

Backup Scripts: Keep your data safe for your peace of mind
 May 1, 2018

To save yourself from future trouble, it’s always a good idea to make a backup!

Android Auto: Take Your ODROID On The Road
 May 1, 2018

Android Auto is a Google application that allows an ODROID-C2/C1+ to function as an
in-dash car computer to support navigation, audio, and hands-free operation.

ODROID-C2 Kodi Media Center: Build Your Own Entertainment
System With A Custom LED-enabled Case
 May 1, 2018

I am one that likes my movies, and also one that likes to �ddle and make, so the two
came together in wanting an easy way to play things from my movie/music collection.

It had to be simple to use, reliable and look good too. My movie / music collection

Home NAS and Media Player: Building The Perfect Entertainment
System
 May 1, 2018

If you are old enough, you may remember and even relate. Picture this: Early 2000s;
DivX–and later, its rival XviD–on the software side, and Pentium 4 and Athlons on the

hardware side have �nally made video compression a thing; no more bulky, moldy VHS tapes; Napster in its
best days,

Linux Logical Volume Manager (LVM2)
 May 1, 2018

The Linux Logical Volume Manager (LVM) is software system designed for adding a
layer between real disks and the operating system’s view of them to make them easier
to manage, replace, and extend. It is used in data centers to use upgrade disk

hardware as well to mirror data to

USB 3.0 eMMC Reader
 May 1, 2018

Hardkernel’s ODROID platform has a unique advantage over other similar Single Board
Computers (SBCs) that they allow the eMMC module to be removed and re�ashes
using an external USB adapter. All of Hardkernel’s eMMC modules ship with an SD card

adapter that allow the user to �ash an operating system

A�ordable UPS Solution: Ensure That Your ODROID-HC2 Has 100%
Uptime
 May 1, 2018

A lot of NAS systems have an Uninterrupted Power Supply (UPS) to protect their
valuable data from accidental corruption due to loss in main power. This article helps

you build an UPS for the ODROID-HC2 using some o�-the-shelf parts. It is based on an inexpensive mini DC
UPS, which I

Fan Control: Tailor the ODROID-XU4 To Your Perfect Settings
 May 1, 2018

The ODROID-XU4 supports 3 cooling levels for the thermal control, and on this article
you will learn to tailor it to suit your cooling and noise needs.

Minecraft Client on ODROID
 May 1, 2018

Minecraft can now be played on the ODROID! Installation is pretty easy, thanks to the
packaging skills of Tobias aka @meveric.

ODROID-XU4 Cluster
 May 1, 2018

In the past few years, the topics of big data and data science have grown into
mainstream prominence across countless industries. No longer are high tech
companies in Silicon Valley the sole purveyors of topics like Hadoop, logistic

regression, and machine learning. Being familiar with big data technologies is becoming

BASH Basics: Introduction to BASH
 May 1, 2018

This guide is a beginner-friendly introduction to the BASH shell

Android Oreo: Get The Latest Version of Android For Your ODROID-
XU4
 May 1, 2018

ODROID Forum user voodik has been porting Android 8.1 (based on LineageOS 15.1)
for ODROID-XU4 since last October. He recently released the �rst alpha version for

community debugging.

Prospectors, Miners and 49er’s – Part 3: Operation and
Maintenance of Crypto-Currency Mining Systems
 May 1, 2018

In the last two articles for the Prospectors, Miners and 49er’s series, I introduced dual
CPU/GPU Mining with sgminer-arm-5.5.6-RC and brie�y examined system thermal

trends and GPU tuning. In this third article, we’ll take a look at the broader operational issues of crypto-
currency mining and its system and maintenance rami�cations,

The Yocto Project: Up and running on the ODROID-C2
 May 1, 2018

This article describes the fundamental building blocks and process for building a
custom ODROID-C2 Linux image. The same steps can be used for other ODROID
machines. Yocto is the industry standard tool for building custom, complex Embedded

Linux systems using the latest Open Source technologies such as Qt5, QtWebEngine, and

Meet An ODROIDian: Matthew Kinderwater (WebClaw)
 May 1, 2018

I am the Director of IT Services at a company called iCube Development which is based
in Calgary, Alberta, Canada. My role is typically involves data recovery cases, working in
a clean lab performing tasks such as replacing heads, electrical repairs, and recovering

data from RAID volumes.

Backup Scripts: Keep your data safe for your peace of mind
 May 1, 2018 By Adrian Popa Linux, Tutorial

You’ve worked hard to get your system in shape and
worked out all of the bugs, but you know that things
are not going to last, and you may be an update away
from a broken browser, or you might want to
experiment with a new kernel or beta package. To
save yourself from future trouble, it’s always a good
idea to make a backup! However, backups are usually
a source of confusion on the forums, and lots of new
users struggle with them. In this article, we’ll learn
what needs to be done to keep your system safe.

Disks, partitions and �le systems

Seasoned computer users have no problem
distinguishing between disks, partitions and
�lesystems, but let’s analyze them to have a common
starting point. A disk is generally a physical device that
stores data into randomly-accessible blocks. In more
complex setups, multiple physical disks can be
combined as RAID arrays using either hardware or
software, and exposing them to the operating system
as virtual disks. Partitions are sections on disks that

usually hold a �lesystem. Filesystems manage how
�les and data are stored in order to be found later on.
In order to make a backup of your ODROID system,
you will need to preserve the partition information
and the contents of the partitions.

Figure 1 – Partition layout of an ODROID-C1 triple-boot
image

All disks start o� with a 512 byte block of data that
typically holds the bootloader (for x86 systems, 446
bytes) and the 64B Master Boot Record (MBR), which
is explained at http://bit.ly/2bMCTUh. The MBR is a
table with the start o�set, length and partition type of
your 4 primary partitions. These are the partitions

http://bit.ly/2bMCTUh

mapped as 1-4 in the Linux kernel (e.g., sda1-sda4 for
a disk called sda). The MBR is an old data structure,
introduced in 1983, so it has some limitations. The
need to use ever-larger disks (>2TB) led to the
introduction of the GUID Partition Table (GPT) which
replaces the MBR in newer systems and is detailed at
http://bit.ly/2bvb4oL. ODROIDs can use both MBR
and GPT, but the boot media is designed as a MBR
volume because of its relatively small size and
simplicity.

But, as shown in Figure 1, a disk may have more than
4 partitions. This is achieved by using a trick – one
primary partition is marked as “extended” and it can
contain any number of logical partitions. Linux
represents them with numbers from 5 upwards (i.e.,
sda5, sda6 and so on). The partition information for
the logical partitions is stored in structures similar to
the MBR called Extended Boot Record (EBR) as
explained at http://bit.ly/2bw47Re, which looks like a
linked list as shown in Figure 2, but precedes the
actual partition on disk.

Figure 2 – EBR position on disk

The partitions you’ll usually see on ODROIDs are
FAT16/FAT32 (seen as VFAT under the mount
command) and Ext2/3/4. There are other partition
types supported by Linux, such as NTFS, XFS, and ZFS,
but they are usually not critical to the boot process, so
they will be out of our scope. There are backup tools
such as BackupPC (http://bit.ly/2bx3J6R) or Clonezilla

(http://bit.ly/1Iq2mN7), which support more partition
types or do backup on �le level. These same tools
should be used to backup your personal data, such as
�les, pictures or music. It’s also a good idea before
starting a backup to do some “spring cleaning” and
delete things you no longer need, such as temporary
�les or downloads, in order to reduce the time it takes
to do the backup and the size of the backup �le. For
instance, you can delete the cache of downloaded apt
packages with the following command:

$ sudo apt-get clean

Backup strategies

There are a few ways of making a backup of your
eMMC/SD card. The simplest to implement is to make
a 1:1 binary copy of your data to an image �le. For this
task, you can use a tool such as dd or
Win32DiskImager. Note that all of the commands that
follow expect to have the variable $backupDir
replaced by the path to your desired backup
directory, which can’t be on the same partition you’re
trying to backup for obvious reasons.

$ sudo dd if=/dev/mmcblk0
of=$backupDir/backup.img bs=1M

In the command above, “if” represents “input �le” and
should point to the block device representing your
disk, such as /dev/mmcblk0, and “of” represents the
“output �le” where data should be written to. The
parameter “bs” represents “block size”, which signi�es
how much data is read and written at once. A
variation of the dd command that shows progress
uses the “pv” command (pipe viewer):

apt-get install pv
 # dd if=/dev/mmcblk0 bs=1M | pv | dd
of=$backupDir/backup.img

Restoring the data is equally easy: just replace the
values of “if” and “of”:

$ sudo dd if=$backupDir/backup.img
of=/dev/mmcblk0 bs=1M

Note that dd makes a binary copy of your disk. This
means that it will copy also the free space on your
disk. The default output �le will be as large as your

http://bit.ly/2bvb4oL
http://bit.ly/2bw47Re
http://bit.ly/2bx3J6R
http://bit.ly/1Iq2mN7

disk, which means that copying a 64GB SD card of
mostly empty space will take a long time and take up
a lot of room. The advantage is that you can later run
tools like PhotoRec (http://bit.ly/1jwXElB) on the free
space and possibly recover deleted �les, which is
useful when doing data forensics or recovering from
bad media. The disadvantage is that the image will be
big and slow to copy. You can use dd together with
gzip to shrink the image before writing it to reduce
size a bit, but you won’t save time:

dd if=/dev/mmcblk0 bs=1M | gzip -c >
$backupDir/backup.img.gz
 # gunzip -c $backupDir/backup.img.gz | dd
of=/dev/mmcblk0 bs=1M

Also note that, in theory, you can do a backup with dd
on a live system by copying it while the partitions are
mounted, but there is a risk of inconsistencies if �les
are changed while doing the backup. It’s best to do an
o�ine backup by pulling the eMMC/SD card, plug it
into a di�erent system, and do the backup without
having mounted partitions. There’s also a
disadvantage when copying between media of slightly
di�erent sizes. Since not all 16GB cards are exactly
the same size, you might end up with a truncated
partition on your destination.

The “dd” utility has the advantage that it is easy to
use, but to gain backup/restore speed and minimize
necessary backup space, you need to break up the
backup operation into several steps and avoid
backing up free space. For this, you’ll need to backup
the MBR + EBR, bootloader, and individual partitions.

You can still cheat and use dd if you use gparted in
order to shrink your largest/last partition to only the
used size, dd up to that size, then resize the partition
back to the original size after you restore it, but it
involves some manual work.

MBR backup and restore

The MBR and EBR are small data structures and can
be easily backed up with dd. But because the EBR’s
position on disk can vary, you should rely on a
partitioning tool to extract and restore the MBR/EBR
data. Such a tool is sfdisk:

$ sudo apt-get install sfdisk
 $ sudo sfdisk -d /dev/mmcblk0 >
$backupDir/partition_table.txt

To restore it later, you need to supply the saved �le to
sfdisk like this:

$ sudo sfdisk /dev/mmcblk0 <
$backupDir/partition_table.txt

Note that overwriting the MBR on a disk with existing
partitions is equivalent to deleting the partitions since
the operating system will not be able to �nd the
o�sets to the old partitions anymore, so use the
restore step with extreme care! This backup can be
performed on a live system without risks since
partition tables are not usually changed during
runtime.

Bootloader backup and restore

ODROIDs use U-Boot as a bootloader, as detailed in
the November 2015 issue of ODROID Magazine
November 2015 (http://bit.ly/2bA3P9g). U-Boot
stores its code and data in the unallocated space after
the MBR and at the beginning of the �rst partition.
There is also some bootstrap code in the �rst 446
bytes in the �rst sector, before the partition table.
Since the size and structure of U-Boot may di�er
between ODROID models, it’s safest to do a binary
backup of this unallocated space with dd. First, you
need to �nd out the start sector of the �rst partition
with sfdisk:

$ sudo sfdisk -l /dev/mmcblk0

Figure 3 – Identify the start sector of the �rst partition
with sfdisk and sector size

As indicated in Figure 3, the �rst partition (loop0p1)
starts at o�set 49152, so we’ll need to copy everything
up to and including sector 49151. The bs (block size)

http://bit.ly/2bA3P9g

parameter must match what sfdisk reported in the
“Units” line:

$ sudo dd if=/dev/mmcblk0
of=$backupDir/bootloader.bin bs=512
count=49151

Note that the dd command will also copy over the
MBR, which is sector 0). To restore the bootloader and
skip restoring the partition table as well, you can use
the following command:

$ sudo dd if=$backupDir/bootloader.bin
of=/dev/mmcblk0 bs=512 skip=1 seek=1

You should also restore the bootstrap code from the
�rst sector:

$ sudo dd if=$backupDir/bootloader.bin
of=/dev/mmcblk0 bs=446 count=1

To restore the partition table as well, do not add the
skip and seek parameters. This too can be done on a
live system since the data is mostly read-only.

FAT partitions backup and restore

By default, Hardkernel’s images come with a FAT16/32
partition mounted under /media/boot that contains
the kernel, initrd, device tree and boot.ini �les. All of
these are crucial to system startup. Android systems
expose this partition as “sdcard” storage.

There are several tools for linux that backup FAT
partitions. I used to use partimage, but it fails to verify
the checksum of the partitions on C2, so I switched to
partclone. Partclone can do a block backup of FAT
partitions preserving data at the same o�sets, but can
skip empty space.

$ sudo apt-get install partclone
 $ sudo partclone.vfat -c -s /dev/mmcblk0p1 -O
$backupDir/partition_1.img

The “-c” speci�es “clone”, “-s” is the source partition,
which is the �rst partition in our case, and “-O” is the
output �le, which will get overwritten if it exists. Note
that partclone cannot operate on mounted
�lesystems and will exit with an error. In order to back
up from a running ODROID, you will need to unmount
/media/boot, perform the backup and mount it back
again.

To restore a FAT partition, you can run the following
command:

$ sudo partclone.restore -s
$backupDir/partition_1.img -o /dev/mmcblk0p1

Figure 4 – Partclone backup with prior unmounting of
/media/boot

Unfortunately, PartClone will not allow you to restore
a partition to a smaller or larger target partition, so
any size adjustment you will need to make after the
restore is done. You can actually restore to a larger
partition, but you will need to manually grow it in
order to use the extra space.

Ext2/3/4 partitions backup and restore

In order to backup and restore Ext2/3/4 �lesystems,
we’ll need to use a di�erent tool called FSArchiver.
Unlike PartClone, FSArchiver creates a �le level
backup and reconstructs the �lesystem upon restore.
Unfortunately, because of certain particularities of
FAT systems where Windows boot �les need to be at
speci�c o�sets, the author of fsarchiver does not
support backing up FAT �lesystems as well, so we’re
stuck to using two tools for the job. But with the help
of external packages fsarchiver can support other
�lesystems as well, such as XFS, ReiserFS, JFS, BTRFS
and NTFS. It usually backs up unmounted �lesystems,
but can be used on live �lesystems as well with the “-
A” �ag, which may not always work. FSArchiver has
the advantage that it can restore a �lesystem in a
bigger or smaller target partition while preserving
UUIDs. In order to back up the second partition, you
can run the following commands:

$ sudo apt-get install fsarchiver
 $ sudo fsarchiver -o -v -A -j 4 savefs
$backupDir/partition_2.fsa /dev/mmcblk0p2

The “-o” �ag means overwrite the destination �le if it
exists, “-v” is verbose output, “-A” allows you to
backup a mounted partition and “-j 4” allows it to use
4 cores for compression.

In order to restore a fsa backup you can run the
following command:

$ sudo fsarchiver restfs
$backupDir/partition_2.fsa
id=0,dest=/dev/mmcblk0p2

Note that since FSArchiver supports multiple
partitions inside an archive, it needs you to specify
which partition id to restore. In our example, we store
only one partition in an archive, so you’ll always
specify id=0 when restoring.

SPI Flash

Newer boards, like the development Odroid N1 may
feature a low capacity SPI NAND Flash chip designed
to store the bootloader and kernel, so that it can boot
from network, or from a SATA disk, without the need
of a eMMC or SD card. Even if the layout of this chip
hasn’t been decided fully at the time of this writing,
we can still back it up and restore it as a block device
with dd. You can get a list (and description) of MTD
devices in your Odroid by running:

$ sudo cat /proc/mtd
 dev: size erasesize name
 mtd0: 01000000 00001000 "spi32766.0"

To back it up, you can simply use:

 $ sudo dd if=/dev/mtd0
of=$backupDir/flash_mtd0.bin bs=4096

In order to write to a �ash device, to restore it, you
need to erase the block you’re going to write to.
Fortunately, since we will write the whole device, we
can erase it all before writing. For this we need mtd-
utils which provides �ash_erase:

$ sudo apt-get install mtd-utils
 $ sudo flash_erase -q /dev/mtd0 0 0
 $ sudo dd if=$backupDir/flash_mtd0.bin
of=/dev/mtd0 bs=4096

ODROID backup tool

Now that you know how to do things manually, you
may question why backup and restore operations are
not simpler, using point and click operations. I agree
that nobody has the time to remember all the
command line arguments from various commands, so
I hacked together a rudimentary GUI that can walk
you through your backup and restore process.

The tool is descriptively called “odroid-backup”. It’s
written in Perl and uses zenity and dialog to build a
rudimentary GUI, because I’m too old to learn Python.
To install the tool, you can download it from my
GitHub repository:

$ sudo wget -O /usr/local/bin/odroid-backup.pl
https://raw.githubusercontent.com/mad-
ady/odroid-backup/master/odroid-backup.pl
 $ sudo chmod a+x /usr/local/bin/odroid-
backup.pl

The script depends on a bunch of non-standard Perl
modules as well as some Linux utilities, and will
display a list of missing dependencies and ways of
�xing it when you �rst run it. To install all
dependencies at once, run the following:

$ sudo apt-get install libui-dialog-perl
zenity dialog libnumber-bytes-human-perl
libjson-perl sfdisk fsarchiver udev util-linux
coreutils partclone parted mtd-utils

The script is designed to run on Linux systems, such
as a PC to which you’ve hooked up a SD card or eMMC
module via a USB adapter, or directly on the ODROID
(sorry Windows fans). Also, the script will create
graphical windows if it detects that you’re running an
X11 session, or will fall back to ncurses (display) if
you’re connected via ssh or terminal. You can
manually force this with the –text switch.

Figure 5 – Zenity vs display rendering

To perform a backup, start the tool in a terminal and
select “Backup partitions”, then select OK (1):

$ sudo odroid-backup.pl

You will be presented with a list of removable drives
in your system. You can start the program with the -a
�ag in order to display all drives, which is the case
when running directly on the ODROID, since eMMC
and SD are shown as non-removable. Select the
desired one and click OK (2). You will then be
presented with a list of partitions on that drive. Select
the ones you wish to backup (3). Next, you will have to
select a directory to which to save the backups. It’s
best to have a clean directory (4). Press OK, and
backup will start with a rudimentary progress bar to
keep you company (5). When the backup is done, you
will be presented with a status window with the
backup results and possible errors (6). The backup
�les have the same naming convention used in this
article. To backup a Flash NAND as well you need to
re-run the tool and select it from the available disks.
You can save the resulting �le in the same directory
as the partition backups.

Figure 6 – Backup steps

To perform a restore, start the tool in a terminal,
select “Restore partitions”, then select OK (1):

$ sudo odroid-backup.pl

You will have to select the directory holding your
valuable backups and select OK (2). In the resulting
window, select which partitions you wish to restore
from the backup and select OK (3). Note that the
partitions are restored in the same order as they were
on the original disk, which means that partition 1 will
be the �rst partition, and so on. In the last window,
you will be asked on which drive to restore the data
(4). Enjoy watching the progress bar progressing (5),

and in the end you will have a status window with the
restore results (6). The log �le is also saved in
/var/log/odroid-backup.log.

Figure 7 – Restore steps

Known limitations

If you backup an eMMC for XU3/4, the hidden sectors
(/dev/mmcblk0boot0, /dev/mmcblk0boot1) are not
backed-up/restored. These blocks contain parts of the
UBoot loader. When restoring a backup on an SD card

or on a new eMMC, the board might boot with an
older UBoot version (stored before the �rst partition).
As a result of this the UBoot environment might be
incomplete (e.g. there is no ${board_name} set), and
booting might be di�erent than normal (network
might be missing). Once you do boot it is
recommended that you reinstall uboot with this
command on the new card:

$ sudo apt-get install --reinstall uboot

As you might suspect, no piece of software is free of
bugs, but hopefully this six step script will have its
uses. This script has some shortcomings, such as the
zenity windows not always displaying the instruction
text, which is why I added the title bar. There is also
no validation of the backups or restores. You will have
to review the log to verify that the backup or restore
operation completed successfully. One other
limitation is that FAT partitions need to be manually
unmounted before backup, although Ext2/3/4 can be
backed-up live. Finally, the sfdisk utility on Ubuntu
14.04 doesn’t support JSON output, so it will not work
there, although I can add support if needed. The
program was tested by backing up and restoring
several o�cial Hardkernel Linux and Android images,
as well as triple-boot images, and so far everything
seems to work. Ideas for improvement and patches
are welcome as always on the support thread at
http://bit.ly/2bEyFzl.

Android Auto: Take Your ODROID On The Road
 May 1, 2018 By Chris Kim Android, ODROID-C1+, ODROID-C2

Android Auto is a Google application that allows an
ODROID-C2/C1+ to function as an in-dash car
computer to support navigation, audio, and hands-
free operation. Video instructions are available at
https://youtu.be/_iTYv8a2Aso. The application runs
inside Linux using the OpenAuto application.

Figure 1

Figure 2

Materials

ODROID-C2 / ODROID-C1+

ODROID-VU7. You can also use the ODROID-VU5, but
it may be too small to see while driving

I2S 2Watt Stereo Boom Bonnet Kit. We chose this for
the mobility. It has also su�cient sound volume, but
you can also use other speakers.

ODROID-USB-CAM 720P / USB Microphone. We
attached a microphone for hand-free service.

https://youtu.be/_iTYv8a2Aso
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145457216438
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G143703355573
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G144549683088
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G147563061546
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G150067146391
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G146883099080
https://goo.gl/fqa3VJ

Power button. You can use your favorite style of
button to match your car’s interior.

SmartPower2 with 15V/4A

Cigarette lighter power adapter

DC Plug Cable Assembly 5.5mm L Type

DC Plug Cable Assembly 2.5mm L Type

Figure 3 – We prepared two buttons for use as a shut-
down switch. For this project, we used the bigger button

Figure 4 – We prepared two buttons for use as a shut-
down switch. For this project, we used the bigger button

Figure 5 – We used a cigarette lighter power adapter as
power supply

Figure 6 – To connect the power adapter to
SmartPower2, we changed the connector to a 5.5mm L
type cable

Software

This project is based on ubuntu64-16.04.3-mate,
version 2.2. Android Auto works well on both the
ODROID-C2 and the ODROID-C1+.

Install dependencies

Before installing the Audio Auto, you should install the
dependency packages.

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G148048570542
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G144281841119
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G144281868640

$ sudo apt-get update && sudo apt-get upgrade
 $ sudo apt-get install -y git-core curl dh-
autoreconf libboost-all-dev libusb-1.0.0-dev
libssl-dev cmake libqt5multimedia5
libqt5multimedia5-plugins
libqt5multimediawidgets5 qtmultimedia5-dev
libqt5bluetooth5 libqt5bluetooth5-bin
qtconnectivity5-dev pulseaudio gstreamer1.0-
plugins-bad gst123 librtaudio-dev

The following script will automatically log into the
Android account after each boot:

$ sudo vi
/usr/share/lightdm/lightdm.conf.d/60-lightdm-
gtk-greeter.conf
 [Seat:*]
 greeter-session=lightdm-gtk-greeter
 autologin-user=odroid

Installation

To use Android Auto, you will need to install
OpenAuto, which requires both aasdk and protocol-
bu�ers to be installed. Before updating the compiler,
please check the version of the GCC compiler. The
GCC version should be 6 or higher:

$ gcc -v
 Using built-in specs.
 COLLECT_GCC=gcc
 COLLECT_LTO_WRAPPER=/usr/lib/gcc/aarch64-
linux-gnu/5/lto-wrapper
 Target: aarch64-linux-gnu
 Configured with: ../src/configure -v --with-
pkgversion='Ubuntu/Linaro 5.4.0-
6ubuntu1~16.04.9' --with-
bugurl=file:///usr/share/doc/gcc-5/README.Bugs
--enable-
languages=c,ada,c++,java,go,d,fortran,objc,obj
-c++ --prefix=/usr --program-suffix=-5 --
enable-shared --enable-linker-build-id --
libexecdir=/usr/lib --without-included-gettext
--enable-threads=posix --libdir=/usr/lib --
enable-nls --with-sysroot=/ --enable-
clocale=gnu --enable-libstdcxx-debug --enable-
libstdcxx-time=yes --with-default-libstdcxx-
abi=new --enable-gnu-unique-object --disable-
libquadmath --enable-plugin --with-system-zlib
--disable-browser-plugin --enable-java-awt=gtk
--enable-gtk-cairo --with-java-
home=/usr/lib/jvm/java-1.5.0-gcj-5-arm64/jre -
-enable-java-home --with-jvm-root-

dir=/usr/lib/jvm/java-1.5.0-gcj-5-arm64 --
with-jvm-jar-dir=/usr/lib/jvm-exports/java-
1.5.0-gcj-5-arm64 --with-arch-
directory=aarch64 --with-ecj-
jar=/usr/share/java/eclipse-ecj.jar --enable-
multiarch --enable-fix-cortex-a53-843419 --
disable-werror --enable-checking=release --
build=aarch64-linux-gnu --host=aarch64-linux-
gnu --target=aarch64-linux-gnu
 Thread model: posix
 gcc version 5.4.0 20160609 (Ubuntu/Linaro
5.4.0-6ubuntu1~16.04.9)

Add the repository via add-apt-repository commands,
then install gcc-6:

$ sudo apt update
 $ sudo add-apt-repository ppa:ubuntu-
toolchain-r/test -y
 $ sudo apt update
 $ sudo apt install gcc-snapshot -y
 $ sudo apt update
 $ sudo apt install gcc-6 g++-6 -y
 $ sudo update-alternatives --install
/usr/bin/gcc gcc /usr/bin/gcc-6 60 --slave
/usr/bin/g++ g++ /usr/bin/g++-6
 $ sudo update-alternatives --config gcc

After installation, you should see that the updated
GCC is available:

$ gcc -v
 Using built-in specs.
 COLLECT_GCC=gcc
 COLLECT_LTO_WRAPPER=/usr/lib/gcc/arm-linux-
gnueabihf/6/lto-wrapper
 Target: arm-linux-gnueabihf
 Configured with: ../src/configure -v --with-
pkgversion='Ubuntu/Linaro 6.3.0-18ub
 untu2~16.04' --with-
bugurl=file:///usr/share/doc/gcc-6/README.Bugs
--enable-
languages=c,ada,c++,java,go,d,fortran,objc,obj
-c++ --prefix=/usr --program-suffix=-6
 --program-prefix=arm-linux-gnueabihf- --
enable-shared --enable-linker-build-id
 --libexecdir=/usr/lib --without-included-
gettext --enable-threads=posix --
libdir=/usr/lib --enable-nls --with-sysroot=/
--enable-clocale=gnu --enable-libstdcxx-debug
--enable-libstdcxx-time=yes --with-default-
libstdcxx-abi=new --enable-gnu-unique-object -
-disable-libitm --disable-libquadmath --

enable-plugin --with-system-zlib --disable-
browser-plugin --enable-java-awt=gtk --enable-
gtk-cairo --with-java-home=/usr/lib/jvm/java-
1.5.0-gcj-6-armhf/jre --enable-java-home --
with-jvm-root-dir=/usr/lib/jvm/java-1.5.0-gcj-
6-armhf --with-jvm-jar-dir=/usr/lib/jvm-
exports/java-1.5.0-gcj-6-armhf --with-arch-
directory=arm --with-ecj-
jar=/usr/share/java/eclipse-ecj.jar --with-
target-system-zlib --enable-objc-gc=auto --
enable-multiarch --enable-multilib --disable-
sjlj-exceptions --with-arch=armv7-a --with-
fpu=vfpv3-d16 --with-float=hard --with-
mode=thumb --disable-werror --enable-multilib
--enable-checking=release --build=arm-linux-
gnueabihf --host=arm-linux-gnueabihf --
target=arm-linux-gnueabihf
 Thread model: posix
 gcc version 6.3.0 20170519 (Ubuntu/Linaro
6.3.0-18ubuntu2~16.04)

Next, download the protobuf-compiler source code:

$ wget
https://github.com/google/protobuf/archive/v3.
0.0.zip
 $ unzip v3.0.0.zip
 $ cd protobuf-3.0.0

In the autogen.sh �le, change the Google Mock
packages to Google Test packages:

$ vi autogen.sh
 .
 .
 . (:32)
 if test ! -e gmock; then
 curl $curlopts -L -O
https://github.com/google/googletest/archive/r
elease-1.7.0.zip
 unzip -q release-1.7.0.zip
 rm release-1.7.0.zip
 mkdir -p gmock/gtest
 mv googletest-release-1.7.0 gmock/gtest
 fi
 .
 .
 .

If you are using an ODROID-C2 for your build, you can
add the “-j4” option to the “make” command but on
the ODROID-C1+, you should avoid this option due to
the lower system memory size.

$./autogen.sh
 $./configure --prefix=/usr/lib/arm-linux-
gnueabihf/
 $ make [-j4]
 $ sudo make install
 $ sudo ldconfig
 $ export PATH=/usr/lib/arm-linux-
gnueabihf/bin/:$PATH
 $ cd
 $ git clone -b master
https://github.com/f1xpl/aasdk.git
 $ mkdir aasdk_build
 $ cd aasdk_build
 $ cmake -DCMAKE_BUILD_TYPE=Release ../aasdk
 $ make [-j4]

Finally, build and install Open Auto:

$ cd
 $ git clone -b master
https://github.com/f1xpl/openauto.git
 $ mkdir openauto_build
 $ cd openauto_build
 $ cmake -DCMAKE_BUILD_TYPE=Release -
DRPI3_BUILD=FALSE -
DAASDK_INCLUDE_DIRS="/home/odroid/aasdk/includ
e" -
DAASDK_LIBRARIES="/home/odroid/aasdk/lib/libaa
sdk.so" -
DAASDK_PROTO_INCLUDE_DIRS="/home/odroid/aasdk_
build" -
DAASDK_PROTO_LIBRARIES="/home/odroid/aasdk/lib
/libaasdk_proto.so" ../openauto
 $ make [-j4]
 $ echo "./openauto/bin/autoapp &" >> .bashrc

Add account to group

To solve the account permission problem, set the user
group as shown below:

$ sudo usermod -a -G root odroid
 $ sudo usermod -a -G tty odroid
 $ sudo usermod -a -G voice odroid
 $ sudo usermod -a -G input odroid
 $ sudo usermod -a -G audio odroid
 $ sudo usermod -a -G pulse odroid
 $ sudo usermod -a -G pulse-access odroid

You should see the Android auto ready screen upon
booting.

Figure 7

Figure 8

Attaching and setting the materials

To use the ODROID-VU7 display, edit the boot.ini �les
as shown below. You should edit resolution and
vout_mode options. The ODROID-VU7 has 800×480
60hz, and DVI mode.

$ sudo vi /media/boot/boot.ini

setenv m "576p" # 720x576
 setenv m "800x480p60hz" # 800x480
 # setenv m "800x600p60hz" # 800x600
 # setenv m "1024x600p60hz" # 1024x600
 # setenv m "1024x768p60hz" # 1024x768
 # setenv m "1360x768p60hz" # 1360x768
 # setenv m "1440x900p60hz" # 1440x900
 # setenv m "1600x900p60hz" # 1600x900
 # setenv m "1680x1050p60hz" # 1680x1050
 # setenv m "720p" # 720p 1280x720
 # setenv m "800p" # 1280x800
 # setenv m "sxga" # 1280x1024
 # setenv m "1080i50hz" # 1080I@50Hz
 # setenv m "1080p24hz" # 1080P@24Hz
 # setenv m "1080p50hz" # 1080P@50Hz
 # setenv m "1080p" # 1080P@60Hz

 # setenv m "1920x1200" # 1920x1200

HDMI DVI Mode Configuration
 # setenv vout_mode "hdmi"
 setenv vout_mode "dvi"
 # setenv vout_mode "vga"

Figure 9

Mount SmartPower2

This is an optional device, and you can use any other
5V/3A PSU for this. The SmartPower2 has an auto-run
function, and you can communicate with it via WiFi.

Figure 10 – Output power ON/OFF automatically when
you power on the SmartPower2

Check the Auto Run option and connect SmartPower2
using the cigarette lighter power adapter as the input
and the ODROID-C1+ as the output.

Figure 11

Figure 12

Mount Stereo Boom Bonnet

If you have to load the driver every time your
ODROID-C1+/C2 starts up, simply register the driver
into /etc/modules (more details):

odroid@odroid64:~$ su
 Password: /* root password is "odroid" */
 root@odroid64:/home/odroid# echo "snd-soc-
pcm5102" >> /etc/modules
 root@odroid64:/home/odroid# echo "snd-soc-
odroid-dac" >> /etc/modules
 root@odroid64:/home/odroid# exit
 exit
 odroid@odroid64:~$

Select “output to ODROID-DAC Analog stereo” via
System » Preferences » Hardware » Sound » Output.

Figure 13 – Select Output: ODROID-DAC Analog Stereo

Figure 14 – Make sure to check the connector!

Set Up your power button

Using the keypads on the TFT LCD, the Android Auto
system can be shut down by powering o� the car
system, but we wanted to include a separate power
button for convenience. To make this work, change
“KEY_UP” to “KEY_POWER” in the source code for the
tftlcd_key service:

{ PORT_KEY1, HIGH, KEY_UP, KEY_RELEASE },

Next, update rc.local to automatically load the
tftlcd_key service on boot:

$ sudo vi /etc/rc.local

By default this script does nothing.
 sudo /home/odroid/tftlcd_key &

if [-f /aafirstboot]; then /aafirstboot
start ; fi

Now connect the power button to the GPIO expansion
connectors J2. We used Pin 6 and Pin 12.

Figure 15

Figure 16

To map a shutdown action, go to System »
Preferences » Hardware » Power Management »
General.

Figure 17 – When power button is pressed: Shutdown

Figure 18

Mount USB Microphones

To use Google Assistant, you will also need a USB
microphone. Set the input to USB device using System
» Preferences » Hardware » Sound » Input.

Figure 19

Figure 20 – Select input : USB PnP Sound Device Analog
Mono

Figure 21

Install Android Auto in a car

We’ve now installed the Android Auto device in my
personal car, which works great. After start up,
Android Auto is automatically ready to connect your
Android device. After connecting your Android device
to Android Auto, the Android Auto will detect your
device so that you can use it.

Figure 22

Figure 23

Figure 24

ODROID-C2 Kodi Media Center: Build Your Own Entertainment
System With A Custom LED-enabled Case
 May 1, 2018 By Gary Morgan ODROID-C2, Tinkering

I am one that likes my movies, and also one that likes
to �ddle and make, so the two came together in
wanting an easy way to play things from my
movie/music collection. It had to be simple to use,
reliable and look good too. My movie / music
collection is stored on a NAS drive allowing me to
store the originals out of the way. So, I thought it was
going to be simple given that all I wanted to do was
play Blu-Ray iso’s, DVD VideoTS/VOBs, CD MP3s and
FLAC �les.

Over the years, I have tried many media clients on
various platforms, but they were often tripped up by
poor audio and unreliable video playback. It did not
seem to be related to cost as I have spent a fair bit on
dedicated media-center PCs over the years. I have
even purchased ready-made solutions. One thing that
did keep happening though, was that I kept coming
back to Kodi, previously known as XBMC.

Then came along the Raspberry Pi, which was full of
promise, attractively priced, with lots of dedicated
programming from the Kodi community. For the
money, it is incredible what can be done. However, I
found everyday use sluggish and even with my basic
video standards with many would cause it to skip and
stutter.

Kodi installation

Anyone who has used Kodi will know that it comes in
a huge number of �avors supporting a huge range of
hardware. After the support issues of keeping the OS
alive with Windows I knew this had to be moved out
of the picture and came across a build called
LibreELEC that supplied a basic Linux OS leaving all
the power of the device to be dedicated to the main
purpose of running Kodi. After a bit of research and
LibreELEC’s supported platforms, I came across
Hardkernel’s ODROID-C2 – RPi like in size and cost.

With it I had a slick Kodi platform up and running in
minutes and it just worked! So much so it sat as just a
bare board on top of my set-top box in my lounge for
ages. I almost forgot about it, sitting back playing
movies. Installation is simple:

download the USB SD creator from the LibreELEC site,

download the appropriate image for your platform,
and

write it out to, in my case, the eMMC module (8GB is
�ne) using the USB to eMMC Module Reader

A note on the reader: I am not sure if this has been
�xed, but I found that using Rev0.2 20130402 of the
reader tricky and it only seemed to work with certain
slots or SD adaptors. I think it is down to the
mechanical tolerances of the PCB.

Finding a home for the ODROID-C2

Along came a nice shiny 4K OLED TV, and I took stock
of my supporting hardware thinking it was really
about time to �nd the ODROID-C2 a proper
home/housing. With most of the purpose build units
wrapping the PCB you end you with cables coming at
the box from all angles and I wanted it to be more like
a set top box. A quick search came up with a nice
Aluminium chassis from DoukAudio available all over
eBay.

Figure 1 – DoukAudio Chassis

However, I still had to get all the connections I needed
to the back of the chassis including, power, LAN, USB
and HDMI. Again, a search on eBay resulted in a
viable short HDMI adapter.

Figure 2 – HDMI Adapter

PSU

From my involvement with RPi’s I knew a good PSU
was also important, so I built my own basic internal
5V 2A supply that was hardwired directly to J8 of the
C2 PCB and followed the advice to remove jumper J1
disabling the USB OTG input.

You could of course purchase a ready built module if
you do not feel con�dent with mains or just power via
the normal way using the micro USB port or DC jack.

Heatsink

Given that I had a nice large Aluminium case it
seemed sensible to heatsink the C2 via the housing
rather than drilling holes all over it and/or using
forced air. I removed the stock heatsink and used a
block of aluminium to take the heat of the processor
out to the case.

Figure 3 – Heatsink

Overclocking

With a nice cool processor, I had some headroom for
overclocking. A good power supply is a must. I suggest
overclocking one step at a time. First, I followed the
overclocking steps in the forum article:
(https://forum.odroid.com/viewtopic.php?

https://libreelec.tv/downloads/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G145622510341
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G135415955758
https://forum.odroid.com/viewtopic.php?t=30078&p=214852

t=30078&p=214852). For me it was a case of loading
up the eMMC card on a PC and editing the boot.ini �le
to see what worked. A CPU frequency of 1.752GHz
was stable for me. This was the line I added to the
boot.ini �le:

 setenv max_freq “1752”

If there are any other lines starting with setenv
max_freq simply comment them out using a “#” in
front eg: #setenv max_freq “1536”. Plug the card back
in to the C2, reboot and test. Next, was setting up the
792 Mhz graphics chip overclock
(https://goo.gl/TgGqVx). For this you need to login to
your box while it is booted. First you need to know its
IP address and this can be found on the Kodi
Settings/System information/Network page. Then
using a telnet client such as PuTTy
(https://www.chiark.greenend.org.uk/~sgtatham/pu
tty), SSH into your box and logon as root using the
password libreelec. At the command line run the
following, then reboot:

 $ echo "echo 5 > /sys/class/mpgpu/cur_freq"
>> /storage/.config/autostart.sh

The �nal overclock you can apply is to the RAM
(http://odroid.com/dokuwiki/doku.php?
id=en:c2_adjust_ddrclk). Again, SSH into your box and
enter the following:

 $ wget
https://dn.odroid.com/S905/BootLoader/ODROID-
C2/c2_update_ddrclk.sh
 $ chmod +x ./c2_update_ddrclk.sh
 $./c2_update_ddrclk.sh 1104
 $ reboot

Please note that overclocking is a trial and error
process and not all systems will work the same due to
factors such as component tolerances, but give it a
go. I was able to overclock the RAM, graphics and
processor and still maintain a reliable Kodi box albeit
just that much slicker to use and navigate, which was
a nice freebie.

Remote Control

A disadvantage of housing the C2 in this way was that
the IR remote did not work with the lid on and this
was needed to power the board ON/OFF. There are

some options to attach an IR receiver via the GPIO
pins, but it was a simple task to remove the IR
receiver and extend it, so it sat behind one if the
existing 3mm LED holes on the chassis front plate. I
enlarged this hole to 5mm. Other navigation and
control was made super responsive by using the USB
Bluetooth adapter (https://goo.gl/zYPdkc), which sat
on the rear panel of housing.

Figure 4 – ODROID-C2 Wiring

Front Panel Power LED

One thing was left: I wanted an LED on the front panel
to tell when the box was alive. Now the C2 already has
some Red & Blue LEDs mounted on the PCB. But the
Red LED is connected to the 5V rail and is on all the
time the board has power even if the OS has gone to
sleep. The Blue heartbeat LED �ashes and �ickers
with activity and can be distracting so much so that
this has been turned o� with more recent builds of
LibreELEC.

I needed another way and the obvious route was the
GPIO (https://goo.gl/GzKcVY) pins. Now, I am no
programmer and I had already given myself the
mental block that it was going to be to hard to
implement and put out a request for help on the
forum (https://forum.odroid.com/viewtopic.php?
f=144&t=30505). In the meantime, I did some digging
and it turns out that access to the pins has been
made really easy (https://goo.gl/KQVMLD) by
Hardkernel.

The LED is 3mm, which is a nice press �t into one of
the pre-drilled holes of the front panel. Being a high
e�ciency White LED, it does not take much current to

https://forum.odroid.com/viewtopic.php?t=30078&p=214852
https://goo.gl/TgGqVx
https://www.chiark.greenend.org.uk/~sgtatham/putty
https://goo.gl/GzKcVY
https://forum.odroid.com/viewtopic.php?f=144&t=30505
https://goo.gl/KQVMLD

make it light up and I did not want a �ood light
illuminating the room. So, I chose a high value current
limiting resistor of 47k ohms wired in series with the
LED. There is a 3.3V @ 3mA limit on the pin. I could
have used Ohm’s law to work out the value, but I just
used trial and error to get a brightness that I liked.

I then connected it between 0V & GPIO pin 249 (Pins 7
& 9) of the J2 Header. You can use pins of your choice
I just used these because they were next to each
other and I could use a pre-wired connector I had.

Figure 5 – ODROID-C2 & LED

With some simple additions to the startup and
shutdown scripts, I now have my LED. I edited the �les
by SSH’ing in and �rst edited the autostart.sh �le:

 $ nano /storage/.config/autostart.sh

I then added the following lines:

 $ echo 249 > /sys/class/gpio/export
 $ echo out >
/sys/class/gpio/gpio249/direction
 $ echo 1 > /sys/class/gpio/gpio249/value

For the shutdown procedure, I edited the
shutdown.sh �le:

 $ nano /storage/.config/shutdown.sh

I then added then following lines:

 $ echo 0 > /sys/class/gpio/gpio249/value

I am not sure if this is the best way, but it works for
me. Coupled with a Logitech Elite remote to manage
my AV system I now have a family friendly media
center.

Figure 6 – Chassis Front

Figure 7 – Chassis Rear

Figure 8 – Chassis Internals

For comments, questions, and suggestions, please
visit the original forum post at

https://forum.odroid.com/viewtopic.php?
f=144&t=30505.

https://forum.odroid.com/viewtopic.php?f=144&t=30505

Home NAS and Media Player: Building The Perfect
Entertainment System
 May 1, 2018 By Will Santana ODROID-XU4, Tutorial

If you are old enough, you may remember and even
relate. Picture this: Early 2000s; DivX–and later, its
rival XviD–on the software side, and Pentium 4 and
Athlons on the hardware side have �nally made video
compression a thing; no more bulky, moldy VHS
tapes; Napster in its best days, changing P2P history
forever. Down here in South America, dial-up internet
was �nally dying and ADSL had arrived. CD-RW drives
were relatively accessible as were their media,
especially when compared with the emerging–and
expensive–DVD. Youtube wasn’t even born. Add it
together and you have the perfect scenario to end up
with this in your house:

Figure 1

A CD tower full of physical media containing software,
mp3 �les, and movies. My tower was exactly like the

one pictured, but in tobacco. It could hold up to two
hundred CDs. When this was taken, I’d switched from
standard CD cases to slim cases, doubling the
capacity.

Let’s fast forward a few years to the early 2010s.
Youtube existed, but wasn’t as huge as it is today.
Net�ix had just arrived in South America, with just a
few unknown titles in its portfolio. Faster ADSL–2 to 5
mbps–was widely available in most big cities down
here. Downloading not just movies, but entire series,
became a big deal. Although DVDs and DVD drives
had become cheaper, it still wasn’t cheaper than the
price per Mb for hard disk drives (HDDs) before the
�oods in Indonesia (https://goo.gl/rP6kyE). Instead of
managing a lot of media, some of which were starting
to go bad, why not have it all on HDDs, available with
just a click? What about all the CD and DVD covers?
Would I trust my family photos to a mechanical HDD
prone to failure?

When I started planning how to organize all the
media, some research showed XBMC (which would be
renamed Kodi a few years later) to be the perfect the
solution. XBMC could handle the media library,
download covers and lyrics, play back almost any
video codec with subtitles, display my family photos,
and much more. All it would take was a good amount
of work on standardizing folders and �le names.

What about the data itself? Disks fail and have bad
blocks all the time. RAID is okay, but it had one main
problem when dealing with large amount of almost
static �les–e�ciency! RAID 1 would have doubled the
cost of disks, space, noise, and energy. RAID 5 seemed
okay, but what if a disk failed and I could not get
another the same size right away? What if two disks
failed? There’s RAID 6 but few controllers support it.
What if the controller fails? Di�erent manufacturers
have di�erent implementations, making recovery of
all the data a nightmare!

Here comes Snapshot RAID. Compared to the usual
RAID, it doesn’t work on the disk level. Instead, it
works on the data level, over any �le system. As long
as you have a parity disk with an equal or greater
amount of space than the data on the biggest disk on
the array, you’re �ne. You can even use disks of
di�erent sizes. The con is the lack of speed and data

availability. Some RAID 5 controllers have live data
reconstitution as long as there is just one disk fail.
RAID parity is calculated live as data changes. It’s �ne,
but it does keep all disks spinning most of the time
even if you’re just changing a small �le. Snapshot
RAID, as the name says, works by calculating parity in
snapshots. If a disk fails, you’d be stuck with the last
snapshot. The good part is that any �le that is not in
the failed disk is available for use, with no need of
reconstruction.

Another goal was merging all data and displaying it as
one big disk–almost like JBOD, but with security. Using
multiple disks is �ne, but makes handling the media
too complex. With this in mind, and with plans to use
the server as a gaming PC as well (which kind of
limited the OS options to Windows) I decided to go
with FlexRAID (http://www.�exraid.com/). It was still
in its beta stage back then, but showed a lot of
potential. To my surprise, as the Brazilian translator I
was gifted a full license when it became paid.

With all the software needs addressed, it was time to
get my hands dirty and build some hardware. As this
was intended to be a media/gaming PC, and as one or
two 1.5TB HDDs would be enough to hold all of my
media at the time, I chose this case by Sentey to be
my living room rack. I will explain all the dust later.

https://goo.gl/rP6kyE
http://www.flexraid.com/

Figure 2

The case could �t up to three 3.5” HDDs, a DVD-RW
drive, a micro ATX motherboard, a full ATX PSU and a
full height GPU. It worked wonderfully until I added
the third disk. No matter how many fans I added, or
how fast the fans worked (producing a lot of noise), it
would overheat.

It became quite obvious that I would need more fans
and additional case to �t more disks as the library
grew fast as a result of the convenience of running a
24-hour server and faster available internet.

It just happened that I had this old Compaq desktop
case laying around:

Figure 3

With a “few”, not particularly pretty mods in the case
and the PSU housing, it became this:

Figure 4

I added seven HDDs and two additional HDD
controllers, as the motherboard could only handle
two disks. At the time the GPU, the additional fan in
the back, and the 120mm one in the top of the case
were not yet added. This was the original
motherboard, which I replaced a few months later
with one that would work better with the processor.
The four 80mm fans in the front–added to cool down

the HDDs–were removed for cleaning. The power
connector is hanging in the front.

Speci�cations:

Motherboard – Abit VA-10 (changed after)

Processor – AMD Athlon XP 2000 + (changed to a
Atlhon X2 after)

RAM – 2Gb DDR 333 (actually, DDR 400 underclocked)
(two more gigs added after)

SiI 3112 RAID Controller

Sil 3114 RAID Controller

HDDs: (the small ones changed to bigger ones after)

1x40Gb IDE (System)

3×1.5Tb SATA (Media)

1×1.5Tb SATA (Personal Data)

1x500Gb SATA (Downloads and virtual memory)

1×1.5Tb SATA (Parity)

Software:

Windows 7 32 bits

Flexraid

XBMC

This setup worked decently for weeks until my then-
�ancée (now my wife) started complaining about the
noise. I must admit, it was LOUD, especially with the
extra fans that came with the graphics card. With a
pending marriage and no plans on leaving my �ancée,
I decided to expand the bathroom renovation we
were planning to the living and bedrooms too.
Remember all the dust in �rst case pic? This is why:

Figure 5

Figure 6

Figure 7

Figure 8

Yes, we use masonry down here in Brazil, not drywall.
And yes, renovating an apartment while living in it can
be compared to hell with no exaggeration. You can
see the CD tower can be seen in the �rst two pics, by
the table. The computer case is on the right side of
the �rst pic. All those yellow things are conduits to

hide the cables and wires that would connect the
living room and bedroom TVs to the server, now
con�ned to a cabinet in the hallway. Of course, heat
would be a problem in a con�ned space. Yet more
fans were added to the cabinet itself, pumping the
hot air to an upper partition that was vented. After a
lot of dust and days of hard work, the results can be
seen in Figures 9 and 10.

Figure 9

Figure 10

The server could still be heard, even with the door
closed, but it was not even close to the noise we had

before. As for the living room, Figure 11 shows the
result.

Figure 11

If you’re still reading after all this, you’re probably
asking, “What about ODROID in all this?” After a few
years focused on expanding the family, we decided to
move to a bigger apartment. Since almost every
apartment where we live is about 70 years old, some
renovation would again be required, and again we’d
be having to live through the renovation. Since we
had an extra small room in the back of the new
apartment, I decided to put the old server there,
passing conduits into the walls and everything. After
months of renovation the time to power up the old
server �nally came, and after discussing the
capabilities of the Raspberry Pi with some work
friends, the big idea popped up. Small, incredibly
powerful boards with lots of processing cores and
RAM were available. Many people were using them as
retro gaming consoles and even mini-PCs. The big
questions were: “Is the technology there yet?” and “If
so, which board to use?”

If successful, the new server would be way smaller,
quieter, and more energy-e�cient than the old one.
At least �ve years had passed since my initial server
build. A few weeks of research and the answer to that
question was clear: the technology was there and the
ODROID-XU4 was the obvious choice. Why? Its eight
cores were way more than the two I had on the old
server. Even with 2GB less RAM would not be a
problem, as I wouldn’t be running Windows anymore,
but the lightweight Linux instead. Gigabit ethernet
would be perfect to feed all devices at the new
apartment. The ODROID-XU4 also has a decent GPU
with hardware decoding capabilities which was
important, as I planned to use it not only as a server

but as a video player too, just like the old PC server.
Finally, but very important, was the USB 3.0
availability. As the XU4 has no SATA interfaces (and
even if it had one or two, it would not be enough),
USB 3.0 made the perfect alternative. Its theoretical
625MB/s speeds are way faster than any mechanical
hard drive. In fact, in testing the HDDs I was using, the
fastest one only delivered about 120MB/s directly
attached to a PC via SATA or using a SATA-USB
adaptor via USB 3.0.

Figure 12

One important thing was that I would no longer be
able to use the old 3.5” HDDs. They are power hungry,
bulky, and need 12V to run. I could have used a PC or
ITX PSU to power them, but once again this solution
would have been bulky and ine�cient. So 2.5” HDDs
came in play, as they are small, resilient, power
e�cient, silent and can be run with only 5V from a
USB port if you have enough juice for them.

I ordered the ODROID-XU4 from Hardkernel and in a
few days I had it in my hands. What a beauty! It even
has an intelligent fan to reduce the noise. After a few
more days, I got some HDDs and a self-powered USB
3.0 hub to start testing. Before gall the tech stu�,
here’s a comparison of the box from ODROID that
contained the XU4 and power adapter, and the old
server. You can’t see it but inside the box, along with
the XU4 and it’s power adapter, there were seven
HDDs with their SATA-USB adapters, a USB hub and
its power adapter, and a lot of SD cards with OS

images. Having all this stu� in a box about the same
size as the old PSU was not bad at all.

Figure 13

In the �nal version of the old server, the PSU would
no longer �t inside the case with the DVD drive (the
red cable to the left is connected to it).

During the �rst tests the powered USB hub created a
bottleneck. An USB 3.0 port can only drop up to
900mA, which is not even close to the amount needed
to run more than one or two disks, depending on the
model used. Disks randomly spinning up and down
during boot up and general use made that very clear.
The �rst powered USB hub I tried did not provide
enough power for just two disks. I even tried running
one directly from the XU4’s USB 3.0 port and another
from the USB 2.0 to divide the load, but the ones
plugged to the hub kept shutting down.

Figure 14

The solution was to �nd a decent powered USB hub.
After more research and reviews, I decided to go with
a Xcellon 10-port USB 3.0 hub. It’s made of aluminum
so it dissipates heat. The 5A from its power adapter
proved to be enough to run at least the �ve disks I
now use. I never tested it with all the seven I have.

Figure 15

Hardware tested, it was time to focus on the software.
As running Windows was no longer an option, the
question became which Linux �avor to use. As I said
before, the old PC served as my home NAS, media
player, gaming machine, and download center using
Sonarr and Torrent. I would not accept losing any
capability.

First, I focused on data availability and safety. I
wouldn’t put my data on a unreliable server. The
easiest and safest way I could �nd was OpenMedia
Vault (https://www.openmediavault.org/). It’s open
source and has everything I need, in an easy-to-use
web interface with tons of plug-ins. As it’s based on
Debian, the OS choice was already made. I
downloaded a Debian image from the Hardkernel
forums and started installing everything. It took me a
few weeks to �gure it all out. OMV’s Greyhole plug-in
would now do the job of merging all the disks in to
one. SnapRAID plug-in would deal with data parity.
OMV would handle the rest and let me con�gure the
two. But just then, something occurred me. After so
many years, I no longer have a 56 kbps dial-up
connection, but a 60 mbps cable one. Protecting
anything more than my family photos and personal
documents is irrelevant. I can now watch most movies
and series via streaming or simply download it in
minutes if it’s not available to stream. I don’t need
that much disk space. Maybe not even parity. As
Greyhole o�ers an option to replicate the data of a
share in as many HDDs from the pool as I want, and
as my sensitive data are not that large, simple double
or triple copies would be enough.

But since the local copy isn’t backup, I’ve con�gured
this data to be synchronized with the Cloud too (real
backup), just in case. So, I’ve left SnapRAID behind
after a few weeks as it would no longer be needed. It
may still �t your needs, if you have a huge amount of
sensitive, slow-changing data. I ran this system for
about two months �awlessly, so the concept was
right. It was time to bring the focus back to media-
playing and gaming. Digging into how to install Kodi
on Debian I stumbled on the amazing work of
Meveric: ODROID GameStation Turbo
(https://forum.odroid.com/viewtopic.php?
f=98&t=7322).

It’s based on Debian, but has a lot of optimizations for
video playback and retro gaming. A few days and I
had it all merged. After two or three months of
running just �ne I started to experience some
eventual system hangs. It turned out to be a dying SD
card. As I could not recover it, the solution was to
rebuild from scratch. I �gured hey, if rebuilding the
software, why not the hardware? For months, a bunch
of wires hid behind my living room door.

With some creativity and a Dremel tool, I turned a
two-drawer mini desktop organizer into the latest
version of my server. Here are pictures of the process:

Figure 16 – Testing the spacers

https://www.openmediavault.org/
https://forum.odroid.com/viewtopic.php?f=98&t=7322

Figure 17 – Drilling the holes, �xing the spacers and
HDDs to the “case”

Figure 18 – OS/Temp �les HDD on the top for easy access

Figure 19 – Let’s not forget the star of the show. Enter
the ODROID-XU4 (and a fan too)

Figure 20 – The USB hub, some cables, and a reminder of
what the “case” was in �rst place

Figure 21 – Everything all together

Figure 22 – On the left there’s a USB 2.0 hub with my
wireless keyboard receiver and an old 4GB �ash drive
that was needed to keep some SnapRAID data, which
will remain there just in case I decide to use it again

Figure 23 – All powered up and to the right of the server,
the ODROID-C2 I use as my media player with my
bedroom TV

In this last build, I added one of the fans from the old
server to help to cool down the HDDs and maybe
extend their life-span. The HDD at the top holds the
OS/download/temp �les. I could have mounted it
behind the fan to keep it cool too, but I decided to
keep it more accessible in case of maintenance. It’s
more reliable than the previous SD card, but not
immune to failure. In addition, I can attach one
additional HDD to the server via the USB hub, if
needed. The whole system is so silent that it resides
on the TV rack in the living room. If you don’t look at
the LEDs, you can’t tell if it’s even powered on or not.

Figure 24

This is not to say everything was perfect. A few weeks
ago, the system froze a few times. The cause was easy
to �gure out. Again, overheating. The server was on
the top shelf of the rack, in the same place the stereo
is now. It is hard to see, but there is a 400VA APC
nobreak there too, in the back. The wiring goes out
through a hole in the back of the lower shelf. The heat

from the server and its power supplies, plus the
nobreak and a lack of ventilation made the ODROID-
XU4 run at around 79°C (174°F) all the time, even with
no load at all. It’s likely the HDDs did as well,
especially the one containing the OS. With a medium
load, the CPU and/or the HDDs–I forgot to check the
temperatures–passed their limit, bringing the whole
system to a halt. Swapping the stereo with the server
solved the issue. The heat can now �ow through the
wiring hole. Even after six hours of a series marathon,
the server runs �ne for weeks without glitching or
freezing. The temperatures dropped by around 4°C
(about 7°F). It could be better, but I can open the rack
door whenever I need to. If the system didn’t freeze
during a Brazilian summer with temperatures up to
43°C (109°F), I doubt it will freeze due to overheat
ever again. In the future, I may 3D-print a case for the
server. But the current one ful�lls my needs.

The saga is not over, and probably never will be. I’d
love to upgrade to an XU5 with 4GB RAM, H.265 and
4K support, and an even faster processor. It would be
the perfect transcoding/playing platform. Running
OMV combined with Emby or Plex would make the
ultimate powerhouse for home transcoding and
streaming. Imagine a C3 with embedded 5GHz AC
WiFi: it would be THE combo, making any “Smart” TV
look like a piece of trash, in terms of power and
�exibility. Right now, it’s more than good enough for
playing retro games, holding almost all of my media
(H.265 is gaining force with 4K), serve my �les all over
the apartment, manage and download my movies
and series while staying small, silent, and power
e�cient. Any media that I can’t play on the XU4 I can
do on my bedroom’s ODROID-C2 (another
Hardkernel’s piece of art).

So, this is it. I hope this helps others like me. Any
further questions, you may �nd me on the ODROID
forums (https://forum.odroid.com) under
will_santana.

https://forum.odroid.com/

Linux Logical Volume Manager (LVM2)
 May 1, 2018 By Cristian Sandu Linux

The Linux Logical Volume Manager (LVM) is software
system designed for adding a layer between real disks
and the operating system’s view of them to make
them easier to manage, replace, and extend. It is used
in data centers to use upgrade disk hardware as well
to mirror data to prevent loss. There are of course
alternatives: hardware RAID is better at performance
but more restrictive: for example you cannot sanely
replace a disk in a hardware RAID0; then there is
mdadm – or software RAID which is a software
implementation(OS level) of RAID but comes with
similar shortcomings. LVM is more �exible allowing
for con�guration that RAID cannot do. That said,
because it is a pure software solution (comprised of
kernel modules and user space daemons) there is a
performance hit involved, and you will lose some
speed over using the disks natively.

The Debian wiki explains pretty well the core concepts
so I will not attempt to compete with them, see this:
https://wiki.debian.org/LVM. For a more detailed

tutorial on LVM see RedHat’s excellent at
https://access.redhat.com/documentation/en-
US/Red_Hat_Enterprise_Linux/4/html/Cluster_Logica
l_Volume_Manager/ch_Introduction-CLVM.html.

The core concepts I will use here are:

PV – physical volume

VG – volume group

LV – logical volume

All LVM commands use these initials to designate the
above concepts.

Installation

If you are running any of the o�cial Ubuntu images
from Hardkernel’s repository, this is all you need to
do:

$ sudo apt install lvm2

This will install the kernel packages, the user space
daemon, and everything else you need to work with

https://wiki.debian.org/LVM
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/4/html/Cluster_Logical_Volume_Manager/ch_Introduction-CLVM.html

LVM.

Cloudshell2

Cloudshell2 o�ers hardware RAID with 2 disks but
your disk upgradability is somewhat limited unless
you have a way to clone the array each time you want
to upgrade. The ODROID Wiki explains how to set up
your JMicron controller at
https://wiki.odroid.com/accessory/add-
on_boards/xu4_cloudshell2/raid_setting. If you want
to use LVM then you will need to use the JBOD setting.
You can also run LVM on top of a hw RAID con�g like
RAID0 or RAID1 but I think it the context of just 2 disks
it kills any advantage LVM would bring into the mix.
After you connect your disks, you will want to
partition them. LVM docs recommend that you do not
use raw disks as PVs(physical volumes) and use
partitions instead, even it’s a disk spanning partition.
In my setup I did just that, I used 2x3TB HDDs that
contain one partition that �lls the disk.

A quick way to partition your disk is with the following
commands:

$ sudo fdisk /dev/sda
Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-621, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-
621, default 621):
w

For more information on disk partitioning, please
refer to
https://www.tldp.org/HOWTO/Partition/fdisk_partiti
oning.html.

One of the cool things about LVM is that you can plan
and simulate your setup with loopback devices before
actually implementing it. The following section details
a 2 identically sized disks used for 2 striped
volumes(for performance, not safety), and it’s the
setup that I did. As a bonus step, we are also going to
simulate upgrading one of the disks with a new disks,
twice it size, this something I also did – simulated and

then implemented. In this �nal scenario part of your
volume will no longer be striped because the disks are
no longer of equal sizes.

Setup loopback devices

$ dd if=/dev/zero of=/tmp/hdd1.img bs=1G
count=1
$ dd if=/dev/zero of=/tmp/hdd2.img bs=1G
count=1
twice the space
$ dd if=/dev/zero of=/tmp/hdd3.img bs=1G
count=2

$ losetup -f

$ losetup /dev/loop0 /tmp/hdd1.img
$ losetup /dev/loop1 /tmp/hdd2.img
$ losetup /dev/loop2 /tmp/hdd3.img

So we have created 3 disks: two 1GB disks and one
2GB disk, feel free to use any dimensions you want,
it’s the proportions that matter and not the actual
sizes. Create physical volumes (PV) $ pvcreate
/dev/loop0 $ pvcreate /dev/loop1 $ pvcreate
/dev/loop2

What this did was tell LVM that we plan to use these
disks as physical support for our future logical
volumes. The cool part to remember here is that each
PV is given an unique ID that is written to the disk so
that even if you move the disks around in your
system, LVM will �nd them based on their IDs. This
will come in handy when we will be upgrading our
disks in the Cloudshell2 enclosure and one of the new
disks will be connected via USB 3.0 and then swapped
with one of the disks in the enclosure.

We will need to put our PVs in a Volume Group before
using them to create logical volumes, this is a
mandatory step, also note that it is not possible to
create logical volumes using PVs from di�erent VGs.

$ vgcreate vgtest /dev/loop0 /dev/loop1

Now that we have created a VG using our 2 simulated
1GB disks, we can check the status of our setup any
moment using these commands:

$ pvs
$ vgs

https://wiki.odroid.com/accessory/add-on_boards/xu4_cloudshell2/raid_setting
https://www.tldp.org/HOWTO/Partition/fdisk_partitioning.html

$ pvdisplay
$ lvdisplay

Create logical volumes (LV)

Now we will create our volumes that will become the
drives that the OS sees as usable. In this scenario, I
am creating 2 striped volumes, one 1GB one and
another one that just �lls up any remaining space.

$ lvcreate -i2 -I4 -L1G -nlvdata1 vgtest
$ lvcreate -i2 -I4 -l100%FREE -nlvdata2 vgtest

The parameters are:

-i2 : strip this volume across 2 PVs

-I4 : extend size(the equivalent of a block in LVM
parlance) will be 4MB

-n : what to name the volume

The last parameter is the volume group to operate
on. The size is speci�ed using the -L or -l option, the -L
requires speci�c sizes while -l allows for percentages
and other speci�ers. At the end, we will have 2
volumes that are evenly distributed across our 2 PVs
in stripes, similar to a RAID0 (actually, 2 RAID0s, one
for each logical volume or LV). At this point, we will
also need to format our new logical volumes with the
�lesystem we want to use you do that by running the
following commands:

$ mkfs.ext4 /dev/mapper/vgtest-lvdata1
$ mkfs.ext4 /dev/mapper/vgtest-lvdata2

Just like on any regular partition, except notice the
path of the devices, these logical devices are exposed
by LVM. For extra safety, mount these disks and write
some test �les to them, just like you would mount a
regular disk. This will allow you to test integrity at the
end.

Once you got the hang of it, you can implement the
above scenario with real disks instead of loopbacks.
Just replace /dev/loop0 and /dev/loop1 with /dev/sda
and /dev/sdb and adjust the sizes of your LVs.

Upgrading your disks

Now, here’s where LVM really shines; unlike hardware
RAID which can be quite rigid about
upgradability(unless your using a mirrored setup)

LVM allows for all kinds of crazy disk arrangements.
This part is based on the cool tutorial at
https://www.funtoo.org/LVM_Fun.

The scenario we are going to implement is as follows:
we will replace one of the disks in the setup with one
that is double the original capacity, e.g. if we have
2x2GB disks, we will replace one of them with 4GB
disk. To �gure out which disk is which, use this
command:

$ sudo smartctl -i /dev/sda1
$ sudo smartctl -i /dev/sdb1

Make sure to run this on the partitions and not on the
disks. Because of the JMicron controller in front of our
disks you will not get any info from the disks
themselves. The above command will tell you the disk
product code, such as ST2000DM for a 2TB Seagate
Barracuda. This will help you decide which physical
disk you want to replace.

The full procedure is:

Connect new spare disk via the second USB3.0 port
using an external enclosure(the cloudshell only
supports 2 SATA drives and both ports are occupied
right now)

Create a PV(physical volume) on the new disk

Add new PV to existing VG(volume group)

unmount all VG volumes and/or freeze allocation on
the PV to migrate

pvmove one of the 2 existing PVs onto this new PV

Leave it overnight since it is going to copy sector by
sector a 2 TB disk

Reduce VG by removing old PV(the one moved at the
previous step)

Shutdown and swap out old disk with new one

Boot and check that the LVs(logical volumes) are
correctly mapped to the PVs

Be warned that not all external USB3.0 enclosures will
be supported by the UAS driver. I used a ORICO
branded one, but your mileage may vary.

Like with all things LVM, you can (and you should!)
simulate the upgrade before executing it.

Attach the new PV

https://www.funtoo.org/LVM_Fun

First, let’s attach the 3rd loop device we created
earlier (the 2GB one) to our existing VG:

$ vgextend vgtest /dev/loop2

Migrate the old PV to the new PV

In this step, we migrate the old disk to the new disk:

$ pvmove --atomic -v -A y /dev/loop1
/dev/loop2

There are 2 important parameters here:

– –atomic: the move will be done transactionally, if it
fails at any point, it just gets reverted, no data loss

-A y: automatically backup the LVM con�g for restoring
in case something bad happens. The tool you will need
to use then is vgcfgrestore.

If you interrupt the process or you experience a
power loss, you can restart the process by running
the following command:

$ pvmove

Although, I would suggest aborting, and starting again
instead:

$ pvmove --abort

Because our pvmove was atomic, this abort will
restore everything to its original state(if we did not
use –atomic then some PE – physical extents would
get moved and some would still be allocated on the
old volume and you would need to manually move
them). In the real world this step takes quite a while,
and I usually just let it run over night (I was moving 2
TB of data).

Resize the new PV

We need now to resize the newly moved PV to include
the extra free space on the disk, this is simply done
with the following command:

$ pvresize /dev/loop2

Resize the Logical Volume

Now we can take advantage of that brand new disk
space and extend one of our LVs to include it.
Because our setup uses stripes, and because this new
free space is only on one PV, we will not be able to

make the new space striped so we will need to use
this command:

$ lvextend -i1 -l +100%FREE
/dev/vgtest/lvdata2

The parameter -i1 tells LVM that we are reducing to
just 1 stripe. This will result in an overall impact
performance as the data written on this part of the
volume will be on a single disk. By running the
“lvdisplay -m” command, we can inspect our resulting
setup:

$ lvdisplay -m /dev/vgtest/lvdata2
 --- Logical volume ---
 LV Path /dev/vgtest/lvdata2
 LV Name lvdata2
 VG Name vgtest
 LV UUID vDefWQ-1ugy-1Sp5-T1JL-
8RQo-BWqJ-Sldyr2
 LV Write Access read/write
 LV Creation host, time odroid, 2018-03-06
17:43:44 +0000
 LV Status available
 # open 0
 LV Size 1.99 GiB
 Current LE 510
 Segments 2
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 254:2

 --- Segments ---
 Logical extents 0 to 253:
 Type striped
 Stripes 2
 Stripe size 4.00 KiB
 Stripe 0:
 Physical volume /dev/loop0
 Physical extents 128 to 254
 Stripe 1:
 Physical volume /dev/loop2
 Physical extents 128 to 254

 Logical extents 254 to 509:
 Type linear
 Physical volume /dev/loop2
 Physical extents 255 to 510

As you can see, the second LV contains a linear
segment at the end, that’s the new space we just

added which could not be striped. In theory, if
replacing the second disk as well, you can restripe it
but I have not yet found a safe way to do that. If I do, I
will write another article about it.

Recycle the spare disk

Now it’s time to remove the disk we migrated from
our setup:

$ vgreduce vgtest /dev/loop1

That just removes it from the volume group. You can
also use pvremove to wipe the LVM label if you want.
We are going to also simulate physically removing the
disk:

$ losetup -d /dev/loop1

Now, let’s simulate the part where we shutdown the
system and put the new disk directly in the

Cloudshell2 (remember that we had it in an external
enclosure), e�ectively replacing the old one. In this
step, disk 3 will go o�ine, then come back as a new
disk:

$ losetup -d /dev/loop2
$ losetup /dev/loop1 /tmp/hdd3.img

If you run pvs, vgs and lvs, they should indicate that
your volumes are intact:

 PV VG Fmt Attr PSize PFree
 /dev/loop0 vgtest lvm2 a-- 1020.00m 0
 /dev/loop1 vgtest lvm2 a-- 2.00g 0

Finally, mount the volumes and check that your test
�les are still there. For comments, questions, and
suggestions, please visit the original article at
https://www.cristiansandu.ro/2018/03/06/lvm-fun-
swap-out-disk-in-lvm2-stripe/.

https://www.cristiansandu.ro/2018/03/06/lvm-fun-swap-out-disk-in-lvm2-stripe/

USB 3.0 eMMC Reader
 May 1, 2018 By Rob Roy Android, Linux, Tinkering, Tutorial

Hardkernel’s ODROID platform has a unique
advantage over other similar Single Board Computers
(SBCs) that they allow the eMMC module to be
removed and re�ashes using an external USB
adapter. All of Hardkernel’s eMMC modules ship with
an SD card adapter that allow the user to �ash an
operating system or inspect the contents of the solid
state drive on another computer using utilities such
as Etcher or dd. However, the SD card adapter
required that another adapter be used in order to
access the drive via USB, and many SD to USB
adapters were not compatible with Hardkernel’s
adapter.

Figure 1 – Hardkernel’s new eMMC to USB adapter is a
convenient way to read and write the eMMC module
contents on a host computer without needing to buy an
additional adapter

A new eMMC to USB all-in-one adapter is now
available from the Hardkernel store at
http://www.hardkernel.com/main/products/prdt_inf
o.php?g_code=G152105300286 for USD $9.90, and is
an improvement over the original SD card adapter,
since a separate third-party USB adapter is not
required to convert from SD to USB. It also does not
the same type of compatibility issues as the original

http://www.hardkernel.com/main/products/prdt_info.php?g_code=G152105300286

SD card adapter, and can be used with any operating
system and any platform that supports USB 3.0.

The original SD card adapter was also confusing to
some new users, who assumed that the eMMC
module needed to be attached to the adapter, then
inserted into the SD card slot of the ODROID, which
decreased the performance of the EMMC module. All
ODROIDs have an eMMC slot directly on the PCB,
which optimizes the performance of the eMMC
module and makes it much more secure during
handling.

To use the USB 3.0 eMMC Reader, simply align the
eMMC module with the white outlined box labeled
“eMMC” on the adapter’s PCB, and press gently until
the adapter snaps into place. Then, insert the male
USB adapter into the USB 3.0 slot on the host
computer, and access it like any other USB drive. A
red light will appear when the USB power is being
applied.

When you are �nished using the eMMC module on
the host computer, eject it using the operating
system’s Eject feature, then remove the adapter from
the USB port and detach the eMMC module from the
adapter by gently pulling up on the adapter, away
from the PCB. Finally, the eMMC module may then be
attached to the ODROID by �rst powering down the
ODROID and unplugging it from the power source,
then aligning the eMMC module with the white
outlined box labeled “eMMC” on the ODROID, and
pressing gently until the adapter snaps into place.
Apply power to the ODROID and the ODROID should
boot from the eMMC adapter. Some models of
ODROIDs have an SD card/eMMC selector switch
which needs to be in the “eMMC” position in order to
boot from the eMMC module.

For more information on �ashing operating systems
to the eMMC module, please visit the ODROID Wiki at
https://wiki.odroid.com/troubleshooting/odroid_�as
hing_tools. Please note that this reader does not work
with the eMMC Black modules.

Speci�cations

USB 3.0 Interface

Native eMMC 8bit wide data interface, instead of slow
SD 4bit width

Works in HS200 mode

Windows / Mac / Linux Compatible

Works with ODROID Orange, Red and Blue eMMC
modules

Use with Etcher or Win32DiskImager software on your
PC

It can’t access the eMMC hidden boot blocks

Rated Power : 5V/500mA (including eMMC module)

Dimensions : 60x26x4.5 mm

Speed tests

We compared the OS �ashing speed between our USB
3.0 eMMC Module Writer and a generic card reader.
The USB 3.0 eMMC Module Writer is 3-4 times faster
than a normal USB 3.0 card reader.

Intel(R) Core(TM) i7-7700 CPU @3.60GHz 3.60GHz /
RAM 16GB / 64bit Windows 10

Etcher version 1.3.1

64GB Yellow eMMC

ubuntu-16.04.3-4.14-minimal-odroid-xu4-
20171213.img(1.63GB)

USB3.0 eMMC Module Writer: Flashing 28.18s,
Validating 20.31s, Total 48.49s Transcend USB3.0 card
Reader: Flashing 93.64s, Validating 81.23s, Total
174.86s

https://wiki.odroid.com/troubleshooting/odroid_flashing_tools

A�ordable UPS Solution: Ensure That Your ODROID-HC2 Has
100% Uptime
 May 1, 2018 By Neal Kim Tinkering, ODROID-HC2

A lot of NAS systems have an Uninterrupted Power
Supply (UPS) to protect their valuable data from
accidental corruption due to loss in main power.

This article helps you build an UPS for the ODROID-
HC2 using some o�-the-shelf parts. It is based on an
inexpensive mini DC UPS, which I believe is good
alternative to expensive UPS’s. This mini DC UPS
o�ers 12V output. This is stepped down to 5V using
two resistors as voltage dividers.

Following are the steps to create your own UPS.

Parts List

7800 mMH mini DC UPS (https://goo.gl/HjjxHo), or you
can use any other 12 V DC UPS if it is rated at 2 Amps
or higher

ODROID-HC2 (https://goo.gl/1oKiVr)

USB IO Board (https://goo.gl/GNsp7T)

10K axial resistor

10K Potentiometer

Some wires

Disassemble mini DC UPS and Wiring

The mini DC UPS has two parts: one is the PCB and
the other is a battery.

https://goo.gl/HjjxHo
https://goo.gl/1oKiVr
https://goo.gl/GNsp7T

Figure 1

Figure 2

The battery connector of the PCB o�ers the 12V
output. The soldered red wire is at +12V and the black
wire is ground (GND).

ADC Reference voltage Changing

The USB IO Board can be setup for the default 3.3 V
or 5 V, based on the the position of R1 (soldering is
required). The selection becomes the ADC reference
voltage.

Figure 3

I have decided to use 5V ADC reference voltage. I
soldered the R1 resistor to VBUS 5V from 3V3 on the
PCB.

De�ne value of resistors

Using two resistors 10 KOhm(R1) and 7.143 KOhm
(R2), we can divide the 12 V output to 5 V and 7 V
using the formula: 12V x (R2 / (R1 + R2)) = 5V For
example, if R1 is 10,000 Ohm, R2 is about 7,143 Ohm.

However, since there is no 7,143 Ohm resistor out
there, I used a 10 K potentiometer. With my selection
of R1 of 9.98 KOhm (5 V) and R2 of 7.44 KOhm (7 V) I
observed the mini DC UPS o�ering slightly less than
12V when charged fully. I increased the R2 value a

little more to get an ADC value to a full 10 bit value of
1024.

Figure 4

The circuit diagrams are below:

Figure 5

Figure 6

Figure 7

De�ne the Maximum & Minimum ADC value

Build the software using the following commands:

$ sudo apt-get install libusb-1.0-0-dev
 $ git clone
https://github.com/hardkernel/Odroid-USBIO
 $ cd Odroid-USBIO/usbio/linux
 $ make
 $ sudo ./usbio

Then the sequence of options is: a. Toggle LED b.
AN0/POT Value c. Button status d. Get Register e. Set
Register f. Get Register Bit g. Set Register Bit q. Exit

Use the following values:

msb = 512, lsb = 212 potentiometerValue = 724

I have set the maximum ADC value to 1023 (10 bits all
high) by manipulating R2 when mini DC UPS is
charged fully. We have to know the minimum ADC
value to see remaining battery level. I have found this
minimum ADC value to be 724 by giving some load
like, stress app to the system supplied power using
mini DC UPS only.

This following script helps me to get minimum ADC
value.

cat -n batCheck.sh
 #!/bin/bash

for i in {1..100000}
 do
 ./usbio << endl >> ./adcValue.log
 b
 q
 endl
 echo "`date +%Y/%m/%d-%H:%M:%S` : ${i}"
 sleep 2
 done
 # nohup ./batCheck.sh &

Remaining battery level

Now that we have �gured out the maximum and the
minimum ADC value, we can calculate the remaining
battery level. You may refer to the shell script in the
Wiki article.

Remaining battery level(%) =
 (ADC value - minimum ADC value) x 100

 (1023 - minimum ADC value)

As noted before, the minimumADC value was found
to be 724 by experimentation, so I set the
minimumADC value is 800 by a wide margin in this
script. If the remaining battery level of the mini DC
UPS is lower than 10 % as I set ${minRemainBat} in
the script, it is going to invoke the shutdown
procedure.

Reference

For more information, please refer to the wiki article
at https://goo.gl/zMwFbf.

https://goo.gl/zMwFbf

Fan Control: Tailor the ODROID-XU4 To Your Perfect Settings
 May 1, 2018 By Justin Lee ODROID-XU4, Tutorial

The ODROID-XU4 supports 3 cooling levels for the
thermal control: 0, 1, 2. Level 0 is the lowest level for
thermal control and comes with the slowest fan
speed. Level 2 is the highest level for thermal control
and comes with the fastest fan speed, as shown in the
following table:

This table shows the default values for how the fan
behaves. When the temperature reaches to 60°C, the
target trip point will be changed to level 1 and the fan
starts to run at 120 PWM value (0~255). The same
idea holds for when the target trip point will be level
3, the fan runs at 240 PWM value when the
temperature reaches to 80°C. You can adjust the
target trip points and its fan speed to be any values

you want. You can even set the fan speed to be
constant.

Modify the trip points

You can check current trip points via the command
prompt.

$ cat
/sys/devices/virtual/thermal/thermal_zone{0,1,
2,3}/trip_point_{0,1,2}_temp
results
60000
70000
80000
60000
70000
80000
60000
70000
80000
60000
70000
80000

Yes, they’re the other trip points named 3, 4, 5. But,
you can ignore them as we don’t use them. Same with
thermal_zone4. As we can see, each trip point at each
thermal zone has the same value 60000, 70000,
80000. That means each trip point is activated at
60°C, 70°C, 80°C. Each trip point is editable by writing
a custom values to the each trip point �les. For
example, if you want to set trip point 1 to be activated
at 30°C, you can just write a value for it.

$ echo 30000 | sudo tee
/sys/devices/virtual/thermal/thermal_zone{0,1,
2,3}/trip_point_0_temp
$ cat
/sys/devices/virtual/thermal/thermal_zone{0,1,
2,3}/trip_point_0_temp
results
30000
30000
30000
30000

Then the fan starts spinning up at 30°C. If you want to
do that automatically, write some code in the
/etc/rc.local �le. Copy and paste the following code:

Target temperature: 30°C, 50°C, 70°C
TRIP_POINT_0=30000
TRIP_POINT_1=50000
TRIP_POINT_2=70000

echo $TRIP_POINT_0 >
/sys/devices/virtual/thermal/thermal_zone0/tri
p_point_0_temp
echo $TRIP_POINT_0 >
/sys/devices/virtual/thermal/thermal_zone1/tri
p_point_0_temp
echo $TRIP_POINT_0 >
/sys/devices/virtual/thermal/thermal_zone2/tri
p_point_0_temp
echo $TRIP_POINT_0 >
/sys/devices/virtual/thermal/thermal_zone3/tri
p_point_0_temp

echo $TRIP_POINT_1 >
/sys/devices/virtual/thermal/thermal_zone0/tri
p_point_1_temp
echo $TRIP_POINT_1 >
/sys/devices/virtual/thermal/thermal_zone1/tri
p_point_1_temp
echo $TRIP_POINT_1 >
/sys/devices/virtual/thermal/thermal_zone2/tri

p_point_1_temp
echo $TRIP_POINT_1 >
/sys/devices/virtual/thermal/thermal_zone3/tri
p_point_1_temp

echo $TRIP_POINT_2 >
/sys/devices/virtual/thermal/thermal_zone0/tri
p_point_2_temp
echo $TRIP_POINT_2 >
/sys/devices/virtual/thermal/thermal_zone1/tri
p_point_2_temp
echo $TRIP_POINT_2 >
/sys/devices/virtual/thermal/thermal_zone2/tri
p_point_2_temp
echo $TRIP_POINT_2 >
/sys/devices/virtual/thermal/thermal_zone3/tri
p_point_2_temp

Reboot and verify that the changes have been
applied.

Modify The Fan Speed

You can check current fan speed scaling with the
following command:

$ cat /sys/devices/platform/pwm-
fan/hwmon/hwmon0/fan_speed
results
0 120 180 240

You can adjust these values by writing a set value to
the �le. If you want to make your fan more aggressive,
you can use the following command:

$ echo "0 204 220 240" | sudo tee
/sys/devices/platform/pwm-
fan/hwmon/hwmon0/fan_speed
results
0 204 220 240

This makes a fan turn on to 80% (204 == 80 * 255 *
0.01) when the temperature reaches to trip point 0.
When the fan speed is newly set, its kernel message
shows up and you can �nd out by using the dmesg
command:

$ dmesg
results
...
[1998.019631] hwmon hwmon0: fan_speeds :
set_fan_speed [0 204 220 240]

If you want to do that automatically, copy and paste
the following lines into the /etc/rc.local �le:

Target fan speed (PWM): 0, 204, 220, 240
echo "0 204 220 240" >
/sys/devices/platform/pwm-
fan/hwmon/hwmon0/fan_speed

Reboot and check if the changes were applied.

Emulate Temperature

You don’t have to stress your ODROID out to test the
new settings. The fan settings can be checked with
these �les.

$ ls -l
/sys/devices/virtual/thermal/thermal_zone{0,1,
2,3}/emul_temp
results
--w------- 1 root root 4096 Apr 11 01:55
/sys/devices/virtual/thermal/thermal_zone0/emu
l_temp
--w------- 1 root root 4096 Apr 11 02:05
/sys/devices/virtual/thermal/thermal_zone1/emu
l_temp
--w------- 1 root root 4096 Apr 11 02:05
/sys/devices/virtual/thermal/thermal_zone2/emu
l_temp
--w------- 1 root root 4096 Apr 11 02:05
/sys/devices/virtual/thermal/thermal_zone3/emu
l_temp

These writable �les let us fake any temperature value
to cover the real temperature on the board and �nally
it makes the fan run with the settings. If you want to
set to 85°C, just write it.

$ echo 85000 | sudo tee
/sys/devices/virtual/thermal/thermal_zone{0,1,
2,3}/emul_temp
results
85000

Verify if the changes took e�ect:

$ cat
/sys/devices/virtual/thermal/thermal_zone{0,1,
2,3}/temp
results
85000
85000
85000
85000

If you want to get back to normal, write 0:

$ echo 0 | sudo tee
/sys/devices/virtual/thermal/thermal_zone{0,1,
2,3}/emul_temp
results
0
$ cat
/sys/devices/virtual/thermal/thermal_zone{0,1,
2,3}/temp
results
30000
30000
30000
29000

This would be helpful for you to check the new fan
speed and trip point settings you’ve just set.

Fully manual way to control the fan speed

This is the most programmatic method to adjust the
fan speed in a manual way:

Set fan to manual mode
$ echo 0 | sudo tee /sys/devices/platform/pwm-
fan/hwmon/hwmon0/automatic

Set speed to 100%
$ echo 255 | sudo tee
/sys/devices/platform/pwm-
fan/hwmon/hwmon0/pwm1

The fan ignores written scaling �les (trip points and
fan speed) and runs constantly at the same speed,
you can do this automatically too. Edit the /etc/rc.local
�le and reboot to check if the changes applied. The
following example makes the fan always run at full
speed:

Fix fan speed
echo 0 | sudo tee /sys/devices/platform/pwm-
fan/hwmon/hwmon0/automatic
echo 255 | sudo tee /sys/devices/platform/pwm-
fan/hwmon/hwmon0/pwm1

Additionally, you can write an application using the
fan.

Fan control script examples

There are some nice script code examples you have
to refer. https://forum.odroid.com/viewtopic.php?
f=77&t=30743

https://forum.odroid.com/viewtopic.php?f=77&t=30743

https://forum.odroid.com/viewtopic.php?
f=146&t=30745

References

https://forum.odroid.com/viewtopic.php?
f=52&t=16308
https://forum.odroid.com/viewtopic.php?
f=99&t=30675

The original text can be found on the ODROID wiki
page for manually controlling the ODROID-XU4 fan at
https://wiki.odroid.com/odroid-
xu4/application_note/manually_control_the_fan#full
y_manual_way_to_control_the_fan_speed.

https://forum.odroid.com/viewtopic.php?f=146&t=30745
https://forum.odroid.com/viewtopic.php?f=52&t=16308
https://forum.odroid.com/viewtopic.php?f=99&t=30675
https://wiki.odroid.com/odroid-xu4/application_note/manually_control_the_fan#fully_manual_way_to_control_the_fan_speed

Minecraft Client on ODROID
 May 1, 2018 By Sebastien Chevalier Gaming, Linux

Minecraft landscape

Minecraft can now be played on the ODROID!
Installation is pretty easy, thanks to the packaging
skills of Tobias aka @meveric. After installing his
repository, type the following command:

$ sudo apt-get install minecraft-odroid

Minecraft will install with a couple of dependencies
and be ready to launch. It comes packaged with the
default launcher, so you can play the demo, or you
can login with your account to play.

Performances

One thing to know is that currently, it’s not really
compatible with mipmaps, and will get poor
performances unless you set mipmaps to “none”.
Once the game has started, go to the Options menu,
select Video, then choose Mipmap Levels: OFF.

Figure 1 – Video Settings

After that, other settings are pretty standard and have
the expected e�ect. I recommend lowering the
Render Distance (5 chunks is �ne but you may want to
lower this to get more FPS), choose Graphics: Fast (so

that tree leaves will not be transparent), and set
Smooth Lightning to OFF for max speed or Minimum
for some soft shadows (but it’s slower). Also, the Max
Framerate should be around your current FPS (30 fps
is nice for a smooth gameplay). With these settings, I
can get around 12 to 15 FPS in full HD. You can use
“F3” during the game to have some statistics
displayed, including FPS, but be aware that the F3
screen uses some FPS itself, around 3 or 4 at least.

Figure 2 – Death screen

More performance

If you want your Minecraft to run faster, you can use
OptiFine, which is a mod that lets you tweak many
Minecraft settings as well as the rendering method in
order to get smoother gameplay. You need to �rst
start Minecraft and launch a game, so that the current
version of Minecraft is registered and downloaded.
Then, go to the OptiFine website at
http://bit.ly/1jOG2Di and download the version for
your Minecraft version (at the time of writing, it’s
1.9.4). You will receive a .jar �le that can launched,
which will install automatically. To launch it, just
double-click or, using a terminal, type the following
command:

$ java -jar OptiFine_1.9.4_HD_U_B4.jar

You will then see a menu asking what you want to do.
OptiFine �rst auto-detects the locale Minecraft folder,
and after a short while, it should install smoothly,

Figures 3 – Opti�ne mod installation

Re-launch Minecraft, and you will notice that the
pro�le is now called OptiFine. Once in game, you will
notice the chunks are loading faster. There are a lot
more settings to play with in the Options screen, as
shown in Figure 5.

Figure 4 – Opti�ne video settings

Without touching anything, OptiFine can give you a
few more FPS (I get 4 FPS more on my ODROID), but it
greatly depends on the actual con�guration. I
estimate that you can expect around 25% to 50%
better performance.

How it works

The �rst question you may ask is why Minecraft
wasn’t available sooner on the ODROID. After all, it’s a
Java game, so it should run as is. However, Java
programs are not CPU dependent, and not system
dependent either, since it’s a Virtual Machine. So, a
Java program that runs on x86/Windows can also be
run on x86/Linux or ARM/Linux. Sometimes Java is not
enough to make a program, and you need to interface
with some native library to do more advanced stu�.
It’s called JNI (Java Native Interface), and it’s a
mechanism that allows a Java program to directly call
a native library. For example, you need that to use an
OpenAL sound or OpenGL graphics, and that’s what

Minecraft does: it uses a Java library called “lwjgl”
(Light Weight Java GL) to access OpenGL for the
rendering. In order to use this library, Minecraft
downloads it directly from its server, along with all
other needed libraries and assets, when you �rst
launch a game. And it checks you have everything
correctly in place every time you launch it. The issue is
that Minecraft is not supported on ARM. It doesn’t
even know this architecture. So when it downloads its
version of lwjgl, it obtains a version meant for an x86
CPU, which simply doesn’t work because it’s not the
right one. To work around that, a special launcher has
been created which intercepts all calls to Java,
analyzes the commands, and replaces the link to the
x86 version with the one installed in the system. It’s a
bit crude, but it does work in allowing Minecraft to
start. Although it does start, it doesn’t get far since it
needs OpenGL, and the ODROID only provides GLES.
So glshim needs to be used in order to translate all
OpenGL calls to GLES. Glshim has only provided
OpenGL 1.5 up until now, so Minecraft warns us to
update our drivers with a warning that OpenGL 1.x
won’t be supported anymore, and OpenGL 2.0 will be
needed. Incidentally, glshim contains some special
hacks that were created speci�cally for Minecraft. The
�rst version of Minecraft on ARM machine was on the
OpenPandora, 2 years ago. And in the beginning, it
looked as shown in Figure 5.

Figure 5 – Early version of Minecraft on OpenPandora

As you can see, it was not very colorful! After some
debugging, I eventually coded a hack in glshim to
compensate for the way that Minecraft does its
lighting. It uses multitexturing, where the �rst texture

is the color of the block, and the second texture is the
light map, which is a very common method of lighting.
However, what Minecraft does is render the textures
such that each block is considered to have a uniform
lightning, so that you don’t have a half-lit block. So,
when issuing the drawing command for a block/cube,
all the vertex coordinates are given to openGL, along
with the textures coordinates for the �rst texture,
with only one texture coordinate for the light map.
And that case, which is technically correct according
to OpenGL specs), wasn’t handled by glshim. It was
�xed by checking to see if there were only one texture
coordinates for a texture. In that case, those
coordinates are duplicated for all vertexes, making it
easier to handle in glshim. If you are curious about
the technical details, inpect the function
“glshim_glEnd” in the �le “gl.c”
(http://bit.ly/24WP30W).

What’s next

After creating the custom launcher and modifying
glshim, Minecraft runs pretty well. Still, things can
always be improved. There are still three main areas
to work on in the glshim application:

Improve the handling of the Mipmap settings

Get more speed by using Batch mode of glshim

Have a glshim working in GLES2

The mipmap settings is a bit puzzling, and I have to
understand what the Mipmap levels really do, which
is not easy with closed source software. The Batch
mode can be quite e�ective sometimes, such as with
Xash3D or Emilia Pinball, for example, but completely
ine�ective sometimes. It can even break the
rendering engine, as is the case with Minecraft. More
work is needed to get this feature stabilized. Having
glshim use GLES2, and proposing an OpenGL 2.x
version is a long term goal for glshim, but will be
needed sooner or later, as more and more software
has dropped support for the �xed pipeline, which is
an OpenGL 1.x function, in favor of using shading
instead.

http://bit.ly/24WP30W

ODROID-XU4 Cluster
 May 1, 2018 By Michael Kamprath ODROID-XU4, Tutorial

In the past few years, the topics of big data and data
science have grown into mainstream prominence
across countless industries. No longer are high tech
companies in Silicon Valley the sole purveyors of
topics like Hadoop, logistic regression, and machine
learning. Being familiar with big data technologies is
becoming an increasingly necessary requirement for
tech jobs everywhere. Unfortunately, getting real,
hands-on experience with big data technologies
typically means having access to an expensive
computer cluster to run your queries. However, the
recent single board computer revolution has made
true distributed computing accessible for personal
use and education for tasks such as these and more.

I have worked in the big data space for eight years.
While I have had access to a cluster to crunch
petabytes of data for some time, I have never had the
opportunity to design and build a cluster of my own. I
decided to build a small cluster primarily to become
more familiar with the underlying setup and

operations of big data software and an underlying
cluster. My price goal was to build a four-node cluster
for under USD$600. I also wanted build a cluster
powerful enough to be reasonably able to process
data on the 10s of gigabyte scale in size.

Key elements of consideration when selecting the
cluster technology is data storage and I/O, networking
performance, CPU cores, and available RAM.
Fortunately, Hardkernel makes a single board
computer that excels in these spec needs: the
ODROID-XU4. With a 2GHz Samsung Exynos 5422 8-
core processor, onboard Gigabit ethernet, multiple
USB 3.0 ports, 2 GB of RAM, and availability of high
performance data storage with both eMMC drives and
UHS-1 microSD cards, the XU4 is a formidable single
board computer for a relatively low cost.

With the node hardware selected, our �rst task is to
design the cluster topology, or how the nodes will be
connected to each other. Several things in�uence this,
most notably the type of distributed computing you

expect to do. Distributed computing paradigms can
be categorized roughly as either big CPU or big data.
For this project, we are focusing on the big data use
case, speci�cally for data analysis. The most common
big data paradigm in use today for data analysis is
mapreduce, which is implemented famously by both
Apache Hadoop and Apache Spark, both very popular
data warehousing technologies in use by many of the
big tech companies out there.

In most commercial scale MapReduce clusters, the
general cluster topology has any number of edge
nodes that a user logs into to use the cluster, one or
more head nodes which are used by the cluster to
coordinate both compute activity and data storage,
and any number of slave nodes which are used for
compute tasks or data storage or both (see Figure 1).
Think of it like dividing a large project between
multiple people to improve everyone’s speed: a
director issues the project request (the edge node)
with several managers coordinating what to do (the
head nodes), and employees taking those tasks and
combining their work (the slave nodes) into a �nal
solution for the director.

Figure 1 – Typical MapReduce Cluster Topology

For our XU4 cluster, we are going to combine the
concept of an edge node and a head node into one
master node, and then link slaves to the master node.
This means the master node will be the node users
log into to use the cluster and the node that
coordinates the slaves. This also implies that the
cluster’s node-to-node communication would occur
over a private network, while the master node needs
to have connection to the outside network. Given
that, the XU4’s networking design for a four node

cluster would need to resemble the one shown in
Figure 2.

Figure 2 – ODROID-XU4 Cluster Topology

This topology requires the master node to be able to
connect to two separate networks. However, the XU4
has only one ethernet port. A second network
connection will need to be added to the master node
with a USB 3 ethernet dongle.

The XU4 o�ers two storage options: an eMMC drive
and a microSD card. Both have their pros and cons.
The eMMC drive is extremely fast, while the microSD
card cost per gigabyte is very a�ordable, but slower
than the eMMC drive. The good news is that a UHS-1
microSD card’s read and write performance can be on
par with spinning hard drives, which are typically used
in large commercial clusters. This makes the microSD
card a good option for bulk data storage. However,
the speed of the eMMC drive is attractive for using as
a boot drive from which software is executed. Given
that, each node in our cluster will have both an eMMC
drive for booting from and a microSD card for bulk
data storage. I recommend getting at least a 16GB
eMMC drive for the master node, since it will be
where you, as a user, will work from, while money can
be saved by getting the cheaper 8GB eMMC drives for
the slave nodes. For data storage, �nd some fast
64GB or greater microSD cards for each of the nodes.

The �nal set of materials necessary for the project
include a small Ethernet switch for the cluster’s
internal network, a number of 6 inch Ethernet cables,
and PCB stando�s to stack the XU4s together. I also
picked up a serial UART for the XU4 in case I needed
to connect to a device directly to sort out any issues,

although I never needed it. One item which I did not
purchase that would be nice to have in retrospect was
a single power supply that could provide 5V power at
4 amps simultaneously to all the nodes, rather than a
messy and ine�cient collection of wall adapters
plugged into a power strip. That will be a future
improvement to the project.

Once all the materials are collected and the cluster is
constructed, our �rst task is to con�gure the
operating system and networking on all nodes. I
chose to go with ODROID’s current Ubuntu 15.10
distribution for the XU4. I �ashed this OS onto each of
the eMMC modules, and then one-by-one booted
each device without the additional microSD card
(which will be used for later storage after
provisioning) and while directly connected to my
home network. This allowed me to directly SSH into
the device after the �rst boot. After the device booted,
I found the IP address each XU4 grabbed from my
home’s DHCP server and logged in. The default user
account is “odroid” with a password of “odroid”. After
connecting, I installed the ODROID Utility to further
con�gure the OS. This can be done by directly
downloading the utility from Github:

$ sudo -s
 $ wget -O /usr/local/bin/odroid-utility.sh
https://raw.githubusercontent.com/
mdrjr/odroid-utility/master/odroid-utility.sh
 $ chmod +x /usr/local/bin/odroid-utility.sh
 $ odroid-utility.sh

The three tasks the ODROID Utility is used to
accomplish is to name the node, disable Xorg, and
maximize the partition size of the eMMC drive. I
named the master node master, and the other three:
slave1, slave2, and slave3.

The master node needs to be con�gured further to
use the USB 3 ethernet dongle as it’s external
network. To con�gure the master node for getting its
external internet connection from the network
attached to USB dongle, you will need to create a �le
named “eth1” in the /etc/network/interfaces.d/
directory with the following contents (assuming that
network has a DHCP server):

auto eth1
 iface eth1 inet dhcp

Similarly, to have the onboard ethernet be used for
the internal cluster network, a �le named eth0 needs
to be created in the same folder indicating a static IP
address:

auto eth0
 iface eth0 inet static
 address 10.10.10.1
 netmask 255.255.255.0
 network 10.10.10.0
 broadcast 10.10.10.255

A DHCP server needs to be set up on the master node
in order to provide an IP address to the slave nodes
on the internal network, and the master node will
need to provide NAT services between the external
and internal networks. Furthermore, all nodes will
need their /etc/hosts �le edited to allow mnemonic
addressing of nodes by their name without needing a
DNS service. Detailed instructions for accomplishing
these tasks can be found at my blog at
http://bit.ly/2aJdAmi.

Once the nodes are con�gured for the desired
networking design, the nodes can be shut down and
disconnected from the home networking. The nodes’
on-board Ethernet should be connected to the
internal network’s Ethernet switch, and your home
network should connect to the master node’s USB 3
Ethernet dongle.

Before restarting each node, format the microSD
cards with an ext4 �le system, and attach one to each
node. Boot up all the devices. You should be able to
SSH into the master node, and from there you can
SSH into each slave. Your �nal setup task is to
con�gure the /etc/fstab �le on each device such that
the microSD card is mounted to a /data mount point.
To do this, you need to �nd the UUID of the microSD
card’s volume after mountain it for the �rst time with
the blkid command, then adding a line to the
/etc/fstab �le that looks like:

UUID=c1f7210a-293a-423e-9bde-1eba3bcc9c34
/data ext4 defaults 0 0

Replacing your microSD card’s UUID with the one
listed above, which is also detailed on my blog. Once
these steps are completed, you will have a fully
con�gured cluster that is ready to have big data
software such as Hadoop installed. Installing Hadoop
is a fairly involved process, and I will cover that in a

future article. For now, we have successfully
provisioned an XU4 cluster that can be used for any
sort of complex data processing. Further information
about this ODROID-XU4 cluster can be found at
http://bit.ly/2aJdAmi.

BASH Basics: Introduction to BASH
 May 1, 2018 By Erik Koennecke ODROID-HC1, Tutorial, ODROID-HC2

This guide is a beginner-friendly introduction to the
BASH shell (https://www.gnu.org/software/bash/),
the terminal and general Linux concepts, like �le
organization. Chances are, if you are not already
approaching retirement age, the computers you have
used always came with a graphical user interface
(GUI). When you start your ODROID SBC, you are
greeted with a nice Ubuntu MATE desktop not much
di�erent from Windows 10 or OS X. In contrast, a shell
or command-line interpreter like BASH seems like a
relic from 50 years ago, so why should you leave your
comfort zone?

There are several answers to this:

You are lazy, just like me. It is better to think a few
minutes about a problem and have a tedious,
repetitive task automated than doing it yourself.

Your SBC has either no video output, like the HC1 or
the HC2, or you have it somewhere else and are
connected only via network. GUIs over the net are
eating bandwidth and are a pain to work with; the lag

of everything you do because of the added latency
drives you crazy after a while. Command line solutions
are usually more responsive and easier to work with
on remote connections.

You want to understand the system better, and have
full control over it. This is also best achieved on the
command line in the shell. You are at a lower layer
than with a GUI. Your little ODROID is less of a black
box, you have �ne-grained control and can do more
things than with the GUI alone.

Figure 1 – The Ubuntu Mate desktop is a modern GUI

https://www.gnu.org/software/bash/

Figure 2 – The BASH command prompt seems like a relic

Let us start a terminal now with the default BASH
shell and see how it can help us with all these. On
Ubuntu MATE, just type CTRL-TAB-T to open the
terminal, or shell.

Terminal window

By using the shortcut, you opened an 80×24 character
terminal (using a default pro�le, that can be changed,
copied and edited) with the command line at the top.
The prompt you see is composed of your user name
(usually ODROID), the machine name, a colon, the
path or working directory, and a $ sign to show that
you are a normal user. The root user would get a #
instead, as shown in Figure 2. Later on, we are going
to customize this to your liking.

Since you start at your home directory, the home
directory shows with the ~ as abbreviation. The ls
command shows you the contents of your working
directory, similar to opening the File Explorer.

What is a shell?

This terminal runs the BASH shell. A shell is a
command-line interpreter which runs in a text
window, the terminal. The standard for Linux is BASH.
BASH can also read and execute commands from a
script, called a shell script.

So far, it has not very spectacular. However, if you use
ls -l or ll for short, you already get more information
than File Explorer is giving you without going to the
Preferences menu to change the settings. But wait,
there is more. If you want to see a nice tree of what
you have in your home directory, try running the tree
command. If it is not installed, install it by running: $
sudo apt update && apt install tree Depending on
how many �les you have, there can be a lot of output.

Limit the output to directories only with tree -d, and if
you have a lot of levels you are not interested in at
the moment, you can limit to i.e., 2 levels by using
tree -d -L 2. When you use a command, you can get an
abbreviated summary with:

 $ <command></command> --help

or use:

<command></command> $ man

for a full manual page of it.

File system

With ls / command, you get the contents of the root
directory. Everything else you can access is bound to
one branch of its tree. For a nice overview, use the
following command:

 $ tree -d -L 1 /

The directories you see follow a standard, the File
System Hierarchy Standard (FHS). The ones of interest
for us are mainly:

/bin – Essential command binaries that need to be
available in single user mode for all users, e.g., cat, ls,
cp.

/boot – Boot loader �les like the initrd ram disk, the
kernel and the ARM device tree blobs for the board.
These are also found in /media/boot, the place where
the FAT32 partition is mounted from which the
ODROID SBC boots.

/dev – The device �les for everything attached to the
ODROID. /dev/mmcblk0 is the eMMC, /dev/mmcblk0p1
is the �rst partition on the eMMC, the FAT32 boot
partition for the ARM processor. /dev/mmcblk0p2 is
the system partition which is your root partition if you
boot from eMMC. In case of using the SD card, it is
mmcblk1 instead of mmcblk0.

/etc – This is the place for all system-wide con�guration
�les.

/home – The home directories for the users. With
standard setup, you have /home/ODROID for the
ODROID user, the shortcut for each users home
directory is ~.

/lib – Libraries for programs in /bin and /sbin.

/media – Mount point for removable storage like USB
sticks. The boot partition for the ARM processor is also
mounted here.

/mnt – Temporarily mounted �le systems.

/opt – Optional software. Things like �mpeg, Google
Chrome, Skype, TeamViewer. If you want to see what’s
there, tree -d /opt or just ls /opt gives you the
overview.

/proc – Virtual �lesystem providing process and kernel
information, populated by the system.

/root – Home directory for the root user, the
superuser.

/run – Information about the system since last boot.

/sbin – Essential system binaries like mount, iw, fdisk,
mkfs.

/srv – Data served by this system. If you have one of
the new HC1 or HC2 or generally use your ODROID as
a �le server, the recommended place to mount your
hard drive to would be

/srv/samba or /srv/ftp or /srv/nfs.

/sys – Information about devices, drivers and some
kernel features. For SBCs, a lot of control is done here.
To control the fan on a XU4, you would use:

$ echo 0 > /sys/devices/platform/pwm-
fan/hwmon/hwmon0/automatic

to shut it o� and

 $ echo 255 > /sys/devices/platform/pwm-
fan/hwmon/hwmon0/automatic

to switch it on again.

/tmp – Temporary �les, often not preserved between
reboots.

/usr – Contains the majority of (multi-)user utilities and
applications. Has its own hierarchy with /usr/bin,
/usr/lib, /usr/local, /usr/sbin and so on.

/var – Variable �les such as logs and spool �les.

Useful commands

Now that you know the layout of your system, what
are the other useful commands in the terminal
besides ls and tree? In the next parts, we are going to
cover:

The most basic commands, usage, application for
ODROID SBCs

What happens during startup and login with regard to
BASH

Customizing the BASH prompt

Brief introduction to scripting, including variables,
tests, loops

Useful one-liners for the command line

Android Oreo: Get The Latest Version of Android For Your
ODROID-XU4
 May 1, 2018 By Justin Lee Android, ODROID-XU4

ODROID Forum user voodik has been porting Android
8.1 (based on LineageOS 15.1) for ODROID-XU4 since
last October. He recently released the �rst alpha
version for community debugging.

What works

Hardware-accelerated GPU driver for 3D rendering

Hardware-accelerated VPG driver for video playing

Ethernet

GPS receiver

USB sound card

WiFi (including AP mode)

Bluetooth Source mode

Navigation bar

Antutu benchmark score looks great

Known issues

Bluetooth Sink mode

Some problems with Play Store: When downloading
the app, you may get stuck with a “Download Pending”
message. Just kill the Play Store in recent apps and
open it again

Not all ODROID-speci�c features are ported at this
point, such as using the mouse wheel to zoom. These
are currently works in progress.

Feel free to join the debug party by visiting the
development thread at
https://forum.odroid.com/viewtopic.php?
f=94&t=28622. You can also contribute to the kernel
source on Github at https://goo.gl/JBrPiB.

https://forum.odroid.com/viewtopic.php?f=94&t=28622
https://goo.gl/JBrPiB

Prospectors, Miners and 49er’s – Part 3: Operation and
Maintenance of Crypto-Currency Mining Systems
 May 1, 2018 By Edward Kisiel (@hominoid) ODROID-XU4, Tutorial

In the last two articles for the Prospectors, Miners and
49er’s series, I introduced dual CPU/GPU Mining with
sgminer-arm-5.5.6-RC and brie�y examined system
thermal trends and GPU tuning. In this third article,
we’ll take a look at the broader operational issues of
crypto-currency mining and its system and
maintenance rami�cations, as well the results of a
dual CPU/GPU four-day, eight-hour mining stability
test. In some ways these are the most important of
the areas covered and can be the di�erence between
a stable running system and instability; even possible
physical damage to your system.

Why is my system hanging, crashing, or not stable
while cryptocurrency mining? Some people facing this
issue have asked this question. There is not one single
solution that will answer this question. The act of CPU
mining, let alone dual CPU/GPU mining, is a complex
and extreme computing activity for a system-on-a-
chip regardless of the manufacture of the SOC or SBC.

The engineered and deployed use case for SOC’s and
SBC systems did not include the type of extreme
computing they are being more frequently subjected
to these days. The following insight is o�ered from
experience gathered while actively operating a mining
cluster of thirty ODROIDs. The cluster is made up of
twenty-�ve OEM active cooled XU4s, one custom
active cooled XU4, and an MC1 quad system.

If we consider typical uses for general computing,
almost without exception none approach the
resource allocation and stress of modern
cryptocurrency mining and other extreme cluster
computing applications. Yet many extreme
applications are regularly run unmanaged at or near
maximum system physical capability and resources.
Any disturbance in a multitude of areas can, and will,
cause instability. These instabilities manifest
themselves in system hangs, crashes, errors, and
potentially damaged hardware. When using these

types of applications, a systematic approach must be
used to prove out the many criteria for deployment.
They include CPU frequency, system temperature,
cooling capability, power usage, ambient
temperature, application and system resource usage,
and preventive maintenance. The dynamic nature of
any environment, even one thought to be controlled,
must be monitored and appropriate adjustments
made. Any variance in one factor potentially changes
and a�ects others and the system as a whole.

This is a new frontier for ARM SBC’s, so keep in mind
you are on the sharp edge of extreme system
utilization. To emphasize this point, we’ll use the
analogy of getting in your car and driving as fast as it
will go, with the tachometer redlined 24 hours a day,
7 days a week. It can be done, but how long will the
car last and what other problems will it cause? How
reliable will it be? Cars were not designed for that type
of use, and neither was the hardware we’re using to
mine cryptocurrency. How do we deal with this? To
start, constant monitoring and adjustment, but there
is another question you must ask: What is my
operational philosophy? There are two trains of
thought that most miners fall into. One group thinks
that the capital cost of mining equipment is sunk and
will have no residual value at the end of its life cycle.
They believe the best approach is to mine the
equipment as hard as they can with the sole purpose
of maximizing pro�tability, then in a couple of years,
disposing of the hardware with zero residual value.
The other group feels that there is, or should be, a
residual value after a couple of years and as such, run
their mining rigs much more conservatively. Which
are you? The answer to this question will dictate how
you operate and what is or is not acceptable.
Someone else may have a di�erent opinion and
approach. Regardless of your strategy, these eight
topics must be consider for reliable 24/7 operation:

CPU frequency

System temperature

Cooling capability

Ambient temperature

Power usage

Application and system resource usage

Preventive maintenance

Active management

CPU Frequency

The designed use of SOC’s and SBC’s do not allow
them to mine at their maximum clock frequency. As a
general guideline when con�guring a system start at
approximately 60% of the rated frequency. This gives
a comfortable starting point to prove out your
con�guration. If there is any doubt about the
suitability of a given frequency, err on the
conservative side until you stabilize the mining rig.
You can easily increase the frequency once the other
areas are proven. Expect to be constantly adjusting
the frequency as part of actively managing your miner
setup; more on that later.

System Temperature

The simple reality is that 70°C-75°C (158°F-167°F) is
the maximum XU4/MC1/HC1/HC2 SOC temperatures
that can be sustained for a 24/7 mining operation. If
you run hotter, you’ll likely experience intermittent
problems. It may take a day or two, or more, but you
will get system hangs, crashes, errors, and an
increased likelihood of permanent SOC damage the
longer and higher the temperature. Not all same
model SBC’s will perform identically either. There are
a number of reasons for this, that include not only
everything in this article, but what some refer to as
the “silicon lottery.” If you’re running a medium to
large cluster, it is recommended that you divide your
cluster into thermal groups. Something as simple as a
four-tier system of hot, warm, cool, and cold will allow
you to manage the cluster more e�ectively and set
di�erent parameters that are appropriate to a given
thermal group. This particularly applies to the ability
to control system temperature through manipulation
of the clock speed for a given group.

Cooling Capability

The �rst order of cooling is to make sure that you
have 100% coverage of thermal paste on the SOC and
that there are no air voids. Air voids and uncovered
areas are a form of insulation and will cause heat
retention and abnormal thermal �ows. Even though
most manufacturers use acceptable thermal paste in
the range of 2.5W/mK, consider upgrading to

something better. There are many thermal pastes
with 2-3 times better thermal conveyance. Look for
one that can perform in the 5W/mK-8W/mK range.
This alone will help move more heat away from the
SOC to the heatsink. Be wary of anything that isn’t
clearly labeled or uses a di�erent metric.

In general, passive cooling should not be used for
mining. Adding a fan to a passive cooled system can
be fraught with problems. The quantity and quality of
air�ow depends on many factors and unless the time
is taken to prove out a give change, stick with an OEM
active cooled system. If you’re going to try something
di�erent, some factors to consider include fan
proximity, angle, coverage, air�ow quantity, and static
pressure. Only quantitative testing will tell whether an
improvement was actually realized. Having a bigger
heatsink is not necessarily a better solution in itself
The development of the XU4 Split Air�ow case
covered at the Odroid Forum
(https://forum.odroid.com/viewtopic.php?
f=97&t=26373) and in the April 2017 and June 2017
issues of Odroid Magazine
(https://magazine.odroid.com/wp-
content/uploads/ODROID-Magazine-201704.pdf and
https://magazine.odroid.com/wp-
content/uploads/ODROID-Magazine-201706.pdf) can
serve as an example. Many people like the large, tall
North Bridge heatsink used in that project. But it’s not
perfect and has some nuances that need to be
addressed to be signi�cantly better. It’s worth taking a
few minutes to talk about them as a guide to doing
custom miner cooling.

In the initial prototype design, the fan and case were
not boxed, which lowered the static air pressure. As
such, it gave very similar performance of the OEM
stock active cooled heatsink. It wasn’t until it was fully
boxed and a fan with a higher air volume was used
that much of a performance increase was recognized.
Only after a copper perch and spreader were added
to a�ect the thermal pipeline did it see a signi�cant
improvement as the testing revealed
(https://forum.odroid.com/viewtopic.php?
f=97&t=26373&start=104). Even still, the further out in
time one tested, the less e�ective the heatsink
became under heavy stress. It eventually becomes

saturated as time increases. It’s �ne for general
computing, but when mining 24/7, the improvement
is going to be less meaningful.

If a fan is used on top, as is often the case, static air
pressure drops signi�cantly because the heatsink is
not �at and the �ns are thicker and closer together.
Both work against better cooling by reducing the
amount of pressure to force air down the heatsink,
and de�ecting more air out at the top of the heatsink.
It is easy to assume that because it is bigger, it should
perform much better, without realizing that this may
not be true for mining. If you simply remove the fan
from the OEM stock heatsink and mount it on the top,
the fan itself is not boxed which further reduces the
static pressure allowing even less air to actually
penetrate the heatsink. Most of it will be going
sideways. The lesson here is if you’re customizing a
cooling system, pay attention to all of the details and
do long term testing. A bigger heatsink or fan may not
always be signi�cantly better for mining, depending
on how it is deployed and whether further
improvements are applied.

Ambient Room Temperature

One of the most overlooked areas for mining systems
is the ambient temperature, especially for
unmanaged systems. The temperature change in
uncontrolled and unmonitored environments can be
very signi�cant. The average house’s ambient
temperature can vary greatly during a 24-hour period.
This matters a lot when pushing the boundaries of a
mining operation. Experienced miners know this and
are constantly checking their rigs for this reason. Let
the sun shine on all or part of a mining system and
the e�ect is even greater. Even a location within a
room or building can be signi�cant. When you’re
running in the 70°C-75°C (158°F-167°F) range, as you
should be in most cases, it only takes a change of 1-2
degrees to a�ect your miners and potentially push
them out of a safe range of operation.

Active Management and Maintenance

Many times new mining operators set up their rigs,
start them using all the system resources they can,
and think they are done. This is a sure way to have
serious instability in a mining operation, whether

https://forum.odroid.com/viewtopic.php?f=97&t=26373
https://magazine.odroid.com/wp-content/uploads/ODROID-Magazine-201704.pdf
https://magazine.odroid.com/wp-content/uploads/ODROID-Magazine-201706.pdf

you’re running one system or a large cluster. All of the
factors we are talking about must be constantly
monitored and adjustments made in order to have a
reliable operation. At minimum system resources,
CPU/GPU temperature and ambient room
temperature must be monitored constantly and the
CPU/GPU frequency or workload changed
accordingly.

Preventative maintenance is another important area
that is often neglected. At minimum, it must happen
on a regular schedule. Even then, with fans becoming
dirty or lubricant expended, constant vigilance for
decreased RPM, noise, dust, and dirt must be
maintained. heatsinks and fans must be kept clean.
Fans must spin at their full RPM’s. Continued
operation and static electricity signi�cantly increases
the collection of dust, dirt, and pollen. It only took a
few months for this system to exhibit reduced
performance and instabilities in a room with an open
window.

Figure 1 – The ODROID-XU4 heatsink needs to be
maintained when operating in a dusty environment

Fans must be maintained and should probably be re-
lubricated every few months as well. The best time to
do this is when the fans and heatsinks are being
cleaned. For the stock OEM active heatsink, the four
screws can be removed and the plastic fan assembly
can be separated from the heatsink without
disrupting the heatsink and thermal paste. Use a dry
toothbrush to thoroughly clean the heatsink �ns and
both side of the fan blades. An appropriate lubricant
can be applied to the fan hub. For a noisy fan, this can
be accomplished In between maintenance cycles by
holding the SBC upside down with the fan spinning
while using a spray extension to apply a lubricant,
temporarily stopping the fan with the extension and

allowing the lubricant to drip down into the hub
assembly. Though not appropriate in all cases WD-40
will work in a pinch and is non-conductive. Have some
extra fans handy as you should expect to have to
replace them.

In general computing, maintenance is something that
people can let slide a bit without catastrophic impact.
When dual CPU/GPU mining, the increased demand
of some crypto algorithms and pool mining, while
running systems at their full potential, you do so at
your own peril. System reliability can be seriously
impacted when multiple factors are allowed to be
introduced through poor management, and
accumulate through insu�cient maintenance. Keep in
mind we are not talking about average computer
usage: We’re talking about pushing operating systems
at their full potential for what amounts to an
inde�nite timeline. Remember our car analogy; pedal
to the metal with a redlined tachometer. Coming full
circle, back to our original question: Why is my system
hanging, crashing, or not stable while cryptocurrency
mining? Here is a guide for places to look.

Long Term Stability Test

After a four-day, eight-hour stability test dual
CPU/GPU mining Monero using the cryptonight
algorithm on a ODROID-MC1 cluster, everything ran
as expected with no errors reported in any syslog.
Sgminer-arm-5.5.6-RC1, XMRig and cpuminer-multi
were used and ran normally. Approximate reported
hashrate for each GPU’s 19h/s, CPU’s 19h/s as
reported by the application. All machines 1.7Ghz
frequency, ambient temperature 71f (21.66c)

Linux Version

 Linux c5n0 4.14.5-92 #1 SMP PREEMPT Mon Dec
11 15:48:15 UTC 2017 armv7l armv7l armv7l
GNU/Linux

Applications Used

 c5n0 - GPU sgminer-5.5.6-ARM-RC1, CPU XMRig
version 2.44
 c5n1 - GPU sgminer-5.5.6-ARM-RC1, CPU XMRig
version 2.51
 c5n2 - GPU sgminer-5.5.6-ARM-RC1, CPU
cpuminer-multi version 1.3.1

 c5n3 - GPU sgminer-5.5.6-ARM-RC1, CPU
cpuminer-multi version 1.3.1

Application Con�gurations

 sgminer-5.5.6-ARM-RC1 GPU Configuration
 -I 6 -w 32 -d 0,1 --thread-concurrency 8192 -
-monero --pool-no-keepalive

XMRig version 2.44 & 2.51 CPU Configuration
 -t 7 --cpu-affinity 0xFE

cpuminer-multi CPU Configuration
 -t 7 --randomize --no-redirect --cpu-affinity
0xFE

sgminer-arm-5.5.6-RC1 Results Summary

c5n0

 [13:53:00] Shutdown signal received.
 [13:53:00]
 Summary of runtime statistics:

[13:53:00] Started at [2018-03-25 05:38:19]
[13:53:00] Pool:
stratum+tcp://pool.supportxmr.com:3333
[13:53:00] Runtime: 104 hrs : 14 mins : 40
secs
[13:53:00] Average hashrate: 0.0 Kilohash/s
[13:53:00] Solved blocks: 0
[13:53:00] Best share difficulty: 16.2M
[13:53:00] Share submissions: 1012
[13:53:00] Accepted shares: 995
[13:53:00] Rejected shares: 17
[13:53:00] Accepted difficulty shares: 5006256
[13:53:00] Rejected difficulty shares: 85000
[13:53:00] Reject ratio: 1.7%
[13:53:00] Hardware errors: 352
[13:53:00] Utility (accepted shares / min):
0.16/min
[13:53:00] Work Utility (diff1 shares solved /
min): 0.16/min

[13:53:00] Stale submissions discarded due to
new blocks: 0
[13:53:00] Unable to get work from server
occasions: 272
[13:53:00] Work items generated locally:
407984
[13:53:00] Submitting work remotely delay
occasions: 0
[13:53:00] New blocks detected on network:

3096

[13:53:00] Summary of per device statistics:

[13:53:00] GPU0 | (5s):9.359 (avg):9.341h/s |
A:2522369 R:25000 HW:170 WU:0.081/m
[13:53:00] GPU1 | (5s):9.361 (avg):9.329h/s |
A:2483886 R:60000 HW:182 WU:0.081/m

c5n1

[13:52:55] Shutdown signal received.
13:52:55]
Summary of runtime statistics:

[13:52:55] Started at [2018-03-25 05:38:28]
[13:52:55] Pool:
stratum+tcp://pool.supportxmr.com:3333
[13:52:55] Runtime: 104 hrs : 14 mins : 26
secs
[13:52:55] Average hashrate: 0.0 Kilohash/s
[13:52:55] Solved blocks: 1
[13:52:55] Best share difficulty: 1.23M
[13:52:55] Share submissions: 1027
[13:52:55] Accepted shares: 1008
[13:52:55] Rejected shares: 19
[13:52:55] Accepted difficulty shares: 5053564
[13:52:55] Rejected difficulty shares: 95000
[13:52:55] Reject ratio: 1.9%
[13:52:55] Hardware errors: 353
[13:52:55] Utility (accepted shares / min):
0.16/min
[13:52:55] Work Utility (diff1 shares solved /
min): 0.16/min

[13:52:55] Stale submissions discarded due to
new blocks: 0
[13:52:55] Unable to get work from server
occasions: 223
[13:52:55] Work items generated locally:
407460
[13:52:55] Submitting work remotely delay
occasions: 0
[13:52:55] New blocks detected on network:
3096

[13:52:55] Summary of per device statistics:

[13:52:55] GPU0 | (5s):9.331 (avg):9.351h/s |
A:2405910 R:50000 HW:176 WU:0.078/m
[13:52:55] GPU1 | (5s):9.324 (avg):9.340h/s |
A:2647653 R:45000 HW:177 WU:0.086/m

c5n2

[13:52:48] Shutdown signal received.
[13:52:48]
Summary of runtime statistics:

[13:52:48] Started at [2018-03-25 05:38:38]
[13:52:48] Pool:
stratum+tcp://pool.supportxmr.com:3333
[13:52:48] Runtime: 104 hrs : 14 mins : 9 secs
[13:52:48] Average hashrate: 0.0 Kilohash/s
[13:52:48] Solved blocks: 1
[13:52:48] Best share difficulty: 50.1M
[13:52:48] Share submissions: 1034
[13:52:48] Accepted shares: 1009
[13:52:48] Rejected shares: 25
[13:52:48] Accepted difficulty shares: 5081646
[13:52:48] Rejected difficulty shares: 125000
[13:52:48] Reject ratio: 2.4%
[13:52:48] Hardware errors: 334
[13:52:48] Utility (accepted shares / min):
0.16/min
[13:52:48] Work Utility (diff1 shares solved /
min): 0.17/min

[13:52:48] Stale submissions discarded due to
new blocks: 0
[13:52:48] Unable to get work from server
occasions: 257
[13:52:48] Work items generated locally:
414051
[13:52:48] Submitting work remotely delay
occasions: 0
[13:52:48] New blocks detected on network:
3099

[13:52:48] Summary of per device statistics:

[13:52:48] GPU0 | (5s):9.226 (avg):9.186h/s |
A:2607526 R:45000 HW:172 WU:0.084/m
[13:52:48] GPU1 | (5s):9.225 (avg):9.188h/s |
A:2474119 R:80000 HW:162 WU:0.081/m

c5n3

[13:52:38] Shutdown signal received.
[13:52:38]
Summary of runtime statistics:

[13:52:38] Started at [2018-03-25 05:38:47]
[13:52:38] Pool:
stratum+tcp://pool.supportxmr.com:3333
[13:52:38] Runtime: 104 hrs : 13 mins : 51
secs
[13:52:38] Average hashrate: 0.0 Kilohash/s
[13:52:38] Solved blocks: 3
[13:52:38] Best share difficulty: 4.01M
[13:52:38] Share submissions: 1059
[13:52:38] Accepted shares: 1028
[13:52:38] Rejected shares: 31
[13:52:38] Accepted difficulty shares: 5165010
[13:52:38] Rejected difficulty shares: 155000
[13:52:38] Reject ratio: 2.9%
[13:52:38] Hardware errors: 350
[13:52:38] Utility (accepted shares / min):
0.16/min
[13:52:38] Work Utility (diff1 shares solved /
min): 0.17/min

[13:52:38] Stale submissions discarded due to
new blocks: 1
[13:52:38] Unable to get work from server
occasions: 251
[13:52:38] Work items generated locally:
405818
[13:52:38] Submitting work remotely delay
occasions: 1
[13:52:38] New blocks detected on network:
3096

[13:52:38] Summary of per device statistics:

[13:52:38] GPU0 | (5s):9.319 (avg):9.247h/s |
A:2365471 R:75000 HW:175 WU:0.078/m
[13:52:38] GPU1 | (5s):9.336 (avg):9.265h/s |
A:2799539 R:80000 HW:175 WU:0.092/m

The Yocto Project: Up and running on the ODROID-C2
 May 1, 2018 By Khem Raj, Himvis LLC Linux, ODROID-C2

The Yocto project is an open source project that
provides a �exible set of tools for building custom
Embedded Linux distributions for embedded and IoT
devices. Support is included for all major CPU
architectures prevalent in the embedded industry.
Through collaboration, industry wide work�ows are
created for embedded developers to enable sharing
of software stacks and technologies. The same
work�ows, infrastructural templates, and
con�gurations also provides a place for hosting BSP
layers. Yocto project releases happen every six
months, April and October.

This article describes the fundamental building blocks
and process for building a custom ODROID-C2 Linux
image. The same steps can be used for other ODROID
machines. Yocto is the industry standard tool for
building custom, complex Embedded Linux systems
using the latest Open Source technologies such as
Qt5, QtWebEngine, and Grafana.

Host System Setup and Prerequisites

The Yocto project requires a Linux based build system
and supports all major Linux desktop and server
distribution, a list of supported distributions is
maintained at
https://www.yoctoproject.org/docs/current/ref-
manual/ref-manual.html#detailed-supported-
distros. The Yocto build system builds most of host
dependent packages itself which provides more
consistency across di�erent linux distributions.
However, certain packages are expected to be pre-
installed on the host build system. For a debian-like
headless system, the following packages need to be
installed:

$ sudo apt-get install gawk wget git-core
diffstat unzip texinfo gcc-multilib build-
essential chrpath socat cpio python python3
python3-pip python3-pexpect xz-utils
debianutils iputils-ping

There is a full list of host development system
requirements at

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#detailed-supported-distros

https://www.yoctoproject.org/docs/current/yocto-
project-qs/yocto-project-qs.html#qs-native-linux-
build-host.

Getting Sources

Yocto project uses the concept of layers for creating a
workspace. The core layer provides all the common
pieces and additional layers change the software
stack as required. The following instructions are
based on the upstream master; however, using a
release branch — e.g., “sumo” or newer would be
possible as well.

$ git clone -b master
git://git.yoctoproject.org/poky.git yocto-
odroid
$ cd yocto-odroid

Download the ODROID BSP layer:

$ git clone -b master
git://github.com/akuster/meta-odroid

Initialize the setup:

$ source yocto-odroid/oe-init-build-env

We now have a common core layer workspace where
we can build an emulator and reference board based
images — e.g. qemuarm. We can then add the
ODROID BSP layer into the project so that we can
build for ODROID boards:

$ bitbake-layers add-layer ../meta-odroid

Next, choose ODROID-C2 as our machine:

$ echo 'MACHINE = "odroid-c2"' >>
conf/local.conf

The workspace is now ready to start a build.

Build

The Yocto project build system provides some sample
reference images for various use cases. Here, a
graphical image is built which is based on X11 and
matchbox. There are several additional reference
images available at
https://www.yoctoproject.org/docs/current/ref-
manual/ref-manual.html#ref-images.

$ bitbake core-image-sato

This build will take a while depending on the power of
the build machine and can vary from 20 mins to
several hours.

Flashing an SD card

After a successful build, the build artifacts are
provides under “tmp/deploy/images/odroid-c2”
directory. A tool like Etcher can be used to create a
bootable SD card. This can also be done using shell
command-line, like dd. However, caution must be
observed since, if the wrong device is chosen, it can
overwrite a hard disk belonging to the build host.

$ cd tmp/deploy/images/odroid-c2
$ xzcat core-image-sato-odroid-c2.wic.xz |
sudo dd of=/dev/sdX bs=4M iflag=fullblock
oflag=direct conv=fsync status=progress

Ensure that sdX points to mounted SD-Card, this can
be con�rmed with dmesg after inserting the Card

% dmesg|tail
[+0.000149] scsi host6: usb-storage 4-4:1.0
[+0.000077] usbcore: registered new
interface driver usb-storage
[+0.002803] usbcore: registered new
interface driver uas
[+1.005024] scsi 6:0:0:0: Direct-Access
TS-RDF5 SD Transcend TS37 PQ: 0 ANSI: 6
[+0.291506] sd 6:0:0:0: [sdb] 15523840 512-
byte logical blocks: (7.95 GB/7.40 GiB)
[+0.000682] sd 6:0:0:0: [sdb] Write Protect
is off
[+0.000003] sd 6:0:0:0: [sdb] Mode Sense: 23
00 00 00
[+0.000688] sd 6:0:0:0: [sdb] Write cache:
disabled, read cache: enabled, doesn't support
DPO or FUA

Figure 1 – Yocto Project Sato UI Running On ODROID-C2

https://www.yoctoproject.org/docs/current/yocto-project-qs/yocto-project-qs.html#qs-native-linux-build-host
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-images

ODROID BSP Layer

The ODROID BSP layer supports multiple ODROID
machines, primarily using kernel and bootloader (u-
boot) based on upstream sources. There is a sample
machine con�g for ODROID-C2, odroid-c2-hardkernel,
which uses Hardkernel supported kernel and u-boot.

Figure 2 – ODROID Machine supported in Yocto Project

As of today, the following BSP elements are
supported:

Linux Mainline – 4.14(LTS) and 4.16

Linux HardKernel – 3.14(EOL) and 3.16(LTS)

U-Boot – 2018.01 as well as u-boot-hardkernel 2015.10

Mali 450 prebuilt drivers r6p1 and Mali t62x prebuilt
drivers r10p0_00rel0

Support for Hardkernel 3.5inch LCD module is added
as well odroid-lcd35

Unleashing Yocto Project Ecosystem

There are many layers available (see the Layer Index
at
http://layers.openembedded.org/layerindex/branch
/master/layers/) which can be added to build more
complex images. For example, you can add the meta-
qt5 layer in order to build a Qt5 based system using
QtWebEngine technology for kiosks. Figure 3 shows a
grafana dashboard running in a Kiosk Browser built
using QtWebEngine on ODROID-C2 — all built from
source using the Yocto Project.

Figure 3 – Grafana Dashboard in QtWebEngine Running
on ODROID-C2 built using Yocto Project

http://layers.openembedded.org/layerindex/branch/master/layers/

Meet An ODROIDian: Matthew Kinderwater (WebClaw)
 May 1, 2018 By Rob Roy Meet an ODROIDian

Please tell us a little about yourself.

I am the Director of IT Services at a company called
iCube Development which is based in Calgary,
Alberta, Canada. My role is typically involves data
recovery cases, working in a clean lab performing
tasks such as replacing heads, electrical repairs, and
recovering data from RAID volumes. I am 34 years old
with experience as a freelance PHP and MySQL
programmer. I developed a free on-line billing system
called iCDBILL and has recently furthered the
development of other open-source applications such
as ICDBill and Billwerx. In 2005 I started to work at a
Data Recovery Lab called iCube Development in
Calgary. I enjoy camping, dirt biking, and hunting. I
would consider a perfect holiday far away from
technology and WiFi with my family.

When I was younger I was a lifeguard, master swim
instructor, and worked has an EMR (emergency
medical responder). My wife works for iCube
Development as the Director of Finance. She is

currently completing our Certi�ed General
Accountant Program. I have a daughter who (at the
time of writing this) is 13 weeks old. I was recently
featured in a publication called City Life where I was
part of the Top 40 Under 40 article, and received an
award from the Aboriginal Multi-Media Society for
my entrepreneurial leadership. You can check out
my open-source contribution called Billwerx on
Youtube, and read about one of my successful big
data recover cases.

How did you get started with computers?

I always had an interest in technology, and at a very
young age, my father would bring home non-working
computers for his work for me to take apart. At the
age of 9, my father brought home my very own
computer. It was an 8086 running at 4MHz with a
20MB HDD running MSDOS 3.3! In grade school, I
learned BASIC and continued to learn about operating
systems, programming, and hardware. What attracted
you to the ODROID platform?

http://www.icubedev.com/
http://www.avenuecalgary.com/City-Life/Top-40-Under-40/2017/Matthew-Kinderwater/
http://ammsa.com/node/29908
https://www.youtube.com/watch?v=JCCNskfMfZE
https://globalnews.ca/news/383925/newlyweds-who-lost-everything-in-fire-get-irreplaceable-gift/

The ARM architecture is growing very rapidly.
Manufacturers like Intel and AMD have been very
dominant is their x86 and x64 instruction set, and I
think ARM adds a very healthy dose of competition to
the market. Unlike many Chinese products that
advertise great technical speci�cations, the
HardKernel and the ODROID community actively
develops the kernel, releases patches, and o�ers free
technical support in the forums. Comparing the
slower performance of the Raspberry Pi to ODROID
hardware makes it an easy choice for developers. In
my opinion, the ODROID-C2 is the most stable 4K
capable device with eMMC storage on the market
today. How do you use your ODROIDs?

We use many ODROID at home and at the o�ce. For
the home, we use the ODROID-C2 for LibreElec and
ODROID-XU4 for Network Attached Storage (NAS)
functions. At work, we use ODROID-XU4s with 3D-
printed CloudShell type cases for HDD diagnostics,
simple �le level repairs, and automated data
duplication functions.

Which ODROID is your favorite and why?

That’s easy: the ODROID-C2 is very stable, has
compatible Raspberry Pi GPIO, supports 4K output,
and uses a fast eMMC for data storage.

What innovations would you like to see in future
Hardkernel products?

I would like to see the addition of WiFi and Bluetooth
on the PCB with U.FL antenna leads. This would make
it completely on-par with Raspberry Pi devices.

What hobbies and interests do you have apart from
computers?

iCube Development funds open-source projects, so
I’ve been lucky to have funding for Maker Projects. For
the last 5 years, I have been very involved with the

Layer3D project, which designs 3D printers and
sources reliable parts from all over the world. All of
our designs and build of materials are made public,
including the source �les

Figure 1 – The Layer3D Theta 3D printer is one of
Matthew’s open-source projects

What advice do you have for someone wanting to get
started in learning about information technology and
programming?

Community forums are more valuable than books
and formal education. Books and school are good, but
most of the computer problems technical people
need to solve use school as a foundation to know how
the operating system and programs works, but are
not a guide in solving a problem. For example, if your
car motor breaks, a mechanic is given a guide by the
manufacturer, such as Ford or GM, to replace the
motor. The guide tells him exactly what to do and
how it should be done. However, some mechanics
have the skill to build their own motor and /or �x
problems that are not in a diagnostic code.

I would summarize by saying to challenge why you’re
doing things. A good tech can follow instructions from
Google, but a great tech knows why he’s doing
something. Take risks, and don’t be afraid to screw
up. It’s how we learn, and how we become better than
school or books.

