
ODROID
Magazine

Build your own UBUNTU from scratch • Install Oracle JDK Version 8

Year One
Issue #4
Apr 2014

DO IT YOURSELF EDITION

Off-Roading with an ODROID Truck PC

A MINECRAFT
SERVER

A HEAVY DUTY

TABLET
CUSTOM ANDROID BUILD

GET STEP BY STEP TUTORIALS ON HOW TO CREATE:

What we stand for.
We strive to symbolize the edge technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

ODROID MAGAZINE	 3

EDITORIAL

Linaro 12.11, which is reaching its end of life this month, was the
last version of Ubuntu to offer the Unity 2D desktop environ-
ment, which is popular with both beginners and experts be-

cause of its friendly icons, unique desktop customization options,
and easy-to-use interface. However, its predecessor and close

relative, Linaro 12.04, is still alive and
well, and comes with Unity 2D. 12.04
is the most recent Long Term Service
(LTS) release, and will be supported

for 3 more years, until April 2017. If you’re
looking for an extremely stable version of
Ubuntu, Linaro 12.04 is your best bet.

However, the 12.04 version of Ubuntu isn’t
available as a pre-built from Hardkernel. Why?

Because, as the ODROID box says, you can Do It Your-
self! The ODROID family of computers are primarily intended for

developers, who love to build everything from scratch for two reasons:
1) they usually get paid by the hour, and 2) they spend days constructing long,

intensive build scripts that take hours to finish, so that they can go make sand-
wiches and drink coffee while they wait for the build to be done!

This month, Mauro shows us how to build a custom Ubuntu image from
scratch, so you can amaze your friends at your next party, and show that you are
a true Linux hacker, worthy of their adoration and free jelly donuts.

We also are very proud to present an emerging trend in the automobile world:
a fully functional computer installed in your car’s dashboard! Known as Car PCs,
several large computer companies have recently contracted with major car manu-
facturers to include their hardware as high-priced options in certain high end mod-
els.

But who says that Car PCs have to be expensive? Our feature article, the
Truck PC, is a guide to building your own onboard computer, as an affordable
alternative to supergluing an iPad to your dashboard. Requiring less than 5W
of power, the ODROID CarPC and its battery can be charged straight from your
electrical system, or by using a small solar panel mounted on the roof. The future
of truly mobile computing is here today, and ODROID line of micro-computers are
once again proven to be ahead of their time.

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Makers of the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE architecture
based single board computer.
Join the ODROID community with members from over 135 countries, at http://forum.odroid.com, and explore the
new technologies offered by Hardkernel at http://www.hardkernel.com.

http://magazine.odroid.com/
http://forum.odroid.com/
http://www.hardkernel.com/

ODROID MAGAZINE	 4

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I am a computer
programmer liv-

ing and working in
Silicon Valley, CA, USA,

designing and building websites such
as Vevo, Hi5, Dolby Laboratories
and Hyundai. My primary languages
are jQuery, Angular JS and HTML5/
CSS3. I also develop pre-built operat-
ing systems, custom kernels and opti-
mized applications for the ODROID
platform based on Hardkernel’s offi-
cial releases, for which I have won sev-
eral Monthly Forum Awards. I own a
lot of ODROIDs, which I use for a
variety of purposes, including media
center, web server, application devel-
opment workstation, and gaming con-

sole.
Bo
Lechnowsky,
Editor

I am President of Re-
spectech, Inc., a technol-

ogy consultancy in Ukiah, CA, USA
that I founded in 2001. From my
background in electronics and com-
puter programming, I manage a team
of technologists, plus develop custom
solutions for companies ranging from
small businesses to worldwide corpora-
tions. ODROIDs are one of the weap-
ons in my arsenal for tackling these
projects. My favorite development
languages are Rebol and Red, both of
which run fabulously on ARM-based
systems like the ODROID-U2. I have
deep experience with many unique op-

erating systems.
Bruno Doi-
che, Art Edi-
tor

Went a little crazier
than usual while studing

again how a color blind person sees, and
missed having a colorblind coworker as
when he worked on EGM Brazil in his
old gaming magazine editing days.

News from Art Editor Bruno:
You will notice a few changes in this

issue. The first is that we are now using
a color-coded system at the top of each
article to show the level of technical de-
tail. This expands our color palette, and
as a bonus, we are mixing our content and
including shorter articles on subjects such
as Linux Tips and Android Gaming.

We are also changing the format of some
of the more technical articles, by including
text in two columns when necessary.

Why? well it was a bum-
-mer when we need-
-ed to type a longer str-
-ing of code and it was cut.
This means that, in some cases, we

are changing the style from three col-

umns, and my art editing teacher would
remind me to keep the layout consistent.
However, the articles will be much more
comprehensive for you to follow the
code, which is the main point!.

From now on, we are going to leave some
space at the end of the technical articles, so
that any future revisions will have room to
grow. Once an article is published, we do a
lot of tweaking based on user feedback, and
if the technical articles are too tight, the ad-
ditions can be difficult to adjust.

Finally, we now have a Table of
Contents, which you can see on the
next page! Cool, huh? Now you won’t
be caught in my little in-jokes like on
the last edition, not that I won’t try to
put some humor here and there!

ODROID MAGAZINE	 5

INDEX
BUILD ANDROID ON ODROID U3 -6

TURN YOUR ODROID TO AN ITUNES AIRPORT AUDIO STATION - 8

PORTABLE IMAGE BACKUP - 9

RENAME YOUR FILES 10

PARANOID FILE EDITING - 10

BUILD YOUR OWN UBUNTU FROM SCRATCH -11

INSTALL THE ORACLE JDK VERSION 8 - 14

USING ODROIDS IN HIGH PERFORMANCE COMPUTING - 16

VECTOR - PARKOUR PACKED ACTION - 17

HOW TO SETUP A MINECRAFT SERVER - 18

LEARN REBOL - 22

BE HEARD WITH ÜBERCASTER - 27

ODROID U3 I2C COMMUNICATION - 29

HEAVY-DUTY PORTABLE LINUX TABLET - 32

HOW I BUILT A TRUCK PC - 34

MEET AN ODROIDIAN - 38

DOWNLOAD YOUTUBE VIDEOS TO WATCH OFFLINE - 20

ODROID MAGAZINE	 6

TECHNICAL ARTICLE

In this tutorial, I will discuss how to
build the Android operating system
for the ODROID-U3 from source,

including the kernel. The Android
build system is robust, but also a bit
complicated if you haven’t used it be-
fore. There are steps that need to be
done properly in order to have a work-
able and repeatable build system. By
the end of this article, you will hope-
fully have sufficient knowledge and un-
derstanding of how it all works.

Build Hardware
and Environment

I won’t go into details in terms of
setting up your build server for building
Android since Google’s own Android
page has lots of information at http://
source.android.com/source/
initializing.html. If you are hav-
ing problems installing JDK 6, follow the
steps in this link: http://askubuntu.
com/questions/67909/how-do-i-
install-oracle-jdk-6.

Building the Android source code is
a big task and requires a powerful ma-
chine. To give you an idea, my computer
has the following specification:

32GB RAM
i5 Intel Processor
2 x 256GB SSD Drive

Android build systems do a lot of
writing and reading, and this in turns
requires constant I/O operations. Even
with an SSD drive, you still have to spend

a good 25-35 minutes waiting time for the
build to complete, and this can be very
time-consuming if you have to constantly
work with Android on a daily basis. Make
sure to have as much free disk space as
possible, with the minimum requirement
around 100GB. There is another trick to
speed up the building process and this is
the use of ccache project. In the next
section I will outlined on how to use it.

If your hardware is not as powerful
as i5 or i7 and you are using a normal
hard drive than make sure you have your
coffee ready !

Download Source
The Android source code for ver-

sion 4.1.2 (JellyBean) that I used in this
article can be downloaded from droid.
com website at http://dn.odroid.
com/4412/Android/4.1.2_Jan-
15-2014/BSP/. There are a couple
files that you need to download from
that link, as shown in below:

Download the 2 files android.tgz
and kernel.tgz, and extract them to a
directory in your local drive. Put the

Android and Kernel source code

BUILD ANDROID
ON ODROID-U3
FROM SCRATCH TO SMASH,
TAKE TOTAL CONTROL
OF YOUR ANDROID SYSTEM
by Nanik Tolaram and Fabien Robert

 http://source.android.com/source/initializing.html
 http://source.android.com/source/initializing.html
 http://source.android.com/source/initializing.html
http://askubuntu.com/questions/67909/how-do-i-install-oracle-jdk-6
http://askubuntu.com/questions/67909/how-do-i-install-oracle-jdk-6
http://askubuntu.com/questions/67909/how-do-i-install-oracle-jdk-6
http://dn.odroid.com/4412/Android/4.1.2_Jan-15-2014/BSP/
http://dn.odroid.com/4412/Android/4.1.2_Jan-15-2014/BSP/
http://dn.odroid.com/4412/Android/4.1.2_Jan-15-2014/BSP/

ODROID MAGAZINE	 7

TECHNICAL ARTICLE

kernel files inside the kernel/ directory
under the Android root directory as
shown above.

The main reason to place the kernel
inside the Android directory is to facili-
tate the creation of the build script, since
the build system revolves around files in-
side the main Android source directory.

I created a set of patch files for this
article on GitHub at https://github.
com/nanikjava/odroid-u-patch.
This patch allows you to build Android
and the kernel at the same time. Run the
command:

git apply --stat ./odroid-
u-patch/fix-build-odroid-
u3.patch

and you will see the output as shown
at the bottom of the page.

There are 3 new file and 2 modifica-
tions for this patch. Make sure you are
inside your Android directory and apply
the patch by running the following com-
mand:

git apply ./odroid-u-patch/

fix-build-odroid-u3.patch

You will get the following messages
which can be safely ignored:

./odroid-u-patch/fix-build-

odroid-u3.patch:171: trail-

ing whitespace.

./odroid-u-patch/fix-build-

odroid-u3.patch:173: trail-

ing whitespace.

 ccache =

warning: 2 lines add

whitespace errors.

One additional file required for the
build process is Makefile, which should
be copied to the kernel/drivers/media/
video/samsung/tvout directory.

ccache and script
modification

I mentioned using ccache to speed
up the compilation process, and now I
will walk you through setting it up. First,
you must remember that ccache require
some free disk space, and in this case, we
are going to set it up to use only 10GB,
which will be more that sufficient.

Create a directory anywhere in your
drive, then initialize the environment
variable and run both of the following
ccache commands to initialize it:

export CCACHE_DIR=\

<your_ccache_directory>

<your__Android_directory>/

prebuilts/misc/linux-x86/

ccache/ccache -M 10G

You can verify whether ccache has
been successfully initialized by inspect-
ing the cache directory as shown at the
upper right on the page.

The last step is to modify the buil-
dOdroid.sh script to change the ccache
directory to point it to you local direc-
tory like the following:

source build/envsetup.sh

lunch odroidu-eng

export USE_CCACHE=1

export CCACHE_DIR=\

<your_ccache_directory>

/usr/bin/time -f “\n%E

elapsed,\n%U user,

\n%S system,\n%M memory,\n%x

status” make -j8

Kernel Modification
There is an unnecessary file that

needs to be removed from the kernel/
directory, which has to do with build-
ing the Broadcom 4330, which is not
needed for the ODROID-U. Delete the
file Android.mk inside the kernel/
drivers/net/wireless/bcm4330/
src/ directory as shown below.

Git stat of the patch

The cache directory and its subdirectories,
numbered in Hex from 0 to F

Kernel directory inside Android

Ready… Set… Go!
Once you have finished the above

steps, you are done with the initial pre-
build setup. Navigate to the Android
source directory, and follow these steps
to start building Android:

Run source build/envsetup.
sh. You will get output as shown next.

https://github.com/nanikjava/odroid-u-patch
https://github.com/nanikjava/odroid-u-patch

ODROID MAGAZINE	 8

TECHNICAL ARTICLE

Run lunch and you wil be shown se-
lection as shown below. Select the 7th
option.

Inform ccache of the directory that
it will use to cache the compiled file, and
also an environment variable to inform
the build process that we want to use
ccache.

export USE_CCACHE=1

export CCACHE_DIR=<your_cca-

che_directory>

The final step is to execute the build
process by typing make -j4.

I’ve created a script called buildOdroid.
sh that you can use to build Android, but
it’s good if you can go through the above
steps to get a flavour of the build steps.

After completing all the above steps,
you will see the build process run, which
will take some time to build. On my ma-
chine, with caching enabled, it took on
average 18 minutes. At bottom we show

what you should be seeing when you get
successful compilation.

Image files
After the build is completed, the re-

sulting binaries and image files (.img) are
found inside the directory out/tar-
get/product/odroidu/ .

There are several different .img
files that you will need for your
ODROID-U:

boot.img • this file is the main
bootloader image that contains the
u-boot, kernel and ramdisk files

recovery.img • this file is used
to create the recovery partition

system.img • this is the main
image file that contains the full
Android system and applications

Cleaning up
If you run into a problem during the

compilation, make sure to “clean” the
directories using the make clobber com-
mand before restarting the build pro-
cess. This will delete all of the binary/
compiled objects that are produced dur-
ing the compiling/linking stage.

Console
output of
envsetup.sh

Android has
been built
successfully!
Good job!

You shouldn’t need to think that 7 is a
number to pick just to get lucky, it is in
fact the correct option here.

SHAIRPORT
TURN YOUR ODROID TO
AN ITUNES AIRPORT
AUDIO STATION
by Bruno Doiche

Got an old stereo with amazing
speakers in need of a little mp3
action? Plug a regular Stereo

Male to 2-RCA from your odroid to
the AUX ports on the Stereo and do
the following on your Linux terminal:

sudo apt-get install\
avahi-utils libmodule-build-perl\
libio-socket-inet6-perl libao-dev\
libssl-dev libcrypt-openssl-rsa-perl\
libwww-perl pkg-config

git clone https://github.com/
njh/perl-net-sdp.git perl-net-sdp

cd perl-net-sdp/
perl Build.PL
sudo ./Build
sudo ./Build test
sudo ./Build install
cd ..
git clone https://github.com/

hendrikw82/shairport.git
cd shairport
make
./shairport.pl -a name

TIPS AND TRICKS

Goonix, what a cute hostname for a
machine… But wait!? Isn’t that the same
computer used to do the PS3 media server
in the last issue? Such versatility!

ODROID MAGAZINE	 9

PORTABLE IMAGE BACKUP

Once you’ve got your ODROID
set up the way that you like, it’s
important to make sure that you

can restore your system quickly and eas-
ily. If you enjoy experimenting with Li-
nux or Android, need to install your OS
on several ODROIDs, or want to keep
a backup in case of disk failure, you can
do so by making an image of your SD
card or eMMC module. An image file is
an exact bit-for-bit copy of the original
disk, complete with bootloader, kernel,
root file system, and user files.

To begin, power down the ODROID
and remove the eMMC or SD card that
you’d like to backup. Using another Li-
nux host computer with an SD card to
USB adapter, plug the SD card or eMMC
adapter into the USB port. If using
an eMMC module, attach the SD card
adapter that came with your ODROID
before inserting it into the SD card slot.
Depending on which operating system
your host is running, the procedure for
backing up your disk to an image file will
be somewhat different.

Windows
H a r d k e r n e l

publishes an im-
proved version of
Win32 DiskImager
that automatically
fills the disk with
zeroes before writing
the image. It’s available for free down-
load at http://bit.ly/1lYQ7MF,
and is very easy to use. Simply select the

USB drive in the dropdown, choose the
image file destination using the folder
button, and press “Read”.

Depending on the size of your SD
card or eMMC module, the backup pro-
cess may take anywhere from 15 - 60
minutes. The resulting .img file will
end up being the exact size of the disk
that was copied, so make sure to have
enough disk space available first. Note
that the image backup should be done
on an NTFS partition, since DiskImager
will be unable to write a file larger than
4GB to a FAT32 disk.

After the image has completed, we
can make it more portable by com-
pressing the file using the xz utility,
which has the advantage of very high
compression ratios. If xzip is not al-
ready installed, download and unzip the
prebuilt Windows binaries at http://
tukaani.org/xz/, then copy the ap-
propriate version of xz.exe to the same
directory as your backup file. Type the
following command into a Windows
command prompt, after navigating to
the correct directory:

xz -z mybackup.img

This step will also take some time
to complete. After the compression is
done, a file called mybackup.img.xz will
replace the original .img file. This can
shrink the file up to 80%, depending on
the amount of data stored on the origi-
nal operating system. Make backups of
your backup by storing several copies on
different disks, in order to ensure that
you won’t lose your valuable data.

When it’s time to recover the backup
image by writing it back to an SD card
or eMMC module, use the xz command
again to decompress the backup file:

xz -dk mybackup.img.xz

This will recreate the original .img
file by reversing the compression algo-
rithm. Note that the -k option preserves
the original .img.xz file, so that it may be
reused later to do another recovery.

Finally, go back to Win32DiskIm-
ager and select the destination disk for

Good backup habits will
keep you safe from bad luck,
evil pets, and especially
your own hubris

Ugh.. Windows

PORTABLE IMAGE
BACKUP
CREATING A RECOVERY FILE FOR YOUR
FAVORITE OPERATING SYSTEM
by Rob Roy, Chief Editor

ODROID MAGAZINE	 10

PORTABLE IMAGE BACKUP

writing the image from the dropdown,
choose the .img file with the file ex-
plorer, and press “Write”. Note that it
must be at least the same size or larger
than the original disk. After the process
completes, the selected disk will be an
exact copy of the your original operating
system. Insert the new disk into your
ODROID, power it on and enjoy!

Linux
In true Linux fash-

ion, image backups
are done entirely from
the command line. If
the xz binaries are not
yet available on your
system, type sudo
apt-get install xz-utils to in-
stall them. Then, mount the SD card or
eMMC module by double-clicking on the
USB adapter’s desktop icon. Type df -h
in the Terminal window and make note of
the device name, which will be in the for-
mat /dev/sdX.

Navigate to the directory where the
image file is to be stored, then type the
following command, substituting the
device name of the USB adapter noted
in the previous step for /dev/sdX:

sudo dd if=/dev/sdX bs=1M

of=./mybackup.img

Just like Windows, after the Read op-
eration is completed, xz is used to com-
press and decompress the image file for
portability:

Compress an image file using xz

xz -z mybackup.img

Decompress a zipped image file
using xz

xz -dk mybackup.img.xz

When writing the decompressed image
to a new card, use the same dd command
as the Read operation with the input file
(if) and output file (of) options reversed:

sudo dd of=/dev/sdX bs=1M

if=./mybackup.img

Mac OSX
The procedure

for creating an im-
age file using OSX
is similar to Linux,
with three small
differences. First,
instead of using
apt-get to install xz,
download the xz-
utils package from the same website
mentioned in the Windows instruc-
tions above, making sure to select the
OSX binaries (http://tukaani.
org/xz/). The other differences are
that the block size (bs) parameter for
the dd command is in lowercase, and
the USB adapter’s device name is in
the format /dev/diskX:

Read from the original disk to an image
file using OSX

sudo dd if=/dev/diskX bs=1m

of=./mybackup.img

Write from an image file to a new disk
using OSX

sudo dd of=/dev/diskX bs=1m

if=./mybackup.img

It’s a good idea to make a backup of
your system before a major upgrade is
attempted, a challenging configuration
is completed, or a large set of software
packages have been installed. In case
the original disk becomes corrupted,
a compressed image backup will also
get you back on track quickly, without
needing to take the time to reinstall
and reconfigure the entire system.

If your data is important enough,
It’s also a good idea to keep a backup
archive as well as some offsite copies for
safekeeping. You can never have too
many backups!

Yeah Linux baby!

We may not talk
often about Macs,
but the magazine
art is made on OSX

RENAME
YOUR FILES FROM
UPPERCASE TO
LOWERCASE IN ONE
COMMAND LINE
by Bruno Doiche

Ever needed to organize the files
in your directories, but have a
bunch of misfits that need to be

renamed to comply to your so dreamed
orderly database of files? Sure, when
they are few, you just issue the mv com-
mand and resolve. But what if they
come in hundreds?
Issue the following syntax on your Ter-
minal:

for i in *; do mv $i $(echo $i
| tr [:upper:] [:lower:]); done

It’s that easy!

PROTECT
YOURSELF FROM
SUPERUSER ACCIDENTS

Whenever you are editing sys-
tem files on your text editor,
do you go to superuser mode

using sudo or su ? Break this dangerous
habit of exposing yourself to an acci-
dental file deletion, move or reboot by
creating a script that will keep your envi-
ronment safe. Let’s call it autosudo.sh

#!/bin/bash
	 FILE=$1
Check Write Permission
	 if [-w $FILE]
then
 /usr/bin/vim $FILE
else
Sudo If We Dont Have Write

Permissions
	 sudo /usr/bin/vim $FILE
fi

Give it executable pemissions with
chmod +x , copy it to /bin run sys-
temwide and then edit like this:
autosudo.sh yourfile_to_edit

TIPS AND TRICKS

ODROID MAGAZINE	 11

BUILD YOUR UBUNTU FROM SCRATCH

BUILD YOUR OWN
UBUNTU FROM
SCRATCH
USING LINARO’S ROOTFS
TO COMPILE LINUX
LIKE A PRO!
by Mauro Ribeiro

Setting up
the environment

cd ~

mkdir ubuntu-guide

cd ubuntu-guide

export GUIDE=`pwd`

export SDCARD=/dev/sdX

Make sure to replace X with the
correct letter of your SDCard.

Downloading all
the necessary
components

• Pre-built bootloaders
This article won’t cover bootload-

er building because nothing changes
over the pre-built bootloader pro-
vided on the Hardkernel developer
website.

wget odroid.in/guides/

ubuntu-lfs/boot.tar.gz

• Kernel Sources

git clone --depth 0 https://

github.com/hardkernel/linux.

git -b odroid-3.8.y odroid-

3.8.y

• Toolchain for Crossbuild
In this guide, I’m using GCC 4.7.2

from Archlinux ARM as my toolchain. I
like this toolchain given the known sta-
bility of this version.

wget odroid.in/guides/ubun-

tu-lfs/arm-unknown-linux-

gnueabi.tar.xz

• Linaro’s rootfs
I chose to use Linaro’s rootfs because

it comes easily packed as a .tgz file, and
will work very well for this guide. At the
moment of this writing, Linaro’s 13.12 is
what was available, and any other rootfs
should work just fine.

Soon, Ubuntu stores will be the favorite hangout spot for a future ODROIDian society.

A major advantage of open-
source operating systems such
as Linux is having the option to

download the source code and compile
it yourself. You can add patches, tweak
the code, and inspect it for bugs without
needing to wait for an official release or
update. The ODROID platform can
run many different operating systems,
and some of them are not available as
pre-compiled ARM images. Taking the
time to learn how to build your system
from scratch enables you to download
newly developed operating systems and
try them out. In this example, Linaro’s
version of Ubuntu will be used to dem-
onstrate how easy it is to take control of
your OS at the most basic level.

General Notes

• This guide was tested on a host
computer running Ubuntu 13.10
64-Bit with ia32 libs installed.

• Free up at least ~10GB of disk
space on your host computer.

• Set aside some spare time.
• If something goes wrong, start

over.
• The default user and pass-

word is “linaro”.
• TTY1 will auto-login as root.

ODROID MAGAZINE	 12

BUILD YOUR UBUNTU FROM SCRATCH

wget http://releases.lin-

aro.org/13.12/ubuntu/arn-

dale/linaro-saucy-server-

20131216-586.tar.gz

5. U-Boot tools
U-Boot tools comes with a tool

called mkimage we need that to create
a boot.scr.

sudo apt-get install u-boot-

tools

Building
and Assembling
the Image

1. Emptying your card.
I choose to do that always as it pro-

vides a clean base.

sudo dd if=/dev/zero

of=$SDCARD bs=1M

2. Installing bootloaders

tar zxvf boot.tar.xz

cd boot

chmod +x sd_fusing.sh

sudo ./sd_fusing.sh $SDCARD

cd ..

3. Create Partitions
We use two partitions, one for

kernel+initrd(if used) and one for
rootfs. The kernel+initrd partition is a
FAT32 type, and the rootfs is a ext4 par-
tition with no journal and no “atime as
mount” option.

It’s also important on this step that the
first partition starts at least 3072 sectors
later, since this is the bootloader space.

sudo fdisk $SDCARD

n

p

1

3072

+64M

n

p

2

134114

<just press enter here>

t

1

c

w

This can be slightly cryptographic
for some users, but it’s quite simple:

n = new
p = partition
1 is the number of the partition

that we are creating
3072 is the start address of this

partition
+64M is the size of this parti-

tion, this is the FAT32 partition, so
doesn’t have to be big

n creates a new partition
134114 is the start of partition 2,

which is right after partition 1
We don’t tell the size to fdisk

and leave it empty so it can use the
rest of the sdcard

t = type
1 is our partition number
c is the type for Fat32 partition
w = write

After all this, call partprobe to get the
new partitions recognized by the kernel:

sudo partprobe

4. Format and mount the partition
We need to format the partitions and

change the UUID of to the same UUID
that we use on Official Ubuntu so later
on you can use the kernel-update script:

mkfs.vfat -n boot $SDCARD”1”

mkfs.ext4 -L rootfs \

$SDCARD”2”

Now that the partitions are format-
ted, let’s change the UUID of the ext4
partition:

tune2fs $SDCARD”2” -U

e139ce78-9841-40fe-8823-

96a304a09859

And disable journaling to prevent ex-
cessive wearing of your card:

tune2fs -O ^has_journal

$SDCARD”2”

Then, mount the partitions:

mkdir rootfs

mkdir boot

sudo mount $SDCARD”1” boot

sudo mount $SDCARD”2” rootfs

5. Install the rootfs on our sdcard
Decompressing the rootfs and copy-

ing it to the card is very simple:

sudo tar -zxf linaro-saucy-

server-20131216-586.tar.gz

sudo mv binary/* rootfs

6. Building the kernel
 This a guide on how to cross-com-

pile the kernel for your board too.
First, decompress the toolchain:

tar -Jxf arm-unknown-linux-

gnueabi.tar.xz

We already have the kernel sources
that we downloaded earlier.

cd odroid-3.8.y

export ARCH=arm

export CROSS_COMPILE=../arm-

unknown-linux-gnueabi/bin/

arm-unknown-linux-gnueabi-

make odroidu2_defconfig

Wait! Do you see the last line make
odroidu2_defconfig? This line for U2
and U3, and if you are doing this for the
X2, just replace it with make odroidx2_
defconfig.

Building the kernel will take a while
depending on your machine.

make -j8

ODROID MAGAZINE	 13

BUILD YOUR UBUNTU FROM SCRATCH

I use -j8 because my computer is a
quad-core with hyperthreading, so 8
threads are available. You should con-
figure the number to match your com-
puter’s processor.

7. Install the kernel and modules that we
just built

First, install just the kernel image.

sudo cp arch/arm/boot/zImage

../boot

Next, install the modules:

sudo make ARCH=arm INSTALL_

MOD_PATH=../rootfs modules_

install

cd ..

Once the modules are installed, the
kernel is ready!

8. Create an initial Boot Script for the first
boot

cd boot

cat << __EOF__ | sudo tee

boot.txt

setenv initrd_high “0xffffffff”

setenv fdt_high “0xffffffff”

setenv bootcmd “fatload mmc

0:1 0x40008000 zImage; bootm

0x40008000”

setenv boot-

args “console=tty1

console=ttySAC1,115200n8

root=/dev/mmcblk0p2 rootwait

rw mem=2047M”

boot

__EOF__

sudo mkimage -A arm -T

script -C none -n boot -d ./

boot.txt boot.scr

cd ..

This creates the boot.txt file, and the
sudo mkimage line creates the boot.scr.

9. Unmount and clean-up

sudo umount boot

sudo umount rootfs

sync

First Boot
and Configurations

Now, we are ready to do our first
boot. Remove the card from your com-
puter and connect to your board.

1. Configuring your network card.

cd /etc/network/interfaces.d

cat << __EOF__ >> eth0

auto eth0

iface eth0 inet dhcp

__EOF__

reboot

2. Configuring FSTAB

mount -t devtmpfs devtmpfs /

dev

cat << __EOF__ >> /etc/fstab

UUID=e139ce78-9841-40fe-

8823-96a304a09859 / ext4

errors=remount-ro,noatime 0

1

/dev/mmcblk0p1 /media/boot

vfat defaults,rw,owner,flush,

umask=000 0 0

tmpfs /tmp tmpfs

nodev,nosuid,mode=1777 0 0

__EOF__

mkdir -p /media/boot

mount /media/boot

3. Running the kernel update script

apt-get install u-boot-tools

wget builder.mdrjr.net/

tools/kernel-update.sh

chmod +x kernel-update.sh

./kernel-update.sh

Running this step is important to
create a uinitrd as well add all the other

boot.scr files for different monitors and
resolutions.

Everything below this is just regu-
lar Linux usage that you can find on
Google and Linux Forums, and is
intended only for those who want a
Graphical environment.

Install xubuntu-desktop

Before starting the downloading,
make sure that you have at least 450MB
of disk space available.

sudo apt-get install xubun-

tu-desktop

1. Installing Mali Drivers

cd ~

mkdir mali

cd mali

2. Downloading the Mali dependencies

wget http://builder.mdrjr.

net/tools/mali.txz

wget http://malideveloper.

arm.com/downloads/drivers/

DX910/r3p2-01rel4/DX910-SW-

99003-r3p2-01rel4.tgz

apt-get build-dep xserver-

xorg-video-armsoc

apt-get install mesa-utils

mesa-utils-extra libgles2-

mesa-dev libgles2-mesa

libgles1-mesa-dev libgles1-

mesa libegl1-mesa libegl1-

mesa-dev

3. Installing Blobs and Headers

tar zxf DX910-SW-99003-r3p2-

01rel4.tgz

tar Jxf mali.txz

mv /usr/lib/arm-linux-gnue-

abihf/mesa-egl ~

cp -aR blobs/* /usr/lib

cp -aR include/* /usr/in-

clude

ldconfig

ODROID MAGAZINE	 14

4. Building and Installing the X11 Driver

cd DX910-SW-99003-r3p2-01-

rel4/x11/xf86-video-mali-0-

.0.1

./autogen.sh

cd src

rm -rf compat-api.h

wget http://cgit.freedesk-

top.org/~cooperyuan/compat-

api/plain/compat-api.h

cd ..

make -j4

make install

mv /usr/local/lib/xorg/mod-

ules/drivers/mali* /usr/lib/

xorg/modules/drivers

5. Configuring Xorg.conf to use Mali

cat << __EOF__ >> /etc/X11/

xorg.conf

Section “Device”

Identifier “Mali-Fbdev”

 Driver “mali”

 Option “fbdev” “/

dev/fb1”

 Option “DRI2”

“true”

 Option “DRI2_PAGE_FLIP”

“true”

 Option “DRI2_WAIT_VSYNC”

“true”

 Option “UMP_CACHED”

“true”

 Option “UMP_LOCK”

“false”

EndSection

Section “Screen”

 Identifier “Mali-Screen”

 Device “Mali-Fbdev”

 DefaultDepth 24

EndSection

Section “DRI”

 Mode 0666

EndSection

__EOF__

6. Create a udev rule to change mali
permission in order for a regular user
to use it

cat << __EOF__ >> /etc/udev/

rules.d/10-mali.rules

KERNEL==”mali”,SUBSYSTEM==”m

isc”,MODE=”0777”

KERNEL==”ump”,SUBSYSTEM==”um

p”,MODE=”0777”

__EOF__

Congratulations.. You made it!

BUILD YOUR UBUNTU FROM SCRATCH

J ava is one of the most popular
programming languages for both
application and web develop-

ment. It has the advantage of true cross-
platform compatibility, which means that
code written in Java will run on any Java
Virtual Machine regardless of the pro-
cessor, computer, operating system, or
other hardware. Oracle publishes a free
Development Kit, which is also available
as an ARMHF binary, which means that
the ODROID family can easily run the
vast library of Java software. The lat-
est version available as of April 2014 is
JDK8, which can be installed alongside
previous versions of Java, and provides

HOW TO INSTALL THE ORACLE
JAVA DEVELOPMENT KIT (JDK) VERSION 8
SAVE TIME WITH JAVA’S
“CODE ONCE, RUN ANYWHERE” ARCHITECTURE
by Robert Raehm, Edited by Venkat Bommakanti

Even though this issue is designed to highlight
several DIY projects, you could also call it the
“Cute Mascot” edition!

a rich platform for development, includ-
ing significant speed improvements over
previous versions.

Requirements

• An ODROID from the X, U or
XU series

• An 8+ GB eMMC or Class 10+
MicroSD

• A custom Ubuntu, Debian or
similar image (13.04 or higher),
available from the ODROID Forums
(http://forum.odroid.com)

Download the tarball
To begin, backup your personal files

from your Ubuntu installation if necessary.
On the Ubuntu desktop, create a dedicated
folder to receive the downloaded package.

http://forum.odroid.com

ODROID MAGAZINE	 15

INSTALL JDK VERSION 8

Mount the Java
installation

On Linux systems, Java is typically
installed in the system directory at /
usr/lib/jvm

when using an automatic installer.
However, since we are manually install-
ing the package, the uncompressed files
will need to be moved to the correct di-
rectory from the Terminal window.

$ sudo mv jdk1.8.0 \

/usr/lib/jvm

Update the PATH
environment variable

Your original Linux installation may
have come with a prepackaged version
of the Java Development Kit, and the
location of that installation will most
likely be specified in the PATH envi-
ronment variable. The PATH variable
specifies certain directories to search
when a command is typed into the Ter-
minal window, so that packages may be
invoked from any directory.

After installing JDK 1.8.0 with the
above steps, we need to ensure that the
1.8 version is used as the default virtual
machine going forward. To do so, up-
date the PATH environment variable to
include the new version:

$ export PATH=/usr/lib/jvm/

jdk1.8.0/bin:$PATH

The $PATH at the end of the com-
mand appends the current PATH envi-
ronment variable to the new one. Since
the $PATH string is searched for the first
occurrence of a program, once a match
is found, the system ignores the rest of
the $PATH string, thereby bypassing
any previous Java installs that may also
be included.

Complete
the installation

Typically, when programs are installed
in Linux using installation utilities, cer-

tain symbolic links are created. We will
need to manually update those symlinks
using the following 4 commands:

sudo update-alternatives

--install /usr/bin/javac\

javac /usr/lib/jvm/jdk1.8.0/

bin/javac 1

sudo update-alternatives

--install /usr/bin/java\

java /usr/lib/jvm/jdk1.8.0/

bin/java 1

sudo update-alternatives

--config javac

sudo update-alternatives

--config java

Verify
the installation

As a final step, we need to ensure that
JDK8 was installed properly, and that the
appropriate components are being used.
To do so, run the java binary using the
version parameter to report the current
default version:

$ java -version

The output should look similar to
this, indicating that JDK8 is the default:

java version “1.8.0”

Java(TM) SE Runtime Environ-

ment (build 1.8.0-b132)

Java HotSpot(TM) 32-Bit

Server VM (build 25.0-b70,

mixed mode)

For additional information or ques-
tions, please visit the original forum
thread at http://forum.odroid.
com/viewtopic.php?f=52&t=204.

The examples in this article use the
March 13th, 2014 version of Oracle JDK.
You can download the latest version by
visiting the Oracle website at https://
jdk8.java.net/download.html
by clicking the link for the most recent
package labelled Linux ARMv6/7 VFP,
HardFP ABI. As the time of this writ-
ing, the latest version available was jdk-
8-fcs-b132-linux-arm-vfp-hflt-
03_mar_2014.tar.gz.

After agreeing to the Terms and
Conditions and downloading the file,
it is good practice to check the md5-
checksum of the package to make sure
that it was transferred correctly. This is
done by using the md5sum utility:

$ md5sum jdk-8-fcs-b132-li-

nux-arm-vfp-hflt-03_mar_2014.

tar.gz

The result should be compared to
the contents of the checksum file lo-
cated in the same directory as the pack-
age download. For this example, the
md5sum file was located at http://
www.java.net/download/jdk8/
archive/b132/binaries/jdk-8-
fcs-b132-linux-arm-vfp-hflt-
03_mar_2014.md5.

My downloaded file had the checksum
of c17b5194214b8ea9ad8e6fc302fe078.
If the file that you downloaded has a dif-
ferent checksum than the one located on
the server, discard it, restart the down-
load and compare the checksums again.

Unpack the tarball

In the terminal window, change di-
rectories (cd) to the designated down-
load folder and unpack the file:

$ tar -zxvf jdk-8-fcs-

b132-linux-arm-vfp-hflt-03_

mar_2014.tar.gz

This creates a new subdirectory called
jdk1.8.0 in the download directory.

http://forum.odroid.com/viewtopic.php?f=52&t=204
http://forum.odroid.com/viewtopic.php?f=52&t=204
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5
http://www.java.net/download/jdk8/archive/b132/binaries/jdk-8-fcs-b132-linux-arm-vfp-hflt-03_mar_2014.md5

ODROID MAGAZINE	 16

HPC IN THE HOME

We have been comparing dif-
ferent kernels and their re-
spective performance on

the XU (see http://tinyurl.com/
XUBench1 and http://tinyurl.
com/XUBench2). It was interesting
to see the differences between the ker-
nels you get with Rob Roy’s Particle
and Whisper images (3.4.67 was the
last update we did before we ran the
benchmarks) versus the 3.13 kernel
you get with the experimental Linaro
14.02 distro.

For those of you who worked with
the Calxeda Highbank or Midway ar-
chitectures, which are reflected in the
openbenchmarking URLs referenced
above and at http://tinyurl.
com/ApacheOnARM, you will not
be surprised at the Quad-Core ARM
Cortex-A9 performance when deliv-
ering pages via httpd. Indeed, most
traditional ISPs don’t need to do much
math to serve up lots of web pages, so
an A9 class processor with a shorter
NEON extension than the Cortex-
A15 should work just fine.

It is interesting to see how the XU
outperforms the quad-core A9 using
the Apache benchmark, and also sur-

USING
ODROIDS IN
HIGH
PERFORMANCE
COMPUTING
WHAT A DIFFERENCE
A KERNEL MAKES
by Kurt Keville, MIT

prising how much better the 3.13 ker-
nel is on the same benchmark as the
3.4 kernel on the Exynos 5410. The
XU wins the race, likely because the
A15 cores were being fully utilized and
the A7 cores were quiesced, giving us
the ideal power vs. performance ratio
for that benchmark.

Future ARM clusters like SpiNNa-
ker will have hundreds of thousands of
cores, so every minor power efficiency
improvement will be important. Many
performance improvements also quite
virtuously represent power reductions.
For instance, if you remove much of
your local media, in the form of SD
cards or SATA drives, you can use the
various tricks associated with tftp or
PXE booting and ramdisks to speed
up operations and reduce the list of
devices that you are powering. Net-
booting and NFSroot are high on the
list of power reduction techniques.

The path to energy-efficiency in the
ODROID-centric Datacenter can be
facilitated through simple kernel and
user space fixes. They don’t make a
great difference on their own but they
add up. These are some of the more
fruitful examples.

The operation not performed is the
most energy-efficient.

In application code you can take full
advantage of the capabilities of your
chip. Using a fused multiply-add gets
you those 2 operations for the same
clock cycles of running those operations
separately.

Implement HPC maintainer / user be-
havior modifications.

By this we mean queueing. If you
use something like PowerNap or Pow-
erWake, you can save considerable pow-
er over the lifetime of your gear. This
functionality was described in my article
in Issue 2 (February 2014) of ODROID
Magazine.

Categorize and maximize things that
lend themselves to consolidation and
distribution to leverage hybrid archi-
tectures.

Put your writeable directories on the
NFS shares so you don’t need journal-
ing filesystems or checkpointing on
your (read-only) directories on the client
nodes. It saves time and energy.

Find a way to effectively utilize idle
cycles for computation.

We used a profiling tool to calcu-
late the ideal communication vs. com-
putation overlap strategy to grab the
appropriate amount of data for an
operation, so that we never get into

The A15 is designed with advanced power reduction tech-
niques, and powers our flagship XU, so get the most of it!

http://tinyurl.com/XUBench1
http://tinyurl.com/XUBench1
http://tinyurl.com/XUBench2
http://tinyurl.com/XUBench2
http://tinyurl.com/ApacheOnARM
http://tinyurl.com/ApacheOnARM

ODROID MAGAZINE	 17

ANDROID GAMING

a data-starved or CPU-starved situa-
tion. If a data-starved environment
is unavoidable we can go to a lower
ACPI power state to dial to power
back while we are waiting for the
transfer to complete.

Compile code locally to maximize re-
source usage.

The package GCC 4.8 on the XU
seems to give us the best, smallest binary.

Use the most numerically efficient ap-
proach.

Here again, this has most to do with
application code, since you can often
represent your floating point numbers in
a number of levels of precision.

Give the big problems their due em-
phasis, but also solve the lots of little
problems.

There are quite a few little fixes that
we recommend. It will come as no
surprise to the ODROID kernel hack-
ers out there, that there is considerable
flexibility in what resources you can
exercise and emphasize in your pro-
duction application, and in what you
can turn off in the kernel with little to
no adverse effect.

Conclusion
To get the best performance out of

your ODROID, you can turn on exact-
ly what you want and turn off every-
thing else. Make sure you are just run-
ning the single app you want to run (in
our case a benchmark). You can’t use
100% of your processor in your pro-
duction app if you are busy respond-
ing to interrupts, so kill off (or don’t
start) unnecessary daemons.

You can drop down to single-user
mode (init 2) if you wanted to be sure you
were not losing resources to unwanted
apps, including anything you didn’t turn
off in the kernel, like USB and video.
There are a few additional tips and tricks,
such as the tickless kernel described at
http://tinyurl.com/XULess-
Watts . Enjoy the journey!

VECTOR
PARKOUR PACKED
ACTION
by Ronaldo Andrade

Vector is an exciting, ar-
cade-style game featur-
ing you as the exception-

al free runner who won’t be held
down by the system. The game
opens with a view into a totali-
tarian world where freedom and
individually is nothing more
than a distant dream. But the
heart of a freerunner is strong,
and you soon break free. Run,
vault, slide and climb using ex-
traordinary techniques based on
the urban ninja sport of Park-
our all while being chased by
“Big Brother” whose sole pur-
pose is to capture you and bring
you back.

Inspired by the practice and
principles of Parkour, Vector’s
intuitive controls accommodate
players of all levels, and sophis-
ticated level designs challenge
the most demanding players with
fast-paced timing puzzles as the
traceur “flows” over the dysto-
pian rooftops.

Overall, this is an awesome
game from Nekki, a Russian de-
velopment company. If you ever
watched Parkour and found it in-

teresting, you will love this game.
The action is fluid and the com-
mands simple, making it fun to
play. But don’t let these words
fool you, the challenge the game
presents is above average. There
are three different stages which
you can play on the full version,
each more beautifully constructed

and challenging than the last.
The main objective here is

to escape from the guards that
are after you, but in order to
get three stars, you will have to
collect holo-cubes and perform
every trick, there is also some
bonus money scattered through
the levels, but they are not nec-
essary to get 3 stars.

On the ODROID, you can
use your keyboard and your
mouse to control the player, or
a joystick as well.

GENERAL TIPS:
Collect every cube and perform

every trick -- this will grant you
three stars at the end of the level.

Look ahead, check the sce-
nario to see what stunt you will
need to pass the obstacle us-
ing the least effort, consuming
less time.

At the store, you can use the
money you receive after each
stage to buy gadgets that can be
useful in some situations.

http://tinyurl.com/XULessWatts
http://tinyurl.com/XULessWatts

ODROID MAGAZINE	 18

When your hear creepers making the
Sssss… noise, there’s only one thing to do:

RUN!

HOW TO SETUP A MINECRAFT SERVER

A lmost everyone loves playing
games, especially Minecraft! It’s
been enjoyed by over 14 million

people worldwide for its addictive game-
play and customizable maps. Although
the official package from Mojang Soft-
ware is closed-source, several open-
source Java versions of Minecraft Server
are also available for the ODROID plat-
form. Programming a virtual world us-
ing a free Minecraft Server package such
as Spigot, Bukkit or BungeeCord is also
a great way to learn Java while having
fun too!

This article details how to install a ba-
sic Minecraft server on your ODROID,
so that you can play online games with a
few of your friends in a world of your
own creation. Using the ODROID as
an inexpensive sandbox is also a great
way to test out maps, upgrades and
modifications before uploading them to
a public server.

Requirements
1. An ODROID from the X, U

or XU series
2. An 8+ GB eMMC or Class

10+ MicroSD

HOW TO SETUP A
MINECRAFT 							
SERVER
CREEEEPERS!
by @qkpham

Edited by Venkat Bommakanti

3. A custom Ubuntu, Debian or
similar image (13.04 or higher), avail-
able from the ODROID Forums
(http://forum.odroid.com)

4. Java version 1.8 (OpenJDK8
or Oracle JDK8)

5. Local Area Network (LAN)
connection, including a router with
port-forwarding feature

Install Java
If Java version 1.8 isn’t already in-

stalled on your system, please refer to
the article in this issue of ODROID
Magazine called Installing Oracle JDK8.
Mojang publishes a Java version of the
Minecraft software for compatibility
with other operating systems such ARM
Linux.

Install Minecraft
First, download the latest Minecraft

Server software from the official site at
https://minecraft.net/download,
making sure to get the Java-based .tar
version.

Create a minecraft directory in your
home directory for storing the down-
loaded minecraft_server.jar. Once the

tarball is downloaded, type the following
commands to start the server:

$ cd ~/minecraft

$ java -Xms1536M -Xmx1536M

-jar minecraft_server.jar

nogui

The Minecraft server should be up
and running now! The final step is to
get the server’s IP address so that our
players can connect to it via their Mine-
craft clients.

Obtain the internal
IP address

Find out the internal (local) IP ad-
dress of your server by typing ifconfig
in the Terminal window and locating the
tag inet addr. On my ODROID, the IP
address was listed as 192.168.1.10. Make
sure this address has a long lease issued
by the local DHCP server or router in
order to avoid frequent configuration
updates.

http://forum.odroid.com
https://minecraft.net/download

ODROID MAGAZINE	 19

HOW TO SETUP A MINECRAFT SERVER

Setup port
forwarding

Minecraft uses the TCP port 25565,
which should be forwarded to the serv-
er’s IP address by your local router us-
ing port forwarding. Refer to the user
manual for assistance with setting up the
router to forward port 25565 to the IP
address obtained in the previous step.

Obtain the external
IP address

The public IP address that identi-
fies your LAN to the outside world can
be discovered by visiting http://www.
whatismyip.com. The address will be
in the form aaa.bbb.ccc.ddd, which
means that the fully-qualified URL for con-
necting to the Minecraft Server on your
LAN would be http://aaa.bbb.ccc.
ddd:25565. Note the additionof the rel-
evant TCP port at the and of the URL.

If your external IP is dynamic (typically
changed periodically by your ISP), you can
use services like No-IP. You can create an
account on their website, then download
and install the Dynamic DNS Update Cli-
ent (DUC) at http://www.noip.com/
download. Detailed instructions on set-
ting up Dynamic DNS can be found at
http://bit.ly/1ggmo2n. In this
case, the fully-qualified Minecraft Server
address would be http://yourac-
ctusername.no-ip.com:25565.

To make sure everything’s working, you
can test that your server is visible online by
going to http://www.canyouseeme.
org. You can also quickly check its status
at http://dinnerbone.com/mine-
craft/tools/status/.

System performance will be ac-
ceptable under normal wireless ether-
net conditions, but a wired connec-
tion will decrease latency and increase
game responsiveness.

Joining the Game
Start your Minecraft client on a

Windows or OSX machine by enter-
ing the public IP address from the
previous step (http://aaa.bbb.

ccc.ddd:25565) when adding a new
server to the client’s server list. At the
time of this writing, the Minecraft Cli-
ent software unfortunately does not
yet run on the ODROID platform.
There is a Minecraft Pocket Edition
available for Android, but it is not
compatible with the full version of
Minecraft Server.

A successful connection to the
ODROID Minecraft Server will
bring the user into our virtual world
as seen above.

Additional Server
Configuration

The server options in Minecraft are
configured by editing the server.properties
file located at /home/yourusername/
minecraft/server.properties:

#Minecraft server properties

#Mon Dec 24 09:23:18 EST

2012

#

generator-settings=

level-name=world

enable-query=false

allow-flight=false

server-port=25565

level-type=DEFAULT

enable-rcon=false

level-seed=

server-ip=

max-build-height=256

spawn-npcs=true

white-list=false

spawn-animals=true

hardcore=false

texture-pack=

online-mode=true

pvp=true

difficulty=1

gamemode=0

max-players=20

spawn-monsters=true

generate-structures=true

view-distance=10

motd=A Minecraft Server

The three settings useful in changing
maps and improving performance
include:

level-name
If you want to add another

map or world to your server, just
unpack the world file inside your
minecraft folder and then change
the level-name setting to the
name of that folder. For example,
if your extracted world folder is
odroid then change the level-name
value to odroid instead of the de-
fault world value.
view-distance

Can be reduced to 7 to improve
server responsiveness
max-players

Performs best when set between
2 and 5

http://www.whatismyip.com
http://www.whatismyip.com
http://aaa.bbb.ccc.ddd:25565
http://aaa.bbb.ccc.ddd:25565
http://www.noip.com/download
http://www.noip.com/download
http://bit.ly/1ggmo2n
http://www.canyouseeme.org
http://www.canyouseeme.org
http://dinnerbone.com/minecraft/tools/status/
http://dinnerbone.com/minecraft/tools/status/

ODROID MAGAZINE	 20

HOW TO SETUP A MINECRAFT SERVER

Please note that Minecraft relies
heavily on floating point operations.
Unlike x86 architecture based CPUs,
ARM based SOCs are not optimized for
floating point operations, so the server
options need to be tuned down to com-
pensate for the heavier load.

If you’d like to further improve
performance, several open-source ver-
sions of Minecraft Server are available
that significantly decrease the server’s
computations, providing a smoother
experience and allowing more players
to join the game.

Craftbukkit
Create a folder for Craftbukkit by

typing mkdir ~/craftbukkit in a
Terminal window, then visit https://
dl.bukkit.org/downloads/
craftbukkit/ to download the latest
version of Craftbukkit to the newly cre-
ated directory. Once the download has
completed, run the server to build your
world.

java -Xms1536M -Xmx1536M

-jar craftbukkit.jar

cd ~/craftbukkit/plugins

wget http://dev.bukkit.org/

media/files/674/323/NoLagg.

jar

wget http://dev.bukkit.org/

media/files/665/783/PTweaks.

jar

wget http://dev.bukkit.org/

media/files/586/974/NoSpawnC-

hunks.jar

Spigot
An alternative to Craftbukkit is Spig-

ot, which provides more configuration
options and is optimized for perfor-
mance and speed. Following the same
procedure as listed above, downloading
the Spigot package instead, found at
http://www.spigotmc.org.

mkdir ~/spigot

cd spigot

wget http://ci.md-5.net/job/

Spigot/lastSuccessfulBuild/

artifact/Spigot/target/spig-

ot.jar

java -Xms1536M -Xmx1536M

-jar spigot.jar

Spigot is very stable, and since it is
based on Craftbukkit, the Bukkit plugins
NoLagg, PTweaks and NoSpawnChunks
above will also work with Spigot.

MineOS
MineOS is a Web-based administra-

tive panel that offers easy management
of Minecraft servers. It can handle
Vanilla, Bukkit, Tekkit and Canary by
default, but you can install any other
server system and configure it to au-
tomatically download a new version
whenever available.

Copying your server
to an external
hosting service

Using an open-source version of
Minecraft allows you to change any as-
pect of the server, including fixing bugs
and installing addons. Since Minecraft
for ODROID is written in Java, it’s easy
for beginners and experts alike to im-
prove the software and customize it to
their own needs.

Once you have your world ready, you
can migrate your Minecraft creation to a
high-traffic server so that it can accom-
modate more players. Simply upload all
of the server files from the minecraft,
spigot or craftbukkit directory on the
ODROID via the web hosting service’s
administration panel.

Enjoy your new ODROID Minecraft
Server, and remember to stay out of
the lava! For additional information or
questions, please visit the original forum
thread at http://forum.odroid.
com/viewtopic.php?f=52&t=84.

DOWNLOAD
YOUTUBE VIDEOS TO
WATCH OFFLINE
by Bruno Doiche

W e are now leaving in a con-
nected world, but from time
to time, we need to go to

places where there is no kind of net-
work connectivity. Well, pack up a sur-
vival kit with whichever you like from
youtube with youtube-dl!

To install, just type the following at
the terminal:

sudo pip install --upgrade
youtube_dl

Now you can download any video
that you want from youtube, just do:

youtube_dl <youtubevideo_url>

What you say? you just want the mu-
sic from the videos and the audio from
the podcasts and want to save space?

Ok, let’s create a simple script to
solve this then

echo “ffmpeg -i $1 -acodec
libmp3lame -ac 2 -ab 128 -vn -y
$2” > mp3zator.sh

Turn it to an executable with:

chmod + X mp3zator.sh

And execute it like this:

mp3zator <your_video_.mp4>
<your_audio.mp3>

Alright, get all you need and get
lost without fear of not having your
beloved movies, videos and music to
consume while you code in a far far
away land.

TIPS AND TRICKS

https://dl.bukkit.org/downloads/craftbukkit/
https://dl.bukkit.org/downloads/craftbukkit/
https://dl.bukkit.org/downloads/craftbukkit/
http://www.spigotmc.org
http://forum.odroid.com/viewtopic.php?f=52&t=84
http://forum.odroid.com/viewtopic.php?f=52&t=84

ODROID MAGAZINE	 21

CREATE A PAPERCRAFT DOLL TO GO ALONGSIDE YOUR MINECRAFT SERVER

When we meant a DIY edition, we meant
business! Take the time to print this page
and make your own creeper papercraft doll
to go alongside your Minecraft ODROID
server. Cut, fold, glue and have fun!

ODROID MAGAZINE	 22

LEARN REBOL
WRITING MORE USEFUL PROGRAMS
WITH AMAZINGLY SMALL AND
EASY-TO-UNDERSTAND CODE
By Nick Antonaccio and Bohdan Lechnowsky

LEARN REBOL

In the first installment of Learn Rebol, we discussed the
motivation behind Rebol and learned how easy it is to cre-
ate a GUI-based program in Rebol on Android. We ex-

panded on these examples in last month’s issue. This month,
we delve even deeper into what can be done with Rebol3 on
ODROID and other platforms.

In this installment, we’ll list the web addresses of where to
get the most up-to-date version of Rebol for different plat-
forms. The non-ARM binaries are listed so you can try your
Rebol 3 programs on your laptop and desktop computers as
well (note, not all Rebol 3 binaries have the graphical compo-
nent available yet).

It’s also my pleasure to announce that the current Rebol
3 builds for Linux ARM hard-float are being compiled and
tested on ODROID computers!

And remember, you can run any app you create in Rebol
3 for ODROID on your Android-powered phone or tablet as
well!

Installation
Android:

Open a web browser and navigate to
http://development.saphirion.com/experimental/

builds/android/

Download r3-droid.apk (amazingly smaller than 2MB).
When finished, double-click on the download icon

(usually by the clock) and grant permissions to install.
Go to the apps list and click the icon for R3/Droid.

Ubuntu:
Open a web browser and download the ARM version

(currently titled “Linux (ARM v7 with hardware float-
ing point support) Great for ODROID!”) from http://
atronixengineering.com/downloads.html.

Perform the following commands in the terminal emu-
lator in the directory where you downloaded r3:

sudo mv r3-armv7hf-view-linux r3

sudo chmod +x r3

sudo ./r3

Windows (x86), Linux (x86), OSX (x86):
http://atronixengineering.com/downloads.html

or http://rebolsource.net *

Windows (x64), Linux (x64):
http://atronixengineering.com/downloads.html

OSX (PPC), Haiku (x86), Linux ARM (soft-float), Li-
nux (IA64), OSX (x64):

http://rebolsource.net *

(* These builds do not contain the graphical compo-
nents yet)

Writing More Programs in Rebol
The focus of these examples is not to teach programming

in Rebol, but rather to show how much is possible with how
little. For further learning resources, see the end of this ar-
ticle.

Here’s a little web chat app running at http://respect-
ech.com/odroid/chat.cgi, complete with a simple veri-
fication system to make it harder for the spambots to post.
The verification system uses a feature of Rebol where data and
code are interchangeable. This makes doing things like a veri-
fication system much simpler:

#!./rebol3 -cs

REBOL [title: “Group Chat”]

;The following line is required as the first

line in cgi output

print {content-type: text/html^/}

;Define where the chat messages are stored

url: %./chat.txt

http://development.saphirion.com/experimental/builds/android/
http://development.saphirion.com/experimental/builds/android/
http://atronixengineering.com/downloads.html
http://atronixengineering.com/downloads.html
http://atronixengineering.com/downloads.html
http://rebolsource.net
http://atronixengineering.com/downloads.html
http://rebolsource.net
http://respectech.com/odroid/chat.cgi
http://respectech.com/odroid/chat.cgi

ODROID MAGAZINE	 23

LEARN REBOL

;Initialize the username

username: copy “”

;Read the POST string to see if there is data

to be processed

if attempt [

 submitted: parse (to string! read system/

ports/input) “&=”

][

 ;Only process the following lines if POST

data was submitted

 ;In POST data, spaces are replaced by “+”,

so change them back to

 ; spaces

 foreach item submitted [replace/all item

“+” “ “]

 ;If there was some data to process and the

verification question was

 ; correctly answered, add the message to

the end of the chat file

 if all [

 submitted/2 <> none

 ;The “load” statement takes the ordi-

nal value picked at random

 ; (e.g. The word “first”) and converts

it to a Rebol word.

 ; The “do” statement tells Rebol to

evaluate what follows it,

 ; in the case of this example, the

command “first”, which picks

 ; the first item out of a series.

 submitted/6 = do load submitted/5

parse “cat dog pig hen cow” “”

][

 write/append url mold rejoin [

 now “ (“ submitted/2 “): “

submitted/4 “^/^/”

]

 username: submitted/2

]

]

;Convert the chat file into plain text, includ-

ing any new message that was

; just added above. Display it in reverse or-

der so the newest messages

; stay on top, right after the input section.

notes: head reverse load dehex copy read/

string url

;Generate the pivotal part of the verification

question

random/seed now/time/precise

ordinal: to-string pick [first second third

fourth fifth] random 5

;Output the HTML page

print rejoin [

 {<FORM METHOD=”POST”>

 Name:

 <input type=text size=”65”

name=”username” value=”} username {“>

 Message:

 <textarea name=messwage rows=5

cols=50></textarea>

 What is the } ordinal { animal in this

list: cat dog pig hen cow?

<input type=text name=”} ordinal

{“>

 <input type=”submit” name=”submit”

value=”Submit”>

 </FORM>}

 “<pre>” notes “</pre>”

]

Important Note: In order to allow more efficient execution
of the examples from now on, we are going to download the
r3-gui.r3 graphic dialect definition to the local storage of your
device instead of downloading it each time. We can do this from
within Rebol itself. On your device, simply type the following:

ODROID MAGAZINE	 24

LEARN REBOL

write %r3-gui.r3 read/string

http://www.atronixengineering.com/r3/r3-gui.r3

If you get an error when running any of the example scripts
below on your device, try this instead:

write %r3-gui.r3 read/string http://

development.saphirion.com/resources/r3-gui.r3

Rebol 3 is open source, and there are several groups work-
ing on enhancements. This leads to having different versions
for different devices in slightly different states at any given
time. This will solidify and these issues will go away as time
moves on.

Doing the above will speed up execution greatly as the r3-
gui dialect doesn’t need to be downloaded each time. Howev-
er, on most non-rooted Android tablets and phones, superuser
access is not allowed, so you won’t be able to write to the root
directory and the above command will fail. This shouldn’t be
a problem on your ODROID running Android. In this case,
either continue to use load-gui or write r3-gui.r3 to another
location, like the sdcard, with a command like this:

write %/sdcard/r3-gui.r3 read/string

http://.../r3-gui.r3

(Replace the “…” with one of the URL paths from the
examples above.)

I’ve modified the examples on the website to check for r3-
gui.r3 in the current directory and the root of the sdcard, and
if it doesn’t exist in either location, then it uses load-gui. I did
this by replacing the load-gui in the following examples with
this code:

foreach cmd [[do %r3-gui.r3][do %/sdcard/r3-

gui.r3][load-gui]][

 if attempt [do probe cmd][break]

]

Basically, there are three different ways to load the r3-gui
dialect specified, and it tries each one until one works without
error.

To run the examples off the website instead of typing them
in, just type:

do http://respectech.com/odroid/learnrebol/

file.r

Replace file.r with the filename in the Rebol header (leave
off the “%” though).

Here’s a small graphic sliding tile game, and no complex GUI
builder tool was required to create this code. It’s simple and read-
able enough that a text editor and the built in help facilities of
Rebol are all you need. The actual layout code is 5 lines. Have
you ever seen code this simple used to create a game for Android
(or even a desktop machine)? No IDE, SDK or build scripts are
needed either - just download the small R3 interpreter to your
Android device or your PC, click the plain text code file, and it
runs the same on every platform, with graphics, touch events
and all, without any changes to the code:

REBOL [title: “Sliding Tile Puzzle” file:

%sliding-tile-game.r]

load-gui

sz: 120x120

fontize [

 p: button [font: [size: 60]]

]

stylize [

 p: button [

 facets: [text-style: ‘p init-size: sz

max-size: sz]

 actors: [

 on-action: [

 t: reduce [face/gob/offset x/

gob/offset]

 face/gob/offset: t/2 x/gob/

offset: t/1

]

]

]

]

view/options [

 hgroup [

 p “8” p “7” p “6” return

 p “5” p “4” p “3” return

 p “2” p “1” x: box sz white

]

] [bg-color: white]

While on the topic of games, it should be noted that R3
allows you to draw graphics and create animations very easily.
Here’s a quick example:

REBOL [title: “3D Box” file: %3d-box.r]

load-gui

bck: make image! 400x220

view/no-wait [image bck]

draw bck to-draw [

 fill-pen 200.100.90

 polygon 20x40 200x20 380x40 200x80

ODROID MAGAZINE	 25

LEARN REBOL

 fill-pen 200.130.110

 polygon 20x40 200x80 200x200 20x100

 fill-pen 100.80.50

 polygon 200x80 380x40 380x100 200x200

] copy []

do-events

Here’s a complete arcade game with image animation, col-
lision detection, keyboard event controls, score keeping, and
more. Try to catch the falling fish. Be careful, it gets faster as
you go!

REBOL [title: “Catch Game” file: %catch-game.r]

load-gui

fish: load http://learnrebol.com/r3book/fish2.

png

s: 0 p: 3 random/seed now/time

stylize [

 paddle: box [facets: [max-size: 50x10]]

 img: image [facets: [max-size: 50x20 min-

size: 50x20]]

]

view/no-wait/options [

 t: text”ARROW KEYS” y: img 50x20 (fish) pad

z: paddle blue

 return

 arrow left 120x120 arrow right 120x120

] [

 shortcut-keys: [

 left [z/gob/offset/1: z/gob/offset/1 -

50 draw-face z]

 right [z/gob/offset/1: z/gob/offset/1 +

50 draw-face z]

]

 min-hint: 600x440 bg-color: white

]

forever [

 wait .02

 y/gob/offset/2: y/gob/offset/2 + p draw-face

y show-now y

 if inside? y/gob/offset (z/gob/offset -

49x0) (z/gob/offset + 49x10)[

 y/gob/offset: random 550x-20 s: s + 1

set-face t form s p: p + .3

]

 if y/gob/offset/2 > 425 [alert join “Score:

“ s unview unview break]

]

Here’s an R3 version of a program found in virtually every
GUI instructional text - a basic calculator. Blink, and you’ll
miss the code for this one. There are no other files, layout
templates, initialization scripts, or tools required to run this
app on any platform. This is the entire, completely portable
program. As you can imagine, with so little code, there’s a
short learning curve to fully understand how examples like this
work. Compare this code to C++ (http://afsalashya-

http://afsalashyana.blogspot.com/2012/06/gui-simple-calculator-visual-c-source.html

ODROID MAGAZINE	 26

LEARN REBOL

na.blogspot.com/2012/06/gui-simple-calculator-
visual-c-source.html), Visual Basic (http://archive.
msdn.microsoft.com/spektrum1calculator), or even
the simplest possible RFO Basic example (http://rfobasic.
com/#section-12.2). That last example was written by the author
of this text to demonstrate the nearest comparably easy and produc-
tive Android development tool available - and each of those examples
runs only on a single operating system. Here’s a minimal HTML5
example (http://thecodeplayer.com/walkthrough/
javascript-css3-calculator). It requires multiple pages of
HTML, CSS and Javascript code. All those examples just scratch the
surface of complexities found in other development environments:

REBOL [title: “Calculator” file: %calc.r]

load-gui

sz: 100x100

fontize [btn: button [font: [size: 60 color:

black]]]

stylize [

 btn: button [

 facets: [text-style: ‘btn init-size:

sz max-size: sz]

 actors: [on-action:[set-face f join

get-face f get-face face]]

]

 field: field [

 facets: [text-style: ‘btn init-size:

415x60 max-size: 415x60]

]

]

view [

 hgroup [

 f: field return

 btn “1” btn “2” btn “3” btn “ + “

return

 btn “4” btn “5” btn “6” btn “ - “

return

 btn “7” btn “8” btn “9” btn “ * “

return

 btn “0” btn “.” btn “ / “ btn “=”

on-action [

 attempt [set-face f form do get-

face f]

]

]

]

Resources
Online Chat and Help:
StackOverflow.com:

There are currently over 1100 questions (and answers) re-
lated to Rebol on StackOverflow.com (http://stackover-
flow.com/search?q=rebol).

20 Points are required to chat on StackOverflow.com
(http://chat.stackoverflow.com/rooms/291/rebol-
and-red). If you don’t have 20 points (or an account at all for
that matter), come on by anyway and look up [Rebol and Red]
under the chat rooms. We are usually one of the most active.
We’ll help you get the 20 points you need to chat.

AltME:
To join the Rebol-powered AltME world, send an email to

user bo at the domain respectech.com asking to be invited. We
are a closed community to avoid spam. Don’t be shy, we’ve
been called the friendliest software development community
on the planet.

Facebook:
https://www.facebook.com/groups/rebol/

http://afsalashyana.blogspot.com/2012/06/gui-simple-calculator-visual-c-source.html
http://afsalashyana.blogspot.com/2012/06/gui-simple-calculator-visual-c-source.html
http://archive.msdn.microsoft.com/spektrum1calculator
http://archive.msdn.microsoft.com/spektrum1calculator
http://rfobasic.com/#section-12.2
http://rfobasic.com/#section-12.2
http://thecodeplayer.com/walkthrough/javascript-css3-calculator
http://thecodeplayer.com/walkthrough/javascript-css3-calculator
http://stackoverflow.com/search?q=rebol
http://stackoverflow.com/search?q=rebol
http://chat.stackoverflow.com/rooms/291/rebol-and-red
http://chat.stackoverflow.com/rooms/291/rebol-and-red
https://www.facebook.com/groups/rebol/

ODROID MAGAZINE	 27

BE HEARD WITH ÜBERCASTER

The Ubercaster, build on the ODROID platform,
is a 21st century way to listen to live music
through your smartphone without having to
push up to the front of the crowd.

BE HEARD WITH
ÜBERCASTER
A REAL-TIME AUDIO
BROADCASTER HOTSPOT
 by K.J Yoo of Echos Design (www.echosdesign.com)

T he year was 2010. On the
streets of the altstadt in Mar-
burg, Germany, I was playing

the violin as street musician. Some
found my music distracting and yet
some found it beautiful. As a curious
engineering student, I thought about
a better medium to present my music
so that only those who were interest-
ed may hear what I played seamlessly.
After realizing FM transmitter sys-
tems were quite expensive, bulky, old
and simply not practical. I decided
to take matters into my own hands.
The solution was simple: Broadcast
audio to people’s favorite device: the
smartphone.

Design Goal
I wanted anyone to easily plug in

any audio into the Übercaster; wheth-
er it came from an instrument, TV,
iPod or microphone, it didn’t mat-
ter. The Übercaster starts broadcast-
ing the sound locally. Then multiple
listeners would use their smartphone
devices to connect to the Übercaster
like a wifi hotspot to “tune-in.” I also
wanted the Übercaster to be an ele-
gant and intuitive device in-line with
Dieter Ram’s 10 Principles of Good
Design.

Development
I have been developing the Über-

caster with ODROID X2/U2/U3 de-
velopment boards since August 2013,

and it consists of device and client
mobile apps.

Essentially, the Übercaster device is
an ODROID U3 running Hostap. (For
those of you who are not familiar with
Hostap, check out Mauro Ribeiro’s ar-
ticle from the February issue “Using
an ODROID-XU as a WiFI Router”.)
The device is running Ubuntu 13.06
with a custom ODROID-3.8.y ker-
nel. The Übercaster application cap-
tures audio with ALSA, encodes the
captured audio with OPUS (http://
www.opus-codec.org) and then
packetizes the raw OPUS packets for
UDP-based multicasting. This pro-
cess takes on average 8ms and requires
about 6-9% of the CPU. I will admit
the ODROID U3 might be overkill for
what I am doing, but I was not able
to find a small dev board with a high
quality audio codec.

So the ODROID works perfectly,
and kudos to Hardkernel!

Via Hostap, wifi capable devic-

es such as smartphones, tablets and
computers can connect to the Über-
caster device, which is running isc-
dhcp-server to handle all the clients.
As soon as a connection is estab-
lished, the Übercaster mobile client
app can be used to listen to whatever
the Übercaster device is broadcast-
ing. The app listens to the broadcast
IP address on the device, receives the
packets, decodes it, and plays back
the sound.

Now at a first glance, it seems like
a basic streaming application like VLC
or Icecast. However, Übercaster of-
fers real-time performance. Real-time
is relative and subjective depending
on the applications, but for the Über-
caster system, the goal is to have the
total audio latency below 25ms. How
I measure audio latency is the delay
between the time audio goes into the

http://www.opus-codec.org
http://www.opus-codec.org

ODROID MAGAZINE	 28

BE HEARD WITH ÜBERCASTER

Übercaster device and when it plays
back on an iPhone 5S. (iOS has a
lower audio latency than Android de-
vices.) 25ms audio latency is not an
arbitrary number, but rather the sup-
posed maximum audio latency before
a person is able to perceive the de-
lay. Currently, the audio latency is <
50ms on iOS devices and on Android
devices it varies significantly from de-
vice to device. On the Google Nexus
7 (2013), the latency is 80ms. I have
tested the Übercaster with multiple
participants and even though the to-
tal latency is currently double of my
goal and the latency varies between
iOS and Android devices, 95% of the
listeners were not able to perceive any
delay when watching TV or a movie.

So how many clients can the Über-

caster support? I have tested up to
25 clients. However, it is theoretically
possible to have many more. After
the server-client relationship is es-
tablished, the Übercaster is basically
a one-way system. The Übercaster
broadcasts UDP-based packets and
the clients merely tune in on an IP
address. That is it. However, there
is a trade off: UDP isn’t always reli-
able. The trade off is that UDP deliv-
ers packets faster and more efficiently
than TCP because it uses non-ack.
This is why the Übercaster transmits
using small packet frame sizes to
hedge against high packet loss rate,
which gives smoother playback.

Demonstration
Video

Please view the following demon-
stration of the Übercaster.

Übercaster Zwei:
vimeo.com/85006122

Übercaster Drei:
vimeo.com/88467399

Dealing with Issues
1. To minimize frequency inter-

ference, I am mainly using 802.11n at
the 5Ghz band. The 2.4Ghz never
works even in a moderately crowded
area. While using the 5Ghz band,
the range is shorter and requires a
bit more power, but it is very stable.

So, at CES 2014 in Las Vegas, I had
no problem giving a demonstration
in the middle of the densely packed
South Hall. (It will be very interest-
ing to work with an 802.11ac module
very soon!)

2. In order to reduce latency, I
use OPUS, SPSC Circular Queue
and a custom protocol that is based
on UDP. I tried RTMP, RTSP and
HTTP, but these really didn’t work
out for me. Originally, I wanted to
use VLC or another RTSP client to
stream content on client devices, but
the latency was very high. This is why
I chose to go with native apps, which
are very light. I am currently creating
an API that makes it very easy for mo-
bile developers to integrate the Über-
caster stream function. A quick tip
concerning Android: it is important
to match the sample rate and buffer
size for minimum latency. Check out
this interesting talk from Google I/O
2013 about High Performance Audio
on Android: https://www.you-
tube.com/watch?v=d3kfEeMZ65c.

The Application
Übercaster started with a simple

question: how can individuals have
complete freedom and seamless con-
trol of what they hear in a local sur-
rounding? Or, how can individuals
have complete freedom to seamlessly
and easily broadcast sound to audience
members in the local surrounding?

An early 3D printed prototype of the Uber-
caster device, not to be confused with a head-
phone-ready bar of soap.

Using a minimum of hardware, the Ubercaster
delivers high-fidelity sound while consuming
only 8W of power

The Ubercaster has evolved into a sleek, sexy machine
from its early tape-and-chewing-gum prototype.

ODROID MAGAZINE	 29

BE HEARD WITH ÜBERCASTER

It turns out that places like gyms,
restaurants, tour guides, music ven-
ues, sports bars and airports have
been thinking of innovative ways to
broadcast sound. There have been
attempts at using FM and infrared,
however it didn’t prove to be practi-
cal, and is expensive and complicated
to use.

From the very beginning, mobile
was at the heart of the product. Cur-
rently 65% of all mobile phone us-
ers in the US use a smartphone. It is
widely adopted and it is growing at a
staggering rate. So everyone essen-
tially has Übercaster-capable receiver
devices already.

Imagine going into a sports bar
and listening to any TV or tuning into
the breaking news while you wait for
the flight to Frankfurt or listening
with perfect clarity to the street mu-
sician playing guitar 50 feet away or
experiencing a tour of Rome through

your smartphone.
Übercaster not only offers a richer

and higher audio quality than current
products, but it also makes an incred-
ible seamless experience for both
those transmitting and those listen-
ing. Übercaster simplifies, reduces
and enhances local audio broadcast-
ing into just a single device.

The Vision
Sound is a stepping-stone for me

to test if local public content distribu-
tion works. I want to broadcast video
in real-time. I think of the future a
lot, and it is clear that the frequency
bands are getting crowded; people
want more bandwidth and faster in-
formation. I think that in public
spaces, there are too many data/bit
redundancies. If a lot of people in a
public area are interested in knowing
more about something like the Real
Madrid game, it is redundant for their

devices to access information from
the same server a thousand miles
away in Texas or California. TVs in a
public area are in essence a form of
local broadcast. People within 50 feet
see the TV. However I am not satis-
fied with how it works currently. So
my goal is local distribution of con-
tent. Let’s say someone sees a TV in
the airport broadcasting CNN with a
breaking news story. They should be
able to have access to the sound at a
minimum -- eventually real-time HD
video streaming to their phone at a
local distance and also additional web
content relating to that news that is
constantly aggregating on the Über-
caster device for distribution. It is
more efficient; people get informa-
tion more quickly and seamlessly.

If you are interested in knowing
more about the Übercaster or have in-
terest in the technology, please email
me at KJ@EchosDesign.com.

After ordering my ODROID-U3
specifically for I2C communica-
tion with several slave devices,

I was unable to find a comprehensive
guide explaining the process of how to
set everything up. In the interest of shar-
ing with others what I’ve learned, I put
together my own guide for setting up an
I2C system on the ODROID platform.

The goal of this article is to intro-
duce you to I2C communication using
the ODROID-U3 as a master. We will
communicate with an LED matrix from
Adafruit. I initially planned to write
this tutorial on communicating with an
MSP430 microprocessor from Texas

ODROID U3 I2C COMMUNICATION
INTER-INTEGRATED CIRCUITS
FOR THE REST OF US
by John Taylor

Instruments, which I have successfully
set up. I decided, however, that the
materials and additional programming
needed for that project are beyond the
scope of this article.

Gathering
the Equipment

• ODROID-U3
• I2C LED Matrix http://www.

adafruit.com/products/1049

• Level Shifter
http://www.adafruit.com/

products/757?gclid=CI-

NsJL057wCFURk7AodZkAArg

Setting up the
ODROID-U3

We need to install i2c-tools so that
we can probe the I2C bus. This is eas-
ily done by running the following com-
mand in terminal, which will take a few
minutes to install:

sudo apt-get install i2c-

tools

Now that we have the i2c-tools pack-
age, we need to load the i2c-dev module
so that we can use it. You can do this
using with the modprobe command, but
every time the ODROID is reset we will

http://www.adafruit.com/products/757?gclid=CI-NsJL057wCFURk7AodZkAArg
http://www.adafruit.com/products/757?gclid=CI-NsJL057wCFURk7AodZkAArg
http://www.adafruit.com/products/757?gclid=CI-NsJL057wCFURk7AodZkAArg

ODROID MAGAZINE	 30

ODROID U3 I2C COMMUNICATION

have to reload the module. To avoid this annoyance, we will
add i2c-dev to the list of modules that are loaded at startup.
Open the /etc/modules file with your favorite text editor
such as nano, and add i2c-dev to the list.

nano /etc/modules

Once you have saved the file, reboot the ODROID and
make sure that when you type the following command you get
a similar result to Figure below.

i2cdetect -l -y

This command tells the computer to detect and list (-l)
all of the I2C ports available. If you don’t use the –y flag the
computer will ask you if you are sure you want to perform this
action and warn you of possible damages that can be done by
messing with I2C busses.

The bus that is mapped to the 8-pin connector is i2c-4. We
will cover its usage after we connect a slave device to it.

Wiring
Now that we have our ODROID set up to do I2C com-

munication, we can connect our slave device. The device that
we will be using is an LED matrix from Adafruit Industries.
Since the ODROID-U3 is a 1.8V device and our LED matrix
is a 5V device, we will use an I2C-safe level shifter, also from
Adafruit Industries.

Communicating
We now want to make sure that we have connected ev-

erything correctly. Luckily, we can do this easily using i2c-
tools. After everything is connected execute the following
command:

i2cdetect -y 4

This command tells the ODROID to list all of the I2C
devices connected to bus 4. As you can see from the following
figure, our LED matrix shows up at address 70.

If you do not see a device at address 70, double-check the
wiring.

C code
Once we know that everything is connected properly, we

can write some simple C code to control the LED matrix. The
code shown below initializes the LED Matrix and sequentially
lights every LED.

After you compile and run this code on the ODROID, you

The /etc/modules file being edited using
Nano.

A list of I2C ports available on the ODROID-
U3.

A simple high-level diagram of the interaction
between the U3 and the I2C LED Matrix.

A matrix of I2C peripherals, showing the
ODROID’s I2C device at address 70.

ODROID MAGAZINE	 31

ODROID U3 I2C COMMUNICATION

will see output similar to the video shown at http://bit.
ly/1fMOyMt. The code can be easily can be modified to
display other patterns/shapes on the LED Matrix.

#include <stdlib.h>

#include <unistd.h>

#include <linux/i2c.h>

#include <linux/i2c-dev.h>

#include <sys/ioctl.h>

#include <fcntl.h>

#include <string.h>

#include <stdio.h>

int i = 0;

int j = 0;

int k = 0;

int main(void)

{

char recieveBuffer[32]; //The Buffer that will

hold onto recieved data

 char transferBuffer[32]; //The buffer that

holds data that we will send

 int address = 0x70; //The address of

the LED matrix

 int tenBitAddress = 0; //variable that

says we aren’t using 10-bit

 //addressing

 //Initialize the I2C channel

 int i2cHandle = open(“/dev/i2c-4”,O_

RDWR);

//Tell the I2C channel we aren’t using ten bit

addressing

 ioctl(i2cHandle,I2C_

TENBIT,tenBitAddress);

//Tell the I2C channel we have a slave at Ad-

dress 70

 ioctl(i2cHandle,I2C_SLAVE,address);

//make sure there is no data in our buffers

memset(recieveBuffer, 0 , sizeof(recieveBuffer)

);

memset(transferBuffer,0,sizeof(transferBuffer));

//start internal oscillator on the LED matrix

by sending 0x21 command

transferBuffer[0] = 0x21;

write(i2cHandle, transferBuffer, 1);

//enable display and turn blink off by sending

0x81

transferBuffer[0] = 0x81;

write(i2cHandle, transferBuffer,1);

//set brightness to max by sending 0xEF

transferBuffer[0] = 0xEF;

write(i2cHandle, transferBuffer,1);

//top level loop keeps track of which column

we are on

for(i = 0; i<16;i=i+2)

{

for(j = 0; j<9;j++)

 {

//we send two bytes in this case, so we load

the

//transfer buffer with 2 bytes

//and set the first Byte to transfer to the

column number

transferBuffer[0] = i;

//set the second Byte to transfer to the

lights to turn on

transferBuffer[1] = 0x01 << j;

write(i2cHandle, transferBuffer,2);

//wait a while

for(k = 0; k < 5000000;k++);

}

//make sure a column is completely off before

leaving it

transferBuffer[1] = 0x00;

write(i2cHandle, transferBuffer,2);

}

}

http://bit.ly/1fMOyMt
http://bit.ly/1fMOyMt

ODROID MAGAZINE	 32

I wanted to build a ODROID-based tab-
let computer that was durable, rugged,
and built of readily available compo-

nents. A list of the hardware that I used is
shown below the image to the right:

Now
for the Software

The software part of this project gave
me the most headache! During my first
tests with Ubuntu 13.10, I couldn’t con-
nect to the LTE network and was stuck
with 3G, but I couldn’t figure out why. It
took me a while to discover that the Mo-
demManager version on Ubuntu 13.10 is
slightly out of date and didn’t properly
support LTE. Updating ModemMan-
ager by itself is nearly impossible since
it’s wired to NetworkManager and it has
a lot of dependencies, so I needed some-
thing newer. My best option was to use
ArchLinux ARM, which always contains
the latest package releases.

Once I got ArchLinux ARM running,
I needed a nice user interface that would
play well with the touchscreen, since I
don’t have a keyboard or mouse connect-
ed to this. I tested a few UIs, including
KDE Plasma Active, but then I saw some
news about Mate 1.8 and decided to give
it a try. It worked very nicely.

However, I still couldn’t use my Mo-
dem to send or receive SMS, and I need-
ed something to monitor the connection
health. At first, my idea was to put all
of those features on a custom app, but I

The case is made from a combina-
tion of aluminum and wood and mea-
sures 21x13x6cm, which I purchased
at a local office supply store.

The screen is a 9” touch screen
LCD. Now, I know that everyone
will want to know where I got this,
and I have some good news for you!
The screen is a prototype for a kit that
Hardkernel will be selling very soon:
a 9” HDMI monitor with a built-in
touchscreen.

I’ve opted to use an ODROID-U3
mainly because of power consump-
tion concerns. I wanted to keep that
low since the screen and the LTE
dongle also draw power. The LTE
dongle uses nearly 500ma of current
on its own!

For the battery, I used 6 Li-Ion cells
wired together as two banks of 3 cells,

which yields a possible 11.1V(12.3V)
and 5000mAh. I salvaged them from
a laptop battery.

A step-down converter (aka Buck
regulator). I’m using a pre-made
LM2596 kit. This IC can handle 2A
without a heatsink, so its enough for
our project.

The LTE Dongle was included for
free from my mobile service carrier. It’s
a Huawei E3276 CAT 4 adapter and
can reach a max speed of 150Mbps.

The WiFi dongle is based on the
Realtek 8192CU chipset, which is
very common. As an example, the
one that I used is the TP-Link model
TL-WN821N.

White LED is from Aliexpress.
It is a 3x3 LED matrix rated at
10W. I’m using it only at 0.5W to
illuminate the internals.

HEAVY-DUTY
PORTABLE LINUX
TABLET
WITH LTE ROUTER
by Mauro Ribeiro

HEAVY DUTY PORTABLE LINUX TABLET

ODROID MAGAZINE	 33

mentation about it online, so I took the
hard path! I connected the modem to a
Windows computer, installed a serial port
sniffer, and used the application provided
with the modem to control it. Once I
knew the commands, I finished my app.

In case you are curious, the commands
for my HUAWEI Modem are:

For automatic network selection:
AT^SYSCFGEX=”00”,3fffffff,1,2,5
a,””,””

For 2G Only mode:
AT^SYSCFGEX=”01”,3fffffff,1,2,5
a,””,””

For 3G Only mode:
AT^SYSCFGEX=”02”,3fffffff,1,2,5
a,””,””

And for LTE Only:
AT^SYSCFGEX=”03”,3fffffff,1,2,5
a,””,””

Those commands are sent to a “con-
trol” serial port that the modem creates.
Some modems (like mine) even have AT
commands to allow grabbing its internal
temperature! They provide a lot of good
information that you can extract to learn
the quality of your connection/signal.

Another issue I had to deal with was
NetworkManager. You can’t start hos-
tapd to create a wifi network if Network-
Manager is managing an interface. Even
if you are disconnected from the wifi
network, it’s still possible to tell Network-
Manager not to manage that interface.

You just add the following line to [Ed-
itor’s note: need filename]:

[keyfile]
unmanaged-devices=\
mac:xx:xx:xx:xx:xx:xx

Where xx:xx:xx:xx:xx:xx is the mac ad-
dress of the device that you don’t want to
manage. I then added another feature to
my application for turning AP on and off.

Turn AP on:
Tell NetworkManager to not

manage my wifi adapter.
Start hostapd to create my wifi

network.

Create a single iptables rules to
setup NAT (share the Internet con-
nection).

Start DNSMASQ to provide
DHCP and DNS server.

Turn AP off:
Kill DNSMASQ
Clear firewall rules
Stop hostapd
Tell NetworkManager to manage

my wifi again.

You may wonder, why not leave it
unmanaged all the time? Because I still
want to use the wifi as a client when I’m
at home, so I can perform package up-
grades and poke around.

Another feature required for the tablet
was to install an on-screen keyboard on
Linux, which is available in both Ubuntu
13.10 and ArchLinux via a package called
onboard. Onboard is a highly configurable
and customizable on-screen keyboard with
many features. It works very well!

Finally, I needed to enable right button
emulation while using the touchscreen.
This is done by adding the following con-
figuration to the /etc/X11/org.conf file,
or to a new configuration file in the direc-
tory /etc/X11/xorg.conf.d.

Section “InputClass”
 Option “EmulateThirdBut-
ton” “1”
 Option “EmulateThirdBut-
tonTimeout” “750”
 Option “EmulateThirdBut-
tonMoveThreshold” “30”
EndSection

The EmulateThirdButtonTimeout
is the amount of time in milliseconds
that you need to keep the touchscreen
pressed in order to be identified as
a right click. EmulateThirdButton-
MoveThreshold is the amount of pixels
that your finger can move and still be
considered as the same position.

With all of that done, you now have
a Linux-powered touch screen tablet,
that also functions as an LTE router,
enabling you to tether to a 4G network
from anywhere!

RED is the buck controller at-
tached to the battery.

YELLOW is the ODROID-U3
GREEN is the WiFi Dongle
Two BLUE marks are the HDMI-

>LVDS board and the On-Screen
display board.

PURPLE is the USB Touchscreen
controller.

CYAN is the External USB port
with the LTE Dongle connected.

WHITE is a 10W LED running
at only 0.5W to light the internals in
case we are in the dark.

ORANGE is the battery
The 6-cell battery is wired as

shown in the image. This gives me
11.1V and 5000mAh.

Charging Li-Ion batteries isn’t
complicated, but it does require
some small knowledge.

Each Li-Ion cell must be charged
with 0.4V more than its rated volt-
age (3.7V) and you can only feed
half of its rated current as charging
current.

So for my case, since I’m using
3 cells in series (3.7 x 3 = 11.1V +
3x 0.4V = 1.2V = 12.3V), my charg-
ing voltage is 12.3V. Since I know
that the total capacity is 5000mAh
(~800mAh per battery), I won’t use
a charger rated over 2.5A. So I end-
ed up using a 13V 2A PSU to charge
the batteries.

I used a Dremel to make the ex-
ternal holes for USB, Power Con-
nector, Power switch, USB, LVDS
Cable and Touch cable.

ended up finding Modem Manager GUI
(http://linuxonly.ru/cms/page.php?7)
that does all of that. However, there was
still one missing feature! I needed to con-
trol the modem so I could lock it to a cer-
tain network type (2G/3G/4G).

So, I made a custom app. I chose QT
5, since QT Creator makes Linux appli-
cation development very easy. I needed
to know what commands the modem
required in order to force it to a certain
network type. I couldn’t find any docu-

HEAVY DUTY PORTABLE LINUX TABLET

http://linuxonly.ru/cms/page.php?7

ODROID MAGAZINE	 34

This ODROID PC navigation system keeps Jer-
emy’s truck on the road and out of the mud!

C ars with high-end navigation sys-
tems are becoming more com-
mon as in-vehicle technology

improves. However, the main issues that
many CarPC units have is that 1) the map
updates are expensive, and 2) you are lim-
ited on functions and software. There
are a number of Android-powered head
units available now, but they generally run
outdated versions of Android, and are
consequently slow. So, I wanted to install
a CarPC in my truck with the most bang
for my buck, and chose the ODROID-
U3 as the platform for my project.

My goal was to have the following
functions available through my Truck
PC:

• Navigation
• Radio
• MP3 player
• Physical button controls

Here are the parts I used to build
my system:

ODROID-U3 with 16GB eMMC, and
Real-Time Clock (RTC) battery

USB Wifi Dongle
Bluetooth dongle
USB self-powered hub
USB GPS (BU-353-S4)
Arduino Uno Rev 3
16 GB USB Drive
Lilliput 7” capacitive touchscreen
12 momentary push buttons

HOW I BUILT A
TRUCK PC
WITH MY ODROID
NEVERMIND THE PRODUCTS ON THE MARKET,
GET THE MOST BANG FOR YOUR BUCK!
by Jeremy Leesmann (Killer Turtle)

A list of applications that I installed
on the ODROID:

Waze (Navigation)
Pandora (Internet Radio)
Google Play Music (MP3)
USBGPS (Gives access to GPS via

the USB port)
Anycut (Gives access to Quick

Launch settings)
Nova Launcher (customizable

home screen)
SwiftKey keyboard (or any 3rd

party keyboard)
GApps for Play Store
Custom kernel for touchscreen in-

put (thanks to @mdrjr for building it)
And some PC applications used to

set up the Arduino and USB GPS
Arduino IDE
SiRF Demo (to configure USB

GPS for correct baud rate)

Setting up
the Arduino as a
Keyboard

The first task is getting the Arduino to
emulate a USB HID keyboard. Start by
building the code for the Arduino, which
is included at the end of this article.

Once the code is built and uploaded,
go to http://hunt.net.nz/users/darran/
and follow the directions for putting the
Arduino into DFU program mode, and
program it to be a USB HID Keyboard.
For reference, here is a map of all the
keyboard codes: http://www.usb.org/
developers/devclass_docs/Hut1_11.pdf.

I wired all the buttons to a common
ground, and then each one to its respective
pin on the Arduino. Then, all I needed to do
was connect the Arduino to the ODROID.

BUILD A TRUCK PC WITH ODROID

http://www.usb.org/developers/devclass_docs/Hut1_11.pdf
http://www.usb.org/developers/devclass_docs/Hut1_11.pdf

ODROID MAGAZINE	 35

The Arduino Uno, when combined with an ODROID-U3, makes con-
necting interface buttons as easy as connecting the dots.

Setting up the ODROID
First, install the custom kernel for your touchscreen. For

detailed instructions, please refer to the February issue of
ODROID Magazine’s Giant Android Tablet cover article.

Next, install GApps in order to get access to the Play Store,
or you can install Amazon Appstore. [Editor’s note: There are
several posts on the ODROID forums explaining how to install
GApps on your ODROID. The simplest way is to use the An-
droid Epic Loot Software Collection, available for free down-
load from the forums, which includes a one-click Gapps installer
app for Android versions 4.1.2 and 4.2.2]

For my home screen, I installed Nova Launcher because it
looks great, but you can use any similar application to custom-
ize the desktop. To get the Arduino buttons to work as hotkeys
for opening apps, go to the Play Store and install Anycut. After
it’s installed, add a shortcut, click activity, and choose the first
Quick Launch that are shown (there are most likely 3 of them).
This will place a shortcut on your home screen for the “Quick

Launch” settings. Open the settings and assign the first four to
your choice of apps. My Quick Launch icons are Waze, Pan-
dora, and Play Music, with the last button going back to the
Home screen.

Next, install a third-party keyboard. I have a Swiftkey, but
any virtual keyboard will work. Once the keyboard is working,
go to Settings, and Language and input, click on Default, and
turn off Hardware keyboard. This will allow the virtual key-
board to work while a physical keyboard is attached.

Now, attach your GPS. If you get the one I have (BU-353-
S4), follow these instructions: http://bit.ly/1gzbAXr. Complete
the software installation by installing any other apps that you
may find useful, such as Skype or Google Hangouts.

Installing the ODROID in your
vehicle

For my truck, I installed a 12V plug connected to a switched
12V line to run both the screen and USB hub. My PSU has a
USB port rated up to 2.1 Amps which I use for powering the
ODROID itself. I also installed a 400W 4-channel amp, con-
nected everything up to the original stereo connections, and
ran an RCA-to-headphone cord from the Audio Out on the
ODROID to the input on the amp.

The ODROID connects to the Internet via a Wifi hotspot
on my phone. You may need to mount the GPS receiver on the
roof (or some other area with an unobstructed upward view) us-
ing a USB cord extension in order to ensure a stable connection.
In my case, everything works great now, and I was able to build a
fast, reliable Truck PC using an inexpensive ODROID-U3.

/* Arduino USB Keyboard HID for ODroid

* Made by Jeremy Leesmann aka Killer Turtle

*/

#define KEY_LEFT_CTRL 0x01

#define KEY_LEFT_SHIFT 0x02

#define KEY_RIGHT_CTRL 0x10

#define KEY_RIGHT_SHIFT 0x20

#define KEY_LEFT_GUI 0xE3

uint8_t buf[8] = { 0 }; /* Keyboard report

buffer */

#define PIN_VolP 7

#define PIN_VolM 8

#define PIN_Enter 5

#define PIN_Escape 6

#define PIN_Up 9

#define PIN_Down 10

#define PIN_Left 11

#define PIN_Right 12

#define PIN_A 0

BUILD A TRUCK PC WITH ODROID

ODROID MAGAZINE	 36

This TruckPC is ready for a non-stop Pandora
party on the beach.

The GPS interface makes sure you can pick up your
date on time for a romantic off-road adventure.

Why go through traffic when you can drive
over it with your monster truck tires?

#define PIN_B 2

#define PIN_C 3

#define PIN_D 4

#define PIN_Space 13

int state = 1;

void setup()

{

Serial.begin(9600);

pinMode(PIN_VolP, INPUT);

pinMode(PIN_VolM, INPUT);

pinMode(PIN_Enter, INPUT);

pinMode(PIN_Escape, INPUT);

pinMode(PIN_Up, INPUT);

pinMode(PIN_Down, INPUT);

pinMode(PIN_Left, INPUT);

pinMode(PIN_Right, INPUT);

pinMode(PIN_A, INPUT);

pinMode(PIN_B, INPUT);

pinMode(PIN_C, INPUT);

pinMode(PIN_D, INPUT);

pinMode(PIN_Space, INPUT);

// Enable internal pull-ups

digitalWrite(PIN_VolP, 1);

digitalWrite(PIN_VolM, 1);

digitalWrite(PIN_Enter, 1);

digitalWrite(PIN_Escape, 1);

digitalWrite(PIN_Up, 1);

digitalWrite(PIN_Down, 1);

digitalWrite(PIN_Left, 1);

digitalWrite(PIN_Right, 1);

digitalWrite(PIN_A, 1);

digitalWrite(PIN_B, 1);

digitalWrite(PIN_C, 1);

digitalWrite(PIN_D, 1);

digitalWrite(PIN_Space, 1);

delay(200);

}

void loop() {

state = digitalRead(PIN_VolP);

if (state != 1) {

buf[2] = 128; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_VolM);

if (state != 1) {

buf[2] = 129; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_Enter);

if (state != 1) {

buf[2] = 40; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_Escape);

if (state != 1) {

buf[2] = 41; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_Up);

if (state != 1) {

buf[2] = 82; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

BUILD A TRUCK PC WITH ODROID

ODROID MAGAZINE	 37

state = digitalRead(PIN_Down);

if (state != 1) {

buf[2] = 81; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_Left);

if (state != 1) {

buf[2] = 80; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_Right);

if (state != 1) {

buf[2] = 79; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_A);

if (state != 1) {

buf[0] = KEY_LEFT_GUI; // Windows Key

buf[2] = 4; // Letter a

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_B);

if (state != 1) {

buf[0] = KEY_LEFT_GUI; // Windows Key

buf[2] = 5; // Letter a

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_C);

if (state != 1) {

buf[0] = KEY_LEFT_GUI; // Windows Key

buf[2] = 6; // Letter a

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_D);

if (state != 1) {

buf[0] = KEY_LEFT_GUI; // Windows Key

buf[2] = 7; // Letter a

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

state = digitalRead(PIN_Space);

if (state != 1) {

buf[2] = 44; // Vol +

//buf[2] = 27; // Letter X

// buf[2] = 123; // Cut key: Less portable

Serial.write(buf, 8);// Ssend keypress

releaseKey();

}

}

void releaseKey()

{

buf[0] = 0;

buf[2] = 0;

Serial.write(buf, 8);// Release key

delay(500);

}

The ODROID TruckPC goes anywhere in style,
including your favorite grassy hilltop.

––––

ODROID MAGAZINE	 38

MEET AN ODROIDIAN

Please tell us a little about yourself.
I am a computer science research fel-

low currently living in Adelaide, Austra-
lia, working at the Teletraffic Research
Centre, Adelaide University. Originally
from Romania, I did my undergraduate
studies in computer science in Bucharest,
and then PhD at National University of
Singapore.

How did you get started with computers?
As a kid, I saw a Spectrum ZX at a

family friend and liked the games. I am
still very fond of many of those games,
like Saboteur, Dizzy, Elite or Chuckie Egg.
I had the opportunity to join a special sec-
ondary school class where the BASIC pro-
gramming language was taught, and also
joined the (small) local computer club.
The high school that I went at also had an
informatics degree program. Growing up

in a communist country, import of tech-
nology was prohibited, so Spectrum was
all I grew up with; I saw my first PC when
I started high school.

What types of projects have you done with
your Odroid?

I initially got the ODROID U2 for
a low-power HTPC, as my Raspberry Pi
was too sluggish. From all the ARM A9-
based boards at the time, the ODROID
was the only quad core that had pros-
pects for getting Open GLES working
in Linux. I actually helped out a bit with
this and with getting XBMC working,
and won the ODROID XU as a monthly
forum award. Currently, I am using the
XU for more than just HTPC - it’s also
a home server (Apache, MySQL, SSH),
download box, and home monitoring
system (motion detection and tempera-
ture logging). I am working now on

MEET
AN ODROIDIAN
MARIAN MIHAILESCU: ONE OF OUR TOP
FORUM CONTRIBUTORS
edited by Rob Roy

Visiting Arapiles - Australia.

Journeying through Nepal at 5000M high.

ODROID MAGAZINE	 39

Climbing 4000M high at malaysian mountains. Exploring exotic beaches at Thailand.

adding more functions - I want to use it
to control my cat feeder, control the air
conditioning unit, and the garage door.
Also planned is integration of all of this
functionality with SiriProxy, to get all this
control on my phone via the Internet.

What other hobbies and interests do you
have?

I love travelling, mountaineering,
climbing and bouldering. Living in Sin-
gapore gave me the opportunity to visit a

lot of places in southeast Asia, Thailand
being the perfect place where you can
enjoy sport climbing right on a beautiful
beach. Adelaide, where I currently live,
is also close to the Grampians National
Park and Mount Arapiles, two landmark
places for bouldering and traditional
climbing. In terms of mountaineering, I
am currently planning my second trip to
Nepal - a visit to the Everest base camp.

What do you like most about the ODROID
community?

It’s the community itself
that I like. If you are work-
ing on a project, you can ask
for advice and people will go
out of their way to help and
give you valuable advice. If
you have issues, you can raise
them on the forums and, if a
solution does not exist, a fix
will be provided.

6. Are you involved with
any other software or hard-
ware projects in addition to the
ODROID?

Besides work, my projects
on the ODROID take up most
of my time. So the answer is

no. My old Raspberry Pi was completely
replaced by the XU. Whatever project I
do for myself, I open up and describe for
others too - there are several HowTo’s I
contributed on the forum, a couple of
articles in the ODROID Magazine, and
the charting library that I created, which
exports data from RRDs to highcharts.
Most of the things there are general and
should work on any platform, and aren’t
specific to the ODROID platform.

From Nepal’s high mountains to its hidden
valleys, we just hope Marian had the chance
to use his ODROID to capture video of his
spectacular travels.

Rock climbing at Thailand,
enjoying the nature and the
adrenaline that comes with it.

MEET AN ODROIDIAN

