

Build Your Own Home Server: Storing A Large Amount Of
Multimedia Files
 October 1, 2017 By odroidinc.com Linux, Tinkering

Why would you need a network attached storage (NAS)
server at home?

Automatic backup of smartphone data

Manage and share data on the Internet

Stream saved videos

Download and manage Torrents on a
smartphone

Host a personal blog

Enable SSL for security

Required components:

Internet service

A WiFi router

A typical computer or a laptop, such as a
MacBook Pro

ODROID-HC1 and its power supply

MicroSD card for the operating system

LAN cable to connect between WiFi router and
ODROID-HC1

Hard Disk Drive (2.5inch) for my multimedia data

Figure 1 – Home server using ODROID-HC1

You also need a little bit of understanding of the operating
system as well as Open Media Vault
(www.openmediavault.org), which will allow everyone to
install and administrate a Network Attached Storage
without deeper knowledge.

Preparation
First, download Open Media Vault (OMV) for ODROID-HC1
from http://bit.ly/2xogExP to your computer. Refer to the
readme.txt �le for the username and password.

web interface username = admin
web interface password = openmediavault

console/ssh username = root
console/ssh password (3.0.75+) = openmediavault

Figure 2 – Downloaded Open Media Vault image

Next, use a USB adapter with an 8GB microSD card, then
open Etcher (etcher.io) to �ash the operating system, as
shown in Figure 3. Make sure to unzip the .7z �le before
selecting it in Etcher.

Figure 3 – Inserting the USB adapter and microSD card in the
computer

http://www.openmediavault.org/
http://bit.ly/2xogExP

Figure 4 – The unzipped image �le has a di�erent �lename than
the .7z �le

Figure 5 – Etcher allows you to write pre-built images to a microSD
card

General con�guration
Insert the completed Open Media Vault image into the
ODROID-HC1, then slide and insert the hard disk drive to
the SATA connector. Connect the LAN cable from the WiFi
router to HC1 and plug the power supply to turn it on. It
will take approximately 10 minutes for the �rst boot. With
another LAN cable, connect the computer to the same WiFi
router which is connected to the HC1.

Next, download and install Angry IP Scanner
(http://bit.ly/2wCMeII) and scan the IP addresses of the
connected devices. The Hostname is shown as
odroidxu4.local. Open a browser and enter the ODROID-
HC1 address.

Figure 6 – Scanning the local IP addresses to locate the IP address
of the ODROID-HC1

Figure 7 – Logging into the web interface of Open Media Vault

As mentioned above, the default username and password
is in the readme.txt at http://bit.ly/2xogExP.

web interface username = admin
web interface password = openmediavault

Figure 8 – Home screen of the Open Media Vault web interface

Go to “System -> Date & Time” and change the timezone to
your current location, then press “Activate [Use NTP
server] -> Save -> Apply”.

Figure 9 – Updating the date and time in Open Media Vault

You can also change the session timeout to “0” in order not
to be logged out after a certain amount of idle time by
selecting “General Settings -> Session timeout -> 0 -> Save -
> Apply -> Yes”.

Figure 10 – Saving the con�guration changes in Open Media Vault

Next, update the system to the latest version by selecting
“Update Management -> Check Package information ->
Upgrade”, reload the page after the update completes,
then reboot the ODROID-HC1 using the “Reboot” option in
the Open Media Vault web interface.

Figure 11 – Updating to the latest version of Open Media Vault

Figure 12 – The Open Media Vault update has been completed

Figure 13 – The page should be reloaded after the Open Media
Vault update completes

Figure 14 – Select “Reboot” from the Open Media Vault web
interface

Figure 15 and 16 – Ignore the error messages after pressing
“Reboot”

http://bit.ly/2wCMeII
http://bit.ly/2xogExP

Figure 17 – Login to the Open Media Vault web interface after the
reboot has completed

Setting permissions
The hard drive needs to be in ext4 format in order to be
compatible with Open Media Vault. If the �le system of the
hard drive is not ext4, you will need to create a new �le
system, as shown in Figure 17)

Figures 18 – 24 – Formatting the hard drive to ext4 format

After the format has completed, select “Mount” as shown
in Figures 19 and 20.

Figures 25, 26 and 27 – Mounting the newly formatted hard drive

The next step is to register users who have permissions to
transfer data to/from the server.

Figures 28 and 29 – Registering the “odroid” user to be able to
transfer data to/from the server

After the user has been created, create a shared folder by
selecting “Shared Folders -> Add -> Name -> Select Device -
> Set Permissions -> Save”. Each user then needs to be
granted privileges. Grant the user “odroid” shared
read/write folder privileges and save the settings.

Figures 30 and 31 – Creating the shared folder and assigning
individual user privileges

ACL is another type of permission that needs to be
granted, as described at http://bit.ly/2xn98sb. The user
“odroid” needs read/write/execute permissions, and other
users can be given permissions as needed.

http://bit.ly/2xn98sb

Figure 32 – Giving ACL permissions to the “odroid” user

Data transfer using Samba
The server can be shared with the workgroup using Samba
(SMB). Click “Apply” to see the shared folder.

Figures 33, 34 and 35 – Sharing the server using Samba

Note that if you have two or more of the same shared
devices or folders, your computer may rename one for
you. For example, if you have two ODROID-HC1s attached
to the router, it will recognize the �rst as odroidxu4 and
name the second one, odroidxu4–2, to di�erentiate the
two. If you do not see the two automatically, try rebooting
your computer.

Figure 36 – Accessing the shared folder from a networked
computer

Open Finder and check “Shared” to see the odroidxu4
shared server, which is the ODROID-HC1. Click “Connect
As” and enter the name and password which matches the
username and password that was created on the server.

After connecting, �les and folders can be transferred to
and from the ODROID-HC1 server.

Figure 37 – Copying �les and folders to the ODROID-HC1 using
Samba

Data transfer using FTP
File Transfer Protocol (FTP) is a standard network protocol
used for the transfer of coputer �les between a client and
server on a computer network. First, enable FTP on Open
Media Vault as shown in Figure 38.

Figure 38 – Enabling FTP in Open Media Vault

Next, enable the shared folder by selecting “Services -> FTP
-> Shares -> Add -> Enable -> select Shared folder -> Save”.

Figure 39 – Selecting the shared FTP folder in Open Media Vault

After FTP is enabled, �les can be transferred to/from the
server by visiting ftp://192.168.0.111 in a browser, using
the address of the ODROID-HC1 server in place of
192.168.0.111.

Figures 40 and 41 – Visiting the Open Media Vault server via FTP
using Firefox

Figure 42 – Visiting the Open Media Vault server via FTP using
Chrome

Next, install FTP on your smartphone, using an app such as
FTP Sprite for iPhone, or ES File Explorer for Android.

Figures 43 and 44 – Accessing the Open Media Vault server using
FTP on a smartphone

Shutdown
On your Open Media Vault web interface, below the
banner, click the three vertical dots on the right, and select
“Shutdown”.

Figures 45 and 46 – Shutting down the server via the Open Media
Vault menu

When the screen shown in Figure 47 appears, your
operating system has stopped running, and the blue
blinking LED should be o� on the ODROID-HC1. A this
point, you can unplug the power supply and remove the
microSD card. Follow this shutdown procedure anytime

you need to change the hard drive, update the operating
system on the microSD card, or unplug the power. This will
help avoid damaging the ODROID-HC1.

Figure 47 – Post-shutdown screen in Open Media Vault

For comments, questions, or suggestions, please visit the
original article at https://medium.com/p/6a3771d9172.

https://medium.com/p/6a3771d9172

KVM On The ODROID-XU4
 October 1, 2017 By Brian Kim ODROID-XU4, Tutorial

This is a step-by-step guide for enabling KVM on an
ODROID-XU4. This guide is only available in u-boot
odroidxu4-v2017.05 and Linux kernel 4.9.x versions. The
�rst step is to rebuild the kernel. KVM needs the arch timer
instead of MCT (Multi-Core Timer), which is the default
timer of ODROID-XU4 (by exynos5422-odroidxu4-kvm.dtb).
And there are the virtualization related con�gurations in
odroidxu4_kvm_defcon�g �le.

$ sudo apt update

$ sudo apt install git

$ git clone depth 1

https://github.com/hardkernel/linux b

odroidxu44.9.y

$ cd linux

$ make odroidxu4_kvm_defconfig

$ make j8

$ sudo make modules_install

$ sudo cp arch/arm/boot/zImage

/media/boot/zImage_kvm

$ sudo cp arch/arm/boot/dts/exynos5422

odroidxu4kvm.dtb /media/boot/

Modify the boot.ini �le by changing “zImage” to
“zImage_kvm”, and “exynos5422-odrooidxu4.dtb” to
“exynos5422-odrooidxu4-kvm.dtb”

/media/boot/boot.ini

(......)

Load kernel, initrd and dtb in that

sequence

fatload mmc 0:1 0x40008000 zImage_kvm

(......)

if test "${board_name}" = "xu4"; then

fatload mmc 0:1 0x44000000 exynos5422

odrooidxu4kvm.dtb; setenv fdtloaded "true";

fi

(......)

Reboot the ODROID-XU4, then check whether KVM is
enabled after the booting process is �nished:

$ dmesg | grep HYP

[0.096589] CPU: All CPU(s) started in HYP

mode.

[0.777814] kvm [1]: HYP VA range:

c0000000:ffffffff

$ dmesg | grep kvm

[0.777771] kvm [1]: 8bit VMID

[0.777793] kvm [1]: IDMAP page: 40201000

[0.777814] kvm [1]: HYP VA range:

c0000000:ffffffff

[0.778642] kvm [1]: Hyp mode initialized

successfully

[0.778713] kvm [1]: vgicv2@10484000

[0.779091] kvm [1]: vgic interrupt IRQ16

[0.779127] kvm [1]: virtual timer IRQ60

$ cat /proc/interrupts | grep arch_timer

58: 0 0 0 0 0 0 0 0 GIC0 29 Level

arch_timer

59: 0 1857 1412 1345 16986 6933 5162 3145

GIC0 30 Level arch_timer

Figure 1 Virtual Machine architecture

Figure 2 – Virtual Machine architecture

Ubuntu Minimal 16.04.3 Running using QEMU and
KVM/ARM
To follow this section, make sure that KVM is already
enabled, with 4GB or more storage space available. In this
section, we will run the Ubuntu Minimal 16.04.3 image on
the virtual machine using QEMU and KVM/ARM.

To begin, Install qemu-system-arm which is to virtualize
the arm machine and required packages:

$ sudo apt update

$ sudo apt install qemusystemarm kpartx

Next, prepare the guest OS kernel and dtb images. It is
needed to set clock frequency for timer in dts �le by
adding a “clock-frequency = <100000000>;” line in the
timer node).

$ wget

https://www.kernel.org/pub/linux/kernel/v4.x

/linux4.13.tar.xz

$ tar Jxvf linux4.13.tar.xz

$ cd linux

$ nano arch/arm/boot/dts/vexpressv2pca15

tc1.dts

arch/arm/boot/dts/vexpress-v2p-ca15-tc1.dts

timer {

compatible = "arm,armv7timer";

interrupts = <1 13 0xf08>,

<1 14 0xf08>,

<1 11 0xf08>,

<1 10 0xf08>;

clockfrequency = <100000000>;

};

Build and copy zImage and dtb images to the working
directory:

$ make vexpress_defconfig

$ make menuconfig

Enable the block layer —>
[*] Support for large (2TB+) block devices and �les

$ make zImage dtbs j8

$ cp arch/arm/boot/zImage ../

$ cp arch/arm/boot/dts/vexpressv2pca15

tc1.dtb ../

$ cd ..

Prepare Ubuntu minimal root �lesystem image by
downloading the Ubuntu minimal 16.04.3 image and
generate the root �lesystem image from the image.

$ wget

https://odroid.in/ubuntu_16.04lts/ubuntu

16.04.34.9minimalodroidxu4

20170824.img.xz

$ unxz ubuntu16.04.34.9minimalodroid

xu420170824.img.xz

$ sudo kpartx a ubuntu16.04.34.9minimal

odroidxu420170824.img

$ sudo dd if=/dev/mapper/loop0p2 of=ubuntu

minimal16.04.3.img

$ sudo kpartx d ubuntu16.04.34.9minimal

odroidxu420170824.img

Modify the root �lesystem for the guest environment by
removing the ODROID-speci�c �le and con�guration:

$ mkdir rootfs

$ sudo mount ubuntuminimal16.04.3.img

rootfs

$ cd rootfs

$ sudo rm ./first_boot

$ sudo rm ./etc/fstab

$ sudo touch ./etc/fstab

$ cd ..

$ sudo umount rootfs

Run qemu, where the host is Ubuntu Mate 16.04.3 / 4.9.50
kernel, and the guest is Ubuntu Minimal 16.04.3 / 4.13
kernel

$ qemusystemarm M vexpressa15 smp 2

cpu host

enablekvm m 512 kernel zImage dtb

vexpressv2pca15tc1.dtb

device virtioblkdevice,drive=virtioblk

drive file=ubuntuminimal

16.04.3.img,id=virtioblk,if=none

netdev user,id=user device virtionet

device,netdev=user

append "console=tty1 root=/dev/vda rw

rootwait fsck.repair=yes"

Figure 3 – The Host operating system runs the LTS Kernel 4.9.50
while the guest operating system runs the upstream Kernel 4.13

My ODROID-C2 Docker Swarm – Part 2: Deploying a Stack to a
Swarm
 October 1, 2017 By Andy Yuen Docker

In Part 1, I deployed services in my ODROID-C2 cluster
using the Docker command line. It works, but there must
be a better way to do deployment, especially when an
application requires multiple components working
together. Docker 1.13.x introduced the new Docker stack
deployment feature to allow deployment of a complete
application stack to the swarm. A stack is a collection of
services that make up an application. This new feature
automatically deploys multiple services that are linked to
each other obviating the need to de�ne each one
separately. In other words, this is docker-compose in
swarm mode. To do this, I have to upgrade my Docker
Engine from V1.12.6 that I installed using apt-get from the
Ubuntu software repository to V1.13.x. Having already
built V1.13.1 on my ODROID-C2 when I was experimenting
unsuccessfully with swarm mode months ago, as
documented in my previous article, it is just a matter of
upgrading all my ODROID-C2 nodes to V1.13.1 and I am in
business.

The httpd-visualizer stack
The �rst thing I did was to deploy the same applications
(httpd and Visualizer) as in my previous article using
‘docker stack deploy’. To do this, I need to create a yaml
�le. This is actually docker-compose yaml �le version “3”.
This is relative easy to do as data persistence is not
required. Here is the yaml �le:

version: "3"

services:

 httpd:

 # simple httpd demo

 image: mrdreambot/arm64busyboxhttpd

 deploy:

 replicas: 3

 restart_policy:

 condition: onfailure

 resources:

 limits:

 cpus: "0.1"

 memory: 20M

 ports:

 "80:80"

 networks:

 httpdnet

 visualizer:

 image: mrdreambot/arm64dockerswarm

visualizer

 ports:

 "8080:8080"

 volumes:

"/var/run/docker.sock:/var/run/docker.sock"

 deploy:

 placement:

 constraints: [node.role == manager]

 networks:

 httpdnet

networks:

 httpdnet:

Note that the use of “Networks” in the yaml �le is not
strictly necessary. If omitted, dDocker will create a default
overlay network as you will see in a later section. The 2
applications, in this case, do not need to talk to each other

anyway! To deploy it, just change to the directory where
the yaml �le is located and issue the command:

$ docker stack deploy c simplestacks.yml

httpddsv

This creates a stack named httpd-dsv. You can �nd out
regarding the state of the stack by issuing a number of
stack commands as shown in Figure 1.

Figure 1 – httpd dsv stack commands

You can point your browser to the swarm manager or any
swarm node at port 8080 to visualize the deployment
using the Visualizer.
Figure 2 shows a screenshot of the VuShell display for
visualization taken from a previous stack deployment:

Figure 2 – VuShell Visualizer

To undeploy the stack, issue the following command:

$ docker stack rm httpddsv

Migrating my WordPress blog to the swarm
To illustrate a more realistic stack deployment, I decided
that a good test is to migrate my blog to the swarm. This is
useful to me as it enables me to bring up my blog easily to
another environment when disaster strikes. To do this, I
have to do some preparation work:

Create a dump of the WordPress database using
mysqldump to create: mysql.dmp.

Use a text editor to replace all references of my
domain name (mrdreambot.ddns.net) in the
.dmp �le with the swarm manager’s IP address
which is 192.168.1.100.

Tar up /var/www/html directory which contains
scripts and uploaded assets

Pick the docker images to use:
mrdreambot/arm64-mysql and
arm64v8/wordpress.

Armed with the above, I can proceed to create a
docker stack deployment for my WordPress blog.

State persistence using bind-mount volumes
The �rst approach I took was to use host directories as
data volumes (also called bind-mount volumes) for data
persistence. The yaml �le is shown below:

version: '3'

services:

 db:

 image: mrdreambot/arm64mysql

 volumes:

/nfs/common/services/wordpress/db_data:/u01/

my3306/data

/nfs/common/services/wordpress/db_root:/root

 environment:

 MYSQL_ROOT_PASSWORD: Password456

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpressuser

 MYSQL_PASSWORD: Password456

 deploy:

 restart_policy:

 condition: onfailure

 placement:

 constraints: [node.role == manager]

 wordpress:

 depends_on:

 db

 image: arm64v8/wordpress

 volumes:

/nfs/common/services/wordpress/www_src/html:

/usr/src/wordpress

/nfs/common/services/wordpress/www_data:/var

/www/html

 ports:

 80:80

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpressuser

 WORDPRESS_DB_PASSWORD: Password456

 WORDPRESS_DB_NAME: wordpress

 deploy:

 replicas: 3

 restart_policy:

 condition: onfailure

 placement:

 constraints: [node.role == manager]

Figures 3 and 4 show the screenshots for the stack
deployment.

Figure 3 – WordPress bind mount volume deployment

Figure 4 – WordPress running

You have probably noticed that the WordPress site has lost
some of its customized look as the arm64v8/wordpress
docker image does not provide any PHP customization or
libraries.
As mentioned earlier, if you do not de�ne Networks in
your yaml �le, docker creates a ‘wordpress_default’ overlay
network for the deployment automatically. The overlay
network is required such that WordPress can reference the
MySQL database using its name “db” as de�ned in the
yaml �le:

WORDPRESS_DB_HOST: db: 3306

The data volumes warrant some explanation. First thing to
note is that all the host directories used as data volumes
are NFS mounted and accessible to all swarm nodes.

/nfs/common/services/wordpress/db_data:/u01/my330
6/data
The host directory
/nfs/common/services/wordpress/db_data is an empty
directory. It is mapped to the container’s
/u01/my3306/data directory where the MySQL database is
located. How its content is created will be described next.

/nfs/common/services/wordpress/db_root:/root
I pre-populated the host directory
/nfs/common/services/wordpress/db_root with 2 �les:

run.sh – the MySQL startup script which replaces
the one located in the container’s /root directory.
This script is the entry point to the MySQL
container. I changed the script to look for the
mysql.dmp �le located also in /root. If it is there,
import the dump �le into MySQL which will
populate the /u01/my3306/data directory with
data. If there is no mysql.dmp �le, it will do
nothing in additional to the usual processing.

mysql.dmp – the dump �le of my Blog’s MySQL
database

The changes in the run.sh �le compared to the one that
comes with the MySQL docker image are shown below:

...

DMP_FILE=/root/mysql.dmp

...

if ["$MYSQL_DATABASE"]; then

 mysql uroot e "CREATE DATABASE IF NOT

EXISTS `$MYSQL_DATABASE`"

 if [f "$DMP_FILE"]; then

 mysql uroot $MYSQL_DATABASE <

$DMP_FILE

 fi

fi

...

Note that this is required only when you run the container
for the �rst time. Subsequent deployment will not require
this volume mapping as the database will have been set up
during the �rst run. This means that you can comment out
this line in the yaml �le after successfully deploying this
stack once:

/nfs/common/services/wordpress/db_root:/root

/nfs/common/services/wordpress/www_src/html:/usr/
src/wordpress
arm64v8/wordpress initializes WordPress by copying the
contents in its /usr/src/wordpress directory to its
/var/www/html directory on startup if /var/www/html has
no content. By pre-populating the host directory
/nfs/common/services/wordpress/www_src/html with the
content from the tar �le created earlier,
arm64v8/wordpress will initialize WordPress with my
Blog's content. This is required only when you run the
container for the �rst time. This means that you can
comment out this line in the yaml �le after successfully
deploying this stack once:

/nfs/common/services/wordpress/www_src/html:

/usr/src/wordpress

/nfs/common/services/wordpress/www_data:/var/ww
w/html
The host directory
/nfs/common/services/wordpress/www_data is an empty
directory whose content will be initialized by the
arm64v8/wordpress script as described above.

Why not use docker-compose?
You may be wondering why I did not use docker-compose
to run the yaml �le, for example, using once-o�
commands as the docker documentation suggests? The
reason for it is that the docker-compose I installed using
apt-get is version 1.8.0 which does not understand docker-
compose yaml �le version 3 which is required for “docker

stack deploy”! I tried to build the latest version of docker-
compose from source without success. This is the reason I
am not using docker-compose.

State Persistence Using Shared-storage Volumes
Using bind-mount volumes is host-dependent. Use of
shared volumes has the bene�t of being host-
independent. A shared volume can be made available on
any host that a container is started on as long as it has
access to the shared storage backend, and has the proper
volume plugin (driver) installed that allow you to use
di�erent storage backends such as: Amazon EC2, GCE,
Isilon, ScaleIO, Glusterfs, just to name a few. There are lots
of volume plugins or drivers available such as Flocker, Rex-
Ray, etc. Unfortunately, no binaries for those plugins are
available for ARM64 machines such as ODROID-C2.
Fortunately, the inbuilt 'local' driver supports NFS. And it is
the driver I am using for shared volume deployment.
The yaml �le for this is shown below:

version: '3'

services:

 db:

 image: mrdreambot/arm64mysql

 volumes:

 db_data:/u01/my3306/data

/nfs/common/services/wordpress/db_root:/root

 environment:

 MYSQL_ROOT_PASSWORD: Password456

 MYSQL_DATABASE: wordpress

 MYSQL_USER: wordpressuser

 MYSQL_PASSWORD: Password456

 deploy:

 placement:

 constraints: [node.role == manager]

 replicas: 1

 restart_policy:

 condition: onfailure

 wordpress:

 depends_on:

 db

 image: arm64v8/wordpress

 volumes:

/nfs/common/services/wordpress/www_src/html:

/usr/src/wordpress

 www_html:/var/www/html

 ports:

 "80:80"

 environment:

 WORDPRESS_DB_HOST: db:3306

 WORDPRESS_DB_USER: wordpressuser

 WORDPRESS_DB_PASSWORD: Password456

 WORDPRESS_DB_NAME: wordpress

 deploy:

placement:

constraints: [node.role ==

manager]

 replicas: 3

 restart_policy:

 condition: onfailure

volumes:

 db_data:

 external:

 name: db_data

 www_html:

 external:

 name: www_html

Again, the volumes warrant some explanation:

/nfs/common/services/wordpress/db_root:/root
It serves the same purpose as in the bind-mount volume
section. It is needed only when you run the stack for the
�rst time to initialize the MySQL database.

/nfs/common/services/wordpress/www_src/html:/usr/
src/wordpress
It serves the same purpose as in the bind-mount volume
section. It is needed only when you run the stack for the
�rst time to initialize the WordPress content.

db_data:/u01/my3306/data
db_data is a shared volume created outside of the stack
deployment meaning it is created before the yaml �le is
deployed. It is used to store the MySQL database content
and is uninitialized on creation.

www_html:/var/www/html
www_html is a shared volume created outside of the stack
deployment meaning it is created before the yaml �le is
deployed. It is used to store the WordPress content and is
uninitialized on creation.

Creating the shared volumes
You have probably noticed the section in the yaml �le that
reads:

volumes:

 db_data:

 external:

 name: db_data

 www_html:

 external:

 name: www_html

The db_data and www_html shared volumes are created
using the following commands:

docker volume create driver local

 opt type=nfs

 opt o=addr=192.168.1.100,rw

 opt

device=:/media/sata/nfsshare/www_html

 www_html

docker volume create driver local

 opt type=nfs

 opt o=addr=192.168.1.100,rw

 opt

device=:/media/sata/nfsshare/db_data

 db_data

The directories /media/sata/nfsshare/db_data and
/media/sata/nfsshare/www_htm must exist before you
create the volumes. My /etc/exports �le has an entry:

/media/sata/nfsshare

192.168.1.0/255.255.255.0(rw,sync,no_root_sq

uash,no_subtree_check,fsid=0)

To prove that the shared volumes work, I initially deployed
only 1 mySQL and 1 WordPress replica on the Docker
manager and let them initialize the shared volumes.

WordPress shared volume deployment

Then I commented out the 2 lines for WordPress
placement:

placement:

constraints: [node.role ==

manager]

and the 2 bind-mount volumes:

/nfs/common/services/wordpress/db_root:/root

/nfs/common/services/wordpress/www_src/html:

/usr/src/wordpress

Next, I want to deploy 3 replicas of WordPress on multiple
nodes. Since we are using the “local” driver, we have to
create the volumes on each node. As shown in Figure 5, I
used "parallel ssh" to create them on all nodes using just 2
commands. Figure 5 shows the volume and the stack
deployment:

Figure 5 - Creating the volumes on nodes

Figure 6 - WordPress shared volume deployment

I checked that all replicas are using the shared volumes by
using “docker exec -it” to get into the WordPress
containers on the nodes they were running on and
examining the content in the /var/www/html directory to
verify that everything was working.
Under the covers, both approaches use NFS for sharing
among the nodes. However, shared volumes provide a
higher-level host-independent abstraction than bind-
mount volumes. Potentially, you can recreate the shared
volumes using storage backends other than NFS such as
AWS EC2 and Glusterfs. Bind-mount, on the other hand, is
tied to your host �le system which may be di�cult to
migrate to another environment.

Conclusion
I learned something new exploring the use of “docker
stack deploy”. I hope you'll �nd this article useful and
informative. There are still many features such as rolling
updates, Continuous Integration/Continuous Deployment
(CI/CD), blue/green and A/B deployments, just to name a
few, that I am yet to explore using my ODROID-C2 Swarm
cluster. And there are other service orchestration
frameworks such as Kubernetes and Openshift that are
more prevalent in the Enterprise environment than Docker
Swarm Mode. I shall explore additional Docker Swarm
Mode use cases and Swarm Mode alternatives and report
my �ndings in the future when the opportunity arises.

Linux Gaming: Mobile Entertainment System
 October 1, 2017 By Tobias Schaaf Gaming, Linux

Hardkernel has done a great job with releasing new
hardware recently. I saw an opportunity to create my own
mobile entertainment system using a few components
available through Hardkernel. This project is rather easy
and well-suited for beginners, even children.

What you will need
This project is based on the VuShell and components that
can be �t inside the case. In fact, there’s quite a bit of
space in this case, allowing for a variety of di�erent
layouts. For now, I’ll focus on the layout I’m using, but if
you want try this project you can exchange or add
components as you see �t.

ODROID-VuShell (http://bit.ly/2b8lk6a)
As the case for our project, this is an absolute must-have!

ODROID-VU7 Plus (http://bit.ly/2cmKyuN)
You could also use the ODROID-VU7 instead
(http://bit.ly/1NWxgDx) if you want to save a few dollars
or use a screen with slightly less power consumption.

ODROID-C1+ (http://bit.ly/1Upx5yI)
You can also use an ODROID-C2 or XU4. Unfortunately, the
C1 and XU3 won’t work, as they don’t have the necessary
I2S connectors.

The C1+ is probably your best choice, since it uses very
little power and allows you to use a battery pack. The
board powers the VU7 over the USB 2.0 OTG connector, so
only one power plug is needed.

Stereo Boom Bonnet (http://bit.ly/2wbKkyE)
As we want to have sound in our project, to be truly
mobile, this is a must-have.

5V/2A PSU
If you use an ODROID XU4, you’ll need an additional 5V/4A
PSU.

SD card with 8MB or more storage
You could also use an eMMC module, but once assembled
you will no longer be able to reach the eMMC module,
making corrections impossible without disassembling
everything. The SD card, on the other hand, will still be
accessible with tweezers.

Spacers
I got my spacers from other ODROID products I had laying
around, but they can also be bought cheaply on Amazon
(http://amzn.to/2yj4OG8).

Keyboard, Mouse
After the initial setup, these may no longer be needed.

Following the list above, your costs should come to around
$160 (not including your keyboard and mouse, or
shipping).

Figure 1 – The main components for the project laid out together
ready for assembling

There are a couple of other components you might want
to get, but these are completely up to you:

Gamepad (for a better gaming experience)
I suggest a wireless XBox 360 controller with a Wireless PC
Adapter, since one adapter supports up to four controllers,
meaning you won’t have to deal with any cables.

External storage (for storing large amounts of data)
For example, you may want to use a USB thumb drive or
external HDD to store movies or games. If you use a large
SD card (32GB or bigger) you don’t necessarily need one,
but they’re probably easier to exchange than a SD card if
you �nd you need extra storage.

WLAN Module
If you want to connect to a wireless network, you will need
one of these.

UPS3 or any other Battery Pack
A power bank for your cellphone or tablet will also do. This
way, you can make the system entirely mobile so that you
don’t need to have a power plug nearby. A decent power
bank should give you somewhere between 3-5 hours
runtime for the entire system.

Micro USB-DC Power Bridge Board (http://bit.ly/2wbWQ1e)
If you use an ODROID-XU4, this will make sure the power
for the display is constant.

IR Remote Controller (http://bit.ly/1M6UGiR) or any other IR
Remote
The C1+ and C2 come with a IR receiver. If you want to use
it in Kodi, that’s something you can do as well.

http://bit.ly/2b8lk6a
http://bit.ly/2cmKyuN
http://bit.ly/1NWxgDx
http://bit.ly/1Upx5yI
http://bit.ly/2wbKkyE
http://amzn.to/2yj4OG8
http://bit.ly/2wbWQ1e
http://bit.ly/1M6UGiR

Solder Set
This is recommended for advanced users wanting “real”
stereo sound

Software
Before you start to assemble the components, you should
setup your ODROID, install the operating system (I used
my own image ODROID GameStation Turbo for the
ODROID-C1 Series), prepare the boot.ini, and, if you want
to, put games, movies, and whatever on your board. It’s
better to do this up front, as it may be di�cult to do at a
later point if you don’t have a network connection.

Make sure to set the options for the VU7 or VU7 Plus
(depending on your choice of LCD screen) on your boot.ini:

$ setenv m "1024x600p60hz" # 1024x600

$ # HDMI DVI Mode Configuration

$ # setenv vout_mode "hdmi"

$ setenv vout_mode "dvi"

$ # setenv vout_mode "vga"

You can also con�gure the system to load the modules
required for the Stereo Boom Bonnet.

Open a terminal and type the following commands:

$ su

$ echo "sndsocpcm5102 sndsocodroiddac"

>> /etc/modules

After that, you can copy over the games or movies you
want to use, and con�gure EmulationStation, Kodi, and any
other additions to your liking, or you can do this later once
the system is assembled.
You will de�nitely need the boot.ini con�guration at
absolute minimum, or else you won’t see anything on your
screen later.

Assembly
Assembling is rather easy, just follow the step from
Hardkernel on how to assemble the VuShell
(http://bit.ly/2b8lk6a) with some slight modi�cations.

Figure 2 – Attaching the ODROID-C1+ on the back of the Vu7 Plus

Once you attach the screen to the front and add the �rst
side on the board (Step 7) it’s time for some modi�cations.
First, connect the Stereo Boom Bonnet with the board. To
do this, gently bend the parts that hold the speakers until
they come apart and you have the board and the speaker
separated. Unplug the cable for the speakers. It’s best to
connect the cable of the Stereo Boom Bonnet before you
assemble it. Refer to the guide from Hardkernel to make
sure you put the cable on the the correct way
(http://bit.ly/2xuWVjA).

Remove the screw that was added in Step 3 of the VuShell
assembly on the side of the VU7 Plus and replace it with a
couple of spacers. Place the Stereo Boom Bonnet upside
down on top of the spacers. Use the screw you originally
removed to fasten the Stereo Boom Bonnet. Use (4) M3
20mm spacers to lift up the Stereo Boom Bonnet so the
volume slider aligns with one of the holes of the VuShell,
which will later allow you to regulate the volume.

Figure 3 – Stereo Boom Bonnet connected upside down with
spacers over the ODROID-C1+

After you connect the �rst side, you can do the same to the
other side. Please note that the top hole of the C1+ is
normally not connected to the case, as can be seen in Step
5 of assembling the VuShell. If you put a spacer in here,
don’t worry if they are not screwed into a socket. It will
work �ne without it. Once the second line of spacers is
assembled to the C1+ and the Stereo Boom Bonnet, you
can connect the �rst speaker that came with the Stereo
Boom Bonnet.

Align the speaker to one of the holes in the VuShell case. I
used transparent sticky tape to fasten the speaker to the
case for my �rst test. Later, you can super-glue it to the
case. Technically, one speaker is enough to have some
rather good sound, but if you choose, you can connect the
second speaker to one of the other holes on the same
side.

If you want real stereo sound, you’ll need to lengthen the
cable on the second speaker so it can be connected to the
other side of the VuShell. Please note that some soldering
is required, so although it’s rather easy, it should be done
with care, and children should be supervised by an adult.

Figure 4 and 5 – I ran out of 20mm spacers and switched to 10mm.
It doesn’t look pretty. Please use 20mm instead. Don’t be as lazy as
me.

Even with just one speaker attached, the sound should be
good enough to watch movies or play games. I made a
video where I tested video playback with �mpeg
http://bit.ly/2xox1wb.

In this video, I turn the volume up and down using the
slider that is easy to reach thanks to the spacers.

After that I also tried some good old 8-bit sounds by
starting Cave Story from within EmulationStation
(http://bit.ly/2xlDxGo). This also worked perfectly. Only
having one speaker connected was really no big deal.

Advanced Assembly
As you may have noticed, the cable of the second speaker
is too short to reach the other end of the VuShell.
Therefore, I needed to lengthen the cable to be able to
reach the other side of the case. This process is fairly easy
and can probably even be done by children, but only with
adult supervision.

You will need some basic soldering equipment. Mainly just
extra wire, soldering tin, and some heat shrink wire wrap
(http://amzn.to/2wH9edI) if you have it. Unfortunately, I
didn’t have these. It works without it, but it’s better to have
the heat shrink wrap in order to protect the cables once
they’re soldered. You will also need something to cut the
wire. A wire/cable cutter will do nicely, and since the cables
are rather thin, a pair of scissors or even a knife would
probably do as well.

http://bit.ly/2b8lk6a
http://bit.ly/2xuWVjA
http://bit.ly/2xox1wb
http://bit.ly/2xlDxGo
http://amzn.to/2wH9edI

Figure 6 – Soldering equipment and a second speaker

When you have all of the items, you can start by unwinding
the cables close to the speaker to a length of about 5 cm (2
inches). Then cut the wire with the wire cutter and expose
the blank wires.

Figure 7 – Don’t cut the wires too close to the speakers, in case you
have to start over again. Twist the exposed wire-ends together.

Cut two longer wires about 20-25 cm (8-10 inches). I
strongly suggest using di�erent colors for the wires so you
see which cable needs to connect to which other cable.
Make sure the two cables you cut are nearly the same
length. I also suggest using similar thin cables as the
speaker cables. Mine were just slightly thicker and they �t
perfectly.

After cutting the wires, expose the ends by slowly
removing the cover of the cable. Be careful not to cut the
cable in the process. Once that is done, twist the exposed
wires so they hold together. Then, you can apply tin to the
exposed ends cover all exposed ends in a thin layer of tin.
This would also be a good time to apply the heat shrink
wrap to the extension cords (two for each cable). After
that, you can solder the cable ends together. Make sure to
connect the right cables.

Figure 8 and 9 – Combine the ends of the cable to the extension
cords, one side after another.

After you solder one end of the cable, you can connect the
other end to the speaker.

Figure 10 – Both ends are connected and the speaker now has a
nice long cable to work with.

In the end, I twisted the cable like the original cable was
twisted, so it’s easier to handle. This actually took a little
while, but the result was good and allowed for much easier
assembly in the VuShell. However, make sure that you
don’t stress the solder points too much when you twist the
cable, or they may come apart again.

Now would also be a good time to put the heat shrink
wraps over the exposed cable ends and heat them up so
they seal the exposed wires. I tried to do the same with
electrical tape but the cables were too thin to wrap it
around properly. Once you’re done twisting the cable, it
should look like a longer version of of the original cable,
just with some soldering points.

Figure 11 – Make sure cables match up at the end

Now it’s time to put the unit together and place the new
speaker inside the VuShell. When you assemble the
speakers, the speaker connector on the top is for the left
channel and the speaker connector on the bottom is for
the right channel. You can also use some YouTube videos
to test if the left and right speaker are connected in the
right order. You can fasten the left speaker either with
super glue or sticky tape.

Figure 12 – Speakers are assembled and there is still plenty of
room in the case

After that, I turned on the device and tested to see if both
speakers worked right at the start (http://bit.ly/2xuF4ct).
Because there is plenty of room inside the case, you can
add additional components rather easily. As already
shown in the assembly instructions from Hardkernel, there

are already screw holes to place an HDD or power bank
inside, which would make the device entirely mobile.

Figure 13 – This 12500 mA battery should give you 3-5 hours of
mobile entertainment for gaming, watching movies, or listening to
music

You can also easily place an XBox 360 wireless PC adapter
in there together with the power bank. That way, you can
use up to 4 XBox 360 controllers at the same time without
having to add a new cable. This is awesome for controlling
Kodi or EmulationStation without the need for a keyboard.

Conclusion
This was a fun and easy project. Some people are already
enjoying this little console, stating that they are amazed by
the idea and mobility you have thanks to the power bank.
Since the VuShell has a lot of space, this project can have
many di�erent variations depending which extra
accessories you want to put to use. You might even want
to skip the speakers entirely and instead simply use the
Stereo Boom Bonnet’s headphone jack, which would allow
you to play your games on a train ride, or if you’re stuck on
an airplane for several hours.

Although not the biggest screen, it’s good enough to have
a couple of friends sitting next to you to watch some
movies on a �eld trip, or play some friendly or competitive
games on one of the many emulators. Some will prefer the
extra power of an XU4 to seriously play some games for
the PSP, Dreamcast, or N64, while others are �ne with
some Nintendo, Super Nintendo, SEGA Genesis, or other
classics on a C1. Placing it in the kitchen running Android
on an C2 allows you to listen to your favorite music while
cooking. Thanks to the touch screen everything you need
is at the tip of your �nger.

All in all, the options are nearly limitless, and it’s very easy
to do. Even children can build their own console. I
encourage you to give it a try and comment on what you
can do with such an all-in-one system.

http://bit.ly/2xuF4ct

How to Install ArchLinux With Full Disk Encryption on an
ODROID-C2
 October 1, 2017 By @YesDay Linux, ODROID-C2, Tutorial

Full Disk Encryption (FDE) protects our data against
unauthorised access in case someone gains physical
access to the storage media. In this article, I will describe
how to install ArchLinux with Full Disk Encryption on
ODROID-C2. The encryption method is LUKS with XTS key-
size 512 bit (AES-256).

In a nutshell, Full Disk Encryption requires the following:

Encrypting a partition and copying the root
�lesystem to it.

The kernel to include the dm_crypt kernel
module. In our case, this is already included by
default, therefore we won’t need to re-compile
the kernel.

The initramfs to include the dm_crypt kernel
module and the cryptsetup binary. We use a tool
called dracut to generate the required initramfs.
Dracut supports the required functionality via
the additional modules crypt and lvm.

Passing the dracut options for LUKS to the
initramfs via the bootargs property inside
boot.ini. For example, say that in our case, we
want the initramfs to unlock a LUKS volume with
UUID ae51db2d-0890-4b1b-abc5-8c10f01da353
and load the root �lesystem from the device
mapper /dev/mapper/vg-root. To pass these
dracut options we con�gure the following:

sudo nano /boot/boot.ini

setenv bootargs "rd.luks.uuid=ae51db2d0890

4b1babc58c10f01da353 root=/dev/mapper/vg

root rootwait < leave the rest as is >"

Note
A lot of the steps throughout this document involve editing
con�guration �les. To keep the words to the minimum, we
use the above notation as a very concise way to describe
such �le editing steps. The above notation means:

You need to edit the �le /boot/boot.ini with root
privileges (hence sudo nano /boot/boot.ini).
Nano is the command line editor, however feel
free to use another editor of your choice.

Find the line starting with setenv bootargs and
add or edit the con�guration options
rd.luks.uuid=ae51db2d-0890-4b1b-abc5-
8c10f01da353 root=/dev/mapper/vg-root
rootwait. Some �les mentioned throughout this
document might have the corresponding line
being commented out or not present at all. If
that’s the case you will need to uncomment or
append the line into the �le, respectively.

Leave the rest of the line after rootwait as is.

Additionally, for a headless setup, you will need to enable
remote unlocking via SSH as described in “Remotely unlock
the LUKS rootfs during boot using Dropbear sshd” article
at http://bit.ly/2g6qjDv. Last but not least, if you prefer to

use the described functionality out of the box, simply
download the OS image at http://bit.ly/2xR8LDe. Either
way, the current document will provide more technical
details in regards to the underlying components and how
they work together in a Full Disk Encryption environment.

Hardware requirements

ODROID-C2

A Linux box from which you will �ash the OS
image and interact with the ODROID-C2

USB disk with at least 4GB capacity

A microSD card or eMMC module with at least
4GB capacity

(Optional) A USB-UART module kit for connecting
with the ODROID-C2’s serial console. Refer to the
post at http://bit.ly/2fM29BB for instructions on
how to connect along with explanation why the
serial console is highly recommended in this
case.

Flash the OS image and boot ODROID-C2

Flash the OS image to the USB disk by following the
instructions from http://bit.ly/2fGKEik. Replace
/dev/mmcblk0 in the following instructions with the device
name for the microSD card as it appears on your
computer. If mounted, unmount the partitions of the
microSD card:

https://www.kernel.org/pub/linux/utils/boot/dracut/dracut.html#_crypto_luks
http://bit.ly/2g6qjDv
http://bit.ly/2xR8LDe
http://bit.ly/2fM29BB
http://bit.ly/2fGKEik
https://archlinuxarm.org/platforms/armv8/amlogic/odroid-c2

$ lsblk

$ umount /dev/mmcblk0p1

$ umount /dev/mmcblk0p2

Zero the beginning of the microSD card:

$ sudo dd if=/dev/zero bs=1M count=8

of=/dev/mmcblk0

$ sync

Using a tool like GParted, create an MBR/msdos partition
table and two partitions on the microSD card:

ext4 partition with 128M size

lvm2 partition occupying the rest of the space
(no need to format yet)

Next, copy the contents of the /boot directory from the
USB disk into the �rst partition of the microSD card:

$ sudo cp R /media/user/usbdisk/boot/*

/media/user/microsdcardpart1/

Create a symbolic link as a workaround for the hardcoded
boot.ini path of the alarm/uboot-odroid-c2
(http://bit.ly/2xbEdPo):

$ cd /media/user/microsdcardpart1

$ sudo ln s . boot

Then, �ash the bootloader �les:

$ sudo ./sd_fusing.sh /dev/mmcblk0

Determine the UUID of the USB disk:

$ sudo lsblk o name,uuid,mountpoint

NAME UUID MOUNTPOINT

sdb

└─sdb1 2b53696c2e8e4e61a1641a7463fd3785

/media/user/usbdisk

Note that If there are duplicate UUIDs among the
partitions of the USB disk and the microSD card, then
remove the duplicates to avoid future con�icts:

$ sudo tune2fs /dev/sda2 U $(uuidgen)

Con�gure the boot.ini to boot from the USB disk. To do so,
use the UUID from the previous step to con�gure the
boot.ini of the microSD card:

$ sudo nano /media/user/microsdcard

part1/boot.ini

$ setenv bootargs "root=UUID=2b53696c2e8e

4e61a1641a7463fd3785 rootwait "

Unmount, run sync few times, and remove the microSD
card and the USB disk from the Linux box. Plug the
microSD card and the USB disk to the ODROID-C2, then
boot the ODROID-C2 and connect to its serial console. If
you need instructions on how to connect to the serial
console, please refer to the article at
http://bit.ly/2fM29BB.

If all goes, well you should boot into the USB disk. Note
that if root=UUID=2b53696c-2e8e-4e61-a164-
1a7463fd3785 doesn’t work, then try root=/dev/sda1,
root=/dev/sdb1 or whatever device name you see in the
console prior to the failed boot (e.g,. [14.812393] sd
1:0:0:0: [sda] Attached SCSI removable disk). If you are still

having issues try restarting a few times and/or
repositioning the USB disk into a di�erent USB port on the
ODROID-C2. Don’t worry if it seems to be giving you
trouble, as you won’t have to boot to the USB disk again
after the �rst successful boot.

Next, verify that the root �lesystem is mounted from the
USB disk:

$ df h

Change passwords

Change the passwords for the alarm and the root user.
The default credentials are alarm/alarm and root/root.

$ passwd

$ su

$ passwd

Install required packages

$ su

$ pacman Syu

$ pacman S needed sudo python git rsync

lvm2 cryptsetup

(Optional) Setup passwordless sudo for the user alarm:

$ echo 'alarm ALL=(ALL) NOPASSWD: ALL' >

/etc/sudoers.d/010_alarmnopasswd

Install dracut
Install pacaur (http://bit.ly/2yEjAaY):

$ sudo pacman S needed basedevel cower

$ mkdir p ~/.cache/pacaur && cd "$_"

$ cower d pacaur

$ cd pacaur

$ makepkg si noconfirm needed

Install dracut using the pacaur tool:

$ pacaur S dracut

Verify the dracut installation by listing modules

$ dracut listmodules

If the “pacaur -S dracut” command reports an error that
aarch64 architecture is not supported by the package, then
follow these steps to con�gure support for aarch64:

$ cd ~/.cache/pacaur/dracut/

$ nano PKGBUILD # replace `arch=("i686"

"x86_64")` with `arch=("aarch64")`

$ makepkg si noconfirm needed

If the makepkg reports an error like dracut-046.tar …
FAILED (unknown public key 340F12141EA0994D), then
type these commands and try again:

$ gpg fullgenkey

$ gpg recvkey 340F12141EA0994D

Refer to Makepkg signature checking for more details at
http://bit.ly/2wuuBe6.

If the “gpg –full-gen-key” command reports the error Key
generation failed: No pinentry, then follow the below steps

to con�gure gpg as described at http://bit.ly/2yDAJBy and
try again. The gpg-agent needs to know how to ask the
user for the password:

$ nano ~/.gnupg/gpgagent.conf

$ pinentryprogram /usr/bin/pinentrycurses

$ gpgconnectagent reloadagent /bye

If makepkg reports missing dependencies error, then
upgrade the packages and try again.

$ sudo pacman Syu

$ pacaur Syua

Prepare the LUKS rootfs
Encrypt the second partition of the microSD card (see also
Recommended options for LUKS at http://bit.ly/2yF15D2):

$ sudo cryptsetup v y c aesxtsplain64

s 512 h sha512 i 5000 userandom

luksFormat /dev/mmcblk0p2

-v = verbose
-y = verify passphrase, ask twice, and complain if they don’t
match
-c = specify the cipher used
-s = specify the key size used
-h = specify the hash used
-i = number of milliseconds to spend passphrase
processing (if using anything more than sha1, must be
great than 1000)
–use-random = which random number generator to use
luksFormat = to initialize the partition and set a
passphrase
/dev/mmcblk0p2 = the partition to encrypt

Unlock the LUKS device and mount it at /dev/mapper/lvm:

$ sudo cryptsetup luksOpen /dev/mmcblk0p2

lvm

Create primary volume, volume group, and logical volume:

$ sudo pvcreate /dev/mapper/lvm

$ sudo vgcreate vg /dev/mapper/lvm

$ sudo lvcreate l 100%FREE n root vg

Create the �lesystem:

$ sudo mkfs.ext4 O ^metadata_csum,^64bit

/dev/mapper/vgroot

Mount the new encrypted root volume (logical volume):

$ sudo mount /dev/mapper/vgroot /mnt

Copy the existing root volume to the new, encrypted root
volume. With a 1.5GB installation, it completes in about 6
minutes on an average microSD:

$ sudo rsync av

exclude=/boot

exclude=/mnt

exclude=/proc

exclude=/dev

exclude=/sys

exclude=/tmp

exclude=/run

exclude=/media

exclude=/var/log

exclude=/var/cache/pacman/pkg

exclude=/usr/src/linuxheaders*

exclude=/home/*/.gvfs

http://bit.ly/2xbEdPo
http://bit.ly/2fM29BB
http://bit.ly/2wuuBe6
http://bit.ly/2yDAJBy
http://bit.ly/2yF15D2

exclude=/home/*/.local/share/Trash

/ /mnt

If the SSH host keys are empty, remove them so that they
will be regenerated the next time the sshd starts. This will
prevent the memory leak issue as described at
http://bit.ly/2xQxGqe.

$ sudo rm /mnt/etc/ssh/ssh_host*key*

Create some directories and mount the boot partition:

$ sudo mkdir p /mnt/boot /mnt/mnt /mnt/proc

/mnt/dev /mnt/sys /mnt/tmp

$ sudo mount t ext4 /dev/mmcblk0p1

/mnt/boot

Register the encrypted volume in crypttab

$ sudo bash c 'echo lvm UUID=$(cryptsetup

luksUUID /dev/mmcblk0p2) none luks>>

/mnt/etc/crypttab'

Con�gure fstab:

$ sudo nano /mnt/etc/fstab

$ /dev/mapper/vgroot / ext4 errors=remount

ro,noatime,discard 0 1

$ /dev/mmcblk0p1 /boot ext4 noatime,discard

0 2

Next, generate a new initramfs using dracut.

The following commands will add the dracut

modules crypt and lvm to the initramfs.

These modules will prompt for LUKS password

during boot and unlock the LUKS volume. Note

that the order of the modules is important:

$ sudo dracut force hostonly a "crypt

lvm" /mnt/boot/initramfslinux.img

Next, determine the LUKS UUID:

$ sudo cryptsetup luksUUID /dev/mmcblk0p2

470cc9ebf36b40a298d87fce3285bb89

Con�gure the rd.luks.uuid and root dracut options in
bootargs. These will unlock the LUKS volume and load the
rootfs from it during boot:

$ sudo nano /mnt/boot/boot.ini

$ setenv bootargs "rd.luks.uuid=470cc9eb

f36b40a298d87fce3285bb89

root=/dev/mapper/vgroot rootwait "

Note that in the above step, do NOT delete the rest of
bootargs, essentially replace root=UUID=2b53696c-2e8e-
4e61-a164-1a7463fd3785 with rd.luks.uuid=470cc9eb-
f36b-40a2-98d8-7fce3285bb89 root=/dev/mapper/vg-root
and leave the rest of bootargs untouched. Then, unmount
and reboot into the LUKS rootfs:

$ sudo umount /mnt/boot

$ sudo umount /mnt

$ sudo reboot

If all goes well you will be prompted to enter the LUKS
password during boot. Next, verify the LUKS rootfs:

df h

output

Filesystem Size Used Avail Use% Mounted on

devtmpfs 714M 0 714M 0% /dev

tmpfs 859M 0 859M 0% /dev/shm

tmpfs 859M 8.3M 851M 1% /run

tmpfs 859M 0 859M 0% /sys/fs/cgroup

/dev/mapper/vgroot 1.7G 1.4G 256M 85% /

tmpfs 859M 0 859M 0% /tmp

/dev/mmcblk0p1 120M 26M 86M 23% /boot

tmpfs 172M 0 172M 0% /run/user/1000

Next, remotely unlock the LUKS rootfs during boot using
Dropbear sshd. Replace 10.0.0.100 in the following
instructions with the IP address assigned to the ODROID-
C2 by your local DHCP server. Use the �ng tool to �nd the
assigned IP address (e.g. sudo �ng 10.0.0.1/24). Then,
make sure the SSH daemon is running:

$ sudo systemctl status sshd

$ journalctl u sshd n 100

If the above commands report that sshd fails with memory
allocation error, then enter the following commands:

$ sudo rm /etc/ssh/ssh_host*key*

$ sudo systemctl start sshd

Refer to the article at http://bit.ly/2xQxGqe for more
information about memory leaks in sshd.

Install and con�gure Dropbear
Install the dracut module crypt-ssh:

$ pacaur S dracutcryptsshgit

From your Linux box, copy the public SSH key to the
appconf/dracut-crypt-ssh/authorized_keys �le on the
remote ODROID-C2 server:

$ cat ~/.ssh/*.pub | ssh alarm@10.0.0.100

'umask 077; mkdir p appconf/dracutcrypt

ssh; touch appconf/dracutcrypt

ssh/authorized_keys; cat >>appconf/dracut

cryptssh/authorized_keys'

Next, con�gure the crypt-ssh module:

$ sudo nano /etc/dracut.conf.d/crypt

ssh.conf

$ dropbear_acl="/home/alarm/appconf/dracut

cryptssh/authorized_keys"

Generate a new initramfs using dracut. The following
commands will add the dracut modules network and crypt-
ssh to the initramfs. Note that the order of the modules is
important:

$ sudo dracut force hostonly a "network

crypt lvm cryptssh" /boot/initramfs

linux.img

Enable network access during boot by adding rd.neednet
and ip dracut options to bootargs:

$ sudo nano /boot/boot.ini

setenv bootargs "rd.neednet=1

ip=10.0.0.100::10.0.0.1:255.255.255.0:archli

nuxlukshost:eth0:off

rd.luks.uuid=ae51db2d08904b1babc5

8c10f01da353 root=/dev/mapper/vgroot

rootwait "

If you prefer DHCP instead of static ip, simply replace with
ip=dhcp. Refer to network documentation of dracut at
http://bit.ly/2g6XCXk and dracut options at
http://bit.ly/2yUBFT6 for more options (man

dracut.cmdline). Reboot so that Dropbear starts, allowing
for remote unlocking:

$ sudo reboot

From your Linux box, connect to the remote Dropbear SSH
server running on the ODROID-C2:

$ ssh p 222 root@10.0.0.100

Unlock the volume (asks you for the passphrase and sends
it to console):

$ console_auth

Passphrase:

If unlocking the device succeeded, the initramfs will clean
up itself and Dropbear terminates itself and your
connection.

You can also type “console_peek” which prints what’s on
the console. There is also the unlock command, but we
encountered an issue while testing as described at
http://bit.ly/2fHB2nw.

Some use cases require feeding input automatically to the
interactive command console_auth. From your Linux box,
unlock the volume:

$ ssh p 222 root@10.0.0.100 console_auth <

passwordfile

or

$ gpg2 decrypt passwordfile.gpg | ssh p

222 root@10.0.0.100 console_auth

For additional security, you might want to

only allow the execution of the command

console_auth and nothing else. To achieve

this, you need to configure the SSH key with

restricting options in the authorized_keys

file. From your Linux box, copy the public

SSH key, with restricting options, to the

appconf/dracutcryptssh/authorized_keys

file on the remote ODROIDC2 server:

$ (printf 'command="console_auth",noagent

forwarding,noportforwarding,nopty,noX11

forwarding ' && cat ~/.ssh/*.pub) | ssh

alarm@10.0.0.100 'umask 077; mkdir p

appconf/dracutcryptssh; touch

appconf/dracutcryptssh/authorized_keys;

cat >appconf/dracutcrypt

ssh/authorized_keys'

Refer to the Dropbear documentation for a full list of
restricting options. Prior to continuing, it might be a good
idea to create a copy of the initramfs:

$ sudo cp /boot/initramfslinux.img

/boot/initramfslinux.img`date +%y%m%d

%H%M%S`

In a headless setup, carefully examine the restricting
options to avoid locking yourself out.

Finally, generate a new initramfs using dracut:

$ sudo dracut force hostonly a "network

crypt lvm cryptssh" /boot/initramfs

linux.img

In this case, you can unlock the volume interactively by
simply typing the following command:

http://bit.ly/2xQxGqe
http://bit.ly/2xQxGqe
http://bit.ly/2g6XCXk
http://bit.ly/2yUBFT6
http://bit.ly/2fHB2nw

$ ssh p 222 root@10.0.0.100

Note that when typing the above command, the
console_auth command is automatically invoked on the
remote server and immediately prompts for password, as
if you just typed ssh -p 222 root@10.0.0.100 console_auth.
While you type the password, it will be displayed on the
screen in plain text. Therefore, you should avoid unlocking
interactively when the access is restricted to the
console_auth command. When you press enter you will be
disconnected no matter whether the password was correct
or not. Whereas with the non-restricted login (see

http://bit.ly/2hHAGl0), you would only be disconnected if
the password was correct, meaning that you would have
feedback for whether the unlocking was successful or not.
On the other hand, to unlock the volume using a password
�le, from your Linux box, type the following command:

$ ssh p 222 root@10.0.0.100 < passwordfile

or

$ gpg2 decrypt passwordfile.gpg | ssh p

222 root@10.0.0.100

For comments, questions, or suggestions, please visit the
original blog post at http://bit.ly/2xMQE3I.

References

ArchLinux dm-crypt/Encrypting an entire system
(http://bit.ly/2xPaybR)

How to install Debian with Full Disk Encryption on
ODROID-C2 (http://bit.ly/2g6JtcF)

http://bit.ly/2xMQE3I
http://bit.ly/2xPaybR
http://bit.ly/2g6JtcF

I2C LCD Module: Using the TWI 1602 16×2 Serial LCD
 October 1, 2017 By Miltiadis Melissas ODROID-C2, Tinkering

After doing so many IoT projects with my ODROID-C2 like
the seismograph detector (http://bit.ly/2uWqas0), the
wine cellar preserver, and noti�er (http://bit.ly/2wch3Vb),
the Gmail mechanical noti�er (http://bit.ly/2wch3Vb) and
many others, I was thinking about adding a low energy,
low cost LCD screen for depicting any valuable information
of all those electronic constructions for the sake of
portability and readability. The I2C TWI 1602 16×2 Serial
LCD Module Display for Arduino JD is the ideal solution for
materializing all those speci�cations and much more.

This LCD Module Display communicates with an ODROID-
C2 using the I2C protocol with just 4 wires. The I2C
protocol is a multi-master, multi-slave, packet switched,
single-ended, serial computer bus invented by Philips
Semiconductor (now NXP Semiconductors). It is typically
used for attaching lower-speed peripheral ICs to
processors and microcontrollers in short-distance, intra-
board communication (http://bit.ly/2qGiYP4). In the
following lines, we describe how this connection can be
materialized physically and programmatically. The
language used is Python 2.7, and the program can be
implemented easily into other projects as a module with
minor modi�cations.

Hardware
You will need all of the usual ODROID-C2 accessories:

ODROID-C2

MicroSD card with the latest Ubuntu 16.04
provided by HardKernel (http://bit.ly/2rDOCfn)

WiringPi library for controlling the GPIOs of an
ODROID-C2 running on Ubuntu 16.04

(instructions from Hardkernel on how to install
the library can be found at http://bit.ly/1NsrlU9)

Keyboard

Screen

HDMI cable

The keyboard, the screen, and the HDMI cable
are optional because you can alternatively access
your ODROID-C2 from your desktop computer
via SSH

Micro USB power or, even better, a power supply
provided by Hardkernel (http://bit.ly/1X0bgdt)

Optional: Power bank with UBEC (3A max, 5V) if
you want to operate the device autonomously
(see Figure 1). Hardkernel provides a better
solution with UPS3 speci�cally designed for
ODROID-C2. You can purchase the UPS3 from
their store at this link: http://bit.ly/2l1rE25. The
UPS3 is a good choice, as it gives the detector the
ability to operate autonomously with greater
stability and duration.

Ethernet cable or usb wi� dongle

The C Tinkering Kit on Ubuntu, which can be
purchased from Hardkernel
(http://bit.ly/1NsrlU9)

I2C TWI 1602 16×2 Serial LCD Module Display for
Arduino JD, which can be found from various
places, such as eBay

For the wiring, please follow the schematic in Figure 1.
There are 2 important wires for the communication: the
SDA that provides the I2C serial data, and the SCL that
provides the I2C serial clock. The SDA is on Pin 3 on the I2C

LCD Display and is connected on GPIO Pin 3 of ODROID-
C2. The SCL is on Pin 4 and is connected on GPIO Pin 5 of
the ODROID-C2. For visual reference see the schematic in
Figure 1 and Hardkernel’s excellent 40-pin layout for
ODROID-C2 (http:// bit.ly/2aXAlmt). These will help to make
sure the wiring is correct. Now that we have our hardware
ready, let’s see how we can establish a communication
between the ODROID-C2 and the I2C Serial LCD Display
using the I2C protocol. The GPIO Pin 2 provides the VCC
power, +5V, for the LCD Display and GPIO Pin 39 is of
course the ground, GND.

Figure 1 – wiring diagram

I2C communication
We will establish a connection between ODROID-C2 and
the Serial LCD Display using the I2C protocol. The steps we

http://bit.ly/2uWqas0
http://bit.ly/2wch3Vb
http://bit.ly/2wch3Vb
http://bit.ly/2qGiYP4
http://bit.ly/2rDOCfn
http://bit.ly/1NsrlU9
http://bit.ly/1X0bgdt
http://bit.ly/2l1rE25
http://bit.ly/1NsrlU9

will follow here are almost identical with those presented
on our previous article under the title “Seismograph
Earthquake Detector: Measuring Seismic Acceleration
using the ODROID-C2”, published in ODROID magazine’s
July issue (http://bit.ly/2uWqas0). In that article, we
described all the necessary steps necessary to establish
communication between the ODROID-C2 and the
MMA7455 accelerometer, which also uses I2C. We will
repeat the same procedure here for the sake of the
consistency and the integrity of this article.

All commands are entered in a terminal window or via
SSH. First, you’ll need to update ODROID-C2 to ensure all
the latest packages are installed:

$ sudo aptget update

$ sudo aptget upgrade

$ sudo aptget distupgrade

Then you will need to reboot the ODROID-C2:

$ sudo reboot

You will need to install SMBus and I2C-Tools, since the LCD
Module Display uses this protocol to communicate with
the ODROID-C2. The System Management Bus, or SMBus,
is a simple, single-ended, two-wire bus for lightweight
communication. It is most commonly found in computer
motherboards for communicating with the power source
(http://bit.ly/2rAWhuU).

Once you have logged into your ODROID-C2 from the
command line, run the following command to install
Python-SMBus and I2C-Tools:

$ sudo aptget install pythonsmbus

Set the ODROID-C2 to load the I2C driver:

$ modprobe amii2c

Set the ODROID-C2 to start I2C automatically at boot by
editing /etc/modules:

$ sudo nano /etc/modules

Use your cursor keys to move to the last line, and add a
new line with the following text:

$ i2cdev

Press return, then add:

$ aml_i2c

Save your changes and exit the nano editor. To avoid
having to run the I2C tools at root add the “ODROID” user
to the I2C group:

$ sudo adduser Odroid 12c

Next reboot the ODROID-C2:

$ sudo reboot

Once your ODROID-C2 has been rebooted, you will have
I2C support. You can check for connected I2C devices with
the following command:

$ sudo i2cdetect y r 1

Figure 2 – Detected I2C devices using i2cdetect

If ‘27’ is shown on line 20 under column 7, this means the
LCD Display is communicating with the ODROID-C2 and
working properly. More details may be found at
http://bit.ly/2qCQM1s.

Python software
We will present the code in chunks, as we do always, in
order to be better understood by our readers. The code is
slightly modi�ed from this the source here
(http://bit.ly/2w2a957) and adopted for the needs of this
project. The code is in Python and what it mainly does is to
establish a connection between the ODROID-C2 and LCD
Display by opening a I2C connection allowing 16 characters
on two lines to be displayed. You can download the code
here (http://bit.ly/2vzSMqd) and run it for immediate
results, or if you don’t want to retype all the code. First,
import the necessary modules:

import smbus

import time

Define device parameters

I2C_ADDR = 0x27 # I2C device address, if any

error,

 # change this address to 0x3f

LCD_WIDTH = 16 # Maximum characters per line

Define device constants

LCD_CHR = 1 # Mode Sending dataLCD_CMD = 0

Mode Sending command

LCD_LINE_1 = 0x80 # LCD RAM address for the

1st line

LCD_LINE_2 = 0xC0 # LCD RAM address for the

2nd line

LCD_LINE_3 = 0x94 # LCD RAM address for the

3rd line

LCD_LINE_4 = 0xD4 # LCD RAM address for the

4th line

LCD_BACKLIGHT = 0x08 # On

ENABLE = 0b00000100 # Enable bit

Timing constants

E_PULSE = 0.0005

E_DELAY = 0.0005

#Open I2C interface

bus = smbus.SMBus(1) # Open I2C interface

for ODROIDC2

Initialise display

def lcd_init():

 lcd_byte(0x33,LCD_CMD) # 110011 Initialise

 lcd_byte(0x32,LCD_CMD) # 110010 Initialise

 lcd_byte(0x06,LCD_CMD) # 000110 Cursor move

direction

 lcd_byte(0x0C,LCD_CMD) # 001100 Display

On,Cursor Off, Blink Off

 lcd_byte(0x28,LCD_CMD) # 101000 Data

length, number of lines, font size

 lcd_byte(0x01,LCD_CMD) # 000001 Clear

display

 time.sleep(E_DELAY)

Send byte to data pins

 # (#bits = the data, #mode = 1 for data or

0 for command)

def lcd_byte(bits, mode):

 bits_high = mode | (bits & 0xF0) |

LCD_BACKLIGHT

 bits_low = mode | ((bits<<4) & 0xF0) |

LCD_BACKLIGHT

 bus.write_byte(I2C_ADDR, bits_high) # High

bits

 lcd_toggle_enable(bits_high)

 bus.write_byte(I2C_ADDR, bits_low) # Low

bits

 lcd_toggle_enable(bits_low)

Toggle enable

def lcd_toggle_enable(bits):

 time.sleep(E_DELAY)

 bus.write_byte(I2C_ADDR, (bits | ENABLE))

 time.sleep(E_PULSE)

 bus.write_byte(I2C_ADDR,(bits & ~ENABLE))

 time.sleep(E_DELAY)

Send string to display

def lcd_string(message,line):

 message = message.ljust(LCD_WIDTH," ")

 lcd_byte(line, LCD_CMD)

 for i in range(LCD_WIDTH):

 lcd_byte(ord(message[i]),LCD_CHR)

Main program block, # Initialize display

def main():

 lcd_init()

Send text to I2C TWI 1602 16x2 Serial LCD

Module Display

while True:

 lcd_string("***ODROIDC2***",LCD_LINE_1)

 lcd_string("ODROIDmagazine ",LCD_LINE_2)

 time.sleep(3)

 lcd_string("***HardKernel***",LCD_LINE_1)

 lcd_string("*hardkernel.com*",LCD_LINE_2)

 time.sleep(3)

Handling keyboard interrupts and exception

utility

if __name__ == '__main__':

 try:

 main()

 except KeyboardInterrupt:

 pass

 finally:

 lcd_byte(0x01, LCD_CMD)

Running the code
The above code can be written in any text editor. However,
it's easier to do with a Python IDE, such as Python IDLE.
The Python IDLE is accessible from the Mate desktop
(Application -> Programming -> IDLE). As soon as we write
the program, we can save it under any name, and �nally
run it as shown in Figure 3:

$ sudo python lcd16x2i2c.py

Figure 3 - output from python program

The messages are presented on the LCD module
sequentially, 2 lines per time.

http://bit.ly/2uWqas0
http://bit.ly/2rAWhuU
http://bit.ly/2qCQM1s
http://bit.ly/2w2a957
http://bit.ly/2vzSMqd

Figure 4 - LCD screen displaying a dual-line message

Conclusion
The "Drive I2C LCD screen with ODROID-C2" application
can be implemented in any other project with minor
modi�cations as a Python module. The only piece of code
that has to be altered in order to change the lines of
characters depicted on the LCD display are the following:

Send text to I2C TWI 1602 16x2 Serial LCD

Module Display

while True:

 lcd_string("***ODROIDC2***",LCD_LINE_1)

 lcd_string("ODROIDmagazine ",LCD_LINE_2)

 time.sleep(3)

 lcd_string("***HardKernel***",LCD_LINE_1)

 lcd_string("**hardkernel.com",LCD_LINE_2)

 time.sleep(3)

Feel free to make any changes to this code and add extra
capabilities to any other projects that you might build.

GamODROID-C0: An ODROID-Based Portable Retro Gaming
Console
 October 1, 2017 By Julien Tiphaine Gaming, ODROID-C0, Tinkering

This article is about yet another homemade portable
gaming console as a sequel to the �rst one that I built
(http://bit.ly/2yFj4th). On the �rst build, I used an
ODROID-W (pi clone) and a brand new GameBoy case. For
this new project, I wanted something more powerful to run
N64, Dreamcast and PSX games, but also some native
Linux game. There are not a lot of low power consumption
options with su�cient CPU+GPU for that, so I chose an
ODROID-C0. Moreover, instead of using and transforming
an existing case, I used a 3d printed one designed by
myself with optimized dimensions and form factor. I want
to thank the ODROID community (forum.ODROID.com),
and in particular @meveric for his debian distribution and
ODROID-optimized packages.

Components
Here is a list of all components I used for this build:

Main parts:

ODROID-C0

8GB eMMC module

128 Gb MicroSD XC (SanDisk Ultra, XC I, class 10)

3.5″ NTSC/PAL TFT Display
(http://bit.ly/2yUyXgd)

A 4x6cm prototype PCB board

Audio Parts :

Stereo 2.8W Class D audio amp

2 PSP 2000/3000 speakers

A cheap USB sound card with a small USB cable

Battery Parts:

2 LiPo batteries : Keeppower 16650 3.7v 2500mA
protected

2 MOLEX connectors, 50079-8100

2 MOLEX receptacle, 51021-0200

Control parts :

12 soft tactile 8mm muttons
(http://bit.ly/2xN8qDW)

4 tactile button 6mm switches
(http://bit.ly/2xNmlcU)

2 PSP 1000 analog sticks

1 Analog multiplexer MC14051BCL

Cooling parts :

2 PS3 GPU copper heatsink

4 15x15mm copper heatsink

Some 1mm Thermal Pad

Some Silicon Thermal paste

Various other electronic parts:

A 3mm blue led

Some wires from an old IDE ribbon cable

Some breadboard connection wires

3 resistors

Decoration parts:

Some Nail polish templates for colors (black,
yellow, red, green, blue)

200, 600 and 1200 sandpaper

XTC 3D (http://bit.ly/2fG3l5O)

White satin spray paint

Anticipated power consumption
The main sources of power drain are the ODROID-C0, the
display and the audio system (soundcard and audio amp).
Before starting, I measured the consumption of these 3
components:

ODROID-C0 : 200-400 mAh depending on CPU
and GPU usage

Audio system : 310 mAh

Display : 420 mAh

http://bit.ly/2yFj4th
http://bit.ly/2yUyXgd
http://bit.ly/2xN8qDW
http://bit.ly/2xNmlcU
http://bit.ly/2fG3l5O

It’s a total of 1130 mAh at 5v, so 5650 mAh / hour. The
batteries I used are (at least) 3.7v x 5000 mA for a total of
18500 mA. The console should last more than 3h in all
cases.

Why use a display with such poor resolution ?

There are several reasons for that: low power, 60 FPS, easy
wiring, and it’s blurry like old TV which makes cool
hardware anti-aliasing.

Why use cylindrical batteries?

It’s more a matter of space optimization regarding the
capacity I wanted. Using a more classical �at battery would
have forced me to make a case deeper than 2cm, although
that was my �rst intention.

Why use a prototype board to mount additional components?

The goal was to easily mount all the components as one
unique motherboard, and I can actually say, it was useful!

Why the need for an analog multiplexer?

The ODROID-C0 provides only 2 analog inputs, and one is
already used to report the battery level. Thus, only 1
analog input was available for a total of 4 analog axis (2
thumb sticks with 2 directions each). The only way of
reading 4 analog axis with one analog input was a
multiplexer. And fortunately, the ODROID-C0 has enough
digital pins to use 2 of them for analog channels switching.

Why use eMMC module vs. microSD?

The eMMC is much faster than a microSD. It allows the
console to boot in a few seconds even with Xorg, a window
manager, and Emulation Station with lots of games. I use
the eMMC for the operating system, and the microSD for
the games and video previews.

3D printed case
The console case has been modeled with Freecad. I
designed it speci�cally for this project and the very speci�c
size of the motherboard and all components. It was my
�rst 3D model and �rst 3D print, so it may contains errors.
However, the Freecad �les are available on GitHub
(http://bit.ly/2fGJWRU) and the STL �les are freely
distributed on Thingverse (http://bit.ly/2xW9FAh).

Figure 1 – Front internal view of the case. The black points are
marks to make holes for skewing.

Figures 2 and 3 – Back internal view of the case. You can see
batteries space at the bottom and some striations for CPU + GPU
thermal dissipation.

The whole case is nearly the same as a Nintendo DS. It
may not be obvious, but using the dimensions of a well
known console allowed me to �nd good and cheap
protection cases. As you can see on photos later, I used an
NDS case to protect my GamODROID-C0, which I found for
a few Euros.

To obtain a nice �nish, I �rst used 600 and 1200 sandpaper
on all parts. Then, I used a product called XTC-3D. It’s
awesome and give a nice brilliant �nish, but it’s still not a
good enough �nish for me. I used some 1200 sandpaper
again before using a white satin aerosol painting. This gave
me the �nish that you see on photos below.

For small parts like buttons and the D-pad, I used some
nail polish. It’s very cheap and actually provided great
brilliant �nish. I �nalized the buttons and D-pad with some
transparent nail varnish to protect colors, since buttons
are the most used part of the console.

Figure 4 – Hardware Assembly

My goal was to build a one-piece motherboard in order to
make it more robust and easier to put inside the case. I
also built small boards for buttons, D-pad and start/select
buttons.

Display hack
The hack is roughly the same as the one I did for my
Retroboy console (http://bit.ly/2yFj4th). However, there
was some di�erences on the connector side : V-in and
composite output was reversed this time. Figure 5 shows
the original display, as found on the Adafruit website.

Figure 5 – 3.5” display

I �rst removed the white connector, then wired the V-in
directly to the voltage regulator output and added two
wires for powering through one of the ODROID 5V pin, as
shown in Figure 6.

Figure 6 – Closeup of the ODROID 5V wiring

Sound card
I chose a cheap USB sound card with a wire between the
board and the USB connector. It was important because it
was easier to unsolder.

Figure 7 – USB sound card

I started to dismantle wires, connectors and then re-drilled
the holes. I prepared the ODROID board by adding pins to
the �rst USB connector, as shown in Figures 8 and 9.
Finally, I soldered the sound card directly on the pins, as
shown in Figure 10.

Figures 8, 9 and 10 – Modi�cations to the sound card

https://github.com/jit06/GamOdroiD-C0
http://bit.ly/2fGJWRU
https://github.com/jit06/GamOdroiD-C0
https://www.thingiverse.com/thing:2502367
http://bit.ly/2yFj4th

Extension board with USB port
I put the extension board just below the USB sound card. I
�rst soldered a USB connector, then I wired it to the
second ODROID USB connector through the extension
board. Note that I also soldered the extension board to the
ODROID motherboard to make the whole thing more
robust.

Figures 11, 12 and 13 – Attaching the extension board to the
ODROID

Finishing audio on the extension board
Having a sound card with analog output is nice, but a 3.5
audio jack and a good amp to drive the speakers is better,
which was exactly the next step: wiring and soldering
components on the extension board.

Figures 14, 15 and 16 – Wiring and soldering the components onto
the extension board)

Analog multiplexer wiring

Figure 17 – Soldering diagram for the extension board

The soldering of this small piece started to add a lot of
wires and ended up �lling the extension board. I had to
use the following: Vdd (Vin), Vss (ground), x (analog
output), x0, x1, x2, x3 (analog inputs), A, B (digital switches).
C was not needed as 2 switches were enough to switch the
�rst 4 outputs. Vee and INH has been wired to ground.
Note that I made a voltage divider bridge between x
(output) and the analog input of the ODROID. This is
because the PSP analog sticks and MC14051B operate in
5V whereas the ODROID-C0 analog input accept a
maximum of 1.8v.

Figures 18 and 19 – Closeup of the analog multiplexer wiring

Volume buttons
You may have noticed on the previous photo that there
were also 2 push buttons on one edge of the extension
board. I wired them to GPIO pins to control audio volume,
as shown in Figure 20.

Figure 20 – Volume button wiring

Start/Select buttons
I used push buttons for start and select buttons. I
mounted them on an small additional board together with
a blue led for battery monitoring.

Figure 21 – Start and select button wiring

Batteries
As indicated before, I used a pair of protected cylindrical
LiPo batteries. I wired them in parallel to get 5000 mA. I
had to solder some wires directly onto the batteries and
added a Molex connector to be able to connect the two
wired batteries to the ODROID-C0 LiPo connector.

Figure 22 – Details of the battery wiring

Mounting the components
At this time, I had done everything on the hardware side. I
started to mount in the front part of the case the display,
analog sticks, D-pad, a-b-x-y boards and L1 + R1 buttons.
The display is not glued but maintained with two traversal
bars. As you will see in Figure 23, these bars allowed me to
also block and drive all of the wires.

Figures 23 and 24 – Steps of the �nal assembly of the components
inside the case

The next step for the front part of the case is adding
speakers, start/select buttons board and wiring everything
with a common ground. The �nal steps before closing are
to add a heat-sink, putting L2+R2 buttons and the
motherboard in the back part of the case, then soldering
everything to GPIO. Note also the yellow wire which is the
composite output of the ODROID that go to the display
input 1.

Figures 25 and 26 – All of the components are �tted into the case
before closing

Figures 27, 28 and 29 – The outside of the case after �nal assembly

Software
I created a script that constructed 80% of the system
including a copy of speci�c con�guration �les. The other
20% are for ROMs and personal customization. If someone
wants to do the same, it should be quite easy to adapt and
re-run the script.

Before starting to comment the install script, here are the
preparatory install steps that I did:

Deployment of @meveric’s minimal Debian
Jessie image on the eMMC
(http://bit.ly/2yF2PML)

Created two partitions on the 128GB microSD: 4
Gb for save states and the rest for ROMs, which
will be mounted at /mnt/states and
/mnt/ressources). I did 2 partitions because I had
the intention to create a read-only system except
for states, but I �nally kept a full read/write
system.

Created a GameODROID folder in /root and
copied the install script and its dependencies

Installation Script
The installation script and all dependencies can be found
on GitHub at http://bit.ly/2fGJWRU. It is organized with
functions dedicated for each steps.

The �rst executed function creates custom mount points,
copies custom fstab and activates tmpfs:

function fstab

{

 echo "fstab and filesystem"

 mkdir p /mnt/states

 mkdir p /mnt/ressources

 cp /root/GameODROID/fstab /etc/fstab

 sed i "s/#RAMLOCK=yes/RAMLOCK=yes/"

/etc/default/tmpfs

 sed i "s/#RAMSHM=yes/RAMSHM=yes/"

/etc/default/tmpfs

}

The custom fstab �le allows to change mount options in
order to optimize for speed (noatime, discard) and use a
small tmpfs partition for /var/log:

tmpfs /var/log tmpfs

nodev,nosuid,noatime,size=20M 0 0

After this �rst function, the system is rebooted, then
upgraded and rebooted again:

function uptodate

{

 echo "update"

 aptget update

 aptget upgrade

 aptget distupgrade

}

The �nal step of this stage is to install all of the necessary
base packages (function syspackages). There is nothing
special here except for two things:

evilwm : I had to use a window manager because
some native games can’t �nd the native screen
resolution without it. I found that evilwm was a
very good candidate for the console, since it is
very light and invisible with default settings.

Antimicro-ODROID : it’s a very nice piece of
software that I did not know about before. It
allows me to map any keyboard and mouse
event to the joypad.

Python package evdev: used to con�gure reicast
input

I used an ODROID C1/C0 speci�c xorg
con�guration �le supplied by @meveric
(http://bit.ly/2xaSonP)

Games

This part correspond to the functions “emulators”,
“emulators_glupen64_meveric” and nativegames. Except
for Dreamcast games for which I used reicase, all other
emulators are part of Retroarch:

pcsx-rearmed (PSX)

fbalpha (CPS2)

gambatte (Gameboy color)

gpsp (Gameboy advance)

mednafen-pce-fast (Pc-Engine + Cdrom)

nestopia (Nes)

picodrive (Sega 32X, SegaCD)

pocketnes (Snes)

genesis-plus-gx (GameGear, Genesis,
MasterSystem)

mednafen-ngp (Neogeo pocket color)

For native games, I selected those that were enjoyable with
a gamepad and running correctly on the ODROID-C0 with a
small screen:

hurrican

hcraft

frogatto

SuperMario War

astromenace

neverball

shmupacabra

aquaria

Revolt

Open JK3

openjazz

supertuxkart

mars

puzzlemoppet

opentyrian

pushover

Game launcher
This corresponds to the function “userinterface”. Initially, I
wanted to use Attract mode. Unfortunately, the
implementation of GLES on ODROID-C0/C1 does not seem
to include glBlendEquationSeparateOES() and
glBlendFuncSeparateOES() functions, which are mandatory
to compile libFSML, which in turn is mandatory to compile

https://forum.odroid.com/viewtopic.php?f=114&t=17569
http://bit.ly/2fGJWRU
http://bit.ly/2xaSonP

Attract mode. Thus, I used the latest Emulation Station
version with video preview support. Since I wanted to
change the default splash screen with a custom one, I had
to replace “splash_svg.cpp” �le in
“EmulationStation/data/converted”. This �le is a simple C
array that contains the bytes of an SVG �le. Despite the
classical con�guration of systems, I create a speci�c one
that list two scripts to change the display: internal screen
or HDMI (see the composite.sh and hdmi.sh scripts).

Speci�c tools
This correspond to the function “localtools”. This is mainly
to handle the custom GPIO gamepad. I had to wrote a
small program in C that creates a gamepad through Linux’s
uinput and poll GPIO to generate events. I used polling
instead of IRQ because the SoC does not have enough IRQ
to handle all the buttons. I named this tool gpio_joypad
and the source code is on GitHub at http://bit.ly/2xaTdgp.
It also handles the analog multiplexer to get left and right
analog thumb sticks values.

Boot con�g �le
This correspond to the function “bootini”. This function
consists in copying a customized boot.ini �le to the boot
partition. The important changes I made are:

Keeping only two video modes : cvbs480
(activated by default) and vga (commented out)

Disabled cec and vpu

Modi�ed kernel arguments:

“cvbsmode=480cvbs” to get a 60Hz
NTSC resolution instead of 50 Hz PAL

“max_freq=1824” to overclock the SoC
(needed for N64 and Dreamcast
emulators)

“quiet loglevel=3
rd.systemd.show_status=false
udev.log-priority=3” to make the boot
as quiet as possible

Initially, I wanted to display the splash screen early during
the boot process. It is well documented on ODROID wiki,
but unfortunately it works only for 720p resolutions.

Launch everything at start
This correspond to the function “startup”. The automatic
startup of X and Emulationstation at boot consisted in a
custom tty1 service in systemd that launch agetty with
autologin, a BASH pro�le that launch X when tty variable =
tty1, and �nally a xinitrc that start the window manager
and Emulation Station.

/etc/systemd/system/getty@tty1.service.d/override.conf

[Service]

ExecStart=

ExecStart=/sbin/agetty autologin root

noclear %I $TERM

The bash /root/.profile :

~/.profile: executed by Bournecompatible

login shells.

if ["$BASH"]; then

 if [f ~/.bashrc]; then

 . ~/.bashrc

 fi

fi

if ["$(tty)" = "/dev/tty1"] ; then

 /usr/local/bin/battery.sh &

 /usr/local/bin/gpiojoypad &

 startx nocursor 2>&1 &

fi

mesg n

/root/.xinitrc

a WM is needed some software are correctly

sized in full screen

e.g : emulationstation, rvgl

evilwm & pid=$!

emulationstation.sh &

this allows not to shutdown X when

emulation is killed

We want that because we have to kill it

after gamelaunch

else it does not reappear on screen

(SDL_Createwindow() does never end)

wait $pid

Note that the bash profile start the joypad

driver (gpio_joypad) and the battery

monitoring script (battery.sh) before

starting X.

The battery monitoring script is not very

accurate, but I dit not found any way to

make a better monitoring to switch on the

led on low battery or when charging:

#!/bin/bash

PIN=75

GPIO=/sys/class/gpio

ACCESS=$GPIO/gpio$PIN

LOWBAT=780

CHARGING=1020

if [! d $ACCESS] ; then

 echo $PIN > $GPIO/export

 echo out > $ACCESS/direction

 echo 0 > $ACCESS/value

fi

while true

do

 ADCVAL=$(cat /sys/class/saradc/saradc_ch0)

echo "value : $ADCVAL"

 # charging

 if [$ADCVAL gt $CHARGING]; then

 echo 1 > $ACCESS/value

 else

 # low bat

 if [$ADCVAL lt $LOWBAT]; then

 echo 1 > $ACCESS/value

 sleep 1

 echo 0 > $ACCESS/value

 else

 echo 0 > $ACCESS/value

 fi

 fi

 sleep 2

done

Finalize and clean up
This correspond to the function “optimize_system”. In this
function, the BASH login message is hidden (to make the
boot process as silent as possible) and packages cache is
cleaned (apt-get clean). There are also two con�guration
�les that are deployed. The custom journald.conf is here to
write logs in ram instead of disk for better performance:

[Journal]

Storage=volatile

I also created a specific alsa configuration

file to add latency and buffers, so most

sound stutering are avoided for n64 and

dreamcast games:

pcm.!default {

 type plug

 slave.pcm "softvol"

 ttable.0.1 0.8

 ttable.1.0 0.8

}

pcm.dmixer {

 type dmix

 ipc_key 1024

 slave {

 pcm "hw:1,0"

 period_time 0

 period_size 2048

 buffer_size 65536

 rate 44100

 }

 bindings {

 0 0

 1 1

 }

}

pcm.dsnooper {

 type dsnoop

 ipc_key 1024

 slave {

 pcm "hw:1,0"

 channels 2

 period_time 0

 period_size 2048

 buffer_size 65536

 rate 44100

 }

 bindings {

 0 0

 1 1

 }

}

pcm.softvol {

 type softvol

 slave { pcm "dmixer" }

 control {

 name "Master"

 card 1

 }

}

ctl.!default {

 type hw

 card 1

}

ctl.softvol {

 type hw

 card 1

}

ctl.dmixer {

 type hw

 card 1

}

Global Retroarch con�guration
Despite changing buttons and path, I had to adapt some
videos parameters of retroarch
(root/.con�g/retroarch/retroarch.cfg) to optimize
performance and better suit the hardware:

video_refresh_rate = "59.950001"

video_monitor_index = "0"

video_fullscreen_x = "720"

video_fullscreen_y = "480"

video_vsync = "true"

video_threaded = "true"

video_force_aspect = "true"

http://bit.ly/2xaTdgp

Core-speci�c con�guration
I also did some adjustments on a of the emulator cores:

Allowing 6 buttons for SegaCD and 32X:

picodrive_input1 = "6 button pad"

Changing glupen64 parameters to optimize

rendering on the ODROID SoC:

glupen64cpucore = "dynamic_recompiler"

glupen64rspmode = "HLE"

glupen6443screensize = "320x240"

glupen64BilinearMode = "standard"

Allowing PSX analog joypad support:

pcsx_rearmed_pad1type = "analog"

For the Dreamcast emulator, I used reicast-joycon�g
(http://bit.ly/2fLE1yH) to generate the gamepad con�g
and copied the resulting �le to
/root/.con�g/reicast/joy.conf. I also changed the fullscreen
resolution to adapt it to the CVBS display:

[x11]

fullscreen = 1

height = 480

width = 720

Keyboard and mouse mapping for native games
Some native games work �ne, but require either a mouse
or a keyboard for special keys such as Esc, Enter, Space,

Shift and the arrow keys. To map these keys to the console
gamepad, I used antimicro. It’s a very nice and easy-to-use
program to map any mouse and keyboard key to any
gamepad buttons.

Scraping videos
Emulation Station has an integrated scraper for game
informations and pictures, but not for videos. Moreover, if
video previews are supported depending on the chosen
themes, they are played through VLC, which is not
accelerated on the ODROID-C0/C1 SoC. The consequence
is that 320×240@30 FPS in h.264 is the biggest playable
size. I wrote and used a custom script available on GitHub
at http://bit.ly/2fGFSkU, which parses the Emulation
Station game folder and scrapes videos from
www.gamesdatabase.org.

Lessons learned

There is no way to correctly monitor the battery
on an ODROID-C0

With only a Mali 450 GPU, even with overclock, it
is still too slow for a lot of N64 and Dreamcast
games

There are some crashes that seem to be related
to the graphics driver, such as Emulation Station
not exiting properly, and hurrican sometimes
does not start with the correct resolution

It is not possible to use a proper interrupt-based
joypad driver, since there are not enough IRQs
available on the SoC.

There is a need for a window manager,
otherwise fullscreen is not available for games
and Emulation Station

Reicast seems to emulate the GDRom noise, but I
actually �nd it annoying

Figure 30 – Sega emulator running on the GamODROID-C0

You can check out the GamODROID-C0 in action at
https://youtu.be/3hxYhH7AFYU. For comments, questions
and suggestions, please visit the original blog post at
http://bit.ly/2khNDTz.

http://bit.ly/2fLE1yH
http://bit.ly/2fGFSkU
http://www.gamesdatabase.org/
https://youtu.be/3hxYhH7AFYU
http://bit.ly/2khNDTz

Android Development: Android Content Provider
 October 1, 2017 By Nanik Tolaram Android

Like any other operating system, Android internally needs
to have persistence storage for storing system
information. This data needs to be in persistent storage, as
it will always need to refer to those data after every reboot
to put the device in a particular state. User and device
information like screen brightness, volume, accounts,
calendar, etc will need to be stored somewhere. Android
uses what is called Content Provider. Basically, it is a
SQLite-backed persistent mechanism, or more simply
known as a database. Most of the data is internally stored
inside of several SQLite databases. In this article we will
take a look at some of the content providers that are used
internally by the operating system.

This article will look at some of the databases that are
used internally by the operating system. A good starting
point to learn more about content provider is to go to the
Android Developer website from Google
(http://bit.ly/2hkvljq).

What and where
Content providers are just normal Android applications
that have a job to serve and process database requests
from a client. Data from the internal content providers are
stored inside /data/data folder as shown in Figure 1. We
are interested in apps that has the following package
format:

com.android.providers.< app_name >

Figure 1 list the internal Android content providers that are
available.

Figure 1 – Package content providers inside /data/data folder

Take, for example, the DownloadManager service that is
provided by the Android SDK. This service allow apps to
download �le asynchronously. Internally, the framework
uses this content provider to keep persistent information
about a �le status that is going to be downloaded. The
follow SQL schema shows the declaration that is used
internally to persist the downloaded �le information.

CREATE TABLE android_metadata (locale TEXT);

CREATE TABLE downloads(_id INTEGER PRIMARY

KEY AUTOINCREMENT,uri TEXT, method INTEGER,

entity TEXT, no_integrity BOOLEAN, hint

TEXT, otaupdate BOOLEAN, _data TEXT,

mimetype TEXT, destination INTEGER,

no_system BOOLEAN, visibility INTEGER,

control INTEGER, status INTEGER, numfailed

INTEGER, lastmod BIGINT, notificationpackage

TEXT, notificationclass TEXT,

notificationextras TEXT, cookiedata TEXT,

useragent TEXT, referer TEXT, total_bytes

INTEGER, current_bytes INTEGER, etag TEXT,

uid INTEGER, otheruid INTEGER, title TEXT,

description TEXT, scanned BOOLEAN,

is_public_api INTEGER NOT NULL DEFAULT 0,

allow_roaming INTEGER NOT NULL DEFAULT 0,

allowed_network_types INTEGER NOT NULL

DEFAULT 0, is_visible_in_downloads_ui

INTEGER NOT NULL DEFAULT 1,

bypass_recommended_size_limit INTEGER NOT

NULL DEFAULT 0, mediaprovider_uri TEXT,

deleted BOOLEAN NOT NULL DEFAULT 0, errorMsg

TEXT, allow_metered INTEGER NOT NULL DEFAULT

1, allow_write BOOLEAN NOT NULL DEFAULT 0,

flags INTEGER NOT NULL DEFAULT 0);

CREATE TABLE request_headers(id INTEGER

PRIMARY KEY AUTOINCREMENT,download_id

INTEGER NOT NULL,header TEXT NOT NULL,value

TEXT NOT NULL);

CREATE TABLE android_metadata (locale TEXT);

CREATE TABLE downloads(_id INTEGER PRIMARY

KEY AUTOINCREMENT,uri TEXT, method INTEGER,

entity TEXT, no_integrity BOOLEAN, hint

TEXT, otaupdate BOOLEAN, _data TEXT,

mimetype TEXT, destination INTEGER,

no_system BOOLEAN, visibility INTEGER,

control INTEGER, status INTEGER, numfailed

INTEGER, lastmod BIGINT, notificationpackage

TEXT, notificationclass TEXT,

notificationextras TEXT, cookiedata TEXT,

useragent TEXT, referer TEXT, total_bytes

INTEGER, current_bytes INTEGER, etag TEXT,

uid INTEGER, otheruid INTEGER, title TEXT,

description TEXT, scanned BOOLEAN,

is_public_api INTEGER NOT NULL DEFAULT 0,

allow_roaming INTEGER NOT NULL DEFAULT 0,

allowed_network_types INTEGER NOT NULL

DEFAULT 0, is_visible_in_downloads_ui

INTEGER NOT NULL DEFAULT 1,

bypass_recommended_size_limit INTEGER NOT

http://bit.ly/2hkvljq

NULL DEFAULT 0, mediaprovider_uri TEXT,

deleted BOOLEAN NOT NULL DEFAULT 0, errorMsg

TEXT, allow_metered INTEGER NOT NULL DEFAULT

1, allow_write BOOLEAN NOT NULL DEFAULT 0,

flags INTEGER NOT NULL DEFAULT 0);

CREATE TABLE request_headers(id INTEGER

PRIMARY KEY AUTOINCREMENT,download_id

INTEGER NOT NULL,header TEXT NOT NULL,value

TEXT NOT NULL);

The following code block shows an example of a data is
stored for the downloaded �le:

1|https://www.gstatic.com/android/config_upd

ate/08202014

metadata.txt|0|||||/data/user/0/com.android.

providers.downloads/cache/08202014

metadata.txt|text/plain|2||2||200|0||com.goo

gle.android.configupdater||||||0|||||0820201

4metadata.txt|||1|1|1|0|0||0||1|0|0

2|http://www.gstatic.com/android/config_upda

te/07252017sms

blacklist.metadata.txt|0|||||/data/user/0/co

m.android.providers.downloads/cache/07252017

sms

blacklist.metadata.txt|text/plain|2||2||200|

0||com.google.android.configupdater||||||385

|385||||07252017sms

blacklist.metadata.”txt|||1|1|1|0|0||0||1|0

|0

Content provider declaration
The content providers provided by the operating system,
which are not all made available to a user application,
normally have the following declaration in their
AndroidManifest.xml:

Listing 1 – Settings content provider

< manifest

xmlns:android="http://schemas.android.com/ap

k/res/android"

package="com.android.providers.settings"

coreApp="true"

android:sharedUserId="android.uid.system">

 < application

android:allowClearUserData="false"

android:label="@string/app_label"

android:process="system"

android:backupAgent="SettingsBackupAgent"

android:killAfterRestore="false"

android:icon="@mipmap/ic_launcher_settings"

android:defaultToDeviceProtectedStorage="tru

e" android:directBootAware="true" >

 < provider

android:name="SettingsProvider"

android:authorities="settings"

android:multiprocess="false"

android:exported="true"

android:singleUser="true"

android:initOrder="100" />

 < /application >

< /manifest >

Listing 1 is the AndroidManifest.xml for the Settings
application which is stored under the package
com.android.providers.settings. Another example can be
seen in Listing-2 which shows the declaration for Contacts
Provider used to stored contacts information:

Listing 2 – Contacts content provider

< manifest

xmlns:android="http://schemas.android.com/ap

k/res/android"

package="com.android.providers.contacts"

android:sharedUserId="android.uid.shared"

android:sharedUserLabel="@string/sharedUserL

abel" >

 < usespermission

android:name="android.permission.BIND_DIRECT

ORY_SEARCH" />

 < usespermission

android:name="android.permission.GET_ACCOUNT

S" />

 < permission

android:name="android.permission.SEND_CALL_L

OG_CHANGE" android:label="Broadcast that a

change happened to the call log."

android:protectionLevel="signature|system"

/>

 < provider

android:name="ContactsProvider2"

android:authorities="contacts;com.android.co

ntacts"

android:label="@string/provider_label" …...

…... />

 < /provider >

The following table lists some of the content providers that
exist inside Android version 7.1.2:

Description Package Name Source Location

CalendarProvider com.android.providers.cal
endar

ContactsProvider com.android.providers.co
ntacts

DownloadProvider com.android.providers.do
wnloads

com.android.providers.do
wnloads.ui

MediaProvider com.android.providers.m
edia

SettingsProvider com.android.providers.set
tings

frameworks/base/package
s/SettingsProvider/src/co
m/android/providers/setti
ngs/SettingsProvider.java

TelephonyProvider com.android.providers.tel
ephony

packages/providers/Telep
honyProvider/src/com/an
droid/providers/telephony
/TelephonyProvider.java

UserDictionaryProvider com.android.providers.us
erdictionary

BlockedNumberCall com.android.providers.bl
ockednumber

PartnerbookmarksProvid
er

packages/providers/Partn
erBookmarksProvider/src/
com/android/providers/p
artnerbookmarks/Partner
BookmarksProvider.java

EmailProvider packages/apps/Email/prov
ider_src/com/android/em
ail/provider/EmailProvider
.java

LauncherProvider packages/apps/Launcher3
/src/com/android/launche
r3/LauncherProvider.java

CellBroadcastReceiver packages/apps/CellBroadc
astReceiver/src/com/andr
oid/cellbroadcastreceiver/
CellBroadcastContentProv
ider.java

WearPackageIconProvider
.java

packages/apps/PackageIn
staller/src/com/android/p
ackageinstaller/wear/Wea
rPackageIconProvider.java

GalleryProvider packages/apps/Gallery2/s
rc/com/android/gallery3d/
provider/GalleryProvider.j
ava

DeskClock packages/apps/DeskClock
/src/com/android/deskclo
ck/provider/ClockProvider
.java

SearchRecentSuggestions
Provider

frameworks/base/core/jav
a/android/content/Search
RecentSuggestionsProvide
r.java

RecentsProvider frameworks/base/package
s/DocumentsUI/src/com/a
ndroid/documentsui/Rece
ntsProvider.java

MtpDocumentsProvider frameworks/base/package
s/MtpDocumentsProvider
/src/com/android/mtp/Mt
pDocumentsProvider.java

ExternalStorageProvider frameworks/base/package
s/ExternalStorageProvider
/src/com/android/external
storage/ExternalStoragePr
ovider.java

BugreportStorageProvide
r

frameworks/base/package
s/Shell/src/com/android/s
hell/BugreportStoragePro
vider.java

https://www.gstatic.com/android/config_update/08202014-metadata.txt

ODROID-MC1 Parallel Programming: Getting Started
 October 1, 2017 By Andy Yuen ODROID-MC1

This guide is not meant to teach you how to write parallel
programs on the ODROID-MC1. It is meant to provide you
with an environment ready for experimenting with MPJ
Express, a reference implementation of the mpiJava 1.2
API. An MPJ Express parallel program that generates
Mandelbrot images has been provided for you to run on
any machine or cluster that has the the Java SDK installed:
ARM or INTEL. If there is su�cient interest expressed for
information on MPJ Express programming, we can write a
tutorial for a future edition of the magazine.

Why parallel programming?
Parallel programming or computing is a form of
computation in which many independent calculations are
carried out simultaneously, operating on the principle that
large problems can often be divided into smaller ones,
which are then solved at the same time. In short, its aim
includes:

Increase overall speed,

Process huge amount of data,

Solve problems in real time, and

Solve problems in due time

Why now?
Many people argue whether Moore’s Law still holds.
Moore’s law is the observation that the number of
transistors in a dense integrated circuit doubles
approximately every two years (some say 18 months).
Moore’s Law is named after Gordon E. Moore, the co-
founder of INTEL and Fairchild Semiconductor. It is this
continuous advancement of integrated circuit technology
that has brought us from the original 4.77 megahertz PC to

the current multi-gigahertz processors. The processor
architecture has also changed a lot with multiple execution
pipelines, out-of-order execution, caching, etc.
Assuming Moore’s Law still applies, we are still faced with
big problems in improving our single CPU performance:

The Power Wall: Power = C * Vdd2 * Frequency

We cannot scale transistor count and frequency without
reducing Vdd (supply voltage). Voltage scaling has already
stalled.

The Complexity Wall: Debugging and verifying
large OOO (Out-Of-Order) cores is expensive
(100s of engineers for 3-5 years). Caches are
easier to design but can only help so much.

As an example of the power (frequency) wall, it has been
reported that:

E5640 Xeon (4 cores @ 2.66 GHz) has a power
envelope of 95 watts

L5630 Xeon (4 Cores @ 2.13 GHz) has a power
envelope of 40 watts

This implies an increase of 137% electrical power for an
increase of 24% of CPU power. At this rate, it is not going
to scale.
Enter multi-core design. A multi-core processor
implements multiprocessing in a single physical package.
Instead of cranking up the frequency to achieve higher

performance, more cores are put in a processor so that
programs can be executed in parallel to gain performance.
These days, all INTEL processors are multicore. Even the
processors used in mobile phone are all multi-core
processors.

Limitations on performance gains
How much improvement can I expect for my application to
gain running on a multi-core processor? The answer is that
it depends. You application may not have any performance
gain at all if it has not been designed to take advantage of
multi-core capability. Even if it does, it still depends on the
nature of your program and the algorithm it is using.
Amdahl’s law states that if P is the proportion of a
program that can be made parallel, and (1−P) is the
proportion that cannot be parallelised, then the maximum
speedup that can be achieved by using N processors is:

1/[(1-P) + (P/N)]

The speedup in relation to the number of cores or
processors at speci�c values of P is shown in the graph
below.

http://bit.ly/1Nx7yBk
http://bit.ly/1MHRobo

Figure 1 – Amdahl’s Law

This gives you some perspective on how much
performance you may be able to gain by writing your
program to take advantage of parallelism instead of having
unreal expectations.

Why do parallel programming in Java?
Some of the advantages of writing parallel programs in
Java include:

Write once, run anywhere,

Large pool of software developers,

Object Oriented (OO) programming abstractions,

Compile time and runtime checking of code,

Automatic garbage collection,

Supports multi-threading in language, and

Rich collection of libraries

Java supported multi-threading since its inception, so what
is new? Java multithreading uses the Shared Memory
Model, meaning that it cannot be scaled to use multiple
machines.
A Distributed Memory Model refers to a multiprocessor
computer system, such as an ODROID-MC1, in which each
processor has its own private memory. Computational
tasks can only operate on local data, and if remote data is
required, the computational task must communicate with
one or more remote processors. In contrast, a Shared
Memory multiprocessor o�ers a single memory space
used by all processors. Processors do not have to be
aware where data resides, except that there may be
performance penalties, and that race conditions are to be
avoided.

The MPJ Express message passing library
MPJ Express is a reference implementation of the mpiJava
1.2 API, which is the Java equivalent of the MPI 1.1
speci�cation. It allows application developers to write and
execute parallel applications for multicore processors and
compute clusters using either a multicore con�guration
(shared memory model) or a cluster con�guration
(distributed memory model) respectively. The latter also
supports a hybrid approach to run parallel programs on a
cluster of multicore machines such as the ODROID-MC1.
All the software dependencies have already been installed
on the SD card image I provided. My mpj-example project
on Github My mpj-example project on Github has also
been cloned and compiled. The resultant jar �le and a
dependent �le have been copied to the ~/mpj_rundir
directory where you can try out in either multicore or
cluster mode. All MPJ Express documentations can be
found in the $MPJ_HOME/doc directory.

Fractal Generation using MPJ Express
The mpj_example project is a Mandelbrot generator.
Mandelbrot set images are made by sampling complex
numbers and determining for each number whether the
result tends towards in�nity when the iteration of a
particular mathematical operation is performed. The real
and imaginary parts of each number are converted into
image coordinates for a pixel coloured according to how
rapidly the sequence diverges, if at all. My MPJ Express

parallel program assigns each available core to compute
one vertical slice of the Mandelbrot set image at a time.
Consequently, the more cores are available, the more work
can be performed in parallel. Mandelbrot images at
speci�c coordinates are shown in the following images.

Figure 2.1 – mandelbrot1: (-0.5, 0.0)

Figure 2.2 – mandelbrot2: (-0.7615134027775, 0.0794865972225)

Figure 2.3 – mandelbrot3: (0.1015, -.633)

These Mandelbrot images are generated using the
following commands on a single machine, the master
node, using a multicore con�guration. From the master
command prompt, issue the following commands:

Figure 3 – Mandelbrot commands

You can rerun the above command with -np values
between 1 and 8 inclusive to see the di�erence in
performance by varying the number of cores used for
Mandelbrot generation. Remember that the XU4 has 4
little A7 and 4 big A15 cores.

The parameters after com.kardinia.mpj.ColourMandelbrot
are:

parameter 1: starting x coordinate

parameter 2: starting y coordinate

parameter 3: step size

parameter 4: color map for mapping number of
iterations to a particular colour

parameter 5: �lename to save the generated
mandelbrot

Figure 4 – A screenshot of running Mandelbrot Generator in
multicore mode.

To run the Mandelbrot Generator in cluster mode, follow
the instructions below:
A text �le named “machines” which contains the
hostnames of every node in you ODROID-MC1 cluster on
separate lines is required. The machines �le that is in the
~/mpj_rundir contains the following 4 lines:

xu4master

xu4node1

xu4node2

xu4node3

To start the MPJ daemon on each node, issue the
command below once from the master node to start a MPJ
daemon on each node:

$ mpjboot machines

Then issue the following commands from the master
node:

Figure 5 – Master node commands

Again, you can vary the number after -np between 4 and
32 as there are a total of 32 cores in your ODROID-MC1
cluster. The screenshot below shows running the above
commands in cluster mode.

Figure 6 – Running Mandelbrot Generator in cluster mode

When you are done with experimenting with the cluster
mode, issue the following command from the master to
terminate all the MPJ daemons started earlier:

$ cd ~/mpj_rundir

$ mpjhalt machines

Performance on the ODROID-MC1
The performance of running the Mandelbrot Generator on
the ODROID-MC1 in both multicore and cluster mode is
summarised in the line graph below. For comparison, I
also ran it on a VM with 4 cores assigned to it on an old
INTEL I7 quad core machine. Figure 7 is a screenshot of the
generator running in the VM.

http://bit.ly/2wWMzKr
http://bit.ly/2hvQXpk

Figure 7 – Running Mandelbrot Generator in the virtual machine

The performance of running on INTEL is also shown in the
same graph. The vertical axis is the time in seconds taken
to generate the Mandelbrot at coordinate -0.5, 0.0. The
horizontal axis is the number of cores used.

Figure 8 – Graph of the execution time of the Mandelbrot
Generator as the number of cores increases

Graphing the data di�erently gives the performance
increase factor as the number of cores increases.

Figure 9 – Graph of performance increase of the Mandelbrot
Generator as the number of cores increases

I observed that when a node was using all 4 big cores or all
8 cores, the current used was between 2.0 and 2.5 amps.
My cheap power supply was not able to supply enough
current when all 4 XU4s on the ODROID-MC1 were running
all cores at 100% utilization. This is the reason why I only
measured the performance for the cluster con�guration

up to 12 cores. Another interesting observation was that in
multicore mode on a single XU4, the most gain occurred
when all 4 big cores were being used. Adding the little
cores did not improve performance by that much. Even for
cluster mode, the performance gain tapered o� as the
number of cores increased due to Amdahl’s law as the
master had to spend the same amount of time combining
the generated partial images into a complete image and it
took a �nite amount of time to transfer the partial images
via the network.

Conclusion
I hope my two getting started guides in the ODROID
Magazine have given you some ideas of using your
ODROID-MC1 as a Docker swarm cluster and also as a
Compute cluster for parallel programming. What you can
do with it is limited only by your imagination. Let us know
if you are interested in additional information regarding
using MPJ Express. We can create additional tutorials. In
the meantime, enjoy and keep exploring the capabilities of
your ODROID-MC1.

Home Assistant: Scripts for Customization
 October 1, 2017 By Tutorial

In this article, we will delve deeper still into Home Assistant
customization, creating our own scripts to collect data
from remote sensors and other control devices. We will
also look into various ways to communicate with the
remote sensors.

Getting remote temperature data
Let’s assume you have this problem: you have several
temperature sensors such as the DS1820 around your
house connected to various ODROIDs and you want to
send the data to Home Assistant, which runs on a single
device. You’ll need to decide on a data transport protocol
and write some script to collect the temperature readings
and pass it to Home Assistant.

Let’s analyze some approaches:

Polling over HTTP

Pushing over Home Assistant API

Pushing over MQTT

Polling over HTTP
If you’re used to web development, you’re probably used
to CGI (Common Gateway Interface), the oldest way to
generate dynamic content using a web server (
http://bit.ly/2jNVkjT). Basically, you upload a script on the
server, regardless of language, which is called by the web
server, serving the script’s output back to the client.
Obviously, you �rst need to install an HTTP server on your
remote host and activate CGI support. We’ll use Apache
2.4:

$ sudo aptget install apache2

$ sudo a2enmod cgi

The default con�guration maps the /cgi-bin/ URL to
/usr/lib/cgi-bin on your �le system. Any executable scripts
you place here can be called by the web server. Let’s
assume that you can get the temperature data on the
remote host with these shell commands:

$ cat /sys/devices/w1_bus_master1/28

05168661eaff/w1_slave

c6 01 4b 46 7f ff 0c 10 bd : crc=bd YES

c6 01 4b 46 7f ff 0c 10 bd t=28375

In the output above, the �rst line validates the reading of
the value (if the CRC matches), and the second line returns
the value in milli-celsius. We will create two scripts (don’t
forget to mark them as executable) to illustrate the code in
two di�erent languages: BASH and Python. The �les will be
stored in /usr/lib/cgi-bin/temperature.sh and /usr/lib/cgi-
bin/temperature.py.

#!/bin/bash

filename='/sys/devices/w1_bus_master1/28

05168661eaff/w1_slave'

valid=0

echo "ContentType: text/plain"

echo

read line by line, parse each line

while read r line

do

 if [[$line =~ crc=.*YES]]; then

 # the CRC is valid. Continue

processing

 valid=1

 continue

 fi

 if [["$valid" == "1"]] && [[$line =~

t=[09]+]]; then

 # extract the temperature value

 rawtemperature=`echo "$line" | cut

d "=" f 2`

 # convert to degrees celsius and

keep 1 digit of accuracy

 echo "scale=1;$rawtemperature/1000"

| bc

 fi

#read line by line from $filename

done < "$filename"

Figure 1a There are two ways of reading the same temperature,
here in bash

#!/usr/bin/python

import re

filename = '/sys/devices/w1_bus_master1/28

05168661eaff/w1_slave'

valid = False

print "ContentType: text/plain"

print ""

execute the command and parse each line of

output

with open(filename) as f:

 for line in f:

 if re.search('crc=.*YES', line):

 # the CRC is valid. Continue

processing

 valid = True

 continue

 if valid and re.search('t=[09]+',

line):

 # extract the temperature value

 temperature = re.search('t=([0

9]+)', line)

 # convert to degrees celsius and

keep 1 digit of accuracy

 output = "%.1f" %

(float(temperature.group(1))/1000.0)

 print output

Figure 1b - And here in Python

Let's analyze the scripts a bit. Both scripts start with a
shebang line which tells the caller which interpreter to use
to run the script (line 1). Next, we de�ne two variables to
point to the �le to be read (line 4) and a variable to
remember if the reading is valid or not (line 5). On lines 7
and 8 we print the HTTP headers. The CGI script has to
return HTTP headers on the �rst lines, separated by a
blank line from the rest of the output. The web server
needs at least the Content-Type header to process the
request. If you omit this, you will get an HTTP 500 error. On
line 11 we begin reading the lines from the �le in order to
parse each one. We look for a valid CRC with a regular
expression on line 14, and if it is correct, we set valid to
true. On line 19, if the CRC is true and the line contains a
temperature, we extract the raw temperature (line 21) and
convert it to celsius, with one digit of accuracy (line 23),
and print it to standard output. In order to access the data,
you could use any HTTP client, like wget, as shown in
Figure 2.

Figure 2 - Extracting the data from the remote host

There might be slight di�erences in the output returned
because of di�erent rounding methods used, or by

variations in the time the query is made, which can cause
the sensor data to �uctuate.

For security purposes, you can enable HTTP Basic
Authentication in your server's con�g. You'll need
SSL/HTTPS with valid certi�cates in order to protect
yourself from somebody sni�ng your tra�c, but that goes
beyond the scope of this article. You can read more about
those here and here.

In order to add the sensor to Home Assistant we can use
the REST sensor inside con�guration.yaml :

sensor:

 ...

 platform: rest

 resource: http://192.168.1.13/cgi

bin/temperature.sh

 name: Temperature REST Bash

 unit_of_measurement: C

 platform: rest

 resource: http://192.168.1.13/cgi

bin/temperature.py

 name: Temperature REST Python

 unit_of_measurement: C

You can get the code here and here.

Pros for this method:

It's easy to implement if you've done web
development

On Home Assistant restart new data is polled

Cons for this method:

Using a web server exposes you to possible
vulnerabilities

The web server may use a lot of resources in
comparison to what it needs to do

Pushing over HA API
A di�erent approach that doesn't involve a web server is to
push sensor data to Home Assistant from the remote
system. We can use a Template Sensor to hold and
present the data. In order to do this, you can have the
script in Figure 3 called periodically with cron on the
remote system.

#!/bin/bash

filename='/sys/devices/w1_bus_master1/28

05168661eaff/w1_slave'

homeassistantip='192.168.1.9'

haport=8123

api_password='odroid'

sensor_name='sensor.temperature_via_api'

valid=0

read line by line, parse each line

while read r line

do

 if [[$line =~ crc=.*YES]]; then

 # the CRC is valid. Continue

processing

 valid=1

 continue

 fi

 if [["$valid" == "1"]] && [[$line =~

t=[09]+]]; then

 # extract the temperature value

 rawtemperature=`echo "$line" | cut

d "=" f 2`

 # convert to degrees celsius and

keep 1 digit of accuracy

 temperature=`echo

"scale=1;$rawtemperature/1000" | bc`

 # push the data to the Home

Assistant entity via the API

 curl X POST H "xhaaccess:

$api_password" H "ContentType:

application/json"

 data "{"state": "$temperature"}"

http://$homeassistantip:$haport/api/states/$

sensor_name

 fi

#read line by line from $filename

done < "$filename"

Figure 3 - Pushing data via the HA API

As you can see, the code is similar to the previous
example, except that at line 25 it uses Home Assistant
REST API to submit the temperature reading. The REST API
requires you to send the Home Assistant API Key inside of
a HTTP header, and the data you want changed needs to
be in a JSON payload in the POST request. The URL you
post to is your Home Assistant instance
/api/states/sensor.name. To enable this and submit data
every 5 minutes, add the following cron entry:

$ crontab e

*/5 * * * * /bin/bash

/path/to/script/temperatureHAAPI.sh >

/dev/null 2>&1

The Home Assistant con�guration looks like this:

sensor:

…

 platform: template

 sensors:

 temperature_via_api:

 value_template: '{{

states.sensor.temperature_via_api.state }}'

 friendly_name: Temperature via API

 unit_of_measurement: C

The template sensor is usually used to extract data from
other Home Assistant entities, and in this case we use it to
extract data from itself. This trick prevents it from deleting
the state data after an external update. Before you set the
temperature, the sensor state will be blank. After cron
executes the script the �rst time, you will get temperature
data. You can get the code from here

Pros for this method:

You control when data is pushed

Resource use is very low

Cons for this method:

Your script needs to have your Home Assistant
secret password in clear

http://bit.ly/2feRKKE
http://bit.ly/2yCyIGo
http://do.co/2wgHEjh
http://bit.ly/2fvoYsN
http://bit.ly/2htjVdh
http://bit.ly/2wSi1F2
http://bit.ly/2wPQLeY
http://bit.ly/2xw8yVT
http://bit.ly/2wgNYY4

When Home Assistant is restarted, the sensor
will not have any value until the �rst update

Pushing over MQTT
The MQTT protocol is a machine to machine protocol
designed for e�ciency (and low power environments) and
has been discussed already in previous ODROID Magazine
articles. The way it works is that a central server called a
broker relays messages for clients that subscribe to a
common topic. Think of a topic as something like an IRC
channel where clients connect and send each other
speci�c messages.
Home Assistant has a built-in MQTT Broker, but in my
tests I found it unreliable, so I used a dedicated broker
called Mosquitto. It can be installed on the same system as
Home Assistant, or on a di�erent system. To install it,
follow these steps:

$ sudo aptget install mosquitto mosquitto

clients

$ sudo systemctl enable mosquitto

MQTT version 3.11 supports authentication, so you should
set up a username and password that is shared by broker
and clients and, optionally, SSL encryption. In my setup I
used user-password authentication, and added an
'ODROID' user:

$ sudo mosquitto_passwd c

/etc/mosquitto/passwd ODROID

$ sudo vi /etc/mosquitto/conf.d/default.conf

allow_anonymous false

password_file /etc/mosquitto/passwd

You can enable general MQTT support in Home Assistant
by adding a MQTT platform in con�guration.yaml
(remember that the mqtt_password parameter is de�ned
in secrets.yaml instead):

mqtt:

 broker: 127.0.0.1

 port: 1883

 client_id: homeassistant

 keepalive: 60

 username: ODROID

 password: !secret mqtt_password

In order to push temperature data to Home Assistant our
script will need the Paho-MQTT Python library. In order to
parse con�guration data we'll need the python-yaml
library as well:

$ sudo aptget install pythonpip python

yaml

$ sudo pip install pahomqtt

The script runs as a daemon, performing periodic
temperature readings in the background and sending
changes via MQTT. The code which reads the actual
temperature (line 40) is the same as in Figure 1b and is not
shown in Figure 4 for brevity. The only change is that
instead of printing the temperature, it returns it as a string.

The code begins by importing a few helper modules,
de�ning functions to parse the YAML con�guration into a
dictionary. Reading the temperature and execution begins
at line 57. A new MQTT client object is de�ned and
initialized with the necessary details to access the MQTT
broker. On line 61, there is a background thread started by
the loop_start() call which ensures that the client remains
connected to the MQTT broker. Without it, the connection
would time out and you would need to reconnect
manually. More information about the MQTT API in Python
is available here. On line 65, there is a loop that reads
temperature data, compares it with the last temperature

read, and if there is a change, publishes an MQTT message
to the broker with the new temperature. Then the code
sleeps for a while before the next reading. When
publishing data to the broker (on line 71), you need to
specify the MQTT topic, the value being sent, and also if
this data should be persistent or not. Persistent data is
convenient, because you can get the last temperature
reading from MQTT when you start Home Assistant and
read the temperature for the �rst time. You can get the full
code from here.

#!/usr/bin/python

import paho.mqtt.client as mqtt

import re

import time

import sys

import yaml

Prerequisites:

* pip: sudo aptget install pythonpip

* pahomqtt: pip install pahomqtt

* pythonyaml: sudo aptget install

pythonyaml

Configuration file goes in

/etc/temperaturemqttagent.yaml and should

contain your mqtt broker details

For startup copy temperaturemqtt

agent.service to /etc/systemd/system/

Startup is done via systemd with

sudo systemctl enable temperaturemqtt

agent

sudo systemctl start temperaturemqtt

agent

filename = '/sys/devices/w1_bus_master1/28

05168661eaff/w1_slave'

valid = False

oldValue = 0

""" Parse and load the configuration file to

get MQTT credentials """

conf = {}

def parseConfig():

 global conf

 with open("/etc/temperaturemqtt

agent.yaml", 'r') as stream:

 try:

 conf = yaml.load(stream)

 except yaml.YAMLError as exc:

 print(exc)

 print("Unable to parse

configuration file /etc/temperaturemqtt

agent.yaml")

 sys.exit(1)

""" Read temperature from sysfs and return

it as a string """

 def readTemperature():

 with open(filename) as f:

 for line in f:

 if re.search('crc=.*YES',

line):

 # the CRC is valid.

Continue processing

 valid = True

 continue

 if valid and re.search('t=

[09]+', line):

 # extract the

temperature value

 temperature =

re.search('t=([09]+)', line)

 # convert to degrees

celsius and keep 1 digit of accuracy

 output = "%.1f" %

(float(temperature.group(1)) / 1000.0)

 # print("Temperature is

"+str(output))

 return output

""" Initialize the MQTT object and connect

to the server """

parseConfig()

client = mqtt.Client()

if conf['mqttUser'] and conf['mqttPass']:

client.username_pw_set(username=conf['mqttUs

er'], password=conf['mqttPass'])

 client.connect(conf['mqttServer'],

conf['mqttPort'], 60)

 client.loop_start()

""" Do an infinite loop reading temperatures

and sending them via MQTT """

 while (True):

 newValue = readTemperature()

 # publish the output value via MQTT

if the value has changed

 if oldValue != newValue:

 print("Temperature changed from

%f to %f" % (float(oldValue),

float(newValue)))

 sys.stdout.flush()

client.publish(conf['mqttTopic'], newValue,

0, conf['mqttPersistent'])

 oldValue = newValue

 # sleep for a while

 # print("Sleeping...")

 time.sleep(conf['sleep'])

Figure 4 - Sending temperature data via MQTT

The script will also need a con�guration �le where it keeps
MQTT credentials, located at /etc/temperature-mqtt-
agent.yaml:

mqttServer: 192.168.1.9

mqttPort: 1883

mqttUser: ODROID

mqttPass: ODROID

mqttTopic: ha/kids_room/temperature

mqttPersistent: True

sleep: 10

There's also a systemd startup script to start your script on
every boot. Copy it to /etc/systemd/system:

http://bit.ly/2ypJOOc
http://bit.ly/2wT1nEZ
http://do.co/2fNrg3B
http://bit.ly/2y5t6HW
http://bit.ly/2ypcTcG

$ cat /etc/systemd/system/temperaturemqtt

agent.service

[Unit]

Description=Temperature MQTT Agent

After=network.target

[Service]

ExecStart=/usr/local/bin/temperaturemqtt

agent.py

Type=simple

Restart=always

RestartSec=5<

[Install]

WantedBy=multiuser.target

To enable it at startup, run the following commands:

$ sudo systemctl enable temperaturemqtt

agent.service

$ sudo systemctl start temperaturemqtt

agent.service

On the Home Assistant side of things, we need to de�ne
an MQTT sensor with the following con�guration:

sensor:

...

 platform: mqtt

 state_topic: 'ha/kids_room/temperature'

 name: 'Temperature via MQTT'

 unit_of_measurement: C

Pros for this method:

Resource use is low

Standard API with low overhead designed for
machine-to-machine communication

Cons for this method:

The remote system needs to have the MQTT
password in the clear

When Home Assistant is restarted, the sensor
will not have any value until the �rst update
unless the MQTT Persistence option is used

Now that you've seen several examples of getting data into
Home Assistant, you will have to choose what is best for
your setup. From now on I will go with MQTT because,
even if it seems more di�cult in the beginning, it scales
better with more complex tasks.

Controlling a Smart TV with a custom component
Here's a new problem that we want to solve. Let's collect
the current channel number, program name, and TV state
from a Samsung TV running SamyGO �rmware. The TV
exposes this information via a REST API which can be
installed on the TV from here. The API sends back
information in JSON format about the current state of the
TV. It can inject remote control codes and can also send
back screenshots with what's currently on. The call and
results for the current information look like this:

$ wget O "http://tvip:1080/cgi

bin/samygowebapi.cgi?

challenge=oyd4uIz5WWAkWPo5MzfxBFraI05C3FDorS

PE7xiMLCVAQ40a&action=CHANNELINFO"

{"source":"TV (0)", "pvr_status":"NONE",
"powerstate":"Normal", "tv_mode":"Cable (1)",
"volume":"9", "channel_number":"45",
"channel_name":"Nat Geo HD", "program_name":"Disaster
planet", "resolution":"1920x1080", "error":false}

In theory, we could con�gure REST sensors to make the
query above and use templating to preserve only the
desired information, like this:

sensor:

...

 platform: rest

 resource: http://tvip:1080/cgi

bin/samygowebapi.cgi?

challenge=oyd4uIz5WWAkWPo5MzfxBFraI05C3FDorS

PE7xiMLCVAQ40a&action=CHANNELINFO

 method: GET

 value_template: '{{

value_json.channel_name }}'

 name: TV Channel Name

But the problem is that, in order to get all the information
in di�erent sensors, you need to make the same query,
discard a lot of data, and keep only what you need for that
particular sensor. This is ine�cient, and in this case, it
won't work because, in order to obtain and expose this
information, the web API running on the TV injects various
libraries into running processes on the TV to hijack some
function calls and obtain the data here. The injection step
is critical, and doing multiple injections at the same time
could cause the process to crash, which would lock up
your TV. This is why the web API serializes the queries and
won't respond to a query before the previous one is done,
but this could result in timeouts.

What is needed in this case is for the sensor component to
store all of the JSON data and have template sensors to
extract the needed data and present it. In order to do this,
we need a custom component, derived from the REST
sensor which acts just like the REST sensor, but when it
receives JSON data it stores that data as attributes of the
entity instead of discarding them.

Custom components live in the
~homeassistant/.homeassistant/custom_components
directory and preserve the structure of regular
components (meaning our sensor would live in the sensor
subdirectory). They are loaded at Home Assistant startup
before con�guration is parsed. Figure 5 shows the
di�erences between the REST sensor and the new custom
JsonRest sensor.

Figure 5 - Changes to store and expose attributes

In order to understand the changes made, you should
follow the custom components guide http://bit.ly/2fvc1PT.
The code makes some name changes in the module's
classes to prevent collisions with the REST component, and
initializes and manages a list of attributes that are parsed
from the JSON input. These will show up as attributes in

the States view. The new component name is JsonRest, the
same as the �lename.

To install the JsonRest component, you can follow these
steps:

mkdir p

~homeassistant/.homeassistant/custom_compone

nts/sensor/

wget O

~homeassistant/.homeassistant/custom_compone

nts/sensor/jsonrest.py

https://raw.githubusercontent.com/mad

ady/homeassistant

customizations/master/custom_components/sens

or/jsonrest.py

To con�gure the new component, once it's stored in the
custom_components/sensor directory, we can use this
con�guration to poll the TV every 5 minutes:

sensor:

…

 platform: jsonrest

 resource: http://tvip:1080/cgi

bin/samygowebapi.cgi?

challenge=oyd4uIz5WWAkWPo5MzfxBFraI05C3FDorS

PE7xiMLCVAQ40a&action=CHANNELINFO

 method: GET

 name: TV Living ChannelInfo

 scan_interval: '00:05'

 platform: template

 sensors:

 tv_living_powerstate:

 value_template: '{{

states.sensor.tv_living_channelinfo.attribut

es.power_state }}'

 friendly_name: TV Living Power

 tv_living_channel_number:

 value_template: '{{

states.sensor.tv_living_channelinfo.attribut

es.channel_number }}'

 friendly_name: TV Living Channel

Number

 tv_living_channel_name:

 value_template: '{{

states.sensor.tv_living_channelinfo.attribut

es.channel_name }}'

 friendly_name: TV Living Channel

Name

 tv_living_program_name:

 value_template: '{{

states.sensor.tv_living_channelinfo.attribut

es.program_name }}'

 friendly_name: TV Living Program

Name

Now only the JsonRest component will poll the TV for
information, and the template sensors extract the needed
data from the attributes, reducing the load on the TV.

Since the TV web API allows the capture of screenshots,
let's add that to Home Assistant as well (to keep an eye on
what the kids are watching). The API returns a JPEG image
each time you ask with URL parameter action=SNAPSHOT.
You can use a Generic IP Camera component:

camera 2:

 platform: generic

 name: TV Living Image

 still_image_url: http://tvip:1080/cgi

bin/samygowebapi.cgi?

challenge=oyd4uIz5WWAkWPo5MzfxBFraI05C3FDorS

PE7xiMLCVAQ40a&action=SNAPSHOT

http://bit.ly/2fupwiK
http://bit.ly/2fnLcct
http://bit.ly/2yD7bF3
http://bit.ly/2wQgc0f
http://bit.ly/2yDZHkO

The TV web API also allows you to send remote control
actions, which can be modelled through the Restful
Command component:

rest_command:

 tv_living_power_on:

 url: !secret samygo_tv_living_power_on

 tv_living_power_off:

 url: !secret samygo_tv_living_power_off

After a bit of grouping, the polished end result may be
viewed here. A link to the con�guration is available here,
and an example for the secrets �le is here. You can �nd
the code and con�guration on the GitHub page.

Figure 6 - Keeping an eye on the TV

http://bit.ly/2jYNjZH
http://bit.ly/2xBfNNF
http://bit.ly/2jXW2v3
http://bit.ly/2huBTbC
http://bit.ly/2wQq8qh

ODROID-MC1 Docker Swarm: Getting Started Guide
 October 1, 2017 By Andy Yuen Docker, Tutorial, ODROID-MC1

The sta� at Hardkernel built a big cluster computing setup
for testing the stability of Kernel 4.9. The cluster consisted
of 200 ODROID-XU4’s (i.e, with a net total of 1600 CPU
cores and 400GB of RAM), as shown in Figure 1.

Figure 1 – A cluster of 200 ODROID-XU4 devices

The experience obtained with this exercise led them to the
idea of building an a�ordable and yet powerful personal

cluster, out of which was born the ODROID-MC1. ODROID-
MC1 stands for My Cluster One. It consists of 4 stackable
units, each with a specially designed Single Board
Computer (SBC) based on the Samsung Exynos 5422 octa-
core processor. It is compatible with the ODROID-XU4
series SBC, and is mounted on an aluminum case. These
cases (which also incorporates an integrated heatsink) are
stacked with a fan attached on the back-end, to ensure
adequate cooling.

The ODROID-MC1 circuit board is a trimmed version of
that used in the ODROID-HC1 (Home Cloud One) Network
Attached Storage (NAS), with the SATA adapter removed.
The ODROID-HC1 circuit board, in turn, is a redesigned
ODROID-XU4 with the HDMI connector, eMMC connector,
USB 3.0 hub, power button and, slide switch removed.

Key features of the ODROID-MC1 include:

Samsung Exynos 5422 Cortex-A15 2Ghz and
Cortex-A7 Octa core CPUs

2Gbyte LPDDR3 RAM PoP stacked

Gigabit Ethernet port

USB 2.0 Host

UHS-1 micro-SD card slot for boot media

Linux server OS images based on modern Kernel
4.9 LTS

The ODROID-MC1 comes assembled and ready to use as a
personal cluster for learning as well as for doing useful
work. In Part 1 of this series on the ODROID-MC1, I will be
describing how to use it as a Docker Swarm cluster. In Part

2, I shall describe how to develop parallel programs to run
on the ODROID-MC1 cluster.

Figure 2 – The ODROID-MC1 makes an excellent swarm device

To set up the MC1 cluster, you need the following in
addition to the MC1 hardware:

1 x Gigabit switch with at least 5 ports

5 x Ethernet cables

4 x SD cards (at least 8GB in capacity)

4 x power adapters for the MC1 computers

Setting Up the OS on Each Computer on the Cluster
The most tedious part in setting up the ODROID-MC1
cluster is to install an Operating System (OS) and software
packages needed for running and managing the docker
swarm on each compute node. To expedite the process,
you can download an SD card image with everything
almost ready to use at
https://oph.mdrjr.net/MrDreamBot/. I say “almost”,’
because there are still a few steps you have to do to make
everything work. The SD card has logins ‘root’ and ‘odroid’
already set up. The password for both logins is “odroid:.

The swarm we are building consists of 1 master and 3
worker nodes. For discussion purposes, assume they use
the following host names and IP addresses. Of course you
can change them to suit your environment. All nodes in
the swam should have static IP address like so:

xu4master – 192.168.1.80

xu4node1 – 192.168.1.81

xu4node1 – 192.168.1.82

xu4node1 – 192.168.1.83

To start the setup process, you need to connect your PC
and one ODROID-MC1 node at a time to a Gigabit switch
which has a connection to your home router (for access to
the Internet). The image is con�gured to use dynamically
allocated IP address using DHCP from your router. You
have to login using SSH to con�gure each node to use a
static IP address instead. There are other con�guration
parameters you need to change as well.
The setup process assumes that you have some Linux
command line knowledge to carry out the following steps:

Write OS image to your SD card – Copy the SD
card image to 4 x 8GB Class 10 SD cards. If you
use bigger capacity SD cards, you have to resize
the �lesystem on each SD card to take up all
space on your SD card. The easiest way to do this
is to mount the SD card on a Linux machine and
use gparted (www.gparted.com) to resize it. That
is the method I used for my SD cards. Insert an
SD card in one of the MC1 computers.

Initiate an SSH session from your PC to the
ODROID-MC1 node as root. Its IP address can be

found in your home router. Skip the next step if
you are setting up the master node.

Change the host name by editing the
/etc/hostname �le, to change xu4-master to xu4-
nodeX where X is either 1, 2 or 3 depending on
which worker node you are setting up.

Con�gure a static IP address by editing the
/etc/network/interfaces, by removing the “#” in
front of the highlighted section and replacing the
IP address 192.168.1.80 with the IP address (in
your home network subnet) to which you want
to assign the node you are setting up.

Update the /etc/hosts �le such that each
ODROID-MC1 node entry has the correct name
and IP address.

Test the changes – Reboot the node to see if you
can SSH into it using the new IP address you
assigned to it. If so, you have successfully set up
that node. If not, double check the changes
described above to make sure there are no
typos.

Set up the next worker node – Repeat Steps 2
through 7 until all the nodes have been set up.

Figure 3 – Listing the Docker Swarm interfaces

For experienced Linux users, an alternate way to do the
above is to mount each SD card on your Linux system and
edit those �les directly on the SD card.
After you have set up your cluster, ssh into xu4-master as
user “odroid”, password “odroid”. From the master, you
can SSH to all the worker nodes without using password as
the nodes in the cluster have been set up with key-based
authentication. Do the same for “root” by either using the
“sudo -s” command, or by using SSH to establish a
connection as the root user into the xu4-master node,
then using SSH to connect to all of the worker nodes.

Setting Up Docker Swarm
A node is a Docker host participating in a swarm. A
manager node is where you submit a service de�nition
and it schedules the service to run as tasks on worker
nodes. Worker nodes receive and execute tasks scheduled
by a manager node. A manager node, by default, is also a
worker node unless explicitly con�gured not to execute
tasks. Multiple master and worker nodes can be set up in a
swarm to provide High Availability (HA).

To bring up swarm mode, issue the following
command on the manager:

$ docker swarm init advertiseaddr

192.168.1.80

which returns:

swarm initialized: current node

(8jw6y313hmt3vfa1fme1dinro) is now a manager

Run the following command to add a worker to this swarm
on each node:

$ docker swarm join token SWMTKN1

1q385ckmw7owbj2zfno04dmidb62iqg2devd7yvae5wv

uohc11at5g1ad4f24fck4cutsqhnw06

192.168.1.80:2377

To make the other nodes join the cluster, issue the “docker
swarm join’”command above on each node. This can be
done using the parallel-ssh to issue the command once
from the manager and executed on each node. Figure 4 is
a screenshot of running “docker ps” command using
parallel-ssh.

Figure 4 – Running the “docker ps” command using parallel-ssh

Now we have a Docker swarm up and running.

Testing the Swarm
To help visualize what is going on in the swarm, we can use
the Docker Swarm Visualizer image (visualizer-arm). To
deploy it as a service, issue the following command from
the manager command prompt:

$ docker service create name=dsv

publish=8080:8080/tcp

constraint=node.role==manager

mount=type=bind,src=/var/run/docker.sock,dst

=/var/run/docker.sock alexellis2/visualizer

arm

Note that the ODROID-XU4 is ARMv7-based, i.e., it is a 32
bit system, unlike the ODROID-C2 which is ARMv8-based,
and 64 bit. Consequently, the Docker images used in the
following commands are di�erent from those used in my
Docker examples for the ODROID-C2.

Point your browser at the master by visiting
http://192.168.1.80:8080, or you can point your browser to
any of the nodes in the swarm. Observe the changes
reported by the visualizer when deploying the httpd
service using my 32 bit httpd busybox mdreambot image
at http://dockr.ly/2wWPCNP. My image is started using the
command:

$ docker service create replicas 3 name

httpd p 80:80 mdreambot/arm32busyboxhttpd

Figure 5 shows a Docker Swarm Visualizer displaying the
nodes on which the service replicas are run, illustrating the
declarative service model used by swarm mode.

Figure 5 – Docker Swarm Visualizer shows the nodes on which the
service replicas are run

Use the following curl command to test the load balancing
feature of docker swarm:

$ curl http://192.168.1.80/cgibin/lbtest

http://dockr.ly/2k24edW

Figure 6 is a screenshot of the curl commands output,
which recon�rms that each request has been directed to a
di�erent node.

Figure 6 – Docker performs automatic load balancing

For a test of self-healing, I stopped the running httpd
container on xu4-master, and another httpd container was

spun up on another node to replace the one I just stopped
as can be seen in the screenshot below. This is because
when we started the service, we speci�ed “replica=3” and
the Docker swarm will maintain the desired number of
replicas. This is called desired state reconciliation.

Figure 7 – Docker supports self-healing state reconciliation

Conclusion
The Docker swarm mode is now fully functional on your
ODROID-MC1 cluster. Feel free to experiment with it. I
hope this guide achieves its objective in getting you started
running docker swarm on the ODROID-MC1. For more
information on Docker swarm mode, please refer to my
other ODROID Magazine articles on the subject.

Meet An ODROIDian: Brian Kim, Hardkernel Engineer
 October 1, 2017 By Brian Kim Meet an ODROIDian

Figure 1 – Brian Kim at Google headquarters in California

Figure 2 – Brian Kim’s family: Younger Sister, Mother, Father, Older
Sister and Nephews

Please tell us a little about yourself.
I’m 36 years old and live in Seoul, South Korea. I’m the
Research Engineer of Hardkernel Co., Ltd. My main job for
Hardkernel is maintaining the open source software like u-
boot, Linux Kernel, WiringPi2-Python and Buildroot. I
modify the open source software and add some routines

in order to support ODROIDs. Hardkernel provides
technical support in the ODROID forums at
http://forum.odroid.com, and my boss will assign software
issues reported in the forums to me. Although it is
sometimes stressful when it is a complex issue or not a
software issue, it is enjoyable to have technical discussions
with the ODROID users.
I have not only a Bachelor’s degree in Information and
Communication from Youngsan University (South Korea),
but also a Master’s degree in Mobile Communication
Engineering from Sungkyunkwan University (South Korea).
I was not a good student when I was in high school, but I
studied very hard in college and achieved a 4.5/4.5 GPA in
one semester. I learned overall background knowledge of
Computer Science in college and graduate school. I studied
CMT (Concurrent Multipath Transfer) using SCTP in a
master’s degree and wrote a paper about it.
I started my career as a software developer. My �rst
serious project was the medical information system
software using Delphi in 2005. Our team designed medical
database associate with personal information database,
and we wrote Object Pascal source code for the software. I
enjoyed developing software using various programming
languages and libraries such as Visual Basic, MFC, Win32,
Qt, PHP, ASP, JSP, C, C++ and Java.

Figure 3 – One of Brian’s toy projects, Only Debugger

Even after graduating from college, I still had a thirst for
learning. So, I moved to Seoul in order to take Embedded
Professional course at a private academy. I learned
Embedded system, ARM architecture, Linux kernel,
Network programming and RTOS in this course work from
2005 to 2006. I was very in�uenced by Unix philosophy at
that time. After I �nished the course, I developed POS
(Point Of Sale) and IP set-top box software as a part-time
job in 2007. I joined WIZnet as my �rst full-time job in
2008.

Figure 4 – Brian’s �rst commercial product, W5300E01-ARM

WIZnet is a fabulous company that designs network chips
embedded with hardwired TCP/IP stack. My �rst job in
WIZnet is developing Linux network driver for WIZnet
chipset. I worked hard and �nished the project in three
months. After that, I developed ARM embedded board
included WIZnet chip called W5300E01-ARM, which was my
�rst commercial product. The modi�ed network driver I
developed is included in the mainline Linux kernel source
code. Besides that, I developed a Serial-to-Ethernet
gateway module and gave technical support.
I participated in an open source software analysis study
group every Saturday in 2007 (Linux Kernel) and 2011 (Xen
Hypervisor). Our study group analyzed the source code in
detail until it was fully understood, which we were
passionate about. After �nishing the study about a year,
we wrote articles and books about what we learned. The
source code of open source software is my textbook, and
open source software developers are my teachers even
now.

Figure 5 – Brian’s �rst computer, an IBM XT

How did you get started with computers?
When I was 8 year old, I got started with computers with
an IBM XT. Although it was my cousin’s computer, I
frequently used the computer to play DOS games. I
remember the old gossip at that time, which was that
“640KB is enough.” When I was 10, my father gave me a
386 PC as a birthday present, and I started PC
communications using a 2400bps modem.

Whom do you admire in the world of technology?
Linus Torvalds, since he made the Linux kernel and Git.
Linux and Git changed the software world.

How did you decide to work at Hardkernel?
The most important factor was what I will do for
Hardkernel. The responsibilities in the job post seemed
interesting to me.

How do you use your ODROIDs at home?
I enjoy making interesting things with ODROIDs. Some of
my projects can be found in ODROID magazine, such as
Ambilight, Rear View Camera and ODROID Arcade Box. In
the South Korean o�ce, we use ODROIDs as private
servers and automatic �sh feeders. The cryptocurrency

miner using 200 ODROID-XU4 devices was also an
interesting project. I created and used a voice light switch
using ODROID-C2 and Google Cloud Speech API at home.

Which ODROID is your favorite and why?
The ODROID-C2 is my favorite, because I’m one of
ODROID-C2 main developers, and it has 64bit ARM
architecture. Although I’m maintaining all of the ODROIDS
currently on sale (ODROID-C1+, ODROID-C2 and ODROID-
XU4), I joined after the XU4 and C1+ were developed.

What innovations do you see in future Hardkernel products?
I think that keeping our current position in the SBC market
as high-performance devices, and trying to enter the low-
end server market are good for survival.

What hobbies and interests do you have apart from
computer?
I enjoy travel, computer games, snowboarding,
wakeboarding, scuba diving and triathlon (swimming,
cycling and marathon). I completed a Triathlon Olympic
course last year. I went to Busan from Seoul by bike during
the summer vacation this year. The distance is about 325
miles (523 KM). I will challenge myself with a full course
marathon next month.

Figure 6 – Brian’s hobbies are snowboarding, scuba diving,
triathlon, traveling and cycling

What advice do you have for someone wanting to learn more
about programming?
Read a good source code from open source software.
Write lots of high quality code as much as you can.

