

Playing Modern FNA Games on the ODROID Platform
 August 1, 2018

FNA is an open source re-implementation of XNA. XNA is a game framework created by
Microsoft Corp., and is quite popular. A few notable games have been written with XNA
(wich is for MS Windows only) and later ported to Linux and MacOS using FNA and/or

MonoGames. Let’s make it

Reading Temperature and Humidity from an SHT15 Sensor: An
Introduction to the GPIO Interface
 August 1, 2018

This project’s goal is to use an ODROID to read temperature and humidity data from
an SHT15 sensor

KeePass: Password Manager
 August 1, 2018

There are lots of password managers out there, but I will focus on a well supported
open source program called KeePass

BASH Basics – Part 4: Variables, Tests and Loops
 August 1, 2018

This part covers the most basic introduction to scripting to BASH

Object Detection in Live Video: Using The ODROID-XU4 With
GStreamer
 August 1, 2018

One of the most used �eld for deep learning has become object detection

Linux Gaming: Saturn Games – Part 5
 August 1, 2018

And we are back again with the ODROID XU3/XU4 running Sega Saturn games. This
issue will cover the rest of the games (letter in the alphabet) I tried and really liked to
play on my ODROID. Once again I found some really nice gems that I want to share

with

Transcode DVB Enigma2 Receiver: Using �mpeg on the ODROID-
XU4
 August 1, 2018

Using NAT (mapping the external ip to the internal device ip) and http �ux, I can see my
TV channels

Coding Camp Part 1: Getting Started with Arduino
 August 1, 2018

In this article, you will learn how to download and install Arduino IDE and ODROID-GO
speci�c libraries and examples

Thundroid – Part 2: Migrating From Bitcoin Testnet to Mainnet
 August 1, 2018

Remember Part 1 of this guide? We set up a Bitcoin full node with Lightning from
scratch, went to quite some length to secure our box, and started testing Bitcoin on
testnet.

eMMC Recovery: Resetting the ODROID-XU4 eMMC Module To Fix
Boot Issues
 August 1, 2018

The Exynos series boot loader is placed on a hidden boot partition in the eMMC
memory for all models except the ODROID-C1/C2. When it is corrupted, or you want to

use the eMMC with a di�erent board, you must install the proper boot loader in the eMMC. Note that you

Coding Camp Part 2: How to Display “Hello, ODROID-GO” on an LCD
Screen
 August 1, 2018

In this article, you will learn how to display a string, change colors, and change font
size. By following this guide, you will be able write code to display “Hello, ODROID-GO”

on your ODROID-GO.

How to Setup a Minecraft Server
 August 1, 2018

This article details how to install a basic Minecraft server on your ODROID, so that you
can play online games with a few of your friends in a world of your own creation. Using
the ODROID as an inexpensive sandbox is also a great way to test out maps, upgrades

Playing Modern FNA Games on the ODROID Platform
 August 1, 2018 By Sebastien Chevalier Gaming, Tutorial

FNA (http://fna-xna.github.io/) is an open source re-
implementation of XNA. XNA is a game framework
created by Microsoft Corp., and is quite popular. A
few notable games have been written with XNA
(which is for MS Windows only) and later ported to
Linux and MacOS using FNA and/or MonoGames.

Amongst those games, you can �nd some gems like
Bastion, FEZ, Stardew Valley, Owlboy and Terraria, to
list just a few. To have a better idea of what game use
this framework, go to https://goo.gl/4MGnys or
http://www.monogame.net/showcase/

Figure 01 – Stardew Valley

Now, this framework is interesting for ODROID SBCs,
because it is not based on C or C++, but on C#. The
big advantage of games compiled with C# is that they
can run on any Linux variant (any CPU architecture) as
long as Mono is supported and running on it. With a
bit of work, most of those games can be made to
work without having the source code of the game. It is
su�ce to just use binaries built for x86 Linux.

http://fna-xna.github.io/
https://goo.gl/4MGnys
http://www.monogame.net/showcase/

Pre-requisites Of course, to launch those games,
some preparation and compilation will be needed.
Along with Mono, we will need some libraries to
support the games, like SDL2 and also a few speci�c
libraries required by the games. We cannot use them
here because of the ARM architecture of the ODROID.
We will also need a fresh version of GL4ES because all
those games use OpenGL 2.1+ extensions at the
minimum. This guide should work with the default
HardKernel image or with ODROID GameStation
Turbo (OGST). First, let us make sure everything is up
to date (do not forget to answer ‘Yes’ if asking to
upgrade):

$ sudo apt update && sudo apt upgrade

Now that latest version of everything is installed, let’s
install the standard libraries we will use. Start with
SDL2 and related libraries:

$ sudo apt install libsdl22.0 libsdl2net2.0

libsdl2mixer2.0 libsdl2ttf2.0

To install Mono, run the following command:

$ sudo apt install monocomplete monoxbuild

After those installations, we are almost ready. The
problem is that SDL2 may not be compiled for
OpenGL support, and some other libraries are
missing from repo and needs to be built from
sources. So, just to be on the safe side, lets install a
few development stu� (you may already have most or
all of them installed):

$ sudo apt install buildessential git

mercurial cmake libgl1mesadev

$ sudo apt install libtheoradev libvorbisdev

If you use OGST and do not want to build all those
libraries, you can simply use the one built by
@meveric for you with the following command:

$ sudo apt install monolibsodroid

For the others who want to build needed components
themselves, get ready for some serious building.
Build some libraries We will build some libraries and
put them in a easy to �nd folder, so we can direct the
search of those libraries with the LD_LIBRARY_PATH

trick, so let us create that folder, named monolibs in
your ~home folder:

$ mkdir ~/monolibs

Now, let us build the libraries we need, namely: gl4es,
SDL2 with OpenGL support, mojoshaders and
libtheroaplay.

GL4ES This library allows the use of many OpenGL 1.x
and 2.x software/games on GLES hardware. It is the
central piece of software, along with Mono, that
allows all those game to run on the ODROID. The
sources are on my github account, so let us get the
latest sources:

$ cd ~

$ git clone

https://github.com/ptitSeb/gl4es.git

Once you have cloned the repo, to get latest sources,
you simply go inside the repo and type “git pull”. Now,
con�gure the build for the ODROID:

$ cd gl4es

$ cmake DODROID=1

DCMAKE_BUILD_TYPE=RelWithDebInfo .

and build the libraries:

$ make j2

Then, simply copy it in the “monolibs” folder for later
use: $ cp lib/libGL.so.1 ~/monolibs/

SDL2 We already have SDL2 installed, but it may be
the version that only supports GLES and not OpenGL.
So it is safe to build a new version. It is not that
complicated anyway. Let us use the version that is on
my GitHub account. Any other version will work, and it
is just for convenience to use mine:

$ cd ~

$ git clone

https://github.com/ptitSeb/SDL2.git

Now configure the build for OpenGL (we will do

outoftree build this time):

$ cd SDL2

$ mkdir build

$ cd build

$ cmake DCMAKE_BUILD_TYPE=RelWithDebInfo.

The con�gure step will run for a bit. You should see,
among a lot of other things: “–VIDEO_OPENGL
(Wanted: ON): ON”. So now, let us build this library (it
will take a bit longer than gl4es):

$ make j2

We can now copy the freshly built library to the
monolibs directory:

$ cp libSDL22.0.so.0 ~/monolibs/

mojoshaders That library is one of the utility libraries
made by Icculus to help porting windows code to
Linux. This particular library converts shaders written
for DirectX to GLSL shaders for OpenGL (or Metal).
This library is used by FNA to transparently use the
DirectX shaders on OpenGL. We will get the source
directly from the Icculus’s repo, using mercurial this
time:

$ cd ~

$ hg clone

http://hg.icculus.org/icculus/mojoshader

Let us con�gure (to produce a shared library, because
by default, it does not)

$ cd mojoshader

$ cmake DCMAKE_BUILD_TYPE=RelWithDebInfo

DBUILD_SHARED=ON

DDEPTH_CLIPPING=ON DFLIP_VIEWPORT=ON

and make the lib:

$ make j2

We will copy this library also and go to the next:

$ cp libmojoshader.so ~/monolibs/

XNAFileDialog Some games use this library. Let us
build a version of the native part just in case.

$ cd ~

$ git clone

https://github.com/flibitijibibo/XNAFileDialog

.git

$ cd XNAFileDialog/native

$ make

$ cp libXNAFileDialog.so ~/monolibs/

LibTheoraPlay Some games use libtheoraplay for the
videos (“A Virus Named TOM” for example). This lib is
a bit tricky because it comes in 2 parts – the C part
and the C# part, but the C# part needs some
adjustment to run on ARM, as there is a workaround
for some issue on Mono/x86 that does not apply here
(and breaks things).

$ cd ~

$ git clone

https://github.com/flibitijibibo/TheoraPlay

CS.git

The patch is simple: open TheoraPlay.cs from
~/TheoraPlay-CS with your favorite text editor and go
to around line 155. Search for the following line: /*
This is only a problem for Mono. Ignore for Win32 */ if
(Environment.OSVersion.Platform !=
PlatformID.Win32NT && IntPtr.Size == 4) and replace
the big “if” that is split in 2 lines with a simple if (false
) Now, let us build the C part of the lib and copy in
monolibs:

$ cd TheoraPlayCS/TheoraPlay

$ cmake DCMAKE_BUILD_TYPE=RelWithDebInfo .

$ make

$ cp libtheoraplay.so ~/monolibs/

Now, let us build the C# part of the library (it is an MS
Windows dll) and copy the dll to the same place, for
future use. We can safely ignore the .dll.con�g �le, we
will not need it:

$ cd ..

$ xbuild /p:Configuration=Release

$ cp bin/Release/TheoraPlayCS.dll ~/monolibs/

TheoraFile Some games use this library. Let us build
a version of the native part just in case.

$ cd ~

$ git clone https://github.com/FNA

XNA/Theorafile.git

$ cd Theorafile

$ make

$ cp libtheorafile.so ~/monolibs/

Other libraries Some games may ask for other
libraries that are more di�cult to build or not
opensource. For example, Hacknet will ask for libcef
(that is basically “Chrome in a lib”), or Bastion will ask

for FMODex (that is closed source). For those games,
you are on your own, but if you have a working
solution, do not hesitate to go to the ODROID forum
and add a post about that. FMOD can be downloaded
for ARMHF, but does not seem to exist for ARM64 (so I
could not test on my N1). To get FMOD, you need to
register at http://www.fmod.com and download
fmodstudioapi for linux (you will get an archive like,
fmodstudioapi11006linux.tar.gz). Extract and copy
libfmod to monolibs with:

$ cd ~

$ tar xf fmodstudioapi11006linux.tar.gz

$ cp api/lowlevel/lib/armhf/libfmod.so

~/monolibs/

For FMODex, you can then use the little wrapper I
wrote:

$ cd ~

$ git clone

https://github.com/ptitSeb/fakemodex.git

$ cd fakemodex

$ cmake DCMAKE_BUILD_TYPE=RelWithDebInfo .

$ make j2

$ cp lib/libfmodex.so ~/monolibs/

Extract games Now, we need to install some games
on the ODROID. The games need to use FNA or
MonoGames here, coming from GoG, HumbleBundle,
or even Steam for some of them. They all need to be
the Linux version of the game. Most of the time, the
Windows version will not work. You should note that
the Steam version of some games will also not run
without Steam launched (DRM), and because we do
not have Steam on the ODROID, that will simply
prevent us to run the game on the ODROID. Use the
GOG or HB (or any other DRM-free) version for games
you want to run on your ODROID.

Steam or other Linux installed version If you have
an installed Linux version of the game, simply copy
the entire folder of the game and you are ready to go.
The Steam version of FEZ or Owlboy, for example, can
be used.

Humble Bundle version Many games now come as a
large single �le ending with “-bin”. These games can
be easily extracted from this – there a zip �le
embedded and all games is inside the “data” folder.

For example, “A Virus Named TOM” comes as “avnt-
10192013-bin”, and “Towerfall:Assension” is
“towerfall-07212016-bin”. Also, because some game
have a “data” that will con�ict with extracted “data”
folder, let us temporarily renamed it to “ODROID”. To
prepare A Virus Named TOM, you can do:

$ cd ~

$ mkdir AvirusNamedTOM

$ cd AVirusNamedTOM

$ unzip ~/avnt10192013bin data/*

$ mv data ODROID

$ mv ODROID/* .

$ rm r ODROID

GOG version Games packages by GOG are quite
similar to extract. For bastion, I have a
”gog_bastion_2.0.0.1.sh” that also contains a zip �le:

$ cd ~

$ mkdir Bastion

$ cd Bastion

$ unzip ~/gog_bastion_2.0.0.1.sh

data/noarch/game/*

$ mv data ODROID

$ mv ODROID/noarch/game/* .

$ rm r ODROID

Figure 02 – FEZ01

Launch the games Finally, we are ready for some
action. We need to remove a few libraries from the
install �rst. Because we will use the version of Mono
that comes with the ODROID, and not the one
embedded in the games, there is some cleanup to do
�rst:

$ cd ~/AvirusNamedTOM

$ rm mscorlib.dll

$ rm System.*dll

$ rm Mono.*.dll

http://www.fmod.com/

Now, some games (like A Virus Named Tom), use
TheoraPlay. It can be under 2 names: “TheoraPlay-
CS.dll” or “TheoraPlay#.dll”. If you see any of this, be
sure to replace with the one we built earlier or you
will have crashes when video start (only on 32bits,
64bits are safe). For the HB version of A Virus Named
TOM, that will be:

$ cd ~/AvirusNamedTOM

$ cp ~/monolibs/TheoraPlayCS.dll

TheoraPlay#.dll

Figure 03 – TwerFall04

Now we can run the game. We need to setup a few
things to have GL4ES emulating OpenGL2 and we also
need to use all the libraries in monolibs. Locate the
“.exe” �le and simply run it with mono. For “A Virus
Named TOM” the commands are:

$ cd AvirusNamedTOM

$ LC_ALL=”C” LIBGL_ES=2 LIBGL_GL=21

LIBGL_DEFAULTWRAP=2

LIBGL_FBOFORCETEX=1 LD_LIBRARY_PATH=~/monolibs

mono CircuitGame.exe

We can go further, with additional components.

Resampling Audio You may notice some games take
some time to initialize and use quite a lot of memory.
Most of the time, this is due to the sound part of the
game, where everything is loaded into memory at
start. If you have the memory issue or simply want to
experiment, I have developed a small tool that can be
used to resample the data. The tool is easily built
using the following commands:

$ sudo apt install libsoxdev

$ cd ~

$ git clone

https://github.com/ptitSeb/rexwb.git

$ cd rexwb

$ cmake DCMAKE_BUILD_TYPE=RelWithDebInfo .

$ make

Using the tool is fairly easy. You have to understand
“xwb” WaveBank is likely sampled at 44kHz, using
MSADPCM compression. While this is pretty e�cient
in Windows, most versions on Linux expand the
MSADPCM to classic PCM format (so size * 4), leading
to having large chunks of the sound �le in memory.
Resampling the sounds in wavebanks to Mono
(instead of Stereo) and resampling to 22kHz (or lower)
lower the memory pressure. Games that have xwb
include “A Virus Named TOM” and “Stardew Valley”.
You will �nd the wavebanks inside Content/Audio.
Note that rexwb always work on a copy of the
wavebanks. To resample TOM’s wavebank (this games
has 2 wavebanks, only the BGM one can be resample,
or both, depend on individual choices) to
mono/22kHz you will use the following commands:

$ cd ~/AvirusNamedTOM

$ cd Content/Audio

$ mv BGMwaves.xwb BGMwaves.xwb.sav

$ ~/rexwb/rexwb BGMwaves.xwb.sav BGMwaves.xwb

22050 f m

$ mv SFXwaves.xwb SFXwaves.xwb.sav

$ ~/rexwb/rexwb SFXwaves.xwb.sav SFXwaves.xwb

22050 f m

FEZ On FEZ, I had an issue on my N1 prototype with
“Hardware Instancing”. This is certainly some bug in
GL4ES I have to track down (I did not have those
issues on OpenPandora), so if you have a crash at
start, simply disable Instancing in option menu. Also,
this game uses a huge drawing list of more the
400,000 triangles to draw those stars in the Menu
screen and a few game screens. While some power
beast ODROIDs like the N1 can handle that, some
other models may have issue with that kind of
drawing. You can activate a special hack in GL4ES to
avoid this draw. With your preferred text editor, go
into the gl4es folder and edit src/gl/drawing.c. Look
for “#if 0” in that �le (around line 207) and change it to
“#if 1”. Rebuild the library and copy it to monolibs to
have a version that will not draw the star�eld for a
smoother main menu.

Figure 04 – FEZ

Stardew Valley I have noticed a few graphics issue
with Stardew Valley, but nothing serious using the
Steam version. One thing to note is that some dll’s
want to load “oal_soft.dll”. It should be redirected to
“libopenal.so” but somehow, it is not. Easier way is to
create a symlink inside Stardew valley folder to
“libopenal.so” named “liboal_soft.so” and it will work.
On my N1, which is ARM64, the command would be:

$ cd ~/StardewValley

$ ln s /usr/lib/aarch64linux

gnu/libopenal.so libsoft_oal.so

But it will be similar on 32-bit ARM:

$ cd ~/StardewValley

$ ln s /usr/lib/armlinux

gnueabihf/libopenal.so libsoft_oal.so

Figure 05 – Stardew Valley

A Virus Named TOM I have tested this game on the
ODROID-N1. I had some graphical issues with this
game, where the image is limited to a subpart of the
whole picture. It is probably a bug of gl4es, but it may
also be a bug in GLES driver of the N. I have not seen
any issue with the OpenPandora during my testing.

Figure 06 – TOM

Bastion This one basically needs FMODex. So you
probably need to download FMOD and build the
fakemodex wrapper to play this one.

Hammerwatch While it is not an FNA game,
Hammerwatch use a custom engine and is also done
in C#. Hammerwatch can be run in the same way.
However, note that the latest version (1.32) uses
FMOD for music and sound, so you need to get the
native version of it (FMOD, not FMODex). THe older
version (without the dlc) does not use fmod.

Other games

Figure 07 – Dust: An Elysian Tail

Figure 08 – Towerfall

Figure 09 – Owlboy
Figure 10 – Owlboy

Do not hesitate to go to the ODROID forums and
create some posts to discuss about your successes
and failures with FNA.

Reading Temperature and Humidity from an SHT15 Sensor: An
Introduction to the GPIO Interface
 August 1, 2018 By Jon Petty ODROID-C0, ODROID-C1+, ODROID-C2, Tinkering

This project’s goal is to use an ODROID to read
temperature and humidity data from an SHT15
sensor, as well as explaining how an ODROID
communicates with an SHT15 over GPIO pins. SHT15
sensors are manufactured by Sensirion and measure
both the temperature and the humidity of their
surroundings. Communication with a sensor occurs
via an ODROID’s GPIO pins. One GPIO pin connects to
the sensor’s SCK pin, which controls how quickly
communication occurs. The second GPIO pin
connects to the sensor’s DATA pin, which is used to
send commands and read results. Once everything
has been set up, the ODROID will send a request to
measure the temperature or the humidity via the
DATA pin, wait for the sensor to complete its
measurement, then read the result over the DATA
pin.

Connecting the SHT15 sensor

The following diagram outlines how to connect an
SHT15 sensor to an ODROID.

Figure 1 – SHT15 Diagram

There are two things to note. First, data-sheets are a
great place to get information on how to use
electronic parts. The circuit in Figure 1 was copied
from the sensor’s data-sheet. It’s recommended by
the manufacturer as a set-up that yields good

measurements. Second, soldering an SHT15 is
di�cult. To make things easier, this tutorial uses a
pre-manufactured SHT15 sensor board.

Required Supplies

To get started, the following parts and tools are
needed:

ODROID (http://bit.ly/1QPVZa9)

ODROID tinkering kit (http://bit.ly/1LmFcdf)

SHT15 sensor board (http://bit.ly/1qd22ZL)

Wires

Soldering iron and solder

Once you have the SHT15 sensor board, make the
following connections after soldering wires to it:

Connect VCC to the ODROID’s +3.3V power source

Connect DATA to the ODROID’s GPIO pin #100

Connect SCK to the ODROID’s GPIO pin #97

Connect GND to the ODROID’s GND

You should end up with something that looks like
Figure 2.

Figure 2 – SHT 15 Connections

Reading and Writing GPIO values

GPIO pin stands for general-purpose input/output
pin. How many of them your ODROID has depends on
the model, but in all cases, they’re used to read and
write binary data. Binary data is data with only two
states, commonly referred to as HIGH and LOW, or 1
and 0. Physically, a HIGH value means the pin voltage
is +3.3 volts, and a LOW value means the pin voltage
is +0.0 volts. Note that the voltage level depends on
the device. For example, an Arduino operates from

+5.0 volts to +0.0 volts. If the ODROID is writing data
to a GPIO the pin, it will change the voltage between
+3.3 volts and +0.0 volts depending on if HIGH or LOW
has been written. If the ODROID is reading data, it will
measure HIGH when +3.3 volts is applied to the pin,
and LOW when +0.0 volts is applied to the pin. For this
project, we’re going to read and write data to and
from two GPIO pins. At a high level, this involves the
following steps:

Connect your ODROID GPIO pins to the sensor

Login to Linux on the ODROID and navigate to the
GPIO directory

Initialize a connection with the two connected GPIO
pins (one for DATA and one for SCK)

When needed, set the pins to write mode and write
data

When needed, set the pins to read mode and read
data

To get started, login to your ODROID and open up a
command line terminal. Some of the following
commands need to be executed as root, which can be
done with the following command:

$ sudo su

GPIO pins are located in the /sys/class/gpio directory:

$ cd /sys/class/gpio

A program called “export” is in this directory, which
initializes connections with GPIO pins. A pin needs to
be initialized before data can be read from it or
written to it. To initialize a connection, pass the
identi�cation number of the pin. In this tutorial, we
connected the SHT15 sensor’s DATA pin to GPIO pin
100, and the sensor’s SCK pin to GPIO pin 97. These
two connections are initialized with the following two
commands.

$ echo 100 > /sys/class/gpio/export

$ echo 97 > /sys/class/gpio/export

After these commands complete, you should �nd the
following newly created directories:

/sys/class/gpio/gpio100

/sys/class/gpio/gpio97

http://bit.ly/1QPVZa9
http://bit.ly/1LmFcdf
http://bit.ly/1qd22ZL

These directories contain everything needed to read
and write data from their corresponding GPIO pins.
The �rst important �le to take note of is “direction.”
For GPIO pin 100, it’s found in the �le
/sys/class/gpio/gpio100/direction. The “direction” �le
changes a pin between read mode and write mode.
You cannot simultaneously read and write data at the
same time on a single pin. You can, however, have
multiple pins where some are reading data and
others are writing data. A pin can be changed to write
mode by writing a value of “out” to the “direction” �le.
Likewise, a pin can be changed to read mode by
writing a value of “in” to the “direction” �le. For
example, the following command changes GPIO pin
100 to write mode:

$ echo out > /sys/class/gpio/gpio100/direction

The next command changes GPIO pin 100 to read
mode.

$ echo in > /sys/class/gpio/gpio100/direction

To determine which mode a GPIO pin is in, you can
read the “direction” value. For example, the following
command determines whether GPIO pin 100 is in
read mode or write mode.

$ cat /sys/class/gpio/gpio100/direction

The second important �le to take note of is “value”.
For GPIO pin 100, it’s found at
/sys/class/gpio/gpio100/value. Reading and writing
binary data is done using the “value” �le. If the pin is
in write mode, the “value” �le is used to output binary
data. If the pin is in read mode, the “value” �le is again
used, but in this case it reads binary data from the
pin. To demonstrate this, we can run a small test to
see if the circuit board is connected correctly. When
initially connected, the DATA pin should be HIGH and
the SCK pin should be LOW. To determine if this is the
case, �rst change both pins to read mode.

$ echo in > /sys/class/gpio/gpio100/direction

$ echo in > /sys/class/gpio/gpio97/direction

Second, read the GPIO value for each pin.

$ cat /sys/class/gpio/gpio100/value

$ cat /sys/class/gpio/gpio97/value

Pin 100 (DATA) should print a value of “1”, and pin 97
(SCK) should print a value of “0”. If this is not the case,
possible places to troubleshoot the problem are
double-checking your wire connections by using the
wire diagram above for reference, and double-
checking that the GPIO pins are set to read mode by
checking the “direction” �le values:

$ cat /sys/class/gpio/gpio100/direction

$ cat /sys/class/gpio/gpio97/direction

Communicating with the SHT15 sensor

At a high level, the following steps result in humidity
or temperature data being read from a sensor:

1. The ODROID sends a request to the sensor to record
either the temperature or the humidity. Note that the
sensor cannot read both the temperature and the
humidity simultaneously. If both measurements need
to be taken, measurements must be done sequentially.

2. The sensor begins taking a measurement, and the
ODROID waits.

3. Once the measurement is completed, the ODROID
reads the result from the sensor.

4. The ODROID converts the measurement into a human-
readable form.

To request that a measurement be taken, the
ODROID sends a binary number to the sensor. For
example, the number 00000011 requests that the
temperature be measured, and the number 00000101
requests that the humidity be measured. The
numbers themselves are sent one bit at a time over
the DATA pin. The SCK pin controls how quickly values
are sent. Take a look at Figure 3, which shows the
GPIO pin values when transmitting the number
00000101 (humidity measurement request).

Figure 3 – Humidity Measurement Request

There are three sections of note in Figure 3. The �rst
is the transmission start sequence. This is a
combination of HIGH and LOW values transmitted
over DATA and SCK that signal the sensor a command
is about to be sent. The second section of note is the

request number section. In it, the DATA pin transmits
each bit 0-0-0-0-0-1-0-1 and the SCK pin varies
between 1 and 0. The SCK pin controls the timing of
how quickly data is transmitted. When SCK is 0, it
indicates that nothing is ready to be read. When SCK
is 1, it indicates something is ready to be read.
Alternating SCK between 1 and 0 while transmitting
each bit over DATA allows the ODROID to send
measurement requests to the sensor.

The last section of note in the diagram above is the
ACK section, also known as the acknowledgement
section. In this section, the ODROID changes the DATA
pin to read mode. This causes it to read values written
by the sensor. If the SHT15 sensor correctly received
the command, it will write a value of 0 to DATA during
the ACK section, then change DATA to 1. The ODROID
continues to control the value of SCK in write mode,
and it takes a moment for the sensor to record a
measurement. When a measurement has been
completed, the sensor changes the DATA pin to 1.
This indicates that the ODROID is free to read the
result back from the sensor. Results consist of two
bytes, for a total of 16 bits. Figure 4 shows the
ODROID reading an example measurement result.

Figure 4 – Measurement Reading

As seen in Figure 4, the ODROID reads the number in
two pieces, 00000100 and 00110001. Each of these
pieces are called a byte. This occurs over three
sections. The �rst and thirds sections transmit the
actual bytes. These transmissions occur bit by bit as
the ODROID alternates SCK between 0 and 1 while
reading DATA. The second section is another ACK
signal. After the �rst byte is sent, the sensor changes
DATA to 1. To send an ACK signal, the ODROID needs
to change DATA to 0 and cycle SCK between 0 and 1.
This tells the sensor that the ODROID is ready to read
the second byte. The number read from the sensor is
in binary and needs to be converted to a base 10
number system. Later in this tutorial, we will use
software to do this. But for now, note that 00000100
00110001 equals 1073. After a measurement has
been recorded and converted to a base 10 number

system, it must be plugged into an equation to get the
�nal result. If a temperature measurement was taken,
the following equation is used:

T = 39.7 + 0.04x

In this equations, x is the base 10 number recorded
from the SHT15 sensor and T is the �nal result. For
example, a value of 1617.5 recorded from the sensor
after a temperature measurement indicates a
temperature of 25oC. If a humidity measurement was
taken, the following equation is used.

H = 2.0468 + 0.0367x – 0.0000015955x2

In this equation, x is the base 10 number recorded
from the SHT15 sensor and H is the �nal result. For
example, a value of 1073 recorded from the sensor
after a humidity measurement indicates a humidity of
35.5%

Using PHP to read humidity and temperature data

After glancing through the previous section, the idea
of controlling SCK and DATA pins through the Linux
command line to request and read measurements
might not sound very appealing. If that’s the case, I
wholeheartedly agree with you! To make this more
manageable, I wrote two PHP scripts to do the hard
work. To download these scripts, navigate to a
directory where you want them to be saved, and run
the following commands:

$ sudo aptget install git php5

$ git clone git@github.com:jon

petty/shtx_php_example.git

The �rst command installs PHP, which is required to
run the scripts. The command also installed a
program called git, which can be used to download
code repositories. The second command uses git to
actually download the scripts. If you wish to examine
the scripts before you download them, they can be
viewed at http://bit.ly/1OGGK5Q. To execute these
scripts, �rst change directories, then follow the
instructions in the README.md �le. It contains the
most up to date instructions on how to execute the
scripts:

$ cd shtx_php_example

$ less README.md

http://bit.ly/1OGGK5Q

Future projects

At this point, you’ve connected an SHT15 sensor to
your ODROID and are able to record the humidity and
the temperature. You also have an understanding of
how GPIO pins are controlled in Linux, and what
communication protocol is used with an SHT15
sensor. If you’re curious and want to learn more, I
encourage you to take a look at the PHP scripts and
match up the code to the communication protocol

and equations. You can also take a look at the data-
sheet and learn additional things out of scope of this
article. For example, if temperatures vary greatly from
25oC, the recorded humidity needs to be run through
a compensation equation to make the results more
accurate.

References

Datasheet SHT1x. Sensirion, Dec. 2011.
http://bit.ly/1x0FfqK

http://bit.ly/1x0FfqK

KeePass: Password Manager
 August 1, 2018 By Adrian Popa Linux, Tutorial

If you’re like me, you’ve been on the Internet for over
20 years, and in all these years you kept making a
capital sin: reusing the same passwords on di�erent
sites for convenience, as illustrated in the cartoon
here https://xkcd.com/792/. However, you have no
way of knowing how these sites secure their
passwords, maybe they are stored in clear, or hashed
without salt which makes them easy to crack with
rainbow tables, or debugging messages expose
passwords in server logs.

Recent disclosures have shown that even big
companies like Yahoo, Apple, and LinkedIn have
su�ered from data breaches and have had their
password data stolen. The infamously long list can be
found here,
https://en.m.wikipedia.org/wiki/List_of_data_breach
es. The only protection you have is frequent password
changes and avoiding password reuse, so that a
compromised account doesn’t turn into a
compromised identity.

As you know, humans are notoriously bad at choosing
and remembering lots of changing passwords,
frequently used ones can be found here,
https://en.m.wikipedia.org/wiki/List_of_the_most_co
mmon_passwords. So we need the computer’s help
to remember and generate all those passwords and
we need one strong master password to protect them
all. In short – we need a password manager. There are
lots of password managers out there, but I will focus
on a well supported open source program called
KeePass, https://keepass.info, which has a backend
for a lot of operating systems.

Linux (GUI) client

KeePass is natively a Mono application, written in
.NET, but because of unexpected support from
Microsoft, Mono can run quite well on Linux systems,
even armhf/arm64. You can install KeePass2 directly
from apt on your ODROID device:

$ sudo aptget install keepass2

https://xkcd.com/792/
https://en.m.wikipedia.org/wiki/List_of_data_breaches
https://en.m.wikipedia.org/wiki/List_of_the_most_common_passwords
https://keepass.info/

Once started, you will need to create a new database
to store your passwords (File -> New…). Select a
suitable name, I used ‘NewDatabase.kdbx’, and you
will be asked to set a strong Master Password, and
optionally a key to unlock the database. If you use a
key, you can create it from the dialog box by moving
the mouse around, or with dd, from /dev/random. For
this article we’re not going to use a key, only a Master
Password, so make sure to use something di�cult to
guess, here’s a suggestion:
https://security.stackexchange.com/questions/6283
2/is-the-oft-cited-xkcd-scheme-no-longer-good-
advice. I’m going to use “odroid” just an example
password

Figure 1 – Database creation – use a strong password!

In the second step you will be asked for a name for
the database (e.g. “work stu�”), a default username,
encryption algorithm, AES is set by default, and the
number of transformation rounds. This means how
many times it should re-encrypt the master password
in order to generate the actual key. The higher the
number the harder it will be to brute-force, but also
the longer it will take to open or save your database.
The GUI o�ers a “1 second delay” option that
calculates the number of rounds based on your
current PC, but for an ODROID-C1 this is 78,000, while
for an Intel it goes to the tens of millions. If you select
too high number, it will take longer to open on
weaker devices, 100,000 should be ok. You can always
adjust this number later, or change the master
password. Make sure to save the database once
opened.

Figure 2 – Main window

From the main window you can use the toolbar to
create new entry, search for existing entries, and
open entries. You can also group entries in folders. A
typical entry has a title, username, password, URL and
notes. You can also add �les and KeePass keeps a
history of your changed attributes for an entry, e.g.
old passwords – which can be handy.

In order to use a saved password you have several
options. Either use CTRL+B to copy username and
CTRL+C to copy the password (or double-click on the
user/password entry) and paste them in your desired
application/form, or use the auto�ll option (CTRL+V)
like this:

Navigate to the desired resource, for example
https://forum.odroid.com/ucp.php?mode=login

Change focus to KeePass2 and select the desired entry
and type CTRL+V

KeePass will switch back to the previous application
and paste the username, use Tab to navigate to the
next �eld and paste password and press Enter. The
sequence can be changed per entry or per group
should you need to use other key presses for the login
sequence.

Note that, for security reasons your copied data is
kept in the clipboard only for 12 seconds and
afterwards it is replaced with “–” in order to keep your
passwords secret. You can change this in Tools ->
Options -> Clipboard auto-clear time. If the
application is not to your liking and reminds you too
much of Windows, you can use other GUI clients for
Linux as well, such as KeePassX, but you will not have
as many plugins/import options as with KeePass2:

https://security.stackexchange.com/questions/62832/is-the-oft-cited-xkcd-scheme-no-longer-good-advice
https://forum.odroid.com/ucp.php?mode=login

$ sudo aptget install keepassx

Figure 3 – KeePassX on ODROID-C1

Web client

KeeWeb is a Web app written in JavaScript that can
manage your passwords in a browser, and can also
run o�ine. The idea is you can host it on your
ODROID, keep the password �le on the ODROID as
well and connect to the app whenever you need to
manage your passwords, without having to use other
clients,
https://github.com/keeweb/keeweb/wiki/FAQ. You
can get the latest version from Github:
https://github.com/keeweb/keeweb/releases. You
will need to run Apache, or NGINX, to serve static �les:

$ sudo aptget install apache

$ cd /var/www/html

$ sudo wget

https://github.com/keeweb/keeweb/archive/gh

pages.zip

$ sudo unzip ghpages.zip

$ sudo mv keewebghpages/ keeweb/

$ sudo service apache2 start

$ sudo systemctl enable apache2

At this point, you can browse to https://odroid-
ip/keeweb and, after accepting the self-signed
certi�cate, you should be prompted with the page in
�gure 4. Here you can upload, it’s only uploaded into
the browser, a local KeePass �le and you can view it.

Figure 4 – KeeWeb initial view

If you want to make persistent changes, we’ll need to
host the �le server-side and enable WebDAV.
WebDAV is a standard for managing �les on a web
server. First we’ll make a directory to store your
password database server-side and then copy it
there:

$ cd /var/www/html

$ sudo mkdir kppassword

$ sudo cp /path/to/NewDatabase.kdbx

/var/www/html/kppassword

$ sudo chown R wwwdata

/var/www/html/kppassword

Make sure to input the correct path to your password
�le. Also, if you’re adding new �les later on make sure
that the kppassword directory and all the kdbx �les
within are owned by the www-data user, so that
apache can save changes. Next, we’ll create a HTTP
auth account that will be allowed to access this �le
while encrypted. Make sure to supply your desired
username and password, make sure it’s not the same
as the master password since these credentials might
be cached in less secure ways:

$ sudo htpasswd c

/etc/apache2/kppassword.access adrianp

We can now enable WebDAV for the kppassword web
directory by creating /etc/apache2/conf-
available/keeweb.conf and enabling a few apache
modules, details here:

https://github.com/keeweb/keeweb/wiki/FAQ
https://github.com/keeweb/keeweb/releases
https://odroid-ip/keeweb

https://github.com/keeweb/keeweb/wiki/WebDAV-
Con�g:

$ sudo vi /etc/apache2/conf

available/keeweb.conf

RewriteEngine on

RewriteCond %{REQUEST_METHOD} OPTIONS

RewriteRule ^(.*)$ blank.html

[R=200,L,E=HTTP_ORIGIN:%{HTTP:ORIGIN}]

< Directory "/var/www/html/kppassword" >

AuthType "Basic"

AuthName "Password Manager"

AuthBasicProvider file

AuthUserFile "/etc/apache2/kppassword.access"

Require validuser

DAV On

Options Indexes

Header always set AccessControlAllowOrigin

"*"

Header always set AccessControlAllowHeaders

"origin, contenttype, cachecontrol, accept,

authorization, ifmatch, destination,

overwrite"

Header always set AccessControlExpose

Headers "ETag"

Header always set AccessControlAllowMethods

"GET, HEAD, POST, PUT, OPTIONS, MOVE, DELETE,

COPY, LOCK, UNLOCK"

Header always set AccessControlAllow

Credentials "true"

< /Directory >

$ sudo a2enconf keeweb

$ sudo a2enmod dav

$ sudo a2enmod dav_fs

$ sudo service apache2 restart

Now, if you were to reload KeeWeb in your browser
you can press on the “More” button and select
WebDAV. You need to supply the following:

URL: https://odroid-
ip/kppassword/NewDatabase.kdbx

User: The username you created with htpasswd

Password: The password you created with htpasswd

Figure 5 – Loading the database from the server

Now you should be able to make changes and save
them, when there are unsaved changes there is a blue
dot next to the database name. Click on it, and it will
prompt you to save and show you save status. If
you’re making simultaneous changes on the same
database from multiple clients, you should be aware
that the �le is overwritten, so changes from multiple
clients might get lost. Also, you might want to close
and restart the tab with KeeWeb from time to time to
make sure it loads the latest version of the �le, and
not an older cached version. Having periodic o�-site
backups of your password �le is also mandatory.

https://github.com/keeweb/keeweb/wiki/WebDAV-
https://odroid-ip/kppassword/NewDatabase.kdbx

Figure 6 – Accessing an entity

That’s it – you can now access and manage your
passwords from any browser with Javascript enabled.
But maybe you’re looking for something terminal
base…

CLI client

Sometimes you may only have shell access and still
need to be able to get to your passwords. In this case
you can use kpcli:

$ sudo aptget install kpcli

You can connect to your password database, as a �le,
and navigate inside by using commands similar to the
Linux shell, like ls, cd, show.

$ kpcli kdb myPasswordDB.kdbx

Please provide the master password:

kpcli:/> ls

=== Groups ===

NewDatabase/

kpcli:/> cd NewDatabase/

kpcli:/NewDatabase> ls

=== Groups ===

eMail/

General/

Homebanking/

Internet/

Network/

Windows/

=== Entries ===

0. Sample Entry keepass.info

1. Sample Entry #2

keepass.info/help/kb/testform.

kpcli:/NewDatabase> show f 0

Title: Sample Entry

Uname: User Name

Pass: Password

URL: https://keepass.info/

Notes: Notes

More usage examples can be found here:
https://www.digitalocean.com/community/tutorials
/how-to-use-kpcli-to-manage-keepass2-password-
�les-on-an-ubuntu-14-04-server

Android KeePass clients You have a wide selection of
clients under Android/iOS as well,
https://keepass.info/download.html, and though I
haven’t tested many, I liked KeePass2Android,
available at
https://play.google.com/store/apps/details?
id=keepass2android.keepass2android, because of
the following features:

open source

quickly unlock a previously unlocked database with
just 3 characters from the passphrase

WebDAV support

o�ine database with automatic sync when online

auto login into sites via “share” feature

You can install the client from the Play Store and
select Open �le -> HTTPS (WebDAV). Enter the URL
and user/password you de�ned when installing
keeweb and you will be prompted for the master
password.

https://www.digitalocean.com/community/tutorials/how-to-use-kpcli-to-manage-keepass2-password-files-on-an-ubuntu-14-04-server
https://keepass.info/download.html
https://play.google.com/store/apps/details?id=keepass2android.keepass2android

Figure 7 – KeePass2Android

Once unlocked you can search or manage your
passwords normally. When you navigate to a page
where you’re required to log in, you can use these
steps:

share the page from the browser to KeePass2Android:
Find. It will then list all saved accounts for that site

select the desired account and you will return to the
browser. The username/password will be available for
a while either in a noti�cation, or as buttons in KP2A
keyboard. You can use these buttons to copy the
credentials and paste them in the browser.

Importing passwords from Firefox

If you’re using Firefox, possibly on many systems,
without synchronization, you can export the
passwords saved in its password manager using this

script: https://github.com/unode/�refox_decrypt.
There used to be several extensions that could do it
from within Firefox, but since they moved to
Quantum, the extensions lost the ability to read your
passwords, which should be a good thing. Firefox is
also moving to a new password manager called
Lockbox,
https://www.bleepingcomputer.com/news/software
/�refox-to-get-a-better-password-manager/. so this
method might not work when that switch happens.

$ git clone

https://github.com/unode/firefox_decrypt.git

$ cd firefox_decrypt

$./firefox_decrypt.py f csv d , >

/dev/shm/firefoxpasswords.csv

You will be asked which pro�le you want to export
and also what is the master password (press enter if
none). You can also select a custom path for your
pro�le, if, for example you are importing passwords
saved on a Windows system or from a remote mount.
Your passwords will be written to a ram disk,
/dev/shm, to prevent leaving traces on the �lesystem
while in-clear.

Before doing the import we need to improve a bit the
data we are going to import. The problem is that the
exported data has only the URL, user, and password
and lacks a title. Also, the URL does not contain
subdirectories, e.g. www.domain.com/example, so we
will be missing some information which needs to be
manually sorted out later. We’re going to try to visit all
sites in the list and scrape the page title and add them
to a new list, so I wrote a little script to do that:

$ sudo aptget install curl libtextcsvperl

$ wget O /usr/local/bin/enrichFirefox.pl

https://raw.githubusercontent.com/mad

ady/enrichFirefoxPasswords/master/enrichFirefo

x.pl

$ sudo chmod a+x

/usr/local/bin/enrichFirefox.pl

$ /usr/local/bin/enrichFirefox.pl

/dev/shm/firefoxpasswords.csv | tee

/dev/shm/firefoxpasswordsenriched.csv

Next, you can use keepass2 and import the password
�le with File -> Import -> Generic CSV Importer.
Navigate to /dev/shm and select the enriched �le and

https://github.com/unode/firefox_decrypt
https://www.bleepingcomputer.com/news/software/firefox-to-get-a-better-password-manager/

press ok. You will be prompted with a preview of the
�le. Select the tab “Structure” and check “Ignore �rst
row” because it’s a header. Now, we need to map the
�elds in the CSV with the �elds in KeePass in the
section below. Delete the �rst “URL”entry and the
“(Ignore)” entry and add “Title” to the top and “Group”
to the bottom and select Next. You should now see
your passwords parsed correctly and you can press
Finish to import them.

Figure 8 – Import settings

Once imported, make sure to delete the exported
password �le and save your database:

$ rm f /dev/shm/firefoxpasswords*.csv

You can redo these steps to import data from other
Firefox pro�les from multiple systems.

Importing passwords from Chrome

In order to export passwords from Chrome, you need
to navigate to chrome://�ags and search for
“password export”. You will need to set it to “Enabled”
and restart Chrome. Once restarted, navigate to
Menu -> Settings -> Advanced -> Manage Passwords.
Under the Saved passwords list click the three dot
menu and select Export Passwords and save it under
/dev/shm as well.

Figure 9 – Exporting passwords from Chrome

If you don’t see any passwords saved locally, then
your passwords are available at
https://passwords.google.com and are synchronized
between multiple browser instances. You can then
import them the same way as Firefox passwords, but
the CSV structure is now Name, URL, Username,
Password. Once you’re done, remember to delete the
exported �le and disable the “Export passwords” �ag.

Replace Firefox/Chrome password manager – Tusk

Copy/pasting passwords may be ok for occasional
access, but using a password manager integrated with
KeePass is necessary for regular browser use. For this
we need to use an extension in the browser to fetch
passwords from the web server. For Firefox and
Chrome, one such extension is KeePass Tusk,
https://addons.mozilla.org/en-
US/�refox/addon/keepass-tusk/?src=search,
https://chrome.google.com/webstore/detail/keepas
s-tusk-password-
acc/fmhmiaejopepamlcjkncpgpdjichnecm. It can
connect to a KeePass database stored over WebDAV
and doesn’t need a local keepass client. You can
install the extension by going to about:addons ->
Extensions and searching for “tusk”. Select the addon
and click “+ Add to Firefox”. For Chrome it can be
installed from the link above. Once it is installed, it will
add an icon next to the search bar where you can

https://passwords.google.com/
https://addons.mozilla.org/en-US/firefox/addon/keepass-tusk/?src=search
https://chrome.google.com/webstore/detail/keepass-tusk-password-acc/fmhmiaejopepamlcjkncpgpdjichnecm

con�gure it and connect to a password database. You
will need to select “Cloud storage setup” and activate
“WebDAV”. You can ignore the warning for storing the
WebDAV username and password on disk.

You will need to �ll in the path to the kppassword
directory over http, sadly it doesn’t like my self-signed
certi�cate, but not the path to the database because it
will discover all databases in that directory. Also add
your WebDAV username and password.

Figure 10 – Tusk Con�guration

You can now close the Tusk tab and when you click on
its icon it will ask you which database you want to
load and ask for the master password and for how
long to keep it open. Once you unlock your database
and navigate to a site you have in your database, Tusk
will automatically search for it in your database, but
will not auto-�ll it for you. You can click on the Tusk
icon and on the “Auto�ll” icon next to the desired
entry to do the �ll. If you enable the hotkey navigation
in Tusk’s settings you can use the following
combination to do the same thing: CTRL+ALT+Space
Tab Enter.

In order to fully bene�t from this you will need to
disable Firefox’s built-in password manager by going
to Menu -> Preferences -> Privacy and security ->
Uncheck Remember logins and passwords for
websites. You should also delete logins.json from
your pro�le folder. You should do the same thing for
Chrome.

One limitation of Tusk is that it’s read-only. If you
need to update a password you will need to use a
di�erent client for the update.

Replace Firefox/Chrome password manager –
chromeIPass/KeePassHelper

If you don’t want your plugin to connect to your
password database directly, and potentially expose
your master password to the browser, you can use a
di�erent approach and proxy requests through
KeePass2. Plugins which do this: chromeIPass
https://chrome.google.com/webstore/detail/chrome
ipass/ompiailgknfdndiefoaoiligalphfdae/,
KeePassHelper for Firefox
https://addons.mozilla.org/en-
US/�refox/addon/keepasshelper/) connect via HTTP
locally to the KeePass2 instance to retrieve
passwords. In order to do this you need to install the
KeePassHTTP plugin inside KeePass2,
https://keepass.info/plugins.html#keepasshttp.

You can do this on the system where you run
KeePass2 in the following way:

$ cd /usr/lib/keepass2/Plugins

$ sudo wget

https://raw.github.com/pfn/keepasshttp/master/

KeePassHttp.plgx

$ sudo aptget install monocomplete

Next you will need to restart KeePass2 and open your
password database and you can proceed to install the
plugin in browser. Once the plugin is installed it will
connect automatically to KeePass2 and it will generate
an encryption key that you need to approve.
Afterwards, connecting to a known site with the
browser will autocomplete the username/password in
the login �elds (for Chrome).

https://chrome.google.com/webstore/detail/chromeipass/ompiailgknfdndiefoaoiligalphfdae/
https://addons.mozilla.org/en-US/firefox/addon/keepasshelper/
https://keepass.info/plugins.html#keepasshttp

Figure 11 – Chrome login with chromeIPass

Maintenance

Now that you have all your passwords in one place
you can run various reports from KeePass2, like Edit -
> Show entries -> Find duplicate passwords and you
will see a report of your password reuse addiction.
You will need to �nd the time and take action and
reset those passwords and replace them with some
more random to actually become more secure.

One last thing you need to consider – which is very
important – is backup. Your password database holds
all your digital identities and if it gets lost or corrupted
will cause you to have a very bad day. This is why you
need to set up a backup strategy and copy backups of
your database on di�erent physical disks and also in
di�erent physical locations, to add geo-redundancy,
so that if an asteroid destroys your city your
passwords will still be safe.

In order to do this I created a script that listens for �le
changes, compares the current �le with its previous
version, to see if there was a change and if needed
copies the �le to other drives and other systems via
network mounts.

You will need inotify to trigger synchronizations:

$ sudo aptget install inotifytools

$ sudo wget O /etc/systemd/system/password

backup.service

https://raw.githubusercontent.com/mad

ady/passwordbackup/master/password

backup.service

$ sudo wget O /usr/local/bin/passwordbackup

detect.sh

https://raw.githubusercontent.com/mad

ady/passwordbackup/master/passwordbackup

detect.sh

$ sudo wget O /usr/local/bin/passwordbackup

execute.sh

https://raw.githubusercontent.com/mad

ady/passwordbackup/master/passwordbackup

execute.sh

$ sudo chmod a+x /usr/local/bin/*.sh

$ sudo systemctl enable passwordbackup

$ sudo systemctl start passwordbackup

The code consists of two bash scripts – one to detect
changes and one to perform the backup, and a
service �le to help with starting on boot.

Let’s take a second to analyze the password-backup-
detect script. On line 2 we set the path to the
password database location, next we start an in�nite
loop. We use inotifywait to listen for a change in
existing �les and when a �le is closed we use �nd to
get a list of �les modi�ed in the last 4 seconds and for
each �le we call the backup script with the �lename as
an argument. Once the password-backup-execute.sh
script �nishes we return to listen for changes.

Figure 12 – password-backup-detect

The password-backup-execute script takes a �le to be
backed up as argument, checks if a backup is needed
and performs the backup to potentially multiple
locations. In the beginning we set how many older
versions of the backup we want to keep and set the
paths for the backup �les, you can use autofs to
mount a remote share on demand for example. Next
we de�ne a doBackup() function that iterates through
the list of destination folders and does the actual copy
and a cleanup() function that uses a combination of ls,
tail and rm to delete older backups while preserving
some newer versions. The backed-up �les contain a
timestamp in their name, but sorting is done based
on last modi�ed time.

Figure 13 – password-backup-execute

The main code checks if there is an older md5sum
hash of the previous backup, and if there is, it gets
compared to the current hash. If the hashes di�er, or
there was no previous hash, backup and cleanup are
done. The check is done to prevent backing up the
same �le multiple times, e.g. you click save in
KeePass2 without making changes.

You will need to modify this code and add your
backup destinations.

The code, perfect as it may look, has two
shortcomings, “bug” is such a nasty word. First of all,
inotifywait will not react to new �les until it’s

restarted, or an old �le gets changed or touched.
Secondly, during the backup phase, �le changes are
not detected. If a �le takes a minute to be saved in all
the remote destinations (due to network latency or
hard disk spin up time), other �le changes that
happen during this time will not be picked up and
won’t be backed up. So, the script is suitable for few
concurrent users with infrequent changes.

I hope this has been informative enough to persuade
you to take charge of your passwords and have better
security practices. Regarding security, keepass
protects you from having your password exposed
when an online service gets hacked, but does not
necessarily protect you from a malware infected
computer or a keylogger. Malware or attackers that
can arbitrarily read your computer’s memory can
access the passwords once decrypted or can sni�
your master password. The reason I recommended
using an ODROID with WebDAV instead of using
Dropbox (which is supported as well) was to minimize
your exposure. Keeping your encrypted �le on
somebody else’s computer (a.k.a. “the cloud”), may be
�ne now, but your passwords may reach into the
wrong hands and the master password may be more
easily cracked in the future, again leaving you
vulnerable.

BASH Basics – Part 4: Variables, Tests and Loops
 August 1, 2018 By Erik Koennecke Linux, ODROID-C0, ODROID-C1+, ODROID-C2, ODROID-HC1, ODROID-MC1, ODROID-XU4, Tutorial

This part covers the most basic introduction to
scripting: variables, tests, and loops. The one-liner for
making archives out of di�erent folders also gets
some company by other nifty one-liners now. But
�rst, we are going to have some quick shortcuts to
make working with BASH more enjoyable.

BASH shortcuts

If you want to run just one command as a di�erent
user, use the following command:

$ su otheruser c "command argument"

For having two commands execute one after each
other, connect them with ‘;’ for example:

$ ls /home/odroid/Music; ls

/home/odroid/Videos

If you want the second command executed only when
the �rst command is successful, use ‘&&’:

$ apt update && apt fullupgrade

Rarely used is ‘||’, where the second command is
executed only when the �rst command is NOT
successful.

In day-to-day work, there are certain steps which we
do very often in di�erent contexts. One example is,
executing a command as root after we tried as
normal user and failed due to insu�cient privileges.

After we do cp some�lewithverylongname.conf /etc to
copy a background con�guration to the /etc directory
and fail, we can repeat this as root with just the ‘sudo
!!’ command – most of you know this already. The !!
stands for a repeat of the last command and can be
used with sudo, without or in other combinations.
Modi�ed with the print modi�er, ‘!!:p’ brings up the
last argument to the command line. Usually, you just
use the up arrow key, though. But in cases where the
arrow keys don’t work, for instance sometimes over
ssh, it can be a great relief! !-1 uses the next-to-last
command, which is also sometimes useful. However,

did you know that you can also reuse only the last
argument of a command?

$ ls /very/long/path/to/a/directory

$ cd !$

expands to:

$ cd /very/long/path/to/a/directory

and can save a lot of typing.

$ ls /very/long/path/to/a/directory

ton of commands, none of which start with ls

$!ls

also expands to

$ ls /very/long/path/to/a/directory

in case you want to repeat an older command. Use
‘!rm:p’ to examine the last rm command before
executing it, likewise with other dangerous
commands. If you want to change only details in the
last command, you can do a �nd and replace of the
arguments with the follow:

$ ls /very/long/path/to/a/directory

$ ^very^veryvery

changes and executes the last command to

$ls /veryvery/long/path/to/a/folder

To sum up what we’ve looked at in a list:

!! last command

!-1 next-to-last command

!$ last argument of last command

!command1 last line with command1

^searchterm^replaceterm replaces �rst occurrence of
searchterm with replaceterm

For movements on the command line, alt-f moves the
cursor forward one word, alt-b backward one word,
ctrl-w erases single words backwards, while ctrl-u
erases from cursor position to the beginning of the
line. You can move to the beginning of the line with
ctrl-a and clear the line after the cursor with ctrl-k. A
ctrl-t swaps the last two characters before the cursor
in case you tend to make this typing error often.

If you want something to lighten you up and mistype
sl instead of ls often, you can also install sl with apt
install sl. I won’t tell you what it does, just try. Most
importantly, if you have a unique �lename or
command after typing the �rst letters, BASH expands
them after you hit tab. Hitting tab twice even gives a
helpful list of options if the �rst letters are not unique.

One last thing, for now, is the use of braces. If you
have a �le named abcde.conf and want to make a
backup with the name abcde.conf.bak, all you have to
do is cp abcde.conf{,.bak} which expands to cp
abcde.conf abcde.conf.bak with the use of the braces.
Everything in the braces expands to the listed options,
so if you want to list the Videos directory of the users
archie, bert, and claude. Then the �ltering does the
trick

$ ls /home/{archie,bert,claude}/Videos

Scripting basics

A BASH script is just a text �le with the �rst line
#!/bin/bash and made executable with:

$ chmod a+x scriptname.sh

If you make a directory named bin in your home
directory, scripts in there can be executed from
anywhere on Ubuntu. A special entry in ~/.pro�le
takes care of that.

If you want to, you could even code the game “Tetris”
in BASH in a little more than 500 lines, as shown in
Figure 1.

Figure 1 – Tetris in BASH on the command line

(Figure 1 – Tetris in BASH on the command line)

A typical example of a script would be hello-world.sh –
don’t forget to execute chmod a+x hello-world.sh

after you saved it from your test editor.

#!/bin/bash

This script just puts out "Hello World".

echo "Hello World"

Except for special cases, all text following a # is a
comment and not executed.

If you only have “Hello World” on the screen, or even
any other �xed text output, this gets boring real quick.
Now it’s time to introduce BASH variables to make the
script do something di�erent depending on the input.
The simplest form is seen as follows in our hello-
user.sh �le.

#!/usr/bin/bash

Greets currently loggedin user

echo "Hello," "$USER"

“Hello, odroid” is the result. We can also de�ne the
variable in the script instead of using an environment
variable like USER. Here is our next script �le, hello-
user2.sh

#!/usr/bin/bash

Greets currently loggedin user

user=$(whoami)

echo "Hello," "$user"

“Hello, odroid” is the same output, but a variable user
gets de�ned by the result of the whoami function and
then printed with the echo function. You can simulate
this also step-by-step on the command line without
writing the script in the text editor. If you de�ne a
variable $user, don’t forget to use unset user
afterwards to leave the system clean. We will talk
more about variables in the next part. For now, let’s
get an example of each basic part done �rst to get a
better overview of the typical script usage. The next
building block needed are tests inside the script.

For a real-world example, let’s look at a short script to
test for Internet connectivity, outside-connected.sh:

#!/bin/bash

test=google.com

if

nc zw1 $test 443

then

echo "we have connectivity"

else

echo "no outside connectivity"

fi

The script de�nes the variable $test as the
google.com server, then uses netcat (nc) in port scan
mode for a quick poke, -z is zero-I/O mode, with a
quick timeout -w 1 waits at most one second. It
checks Google on port 443 (HTTPS). The output is
dependent on if you can reach Google’s servers or
not.

Now, let’s look at loops. With variables, tests and
loops, you have already 95% of normal script usage
covered. A simple loop in a real world script would be
to convert each �ac �le to mp3 in a directory:

flac2mp3.sh

#!/bin/bash

for i in *.flac

do

ffmpeg i "$i" acodec libmp3lame "$(basename

"${i/.flac}").mp3"

done

This script loops, converts and renames for each �ac
�le in the current directory. Take a look at how the
basename function together with the variable
changes the extension from .�ac to .mp3 in this
example. These are the most basic examples for
variables, loops and tests; more to follow later. In the
next part, we continue with scripting, and also take a
look at BASH history.

References
https://raw.githubusercontent.com/kt97679/tetris/
master/tetris.sh
https://www.tldp.org/LDP/abs/html/

https://raw.githubusercontent.com/kt97679/tetris/master/tetris.sh
https://www.tldp.org/LDP/abs/html/

Object Detection in Live Video: Using The ODROID-XU4 With
GStreamer
 August 1, 2018 By Marian Mihailescu ODROID-XU4, Tutorial

Deep learning has become an important topic in the
past years, and many companies have invested in
deep learning neural networks, either in terms of
software or hardware. One of the most used �eld for
deep learning has become object detection – for
example, the photos taken with our phones are not
automatically classi�ed in categories using deep
learning object detection.

In this article, we investigate a new use for the
ODROID-XU4: creating a smart security camera that is
able to detect objects of interest in the camera feed
on-the-�y and act accordingly. We will be using the
dnn module of OpenCV to load a a pre-trained object
detection network based on the MobileNets Single
Shot Detector. The article was inspired by an excellent
introductory series on object detection by Adrian
Rosebrock on his blog, PyImageSearch. In Adrian’s
tests, a low-power SBC such as the raspberry pi was
not even able to achieve 1fps when doing real-time

detection. Accordingly, I will not cover the basics of
object detection and OpenCV, which you can read
about in his posts, but instead focus on optimizations
for the ODROID-XU4 SBC in order to achieve the
highest real-time detection framerate for a live
stream.

CPU vs GPU

The �rst thing to determine is if the ODROID GPU can
help speed up detection by using OpenCL. ARM
maintains the ARM Compute Library, an optimized
vision and machine learning library for the Mali GPUs.
However, my �ndings are that the quad-core 2Ghz
A15 cores provide a much better performance than
the 6-core 700Mhz Mali GPU for the ODROID-XU4.
You can read more about these results on the forum
postat https://forum.odroid.com/viewtopic.php?
f=95&t=28177.

In my tests, using all 8 cores is also detrimental, since
ARM little cores will slow down overall detection time.
To make sure we are using only the powerful A15
cores, we need to run our detection program using
taskset 0xF0. Adequate cooling is also recommended
to maintain top frequency on the A15 cores.

OpenCV optimizations

Next, we want to compile the latest version of
OpenCV, which provides a deep learning module, and
optimize it for the ODROID-XU4. For this, we update
the CPU_NEON_FLAGS_ON in
cmake/OpenCVCompilerOptimizations.cmake to use -
mfpu=neon-vfpv4 instead of -mfpu=neon, enable
Threading Building Blocks (TBB) with the �ags -
DWITH_TBB=ON -DCMAKE_CXX_FLAGS=”-
DTBB_USE_GCC_BUILTINS=1″ and make sure the
following compile �ags are used: -mcpu=cortex-
a15.cortex-a7 -mfpu=neon-vfpv4 -ftree-vectorize -
m�oat-abi=hard by setting C_FLAGS, CXX_FLAGS, -
DOPENCV_EXTRA_C_FLAGS and -
DOPENCV_EXTRA_CXX_FLAGS. We also need to make
sure GStreamer library is available to OpenCV by
using the �ag -DWITH_GSTREAMER=ON. Prebuilt
Ubuntu 18.04 packages for OpenCV and GStreamer
are available from my repository at
https://oph.mdrjr.net/memeka/bionic/.

With only CPU and OpenCV optimizations, we can
already achieve 3fps using the same code that run on
Raspberry Pi obtains only ~0.9fps. But let’s try and do
better.

GStreamer

Instead of using OpenCV to connect to the camera, we
can use instead GStreamer. This allows us several
things: connect to wireless cameras on the network,
use the ODROID hardware decoder, hardware
encoder, and hardware scaler. We can use the
hardware decoder to process H264 from a live stream
or from a H264 camera, the hardware scaler to
change image resolution and pixel format, and the
encoder to output a H264 encoded stream, either to
save in a �le, or to stream. It showed also a small
overall performance improvement. Some example
GStreamer pipelines are:

Connect to H264 stream from camera:

$ v4l2src device=/dev/video1 dotimestamp=true

! video/xh264, width=1280, height=720,

framerate=15/1 ! v4l2h264dec !

v4l2video20convert ! appsink

Connect to MJPEG/YUV stream from camera:

$ v4l2src device=/dev/video0 dotimestamp=true

! video/xraw, width=1280, height=720,

framerate=15/1 ! v4l2video20convert ! appsink

Save output to mp4 �le:

$ appsrc ! videoconvert ! v4l2h264enc extra

controls="encode,frame_level_rate_control_enab

le=1,video_bitrate=8380416" ! h264parse !

mp4mux ! filesink location=detected.mp4

Stream output on the web with HLS:

$ appsrc ! videoconvert ! v4l2h264enc extra

controls="encode,frame_level_rate_control_enab

le=1,video_bitrate=8380416" ! h264parse !

mpegtsmux ! hlssink maxfiles=8 playlist

root="http://0.0.0.0/hls" playlist

location="/var/www/html/hls/stream0.m3u8"

location="/var/www/html/hls/fragment%06d.ts"

targetduration=30

Multithreaded batch processing

With these improvements and a multi-threaded
model where fetching the next frame runs
independent in a di�erent thread of the object
detection, ODROID-XU4 is able to achieve up to 4fps:
in one second, it can detect objects in 4 images. Since
detection is the main objective, 4fps is actually
enough to alert us on objects of interest. So we can
have an input stream with higher framerate, and
selectively select frames for object detection.

To maintain the illusion that each frame is processed,
we do a simple trick: when an object is detected, we
highlight its position both in the frame processed, and
in the subsequent frames until the next detection.
The position will lose accuracy when the object
moves, but since we are capable or processing up to
4fps, the error will be quite small. We use a queue to
read frames from the input stream, and process n
frames at once time: �rst frame is used for detection,
and subsequent processing is done for all n frames
based on the objects detected on �rst frame. We

choose n, the size of the batch, as a function of the
input stream frame-rate, and the processing
capabilities of the ODROID-XU4.

For example, for an input with 15fps, we can use n=4
(run detection for 1 in 4 frames) to maximize
utilization. The code in Python for this is quite simple:

function to read frames and put them in

queue

def read_frames(stream, queue):

global detect

while detect is True:

(err, frame) = stream.read()

queue.appendleft(frame)

start reader thread

detect = True

reader = threading.Thread(name='reader',

target=read_frames, args=(vin, queue,))

reader.start()

grab a batch of frames from the threaded

video stream

frames = []

for f in range(n):

while not queue:

wait for n frames to arrive

time.sleep(0.01)

frames.append(queue.pop())

frame_detect = frames[0]

Objects of interest

We de�ne the objects of interest from the classes the
MobileNets SSD can detect. These classes include
“person”, “bird”, “cat”, “dog”, “bicycle”, “car”, etc. We
want to be able to assign di�erent detection
con�dence levels for each object, and also a timeout
for detection: e.g. in the same object of interest is
detected in the next frame processed, we don’t want
to receive a new noti�cation (i.e. we don’t want to get
4 emails each second); instead we use a timeout
value, and we get a new noti�cation when the timeout
expires. The code in Python is:

check if it's an object we are interested in

and if confidence is within the desired

levels

timestamp = datetime.datetime.now()

detection_event = False

if prediction in config['detect_classes']:

if not confidence > (float)

(config['detect_classes'][prediction]):

confidence too low for desired object

continue

else:

we detected something we are interested in

so we execute action associated with event

but only if the object class was not already

detected recently

if prediction in DETECTIONS:

prev_timestamp = DETECTIONS[prediction]

duration = (timestamp

prev_timestamp).total_seconds()

if duration > (float)

(config['detect_timeout']):

detection event (elapsed timestamp)

detection_event = True

else:

detection event (first occurence)

detection_event = True

else:

if not confidence > (float)

(config['base_confidence']):

confidence too low for object

continue

Detection events and outputs

Lastly, we want to have two separate actions taken
after a frame is processed: �rst action is independent
of detection results, whereas the second action is
taken only when the objects of interest are detected.
In my example code, all frames are modi�ed by
having a box and a label around all detected objects
(of interest or not). These frames are then saved in
the output stream, which can be streaming video.
Thus, when connecting remotely to the security feed,
you can see the processed video instead, which
includes color-coded squares around moving objects.

When objects of interest are detected, the frame is
also saved as a jpeg �le, and is made available to a
user-de�ned script that is responsible for notifying
the user. For example, the picture can be sent via
email, used with IFTTT or sent directly to the user’s
mobile phone.

The full example code is available at
https://gist.github.com/mihailescu2m/d984d9fe3e3
937573456c2b0423b4be9 and the con�guration �le in
json format is at

https://gist.github.com/mihailescu2m/d984d9fe3e3937573456c2b0423b4be9

https://gist.github.com/mihailescu2m/42fdccd624dc
91bb9e04b3adc39bc50f

Resources

https://www.pyimagesearch.com/2017/09/11/object
-detection-with-deep-learning-and-opencv/

https://www.pyimagesearch.com/2017/09/18/real-
time-object-detection-with-deep-learning-and-
opencv/
https://www.pyimagesearch.com/2017/10/16/raspb
erry-pi-deep-learning-object-detection-with-opencv/

https://gist.github.com/mihailescu2m/42fdccd624dc91bb9e04b3adc39bc50f
https://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-learning-and-opencv/
https://www.pyimagesearch.com/2017/09/18/real-time-object-detection-with-deep-learning-and-opencv/
https://www.pyimagesearch.com/2017/10/16/raspberry-pi-deep-learning-object-detection-with-opencv/

Linux Gaming: Saturn Games – Part 5
 August 1, 2018 By Tobias Schaaf

And we are back again with the ODROID XU3/XU4
running Sega Saturn games. This issue will cover the
rest of the games (letter in the alphabet) I tried and
really liked to play on my ODROID. Once again I found
some really nice gems that I want to share with you.
This will probably be the last of the series, although I
might pick it up again when emulators get better and
more games will be available or running on ODROIDs
for the Sega Saturn. For example, the newest version
of Yabause libretro core sometimes works quite nice
now and it’s possible to play some games on this
emulator as well and I took it into account here and
there.

Tenchi Wo Kurao 2 / Warrior of Fate

This is an very good arcade port. For all I know it’s
actually arcade perfect. You can �nd it also on MAME,
CPS1 and PlayStation. While all versions are rather
good, the Saturn version has it all in my opinion.
Graphics and sounds are as it’s arcade counterpart
and the CD quality music is just an upgrade to an

already amazing title. It’s also running very good on
ODROIDs which is why I can highly recommend it.

Figure 1 – Choose one out of �ve �ghters all with
di�erent weapons and attacks

Figure 2 – Head out and hunt down the enemy

The game is your typical arcade brawler, with tons of
enemies coming at you from left and right. You hit
them enough times and they stay down, down
enough of them and proceed to the next section. At
the end of each section you’ll encounter a boss which
has plenty more hit points and takes a long time and
some tactics and skills to take down.

I like it and it plays amazingly good on the XU4 even if
you need to use frame skipping. Still, the game does
not slow down even with 10 or more enemies on the
same screen. The sprites are big and colorful
backgrounds are well drawn there’s really nothing to
complain about. This port to the Saturn is solid, and if
you like games like this, I suggest you look into it on
the Saturn.

Figure 3 – Boss �ght on the second stage, and the health
bars keep getting longer

The Legend of Oasis / The Story of Thor 2

If you played Beyond Oasis on the Sega Genesis, you
know exactly what you’re getting into. This game is
suppose to be the “prequel” but plays pretty much
like the Genesis version. But with improved graphics.
In fact it’s one of the nicest looking 2D games of it’s
time I’d like to say.

Figure 4 – Beautiful graphics in Legend of Oasis

Figure 5 – Lots of animation going on, waterfall, �sh
swimming around, water ripples

Your �rst quest is to head down into the dungeon and
befriend the water spirit. Similar to Beyond Oasis, you
�nd elemental spirits and use them to solve puzzles
and �ght enemies. You can collect di�erent weapons
which have all limited uses but you always have your
dagger which does not expire like the other weapons
you can collect. You also collect a lot of other items,

especially food which you can use to re�ll your health
bar.

However, they changed a lot of the game compared
to Beyond Oasis. You no longer �nd items to increase
your level or health, but instead you “train” your
character: take enough hits and get healed and you
get more health and things like this. It’s an interesting
concept, but also a little strange. The level design can
be hard at times as you often struggle to �gure out
where to go and how to get up or down a platform. It
often looks like you can go a certain way but then you
see it’s suppose to be much higher and you can’t
reach it. It might not be the best game of its time, but
it looks rather beautiful and runs well on the ODROID
XU4.

Figure 6 – You can still use your attack moves from
Beyond Oasis and swing around your character

Theme Park

Theme Park was one of these games that I played way
too long as a child. I actually remember playing this
game on my trusty Amiga and was very surprised to
see a Sega Saturn port. As you control this game by
mouse on the Amiga I was skeptical how it would
work out on a console with a joystick/gamepad. I was
pleasantly surprised to �nd out it’s actually working
quite well. It took me a little while to �gure out all
controlls, but it’s working rather good. Everything is
there and works as it was in the Amiga version I
remember.

Figure 7 – Di�erent attractions I build in my theme park

Figure 8 – The game has a big variety of di�erent
attractions and shops to choose from

What I also like are the render videos that you can
watch for each attraction, allowing you to be the child
in one of your rides and see how this attraction looks
from a child’s point of view.

You have to do a lot of micro-management in this
game. Hiring sta� distribute them through the park,
select what rides you place where and what shops
you want. You can manage the prices for shops or the
amount of ice in your coke or salt on your fries. You
have to select the right price of your entrance fee and
so on.

Figure 9 – People coming and going at the bus stop

It’s an interesting and fun game, and yes, we all
increase the speed of the roller coasters so high that
the people started to throw up after the ride. One
downside of this game is that I could only get it to
work with the libretro core, it still plays in a very good
speed, so I assume Yabause would work �ne as well,
but sadly the standalone emulator crashes. Maybe
with a newer version this can be �xed.

Time Bokan Series – Bokan to Ippatsu! Doronboo
Kanpekiban

I want to be honest with you, I have no clue what this
game is all about, as it’s completely in Japanese. Still
this game is very fun to play and o�ers a lot of anime
cutscenes which looks like they are from a actual
anime series of the 80s. It’s a fast paced vertical
shooter with bright colors and tons of stu� going on
on the screen.

Figure 10 – Select one out of 6 characters with di�erent
weapons

Figure 11 – This game o�ers mid-level bosses not only
end-level bosses

This game is not easy but very fun to play it’s nothing
that you should take serious but the bright colors and
tons of enemies on the screen are just fun.

Figure 12 – Level up your �re-power and keep going

This is one of these casual shooters that you pick up
play for half an hour and feel satis�ed. It also exists
for the PlayStation so I guess it’s up to you where you
want to play it. Tryrush Deppy

I don’t even know where to start to describe this
game. It has a very cartoon-ish style both in the game
graphics but also in the intro of the game. You’re a
cab (taxi) and you participate in a car racing, but not
what you might expect. In this game cars act like
humans and they are actually WALKING on their back
tires (I’m not kidding).

Figure 13 – Tryrush Deppy, one of the strangest games
I’ve played so far

The game itself turns out to be a fast-paced
platformer similar to Sonic, but without the loopings.
It’s very fast and you can run, jump or dash through
the world. You have to collect “oil” to keep going but
there are more items you can collect which give you
temporary powers, like a shield so you can run
through everything or you become a lot faster for a
short time. The goal is always to run to the end of the
level and hit the goal sign (sounds familiar?).

Figure 14 – The intro shows you and a bunch of other
cars “standing” in line waiting for the race to start

Once again I really like the bright colors as well as the
cartoon-ish design, since it really suits the game. You
can also select your own license plate at the start of
the game to save your in game progress.

Figure 15 – Create your own individual license plate

Figure 16 – Yes you walk on your back tires in this game

I haven’t played the game very far yet, but there’s lots
of things going on aside from you running and
jumping. There are cops chasing you for “speeding”
there are villains that get chased by the cops and can
run you over. Your dash can act as an attack and you
can actually charge it so you run faster and dash
further. Some enemies can be killed by jumping on
their head or dashing through them. There are hard
to reach objects, hidden paths and more.

All in all, it’s a very fun game and I rather enjoy playing
it. I found one tiny issue with it, which is that the
character sprite sometimes glitches for a frame or so
and then becomes normal again. I’m not sure if that’s
due to the emulator or a bad ROM. If you like
platformers (games similar to Sonic or Mario) you
should de�nitely check this game out. Also, did I

mention that there are actual boss �ghts in this game
as well? At some points you have to crash huge
monster cars that you have to hit with your dash
attack in certain spots.

Twinkle Star Sprites

Twinkle Star Sprites is a fun little game on the Saturn.
I’ve the game also for Dreamcast but sadly it’s
extremely slow on the reicast dreamcast emulator.
Luckily for us the Saturn version works just �ne.

Figure 17 – Twinkle Star Sprites on the Sega Saturn

In this anime styled shooting game, you can select
between many di�erent characters and �ght against
your opponent not by shooting at them, but by
shooting at monsters and objects coming at you and
avoiding getting hit. If you destroy enough things on
the screen you cause extra stu� to spawn on your
opponents screen making it harder for them to avoid
things. If you or your opponent get hit often enough
it’s Win or Lose.

Figure 18 – Twinkle Star Sprites is a very anime-styled
game which can be seen on the loading screens

Figure 19 – Twinkle Star Sprites has many di�erent
characters to select

The gameplay is rather easy: shoot at everything and
avoid what you can not destroy. It’s a lot of fun and
looks very good. I love the bright color and yes even
the sparkles and explosions going on all over the
screen is nice to look at. I’m not quite sure why the
Dreamcast version is running so much slower, but I’m
happy to be able to play the Sega Saturn version,
which the ODROID-XU4 can handle really well. You
have a power meter which allows you to shoot a
charged attack which does more damage and can hit
more enemies at once. It also can have di�erent level
depending on your charging. You also have a limited
number of bombs you can use to destroy a large
number of enemies on the screen.

Figure 20 – Destroying a boss on your side launches a
large attack on your opponent

Vampire Hunter Darstalkers’ Revenge

While I’m normally not a big fan of �ghting games like
Street Fighter and so on, this is one game I actually
enjoy playing and I enjoy it on the Sega Saturn.

Figure 21 – Vampire Hunter has a good amount of
�ghters to choose from

Figure 22 – Vampire Hunter has very beautiful graphics
and fast �ghting action

I have to say I enjoy the brighter colors on the Sega
Saturn a lot. Compared to the Genesis where
everything seemed dark and muddy the Saturns
games are much more vibrant when it comes to
colors and I enjoy this a lot. So it also is with this
�ghting game paired with tons of animation on each
character and with many di�erent attacks it makes a
really solid game experience. Like most good �ghting
games this one uses 6 di�erent buttons which also
makes it best on the Saturn as other consoles only
use 4 action buttons most of the time. It also means
you can pull o� a lot of di�erent moves and special
attacks rather easily. It’s probably one of my favorite
�ghting games (also maybe cause I can actually beat
the enemies). If you like �ghting games, I highly
recommend to try this game on the ODROID.

Waku Waku Puyo Puyo Dungeon

Unfortunately, I haven’t had time to play this as much
as I would like yet, also it’s a little bit hard to
understand for me as the entire game is in Japanese.
Still I managed to get into a dungeon and �gured out
how to attack, cast spells and switch through di�erent
spells that I had, and for all I care I had a lot of fun.

Figure 23 – Restoring your health on pentagrams

Figure 24 – Di�erent spells cost di�erent amounts of MP
per attack

Although the game seemed slightly laggy, it doesn’t
really matter since you don’t need a fast reaction time
in this game. You and the enemies take “rounds” even
if it doesn’t feel like it. You walk a step the enemy
does, you hit the enemy walks or attacks you as well.
It’s just back and forth. Your character is automatically
turning to the enemy when they attack you so you
don’t have to �gure out how to do diagonals. You �nd
gold and other items in the dungeon, so I guess you
can buy either new weapons and armors or just
health items outside of the dungeon, but I haven’t
�gured that all out yet. I have also found two types of
pentagrams in the dungeon yet. One restores your
health, and the other restores MP. The one for MP
disappears quickly though after one or two uses,
while HP seems to stay.

From the start you have �re and ice attacks as skills
and on deeper level in the dungeon you �nd enemies
that get more damage depending on the element
you’re using. Killing an enemy gives you Exp and Gold
every now and then they also drop items like apples
and such. The �rst couple of level ups go fast and
your HP and MP goes up automatically also your
attack and magic becomes stronger. You’ll �nd a
stairway at some point in the dungeon leading to the
next level, go deep enough and you encounter a boss
�ght.

Figure 25 – Onto the next level of the dungeon

Warcraft II – The Dark Saga

I was very much surprised seeing this game on the
Saturn, but then again, I’ve seen other PC ports on the
system as well. I was also surprised to see the game
running rather well, although I found out it has a few
issues. So the bad things �rst. On Yabause
standalone, the videos are broken and you can’t see
(but hear) them. It also has some issues with
transparent graphics it seems as the game misses
some elements. For example when you click on a
character you do not see that you have him selected
and if you open up the info screen the background is
white instead of transparent/meshed. This is rather
annoying, since you also don’t see how many
characters you have selected or what health they
have left, but still everything else works �ne once you
�gured out the button layout of the game.

When you �gured out the layout the game is actually
quite enjoyable on Yabause standalone and fun to

play even with the shortcomings. The libretro core
has no graphical issues and looks rather good, videos
work, transparent and mesh is there everything looks
�ne, BUT the speed is too slow to be enjoyable.

Figure 26 – Mission overview with level password fully
voiced mission description

Figure 27 – A quick look on the in game graphics

Everything from the DOS version of the game seems
to be there. The game even houses the expansion
pack of the game. All Mission descriptions are fully
voiced. Videos are all there (even if they don’t work on
Yabause standalone), and the music is what you
would expect.

Although the game uses passwords for the levels,
there is a save option for the game as well. Although
you probably won’t �t more than 2 save games on the
internal memory of the Saturn as the save states are
quite big. Still this allows you to save and restore on

any point in the game. Still, you can easily play the
DOS version of the game on ODROIDs as well, so it’s
up to you how you want to play this masterpiece.

Willy Wombat

This game surprised me a little. In this 3D platforming
game you play as Willy Wombat and jump and �ght
through di�erent level. What is very interesting is that
you can freely rotate the camera with the R and L
buttons of the Saturn controller (for me mapped as
L2/R2). This is very interesting as many objects only
appear if you rotate the camera, they are strategically
placed so you only see them from a certain angle.
Although the 3D capabilities of the Saturn are very
limited it works �ne in this game, as it uses pre-
rendered 2D sprites (similar to Donkey Kong) for the
character and objects in a 3D environment.

Figure 28 – 3D graphics with minimal textures on the
Saturn

Figure 29 – Collect �ve of these bubbles to increase you
life bar

I haven’t dived far into the game yet, but it plays
actually quite nice. The controls work good, although
it’s sometimes a little hard to place your jump
correctly due to the isometric viewing angle, but
turning the camera often helps a lot. You have two
types of attacks: a close range slash, and a
boomerang attack that has limited range. It can also
be used to collect items. Later you can also �nd some
special attacks called forces that you can use to
support you in your quest. These do massive damage
to a lot of enemies on screen.

Figure 30 – Attacking the enemy with your trusty
boomerang

Although the game is completely in Japanese, all voice
acting is done in English, making it very easy to follow
the story and understand the game. Also, the game is

a Sega Saturn exclusive, so check it out you won’t �nd
it anywhere else.

Wonder 3 Arcade Gears / Three Wonders

Wonder 3 Arcade Gears is a collection of 3 arcade
games on one disc. Roosters, Chariot and Donburu
are the three games on this disc. Roosters being a
action orientated platformer, Chariot a arcade side-
scroller shooter featuring the same characters as in
Roosters and Donburu is an unrelated puzzle game.
All games work actually quite nicely, with no
slowdowns or anything.

Figure 31 – The game select screen of Wonder 3 Arcade
Gear

Each game is fun in its own way, and it’s a really nice
compilation of games on one disc. I did knew about
Roosters before I got this compilation and already
played it for the arcade or on the PS1. However, the
other two games were new to me. Chariot instantly
reminded me that on Roosters, it has the same
characters and enemies, and the treasure chests are
the same as in Roosters, although they now all �y.

You have your primary attack, which can be upgraded
and switched through collecting power-ups, and you
have your more powerful secondary attack which
depends on the length of your “tail”. The longer the
tail the stronger the attack but it also takes longer to
recharge.

Figure 32 – Roosters Action Platformer

Figure 33 – Chariot Arcade Shooter

Figure 34 – Donburu “action” Puzzle

Donburu is a totally di�erent game, and not
connected to the former two. Your goal here is to

push blocks around and with that, kill all of the
enemies on the screen. Di�erent blocks have
di�erent properties. For example, some explode and
damage enemies in their surroundings. You get
points depending on how fast you completed the
level. All three games are very fun to play, have
beautiful graphics, and run �uently on the ODROID-
XU4. It’s worth having this disc for your Saturn or on
your Saturn emulator of choice.

Worms

I remember the original Worms from my trusty
Amiga. This game was the best of the best back then,
and spawned many sequels and clones such as
Hedgewars. The Saturn version of this game seems to
be similar to the Amiga CD32 version, means it comes
with all the video cutscenes music and voices that
made the game fun and great. And although this
game has tons of stu� going on in the background
and with all the characters on the screen it’s working
perfectly �ne on the ODROID XU4.

Figure 35 – Worms Title Screen on the Sega Saturn

Figure 36 – As usual the computer drops the bomb..
umm grenade right on top of you

In this game, you have teams of worms �ght each
other with di�erent weapons ranging from Bazooka,
Shotgut, and Air Strikes, to the famous exploding
sheep. There are tons of weapons to choose from. It’s
brutal, it’s war, it’s fun! Weapons are a�ected by wind
direction and strength. With enough wind strength
you can shoot to the right to get around an object and
still kill an enemy that is standing on your left.

Figure 37 – Supply drop from the sky grab it before
someone else does

Figure 38 – If your health drops to zero your worm will
blow itself up

This game has beautiful graphics, especially
considering that it was created for the Amiga. It’s a
very competitive game and fun to play against friends
or the computer. This particular game is what started
the series, which goes still on today with many, many
di�erent versions of the game. If you played Worms
Armageddon, or World Party, you know how fun this
game really is and here you have the chance to visit
the roots of these amazing games.

Honorable Mentions

Terradiver

This is another rather generic shoot ‘em up vertical
scroller. It has nice visuals and actually uses di�erent
planes where enemies are on, but not all your
aircrafts can attack both planes which can be quite
annoying. Still, I haven’t found anything special about
it and it’s a little bit too slow for my taste to fully enjoy
it, but worth if you like shmups.

Tetris Plus

What can I say: it’s Tetris and not the only one on the
system, but it’s the better version in my opinion.
There’s nothing bad about the game. It has di�erent
game mods, some anime characters, nice music, and
a level system. It’s a very solid and enjoyable Tetris
game.

The Lost World Jurassic Park

This one crashed when you load into the game on
Yabause standalone but works on libretro, but sadly a

little too slow. You play a dino this time and �ght
against other dinos and have to solve jumping puzzles
and such. It uses a 3D world and characters and looks
surprisingly good with it. I wish it would work on the
Yabause standalone as it probably would run full
speed there.

Three Dirty Dwarves

Unfortunately, this game has lots of graphics issues
running under my current build of Yabause
standalone emulator, but it runs without graphical
issues under the libretro core, but as usual it runs way
too slow here. This game is actually quite nice: you
play 3 dwarves that �ght against all kind of monsters.
One uses a baseball and and bat as his main weapon,
one uses a shotgun, and the last uses a bowling ball
to �ght o� enemies. If you get hit, the guy goes down
and the next in the line takes over, but you can revive
your fallen comrades by kicking them in the butt, so
to speak. It’s a fun action game with nice graphics.
Hopefully I can get a newer version of Yabause
running at some point, and that will �x this issue,
since this is a really nice game.

Thunder Force Gold Pack 1, 2 and V

Thunder Force Gold Pack 1 consists of Thunder Force
II MD and Thunder Force III. The �rst one is a top-
down, and the second one a side scroller. Both are
nice and fun to play with a little bit of parallax
scrolling going on. Graphics are ok, but not
impressive. You can switch between di�erent weapon
types back and forth to optimize the e�ect on your
enemy. Especially in Thunder Force III you’re doing
this a lot.

Thunder Force Gold Pack 2 houses Thunder Force AC
and Thunder Force IV. The former is pretty much the
same as Thunder Force III, but with much more
lagging. I guess they upped the graphics with an
additional layer of parallax scrolling background, but
the performance took a serious hit. It’s easier than III
though, but also removed the level select from III.

Thunder Force IV has better graphics lots of parallax
scrolling and is much better performance wise, and
the level select is back. The map is much bigger this
time, and you can go far up and down on the screen,
which means you don’t see what’s up or below you if

you don’t go up and down. I like it the most, although
it’s quite hard.

Thunder Force V goes to 3D this time. It looks nice,
but the lagging is back and the graphics have tons of
glitches. I never knew if I hit the boss or not, as I don’t
see any indicator for it, and the boss glitches all over
the place. If Thunder Force IV was a standalone title I
would recommend it, but together with the others, it’s
not really worth it.

Ultimate Mortal Kombat 3

I like this game: it’s very fast and you have a lot of
characters to choose from. It’s not very easy, but I
don’t think any of the Mortal Kombat games are. It’s a
really good arcade port and plays rather well on the
ODROID-XU4. If you like the Mortal Kombat series,
you should try this version and see how you like it.

Virtua Fighter 2

It works, and the 3D graphics are actually quite good.
Textures and backgrounds are �ne. I’m just not a fan
of it. The speed is ok if you use frame skipping.

Wakumon / Waku Waku Monster

This game is actually fun to play for a little while. It’s
one of these games where you drop items and have
to match the same color, and if you have 3 or more
together, you pop them and you get points. Have
enough points, and you attack your enemy, if the
enemy attacks, you press a button to counter the
attack and minimize the damage. Be faster than your
opponent and win. Each time you win, your “Monster”
evolves. You start with an egg, and every time you
win, your pet grows and changes form, which is funny
to see. It’s great in small doses, and I actually like it
quite a bit.

Whizz

Whizz is an interesting platformer where you play a
rabbit with a hat that looks like it came straight out of
Alice in Wonderland. The colors are bight, the music is
very nice, and the game controls are rather good. It’s
also fast enough on the XU4 to enjoy it. There is just
one issue: the game freezes after a couple of seconds.

Using the libretro core instead helps in that the game
doesn’t freeze, although it’s too slow to play. While

currently the game is not working as it should, I’m
wondering if newer versions of Yabause �xed that
issue, and if so, we can probably play this game in the
future.

Wipeout 2097

Currently, this game only works on the libretro core,
where it’s way too slow to be fun to play. However,
you can see what the potential is, and I think I would
probably enjoy it better than the PS1 version of the
game. Unfortunately, it’s not really playable at the
moment.

WolfFang

This game is another side-scroller, which is not bad,
but not impressive either. You can build your own
“mech” by selecting secondary weapons, close range
weapons, leg types, and such, or you can choose one
of the pre-con�gured options. The controls are not
the best in my opinion, but if you hold the �re button,
you will keep looking in one direction, but still have to
aim up and down, if you don’t hold the button you
can turn around and kill enemies from behind you.
Although your weapon is widely spread, there is no
angle from which you can hit all enemies, and even
altering the two heights you can select back and forth
won’t allow you to hit all enemies. You need to jump
with the hope of hitting the other enemies before
they hit you.

When your health goes to zero, your mech is
destroyed and you jump out of it. The resulting
character has only a tiny gun and the slightest hit will
kill you, which is not really fun at all. On Yabause
standalone it has some graphical issues, and libretro
has some speed issues, but is probably good enough
to play.

Z

Z was a surprise to me. I love Z, and this version
seems to have everything in that the PC version has,
with all videos, music, and levels included, and that’s

very positive. The graphics are �ne as well, but this
game requires speed, and lots of it. If you don’t know
what and when to do things, you will lose. This game
is very hard, and just to be honest, without a mouse,
playing this game is not fun at all. You have a couple
of shortcuts to jump to the next unit, next �ag, and
next enemy, but that doesn’t help much. Still, the
game works perfectly �ne.

Final recap of Sega Saturn on ODROIDs

It’s been a long journey. I’ve tested hundreds of
Saturn games and picked the games that I liked the
most. Not every game worked: some games were
unbearably slow, and others crashed before I could
even try them. It was a rollercoaster of emotions.
There are a few games that I would have loved to play
on the ODROID but that simply wouldn’t work. The
emulation of Sega Saturn is very di�cult, and often
fails. The development is also very slow, and not
much has changed in a very long time. I’m still using a
very old version of the Yabause standalone emulator,
but newer versions simply didn’t work.

However, there’s hope! New versions of Saturn
emulators are still in development, and there’s even
an Android version that runs on OpenGL ES. In fact,
I’ve even seen videos that show this emulator working
on the ODROID-XU4 as well.

I hope that in the future, we can see more Saturn
games running on the ODROID, and I might pick the
topic up once again when this happens. For now I’m
quite satis�ed with Saturn on the ODROID-XU4. I have
a collection of over 50 games for the Saturn that I
really enjoy playing, and which will take me quite a
while to �nish. I hope you too will have fun with the
Sega Saturn on your ODROID-XU4 and that this series
gave you some ideas on what you can play.

Transcode DVB Enigma2 Receiver: Using �mpeg on the ODROID-
XU4
 August 1, 2018 By @martos ODROID-HC1, ODROID-XU4, Tutorial

When I stay in hotels during my travels, I notice some
channels are not available on TV. Using NAT (mapping
the external ip to the internal device ip) and http �ux,
I can see some of those TV channels on my cell phone
or my laptop. If the bandwidth is low, you could use
3G or higher (350Kbs rate) access.

In my �rst test, with a Raspberry Pi 3, using the
hardware decoder, we can transcode to just 320*240.
I discovered the ODROID-MC1 at a resale website, so I
got it. It uses the Exynos 5520, which is more
powerful. Using it, we can transcode to 512*384.

Price comparisons

Raspberry Pi 3 Model B+ Desktop Starter Kit (16Gb)
costs 60 € (US $70)

ODROID-HC1 (sd 16Gb + PSU) = 70 € (US $82)

ODROID-XU4 (sd 16Gb + PSU) = 85 € (US $100)

The ODROID SBCs could be a good choice, but for the
moment the hardware decoder may have some bugs
in the MPEG4 processing, so, we use only H.264 video
format at this moment). The MPEG4/MPEG2 video
decoding is very unstable, so we are forced to use the
software encoder/decoder.

Raspberry Pi 3 Model B+ is good, but the CPU is less
powerful. However, with the hardware
decoder/encoder, its performance is acceptable. In
any case, do not use the WiFi network, but use the
wired network (RJ45 ethernet jack). With either board,
we cannot decode 4K video, which is only available on
the ODROID-C1.

Install on ODROID-XU4 or ODROID-HC1

We will use Ubuntu 18.04 (Version: 20180531 –
https://goo.gl/LKPL9F). Install the software at
https://goo.gl/A9gbkD. Read the Release Notes at
both links for useful information. After this we install

https://goo.gl/LKPL9F
https://goo.gl/A9gbkD

the e2transcoder software (the web GUI) and �mpeg
using the steps at https://goo.gl/p9c4Pi. The steps
include:

$ su

aptget install malifbdev

aptget install ffmpeg

aptget install apache2

aptget install libavtools

aptget install zip

aptget install mc

aptget install zip

aptget install php

aptget install libapache2modphp

aptget install sqlite

aptget install phpsqlite3

aptget install phpxml

Fetch the e2transcoder zip �le using:

$ wget http://e2transcoder.sharetext.net/wp

content/uploads/files/enigma2_transcoder_072.z

ip

Expand the zip �le and copy the contents of

repertories/DB/*.*

to

/var/www/html/

You would now see the following �les and directories
in the /var/www/html/ folder:

/admin

/stream

index.html (original)

Index.php

Run the following commands:

$ rm /var/www/html/admin/config.php

$ cp /var/www/html/admin/config_linux.php

/var/www/html/admin/config.php

Edit the /var/www/html/admin/con�g.php �le to
contain the following information:

// if enigma2 receiver is not used must be 0,

but it is not mandatory if receiver is used

$conf["callreceiver"] = 1;

// full path of stream dir

$conf["stream_dir"]="/var/www/html/stream/";

// path of avconv or ffmpeg executable, if

avconv of ffmpeg installed $conf["command"] =

"/usr/bin/ffmpeg";

from package only need executable name

// web url folder of stream enigma2 receiver

configuration

$conf["stream_web_dir"] = "/stream/";

// enigma2 user name

$conf["db_username"] = "root";

// enigma2 password

$conf["db_password"] = "YYYYYY";

// enigma2 IP

$conf["db_ip"] ="192.168.ZZZ.ZZZ";

$conf["parameters"] = "threads 16 vcodec

h264 i {stream_url} s 512x384 vf fps=21

maxrate:v 400k bufsize:v 60000k ac 1 ar

22050 vbr 1 sn {stream_dir}ystream.m3u8";

// full path of avconv or ffmpeg log

$conf["stream_log"] = "/var/log/stream.log";

Folders /admin/db and /stream/ should be writable by
the web server. In case of Apache, this is user
“apache” for nginx www-data.

$ chown R wwwdata /var/www/html/

$ chmod R 755 /var/www/html/

$ touch /var/log/stream.log

$ chown wwwdata /var/log/stream.log

There is a small issue with slqlite. Locate the sqlite3.so
library. In the Raspberry Pi, it is at
/usr/lib/php/20151012/sqlite3.so. Locate php.ini
typically at /etc/php/7.2/apache2/php.ini. In this �le,
�nd the section [sqlite3] and change to:

[sqlite3]

sqlite3.extension_dir

=/usr/lib/php/20170718/sqlite3.so

Now, on your web browser, access
http://ip_of_your_receiver/index.php. Enter the login
information (also in con�g.php). Go to the “Settings”
section and click on “Reload E2 Playlist”. Return to
“Channels”. Select your Channel by clicking on it, and
at the top you should see “TV:channel-name”. Be
careful, you can not show TV and transcode another
channel if it is not in the same transponder.. You
should see the status change from, “Preparing” to
“Running” (you can also check using: $ tail -f
/var/log/stream.log). Go to the “Live” section and click
on the play icon or enter the link in the vlc player.

https://goo.gl/p9c4Pi

Figure 01 – Login

Figure 02 – Main Page

Figure 03 – HTML5 player in Chrome on SmartPhone Figure 04 – Settings

Figure 05 – EPG

For comments, questions, and suggestions, please
visit the original article at
https://forum.odroid.com/viewtopic.php?
f=95&t=31358.

https://forum.odroid.com/viewtopic.php?f=95&t=31358

Coding Camp Part 1: Getting Started with Arduino
 August 1, 2018 By Justin Lee Tinkering, Tutorial, ODROID-GO

In this article, you will learn how to download and
install Arduino IDE and ODROID-GO speci�c libraries
and examples. There are o�cial step-by-step guides
for the supported platforms which are maintained by
community members.

Windows

Debian / Ubuntu

Fedora

openSUSE

macOS

Install ODROID-GO libraries

Windows Execute a Git Bash program from the Start
Menu and enter the following commands:

$ git clone

https://github.com/hardkernel/ODROIDGO.git

$

USERPROFILE/Documents/Arduino/libraries/ODROID

GO

Linux Open a Terminal by pressing CTRL-ALT-T and
enter the following commands:

$ git clone

https://github.com/hardkernel/ODROIDGO.git

~/Arduino/libraries/ODROIDGO

Select a target device Arduino IDE has to know
which board will be used for compiling and sending a
data.

Select Tools → Board → ODROID-ESP32.

Figure 1 – Selecting a target device

https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/windows.md
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/debian_ubuntu.md
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/fedora.md
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/opensuse.md
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/mac.md

Select a proper serial port Arduino IDE has to know
which port the device is connected to. The port
number depends on your system. You might need to
install CP2104 VCP drivers on your host computer if
you can’t open the serial port.

Windows

Figure 2 – Selecting a proper serial port in Windows

Select Tools → Port: “COM#” → COM#.

Linux

Figure 3 – Selecting a proper serial port in Linux

Since ODROID-GO always connects to the host PC via
USB cable, select a USB device �le.

Select Tools → Port → /dev/ttyUSB#.

Let’s code with ODROID-GO Now you’re ready to
write your source code. To learn how to write source
code, refer to Part 2 of the Coding Camp series in this
issue. For comments, questions, and suggestions,
please visit the original article at
https://wiki.odroid.com/odroid_go/arduino/01_ardui
no_setup.

https://wiki.odroid.com/odroid_go/arduino/01_arduino_setup

Thundroid – Part 2: Migrating From Bitcoin Testnet to Mainnet
 August 1, 2018 By @stadicus Linux, Tutorial

Remember Part 1 of this guide? We set up a Bitcoin
full node with Lightning from scratch, went to quite
some length to secure our box, and started testing
Bitcoin on testnet. If you did not catch Part 1, please
read it �rst as this part won’t make much sense
without it. The goal of this guide is to switch our
Thundroid from Bitcoin testnet to mainnet and to
transact with real money. Financial best practices
Bitcoin is a bearer asset like physical cash, so
transactions cannot be reversed. Controlling your
bitcoin actually means controlling the private keys
that allow you to use them. This means that if
someone has access to your private keys, this person
has full control over your bitcoin. Once they are sent
to a di�erent address, there’s nothing you can do to
get them back.

To manage your bitcoin, you need a wallet. This is an
application that manages the private keys for you.
There is an important distinction:

Hot wallet: an application that manages your private
key and is exposed to the internet. It is a very
convenient mobile application, but could potentially be
hacked. This type of wallet is used for smaller amounts
and everyday use.

Cold storage: your private key is never been exposed
to any network. Examples are paper wallets which are
created and/or printed using an o�ine computer, or
hardware wallets like a Ledger or Trezor. This is how
you secure your savings in bitcoin.

By de�nition, this project is a hot wallet as it is
connected to the internet. That said, do not store
large amounts of money on your Thundroid!

Bitcoin: don’t use the wallet built into Bitcoin Core at
all. The way to go is to use a small hardware wallet to
secure your private keys with Thundroid as your
trusted backend to send / verify transactions. More on
that later.

Lightning: as the whole network is still in beta, it goes
without saying that you should not put your life

savings into it. Experimenting with small amounts is
�ne, but do it at your own risk.

Please be aware that while Bitcoin has been battle-
tested for almost a decade and is used to move
billions of US dollars every day, the Lightning Network
is still in beta and under heavy development. This
guide also allows you to set up your Bitcoin node
while ignoring the Lightning part.

Moving to Mainnet The current setup of your
Thundroid runs on Bitcoin testnet. Make sure that
your box running smoothly so that we can move on to
copy the mainnet blockchain that you already
downloaded on a regular computer (see Part 1) to the
box.

On your regular computer, check the veri�cation
progress in Bitcoin Core. To proceed, it should be fully
synced (see status bar). Shut down Bitcoin Core on
Windows so that we can copy the whole data
structure to the Thundroid. This takes about 6 hours.

NOTE: If you get stuck, please check out my GitHub
repository. You can search for answers among solved
issues, or open a new issue if necessary.

Temporarily enable password login In order to copy
the data with the user “bitcoin”, we need to
temporarily enable the password login. As user
“admin”, edit the SSH con�g �le and put a # in front of
“PasswordAuthentication no” to disable the whole
line. Save and exit.

$ sudo nano /etc/ssh/sshd_config

PasswordAuthentication no

Restart the SSH daemon.

$ sudo systemctl restart ssh

Copy mainnet blockchain using SCP We are using
“Secure Copy” (SCP), so download and install WinSCP,
a free open-source program. There are other SCP
programs available for Mac or Linux that work
similarly. Do not use rsync as this can lead to issues
later on.

With WinSCP, you can now connect to your Pi with the
user “bitcoin”. Both protocols SCP and SFTP work, in
my experience SCP is a bit faster.

Figure 1 – Sign in with username “Bitcoin”

Accept the server certi�cate and navigate to the local
and remote bitcoin directories:

Local: d:itcoinitcoin_mainnet\

Remote: mnthdditcoin\

You can now copy the two subdirectories blocks and
chainstate from Local to Remote. This will take about
6 hours.

Figure 2 – copy the two subdirectories blocks and
chainstate from Local to Remote

NOTE: The transfer must not be interrupted. Make
sure your computer does not go to sleep. Disable
password login again As user “admin”, remove the #
in front of “PasswordAuthentication no” to enable the
line. Save, exit the con�g �le and restart the ssh
daemon.

$ sudo nano /etc/ssh/sshd_config

PasswordAuthentication no

Restart the SSH daemon.

$ sudo systemctl restart ssh

Send back your testnet Bitcoin To avoid burning
our testnet Bitcoin, and as a courtesy to the next
testers, we close all our channels and withdraw the

https://github.com/Stadicus/guides/blob/master/thundroid/README.md#outlook-prepare-for-bitcoin-mainnet
https://github.com/Stadicus/guides
https://winscp.net/

funds to the address stated on the website of the
Bitcoin Testnet Faucet.

$ lncli closeallchannels

Wait until the the channel balance is zero and the
funds have been returned to our on-chain wallet.

$ lncli channelbalance

$ lncli walletbalance

Send the amount provided by walletbalance minus
500 satoshis to account for fees. If you get an
“insu�cient funds” error, deduct a bit more until the
transaction gets broadcasted.

$ lncli sendcoins

2N8hwP1WmJrFF5QWABn38y63uYLhnJYJYTF [amount]

Adjust con�guration Stop the Bitcoin and Lightning
services:

$ sudo systemctl stop lnd

$ sudo systemctl stop bitcoind

Delete LND wallet. Edit “bitcoin.conf” �le by
commenting ‘testnet=1’ out, then save and exit.

$ sudo nano

/home/bitcoin/.bitcoin/bitcoin.conf

remove the following line to enable Bitcoin

mainnet

#testnet=1

Copy updated “bitcoin.conf” to user “admin” for
credentials (the command bitcoin-cli looks up the
“rpcpassword”)

$ sudo cp /home/bitcoin/.bitcoin/bitcoin.conf

/home/admin/.bitcoin/

Edit “lnd.conf” �le by switching from bitcoin.testnet=1
to bitcoin.mainnet=1, then save and exit.

$ sudo nano /home/bitcoin/.lnd/lnd.conf

enable either testnet or mainnet

#bitcoin.testnet=1

bitcoin.mainnet=1

Delete the LND authorization �les (*.macaroon). They
are linked to the currently active wallet and need to
be created when we create a new wallet for mainnet.

$ sudo rm /home/bitcoin/.lnd/*.macaroon

$ sudo rm /home/bitcoin/.lnd/data/macaroons.db

Restart bitcoind & lnd for mainnet NOTE: Do not
proceed until the copy task of the mainnet blockchain
is completely �nished. Start Bitcoind and check if it’s
operating on mainnet:

$ sudo systemctl start bitcoind

$ systemctl status bitcoind.service

$ sudo tail f

/home/bitcoin/.bitcoin/debug.log (exit with

CtrlC)

$ bitcoincli getblockchaininfo

Wait until the blockchain is fully synced. “blocks” =
“headers”, otherwise you might run into performance
/ memory issues when creating a new lnd mainnet
wallet. Start LND and check its operation. It will wait
for the wallet to be created.

$ sudo systemctl start lnd

$ systemctl status lnd

Create mainnet wallet Once LND is started, we need
to create a new integrated Bitcoin wallet for mainnet.
Start a “bitcoin” user session and create a new wallet

$ sudo su bitcoin

$ lncli create

If you want to create a new wallet, enter your
password [C] as wallet password, select n regarding
an existing seed and enter the optional password [D]
as seed passphrase.

Figure 3 – Create a new integrated Bitcoin wallet for
mainnet

The 24 seed words that are displayed, combined with
your optional passphrase, is the backup for your on-
chain Bitcoin. The current state of your channels,
however, cannot be recreated from this seed, this is
still under development for LND.

NOTE: This information must be kept secret at all
times. Write these 24 words down manually on a
piece of paper and store it in a safe place. This piece
of paper is all an attacker needs to completely empty
your wallet! Do not store it on a computer. Do not
take a picture with your mobile phone. This
information should never be stored anywhere in
digital form.

Exit the “bitcoin” user session. To use lncli with the
“admin” user, copy the permission �les and the TLS
certi�cate. Check if it’s working.

$ exit

$ sudo cp /home/bitcoin/.lnd/tls.cert

/home/admin/.lnd

$ sudo cp /home/bitcoin/.lnd/admin.macaroon

/home/admin/.lnd

Check if it works by getting some node infos

$ lncli getinfo

Restart lnd and unlock your wallet (enter password [C]
)

$ sudo systemctl restart lnd

$ lncli unlock

Monitor the LND startup progress until it has caught
up with the mainnet blockchain (about 515k blocks at
the moment). This can take up to 2 hours, after which
you will see a lot of very fast chatter. Exit with Ctrl-C.

$ sudo journalctl f u lnd

This command will return “synced_to_chain: true” if
LND is ready.

$ lncli getinfo

Improve startup process It takes a little getting used
to the fact that the LND wallet needs to be manually
unlocked every time the LND daemon is restarted.
This makes sense from a security perspective, as the
wallet is encrypted and the key is not stored on the
same machine. However, for reliable operations this
is not optimal, as you can easily recover LND if it has
to restart for some reason (such as a crash or power
outage), but then it’s stuck with a locked wallet and
cannot operate at all.

This is why a script that automatically unlocks the
wallet is helpful. The password is stored in a root-only
directory as plain text, so it’s clearly not as secure, but
for reasonable amounts this is a good middle-ground.
You can always decide to stick to manual unlocking or
implement a solution that unlocks the wallet from a
remote machine.

As user “admin”, create a new directory and save your
LND wallet password [C] into a text �le:

$ sudo mkdir /etc/lnd

$ sudo nano /etc/lnd/pwd

The following script unlocks the LND wallet through
its web service (REST interface). Copy it into a new �le.

$ sudo nano /etc/lnd/unlock

#!/bin/sh

LND wallet autounlock script

2018 by meeDamian, robclark56

Delay is needed to make sure bitcoind and

lnd are ready. You can still

unlock the wallet manually if you like.

Adjust to your needs:

/bin/sleep 300s

LN_ROOT=/home/bitcoin/.lnd

curl s

 H "GrpcMetadatamacaroon: $(xxd ps

u c 1000 ${LN_ROOT}/admin.macaroon)"

 cacert ${LN_ROOT}/tls.cert

 d "{"wallet_password": "$(cat

/etc/lnd/pwd | tr d '

' | base64 w0)"}"

 https://localhost:8080/v1/unlockwallet

> /dev/null 2>&1

echo "$? $(date)" >> /etc/lnd/unlocks.log

exit 0

Make the directory and all content accessible only for
“root”

$ sudo chmod 400 /etc/lnd/pwd

$ sudo chmod 100 /etc/lnd/unlock

$ sudo chown root:root /etc/lnd/*

Note: I encountered the issue that curl was not
running correctly on my machine and I had to reinstall
a library before I got it working again:

$ sudo apt install reinstall libroken18

heimdal.

Create a new systemd unit that starts directly after
LND.

$ sudo nano /etc/systemd/system/lnd

unlock.service

Thundroid: system unit for lnd unlock script

/etc/systemd/system/lndunlock.service

[Unit]

Description=LND wallet unlock

After=lnd.service

Wants=lnd.service

[Service]

ExecStart=/etc/lnd/unlock

Type=simple

[Install]

WantedBy=multiuser.target

Edit the LND con�g �le to enable the REST interface
on port 8080:

$ sudo nano /home/bitcoin/.lnd/lnd.conf

add the following line in the [Application

Options] section

restlisten=localhost:8080

Reload systemd and enable the new unit. Restart your
Thundroid and watch the startup process to see if the
wallet is automatically unlocked.

$ sudo systemctl daemonreload

$ sudo systemctl enable lndunlock.service

$ sudo shutdown r now

 reconnect

Unlocking the wallet will take several

minutes due to the build in delay

$ sudo journalctl u lnd f

Note: a more elegant way were to run the script with
ExecStartPost=+/etc/lnd/unlock in the lnd.service unit.
This would enable it to unlock the wallet if LND
service is restarted outside the startup process. The
=+ is necessary to run LND with user “bitcoin” and the
unlock script with root privileges. Unfortunately, this
is only supported starting with systemd version 331,
but we are using version 229. Start using the

Lightning Network Fund your node
Congratulations, your Thundroid is now live on the
Bitcoin mainnet! To open channels and start using it,
you need to fund it with some bitcoin. For starters,
put only on your node what you are willing to lose,
and treat it as monopoly money. Generate a new
Bitcoin address to receive funds on-chain:

$ lncli newaddress np2wkh

> "address": "3.........................."

From your regular Bitcoin wallet, send a small amount
of bitcoin to this address, or ask your one annoying
Bitcoin friend to send you a few bucks. Next, check
your LND wallet balance:

$ lncli walletbalance

Monitor your transaction on a Blockchain explorer as
described at https://smartbit.com.au. LND in action
As soon as your funding transaction is mined and
con�rmed, LND will start to open and maintain
channels. This feature is called “Autopilot” and is
con�gured in the “lnd.conf” �le. If you would like to
maintain your channels manually, you can disable the
autopilot.

You can use the same commands that were listed in
Part 1 of this guide or use, go to LND API reference or
just type lncli –help. Try it out and explore Lightning
mainnet There are a lot of great resources to explore
the Lightning mainnet in regards to your own node.

Lightning Spin: A simple Wheel of Fortune game

Lightning Network Stores: Stores and services
accepting Lightning payments

Recksplorer: Lightning Network Map

1ML: Lightning Network Search and Analysis Engine

lnroute.com: Comprehensive Lightning Network
resources list

What’s next? You now have your own
Bitcoin/Lightning full node. The initially-stated goals
were as follows and we achieved them all:

A fully validating Bitcoin Full Node that does not
require any trust in a 3rd party

Runs reliably 24/7

Supports the decentralization of the Lightning network
by routing payments

https://smartbit.com.au/
https://github.com/Stadicus/guides/blob/odroid_pt2/thundroid/README.md#lnd-in-action
http://api.lightning.community/
https://www.lightningspin.com/
http://lightningnetworkstores.com/
https://rompert.com/recksplorer/
https://1ml.com/
http://lnroute.com/

Can be used to send and receive personal payments
using the command line interface.

Usability? Not so much…

Is it the perfect Bitcoin Lightning node yet? It’s clunky
and the command line does just not cut it. In Part 3 of
this guide we will therefore go on to extend the
Thundroid with additional applications that use it as
our own private backend.

The Electrum desktop wallet is the perfect power-user
wallet to handle regular on-chain Bitcoin transaction.
Because it supports a wide variety of hardware-wallets,
you private keys never need to be exposed to any
(possibly compromised) online computer. With the
Electrum Personal Server running on Thundroid, you
have full control to send, receive, and verify Bitcoin
transactions with great security and privacy.

Figure 4 – The Electrum desktop wallet

The Shango lightning mobile wallet is perfect for small,
instant payments on the go. It connects to your
Thundroid and provides a neat user interface on your
iOS / Android phone to send and receive payments,
and manage peers and channels. While still in closed
beta, I hope it will be public just in time.

Figure 5 – The Shango lightning mobile wallet

Join me in part 3 of the guide “The perfect Bitcoin
Lightning node” and discover some cutting edge
applications that work on top of our own Bitcoin full
node!

eMMC Recovery: Resetting the ODROID-XU4 eMMC Module To
Fix Boot Issues
 August 1, 2018 By Justin Lee ODROID-XU4, Tinkering, Tutorial

The Exynos series boot loader is placed on a hidden
boot partition in the eMMC memory for all models
except the ODROID-C1/C2. When it is corrupted, or
you want to use the eMMC with a di�erent board, you
must install the proper boot loader in the eMMC.
Note that you must have a blank micro SD card to run
the recovery process.

Recovering with recovery image

Download Recovery Image �le.

Prepare a micro SD card and �ash the downloaded
image

Connect both the eMMC and micro SD card to the
ODROID-XU3/XU4

Set the DIP switches or slide switch on the XU3/XU4 to
“SD boot mode” (if you have an ODROID-XU3, refer to
this link)

Connect power and observe the LED status

The blue and red LEDs should remain steadily on,
which may take from 40 seconds to 3 minutes

After the recovery process, the blue LED will be
�ashing like a heartbeat, at which point you can
remove the power supply

Set the DIP switches or slide switch back to eMMC boot
mode

Remove the micro SD card

Proceed with normal power up with your peripherals
attached

After verifying that Android boots on the eMMC
module, you can �ash another OS image, such as
image, on the eMMC, and the bootloader will load the
new OS

Recovering eMMC with micro SD card and USB-
UART kit

This instruction requires a USB-UART and terminal
application on your desktop.

Set the DIP switches or slide switch on the XU3/XU4 to
“SD boot mode”

Insert the micro SD �ashed with the booting image into
its slot and power on, stopping at U-boot once the
board has powered up

Type the “run copy_uboot_sd2emmc” command to
copy the boot loader image from micro SD to eMMC

Once copying is done, set the DIP switches or slide
switch back to eMMC boot mode

Proceed with normal power up with your peripherals
attached

After verifying that Android boots on the eMMC
module, you can �ash another OS image, such as
image, on the eMMC, and the bootloader will load the
new OS

The ODROID-XU4 has a slide switch to choose the
boot media, as shown in Figure 1. The boot
con�guration switch must be set to boot from SD card
if you do not have an eMMC attached. The device

does not automatically fallback to the SD card if no
eMMC is present.

Figure 1 – Location of boot mode selector switch on the
ODROID-XU4

Coding Camp Part 2: How to Display “Hello, ODROID-GO” on an
LCD Screen
 August 1, 2018 By Justin Lee Tinkering, Tutorial, ODROID-GO

In this article, you will learn how to display a string,
change colors, and change font size. By following this
guide, you will be able write code to display “Hello,
ODROID-GO” on your ODROID-GO.

Basic code structure for Arduino When you �rst run
the Arduino IDE, you will see a screen similar to the
one shown in Figure 1.

Figure 1 – Sketch for Arduino

That editor is called Sketch, and it is your playground.
The default source code is:

void setup() {

 // put your setup code here, to run once:

}

void loop() {

 // put your main code here, to run

repeatedly:

}

There are two functions with some comments that let
you know what each function performs in the code.
We will use this simple structure.

Arduino for ODROID-GO We will provide the library
for Arduino development: odroid_go.h. The library
helps you to control components on the board such
as LCD, buttons, speaker, etc. This library should be
included �rst.

To prepare the board for use, it should be initialized.
To initialize the board, use the GO.begin() function. If
you want to control the buttons or the speaker on the
board, you have to use the GO.update() function to
apply the changes from the code.

The GO.update() function isn’t used in this guide since
we will only need to use the LCD to display a simple
string.

#include

void setup() {

 // put your setup code here, to run once:

 GO.begin();

}

void loop() {

 // put your main code here, to run

repeatedly:

}

The GO.begin() function has to be included in the
setup() function since it is called only once. The GO
instance has not only the two core functions, but also
a lot of helper functions that let you control the
components on the board. Now, let’s use the GO.lcd
functions to show “Hello, ODROID-GO”.

Hello World We will use the GO.lcd.print function to
show a string:

#include

void setup() {

 // put your setup code here, to run once:

 GO.begin();

 GO.lcd.print("Hello, ODROIDGO");

}

void loop() {

 // put your main code here, to run

repeatedly:

}

The sketch looks �ne, but the text on the LCD will be
too small to see. Let’s increase the font size to 2 by
using the GO.lcd.setTextSize() function.

#include

void setup() {

 // put your setup code here, to run once:

 GO.begin();

 GO.lcd.setTextSize(2);

 GO.lcd.print("Hello, ODROIDGO");

}

void loop() {

 // put your main code here, to run

repeatedly:

}

You can also change the text color with
GO.lcd.setTextColor(). Change the text to green.

#include

void setup() {

 // put your setup code here, to run once:

 GO.begin();

 GO.lcd.setTextSize(2);

 GO.lcd.setTextColor(GREEN);

 GO.lcd.print("Hello, ODROIDGO");

}

void loop() {

 // put your main code here, to run

repeatedly:

}

As an advanced feature, we’ve also added a function
called displayGO() which includes several e�ects. New
functions introduced include:

GO.lcd.setRotation(): rotates output screen. The
rotation parameter can be 0 to 7.

GO.lcd.clearDisplay(): resets all texts on the screen.

GO.lcd.setTextFont(): sets font style after calling this. A
given font name is speci�ed by a number.

#include

uint8_t idx;

uint8_t rotate;

void setup() {

 // put your setup code here, to run once:

 GO.begin();

 GO.lcd.println("Hello, ODROIDGO");

 delay(1000);

}

void displayGO() {

 GO.lcd.clearDisplay();

 GO.lcd.setRotation(rotate + 4);

 GO.lcd.setCursor(30, 40);

 if (idx) {

 GO.lcd.setTextSize(1);

 GO.lcd.setTextFont(4);

 GO.lcd.setTextColor(MAGENTA);

 } else {

 GO.lcd.setTextSize(2);

 GO.lcd.setTextFont(1);

 GO.lcd.setTextColor(GREEN);

 }

 GO.lcd.print("Hello, ODROIDGO");

 idx = !idx;

 rotate++;

 rotate %= 4;

 delay(1000);

}

void loop() {

 // put your main code here, to run

repeatedly:

 displayGO();

}

You can verify, compile, or upload a sketch from the
toolbar or Sketch menu. Here are some helpful
shortcuts you can use:

CTRL-R: Verify and compile.

CTRL-U: Upload.

Before uploading the binary, you have to select the
proper port at the Tools – Port menu. If the procedure
goes well, you can see “Hello, ODROID-GO” on your
device.

Figure 2 – ODROID-GO

A completed example The complete example is
available by clicking the Files → Examples → ODROID-
GO → Hello_World menu to import and pressing
CTRL-U to compile/upload.

Figure 3 – A completed example

For comments, questions, and suggestions, please
visit the original article at
https://wiki.odroid.com/odroid_go/arduino/02_hello
_world.

https://wiki.odroid.com/odroid_go/arduino/02_hello_world

How to Setup a Minecraft Server
 August 1, 2018 By @qkpham Gaming, Linux, Tutorial

Almost everyone loves playing games, especially
Minecraft! It’s been enjoyed by over 14 million people
worldwide for its addictive gameplay and
customizable maps. Although the o�cial package
from Mojang Software is closed-source, several open-
source Java versions of Minecraft Server are also
available for the ODROID platform. Programming a
virtual world using a free Minecraft Server package
such as Spigot, Bukkit or BungeeCord is also a great
way to learn Java while having fun too! This article
details how to install a basic Minecraft server on your
ODROID, so that you can play online games with a few
of your friends in a world of your own creation. Using
the ODROID as an inexpensive sandbox is also a great
way to test out maps, upgrades and modi�cations
before uploading them to a public server.

Requirements

1. An ODROID from the X, U or XU series

2. An 8+ GB eMMC or Class 10+ MicroSD

3. A custom Ubuntu, Debian or similar image (13.04 or
higher), available from the ODROID Forums
(http://forum.odroid.com/)

4. Java version 1.8 (OpenJDK8 or Oracle JDK8)

5. Local Area Network (LAN) connection, including a
router with port-forwarding feature

Install Java

If Java version 1.8 isn’t already installed on your
system, please refer to the article in this issue of
ODROID Magazine called Installing Oracle JDK8.
Mojang publishes a Java version of the Minecraft
software for compatibility with other operating
systems such ARM Linux.

Install Minecraft

First, download the latest Minecraft Server software
from the o�cial site at
https://minecraft.net/download, making sure to get
the Java-based .tar version.

http://forum.odroid.com/
https://minecraft.net/download

Create a minecraft directory in your home directory
for storing the downloaded minecraft_server.jar.
Once the tarball is downloaded, type the following
commands to start the server:

$ cd ~/minecraft

$ java Xms1536M Xmx1536M jar

minecraft_server.jar nogui

The Minecraft server should be up and running now!
The �nal step is to get the server’s IP address so that
our players can connect to it via their Minecraft
clients. Obtain the internal IP address

Find out the internal (local) IP address of your server
by typing ifcon�g in the Terminal window and locating
the tag inet addr. On my ODROID, the IP address was
listed as 192.168.1.10. Make sure this address has a
long lease issued by the local DHCP server or router in
order to avoid frequent con�guration updates. Setup
port forwarding

Minecraft uses the TCP port 25565, which should be
forwarded to the server’s IP address by your local
router using port forwarding. Refer to the user
manual for assistance with setting up the router to
forward port 25565 to the IP address obtained in the
previous step. Obtain the external IP address

The public IP address that identi�es your LAN to the
outside world can be discovered by visiting
http://www.whatismyip.com. The address will be in
the form aaa.bbb.ccc.ddd, which means that the fully-
quali�ed URL for connecting to the Minecraft Server
on your LAN would be http://aaa.bbb.ccc.ddd:25565.
Note the additionof the relevant TCP port at the and
of the URL.

Iif your external IP is dynamic (typically changed
periodically by your ISP), you can use services like No-
IP. You can create an account on their website, then
download and install the Dynamic DNS Update Client
(DUC) at http://www.noip.com/download. Detailed
instructions on setting up Dynamic DNS can be found
at http://bit.ly/1ggmo2n. In this case, the fully-
quali�ed Minecraft Server address would be
http://youracctusername.no-ip.com:25565.

To make sure everything’s working, you can test that
your server is visible online by going to
http://www.canyouseeme.org. You can also quickly

check its status at
http://dinnerbone.com/minecraft/tools/status/.

System performance will be acceptable under normal
wireless ethernet conditions, but a wired connection
will decrease latency and increase game
responsiveness.

Joining the Game

Start your Minecraft client on a Windows or OSX
machine by entering the public IP address from the
previous step (http://aaa.bbb.ccc.ddd:25565) when
adding a new server to the client’s server list. At the
time of this writing, the Minecraft Client software
unfortunately does not yet run on the ODROID
platform. There is a Minecraft Pocket Edition available
for Android, but it is not compatible with the full
version of Minecraft Server.

A successful connection to the ODROID Minecraft
Server will bring the user into our virtual world as
seen in Figure 1.

Additional Server Con�guration

The server options in Minecraft are con�gured by
editing the server.properties �le located at
/home/yourusername/minecraft/server.properties:

#Minecraft server properties

#Mon Dec 24 09:23:18 EST 2012

generatorsettings=

levelname=world

enablequery=false

allowflight=false

serverport=25565

leveltype=DEFAULT

enablercon=false

levelseed=

serverip=

http://www.whatismyip.com/
http://www.noip.com/download
http://bit.ly/1ggmo2n
http://www.canyouseeme.org/
http://dinnerbone.com/minecraft/tools/status/

maxbuildheight=256

spawnnpcs=true

whitelist=false

spawnanimals=true

hardcore=false

texturepack=

onlinemode=true

pvp=true

difficulty=1

gamemode=0

maxplayers=20

spawnmonsters=true

generatestructures=true

viewdistance=10

motd=A Minecraft Server

The three settings useful in changing maps and
improving performance include:

level-name: If you want to add another map or world
to your server, just unpack the world �le inside your
minecraft folder and then change the level-name
setting to the name of that folder. For example, if your
extracted world folder is odroid then change the level-
name value to odroid instead of the default world
value.

view-distance: Can be reduced to 7 to improve server
responsiveness

max-players: Performs best when set between 2 and 5

Please note that Minecraft relies heavily on �oating
point operations. Unlike x86 architecture based CPUs,
ARM based SOCs are not optimized for �oating point
operations, so the server options need to be tuned
down to compensate for the heavier load.

If you’d like to further improve performance, several
open-source versions of Minecraft Server are
available that signi�cantly decrease the server’s
computations, providing a smoother experience and
allowing more players to join the game. Craftbukkit

Create a folder for Craftbukkit by typing mkdir
~/craftbukkit in a Terminal window, then visit
https://dl.bukkit.org/downloads/craftbukkit/ to
download the latest version of Craftbukkit to the
newly created directory. Once the download has
completed, run the server to build your world.

java Xms1536M Xmx1536M jar craftbukkit.jar

cd ~/craftbukkit/plugins

wget

http://dev.bukkit.org/media/files/674/323/NoLa

gg.jar

wget

http://dev.bukkit.org/media/files/665/783/PTwe

aks.jar

wget

http://dev.bukkit.org/media/files/586/974/NoSp

awnChunks.jar

Spigot

An alternative to Craftbukkit is Spigot, which provides
more con�guration options and is optimized for
performance and speed. Following the same
procedure as listed above, downloading the Spigot
package instead, found at http://www.spigotmc.org/.

mkdir ~/spigot

cd spigot

wget http://ci.md

5.net/job/Spigot/lastSuccessfulBuild/artifact/

Spigot/target/spigot.jar

java Xms1536M Xmx1536M jar spigot.jar

Spigot is very stable, and since it is based on
Craftbukkit, the Bukkit plugins NoLagg, PTweaks and
NoSpawnChunks above will also work with Spigot.
MineOS

MineOS is a Web-based administrative panel that
o�ers easy management of Minecraft servers. It can
handle Vanilla, Bukkit, Tekkit and Canary by default,
but you can install any other server system and
con�gure it to automatically download a new version
whenever available.

Copying your server to an external hosting service

Using an open-source version of Minecraft allows you
to change any aspect of the server, including �xing
bugs and installing addons. Since Minecraft for
ODROID is written in Java, it’s easy for beginners and
experts alike to improve the software and customize
it to their own needs.

Once you have your world ready, you can migrate
your Minecraft creation to a high-tra�c server so that
it can accommodate more players. Simply upload all
of the server �les from the minecraft, spigot or
craftbukkit directory on the ODROID via the web
hosting service’s administration panel.

https://dl.bukkit.org/downloads/craftbukkit/

Enjoy your new ODROID Minecraft Server, and
remember to stay out of the lava! For additional
information or questions, please visit the original

forum thread at
http://forum.odroid.com/viewtopic.php?f=52&t=84.

http://forum.odroid.com/viewtopic.php?f=52&t=84

