
Magazine

14.04 Repository Upgrade • Community Images • Graphics with Java

ODROID Year Two
Issue #13
Jan 2015

Cloud
Edition
Docker: Develop, Ship and Run Any Application, Anywhere with Containers
Seafile: Open Source Personal Cloud Software
OwnCloud: File Synchronization and Sharing Using Your Private ODROID Server

• Microsoft-Free Programming: Setting up an ASP.NET and Mono Server Stack
• GNU Radio: Wireless communications research and real-world radio systems

COMPARISON OF THE GAMING POWER OF THE ODROID-XU3 VS ODROID-U3

ASP.NET

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID U3
devices to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone : +49 (0) 8403 / 920-920
email : service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Makers of the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE architecture
based single board computer.
Join the ODROID community with members from over 135 countries, at http://forum.odroid.com, and explore the
new technologies offered by Hardkernel at http://www.hardkernel.com.

This month, our focus is on demonstrating how ODROIDs
can be used as personal private cloud servers. Stor-
ing files “in the cloud” normally involves subscribing to

an expensive third-party service, with the potential for data
to be hacked or exposed, as has been demonstrated with re-

cent news articles involving celeb-
rity photos and corporate emails
that were released to the public
without permission. By install-

ing and configuring software such as
Seafile and OwnCloud, you can main-

tain your preferred level of security by using
any ODROID device to host the files at your

home or office. By doing so, you can limit ex-
posure to a local secure intranet, so that the chance of

an unknown intruder gaining access to them is greatly reduced.

A hot topic in world of cloud computing is Docker, which allows applica-
tions to be built on a platform of the developer’s choice, then installed and
run on nearly any architecture, including ODROIDs! As demonstrated in
the latest Google I/O conference, Docker offers a highly stable environ-
ment in which to distribute and compartmentalize applications for scal-
ability purposes. It enables apps to be quickly assembled from various
components that are completely portable. Fred Meyer, a Docker expert
who recently joined the ODROID Magazine team, presents the first part
of an interesting series on getting Docker running on an ARM device.

Now that the ODROID-C1 has been available for a while, the ODROID fo-
rum has grown to nearly 8,000 members, with many suggestions, tips,
and tutorials being posted daily. Tobias recently uploaded many of his
game packages and useful software to the Hardkernel community server,
and also put together a guide for connecting to his repository in order to
get kernel updates via a simple apt-get command, which is a more conve-
nient way to update custom ODROID software from Debian and Ubuntu.

As always, we bring you reviews of some fun games to play, including sev-
eral Android programs, as well as a comparison of the gaming power of the
ODROID-XU3 vs the ODROID-U3. Nanik continues his excellent series on
Android Development with an introduction to the Zygote app, and we feature
a tutorial on using your ODROID as a modern digital radio using the GNU radio
package.

ODROID MAGAZINE 3

http://magazine.odroid.com
big.LITTLE
http://forum.odroid.com
http://www.hardkernel.com

STAFF

ODROID
Magazine

Rob Roy,
Chief Editor

I’m a computer
programmer living

and working in San
Francisco, CA, design-

ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

Bo
Lechnowsky,
Editor

I am President of Re-
spectech, Inc., a tech-

nology consultancy in Uki-
ah, CA, USA that I founded in 2001.
From my background in electronics
and computer programming, I manage
a team of technologists, plus develop
custom solutions for companies rang-
ing from small businesses to worldwide
corporations. ODROIDs are one of
the weapons in my arsenal for tack-
ling these projects. My favorite devel-
opment languages are Rebol and Red,
both of which run fabulously on ARM-
based systems like the ODROID-U3.
Regarding hobbies, if you need some,
I’d be happy to give you some of mine
as I have too many. That would help
me to have more time to spend with my
wonderful wife of 23 years and my four
beautiful children.

Bruno Doiche,
Senior
Art Editor

Bruno has been se-
curing his computing

necromantic skills after bringing a fiber
optics switch back to life, getting his
Macintosh back from death, resurrect-
ing a PS3, rescuing his fiancee’s T400
with an old-school dd data transplant,
and handling the cold innards of his
steady job at the data center.

Manuel
Adamuz,
Spanish
Editor

I am 31 years old
and live in Seville,

Spain, and was born in Granada. I
am married to a wonderful woman
and have a child. A few years ago I
worked as a computer technician and
programmer, but my current job is
related to quality management and
information technology: ISO 9001,
ISO 27001, and ISO 20000. I am
passionate about computer science,
especially microcomputers such as the
ODROID and Raspberry Pi. I love
experimenting with these computers.
My wife says I’m crazy because I just
think of ODROIDs! My other great
hobby is mountain biking, and I oc-
casionally participate in semi-profes-
sional competitions.

Nicole Scott,
Art Editor

I’m a Digital Strat-
egist and Trans-

media Producer
specializing in online

optimization and inbound market-
ing strategies, social media directing,
and media production for print, web,
video, and film. Managing multiple
accounts with agencies and filmmak-
ers, from Analytics and Adwords to
video editing and DVD authoring. I
own an ODROID-U3 which I use
to run a sandbox web server, live in
the California Bay Area, and enjoy
hiking, camping and playing music.
Visit my web page at http://www.ni-
colecscott.com.

James
LeFevour,
Art Editor

I am a Digital Me-
dia Specialist who is

also enjoying freelance
work in social network marketing and
website administration. The more I
learn about ODROID capabilities the
more excited I am to try new things I’m
learning about. Being a transplant to
San Diego from the Midwest, I am still
quite enamored with many aspects that
I think most West Coast people take for
granted. I live with my lovely wife and
our adorable pet rabbit; the latter keeps
my books and computer equipment in
constant peril, the former consoles me
when said peril manifests.

ODROID MAGAZINE 4

http://bit.ly/1fsaXQs
http://www.nicolecscott.com
http://www.nicolecscott.com

INDEX
GNU RADIO - 6

ANDROID GAMING: METAL SLUG DEFENSE - 7

ANDROID GAMIING: HEAVENSTRIKE RIVALS - 16

DOCKER - 26

MONO - 31

ANDROID DEVELOPMENT - 32

 JAVA GRAPHICS - 34

COMMUNITY IMAGES - 25

MEET AN ODROIDIAN - 42

KERNEL REPOSITORY - 17

LINUX GAMING - 20

CLOUD COMPUTING - 8

SEAFILE - 38

HISTORY OF ODROIDS - 41

HISTORY OF LINUX - 30

ODROID MAGAZINE 5

http://www.hardkernel.com

$ sudo chmod +x ./build-gnuradio

&& ./build-gnuradio && gnuradio

3. Follow these instructions to create your
own build-gnuradio script:

Download the standard GNU Radio
build script:

$ wget http://www.sbrac.org/files/

build-gnuradio

Create two local variables:

$ TEST=-DCMAKE_CXX_

FLAGS:STRING=”-march=armv7-a

-mcpu=cortex-a9 -mfpu=neon \

-mfloat-abi=hard”

$ TEST2=-DCMAKE_C_FLAGS:STRING=”-

march=armv7-a -mcpu=cortex-a9

-mfpu=neon \

-mfloat-abi=hard”

GNU Radio is a free and open-
source software development
toolkit that provides signal pro-

cessing blocks to implement software
radios. It can be used with readily-
available low-cost external RF hardware
to create software-defined radios, or
without hardware in a simulation-like
environment. It is widely used in hob-
byist, academic and commercial envi-
ronments to support both wireless com-
munications research and real-world
radio systems.

To use GNU Radio, boot up a Debian
or Ubuntu distribution and follow these
steps for installation:

1. Type the following into a Terminal win-
dow to install GNU Radio from the Debian
repository:

$ wget -c \

http://ftp.debian.org/debian/

pool/main/q/qwtplot3d/libqwt-

plot3d-qt4-0_0.2.7+svn191-7_arm-

hf.deb

$ wget -c \

http://ftp.debian.org/debian/

pool/main/q/qwtplot3d/libqwt-

plot3d-qt4-dev_0.2.7+svn191-7_

armhf.deb

$ sudo dpkg -i libqwtplot3d-

qt4-*.deb

$ gnuradio

2. Use this pre-built script to build GNU
Radio from source: http://bit.ly/1AWW3vr.
Save it to a temporary folder under the
name “build-gnuradio”, then type the fol-
lowing after navigating to the temporary
folder:

GNU RADIO
BRING YOUR PERSONAL RADIO BROADCASTS
INTO THE 21ST CENTURY
by @denash

Search for every occurrence of cmake
in the build-gnuradio script, and add
“$TEST” “$TEST2” to the arguments.
At around line 348, find this line:

for dir in /lib /usr/lib /usr/

lib64 /lib64 /usr/lib/x86_64-

linux-gnu /usr/lib/i386-linux-gnu

and append the following snippet:

/usr/lib/arm-linux-gnueabihf /

usr/lib/arm-linux-gnueabi

Finally, run the build script:

$./build-gnuradio

Note that gnuradio should not be
compiled using the -j4 flag since GNU
radio seems to break when built in paral-
lel.

We didn’t mod this classic radio, but don’t think we wouldn’t if we got our hands on it!

GNU RADIO

ODROID MAGAZINE 6

http://www.sbrac.org/files/build
http://www.sbrac.org/files/build
http://ftp.debian.org/debian/pool/main/q/qwtplot3d/libqwtplot3d
http://ftp.debian.org/debian/pool/main/q/qwtplot3d/libqwtplot3d
http://ftp.debian.org/debian/pool/main/q/qwtplot3d/libqwtplot3d
svn191-7_armhf.deb
svn191-7_armhf.deb
http://ftp.debian.org/debian/pool/main/q/qwtplot3d/libqwtplot3d
http://ftp.debian.org/debian/pool/main/q/qwtplot3d/libqwtplot3d
http://ftp.debian.org/debian/pool/main/q/qwtplot3d/libqwtplot3d
svn191-7_armhf.deb
svn191-7_armhf.deb
http://bit.ly/1AWW3vr

GNU RADIO

Adding
microphone input
1. Run the “PulseAudio VolumeControl”
application, found in the Applications
menu
2. In the Configuration tab, select the “An-
alog Stereo + Analog Mono Input”
3. Install “GNOME ALSA Mixer” via the
Ubuntu Software center and run it
4. Ignore the error pop-up. It seems to be
a permission issue of saving configuration
file
5. Check the following 3 items in the Mix-
er GUI: “MIC Bias VCM Bandgap”, “MIC1
Mix”, and “Left ADC Mixer MIC1”

Running GQRX

Using the uhd_fft.py tool to
observe a GSM downlink channel

Screenshot of the
GRC with a narrow
band FM receiver

6. You can adjust the input gain or boost
option with the “ADCL”, “ADCL Boo”,
”MIC1”, and “MIC1 Boo” control bar
7. You can view the real time microphone
input level in the Input Device tab of “Pul-
seAudio VolumeControl”

More information about GNU Ra-
dio may be found at the home page at
http://gnuradio.org.

ANDROID GAMING

METAL SLUG
DEFENSE
A WHOLE NEW TAKE ON
A BELOVED SERIES
by Bruno Doiche

Ilove the game Metal Slug, which I’ve
played in the arcade, on my NEO
GEO CD, on a cellphone, and emu-

lated on every single computer I’ve ever
had - even the POWER 4 and 5 servers
I used to own.

However, after countless plays, I
thought I’d seen everything that was sup-
posed to be seen in the series, and sud-
denly... BAM! SNK released a defense
game based on Metal Slug.

Take a look for yourself - it’s a very fun
game!

http://bit.ly/1iH5Z2k

ODROID MAGAZINE 7

uhd_fft.py
http://gnuradio.org
http://bit.ly/1iH5Z2k

OwnCloud is an enterprise-quality file synchronization and sharing applica-
tion that is hosted in your own data center, on your servers, using your own
storage. OwnCloud provides universal file access through a single front-end

to all of your systems, regardless of the particular architectures. Users can access
company files on any device, anytime, anywhere, while IT can manage, control and
audit file sharing activity to ensure that security and compliance measures are met.

In this article, I present the specifics of installing, configuring and using the most
recent versions of the best-of-breed software that comprises a robust secure own-
Cloud solution, which consists of the following components:

Odroid XU3 or XU3 Lite with 1TB USB3 storage (plus 1TB backup) and Gigabit Ethernet
LEMP software stack (Linux 3.10.60, Enginx 1.4.6, MySQL 5.5.40, Php 5.5.9)
phpMyAdmin 4.0.10
ownCloud 7.0.4

Online documentation for ownCloud is skimpy, outdated and confusing in some
cases, if not outright misleading, inaccurate and untested. A variety of information
resources have been researched, and a working configuration has been painstakingly
assembled in an effort to make your journey through the setup process as easy as pos-
sible.

Requirements
1. An ODROID XU3-Lite or XU3 board, with an appropriate power adapter. While this
article targets an XU3-Lite, it can apply to a U3 or a C1 as well.
2. A 16GB+ eMMC 5.0 modue or Class 10 MicroSD card with the latest XU3-Lite specific
Lubuntu desktop image.
3. A 1TB USB3 external HD such as a WD Ultra or Toshiba Canvio, used for primary
ownCloud data storage. A second 1TB USB3 external hard drive may also be added as a
method of backing up the primary data.

Install Lubuntu
Install the latest XU3 image onto the eMMC card, and boot up the system with

the HDMI display attached. Run the ODROID Utility and use it to expand the
operating system partition. Reboot and run the ODROID Utility again, updating
the kernel, video drivers and all other aspects of the system. Reboot one more time
before continuing to the next step.

Prepare the system
Backup all the operating system files and software on the external USB3 HD’s us-

ing the dd utility if desired. With the XU3 system powered down, do the following:

MY VERY OWNCLOUD
KEEP YOUR FILES SECURE WITH
A PERSONAL CLOUD SERVER
by Venkat Bommakanti

CLOUD COMPUTING

ODROID MAGAZINE 8

CLOUD COMPUTING

• Attach the primary external HD, which will be used to store the main ownCloud data, to
the USB3 Host Type A port,
• Attach the secondary external HD, which will be used as the ownCloud data backup, to
one of the many USB2 Type A ports. Since backups can be scheduled for off-peak hours,
a USB2 connection will suffice for the backup drive.
• Attach the USB3 OTG cable to the USB3 port and attach the other end of the cable
to the Gigabit Ethernet dongle. Attach the dongle to your home router using a regular
Cat5E or Cat6 cable.

Since the two HDs are normally NTFS formatted out of the box, they should be
detected and mounted automatically.

Install MySQL
Rather than using lightweight data management options through the default

SQLite system, I have chosen the highly scalable and popular MySQL RDBMS for
managing the administrative meta data of the ownCloud instance.

First, install MySQL software using the following command:

$ sudo apt-get install mysql-server mysql-client

Reboot the system and check the installation:

$ mysql -V

mysql Ver 14.14 Distrib 5.5.40, for debian-linux-gnu (armv7l) using read-

line 6.3

Setup the root password on first use:

$ mysql -u root -p

Enter a password at the prompt and note it somewhere safely. For this example, I
used “odroid” as the password for the root user. The installation can also be checked
using the following SQL commands from the MySQL CLI:

mysql> SHOW VARIABLES LIKE “%version%”;

mysql> STATUS;

mysql> show databases;

mysql> select user,host from mysql.user;

mysql> exit

Alternatively, you can check the installation using the MySQL admin application
like so:

$ mysqladmin -u root -p version

Install the system database and secure the installation using the following com-
mands, after which the installed MySQL instance will be ready for use by ownCloud:

$ sudo mysql_install_db

ODROID MAGAZINE 9

mysql.user

$ sudo mysql_secure_installation

Install nginx
To create a robust and efficient setup, we have chosen the

nimble nginx webserver over the default apache web server.
You can refer to the August 2014 ODROID Magazine issue
for specific instructions regarding nginx installation and con-
figuration.

The general steps are as follows:

Install nginx using the command:

$ sudo apt-get install nginx-full

Next, check the username that owns the nginx installation,
which will be used later:

$ sudo grep user /etc/nginx/nginx.conf user www-data;

Setup the SSL credentials using the commands (each com-
mand in a single line):

$ sudo cd /etc/nginx/ && sudo mkdir ssl
$ sudo openssl req -x509 -nodes -days 365 \
-newkey rsa:2048 -keyout \
/etc/nginx/ssl/nginx.key -out \
/etc/nginx/ssl/nginx.crt

Update the nginx configuration to address the needs of the
SSL, PHP5 and ownCloud installations:

$ sudo cd /etc/nginx/sites-available
$ sudo cp default default-orig
$ sudo medit default

Replace the existing server { … } block with the follow-
ing configuration. Each configuration snippet shown below
should be on its own line:

 ...
 # our php-handler - add this
 upstream php-handler {
 server unix:/var/run/php5-fpm.sock;
 }

 # update section like so:
 server {
 listen 80 default_server;
 listen [::]:80 default_server ipv6only=on;

 # ssl support
 listen 443 ssl;

 root /usr/share/nginx/html;

 # try php file execution first
 index index.php index.html;

 # Make site accessible from http://your-XU3-
host-ip-addr/
 server_name <your-XU3-host-ip-addr>;

CLOUD COMPUTING

 # ssl credentials
 ssl_certificate /etc/nginx/ssl/nginx.crt;
 ssl_certificate_key /etc/nginx/ssl/nginx.key;

 # set max upload size
 client_max_body_size 10G;
 fastcgi_buffers 64 4K;
 client_body_buffer_size 2M;

 # setup calendar, contact, webdav options
 rewrite ^/caldav(.*)$ /remote.php/caldav$1 re-
direct;
 rewrite ^/carddav(.*)$ /remote.php/carddav$1
redirect;
 rewrite ^/webdav(.*)$ /remote.php/webdav$1 re-
direct;

 location = /robots.txt {
 allow all;
 log_not_found off;
 access_log off;
 }

 # diabling of .ht* checks doesn’t work (from
here) for nginx.
 # so using /oc-data as the ownCloud data direc-
tory, instead of
the typical data directory: /usr/share/nginx/html/
ownCloud/data.
retained for future support when issue gets fixed in
ownCloud
 location ~ ^/(?:\.ht|oc-data|config|db_struc-
ture\.xml|README){
 deny all;
 }

 location / {
 # First attempt to serve request as
file, then
 # as directory, then fall back to dis-
playing a 404.
 try_files $uri $uri/ index.php;

 # The following 2 rules are only needed
with webfinger
 rewrite ^/.well-known/host-meta /pub-
lic.php?service=host-meta last;
 rewrite ^/.well-known/host-meta.json /
public.php?service=host-meta-json last;
 rewrite ^/.well-known/carddav /remote.
php/carddav/ redirect;
 rewrite ^/.well-known/caldav /remote.
php/caldav/ redirect;
 rewrite ^(/core/doc/[^\/]+/)$ $1/index.
html;
 }

 # redirect server error pages to the static
pages
 error_page 404 /404.html;
 error_page 500 502 503 504 /50x.html;
 location = /50x.html {
 root /usr/share/nginx/html;
 }

 # pass the PHP scripts to FastCGI server lis-
tening on fpm-socket
 location ~ \.php(?:$|/) {
 fastcgi_split_path_info ^(.+\.php)
(/.+)$;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $docu-
ment_root$fastcgi_script_name;
 # $fastcgi_path_info parse fails
in latest php5-fpm. disable it.
 # fastcgi_param PATH_INFO $fastcgi_
path_info;

ODROID MAGAZINE 10

nginx.conf
nginx.key
nginx.crt
php5-fpm.sock
index.php
index.html
nginx.crt
nginx.key
remote.php/caldav
remote.php/carddav
remote.php/webdav
robots.txt
index.php
public.php
public.php
host-meta.json
public.php
remote.php/carddav
remote.php/carddav
remote.php/caldav
remote.php/caldav
index.html
index.html
404.html
50x.html
50x.html

CLOUD COMPUTING

 fastcgi_pass php-handler;
 fastcgi_read_timeout 600;
 }

 # since “phpmyadmin” is a db-admin app, obfus-
cate it by using a
random (or is it not) appname “OYA16z2-xFg” ;!).
make it use
 # a BASIC authentication dialog prior to
displaying its own login page.
 # the BASIC authentication credentials
are placed in the phpmyadmin_pass
 # file
 location /OYA16z2-xFg {
 auth_basic “PHPMyAdmin Login”;
 auth_basic_user_file /etc/nginx/phpmyad-
min_pass;
 }
 }
 ...

Save the nginx config file after the above editing has been
completed, then create placeholder HTML error pages if they
don’t already exist:

/usr/share/nginx/html/404.html

/usr/share/nginx/html/50x.html

Install php5
Type the following commands to install the prerequisites

for PHP5:

$ sudo apt-get install autoconf automake autotools-
dev libtool curl
$ sudo apt-get install libcurl4-openssl-dev lbzip2
$ sudo apt-get install php5 php5-dev php5-cgi php5-
fpm php5-curl php5-gd
$ sudo apt-get install php5-mysql php5-gmp php5-
imagick php5-imap php5-intl
$ sudo apt-get install php5-ldap php5-mcrypt libm-
crypt-dev php-xml-parser
$ sudo apt-get install php5-xsl php-apc phpmyadmin

phpMyAdmin, a PHP-based tool, is a useful application for
managing MySQL databases. During its installation, skip the
web server config since nginx is not presented as an option. For
the MySQL dbconfig-common config step, select “YES” and
use your preferred secure password, which for simplicity in this
example is “odroid”. Make sure to use a more secure password
for your own setup.

Note that in the nginx installation section earlier, we had
already included the needed php5-fpm config. However, we
will need to make a minor socket configuration change:

$ sudo cd /etc/php5/fpm/pool.d/
$ sudo cp www.conf www.conf-orig
$ sudo medit www.conf

Add the following socket configuration to the existing file,
which is intended to match the existing nginx socket configura-
tion that was established in the previous step:

listen = /var/run/php5-fpm.sock

The nginx document root folder is /usr/share/nginx/html,
where you should create a sample php test file, which will be
used later to test the PHP5 installation:

$ sudo cd /usr/share/nginx/html
$ su
echo ‘<?php echo exec(‘whoami’); ?>’ > info.php
echo ‘<?php phpinfo(); ?>’ >> info.php

Enhance file execution security by setting the following
flags in the PHP5 configuration file:

$ sudo medit /etc/php5/fpm/php.ini

Set these options:

cgi.fix_pathinfo=0
display_errors = On
display_startup_errors = On
output_buffering = 0

Change the following options in the same file to suit your
needs:

upload_max_filesize = 50M
max_file_uploads = 5
post_max_size = 60M
default_socket_timeout = 600

Save the changes. Note that some of the configuration
changes above are related to the upcoming ownCloud instal-
lation. Next, apply the installed component configuration
changes:

$ sudo service php5-fpm stop && sudo /etc/init.d/
mysql stop && sudo service nginx stop
$ sudo service nginx start && sudo /etc/init.d/mysql
start && sudo service php5-fpm start

Verify the installation by navigating a web browser to
http://<XU3 IP address>/info.php. Because a simple PHP
script was created earlier, the output should match the screen-
shot shown in Figure 1.

Figure 1 - PHP test page showing the info.php output

ODROID MAGAZINE 11

404.html
50x.html
www.conf
www.conf
www.conf
php5-fpm.sock
info.php
info.php
php.ini
cgi.fix
init.d/mysql
init.d/mysql
init.d/mysql
info.php
info.php

CLOUD COMPUTING

When you check the output, you may notice that a useful
PHP5 module called mcrypt is disabled, which can be enabled
using the following command:

$ sudo php5enmod mcrypt

Restart php5-fpm, mysql and nginx with the previous com-
mands above and refresh the browser page to review the PHP
information script. It should now show that the mcrypt mod-
ule is enabled.

Install ownCloud
Create a placeholder directory in your home dir and navi-

gate to it:

$ mkdir ownCloud && cd ownCloud

Download the latest ownCloud tarball for Linux and its
corresponding md5 hash file:

$ wget https://download.ownCloud.org/community/own-
Cloud-7.0.4.tar.bz2
$ wget http://bit.ly/1GIchxr

Check integrity of the ownCloud file:

$ cat ownCloud-7.0.4.tar.bz2.md5
6d4a3f9275d1f2b2607e7e6484051d4c -
$ md5sum ownCloud-7.0.4.tar.bz2
6d4a3f9275d1f2b2607e7e6484051d4c ownCloud-7.0.4.tar.
bz2

If the md5sum numbers match, we are OK to install it. The
authenticity of the file can also be checked using the instruc-
tions at http://bit.ly/13Nlfeu.

Expand the tarball to a new subdirectory:

$ mkdir ~/zBU/ownCloud/oc
$ cd ~/zBU/ownCloud/oc && cp ../ownCloud-7.0.4.tar.
bz2 .
$ tar -xjf ownCloud-7.0.4.tar.bz2

Next, move the expanded tarball contents to the nginx doc-
ument root at /usr/share/nginx/html:

$ sudo mv ownCloud /usr/share/nginx/html/

The ownCloud installation comes with a sample php config
file called config.sample.php. Make a copy of it and edit the
copy to establish the necessary configuration:

$ cd /usr/share/nginx/html/ownCloud/config
$ sudo cp config.sample.php config.php
$ sudo medit ./config.php

Update the following sections, substituting the IP address
for <XU3-host-ip-address> without using the “<” and “>”
symbols:

‘apps_paths’ => array(
 array(
 ‘path’=> ‘/usr/share/nginx/html/own-
Cloud/apps’,
 ‘url’ => ‘/apps’,
 ‘writable’ => true,
),
),

‘trusted_domains’ =>
 array (
 ‘localhost’,
 ‘<XU3-host-ip-address>’,
),

Create the ownCloud data directory along with a data
backup directory, then change the ownership and other attri-
butes of the various ownCloud directories:

$ cd usr/share/nginx/html/ownCloud
$ sudo mkdir oc-data && sudo mkdir oc-data-bu
$ sudo chown -R root:root /usr/share/nginx/html/own-
Cloud/
$ sudo chown -R www-data:www-data /usr/share/nginx/
html/ownCloud/config/
$ sudo chown -R www-data:www-data /usr/share/nginx/
html/ownCloud/oc-data/
$ sudo chmod 0775 /usr/share/nginx/html/ownCloud/oc-
data/
$ sudo chown -R odroid:odroid /usr/share/nginx/html/
ownCloud/oc-data-bu/
$ sudo chmod 0775 /usr/share/nginx/html/ownCloud/oc-
data-bu/
$ sudo chown root:root /usr/share/nginx/html/own-
Cloud/.htaccess
$ sudo chown -R www-data:www-data /usr/share/nginx/
html/ownCloud/apps/

The config/, oc-data/ and apps/ subdirectories need to be
under ownership of www-data, which was established earlier.
Also, note that the backup directory oc-data-bu can be used by
a cron-job (under the user odroid) to periodically backup the
ownCloud data directory contents. This allows for the regular
odroid user to restore data if necessary.

By default, the ownCloud installation presumes the use of
Apache, and relies on the .htaccess file to ensure proper access
restrictions, which interferes with the operation of nginx. To
address this, we need to move the oc-data and oc-data-bu di-
rectories out of the nginx document directory structure to the
system root “/”:

$ sudo mv /usr/share/nginx/html/ownCloud/oc-data /
$ sudo mv /usr/share/nginx/html/ownCloud/oc-data-bu /

The ownership and permissions will remain unchanged, al-
lowing ownCloud to properly access the directories. We can

ODROID MAGAZINE 12

https://download.ownCloud.org/community/ownCloud-7.0.4.tar.bz2
https://download.ownCloud.org/community/ownCloud-7.0.4.tar.bz2
http://bit.ly/1GIchxr
ownCloud-7.0.4.tar.bz2.md
ownCloud-7.0.4.tar.bz
ownCloud-7.0.4.tar.bz
ownCloud-7.0.4.tar.bz
http://bit.ly/13Nlfeu
ownCloud-7.0.4.tar.bz
ownCloud-7.0.4.tar.bz
ownCloud-7.0.4.tar.bz
config.sample.php
config.sample.php
config.php
config.php

now use these directories to create mount-points for the two
USB3 external hard drives. Update the fstab file so that the
mounts persist across every reboot:

$ cd /etc
$ sudo medit ./fstab

Add the following entries, each in its own single line:

WD My Passport Ultra 1TB - external HD #1
/dev/sda1 /oc-data ext4 defaults,errors=remount-
ro,noatime,nodiratime 0 2

Toshiba Canvio 1TB - external HD #2
/dev/sdb1 /oc-data-bu ext4 defaults,errors=remount-
ro,noatime,nodiratime 0 2

After you have backed any existing data on the hard drives,
you can use the gparted utility to reformat them to ext4 for-
mat, then reboot. The file-system entries should be verified:

$ df -h
 Filesystem Size Used Avail Use% Mounted on
 ...
 /dev/sda1 917G 72M 871G 1% /oc-data
 /dev/sdb1 917G 72M 871G 1% /oc-data-
bu

This ensures that ownCloud will use the reasonably fast
and large 1TB USB3 hard drives. Although 1TB may not be
enough for some purposes, it is definitely better than a few
paltry gigabytes!

Configure phpmyadmin
Even though the phpMyAdmin installation was addressed

in an earlier step, its configuration is incomplete. If the MySQL
installation is reported as working using phpMyAdmin, we can
safely assume that a major part of the overall installation is
completed properly. Prepare the phpMyAdmin installation to
be usable under nginx, then verify it:

$ sudo ln -s /usr/share/phpmyadmin /usr/share/nginx/
html
$ ls -ltr /usr/share/nginx/html
...
lrwxrwxrwx 1 root root 21 Dec 12 13:46 phpmyadmin
-> /usr/share/phpmyadmin

Next, create the basic authentication credentials:

$ openssl passwd
Password: birdsong
Verifying - Password:
Warning: truncating password to 8 characters
PUzMLT4M8HMDY

Then, create a password file:

$ cd /etc/nginx

$ sudo touch phpmyadmin_pass
$ sudo medit ./phpmyadmin_pass

Add the following on the first line and save the file:

zWarlock:PUzMLT4M8HMDY

Although basic authentication is used as an example, you
may want to use a more robust method in your actual setup.

Normally, phpMyAdmin is accessible using the url:
http://<XU3-Lite-ip-address>/phpmyadmin. However, since
we used an obfuscation which was configured earlier, we will
have to use the url http://<XU3-Lite-ip-address>/OYA16z2-
xFg, which should display a pre-login dialog show as shown in
Figure 2.

Use the same credentials specified in the nginx configura-

tion earlier (username: zWarlock, password: birdsong). After
clicking OK, it should take you to the actual phpMyAdmin
login page similar to Figure 3.

Note the use of the previously specified access credentials
(username: root, password: odroid). Upon successful login,
you will be presented with the home page as shown in Figure 4.

CLOUD COMPUTING

Figure 2: phpmyadmin pre-login screen

Figure 3: phpmyadmin login page

ODROID MAGAZINE 13

Note the presence of the MySQL database in the pane to
the left. Figure 5 shows the list of preliminary users in the da-
tabase. Reboot the system prior to the final step.

Complete the
ownCloud setup

Access the ownCloud web-
site using the url http://<XU3-
Lite-ip-address>/ownCloud.
You should be navigated to
the ownCloud setup page.
After the form is filled in
with the desired informa-
tion, it should look like the
one shown in Figure 6. Note
the setup of the credentials
(username: ocadmin, pass-
word: ocpwd1).

Click on Finish Setup, which returns with a page listing the
available desktop clients to be installed. We can check if the
ownCloud database and users were configured properly using
phpMyAdmin, as seen in Figure 7.

The ownCloud instance displays the page shown in Figure
8 indicating the available clients to be installed. Click on the
Desktop app option, which displays a page similar to Figure 9.

I selected the Windows option to be used on my Win7
system. You can select the option appropriate for your
case. A prompt will appear to download the Desktop Cli-
ent version 1.7.0. Select Save File, and after download is
complete, run it to install the client. After a client login
window appears, use the login credentials selected in Fig-
ure 6 (username: ocadmin, password: ocpwd1). A window
will appear for the setup of local syncup as shown in Fig-
ure 10.

CLOUD COMPUTING

Figure 4: phpMyAdmin home page

Figure 7: ownCloud database and users in phpMyAdmin

Figure 8: ownCloud client
installation option

Figure 9: ownCloud desktop cli-
ent install option

Figure 5: phpmyadmin showing preliminary users

Figure 6: ownCloud penultimate
step with data filled in

ODROID MAGAZINE 14

Create a local directory at c:\oc-data-mysync to be used
for the local syncup. Click Connect and wait for completion,
which will display the final client screen. Filled in with relevant
information, it should look like Figure 11.

Click on the “Open ownCloud in Browser” option, which
will launch a browser-based ownCloud login page. Enter the
credentials, and you should see a page like Figure 12. Finally,
close the welcome window.

The installation process modifies the ownCloud PHP con-
figuration to the point where ownCloud disallows uploads of
any files, and instead adding a special configuration for the use
of an external third-party data storage application called Ob-
jectStore. However, the whole purpose of a stand-alone cloud
system is not to depend on external data storage. To address
this issue, adjust the modified ownCloud PHP configuration
to match those shown below:

$ sudo medit /usr/share/nginx/html/ownCloud/config/
config.php

‘logtimezone’ => ‘America/Los_Angeles’,
‘log_rotate_size’ => 1048576000, // ~1GB
‘openssl’ =>
array (
 ‘config’ => ‘/usr/lib/ssl/openssl.cnf’,
),
‘mount_file’ => ‘oc-data/mount.json’,

Next, remove the entire objectstore entry by searching for
the “objectstore” tag, then deleting the entry. Save the file and
reboot the system. Once the ODROID has rebooted, you can
then proceed to create specialized folders for storing various
types of files. I created the following folders, then uploaded
some sample content to each of the folders for the purpose of
verifying that ownCloud was running:

pix: to hold pictures
audio: to hold mp3 files
video. to hold mp4 and flv files

Figure 13 shows a popup window playing a video file
through its native registered player directly within the own-
Cloud client session.

To test that everything has been installed properly, you can
perform one final check to see if the XU3 system actually has
the files present, and is serving them correctly, by using the fol-
lowing commands:

CLOUD COMPUTING

Figure 10: ownCloud client local syncup

Figure 11: ownCloud client setup completion

Figure 12: ownCloud client first login

Figure 13: ownCloud client playing a video

ODROID MAGAZINE 15

c:\oc-data-mysync
config.php
openssl.cnf
mount.json

 $ su

 # cd /oc-data/ocadmin

 # find . -name “*”

 .

 ./files

 ./files/audio

 ./files/audio/gdPeggyO.mp3

 ./files/audio/rre1759.mp3

 ./files/audio/jgBrokedownPalace.mp3

 ./files/video

 ./files/video/dgWishYouWereHere.mp4

 ./files/video/swecCantFindMyWayHome.mp4

 ./files/video/gdBirdsong.mp4

 ./files/video/ecbbkCrossroads2010.flv

 ./files/video/dsDownToTheWaterline.mp4

 ./files/pix

 ./files/pix/acharipicb.png

 …

Wasn’t that fun? Well, there you have it: one of the fastest
and smallest high capacity scalable ownCloud systems avail-
able. Best of all, like nearly all ODROID-based projects, you
can fit the whole server into your shirt pocket!

Additional configuration

• Enable and test https access
• Enhance the configuration using the information at
http://bit.ly/1tshZRW
• Develop a cron job using rsync to backup the ownCloud
configuration, data, and relevant database information
• Delve deeper into apps built into ownCloud, such as
calendaring
install third-party apps to be hosted by ownCloud
• Use external storage options such as Google Docs or
Objectstore Swift
• And much more!

For more information or questions regarding ownCloud,
please visit the original information sources by clicking on
any of the following websites:

• http://bit.ly/13Nlfeu

• http://bit.ly/1H8B8uo

• http://bit.ly/13NwWlo

• http://bit.ly/1rtFE33

• http://bit.ly/1tshZRW

• http://bit.ly/1kssJLF

• http://bit.ly/1D1R7s6

• http://bit.ly/1JWN0C6

• http://bit.ly/1Ez6ZXy

CLOUD COMPUTINGANDROID GAMING

HEAVENSTRIKE RIVALS
A CLASSIC RPG FOR
THE FINAL FANTASY LOVER
IN ALL OF US
by Bruno Doiche

Aking of the RPG genre, Square Enix is a publisher that
has consumed hours and hours of our lives with all of
their games, so if you are running our latest Android re-

lease on your ODROID, don’t miss the opportunity to take a
look on Heavenstrike Rivals.

Enjoy a battle system designed especially for mobile devices
that’s easy to learn but with deep strategic possibilities, quick-entry
player-vs-player combat, and hundreds of unique characters to
collect, grow and evolve.

Challenge the world and ascend the rankings until you rule
over all!

http://bit.ly/1BKpbrc

ODROID MAGAZINE 16

gdPeggyO.mp
rre1759.mp
jgBrokedownPalace.mp
dgWishYouWereHere.mp
swecCantFindMyWayHome.mp
gdBirdsong.mp
ecbbkCrossroads2010.flv
dsDownToTheWaterline.mp
acharipicb.png
http://bit.ly/1tshZRW
http://bit.ly/13Nlfeu
http://bit.ly/1H8B8uo
http://bit.ly/13NwWlo
http://bit.ly/1rtFE33
http://bit.ly/1tshZRW
http://bit.ly/1kssJLF
http://bit.ly/1D1R7s6
http://bit.ly/1JWN0C6
http://bit.ly/1Ez6ZXy
http://bit.ly/1BKpbrc

ODROID MAGAZINE 17

OS SPOTLIGHT

Once in the directory, you can download any number of my repository files to this
directory:

$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-all-main.list
main package list for all ODROIDs and all Distributions (Debian/Ubuntu)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-all-U.list
package list for ODROID U2/U3 devices and all Distributions (Kernel and
Headers)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-all-X.list
package list for ODROID X devices and all Distributions (Kernel and
Headers)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-all-X2.list
package list for ODROID X2 devices and all Distributions (Kernel and
Headers)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-all-XU.list
package list for ODROID XU devices and all Distributions (Kernel and
Headers)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-all-XU3.list
package list for ODROID XU3 devices and all Distributions (Kernel and
Headers)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-all-C1.list
package list for ODROID C1 devices and all Distributions (Kernel and
Headers)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-all-testing.list
package list all ODROID devices and all Distributions unstable packages
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-wheezy-main.list
package list for all ODROID devices but for Debian Wheezy (ex. not for
Ubuntu 14.04)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-wheezy-back-
ports.list
package list for all ODROID devices but for Debian Wheezy (backports of
libraries ex. SDL2)
$ wget http://oph.mdrjr.net/meveric/sources.lists/meveric-wheezy-testing.
list
package list for all ODROID devices but for Debian Wheezy (packages for
testing ex. XBMC 13)

Please make sure to only download the package lists suitable for your device. For in-
stance, kernel updates for the ODROID-X2 won’t work on an ODROID-U3.

Next, you need to download and install my signature key to tell the apt program that
packages signed with that key are OK to use:

$ wget -O- http://oph.mdrjr.net/meveric/meveric.asc | apt-key add -

After that, you need to update the package lists with the following command:

$ apt-get update

USER-CONTRIBUTED
KERNEL REPOSITORY
MANAGE YOUR SOFTWARE PACKAGES WITH
AUTOMATIC UPDATES USING APT-GET

by Tobias Schaaf

For some time now, I’ve been build-
ing Debian packages for easy in-
stallation of games and programs

that I’ve ported to the ODROID, which
are stored in the Hardkernel-sponsored
server at http://bit.ly/13v98ly. You can
manually download and install lots of
software packages from this repository,
which spares the trouble of compiling
them on your own. However, I’ve re-
cently improved the way in which these
programs may be installed on your local
system.

I’ve been experimenting with a sim-
ple Debian repository which will allow
you to install packages with a simple
“apt-get install” command, and to up-
date already-installed packages with
the “apt-get upgrade” command. I’ve
recently developed it into a state where
it’s usable, and it is even able to update
kernels with the “apt-get upgrade” com-
mand, which is a feature that was previ-
ously unavailable even from Hardkernel.

I want to share the current status of
my first ODROID repository for people
who want to try it out. I will most likely
add more repositories whenever I see the
need for it.

Getting started
Note that all of the following steps

should be done as as root by typing
“sudo su” and typing the administrative
password, which is typically “odroid”.
First, navigate to the /etc/apt/sources.
list.d/ directory on your distribution.

http://oph.mdrjr.net/meveric/sources.lists/meveric-all-main.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-all-U.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-all-X.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-all-X2.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-all-XU.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-all-XU3.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-all-C1.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-all-testing.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-wheezy-main.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-wheezy-backports.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-wheezy-backports.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-wheezy-testing.list
http://oph.mdrjr.net/meveric/sources.lists/meveric-wheezy-testing.list
http://oph.mdrjr.net/meveric/meveric.asc
http://bit.ly/13v98ly
sources.list
sources.list

ODROID MAGAZINE 18

If you’ve done everything right, it
should run through without an issue,
which means you are now ready to up-
date and install packages via the “apt-
get” command.

Kernel updates using
apt-get

One of the most helpful features of
the Debian repository is the option to
update your kernels automatically via
system updates. For this, I created a
“meta-package” which will guarantee
that your kernel will always be updated
with the system updates. I will use the
ODROID-U series as an example, but
the same applies to ODROID-X and
ODROID-X2, and other modern mod-
els as well.

First, make sure that you have the the
following in your /etc/apt/sources.list.d/me-
veric.list file, and have already run the “apt-
get update” command in order to down-
load the most current package list:

$ deb http://oph.mdrjr.net/mev-

eric/ all u

You can then install the following
meta package to get all the Kernel up-
dates that I provide:

$ apt-get install linux-headers-

armhf-odroid-u

$ apt-get install linux-image-

armhf-odroid-u

The headers package contains the
header files for the kernel, which are
sometimes needed if you want to com-
pile your own kernel modules, such as
when installing an external sound card
or similar peripheral. The image pack-
age contains the actual kernel and mod-
ules. With these packages installed, you
automatically get the newest kernel,
and can automatically get updates using
“apt-get”.

Notes
When you already have one of my ker-

nels installed, or whenever you receive an update, the previous kernel and header will be
uninstalled before installing the new kernel. The system will complain about that, since
you are uninstalling the currently running kernel and ask you if you want to stop this
operation. You have to answer with “no” in order to continue with the installation.

Be careful with this step, because after removing the kernel, you should NOT restart
the ODROID until the new kernel is installed, since your ODROID won’t boot without
a kernel. But don’t worry, your ODROID will run indefinitely until you restart, even for
days and weeks, which should give you plenty of time to fix any issues. If something goes
wrong and the system gets restarted anyway, you can still repair your installation using an-
other computer.

If you already have a kernel as a package installed created by me, you don’t need to
worry, since the steps above should work fine. If you have a kernel from HardKernel
lower than version 3.8.13.26, you should be fine as well. However, if your kernel is
labeled version 3.8.13.26 (type uname -a to see what kernel version you have) then
you have to clean up the /boot directory first, since the kernel package might contain
the same files that are already copied in your boot directory, which will prevent the
package from installing.

$ rm -f /boot/*-3.8.13.26 for U3
$ rm -f /boot/*.3.10.51 # for XU3

Package list
This section contains a list of packages that can be found in my repository as of

January 2015. The list will be updated without a corresponding announcement, so
make sure to periodically check the forum thread listed at the end of this article if you
want to know when packages have been added.

Package Name Description

linux-headers-armhf-odroid-u Meta Package for Kernel Headers of U devices
linux-image-armhf-odroid-u Meta Package for Kernel Image of U devices
linux-headers-armhf-odroid-x Meta Package for Kernel Headers of X devices
linux-image-armhf-odroid-x Meta Package for Kernel Image of X devices
linux-headers-armhf-odroid-x2 Meta Package for Kernel Headers of X2 devices
linux-image-armhf-odroid-x2 Meta Package for Kernel Image of X2 devices
linux-headers-armhf-odroid-xu Meta Package for Kernel Headers of XU devices
linux-image-armhf-odroid-xu Meta Package for Kernel Image of XU devices
linux-headers-armhf-odroid-xu3 Meta Package for Kernel Headers of XU3 devices
linux-image-armhf-odroid-xu3 Meta Package for Kernel Image of XU3 devices
linux-headers-armhf-odroid-c1 Meta Package for Kernel Headers of C1 devices
linux-image-armhf-odroid-c1 Meta Package for Kernel Image of C1 devices
armagetronad-odroid-launcher Meta Package for glshim version of Armagetron
chromium-bsu-odroid Up-Down Shooting game using glshim
eduke32-odroid Remake of Duke Nukem 3D using glshim
emulationstation-odroid A graphical and themeable emulator front-end
freedroidrpg-odroid Diablo game with Tux using glshim acceleration
hedgewars-odroid-launcher Worms-like action game using glshim
libgl-odroid glshim OpenGL -> OpenGL ES wrapper
libglew-odroid libGLEW linked against glshim (for some games)
libglues-odroid libGLU for OpenGL ES linked against glshim
 (needed for some games)
mario-odroid Super Mario and Valves Portal mixed using glshim
neverball-odroid-launer 3D Puzzle game using glshim
neverputt-odroid-launcher 3D Puzzle/Golf game using glshim
opencpn-odroid Naval map and route using glshim
shmupacabra-odroid A hard and fast arcade shooter using glshim
smc-odroid Super Mario Chronicles, using glshim
supertux2-odroid Super Mario Clone with Tux using glshim
supertuxkart-odroid-launcher Run SuperTuxCart (3D Mario Kart clone) glshim
sw-odroid Shadow Warrior clone using glshim and OpenGL
valyriatear-odroid Very nice looking RPG game
yquake2-odroid Quake 2 remake in OpenGL using glshim
clementine-odroid Music Player to organize your music and streams
mono-odroid Mono (C#) lib and dev files for Debian Wheezy
retroarch-odroid Retroarch Frontend for Libretro cores
 (Multi System Emulator)
xf86-video-armsoc-odroid ARMSoC framebuffer drivers for Mali GPUs used
 for Exynos 4412 series

OS SPOTLIGHT

sources.list.d/meveric.list
sources.list.d/meveric.list
http://oph.mdrjr.net/meveric
http://oph.mdrjr.net/meveric

ODROID MAGAZINE 19

OS SPOTLIGHT

xbmc-odroid XBMC Gotham 13.2 for Debian Wheezy
antimicro-odroid Tool for mapping keyboard events to gamepads and joysticks
clipgrab Tool to download movies from online websites, such as youtube or dailymotion
corsixth-odroid Theme Hospital Clone (very funny Hospital simulation)
d1x-rebirth-odroid Descent 1 Rebirth OpenGL ES version
d2x-rebirth-odroid Descent 2 Rebirth OpenGL ES version
desmume-odroid Nintendo DS/i Emulator
doom3-odroid Famous 3D First Person Shooter
dosbox-odroid ARMv7a optimized version of DOS Emulator
dunelegacy Dune 2 remake with enhanced features using SDL
etr-odroid Extreme Tux Racer OpenGL ES version
fheroes2-odroid Heroes of Might and Magic 2 remake
flare-engine-odroid Free/Libre Action Roleplaying Engine
ffmpeg-odroid A complete, cross-platform solution to record, convert and stream audio and video
frogatto-odroid-720 Very good looking jump platformer where you play as a frog using GLES1 (720p binary)
frogatto-odroid-1080 Very good looking jump platformer where you play as a frog using GLES1 (1080p binary)
fs-uae Amiga Emulator with OpenGL ES 1 support
homeworldsdl-odroid Port of the famous Real Time Space Strategy game Homeworld with OpenGL ES support
hurrican-odroid Remake of the classic Turrican using OpenGL ES for lots of special effects
ioquake3-odroid Open Source Quake 3 remake for OpenGL ES
ja2-stracciatella Jagget Alliance 2 remake in SDL, allows to replay JA2 on your ODROID in FullHD
jk3-odroid Jedi Knight 3 - Jedi Academy for OpenGL ES
libsodium-odroid easy-to-use encryption and decrytion library
mednafen-odroid A MultiSystemEmulator which allows you to play GBA, NES, and many other console games
openggs-odroid Great Giana Sisters remake.. C64 version, as well as total remake with different levels
openomf-odroid Open Source remake of One Must Fall 2097
opentyrian-odroid Arcade Shooter
openxcom-odroid UFO: Enemy Unkown (X-COM: UFO Defence) remake with high resolution and new features
ppsspp-odroid PlayStation Portable Emulator
retroarch-cores-good Libretro cores for retroarch used in GameStation Turbo Image
retroarch-cores-bad Additional libretro cores for retroarch not used in GameStation Turbo Image
rickyd-odroid Rick Dangerous Clone using SDL2
scummvm-odroid ScummVM Engine for multiple Adventure games
smw-bin Super Mario War - A fighting/Jump and Run inspired by Super Mario
smw-leveledit Level Editor for Super Mario War
toppler-odroid Toppler Tower is a Nebulus Clone in SDL
uqm-hd-odroid Ur-Quan Master HD / HD remake of Ur-Quan Master (Star Control 2)

vcmi-odroid Heroes of Might and Magic III Engine to play HoMM3 on the ODROID

If you have questions about the repository, feel free to post on the original post in the ODROID forums at http://bit.
ly/1wEbfzC, and I will try to help you whenever I can. It sounds complicated, but once the repository is setup properly,
you can install and update programs, games and kernel with a simple “apt-get” command.

UPGRADE
FROM 13.10
TO 14.04
STAY SECURE UNTIL
APRIL 2019 WITH AN
LTS RELEASE
by Rob Roy

I’ve created a large public repository
of Ubuntu 13.04 and 13.10 im-
ages over the past year, and have re-

ceived several requests to upgrade them
to Ubuntu 14.04. Because my library
contains over 100GB of software and
distributions, I have decided to share the
instructions for upgrading any of my im-
ages to Trusty Tahr, which can be easily
performed from the command line. Even
though Ubuntu 13.10 no longer receives
software and security updates, I person-

ally still use the 13.10 versions because of
their stability and reliability, but Ubuntu
14.04 is supported until April 2019, so it
makes sense to upgrade to that version if
you wish to have a secure system.

To begin, download any of my Ubuntu
13.10 images from the Hardkernel server at
http://bit.ly/1rhHymu, copy it to eMMC
or SD card, and boot it up. The first step is
to download the ODROID Utility script:

$ sudo -s

$ wget -O /usr/local/bin/odroid-

utility.sh \

https://raw.githubusercontent.

com/mdrjr/\

odroid-utility/master/odroid-

utility.sh

$ chmod +x /usr/local/bin/odroid-

utility.sh

$ odroid-utility.sh

Select the option to resize the root
partition, which will require a reboot.
Once the desktop appears again, choose
“Software Updates” from the Applica-
tion menu, or type “sudo do-release-up-

grade” in the Terminal window. Follow
the prompts to upgrade, but don’t reboot
when asked. Run the ODROID Utility
once again, and upgrade the kernel, firm-
ware and video drivers.

Once the ODROID Utility has com-
pleted its upgrades, reboot and verify that
the new operating system has been installed
by typing the following into a Terminal:

$ lsb_release -a
Distributor ID: Ubuntu
Description: Ubuntu 14.04.1 LTS
Release: 14.04
Codename: trusty

The now classic ODROID-C1 utility

ODROID MAGAZINE 19

http://bit.ly/1wEbfzC
http://bit.ly/1wEbfzC
http://bit.ly/1rhHymu
odroid-utility.sh
odroid-utility.sh
https://raw.githubusercontent.com/mdrjr
https://raw.githubusercontent.com/mdrjr
odroid-utility.sh
odroid-utility.sh
odroid-utility.sh
odroid-utility.sh
odroid-utility.sh

speed was reported at 117 MB/sec. I did
the same test on a different XU3 with
a different eMMC (one was 64GB, and
the other was 16GB) with the exact same
result. I redid the test on my Linux Lap-
top with a regular SATA hard drive, and
got about 95 MB/sec, with the values
sometimes dropping under 80 MB/sec.
The ODROID gave a constant 115-117
MB/sec, so the read speed is very good.
After that, I tested the write speed of the
eMMC using the command “pv /dev/
zero > test.file”, which varied somewhat,
but resulted in an average of about 30
MB/sec with spikes up to 35 MB/sec.

Notes
While I haven’t done the exact same

read/write test on the U3, since the speed
of the eMMC is already known from
previous tests, I did create a random data
test file for comparison. What I noticed
instantly was that the speed of the file
creation was nearly the same. The U3
created the file at 4 MB/sec which is just
about 5% slower than the XU3. How-
ever, on the XU3, the CPU temperature
rose to 67-70°C with the fan constantly
spinning on a high speed, whereas the
U3 was running quietly at 50°C without
even starting the fan.

Generally speaking, the XU3 is loud-
er than the U3. Even at idle, the XU3
never goes under 55°C and the moment
I started a task, one of the cores it goes

Recently, I was able to get a version
of my popular gaming image
ODROID GameStation Turbo

working on the ODROID-XU3. Al-
though it’s not perfect, it gives a similar
user experience to the U3 version. Now
that I have the same image running on
both U3 and XU3, it’s time to compare
both boards for their gaming power to
determine which board performs better
as a gaming platform, and what draw-
backs there may be.

Overview
Obviously, the ODROID-XU3 has

more USB2 ports, as well as a USB3
port, which is a big advantage over the
U3, but also the eMMC module and
hardware bus is a lot faster on the XU3.
I used the command “hdparm -tT /dev/
mmcblk0“ to test the eMMC speed,
and it reported that the read speed is
about 80-90 MB/sec with an average
of 84 MB/sec on the XU3. I then cre-
ated a 4GB test file using the command
“pv /dev/urandom > test.file” to evalu-
ate the write capabilities, which utilized
one core at 100% and reported a speed
of about 4.2 MB/sec, which is not bad,
considering that it’s randomly generated
data. After the file was created, I did an-
other test by sending the newly gener-
ated file to /dev/null with the command
“pv test.file > /dev/null”, but this time,
the results were somewhat different: the

up to 100% briefly, and the temperature
jumps up to 65°C almost instantly.

The write speed of the XU3 is rath-
er slow compared to its excellent read
speed, and with a good microSD card
you can probably achieve the same write
speed as the eMMC. This also means
that even if you’re using the GigaBit
USB3 LAN adapter you will never get
more than 30 MB/sec when copying a
file over the network.

Another fun fact (although not much
of a performance test) are the results of
the command “pv /dev/zero > /dev/
null”:

XU3 yields 3.2GB/sec @75°C CPU
with the fan spinning full speed

U3 yields 3.5GB/sec @50°C with no
fan spinning

XU-Lite yields 2.4GB/sec @56°C
with no fan spinning

Another thing that I noticed is that
the XU3 operating system is somewhat
unstable. XBMC tends to crash the XU3
when switching between programs or
movies too often. Even running games
from the desktop can cause the XU3 to
occasionally crash or hang. Although
the performance of the XU3 is generally
very good, this is somewhat of a down-
side, so you should position the XU3 in
a way that you can easily restart it.

LINUX GAMING
A COMPARISON OF THE GAMING POWER OF THE U3 VS XU3
by Tobias Schaaf

LINUX GAMING

ODROID MAGAZINE 20

test.file
test.file
test.file
3.2GB/sec
3.5GB/sec
2.4GB/sec

your hardware. The demo runs through
a level with different monsters, with a
lot of different effects. It calculates the
time the game needs to finish the demo,
and gives an average FPS. On the XU3,
the game had some slight issues. While
turning quickly, some glitches appear
such as tearing, with an unknown cause.
But even with the glitches, the game is
very much playable and gets a final re-
sult of 29 FPS, while the U3 gets 24.5
FPS without any of the glitches appar-
ent in the XU3 tests. I’m not sure if the
glitches are simply rendering issues, or if
they are actually affecting performance,
but even with the tearing, the XU3 per-
forms about 18% faster than the U3 on
this game.

Extreme Tux Racer,
Homeworld, Jedi-
Knight 3, Frogatto
and UFO-AI

I haven’t been able to find an FPS
counter for Extreme Tux Racer, but I can
tell by playing that the game runs full
speed on both the U3 and XU3, but the
XU3 has a video tearing issue whenever
the camera moves. This turned out to be
true for every game that I tried running
natively under OpenGLES, even while
using glshim. Homeworld, which uses
OpenGLES 1.1, is working just fine.
The tearing on the XU3 is still present,
but nearly unnoticeable, since the cam-
era never turns fast enough to make it
visible. Jedi-Knight 3 started on the
XU3, but was unable to draw a window,
which means that only the game audio
is working. Frogatto demonstrated the
tearing issue as well, but runs smoothly
besides that. The XU3 actually fixes an
issue with transparency which is promi-
nent on the U3, so the water looks better
on the XU3 than on the U3.

UFO-AI surprised me by performing
very well on the XU3. The U3 has is-
sues with this game, which in my opin-
ion, is the result of the texture buffer.
You have to reduce the graphics a lot in
order to be able to play it, and at some

OpenGLES
performance

The next experiment that I tried was
running the glmark2-es2 demo in order
to see how well the new Mali T628 of
the XU3 performs compared to the Mali
400 of the U3. I was surprised to see
that glmark2-es2 found OpenGLES 3.0
right on mark and was able to perform
every single test there is while the U3 has
some issues with a few tests.

I was also surprised in a different
way with the results. In some tests,
the ODROID-U3 was 5-10 FPS faster
than the XU3, but the results varied a
lot. In fact, both devices are slower than
they should be, but I’m not sure what
the problem is. While the U3 shows an
average of 67 FPS, and went as high as
79 FPS in the test, I’ve seen the U3 per-
forming much better in the past, with
values of up to 109 FPS using the same
benchmark. So something is slowing
down this test, although it probably does
not affect the overall experience.

The XU3, on the other hand shows
an average of 66 FPS with the highest
score at 73 FPS, but I’ve also seen val-
ues of 140 FP which indicates that the
T628 in fact should have more power
than it actually shows. Another anom-
aly is that the XU3 is unable to run the
glmark2-es2 benchmark in full screen
mode, which results in a still picture.
However, the tests still seem to run in
the background with a reported value of
over 1500 FPS.

I also noticed that running the
benchmark in window mode, but hav-
ing the window in the background, has
the same result with benchmark results
of over 1500 FPS. I also wanted to run
native OpenGLES games and compare
the speed, so I used the ones that are
the most demanding on the hardware,
which are presented in the following sec-
tions.

Doom3
Doom3 has a timed demo which

you can use to test the performance of

LINUX GAMING

adjustment points, the graphics fail and
the game crashes. It can only be played
using a low texture resolution using the
256x256 pixel maps. If you’re lucky, you
can use 512x512, but it results in having
graphical issues much earlier in the game.
The XU3 can go up to 1024x1024 pixel
maps, and seems to handle it well. But,
starting at 2048x2048, the performance
drops greatly when using battlescape
mode, while the FPS counter remains at
a steady 50 FPS while using the game
menu and globescape mode. The U3
demonstrates far more issues than the
XU3 when playing UFO-AI.

GLSHIM
performance

Glshim is a wrapper for OpenGL
which allows you to play certain
OpenGL games on OpenGLES devices
such as ODROID. It only supports
OpenGL 1.x for now, and not all func-
tions are available. Some games that
use OpenGL are playable, but there are
quite a lot that actually work properly.
Therefore, glshim is a good test of per-
formance, especially since some of the
programs have high hardware demands.

Eduke32, Super-
Tux2, Chromium
B.S.U., Hedgewars
and Secret Maryo
Chronicles

Eduke has some issues on the XU3.
For instance, when running the game
in full screen in the same resolution as
the desktop, I receive an EGL error and
I don’t see anything on the monitor.
However, I can run it in windows mode,
but that drops the frame rate down to
about 27FPS. When I use a different
resolution for the game than the desktop
resolution, the game starts with a slightly
misplaced image, but it holds about 40-
49 FPS with an average of about 47 FPS.
On the U3, the game runs without is-
sues at a steady 60FPS.

SuperTux 2 has acceptable perfor-
mance on both devices. The XU3 suf

ODROID MAGAZINE 21

ODROID MAGAZINE 22

in the same resolution as the desktop us-
ing SDL.

Emulators
Emulators are a very good test for

performance as well, since they often
require a lot of CPU power along with
some graphical power in order to emu-
late different systems. A very good ex-
ample for this is Retroarch, which is a
front-end for the well-known libretro
cores, which uses different technolo-
gies to emulate different systems such
as SNES, NDS, GBA, 3DO and many
others. It uses OpenGLES 2.0 in order
to display the content using hardware ac-
celeration, but also uses SDL to draw the
content, OpenAL for sound and udev
for controller input. Having so many
different technologies working together
is rather demanding on the hardware, so
it’s expected that the XU3 performs bet-
ter, since it has a more powerful CPU.

Retroarch 3DO
Emulation

I chose a few CPU-intensive cores
of Retroarch for testing, and one of
the newest add-ons for Retroarch is the
3DO emulator, which is typically very
demanding on the CPU. I used Super
Street Fighter II to try out the perfor-
mance of both devices. For some reason,
I was unable to take screenshots directly
from the U3 so I can only include pic-
tures from the XU3.

Retroarch NDS
Emulation

Although NDS is not the newest

SDL Performance
Since OpenGLES showed poor per-

formance in my experiments, I was
looking forward to trying out the SDL
performance, since its speed is mostly re-
liant on the power of the CPU. My as-
sumption was that SDL should be better
on the XU3 than on the U3.

I ran a few games such as Jagged Al-
liance 2, Dune Legacy and freedroid
RPG, as well as an SDL benchmark
called gpmark for comparing he per-
formance of the XU3 with the U3. As
suspected, the performance of the XU3
is higher than on the U3. It even solves
the issue with the full screen resolution
which I encountered with OpenGLES
applications, meaning I can run games

fers from the tearing issue while
scrolling, but the U3 version is running
fine. On the U3, this game runs at an
average of 68 FPS, while on the XU3 it
runs between 58 and 62 FPS.

My patched version of Chromium
B.S.U. runs very well on the U3 at 1080p
with about 50 FPS, although during
play the FPS slowly decreases. On the
XU3, the frame rate can go as high as
55 FPS, but sometimes also drop to 44
FPS. The game is still very playable, but
has the same issues that I had encounter
with other games, i.e., the game does not
run in full screen at the same resolution
as the desktop.

Hedgewars also does not work in
full screen with the desktop resolution.
Choosing a different resolution results in
about 45-49 FPS while in window mode
at 1360x786 resolution. Between 22
and 27 FPS can be achieved on the XU3,
while on the U3 it runs in 1920x1080
full screen at a steady 60 FPS, and in
window mode, it shows 40 FPS.

Secret Maryo Chronicles does not
have an FPS counter, so my impres-
sions are based on the look and feel. U3
performs awesomely at 1080p with full
details, and the game is very smooth.
Using the window mode at 1360x768
resolution was still good, but I could
feel that it was struggling a little. On
the XU3, there still existed the screen
resolution issue mentioned above, but
performance was acceptable. In fact, the
window mode feels somewhat faster on
the XU3 than on the U3.

OpenGLES
conclusion

I was disappointed with the Open-
GLES performance of the XU3. I think
it might just be an issue with OpenGLES
1.1, since Doom3 was in fact running
faster than on the U3, but that could
also due to the CPU power of the XU3.
Unfortunately, there are only a small
number of games that use OpenGLES
2.0 or even 3.0 on Linux, so it’s hard to
compare them with each other.

GPMark results 320x240 XU3

GPMark results 640x480 XU3

GPMark results 640x480 U3

GPMark results 320x240 U3

LINUX GAMING

ODROID MAGAZINE 23

Although FS-UAE relies heavily on
OpenGLES, it performs surprisingly
well on the XU3. I discovered no is-
sues with it, and the performance is very
good. I chose a more demanding game
for this test called Banshee. The AGA
version requires expanded memory and
a fast CPU.

I set both ODROIDs to emulate an
Amiga A1200 with a 68020 CPU at the
fastest speed possible, including 2MB
chip memory and 4GB fast memory us-
ing Kickstart 2.04. The XU3 once again
wins over the U3 through pure CPU
power. While the game on the XU3
runs well in full speed without lags, the
game is very slow on the U3, with stut-
tering sound and laggy gameplay.

the XU3 than on the U3, which is not
surprising, since the XU3 CPU is much
more powerful than the U3 CPU. The
higher CPU power can utilize up to 50%
more speed, but has on average, about
20-25% more speed than on the U3.

FS-UAE Amiga
Emulation

core available for Retroarch, it has some
occasional 3D rendering, which can
be very demanding. With the recently
added JIT compiler for ARM boards,
NDS emulation runs nearly perfect on
all ODROIDs, with some room for
improvement. I used Rune Factory 3
and Bleach the 3rd Phantom for test-
ing. Rune Factory 3 uses 3D characters
and Bleach has some heavy background
scrolling which are both very CPU-in-
tensive.

Phantom, where you can choose to
talk to friends and allies. In the back-
ground, the Bleach logo is constantly
scrolling which eats up CPU power like
crazy, giving 50 FPS on the XU3 vs. 42
FPS on the U3)

I could have performed more tests
with the NDS emulator, but it’s pretty
clear that Retroarch performs better on

Street Fighter II gameplay shows 48.8
FPS on the XU3 vs. 27.8 FPS on the U3

Street Fighter II title screen shows 58.7
FPS on the XU3 vs. 42.2 FPS on the U3

Street Fighter II intro shows 49.2 FPS
on the XU3 vs. 29 FPS on the U3

Rune Factory 3 title screen shows
nearly 60 FPS on both the XU3 and U3

Rune Factory 3 gameplay shows 57.5
FPS on the XU3 vs. 45 FPS on the U3

A scene in Bleach the 3rd Phantom,
where you can choose to talk to friends
and allies. In the background, the Bleach
logo is constantly scrolling which eats
up CPU power like crazy, giving 50 FPS
on the XU3 vs. 42 FPS on the U3

Banshee is a great multiplayer
cooperative game for the Amiga

LINUX GAMING

ODROID MAGAZINE 24

PPSSPP makes it obvious that the XU3
still has reserve power during intensive
emulation, whereas the U3 is often at its
limit. Which means that, rather than
2x resolution, you would probably be
able to use a 3x resolution on the XU3,
which should enhance the graphics even
more, making the games look like you
are playing them on an Xbox 360.

Final thoughts
Although the performance of the

XU3 is incredible, it has many flaws.
XBMC is not working correctly, and the
MFC decoder functions in XBMC are
simply a clever hack, forcing the system
to use MFC rather than checking to see
if it’s actually available.

OpenGLES seems to be somewhat
broken on the XU3, even though version
3.0 is supported. Native OpenGLES
games, as well as glshim, seem to run
slower on the XU3 than on the U3, al-
though the specs say it should have per-
form better on the XU3. Only Doom3,
while somewhat glitchy, was actually
able to use the higher performance of the
XU3 to improve graphics performance.

This leads me to the conclusion
that OpenGLES 2.0 (and probably 3.0
as well) are working fine on the XU3,
while the OpenGLES 1.1 performance
is worse on the XU3 than on the U3.
Issues with vsync, screen resolution and
tearing indicate that there are some in-
compatibilities with the XU3, which is
probably an issue with the xf86-video-
armsoc driver. It seems unable to handle
the different modes as well as it can on
the U3, which means that there’s prob-
ably a solution if someone is able to fix
the xf86-video-armsoc driver for the
XU3.

On the other hand, when you start
3D acceleration through SDL, like some
of the emulators do, the performance is
very nice and there are no residual issues.
The XU3 clearly shows that higher CPU
power gives an advantage when it comes
to emulating other systems, and the
XU3 does a really good job with most

enjoy fighting games, I chose Soul Cal-
ibur. I could have used Tekken 6 like
HardKernel uses for their demos, but I
find Tekken to be a rather dull fighting
game with only a little action and medi-
ocre graphics. I prefer Soul Calibur over
Tekken, since even back on DreamCast,
Soul Calibur always had stunning graph-
ics, with lens flare reflections, very fluent
character movement, swords, staffs, and
all kinds of weapons.

Even though Soul Calibur runs at the
same speed on the XU3 as on the U3, I
feel that it’s somewhat faster on the XU3.
The menus react better, although after a
short initial shock, the U3 is just as fast
as his big brother. All in all, PPSSPP
shows how well an emulator can lever-
age the hardware. PPSSPP even has an
option to use OpenGLES 3.0, which
theoretically should work even better on
the XU3 and would offer more effects.
However, the PPSSPP project is in a big
restructuring phase right now because
they are switching from SDL to SDL2,
which unfortunately caused the newest
version of PPSSPP to be temporarily un-
able to run on the ODROID platform.

Similar to the other emulators,

PPSSPP
Playstation Portable
Emulation

PPSSPP is one of the best emula-
tors available, and the performance and
graphics it provides are just stunning, al-
lowing you to play beautiful 3D games
in high resolution. For this test, I dis-
abled the frame skip option in order to
see what the actual frame rate output
and speed were using a 2x resolution.

I played Asphalt Urban GT2 and
Ragnarok Tactics as an example, since
I’ve traditionally used these games for
testing the performance of the PPSSPP
emulator while developing my GameSta-
tion Turbo images. Asphalt Urban GT2
is very demanding on the hardware, but
will actually get slower if you increase
frame skipping, and also has other deg-
radation issues which, in other games,
would otherwise boost performance.

Ragnarok Tactics is a cute anime-style
RPG/TBS game in the world of Ragn-
arok Online. Back when the PPSSPP
emulator was still hard to get to working
properly on the ODROID, it was one of
the first game that I tried. There were
different types of errors found in run-
ning the game, such as characters that
were always facing in one direction no
matter what, and the gameplay was not
very fluent. However, I’m impressed at
how far the performance of the game has
come so far.

At the last moment, I decided to test
one more game. Since people tend to

Soul Calibur runs at 60 FPS on the XU3
and at 60 FPS on the U3 - so much for
performance comparison!

Asphalt Urban GT2 on the ODROID-XU
runs great with about 30-35 FPS on
the XU3, and gets only about 13 FPS
on the U3, but can run better on the
U3 with the right settings

Ragnarok Tactics running in steady
60 FPS on the XU3 and 57 FPS on the
U3 with waterfalls on the screen and
many polygon models

LINUX GAMING

ODROID MAGAZINE 25

emulators.
Therefore, I would suggest that, as

long as you want to play native Open-
GLES games or games with glshim, stick
with the U3 until the issues on the XU3
are resolved. However, for emulation,
the XU3 is awesome and highly recom-
mended, since all emulators can make
use of the powerful XU3 CPU, giving
better results, on the order of 15-50%
over the U3.

Unfortunately, the XU3 crashes or
freezes rather often, which diminishes its
gaming experience. A workaround is to
use an eMMC module, which allows the
XU3 to reboot quickly, and if you can
deal with having to occasionally restart
the computer in order to keep playing,
it’s the perfect device for gaming and/or
to use as a desktop replacement. Inter-
estingly, the games available for the XU3
are stable, since the XU3 never crashes
during gameplay, but only on starting or
exiting. So at least while you play, you
are safe from losing your progress.

All tests were done on Debian
Wheezy using ODROID GameStation
Turbo, so I can’t say if the games that I
tested would perform differently using
Ubuntu 14.04. I’m also still in the pro-
cess of evaluating Debian Jessie to see if
it solves some of the issues mentioned
above, so there may be room for im-
provement resulting from switching to
an updated operating system.

LINUX GAMING

Hardkernel produces many pre-
built images for use with the U3
and XU3 such as Android and

Ubuntu, and some ODROIDians have
created special-purpose distributions
based on the official releases and shared
them with the open-source community.
Here is a short list of popular contri-
butions that have been released on the
ODROID forums:

OpenELEC
U3/XU3: http://bit.ly/1t6fWgr

Gamestation Turbo
U3: http://bit.ly/1nVvQqz
XU3: http://bit.ly/1ASFO5O

Cyanogenmod 11
U3: http://bit.ly/1ASG8BL
XU3: http://bit.ly/1qMA6Oq

Max2Play
U3: http://bit.ly/1HMovDY

Trusty Dev Centre
U3: http://bit.ly/1t6h1ov

Ubuntu Server
U3: http://bit.ly/1CMYC8K

Debian
U3: http://bit.ly/13zNTiG

Robotics (ROS + OpenCV + PCL)
U3: http://bit.ly/16TLG3V
XU3: http://bit.ly/1xlEPbZ

Android Pocket Rocket
U3: http://bit.ly/1H2Legq
XU3: http://bit.ly/1wrlB0L

Arch Linux (ALARM)
U3: http://bit.ly/1wOEzng

Kali Linux
U3/XU3: http://bit.ly/1sZsZ7x

COMMUNITY IMAGES
by Rob Roy

COMMUNITY IMAGES

You don’t want to encounter Tobias in an
online gaming session - he is extremely
ARMed and dangerous!

http://bit.ly/1t6fWgr
http://bit.ly/1nVvQqz
http://bit.ly/1ASFO5O
http://bit.ly/1ASG8BL
http://bit.ly/1qMA6Oq
http://bit.ly/1HMovDY
http://bit.ly/1t6h1ov
http://bit.ly/1CMYC8K
http://bit.ly/13zNTiG
http://bit.ly/16TLG3V
http://bit.ly/1xlEPbZ
http://bit.ly/1H2Legq
http://bit.ly/1wrlB0L
http://bit.ly/1wOEzng
http://bit.ly/1sZsZ7x

- node.js
- roundcube
- serviio DLNA/Server
- madsonic
- webproxy/webfilter
- DHCP/DNS-Server, like dnsmasq
- cloudprint (using cups)
- and many more

Everything runs inside its own, light-
weight Docker container. The Linux
“system” inside each container can be
based on CentOS, Ubuntu, Fedora, or
ARCH Linux (to name a few) as person-
al preference, or as required by the ap-
plication. This approach makes efficient
use of the ODROID resources and at
the same time keep your base/host op-
erating system (OS) clean. Docker en-
sures that if something goes wrong with
a single application, none of the other
application containers will be affected,

Docker is a platform for develop-
ers and sysadmins to develop,
ship, and run applications.

Docker lets you quickly assemble appli-
cations from components and eliminates
the friction that can come when ship-
ping code, and lets you get your code
tested and deployed into production as
fast as possible. It consists of the follow-
ing components:

- The Docker Engine, which is a
lightweight and powerful open source
container virtualization technology
combined with a workflow for building
and containerizing applications.

- The Docker Hub (https://hub.
docker.com), which is a SaaS service
for sharing and managing application
stacks.

With Docker (https://www.docker.
com/whatisdocker), you can manage
to host many different applications on
your single ODROID box concurrently,
which becomes very easy to maintain. I
have been running a miniDLNA Dock-
er for several weeks now, and it is abso-
lutely stable, serving music to my home.
With Docker, you can run many popu-
lar Linux applications, such as:

- owncloud
- lamp
- openstack (dockenstack)

and there won’t be the need to clean up
the host by re-installing or purging the
system media.

Prerequisites
On your ODROID, you will need

to run an OS with support for Docker.
While Ubuntu 14.04 comes with Dock-
er support in the repositories, the actual

XU3 kernel requires a rebuild, and you
will find the instructions on how to do
that further down this article. You can
also use ARCH Linux for the XU3,
which comes with ready support in the
kernel and a more upstream version of
Docker.

With your ODROID up and run-
ning, install the Docker binaries from
the main repository:

Ubuntu

$ sudo apt-get install docker.io

ARCH Linux

$ pacman -S docker

Base image

I suggest beginning with an Ubuntu
14.04 based image, as this is also the re-
quired base for building Docker from
source. In general, this first step is ex-

DOCKER: DEVELOP, SHIP
AND RUN ANY APPLICATION,
ANYWHERE
PART 1 - GETTING STARTED
WITH CONTAINERS
by Fred Meyer

DOCKER

Linux distributions supported by Docker

Installing and configuring Docker is
the first step toward a stable system

ODROID MAGAZINE 26

node.js
https://hub.docker.com
https://hub.docker.com
https://www.docker.com/whatisdocker
https://www.docker.com/whatisdocker
docker.io

and Docker projects:

$ sudo docker pull hominidae/

armhf-ubuntu

Next, in order to run a test of your
freshly created container by simply view-
ing the lsb-release file inside, type:

$ sudo docker run hominidae/arm-

hf-ubuntu cat /etc/lsb-release

DISTRIB_ID=Ubuntu

DISTRIB_RELEASE=14.04

DISTRIB_CODENAME=trusty

DISTRIB_DESCRIPTION=”Ubuntu

14.04”

If you’d like to build your image
from scratch instead, the following sec-
tions illustrate how to do so, using an
ODROID to perform the compilation.

Building from
scratch

There is a way to create ARM based
Docker images from an x86 Dock-
er host, running a version of qemu-
arm-static, as described at http://bit.

ly/1CNgX5O, but I suggest doing this
on your ODROID host instead.

Install debootstrap

The debootstrap utility is required in
order to create a basic Debian/Ubuntu
tarball. Follow the recommended steps
for installation on your Linux distribu-
tion. For example, in ARCH Linux, in-
stall yaourt first.

plained at http://bit.ly/1tn21Z9. For
the XU3, on ARM, some other tweaks
are required.

A faster start for obtaining a base im-
age is through the public Docker image
repository, called the Docker Hub, which
is available at http://bit.ly/1y1SMvO. I
also added my manually built base imag-
es to the Docker Hub, and if you want to
skip the steps of producing it for your-
self, you can access and download them
easily.

Note that the current versions of
Docker and Docker Hub are not aware
of the architecture for which the im-
age has been built. All standard images
are intended for the x86 architecture,
and the autobuild feature offered by
the Docker registry is only available for
x86. However, Docker is Linux-based,
and since Linux supports many archi-
tectures, other developers have added
images from other architectures to the
repository.

A well-known common naming con-
vention has been established, where the
contributors cite the architecture of the
image inside the image name. For the
ODROID architecture, look for im-
ages carrying “armhf” in the name while
browsing the repository.

For convenience, my pre-built Ubun-
tu Trusty 14.04 base image is available
through the public Docker repository
at https://registry.hub.docker.com/u/
hominidae/armhf-ubuntu. Type the fol-
lowing to fetch it for your own builds

DOCKER

Hardcore Linux hackers will find install-
ing Docker to be a walk on the beach

Ubuntu runs Docker well, and is the pre-
ferred operating system for many users

Create minbase tree
and tarball

On the command line, type the
following, which will produce an
ubuntu:trusty tree under the directory
“ubuntu” relative to where you run the
command:

$ sudo debootstrap --ver-

bose --variant=minbase \

--include=iproute,iputils-ping

--ARCH armhf trusty ./ubuntu \

http://ports.ubuntu.com/ubuntu-

ports/

Modify the sources
list

Copying the sources.list from the
XU3 stock ubuntu:14.04 image into
your newly created ubuntu:trusty tree is
a good start for creating a Docker im-
age that is able to maintain itself through
running a simple “apt-get update &&
apt-get upgrade”. Type the following
command into a Terminal window:

$ sudo cp /etc/apt/sources.list

./ubuntu/etc/apt/

The following line will create and
add the tree/tarball as an image, named
“ubuntu” and tagged “latest” to your lo-
cal Docker repository on your host:

$ sudo tar -C ubuntu -c . | sudo

docker import - ubuntu

Next, run a test of your freshly cre-
ated container by typing the following
command into a Terminal window:

$ sudo docker run ubuntu cat \

/etc/lsb-release \

DISTRIB_ID=Ubuntu \

DISTRIB_RELEASE=14.04 \

DISTRIB_CODENAME=trusty \

DISTRIB_DESCRIPTION=\

”Ubuntu 14.04”

ODROID MAGAZINE 27

http://bit.ly/1CNgX5O
http://bit.ly/1CNgX5O
http://bit.ly/1tn21Z9
http://bit.ly/1y1SMvO
https://registry.hub.docker.com/u/hominidae/armhf
https://registry.hub.docker.com/u/hominidae/armhf
http://ports.ubuntu.com/ubuntu
sources.list
sources.list

At some point, especially whenever
you start a new project, it is a good prac-
tice to bring your Ubuntu container up
to date by adding the following line in-
side your Dockerfile:

RUN apt-get update && apt-get

upgrade

Also you’ll want to save your image,
snapshotting its “system” for further re-
use, by typing:

$ sudo docker save <image-id>

<name>.tar

You can explore further docker-cli
commands at http://bit.ly/13KDxwN.

Upgrading Docker
binaries on your host

Docker is still under development, so
new features are constantly added, and
the API is continually evolving. The
good thing about Docker is that now
you can upgrade your ODROID host to
the latest version of the binaries if you
wish. You can rebuild Docker, since it
builds inside a ubuntu:14.04 container,
and create/install the binaries by fol-
lowing the instructions at http://bit.
ly/16U9epg.

As previously mentioned, Docker is
not aware of the architecture on which
it’s installed, which means that the
Docker container to build the docker
binaries isn’t either. In order to run the
build on your ODROID host, you will
have to do two tweaks to the source ob-
tained from git.

The Dockerfile will build GO
(https://golang.org) for all known/sup-
ported architectures. This obviously
assumes that the build is running on
x86-based machines, and that it is able
to do a cross-compile. Just remove all
architectures in the Dockerfile except for
“Linux/ARM”.

Secondly, the Docker daemon that

speedup \

 \

 && echo ‘DPkg::Post-Invoke {

“rm -f /var/cache/apt/ARCHives/*.

deb /var/cache/apt/ARCHives/

partial/*.deb /var/cache/apt/*.

bin || true”; };’ > /etc/apt/apt.

conf.d/docker-clean \

 && echo ‘APT::Update::Post-

Invoke { “rm -f /var/cache/apt/

ARCHives/*.deb /var/cache/apt/AR-

CHives/partial/*.deb /var/cache/

apt/*.bin || true”; };’ >> /etc/

apt/apt.conf.d/docker-clean \

 && echo ‘Dir::Cache::pkgcache

“”; Dir::Cache::srcpkgcache “”;’

>> /etc/apt/apt.conf.d/docker-

clean \

 \

 && echo ‘Acquire::Languages

“none”;’ > /etc/apt/apt.conf.d/

docker-no-languages \

 \

 && echo ‘Acquire::GzipIndexes

“true”; Acquire::CompressionTypes

::Order:: “gz”;’ > /etc/apt/apt.

conf.d/docker-gzip-indexes

Finalize the image

To save your image, it’s necessary to
commit the changes from above and tag
the image before proceeding to the next
step. First, fetch the latest container-id
from the last run, then use that contain-
er-id (the first 3 digits will suffice) to
commit the changes and tag the result-
ing new image:

$ sudo docker ps -l

$ sudo docker commit <id> ubun-

tu:14.04

Exploring Docker

You now have a working Ubuntu
Trusty 14.04 base armhf-image to start
from. Run this command to view your
available images:

$ sudo docker images

Tweak the image

You normally will use a Dockerfile
(http://bit.ly/1x8oBnN) to begin cus-
tomizing and enhancing your base im-
age. In the Dockerfile, you will instruct
Docker to install further applications.
During this stage, only the docker com-

mand is running inside the container,
without any services (such as initd/sys-
temd), which will make the install com-
mands for certain applications/services
fail.

To circumvent this, you need to apply
some tweaks/adjustments, as shown in
the example at http://bit.ly/13KBsRm:

$ sudo docker run ubuntu echo

‘#!/bin/sh’ > /usr/sbin/policy-

rc.d \

 && echo ‘exit 101’ >> /usr/

sbin/policy-rc.d \

 && chmod +x /usr/sbin/policy-

rc.d \

 \

 && dpkg-divert --local --re-

name --add /sbin/initctl \

 && cp -a /usr/sbin/policy-rc.d

/sbin/initctl \

 && sed -i ‘s/^exit.*/exit 0/’

/sbin/initctl \

 \

 && echo ‘force-unsafe-io’ > /

etc/dpkg/dpkg.cfg.d/docker-apt-

Ubuntu Tweak is an application designed
to make Ubuntu configuration easier

DOCKER

ODROID MAGAZINE 28

http://bit.ly/13KDxwN
http://bit.ly/16U9epg
http://bit.ly/16U9epg
https://golang.org
apt.conf.d/docker
apt.conf.d/docker
apt.conf.d/docker
apt.conf.d/docker
apt.conf.d/docker
apt.conf.d/docker
apt.conf.d/docker
apt.conf.d/docker
http://bit.ly/1x8oBnN
http://bit.ly/13KBsRm
dpkg.cfg.d/docker

nel parameters as not-enabled, you’ll
need to prepare a new kernel config and
build a kernel from it. Note that you can
point the lxc-checkconfig tool towards a
kernel config-file, allowing you to test a
kernel without having to boot into it:

usage: $ CONFIG=/path/to/config /

usr/bin/lxc-checkconfig

Prepare a suitable
kernel config and
build the kernel

First, fetch a kernel build tree. Note
that the instructions shown here are
for kernel 3.10.y. The instructions for
kernel compilation are already laid out
in the ODROID Wiki at http://bit.
ly/1ATKTLh. Go to the “Linux” Sec-
tion further down on that Wiki page,
and read the section titled “Kernel Re-
build Guide” with the following addi-
tional steps:

1. In build-step 2 from the Wiki,
during menuconfig, do the following
config steps:

a. under Filesystems entry, disable
support for XFS.

Kernel 3.10.y has a dependency con-
fig bug in its build tree...you won’t be
able to enable the next part, until you
disable XFS.

b. under General -> Namespaces, en-
able “User Namespaces”

c. under General -> cgroup, enable
all options

d. under Devices -> Character De-
vices,

enable “support for multiple dev/pts
instances”

e. save the config and exit from me-
nuconfig

f. re-check the new config:

$ CONFIG=./.config /usr/bin/lxc-

checkconfig

Hopefully your new configuration
has all required features enabled now.

2. Continue to build and install the

kernel needs a modified config, and if a
rebuild is required:

$ lxc-checkconfig

--- Namespaces ---

Namespaces: enabled

Utsname namespace: enabled

Ipc namespace: enabled

Pid namespace: enabled

User namespace: enabled

Network namespace: enabled

Multiple /dev/pts instances: en-

abled

--- Control groups ---

Cgroup: enabled

Cgroup clone_children flag: en-

abled

Cgroup device: enabled

Cgroup sched: enabled

Cgroup cpu account: enabled

Cgroup memory controller: enabled

Cgroup cpuset: enabled

--- Misc ---

Veth pair device: enabled

Macvlan: enabled

Vlan: enabled

File capabilities: enabled

Should you see any of the above ker-

will build the binaries has a hard-coded
check for the presence of the amd64 ar-
chitecture in its code. You’ll first need
to remove the check for the amb64 ar-
chitecture by editing the file docker/dae-
mon/daemon.go in the source tree from
git, in order to get a working Docker
daemon.

Building the kernel

Ubuntu will be the default host OS
for many users, using the kernel supplied
by the Hardkernel team. The actual ker-
nel build, however, does not include the
proper settings to support Docker. The
following steps will fix these settings,
beginning with checking whether your
kernel is already enabled for Docker.

Install lxc

Although lxc is not needed for Dock-
er, since Docker comes with its own
implementation called libcontainer,
this package comes with a little tool to
check/probe your kernel config.

$ sudo apt-get install lxc

Now check whether your running

An example of the make menu config application, which is one of the essentials steps
when building a kernel. There are a lot of options available, so take your time!

DOCKER

ODROID MAGAZINE 29

http://bit.ly/1ATKTLh
http://bit.ly/1ATKTLh
daemon.go

kernel, as laid out in the Wiki.
3. After you have booted into your

newly built kernel, check your kernel
configuration again, type “lxc-checkcon-
fig”.

Congratulations! After completing
these steps, you now have a kernel suit-
able for using containerized Apps with
Docker on your ODROID.

Notes

When enabling Docker in kernel
3.10.y, your host will lose the capability
to support the XFS filesystem format.
This is the main reason why the team at
Hardkernel has not supplied a Docker-
enabled kernel (yet).

If you have access to an ARCH Linux
image for the XU3, there is a shortcut
for establishing a working kernel config.
Since ARCH Linux for ODROID-XU3
comes with a Docker-enabled kernel
3.10.y already, you can extract the con-
fig from there. Using a running ARCH
Linux install, type the following in a ter-
minal:

$ zcat /proc/config.gz > .config-

arch && CONFIG=./.config-arch /

usr/bin/lxc-checkconfig

Finally, fetch the .config-arch file and
inject it into step 2 of the kernel build
guide from the Wiki.

In the next part of this series, I will
introduce some of my pre-built Docker
images so that you can get your Docker
system up and running even faster.

DOCKER

CLICK TO VIEW MOREODROID MAGAZINE 30

config.gz
http://infographiclabs.com/news/the-history-of-linux/
http://infographiclabs.com/news/the-history-of-linux/

SETTING UP ASP.NET
AND MONO
BUILDING A MICROSOFT-FREE
SERVER STACK
by Rui Carmo

MONO

make install

Should report 3.10.1 (or above)

and hardware floating point

mono --version

Sample output

Mono JIT compiler version 3.10.1

(master/8da186e Sat Oct 25

19:32:35 WEST 2014)

Copyright (C) 2002-2014 Novell,

Inc, Xamarin Inc and Contribu-

tors. www.mono-project.com

 TLS: __thread

 SIGSEGV: normal

 Notifications: epoll

 Architecture:

armel,vfp+hard

 Disabled: none

 Misc: softdebug

 LLVM: supported,

not enabled.

 GC: sgen

LLVM support
It’s possible to set up the Mono

LLVM fork to have Mono use LLVM
instead of its built-in JIT, but it requires
picking the right Git branch and pass-
ing both --enable-llvm=yes to autogen.
sh and --llvm to mono itself which is not
very useful, since the trade-offs in RAM/
performance are debatable. Start up
time, in particular, seems to take a siz-
able hit.

These are my notes on setting
up a bleeding-edge Mono run-
time and ASP.NET vNext on

ODROID devices with hardware float-
ing point.

Building Mono from
Source

I’m going to do everything as

root

su -

grab minimal dependencies

apt-get install build-essential

mono-runtime autoconf libtool

automake

import required certificates

mozroots --import --ask-remove

--machine

Now check out the Mono tree

(this alone will take ages if you

have a slow SD card)

git clone git://github.com/mono/

mono.git

cd mono

./autogen.sh --prefix=/usr/local

grab the bootstrap compiler

make get-monolite-latest

now is a nice time to go off

and take a long stroll by the

beach

make

use this instead if you have

distcc like me, it will speed up

building the native bits:

DISTCC_NODES=“node1 node2

node3 node4 localhost” make -j5

CC=distcc

now install it locally

vNext
This script uses myget.org to fetch

the nightly vNext package builds by
Eilon Lipton, who works at Microsoft,
so your mileage may vary depending on
how stable the nightlies are.

grab K tools

curl https://raw.githubuser-

content.com/aspnet/Home/master/

kvminstall.sh | sh && source

~/.kre/kvm/kvm.sh

kvm upgrade

add the package repo certifi-

cates

sudo certmgr -ssl -m https://

nuget.org

sudo certmgr -ssl -m https://www.

myget.org

mozroots --import --sync

run the samples

git clone https://github.com/

aspnet/home

cd cd home/samples/HelloWeb

kpm restore -s https://www.myget.

org/F/aspnetvnext/

For further questions regarding set-
ting up .NET on an ARM device, please
refer to the original article at http://bit.
ly/1AZH3hW. This article was brought
to you under the Creative Commons li-
cense (http://bit.ly/1jsHqrq).

ODROID MAGAZINE 31

ASP.NET
www.mono-project.com
autogen.sh
autogen.sh
ASP.NET
github.com/mono/mono.git
github.com/mono/mono.git
autogen.sh
myget.org
https://raw.githubusercontent.com/aspnet/Home/master/kvminstall.sh
https://raw.githubusercontent.com/aspnet/Home/master/kvminstall.sh
https://raw.githubusercontent.com/aspnet/Home/master/kvminstall.sh
kvm.sh
https://nuget.org
https://nuget.org
https://www.myget.org
https://www.myget.org
https://github.com/aspnet/home
https://github.com/aspnet/home
https://www.myget.org/F/aspnetvnext
https://www.myget.org/F/aspnetvnext
http://bit.ly/1AZH3hW
http://bit.ly/1AZH3hW
http://bit.ly/1jsHqrq

it involves a number of different components talking and con-
necting with each other. At the highest level, the process works
as shown in Figure 1.

When you launch an application, you are instructing An-
droid to create/fork a process, and this is taken care of by send-
ing a socket request to Zygote when you start Android for the
first time during the execution of the init process. Please refer
to the December issue of ODROID Magazine at http://bit.
ly/1x2sg6z for a further explanation of the init process. One
of the main tasks of init is to launch Zygote, which makes it
reside in memory waiting for an incoming instruction via its
opened socket.

Zygote Init
Here is the init process command that launches Zygote:

service zygote /system/bin/app_process -Xzygote /sys-

tem/bin --zygote --start-system-server

 class main

 socket zygote stream 660 root system

 onrestart write /sys/android_power/request_state

wake

 onrestart write /sys/power/state on

 onrestart restart media

 onrestart restart netd

The above service command instructs Android to run zy-
gote with the appropriate permissions. Note that the actual
application is called app_main, but the service is referred to as
Zygote. The following explains the different parameters passed
to app_main:

--zygote: instructs the app_main application to run the
program in zygote mode, where it initializes the environment
and opens a socket.

Building apps has become easier since the early days of
Android development, and there are plenty of resources
on the Internet that you can use to learn more. As an

Android developer, you may understand the variety of APIs
that are made available for your application, but sometimes
you need to stop and think about how the app actually runs
inside Android. Which part of Android is taking care of the
app, and what is controlling it? This article will try to answer
these questions.

Zygote
We know that Android uses the Java Virtual Machine to

run apps, and that this virtual machine is called dalvik, which
was renamed art in Lollipop/Android 5.0. Dalvik is an imple-
mentation of a Java VM, but it is not the service that con-
trols the launching of your application. There is another small
component that controls the end-to-end process which is called
Zygote.

Let’s take a look what Zygote means in Wikipedia: “....In
multicellular organisms, it is the earliest developmental stage of
the embryo. In single-celled organisms, the zygote divides to
produce offspring, usually through mitosis, the process of cell
division.” Ignoring the relevancy of the Wikipedia quote to
biology, we can see that zygote is the replication of cells, which
in the Android world means the replication of a process. In
summary, Zygote takes care of the instantiation and replication
of processes in conjunction with the virtual machine.

Every time you execute a Java application inside Android,
you are triggering the launch process. Internally, the launch
process is a straightforward yet multi-layered procedure, since

ANDROID DEVELOPMENT:
THE POWER OF ZYGOTE
by Nanik Tolaram

ANDROID DEVELOPMENT

Figure 1 : Application creation process

ODROID MAGAZINE 32

http://bit.ly/1x2sg6z
http://bit.ly/1x2sg6z

--start-system-server: this is to instruct the app_main appli-
cation to start the system server which requires different kinds
of handling than normal applications. The system server con-
tains several components that will be run as part of the init
process.

The app_main application is used to launch apps, and is

also used to launch Android’s internal services. You can say
that the app_main application is the “one-size-fits-all-app” for
bootstrapping applications inside Android.

Figure 2 shows the ZygoteInit class initialized during the
init process, with two main steps:

1. Create a socket called “ANDROID_SOCKET_zygote”,
which is used to receive incoming requests.

2. Process incoming requests to launch new applications
and fork processes.

The zygoteinit class is the primary class that takes care of all
zygote-related functionality, including preparing the environ-
ment for the new app to use, while the ZygoteConnection class
is used to handle the incoming socket requests.

Launching Apps
Knowing that Zygote is the component that takes care of

launching Android app, we can go a bit deeper by looking at
the different classes involved in making this “magic” happen.

As seen in Figure 3, we will look at the highlighted section of
the Android architecture.

Specifically, we are going to review the Activity Manager,
since this is the main service that takes care of the activity life-
cycle of an Android app. The flow diagram in Figure 4 shows
the classes that are involved when you want to run an app:

- ActivityManagerService is the main service inside Android
that takes care of activities inside Android applications

- The Process class is responsible for mapping apps and pro-
cesses created inside Linux

Steps 2 and 3 of Figure 4 shows the interaction with Zygote
via the ANDROID_SOCKET_zygote socket as described in
Figure 1. As you can imagine, without Zygote you wouldn’t be
able to execute your app, and the whole Android system would
be rendered useless. Zygote is just a small component in the
whole Android framework that helps the ActivityManager to
launch applications in memory.

In summary, we can see that the whole interaction between
the different layers will look like Figure 5. With a deeper un-
derstanding of Zygote comes better insight at how your app is
executed inside Android.

ANDROID DEVELOPMENT

Figure 2 : ZygoteInit Initialization

Figure 5 : Complete Zygote Flow

Figure 3 : Android Architecture

Figure 4 : App launch flow

ODROID MAGAZINE 33

The Finnish word Poiju means a
buoy. It is a sea marker that stays in
its location on the water’s surface, and
keeps on moving by wind and waves.
The Poiju application, as used in this
article, models radio network and com-
putational models in order to mimic
network behavior. The application has
been developed partially for actual use,
and partially for fun and experiments.

The domain logic consisting of spa-
tially relevant elements and related al-
gorithms as deployed into a runtime
environment (RTE). The algorithms are
enumerated as:

- propagation model
- combined coverage
- dominance
- service area
- interference
- parallelization

The informal architecture of the Poi-
ju application is shown in Figure 2. The

In many applications, it is valuable to
visualize the objects of interest using
graphics; for instance, a floor layout,

a drive route on a map, a design sche-
ma of a board layout, or a tool path of
a numerical control program. For such
purposes, primitives such as lines, rect-
angles, ellipsoids, or free form paths are
used. Another means to create graphics
are raster images, where each pixel con-
tains an RGB color and sometimes also
an alpha transparency value.

We created a sample applica-
tion called Poiju, which runs on an
ODROID-XU3, to help us visualize
graphical representations of our experi-
ments. In this article, we demonstrate
the graphics capabilities of the applica-
tion, present an overview of its drawing
and imaging functions, and show how
parallelisation with the octa-core proces-
sor of the ODROID improves compu-
tation performance using domain algo-
rithms.

Overview

development environment is used local-
ly for verifying the domain logic as well
as various other experiments.

Swing and AWT

Visualization can be used to enable
an application user or tester to verify
the correctness of computations and in-
termediate results. Java offers its own
methods to perform visualization. Java’s
Swing and AWT packages are capable of
converting line drawings into graphics
content as a Graphics class, and painting
of Image instances into a graphical con-
text. Painting in the UI is done using a
view coordinate system whose origin is
top left cornered, with the y-axis direct-
ed downwards and the x-axis directed to
the right.

The AffineTransform class of Java is
used to translate, rotate and scale view
objects into their correct locations.
Meanwhile, domain objects are mapped
using another coordinate system. For
instance, the location of geographical
objects may be given as longitude and
latitude or as northing and easting at a
relevant UTM zone. The spatial cells
of Poiju are first created as implementa-
tions of Shape objects and are painted
only after that. Therefore, all shape
functionality is available. For instance,
it is easy to ask determine whether a
mouse click hits an item on a map. Let’s

FANCY GRAPHICS WITH
JAVA: POIJU
by Jussi Opas

JAVA GRAPHICS

A desktop with the Poiju application
and Conky monitor on an ODROID-XU3

Figure 2 - Poiju architecture

ODROID MAGAZINE 34

draw 305000 interference lines. The re-
sults are shown in the table below:

As seen in the table, in one second,
30800 aliased or 15700 anti-aliased lines
can be drawn. Keep in mind that the
Swing component is not thread safe.
Therefore, only one thread can draw

lines at a time ,and multiple cores can-
not be used to accelerate painting.

As shown in Figure 4, all interference
lines have been painted into a single im-
age. Interference is represented as prob-
ability (CIP) and its magnitude is shifted
on the interval [0, 100] %. The stronger
the interference, the darker the red color.
Respectively, a light color means that the
interference is low between two cells.
Painting of all interference lines at a time
does not have a practical use case, but we
show it here to demonstrate the graphi-
cal capability of the Poiju application.

All interference lines are computed

have a look on how Java does drawing
on an ODROID-XU3 while modeling
multi-node networks.

Drawing

The figure below illustrates paint-
ing of cells with four different methods:
border as aliased or with anti-aliasing on,
and the content of the sectors with or
without a fill. Visually, one would select

the last method, where anti-aliasing is on
and the content is filled.

Intuitively, one would assume that
aliased borders without filling is the
fastest. One could also assume that fill-
ing takes more time. Then, it would be
logical to determine that anti-aliasing is
more time consuming, and that filling
with anti-aliasing would be the slowest
method. To decide which of the meth-
ods to use one can, of course, test it with
a real-world application by collecting
actual painting times in order to get ac-

curate information. Painting times of
10000 cells are shown in the table below:

The surprise is that painting with
aliased lines with content fill is essential-
ly slower than any other method, since it
takes 5.7 seconds to paint. If the rule for
using a progress meter is 2 seconds, then
the application should use it while paint-
ing is performed. Performance-wise, it is
feasible to use painting with anti-aliasing
and fill, but an attractive outlook can be
reached also with anti-aliasing without
filling. We also recorded the time to

JAVA GRAPHICS

with another interference method in Fig-
ure 5. The lines are lighter here, because
the used mathematical method (FEP) is
different from the previous image.

Interference lines in Figure 6 are
shown as average received power (ARP),
whose value interval is [0, 63] and the
unit is RXLEV. A white to green color
gradient has been used.

Images

With Java the other means to pro-
duce graphics is to create images. Once
an image has been rendered, its painting
is very fast. We cannot measure it with
the System.currentTimeMillis method,
because painting takes less than a mil-
lisecond. Therefore, time is used signifi-
cantly only when the domain algorithms

compute the content of a raster. Figure
6 shows what kind of graphics we can
produce with image functionality.

Combined coverage looks as if light-
houses were located around the reserved
space. Each pixel has the field strength

Figure 5 - FEP lines

Figure 4 - Interference lines

Figure 6 - ARP lines

Figure 7 - Combined coverage

Figure 3 - 4 methods of cell painting

ODROID MAGAZINE 35

System.currentTimeMillis

shows a situation where two cells have
been selected.

In the background, the number of
servers’ raster handover margin is 0 deci-
bels. Hence, there are only a few pixels
with several serving signals. Mutual in-
terference between cells is unbalanced,
since interference in one direction is
bigger than the other direction (33%
vs 58%). The interference line color
changes accordingly.

Many dimensions

In an early phase of development, the
application supported only line drawing
capabilities and tables showing interfer-
ence values. However, by using only
tables, it is not possible to say whether
the computed values are correct. Con-
versely, by line drawing on a map, it’s
immediately apparent that the values
are sometimes biased or wrong. Not all
interference relations were counted, but
the specification function insisted that
it had been given correct formulas, so it
follows that the implementation func-
tion had made mistakes.

A software solution to this kind of
problem is to develop graphics that
show correctness or incorrectness of the
applied mathematics and its implemen-
tations. The graphics must be created
within the system and using the same
language that is used in the implemen-
tation. Also, the graphical verification
must be built into the environment that
implements the formula. This is because
Matlab has some functions that do not
exist in the production language. A
methodological question was whether
it is possible to reasonably compute in-
terference relation without making pixel
traversals. The specification function
wanted to avoid a pixel-based imple-
mentation, because previous implemen-
tations had been too slow, and develop-
ment times had been too long.

At that time of development, test
engineers were inspecting interference
lines in a static network layout. It was

drawn on top of it.
With the available graphics, a net-

work can be inspected more closely. In

Figure 10, the dominance area of se-
lected cell is shown with blue color. The
black border line shows that the service
area is larger than the dominance area.

In Figure 11, interference lines of the
selected cell have been painted with in-
terference probability values. Also, the
color of the painted values is changing
in accordance with interference values.
It is also possible to inspect interference
values between selected cells. Figure 12

value of the strongest cell. Alternatively,
coloring could be made using a different
color gradient.

Dominance raster contains the long

identifier of the strongest cell at each
pixel. Coloring is made so that a ran-
dom color is given to each identifier.

Figure 9 shows how many cells are
serving at each pixel. A handover mar-
gin of 2 dB has been used for the image.
Blue pixels are served by one cell, light
blue are served by two cells, red pixels
by three cells, and so on. In a stream-
ing technology network, multiple servers
would mean a soft handover area, where
data is transferred to a mobile by several
cells at a time.

Layers

It is useful to use both images and
drawing in the same image. It can be
made by painting several layers of data
into the same graphics context. For in-
stance, there may be a image in the back-
ground, and then one or more layers are

Figure 8 - Dominance

Figure 9 - Servers

Figure 10 - Dominance and service area

Figure 11 - Interference with values

Figure 12 - Interference between two cells

JAVA GRAPHICS

ODROID MAGAZINE 36

graphics can be produced. Graphical
visualization serves a solid purpose in
showing what an application does. In
domain logic, visualization is used to
validate the functionality of the appli-
cation during development. The cur-
rent trend in software development is
that testing is based on unit tests and on
test automation. It does not justify the
kind of work that has been shown here,
which is considered as something that
should be avoided. In spite of that, we
have written a separate application with
a diversity of purposes in mind: to verify
model and algorithms, to learn, and just
for fun. Meanwhile, we can also ensure
that the domain models and algorithms
work flawlessly using graphics. We have
found that the octa-core ODROID-
XU3 is an excellent platform for imple-
menting and exercising parallelization
experiments.

between two cells is continuous, and a
back-shooting and side-shooting inter-
fering cell causes interference to the car-
rier cell. We propose that other projects,
old or new, could also use this triple
axis method, <carrier bearing, interferer
bearing, interference value>, to verify
their definition and implementation.

Parallelization

Interference computation can be par-
allelized. ODROID-XU3 has 4 big and
4 little cores, which allows a Java pro-
gram to run 8 threads simultaneously.
Dominance and combined coverage
for 10000 cells is computed in 0.4 sec-
onds by XU3. A profile of parallel in-
terference computation test with varying

thread amount configurations is shown
Figure 15. Interference for 10000 cells
can be computed in less than 7 seconds.
Meanwhile, drawing of those lines takes
more time - 10 or 19 seconds depending
on the aliasing style.

We can also compare heterogeneous
multiprocessing capability of XU3 to
the cluster switching used by the XU.
The XU3 can run 8 threads at same time
while XU runs 4 threads. Since the XU3
runs at 2 GHZ, it is faster already with
one thread because the XU uses A15
cores which run at 1.6 GHz. With these
figures, we say that there is no reason to
avoid pixel-based implementations be-
cause of performance reasons.

Conclusions
We have shown that with Java, fancy

not possible to move cells or rotate their
antennas. However, in a full black box
test, one should go through all possible
configurations. To implement that, we
did the following experiment: two cells
are located close to each others and the
bearing of main antenna is changed in-

crementally with one degree. While do-
ing so we got 360 lines, with each having
360 values. The resulting cell layout and
resulting values are illustrated in Figure
13.

The black circle in the top left cor-
ner illustrates that an interfering cell has
been drawn 360 times, once per each
sample degree configuration. On the
basis of the figure in the right side, two
cells seem to interfere each other only
when they are directed towards each oth-

ers. This is erroneous, because interfer-
ence is caused by the carrier cell when an
interfering cell is shooting from behind.
Based on this, the computation should
be redone and corrected.

After correction, the mutual interfer-
ence relation between two cells is shown
in Figure 12. The interference relation

Figure 15 - XU and XU3 parallel
interference computation

Figure 13 - An early interference graph

Figure 14 - Circle opposite 1-point stroke

JAVA GRAPHICS

ODROID MAGAZINE 37

Setup the image
I used SD formatter to format the

cards and the Win32 disk imager from
Hardkernel to write an Ubuntu image to
the boot media. I do not want to go into
too much detail as there are already lots
of tutorials on how to do this.

First boot
Although the ODROID can be

started as a headless node, and is ready
for SSH on first boot, I like to have the
desktop up for making early changes.
Plug in the eMMC or SD card, moni-
tor, usb dongle for keyboard and mouse,
ethernet cable and apply power. If you
have to enter a password and username
they are as follows:

User = ODROID
Password = ODROID

The ODROID boots fast and the
desktop appears immediately upon log-
in. The first thing that I do is run the
ODROID utility which is Hardkernel’s
version of the raspi-config command. I
usually choose to change the hostname
first, then expand the root partition and
install the updated xorg files. If we were
primarily using the desktop, we would
also update the window manager and
video drivers, but since we are not, we
can skip that part. When you are fin-
ished with this step, you can reboot so
that changes will take effect. Upon re-

Seafile is a cloud service that allows
you to create and share a private
cloud library of files with friends

or colleagues. Files get synced for all us-
ers, so that if one person edits a docu-
ment or makes any changes to it, Seafile
automatically updates the changes for
everyone in the group. It’s safe, because
you use your own servers, and reliable
because Seafile saves everything, and you
can even restore items that have been
accidentally deleted. It’s also secure be-
cause the files can be encrypted with a
password.

This tutorial is an overview of the
initial installation and setup of a Seafile
server on an ODROID-U3. Seafile is a
great platform for hosting a blog, small
business server or family media server
when coupled with an external 250GB
USB hard drive.

Required
components

The item list for this project is fairly
short. I will explain what it is that I am
using and what parts are interchange-
able or optional. This can be set up as
headless server, or with a monitor if you
would like. I prefer to look at the first
boot on the monitor.

- ODROID-U3 with power supply
and HDMI cable

- Ethernet cable or Wifi adapter
- 16GB (or larger) eMMC or SD

card as the boot media
- 250GB Linux-compatible hard

drive
- Monitor, keyboard and mouse,

which can be removed after the initial
installation

SEAFILE
PERSONAL CLOUD
SOFTWARE
by @tlankford

SEAFILE

booting, launch a Terminal window so
that so we can make a few changes. First,
run the following command to check for
an ethernet connection:

$ sudo ifconfig

We are mainly looking for eth0 and
its IP address. Make a note of the IP ad-
dress, then enter this command to cus-
tomize the keyboard configuration:

$ sudo dpkg-reconfigure keyboard-

configuration

Choose the UTF-8 configuration ap-
propriate for your location by using the
spacebar to deselect the default and se-
lect the preferred one. Next, enter the
command:

$ sudo dpkg-reconfigure tzdata

This command allows you to choose
the appropriate time zone, which is fairly
self explanatory. Next, enter the com-
mand:

$ sudo nano /etc/ssh/sshd.conf

This will launch the nano editor so
you can make changes to the script. In
the default Hardkernel images, I have
found that nano is not installed by de-
fault, so you can substitute vi for the
nano command if you are more com-

ODROID MAGAZINE 38

sshd.conf

external drive plugged in before running
this command. Next, we want to see if
the drive is usable as is, or if we are going
to have to rewrite the drive. To test its
usability, type the following command,
using the drive path given by the file
manager in the above step:

$ sudo nano mkdir /media/ODROID/

OneTouch 4\Mini/test

If you get a read-only error, then you
will have to reformat, which requires a
few simple steps. There are several ways
to go about this, but we are going to use
a program called parted in this tuto-
rial. Be very careful and pay attention
to what you are doing, since the parted
application can overwrite the boot drive
and corrupt the operating system, so be
very careful when working with the drive
scripts. First, type the following com-
mand, using the partition name found
using the preceding “cat” command:

$ umount /dev/sda1

Finally, type the following to apply
the changes:

$ sudo reboot

This will unmount the partition so
that we do not get a “drive in use” error.
Next, start the parted application and se-

lect the appropriate partition:

$ parted

$ select /dev/sda

The “select” command is very impor-
tant to make sure we are using the right
drive. We do not want to mess with the
boot drive at all. Next, type the com-
mand, which will prompt to give a name
to the drive. For this example, the drive
will be named “labserv”:

$ mklabel msdos

labserv

Next, type:

$ mkpart

When prompted, respond with the
following answers:

primary

ext4

0%

100%

Finally, type the following to apply
the changes:

$ sudo reboot

This specifies the partition layout,
and you can change these values if you

SEAFILE

fortable with the vi editor. If your prefer
the nano editor, then run the command:

$ sudo apt-get install nano

After starting the editor, scroll down
until you see the following lines and
change them to match the following ex-
ample:

Port 22

Protocol 2

PermitRootLogin yes

For security, you will want to change
the PermitRootLogin option to “no” af-
ter the initial configuration. Save the
file, then bind the configuration using
the following commands, making note
of the IP address:

$ ifdown eth0

$ ifup eth0

Finally, type the following to apply
the changes:

$ sudo reboot

Create a test sample
When you plug in the USB drive, the

Ubuntu desktop should have a prompt
to open the drive in the file manager.
We want to save the drive path for lat-
er. For this example, the directory was
/media/ODROID/OneTouch 4 Mini.
You can change the location where the
drive is mounted, but the default is fine
for our purposes. Next, open a Terminal
window and type the command, which
gives a list of the available drives:

$ cat /proc/mounts

Ignore the drives listed containing
with the letters “mmc”, and look for the
drive that is named /dev/sda*. The * is
probably going to be a partition num-
ber 1. If there are multiple partitions
mounted, then we will see them listed
in order. Make sure to only have one

ODROID MAGAZINE 39

ics. I used PuTTY to establish the con-
nection by installing it from http://bit.
ly/1jsQjnt. After PuTTY launches, you
will be asked for the IP address of the
ODROID from the earlier step. Make
sure that the port is set to 22. Press en-
ter and wait for the Terminal window to
appear, then login as ODROID with the
password ODROID. You should see the
same Terminal prompt that you would
see if using the native Terminal applica-
tion on the desktop, which looks like
this:

ODROID@ODROID~$

If you see this prompt, it means that
you are in your home directory. We have
made a few changes, so we want to run
the following commands, answering “y”
when prompted:

sudo apt-get update

sudo apt-get upgrade

Next, initiate the installation of
MySQL by running the command:

$ sudo apt-get install mysql-

server mysql-client php5-mysql

You will be prompted to set a pass-
word for the user “root”. After typing
your chosen password, run two more
commands, typing “y” for each of the
answers, except in response to chang-
ing the root password. Make sure to re-
member the root password, since it will
be used during the setup of the Seafile
server.

$ sudo mysql_installation_db

$ sudo mysql_server_installation

Installing Seafile
There are two dependencies that the

software will for during installation so
we are going to preempt this error by
pre-installing them, answering “y” when
prompted:

wish to make multiple partitions, but for
simplicity, we will only be writing a sin-
gle partition in this example. Next, type
the following to check that the partition
has been written properly, then exit the
partition editor:

print

quit

Finally, designate a file system for the
partition by typing:

$ mke2fs -v -L labserv -t ext4 /

dev/sda1

$ umount /dev/sda

Once the drive has been unmount-
ed, unplug it from the ODROID, wait
a moment, then plug the drive back in.
Check the file manager to see if the drive
path for the hard drive is mounted prop-
erly. Since my example uses the label
“labserv”, the file manager shows that
it is mounted in the directory /media/
ODROID/labserv. In a Terminal win-
dow, type the following command, sub-
stituting the name that you chose for
your drive for “labserv”:

$ mkdir /media/ODROID/labserv/

test

If there are no errors, then remove
the test folder by typing:

rm -rf /media/ODROID/labserv/test

If the test is successful, that means
that the drive is formatted properly and
ready for use with the server. Shutdown
the ODROID so that you can unplug
the monitor and keyboard by typing:

$ sudo shutdown -h now

Installing MySQL
For the rest of the steps, it’s necessary

to login using SSH. I am not going into
much detail regarding SSH, since there
are many available tutorials on the specif-

$ sudo apt-get install python-

setuptools python-simplejson

Next, install the Seafile server appli-
cation, which offers a nice interface to
the Seafile server using a standard brows-
er. Create a temporary directory called
seafile to store the files:

$ mkdir seafile

$ cd seafile

Next, download and unpack the
package into the newly created directory:

$ wget https://bitbucket.org/hai-

wen/seafile/downloads/\

seafile-server_3.0.4_pi.tar.gz

$ tar xzvf seafile_server*

$ cd seafile_server*

$./setup-seafile-mysql.sh

Follow the prompts and just choose
defaults, except for two items: when
asked for server name, enter your IP ad-
dress, choosing the default ports. Also,
choose to set up new MySQL databases.
After all the questions are answered, you
should see a list that looks like this:

Server Name: Your Server Name

IPAddress: <ODROID IP address>

ccnet server port: 10001

seafile data: /media/ODROID/lab-

serv/seafile-data

seafile server: 12001

HTTP server: 8082

MySQL server: 3306

ccnet database: ccnet-db

seafile database: ccnet-db

seahub database: seahub-db

During the setup, you may be asked
to enter to the MySQL root password
that was chosen earlier. Next, start the
Seafile server and seahub application by
typing the following commands into a
Terminal window:

$./seafile.sh

$./seahub.sh

SEAFILE

ODROID MAGAZINE 40

http://bit.ly/1jsQjnt
http://bit.ly/1jsQjnt
https://bitbucket.org/haiwen/seafile/downloads
https://bitbucket.org/haiwen/seafile/downloads
seafile-server_3.0.4_pi.tar.gz
setup-seafile-mysql.sh
seafile.sh
seahub.sh

When asked to enter the administra-
tive email, type in your preferred email
address, then set a password for the
browser login, which should be written
down for future use. Once the Seahub
application is setup, you can check it
using a local browser by navigating to
http://<IP address>:8000, where <IP ad-
dress> matches the one from the earlier
“ifconfig” command. Finally, login and
check out your new cloud server!

For further information about set-
ting up Seafile on the ODROID, please
refer to the original article at http://bit.
ly/1rIb9Te, or the Seafile home page at
http://seafile.com.

SEAFILE HISTORY OF ODROIDS

HISTORY OF ODROIDS
by Rob Roy

Wikipedia maintains a history of Hardkernel’s products, which includes a
chart of the specifications for every ODROID device since 2009. Check
it out at http://en.wikipedia.org/wiki/Odroid:

The man in the cloud wanted us to tell
you that he enjoys passing the time by
browsing through your collection of
funny cat memes and gym selfies

ODROID MAGAZINE 41

http://bit.ly/1rIb9Te
http://bit.ly/1rIb9Te
http://seafile.com
http://en.wikipedia.org/wiki/Odroid
http://en.wikipedia.org/wiki/Odroid

Please tell us a little about yourself.
I live in Sydney, Australia, and am mar-

ried to my best friend with our 2 beautiful
and playful boys who are 5 and 10 years
old. On a day to day basis, I work as an
Android Platform Engineer building a cus-
tom Android platform called ScreenerOS
(http://bit.ly/1wjixnr) that is compat-
ible with both x86 and ARM platforms.

How did you get started with computers?
I started working with computers

when I was 9 years old. My first com-
puter was an Apple computer (can’t
remember the model) and my first ex-
posure to programming was with the
BASIC language. I started taking a deep
interest in computers when, at 11 years
old, I got infected by a boot sector virus
called Denzuko, and that’s the time that
I started learning everything I needed to
know in order to clean the virus. Since
then, I realised that I have a passion in
learning how things work inside com-
puters. I wrote my first computer book
when I was 17 years old, which was a
C++ programming book.

What drew you to the ODROID platform?
I came across ODROIDs when I

was doing research on embedded open
source hardware systems, and found out
that it can run Android, and the price
was reasonable. It was at the same time
that I came across a posting in the forum
that they were looking for an Android
columnist, so I jumped at the chance, as

MEET AN
ODROIDIAN
NANIK TOLARAM: JAVA JEDI
edited by Rob Roy

a lot about Java and J2EE by reading
the implementation source code of the
various Java Specification Request (JSR)
documents. I’ve been working with Java
ever since, as both a hobby and profes-
sionally.

What hobbies and interests do you have
apart from computers?

Since I was young, I have always had
a keen interest in tropical fish and breed-
ing them, especially goldfish and discus.
A new hobby that I’ve picked up lately
is making electronic projects with my
boys, as well as woodworking, since I
love to design things from scratch.

MEET AN ODROIDIAN

Nanik surrounded by his family. Kudos for happiness above all else!

I was also looking for an avenue to share
my Android knowledge with the com-
munity. I guess it’s my own way to give
back to the community since I’ve learned
a lot from the open source community.

Which ODROID is your favorite?
The ODROID-U3 is my all time fa-

vourite, because it’s small and powerful!

How did you become so proficient in Java?
I started learning Java back in 2004.

I found out about Java by coincidence
when I was doing research about the in-
ternals of virtual machines and the po-
tential that they can bring. I discovered

ODROID MAGAZINE 42

http://bit.ly/1wjixnr

MEET AN ODROIDIAN

Are you involved with any other comput-
er projects unrelated to the ODROID?

I’m actively involved in doing pre-
sentations for the Sydney Android
community (http://bit.ly/1EbknRo),
and also getting myself involved with
the MinnowBoard Max communities.

What type of hardware innovations
would you like to see for future Hardker-
nel boards?

One thing that I find currently
lacking is the availability of sensor ac-
cessories for boards specifically for An-
droid. We know that most Android
devices such as phones and tablets have
varieties of sensors which do not exist
for many development boards.

What advice do you have for someone
want to learn more about programming?

Learning programming has never
been easier nowadays, as there are so
many good websites and communi-
ties that can help out with any kind of
problems. Open source has changed
the way in which people are learning,
and it’s a good opportunity for some-
one to learn what interests them.

I always tell people that the worst
enemy that you need to overcome is
yourself, because learning something
is a process. Learning is easy, but the
process behind how to push oneself
to excel is the difficult part. Build the

ADVERTISEMENT

ODROIDS ARE
NOW AVAILABLE
IN THE UNITED

STATES
WWW.AMERIDROID.COM

AFFORDABLE SHIPPING

Alongside having a happy family, Nanik
is also an accomplished writer

Just in case you are in doubt that Nanik is a Jedi, just read his quote

motivation and desire to learn program-
ming since programming is a combina-
tion of science and art. Read lots and
lots of source code because the best doc-
umentation is inside the source. Making
mistakes is the best way to learn - if you
don’t make mistakes, that means you
haven’t succeeded. Understanding how
certain things work is more important
than knowing a certain programming
language. Think of programming as the
tool that you use to drive, because with-
out knowing how to drive you won’t be
able to arrive at your goal.

“The worst enemy that
you need to overcome is
yourself, because learn-
ing something is a process.
Learning is easy, but the
process behind how to
push oneself to excel is the
difficult part.”

ODROID MAGAZINE 43

http://bit.ly/1EbknRo
http://www.ameridroid.com
http://www.ameridroid.com
www.ameridroid.com

