
A practical approach
to running

Year Two
Issue #24
Dec 2015ODROID

Magazine

Striping LVs • Solarus • Linux Gaming • Android Development • Gradle

Easily
Multiboot your
ODROID-XU4

Robot
The future of sports is coming
and will be powered by an ODROID

Goalkeeper

Linux Containers

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://www.hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://bit.ly/1tXPXwe

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

The day has finally come when robots are completely replac-
ing humans, at least on the soccer field! Meet Faro, the
robotic ODROID-powered goalkeeper, part of a team of ad-

vanced humanoid robots that belong to the Robocup Foundation,
whose goal is to eventually defeat a World Cup level human soc-

cer team. Using an ODROID-C1, the
Gadjah Mada Robotic Team has de-
veloped algorithms that work with
a camera, compass, and gyroscopic

sensors to predict where the ball will be
traveling in real-time and prevent a goal

from being scored.
We also celebrate the release of Fallout 4 with

a review by Tobias of the original Fallout game.
Zelda fans can enjoy some fan-made games using Solarus, and

emerging rock stars can practice their riffs using Frets on Fire, an
open-source Guitar Hero clone. Jon presents a tutorial on using the GPIO ports to read
from an external sensor, David continues his series on Logical Volume Management,
Andrew presents a guide to Gradle and the Android NDK, Adrian gives an overview of
Linux Containers, and Hardkernel gives us a peek inside their new offices.

http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com
http://www.ameridroid.com/

STAFF

ODROID
Magazine

Manuel
Adamuz,
Spanish
Editor

I am 31 years old and
live in Seville, Spain, and

was born in Granada. I am married to
a wonderful woman and have a child.
A few years ago I worked as a com-
puter technician and programmer, but
my current job is related to quality
management and information tech-
nology: ISO 9001, ISO 27001, and
ISO 20000. I am passionate about
computer science, especially micro-
computers such as the ODROID
and Raspberry Pi. I love experiment-
ing with these computers. My wife
says I’m crazy because I just think of
ODROIDs! My other great hobby is
mountain biking, and I occasionally
participate in semi-professional com-
petitions.

Nicole Scott,
Art Editor

I’m a Digital Strate-
gist and Transmedia

Producer specializing
in online optimization and inbound
marketing strategies, social media
directing, and media production for
print, web, video, and film. Manag-
ing multiple accounts with agencies
and filmmakers, from Analytics and
Adwords to video editing and DVD
authoring. I own an ODROID-U3
which I use to run a sandbox web
server, live in the California Bay
Area, and enjoy hiking, camping and
playing music. Visit my web page at
http://www.nicolecscott.com.

James
LeFevour,
Art Editor

I am a Digital Media
Specialist who is also en-

joying freelance work in social network
marketing and website administration.
The more I learn about ODROID ca-
pabilities, the more excited I am to try
new things I’m learning about. Being a
transplant to San Diego from the Mid-
west, I am still quite enamored with
many aspects that I think most West
Coast people take for granted. I live
with my lovely wife and our adorable
pet rabbit; the latter keeps my books
and computer equipment in constant
peril, the former consoles me when said
peril manifests.

Bruno Doiche,
Senior
Art Editor

What to do when
you have to move to

your new house while still having
this magazine deadline to work on?
You do whatever you can on your
laptop in the best hobo style, sitting
on the floor at the old house that still
has Internet access. After all is done,
this loony art editor is very pleased
with his new humble abode.

Rob Roy,
Chief Editor

I’m a computer
programmer in San

Francisco, CA, design-
ing and building web applications
for local clients on my network
cluster of ODROIDs. My primary
languages are jQuery, Angular JS
and HTML5/CSS3. I also develop
pre-built operating systems, custom
kernels and optimized applications
for the ODROID platform based
on Hardkernel’s official releases, for
which I have won several Monthly
Forum Awards. I use my ODROIDs
for a variety of purposes, including
media center, web server, applica-
tion development, workstation, and
gaming console. You can check out
my 100GB collection of ODROID
software, prebuilt kernels and OS
images at http://bit.ly/1fsaXQs.

http://www.nicolecscott.com
http://bit.ly/1fsaXQs

INDEX

LINUX CONTAINERS - 10

LINUX GAMING: FALLOUT - 26

FRETS ON FIRE - 23

FARO - 18

 SOLARIS - 34

MEET AN ODROIDIAN - 40

MULTIBOOT - 24

ANDROID GAMING: FIVE NIGHTS AT FREDDY’S - 33

SHT15 SENSOR - 30

LOGICAL VOLUME MANAGEMENT - 6

HARDKERNEL OFFICES - 8

COMMUNITY wIKI -41

GRADLE - 20

C1+ OTG JUMPER - 37

ANDROID DEVELOPMENT - 38

http://www.hardkernel.com

When you start using Logical Volume Management
(LVM) for more than personal and home systems,
and implement it in a business environment, a few

key features of it can be very useful. In this article, I will pres-
ent some of this wonderful facilities provided by LVM.

There is one great option that you can use to help improve
your LVM I/O performace: Stripes! No, not the parallel lines
on your shirt, but stripes of data.

To create a striped logical volume (LV), you will need at
least two physical volumes. When you do, the set chunk of
data called extents will be written across all the physical vol-
umes, with every piece on a single volume until to the last, and
then back to the first over and over. In other words, your file
will be split into small parts, and each part will be on a differ-
ent physical volume instead of having it saved on a single one,
which is the default linear volume. This can provide a consid-
erable speed improvement when reading the file, since it will
come from different physical “spaces” in parallel.

The following command creates a 10GB logical volume
striped across two physical volumes, with a stripe size of 32 kB.

LOGICAL VOLuME
MAnAGEMEnT
BEYOnD BARRIERS wITH LVM
by David Gabriel

LVM

$ lvcreate -L 10G -i 2 -I 32 -n applv rootvg

My advice is that you do a few tests with saving random
files on a striped LV to see if this is the right approach for you.
Keep in mind that this kind on configuration is sensitive to
device failures. If you lose a drive that has one part of your file,
you lose it all.

Another option of logical volumes is the mirrored one. In
contrast to striping, this is very useful when you have device
failures, since the volume will be kept running even if one of
the mirrors fails. When you save data to the volume, it creates
two copies of it on two different devices. When one of them
fails, the volume will be converted to linear, which is the de-
fault option when creating new volumes.

The following command creates a new mirrored LV:

$ lvcreate -L 5G -m 1 -n applv rootvg

This will create two copies of the volume on two different
physical devices. You can also specify where you want the cop-
ies to be created by adding the devices to the command.

$ lvcreate -L 5G -m 1 -n applv rootvg /dev/sda1 \

/dev/sdb1 /dev/sdc1

The original data will go to /dev/sda1, a mirrored copy will
go to /dev/sdb1, and the mirror logs go to /dev/sdc1. If you
do not specify the log device, it will go to the system memory.

In case one of the devices fails, you should be able to con-
tinue to use the logical volume. After replacing or fixing the
physical device, you should recreate the mirror so you have
your redundancy back. To do so, you need to recreate the
physical volume, add it to the volume group, then convert the
now linear volume back to mirrored state.

ODROID MAGAZINE 6

LVM

$ pvcreate /dev/sda1

$ vgextend rootvg /dev/sda1

$ lvconvert -m 1 \

/dev/rootvg/applv /dev/sda1 \

/dev/sdb1 /dev/sdc1

Use the lvs command to verify that
the mirror has been restored.

Now, let’s say you’ve already have your
LVM running for some time. Every-
thing is configured and going smoothly
when suddenly it stops working, giving
you error messages or presenting behav-
iors that you haven’t seen before. Let
me give you a few tips on how to handle
these kind of situations and troubleshoot
your system.

Check your running LVM configu-
ration. If any new configuration was
made, this could be a good place to start.

$ lvm dumpconfig

The lvm command’s output has dif-
ferent levels of feedback. Use -v, -vv,
-vvv or -vvvv to increase the verbosity
levels and get more information.

Having a look at the LVM dump in-
formation is also a good idea.

$ lvmdump

This command will create a dump for
diagnostic purposes. Take a look at the
lvmdump man page for a complete list
of the file contents.

You can also check the information
provided by the following commands.

$ pvs -a

$ lvs -v

$ dmsetup info

These commands can provide you
additional system information to help in
the troubleshooting.

The LVM service performs regular
backups of its configuration and meta-
data. It contains information about the
physical and logical volumes, the extent
sizes, and which physical volume are
used by the logical volumes. By default,
this file is stored under /etc/lvm/backup,
and a few older versions are saved in /
etc/lvm/archive. It is a good idea to keep
a copy of this file outside of the system.
If anything bad happens to it, you won’t
be able to access it in order to recover the
LVM metadata. You can also perform
manual backups of the metadata content
with the following command.

$ vgcfgbackup

This command is straightforward.
You can specify where you want to save
the file using the -f argument. Remem-
ber that this will backup only metadata,
and not the actual files and directories
inside the volumes.

Examples of messages you may re-
ceive when you have corrupted or miss-
ing metadata are: “Couldn’t find device
with uuid” or “Couldn’t find all physi-
cal volumes for volume group”. In these
cases, a restore on the configuration
might help.

$ vgcfgrestore rootvg

You may also need to activate the
logical volumes after the restore.

$ lvchange -ay /dev/rootvg/applv

After this command completes, you
should be able to see your logical vol-
umes restored by checking them with
the lvs command.

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine is

now on
Reddit!

ODROID MAGAZINE 7

http://www.reddit.com/r/odroid

HARDKERNEL

nEw HARDKERnEL
OFFICES
A TOuR OF THE MAIn HEADquARTERS
edited by Rob Roy

Hardkernel, based in South Ko-
rea, has announced that they
moved into a new office recent-

ly. Some of their team members work in
other countries, but most of the staff is
based in the city of Anyang. Although
the ODROIDs themselves are produced
in a nearby factory, the hardware design,
code development, testing, shipping and
administration is done in the main head-
quarters at 475-1 Mananro, Manangu,
Anyang, Gyeonggi, South Korea 430-
852. @pinkodroid shared some pictures
of the modern offices via the Hardkernel
blog at http://bit.ly/1ONVPmw.

The exterior of the Hardkernel offices looks very modern

The first floor of
the new office
is a duplex-style
warehouse

ODROID MAGAZINE 8

http://bit.ly/1ONVPmw

HARDKERNEL

A garden on the rooftop, great for lunch when the weather is good The second floor is the main office, where the developers work

On the first day,
the team gathered
on the rooftop for
a celebration

Prayers are offered
for Hardkernel’s

continued success

Shamanism is an
important part of

Korean culture

Following the
Korean tradition,
lots of food was
prepared

Hardkernel
employees enjoy
eating together
after a long day

ODROID MAGAZINE 9

You’ve gone ahead and bought an ODROID and you
like it. Wouldn’t you want more? Maybe you need
an isolated system for testing, or want to run multiple

instances of some software. Maybe you want to run various
network tests and need to simulate multiple independent cli-
ents. If processing power is not an issue for you, then Linux
Containers, inspired from Solaris, can do the job well on your
ODROID.

How it works
LXC is a lightweight virtualization method to run simulta-

neous multiple virtual units called containers, which are similar
to chroot, on a single control host. Containers are isolated with
Kernel Control Groups, called cgroups, and Kernel Namespac-
es. It provides an operating system-level virtualization where
the Kernel controls the isolated containers. With other full
virtualization solutions like Xen, KVM, and libvirt, the proces-
sor simulates a complete hardware environment and controls
its virtual machines.

Conceptually, LXC can be seen as an improved chroot tech-
nique. The difference is that a chroot environment separates
only the file system, whereas LXC goes further and provides
resource management and control via cgroups.

Benefits of using Linux
Containers
Isolating applications and operating systems through containers.
Providing nearly native performance as LXC manages allocation
of resources in real-time.
Controlling network interfaces and applying resources inside
containers through cgroups.

Limitations of using Linux
Containers
All LXC containers are running inside the host system’s Kernel
and not with a different Kernel.
Only allows Linux “guest” operating systems.
LXC is not a full virtualization stack like Xen, KVM, and libvirt.
Security depends on the host system, and LXC is not secure. If
you need a secure system, use KVM.

LInuX COnTAInERS
quICKLY pREpARE A FuLLY COnFIGuRED
ISOLATED SYSTEM FOR TESTInG
By Adrian Popa

LINUX CONTAINERS

Containers vs Virtual Machines

ODROID MAGAZINE 10

LINUX CONTAINERS

To install and use LXC, simply use apt-get to install the
LXC package:

$ sudo apt-get install lxc

Initialization
In order to create or operate Linux containers, you’ll need

to have root privileges. Private containers can also be created
by non-privileged users, but for this to work well, you need at
least kernel version 3.13. However, the Ubuntu 15.04 image
from HardKernel comes with kernel version 3.10. In addition
to root, you’ll also need to have some specific kernel configura-
tions active if you’ve built your own kernel. The default kernel
from HardKernel contains all the necessary configuration to
run LXC out of the box. To check that your system is ready for
LXC, run the lxc-checkconfig command. If your kernel does
not support lxc, refer to the Docker article in the January 2015
issue of ODROID Magazine at http://bit.ly/1OfT2zo in order
to find out what you need to enable in the kernel’s configura-
tion.

To create a new container, you first need to setup an initial
configuration file and select a suitable template. The templates
instruct LXC how to download the necessary packages for the
distribution of your choice. In Ubuntu 15.04 you get these
templates by default:

ls /usr/share/lxc/templates/

lxc-alpine lxc-centos lxc-fedora lxc-

oracle lxc-ubuntu-cloud

lxc-altlinux lxc-cirros lxc-gentoo lxc-

plamo

lxc-archlinux lxc-debian lxc-openmandriva lxc-

sshd

lxc-busybox lxc-download lxc-opensuse lxc-

ubuntu

Unfortunately, since you’re not running an Intel platform,
not all of them will work on our ODROIDs. To find out if
your favorite distribution will run as a container, you need to
investigate if they also provide an ARM build. We will first
create a new container for Fedora Linux. We want the network
configuration to go through lxcbr0 which does NAT, so we will
setup the configuration like this:

cat fedora.conf

lxc.utsname = fedoracontainer

lxc.network.type = veth

lxc.network.flags = up

lxc.network.link = lxcbr0

lxc.network.name = eth0

ODROID MAGAZINE 11

http://bit.ly/1OfT2zo
fedora.conf
lxc.utsname
lxc.network.type
lxc.network.flags
lxc.network.link
lxc.network.name

LINUX CONTAINERS

The configuration simply specifies that the container will be
called “fedoracontainer” internally as the hostname, that net-
working is bridged to lxcbr0, and that the internal network
interface name is eth0. Unfortunately, the template for Fedora
is out of date and will fail by default, so you’ll need to correct
some mirror paths:

sed -i ‘s/mirrorurl=”mirrors.kernel.org::fedora”\

/mirrorurl=”mirrors.kernel.org::archive\/\

fedora-archive”/’ /usr/share/lxc/templates/lxc-fedora

To create the container, use this command:

lxc-create -t /usr/share/lxc/templates/lxc-fedora \

-f fedora.conf -n fedoracontainer -- --release 23

The -t parameter specifies the template to be used, -f points
to the configuration file we’ve just created and -n sets the con-
tainer’s name. The -- switch informs lxc-create to pass any ad-
ditional parameters to the template (which is a bash script),
and we’re asking for Fedora 23. The bootstrap script will take
care and download a “livecd” version of Fedora 20 and use it to
install a Fedora 23 minimal image. The whole process may take
a while. After the container is created, you can safely delete the
bootstrap and cache if you don’t plan on installing other fedora-
based containers soon:

rm -rf /var/cache/lxc/fedora/armhfp/bootstrap

rm -rf /var/cache/lxc/fedora/armhfp/LiveOS

Right now, the container is shut down and stores its files,
including the container config, in the /var/lib/lxc/fedoracon-
tainer/ directory, which uses 657MB for the minimal install.

Let’s investigate using Ubuntu 15.10 as a container. I’ve
heard there are still problems if you run it as a main operating
system on ODROID, but let’s investigate it.

First, prepare the initial config file. It’s similar to Fedora’s,
but this time we want the container to be bridged to eth0, so
we’ll need to create a bridge interface connected to eth0 which
we’ll call brlan0.

Changing your wired network connection to a bridge in-
terface can be difficult if you are doing this remotely over the
network. The best way to do it and have persistency across
reboots is to add this config to /etc/network/interfaces, then
reboot your ODROID:

auto brlan0

iface brlan0 inet dhcp

 bridge_ports eth0

ODROID MAGAZINE 12

mirrors.kernel.org
mirrors.kernel.org
fedora.conf

LINUX CONTAINERS

Bridging to the wireless adapter

Note that the brlan0 interface will become the layer 3 inter-
face in your system and obtain an IP address, and eth0 will be
just a layer 2 switch port. Also, changing the network configu-
ration might break processes where the interface is specified by
name, such as iptables, arpwatch, and munin.

Once the bridge interface is up and running after reboot-
ing your ODROID, use this configuration to prepare the con-
tainer:

cat ubuntu.conf

lxc.utsname = ubuntucontainer

lxc.network.type = veth

lxc.network.flags = up

lxc.network.link = brlan0

lxc.network.name = eth0

lxc-create -t /usr/share/lxc/templates/lxc-ubuntu \

-f ubuntu.conf -n ubuntucontainer -- --release wily

The 10.15 minimal install uses only 326MB.

If you want to bridge to your wireless adapter, the bad news
is that you can’t, as discussed at http://bit.ly/1WZNdOb. This
is because the wireless driver can create multiple logical inter-
faces (such as wlan0), and you can’t move the logical interface
in a different namespace without moving the whole network
card. However, LXC provides a mechanism to detach the
whole network card from your host system and attach it to a
running container:

lxc-device -n container-name add wlan0

Once the wifi card has been attached to the container, it will
no longer be visible in the host OS, so you’ll need an alternate
way of connecting to it.

Starting and stopping
Now that you have two containers, it’s time to start them

up. This can be done with the following command:

lxc-start -n fedoracontainer -d

The -d switch tells the command to start the container in
the background, otherwise it would attach your terminal to its
console, and killing the terminal would also terminate the con-
tainer. If you are having problems starting your container up,
remove the -d parameter to follow the boot messages. To at-
tach to the container and do some actual work, use lxc-attach:

ODROID MAGAZINE 13

ubuntu.conf
lxc.utsname
lxc.network.type
lxc.network.flags
lxc.network.link
lxc.network.name
ubuntu.conf
http://bit.ly/1WZNdOb

LINUX CONTAINERS

LXC container running

lxc-attach -n fedoracontainer

[root@fedoracontainer ~]#

You can attach before the container has had time to fully
start, so some services, such as network services, might not be
available immediately. Simply wait for the container to fully
start, which will be indicated by a getty process in your process
list. If you take a peek inside, you’ll see only a few processes
running. You can then use yum to install your favorite pack-
ages, as if the system was running on its own hardware.

To exit the container without stopping it, you can simply
type exit at the prompt. You can also access the container via
ssh from the host via the internal network. To turn off a con-
tainer, you can issue the lxc-stop command:

lxc-stop -n fedoracontainer

If you want your container to be started together with the
system, you can enable the auto startup feature by modifying
the container’s configuration located at /var/lib/lxc/fedoracon-
tainer/config and add the following lines:

lxc.start.auto = 1

lxc.start.delay = 10

The lxc-ls command will then show you if it is scheduled
for autostart:

lxc-ls --fancy

NAME STATE IPV4 IPV6 GROUPS AUTOSTART

--

fedoracontainer STOPPED - - - YES

ubuntucontainer STOPPED - - - NO

To get additional info about your running container, you
can also use the following command:

lxc-info -n fedoracontainer

Name: fedoracontainer

State: RUNNING

PID: 24396

IP: 10.0.3.186

CPU use: 41.87 seconds

Memory use: 15.09 MiB

Link: vethTSW172

 TX bytes: 3.27 KiB

 RX bytes: 28.89 KiB

 Total bytes: 32.16 KiB

ODROID MAGAZINE 14

lxc.start.auto
lxc.start.delay

LINUX CONTAINERS

web interface for container management

If the command line is not your favorite environment, you
can also manage your containers from a nifty web interface
called lxc-webpanel: https://lxc-webpanel.github.io/install.
html. After following the instructions in the link to install it,
you can access it at http://your-ODROIDs-ip:5000/. There,
you can do most of the tasks already presented and explore
some of the advanced topics.

Advanced topics
The configuration shown before will get you started with

LXC without adding too much complexity to your setup.
However, containers have a lot of flexibility in terms of your
control of resource allocation that we will briefly discuss now.

Disk space
The containers you’ve just created use a directory on the

filesystem to store their root filesystem. While this is simple
to implement and understand, it provides medium I/O per-
formance. Other options include an lvm block device, a loop
block device (which can be a file or a physical storage device),
brtfs filesystem or zfs. These allow you to specify a maxi-
mum size to be used and also, brtfs and zfs offer features for
snapshots, deduplication and fast cloning (copy-on-write). If
needed, you can also limit the amount of I/O operations that
the container is allowed to make in order not to starve other
containers or the host.

Memory
To list the currently used memory of a running container,

you can run the following command:

cat /sys/fs/cgroup/memory/lxc/\

ubuntucontainer/memory.usage_in_bytes

20341040

ODROID MAGAZINE 15

https://lxc-webpanel.github.io/install.html
https://lxc-webpanel.github.io/install.html
memory.usage

LINUX CONTAINERS

By default, the container will be able to use the whole sys-
tem memory. If that’s not what you want, you can limit the
memory with the following commands:

lxc-cgroup -n ubuntucontainer memory.limit_in_bytes

40M

cat /sys/fs/cgroup/memory/lxc/\

ubuntucontainer/memory.limit_in_bytes

41943040

The changes will be reflected immediately in your running
container:

root@ubuntucontainer:~# free -m

 total used free shared

buffers cached

Mem: 40 31 8 31

0 23

-/+ buffers/cache: 7 32

Swap: 0 0 0

If you go over the memory limit, the kernel will try to re-
move some caches, but in the end, if there’s no more memory,
you’ll see processes dying with “Cannot allocate memory” er-
rors.

root@ubuntucontainer:~# mount -t tmpfs -o size=50m

tmpfs /mnt/ramdisk3

root@ubuntucontainer:~# dd if=/dev/zero \

of=/mnt/ramdisk3/1

dd: writing to ‘/mnt/ramdisk3/1’: Cannot allocate

memory

Alternatively, you can add the memory limit directly in the
container’s configuration by adding the following line:

lxc.cgroup.memory.limit_in_bytes = 40M

CPU
You can assign specific CPU cores to a container, or allocate

a number of CPU shares to that container to restrict CPU us-
age. By default each container gets 1024 shares:

cat /sys/fs/cgroup/cpu/lxc/\

ubuntucontainer/cpu.shares

1024

echo 256 > /sys/fs/cgroup/cpu/lxc/\

ubuntucontainer/cpu.shares

cat /sys/fs/cgroup/cpu/lxc/\

ubuntucontainer/cpu.shares

256

ODROID MAGAZINE 16

memory.limit
memory.limit
lxc.cgroup.memory.limit
cpu.shares
cpu.shares
cpu.shares

LINUX CONTAINERS

To set it in the container’s configuration, add the following
directives:

lxc.cgroup.cpuset.cpus = 1,2

lxc.cgroup.cpu.shares = 256

Kernel modules
In order to use specific kernel modules such as iptables in-

side a LXC container, you first need to load that module on
the host.

Special files
Similar to the special configuration needed to attach a wifi

interface to a running LXC, you can bind special files from the
host to be used exclusively by the container. For instance, to be
able to use a USB-to-Serial adapter in the container, you could
run this command in the host:

lxc-device add -n ubuntucontainer \

/dev/ttyUSB0 /dev/ttyS0

Use cases
Containers can be useful as test systems where you can ex-

periment without risk of breaking things. You can give root
access to your friends and share multiple independent environ-
ments on top of the same hardware.

I learned how to use LXC and bought a few ODROIDs
in order to conduct network tests using multiple NICs from
multiple locations. My employer was running multiple
Smokeping slave instances over multiple providers to measure
website response time, Youtube video download, and Speed-
test.net results from two independent containers running on an
ODROID. The containers allowed us to use bridged network-
ing to access remote resources via both links simultaneously
by keeping different routing tables. Because the application
doesn’t need a lot of CPU cycles or memory, the ODROIDs
were perfect for the task.

My plan for the future is to get Android running inside a
container, which is possible according to the article available
at http://bit.ly/1QO855N. Have fun playing with contain-
ers, and feel free to post a response on the support thread at
http://bit.ly/1PANHG0 if you manage to use other containers.

Further reading
LXC Quickstart: http://bit.ly/1WZO8ht
Advanced guide: http://bit.ly/1S5j9tW

ODROID MAGAZINE 17

lxc.cgroup.cpuset.cpus
lxc.cgroup.cpu.shares
Speedtest.net
Speedtest.net
http://bit.ly/1QO855N
http://bit.ly/1PANHG0
http://bit.ly/1WZO8ht
http://bit.ly/1S5j9tW

•	 Gyro sensor
•	 Compass
•	 Robotis Bioloid Frame
The mechanical parts of Faro are supported with a Bioloid

frame, which is a robot kit from Robotis. Both hands have 3
DOF (Degrees of Freedom) and both legs have 6 DOF. These
extra DOFs are needed for more flexibility to maneuver. Three
AX-12A servos are used for each hand, while each leg uses six
AX-18A servos for more power. The other two AX-12A servos
are used to support the camera on Faro’s head.

Those servos are controlled with CM-530 controller, which
is connected to the main controller through the USB interface.
Every motion is programmed in this controller. It receives a
sequence of action commands from the main controller to de-
termine which motion to use. It also has a gyro sensor to sta-
bilize the body.

An ODROID-C1 is used as the main controller. The Logi-
tech C905 camera is connected to the C1’s USB port. This
camera is Faro’s main sensor. It enables Faro to see the world,
or at least the soccer field. A compass is also connected to the
ODROID-C1 to give information about the body’s direction.
It make sure that Faro is facing the opponent’s goal.

The trend of soccer robots is quite fascinating these days.
The people in The Robocup Federation even said that
“by the middle of the 21st century, a team of fully au-

tonomous humanoid robot soccer players shall win a soccer
game, complying with the official rules of FIFA, against the
winners of the most recent World Cup.”

Well, that really is an ambitious dream. Although today’s
technology is nowhere near that ultimate goal, development of
soccer robotics is under active research in many labs and uni-
versities. At Gadjah Mada University in Indonesia, the Gadjah
Mada Robotic Team (GMRT) is developing a kid-sized robot
soccer team. In this article, I’ll focus on Faro, the goalkeeper,
which uses an ODROID-C1 as its brain.

Hardware
Faro is built with the following parts and components:
•	 ODROID-C1 with Ubuntu 14.04
•	 CM-530 Controller
•	 Logitech C905 Camera
•	 12 Dynamixel AX-18A
•	 8 Dynamixel AX-12A
•	 3 Cell 1800 mAh LiPo Battery

FARO
THE HuMAnOID
GOALKEEpER ROBOT
by Ilham Imaduddin

FARO

Figure 1 - Faro is the one on the right
Figure 2 - I’m cool, aren’t I?

ODROID MAGAZINE 18

that they are currently doing. This enables the team to coor-
dinate and do their teamwork, doing the best strategy to beat
the opponent. The communication is done through a Wi-Fi
network.

One of the biggest challenge of a goalkeeper robot is, of
course, to make sure that it catches the ball. A problem arises
when the ball is moving faster than the robot’s ability to pro-
cess and catch it in time. In that case, the system fails to track
the ball, so it stands still, not knowing that it just lost a point,
or the system could succeed to track the ball, but then it’s too
late, so it moves to catch the ball but the ball is passing through
anyway.

The processing time of all those routine is small enough
for Faro to catch the ball in time on average ball movement,
but sometime it fails (even humans fail sometimes, don’t we?)
So, it would be good to improve the response time by using a
more powerful computer, such as the ODROID-XU4. But
even more processing power doesn’t guarantee that the robot
can catch the ball in time. The physical capability of the robot
also plays a big role. The robots need enough power and speed
to act on the brain’s commands, so that it can catch the ball in
time and ultimately guard the goal against every opponent’s
kick. What’s the point of knowing without the ability to act,
anyway?

Development of humanoid robots as a soccer team is far
from completed. Even today’s robot soccer team is easily de-
feated by a kindergartner. More processing power, more com-
plex algorithms, and more physical power is needed to surpass
a human’s abilities. A lot of research still needs to be done to
reach the ultimate goal: winning a soccer game against human
World Cup champions.

The power comes from a 3 cell LiPo battery (11.1 V), which
is divided into two paths. One is directly connected to CM-
530 controller, and the other one is regulated to 5V for power-
ing the ODROID-C1.

Algorithm
Faro’s task is straight and simple: prevent the ball from get-

ting into the goal. To achieve this task, several processes are
applied.

The first process is to detect the ball. It is done by capturing
video from the camera and finding the features of a ball from
the footage, including color, shape, edges, and other param-
eters. The ball is orange, with a diameter of approximately 10
cm. After the ball is found, Faro starts tracking the ball move-
ment.

By tracking the ball movement, Faro can predict and sense
danger coming to its goal. When Faro detects the ball moving
to its direction, it counts and predict the trajectory of the ball
and does an action based on that prediction, such as standing
by or jumping to save the goal.

All of theses processes are done inside the ODROID-C1
with the help of the OpenCV library. Even though image pro-
cessing requires a lot of processing power, the ODROID-C1 is
actually powerful enough to do the job.

If Faro thinks that a ball is threatening the goal, an action
command will be sent to the CM-530 controller. This com-
mand include a selection of motions, such as left dive, right
dive or standing up from a falling position.

All those motions are programmed into the CM-530 con-
troller, so when the CM-530 receives an action command, it
will choose the appropriate motion and count every servo’s
angle. Finally, the CM-530 signals the servo to do the motion.

While the ball tracking routine is being executed, Faro also
communicates with other team player to coordinate. Every
team player will share information about what it senses, es-
pecially the position of the ball. They also share the action

FARO

Figure 3 - Guarding the Goal

Figure 4 - Cheers!

ODROID MAGAZINE 19

from Android Development Tools
(ADT), a plug-in for Eclipse, to Android
Studio, which is based on NetBrains’ In-
tellij, as their default IDE for Android.
Studio, unlike ADT, uses a build system
known as Gradle. Although not avail-
able at launch, preliminary NDK sup-
port for Gradle has been added since
Studio version 1.3. Although support
has been added for the NDK, integra-
tion into the IDE is still very limited,
and its use requires manual changes and
use of alpha versions of certain modules.

Installation
Let’s begin with the very basic of get-

ting all the parts we need setup. The in-
stallation of Android Studio, the SDK,
and the NDK take a while to install and
require about 2GB of files to be down-
loaded.

Android Studio
For starters, you should have the lat-

est version of Android Studio installed.
If it isn’t, download a copy from http://
bit.ly/IKeIqs. Installation is fairly
straightforward for all platforms, and
Google provides good documentation
if you encounter difficulties during the
installation.

NDK and SDK
Launch Android Studio and click on

the SDK Manager button on the top

This article is a look at how to use
the Android NDK within the
Android Studio Gradle build sys-

tem. As an example, I used HardKer-
nel’s Android WiringPi app at http://bit.
ly/1Eq3UpF. Let’s begin with a few ba-
sics such as what the NDK is, and more
importantly, how should it be used.

Android’s NDK (Native Develop-
ment Kit), is a means of allowing An-
droid apps which are Java-centric to
interface with C or C++ libraries. This
can be useful by allowing us make use
of existing libraries, as well as gain any
performance benefits from using C or
C++ which are compiled from source to
a specific platform. Before you get too
excited about the the use of mixing C
and C++ into your next app, there are
a few pit-falls and advisories. Google’s
documentation on the NDK best sum
up these concerns:

“Before downloading the NDK, you
should understand that the NDK will
not benefit most apps. As a developer,
you need to balance its benefits against
its drawbacks. Notably, using native
code on Android generally does not
result in a noticeable performance im-
provement, but it always increases your
app complexity. In general, you should
only use the NDK if it is essential to
your app and never because you simply
prefer to program in C/C++.”

In May of 2013, Google switched

icon panel, as shown in Figure 1. Af-
ter that loads, click on the text near the
bottom called “Launch Standalone SDK
Manager”, from where we will want to
install, at a minimum, the following
items:

Android 4.4.2 (API 19) → SDK

Platform

Extras → Ndk Bundle

This assumes that you plan on using
the official HardKernel Android im-
age, which is limited to Kitkat 4.4.2,
but there are several community images
which are based on newer Android re-
leases. Look at the Android SDK Build
tools and make a note of the most re-
cent version that you have installed. As
shown in Figure 1, I only have 23.0.1
installed. After all packages have been
selected click “Install <X> packages..”
and sit back and relax as they download
and install. After it finishes, restart An-
droid Studio.

Editing the project
As I stated before, I’m using Hard-

Kernel’s wiringPi app, which I imported
into Studio. However, the same ap-

uSInG AnDROID nDK
In AnDROID STuDIO
AnD GRADLE
wORKInG wITH wIRInGpI In AnDROID
by Andrew Ruggeri

GRADLE

Figure 1 - Android SDK Manager Button

ODROID MAGAZINE 20

http://bit.ly/IKeIqs
http://bit.ly/IKeIqs
http://bit.ly/1Eq3UpF
http://bit.ly/1Eq3UpF

includes NDK support, since current
stable releases do not.

${project}/App/build.gradle

buildscript {

 repositories {

 jcenter()

 }

 dependencies {

 classpath ‘com.an-

droid.tools.build:gradle-

experimental:0.3.0-alpha5’

 }

}

allprojects {

 repositories {

 jcenter()

 }

}

This file needs a good amount of re-
work. I added comments before certain
parts and lines in order to explain them.
A commentless, clean, and continuous
copy of the file can be found at http://
bit.ly/1QrEVdB.

// Take note that all attributes

are set with ‘=’ rather than just

a space as is typical

// Fist off we are going to be

proach and NDK modifications are
necessary for any project created from
scratch. If you do choose to work with
an existing piece of code, make sure that
you have a good understanding of its an-
droid.mk files, or the code itself, in or-
der to properly build it. There are three
Gradle files that we will need to change:

${project}/build.gradle

${project}/App/build.gradle

${project}/App/gradle/wrapper/

gradle-wrapper.properties

After all changes have been made,
you can build, debug and run your ap-
plication from Android Studio as if it
was any other Studio project. A quick
guide on using adb over Wifi can be
found at http://bit.ly/1QrEOyE. If you
are using a copy of the Studio wiringPi
app from GitHub, ensure that the NDK
and SDK path reflect your system. The
NDK and SDK paths are found in the
${Project}\local.properties file.

The changes needed at the project
level for build.gradle are rather simple.
Here we want to set the build scripts
classpath dependency to “com.android.
tools.build:gradle-experimental:0.3.0-
alpha5.” This is necessary to use the lat-
est experimental version of Gradle which

GRADLE

using a different plug than nor-

mal, note the addition

// of ‘model’ in the name.

apply plugin: ‘com.android.model.

application’

// Certain attributes now need

to be placed inside of an extra

‘model’ namespace

model {

 android {

 // SDK to be compiled

against, you can use an SDK lower

than your device’s

 // Android version but, a

greater one may/will cause prob-

lem

 // A mapping of OS to API

version can be found here:

 compileSdkVersion = 19

 // I recommend using the

latest version of build tools you

have

 // when working with the

experimental Gradel versions

 // the buildToolVersions

installed can be found:

 // en.wikipedia.org/wiki/

Android_version_history

 buildToolsVersion =

“23.0.1”

 // Inside of default config

(not appended with .with) are the

same values

 defaultConfig.with {

 applicationId =

“com.hardkernel.wiringpi”

 minSdkVersion.api-

Level = 16

 // I’ve seen a lot

of misconceptions about what tar-

getSdkVersion really is

 // target Sdk has

NOTHING to do with compilation of

the application

 // It tells An-

droid how to render and theme the

views, here it’s set to 19

 // this means on

Figure 2 - Android SDK Manager Version

ODROID MAGAZINE 21

build.gradle
com.android.tools.build
com.android.tools.build
http://bit.ly/1QrEVdB
http://bit.ly/1QrEVdB
android.mk
android.mk
build.gradle
build.gradle
gradle-wrapper.properties
http://bit.ly/1QrEOyE
local.properties
build.gradle
com.android.tools.build
com.android.tools.build
com.android.model.application
com.android.model.application
en.wikipedia.org/wiki/Android
en.wikipedia.org/wiki/Android
defaultConfig.with
com.hardkernel.wiringpi
minSdkVersion.apiLevel
minSdkVersion.apiLevel

 create(“arm8”) {

 ndk.abiFilters +=

“arm64-v8a”

 }

 create(“x86”) {

 ndk.abiFilters +=

“x86”

 }

 create(“x86-64”) {

 ndk.abiFilters +=

“x86_64”

 }

 create(“mips”) {

 ndk.abiFilters +=

“mips”

 }

 create(“mips-64”) {

 ndk.abiFilters +=

“mips64”

 }

 // Set to build all ABI fla-

vours

 create(“all”)

 }

}

The final change we need to make is
to the properties files in order to specify
the Gradle version. The ending value
part of the distribution URL needs to be
changed from “gradle-2.6-all.zip” if you
are using an earlier version.

${project}/App/gradle/wrapper/

gradle-wrapper.properties

#Sat Nov 07 12:41:05 EST 2015

distributionBase=GRADLE_USER_HOME

distributionPath=wrapper/dists

zipStoreBase=GRADLE_USER_HOME

zipStorePath=wrapper/dists

distributionUrl=https\://ser-

vices.gradle.org/distributions/

gradle-2.6-all.zip

 CFlags += “-I${file(“src/

main/jni/wiringPi”)}”.toString()

 CFlags += “-I${file(“src/

main/jni/devLib”)}”.toString()

 // external library that

need to be referenced

 ldLibs += [“log”, “dl”]

 }

 android.buildTypes {

 release {

 minifyEnabled =

false

 proguardFiles +=

file(‘proguard-rules.txt’)

 }

 }

 // This following part of

code is set to build NDK for ALL

platform types

 // which NDK supports. For

Odroid devices (currently) we

only need the arm

 // and x86 (for debug on a

host computer) ABIs. For infor-

mation about the

 // Support ABIs can be

found at the link bellow.

 // https://developer.an-

droid.com/ndk/guides/abis.html

 android.productFlavors {

 create(“arm”) {

 // the abiFilters

set the directory name where the

lib will be located

 ndk.abiFilters +=

“armeabi”

 }

 create(“arm7”) {

 ndk.abiFilters +=

“armeabi-v7a”

 }

Android Lollipop (SDK 23) it will

still render as

 // all the views as

if they were on 19, unset this

default to minSdkVersion

 targetSdkVersion.

apiLevel = 19

 }

 }

 // It is advisable to keep

both these version the same

 compileOptions.with {

 // Java source libraries

that are used

 sourceCompatibility = Java-

Version.VERSION_1_7

 // Java compiler that is

used to create bytecode

 targetCompatibility = Java-

Version.VERSION_1_7

 }

 // Here is where all the

configuration for the NDK

 android.ndk {

 // moduleName is the name

of the library being build by the

NDK

 // the name must EXACTLY

match the name of the NDK library

 // which is being load-

ed from java’s “loadLibrary()”

method

 moduleName = “wpi_android”

 // This is the NDK platform

which will be used

 // In the Android.mk this

was ‘APP_VERSION’

 // if not set platform ver-

sion is set the compileSdkVersion

 platformVersion = 19

 // For any compiler flags

they are set with either CFlags

or CPPFlags

 CFlags += “-DRMOLD”

 CFlags += “-UNDEBUG”

 CFlags += “-DANDROID”.to-

String()

 CFlags += “-I${file(“src/

main/jni”)}”.toString()

Figure 3 - Gradle error

GRADLE

ODROID MAGAZINE 22

ndk.abiFilters
ndk.abiFilters
ndk.abiFilters
ndk.abiFilters
ndk.abiFilters
gradle-2.6-all.zip
gradle-wrapper.properties
services.gradle.org/distributions/gradle-2.6-all.zip
services.gradle.org/distributions/gradle-2.6-all.zip
services.gradle.org/distributions/gradle-2.6-all.zip
android.buildTypes
proguard-rules.txt
https://developer.android.com/ndk/guides/abis.html
https://developer.android.com/ndk/guides/abis.html
android.productFlavors
ndk.abiFilters
ndk.abiFilters
targetSdkVersion.apiLevel
targetSdkVersion.apiLevel
compileOptions.with
JavaVersion.VERSION
JavaVersion.VERSION
JavaVersion.VERSION
JavaVersion.VERSION
android.ndk
Android.mk

Other changes
Depending on your settings, you

may see a “Failed to sync Gradle project
<Project Name>” error, which is caused
by a mismatch between the system Gra-
dle version and the project version. If
you click on the link in the error de-
scription, it will launch the Gradle edi-
tor. Under “Project-level Settings,” set
the radio button to “Use default gradle
wrapper (Recommended).” This causes
the project to default to the Gradle ver-
sion that is specified in the properties
file.

Figure 4 - Gradle Settings

GRADLE

FRETS On FIRE
RELEASE YOuR InnER ROCK STAR
by @v0ltumna

FRETS ON FIRE

Figure 1 - Frets on Fire gameplay

odroid_20150922-1_armhf.deb

$ sudo apt-get install gdebi

$ sudo gdebi libgl*.deb

Then, link the Mali drivers (on the
XU3 and XU4, use libmali.so instead of
libMali.so):

$ ln -sf /usr/lib/arm-linux-gnue-

abihf/mali-egl/libMali.so /usr/

lib/arm-linux-gnueabihf/libEGL.so

$ ln -sf /usr/lib/arm-linux-

gnueabihf/mali-egl/libMali.so /

usr/lib/arm-linux-gnueabihf/lib-

GLESv1_CM.so

$ ln -sf /usr/lib/arm-linux-

gnueabihf/mali-egl/libMali.so /

usr/lib/arm-linux-gnueabihf/lib-

GLESv2.so

Next, change the file /usr/games/fofix
to match the following:

The ODROID already supports
karaoke (http://bit.ly/1PLowzd)
and dancing (http://bit.

ly/1NAnHoc) software, so the next
logical step is to add some guitars and
drums! Frets on Fire is a Python clone
of Guitar Hero available in the Debian
repository. A gameplay video is available
at http://bit.ly/1MSjhZe.

Installing Frets on Fire is easy:

$ sudo apt-get install fofix

Frets on Fire needs OpenGL support,
so GLshim is needed so that the game
will run using OpenGLES:

$ cd ~/Downloads

$ mkdir glshim

$ cd glshim

$ wget http://oph.mdrjr.net/

meveric/other/freeorion/libgl-

ODROID MAGAZINE 23

http://oph.mdrjr.net/meveric/other/freeorion/libgl-odroid_20150922-1_armhf.deb
libmali.so
libMali.so
libMali.so
libEGL.so
libMali.so
libGLESv1_CM.so
libGLESv1_CM.so
libMali.so
libGLESv2.so
libGLESv2.so
http://bit.ly/1PLowzd
http://bit.ly/1NAnHoc
http://bit.ly/1NAnHoc
http://bit.ly/1MSjhZe
http://oph.mdrjr.net/meveric/other/freeorion/libgl-odroid_20150922-1_armhf.deb
http://oph.mdrjr.net/meveric/other/freeorion/libgl-odroid_20150922-1_armhf.deb

#!/bin/sh -e

export LD_LIBRARY_PATH=/usr/lo-

cal/lib

cd /usr/share/fofix/src

exec ${PYTHON:-python} ${FOFIX_

PYTHON_FLAGS:--OO} FoFiX.py “$@”

Now you are able to start the game:

$ fofix

But where do you put your music
or custom themes? Usually, you would
put them in the directory /usr/share/
fofix/data, but I prefer putting those in
my home folder in order to easily access
them. To do so, start the game, then
exit so that the folder ~/.fofix is created.
Move the themes to your home folder
and create symbolic links so that you
can put your songs in ~/.fofix/songs and
themes in ~/.fofix/themes:

$ sudo mv /usr/share/fofix/data/

themes /home/odroid/.fofix/

$ sudo chown -R odroid:odroid /

home/odroid/.fofix/themes

$ sudo rmdir /usr/share/fofix/

data/songs

$ mkdir /home/odroid/.fofix/songs

$ sudo chown odroid:odroid /home/

odroid/.fofix/songs

$ sudo ln -s /home/odroid/.fofix/

songs /usr/share/fofix/data/songs

$ sudo ln -s /home/odroid/.fofix/

themes /usr/share/fofix/data/

themes

Have fun rocking your ODROID,
and probably your neighbors! For com-
ments, questions and suggestions, visit the
original thread at http://bit.ly/1l1eyhu.

FRETS ON FIRE

It is often convenient to have mul-
tiple operating systems installed to
the same microSD card or eMMC

module. I have written some convenient
scripts in order to be able to do this on
an ODROID-XU3 or ODROID-XU4.
This guide details the steps necessary to
use my scripts in order to create a multi-
boot installation.

Overview
•	 Create multiboot installation on a

single SD card or eMMC module
with any combination of Android,
Linux and OpenELEC

•	 Boot menu for OS selection
•	 Tested with Hardkernel’s offi-

cial images for Android 4.4, CM
12.1 Android 5.1.1, Ubuntu Mate
15.04, Ubuntu Server 14.04, and
OpenELEC 5.0.7.0

•	 Verified working with an
ODROID-XU4, but is also com-
patible with the ODROID-XU3

•	 Creates installation directly from
Android update.zip, Linux instal-
lation image and OpenELEC up-
date archive

•	 Installation source for Android
and Linux can be a backup of your
existing Android/Linux installa-
tion (backup scripts are included)

•	 All partition sizes can be set
•	 It is recommended to run the

eMMC card preparation and in-
stallation using Linux

•	 As a bonus, you don’t have to re-
move the eMMC module from
the ODROID

ODROID-Xu4
MuLTI-BOOT
SCRIpTS
DO IT THE EASY wAY
by @loboris

MULTIBOOT

Build Procedure
First, download and unpack

the scripts package from http://bit.
ly/1MjfYgx. Note that all commands
below must be run in the script direc-
tory.

You may need to install some auxilia-
ry packages that are reported as missing
by the script during installation using
the apt-get command.

Preparation
The recommended card size is 16GB

or larger, but an 8GB card can be used
as a minimum. Before running the
script, you can edit the prepare_multi-
card script file in order to set the desired
partition sizes by editing the variables at
the beginning of the script.

To begin, insert your card in the
Linux host USB reader and run the fol-
lowing commands in the script direc-
tory:

$ sudo ./prepare_multicard

<sd|mmc_card> <card_type>

<sd|mmc_card> is your card block
device (/dev/sdX, /dev/mmcblkX), and
<card_type> is either “sd” for SD card
installation or “em” for eMMC card in-
stallation. After running the script, you
will have an SD card or eMMC mod-
ule that is ready for installing Android,
Linux and OpenElec.

ODROID MAGAZINE 24

FoFiX.py
http://bit.ly/1l1eyhu
update.zip
http://bit.ly/1MjfYgx
http://bit.ly/1MjfYgx

MULTIBOOT

Installing Android
Insert your card that has been pre-

pared for multiboot by the script into a
USB SD card reader on the Linux host
and run the following commands in the
script directory:

$ sudo ./copy_android <source>

<dest> <card_type> [update]

<source> can be:
•	 Android update archive (update.

zip)
•	 Directory with Android backup

(created with the backup_single_
android or copy_android script)

•	 sd/emmc card (/dev/sdX, /dev/
mmcblkX)) with valid multiboot
installation

<dest> can be:
•	 SD card or eMMC module (/dev/

sdX, /dev/mmcblkX)) prepared
for multiboot

•	 Directory (creates backup of mul-
tiboot Android installation)

<card_type> must be “sd” for SD
card installation or “em” for eMMC
module installation

If the 4th [update] parameter is pres-
ent, the script won’t copy the contents
of the data partition. This option is in-
tended to be used in order to update an
existing multiboot Android installation.
Enter it only if updating to the same An-
droid version.

Installing Linux
Insert your multiboot-prepared card

into the reader and run the following
commands in the script directory:

$ sudo ./copy_linux <source>

<dest> <card_type>

<source> can be:
•	 Unpacked Linux installation im-

age (linux_ver-xxx.img)
•	 Directory with Linux backup (cre-

ated with backup_single_linux or
copy_linux script)

•	 SD card or eMMC module (/dev/
sdX, /dev/mmcblkX)) with valid
multiboot installation

<dest> can be:
•	 SD card or eMMC module (/dev/

sdX, /dev/mmcblkX)) prepared
for multiboot

•	 Directory (creates backup of mul-
tiboot Linux installation)

<card_type> must be “sd” for SD
card installation or “em” for eMMC
module installation

Installing OpenELEC
Insert your card (prepared for multi-

boot) in the reader and run the following
commands in the script directory:

$ sudo ./copy_oelec <source>

<dest> <card_type>

<source> can be:
•	 OpenELEC update archive

(Op e n E L E C - Od ro i d - X U 3 -
x.x.x.x.tar)

<dest> can be:
•	 SD card or eMMC module (/dev/

sdX, /dev/mmcblkX)) prepared
for multiboot

<card_type> must be “sd” for SD
card installation or “em” for eMMC
module installation

Default OS and
timeout

After removing the SD card or
eMMC module from the Linux host,

then inserting it into the ODROID
and powering on, you will be presented
with a boot menu so that you can se-
lect which OS to load. You can edit the
file “boot.ini.sel” on the FAT partition
(userdata) in order to set the default OS
that is used if no key is pressed (DE-
FAULT_OS variable). You can also set
the timeout (in seconds) after which the
default OS is booted if no key is pressed
(BOOT_DELAY variable). Finally, you
can specify the screen resolution of the
boot menu (videoconfig variable), but
not all resolutions may work with your
monitor.

Copying a backup
You can backup your old Android/

Linux SD card or eMMC module and
use the backup as the source for the mul-
tiboot installation. Insert the SD card
or eMMC module containing the exist-
ing operating system in the reader and
run one of the two the following com-
mands in the script directory, depending
on whether the source OS is Android or
Linux:

$ sudo ./backup_single_android

<sd|mmc> <backup_dir>

or

$ sudo ./backup_single_linux

<sd|mmc> <backup_dir>

For this command, <sd|mmc> is your
SD card or eMMC module with the old
Android/Linux installation (/dev/sdX, /
dev/mmcblkX), and <backup_dir> is
the name of the backup directory. The
script will create subdirectories for the
card partitions, so you can backup An-
droid and Linux card to the same base
directory.

For comments, suggestions and ques-
tions, please visit the original forum
thread at http://bit.ly/1j9r6TG.

ODROID MAGAZINE 25

update.zip
update.zip
linux_ver-xxx.img
OpenELEC-Odroid-XU3-x.x.x.x.tar
OpenELEC-Odroid-XU3-x.x.x.x.tar
boot.ini.sel
http://bit.ly/1j9r6TG

from Vault 13, growing up in relatively
safety. You are then sent out on a quest
to save your Vault. The water purifica-
tion facility has broken down, and with-
in 150 in-game days, your Vault will run
out of water. You are supposed to find
a water chip, which is a replacement for
the broken part in your own Vault.

The game has an isometric style, and
switches between real-time and turn-
based mode. Every time you get into
a fight, you use a turn-based system in
which you have a certain amount of Ac-
tion Points (AP) to perform different
tasks, like walking, using items, or at-
tacking.

The game offers many different ar-
mors, weapons and other items for you
to use or trade with. You have a set of dif-
ferent skills, such as first aid, lockpick-
ing or sneaking which you can train to
improve your character. Fallout is fun
to play, although it takes place in a very
dark setting, which shows why war is al-
ways bad.

Prerequisites
The game is available for both DOS

and Windows systems. Since we have a
working version of DOSBox in my re-
pository, which is a DOS emulator, it
should be fairly easy to get Fallout to
run in DOSBox. If you only own the
Windows version of the game (or the
GoG.com version) don’t worry, there is

I have always been a fan of the Fall-
out series. When it first came out, I
played it for hours and hours, trying

to find every little secret. As much as I
liked the game, I also kept dying many
times, since I was rather young and inex-
perienced in 1997. However, that never
stopped me from continuing, and I kept
playing and playing until I finally beat
the game. Today, I’m much more expe-
rienced when it comes to games like this,
but also a little less patient. The Fallout
series, especially the first one, will always
be a very good memory, and I wanted to
play it again on my ODROID and see
how well I could do.

Overview
As the name suggests, the game

is set in the future where most of the
earth has been destroyed in nuclear at-
tacks. An all-out war has left the earth
devastated, annihilating most of man-
kind, animals and vegetation. There are
some survivors in underground bunkers
called “Vaults.” Some other less lucky
creatures have survived the nuclear blast,
but they are mutated or disfigured from
the nuclear radiation. What followed
is a very hostile environment in which
people try to survive. Some just want
to live a peaceful life and rebuild society,
and others believe it’s easier to steal from
and terrorize the weak.

In the game, you play an inhabitant

LInuX GAMInG
FALLOuT: A pOST-nuCLEAR ROLE pLAYInG GAME
by Tobias Schaaf

LINUX GAMING

an easy way for you to play the game on
ODROIDs as well.

Installation

$ sudo apt-get install dosbox-

odroid

Configuration
Start DOSBox once to create the de-

fault config file, then exit it right away.
Open /home/odroid/.dosbox/dosbox-
SVN.conf in a text-editor and change
the following lines:

[sdl]

fullscreen=true

fullresolution=desktop

output=overlay

[dosbox]

memsize=31

[render]

 frameskip=3

aspect=true

[cpu]

core=dynamic

Before starting DOSBox, I created a
folder where I want to place my games
later:

$ mkdir DOS

I then copied over the ISO from
Fallout and placed it into a folder called

ODROID MAGAZINE 26

GoG.com
dosbox-SVN.conf
dosbox-SVN.conf

game on your Windows PC. Copy the
install folder to your ODROID in the
folder you created for DOSBox, such
as /home/odroid/DOS. You need to
download the 1.1 DOS patch of Fallout,
as well as some basic DOS files. I put
them all on my web space hosted by @
mdrjr, so all necessary files can be down-
loaded from http://bit.ly/1HZAHSt.
The Fallout 1.1 DOS patch includes a
DOS starter executable, which can be
used to play the Windows version of
Fallout under DOS.

The rest of the files are needed to
launch fallout.exe. After you copy all of
the files onto your ODROID into your
Fallout folder from your Windows ver-
sion of Fallout, everything should be
ready to play.

Introduction
The game starts with a rather dark

introduction movie, which explains the
background and setting of the game in a
video cutscene, after which you are pre-
sented with the main menu. You can
then start a new game or load one of
your save games. Starting a new game
presents a character selection screen
where you can choose to play one out
of three pre-made characters, or create
your own personal character. I normally
choose the latter.

Character creation, and later level
ups, is one of the most important thing
to do in the game. Here you choose you
basic abilities, traits and skills. It can
take a while to create a character and se-

LINUX GAMING

Figure 1 - German installer of the DOS
version of Fallout 1

lect the right attributes for it. You can’t
maximize all your attributes, so you have
to choose which ones are the most im-
portant for you, and concentrate your
training on a few selected skills, rather
than all of them.

Your special abilities define the basic
attributes of your character, such as how
much they can lift, how much damage
they can take, and how many movement
points they have. You can increase one
attribute at the cost of another. If you
want to be able to carry a lot of items,
you need a lot of strength. To haggle for
better prices or persuade others, you need
high charisma. Luck gives you a higher
chance of critical hits. If you increase
one of your attributes, another might
suffer, so choose wisely which ones you
consider most important to you.

Traits are like special abilities that
your character has. These abilities also
often come with a price, so be careful
what you select. For example, the fast
shot ability reduces the time cost of us-
ing guns of any kind by one point, but
it will also prevent you from aiming at
body parts of your enemy, which allows

Figures 2 and 3 - Loading screen and
main menu of Fallout 1. Strangely
enough, there are no preferences on
the main menu

“CDs” on my ODROID as well. To
make things easier, I added the following
lines to the end of the DOSBox configu-
ration file, so I don’t need to type them
every time I want to play the game:

[autoexec]

mount c: /home/odroid/DOS -free-

size 1024

imgmount d: /home/odroid/CDs/

Fallout.iso -t iso

c:

Now that the game is prepared, we
can start up the emulator. The folder
DOS will be automatically mounted as
drive C:, and the CD will be mounted as
a CD-ROM drive on D:. You probably
noticed that I added the option “-free-
size 1024” for mounting the drive C:
in DOSBox. This is needed for the full
installation of Fallout, which is nearly
600MB in size. Without any option, the
C: drive is only mounted with less than
300MB reported as free, even though it’s
the same size as the free space on the SD
card or eMMC module. This option is
sometimes needed for large games that
check available disk space before install-
ing.

After that, I switched to drive letter
D: and started the installer. I chose to
do a full install since this will allow you
you to play the game without the CD
inserted. After the game is installed,
switch to C: and enter the folder where
you installed the game, then start the
sound setup tool. Perform an automatic
search for the sound settings. After that,
you are done installing the game and can
starting it by entering “fallout”:

> c:

> cd fallout

> sound

> fallout

Installing the Win-
dows version

To get the Windows version of Fall-
out running, you first need to install the

ODROID MAGAZINE 27

http://bit.ly/1HZAHSt
fallout.exe
Fallout.iso

strategically plan your next moves, while
considering the moves from your ene-
mies. Like your character, your enemies
have a certain amount of AP, which allow
them to move and attack. Sometimes
it’s wiser to just walk away a few steps so
the enemy has to walk towards you, and
therefore use up most of its AP, which
means it can not attack you. On your
next turn, you have your full amount of
AP and can strike first.

If you look at the picture of our char-
acter fighting a rat in Figure 5, you’ll see
that it shows the chance to hit the enemy
over the enemy when you try to attack it.
That way, you get an idea of how likely
you will hurt or kill an enemy. The bet-
ter your skill level for a certain type of
weapon, the more likely you’re going to
hit the enemy with that type.

The game mechanics are similar
to most other RPG games. You walk
around, talk to people, accept quests,
fight, level up and upgrade your skills.
You can improve your character and
equipment, and buy or steal items.
Money is always useful, but you’ll nev-
er have enough of it (like in real life).
What makes the game unique is its dark
setting, the characters you deal with, and
the things that you encounter.

Fallout has day and night cycles and
a huge map to explore, with random
events and encounter while traveling
through the land. You are virtually free
to do whatever you like in this game. Do
you find it troublesome to solve quests
for some villagers? Are they starting to
make you mad, and don’t give you any
reward for your hard work? If you want
to just wipe out an entire village and take
what they owe you, you can do that in
Fallout. If an NPC is aggravating you,
go ahead and shoot him. If his friends
are trying to gang up on you, you can
blast them away as well. Has a villager
gotten caught in the crossfire and is now
attacking you? Just keep firing! Acci-
dents happen, and sometimes they result
in wiping out an entire village in Fallout.
You can choose if you want to free some

supposed to get a new water chip for
your Vault. It also tells you that there
is another Vault nearby that you should
visit. That’s about all the information
that you get. The start of the game can
be a little bit difficult, since there is no
real tutorial except for an NPC that tells
you how to play the game. When the
game first came out, you were supposed
to read the manual to find out informa-
tion like this.

You start in a cave infested with a
bunch of rats, which you can use to train
up a little and learn how to fight. Al-
though you probably have a gun, you are
better off using a knife at first, so open
your inventory, setup your character and
start exploring the world.

The game is played in 3rd person
isometric view. You follow your charac-
ter, but can also scroll away from your
character in order to explore your sur-
rounding. You can walk freely until you
get into a fight, which is when the game
switches to a turn-based mode.

During fights, you have to choose
what actions you want to perform, and

you to selectively send a bullet to the
head of your enemy rather than the ar-
mored chest. The gifted ability, which
will increase your beginning attributes
and skills, will make the start of the
game much easier, but also reduces the
speed at which you learn new things,
making it harder for you in the end. Fast
metabolism will heal you faster, but will
also spread poison through your body
more quickly. Chemical resistance will
prevent you from getting a drug addic-
tion, but will also cause drugs that im-
prove your abilities to wear off much
faster, while chemical reliance will do ex-
actly the opposite. Choosing traits can
also be very important and will affect the
development of your character.

Skills
Skills define how good you are with

the use of certain types of weapons or
fighting styles, as well as abilities like first
aid and lockpicking. You can choose
three “tag skills,” which have higher
starting attributes as well as double-
speed leveling if you distribute points
into them during a level-up.

There is a lot to consider when creat-
ing a new character, but it also offers a
lot of opportunities and gives the game a
higher replay value in trying out a differ-
ent approach each time.

Gameplay
After you pick your character, a sec-

ond introduction tells you that you’re

Figure 4 - The character creation screen
of Fallout 1 using the SPECIAL (Strength,
Perception, Endurance, Charisma, Intel-
ligence, Agility, Luck) system

Figure 5 - The game starts with us leav-
ing the Vault 13 our home

Figure 6 - Fighting rats isn’t really hard
but a good training

LINUX GAMING

ODROID MAGAZINE 28

try bringing your possessions to one spot
that you remember, such as a closet or
something similar. Items like weapons
and armors can be very valuable if you
trade them.

Why I like Fallout
I enjoy Fallout mostly for its setting.

It shows what terrible things might hap-
pen if mankind participates in a destruc-
tive war. The game presents a dark world,
and even with most humans killed, the
rest are still fighting each other. The
places that you can explore, along with
the items you can find, make this game
very unique.

Although Fallout 3 and 4 offer far
better graphics, the dark atmosphere of
Fallout 1 and 2 are much better in my
opinion. It’s a classic RPG game, rath-
er than an Action First-Person Shooter
RPG game like Fallout 3 and 4. Fallout
1 is reasonably hard, but if you save of-
ten and plan your moves, it’s really fun
to explore a really big and interesting
world. Just avoid getting killed!

Fallout is driven by chance, which
means that if you try to pickpocket
someone, it might fail, but if you reload
your game and try it again, you might
succeed. Even if your steal skill is rather
low, between saving, reloading and exer-
cising some patience, you might still be
a very good thief.

Stealing is a good way to get items,
and can be used to strip an enemy of his
weapons. If you steal all of the weapons
of a group of people before you get into
a fight with them, they will probably at-
tack with only fists and knives, giving
you a very good advantage.

Use your skills as often as possible.
Doctor and lockpicking are very good
skills to have. You can’t carry around a
lot of items without being overloaded, so

slaves from their owners, or take some
people captive and sell them as slaves.
You are free to do as you like.

The things you can do in this open
world game are enormous, such as lock-
picking in order to get any items that
people have hidden in their shacks. You
can try pickpocketing some traders,
healing your broken legs, or fighting the
poison in your body. You can also use
your repair skills in order to fix weapons
and machines that you find on the way,
or use science to hack computers. There
are many hidden things to discover, such
as an alien spacecraft. You can also gath-
er companions to fight alongside you.
Using your skills will increase your expe-
rience and help you to level faster.

Hints and tips
The game can be very hard at the be-

ginning, since most enemies, except for
the rats, can kill you very quickly. For
example, Radscorpions are dangerous
giant scorpions which often come in
groups of four or more when you travel
through the land. You should save often,
as in most games.

Figure 7 - Traveling the land using the map

Figure 8 - After only a short while of play-
ing I already got quite some good stuff

Figure 10 - Game Over: if you see this screen, you know you really screwed up!

LINUX GAMING

Figure 9 - wiping out a raiders camp

ODROID MAGAZINE 29

It’s recommended by the manufacturer as a set-up that yields
good measurements. Second, soldering an SHT15 is difficult.
To make things easier, this tutorial uses a pre-manufactured
SHT15 sensor board.

Required Supplies
To get started, the following parts and tools are needed:

•	 ODROID (http://bit.ly/1QPVZa9)
•	 ODROID tinkering kit (http://bit.ly/1LmFcdf)
•	 SHT15 sensor board (http://bit.ly/1qd22ZL)
•	 Wires
•	 Soldering iron and solder

Once you have the SHT15 sensor board, make the follow-
ing connections after soldering wires to it:

•	 Connect VCC to the ODROID’s +3.3V power source
•	 Connect DATA to the ODROID’s GPIO pin #100
•	 Connect SCK to the ODROID’s GPIO pin #97
•	 Connect GND to the ODROID’s GND

This project’s goal is to use an ODROID to read tempera-
ture and humidity data from an SHT15 sensor, as well
as explaining how an ODROID communicates with an

SHT15 over GPIO pins. SHT15 sensors are manufactured by
Sensirion and measure both the temperature and the humidity
of their surroundings. Communication with a sensor occurs
via an ODROID’s GPIO pins. One GPIO pin connects to the
sensor’s SCK pin, which controls how quickly communication
occurs. The second GPIO pin connects to the sensor’s DATA
pin, which is used to send commands and read results. Once
everything has been set up, the ODROID will send a request
to measure the temperature or the humidity via the DATA pin,
wait for the sensor to complete its measurement, then read the
result over the DATA pin.

Connecting the SHT15 sensor
The following diagram outlines how to connect an SHT15

sensor to an ODROID.
There are two things to note. First, data-sheets are a great

place to get information on how to use electronic parts. The
circuit in Figure 1 was copied from the sensor’s data-sheet.

READInG TEMpERATuRE
AnD HuMIDITY FROM An
SHT15 SEnSOR
An InTRODuCTIOn TO THE GpIO InTERFACE
by Jon Petty

SHT15

Figure 1 - SHT15 schematic diagram Figure 2 - SHT 15 Connections

ODROID MAGAZINE 30

http://bit.ly/1QPVZa9
http://bit.ly/1LmFcdf
http://bit.ly/1qd22ZL

$ echo out > \

/sys/class/gpio/gpio100/direction

The next command changes GPIO
pin 100 to read mode.

$ echo in > \

/sys/class/gpio/gpio100/direction

To determine which mode a GPIO
pin is in, you can read the “direction”
value. For example, the following com-
mand determines whether GPIO pin
100 is in read mode or write mode.

$ cat \

/sys/class/gpio/gpio100/direction

The second important file to take
note of is “value”. For GPIO pin 100,
it’s found at /sys/class/gpio/gpio100/val-
ue. Reading and writing binary data is
done using the “value” file. If the pin is
in write mode, the “value” file is used to
output binary data. If the pin is in read
mode, the “value” file is again used, but
in this case it reads binary data from the
pin. To demonstrate this, we can run
a small test to see if the circuit board is
connected correctly. When initially con-
nected, the DATA pin should be HIGH
and the SCK pin should be LOW. To
determine if this is the case, first change
both pins to read mode.

$ echo in > \

/sys/class/gpio/gpio100/direction

$ echo in > \

/sys/class/gpio/gpio97/direction

Next, read the GPIO value for each
pin.

$ cat \

/sys/class/gpio/gpio100/value

$ cat \

/sys/class/gpio/gpio97/value

Pin 100 (DATA) should print a value
of “1”, and pin 97 (SCK) should print a

GPIO pins are located in the /sys/
class/gpio directory:

$ cd /sys/class/gpio

A program called “export” is in this
directory, which initializes connections
with GPIO pins. A pin needs to be ini-
tialized before data can be read from it
or written to it. To initialize a connec-
tion, pass the identification number of
the pin.

In this tutorial, we connected the
SHT15 sensor’s DATA pin to GPIO pin
100, and the sensor’s SCK pin to GPIO
pin 97. These two connections are ini-
tialized with the following two com-
mands.

$ echo 100 > /sys/class/gpio/ex-

port

$ echo 97 > /sys/class/gpio/ex-

port

After these commands complete, you
should find the following newly created
directories:

/sys/class/gpio/gpio100

/sys/class/gpio/gpio97

These directories contain everything
needed to read and write data from their
corresponding GPIO pins. The first im-
portant file to take note of is “direction.”
For GPIO pin 100, it’s found in the file
/sys/class/gpio/gpio100/direction. The
“direction” file changes a pin between
read mode and write mode. You cannot
simultaneously read and write data at
the same time on a single pin. You can,
however, have multiple pins where some
are reading data and others are writing
data.

A pin can be changed to write mode
by writing a value of “out” to the “direc-
tion” file. Likewise, a pin can be changed
to read mode by writing a value of “in”
to the “direction” file. For example, the
following command changes GPIO pin
100 to write mode:

You should end up with something
that looks like Figure 2.

Reading and Writing
GPIO values

GPIO pin stands for general-purpose
input/output pin. How many of them
your ODROID has depends on the
model, but in all cases, they’re used to
read and write binary data. Binary data
is data with only two states, commonly
referred to as HIGH and LOW, or 1 and
0. Physically, a HIGH value means the
pin voltage is +3.3 volts, and a LOW
value means the pin voltage is +0.0 volts.
Note that the voltage level depends on
the device. For example, an Arduino op-
erates from +5.0 volts to +0.0 volts. If
the ODROID is writing data to a GPIO
the pin, it will change the voltage be-
tween +3.3 volts and +0.0 volts depend-
ing on if HIGH or LOW has been writ-
ten. If the ODROID is reading data, it
will measure HIGH when +3.3 volts is
applied to the pin, and LOW when +0.0
volts is applied to the pin.

For this project, we’re going to read
and write data to and from two GPIO
pins. At a high level, this involves the
following steps:

•	 Connect your ODROID GPIO
pins to the sensor

•	 Login to Linux on the ODROID
and navigate to the GPIO directory

•	 Initialize a connection with the
two connected GPIO pins (one for
DATA and one for SCK)

•	 When needed, set the pins to write
mode and write data

•	 When needed, set the pins to read
mode and read data

To get started, login to your
ODROID and open up a command
line terminal. Some of the following
commands need to be executed as root,
which can be done with the following
command:

$ sudo su -

SHT15

ODROID MAGAZINE 31

while transmitting each bit over DATA allows the ODROID
to send measurement requests to the sensor.

The last section of note in the diagram above is the ACK
section, also known as the acknowledgement section. In this
section, the ODROID changes the DATA pin to read mode.
This causes it to read values written by the sensor. If the
SHT15 sensor correctly received the command, it will write
a value of 0 to DATA during the ACK section, then change
DATA to 1. The ODROID continues to control the value of
SCK in write mode, and it takes a moment for the sensor to
record a measurement.

When a measurement has been completed, the sensor
changes the DATA pin to 1. This indicates that the ODROID
is free to read the result back from the sensor. Results con-
sist of two bytes, for a total of 16 bits. Figure 4 shows the
ODROID reading an example measurement result.

As seen in Figure 4, the ODROID reads the number in
two pieces, 00000100 and 00110001. Each of these pieces
are called a byte. This occurs over three sections. The first and
thirds sections transmit the actual bytes. These transmissions
occur bit by bit as the ODROID alternates SCK between 0
and 1 while reading DATA. The second section is another
ACK signal. After the first byte is sent, the sensor changes
DATA to 1. To send an ACK signal, the ODROID needs
to change DATA to 0 and cycle SCK between 0 and 1. This
tells the sensor that the ODROID is ready to read the second
byte. The number read from the sensor is in binary and needs
to be converted to a base 10 number system. Later in this tu-
torial, we will use software to do this. But for now, note that
00000100 00110001 equals 1073.

After a measurement has been recorded and converted to a
base 10 number system, it must be plugged into an equation to
get the final result. If a temperature measurement was taken,
the following equation is used:

T = -39.7 + 0.04x

In this equations, x is the base 10 number recorded from
the SHT15 sensor and T is the final result. For example, a
value of 1617.5 recorded from the sensor after a temperature
measurement indicates a temperature of 25oC. If a humidity
measurement was taken, the following equation is used.

H = -2.0468 + 0.0367x – 0.0000015955x2

value of “0”. If this is not the case, possible places to
troubleshoot the problem are double-checking your wire con-
nections by using the wire diagram above for reference, and
double-checking that the GPIO pins are set to read mode by
checking the “direction” file values:

$ cat /sys/class/gpio/gpio100/direction

$ cat /sys/class/gpio/gpio97/direction

Communicating with the SHT15
At a high level, the following steps result in humidity or

temperature data being read from a sensor:

1. The ODROID sends a request to the sensor to record ei-
ther the temperature or the humidity. Note that the sen-
sor cannot read both the temperature and the humidity
simultaneously. If both measurements need to be taken,
measurements must be done sequentially.

2. The sensor begins taking a measurement, and the
ODROID waits.

3. Once the measurement is completed, the ODROID reads
the result from the sensor.

4. The ODROID converts the measurement into a human-
readable form.

To request that a measurement be taken, the ODROID
sends a binary number to the sensor. For example, the num-
ber 00000011 requests that the temperature be measured, and
the number 00000101 requests that the humidity be measured.
The numbers themselves are sent one bit at a time over the
DATA pin. The SCK pin controls how quickly values are sent.
Take a look at Figure 3, which shows the GPIO pin values
when transmitting the number 00000101 (humidity measure-
ment request).

There are three sections of note in Figure 3. The first is the

transmission start sequence. This is a combination of HIGH
and LOW values transmitted over DATA and SCK that signal
the sensor a command is about to be sent. The second sec-
tion of note is the request number section. In it, the DATA
pin transmits each bit 0-0-0-0-0-1-0-1 and the SCK pin varies
between 1 and 0. The SCK pin controls the timing of how
quickly data is transmitted. When SCK is 0, it indicates that
nothing is ready to be read. When SCK is 1, it indicates some-
thing is ready to be read. Alternating SCK between 1 and 0

Figure 3 - Humidity Measurement Request

Figure 4 - Measurement Reading

SHT15

ODROID MAGAZINE 32

Linux, and what communication proto-
col is used with an SHT15 sensor. If you
want to learn more, I encourage you to
take a look at the PHP scripts and match
up the code to the communication pro-
tocol and equations. You can also look at
the datasheet and learn additional things
out of scope of this article. For example,
if temperatures vary greatly from 25oC,
the recorded humidity needs to be run
through a compensation equation to
make the results more accurate.

References
Datasheet SHT1x. Sensirion, Dec.

2011. http://bit.ly/1x0FfqK

SHT15 ANDROID GAMING

An SHT15 temperature and humidity
sensor can communicate with PHP
scripts through the ODROID’s GPIO pins
to keep your pets looking their best

In this equation, x is the base 10
number recorded from the SHT15 sen-
sor and H is the final result. For exam-
ple, a value of 1073 recorded from the
sensor after a humidity measurement
indicates a humidity of 35.5%.

Using PHP to read
humidity and
temperature data

After glancing through the previous
section, the idea of controlling SCK and
DATA pins through the Linux com-
mand line to request and read measure-
ments might not sound very appealing.
If that’s the case, I wholeheartedly agree
with you! To make this more manage-
able, I wrote two PHP scripts to do the
hard work. To download these scripts,
navigate to a directory where you want
them to be saved, and run the following
commands:

$ sudo apt-get install git php5

$ git clone git@github.com:\

jon-petty/shtx_php_example.git

The first command installs PHP,
which is required to run the scripts. The
command also installed a program called
git, which can be used to download code
repositories. The second command uses
git to actually download the scripts. If
you wish to examine the scripts before
you download them, they can be viewed
at http://bit.ly/1OGGK5Q.

To execute these scripts, first change
directories, then follow the instructions
in the README.md file. It contains
the most up to date instructions on how
to execute the scripts:

$ cd shtx_php_example

$ less README.md

Future projects
At this point, you’ve connected an

SHT15 sensor to your ODROID and are
able to record the humidity and the tem-
perature. You also have an understand-
ing of how GPIO pins are controlled in

FIVE nIGHTS
AT FREDDY’S
JuMp SCARES AnD
CREEpY TOYS
by Rob Roy

Being scared is
lots of fun, and
Five Nights at

Freddy’s is a great game
to play late at night
alone with the lights off!

You have been hired as a nighttime
security guard at Freddy Fazbear’s Pizza.
Your mission is to make it through five
nights of keeping yourself from being
attacked by the animatronic animals
that roam the hallways at night. You
can only view them over the security
cameras mounted through the building.
Consider yourself lucky if you make it
through the final night! There are cur-
rently five increasingly challenging in-
stallments of the game, which may be
downloaded from the Google Play Store
at http://bit.ly/1XSlx8O.

ODROID MAGAZINE 33

http://bit.ly/1x0FfqK
mailto:git@github.com
shtx_php_example.git
http://bit.ly/1OGGK5Q
README.md
README.md
http://bit.ly/1XSlx8O

Getting started
You need at least cmake-version

2.8.11, which is available on most sys-
tems. Simply install the cmake-version
which is provided along with the dis-
tributions, except for Debian Wheezy,
which requires the installation of a more
recent version. The easiest way to do this
is to install the versions from the back-
port repository:

$ sudo apt-get install -t wheezy-

backports cmake

After you made sure to have a suit-
able version of cmake, clone the Solarus
engine:

$ git clone git://github.com/

christopho/solarus

$ cd solarus

You will also need some dev pack-
ages:

$ sudo apt-get install libsdl2-

dev \

 libsdl2-image-dev libsdl2-ttf-

dev \

 libphysfs-dev libluajit-5.1-dev

Solarus uses some c++ functions
which are implemented only in version
4.8, so the 4.7.2 version in Wheezy does
not support them. Verify your gcc ver-

Do you remember the days when
you played Zelda: A Link to the
Past and could not stop playing

until you made it to the end at least one
time? Well, the past still lives on in some
really well made Zelda fan games. This
means new huge worlds and dungeons
waiting to be explored and bad enemies
needing to be conquered, so it is time
to pick up your old 2D sword again. It
is all open source and made by fans for
fans and is not connected to Nintendo
in any way, except from using the story
and some resources of the original Zelda
games.

Not only do the engine and the
games work on the ODROID, but the
Solarus editor can also be used to create
new worlds and adventures. If you like
to tell others your stories and let them
solve your riddles, that might be a nice
option for you.

sion with the command “gcc --version”.
If you have version 4.8 or newer, ignore
this step and continue on to the com-
pilation section. If you use such an old
version of gcc, you have to apply the
following patch, which gets rid of those
newer functions without affecting game-
play. To ensure that the patch is viable,
we will check out a suitable commit. For
more recent commits, you might have to
alter the source code in a similar way as
the patch does.

$ git checkout 4a662991f-

967251101a32bd58dced44f0f3cf300

$ wget -O patch.txt http://paste-

bin.com/raw.php?i=p5qLknQd

$ patch -p0 < patch.txt

After that, you can compile and in-
stall the engine:

$ mkdir build

$ cd build

$ cmake ..

$ make -j5

$ sudo make install

At this time, three full games exist
that make use of the Solarus engine. You
have to create the gamedata and start So-
larus with that data in order to be able
to play.

Before installing any game data, in-
stall glshim so that the games will run

FAn-MADE ZELDA
GAMES
YOuR FAVORITE
FAnTASY wORLD
EXpAnDS
by Oliver Schmitt

SOLARUS

Figure 1 - Link and Zelda

ODROID MAGAZINE 34

github.com/christopho/solarus
github.com/christopho/solarus
patch.txt
http://pastebin.com/raw.php?i=p5qLknQd
http://pastebin.com/raw.php?i=p5qLknQd
patch.txt

Zelda: Mystery of
Solarus DX

This is the game the whole engine
originally was designed for. It is a sequel
to A Link to the Past. You have to pro-
tect the Triforce, save some children and,
in the end, restore peace in Hyrule.

First, clone the game and build the
package:

$ git clone git://github.com/

christopho/zsdx

$ cd zsdx/build

$ cmake ..

$ make -j5

Change the file zsdx so that it looks
like this:

#!/bin/sh

export LD_LIBRARY_PATH=”/usr/lo-

cal/lib/arm-linux-gnueabihf/;/

usr/local/lib/”

solarus_run /usr/local/share/so-

larus/zsdx

Finally, install and start the game:

$ sudo make install

$ zsdx

Once you start the game, the config-
uration will be saved in the folder ~/.so-
larus/zsdx. General settings are saved in
settings.dat. Saved game settings have
their own files, such as the mapping
of your joypad or keyboard. To use an
Xbox 360 controller, run the following
commands prior to starting the game:

$ sudo apt-get install xboxdrv

$ sudo xboxdrv --dpad-only --si-

lent &

Zelda: Mystery of
Solarus XD

Mystery of Solarus XD was started
as an April 1st joke, but it’s still worth a
look, with two huge dungeons and sev-
eral hours of gameplay. It is really fun
to play, as there are not only dungeons

using OpenGLES:

$ cd ~/Downloads

$ mkdir glshim

$ cd glshim

$ wget http://oph.mdrjr.net/

meveric/other/freeorion/libgl-

odroid_20150922-1_armhf.deb

$ sudo apt-get install gdebi

$ sudo gdebi libgl*.deb

Then, link the Mali drivers (on the
XU3 and XU4, use libmali.so instead of
libMali.so):

$ ln -sf /usr/lib/arm-linux-gnue-

abihf/mali-egl/libMali.so /usr/

lib/arm-linux-gnueabihf/libEGL.so

$ ln -sf /usr/lib/arm-linux-

gnueabihf/mali-egl/libMali.so /

usr/lib/arm-linux-gnueabihf/lib-

GLESv1_CM.so

$ ln -sf /usr/lib/arm-linux-

gnueabihf/mali-egl/libMali.so /

usr/lib/arm-linux-gnueabihf/lib-

GLESv2.so

SOLARUS

to explore but also a lot of jokes, and
even Yoda has a guest appearance. If you
have ever wondered what bureaucracy in
Hyrule is like, this game will give you
the answer.

First clone and build it:

$ git clone git://github.com/

christopho/zsxd

$ cd zsxd/build

$ cmake ..

$ make -j5

Change the file zsxd like before so
that it matches the following content:

#!/bin/sh

export LD_LIBRARY_PATH=”/usr/lo-

cal/lib/arm-linux-gnueabihf/;/

usr/local/lib/”

solarus_run /usr/local/share/so-

larus/zsxd

Finally, install and launch the game:

$ sudo make install

$ zsxd

Figure 3 - The Legend of Zelda Mystery
of Solarus screenshot

Figure 2 - The Legend of Zelda Mystery
of Solarus logo

Figure 4 - The Legend of Zelda Mystery
of Solarus XD Logo

Figure 5 - The Legend of Zelda Mystery
of Solarus XD screenshot with Yoda

ODROID MAGAZINE 35

github.com/christopho/zsdx
github.com/christopho/zsdx
settings.dat
http://oph.mdrjr.net/meveric/other/freeorion/libgl-odroid_20150922-1_armhf.deb
http://oph.mdrjr.net/meveric/other/freeorion/libgl-odroid_20150922-1_armhf.deb
http://oph.mdrjr.net/meveric/other/freeorion/libgl-odroid_20150922-1_armhf.deb
libmali.so
libMali.so
libMali.so
libEGL.so
libMali.so
libGLESv1_CM.so
libGLESv1_CM.so
libMali.so
libGLESv2.so
libGLESv2.so
github.com/christopho/zsxd
github.com/christopho/zsxd

The editor may be launched with the
following command:

$ LD_LIBRARY_PATH=”/usr/local/

lib/arm-linux-gnueabihf/;/usr/lo-

cal/lib/” solarus-quest-editor

Good luck in your adventures of
game creation!

Non-Solarus games
Besides the Solarus engine, there are

also other fan games which work on the
ODROIDs. We already know the first
on the list, but we will describe this in
detail because the others can be built the
same way. One such game is Zelda: Re-
turn of the Hylian in its original version.

The story is summarized on the
homepage: “After Link’s victory over
Ganon (in A Link to the Past), no one
knows what Link’s wish to the Triforce
was. But this wish reunified the Light
World and the Dark World and brought
the 7 wise men’s descendants back to life.
Peace was back in Hyrule. Unfortunate-

$ sudo make install

$ zelda_roth_se

Create your own
As mentioned above, you may also

create your own games with the editor
for the Solarus engine. It runs directly
on the ODROID. After you have com-
piled and installed it with the instruc-
tions below, a good starting point for
development is http://bit.ly/1OFrdTJ,
where you may find resource packages
and some nice video tutorials.

To build the Solarus editor, first clone
the repository and prepare your system.
You will need the following develop-
ment packages:

$ sudo apt-get install qtbase5-

dev qttools5-dev qttools5-dev-

tools

On Debian Wheezy, these should be
installed from the backports repository:

$ sudo apt-get install -t wheezy-

backports qtbase5-dev qttools5-

dev qttools5-dev-tools

After that, clone and build:

$ git clone git://github.com/

christopho/solarus-quest-editor

$ cd solarus-quest-editor

$ mkdir build

$ cd build

$ cmake ..

$ make -j5

$ sudo make install

Zelda: Return of the
Hylian SE

A remake of Vincent Jouillat’s game
was also implemented with this engine.
First, clone the source code and build it:

$ git clone --branch solarus-1.5

\

 git://github.com/christopho/

zelda_roth_se

$ cd zelda_roth_se

$ mkdir build

$ cd build

$ cmake ..

$ make -j5

Then, change the file zelda_roth_se
so that it matches the following content:

#!/bin/sh

export LD_LIBRARY_PATH=”/usr/lo-

cal/lib/arm-linux-gnueabihf/;/

usr/local/lib/”

solarus_run /usr/local/share/so-

larus/zelda_roth_se

Finally, install the game:

Figure 6 - The Legend of Zelda Return
of the Hylian Solarus Edition Logo

Figure 7 - The Legend of Zelda Return of
the Hylian Solarus Edition screenshot

Figure 8 - Solarus editor

Figure 9 - Return of the Hylian
game title screen

Figure 10 - Return of the Hylian
gameplay screenshot

SOLARUS

ODROID MAGAZINE 36

http://bit.ly/1OFrdTJ
github.com/christopho/solarus
github.com/christopho/solarus
github.com/christopho/zelda
github.com/christopho/zelda

A
new jumper has been added to the
ODROID-C1+ board on PCB
revision date 2015/09/30 that

enables the OTG power option. When
the jumper is attached, the board may
be powered via USB using a USB OTG
cable. In previous revisions of the board,
this option required desoldering the R94

ly, this wish also resurrected Ganon and
his henchmen. He was preparing his re-
venge, but he couldn’t do anything with-
out the Triforce. One night, a familiar
voice speaks to Link in his sleep…”

The game is available in English, Ger-
man, Spanish and French, which can be
selected by clicking on the country flags
at http://bit.ly/1PDC2G2. Type the fol-
lowing commands to install the English
version (press Ctrl-Enter after launching
to toggle fullscreen):

$ wget http://www.zeldaroth.fr/

us/files/\

 ROTH/Linux/ZeldaROTH_US-src-

linux.zip

$ unzip ZeldaROTH_US-src-linux.

zip

$ cd ZeldaROTH_US-src-linux/src

$ make -j5

$./ZeldaROTH_US

Further adventures
Once you have played through all of

these games and are looking for more,
just visit the homepage of Vincent Jouil-
lat at http://bit.ly/1LAhCI7 and down-
load the other games, which can be
compiled and installed like the examples
above. You may then accompany Link
on his adventures called “On Link Be-
gins,”, “Time to Triumph,” and “Navi’s
Quest.” Another place to look for new
stuff is the homepage of the Solarus team
at http://bit.ly/1RTgUKv. At least two
community games are already down-
loadable in early versions, and are still in
active development. Good luck on your
journey, and have fun!

SOLARUS OTG JUMPER

ODROID-C1+
OTG JuMpER
SOLDERLESS uSB pOwER
edited by Rob Roy

FIgure 2 - J8 jumper location on the latest revision of the ODROID-C1+

connection, as described in the post at
http://bit.ly/1NBoyon.

The J8 jumper can be removed in
order to give stable access to the device
mode, such as a gadget driver or ADB/
Fastboot interface. For more informa-
tion, please visit the original article at
http://bit.ly/1XLeuUT.

FIgure 1 - Revision 0.4 of the ODROID-C1+ allows the board to be easily powered via USB

ODROID MAGAZINE 37

http://bit.ly/1PDC2G2
http://www.zeldaroth.fr/us/files
http://www.zeldaroth.fr/us/files
ZeldaROTH_US-src-linux.zip
ZeldaROTH_US-src-linux.zip
ZeldaROTH_US-src-linux.zip
ZeldaROTH_US-src-linux.zip
http://bit.ly/1LAhCI7
http://bit.ly/1RTgUKv
http://bit.ly/1NBoyon
http://bit.ly/1XLeuUT

Init Services
As the name implies, the system

server core task is to initialize the vari-
ous system services that need to be run
and made available. Failure to start these
services will stop the whole Android sys-
tem will from booting up, forcing it into
what is known as a ”boot loop,” which is
a situation where you see the boot ani-
mation over and over again.

The following list shows the services
that are made available by the system
server, some of which are used by user
applications. You can use the service list
provided by the adb command to print
out the services that have been initialized
by the system.

0 sip: [android.net.sip.

ISipService]

1 phone: [com.android.inter-

nal.telephony.ITelephony]

2 iphonesubinfo: [com.android.

internal.telephony.IPhoneSubInfo]

3 simphonebook: [com.android.

internal.telephony.IIccPhoneBook]

4 isms: [com.android.internal.

telephony.ISms]

5 media_router: [android.me-

dia.IMediaRouterService]

6 print: [android.print.

IPrintManager]

7 assetatlas: [android.view.

IAssetAtlas]

8 dreams: [android.service.

dreams.IDreamManager]

9 commontime_management: []

10 samplingprofiler: []

11 diskstats: []

….....

37 statusbar: [com.android.

In this article, we are going to take
a look at the Android system serv-
er. The system server is the main

internal application that takes care of
initializing a number of services, such as
running the necessary hardware system
services that are available on your device,
initializing the package manager service
(which takes care of package manage-
ment such as upgrading, installing, and
removing.apk files), and many more im-
portant tasks. Failure in starting up the
system server will make Android go into
a boot loop and render your device use-
less. Different versions of Android have
different services, so for this article, I
am going to discuss Kitkat 4.4.2 for the
ODROID-C1.

Life after Zygote
The application that initiates the

system server process is called Zygote,
which is invoked during the bootup init
process. You can learn more about Zy-
gote from ODROID January edition at
http://bit.ly/1MOtlH5. The code re-
sides inside ZygoteInit.java, as shown in
Figure 1. This particular code snippet is
responsible for starting up system server.

internal.statusbar.IStatusBarSer-

vice]

38 device_policy: [android.

app.admin.IDevicePolicyManager]

39 lock_settings: [com.an-

droid.internal.widget.ILockSet-

tings]

40 mount: [IMountService]

….....

50 alarm: [android.app.IAlarm-

Manager]

51 consumer_ir: [android.hard-

ware.IConsumerIrService]

52 vibrator: [android.

os.IVibratorService]

….....

64 procstats: [com.android.

internal.app.IProcessStats]

65 activity: [android.app.IAc-

tivityManager]

66 package: [android.content.

pm.IPackageManager]

67 schedul-

ing_policy: [android.

os.ISchedulingPolicyService]

75 SurfaceFlinger: [android.

ui.IsurfaceComposer]

The number of services grows with
each version of Android. In the fol-
lowing list, you can see services that are
made available to user applications in
KitKat (http://bit.ly/1X3EchG):

WINDOW_SERVICE (window)

The top-level window manager in which
you can place custom windows. The re-
turned object is a WindowManager.
LAYOUT_INFLATER_SERVICE (layout_in-

flater)

A LayoutInflater for inflating layout re-

ANDROID DEVELOPMENT

AnDROID DEVELOpMEnT
InSIDE THE SYSTEM SERVER
by Nanik Tolaram

Figure 1 - ZygoteInit.java

ODROID MAGAZINE 38

WIFI_SERVICE (wifi)

A WifiManager for management of Wi-
Fi connectivity.
WIFI_P2P_SERVICE (wifip2p)

A WifiP2pManager for management of
Wi-Fi Direct connectivity.
INPUT_METHOD_SERVICE (input_method)

An InputMethodManager for manage-
ment of input methods.
UI_MODE_SERVICE (uimode)

An UiModeManager for controlling UI
modes.
DOWNLOAD_SERVICE (download)

 A DownloadManager for requesting
HTTP downloads
BATTERY_SERVICE (batterymanager)

A BatteryManager for managing battery
state
JOB_SCHEDULER_SERVICE (taskmanager)

A JobScheduler for managing scheduled
tasks
NETWORK_STATS_SERVICE (netstats)

 A NetworkStatsManager for querying
network usage statistics.

Did you notice that a smaller num-

ber of services are shown in the second
list than the first list? The reason is that
the SDK only provides services that are
useful for the developer in order to build
the Android app that they want to cre-
ate. However, since Android is open
source, you can create your own SDK
and expose other services to your app
developer for use in your device. Figure
2 shows the code flow that eventually
starts the system server.

We are going to look at two core ser-
vices that are crucial for Android devel-
opers. The failure of these services will
render an application inoperable.

Activity Manager
This is one of the crucial services

that most Android developers depend
on. Execution of applications via the
Activity lifecycle is controlled inside this
service. Creating, resuming, destroying,
and other Activity-related operations are
performed here. The normal way of ob-
taining this service from Android appli-

sources in this context.
ACTIVITY_SERVICE (activity)

An ActivityManager for interacting with
the global activity state of the system.
POWER_SERVICE (power)

A PowerManager for controlling power
management.
ALARM_SERVICE (alarm)

 A AlarmManager for receiving intents at
the time of your choosing.
NOTIFICATION_SERVICE (notification)

A NotificationManager for informing
the user of background events.
KEYGUARD_SERVICE (keyguard)

 A KeyguardManager for controlling
keyguard.
LOCATION_SERVICE (location)

A LocationManager for controlling loca-
tion (e.g., GPS) updates.
SEARCH_SERVICE (search)

 A SearchManager for handling search.
VIBRATOR_SERVICE (vibrator)

 A Vibrator for interacting with the vi-
brator hardware.
CONNECTIVITY_SERVICE (connection)

A ConnectivityManager for handling
management of network connections.

ANDROID DEVELOPMENT

cation is by using the following API call:

ActivityManager am =

(ActivityManager)getActivity().

getSystemService(

Context.ACTIVITY_SERVICE);

Using the Activity Manager, you can
access information such as memory and
currently running processes. More in-
formation about the Activity Manager
may be found at http://bit.ly/1N80KhR.
Internally, this service stores information
for all currently running Android appli-
cations inside the device such as security,
permissions, process information (name,
date, and size), memory information
and more.

SystemUI

This service is not made available to
the application layer, since it’s an internal
service that is important to the Android
framework. If you have been using An-
droid for some time, you have probably
seen the error shown in Figure 3.

When you get this kind of error, An-
droid will enter into a “soft reboot” state
where the whole framework will get re-
started as soon as you hit the OK but-
ton. As the name implies, the System UI
perform many critical operations while
providing necessary services for user in-
teraction such as notification, power and
volume. Internally, the system UI spins
off a number of different services that
work in harmony. Figure 4 shows some
of the services that are launched when it
is run.

Figure 3 - Error message and confirma-
tion dialog when the System UI crashes

Figure 2 - Code flow that initiates the
system server

Figure 4 - Services that are launched
when the System UI is run

ODROID MAGAZINE 39

Please tell us a little about yourself.
My name is Saleem Almajed. I am 22 years old, and live in

a small country called Bahrain. I’ve always been in love with
technology. I like everything about computers, smartphones,
and operating systems.

How did you get started with computers?
My teacher in primary school, while he was teaching me

basic computing skills, saw that I had a talent to be something
in the future. He insisted to my mother that “Saleem has so
much potential to be an IT expert, please follow my advice and
get him a PC.” So she did, and I started playing with comput-
ers since childhood. I got my first Linux operating system after
two years of using Windows ME, when I found an article say-

MEET An ODROIDIAn
SALEEM ALMAJED (@XEOSAL)
EMERGInG TECHnOLOGY EXpERT
AnD AVID MuSICIAn
edited by Rob Roy

ing that I could actually order an Ubuntu installation CD for
free, thanks to Canonical.

What attracted you to the ODROID platform?
I was introduced to the ARM embedded computer world

through the Raspberry Pi. After using it for about a month, I
decided to look for alternatives, and that’s when I read about
the ODROID-C1. It proved to be much better for my pur-
poses, especially the dual USB 2.0 buses, Mali GPU, better
CPU and RAM. I also liked that there were other, more pow-
erful ODROIDs available. I was able to learn a lot about these
little computers and their specifications by using them and ex-
ploring the ODROID forums, and that’s when I decided to
support HardKernel.

How do you use your ODROIDs?
I use them mostly as desktop replacements for software,

operating system and kernel development purposes. I also use
them as media centers, local servers and retro emulators for my
younger brother.

Which ODROID is your favorite?
The ODROID-C1.

Although he looks like he’s having fun, Saleem is really thinking
about all the projects that he can build with his ODROID-C1

MEET AN ODROIDIAN

Saleem is very talented when it comes to electronics

ODROID MAGAZINE 40

Your Odrobian Jessie pre-built community image is very popular.
What motivated you to create the image?

All my life, I was reading and learning from experts on the
Internet, and lately I’ve been wondering if I had become good
enough to be the one that help other people instead. I just
wanted to believe in myself by creating something that people
can actually use.

What innovations would you like to see in future Hardkernel prod-
ucts?

I wish that HardKernel would create a custom built SOC
for their ODROIDs. I am sure that would open a whole new
world of possibilities. My dream is to make ARM embedded
computers as customizable as possible. I would also like to see
upgradable RAM and PCI-E in future models.

What hobbies and interests do you have apart from computers?
I enjoy playing guitar, listening to music, singing and writ-

ing songs, and reading about everything revolutionary such as
science, technology and gadgets. I also like watching movies
and building DIY projects, like amplifiers and other electron-
ics.

What advice do you have for someone want to learn more about
programming?

As long as you believe in yourself, you can do anything. Set
goals for yourself and start doing it, and you will be amazed at
how far you’ve gone after only a couple months.

Saleem enjoys playing guitar when he’s not busy programming

MEET AN ODROIDIAN COMMUNITY WIKI

COMMunITY wIKI
COnTRIBuTE TO
THE EXpAnDInG
ODROID KnOwLEDGE BASE
by Rob Roy

Hardkernel has re-
cently set up a
great resource for

ODROIDians to contrib-
ute their knowledge to a
community wiki, available
at http://wiki.odroid.in.
It is intended to comple-
ment the official Hardkernel wiki at http://bit.ly/1R6DOgZ,
and is useful for posting your tips, community image links,
projects, and anything else that might be beneficial to the
Hardkernel community.

If you’d like to participate, click on the “Request Account”
button in the top right, and include your ODROID forum
username in the “Personal Biography” section. For comments,
questions and suggestions related to the new wiki, please visit
the original forum thread at http://bit.ly/1QDMNoT.

ODROID MAGAZINE 41

http://wiki.odroid.in
http://bit.ly/1R6DOgZ
http://bit.ly/1QDMNoT

