
ODROID
Magazine

Ubuntu 14.04 Trusty Tahr Is Here • Peek Inside Android Source Code

Year One
Issue #3
Mar 2014

Linux

ODROID
on the

Gaming

Set up
a HPC
Head Node

Making Money with ODROID Web Development

Boot a Linux
Distro from an
USB Drive

Keep your
kernels up
to date

ODROID MAGAZINE 3
ODROID MAGAZINE 3

EDITORIAL

W e’ve had an exciting first two months here at ODROID Magazine, and it’s
been a pleasure to read the many awesome submissions from our diverse
team of international authors. The articles have been well received by

the community, with nearly 10,000 downloads in our first month. Now that we’ve
introduced you to the $59 U3 powerhouse board, and shown you how to be the first
on your block with a Giant Android tablet, we’re going to explore the fun side of
Linux: its amazing GAMES.

Remember those early 8- and 16-bit computer games with amazing gameplay, unique
stories, and really catchy music? Arcade and console classics such as Donkey Kong, Pac-
Man, Super Mario Brothers, Maniac Mansion, Mortal Kombat, and Star Wars all run
great on the ODROID in stereo sound and HD graphics. Hold on to your joystick!

Premiering in ODROID Magazine this month is Nanik, who is our new Android De-
veloper columnist. He brings with him a deep understanding of software development,
and presents us this month with an in-depth look into the Android source code. Ronaldo
is another recent addition as our Android Gaming expert, with reviews, tips, and guides
to the thousands of Android games available from the Play Store and other sources.

Also joining the regular contributor circle is Manuel, our new Multilingual
Editor, providing a full Spanish translation of each month’s issue for the benefit
of our international community. We are also very proud to introduce our Proof-
readers Venkat and Fabien, who review and test the magazine articles before
publication from a reader’s perspective.

Look for an announcement on the ODROID Magazine forum at http://forum.
odroid.com for more details on the upcoming Spanish version. Welcome aboard,
Nanik, Ronaldo, Manuel, Venkat and Fabien!

ODROID
Magazine

Rob Roy, Chief Editor

I am a computer programmer living
and working in Silicon Valley, CA,
USA, designing and building websites
such as Vevo, Hi5, Dolby Laboratories
and Hyundai. My primary languages
are jQuery, Angular JS and HTML5/
CSS3. I also develop pre-built operat-
ing systems, custom kernels and opti-
mized applications for the ODROID
platform based on Hardkernel’s official
releases, for which I have won several
Monthly Forum Awards. I own a lot of
ODROIDs, which I use for a variety of
purposes, including media center, web
server, application development work-
station, and gaming console.

Bo Lechnowsky, Editor

I am President of Respectech, Inc., a
technology consultancy in Ukiah, CA,
USA that I founded in 2001. From my
background in electronics and com-
puter programming, I manage a team
of technologists, plus develop custom
solutions for companies ranging from
small businesses to worldwide corpora-
tions. ODROIDs are one of the weap-
ons in my arsenal for tackling these
projects. My favorite development
languages are Rebol and Red, both of
which run fabulously on ARM-based
systems like the ODROID-U2. I have
deep experience with many unique op-
erating systems.

Bruno Doiche, Art Editor

Fetched a Lapdock Altrix to play with
his ODROIDS so now his fiancée can
stop sending him away from the living
room TV to watch Netflix.

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian. • Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang,
Gyeonggi, South Korea, 431-815 • Makers of the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE architecture based single board computer.
Join the ODROID community with members from over 135 countries, at http://forum.odroid.com, and explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

http://forum.odroid.com
http://forum.odroid.com
http://magazine.odroid.com/
http://forum.odroid.com/
http://www.hardkernel.com/

ODROID MAGAZINE 4

A frequent contributor to the
ODROID community, Suriyan
is well known for his updated

ODROID bootloader, which permits
booting into a Linux root file system
located on a USB or network partition.
He graciously shares his expertise in
response to a highly requested forum
topic: how to set up an ODROID,
particularly the U2 and U3, with a
minimal boot and root file system
partitions, so that all other operating
system files can be accessed from an
external USB hard drive.

The Need for an
eMMC or SD card

Although the root file system can
be stored on a network or USB drive,
an eMMC or SD card is required to
store the boot loader related files. The
ODROID hardware always looks for
the boot loader, known as u-boot, on
the local eMMC module or SD card.

The ODROID XU has a DIP
switch which lets the user choose
between eMMC and SD card for the
boot media. The U2 and U3 models,
on the other hand, always tries to boot
from eMMC first, if a disk is present,
and falls back to booting from the SD
card if not.

BOOTING A LINUX
DISTRIBUTION FROM
AN EXTERNAL USB
DRIVE
THE MOST POPULAR ARTICLE REQUEST
FROM OUR USER FORUMS
by Suriyan Ramasami

TECHNICAL ARTICLE

Getting the image
The popular Xubuntu image for the

ODROID U3, which is available for
free download at http://odroid.
in/ubuntu-u2-u3/, will be used
in this article to demonstrate how to
move the root file system to an ex-
ternal USB drive. The same methods
apply to any similar ODROID distri-
bution, including Debian, OpenSUSE,
ALARM, and Ubuntu.

Although some flavors of Linux
may contain simpler tools to keep the
root file system on a separate drive, the
approach shown here uses common
tools that are present in most (if not
all) distributions.

Gathering
the Equipment

Choose any ODROID from the X, U
or XU series along with a pre-flashed SD
card containing the official Hardkernel
Xubuntu image linked above. Any type
of USB drive, such as a flash or external
USB, can be attached to the ODROID
for storing the external file system. To
begin, boot up the default image in or-
der to access the files involved in the
boot process.

System Partitions
Let’s look at the system partitions to

get an understanding of where the boot
and the root file system partitions reside.

/dev/mmcblk0p1 is the first VFAT
partition which hosts the boot related
files

/dev/mmcblk0p2 is the EXT parti-
tion which is the root file system

The boot partition and the root file
system both reside on the SD card, as
indicated by the letters “mmc” in the de-
vice name.

Exploring the boot
partition

boot.scr: The boot loader (u-
boot) uses this file for its input variables

boot-*.scr: Sample files which can
be used as replacements for boot.scr

zImage: Linux kernel
uInitrd: initial ramdisk used by the

Linux kernel

The boot loader’s job is to load zIm-
age and uInitrd, then pass control to

http://odroid.in/ubuntu-u2-u3/
http://odroid.in/ubuntu-u2-u3/

ODROID MAGAZINE 5

TECNHICAL ARTICLE

zImage along with some boot param-
eters that are set in boot.scr.

Looking at the boot.
scr file

The root= variable is passed as
a parameter to the Linux kernel by the
boot loader, instructing it to use the file
system matching the given ID.

root assignments can take three
forms:

root=UUID=...
root=LABEL=...
root=/dev/<device>

The first two variations can only be
used if an init ramdisk is used along with
the Linux kernel. The ArchLinuxArm
distribution does not use an init ramdisk
for booting, and so the third form should
be used to ensure a that the boot loader
remains compatible with ALARM.

In order to determine the UUID of
the EXT partition, use the dumpe2fs
command.

root@odroid:~# dumpe2fs /
dev/mmcblk0p2 |grep UUID
dumpe2fs 1.42.8 (20-Jun-
2013)
Filesystem UUID:
e139ce78-9841-40fe-8823-
96a304a09859

As shown above, the UUID listed
should match the root=UUID=...
parameter in boot.scr. If they don’t
match, Linux will not be able to iden-
tify the root file system, and will be
unable to mount it.

The problem with the UUID ap-
proach is that, if a new file system is
created and the root file system is cop-
ied over to it, it will fail to boot up, so
the UUIDs need to remain manually
synchronized.

A better approach is to use file sys-
tem labels instead. To read the label of
an existing EXT file system, use the
e2label command.

root@odroid:~# e2label /dev/

mmcblk0p2

rootfs

To change the label of an existing file
sytem, the tune2fs command should be
used.

root@odroid:~# tune2fs -L

“RootFS” /dev/mmcblk0p2

tune2fs 1.42.8 (20-Jun-2013)

root@odroid:~# e2label /dev/

mmcblk0p2

RootFS

The form root=LABEL=RootFS
will work as well, and is the most flexible
method of identification, since the label
can be easily changed using tune2fs.

Using the
root=LABEL=...
parameter

Consider the case where the ability to
boot to different distributions is needed
(Debian, Ubuntu, etc.) while using the
same kernel for each of them.

When setting up the partitions, the
first VFAT partition would remain un-
changed, since it simply stores the boot
loader files, along with a modified boot.
scr containing the entry root=RootFS.
In a triple-boot system, the second EXT
partition could be used as the root file
system for Ubuntu, and the third EXT
partition as the root file system for De-
bian.

When using this ideal setup, switching
between distributions involves simply
changing the label of the intended parti-
tion to RootFS, and updating the other
EXT partition labels to anything except
RootFS. After rebooting, the partition
with the RootFS label would be recog-
nized as the root file system, and the

corresponding Linux image would boot
to its desktop or command prompt.

The following guide details the steps
involved in customizing an ODROID in
order to implement this ideal scenario.
First, the boot loader must be modified
to support USB drives.

Modifying boot.scr
The newer boot loaders, such as

the one included with the XU and the
modified U2/U3, are able to read vari-
ables from a boot.ini file as a plain text
file. However, the previous version of
the Hardkernel boot loader read from
a boot.scr file instead, which is a pro-
cessed text file. Therefore, the boot.scr
file needs an additional conversion step
when modifying it.

The utility mkimage is used for this
purpose.

root@odroid:~# cp /media/

boot/boot.scr /media/boot/

boot.scr.org

root@odroid:~# strings /me-

dia/boot/boot.scr > /media/

boot/boot.txt

root@odroid:~# vi /media/

boot/boot.txt

Modify boot.txt with to match the
file shown below. Note that the first two
lines are deleted, and that the root= pa-
rameter has been changed.

Convert the boot.txt to a boot.scr us-
ing the utility mkimage.

It would seem that if the root file
system is copied over to a partition in
the USB drive and its file system label
changed to RootFS, then a reboot would
subsequently select that USB partition

ODROID MAGAZINE 6

TECHNICAL ARTICLE

as the root file system. However, there
are two small obstacles:

1. The Linux kernel does not have USB
storage access built into the kernel

2. The modules which enable USB stor-
age access are not yet present in initrd.

If, in the future, Hardkernel distri-
bution images default to having USB_
STORAGE enabled in the kernel, or the
init ramdisks already contain the USB
storage modules, the following step can
be skipped.

Exploring
the uInitrd file

initrd is a gzip image, and uInitrd
is a format recognized by the boot load-
er, called u-boot. U-boot presently has a
64 byte header, though this size can vary.
Use the mkimage -l uInitrd com-
mand to determine the exact length.

Extract the gzip image from uInitrd
and gunzip it. It is a cpio archive.

Once it’s uncompressed, you can
view and modify the files. The next
step should be performed using an EXT
partition, instead of the VFAT partition
where it will eventually reside.

The goal here is to update the ini-
trd ramdisk image to include the mod-
ules needed for the Linux kernel to
mount the root file system from the
USB storage.

A rebuild of kernel or modules isn’t
required, since all the modules, with the
correct versions, are already present in
the current root file system.

The modules required are: usb_

storage, sd_mod, scsi_mod. They
are located in the current root file sys-
tem in /lib/modules:

/lib/modules/3.8.13.14/ker-
nel/drivers/usb/storage/usb-
storage.ko

/lib/modules/3.8.13.14/ker-
nel/drivers/scsi/sd_mod.ko

/lib/modules/3.8.13.14/ker-
nel/drivers/scsi/scsi_mod.ko

Copy these over to the initrd tree and
update the module information by run-
ning depmod. It is essential to run dep-
mod in the initrd tree as it updates many
files related to loading modules.

Regenerating
uInitrd

The init ramdisk now contains the
required USB storage-related modules.

Select the USB
drive as the root
filesystem

The USB drive requires some prepa-
ration before storing the root file sys-
tem. First, changing its label to RootFS,
as mentioned above. The label of the
current root file system should also be
changed from RootFS to RootFS.org, so
that two EXT file systems do not end up
with the same label.

Prepare
the USB drive

To avoid losing data, it is recom-
mended to work with a blank USB drive.
Plug it into the ODROID in order to
create a new partition. In this example, a
12 GB partition was created using fdisk
as the first partition on the drive.

In these screenshots, the USB drive

has been assigned to /dev/sda1. To
verify the applicable device name on
your local system, run the dmesg com-
mand and inspect the output.

Next, create an EXT file system on
the USB drive.

root@odroid:~# mkfs.ext4 /

dev/sda1

mke2fs 1.42.8 (20-Jun-2013)

Filesystem label=

OS type: Linux

(…)

Writing superblocks and file-

system accounting informa-

tion: done

root@odroid:~#

Change the label of the USB drive
partition to RootFS, then mount the
partition as /dst, as shown below.

Preparing the source
root file system

The image file xubuntu-13.10-desk-
top-armhf_odroidu_20140107.img will
be used to extract the root file system.
Because of space considerations, it was
first copied over to the USB partition
created in the previous step.

To write the image file to the partition,
use the utility kpartx, which may need to
be installed with the command apt-get
install kpartx. For ArchLinuxArm users,
it should be built from source, located
at http://christophe.varoqui.
free.fr/.

For this Xubuntu example, loop0p1
is the VFAT boot partition, and loop0p2
is the root file system that needs to be
copied over to the USB partition.

http://christophe.varoqui.free.fr/
http://christophe.varoqui.free.fr/

ODROID MAGAZINE 7

TECHNICAL ARTICLE

Mounting and copying the source
root file system to the USB partition

Changing the label of
the current root file
system

The current file system needs to be
called something other than RootFS,
since that label will be reserved for the
bootable partition. RootFS.org is a good
alternative label.

Cleaning up

Reboot
After a power cycle, the ODROID

will boot into the root file system lo-
cated on the USB drive. If it does not,
go back and check to see if any of the
steps were overlooked. It may take a
few attempts before getting everything
to work together perfectly.

Verifying
the changes

Once the ODROID has finished boot-
ing, there are two things to be verified:

Did the boot.scr pass the correct root=
parameter to the Linux kernel?

Is the USB drive really being used as
the root filesystem?

Guidelines
Any ODROID distribution devel-

oper who wishes to facilitate storage of

the root file system on an external USB
drive should use this quick checklist:

Use root=LABEL= in the boot.scr
script.

Build a kernel with USB storage
support built in.

If the kernel does not include
built in USB storage support, bun-
dle the init ramdisk with the USB
storage related modules.

Now enjoy using your Linux in
whichever external USB disk you need.

Would you like to write a column for ODROID Magazine to share your knowledge
and experience? The following positions are currently open, and offer an opportunity

to participate in the emerging field of ARM technology with a worldwide audience of nearly
10,000 ODROID enthusiasts, and that was just in our first month!

Kali/Backtrack:
A column covering the basics of Kali and similar penetration testing suites.

Linux Developer:
Guides for setting up the development environment,

basic compilation with kernel examples,
and how to use the command line interface effectively.

To apply, please send an email to odroidmagazine(at)gmail.com with a description of your qualifications.

ODROID MAGAZINE 8

A this point, many ODROIDians
have already put two or more
of these amazing computers to

good use, probably with one ODROID
at the home office and at least one more
plugged into a TV set.

But what if you are a single ODROID
owner, happily using it on your home of-
fice, but also hoping to access your mul-
timedia content from your living room?

The ODROID’s portability is a great
advantage, so you could just pack it up
and get your setup running on your
TV. It’s just a matter to get it plugged
into the HDMI port, turning it on, and
launching XBMC, right?

But what do you do if you are too
lazy or busy to disconnect your USB
drives, disassemble your robotics project
and take them all the way to the TV set
(mine is a daunting 5 yards away)?

Additionally, you may already have
your TV connected to a Playstation 3 or
another device such as:

The answer is that you can make your
ODROID work as an incredible media

PLAYSTATION MEDIA SERVER

Microsoft XBOX 360
Sony Bravia
Google Android
Freebox HD
Freecom MusicPal
Pioneer Kuro
Philips Aurea
Philips Net TV
Popcorn Hour

Asus O!Play
Xtreamer
AC Ryan PlayOn!HD
Brite-view CinemaTube
Samsung TVs
Philips Streamium
Western Digital WD TV Live
XBMC Media Center
Boxee

USE YOUR ODROID
AS A PLAYSTATION 3
MEDIA SERVER
CHILL OUT IN STYLE
BETWEEN GAMING SESSIONS
by Bruno Doiche

server, overcoming the insurmountable
distance from your home office to your
living room. By following my guide, I’ll
show you how to do exactly that!

The right tool for the
right job

Although the setup and implementa-
tion of a PS3 Media Server is far from
rocket science, transcoding and sending
the files over your network can some-
times be problematic. So to keep things
working smoothly, I suggest the follow-
ing rules of thumb:

For any quad-core ODROID (X2,
U2, U3), you can transcode videos up to
720p using cabled ethernet, but you may

experience video stuttering if
you try to use wireless ether-
net, or upgrade the resolution
to 1080p; For any octa-core
ODROID (XU, XULite) you
can set the resolution up to
1080p using the gigabit ether-
net adapter, or use a wireless
setup as described in the “XU
Wireless Router” article in the

Feb 2014 issue of ODROID magazine.

Don’t be fooled by their misleading project
name! The Playstation media server will allow
your ODROID to support lots of devices.

Go to www.ps3mediaserver.org/

The download and saving process is pretty
straightforward but beware, if you download
from your windows PC or your Mac, check that
you are really getting the Linux version!

By keeping these rules in mind, I al-
ways experience great movies and video
playback on my ODROID.

ODROID MAGAZINE 9

PLAYSTATION MEDIA SERVER

Scanning: the server is
probing the network to
find a device for you,
may take a while if your
odroid is firewalled.

The default configurations
on the ODROID Linux-
based builds is the lxcbr
interface. Set the default
network to the cabled
network interface (in this
case, eth0) instead.

The server defaults video
sharing to use the root
directory. To avoid this,
change your shared folder
to the location of your vid-
eos and songs to save your-
self from having to navigate
to deep directories.

The IP whitelist can be
used in case you need to
limit the number of ma-
chines connected to your
media server. This guaran-
tees that no one will be pig-
gybacking on your server
while you are using it.

Never hide the #TRANSCODE folder, since
this may hinder your ability to choose from
different transcoding engines on the PS3 in
order to select specific subtitles or audio.

Whenever you change the
configuration options, re-
member to save your settings, then press the
“Restart Server” button. It seems obvious,
but this step is easily overlooked.

No deal: check your net-
work, firewall rules, and
specially if your client
device is on!

Don’t forget to edit your hostname to avoid the
sight of seeing your beloved media server go-
ing by the drab name of “localhost.

Media decoder engines galore! Although
Mencoder does the job, FFMPEG and VLC tend
to save the day.

Success: hurry, get the
popcorn and the soda!

And that’s it! Now that you have
your Playstation Media Server running,
it still needs to connect to the network.
Doing so is a simple matter of match-
ing the configuration options shown in
these screenshots.

Locate the PMS.sh file, and right-click it to
run the script.

Extract your .tar.gz file by right-clicking and
selecting a folder for uncompression.

The 3 possible
status

Getting another
transcoding engine

It never hurts to have options, and
sometimes a specific transcoding engine
is more effective at handling a certain
video or audio file than another. To
guarantee that everything goes smooth-
ly, do yourself (and your ODROID) a
favor, and use your package manager to
install the most recent version of Men-
coder, VLC and ffmpeg. To play a me-
dia file using a different encoding engine
on the PS3, go to the #TRANSCODE
folder, and select another option.

ODROID MAGAZINE 10

ANDROID DEVELOPMENT

W hen discussing Android de-
velopment, the first thing
usually mentioned is the

sheer size of the code base, and how dif-
ficult it can be to navigate through the
different parts of the Android source.
To give you an idea of how big Android
is, the current size on my local drive for
the ODROID-specific version of An-
droid 4.1.2 (excluding Linux kernel) is
8.6GB. When confronted with a mas-
sive code base like Android, the easiest
approach is to break it down
into smaller pieces for ease of
understanding. Android is like
a gigantic jigsaw puzzle that
can be packed and unpacked
again as needed.

This article presents an
overview of the different di-
rectories located inside the
source code, describes what
projects each directory con-
tains, and what kind of useful
things you will find in each
area. It is surprising how
much can be learned and ex-
tracted simply by browsing
the source code.

A Bird’s Eye
View

Here is the top level direc-
tory structure of the Android
source code.

ANDROID
DEVELOPMENT
INSPECTING THE ANDROID SOURCE CODE
UNDER A MICROSCOPE
by Nanik Tolaram

Altogether, there are 23
main Android directories,
however, this number chang-
es from version to version.

Architecture
Details

In order to understand
what role the different source
code pieces play in the over-
all Android architecture, we
will map each role shown to
you below to a directory.

The source code will be
associated with
this diagram by us-
ing the labels that
differentiate each
layer, such as Ap-
plications, Appli-
cation Framework,
Libraries, and An-
droid Runtime.

Under the hood
Let’s start putting the source code

under the microscope by looking at what
each directory contains.

abi/ (Libraries)
This directory stores Gabi++, a new

minimalistic C++ runtime that provides
the same headers as the system one, with
the addition of RunTime Type Informa-
tion (RTTI) support. The content of
this directory is useful if you are plan-
ning to write applications using the C++
language.

High Level Directory structure
of Android source code

Android
Architecture

ODROID MAGAZINE 11

ANDROID DEVELOPMENT

bionic/ (Libraries)
If you have done any C

programming in Linux, then
you are familiar with the BSD
C library. However, because
the BSD library is big in
terms of size, Android uses
a port of that library called
Bionic. Bionic is a stripped
down version of the original
BSD C library, and supports
x86 and ARM architecture
instruction sets. This is the
core library upon which all
Android code depends.

bootable/ (Booting)
Most Linux users are fa-

miliar with the GRUB boot-
loader that runs
on an x86 PC,
and in the
ARM embedded world, a similar boot-
loader, with a smaller footprint, is used.
This directory normally stores the boot-
loader code for use with your embedded
device, such as u-boot or one of its de-
rivatives. Android devices contain a spe-
cial partition called “recovery”, which is
technically a self-contained application
that includes a Linux kernel with which
a user can performance maintenance,
troubleshooting or upgrades to Android.
This “recovery” app is inside the subdi-
rectory called recovery/ .

build/ (Build)
The complex nature of Android

warrants its own build system. This di-
rectory contains all of the scripts (Shell,
Python and Makefile) that are needed to
build the source code from its various
directories and package them together
into a single set of image files. On com-
pletion of the build process, Android is
reduced to several .img files (for ARM)

and a single .iso (for
x86). Figure 3 shows
the different relevant
sub-directories inside the
recovery area.

cts/ (Test)
This directory contains

the compatibility test suites
(CTS) that allow device man-
ufacturers to test whether a
particular device is Android
compatible. Test cases are
written in a language called
Junit, which provides direct
access to the Android test-
ing APIs. To learn more
about the CTS, please refer
to the Android CTS website
at http://source.an-
droid.com/compatibil-
ity/cts-intro.html.

dalvik/ (Android Runtime)
This directory contains the complete

source code for the Dalvik virtual ma-
chine. Besides Dalvik, it also contains
several useful tools that are related to
profiling, tracedump and many more.
The Dalvik core itself lives inside the
vm/ subdirectory.

development/
This directory is of interest to An-

droid application developers, since it
contains a number of sample applica-
tions that can be re-used or extended.
There are also several useful tools inside
this directory such as the Android APK
checker, an HTTP server for testing, and
many others. App developers will want
to take a look at apps/ and samples/
directory for example projects.

device/ (Build)
Android runs on hundreds of devic-

es, and each device has a unique configu-
ration in terms of hardware and periph-
erals. Device configurations and scripts
that are specific to a particular device
are stored inside this directory, and con-

tains files for different hardware. For
example, below look at the differences
between the files required for Nexus 7
devices (left) and the files required for
Hardkernel devices (right).

If you look inside
the proprietary/
folder, you will find
a number of binary
drivers that are used
specifically for the
ODROID platform.

Inside
/recovery

Inside
/dalvik

Inside
/build

Inside the /device directory

hardkernel
proprietary/

http://source.android.com/compatibility/cts-intro.html
http://source.android.com/compatibility/cts-intro.html
http://source.android.com/compatibility/cts-intro.html

ODROID MAGAZINE 12

ANDROID DEVELOPMENT

Docs/ (Document)
This directory contains documen-

tation for the Android framework and
API. The files are in raw format that
are converted to HTML during the
build process.

external/ (Libraries)
After the kernel, this directory is the

most complex in terms of its source
code. It contains all the different open
source projects that Android relies on
for its existence. All applications run-
ning in Android, either directly or indi-
rectly, use some of the libraries inside
the “external” directory.

frameworks/ (Application Framework)
The “frameworks” directory is the the

heart of Android system, and contains
a combination of applications, SDK,
APIs, utilities and much more. The level
of code complexity is similar to the ex-
ternal/ directory. If you ever need
to customize Android, or want to learn
how the whole application stack works,
this is the place to look. Most of the
user space applications reside here.

gdk/

This is an experimental directory that
was introduced in Android 4.1.2, but
does not exist after version 4.1.2. It
contains llvm and CLANG code, which
is not currently being used inside the
Android framework. Due to the experi-
mental nature of this directory, it can be
safely ignored.

hardware/ (Build)

This directory contains the Hard-
ware Abstraction Layer (HAL). The
HAL permits vendors that do not
provide open source drivers to supply
their own pre-compiled binary drivers.
The two main directories that provide
the Android HAL are shown in Figure
8. The rest of the directories contain
source code for the user space HAL
that is made available in the Android
repository.

libcore/ (Android Runtime)
The main focus of this directory is

to house the core library used by the
framework, as well as header files that
are used by native code when using the
Java Native Interface (JNI). Other sub-
directories contain libraries such as json,
luni (“lang util net io”) and dalvik
system utilities (dexfile and vmruntime).

libnativehelper/ (Libraries)
Android provide the flexibility of

writing apps in Java and interfacing with
native code with the help of the Java Na-
tive Interface (JNI). This library contains
the module called libnativehelper that is
used internally by Android to interface
between Java and the native world. The
integration layer is a simple JNI abstrac-
tion tool to make integration easier.

ndk/ (Libraries)
The Native Development Kit is nor-

mally used to develop Android applica-
tions using native code, and this direc-
tory contains the NDK source code. It
includes tools needed for building NDK
applications, including template makefile
for building the native code on different
platform such as ARM, MIPS, and x86.
A few additional tools such as make, sed
and toolbox can be also found inside
this directory.

packages/ (Applications)

All of Android’s prebuilt applications
such as Calculator, Launcher and Set-
tings are found here. This directory is a

goldmine for application developers who
wants to understand how applications
are interacting with the system services
such as the network, phone, sms, and ac-
celerometer. The apps/ subdirectory
contains most of the applications, while
the experimental/ directory contains
experimental applications which do not
get included in the final image file.

The inputmethods/ subdirectory
contains input applications such as key-
board, mouse, touch, etc. As expected,
the wallpapers/ subdirectory contains
wallpaper applications and resources.

prebuilt/ (Build)
 The content of this directory is

slightly different than prebuilts/,
but does not exist after version 4.1.2.
However, it does contain the GCC 4.4.3
toolchain and some jar files that are used
during the build process.

prebuilts/ (Build)
This directory contains the binaries

for the toolchain suite that is used to
compile Android source code to an im-
age file. Due to licensing issues, the JDK
is not part of this directory, but instead
contains the toolchain that is included
with the GNU compiler. The compiler
supports both ARM and x86 architec-
ture, and the main toolchain resides in
the gcc/linux-x86/toolchain di-
rectory for Linux and gcc/darwin-
x86/toolchain for Mac. Addition-
ally, the directory contains the prebuilt
kernel for the qemu emulators inside the
qemu-kernel directory.

sdk/ (Tools/Build)
The Android development kit not

only consist of libraries and API that
a developer can use, but also includes

HAL layer source code directory

Inside packages/

ODROID MAGAZINE 13

ANDROID DEVELOPMENT

a number of tools, apps and scripts.
This directory contains many auxiliary
programs such as the SDK launcher,
Traceview, and more.

system/ (Application Framework)
This directory contains the librar-

ies and applications that form part of
the core Android framework. Different
global services that are made available
to all applications, such as bluetooth,
volume mounting, security and vold are
located here.

vendor/ (Build)
Vendor related hardware drivers that

are provided as binary files are stored
here. Normally, the directory contains a
subdirectory indicating which hardware
is supported. All the necessary binary
objects, including configuration files, are
available in the “vendor” directory.

As an Android developer, you will
most likely need to learn about more
than one aspect of Android develop-
ment, and thus you will be looking into
the various directories for support, ex-
amples and documentation. If you like
to design applications, you will mostly
be interested in the packages directory
to understand how the internal built-in
application uses the API, or to discover
if there are any hidden APIs that you
can leverage. However, if you are a plat-
form developer who would like to cus-
tomize Android for a particular vertical
market, then the framework and system
directory will be of interest.

Further Reading
Regardless what you are trying to

achieve with Android, there many educa-
tional benefits from studying the source
code (both native and Java) and under-
standing how the whole stack works to-
gether. To explore more in depth about
the Android source code components,
please visit my eLinux wiki page, which
details the different subdirectories in-
side the Android source code: http://
elinux.org/Android_Source_
Code_Description.

Inside system/

Did you know that Hardkernel
publishes nightly builds of its
custom ODROID kernels, so

that you can easily keep your personal
system updated with the latest software
improvements? The kernel packages are
built on an ODROID-XU directly from
the GitHub source code, and then up-
loaded to the Hardkernel website for
your convenience.

In order to update your image with
the latest Linux kernel, directly from
the desks of the Hardkernel developers,
download the kernel installation script
from http://builder.mdrjr.
net/tools/kernel-update.sh,
and initiate the update from any Termi-
nal window by typing:

KEEPING YOUR ODROIDS UP TO DATE
DON’T MISS THE CHANCE
TO BE RUNNING THE LATEST
AND GREATEST KERNEL RELEASE
by Rob Roy, Chief Editor

$ wget builder.mdrjr.net/\

 tools/kernel-update.sh

$ sudo sh kernel-update.sh

Once the script has completed, re-
boot the ODROID so that the new ker-
nel may take effect. The main supported
operating systems include Ubuntu, Fe-
dora, OpenSUSE, Debian, and Ubuntu
Server, but the script can be easily modi-
fied for any distribution.

The script also automatically detects
the ODROID platform (U, X, or XU)
and installs the appropriate kernel ver-
sion. Should you experience any issues
with the upgrade, a backup of the kernel
files is stored as a .tgz file in the /root/
directory for quick recovery.

In addition to updating the kernel,
it’s also important to update the packag-
es included on your Ubuntu or Debian
distro.

To do so, connect to the official soft-
ware repository and download the lat-
est package updates using the following
command:

$ sudo apt-get update \

&& sudo apt-get dist-upgrade\

&& sudo apt-get autoremove

Ubuntu updates are released daily,
and it’s a good idea to update your ker-
nel and software as often as possible.

http://elinux.org/Android_Source_Code_Description
http://elinux.org/Android_Source_Code_Description
http://elinux.org/Android_Source_Code_Description
http://builder.mdrjr.net/tools/kernel-update.sh
http://builder.mdrjr.net/tools/kernel-update.sh

ODROID MAGAZINE 14

Looks like a simple thing to do right?
Well, after reading this article, it will be
even simpler for you.

HPC AT HOME

In the February 2014 issue of
ODROID Magazine, we started
our series on efficient and inex-

pensive High Performance Comput-
ing achievable from the comfort of
your own home. We began by describ-
ing the process of setting up a head-
less cluster for running MPI-based
parallel programs. In this article, we
detail the networking configuration
required to set up a dedicated head
node for our cluster using iptables
to configure NAT, and DNSMasq to
configure DHCP and DNS services
for our cluster.

What you’ll need for this article:

• 2x ODROIDs - in our examples, we
will be using XU+Es running Ubuntu
13.09 server. More ODROIDs can eas-
ily be included as well, to create a big-
ger cluster.

• 1x Ethernet Switch (preferably Giga-
bit Ethernet, also called 1000-BaseT)

• 3x Ethernet Cables (plus 1 cable for
each additional ODROID)

• 1x USB Gigabit Ethernet Adapter
(ideally 1 for each ODROID)

HIGH
PERFORMANCE
COMPUTING AT
HOME
SETTING UP
AN HPC HEAD NODE
by Cooper Filby and Anthony Skjellum -
Runtime Computing Solutions LLC

Cluster Overview
Up above, we illustrate a sample

network connection for our ODROID
cluster in order to diagram how the
listed components will be used. In our
finished set up, all of our compute
nodes will be connected to our dedi-
cated cluster switch, either using on-
board or USB ethernet.

The head node will use its USB eth-
ernet to connect to the cluster switch,
and use its onboard ethernet to con-
nect to the home network switch.
Compute nodes will be able to com-
municate with the home network and
outside world through the head node.

Connecting
the Head Node

As outlined above, we need to wire
our head node to be multihomed, that
is, connected to two networks, the home
network and our cluster network. On
the node you wish to use as your head
node (in this case the ODROID XU+E
we have named odroid-server0 as in part
1 of our series), connect the onboard
ethernet device to your home network,
and then connect the USB ethernet
dongle to the switch for your cluster.
Both of our network interfaces on our

head node should be configured to allow
communication with both the compute
nodes and the outside world.

Editing /etc/network/inter-
faces, we need to set up eth0 to use
the home network’s DHCP, and eth2,
the USB Ethernet Adapter, to commu-
nicate with the rest of the cluster. For
eth0, your entry should look as follows:

auto eth0

iface eth0 inet dhcp

hwaddress ether

1a:e7:ed:f2:ff:73

Where the MAC address (in this
case 1a:e7:ed:f2:ff:73) can be of
your choosing. For eth2, we will want
to designate its static networking in-
formation, since it will be hosting a
our DHCP and DNS service for the
rest of our cluster. The exact infor-
mation we use may vary by user, but
for the purposes of this article we’re
going to assume that our cluster net-
work is 192.168.128.0 through
192.168.128.24.

ODROID MAGAZINE 15

HPC AT HOME

Thus, we will configure eth2 as follows:

auto eth2

iface eth2 inet static

address 192.168.128.254

netmask 255.255.255.0

Once we run sudo service network-
ing restart, eth0 and eth2 will be config-
ured to connect and communicate with
our two separate networks; eth0 will be
assigned an IP address from your home
router, while eth2 will get the IP speci-
fied in /etc/network/interfaces
(which is 192.168.128.254 in this ex-
ample). Next, we will configure /etc/
hosts with our static IP as follows:

127.0.0.1 localhost

192.168.128.254 odroid-serv-

er0.ocluster odroid-server0

Where ocluster is the chosen
name of our cluster domain and
odroid-server0 is the chosen name
of our head node. You can pick a
different hostname for your head
node as long as you update /etc/
hosts accordingly.

Configuring NAT
A good next networking question

to ask is this: What is Network Address
Translation (NAT), and why is it impor-
tant to our cluster? When it comes un-
derstanding NAT, it’s essential to know
how communication occurs between
networks and hosts, and the two main
types of IP addresses: public and pri-
vate. Public IP addresses are assigned by
a central authority and delegated to you,
such as by your Internet Service Pro-
vider (ISP). They can be used to send
traffic externally between networks or
hosts with a public IP on the Internet.
On the other hand, private IP addresses
are for internal usage within a local area
network (such as your home network).

Private IP addresses don’t make
sense on the public Internet; they can
only be directly used to send traffic to

other hosts on the private network on
which they’re defined. Furthermore,
hosts on a private network are hidden
from the rest of the world, as external
hosts have no direct way to send traffic
to a host without a public IP. So, the
question becomes this: if private net-
work IP’s are for internal traffic only,
how can home networks communicate
with the rest of the world? The answer
is Network Address Translation (NAT).
WIth NAT, your home router will “vir-
tualize” the Source IP address on your
outgoing packet with that of your Public
IP (like the one assigned by your ISP),
allowing remote hosts to respond to the
request of an internal machine. In the
context of our cluster, we will create a
new private network that will allow us
to further isolate cluster traffic from our
home network, and use the head node to
gain access to our compute nodes.

The translation that happens in
your router on the way out (private to
public) and on the way in (public to
private) is the main feature of NAT.
One public IP address belonging to
your router can practically manage
thousands of private IPs using the
standard protocol.

With NAT in mind, we will need to
set up our head node for NAT by en-
abling IP forwarding and configuring the
firewall with iptables. In this instance,
we are going to use eth0 for our external
network, and eth2 (implemented using
the USB dongle) to communicate with
the internal network to allow fast com-
munication between nodes. First, we
will need to edit /etc/sysctl.conf,
and remove the # from the line contain-
ing net.ipv4.ip_forward = 1 (and
make sure it equals 1 and not 0).

To enable this setting, we can then
run sudo sysctl -p /etc/sy-
sctl.conf to apply our changes. Al-
ternatively, if you just want to test this
setting without applying it permanently,
you can run sudo sysctl -w net.
ipv4.ip_forward=1. With IP Forward-
ing enabled, we now just need to install

iptables with sudo apt-get install
iptables and run three commands to
setup NAT on the head node:

$ sudo iptables -t nat -A

POSTROUTING -o eth0 \

-j MASQUERADE

$ sudo iptables -A FORWARD

 -i eth0 -o eth2 -m state

 --state RELATED,ESTABLISHED

 -j ACCEPT

$ sudo iptables -A FORWARD

 -i eth2 -o eth0 -j ACCEPT

These commands may look a bit
confusing, but fortunately we can
describe what they’re doing without
much difficulty. In essence, we’re en-
abling NAT and telling the head node
to forward all traffic coming to eth2
(the internal network) through eth0,
and to allow external traffic to pass
to internal network if it’s part of an
established connection. As of now,
these settings are temporary, and will
be cleared upon reboot of the head
node unless we explicitly save them
and set them to load on boot.

Unfortunately, testing these settings
without a DNSMasq service setup re-
quires a bit more work, such as using
a machine with a GUI and manually
assigning an IP address and routing
rules to test external communication.
Instead, we’re going to push forward
bravely and configure these settings to
save and load on reboot, then go about
configuring DNSMasq so we can test
everything at once.

To save the current firewall rules,
we can run sudo iptables-save >
iptables.up.rules ; sudo mv
iptables.up.rules /etc/. Alter-
natively, if you’re running as root, or
have invoked sudo -i, you can simply
run sudo iptables-save > /etc/
iptables.up.rules. Finally, we’ll
need to create a startup script to load
our iptables rules on boot by editing /

ODROID MAGAZINE 16

HPC AT HOME

etc/network/if-pre-up.d/ipt-
ables, and writing the following lines
to it:

#!/bin/bash

/sbin/iptables-restore < /

etc/iptables.up.rules

Finally, run sudo chmod +x /
etc/network/if-pre-up.d/ip-
tables, so the script can be executed
on start.

Configuring
DNSMasq

Our next question: What’s DNS-
Masq, and why do we need it for our
cluster? DNSMasq provides us with a
lightweight DHCP server and a DNS
server, both of which make our clus-
ter more flexible for a variable number
of nodes. DHCP is the Dynamic Host
Configuration Protocol, and in essence
it assigns IP addresses and networking
information to hosts that request it.

On the other hand, DNS is the Do-
main Name System, and it allows us to
refer to individual machines by a host-
name, rather than by it’s IP address.
However, before we install and con-
figure dnsmasq it’s worth noting that
misconfiguring your DNS server or
DHCP server could cause all sorts of
chaos on your home network. Fortu-
nately, should this happen, unplugging
the head node should rectify these is-
sues should that happen.

To get started, we’re going to run
sudo apt-get install dnsmasq to install
the server, and then stop it with sudo
/etc/init.d/dnsmasq stop. To
configure DNSmasq, use a text editor
to modify /etc/dnsmasq.conf (as
sudo). You may notice that there are a
large number of commented out lines
showing various configuration options
for DNS and DHCP. In this case, we’re
going to specify a few options for our
head node at the end of the file, in-
stead of uncommenting the individual
lines throughout the file that we need,

as this should make it easier for us to
make changes later on since all our set-
tings will be in one place. For our clus-
ter, we added the following lines:

interface=eth2

domain=ocluster

dhcp-range=eth2,192.168.128

.1,192.168.128.254,255.255.

255.0

dhcp-host=00:13:3b:99:92:b1,

192.168.128.254

So what do all these configuration lines
mean? Interface specifies which interface
the DHCP and DNS server should listen
for requests on, while domain specifies
the domain of our cluster.

DHCP-range specifies the range
of IPs that can be allocated to hosts
on the specified interface, in this case
IP’s between 192.168.128.1-192-
.168.128.254 on our internal net-
work, eth2. The final line is a static
IP lease for our head node, where
00:13:3b:99:92:b1 is the MAC ad-
dress of our head node on eth2, and
192.168.128.254 is the static IP.
With these changes made, we need to
configure odroid-server0 to use itself
as it’s primary DNS server so it can re-
solve the names of internal hosts.

To do this, we can modify /etc/
dhcp/dhclient.conf and re-
move the # from the line containing
#prepend domain-name-servers
127.0.0.1; and run sudo dhclient
so the changes take effect. Finally, we
found that dnsmasq would not work
correctly for internal nodes when in-
voked by its startup script unless we
modified /etc/default/dnsmasq
and removed the # from the line, #IG-
NORE_RESOLVECONF=yes, although
your mileage may vary.

Once this is all configured, we can
run sudo /etc/init.d/dnsmasq
restart to start the service. Alterna-
tively, we could go ahead and just con-
figure all of the nodes of cluster with
static IP addressess and modify the /

etc/hosts file on each node to in-
clude the IP addresses and hostnames
of all the nodes on the cluster. While
this approach can be simpler in some
regards, it is much less suitable for a
larger cluster, and thus will not be dis-
cussed here.

Connecting
Compute Nodes

If you have your compute nodes
configured correctly so there are no
MAC address or hostname conflicts,
then connecting the compute nodes
is as simple as hooking them up and
powering them on (assuming the eth-
ernet devices are configured to use
dhcp). From the head node you should
be able to use ssh to connect to your
compute nodes, e.g. ssh odroid-
server1. Once connected, verify
DNS and NAT are working by pinging
your head node by hostname and an
external website such as google.com.

On the off chance you run into
configuration issues, there are a
few steps you can take to determine
whether DHCP/DNS or NAT is caus-
ing issues. You can use the tool nmap
to scan and see if your compute nodes
are being assigned an IP with nmap
-sP 192.168.128.0/24.

If you can connect to your com-
pute nodes but get a message about
an unknown host when pinging other
hosts by hostname, then there is likely
a problem with DNS. If you have is-
sues connecting to external hosts from
your compute node try running ping
8.8.8.8 to see if NAT is working
correctly and allowing traffic through
the head node.

A Simple
MPI Example

Now that we’ve done all the set
up, here’s an example of parallel pro-
gramming using MPI. You can run
a “canned MPI application,” ours is
simple, with more complex programs
coming in future installments. This

ODROID MAGAZINE 17

FLAPPY BIRD
INSTALLING
THE ORIGINAL GAME
by Ronaldo Andrade

G ame enthusiasts all over the
world were surprised when
Vietnamese developer Dong

Nguyen decided to remove his master-
piece from the Google Play and Apple
stores. But this does not mean you
can’t get Flappy Bird anymore!

All you have to do to join the fun is to
download the APK to your ODROID,
install and play. It’s a free application
that doesn’t require any additional li-
censing, and you no longer have to be
jealous of everyone who downloaded it
before it became scarce.

http://apkandroid.blogspot.com.
br/2014/02/flappy-bird-13-apk.
html

Enjoy, and don’t break your screen!

HPC AT HOME ANDROID GAMING

script, which we’ve called simple1.
sh, just reports networking and host
information from each of the com-
pute nodes.

simple1.sh

#!/bin/bash

A=`echo -n “Hello from: “`

H1=`hostname `

H2=`hostname -i `

H3=`hostname -I `

H4=`hostname -f `

echo $PMI_RANK $A name=$H1

shortlist=$H2 longlist=$H3

FQHN=$H4

Type the following to run the
script:

$ mpirun -np 4 -hosts

odroid-server1,odroid-

server2,odroid-

server3,odroid-server4 ~/

scripts/simple1.sh

Which gives the following output:

0 Hello from:

name=odroid-server1

shortlist=192.168.128.1

longlist=192.168.128.1

FQHN=odroid-server1.ocluster

1 Hello from:

name=odroid-server2

shortlist=192.168.128.2

longlist=192.168.128.2

FQHN=odroid-server2.ocluster

2 Hello from:

name=odroid-server3

shortlist=192.168.128.3

longlist=192.168.128.3

FQHN=odroid-server3.ocluster

3 Hello from:

name=odroid-server4

shortlist=192.168.128.4

longlist=192.168.128.4

FQHN=odroid-server4.ocluster

In this case, we used 4 ODROIDs
systems to run our simple script, with
1 cores each. We used MPICH2 with
an enumerated host list, and you can
install MPI on Ubuntu with sudo
apt-get install mpich2 (installs
MPICH2 and dependencies).

Next Steps
From here, we can now easily add

more nodes to our cluster once they
have a basic networking configuration
in place. So where do we go from here?
Thus far, we have just been using the
ODROID user on each node, but this
is not ideal if you want to have several
users on your cluster.

Furthermore, copying files around
can be a hassle with the current setup.
Therefore, we will continue this se-
ries by detailing an AutoFS and LDAP
server setup on the head node to allow
us to share files and authenticate users
across our cluster.

Additionally, we will look into run-
ning more complex MPI jobs using C/
C++ programs we write as examples
rather than the simple shell script we
showed here to better demonstrate
our cluster’s capabilities. Real MPI
programs transfer data with message
passing and and harness parallel pro-
cessing by working together, rather
than our script, which ran indepen-
dently on each ODROID.

Additional Reading
The MPICH Programming Lan-

guage is a high performance and widely
portable implementation of the Mes-
sage Passing Interface (MPI) standard.
MPICH and its derivatives form the
most widely used implementations
of MPI in the world. They are used
exclusively on nine of the top 10 su-
percomputers (as of November 2013),
including the world’s fastest supercom-
puter: Tianhe-2. Learn more by visit-
ing http://www.mpich.org, which
offers many tutorials, publications, and
other documents for developers.

Ronaldo has the bragging rights of a
monk-like patience, and the highest
score among the magazine’s team

http://apkandroid.blogspot.com.br/2014/02/flappy-bird-13-apk.html
http://apkandroid.blogspot.com.br/2014/02/flappy-bird-13-apk.html
http://apkandroid.blogspot.com.br/2014/02/flappy-bird-13-apk.html
http://www.mpich.org

ODROID MAGAZINE 18

TECHNICAL ARTICLE

One of the advantages of having
an ODROID board as a com-
puting platform is flexibility. It

can be used as a computer, a research
tool, a game console, or a media center.
In this article we will explore a new way
in which the ODROID can be used: for
monitoring your home. More exactly, we
will discuss how to attach a couple of
sensors to the ODROID-XU which will
allow us to detect motion and to moni-
tor the room temperature.

Motion and temperature sensors are
some of the easiest to connect, and have
made the Arduino and the Raspberry Pi
platforms very popular, as you can attach
them easily to the GPIO (General Pur-
pose Input/Output) pins exposed on the
board. Of the Hardkernel products, the
ODROID XU series is better suited to
connecting sensors, as it includes a 30-
pin expansion port that can be used for
several types of connections, such as SPI
(Serial Peripheral Interface) , I2C (Inter-
Integrated Circuit) and GPIO. For the
ODROID U series, there is an IO board
accessory that can be connected to the
USB port, providing similar capabilities.

The sensors used for the purpose of
the article, shown right, are quite com-
mon and inexpensive: the DS18B20

HOW TO KNOW
WHEN YOUR CAT IS
NAPPING
A GUIDE FOR ATTACHING SENSORS
TO THE ODROID-XU
by Marian Mihailescu

Of course this article made us feel
obliged to use as many cat memes as the
art editor would deem appropriate.

digital temperature sensor and the HC-
SR501 Pyroelectric Infrared (PIR) mo-
tion sensor detector, each available for
around US$2 on eBay.

 Both sensors connect using 3 pins:
Power, Ground, and Data. However, af-
ter inspecting the datasheets, we see two
major problems. The sensors need 3.3V
or 5V power, and output on the Data
pin needs a similar voltage. The motion
sensor outputs a logical value (0V = no
motion; 3.5V/5V = motion), while the
temperature sensor outputs the temper-
ature using the 1-wire bus protocol. The
first problem is that all the ODROID
expansion headers are 1.8V (except the
PWRON signal), so connecting the sen-

sor’s Data output directly to the board is
dangerous. The second problem is that
the 1-wire bus protocol is not enabled
on the ODROID boards.

Connecting
the sensors

In order to be able to connect the
sensors, we need to adjust their output
to the 1.8V voltage compatible with the
ODROID boards. This is done using

Left: HC-SR501 PIR Motion Sensor
Right: DS18B20 Digital Temperature Sensor

ODROID MAGAZINE 19

TECHNICAL ARTICLE

a level converter, such as the Freetron-
ics Logic Level Converter Module. Al-
though it is not explicitly stated that it
is compatible with 1.8V, the level con-
verter works by having high power and
low power references that are used to
provide a bidirectional interface between
different devices operating at these volt-
ages. The connections for the logic level
converter are shown in Figure 2.

To provide the low voltage ref-
erence or 1.8V, we connect another
GPIO pin of the ODROID board,
which we configure to always output
the logical value “1”.

 The entire connection schematic for
the motion sensor is depicted in Figure
3. Pin 1 (5V0) of the ODROID board
is connected (using the red wire) to the
motion sensor power pin (VCC) and to
the logic level converter High V IN in-
put. Next, Pin 2 (GND) of the board
is connected (using the black wire) to
the motion sensor ground pin (GND)
and the logic converter GND pins. We
are using the GPIO pin 16 (GPX1.0)
to provide the reference 1.8V power to
the level converter Low V IN input (the
green wire), using the following linux
commands:

root@odroid:/ # echo 304 > /

sys/class/gpio/export

root@odroid:/ # echo out > /

sys/class/gpio/gpio304/di-

rection

root@odroid:/ # echo 1 > /

sys/class/gpio/gpio304/value

The first line is used to select GPIO
pin 16 (GPX1.0). From the documentation

provided by ODROID, 304 is the “base”
address of GPX1 chip, to which we add the
desired GPX pin address (in this case, 0).
The second line is used to configure the pin
for logical output, while the last line will set
the output to logical 1, resulting 1.8V on pin
16. The motion sensor data output (OUT),
which will be 5V when motion is detected,
is connected (using the yellow wire) to the
logic level converter High V I/O 1 pin, with
the corresponding Low V I/O 1 pin (which
is transformed to 1.8V) being connected to
the board GPIO pin 13 (GPX1.5) using
the blue wire. To pin uses the address 309
(304+5) and is enabled using the following
command:

root@odroid:/ # echo 309 > /

sys/class/gpio/export

The default configuration for a GPIO
pin is “input”, and the state can be read
from “value”. A value of 1 indicates mo-
tion, while a value of 0 indicates no mo-
tion detected. The
sensor also has two
resistors which can
configure the sen-
sitivity (Sx) and the
time which the out-
put is set to “1” when
motion is detected -
from a few seconds
to minutes (Tx).

root@odroid:/ # cat /sys/

class/gpio/gpio309/value

1

Freetronics Logic Level Converter Module
with 4 IO Ports

Cats can sleep up to 16 hours a day, enough time
for them to dream up new ways to be cute and
cuddly and still hold down a full-time job

Connect the Motion Sensor as show in this sche-
matic, remember that this is for the ODROID-XU

ODROID MAGAZINE 20

TECHNICAL ARTICLE

Enabling the 1-wire
protocol

The digital temperature sensor is
connected in a similar way as the mo-
tion sensor (see Figure 4). The sensor
power (VCC) is connected to the board’s
5V source (pin 1), the sensor ground
(GND) to the board’s pin 2 (GND),
and the sensor data (DQ) is connected
to the level converter High V I/O 3 in-
put (using the magenta wire). The level
converter Low V I/O 3 is connected to
the board’s GPIO pin 17 (GPX1.6) us-
ing the cyan wire. The only difference is
the presence of a 4.7KOhm pull-up re-
sistor between the VCC and GND pins
of the temperature sensor, used to keep
the data transfer stable.

The DS18B20 is using the 1-wire
protocol for communication. The linux
kernel has a driver for the 1-wire proto-
col (w1), and all that needs to be done
on the ODROID devices is to specify
what pin header we want to use for
this protocol. For the ODROID XU,
the modifications are done in the file
arch/arm/mach-exynos/board-
ODROIDxu-ioboard.c and include
the following lines:

#if defined(CONFIG_W1_MAS-

TER_GPIO) || defined(CONFIG_

W1_MASTER_GPIO_MODULE)

static struct w1_gpio_plat-

form_data w1_gpio_pdata = {

.pin = EXYNOS5410_GPX1(6),

.is_open_drain= 0,

 };

static struct platform_de-

vice ODROIDxu_w1_device = {

 .name = “w1-gpio”,

 .id = -1,

 .dev.platform_data =

&w1_gpio_pdata;

 };

This will allow pin 17 (GPX1.6)
to be used for the 1-wire protocol if
it is enabled in the kernel configu-
ration. After the new kernel is com-

piled, the sensor is acti-
vated and the temperature
(which needs to be divid-
ed by 1000 to get Celsius
degrees) is read with the
following commands:

root@odroid:/ # mod-

probe w1-gpio

root@odroid:/ # mod-

probe w1-therm

root@odroid:/ # cd /

sys/bus/w1/devices;

ls

lrwxrwxrwx 1 root root 0

Feb 1 12:24 28-000004bc791d

-> ../../../devices/w1_bus_

master1/28-000004bc791d

lrwxrwxrwx 1 root root 0 Feb

1 12:24 w1_bus_master1 ->

../../../devices/w1_bus_mas-

ter1

root@odroid:/ # cat 28-

000004bc791d/w1_slave

28625

This article provides a basis for con-
necting various sensors to your ODROID
board. There is a small step from reading
and visualising the sensor values, to mak-
ing active decisions based on them (e.g.
sending an email when motion is detect-
ed) and then home automation.

If you’d like to get more detailed in-
formation about the XU sensors, you
can use the magic of Google Search, or
visit some of the recommended links
listed below:

DS18B20 datasheet: http://

datasheets.maximintegrat-

ed.com/en/ds/DS18B20.pdf

HC-SR501 datasheet:

http://www.mpja.com/

download/31227sc.pdf

ODROID XU connectors:

http://odroid.com/dokuwi-

ki/doku.php?id=en:odroid-

xu#expansion_connectors

kernel patch to enable w1

protocol: https://github.

com/hardkernel/linux/commi

t/6ffdec4496b7fcb2504423ab3

827993ff341696dConnect the Temperature Sensor

The ODROID-XU sensors capture my cat
roaming around the house at 5AM and
6:30AM

That was definitely fun to do, I hope some-
time soon we do something with another
pet, parrots maybe...

http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
http://datasheets.maximintegrated.com/en/ds/DS18B20.pdf
http://www.mpja.com/download/31227sc.pdf
http://www.mpja.com/download/31227sc.pdf
http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu#expansion_connectors
http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu#expansion_connectors
http://odroid.com/dokuwiki/doku.php?id=en:odroid-xu#expansion_connectors
https://github.com/hardkernel/linux/commit/6ffdec4496b7fcb2504423ab3827993ff341696d
https://github.com/hardkernel/linux/commit/6ffdec4496b7fcb2504423ab3827993ff341696d
https://github.com/hardkernel/linux/commit/6ffdec4496b7fcb2504423ab3827993ff341696d
https://github.com/hardkernel/linux/commit/6ffdec4496b7fcb2504423ab3827993ff341696d

ODROID MAGAZINE 21

UBUNTU 14.04 FOR ODROID

What does the Tahr say? “Dude, if you have
early adopter blood, go and upgrade!”

Enrich your desktop experience, there is as
many wallpapers as you would ever need.

A lthough Ubuntu 14.04 is not set
for official release until April
17th, 2014, ODROID owners

can perform an early upgrade to Trusty
Tahr using the “update-manager” appli-
cation. By synchronizing your OS ver-
sion with the latest Canonical release,
you can keep your favorite Ubuntu im-
age running indefinitely, without needing
to reinstall the entire operating system
whenever a new version is announced.

ODROID computers that are already
running an Ubuntu 13.04 or 13.10 image
only need to enter a few commands in
order to upgrade the Ubuntu operating
system to the latest 14.04 version. To
begin, close all open applications, launch
a Terminal window, and type:

$ sudo apt-get update \
&& sudo apt-get upgrade \
&& sudo apt-get dist-upgrade\
&& sudo apt-get autoremove \
&& sudo apt-get clean

The update-manager command
applies the latest updates to the current
operating system, in preparation for the
upgrade. Confirm all questions until the
bash prompt re-appears, then type:

$ sudo update-manager –d

Press the “Upgrade” button, click
“Continue” a few times, and go make
a sandwich! After determining which
packages will be required for the up-

UBUNTU 14.04
TRUSTY TAHR
NOW AVAILABLE
FOR THE ODROID PLATFORM!
by Rob Roy, Chief Editor

grade, your system will ask for a reboot.
Before doing so, it’s important to replace
the default video configuration file, so
that the ODROID video settings in /
etc/X11/xorg.conf take effect and
produce an HDMI signal.

If you’ve already rebooted, don’t wor-
ry, you can perform the patch via SSH.
Otherwise, open a second Terminal win-
dow and enter the next two commands to
restore the ODROID video drivers:

$ cd /etc/X11/xorg.conf.d
$ sudo mv exynos.conf \
 exynos.conf.original

If you’re running Lubuntu Whis-
per, you’ll also need to move the XFCE
desktop service into the LXDE configu-
ration file to retain desktop compatibil-
ity with 14.04:

$ cd ~/.config/autostart
$ rm xfdesktop.desktop
$ cd ~/.config/lxsession/LXDE
$ echo “@xfdesktop \
 --replace” >> autostart
$ sync && sudo reboot

After the ODROID has rebooted,
verify that your new operating system
is installed by typing the following com-
mand in a Terminal window:

$ lsb_release -a

It’s that easy! Don’t forget to get your
new Trusty Tahr 14.04 desktop wallpaper
from Flickr at http://www.flickr.
com/groups/2484760@N20/. Please
note that some earlier versions of Ubuntu
may also require the additional step of re-
compiling the Mali drivers for use with Xorg
Server 1.14, which is detailed in the May is-
sue under the title “Recompiling Mali”.

http://www.flickr.com/groups/2484760@N20/
http://www.flickr.com/groups/2484760@N20/

ODROID MAGAZINE 22

LEARN REBOL
WRITING MORE USEFUL PROGRAMS
WITH AMAZINGLY SMALL AND
EASY-TO-UNDERSTAND CODE
By Nick Antonaccio and Bohdan Lechnowsky

LEARN REBOL

Rebol (Relative Expression
Based Object Language) is a
revolutionary advancement in

programming language emerging from
over thirty years of language research.
It offers enormous flexibility and
power, with a focus on intuitive

the first installment of Learn Rebol
last month, we discussed the motivation
behind Rebol and learned how easy it is
to create a GUI-based program in Rebol
on Android.

In this installment, we’ll briefly re-
visit how to install Rebol on Android,
but we’ll also show how to install it for
ODROID’s Ubuntu environment. In
addition, we’ll show how to create a
text editor with which you can write
Rebol programs (or anything else for
that matter), calculators, bar charts,
data input grids, and even a Web photo
viewer – all from scratch! Not only
will these programs run on your An-
droid or Ubuntu installation, but they
will also run on your Windows, Linux
and MacOS X laptop or desktop with-
out any modifications!

And yes, you can run any app you
create in Rebol 3 on your Android-pow-
ered phone or tablet as well!

Installation
Android:

Open a web browser and navi-
gate to http://development.
saphirion.com/experimen-
tal/builds/android/

Download r3-droid.apk
(amazingly smaller than 2MB).

When finished, double-click on

the download icon (usual-
ly by the clock) and grant
permissions to install.

Go to the apps list
and click the icon for R3/
Droid.

Ubuntu:
Open a web browser and down-

load http://atronixengi-
neering.com/r3/downloads/
r3-arm-view-linux-2014-
02-19-715e14

Perform the following com-
mands in the terminal emulator in
the directory where you download-
ed r3 (as sudo):

mv r3-arm-view-linux-2014-
02-19-715e14 r3
chmod +x r3
./r3

Note: Not only does Rebol 3 work
great on ODROID devices, but Re-
bol 3 for Linux-ARM is being de-
veloped on ODROID devices.

Pretty simple, eh?

Getting to work
As mentioned in the last installment,

Rebol has multiple GUI toolkits. In Re-
bol 3, the most popular is called R3-GUI.
The GUI toolkit of choice needs to be
loaded if the program is going to make
use of it. This can be done dynamically
from the web (for always automatically
using the latest version), or a copy of the
GUI toolkit can be stored on your com-
puter (for quicker access).

R3-GUI can be loaded from the web
by simply using the command: load-gui

Here’s the code for a little note pad
app that allows you to create, load, edit,
and save a text file. You could use it to
store an editable to-do list, shopping list,
notes and reminders, or other free form
data. The first two lines are stock code
that you’ll see at the beginning of every
example in this section. There’s a text
area widget and two buttons which load
and save the notes.txt file. It’s pretty easy
to follow the code, even without any
formal introduction to Rebol:

REBOL [title: “Tiny Note
Editor” file: %tiny-note-
editor.r]
load-gui
view [
 a: area
 button “Load” on-action
[attempt [set-face a read/
string %notes.txt]]
 button “Save” on-action
[write %notes.txt get-face a
alert “Saved”]
]

http://development.saphirion.com/experimental/builds/android/
http://development.saphirion.com/experimental/builds/android/
http://development.saphirion.com/experimental/builds/android/
http://atronixengineering.com/r3/downloads/r3-arm-view-linux-2014-02-19-715e14
http://atronixengineering.com/r3/downloads/r3-arm-view-linux-2014-02-19-715e14
http://atronixengineering.com/r3/downloads/r3-arm-view-linux-2014-02-19-715e14
http://atronixengineering.com/r3/downloads/r3-arm-view-linux-2014-02-19-715e14

ODROID MAGAZINE 23

LEARN REBOL

If you don’t feel like typing in the
code, you can simply enter the follow-
ing to load it from the web where I have
saved a copy of the script:

do http://respectech.com/
odroid/learnrebol/tiny-note-
editor.r

Likewise, the following examples
can be accessed the same way, but just
change “tiny-note-editor.r” to the file-
name specified in the REBOL header
on each script.

Now, we’ll modify it so we can specify
the file to open and the filename to save:

REBOL [title: “Tiny Text
Editor” file: %tiny-text-
editor.r]
load-gui
view [
 a: area
 filename: text file 200
 button “Load” on-action
[
 set-face filename
request-file
 set-face a read/
string to-file get-face file-
name
]
 button “Save” on-action
[
 write file: request-
file/file to-file get-face file-
name get-face a
 set-face filename
form probe file
 alert “Saved”
]
]

As you can see, Rebol’s code structure
is pretty free-form. The Tiny Text Editor
is laid out differently than the Tiny Note
Editor, but mostly because the buttons’
on-action blocks are split into lines based
on the actions being specified.

Here’s a short program to calculate

restaurant tips. Like every other app
here, it can be run instantly on any An-
droid phone, tablet, or device, or on
any desktop/laptop PC, using the exact
same code:

REBOL [title: “Tip Calcula-
tor” file: %tip-calculator.r]
load-gui
view [
 f: field “49.99”
 t: field “.20”
 button “Calculate” on-
action [
 set-face x round/to
(to-decimal get-face f) * (1
+ (to-decimal get-face t))
.01
]
 x: title “Total: “
]

Here’s an example that displays a
block of data in graphic bar chart for-
mat. It consists of 2 stock header lines, 1
line of data to display, and 1 short line of
actual code. Like every other R3 exam-
ple in this text, all you need to create and
run this application on any platform is
a text editor and the tiny R3 interpreter.
This app, along with the R3 interpreters
for every popular OS platform, could be
quickly emailed to friends or co-workers,
and opened instantly on any device each
user happens to have available:

REBOL [title: “Bar Chart”
file: %bar-chart.r]
load-gui
d: [“March” 13 “April” 9
“May” 21 “June” 29 “July”
10]
g: [] foreach [m v] d [ap-
pend g reduce [‘button m v *
10]] view g

Network access and web protocols
are built into R3 natively, to provide easy
access to all types of online data. Here’s
a variation of the above program, which
displays a chart of live data read directly
from a web URL (http://learnre-
bol.com/chartdata). Change the
data at the web URL, run the app, and
the bar chart displays the appropriate
graphic adjustments:

REBOL [title: “Bar Chart -
Live Online Data” file: %bar-
chart-live-data.r]
load-gui
d: load http://learnrebol.
com/chartdata
g: [] foreach [m v] d [ap-
pend g reduce [‘button m v *
10]] view g

Here’s a grid display, typical of any
app that involves managing tables of
text, numbers, or other data. Rows can
be added or removed, cells can be edited
manually by the user, and the values are
sortable and filterable by clicking col-
umn headers (months are automatically
arranged chronologically, text alphabeti-
cally, numbers ordinally, etc.). Most of
this example is just the data to be dis-
played. You don’t really even need to un-
derstand anything about programming
to follow this code:

REBOL [title: “List-View/
Grid display” file: %grid-
display.r]
load-gui

ODROID MAGAZINE 24

LEARN REBOL

Conclusion
As you might conclude from the pre-

ceding examples, creating powerful and
useful apps in Rebol 3 is about as simple
as it can get. But, it can get even easi-
er! In a future article in this series, we’ll
discuss using Rebol 3 to create DSLs
(Domain-specific Languages) to make
programming applications as simple as
you can imagine.

If you want to get in on the discus-
sion with the Rebol/Red community,
there are two main forums where you
can interact with other programmers
and developers in real-time: The [Rebol
and Red] chat room on StackOverflow.
com, and the Rebol-powered darknet
“AltME Rebol4 World”. To join the
AltME world, send an email to user bo
at the domain respectech.com and/or
henrikmk at the domain gmail.com ask-
ing to be invited. We are a closed com-
munity to avoid spam. Don’t be shy, the
Rebol/Red community is known as the
friendliest software development com-
munity on the planet!

view [
 text-table [“Text” 100
“Dates” 200 “Numbers”] [
 [“abcd” 1-jan-2013
44]
 [“bdac” 27-may-2013
4]
 [“dcab” 13-aug-2014
5]
]
]

R3 can be used to create full featured
web applications. Here’s a variation of
the above program, which reads data
created by an R3 web app running at
http://learnrebol.com/grid-
data.cgi. Run it several times to see
the updated data generated each time by
the web app:

REBOL [title: “List-View/
Grid display” file: %grid-
display-live-data.r]
load-gui
webdata: load to-string read
http://learnrebol.com/grid-
data.cgi
view [text-table [“Text” 100
“Dates” 200 “Numbers”] (web-
data)]

Here’s the code for the app run-
ning on the web server that creates the
random data displayed in the GUI grid
above:

#!./rebol3 -cs
REBOL []
random/seed now/time
print {content-type: text/
html^/}
data: copy {}
loop 100 [
 append data rejoin [

 “[“ mold random
“abcd” “ “ random now/date “
“ random 100 “]”
]
]
print data

Here’s another simple web app. It
centers and displays all photos found
in a given folder on a web server, along
with the total count of all displayed im-
ages. A demo of this script is available
at http://learnrebol.com/pho-
tos.cgi. Web apps like this can run
on any computing device that has an
Internet connection, even if R3 isn’t in-
stalled on the device. All you need is a
web browser (the code runs on the web
server, and pushes out results for the
browser to see):

#!./rebol3 -cs
REBOL [title: “Web Photo
Viewer”]
print {content-type: text/
html^/}
folder: read %./
count: 0
foreach file folder [
 foreach ext [“.jpg”
“.gif” “.png” “.bmp”] [
 if find file ext [
 print rejoin
[{
<CENTER><img src=”}
file {“></CENTER>}]
 count: count + 1
]
]
]
print join {
Total
Images: } count

http://learnrebol.com/griddata.cgi
http://learnrebol.com/griddata.cgi

ODROID MAGAZINE 25

Compiling Red Console on MS Windows

LEARN RED

LEARN RED
THE NEXT EVOLUTION
OF REBOL: PART 1
By Gregory Pecheret

Q uestion: Which programming
language has ALL of the fol-
lowing advantages?

cross-platform

cross-compiling

open source

embeddable

Unicode-compliant

Lua/Scala/Rebol-inspired

paradigm neutral (functional, imperative,

symbolic, prototype-based objects)

full stack (machine level to Meta Domain-

Specific Language, and everything in-be-

tween)

simple/compact/fast/ubiquitous/portable/

flexible/green

The answer is Red!
Red is a modern programming lan-

guage that re-uses most of Rebol’s syn-
tax and semantics. While Rebol is an
interpreted language, Red can run either
as an interpreted language, or be stati-
cally compiled to native code. The Red
interpreter and compiler is written in
Rebol 2, so at most a Rebol 2 interpreter
is required to compile a Red program
through Red. Red also has a standalone
executable that can be used to interpret
or compile programs. Beginning with
version 2, the Red engine will be ported
from Rebol 2 to Red. This will make Red
a self-hosted language, with two stacks
called Red and Red/System.

Red/System is the low-level com-
ponent of the Red programming lan-
guage and provides Red’s runtime li-
brary, a linker to produce executables
and a low-level system programming

language similar to a C-level language
suitable for device driver development,
native library usage, and more. Red is
a flexible mid to high level scripting
language similar to Rebol, suitable for
complete applications, user interfaces,
data modeling, domain-specific lan-
guage creation and scripting.

Red’s runtime uses a hybrid approach
by compiling what can be solved statically,
using a just-in-time compiler for other cas-
es, and finally interpreting when none of
those approaches satisfies.

Getting Started
We will first use the Red executable

(available since version 0.4.0) to compile
the Red console (available since version
0.3.2), and then we’ll use this console to
learn some Red language basics.

Red is built on the earlier Rebol 2, which
was never ported to Linux ARM (like
Ubuntu on ODROID). The current ver-
sion of Rebol 3 has been ported to Linux
ARM, but is not compatible with Red at
this time. Therefore, we will need to cross-
compile our Linux ARM programs on a Li-
nux, Windows or Mac OS X desktop ma-
chine until Red becomes self-hosted.

From the download section of
http://red-lang.org, download
the Red executable for your favorite
desktop platform. Create a directory on
your system called “Red”, and place the
Red executable
in that directory.
This will be your
Red root directo-
ry. Run it straight
from the file since

no installation is required, except chmod
+x red-041 on systems that require this.
The Red executable is both a Red com-
piler and a Red interpreter, all rolled
into one file. If you run it without any
command line options, it will launch as a
Red interpreter (Read Eval Print Loop).
The first time it is launched, it will com-
pile the interpreter automatically. Since
Red compiles its own REPL, we’ll need
to download the Red source code from
github.com/red/red to perform
this compilation. If you’re not familiar
with GitHub, go to https://github.
com/red/red/tags and click the .zip
(Windows) or .tar.gz (Linux) file under
the most recent version (v0.4.1 as of this
writing). Now, let’s compile the REPL
console for ODROID:

The console executable for Linux-
ARMhf (“Linux-ARMhf ” for hard-float
vs “Linux-ARMsf ” for soft-float operat-
ing systems) is now available in the red-
master folder. Ubuntu on ODROID is
a hard-float operating system.

The following example illustrates both
capabilities by calling a Red library embed-
ded in Java to build a basic user interface
through the Java AWT. This is based on the
code available in your Red root directory at
red/bridges/java/hello.red.

Red’s logo depicts a full stack language able to cover
the full development spectrum from low-level to high-
level programming. Red is a full-stack language!

ODROID MAGAZINE 26

LEARN RED

Here you have to build hello.red as a
library and bridge.java with a JDK.

 To build hello.red, use the Rebol 2 ex-
ecutable you downloaded earlier on one
of the supported platforms and run this
Rebol command from the Rebol console:

cd %path/to/your/red/root/

directory

do/args %red.r “-dlib -o

%red/bridges/java/hello

%red/bridges/java/hello.red”

Then compile bridge.java using Java’s
compiler (which you must already have
installed, and which is beyond the scope
of this tutorial):

javac bridge.java

And run it with Java (again, which
must already be installed):

Java –Djava.library.path=.

bridge

To avoid potential issues, make sure
your Java runtime and compiler matches
(javac –version, java –version).

Since Red v0.4.1, Red features a pars-
ing engine, a well-known method in Re-
bol to write dialects (sometimes referred
to as DSLs – Domain-Specific Languag-
es). A typical case of parse usage would
be rewrite the code shown next column
in a more elegant way to wrap the AWT
calls. This is part of the Red roadmap.

Using a dialect, then it could be com-
pressed to something simple with the flex-
ibility of the following AWT examples:

main: function [][

 frame: java-new [java.

awt.Frame “AWT/Red”]

 layout: java-new [

 java.awt.GridLayout

4 1

]

 button1: java-new [

 java.awt.Button

“Button”

]

 label: java-new [

 java.awt.Label

 “Demo AWT/Red”

 label.CENTER

]

 checkbox1: java-new [

 java.awt.Checkbox

“Option 1”

]

 textfield: java-new [

 java.awt.TextField

“Hello !”

]

 java-do [frame/setLayout

layout]

 java-do [frame/add la-

bel]

 java-do [frame/add but-

ton1]

 java-do [frame/add

checkbox1]

 java-do [frame/add tex-

tfield]

 java-do [frame/setSize

200 200]

 java-do [frame/setVis-

ible yes]

 events: java-new

[events]

 java-do [frame/addWin-

dowListener events]

]

view [

 set “AWT/Red” 4 1

200x200

 button1: button []

 label1: label “Demo AWT/

Red” center

 checkbox1: check “Option

1”

 textfield: field “Hello !”

]

Just imagine how much more pro-
ductive software developers could be by
using the power of DSLs like this. The
view dialect example above uses less than
¼ the amount of code than the Java ex-
ample it replaces, and is much more read-
able and easy to debug and change.

Red’s Past
and Future

The author of Red, Nenad Rakocevic,
first announced his intent to build the Red
language on February 26th, 2011 at the Re-
bol/Boron conference in the Netherlands.
He has since been working full-time on his
endeavor. Red is still a work in progress,
but Red foundations have been set and it
is already possible to cross-compile and/
or embed Red in Java, for example.

Android is clearly a focus, and Red
is able to produce APK binaries as the
proof of concept “eval” progam dem-
onstrates (download it from http://
static.red-lang.org/eval.apk).
Red is becoming an alternative to allow
development of Android applications that
remain independent of complicated IDEs
and development environments and is ex-
tremely lightweight. Upcoming releases
will include simple I/O support of files,
full object support, Visual Interface Dia-
lect for GUI creation, and more.

To view Nenad’s recent talk on “What
is Red” at the ReCode Conference 2013,
visit http://www.youtube.com/
watch?v=H4kMlOkN894. The talk
was recorded with a camera programmed
and developed using Red and Rebol 3.

Since version 0.3.3, it is possible to both compile a
Red program as a native library and to embed a Red
library in Java thru JNI.

ODROID MAGAZINE 27

MAKING MONEY WITH ODROIDS

The Code Monkey desktop’s default wallpaper
reminds you that you can do more with less.

WEB DEVELOPMENT
WITH CODE MONKEY
AND QUIET GIANT:
USING ODROIDS TO BUILD A SUCCESSFUL BUSINESS
by Rob Roy, Chief Editor

ODROID computers are ex-
tremely versatile, and can be
used for nearly every type of

computing application, including gam-
ing, robotics, desktop publishing, web
browsing, audio production, media serv-
er and playback, and much more. Many
ODROID owners use them exclusively
for fun, learning and home entertain-
ment. However, because of their pow-
erful quad-core processors, generous
2GB of RAM, and low cost, you can
also run a successful web development
business with an ARM-based ODROID
cluster from your home!

The high cost of a typical software
development computer can be prohibi-
tive for home enthusiasts who wish to
offer professional web development
services, especially considering the cost
of installing a typical Windows or OSX
operating system, purchasing expensive
laptops, hard drives, memory, proces-
sors and cooling systems, licensing a de-
velopment studio package such as Visual
Studio, and renting a dedicated develop-
ment server from a data center.

In contrast, the startup cost of build-
ing an ODROID-based development
studio is approximately 90% less ex-
pensive than a home-built x86 machine,
while leveraging the latest free, open-
source operating systems and communi-
ty-supported software to provide a ro-
bust platform for web developers.

I have been running a successful web
development business since 2012 with

my ODROID-X2 and ODROID-U2,
using them exclusively to produce and
maintain modern HTML5 websites that
are viewed by hundreds of thousands
of visitors each month. Almost any
web software that can be written using
an expensive Windows- or OSX-based
system can also be developed using an
ODROID, including HTML5, respon-
sive layouts, content management, cross-
browser compatible code, and web ap-
plications written in popular modern
languages such as jQuery, AngularJS,
PHP, Java, and JavaScript.

For those aspiring to augment their
income with web development, the
community images Code Monkey and
Quiet Giant provide a virtual 8-core sys-
tem that operates in parallel to provide a
sandbox web environment. A sandbox
environment is where a website is proto-
typed on a local network server before
being published to an expensive public
internet server. Code Monkey includes
several great Interactive Development

Environments (IDEs) including Blue-
fish Web Editor, which will be used in
this article to illustrate how to get a basic
Wordpress site running in an inexpen-
sive sandbox environment. Both images
used in this article are available for free
download from the ODROID forums
at http://forum.odroid.com.

Choosing
the Development
Environment

The development stack used on
many internet servers is known as
LAMP, which stands for Linux, Apache,
MySql, and PHP. Code Monkey runs
a version of Linux called Ubuntu, and
Quiet Giant runs a server-specific ver-
sion of Ubuntu, published by Linaro,
which is optimized for high traffic serv-
er usage. Nginx is a popular alternative
to Apache, and other Linux distribu-

ODROID MAGAZINE 28

MAKING MONEY WITH ODROIDS

tions such as Debian are also viable for
use as the server OS. MySql is the stan-
dard database package for storing per-
sistent user data, layout and other web
information relevant to the appearance
and data storage of the site.

Quiet Giant comes with MySql and
Apache pre-installed, along with sev-
eral other services that can be used
to mirror a production environment,
such as DNS, Tomcat and Mail. It is
not recommended to expose the sand-
box website to the internet for security
reasons, so it is very important to use
a router with a firewall in order to pro-
tect the local system from intrusion,
injection or spying. As a general rule,
never keep sensitive data on a public-
facing internet server unless proper se-
curity and firewall software is in place
to prevent hacking.

The advantages to LAMP develop-
ment are the wide availability of qual-
ity low- and no-cost software, a stable
OS environment that requires minimal
maintenance, and an ability to host the
website on any machine, regardless of
the server’s performance profile. For
the purposes of demonstrating sand-
box development, the Quiet Giant
image will run the same software that
would be installed on a high-end inter-
net server (Apache, PHP and MySql)
so that, when it comes time to push
the site to the data center, there will be
no compatibility issues, since the code
was developed using the same tools
and software packages that are run-
ning in the production environment.

Gathering
the Equipment

To illustrate the concepts of
ODROID web development, I chose
Wordpress 3.8 as an example Content
Management System (CMS) platform,
which will be installed onto the Quiet
Giant server, and then customized us-
ing Bluefish Web Editor from the sec-
ond ODROID running Code Monkey.

Any two ODROIDs from the X, U

or XU series can be used, with the XU
being the best option for the Quiet Gi-
ant server due to its USB 3.0 ports and
high-performance A15 cores, and the
X or U machine serving as the ideal
development computer due to their
low cost and portability. If an XU is
not available, another X or U computer
can be substituted for the server, since
Quiet Giant has already been ported to
every ODROID hardware platform.

Configuring
the Database Server

For the Wordpress installation to
function properly, MySql needs to re-

serve space in the database for Word-
press content and configuration files.
To configure the MySql installation, log
into the Quiet Giant server using the
SSH protocol by booting up Code Mon-
key on the client ODROID and launch-
ing a Terminal session. The default SSH
username and password of “odroid”,
and a server address of 192.168.1.100,
will be used in the following examples.

ssh odroid@192.168.1.100

Start the MySql admin panel after the
command prompt appears with the fol-
lowing command. The default MySql

Setting up
the Network

Three protocols are used to share
resources between the two machines,
creating a robust development envi-
ronment paired with powerful server
capabilities:

Samba file-sharing protocol en-
ables a remote server’s shared direc-
tory to be mounted as if it were a lo-
cal hard drive. Quiet Giant includes
a pre-configured Samba server that
automatically permits sharing of the
Apache web directory (www), mak-
ing it visible as a mountable drive to
any client machine located on the lo-
cal network.

SSH allows remote commands
to be sent to the Quiet Giant server
from the Code Monkey development
ODROID over an encrypted, pass-
word-protected connection. It mim-
ics the use of the Terminal window on
the server by creating a remote BASH
shell that can be used to start and stop
services. In this example, SSH will be
used to configure the MySql server be-
fore Wordpress is installed.

HTTP is the standard web pro-
tocol that runs on port 80, and al-
lows Apache to listen for incom-
ing web traffic. Whenever the web
server’s URL is typed into a brows-

er on the client machine, a request
for port 80 is sent to that server,
which then notifies the web soft-
ware, such as Apache, that a visitor
is requesting a copy of the site.

Before installing WordPress,
a static IP address for the server
needs to be established so that the
client and server machines can find
each other. To establish the static
IP, boot up the Quiet Giant image,
plug in the ethernet cable, and log
into the router admin panel from any
other computer on the network. The
ODROID running Quiet Giant can
be identified in the router’s client list
by its host name of “odroid-server”.

After configuring the DHCP res-
ervation, it may be necessary to re-
boot the Quiet Giant server in order
for the new address to be assigned.
For more details on creating a static
IP, please refer the specific router’s
instruction manual.

Although it may be tempting to use
a wireless dongle as part of the serv-
er’s hardware configuration, a wired
ethernet connection will give the best
performance, and reduce the amount
of waiting required when updating
files, due to the higher throughput of
the LAN connection which is up to
30% faster than wireless.

ODROID MAGAZINE 29

MAKING MONEY WITH ODROIDS

configuration and installation will be
performed using the development ma-
chine, and the SSH session to the Quiet
Giant server is no longer needed.

Copying
the Client’s Website

Wordpress, one of the world’s most
popular and well-supported Content
Management Systems (CMS), is open-
source and available for free at https://
wordpress.org/download/. It lets
developers build professional websites
quickly, while also providing an interface
for non-technical people to update web-
site content. Wordpress is very simple
to install, use, and customize, while also
offering hundreds of useful add-ons
that easily perform complex tasks such
ad rotation, social media integration, im-
age slideshows, video carousels, respon-
sive layouts and much more.

Download the Wordpress .tar.gz
package and save it to the ~/Down-
loads/ directory on the Code Monkey
client machine. Decompress the pack-
age by right-clicking it in the Thunar File
Manager and selecting “Extract Here”.

To copy Wordpress to the Quiet Gi-
ant server, first connect to the server’s
shared Samba “www” directory by se-
lecting the “Browse Network” option
on the left side of the Thunar window.
Navigate to the “Windows Network”
-> “WORKGROUP” -> “ODROID-
SERVER” directory, and click on the
“www” share. The Samba share may
also be accessed directly by typing
“smb://odroid-server/www” into
the Thunar address bar. Use the default
username and password of “odroid” to
complete the connection.

The Samba file-sharing protocol fa-
cilitates the installation of Wordpress
files on the server by mounting the
Apache “www” directory as if it were a
local hard drive on the client ODROID.
After the website is installed, the same
Samba share allows customization of
the layout, styles and other Wordpress
code via Bluefish Web Editor.

Using Thunar, copy the files from
inside the newly extracted wordpress
directory, and paste them into the www
shared directory (smb://odroid-
server/www/).

Establishing an SSH connection to our server

Checking the MySql root user privileges

Locating the Samba share

Validating the Samba credentials

Copying the Wordpress files to the server

Configuring the MySql server
for use by Wordpress

username is “root” and the password is
“odroid”:

mysql -u root -p’odroid’

Once the MySql admin panel is
launched, the Wordpress database can
be configured:

mysql> create database word-

press;

mysql> grant all privi-

leges on wordpress.* to

“odroid”@”localhost” identi-

fied by “odroid”;

mysql> flush privileges;

mysql> exit

Now that the MySql database is ready
to accept the Wordpress content, start
the File Manager program by double-
clicking its shortcut on the Code Mon-
key desktop. The rest of the Wordpress

Configuring
the Wordpress Site

Once the files have been copied, launch
any web browser from the Code Monkey
desktop, and type the static IP address of
the Quiet Giant machine as the URL (for
example, http://192.168.1.100/).
The Wordpress welcome screen will ap-

ODROID MAGAZINE 30

MAKING MONEY WITH ODROIDS

pear, with a notification that one of the
configuration file needs to be created. So
far, so good!

Switch back to the browser and click
on “Run the Install” to access the Da-
tabase Setup screen. Replace both the
username and password with “odroid”,
and click “Submit”.

web server. Making local changes, push-
ing them to the internet server, then con-
stantly hitting Refresh in the browser,
wastes valuable time that is better spent
customizing the site.

By setting up a multi-boxed sandbox
environment, the Quiet Giant machine
resides behind the local network, and
all development can be done directly on
its hard drive using the Samba file shar-
ing protocol to edit the files from the
Code Monkey development machine.
Since Apache and MySql are used in the
ODROID sandbox environment, com-
patibility with any production environ-
ment that offers LAMP is nearly guaran-
teed. File are copied to the server using
the File Manager instead of FTP, result-
ing in enormous time savings because
of instantaneous file access.

Additionally, the low cost of the all-
ODROID development studio means
that a beginning website business can
make money on its first project, with-
out having to first recover high startup
equipment costs. ODROIDs also make
it very easy to test websites on both
Desktop and Mobile without the need
to purchase additional QA tablets, since
the ODROID is capable of running
both Linux and Android, and support-
ing a wide selection of browsers on both
operating systems.

Migrating
the Website
to a Public Server

Once the content of the Wordpress
website is ready for publication, the
site files can be uploaded to the public
server either via FTP, or through a stan-
dard cPanel application, depending on
the hosting service. Filezilla is available
on the Code Monkey image for host-
ing companies that provide access to
the website’s FTP server. If using the
cPanel interface to transfer the website
files instead, they may be uploaded di-
rectly from the Samba share at smb://
odroid-server/www/.

Once the web files have been cop-

To create the necessary wp-config.
php configuration file, open the pre-built
example from the Wordpress web page
by clicking on the “We Got It” link, and
copying the file contents using Ctrl-C.
Launch the Gedit Text Editor from the
Code Monkey desktop, and paste the file
into a new document using Ctrl-V. Save
the file as “wp-config.php” by pressing
Ctrl-S, clicking on the “www on odroid-
server” link in the left side of the Save
File dialog, and pressing “Save”.

Initial setup of Wordpress

Final setup screen of Wordpress

Copying the example wp-config.php Word-
press configuration file

Database setup of Wordpress

Customizing
the Wordpress Site

At this point, the Wordpress sand-
box development environment is
ready for use. Many administrative
and configuration tasks, such as adding
themes and plugins, can be performed
via the wp-admin interface located at
http://192.168.1.100/wp-admin.

Advanced developers may want to
customize the site PHP files, located in
smb://odroid-server/www/, by us-
ing the Bluefish Web Editor application to
open the shared Samba directory. Exten-
sive tutorials on customizing Wordpress,
downloading themes and plugins, and
modifying the source code are available
at the official Wordpress site https://
codex.wordpress.org/Getting_
Started_with_WordPress.

The Sandbox
Advantage

The ODROID web development
multi-boxing setup solves the produc-
tivity issue of constantly using FTP to
publish incremental changes to a remote

ODROID MAGAZINE 31

MAKING MONEY WITH ODROIDS

ied to the public internet server, it’s also
necessary to migrate the Wordpress da-
tabase, which contains the site’s content
and custom settings. Connect to the
Quiet Giant image via SSH and type the
following command:

mysqldump -u odroid

-p’odroid’ wordpress > ~/

Public/www/wordpress-data-

base.sql

This exports a copy of the database
to the file “wordpress-database.sql”
on the server’s local hard drive. This
file may then be imported to the pub-
lic MySql server directly from Apache’s
“www” directory, which is already avail-
able as a shared drive to the Code Mon-
key machine. After the database import
is completed, the new Wordpress web-
site will be identical to the one created in
the sandbox environment.

Working Wordpress Site

shared on the local network at smb://
odroid-server/spigot/, and can
also be modified from Code Monkey us-
ing any available IDE in the same way
that the Wordpress site was edited.

To run Spigot, establish an SSH ses-
sion to Quiet Giant, then type the fol-
lowing command:

cd ~/Public/spigot

sh ./spigot.sh

Anyone on the local network may then
play Minecraft on the Spigot server, and
test out the server’s world by using Qui-
et Giant’s static IP address as the server
name. Complete support for customiz-
ing and administering Spigot is available
at http://www.spigotmc.org.

Once the Minecraft server has
been customized for public use, fol-
low the same procedure for upload-
ing as with the Wordpress site, using
either Filezilla or cPanel to send the
files from the sandbox server to the
public site. Using addons, Minecraft
players can submit donations and pur-
chases directly to a PayPal account,
which can cover the cost of the pub-
lic server, and perhaps bring in some
extra money on the side.

ODROIDs
for Profit

Who knew that a $59 computer
could be a core part of your home
web development business? Replac-
ing expensive laptop and desktop
computers with ODROIDs can save
you thousands of dollars in equip-
ment costs. Clients who wish to
maintain security while developing
their websites can be assured that
their product will not be available on
the Internet until it’s ready, thanks to
the privacy of the sandbox environ-
ment. The portability of ODROIDs
make it easy to write software on the
go, making it an ideal solution for a
lucrative mobile software develop-
ment business.

Other Sandbox
Applications:
Hosting
a Minecraft Server

Quiet Giant is a powerful OS that
also comes with an optimized Minecraft
server build called Spigot. Spigot is writ-
ten in Java, and allows complete custom-
ization of any aspect of the Minecraft
server. The Spigot files are automatically

REBOOT YOUR
UBUNTU AFTER
INSTALLING CPUFREQ

After installing your CPU governor
from Issue 2, have you noticed
that your Ubuntu distro hangs

when issuing a restart? If so, check your
current cpufreq policy by typing:

sudo cpufreq-info

If your policy is set to anything other
than “performance”, you may have to
power cycle your ODROID to reboot.
But don’t worry, you can also just issue
the following command prior to a re-
start in order to get the job done:

sudo cpufreq-set -g performance

and bam! Your ODROID is able to
restart now.

RESIZE YOUR
PARTITION

Did you install a new image on
your eMMC card or SD card
and forget to allocate the free

space on your main partition? You
don’t need to go through the hassle of
disconnecting the card or module and
taking it all the way back to GParted
on another copy of Linux. Mauro, one
of the Hardkernel developers, created
a handy script for our convenience:

http://forum.odroid.com/
download/file.php?id=502&sid
=842ba747c84c171245591847c5
53b7af

Make it executable:

chmod +x resize.sh

run it as sudo

sudo ./resize.sh

Then, reboot your ODROID. Once
the boot is completed, run the com-
mand again to allocate the free space,
and you are all set!

ODROID LINUX TIPS

http://www.spigotmc.org

ODROID MAGAZINE 32

MEET AN ODROIDIAN

Rob Roy, a frequent contributor to the
ODROID forums, was recently selected by
Hardkernel to publish ODROID Maga-
zine due to his passion for ARM technol-
ogy. Currently living in San Francisco,
California, Rob has worked in the software
engineering industry for over 20 years, with
many stories to tell about the early days of
computing. He’s been recognized for his in-
novative contributions by many high-profile
clients such as PNC Bank, Cleveland Indi-
ans, BP, Chevron, PPG, Hyundai, Dolby
Technologies, Hi5, and VEVO.

How did you get started with computers?
When I was about 10 years old, my

parents let me visit with my uncle Jack
and aunt Eydie in Pittsburgh, Pennsyl-
vania for a few weeks, as a summer va-
cation. Jack was a mechanical engineer,
and used an Apple][+ and an Apple][e
in his job to perform stress calculations.
I was very interested in math, and so he
gave me a couple lessons in how to use
the computer, along with a typing pro-
gram called Letter Invaders.

That weekend, he took me to a lo-
cal Apple Bytes enthusiast club, where I
got to meet a lot of really smart and fun
people who shared a common interest of
exploring the possibilities of these revo-
lutionary new home computers. It was
absolutely amazing what could be done
with 64KB of RAM and 113KB 5-¼”
floppy disks back then. After the meet-
ing, I played the game Ultima 3 non-stop
for a few days, then started learning BA-
SIC from my uncle, since the language

was built into the Apple hardware.
When I got home from my vacation,

I told my parents exactly what I wanted
for Christmas: an Apple //c. My brother
and I played games on it, did our home-
work, and even wrote little programs to
do simple things like bouncing a pixel
around the screen, or keeping track of
the shopping list for the week. We later
got an Amiga 2000, which was a very ad-
vanced computer for its time. I attend-
ed Carnegie Mellon University, where I
had access to a Cray YMP through my
on-campus job, and got to explore the
early internet, when it was only used by
a handful of universities, before HTTP
was invented.

What do you like most about the ODROID
community?

It reminds me of that first Apple
Bytes meeting with my uncle, where peo-
ple from all walks of life and backgrounds
got together to speak the same language.
ODROIDs provide an opportunity for
everyone to learn and experiment with
ARM technology in a supportive environ-
ment. The depth of knowledge available
in the forums, and the worldwide appeal
of ODROIDs, bring back that feeling of
something exciting about to happen. I
think that ODROIDs herald a new revo-
lution of affordable home computing,
which is a long-awaited breath of fresh air
for the technology world.

What other interests and hobbies do you
enjoy?

I have been a vegetarian for almost 20

MEET
AN ODROIDIAN
ROB ROY: CHIEF EDITOR OF
ODROID MAGAZINE
by Robert Hall

Heavenly ski trip in South Lake Tahoe 2014

ODROID MAGAZINE 33

years, and follow a living foods diet. For
those who are curious about what a living
foods diet consists of, I have many free
and original gourmet recipes available at
http://icaneatraw.blogspot.
com. I also enjoy almost any type of
exercise, including running, skiing, swim-
ming, biking and martial arts. I earned a
second-degree black belt in Hapkido after
college, and just recently came back from
a ski trip with my girlfriend at Heavenly
in South Lake Tahoe. I do a hot springs
retreat at least once a month, to relax and
enjoy the beautiful California Redwoods.

What motivated you to produce the OS im-
ages available on the forums?

I run a web development company
from my home office, and I was look-
ing to replace my trusty 2008 HP laptop
with something more modern and por-

table. I read an article on Wired about
the Raspberry Pi, and remembered using
RISC-based machines in college. That
led me to research and buy the most
powerful ARM board that I could find,
which happened to be the ODROID-
X2. After seeing what it could do, I set
a goal for myself to completely replace
my Windows XP machine with my new
ODROID, while still doing everything
that I used to do in Windows, by instead
using Ubuntu and Android on my X2.

When I got my first ODROID, I
knew next to nothing about Linux,
coming from a Microsoft and Apple
background, so I kept reading and ask-
ing questions on the ODROID forums.
I wanted to tweak the Linux OS to be
more like my old Windows XP envi-
ronment. I tried an ODROID port of
Slackware, which was graphically fast,

but very challenging for a beginner
to customize. The forums were sup-
portive of experimentation, and other
ODROID contributors inspired me to
want to learn more.

For my web business, I decided to use
the official Linaro 12.04 image which
came with the standard Unity desktop.
I started hacking away on the command
line until I got rid of all of the warnings
and errors in the kernel log. Then, I
installed Synaptic and configured every
desktop environment that I could find,
and downloaded all of the equivalent
Linux programs to those that I had used
in Windows. Throughout the process,
there were many software obstacles that
required research, questions, and perse-
verance in order to achieve a completely
stable environment. I really learned a
lot about Linux from that experience.

After learning that I could copy an
image using the “dd” command, I pub-
lished my first pre-built OS called Fully
Loaded, which included several desk-
top environments such as Unity, KDE
Plasma, LXDE, Gnome and Xubuntu.
After that, I was encouraged to create a
few more images for my own personal
use such as Pocket Rocket and Whisper,
and realized how easy it was to share
what I had done with others.

I currently offer more than a dozen
images to the ODROID community,
and receive PayPal donations from many
community members who appreciate
the time and effort that I put into mak-
ing them. I very much enjoy interacting
with people from around the world, and
by learning more about Linux, I’ve been
able to help others find new ways to use
ODROIDs to fit their needs.

 Rob Roy’s ODROID software contributions
may be downloaded for free from http://
oph.mdrjr.net/robroyhall/.

The Ultimate ODROID Setup: U3, XU, Q2 and
a BERO bluetooth robot
http://www.betherobot.com

MEET AN ODROIDIAN

http://icaneatraw.blogspot.com
http://icaneatraw.blogspot.com
http://oph.mdrjr.net/robroyhall/
http://oph.mdrjr.net/robroyhall/
http://www.betherobot.com

ODROID MAGAZINE 34

THANK YOU FOR READING!!!

THANK YOU
THIS MAGAZINE ISSUE ENDED
you can now stop reading....

Okay...

Wait a minute...
where is the cover
article?

OKAY, OKAY
SO, BY POPULAR DEMAND

and because you probably skipped ahead to read about
how to play all the cool games on the front cover…

ODROID MAGAZINE 35

LINUX GAMING
ON ODROID
THE RIGHT SYSTEM FOR YOUR GAMES (PART TWO)

by Tobias Schaaf

L ast month, I presented and
discussed many of the differ-
ent emulators available for the

ODROID platform. I compared some
of them and showed what the differ-
ences are, and how the emulators have
evolved over the years. If you are un-
sure where to find the games you want
to play, or choosing what system to pick
for your games, this article will help you
find some answers.

Choosing the right
system for your
favorite game genre

There are plenty of genres to
choose from, but which system is
best for which genre, and what
games for your genre exists for
which system? If you read my
last article, you know that, for
example, you won’t find ad-
venture games for the MAME
or NeoGeo emulators, but where
do you find them? What system
offers the best racing games, and
which has the best strategic games?

Since there are many genres and
many systems to play on, this will be
once again reflect my personal prefer-
ences, is based on my own experiences.

Adventure
If you want to play adventures, you

should definitely go for ScummVM!
ScummVM is an awesome piece

of work. There are tons of Adven-
ture games and ScummVM just plays

them very well on the
ODROID.

It runs the
famous Monkey
Island series:

And other
classics such
as Day of the
Tentacle, The
Dig, Beneath a
Steel Sky, and Bro-
ken Sword:

More
informa-

tion about
ScummVM can
be found here:
http://scummvm.
org.

There are many awesome Adventure
games available for the ODROID, and
you can play them with either mouse,
keyboard, joystick or gamepad. There
were some adventures available for con-
sole systems, but they are mostly ports

of the original PC or Amiga
games. So, there is no need to

consider the console Adventure
ports, since the same games are
most likely available for Scum-

mVM, which also supports dif-
ferent versions of the same

game. This means that you
can even play the original
Amiga version of Monkey

Island or the Mac OS version
of Day of the Tentacle directly

on ScummVM.

Action
There are many Action subgenres

such as shooter, fighting games, beat ‘em
up, side and top down scrollers. If you
look into the gigantic MAME library
and my personal favorite, the NeoGeo,
you will find hundreds of Action games.

LINUX GAMING

ScummVM, a testment to the
classic age of point and click

adventure games with compel-
ling stories great 16bit art and

an ambience that even the most
die hard indie developers are

still struggling to recapture for
gamers worldwide

http://scummvm.org
http://scummvm.org

ODROID MAGAZINE 36

LINUX GAMING

S o m e
notable examples include
the Metal Slug Series, 1944 -
The Loop Master, Blazing Star,
Gun Force 2, King of Fighters
Series, and Last Blade 2:

If you really like fast action games,
beat ‘em up, action scrollers and shoot-
ers, these games are what you’re looking
for, and ODROID does a really good
job with this genre. The best part is that
most of these games are made for two
or more players, so that you can play
with a friend on your ODROID and en-
joy these kind of games together.

There are many action games avail-
able for all of the major consoles, and

most of the games that
exists for MAME

and NeoGeo
were subsequent-

ly ported to other
platforms. They are

generally somewhat
easier than the arcade

originals, so if you
want the original

gaming experi-
ence, I strongly

r e c o m m e n d
MAME emula-

tion.
Other console sys-

tems offered quality ac-
tion games too, such as the Jungle Strike
and Desert Strike series which were
available for several systems such as
Amiga and SNES.

Another well
known series is
the infamous
M o r t a l
K o m b a t
g a m e s ,
which is a
brutal fight-
ing emulator
not suitable for
children due to
its extreme vio-
lence and re-
alistic blood

effects.

Jump ‘n Run
or Platformer

Although it’s easier
to associate Adventure
and Action games with

specific emulators and systems,
it’s more difficult to determine

which platform to use when looking
for Platformer games to play, as they

are available for every system.
Platformers, also known as Jump ‘n

Run, is an extremely popular and time-
less genre. Classics such as Earthworm
Jim, Turrican, Aladdin and Asterix are
rewritten for each new console as either
modernized versions or faithful remakes
of the originals.

But how can you find a specific Plat-
former game that you’re looking for?

Nearly every big Disney production
has its own Platformer or Jump ‘n Run,
along with many other cartoons from

the 90s, such as Aladdin, Lion
King, Asterix, Tiny Toons, Bat-

Man, SpiderMan, X-Men, Mickey,
Kirby, Donkey Kong, and so on.
Up until the GameBoy Advance

(GBA) these types of games were very
common, but on newer generations of

One of the games
that made the ESRB rating
exist, but was loved by kids

everywhere:
Mortal Kombat

A little reminder of 90’s-era
American endeavors to keep a

changing world at peace:
the “Strike” series.

Need to make your blood boil,
sharpen your reflexes and wish

to complete your DIY arcade
controls? So, look no further
than MAME games, with the

added benefit of not having to
spend bags and bags of quarters

to end those darned difficult
games.

ODROID MAGAZINE 37

consoles, such as the PlaySta-
tion 1 or the PlayStation Portable,
there are fewer versions of the
classic Platformers. So, the best ex-
perience for the jump ‘n run genre will
be found with the NES, SMS, Genesis,
SNES, and GBA emulators.

There are some great Action games
on the Amiga as well. Back in the day,
I really enjoyed a game called Flash-
Back which was interesting because it
offered lots of different sceneries and
tasks. FlashBack is considered a more
“mature” platformer, and also exists for
other systems such as the SNES. It was
even recently remastered for PCs again
with a modernized look.

Strategy
Strategy games are not very common

around consoles, but there are a few
games such as Final Fantasy Tac-
tics or Advanced Wars.

However, those games are
nothing compared to the real
strategy games found for PC (or
some for Amiga as well), and
as their name suggests, they
are more about tactics than
real strategy.

Games such as Dune 2 (the
original RTS), Command and
Conquer, and round based strategy
games such as Battle Isle and Histo-
ryline 1914-1918 are hard to find on

consoles, since
they are played

best with a mouse
and keyboard. For

these types of
games, a native

Linux pro-
gram in-
stead of an
e m u l a t o r

provides the
most interac-

tive experience.
I really love

those very early strat-
egy games. I spent weeks finishing all
the levels of Dune 2 when it first came
out, and today there are
some really nice re-
makes such as Dune
Legacy.

There is an
a b u n d a n c e
of Strategy
games that run
natively on Linux.
Some are remakes
from old clas-
sics, and some
are new games

that exist for
Linux and

other systems. Examples
of the Strategy genre include

Free Heroes 2, Battle for Wes-
noth, Zod Engine, Advanced

Strategic Command, Crimson
Fields, OpenXCom, Jagget Alliance

2, Unknown Horizons and Widelands.
If you’re looking for strategy games,

it’s rather easy to find good games that
run directly on Linux, and with an
ODROID, you have plenty to choose
from. You can experience your old fa-
vorites with games such as Zod Engine,
OpenXCom, Jagget Alliance 2, or you
can try new original games such as Battle
for Wesnoth. There are a lot of games
in the Debian and Ubuntu software re-
positories, as well as some that I the and-

The 16-bit console era will
always be remembered by its

many mascots that shaped the
gamer’s imagination, and kept
us in love with those heroes in

updated forms

Careful strategy, resource
control, learning to adapt quickly

to changing situations,
and thinking about the con-

sequences of your actions. If
you have ever played a strategy

game, you know what we are
talking about

LINUX GAMING

ODROID MAGAZINE 38

LINUX GAMING

created and posted online in my reposi-
tory mentioned at the beginning of this
article. So, if you like strategic games
like I do, you will love playing them on
an ODROID in high definition.

Racing
Although it’s not my fa-

vorite genre, I used to play
some of the racing games,
and it really is a matter of
personal preference. If you
like the old 2D classics, such
as the OutRun series, or the Lo-
tus series, or the all famous Ma-
rio Kart, then the SNES, Amiga
and Sega Genesis emulators
will offer the most choices.
There are also several bird
perspective racing games
like the old Micro Ma-
chines racing games.

You can also play more
modern racing games on the
PS1 or the PSP, such as the 3D
racing games Gran Turismo and As-
phalt: Urban GT 2.

The Genesis also has some racing
games with good looking graphics and
catchy music, and the PS1 and PSP offer
several famous series such as Need For
Speed and Gran Turismo.

Simulation
Simulations such as CrosixTH

or OpenTTD can run directly
on Linux for the ODROID
without an emulator.

I love Corsix TH! It’s
very fun to see many crazy
illnesses you can discover
and cure, and the game has
some lovely animation. I also
really like OpenTTD. I played
the original Transport Tycoon
on my first DOS-based PC. It
was awesome to see all that
money flowing in, and I re-
ally wished it was that easy
in real life. OpenTTD is
unique because of the on-

line feature, and
the multitude of

add-ons available for
the game. You even can

have old trains from the 19th century.
What other simulation games exist

for the ODROID? Some of them run
on emulators, such as Theme Park for
the Amiga and SNES.

Many simulation games exist as na-
tive Linux ports. Examples include
Widelands, a clone from the old Settlers

series, and Unknown
Horizons, which is

similar to the Anno
series. FreeCiv

and FreeCol are

clones of the Civilization and the Colo-
nization series. I also enjoy playing the
original Colonization on the Amiga be-
cause of its awesome music and enter-
taining graphics.

There are some exceptionally well-
done 3D space simulators available on
the ODROID. The FreeSpace series,
which I loved to play on the PC, runs
great on the ODROID. It has stunning
graphics, engaging gameplay, and is a re-
ally big game! There are huge destroyers
in the game that are literally a thousand
times bigger then your space fighter.

The best place to look for your favor-
ite simulation games is the Software

Center included with your Linux
distribution.

From the technically focused
games like Gran Turismo to just
plain fun ones like Mario Kart,

racing games put our com-
petitive instincts in motion, and
make us want to become good
enough to finish in 1st place.

Just five more minutes! How
many times have you told

yourself that when playing an
engrossing board or computer

game, only to be surprised when
the sun comes up?

ODROID MAGAZINE 39

exotics such as the Jedi Knight series.

Conclusion
As you can see, the ODROID offers

many options when it comes to games.
There are quite a few more sub-genres
than those detailed here, such as sport
games like soccer and tennis, puzzle
games, and other games such as Harvest
Moon which are hard to fit into any of
the main genres.

With the ability to emulate many differ-
ent systems on the ODROID, you have the
world of gaming at your fingertips, so grab
your controller, mouse and keyboard, and
see how well you can do on that big TV of
yours!

Tobias, a long-time contributor to the
ODROID forums and Linux Gam-
ing columnist, produces a popular Gam-
ing OS called ODROID GameStation
Turbo with XBMC, available for free
download at http://oph.mdrjr.net/
meveric/images/. GST offers many
gaming console and system emulators for
the X and U series, along with a custom
build of XBMC designed specifically
for gamers. He maintains a repository
of many of his favorite classic games at
http://oph.mdrjr.net/meveric/re-

pository/.

LINUX GAMING

Role Playing Games
(RPG)

Role Playing Games is actually one
of my favorite genres, and there are
quite a lot of RPGs available, with way
too many to mention them all. Some
highlights include the now famous Final
Fantasy saga, the Tales series and Chro-
no Trigger. Although NES, Sega and
SNES offer a few great RPGs, such
as Link of Zelda, Secret of Mana
and Earthbound, but RPGs have
evolved over the years. As I
mentioned

for a game from that era.
I also enjoy paying “Riviera – The

Promised Land”, which has a very deep
story and a great fighting style as well. I
recently found out that Riviera was re-
made for the PSP, which has pretty much
the same graphics with improved effects
and voice acting as an improvement
over the GBA version. I also recom-

mend some of the
well-done Drag-

on Ball Saga
games for the

GBA.
I main-

ly recom-
mend the

GBA, PS1 and
PSP emulators

on GST if you en-
joy RPG games.

in my previous article, newer emulators
equals bigger ROM sizes which equals
more content, resulting in better looking
games.

Ultimately, I prefer the GBA for RPG
games, especially the Summon Night se-
ries. I really love its fighting style, which
is rather rare for a Role Playing Game.
You actually have to fight your enemies
in real time with different weapons, and
you jump, block and force them back
while using a set of spells. It’s all very
fun to play, especially since the game
permits forging special weapons of dif-
ferent types with unique attributes, de-
pending upon the Materials used. All of
this adds up to great gameplay, especially

First
Person

Shooter
(FPS)

You won’t find many, if at all, FPS
games on the first generation of video con-
soles such as the NES and SNES. How-
ever, titles such as Battlefield 3, Battlefield
4 and Call of Duty, all of which are avail-
able for current Xbox and PlayStation con-
soles, are proof that people like to play FPS
games on console systems.

As a side note, I never understood
the attraction of playing an FPS game
on a console. It’s called “point and
shoot”, not “swirl around and shoot”,
and the mouse is a natural pointing
device whereas a gamepad is not. Ap-
parently a lot of console gamers do not
share my opinion, but that’s fine.

Anyway, the ODROID offers some
nice FPS titles as well, such as Quake 3
Arena (Open Arena) or World of Padman
which offer fast multiplayer action on the
ODROID. We even have some very nice

Irrefutably bounded to Japanese
anime, RPG will take you to

wonderous journeys that will
kept you wanting

one more gaming sequel!

The Jedi Knight games are not
pure FPS but as we all know, it’s
just more fun to slice the enemy

up with your light saber!

http://oph.mdrjr.net/meveric/images/
http://oph.mdrjr.net/meveric/images/
http://oph.mdrjr.net/meveric/repository/
http://oph.mdrjr.net/meveric/repository/

