array of demanding industry
environments, around the world, for
more than a decade.

Examples of Rebol’s practical
application in the real world

 Quick schedule apps

 Email programs with special features for
personal use

 Business applications to handle inventory,
sales and employee management

 Niche commercial applications intended for
international re-sale

 Distributed apps to organize group activi-
ties for your local school

 Web apps to manage membership routines
for an online club

 Hardware interfaces to control computer-
ized machinery in your home or business

 Systems to manage robotics at brand name
manufacturing facilities

Evolution of Rebol
For most of its life, Rebol 2 was a

closed source commercial tool which

PROGRAMMING WITH REBOL

ODROID MAGAZINE	 31

thrived as a “secret weapon” among
only a small community of users who
communicated privately and covertly us-
ing invite-only communication channels,
the executables of which were devel-
oped using Rebol 2.

With the release of open source R3
and the new potential for Android de-
velopment, in addition to more than
40 legacy platforms and web develop-
ment, Rebol has attracted a new group
of coders interested in its practical
and productive capabilities for creat-
ing software of all sorts. In future ar-
ticles, we will show you how easy it is
to get started.

Red
On All Platforms

During the closed-source era of
Rebol 2 and 3, several languages were
developed as open-source variants of
Rebol including Boron, Topaz, World
and Red. The data-interchange format,
JavaScript Object Notation (JSON), was
also heavily inspired by Rebol’s clean
data format.

The front-runner of these efforts
presently is Red, which also has a low-
level subsystem called Red/System.
While Rebol is an interpreted-only lan-
guage, Red and Red/System can run ei-
ther as an interpreted language or as a
compiled language. Red’s founder and
lead developer is Nenad Rakocevic, aka
“DocKimbel”.

The Rebol language family was recently
recognized as the most expressive multi-
purpose languages, as seen in the chart at
http://bit.ly/1iikG1r. Expressive-
ness is the measure of what can be accom-
plished by a given amount of coding.

The only two languages rated as
more expressive than Rebol are Au-
geas and Puppet, both of which are not
general-purpose. Red falls in the same
category as Rebol as far as expressive-
ness is concerned.

Red, along with Red/System, is the first
real contender to be a “full-stack” program-
ming solution. Several popular languages

PROGRAMMING WITH REBOL

are compared and contrasted at http://
bit.ly/1tHdcbS for their “Natural
scope of application”. Notice how Red,
coupled with Red/System, cover the entire
stack of application abstraction levels, even
more so than Rebol itself.

Another language
to learn?
I’ve heard it all
before!

Before starting on this section, make
sure you have completed the Rebol 3 in-
stallation outlined in the article by Boh-
dan Lechnowsky in this same issue. The
screenshots shown in this and future
articles are taken from a Windows work-
station, but will look nearly identical on
Ubuntu, Android, or any of the other op-
erating systems supported by Rebol 3.

For years, developers have been hear-
ing that some “new” language technol-
ogy will supposedly cut their develop-
ment time by orders of magnitude. That
sort of talk is so common that it falls
on deaf ears. This introductory section
provides a few short examples to sub-
stantiate some of the productive capa-
bilities which Rebolers enjoy. Nothing
else even comes close to its simplicity.

Using R3, you can build a GUI “hello
world” application for Android, Linux,
Windows, and Mac as simply as this:

load-gui

view [text “Hello World!”]

On Android, there will be no “close”
button on the window, so press “Es-
cape” on the keyboard to get back to the
Rebol command line.

The program above is much more
than the typical text-based console “hel-
lo world” app. It’s actually a complete
windowed form, capable of displaying
all sorts of other useful Graphic User
Interface (GUI) widgets.

Here’s another simple program that
displays some text entry fields, buttons,
lists, and other common GUI widgets.

Notice that every single widget word
maps directly to something that appears
on screen. There is no wasted syntax -
you really don’t even need to understand
anything about “programming” to fol-
low what this code does:

load-gui

view [

 field

 area

 check

 radio

 text-list

 text-table

 drop-down

 button

]

On Android, the Rebol command
line currently only takes single-line com-
mands. This is not a problem, as Rebol
is syntax-free. Simply enter the com-
mand like this on Android:

load-gui

view [field area check radio
text-list text-table drop-
down button]

Alternatively, multi-line programs
can be written with any text editor, and
executed using Rebol. For instance, if
you create a file called gui-demo.r that
you can execute from the Rebol 3 com-
mand line:

do %gui-demo.r

That’s it!
Pleas note that Rebol has numerous

GUI dialects. The examples shown in
this and future articles make use of the
“R3-GUI” dialect, which is based on,
and very similar to, the popular Rebol 2
Visual Interface Dialect (VID).

In the next article, we’ll look at creat-
ing a fully functional text editor, graphi-
cal calculator, and more!

ODROID MAGAZINE	 32

IO PORTS ON ODROID-U3

One of the exciting accessories
available for the ODROID-U3
is the I/O shield, which was

designed as versatile, general-purpose
data acquisition and control module
to provide a direct connection to the
ODROID-U3 I/O connector.

The I/O shield includes a big pro-
totyping area, so you can wire up DIP
chips, sensors, and more. Along the
edges, all the GPIO/ADC/PWM and
power connectors are broken out to 0.1”
pins for ease of access. There are also
two 3-pin headers for small servo motor
connections, and a 10-pin connector of
I2C/GPIO for further expansion.

This article will get you started with
using the I/O shield using examples in
the C++ language.

Installation
The drivers are installed by default

on Ubuntu 13.10, which is available for
download from the ODROID forums.

Verify that you have the following mod-
ule (Ti’s TCA6416A I2C to Parallel Port Ex-
pander) in your kernel source tree: /lib/
modules/`uname -r`/ kernel/
drivers/gpio/gpio-pca953x.ko

I/O SHIELD
ACCESS
USING THE C/C++ LANGUAGE
FOR ODROID-U3
Justin Lee and Kevin Kim

Launch Ubuntu Software Center, search for
“arduino”, and install it

Firmata example code

Usage

Download the Fir-
mata software for I/O shield, and
setup the configuration as follows:

Port setup :
Tools > Serial Port > /dev/tty-
ACM99

Open the example code and upload
it to your IO_shield:
File > Examples > Firmata > Stan-
dardFirmata

Download the I/O shield source code
http://dn.odroid.com/U3_
Accessory/u3_IOshield_ex-
ample.tgz

1. Extract source code using the “tar -xvzf”
command.

2. Build the libfirmatac.a library.

3. Build the Example code which links
libfirmatac.a:

ledBlink.ex is an IO Shield ‘D13’
port LED blink example.

servotest.ex is an IO Shield ‘D3’
port servo motor control example.

Making a Test
Circuit with the U3
I/O shield and the
Tinkering Kit

Use the following parts from the tin-
kering kit, also available from the Hard-
kernel website: B, C, E, G, H, I, J:

http://dn.odroid.com/U3_Accessory/u3_IOshield_example.tgz
http://dn.odroid.com/U3_Accessory/u3_IOshield_example.tgz
http://dn.odroid.com/U3_Accessory/u3_IOshield_example.tgz

ODROID MAGAZINE	 33

IO PORTS ON ODROID-U3

Accessing the
GPIO from the
Linux User Space

GPIO means “General Purpose In-
put/Output”, and is a special pin present
in some chips that can be set as either in-
put or output, and is used to move a signal
high or low (in output mode) or to get the
signal current status (in input mode). Usu-
ally, these pin are directly managed by kernel
modules, but there is an easy way to manage
these pins from the user space as well.

Standard Linux kernels contain a special
interface which allows access to the GPIO
pins. By running the kernel menuconfig
command before compiling the kernel, you
can easily verify if this interface is active,
and enable it if necessary. The kernel tree
path is Device Drivers > GPIO
Support > /sys/class/gpio/...
(sysfs interface)

If you embed the driver, you can ac-
cess the GPIO via the kernel node /

Match the simple circuit shown here, and
have your U3 like we are showing below:

sys/class/gpio.
If you want to work with a particular

GPIO, you must first reserve it, set the
input/output direction, then start man-
aging it. Once you reserve the GPIO
and finish using it, you also need to free
it, to allow other modules or processes
to use them. This rule applies whether
you want to use the GPIO from the ker-
nel or at the user level.

GPIO Export
By typing “sudo modprobe” in the

Terminal window after booting the
Linux kernel, the GPIO driver and
TCA6426 devices will be attached to the
i2c-gpio.4 bus. 16 Ports are mapped to

GPIO #289~#304 (I/O
Shield pin number P00~P07,
P10~P17):

sudo modprobe gpio-
pca953x

sudo su –c ‘echo tca6416
0x20 > /sys/devices/plat-
form/i2c-gpio.4/i2c-4/new_
device

dmesg

… i2c i2c-4: new_device: In-
stantiated device tca6416 at
0x20

Next, build the u3_shield_GPIO_
sysfs.c, located in the examples folder,
using g++. Please note that the GPIO-
sys_init() function need the super-user
permission to do modprobe and attach
i2c device. The default password on the
official Hardkernel images is “odroid”.

P00 port : LED blink

P10 port : key press, then GPIO

297 read value = 0, otherwise GPIO

297 read value = 1

Starting your
application software
on boot

There’s a place on the kernel to load
modules as needed. However, you can’t
use it to send echo commands or values
to sysfs without root or super-user permis-

sions. Fortunately, there is a way to over-
come this limitation by using a conf file to
launch the module as a daemon, then using
a shell script to perform the initialization:

1) Create the file /etc/init/
tca6416.conf, which may require
root privileges:

description “TCA6416 Module
Initialization”

start on runlevel [2345]

exec /usr/sbin/tca6416init.
sh

2) Create the file /usr/sbin/
tca6416init.sh:

#!/bin/bash

Load the Kernel Module

modprobe gpio-pca953x

Set the I2C address of the
module

echo tca6416 0x20 > /sys/de-
vices/platform/i2c-gpio.4/
i2c-4/new_device

Enable all GPIO’s on the
board

for gpio_n in `seq 289 304`

do

echo $gpio_n > /sys/class/
gpio/export

done

By adding these two files, all the
GPIO ports will be permanently en-
abled on reboot. You can also add your
application software in the “tca6416init.
sh” as an alternative method.

Additional Credits

The FirmataC library and exam-
ples are made by jdourlens, which
were slightly modified for use on the
ODROID: https://github.
com/jdourlens/FirmataC

https://github.com/jdourlens/FirmataC
https://github.com/jdourlens/FirmataC

ODROID MAGAZINE	 34

TECHNICAL ARTICLE

USING AN ODROID-XU
AS A WIFI ROUTER
GET TO 802.11AC WITH STYLE
by Mauro Ribeiro, Hardkernel Developer

The LAN Interface is eth1 (Gigabit Adapter)

The WAN Interface is eth0 (Connected to the
internet)

The Wifi Interface is wlan2

Although unlikely, the Wifi interface

value (the last item on the list) may be dif-
ferent for your LAN, but this is covered
below. It’s also very important for secu-
rity that you change both the root pass-
word and the “odroid” user password, in
case the board is exposed to the internet.

Install the necessary packages
and dependencies

apt-get install git build-es-
sential bridge-utils

Build the kernel

git clone --depth 0 https://
github.com/hardkernel/linux.
git -b odroidxu-3.4.y linux

cd linux

make odroidxu_ubuntu_defcon-
fig

make -j5

make modules_install

cp arch/arm/boot/zImage /me-
dia/boot

sync && reboot

 This builds a new -XU kernel from
the latest GitHub source code. Now
you have an updated copy of the kernel
on your ARM Board!

Dealing with Realtek Wifi drivers.
Realtek wifi drivers are slightly tricky

to configure:

Use the provided drivers
Netis ships a mini-cd with the

Linux drivers inside. You’ll have
a linux folder with the following
folder: RTL8812AU_8821AU_linux_
v4.2.0_6952.20130315. Copy that
folder to your ODROID, since these are
the drivers that we need to build.

Build the wifi drivers

cd RTL8812AU_8821AU_linux_
v4.2.0_6952.20130315/driver

tar zxvf rtl8812AU_8821AU_
linux_v4.2.0_6952.20130315.
tar.gz

cd rtl8812AU_8821AU_linux_
v4.2.0_6952.20130315

If you’d like to use your ODROID-
XU as a wireless router, you’ll need
the following items, all of which are

available from the Hardkernel website:

ODROID-XU (+E or Lite)

USB 3.0 to Gigabit LAN Adapter

MicroUSB 3.0 to USB OTG Cable

USB 3.0 to 802.11ac Adapter

microSD or eMMC with Ubuntu Server in-
stalled

The ODROID-XU works best for
this project because it offers a USB 3.0
port, so that we can use the full band-
width of it for Wifi AC, and because the
XU models also permit the use of the
USB 3.0 Gigabit LAN adapter. For best
throughput, we’ll use our 10/100 On-
board LAN as the WAN Port.

The USB 3.0 to Wifi adapter used in
thie article is a Netis WF2190, which is
based on the Realtek 8812AU chip. If
you have problems finding the Netis
WF2190 Adapter, there is a listof equiv-
alent adapters using the same chip here:
http://goo.gl/dNwdnY.

Before starting, make sure that you
have at least 4GB of free disk space.
The following values are used in this tu-
torial for example purposes (your local
network may differ):

The LAN address will be 10.10.10.0/24

The LAN gateway (ODROID) will be
10.10.10.254

The DHCP Range will be 10.10.10.1 to
10.10.10.253

Believe us, this
setup means

business

http://goo.gl/dNwdnY

ODROID MAGAZINE	 35

iface br0 inet static

bridge_ports eth1

address 10.10.10.254

netmask 255.255.255.0

network 10.10.10.0

pre-up /sbin/ifconfig wlan2
up

After rebooting, your LAN interface
will be called br0 with eth1 being part of it.

Using hostapd
Since the wireless adapter doesn’t

have dual radios, you have to choose be-
tween the 5GHz or 2.4Ghz frequency.
If you are on a network with only 5Ghz
devices, which most are nowadays, use
the 5Ghz config to allow a maximum
speed of 800Mb/s. If you need extra
compatibility with older computers, or
your devices aren’t 5Ghz, use the 2.4Ghz
configuration shown below.

To begin configuring the hostapd
service, start by creating the following
file using root privileges:

/etc/hostapd.conf:

5GHz version

Change this to match your
config

interface=wlan2

ctrl_interface=/var/run/hos-
tapd

Your network name

ssid=ODROID-NET 5Ghz

channel=36

wpa=2

Your network password

wpa_passphrase=testtest

bridge=br0

eap_server=0

wps_state=0

driver=rtl871xdrv

* edit the Makefile and on line 583
ARCH ?= change to ARCH ?= arm

make && make install

modprobe 8821au

 Now your Wifi drivers should be
working properly.

Test the Wifi Driver

ifconfig wlan0 up

iwlist wlan0 scan

Note that if wlan0 doesn’t exist,
check for wlan1 or wlan2 by typing “if-
config -a”. Save this information for
later, because we’ll need to know the wifi
card name in an upcoming step.

At this point, you’ll see the list of
Wifi networks in Range. You can now
use your ODROID as a Wifi client to
connect to other wireless networks.

Building hostapd
and wpa_supplicant

Because Realtek 8812 isn’t supported
on Linux yet, we need to build the drivers,
including hostapd, from the manufactur-
er’s source provided on their website.

Build hostapd
from the manufacturer’s source

cd RTL8812AU_8821AU_linux_
v4.2.0_6952.20130315/wpa_
supplicant_hostapd

tar zxvf wpa_supplicant_hos-
tapd-0.8_rtw_r6747.20130222.
tar.gz

cd wpa_supplicant_hostapd-
0.8_rtw_r6747.20130222/hos-
tapd

Before building and installing hos-
tapd, let’s just make sure that we don’t
have Ubuntu’s hostapd installed:

apt-get remove hostapd

make && make install

Building wpa_supplicant

TECHNICAL ARTICLE

cd RTL8812AU_8821AU_linux_
v4.2.0_6952.20130315

cd wpa_supplicant_hostapd

cd wpa_supplicant_hostapd-
0.8_rtw_r6747.20130222

cd wpa_supplicant

Again, we have to make sure that
Ubuntu’s wpa_supplicant isn’t present:

apt-get remove wpasupplicant

make && make install

This installs all of our wifi drivers,

along with the manufacturer’s provided
tools. Let’s move on into the configura-
tion part.

Configuration
 The Ubuntu Network Bridge must

be configured in order to create the inte-
gration between the Wireless and Wired
connections.

cd /etc/network

You’ll also need to edit the interfaces
file, using the following screenshot as an
example:

-- BEGIN --

setup loopback interface

auto lo

iface lo inet loopback

setup eth0 as DHCP for our
WAN

auto eth0

iface eth0 inet dhcp

setup eth1 as manual and
leave it empty

auto eth1

iface eth1 inet manual

Create our bridge with
eth1 on it and use the IP
10.10.10.254

auto br0

ODROID MAGAZINE	 36

beacon_int=100

hw_mode=a

ieee80211n=1

wme_enabled=1

h t _ c a p a b = [S H O R T - G I - 2 0]
[SHORT-GI-40][HT40+]

wpa_key_mgmt=WPA-PSK

wpa_pairwise=CCMP

max_num_sta=8

wpa_group_rekey=86400

2.4GHz version

interface=wlan2

ctrl_interface=/var/run/hos-
tapd

ssid=ODROID-NET 2.4Ghz

channel=6

wpa=2

wpa_passphrase=testtest

eap_server=0

wps_state=0

driver=rtl871xdrv

beacon_int=100

hw_mode=g

ieee80211n=1

wme_enabled=1

h t _ c a p a b = [S H O R T - G I - 2 0]
[SHORT-GI-40][HT40+]

wpa_key_mgmt=WPA-PSK

wpa_pairwise=CCMP

max_num_sta=8

wpa_group_rekey=86400

You should customize the inter-
face parameters “ssid” and “wpa_pass-
phrase” for your network.

Auto-Start hostapd
Edit /etc/rc.local and add the

following lines before the “exit 0” line:

TECHNICAL ARTICLE

/usr/local/bin/hostapd /etc/
hostapd.conf &

sleep 3

/sbin/brctl addif br0 wlan2

 DNS and DHCP
Our network needs both a DNS and

a DHCP Server in order to auto-con-
figure our clients. In this case, we’ll use
dnsmasq since we already installed it as a
dependency in the first step.

- mkdir /etc/dnsmasq

Create the file /etc/dnsmasq.d/
odroid.conf:

resolv-file=/etc/resolv.dns-
masq

addn-hosts=/etc/dnsmasq/
hosts

dhcp-hostsfile=/etc/dnsmasq/
dhcp

expand-hosts

min-port=4096

stop-dns-rebind

rebind-localhost-ok

interface=br0

Here on this line we’ll
configure the LAN interface
(br0), initial IP Address

last IP address, Network
netmask and the time that a
IP will be kept to a client

that is known as lease
time

dhcp-range=tag:br0,10.10.10.
1,10.10.10.253,255.255.255.0
,1440m

This line we configured the
IP address of our gateway
(the odroid)

dhcp-option=
tag:br0,3,10.10.10.254

dhcp-lease-max=255

dhcp-authoritative

Now that our devices can connect
to our new network, they need to be
able to access the internet. We’ll fix that
right now!

Creating IP tables
for internet access
Edit /etc/rc.local, and before

“exit 0”, add the following lines:

echo 1 > /proc/sys/net/
ipv4/ip_forward

iptables -t nat -A POSTROUT-
ING -s 10.10.10.0/24 -o
eth0 -j MASQUERADE

Now we’re done, and you should
have a fully functional wireless router.

LAN Utility showing
that the router is up

and running

To make your router even more
useful, you can also attach USB disks
to the USB 2.0 ports of the ODROID-
XU, then create a Torrent server, a
Samba file server, or any other type
of shared network resource.

I’ve tested the ODROID-XU router
with my Nexus 5 phone, and it report-
ed a throughput of 433Mb/s. That’s
quite nice for Wifi, isn’t it ? It could
go faster, but I think that 433Mb/s is
a limitation of the Nexus 5.

Next month, I’ll discuss how to setup
some attractive graphics to monitor the
input/output data on your network.

ODROID MAGAZINE	 37

SETTING UP A 1080p HOME MEDIA CENTER

THE ART
OF MULTI-BOXING
1080p HOME MEDIA CENTER
USING POCKET ROCKET AND WHISPER
by Rob Roy, Chief Editor

Multi-boxing is an advanced net-
working technique of connect-
ing two or more computers to

create a single virtual system. Originally
referring to gamers who dominated on-
line matches by controlling several play-
ers simultaneously, the methods can also
be used in other applications besides
gaming as a way to use parallel comput-
ing to improve the overall responsiveness
of the user experience.

Compared to a single-box system,
which requires a reboot to switch be-
tween platforms, the key combination
Alt-Tab switches between the different
desktops of the multi-boxed machines.
Tasks that would normally slow down
the user interface, such as downloading,
video conversion, or torrents, are moved
to a second computer which performs
its job seamlessly in the background,
but appears on the first machine as if it
were a native application. As a multiple
Odroid owner, it’s more economical to
connect several Odroids together, ac-
cessed by a single monitor and keyboard,
than to purchase separate equipment for
each computer.

The primary advantage of delegating
tasks among several computers is that,
if disk or CPU activity is high on one
machine, the performance of the other
systems are unaffected, since each com-
puter has its own local resources, without
needing to compete for processor cycles
or hard drive access. For example, when
watching videos, heavy background
downloading can affect the frame rate
of the video playback, causing video
artifacts, frame stuttering and audio de-

lays. Using a second system to do the
work of gathering media files then frees
up the main system for playing smooth
video without glitches caused by spikes
in disk activity.

To illustrate the concept of Odroid
multi-boxing, two of the community
images available on the Odroid forums,
Android Pocket Rocket and Lubuntu
Whisper, can work cooperatively to
run two Odroids as a virtual octa-core
system. Operating two images simulta-
neously improves the stability and effi-
ciency of both environments, with the
advantage of doubling the computing
power, RAM and disk storage available
for use. Alternatively, the full-featured
Dream Machine image may be used in-
stead of Whisper, and the Couch Potato
SD card image may be substituted for
Pocket Rocket in case an eMMC module
is not available.

Gathering
the Equipment

Setting up an Odroid multi-boxed
virtual computer requires any two
Odroids from the X, U or XU series,
and a modern wi-fi router. The remov-
able eMMC modules available from
Hardkernel give the best disk perfor-
mance, and for media storage, a high-
capacity external USB drive or SD card
permits sharing of large files between
the computers without crowding the
main operating system partition.

The following guide outlines the
steps necessary for building a typical
Home Media Center with two Odroids,
using one Odroid as the media server

and another Odroid as the media client.
Since XBMC for Android gives the best
performance in 1920x1080 resolution,
I chose Android Pocket Rocket as the
client, which already has the necessary
SSH, VNC, and Samba protocols in-
stalled. For the media server, Lubuntu
Whisper works well because of the pre-
configured Desktop Sharing, Transmis-
sion and Samba applications. Both im-
ages are available for download from
the Odroid forums at http://forum.
odroid.com/.

In this dual-box system, media ac-
quisition is performed only by the Linux
server, which can elegantly handle a high
volume of disk and ethernet activity.
When media files are ready for viewing,
the Android system loads them from
a common shared directory and plays
them using a hardware-decoded video
player like XBMC or MXPlayer.

The first step, after downloading and
copying the images to an eMMC mod-
ule or SD card, is to set up the network
neighborhood so that the Odroids can
find each other.

Configuring
the Router

The server system running Whisper
needs a local static IP address so that the
other Odroid can locate it on the net-
work easily. Without a static IP, the con-
nections would need to be reconfigured
with a new IP address after each reboot.

The option to assign a permanent IP
address, also called DHCP reservation,
is included in the wi-fi router’s adminis-
trative panel. For example, using a stan-

A pair of ODROID U3s can run all of this!

http://forum.odroid.com/
http://forum.odroid.com/

ODROID MAGAZINE	 38

SETTING UP A 1080p HOME MEDIA CENTER

dard home Cisco router, the admin page
is accessed at 192.168.1.1 with a default
blank username and password of “ad-
min”. Some routers use 192.168.0.1,
10.0.0.1 or another similar address in-
stead. For specific instructions, refer
to the router manufacturer’s website or
user manual for details on accessing the

admin panel and setting a
static IP address.

To reserve the static IP ad-
dress, boot up Whisper with
its ethernet port connected
to the router, then login to
the router from any comput-
er on the network. Follow
the manufacturer’s instruc-
tions, setting the static IP ad-
dress for the Odroid running
Whisper to a convenient and
easy-to-remember number,
such as 192.168.1.100.

Enabling
Desktop
Sharing,
Samba and
SSH

The two Odroid have three chan-
nels of communication with each other,
known as protocols. Each protocol pro-
vides a different service to allow specific
types of remote access to the host server’s
disk, memory and peripheral resources:

VNC stands for Virtual Network
Computing, a protocol that broadcasts
a graphical desktop to a remote system
and processes input from the remote
keyboard and mouse as if they were con-

nected locally. VNC servers
and clients are available for
nearly all modern operating
systems, including iOS, An-
droid, Windows, Linux and
OSX. Its wide appeal per-
mits unique combinations
like accessing a Windows
desktop from a Macintosh,
running a Linux desktop
from within Windows, or
wirelessly controlling mul-
tiple Odroids from an An-
droid phone or iPad.

 SSH is a Secure SHell
which creates an encrypted
text-based connection be-
tween two computers using
a networked terminal. With

SSH, remote commands may be sent to
the server using the standard command
line interface to start and stop applica-
tions, reboot the system, and perform
other administrative functions. In the
media center example below, it will be
used to launch the VNC server.

Samba is a free software implemen-
tation of the SMB/CIFS networking
protocol, allowing remote file servers to
be mounted as local drives. For purpos-
es of media sharing, the Samba server
enables video, audio and other files to be
accessed by the Android media client via
the ethernet port.

To improve system security, all three
protocols require separate usernames
and passwords. For convenience, Sam-
ba, SSH and VNC are initially synchro-
nized to use “odroid” as the username
and password. These passwords should
be changed before moving on to the
next step, but in the following screen-
shots, the security remains unedited and
all password fields contain the default
value of “odroid”.

Setting Up
the Server

For the initial setup, connect the
Odroid running Whisper to the key-
board, mouse and monitor. Enable
Desktop Sharing by selecting “Desktop
Sharing” from the “Internet” menu, and
matching the options to those shown
below. Choose an appropriately secure
password for desktop access which will
later be used in setting up the Android
bVNCFree client.

Typical router admin panel with option
to assign static IP address

Router admin panel with “odroid” client added
to DHCP reservation list as 192.168.1.100

Desktop Sharing configuration menu

ODROID MAGAZINE	 39

SETTING UP A 1080p HOME MEDIA CENTER

Output of ifconfig command on
the Whisper server

Pocket Rocket desktop contains JuiceSSH
and bVNCFree, make good use of them

As a double-check, verify that the IP
address of the Whisper system matches
the one selected in the DHCP Reserva-
tion router setup by running Terminal
from the Whisper desktop and typing
“ifconfig”. If the addresses don’t match,
it may be necessary to reboot Whisper in
order to register it under the new IP ad-
dress stored in the router.

Finally, connect any large-capacity
device to use as a shared directory for
media files such as an external USB
drive to the Whisper server, and run the
“Samba” applet from the “Preferences”
menu. Match the options shown in Fig-
ures 5-8, substituting the preferred stor-
age directory for the one shown in the
screenshot. For the purposes of run-
ning the stress tests detailed below, set

the shared directory to “/home/
odroid/Downloads” since this is
the default save directory for Trans-
mission, Firefox and Chromium. If
using an external USB drive, con-
figure all three applications to save
to a shared Samba shared storage
directory located on the external
drive.

Setting Up
the Client

Now that the server is ready, dis-
connect the keyboard, mouse and
monitor, and connect them to the
Android Pocket Rocket client ma-
chine. From now on, the Whisper serv-
er will not need any peripherals except
in the case of network or router failure.
The server’s desktop, command line in-
terface, files, and CPU are all available to
the Android Pocket Rocket client via the
the SSH, VNC and Samba protocols.

The initial connection between the two
computers is via SSH, so that the VNC
desktop server may be started, which then
allows the X11 desktop to be shared. After
the Vino server loads, JuiceSSH remains
in the background while the Android ap-
plication called bVNCFree gives remote
control of the Whisper desktop.

Connecting the
Client to the Server

Launch JuiceSSH and select “Man-
age Your Connections”, and match the
options shown in below figures, using
the static IP address registered with the
router in the first step. Advanced users
may skip the SSH step by adding Vino as
a Linux startup task.

JuiceSSH configuration options

Configuring the Samba options in Whisper

ODROID MAGAZINE	 40

Android has many built-in shortcut key
combinations that closely resemble
those used in Windows and OSX.

Esc: Close a popup window

Control-W: Close the current window

Control-T: Open a new browser tab

Control-C: Copy

Control-X: Cut

Control-V: Paste

Control-A: Select all

Tab: Navigate to next input field

Alt-Tab: Switch to another appli-
cation

Alt-Tab -> Alt-Esc: Return to the
desktop (same as Home button)

Mouse Right-click: Go to previous window or close
a popup window if there’s one open

As an example of keyboard naviga-
tion, you can press Alt-Tab, then Alt-Es-
cape to get back to the Android desktop
instead of clicking on the Home button
with the mouse from within any An-
droid application.

Once the server is connected,
JuiceSSH drops into the remote server’s
scripting shell, known as the command
line interface or command prompt.
For convenience, Whisper includes a
local Vino script which automatically
shares the current desktop using a sin-
gle command. Launch the VNC server
by typing “vino” at the SSH command
prompt, and entering the root password
of “odroid”.

Keyboarding
Like a Pro

Before moving on to using the
graphical X11 desktop, it’s important to
become comfortable with the Android
interface itself. To optimize the user
experience, Android provides several
keyboard shortcuts that permit quick
window management and data sharing
functions while also alleviating the need
for using the mouse.

Connecting
with VNC

Launch the bVNCFree application,
and select “New Connection”. Match
the configuration options to those
shown in Figure 8, again using the static
IP address registered with the router and
used when setting up JuiceSSH.

After the handshake has been estab-
lished, the Whisper desktop opens up,
allowing the Android client to take full
control of its storage, CPU and resourc-
es. By also enabling the “Fit To Screen”
scaling option, the virtual system gives
the appearance that the server desktop
is running natively on the local Odroid
client while simultaneously running An-
droid applications.

Running the Media
Server

Now that the two systems are connect-
ed, they are ready to perform some tough
tasks to show off how well the networked
machines handle a high volume of disk
I/O. For comparison, Pocket Rocket will
do all of the work on its own as an exam-
ple of single-boxing. By stress testing the
client system, the areas of improvement
become more apparent when many large
files are processed at the same time.

For the single-box test, download sev-
eral files, start a few torrents, and watch an
XBMC video using only Pocket Rocket.
Although the Android system performs
well under medium to heavy load, there
will be brief moments during video play-
back where the screen will stutter, or the
audio will be out-of-sync due to spikes in
disk access. Because the eMMC or exter-
nal drive has many applications competing

SETTING UP A 1080p HOME MEDIA CENTER

Juice SSH connecting to the Whisper server

JuiceSSH after running the “vino” command

The Alt-Tab menu in Android Pocket Rocket

Configuration options for bVNCFree

ODROID MAGAZINE	 41

for storage, the playback experience gets
slightly degraded at random intervals due
to locked resources.

To improve stability and video play-
back, the tasks of downloading and han-
dling high volumes of disk access are
delegated to the Whisper server in the
dual-box setup. This separation frees up
the processor cycles and disk usage on the
Android client so that the video player isn’t
waiting for another application to finish
before loading the next piece of the video
from the hard drive.

In order to perform the dual-box stress
test, shut down all of the downloads and
torrents on the Android system so that
only the video player is running. Press
Alt-Tab to switch to the bVNCFree ap-
plication, then use the Whisper desktop
to download several large files and torrent
a few more, using the web browser and
Transmission.

After one of the media files has fin-
ished downloading, press Alt-Tab to
switch to the Android video player, such as
XBMC, then play the file from the newly
added Samba shared directory.

The simplest way to load a media file, is
to log into the Samba share using either ES
File Explorer’s “LAN” tab and single-click
a media file from the shared directory, or
by starting XBMC and logging into the
Samba share using the XBMC interface.

Notice that moving the downloads to
the Whisper server allows the videos to

play smoothly on Android, without stut-
tering or momentary freezing. The play-
back on the Android client remains con-
sistent despite heavy stress,on the server,
which grealy improves the experience of
using Pocket Rocket by itself.

Peeking
Under the Hood

Since the Android operating system
and video player have no competition
for the local hard drive, overall per-
formance improves on the Android
client since it has immediate access to
the hard disk, now that the media files
streams have been moved over to the
ethernet port. The result of the coordi-
nation between the two systems is that
the Android client remains responsive
at all times, while the Whisper server
accomodates the increased disk activity
in the background without locking the
Android system’s resources. The dual-
box version of the Media Center per-
forms better than the single-box ver-

sion because of its compartmentalized
use of each system’s peripherals.

Files may also be copied and shared
from one system to another using ES
File Explorer, so that documents may
be edited locally on the Android client
system while maintaining a read-only
master copy on the Whisper server. Ad-
ditionally, bVNCFree allows text data
to be transferred between previously
unconnected desktop environments
(ex. between Windows and Linux) us-
ing the Copy and Paste function of the
Android desktop, instead of resorting
to an intermediate file or email.

Building
a Cluster of Odroids

Follow the steps again to connect
more computers to the cluster, with a
separate SSH and VNC session control-
ling each additional system. For my per-
sonal multi-boxing system, I connected
several Odroid computers which offer a
dedicated web server, application devel-
opment packages, and a security testing
suite, all operating in their own resource
spaces, coordinated using the Android
Pocket Rocket desktop.

Advanced
Multi-boxing

Seasoned Linux users can add auto-
mation to the Media Center by sched-
uling cron jobs, adding RSS feeds, and
kickstarting downloads using the rTor-
rent command line interface. Further
customizations include enabling the web
interface in XBMC and Transmission for
true remote management, and installing
a local Apache website for managing,
sorting and displaying the media library
contents in an easy-to-read format.
Handbrake has also recently been port-
ed to the Odroid, which can be included
in the download process for converting
media files to the preferred resolution
and codec before making them available
to the Android client.

SETTING UP A 1080p HOME MEDIA CENTER

The Whisper desktop, as viewed through the
Android bVNCFree application

ES File Explorer’s LAN tab

ODROID MAGAZINE	 42

MEET AN ODROIDIAN

What is your official title and role at Hard-
kernel?

Senior Software Engineer, I mainly
do Kernel work, Linux Support and deal
with our forums. Trying to get onto the
Hardware world too.. Its a lot of fun :)

As one of the moderators of the ODROID
forums, what do you like most about the
ODROID community?

I think that what I like most the is
amount of information that we managed
to share and how many users that we had
with no Linux knowledge, now they are
quite advanced.

How did you get started with computers?
Since I was 2 years old (from what I

can remember), I’ve shown a tendency in
dealing with electric and electronic stuff.
Mostly because of my uncle’s influence,
who taught me basic electronics since I
was kid. I was 5 or 6 years old when my
uncle showed me an Apple 2+. From a
friend of his. This was on 1989 or 1990.

A year later, my un-
cle gave me an awesome
386 computer. I still
recall the exact specs”
386-DX40, 4MB of
RAM, VGA Card, 14”
Color Monitor (CRT),
Dual Floppy 5 1/2 and
3 1/4. And an out-
standing 260MB Sea-
gate HDD. I kept this
machine. The CRT and
HDD are dead, but ev-
erything else works.

I really got into Linux in 1998. A
friend of mine brought me a CD-ROM
from USA containing “Slackware 97”.
That is where everything started.

What are some of your favorite projects that
you’ve seen ODROIDs being used for?

I love projects that deal with light con-
trol and ambiance light control. I don’t
think I have seen any of those so far us-
ing ODROID’s. I’ve seen some pretty

neat robots powered by
ODROID’s, and I’m on
my own personal project
to do some light control
with ODROID’s :)

Do you have any personal
projects that you’re work-
ing on using ODROIDs?

Yes, ambient light
control. It’s using a
U3+Shield board to
control the light on my

room using 5 10W leds. Right now I
have it about 70% complete. Minor bits
are missing, such as cabling, housing and
remote control Software.

What other interest and hobbies do you enjoy?
Race Cars are probably what I love

most apart from the computer side. I’ve
been part of the scene dealing with cars
ECU’s. Combustion engines are fun.

About my dogs: They are two Lhasa-
Apso. Meg is the older, she’s 6 years old
now.

Junior is the last born of her mother,
he’s 4 years old now. Laika and Res were
my very first dogs. They are the couple
that gave birth to all of my current dogs.
Unfortunately, Laika passed away early last
year due to complications of a surgery to
remove stones on her bladder. Res sadly
passed away a couple months later. Laika
died at age of 7 and Res at age of 9.

MEET
AN ODROIDIAN
MAURO RIBEIRO: THE SOFTWARE GENIUS
BEHIND ODROID’S LINUX KERNELS
edited by Rob Roy

Mauro dressed in a typical korean attire, a
cool memento of his last korean trip.

