
Year Three
Issue #27
Mar 2016

Half-Life on ODROID • Real Time Kernel • System memory with zRAM

• EXAGEAR Desktop for ODROID

• MQTT Basics: Learn how to enable
IoT messaging across devices

ODROID
Magazine

64-Bit
A new generation of ARM:

Processing

ODROID
Magazine

ODROID-C2
The cutting edge

What we stand for.
We strive to symbolize the edge of technology,
future, youth, humanity, and engineering.

Our philosophy is based on Developers.
And our efforts to keep close relationships with
developers around the world.

For that, you can always count on having the quality
and sophistication that is the hallmark of our products.

Simple, modern and distinctive.
So you can have the best to accomplish
everything you can dream of.

We are now shipping the ODROID-U3
device to EU countries! Come and visit
our online store to shop!

Address: Max-Pollin-Straße 1
85104 Pförring Germany

Telephone & Fax
phone: +49 (0) 8403 / 920-920
email: service@pollin.de

Our ODROID products can be found at
http://bit.ly/1tXPXwe

http://hardkernel.com
mailto:service@pollin.de
http://bit.ly/1tXPXwe
http://pollin.de

EDITORIAL

ODROID Magazine, published monthly at http://magazine.odroid.com, is your source for all things ODROIDian.
Hard Kernel, Ltd. • 704 Anyang K-Center, Gwanyang, Dongan, Anyang, Gyeonggi, South Korea, 431-815
Hardkernel manufactures the ODROID family of quad-core development boards and the world’s first ARM big.LITTLE single board computer.
For information on submitting articles, contact odroidmagazine@gmail.com, or visit http://bit.ly/1ypImXs.
You can join the growing ODROID community with members from over 135 countries at http://forum.odroid.com.
Explore the new technologies offered by Hardkernel at http://www.hardkernel.com.

The long-awaited 64-bit ODROID-C2 is finally here! Featur-
ing 4K video, 2GB RAM, Gigabit ethernet, and a powerful
S905 Amlogic processor, it offers cutting-edge power at a

reasonable cost. It’s available for $40 USD from the Hardker-
nel store at http://bit.ly/1fbE9ld. To learn more about the C2,

and to download pre-built operating
systems such as Android and Ubun-
tu, visit the new ODROID-C2 wiki
page at http://bit.ly/1Trq5Ef. One of

the exciting new peripherals available
for the ODROID-C2 is the oCAM, an

advanced USB 3.0 camera that can be used in
OpenCV projects. DoYoon Kim details how to

easily set up a simple hand tracking and surveil-
lance system using open source software.

The popular ODROID-C0 can be used in conjunction with MQTT to cre-
ate ioT devices, as shown by Venkat in his latest hardware tinkering article. Tobias
continues his gaming series with Half Life, Andrew shows us how to use a real-time
kernel to optimize your application’s efficiency, Christopher presents a project on add-
ing a backlight to the ODROID-VU7 display, Adrian helps us enhance our Linux terminal
using Byobu, and Justin delves into Exagear to run Window programs on your ODROID.

http://ameridroid.com
http://magazine.odroid.com
big.LITTLE
mailto:odroidmagazine@gmail.com
http://bit.ly/1ypImXs
http://forum.odroid.com
http://www.hardkernel.com
http://bit.ly/1fbE9ld
http://bit.ly/1Trq5Ef

Manuel Adamuz, Spanish Editor
I am 31 years old and live in Seville, Spain, and was born in Granada. I am married to a wonderful woman and have
a child. A few years ago I worked as a computer technician and programmer, but my current job is related to quality
management and information technology: ISO 9001, ISO 27001, and ISO 20000. I am passionate about computer
science, especially microcomputers such as the ODROID and Raspberry Pi. I love experimenting with these com-

puters. My wife says I’m crazy because I just think of ODROIDs! My other great hobby is mountain biking, and I
occasionally participate in semi-professional competitions.

Andrew Ruggeri, Assistant Editor
I am a Biomedical Systems engineer located in New England currently working in the Aerospace industry. An 8-bit
68HC11 microcontroller and assembly code are what got me interested in embedded systems. Nowadays, most proj-
ects I do are in C and C++, or high-level languages such as C# and Java. For many projects, I use ODROID boards,
but I still try to use 8bit controllers whenever I can (I’m an ATMEL fan). Apart from electronics, I’m an analog
analogue photography and film development geek who enjoys trying to speak foreign languages.

Venkat Bommakanti, Assistant Editor
I’m a computer enthusiast from the San Francisco Bay Area in California. I try to incorporate many of my interests
into single board computer projects, such as hardware tinkering, metal and woodworking, reusing salvaged materials,
software development, and creating audiophile music recordings. I enjoy learning something new all the time, and
try to share my joy and enthusiasm with the community.

Josh Sherman, Assistant Editor
I’m from the New York area, and volunteer my time as a writer and editor for ODROID Magazine. I tinker with
computers of all shapes and sizes: tearing apart tablets, turning Raspberry Pis into PlayStations, and experimenting
with ODROIDs and other SoCs. I love getting into the nitty gritty in order to learn more, and enjoy teaching oth-
ers by writing stories and guides about Linux, ARM, and other fun experimental projects.

Nicole Scott, Art Editor
I’m a Digital Strategist and Transmedia Producer specializing in online optimization and inbound marketing strate-
gies, social media management, and media production for print, web, video, and film. I manage multiple accounts
with agencies and filmmakers, from web design and programming, Analytics and Adwords, to video editing and
DVD authoring, and help clients with the all aspects of online visibility. I own an ODROID-U2 and a number
of ODROID-U3s, and loos forward to using the latest technologies for both personal and business endeavors. My

web site can be found at http://www.nicolecscott.com.

James LeFevour, Art Editor
I’m a Digital Media Specialist who is also enjoying freelance work in social network marketing and website administra-
tion. The more I learn about ODROID capabilities, the more excited I am to try new things I’m learning about. Being
a transplant to San Diego from the Midwest, I am still quite enamored with many aspects that I think most West Coast
people take for granted. I live with my lovely wife and our adorable pet rabbit; the latter keeps my books and computer

equipment in constant peril, the former consoles me when said peril manifests.

Bruno Doiche, Senior Art Editor
Bruno went to Vegas to get married and enjoy his hard earned vacations. He enjoyed it a lot, but got back to our beloved

magazine absolutely happy to see that our Hardkernel folks have released the ODROID-C2 into the wild, with great reviews.
It finally giving him the opportunity to give the Gemini Rocket cover a go!

He also was super happy when he saw the guest list for his wedding ceremony, which listed Billy Corgan, Depeche Mode,
the Victoria Secret model Candice Swanepoel and many other famous guests. But, in the end, it was just elaborate shenanigans

from his sister-in-law that was kidding with him and his fiancée (now wife). In the end, the marriage was great and enjoyable.

OUR AMAZING ODROIDIAN STAFF:

Rob Roy, Chief Editor
I’m a computer programmer in San Francisco, CA, designing and building web applications for local clients on my
network cluster of ODROIDs. My primary languages are jQuery, Angular JS and HTML5/CSS3. I also develop pre-
built operating systems, custom kernels and optimized applications for the ODROID platform based on Hardkernel’s
official releases, for which I have won several Monthly Forum Awards. I use my ODROIDs for a variety of purposes,

including media center, web server, application development, workstation, and gaming console. You can check out my
100GB collection of ODROID software, prebuilt kernels and OS images at http://bit.ly/1fsaXQs.

http://www.nicolecscott.com
http://bit.ly/1fsaXQs

INDEX

MqTT - 21

SMarT kIoSk - 11

bYobu - 12

zraM - 19

exagear - 16

real TIMe - 25

MeeT an odroIdIan - 29

Toner reSeT - 27

odroId-c2 - 23

Super eYeS - 8

half lIfe - 15

vu7 backlIghT - 6

Have you ever wanted to control the backlight on the
ODROID-VU7 using the digital GPIO on the
ODROID-C1? In this article, I will detail how to add

a digital control for the backlight using only one transistor and
two resistors. The digital switch can complement the existing
hardware switch or bypass it completely.

Note that this is a semi-permanent modification and some
soldering is required. Please be warned that, neither Hardker-

nel nor I would be responsible to rectify any mishaps resulting
from this exercise. Also, the Hardkernel warranty would be
null and void on the ODROID-VU as a result of following
these steps, since the hardware is being modified. Figure 1 il-
lustrates the completed circuit diagram schematic.

Locate the “On/Off” backlight switch on the back of the
display in the top left corner next to the 3 ports. Start by snip-
ping the middle pin of the hardware switch. The cut should be
somewhere near the middle. Create a complete disconnect by
bending the snipped ends away from each other. The middle
pin to be cut is shown in Figure 2.

At this point, you need to decide whether you want to by-
pass the switch or retain full use of it. If use of the hardware
switch is retained, the screen will turn off when the switch is
in the “Off” physical position, irrespective of the state of the
GPIO pin. If the switch is disabled, the digital control will be
the only way to turn the display on or off. Make sure to follow
standard safety procedures for yourself and the device during
the soldering step.

In either case, solder one wire on the emitter side to the
bottom half of the PCB middle pin (blue wire). To retain the
use of the switch, solder the red wire (collector side) to the top

ODROID-VU7
BACKLIGHT
ADDInG A DIGITAL
COnTROL SYSTEM
by christopher dean

VU7 BACKLIGHT

figure 1 - odroId-vu7 digital backlight switch schematic

figure 2 - Middle pin to be cut, of the hardware switch

ODROID MAGAZINE 6

half of the middle pin. On the other hand, to bypass the the
hardware switch, solder the red wire (collector side) to the pin
on the “On” side. Study figure 3 well before proceeding.

Figure 4 illustrates the state of the device for the case where
the use of the switch is retained.

Using the illustrations and listed components, solder to-
gether the transistor (2n3904) and the resistors (1K & 100K
ohm - ½ watt) on a proto-board. You can use a screw ter-
minal as indicated in Figure 1, or solder the wires from the
hardware switch directly to the transistor. Then, add a male or
female header for the pull-down and signal pins, as appropriate
to your use-case. Devote enough time to this step to ensure
circuit accuracy and the absence of electrical shorts. It is rec-
ommended to wire-wrap and test the circuit before you solder
it. Also, note that the transistor is likely to get very hot during
use, so be sure to add an IC heatsink or another passive cooling
option to prevent it from burning up. Figure 5 shows the result
of steps performed so far.

VU7 BACKLIGHT

figure 3 - closeup of
the hardware switch
modification

figure 4 - Soldering is done to keep the switch

Optionally, as the last step, mount the transistor board onto
the back of the LCD panel and run the jumper wires to the C1.
For testing, instead of toggling the transistor with the GPIO,
you can also use pin 1 (3.3V power) to force the backlight to

come on. Choose a GPIO pin and test using the pin to toggle
the backlight. I used pin 7 (GPIO #83) in my test.

figure 5 - adding passive cooling

figure 6 - Mount the transistor board onto the lcd panel

ODROID MAGAZINE 7

An affordable, yet powerful camera module is now avail-
able! When you’re looking for a camera module for
an ODROID, you might be interested in a peripheral

vision camera. However, it’s almost certain that the price for
such a camera will be higher than the price of the base devel-
opment board. Naturally, the question that comes to many
people is: why not just use a cheap webcam instead?

Sure you can, but a normal webcam has very limited abili-
ties and lacks modularity. In other words, there is no flexibil-
ity or configurability for that simple webcam. First of all, one
key thing that cheap webcams lack is the ability to change the
camera’s lens to suit your particular need. This is a large dis-
advantage, since the lens determines the field of view and the
focal length. Because webcams are made for video chatting,
they have a short focal length and a small field of view. This
is because a camera only needs to be focused on your face for
video chatting, which is normally located close to the camera.
In many projects, you have to take a picture of an object that
is far from the camera, or you may need to widen the field of
view far beyond the range of a normal webcam. Furthermore,
in a more serious application, you might need to have a camera
with a shutter, however you will rarely find a webcam that sup-
ports this functionality.

Most webcams are made to be used with minimum hassle
and configuration. This becomes a problem when need to con-
trol the camera’s parameters, such as auto exposure. To process
the image data properly, you need to keep the exposure time
constant. However, webcams will typically have automatic
modes, such as auto expose, that prevents manual manipula-
tion and severely limits the camera’s controllability.

Another issue with most webcams is the interface between
the camera module and the host board. One might think that,
for most webcams, USB 2.0 interface is sufficient, and that
there is no need to spend more money on a camera with a faster
interface. Unfortunately, we encounter two major limits due to

SUpER
EYES
HAnD TRACKInG AnD
SURVEILLAnCE wITH THE OCAM
by doYoon kim

SUPER EYES

this slow data interface. The obvious limitation is on the im-
age size and the frame rate which can be transmitted. Another
hidden yet higher impact problem is with the CPU usage on
the host board. Using a slow communication channel such
as USB 2.0, it is inevitable that there will be compression and
decompression of the video. At a frame size and rate of 1280 x
720 at 30 fps, a lot of CPU power is consumed.

The good news is that we finally have an alternative! A
camera module for ODROID, named the “oCam”, is avail-
able for purchase for USD $99 at http://it.ly/1WsoNbr and
features the following:

M12 lens mount: The user can choose one of the M12
mount lenses that have 5 different focal lengths to use
on their oCam. Optional parts will soon be available to
adapt C or CS mount lenses.

Full controllability: The oCam comes with software
that can control various camera parameters such as resolu-
tion and exposure time. The software’s source code and
binary executable for ODROID are available for download.

USB 3.0 interface: The oCam provides a high speed
USB 3.0 interface which uses DMA to drastically lower
the CPU utilization.

ocam viewer to control camera parameters

ODROID MAGAZINE 8

http://it.ly/1WsoNbr

SUPER EYES

It is available at an amazingly low price.
oCam is fully tested and compatible with UVC (USB Video

Class), which does not require any device driver. This allows
the oCam to run on Windows as well as Linux systems. Out
of the many possible applications of the oCam, the following
two examples best show you what is possible with the oCam.

Hand detection
This application was developed by Simen Andersen, and

uses OpenCV to recognize and track a user’s hand motion.
SimenAndresen’s blog post “Hand Tracking and Recognition
With OpenCV” at http://it.ly/1mOrrMu contains more infor-
mation.

You can run handDetectionCV on an ODROID-XU4 by
following these steps:

configure the odroId-xu4 to access the Internet.
open a terminal, enter the following command, then fol-

low the prompts to install the opencv library:
$ sudo apt-get install libopencv-dev

get the handdetectiondv source, move to the “linux ver-
sion” folder, then build and run the program:
$ make all

$ opencv

Cover the green squares with one hand. Your hand has
been tracked when the green squares turn into white squares
as shown next. You can now move your hand around and see
how the program tracks it.

Video Surveillance System
You can build your own video surveillance system using a

single ODROID-XU4 and multiple oCam cameras. The sur-
veillance system is based on MotionEyeOS, which was devel-

oped and published by Calin Crisan.

MotionEyeOS GitHub: bit.ly/1OlPlVE
MotionEyeOS facebook: on.fb.me/1ounjlP

Simen andresen’s handdetectioncv

hand detection by handdetectioncv

hand tracking and recognition by handdetectioncv

video surveillance system configuration

ODROID MAGAZINE 9

http://it.ly/1mOrrMu
bit.ly
on.fb.me

Set the resolution to 640 x 480 and the framerate to 30fps,
then finish by clicking “Apply”.

Verify that the oCam’s video appears. If you don’t see any
video coming from the oCam, try one of the following trou-
bleshooting solutions:

Disconnect and reconnect the oCam. At the ODROID-
XU4 console, check the connection to the camera using dmesg.

Add more power to oCam using either an external power
supply or a powered USB 3.0 hub.

Connect the oCam to another Linux system to check if the oCam
can transmit images at 640 x 480 resolution at 30fps correctly.

Repeat the connection process for the remaining unat-
tached oCam cameras.

After completing those steps, you will now have your own
surveillance system! The MotionEyeOS’s monitoring screen
will display something similar to the example shown below.

Since MotionEyeOS is accessible through any web browser,
you can view your camera’s images and control them from any-
where as long as the ODROID-XU4 is connected to the In-
ternet. Further information and more detail is available from
MotionEyeOS’s GitHub at http://bit.ly/1VuPBHS.

To set up a surveillance system use the following steps:

• Prepare an ODROID-XU4 eMMC module or micro SD card
and cameras. for the configuration in this example, we used
4 ocam cameras.

• Configure the ODROID-XU4 to access the Internet.
• Download the latest version of MotionEyeOS for the

odroId-xu4 from MotioneyeoS’s github “Supported devic-
es” page (http://it.ly/214XmuP) and unzip the downloaded
oS file.

• Connect the eMMC module or micro SD card to your com-
puter and flash the unzipped image file to it. If you’re unfa-
miliar with this process, please read the odroId flashing
guide at http://it.ly/1Vk9u4o.

• Insert or attach the eMMC module or micro SD card load-
ed with MotioneyeoS into your odroId-xu4.

• Using the Ethernet port, connect the ODROID-XU4 to a
network and power on the odroId.

Booting takes about 1 or 2 minutes. After this, you can log
in to the system, using the default account of ‘admin’ with no
password.

You can access the surveillance system from any web brows-
er using the network address shown in the boot screen of Mo-
tionEyeOS.

Attach an oCam to ODROID-XU4.
From a web browser, log into MotionEyeOS using the ad-

min account. Click “Add Camera” to add the oCam.

SUPER EYES

MotioneyeoS log-in screen MotioneyeoS video surveillance system

MotioneyeoS video surveillance screen

adding ocam to MotioneyeoS system

ODROID MAGAZINE 10

http://bit.ly/1VuPBHS
http://it.ly/214XmuP
http://it.ly/1Vk9u4o

A while back, I created a Python-based script called
SHOWtime (http://bit.ly/1VfzMmW) in order to
display a variety of interesting information on the

ODROID-SHOW attached to a compatible ODROID. The
information includes system statistics, website uptime tracker
and Bitcoin price.

After upgrading to an ODROID-XU4, I created a web ap-
plication using Flask and jQuery that essentially had the same
features listed above, but in addition, is capable of interaction
with the user. A video of the application in use can be seen at
http://youtu.be/kVVemfqK-nI.

The application, including source code, installation and us-
age instructions, can be obtained from http://bit.ly/1TuJx2L.
The application currently displays the following information
through a slide-show/wizard like interface:

• CPU & RAM usage,
• Disk usage,
• Tail, which displays the newest lines of a chosen file such

as the kernel log,
• Bitcoin price, which comes with a fancy graph,
• Bitcoin address tracker, which displays current balance

and most recent transactions,
• Website uptime tracker

Note that the application has to be configured to use the
VIEW_WIDTH and VIEW_HEIGHT parameters, based on
your touchscreen’s supported resolutions. The default should
be correct for ODROID-VU and for the 5” and 7” Waveshare
HDMI touchscreens.

After launching the web application, the user interface
can be accessed through a web browser, by pointing it to
the link: http://<ODROID-device-ip-address>:5210. If ac-
cessed at the device locally, you can use the link: http://
localhost:5210 or http://127.0.0.1:5210. You can config-
ure the views by updating the setting in settings.py, which
is the web application’s python source code file.

If you wish to add more views, you can do so by creating the
following three categories of files:

SHOw ME STUFF
A SMART KIOSK SYSTEM
FOR YOUR ODROID-SHOw
by @matoking

Flask view (showmestuff/views/<your-view-name>.
py): It will contain the HTTP requests required by the Ja-
vaScript application to retrieve the required information,
such as CPU usage.

HTML view (showmestuff/templates/views/<your-
view-name>.html): It will contain the HTML code that
retrieves the view-specific configuration and the Javascript
source code associated with the application.

JS file (showmestuff/static/js/views/<your-view-
name>.js): Contains the app itself that retrieves information
using the HTTP requests provided by the Flask view and
displays them on-screen when the view is active.

For example, if you wish to add a view to display CPU
usage, the phrase <your-view-name> listed above, could corre-
spond to cpu-usage. You may use the uptime view as a simple
example to develop and enable your own view. For comments,
questions and enhancement suggestions, please visit the origi-
nal post at http://bit.ly/1PGHNB8.

References:
http://bit.ly/1VfzMmW

http://flask.pocoo.org/

https://jquery.com/

SMART KIOSK

Showmestuff is a spiffy usage for your ODROID-SHOW

ODROID MAGAZINE 11

http://bit.ly/1VfzMmW
http://youtu.be/kVVemfqK
http://bit.ly/1TuJx2L
settings.py
http://bit.ly/1PGHNB8
http://bit.ly/1VfzMmW
http://flask.pocoo.org
https://jquery.com

fault: Operating system and version, list of active terminals,
un-updated packages, uptime, load, CPU scaling, memory us-
age and the current time and date. We will see in a minute how
we can change them, but first, let’s learn how to get around.

Tips & Tricks
If you’re not familiar with what screen or tmux can do,

here’s a quick refresher. Imagine having access to a single text-
mode terminal, like a dumb terminal, but wanting to have the
multitasking experience you’re used to on a desktop environ-
ment. With screen or tmux you can start as many terminal in-
stances you need (with CTRL+A C) and switch between them
(CTRL+A followed by the terminal number) while having the
advantage of keeping the terminals alive even if you disconnect
from them (just replace CTRL+A with CTRL+B for tmux).
Later, you can attach to any running tmux or screen session
and resume your work. If you’re interested in them, here’s a
comprehensive cheat-sheet (http://bit.ly/1QCPGuU).

Byobu aims to build on top of screen/tmux’s capabilities
and simplify general usage. To get byobu’s key binding cheat

BYOBU
YOUR LInUX TERMInAL
On STEROIDS
by adrian popa

BYOBU

figure 1 - byobu main screen

Do you find yourself spending a lot of time in front of a
terminal? Do most of your windows consist of termi-
nals running half-forgotten command-line programs?

Do you suffer from the pain of having your SSH disconnected
either by timeout or a network failure and having to re-login
and start your session over? Well, I think I have a solution for
your problem—it’s called byobu (http://byobu.co/). By the
way, if you ever forget the name, search for japanese folding
screens instead: (http://bit.ly/1Rm4Mlq)

Byobu is a text based window manager and a terminal mul-
tiplexer. It is designed to enhance tools like GNU Screen or
TMUX. It includes enhanced profiles, convenient keybind-
ings and toggleable system status notifications. I was drawn to
it because of my need to see ODROID system temperature at
all times while operating via SSH so as to prevent overheating.

In order to get started with byobu as quickly and easily as
possible, the best thing to do is view their introductory video.
(http://bit.ly/1QetGEI) It will show you what it can do and
how to do it. This article describes some of the shortcuts and
customizations you can use in the utility.

Getting Started
So, let’s get started. To install byobu in Ubuntu:

$ sudo apt-get install byobu

To start it up, simply run byobu from your terminal:

$ byobu

and you get to your new terminal window. At first look it
looks like a regular shell environment, but you will notice a
status bar below showing you various system parameters and a
slightly modified prompt, like in Figure 1.

The status bar has the following information enabled by de-

ODROID MAGAZINE 12

http://bit.ly/1QCPGuU
http://byobu.co/
http://bit.ly/1Rm4Mlq
http://bit.ly/1QetGEI

sheet, you only need to press Shift+F1
while byobu is running:

I suggest you take your time to play
around and practice creating and switch-
ing windows, as well as practicing with
splitting windows horizontally and ver-
tically to better understand where and
how you can best use the features avail-
able. You don’t need to always keep
splitting windows, but sometimes it can
be useful to keep an eye on a log while
editing a file or running some script.

Since byobu makes a lot of use with
function keys, it may conflict with other
applications such as midnight-com-
mander. To toggle byobu’s key bind-
ings, you can press Shift+F12. While its
key bindings are disabled you can still
use tmux or screen shortcuts to create
or navigate between windows. When
pressing CTRL+A the first time byobu

BYOBU

figure 2 - byobu cheat sheet
be seen in figure 5.

To customize what is shown in the
status bar, go to the menu (F9) and se-
lect, “Toggle status notifications” (Figure
6). If you enable “custom”, you will be
able to add your own scripts that can
output useful information for you. You
can read the man page to get an idea of
what needs to be done in case you want
to develop your own.

For ODROID users I created a few
small custom scripts that display sys-
tem temperature and fan power percent
relative to our own devices. You can
download them from github (http://
bit.ly/1KJh2gH) and install them with
these commands:

$ mkdir -p . byobu/bin

figure 3 - Multitasking in the same
window with splits

figure 4 - Session selector in case of multiple sessions

figure 5 - cycling through status views

figure 6 - Select desired plugins

asks you if you want to turn on “screen”
key-bindings or if you want the default
Emacs line editing instead. You can
change this at a later time by running:

$ byobu-ctrl-a

Now that you’ve played a bit with
byobu, maybe you like it so much that
you want it as a default shell when you
log in. You can do this by invoking
the menu (with F9) and selecting the
last option, “Byobu currently does not
launch at logon (toggle on)”. Now the
next time you log in, your bash startup
scripts will start byobu up for you and
you’ll reconnect automatically to your
session. If you have multiple sessions,
you will be asked where you want to
connect, like in Figure 4. You can con-
nect from multiple places to the same
session and the screen will resize to fit
the smallest window. While this setting
will not cause all new terminal windows
under X11 to start up byobu, the Alt+F1
- Alt+F6 login shells will each start a new
byobu session upon login—which might
be useful for you.

Customizing the
status bar

The status bar provides useful in-
formation about the health and perfor-
mance of your system. By default there
are some predefined “views” which you
can toggle through with Shift+F5, as can

ODROID MAGAZINE 13

http://bit.ly/1KJh2gH
http://bit.ly/1KJh2gH

Have you seen the movie Inception?
By default byobu will detect you’re run-
ning inside byobu (by the magic of en-
vironment variables) and will not con-
nect you to a remote byobu session on
the other end. You will just get a plain
remote shell inside your local byobu.
But if you want to, you can start up the
remote byobu and experience the beauty
of inception - but don’t go too deep, you
may get a headache… Thankfully you
can run screen inside byobu as long as
you use different key bindings.

See? With a little help and some el-
bow grease, the terminal world is not
such a scary place after all!

$ sudo apt-get install bc

$ cd . /byobu/bin

$ wget https://raw. githubuser-

content. \ com/mad-ady/odroid-

byobu/master/20_fan

$ wget https://raw. githubuser-

content. \ com/mad-ady/odroid-

byobu/master/20_temperature

$ chmod a+x 10_*

The fan plugin should work on the
ODROID-XU3 and ODROID-XU4,
while the temperature plugin should
work on all ODROIDs. The number
prefixing the plugin’s name refers to the
frequency at which it’s running, which
in this example is every 20 seconds. Feel
free to edit the plugins and set different
thresholds to change the colors to better
suit your needs. A sample output is in
Figure 7.

Troubleshooting and
common problems

Here are some of the problems I ran
into, and a few tips on solving them.

•	 When starting byobu each sta-
tus update (every second) adds a
new line at the bottom, stacking
multiple updates.

This is caused by terminals not sup-
porting UTF-8 (byobu’s status line uses
some UTF-8 encoded characters which
messes up the row length if not prop-
erly supported by the terminal). To fix
this, if you’re connecting through putty
try this fix (http://bit.ly/1mWHQ1r) or
if you’re SSHing from a different Linux
system, try running byobu with the “C”
locale:

$ LC_ALL=C byobu

figure 7 - custom temperature and fan
plugins

figure 8. byobu with broken uTf-8 support

figure 9 - The bottom byobu window
runs on my pc while the inner window
runs on the odroId

•	 You may notice that scrolling
back with your mouse wheel is
broken.

By default tmux starts with mouse
scrolling off. You can set it to on by
running this command and restarting
byobu:

$ echo ‘set-window-option -g

mode-mouse on’ >> . byobu/. tmux.

conf

Alternatively you can use the key-
board by entering “copy mode” with
CTRL+A [and using arrows or PgUp/
PgDown to scroll through the buffer.

•	 Help! I broke something and
byobu crashes or freezes on start-
up and I can’t login!

If something broke byobu or you
want to login into a standard bash shell
for example you can do this to bypass
the automatic startup scripts:

$ ssh -t your-odroid-ip bash

•	 What happens when you’re in-
side byobu and try to SSH into
a byobu system?

BYOBU

ODROID MAGAZINE 14

http://bit.ly/1mWHQ1r

and Team Fortress. These games were originally just addons
for Half-Life, but later on became their very own stand-alone
games.

Using the following command, you can install the Xash3d
engine from my repository using the Debian Jessie package list:

$ apt-get install xash3d-odroid

Welcome to Black Mesa! I’ve been waiting a long time
to get this awesome game working on the ODROID
platform. This is now possible, thanks to @ptitSeb,

who ported Half-Life to ARM using the Xash3D engine and
other libraries. By using of his version of GLshim, we can now
play Half-Life in 1080p on ODROIDs!

This game is one of a kind, and made the First Person
Shooter genre very popular. Similar to Doom’s release many
years earlier, this game had a major influence on the industry.
There are countless mods for Half-Life, such as Counter Strike

HALF-LIFE
BLACK MESA HAS COME TO THE ODROID pLATFORM
by Tobias Schaaf

HALF-LIFE

figure 2 - one of the robots from the Intro of half-life

figure 1 - black Mesa research facility figure 3 - alien planet with the monsters that invade the
black Mesa research facility

figure 4 - although it’s already 18 years old, the game offers
great visual effects

ODROID MAGAZINE 15

EXAGEAR
GET MORE FROM YOUR ODROID wITH
TEAMVIEwER, SpOTIFY AnD SKYpE
by gaukhar kambarbaeva

The game port offers support for sin-
gle and multiplayer modes for the origi-
nal Half-Life, as well as the Blue Shift
addon. Other mods may work as well,
such as Counter Strike.

To play, you will need version 1.1.1.0
of the original Half-Life. In your Linux
home directory, there will be a folder
named “.xash3d”. Place Half-Life’s
“valve” folder inside of it. Half-Life
mods will also need to be placed in that
folder as well. See the following direc-
tory list as an example:

$ ll /home/odroid/.xash3d/

total 12

drwxr-xr-x 9 odroid odroid 1024

Feb 4 21:18 bshift

drwxr-xr-x 12 odroid odroid 1024

Feb 4 21:38 dmc

drwxr-xr-x 14 odroid odroid 3072

Feb 4 21:42 gearbox

drwxr-xr-x 12 odroid odroid 1024

Feb 4 21:42 ricochet

drwxr-xr-x 15 odroid odroid 3072

Feb 4 21:45 tfc

drwxr-xr-x 17 odroid odroid 3072

Feb 4 23:19 valve

For comments, questions, and sug-
gestions, please visit the original article
at http://bit.ly/1WsqDZF.

HALF-LIFE

x86 apps at an acceptable performance
level. ExaGear Desktop is a state-of-the-
art emulator using binary translation,
which provides small performance over-
head.

One of the best ARM-based device
for running x86 apps is the ODROID-
XU4. Currently, it is the best device
on the market from a performance
perspective. It is based on an octacore
Samsung Exynos 5422 2GHz CPU.
By combining the high performance of
the ODROID-XU4 and the efficiency
of ExaGear Desktop, you can run a lot
of popular x86 applications on an XU4
flawlessly and have a better user experi-
ence.

Additionally, ExaGear Desktop al-
lows you interact with x86 applications
the same way as you interact with ARM
applications. After installation you
can just go to the start menu and run
your application. In this article, we will
provide some real example of ExaGear
performance by installing TeamViewer,
Skype and Spotify.

ExaGear Desktop is a virtual ma-
chine that allows running of
x86 Linux applications directly

on ARM devices simultaneously with
native applications. It also allows you
to run x86 Windows applications on
ARM platforms using Wine (http://bit.
ly/1uHLDzo). The main advantage of
ExaGear is its exceptional performance.
The current version of ExaGear Desktop
provides up to 80% of native ARM ap-
plication performance on average, as de-
scribed at http://bit.ly/20Ks9aK.

Although QEMU allows users to
run x86 apps on ARM-based devices, it
does not deliver good performance. A
lot of x86 application developers do not
take the time to do performance tuning
of their applications, since they develop
with an Intel i7 CPU. If their app works
adequately on that machine, they do
not tune performance further. ARM’s
CPUs have a less peak performance, but
are more power efficient, cheaper and
cooler, and with dramatic overhead of
QEMU (5-10 times), you cannot run

EXAGEAR

figure 1 - exagear
desktop shortcut on
the desktop and x86
terminal

ODROID MAGAZINE 16

http://bit.ly/1WsqDZF
http://bit.ly/1uHLDzo
http://bit.ly/1uHLDzo
http://bit.ly/20Ks9aK

processing:

 teamviewer

This message is only a warning in-
forming you that the TeamViewer pack-
age depends on some other packages
that should be installed. The following
command will help you handle this situ-
ation by installing the dependency pack-
ages and finalizing the TeamViewer in-
stallation:

$ sudo apt-get install -f

Now you can run TeamViewer from
the Start Menu, and use it as if it were
running on x86 machine. Note that
after a system reboot, TeamViewer will
start automatically. If you would like to
start or stop the TeamViewer daemon
manually, make sure to do so from the
x86 terminal.

Installing Skype
To install Skype, open the x86

terminal by launching ExaGear and
running the following commands:

$ sudo apt-get install pulseaudio

$ wget http://download.skype.com/

linux/skype-debian_4.3.0.37-1_

i386.deb

$ sudo dpkg -i skype-debi-

an_4.3.0.37-1_i386.deb

$ sudo apt-get install -f

TeamViewer
To install TeamViewer, run the fol-

lowing commands in the x86 terminal
on your ARM device, just as you would
on an x86 machine:

$ sudo apt-get install wget

$ wget http://download.teamview-

er.com/download/teamviewer_i386.

deb

$ sudo dpkg -i teamviewer_i386.

deb

During the execution of this com-
mand, you might see the following mes-
sage:

Selecting previously unselected

package teamviewer.

(Reading database ... 7705 files

and directories currently in-

stalled.)

Preparing to unpack teamviewer_

i386.deb ...

Unpacking teamviewer (11.0.53191)

...

dpkg: dependency problems prevent

configuration of teamviewer:

 teamviewer depends on liba-

sound2; however:

 Package libasound2 is not in-

stalled.

 ...

 teamviewer depends on libxfixes3;

however:

 Package libxfixes3 is not in-

stalled.

dpkg: error processing package

teamviewer (--install):

 dependency problems - leaving

unconfigured

Errors were encountered while

Installing ExaGear
First, you need to install ExaGear

Desktop on your ODROID-XU4 de-
vice. You can purchase an ExaGear
Desktop license key on the Eltechs web-
site at http://bit.ly/1Q6SxKm. For the
ODROID-XU4, you need to use “Ex-
aGear Desktop for ARMv7”. One li-
cense key is valid for one device for an
unlimited time, with future updates of
ExaGear Desktop available for free.

The most recent version of ExaGear
Desktop is v1.4.1, which includes im-
ages of several x86 systems: Ubuntu
14.04, Ubuntu 15.04, Debian 7, Debian
8. There is an installation script that in-
stalls the x86 image on your host ARM
system, so all that you need to do is to
run the script in the directory containing
the deb packages and the license key.

Since we will be installing a version
of Spotify that currently only works on
Ubuntu 14.04, we will install the guest
x86 Ubuntu 14.04 image by running in-
stall script with following options:

$ sudo ./install-exagear.sh

ubuntu-1404

...

ExaGear is activated.

Done!

Once installation has been complet-
ed, click on ExaGear’s shortcut on your
desktop, or in the System Tools section
of the Start Menu, and the terminal win-
dow with x86 system will open.

You are in x86 environment that can
be checked by running the following
command:

$ arch

i686

It is recommended to update the re-
positories on the first launch of the guest
x86 system, after which you can install x86
application in the x86 terminal window:

$ sudo apt-get update

EXAGEAR

figure 2 - Teamviewer and Skype in
start Menu

figure 3 - Skype with video

ODROID MAGAZINE 17

http://download.skype.com/linux/skype-debian_4.3.0.37-1_i386.deb
http://download.skype.com/linux/skype-debian_4.3.0.37-1_i386.deb
http://download.skype.com/linux/skype-debian_4.3.0.37-1_i386.deb
skype-debian_4.3.0.37-1_i386.deb
skype-debian_4.3.0.37-1_i386.deb
http://download.teamviewer.com/download/teamviewer_i386.deb
http://download.teamviewer.com/download/teamviewer_i386.deb
http://download.teamviewer.com/download/teamviewer_i386.deb
teamviewer_i386.deb
teamviewer_i386.deb
teamviewer_i386.deb
teamviewer_i386.deb
http://bit.ly/1Q6SxKm
install-exagear.sh

ODROID Talk
Subreddit

 http://www.reddit.com/r/odroid

ODROID
Magazine

is on
Reddit!

Once installation has completed, you
can start Skype from the Start Menu,
with text messaging, voice mail and vid-
eo conferencing working flawlessly.

Installing Spotify
Installation instruction for Spotify

is exactly the same as described on the
official Spotify website at http://spoti.
fi/1Wxngk8, except that you are run-
ning the commands on ARM device in
the x86 terminal provided by ExaGear
Desktop.

First, add the Spotify repository sign-
ing key in order to be able to verify the
downloaded packages, add the reposito-
ry, update the list of available packages,
and install Spotify:

$ sudo apt-key adv --keyserver \

 hkp://keyserver.ubuntu.com:80

--recv-keys \

 BBEBDCB318AD50EC6865090613B00F

1FD2C19886

$ echo deb http://repository.

spotify.com \

 stable non-free | sudo tee \

 /etc/apt/sources.list.d/spo-

tify.list

$ sudo apt-get update

$ sudo apt-get install spotify-

client

Now you can enjoy your favourit
music!

Notes
Although the ARM ecosystem is

growing rapidly, there are still many
worthy applications that are not
available on ARM. ExaGear Desk-
top makes possible to run these ap-
plications using an ARM device, and
the combination of ExaGear Desk-
top and the ODROID-XU4 pro-
vides a nice experience.

Figure 4 - Skype and Spotify running on an ODROID-XU4 connected to a Windows
pc via Teamviewer

EXAGEAR

ODROID MAGAZINE 18

http://www.reddit.com/r/odroid
http://spoti.fi/1Wxngk8
http://spoti.fi/1Wxngk8
keyserver.ubuntu.com
http://repository.spotify.com
http://repository.spotify.com
sources.list.d/spotify.list
sources.list.d/spotify.list

Classic swap vs
zRAM

Memory is limited, so compressing
data in memory is also limited. With a
classic swap partition, you could theo-
retically have much more virtual RAM
(swap) then with zRAM, but, as pre-
viously mentioned, this method a lot
slower than zRAM. Therefore, if we
use zRAM, we can have a very fast swap
within certain limits. It’s even possible
to combine zRAM and regular swap.
The zRAM is used first, and if you run
out of zRAM swap space, the regular
swap partition is used.

Overview
While using zRAM is a really good

way to improve swapping of memory, it
should only be done in moderation. If
you read Internet articles about zRAM,
you will find a lot of information, guides
and scripts. One thing that they have
in common is that they recommend us-
ing a maximum of 50% of the available
memory as zRAM swap.

Because zRAM compresses pages
in memory to between 30 and 50% of
the original size, when you have 2GB
of zRAM, that equals about 615 MB in
normal memory. In practice, it’s actu-
ally more since there is some administra-
tive overhead as well. The ODROID-
C1 has a total of 836 MB of available
RAM, which means that only about
200MB would actually be available for
the system to run on. The kernel, driv-
ers, log files, foreground programs, and
background tasks all need to run in that
200MB of memory.

It’s important to set proper values for
the size of the zRAM compression space.
Whenever a program needs data from
zRAM, it can’t use it directly, but has to
decompress the information first. If the

If you’re comparing an ODROID to
a conventional PC or laptop, one of
the big differences is the amount of

memory (RAM) that’s available. While
many computers come with 4-16GB of
RAM or more, ODROIDs have only
2GB, and the C1 and C1+ have only
1GB of RAM. This can quickly lead to
issues, and the programs that you’re run-
ning can get very slow, and might even
crash completely. There is even a chance
that your entire system can crash. A way
to avoid this behavior is to virtually in-
crease the amount of memory available
on the ODROID, using a technique
called swap.

Swap
Swap is a file or a partition on your

system that is used when your memory
is full, in order to prevent a program or
the system from crashing. Originally,
swap was stored on a disk, which is, of
course, much slower than real memory.
Since the disk of an ODROID is an SD
card or eMMC card, this means that it’s
even slower than on a conventional PC,
which can use very fast solid state drives
(SSD).

zRAM
You may have already heard about

zRAM being used on ODROIDs to
improve performance or to virtually
increase the amount of RAM available
to the ODROID. zRAM is a reserved
space in memory that is used as a swap
partition that can compress pages (data)
in memory (RAM). Having the swap
partition in memory is much faster than
storing it on a hard drive or SD card.
The only thing that needs to be done is
to compress the data, which can be done
very quickly by the CPU.

RAM is already full, what needs to be
done is to remove a portion of these 200-
400 MB with active data from memory
by compressing it again, and then de-
compressing the data that is needed for
the current task.

With more data in the zRAM, the
more often these swaps need to be done,
which results in more stress on the CPU,
since the CPU is constantly compressing
and decompressing. In the end, the en-
tire system will only be busy with com-
pressing and uncompressing pages in the
memory. The more memory you have
to compress, as it approaches 200% of
physical memory, the more likely that
currently needed data is within the com-
pressed pages.

Proper usage
No matter what kind of swap you’re

using (classic swap, zRAM partition, or
both), swap is always a “last resort” mea-
sure of the system to prevent failures and
crashes. It’s not meant to be the default
configuration of a system. If you system
only runs with swap, your application
design is flawed. If you want to run a
program that requires at least 2GB of
RAM, it’s not a good idea to run it on
a device that has less than 2GB total, or
even less than 1GB as for the ODROID-
C1. Even if you have classic swap or
zRAM, that means you already know
the program won’t even run without us-
ing swap. The same approach applies to
running many small programs simulta-
neously. If Chromium or FireFox needs
200 MB of RAM for each website that
is open, launching 10 of them at a time
is not a good idea either. Swap should
only be used as a temporary measure.

Using zRAM
You can download the latest ver

USInG zRAM
MEMORY EXpAnSIOn THROUGH COMpRESSIOn
by Tobias Schaaf

ZRAM

ODROID MAGAZINE 19

Threads reports the number of work-
ing threads used to handle zRAM. The
default is 0, which means there as many
threads as there are CPU cores. This will
create smaller zRAM devices under /dev/
zram* equal to the amount of threads
you selected. The amount of available
zRAM will be evenly distributed among
the zRAM devices. By default you have
as many zRAM devices as you have CPU
cores, but you might want to change
this setting. If you’re excessively using
zRAM and also use all cores for zRAM,
that means that in the worst case scenar-
io, your system can’t do any other tasks,
since all cores are busy with zRAM. It’s
up to you to experiment with it, but you
don’t need to touch it if you don’t want
to.

Notes
Although zRAM can be compressed

rather well to 30-50% of the original
size, using large amounts of zRAM is not
recommended. The more zRAM you
use, the less memory (RAM) you have to
actually work with, and the system can’t
work with zRAM directly but needs to
uncompress it first. Which means that
the smaller the amount of real RAM
that you have available, the more often
the system needs to compress and un-
compress pages in zRAM. With large
amounts of zRAM this happens way
more often.

Depending on the compression lev-
el, 2GB of zRAM wouldn’t even fit in
the memory at all, causing application
crashes or halting the entire operating
system. Therefore, leaving enough “real”
memory available for the system to work
with is crucial, and you shouldn’t set the
zRAM value too high. As previously
mentioned, values between 50-100%
of your real memory are probably safe
to use, and higher values are bound to
cause issues over time.

Example
The C1 has a total of 836 MB of

RAM while using a normal desktop im-

age. Compressing the RAM to 30-50%
of the original size mean that you would
have a resulting size of 1672-2787 MB.
As you can see, this already means that
you may only get about 1.4 GB left
over. Depending on the programs you
run, a large amount of zRAM, such as
2GB, would not work and your memory
would be depleted long before you reach
the 2GB limit. Additionally, this would
mean that 100% of your RAM would
have to be compressed, but the system
cannot work on compressed data. It
needs to uncompress the data in mem-
ory in order to work with the data, and
this has to be done in regular RAM.

Assuming we leave an absolute mini-
mum of 136 MB, that leaves us with
700 MB of available RAM for compres-
sion. That means that we have 1400-
2333 MB of zRAM for use, which also
means that we have an absolute mini-
mum of 136 MB to work with. All
programs, drivers, the desktop itself,
and kernel modules have to share 136
MB of memory in order to work. Ev-
ery time a program needs data that’s in
the zRAM, a portion of that 136 MB of
available memory needs to compressed
and moved out of the way, and the data
needed from zRAM needs to be uncom-
pressed. With that small amount of
RAM, your system would be constantly
busy with compressing and uncompress-
ing pages in memory, and your system
gets slower and slower as the data stored
in zRAM increases. Therefore, it’s im-
portant to set the zRAM to an appro-
priate size, since it will slow down your
system, and may create a situation where
the system no longer reacts to input,
since it’s 100% busy with compressing
and uncompressing.

Further reading
More information about zRAM may

be found at http://bit.ly/1Pt80Gr.

sion of my zRAM scripts from http://
bit.ly/1PHq51B and install them with
dpkg:

$ wget http://bit.ly/1PHq51B \

 -O zram-odroid.deb

$ dpkg -i zram-odroid.deb # or

gdebi zram-odroid.deb

After installation, you can start and
stop zram using the following com-
mands:

$ sudo service zram start

$ sudo service zram stop

If you’re using Ubuntu 14.04 or
Debian Wheezy, you can also use the
following command to get detailed in-
formation about your current use of
zRAM:

$ sudo service zram status

If you’re using a systemd based Linux
(such as Ubuntu 15.04, 15.10, 16.04 or
Debian Jessie), use the following com-
mand instead:

$ sudo zramstat

You can configure zRAM by editing
the options in the zRAM configuration
file located at /etc/zram/zram/conf.

Statistics
Fraction is the amount of RAM in

% that should be used as zRAM. The
default is 50, which means that 50% of
available RAM should be used as zRAM.
That’s roughly 900 MB to 1GB on all
devices except the C1, where it’s only
around 418 MB.

The value can be changed to nearly
anything you want: 100 (same amount
of zRAM as you have real memory), 200
(twice as much RAM as your system has
can be used as zRAM) or even 2000 if
you feel a little crazy. Good values for
zRAM are probably between 50 and
100% of available memory.

ZRAMZRAM

ODROID MAGAZINE 20

http://bit.ly/1Pt80Gr
http://bit.ly/1PHq51B
http://bit.ly/1PHq51B
http://bit.ly/1PHq51B
zram-odroid.deb
zram-odroid.deb
zram-odroid.deb

MQTT BASICS
IOT MADE EASY
by venkat bommakanti

rc.local file, which requires root privileg-
es, add the following snippet, then eboot
the system and ensure that the system
clock is accurate:

(/etc/init.d/ntp stop

until ping -nq -c3 8.8.8.8; do

 echo “Waiting to setup ntp

based clock...”

done

ntpd -gq

/etc/init.d/ntp start)&

Please note that Hardkernel will be
releasing an RTC hardware add-on for
the ODROID-C2 in the near future. If
that addon is used, the software fix noted
above will not be required.

Mosquitto
Mosquitto is an open source Eclipse-

project based message broker that imple-
ments the MQTT protocol. It includes
a message publisher and subscriber test
utilities that can be used to validate the
installation.

Type the following command to in-
stall mosquitto and related software add-
ons:

$ sudo apt-get install mosquitto

\

 apparmor mosquitto-clients

Check the installation using the fol-
lowing command:

$ mosquitto -h

mosquitto version 1.4.8 (build

date Fri, 19 Feb 2016 12:03:16

+0100)

mosquitto is an MQTT v3.1 broker.

Usage: mosquitto [-c config_file]

[-d] [-h] [-p port]

MQTT, which stands for MQ
(Messaging Queue) Telemetry
Transport, is an IBM inven-

tion, developed as a machine-to-ma-
chine (M2M) connectivity protocol. It
was designed as an extremely lightweight
publish/subscribe messaging transport,
making it ideal for the Internet of Things
(IoT) domain. This article introduces
you to the basics of MQTT using the
ODROID-C2, which is an ideal, pow-
erful, next-generation IoT brain.

System preparation
Install the latest official Hardkernel

ODROID-C2 image, then upgrade the
system to bring in all updates using the
following commands:

$ sudo apt-get update && \

 sudo apt-get upgrade

$ sudo apt-get dist-upgrade && \

 sudo apt-get install linux-

image-c2

$ sudo apt-get autoremove

Reboot the system and ensure that
the device is functional, including access
to the Internet.

Install pre-requisites
The ODROID-C2 does not include

Real Time Clock (RTC) hardware sup-
port. However, an accurate clock is de-
sirable when dealing with IoT related
events. Towards that end, run the fol-
lowing command:

$ sudo apt-get install ntp

Then, update the system in order to
synchronize the system clock to an NTP
server after bootup and network con-
nectivity is established. Update the /etc/

-c : specify the broker config

file.

-d : put the broker into the

background after starting.

-h : display this help.

-p : start the broker listening

on the specified port.

 Not recommended in conjunc-

tion with the -c option.

-v : verbose mode - enable all

logging types. This overrides

 any logging options given

in the config file.

See http://mosquitto.org/ for

more information.

Mosquitto 1.4.8 happens to be the
latest available release. Launch the bro-
ker in background mode using the fol-
lowing command, which enables ver-
bose logging:

$ mosquitto -d -v

Validate the launch using the follow-
ing command:

$ ps aux | grep mos

mosquit+ 431 0.0 0.1 6340

2348 ? S 13:34 0:01

/usr/sbin/mosquitto -c /etc/mos-

quitto/mosquitto.conf

Test MQTT
First, create a text file to hold the

message payload:

$ cd ~ && mkdir zBU && \

 cd zBU && mkdir mqtt && cd mqtt

$ touch pub.txt

Edit the file and add the following
line, then save the payload file:

MQTT BASICS

ODROID MAGAZINE 21

rc.local
init.d/ntp
init.d/ntp
http://mosquitto.org
mosquitto.conf
pub.txt

figure 1: Message publishing and subscription using Mosquitto and paho tools

Edit the file and add the following
contents, using the ODROID-C2 specif-
ics:

#!/usr/bin/python

Copyright (c) 2014 Roger Light

<roger@atchoo.org>

#

All rights reserved. This pro-

gram and the accompanying materi-

als

are made available under the

terms of the Eclipse Distribution

License v1.0 which accompanies

this distribution.

#

The Eclipse Distribution Li-

cense is available at

http://www.eclipse.org/org/

documents/edl-v10.php.

#

Contributors:

Roger Light - initial

implementation

This shows an example of using

the publish.single helper func-

tion.

#

This is a modified version of

pub-single.py

mqtt_publisher wishing you -

hello mqtt world !

Launch the subscriber and publish a
message using the publisher:

$ mosquitto_sub -t test -d

$ mosquitto_pub -t test -f ./pub.

txt -d

Note that the topic of “conversation”
is test. Figure 1 illustrates the output
in the terminal window where the sub-
scriber was run.

Paho MQTT clients
Paho, another Eclipse-project, pro-

vides open source MQTT clients for
various languages such as Java, C and
python.

Install the paho python client using
the following commands:

$ sudo apt-get install python-pip

$ sudo pip install paho-mqtt

Create a test python publisher using
the following commands:

$ cd ~ && mkdir zBU && cd zBU &&

mkdir mqtt && cd mqtt

$ touch py_pub.py && chmod 755

py_pub.py

By Venkat Bommakanti

import sys

try:

 import paho.mqtt.publish as

publish

except ImportError:

 # This part is only re-

quired to run the example from

within the examples

 # directory when the module

itself is not installed.

 #

 # If you have the module

installed, just use “import paho.

mqtt.publish”

 import os

 import inspect

 cmd_subfolder = os.path.

realpath(os.path.abspath(os.

path.join(os.path.split(inspect.

getfile(inspect.currentframe()))

[0],”../src”)))

 if cmd_subfolder not in

sys.path:

 sys.path.insert(0, cmd_sub-

folder)

 import paho.mqtt.publish as

publish

publish.single(“test”, “Paho

wishing you - hello mqtt world

!”, hostname=”odroid64”)

Then, run the python application:

$ python ./py_pub.py

A future MQTT article will address
the publishing of ambient tempera-
ture, pressure and altitude data using
the ODROID-Weatherboard on the
ODROID-C2 and a Nore-RED solu-
tion.

References
http://mqtt.org/
http://mosquitto.org/
http://bit.ly/24lowgd
http://bit.ly/1SLnQwL

MQTT BASICS

ODROID MAGAZINE 22

mailto:roger@atchoo.org
http://www.eclipse.org/org/documents/edl-v10.php
http://www.eclipse.org/org/documents/edl-v10.php
publish.single
pub-single.py
pub.txt
pub.txt
py_pub.py
py_pub.py
paho.mqtt.publish
paho.mqtt.publish
paho.mqtt.publish
os.path.realpath
os.path.realpath
os.path.abspath
os.path.join
os.path.join
os.path.split
inspect.getfile
inspect.getfile
inspect.currentframe
sys.path
sys.path.insert
paho.mqtt.publish
publish.single
py_pub.py
http://mqtt.org/
http://mosquitto.org/%0D
http://bit.ly/24lowgd%0D
http://bit.ly/1SLnQwL%0D

•	 Ubuntu 16.04 and Android 5.1 Lollipop based on Ker-
nel 3.14 LTS

•	 Board dimensions are identical to the ODROID-C1+

Market comparison
All of the boards compared in Table 1 are Linux-friendly

ARM® single-board computers that cost less than USD$40.

Hardware
The ODROID-C2 has many advantages over the Rasp-

berry Pi 2. The processor is an S905 2GHz quad-core from
Amlogic with 2GB DDR3 RAM, Gigabit Ethernet and IR-re-

The ODROID-C2 is esteemed to be the most powerful
low-cost single board computer available, as well as be-
ing an extremely versatile device. Featuring a quad-core

ARM 64-bit processor, advanced Mali GPU, and Gigabit Eth-
ernet, it can function as a home theater set-top box, a general
purpose computer for web browsing, gaming and socializing,
a compact tool for college or office work, a prototyping de-
vice for hardware tinkering, a controller for home automation,
a workstation for software development, and much more. It
is available for purchase at the Hardkernel store (http://bit.
ly/1Pp4J7w) for USD$40.

Some of the modern operating systems that run on the
ODROID-C2 are Ubuntu, Android, ARCHLinux, and Debi-
an, with thousands of free open-source software packages avail-
able. The ODROID-C2 is an ARM device -- the most widely
used architecture for mobile devices and embedded 64-bit
computing. The ARM processor’s small size, reduced complex-
ity and low power consumption makes it very suitable for min-
iaturized devices such as wearables and embedded controllers.

Specifications
•	 Amlogic ARM® Cortex®-A53(ARMv8) 2Ghz quad core

CPUs
•	 Mali™-450 MP3 GPU (OpenGL ES 2.0/1.1 enabled

for Linux and Android)
•	 H.265 4K/60FPS and H.264 4K/30FPS capable VPU
•	 2GB DDR3 SDRAM
•	 HDMI 2.0 4K/60Hz display
•	 Gigabit Ethernet
•	 40pin GPIOs + 7pin I2S port
•	 eMMC5.0 HS400 Flash Storage slot / UHS-1 SDR50

MicroSD Card slot
•	 USB 2.0 Host x 4, USB OTG x 1 (power + data ca-

pable)
•	 Infrared(IR) Receiver

ODROID-C2
64-BIT LOw-COST
pOwERHOUSE
by Justin lee

ODROID-C2

Table 1 - odroId-c2 vs odroId-c1 vs raspberry pi2

ODROID MAGAZINE 23

http://bit.ly/1Pp4J7w
http://bit.ly/1Pp4J7w

The eMMC 5.0 storage is ~7x faster than the MicroSD
Class-10 card in read tests. The MicroSD UHS-1 card is ~2x
faster than the MicroSD Class-10 card in read tests. The Mi-
croSD UHS-1 card provides a great low-cost option for many
applications! But don’t forget that the new eMMC Black mod-
ules are also very affordable, thanks to the new price cut.

Ethernet
performance

The C2 has an on-board Gigabit Ethernet controller. Our
bi-directional streaming speed was measured at ~900Mbps.
Thanks to the doubled Tx buffer in S905, the upload speed is
twice faster than C1.

Display
As shown in the screenshot below, the 4K HDMI output

renders a gorgeous desktop screen at ultra-high-definition
3840x2160 resolution, ready for the new generation of televi-
sions and monitors.

Notes
There is no Serial Peripheral Interface (SPI) bus or on-board

Real Time Clock (RTC) on the C2, since the S905 SoC doesn’t
offer them. As a results, many SPI-based add-on boards are not
compatible with C2. However, we are considering making an
add-on RTC board. Also, the alpha-blending issue has been
fixed in the S905, so we don’t need to use the DDX blending
any more.

OS images and build guides are available in our WiKi at
http://bit.ly/1Trq5Ef.

ceiver. The size of this computer is still only 85 x 56 mm with a
weight of 40g, and offers silent operation, 2~5W average power
usage, and instant portability, since it fits in a shirt pocket.

One powerful feature of the ODROID-C2 is the row of
GPIO (general purpose input/output) pins along the edge of
the device. These pins are a physical interface between the
board and the outside world. The 40pin interface header in-
cludes PWM, I2C, UART, ADC and GPIO function.

An SD 3.01 standard compatible UHS-1 MicroSD card,
as well as the faster eMMC module, can be ordered with the
ODROID-C2, and arrives with the popular Ubuntu operat-
ing system already installed. Insert the SD card into the slot,
connect a monitor, a keyboard, a mouse, Ethernet and power
cable, and that’s all you need to do to use the ODROID-C2!
Browse the web, play games, run office programs, edit photos,
develop software, and watch videos right away.

The IR receiver and ADC features on the ODROID-C2
offer many options for building great DIY projects.

CPU/RAM performance
We ran several benchmarks to measure the computing pow-

er on the C2. The same tests were performed on the Raspberry
Pi 2, ODROID-C1, ODROID-U3 and ODROID-XU4. The
values of the test results were scaled uniformly for comparison
purposes. The computing power of the C2 was measured to be
~2-3 times faster than the latest Raspberry Pi 2 thanks to the
2Ghz Cortex-A53 cores and much higher memory bandwidth.
The high-performance 2GB DDR3 RAM is an additional ad-
vantage allowing most programs to run smoothly on the C2.

Storage performance
The C2 can boot from a MicroSD card or an eMMC mod-

ule, which is selected using an easy-access hardware switch.
The MicroSD interface supports the higher performance UHS-
1 mode as well. File access of a 512MB file (read/write) on
two different storage options shows distinct performance dif-
ferences.

ODROID-C2

figure 1 - cpu/raM benchmarks graph

figure 2 - 4k desktop screenshot

ODROID-C2

ODROID MAGAZINE 24

http://bit.ly/1Trq5Ef

“PREEMPT_RT” stands for Pre-
emptive Real Time. The standard Linux
kernel after version 2.6 is partially pre-
emptive by default. A kernel that is
preemptive has the ability to change the
task that the CPU is focused on. The
CPU can be working on one task and
then be told to switch its focus tempo-
rarily to another task. Once that other
task is completed, focus is restored to the
previous task. One task being switched
for another is called context switching.
Tasks are given a priority which is used
to determine which task is more impor-
tant and should get the CPU’s focus. A
low priority task, such as background
wifi scanning, will get interrupted fre-
quently as higher priority tasks come up.
Conversely, a task with high priority will
get much more time from the CPU.

One important note is that a task can
hold its place with the use of a spinlock.
This means even if a higher priority task
comes along, the task with the spin-
locked task will remain in focus. Fig-

Recently, ODROID forum
user @chlorisdroid (http://bit.
ly/1PIuRIR) posted a preemp-

tive Real Time (RT) Linux 3.10 kernel
for the ODROID-C0, C1, and C1+.
The forum thread, available at bit.
ly/1QAF0af, features GitHub links to
the modified kernel source and related
infomation. With the recent release of
the ODROID-C0, which is a develop-
ment board aimed at the Internet of
Things (IoT) and portable use, a real-
time Linux kernel offers a great advan-
tage.

This article will detail what exactly a
real time Linux kernel is. I hope that
when you’re finished reading it, you will
be as excited as I am for all the advan-
tages that an RT Kernel can bring to the
ODROID-C0, C1, andC1+. You may
be wondering, if a real time Linux ker-
nel is so great, why isn’t it the default
Linux kernel that Hardkernel provides?
The simple answer is that although both
standard and real time kernels are very
similar, they serve different uses.

What’s in a name
The first step to understanding what

this modified real time kernel offers is to
understand its name. The full title used
on the forum post to describe the kernel
was “Real Time Linux Kernel 3-10-80-
rt88 PREEMPT_RT”. The main part of
interest is at the end “PREEMPT_RT”.
The numbers in the middle are the ver-
sion information.

ure 1, courtesy of embeddedlinux.org.
cn, shows an example of a low priority
task (Task 1), which gets interrupted by
a higher priority task (Task 2). Task 2
is then overtaken by a high priority task
(Task 3). Once the higher priority task
(Task 3) is completed, the next highest
task takes control (Task 2). The same
situation is seen between Task 2 and
Task 3.

Real Time is the most important part
of the kernel’s description, which sets
it apart from a normal kernel. A Real
Time Operating System (RTOS) is a
system that uses time constraints and
deadlines for task completion. The main
use for an RTOS is to be deterministic,
which means that the OS will do what
you want at the time that you want it
to happen. However, keep in mind this
does not mean that an RTOS is faster,
or that it will have better throughput at
task completion than a non-RTOS. In
fact, the opposite is true.

Steven Rostedt, a maintainer of the

REAL TIME
LInUX KERnEL
THE ODROID-C0’S BEST FRIEnD
by andrew ruggeri

REAL TIME

figure 1: Spinlock of a low priority task

ODROID MAGAZINE 25

http://bit.ly/1PIuRIR
http://bit.ly/1PIuRIR
bit.ly
bit.ly
embeddedlinux.org.cn
embeddedlinux.org.cn

two terms commonly used to refer to how a processes behave
in a RTOS: hard, and soft. Hard real time means if a task does
not finish within its deadline then major problems or complete
failure will or have occur. With Soft Real Time if a task is
not completed within its time constraint minor or negligible
problems will occur. The Linux kernel, after 2.6, is only setup
to handle soft deadlines, The PREEMPT_RT patch adds the
ability for hard deadlines as well.

How it works
The PREEMPT_RT patch works by changing the behavior

of a few key elements. The patch aims to be fully preemptive,
beyond what the normal kernel considers preemptive. This
means that the spinlocks, which can stop a context switch, do
not make sense if the goal is to be fully preemptive. Spin-
locks in the RT kernel are treated as mutexes instead, and so
lose their ability to lock a task. Additionally, critical sections
marked with rwlock_t and spinlock_t are also not preemptive.
The final major change is to the behavior of interrupts, which
run as threads when fired. More technical details on the func-
tionality of the RT patch can be found in the links at the end
of this article.

The cleanest example of when to use an RTOS comes from
Abraham Silberschatz in his book Operation System Concepts:
“A real-time system is used when rigid time requirements have
been placed on the operation of a processor or the flow of data”.
With that in mind, it’s easy to see why an RTOS can be found
in such a variety of places and device, such as aircrafts, trains,
small MP3 players, and quadcopters. Any application where
you might find the need for time sensitive tasks is a candidate
for using an RTOS.

Further reading
2013 presentation at the ELC by Steven Rostedt
http://bit.ly/1Lqz8Pl

Real Time Linux Wiki
http://bit.ly/1OQlDcv

@chlorisdroid’s blog
http://blog.georgmill.de

@chlorisdroid’s Real Time Linux forum post
http://bit.ly/1QAF0af

Preemptive Real Time Patch, is often quoted as writing “The
more determinism you have, the less throughput you have”
with regard to a Real Time System. Figure 2, courtesy of Altera
(http://bit.ly/1Xu3Vl3), shows the jitter distribution by com-
paring 2 kernels, one with the RT patch and one without. Fig-
ure 3, provided by Red Hat (http://red.ht/24b4oNN), shows
the repsonse time of a given task between an RT and a non-RT
kernel. The statistics on Figure 2 show that the RT kernel has
a significantly lower skew and standard deviation. The small
standard deviation is what makes the RT kernel of interest, as
this shows that timing is very consistent.

Figure 3 also shows the consistency of Real Time kernel la-
tency, where the non-RT kernel (in red) has a range of about
175 microseconds, and the RT tasks (in green) have a more
limited range of about 20 microseconds. When looking at the
typical latency in Figure 3, the non-RT times are commonly
lower as compared to the RT’s times. This is expected since,
as previously mentioned, this is a drawback to the increase in
determinism.

 In a RTOS, a task is given an allotment of time and its pro-
cessing should be completed within that allotment. There are

REAL TIME

figure 3 - latency between an rT and a non-rT kernel

figure 2 - Jitter distribution between an rT and a non-rT kernel

REAL TIME

ODROID MAGAZINE 26

http://bit.ly/1Lqz8Pl
http://bit.ly/1OQlDcv
http://blog.georgmill.de
http://bit.ly/1QAF0af
http://bit.ly/1Xu3Vl3
http://red.ht/24b4oNN

EEPROM pads. The wires reach into
an externally accessible place inside my
printer.

Then, I made a PCB with a socket
for the new DIP EEPROM and a micro-
controller, because I wanted to hook up
the microcontroller to the EEPROM for
occasionally resetting the toner values.
After the PCB was finished, I realized
that I am too lazy to write the microcon-
troller’s program, so I needed another
idea.

Second approach
After extracting the printer’s EE-

PROM, I needed a convenient way to
read and write to it, which is when I
thought of using my beloved ODROID-
C1. After some Internet research, I
found that it is quite easy to hook up
an EEPROM to an SBC like the C1.
I found an article written by someone
who did basically the same thing as I was
planning to do, so I made another small
PCB that connected an EEPROM to my
C1. At the moment, this process is not
as convenient as it could be, because I
need to switch the EEPROM between
my printer and my C1, but it takes less
than a minute to do so.

I wrote an automatic script that cre-
ates a backup of the EEPROM with
time stamp, then resets the values for the
toner count and remaining toner. In or-
der to make the script work for you, first

I created a micro-project for reset-
ting the counter of remaining toner
for my Samsung CLX-3175N laser

printer. Some Samsung laser printers are
shipped with pre-filled starter toner car-
tridges. These cartridges do not have an
individual counter for pages and toner,
so the printer counts these values by it-
self, as long as a cartridges with individu-
al counter chips is not being used.

However, this is a very bad business
practice of Samsung: for each cartridge,
they assume how much toner is used,
and how many pages can be printed with
the remainder. However, if the printer
believes that there is no toner left, it will
refuse to print, no matter how much
toner is actually left.

However, many Samsung printer
models have internal EEPROMS for
storing information, such as the usage
values of all internal components. By
determining which EEPROM addresses
the printer uses to store certain informa-
tion, it’s possible to reset the informa-
tion, which is the goal of my project.

Preliminary design
I wanted to have the reset process be

as convenient as possible. To achieve
this, I decided to remove the internal
SMD EEPROM and replace it with an
external one in DIP. I desoldered the
EEPROM off the printer’s main PCB
and soldered wires to the main board’s

install the dialog application, because I
love fancy DOS-like windows:

$ sudo apt-get install dialog

Then, install a tool to scan the I2C
bus:

$ sudo apt-get install i2c-tools

You can optionally install a hex editor
for doing further research:

$ sudo apt-get install hexedit

Next, download, compile and install
the eeprog tool. There is a modified ver-
sion of the program that has to be used,
because the modified version supports a
“delay” option when performing a write
operation. Download the file from
http://bit.ly/1OkTf0Z and extract it to
your home directory. Then, navigate to
the directory where you extracted the
program and compile it to create an ex-
ecutable program:

$ cd ~/eeprog-0.7.6-tear12

$ make

Load the I2C module:

$ sudo modprobe aml_i2c

$ sudo echo “aml_i2c” >> /etc/

modules

TONER RESET

TOnER RESET
EXTEnDInG THE LIFE OF YOUR
LASER pRInTER
CARTRIDGES
by @Jojo

ODROID MAGAZINE 27

http://bit.ly/1OkTf0Z

Improvements
The script is not very dynamic, since

I only implemented the essential func-
tions for my purposes. In the future, I
could implement a parameter for differ-
ent printers by using different addresses
inside the EEPROM, as well as include
autodetection of the EEPROM. For
comments,and questions, please visit the
original post at http://bit.ly/1U8R4F2.

figures 1 - 3 - The eeproM connected
to the c1

Further reading

Similar project:
http://bit.ly/1QPJidO

Raspberry Pi EEPROM program:
http://bit.ly/1L0mkUF

Hardware design:
http://bit.ly/1RdpzHP

figures 4 - 8 - Screenshots of the toner reset application

After the module has loaded, hook
up the EEPROM to the I2C bus of your
C1, which should be detected at address
0x50 by running the following com-
mand:

$ sudo i2cdetect -y 1

Finally, downloaded my script from
http://bit.ly/1mImpB3, save it to the
same directory that contains eeprog, and
run it:

$ sudo bash EEPROM_Resetter_v1.sh

Choose backup and reset, then plug
the EEPROM back into the printer
again, which allows you to print as much
as you want and only refill the cartridges
when they are actually empty.

TONER RESET

ODROID MAGAZINE 28

http://bit.ly/1U8R4F2
http://bit.ly/1QPJidO
http://bit.ly/1L0mkUF
http://bit.ly/1RdpzHP
http://bit.ly/1mImpB3
EEPROM_Resetter_v1.sh

Please tell us a little about yourself.
My name is Christopher Dean. I have been working

with ODROID development boards for over 4 years. I got
my first ODROID for curiosity. After the release of the
ODROID-U3, I began using them in school projects. Over
the last 8 years, I have studied many aspects of Computer
Software, Simulation, and Hardware design. Currently I
work and own Protoze, which is a technology research start-
up. I am extremely busy and the days are long, but I enjoy
the variety of challenges that owning a business brings. I
live in the beautiful state of Oregon with my amazing wife
Nicole and our four pets, who are like our children: Shel-
don, Peyton, Rogue, and Storm.

How did you get started with computers?
Like most people born during the 1980’s: video games!

My grandpa gave us an old computer with Duke Nukem 2
and other DOS games that I quickly learned how to “ex-
ecute”. Eventually, I moved to Windows 3.1 with a game
called “Raptor: Call of the Shadows” and a Sidewinder Joy-
stick. As I got older, I used computers to do school work
and edit my skating footage. I have been, and always will
be, a PC gamer.

What attracted you to the ODROID platform?
At first, I liked the pure horsepower that the ODROID-

U2 provided at its low cost and small size. Over time, I
was more attracted to the quality of the boards, combined

MEET An ODROIDIAn
CHRISTOpHER DEAn (@TpIMp)
ACCOMpLISHED QT5 DEVELOpER AnD HARDwARE VIRTUOSO
edited by rob roy

with the strength of the community. Without the commu-
nity work and Hardkernel’s official Ubuntu images, I would
have been in over my head.

How do you use your ODROIDs?
I mostly use my ODROIDs for learning. Over the years,

I’ve learned a great deal about Linux on ARM. Now I use
ODROIDs wherever I can! I put them in robots, proto-
types, and anything IoT-related that needs USB, large data,
or heavy GPU workloads, which is a growing demand. I
save a lot of time for my clients by using the ODROID-VU7
and ODROID development boards to turn their product
ideas into tangible early builds. Utilizing ODROID and
Qt5 (QML) allows me to rapidly prototype ideas in weeks
instead of months.

Which ODROID is your favorite?
The ODROID-U2 is my favorite because it was my first

left to right is Storm, Sheldon, rogue, nicole, christopher, peyton

protoze is chris’ venture, and this is his business logo.

MEET AN ODROIDIAN

ODROID MAGAZINE 29

qt developer’s dream desktop

one. However, in terms of function, the C1 and C2 are very
powerful platforms. The C0 in time will likely become my
new favorite, since it provides so much for so little!

Your Qt5 Developer’s Dream pre-built OS image is very popular.
What do you like about Qt5, and what motivated you to create
the image?

Hands down the best thing about Qt is the cross-plat-
form support. In my opinion, C++ is by nature an extreme-
ly powerful, cross-platform, fast language. The developers
of the Qt Project make a great language even better. I have
worked on multiple projects with only Qt as a dependency,
and I don’t believe there exists a faster platform with which
to prototype, and it has far less dependencies than other plat-
forms. My motivations behind the Qt5 Developer’s Dream
is to help others get the most out of their ODROIDs. I
know first hand that being a Qt5 developer is easy and fun,
but building a large software platform like Qt5 can be diffi-
cult for many beginners. Providing an image with pre-built
libraries direct from Qt-Project source allows developers
to try the latest Qt, which is 5.6 beta at the moment, on
ODROID development boards in three easy steps:

• Download the Qt5 Developer’s Dream image
• Flash the image to SD card or eMMC
• Code Less, Create More with Qt5

MEET AN ODROIDIAN

What innovations would you like to see in future Hardkernel
products?

I would like to see more hardware peripheral circuits and
IC’s to extend the ODROID’s ability to interface with more
hardware widgets. Each ODROID currently provides an
amazing chipset for embedded Linux environments, but I
think that the ODROID platform would be even stronger
with more hardware peripherals such as SPI, PWM, high
speed GPIO. I believe any IoT problem that currently ex-
ists can be solved using an ODROID paired with a micro-
controller or programmable logic controller. I personally
have explored the idea of putting the microcontroller unit
(MCU) or field programmable gate array (FPGA) on the
same board as the embedded Linux SOC. This is easier said
than done, and involves lots of research and development
work.

What hobbies and interests do you have apart from computers?
I enjoy skateboarding, video games, open source proj-

ects, and spending time with my family.

What advice do you have for someone wanting to learn more about
programming?

Anyone can write code, but not everyone is cut out to
develop software. Whatever you do, don’t learn code be-
cause you have to. Creating software is like art, because it
helps if your heart is truly in it. If you do want to learn,
decide what kind of software you want to write. If you
want to create an application, a website, a mapping algo-
rithm, or a virus, then do your homework! Learn what
language/layer your development will be at, then learn
about that language. There are so many resources online
and great books written on almost every development lan-
guage. It’s important to understand that learning how to
write code is the beginning step to learning how to write
bad software. There is still even more to learn before you
write “good” software. Be open to criticism, because it can
hurt, but ultimately helps you grow.

chris’ dream schematic for the next odroId

ODROID MAGAZINE 30

