
Keyboard for the ODROID GO

Keyboard for the ODROID-GO
 November 1, 2018

With Hardkernel’s new bluetooth keyboard, you can turn your ODROID-GO to a
portable handheld computer.

Building PPSSPP for Ubuntu on the ODROID-XU3/XU4
 November 1, 2018

PPSSPP is a Playstation emulator that runs on many platforms, including Linux and
Android.

ODROID-H2: A Brand New X86 Platform Device
 November 1, 2018

Hardkernel’s new Intel platform, the ODROID-H2, will be available in November 2018.
And we now bring you many advantages that encourage us all to start x86 platforms as
well as the ARM architecture.

Mini ODROID-XU4 Dreamcast
 November 1, 2018

This is a Dreamcast case designed for the ODROID-XU4 single board computer which
can play DC games very well. This is designed as a snap-together case but some �ne
trimming may be needed, to snap together properly. Case dimensions should be

already pre-saved at 4.25″x4.25″. it will have to be

Dirty COW: Linux Exploit
 November 1, 2018

Dirty COW, or technically known as CVE-2016-5195, is an Linux kernel exploit made
famous in 2016.

Linux Gaming: FNA Games on ODROIDs – Owlboy
 November 1, 2018

I grew quite fond of some of the FNA games, so I decided to give them their own little
series in the ODROID magazine.

Coding Camp – Parts 7 and 8: Play your own Tetris Game and Add
Another LCD Display
 November 1, 2018

The Arduino for ODROID-GO Coding Camp, includes two projects among others: Tetris
and I2C interface experiments.

BASH Basics – Part 6: Loops and Functions
 November 1, 2018

BASH has three basic loop structures: the while-loop, the until-loop and the for-loop
which we had seen earlier. So, where do we use which loop?

ODROID XU4 ORA Base Image v1 5 2: Sammy Atomiswave Sega

ODROID-XU4 ORA Base Image v1.5.2: Sammy Atomiswave, Sega
Naomi, Sega Saturn and More!
 November 1, 2018

Team ORA has just released version 1.5.1 v1.5.2 of their awesome ORA Base image for
the ODROID-XU4, that is without a doubt one of the most dedicated Retropie-related

extension teams we see in existence.

Managing Open Source Components: 5 Best Practices to Make Sure
You Do It Right
 November 1, 2018

Given that open source components are a core part of a developer’s work�ow, here
are some best practices that you should consider when adopting an OSS library in your

application.

Introducing NEMS Linux: Part 2 – Monitoring a Local Linux Server
 November 1, 2018

Last month I introduced you to NEMS Linux, the Nagios Enterprise Monitoring Server
for ODROID devices. If you haven’t read that article yet, please start there. It will take
you through the initial setup of NEMS Linux and arm you with some important

information to help you get started. This

Meet An ODROIDian: Roberto Rosario
 November 1, 2018

Please tell us a little about yourself. Hello, my name is Roberto Rosario. I’m the creator
of Mayan EDMS, a free open source document management software, the OpenHolter
a portable, Arduino based electrocardiogram machine and Rocket Launcher the

custom software launcher for the ODROID Go. I’m a software developer working

K b d f th ODROID GO

Keyboard for the ODROID-GO
 November 1, 2018 By Justin Lee ODROID-GO, Tinkering

With Hardkernel’s new bluetooth keyboard, you can
turn your ODROID-GO to a portable handheld
computer. ODROID-GO can emulate some classic
computer systems such as Commodore 64, ZX
Spectrum, and MSX. We believe a physical keyboard
provides a better emulation experience for these
systems.

You can also type in and run BASIC language
programs on the GO. The ODROID-GO keyboard can
also be used with your computer or smartphone as a
Bluetooth LE device. The keyboard has 54 keys in a
familiar QWERTY layout, three status LEDs, a real-time
clock (RTC) IC with a CR2032 battery to keep track of
the current date and time.

Product information is available at

ODROID-GO QWERTY Keyboard RODROID-GO QWERTY Keyboard RODROID-GO QWERTY Keyboard R………

https://www.youtube.com/watch?v=zl-v_YFcNnM
https://www.youtube.com/channel/UC7pBTr7xyc-1Ubj5hwiAUAQ

B ildi PPSSPP f Ub t th ODROID XU3/XU4

Figure 1 – Keyboard for the ODROID-GO

Product information is available at
https://www.hardkernel.com/main/products/prdt_i
nfo.php?g_code=G153982725754, and the Wiki page
is available at
https://wiki.odroid.com/odroid_go/qwerty.

One useful application for the bluetooth keyboard is
playing Commodore 64 emulated games on the
ODROID-GO. The package for Commodore 64
emulation is available at
https://github.com/OtherCrashOverride/frodo-go,
and the package for using the ODROID-GO as a
Bluetooth LE device is available at
https://github.com/OtherCrashOverride/bt-
keyboard-go.

For comments, questions and suggestions, please
visit the original post at
https://forum.odroid.com/viewtopic.php?
f=29&t=32565.

https://www.hardkernel.com/main/products/prdt_info.php?g_code=G153982725754
https://wiki.odroid.com/odroid_go/qwerty
https://github.com/OtherCrashOverride/frodo-go
https://github.com/OtherCrashOverride/bt-keyboard-go
https://forum.odroid.com/viewtopic.php?f=29&t=32565

Building PPSSPP for Ubuntu on the ODROID-XU3/XU4
 November 1, 2018 By @AreaScout Gaming, ODROID-XU4

PPSSPP is a Playstation emulator that runs on many
platforms, including Linux and Android. This article
describes how to build PPSSPP from source, so that
you can run PlayStation games in Ubuntu:

$ cd ~

$ git clone recursive

https://github.com/hrydgard/ppsspp.git

FFmpeg needs to build before the ppsspp binary is
build, since the pre-build binaries are all for soft
�oating points, and we need hardfp:

$ cd ppsspp/ffmpeg

$./linux_armhf.sh

$ cd ..

Before we can start to compile, we have to turn our
/usr/include/GLES2/gl2ext.h into an vendor speci�c
one by disable the use of GL_EXT_bu�er_storage. Our
Mali library does not include/export that function so
we can’t de�ne it:

$ sudo sed i.bak '/^#ifndef

GL_EXT_buffer_storage$/,/^$/d'

/usr/include/GLES2/gl2ext.h

You may want to set the use of only 4 cores in
FFmpeg for tinkering and experimenting, I have
observed that FFmpeg with threading doesn’t work
out very well when all cores are chosen with HMP
(switching higher demanding tasks from LITTLE to the
BIG CPU’s). To do this, you can edit the �le
Core/HW/MediaEngine.cpp at line number 475 to use
only 4 cores, which is better for switching from 4
LITTLE to 4 BIG instead using all 8 cores.

av_dict_set(&opt, "threads", "4", 0);

However, this was observed in Moonlight with using
GameStream with 1080p video �les. PPSSPP video
�les are not that big, and maybe therefore not so CPU
intensive, so that may only impact very little to
nothing.

Next generate the Make�le and start compiling the playable at

ODROID H2 A B d N X86 Pl tf D i

Next, generate the Make�le, and start compiling the
binary:

$ cmake DUSING_EGL=OFF DUSING_GLES2=ON

DUSE_FFMPEG=YES DUSE_SYSTEM_FFMPEG=NO .

$ make j7

If you are on VU5A, you have now touchscreen
capabilities in the menu, and you can also enable ‘On-
Screen touch controls’ if you want. For a
demonstration using GoW – Chains of Olympus on
ODROID XU4 / VU5A, with Mali GBM enabled
userspace driver, please watch the video at
https://youtu.be/QegJlw�kZk?t=374.

You can now brand your emulated PPSSPP to an
unique region by generate a locale for it, using de_AT
as an example (some games may use it for in-game
language):

$ sudo localegen de_AT.UTF8

$ sudo updatelocale LANG=de_AT.UTF8

My settings for GoW along with some texture
replacements for Star Wars – The Clone Wars and Star
Wars – The Force Unleashed so the Games are

playable at
https://forum.odroid.com/download/�le.php?
id=7789. Here is my ppsspp con�guration folder
structure:

odroid@odroid:~$ tree d .config/ppsspp/

.config/ppsspp/

└── PSP

│├── PPSSPP_STATE

│├── SAVEDATA

││ ├── ULES01284SAVE00

││ └── ULES01376SYSDATA

│├── SYSTEM

││ └── CACHE

│└── TEXTURES

││├── ULES00981

││└── ULES01284

For comments, questions and suggestions, please
visit the original thread at
https://forum.odroid.com/viewtopic.php?
f=98&t=32173.

https://forum.odroid.com/download/file.php?id=7789
https://forum.odroid.com/viewtopic.php?f=98&t=32173

ODROID-H2: A Brand New X86 Platform Device
 November 1, 2018 By Justin Lee ODROID-H2

Hardkernel’s new Intel platform, the ODROID-H2, will
be available in November 2018. There are many
advantages that encourage us to start x86 platforms
as well as the ARM architecture:

The x86(x64) platform has very decent Linux software
support

The latest Kernel 4.18 perfectly works out of the box
(Today’s Ubuntu 18.10)

Modern OpenGL 4.5, OpenCL 2.0, Wayland and Vulkan
GPU drivers are working via standard Mesa library

MPEG2/MPEG4/H.264/H.265/VP8/VP9 HW video
decoder & encoder works with VAAPI standard

x86(x64) platform has very strong hardware interfaces

Dual channel 64bit DRAM interfaces for much faster
data processing

Multiple video outputs

Multiple PCIe lanes

Multiple USB 3.0/2.0 root hubs

Multiple Ethernet ports

Multiple SATA ports

Project History

In October 2015, we started to develop the �rst x86
based ODROID board with Intel Cherry Trail x5-Z8500
2.2Ghz CPU which was supposed to be the ODROID-
H. In 2015 and 2016, there were several single board
computers in the market using Intel x5-Z8300 1.8Ghz
Quad-core CPU from other manufacturers.

We saw a signi�cant performance di�erence on
Z8500 2.2Ghz. It was in a di�erent category. After 3
months of schematics and PCB design, we started the
manufacturing process. We faced a big issue that the
Z8500 had a very �ne pitch of BGA, which raised PCB
cost and manufacturing cost twice more than
expected. The Z8300 had 592 pins while Z8500 had
1380 pins. LPDDR3 RAM sourcing was another big
hurdle. The Z8300 supported a normal DDR3, while
the Z8500 supported only LPDDR3, which was much
more expensive with very long lead time. The Z8500

CPU itself was very competitive but it was not begin mass production of ODROID H2 within a few

CPU itself was very competitive, but it was not
competitive enough when it came time to create the
�nal product.

In August 2016, we started another x86 board design
with the Intel Braswell N3160 CPU. Having learned
lessons from the previous iteration, the second
development was faster and more successful. This
time, we named the project ODROID-H1. We made
the �rst engineering sample in February 2017 with
8GB onboard DDR3 memory. The ODROID-H1 was
used for a dedicated project and the result was quite
successful. However, the next generation Intel CPU
Apollo Lake was already available in the market, and
we thought Braswell was not competitive in the
generic SBC market. Additionally, the 1GB DDR3 chip
shortage problem also blocked the launching of the
H1 model.

In December 2017, we considered the AMD Ryzen 5
2500U 3.5Ghz mobile processor. The performance
was very impressive, but the price of the CPU was also
very high. Fortunately, Intel also announced the
Gemini Lake processors. It was slower than the Ryzen,
but much faster than the Intel Apollo Lake, and the
price was reasonable. Finally, we decided to build a
high-end single board computer called the ODROID-
H2 with the following speci�cations:

2.3Ghz Quad-core processor J4105 (14nm) with 4MiB
Cache

Dual-channel Memory DDR4-PC19200 (2400MT/s)

Total 32GiB RAM Space with two SO-DIMM slots

4 x PCIe 2.0 for one NVMe storage

2 x Gbit Ethernet ports

2 x SATA 3.0

SSE4.2 accelerator (SMM, FPU, NX, MMX, SSE, SSE2,
SSE3, SSSE3, SSE4.1, SSE4.2, AES)

Intel UHD Graphics (Gen9.5) 600 (GT1) 700Mhz

HDMI 2.0 and DP 1.2 multiple video outputs

We started the hardware design in March 2018, and
we made the �rst engineering samples in July. After
�xing some hardware issues, we had the second
engineering samples in September. Everything went
well, and we passed the FCC, CE, KC and RoHS
certi�cation tests in the past few months. We will

begin mass production of ODROID-H2 within a few
weeks, and our �rst shipment will be available in late
November.

The ODROID-H2 includes a large heatsink, which will
give you a quiet and powerful computing experience.
The size of the board is about 110x110x43mm, and
weighs about 320 grams including heatsink, two
DRAM modules, and M.2 NVMe SSD.

Figure 1 – ODROID-H2

Figure 2 – ODROID-H2 Block diagram and
interconnections.

Figure 3 – Closeup of ODROID-H2 PCB

Figure 4 – Closeup of ODROID-H2 PCB

Figure 5 – Closeup of ODROID-H2 PCB

Let’s look into the CPU frequency and thermal
characteristics with the stock passive heatsink. Figure
6 shows the result of measuring the temperature of a
quad-core CPU under heavy stress for three hours.
The frequency remains at 2.3 GHz without throttling
and the temperature is maintained at lower than
80°C. The ambient temperature is 25°C approx. The
test was run using the following command:

$ stressng cpu 4 cpumethod matrixprod

Figure 6 – ODROID-H2 CPU stress test results

We also measured the power consumption with an
eMMC storage after booting Ubuntu 18.10:

Idle: 4Watt (Approx.)

CPU Stress: 14Watt (Approx.)

CPU+GPU Stress: 22Watt (Approx) The dual 4K/60Hz display output is fantastic with

CPU+GPU Stress: 22Watt (Approx.)

Power-o�: 0.5Watt (Approx.)

Suspend: 0.6Watt (Approx.)

Storage performance

We tested eMMC, USB 3.0, SATA3 and NVMe storages
with the following command:

$ iozone e I a s 100M r 4k r 16384k i 0

i 1 i 2

It should be noted that the SSD connected to the M.2
MVMe 4-lane PCIe interface has a transfer rate of over
1.6GiB / sec.

Figure 7 – ODROID-H2 storage benchmark results

We also measured the video transcoding
performance with a 4K/H.265 to 720p/H.264 test
condition. Fully hardware accelerated 4K/H.265 to
720p/H.264 video transcoding could be done with
FFmpeg on VAAPI. Amazingly, 10 minutes of 4K/30Hz
video �le could be transcoded to 720p/30Hz video in
3 minutes. We also learned that when dual channel
memory is con�gured, the transcoding performance
is about 25% faster.

Figure 8 – ODROID-H2 storage benchmark results

The dual 4K/60Hz display output is fantastic with
HDMI 2.0 and DP 1.2 ports, as shown in Figure 9.

Figure 9 – Hardware-accelerated WebGL example
running at 7680 x 2106 resolution

The video at https://youtu.be/heb1VC5FbIM shows
how nicely the ODROID-H2 works, using Ubuntu 18.10
with Kernel 4.18 from eMMC storage. Running
Dolphin on Ubuntu and enabling Vulkan GPU driver,
we could smoothly play Wii games.

Hardware virtualization with VT-x technology

Windows 10 can run on Ubuntu as a guest OS. Two of
the four CPU cores and 4GB of 8GB are assigned for
the guest OS. We tested it with the recent VirtualBox.
We will check the HW 3D/2D acceleration
performance on the guest OS later.

Figure 10 – Hardware virtualization with VT-x technology

ODROID-H2 price will be o�cially announced next
month when it starts selling. The price is anticipated
to be above USD$100.

ODROID-N2

When we gave up on the N1, the N2 (based on ARM
Cortex A73) was already on the way. So far, it is
working great at the evaluation sample stage, but we
still need some more time to check the hardware and
software stability. We will make an announcement in
the ODROID forums (https://forum.odroid.com) as
soon as it is available for public open.

Cases
We have introduced many di�erent types of cases

https://youtu.be/heb1VC5FbIM
https://forum.odroid.com/

We have introduced many di�erent types of cases
earlier for previous ODROID boards. For the ODROID-
H2, we are pleased to introduce 4 types of case. They
are designed with our experiences and what we have
learned from the forums. All of them are built with
acrylic panel, and you can easily build them up by
yourself.

Type-I

This is basically a very similar design to the ODROID
CloudShell 2 which can mount up to two 3.5″ drives.
Similar to the ODROID CloudShell 2, this case also has
a 90mm fan in order to blow out hot air comes from
the board and drives. Since the ODROID-H2 supports
native SATA interface unlike the ODROID CloudShell 2,
which uses USB 3.0 to SATA bridge with ODROID-XU4,
the drives can be connected with cables.

Figure 11 – Design prototype for ODROID-H2 case

Figure 12 – Design prototype for ODROID-H2 case

Figure 13 – Design prototype for ODROID-H2 case

Type-II

You may want to attach your ODROID to the back of a
display device in order to make your table tidy. The
Type-II is one that can be installed by a VESA mount
bracket to the bottom of it and hang up to your
monitor or TV. By default, a 90mm fan grill is included
in the package instead of adding air holes to the top
panel. We are expecting to run it with a passive
heatsink only, but if you like to blow out the hot air for
your con�dence, you can put a 90mm regular PC fan
and cover with the grill by yourself.

Figure 14 – Design prototype for ODROID-H2 case

Figure 15 – Design prototype for ODROID-H2 case

Figure 16 – Design prototype for ODROID-H2 case

Figure 17 – Design prototype for ODROID-H2 case

Type-III

The ODROID-H2 has an NVMe slot on the bottom and
can run as a primary storage, but you may also need
more storage. The Type-III case would be good choice
if you only require running one or two 2.5″ drive. Both
Type-III and Type-IV have plenty of space for drives.

Figure 18 – Design prototype for ODROID-H2 case

Figure 19 – Design prototype for ODROID-H2 case

Type-IV

If you are not happy with a Type-III case, since you
cannot attach a 3.5″ drive, you can consider the Type-
IV case. The basic function and design is very similar
to the Type-III, but the lower space is extended large
enough to mount a 3.5″ drive. There is a piece of a
partition that can hold your drives, and by moving it,
you can mount two 2.5″ drives or one 3.5″ drive.
Unfortunately, it is not able to mount two di�erent
size of drives at the same time because of its
architecture.

Mi i ODROID XU4 D t

Figure 20 – Design prototype for ODROID-H2 case

Figure 21 – Design prototype for ODROID-H2 case

Figure 22 – Design prototype for ODROID-H2 case

Figure 23 – Design prototype for ODROID-H2 case

Figure 24 – Design prototype for ODROID-H2 case

For comments, questions, and suggestions, please
visit the original post at
https://forum.odroid.com/viewtopic.php?
f=29&t=32536.

https://forum.odroid.com/viewtopic.php?f=29&t=32536

Mini ODROID-XU4 Dreamcast
 November 1, 2018 By @8BitFlashback Gaming, ODROID-XU4

This is a Dreamcast case designed for the ODROID-
XU4 single board computer which can play DC games
very well. This is designed as a snap-together case but
some �ne trimming may be needed, to snap together
properly. Case dimensions should be already pre-
saved at 4.25″x4.25″. it will have to be printed at
these dimensions in order for the ODROID-XU4 to �t
properly.

Print Settings

Printer Brand: XYZprinting

Printer: da Vinci 1.0 Pro 3in1

Rafts: Yes

Supports: Yes

Resolution: 1mm

In�ll: 30%

Filament: generic abs white

I added supports and rafts were used where needed,
printing in 1mm layers.

Figure 1 – Printing process

Figure 2 – Printing process

Figure 3 – Printing process

Figure 4 – Printing process

Figure 5 – Printing process

Figure 6 – Printing process

Figure 7 – Printing process

Figure 8 – Printing process

Post-Printing

Some extra work was required to achieve realism. I
used an exacto knife and small putty knife to remove
supports & rafts, then sanded all parts with 120 grit. I
�t all electronics inside case some drilling and
trimming required, then removed electronics. I used 2
coats of �ller primer to �ll imperfections then wet
sanded 1st coat with 360 grit and 2nd coat with 600
grit. Then then painted with matte white and matte
gray, and applied a matte clear coat.

Figure 9 – I did detail paint for controller ports and
buttons

Figure 10 – I applied decals for logos and used Avery
clear shipping labels

Figure 11 – The power button

Figure 12 – We had to drill a small hole through power
button stem so we could secure with a paperclip

Figure 13 – We had to drill a small hole through power
button stem so we could secure with a paperclip

Figure 14 – We had to drill a small hole through power
button stem so we could secure with a paperclip

Di t COW Li E l it

Figure 15 – We used the spray paints shown

Figure 16 – We used the spray paints shown

Figure 17 – The controller ports were glued in place after
all the painting was completed

Figure 18 – The controller ports were glued in place after
all the painting was completed

Figure 19 – The controller ports were glued in place after
all the painting was completed

For comments, questions and suggestions, please
visit the original article at
https://www.thingiverse.com/thing:3119657.

https://www.thingiverse.com/thing:3119657

Dirty COW: Linux Exploit
 November 1, 2018 By Andrew Ruggeri Android, Linux, Tutorial

Introduction

Dirty COW, or technically known as CVE-2016-5195, is
an Linux kernel exploit made famous in 2016. The
exploit has been known to a�ect Linux kernels from
version 2.6.22 which came out in 2007. This exploit
was present all the way to it’s discovery in and �x in
October of 2016. At which point large Linux
distributors were quick to push a �x. There is however
a still notable problem with this, while Linux
distributions have had kernel patches and updates
pushed, many Android devices which run a Linux
kernel have yet to see any �x. Hardkernel is unique in
how they provide a continuous stream of kernel and
software updates, as many Android smartphone
vendors adopt a “ship it and forget” idology when it
comes to their Android devices. If you want to try this
on your own ODROID device, simply download an old
Android and Ubuntu image from before October
2016. This article is going to focus on the ‘what’ and

‘how’ of the Dirty COW exploit, as well as the steps it
would take to port the code to Android.

The ‘What’ of Dirty COW

Dirty COW, is so named as it is a method to perform a
dirty Copy On Write operation. This allows an attacker
to edit to a �le which they do not have write access to.
The exploit uses a race-condition on the copy-on-
write mechanism in linux. By brute-force an attacker
can induce the race condition, allowing the altered
memory to written with no regard for the user’s write
access. This is a critical bug as, a non-root user would
not be allowed to edit the ‘/etc/passwd’ �le, which
contains information regarding user accounts.
Overwriting this �le can enable the attacker to gain
root permission as well as change passwords of
others. Later in the code section we will see exactly
how this can be done. The example code given with
this article is setup to write text to a target �le

however dirty COW can be used to overwrite any changes private Once the copy is done process B

however, dirty COW can be used to overwrite any
data.

The ‘How’ of Android Deployment

As mentioned earlier the Android OS runs a version of
the Linux Kernel at its core. Along with that, many
Android Smartphones allow software to be run which
has not been signed and installed from the ‘Google
Playstore’ app marketplace. This allows easy
installation and deployment of our app. We just need
to create an APK installer for our app and move it to
the target smartphone.

From the software point of view, we have a relatively
straightforward path. Google provides all the
necessary tools for developing an Android app,
mainly Android Studio. The pieces we need are
Android Studio and the Android NDK. There is already
an abundance of setup guides for Android Studio, and
I’m going to avoid adding another. The NDK, or Native
Development Kit, for Android allows us to write and
cross-compile C and C++ code. It also, and more
importantly, allows us to make certain function calls
which are pivotal to this exploit. We will see a listing of
all the functions and explanation of the source code
next. Since, as stated before Android uses the Linux
kernel, the code example here will work with little, or
no, modi�cations (depending on use case).

The ‘How’ of Dirty COW

Linux’s memory use is the main point in how this
vulnerability works. A copy of the code with
annotation is following this. However, I �nd it best to
have a quick high-level overview If we map a �le from
disk into memory, that �le’s content can be read
directly from memory now, this is done with the
mmap() function bellow. When we do this, if we only
have read access to the �le, the �le can only opened
and mapped with read access as well. However the
exploit takes care of this limitation for us. When we
map the �le we into memory we want it private. If
another processes (we’ll call it process B) wants
read/write access this memory that is OK. When
process B writes to this memory, the memory is
copied so the changes will only be seen by process B.
This is the idea of copy-on-write, as once process B
writes to this memory a copy is made keeping all the

changes private. Once the copy is done, process B
now points to the new private memory location and
that data can be changed. We also have madvise(),
which is telling the kernel to discard the newly copied
private memory, once discarded processes B will now
point back to the original memory location. You can
now start to see how a race condition can be induced.
What we want is for process B to write to the original
memory location loaded by process A. There are 3
steps then when working correctly go like this when
process B want to write:

1. Copy data from original location to new location

2. Update memory pointer for process B to point to new
location

3. Write data

4. madvice() clear the new copy, and update process B
memory pointer back to the old location.

If we have the steps above, working their current
arrangement there is no problem. However if we keep
calling madvice() we can get a �ow that goes: 1, 2, 4, 3.
If madvice() runs before the data is written we can
have everything align were the memory is pointing
the original location and that is where the write takes
place!

The Code

The git project contains the source code and all
Android Studio project �les as well. Hidden in there as
well is a cmake �le which will build a dirty COW test
application for a desktop Linux Distro. If you are
familiar with Java and Android development, most of
the “App” part of the code should be quick to
understand, as there not much to it. The Java side
consists of reading info from a couple blank text
boxes, and calling the NDK C code on button press.
We’ll take a deeper look through the C code, as that is
what is pertinent for this article.

The C code is simple and short, under 200 lines. With
a quick glance at the code you’ll see that, the basic
steps are to open the target �le as read only, then
map that �le into that processes memory. Once
loaded into memory, two ‘dueling’ threads are
spawned. One thread continuously tries to write the
desired data to the processes memory. The second

thread will continuously attempt or “hint” as the man printf("Failed to map file to memory

thread, will continuously attempt, or “hint” as the man
page says, to tell the kernel we don’t need that
memory page, this will write the memory to disk.

Without further ado, let’s have a look at some of the
crucial parts of the code:

After opening the target �le to the �le descriptor
named ‘�le’, we call fstat, which will return the status
and information about that �le. Here we are mainly
interested in the size of the �le, which is struct
member st_size. We do some safety and sanity checks
and continue.

// Get & check file status

struct stat fileStatus;

if(fstat(file, &fileStatus) != 0)

return 1;

// check sizes

fileSize = fileStatus.st_size;

if(fileStatus.st_size <= 0 ||

fileStatus.st_size <= strlen(replaceText) +

offset) {

printf("Size problem:

 File Size: %lld

 Text Size: %ld",

fileStatus.st_size, strlen(replaceText));

return 1;

}

Once we have the �le’s size, in bytes, we move on to
call mmap. This function will map the �le’s data into
the process memory. We needed the �le’s total size,
as to map all of it to memory. The other important
arguments provided are the two enums PROT_READ,
and MAP_PRIVATE. The enum PROT_READ says the
memory can only be read. MAP_PRIVATE says for
mmap to use private copy-on-write mapping, this
means that changes will only be visible to the calling
process. Other parameters can be found on the
mmap man page or here: http://man7.org/linux/man-
pages/man2/mmap.2.html

// map the file into the's proccess memory and

get address

memoryMap = mmap(NULL,

(size_t)fileStatus.st_size, PROT_READ,

MAP_PRIVATE, file, 0);

if(memoryMap == MAP_FAILED) {

printf("Failed to map file to memory

");

return 1;

}

�leO�set = (o�_t)memoryMap + o�set;

With this info, we have everything kick o� our two
threads. These two threads we will let run, in order to
induce our sought after race condition. In my
experience, you don’t need to let the threads run long
at all, less than a second and the �le was overwritten.
Here we have the memory advise function that gets
called from the pthread_create. The function is pretty
sparse, it will continuously call madvise or
posix_madvise. Madvise takes the address of where
out mapped �le is, the size, and the
MADV_DONTNEED enum. This enum as mentioned
before, ‘hints’ to the kernel to page out that memory.

void *adviseThreadFunction(void* adviseStruct)

{

printf("Thread: Memory Advise Running

");

while(threadLoop) {

madvise(memoryMap, fileSize, MADV_DONTNEED);

}

printf("Advise Thread Bye

");

return NULL;

}

Here is the second thread, it starts by opening the
pseudo-directory for that process’s memory located
at /proc/self/mem. Upon, a successful open we move
onto the endless-loop part, where we seek to the
memory location we are interested in, followed by
writing our desired replacement data to it.

void *writeThreadFunction(void* text) {

printf("Thread: Write Running

");

const char* replaceText = (char*)text;

int memFile = 0;

if((memFile = open("/proc/self/mem", O_RDWR))

< 0) {

printf("Failed to open /proc/self/mem

");

Li G i FNA G ODROID O lb

");

return NULL;

}

// Continually try to write text to memory

size_t textLength = strlen(replaceText);

printf("%ld : %s

", textLength, replaceText);

while(threadLoop) {

// seek to where to write

lseek(memFile, fileOffset, SEEK_SET);

// Write replacement text

write(memFile, replaceText, textLength);

}

printf("Write Thread Bye

");

return NULL;

}

If you enjoyed this article and would like to see more
more security focused articles in future issue, let me
know by posting on ODROID magazine forum thread.

Linux Gaming: FNA Games on ODROIDs – Owlboy
 November 1, 2018 By Tobias Schaaf Gaming, ODROID-XU4

A short while ago, @ptitSeb made an article about
FNA games and how they now work on ODROID.
Together, we worked to make sure this was possible.
He kept working on it to improve his gl4es project and
other parts to give us the best support on ODROIDs
for FNA games.

I have also been working with him to try and make it
easier from a user point of view, by creating the
monolibs-ODROID package (available for all ODROIDs)
and providing an installer that allows users to install
their games on ODROID.

During this process, I grew quite fond of some of the
FNA games, so I decided to give them their own little
series in the ODROID magazine, as not everyone is
familiar with these games and how they work on
ODROIDs.

Owlboy

I just recently bought Owlboy on GOG as part of their
10th year anniversary. I put it on my ODROID and was

surprised how it worked out of the box. It was rather
easy to get to work properly and looked great. In fact,
I was surprised that I could run the game in 1080p
without any stuttering or slow-downs.

Figure 1 – Owlboy running in 1080p on ODROID

(Figure 1 – Owlboy running in 1080p on ODROID)

The game itself can be played via keyboard and
mouse or via gamepad, but believe me when I say,
you WANT to use a gamepad. I was rather surprised
at the quality of the gamepad integration with this

game Using my XBox 360 controller I use both analog

game. Using my XBox 360 controller I use both analog
sticks, the trigger keys, and the shoulder buttons. The
button layout is actually quite comfortable. It’s nice to
have a game that integrates well with your controller.
It feels like this game was made for the ODROID itself.

Installation

I wrote a small installer for the game that, if you are
using either one of my images or my repositories, you
can install by simply using the command:

$ aptget install owlboylauncherodroid

The installer currently only supports the GoG installer,
but might be updated in the future to support the
Humble Bundle or Steam as well.

Simply point to the Linux version of Owlboy from GoG
and the rest will be done automatically.

Graphics

The game uses a mix of retro-style 16-bit graphics and
more modern e�ects. If it had existed “back in the
day,” you probably could have had a similar game on
the Sega Saturn.

Figure 2 – In-game graphics have multiple layers

Figure 3 – Clouds in foreground and background, light
shafts

Figure 4 – Colored transparent mist and di�erent vines
in foreground and background

The graphics are really nice and change from bright
colored open skies with lush green grass lands to dark
gray caverns. There’s a good mixture of graphics and
palettes used in the game. The old style graphics �t
the game without feeling too pixelated or like it is
trying too hard to simulate the old 8-bit era, as some
other retro-styled games have. Although the pictures
above don’t show it, there are a lot of outdoor scenes
where the sky is blue and white, with wide open
spaces. The game occasionally zooms out to give you
an overview of where you are, and zooms in closer if
you are in tight areas. All in all, the graphics are good
and �t the gameplay. The ODROID-XU3/XU4 is able to
keep up with the graphics and running the game in
1080p is no big deal. Even the ODROID-C2 can handle
running the game with the 1080p a possibility.

I haven’t tried it on an ODROID-C1 yet, but my guess is
that it should work �ne.

Sound and Music

There isn’t much I can say here. While the sound is
�ne, there’s not much variety. There are only so much
shooting, swirling, wing-�apping, object-hitting
sounds you can make and although it’s good quality
sound, it’s not very impressive. There’s no voice
acting, so there’s not much you can say in regards to
narration.

The music is �ne, I guess. It �ts the setting, but there’s
also nothing special about it. The tunes are not
particularly memorable: I never found myself thinking
I’d want to listen to the soundtrack outside of the
game.

It feels like any random platformer 16-bit era music. It
does the job, but it’s de�nitely no Final Fantasy,

Aquaria or Heimdall 2 where the music sticks in your �ghting a large number of regular enemies At the

Aquaria, or Heimdall 2, where the music sticks in your
head and you �nd yourself putting the soundtrack on
your phone to listen to even when you’re not playing.

Story

I’m not quite sure about the story yet. You are a mute
owlboy, the worst of your kind, and you are not very
good at anything. You’re unreliable and most of the
time you just mess up. Because of this, you only have
a few friends. While progressing through the story
you meet up with new people and make new friends,
and their help compensates for your lack of ability.
You explore ancient owl-temples, try to save the owl
people capital by �ghting o� a pirate attack, and
whatnot.

I’m still only a couple of hours into the game but I can
already say that, in my opinion, the story is not very
interesting. Still, it’s not too shabby and most of the
time you can just concentrate on �ghting and
exploring.

Since there isn’t any voice acting and you have read
everything everyone says, I’m even less interested in
the story and just progress through without paying
much attention.

Gameplay

The gameplay is really good. While game might look
and sound like your random platformer/shooter in
certain ways, it has just the right feel and control to be
di�erent. The fact that you can only stun enemies and
require your friends, which you carry around with
you, to actually kill enemies or destroy objects, is
quite nice. That you can leave them behind and later
teleport them back to you is also a nice way to solve
puzzles or simply look ahead for a little while.

Thanks to the controller support you can �y and
dodge in one direction while aiming and shooting in
another direction, which is often needed, especially
when �ghting boss monsters.

Speaking of boss monsters: The game progresses like
most action platformers. You go into a new area–
mostly a dungeon of a kind–and kill whatever
monsters are in there while trying to solve switch
puzzles and such. After a while you often encounter
some mid-bosses, or an area where you are trapped

�ghting a large number of regular enemies. At the
end you’ll encounter a boss to �ght. They actually
come in very di�erent layouts. First, you’ll only have to
hit a boss a number of times, then later you’ll need to
damage and destroy secondary objects as well. At
other times you just need to run away and survive
�ghting your way through smaller monsters and
destroyable objects.

Figure 5 – Entering a new boss area

Figure 6 – and of course �ghting the boss you just found

Figure 7 – In this �ght you attack the pirate that is �ying
around but also have to destroy the ship that shoots at
you when his captain recovers

Boss �ghts get harder from one boss to another, not
due to the fact that the bosses itself are harder to kill,
but due to the fact that you get additional tasks to do
to damage or kill an enemy.

(Figure 9 and 10 This boss just chases you and you

C di C P t 7 d 8 Pl T t i G d

Figure 8 – In this �ght you attack the pirate that is �ying
around but also have to destroy the ship that shoot at
you when his captain recovers

From some of the boss �ghts you actually get
something good. In the example above, after you’ve
beaten the pirate he joins you and gives you the
ability to either shoot multiple enemies at once with
his �ame throwing shotgun, or destroy large and
more durable objects, sometimes with �re, to open
new paths. He’s the second guy that joins you in your
quest.

Figure 9 and 10 – This boss just chases you and you have
to dodge and destroy items until at the end it just stops
and freezes in place

(Figure 9 and 10 – This boss just chases you and you
have to dodge and destroy items until at the end it
just stops and freezes in place)

Conclusion

I was quite surprised at how well the game works,
especially the integration with the game controller
and the built-in options for XBox and Playstation
controllers. The graphics look nice and scale well,
which makes playing on the TV even better.

As the game doesn’t require anything special in the
way of drivers, it runs on all ODROID platforms
including 64-bit platforms such as the C2 or N1. The
performance on the XU3/XU4 was outstanding. I had
no lags or anything. This game feels like it was made
for ODROID.

If you like action platformers I highly recommend this
game. It will keep you busy for many hours and shows
once more what ODROID is capable of. Thanks to
@ptitSeb who made it possible to play these games
on ODROID.

Coding Camp – Parts 7 and 8: Play your own Tetris Game and
Add Another LCD Display
 November 1, 2018 By Justin Lee ODROID-GO, Tinkering, Tutorial

The Arduino for ODROID-GO Coding Camp, includes
two projects among others: Tetris and I2C interface
experiments. Before getting started with these
projects, it is advisable to work on the Arduino Setup
and Hello World projects listed in the reference
section below.

Tetris

Figure 01 – Tetris

You can import, compile and upload the latest version
of the game to ODROID-GO by selecting the following
menu options in the Arduino IDE: Files → Examples →
ODROID-GO → Applications → Tetris. Then enter the
key-combination: CTRL-U to compile and upload.

Figure 02 – Compile & upload

After uploading is complete, the following message is
displayed:

Hard resetting via RTS pin…

I2C Interface

Figure 03 – LCD with cable

Let us learn how to use I2C interface on the ODROID-
GO IO expansion port. First, you will have to connect
the 16×2 LCD to your ODROID-GO’s P2 (expansion
connector) as follows:

P2 on ODROIDGO 16x2 LCD

GND (pin #1) GND

IO15 (Pin #4) SDA

IO4 (Pin #5) SCL

P3V3 (Pin #6) VCC

Figure 04

Figure 05

The next step involves importing the needed library.
Depending on your host operating system, the steps
are slightly di�erent:

For MS Windows, open a terminal and enter the
following commands:

c:> cd

$USERPROFILE/Documents/Arduino/libraries

c:> git clone

https://github.com/marcoschwartz/LiquidCrystal

_I2C

In Linux, open a terminal and enter the following
commands:

$ cd ~ && mkdir goproj && cd goproj

$ git clone

https://github.com/marcoschwartz/LiquidCrystal

_I2C

~/Arduino/libraries/LiquidCrystal_I2C

To use I2C on ODROID-GO, the ESP32’s Wire library is
useful. This library can be used via the Arduino IDE.
We know that the ports used for I2C communications
include #15 for SDA and #4 for SCL. De�ne a pre-
processor and use the Wire.begin() function to include
the code below. You can pass only 2 parameters to
the function: the pin #s for SDA and SCL listed above.

#define PIN_I2C_SDA 15

#define PIN_I2C_SCL 4

void setup() {

// put your setup code here, to run once:

Wire.begin(PIN_I2C_SDA, PIN_I2C_SCL);

}

void loop() {

// put your main code here, to run repeatedly:

}

We need to add code to setup the LCD. Include the
LiquidCrystal_I2C.h header �le from the library to
show a message on that easily. Create an instance for
controlling the LCD with using the statement, which
takes the LCD_ADDR, columns and rows parameters
relevant to the 16×2 LCD:

LiquidCrystal_I2C lcd(LCD_ADDR, 16, 2

Invoke init(), turn on the backlit with backlight(), set
cursor to specify a point to write down with
setCursor() and print using a call to print():

#include

#define PIN_I2C_SDA 15

#define PIN_I2C_SCL 4

const uint8_t LCD_ADDR = 0x3f;

LiquidCrystal_I2C lcd(LCD_ADDR, 16, 2);

void setup() {

// put your setup code here, to run once:

Wire.begin(PIN_I2C_SDA, PIN_I2C_SCL);

lcd.init();

lcd.backlight();

lcd.setCursor(0, 0);

lcd.print("Hello, ODROIDGO");

}

void loop() {

// put your main code here, to run repeatedly:

}

Press CTRL-U to compile and upload the sketch to
show a message on the LCD.

then enter the key combination: CTRL U to compile

BASH B i P t 6 L d F ti

Figure 06 – Compile & upload

We have prepared a more advanced version of this
project. It can be imported using the menu options:
Files → Examples → ODROID-GO → 16x2_LCD_I2C,

then enter the key-combination: CTRL-U to compile
and upload.

References

https://wiki.odroid.com/odroid_go/arduino/01_ardui
no_setup
https://wiki.odroid.com/odroid_go/arduino/02_hello
_world
https://wiki.odroid.com/odroid_go/arduino/33_gam
e_tetris
https://wiki.odroid.com/odroid_go/arduino/09_16x2l
cd_i2c https://github.com/espressif/arduino-
esp32/tree/master/libraries/Wire

https://wiki.odroid.com/odroid_go/arduino/01_arduino_setup
https://wiki.odroid.com/odroid_go/arduino/02_hello_world
https://wiki.odroid.com/odroid_go/arduino/33_game_tetris
https://wiki.odroid.com/odroid_go/arduino/09_16x2lcd_i2c
https://github.com/espressif/arduino-esp32/tree/master/libraries/Wire

BASH Basics – Part 6: Loops and Functions
 November 1, 2018 By Erik Koennecke Development, Linux, ODROID-C2, ODROID-XU4

The introduction into scripting ends with the �nal
aspects of scripting with loops and functions. To see
more about BASH, the command line, interesting
BASH scripts, and command line functions, you can
look at the BASH scripts and analyze them with your
newfound knowledge from the last parts. We covered
loops and functions brie�y at the beginning, but since
they are so important, this article contains more detail
about them and how to use them.

Loops

BASH has three basic loop structures: the while-loop,
the until-loop and the for-loop which we had seen
earlier. So, where do we use which loop? while-loops
are used as long as an expression evaluates to true.
Let’s �rst look at a script which opens four terminals
for us to avoid repetitive work:

4terminals.sh

#!/bin/bash

This script opens 4 terminal windows

i="0"

while [$i lt 4] #test condition and while

statement

do

#open terminal and background it until 4

windows are open

mateterminal &

i=$[$i+1] #increment counter

done

If you set your variable to true, the loop runs
inde�nitely. You can get out of it with a ctrl-c or a
break statement, which is covered below. To
increment the counter, ((i++)), is also a valid way to do.
Avoid “o�-by-one” or “fencepost”-errors! Check when
to use lt or le, larger than or larger or equal, by using
a simple example �rst. until-loops are run until the
test becomes true. By changing the statement in the
above script to until and changing the test, we can
achieve the same result:

4terminals2 sh Imagine that you want to write a script to backup a set

4terminals2.sh

#!/bin/bash

This script opens 4 terminal windows

i="0"

#test condition and until statement

until [$i ge 4]

do

#open terminal and background it until 4

windows are open

mateterminal &

((i++)) #increment counter

done

By adopting the statement and the test, we achieve
identical results. Why use a di�erent statement, then?
This is about clean and elegant code. You choose
whatever is easiest to read, code, and understand in a
particular situation. “Don’t touch the paint until it’s
dry.” is easier to understand than “Don’t touch the
paint while it’s not dry.”, or even “Don’t touch the
paint while it is wet.” The for-loop was already
covered; the for … do … done structure should be
clear by now. With for i in {a..b}, we can also de�ne
ranges of values. A script with a range would look like
this:

4terminalswithrange.sh

#!/bin/bash

simple range in for loops

for i={1..4}

do

mateterminal &

done

echo "Preparations completed!"

Be careful not to include spaces in the curly brackets,
otherwise this will be seen as a list of items! If the �rst
number is bigger than the second, the count is down
instead of up; also, an added number after two more
points like {a..b..c} will use an increment with the size
of c. for-loops are incredibly useful when we want to
process sets of �les, as we have already seen in the
earlier examples.

However, there are other ways to control loops and
scripts: the break, continue and select commands.

Imagine that you want to write a script to backup a set
of �les by copying them to another place, but only
when the disk is less than 95% full:

backup�les.sh

#!/bin/bash

make a backup of files in dir

usage: backupfiles.sh dir

for i in $1/*

do

level=$(df $1 | tail 1 | awk '{ print $5 }'

| sed 's/%//')

if [$level gt 95]

then

echo Low disk space 1>&2

break

fi

cp $i $1/backup/

done

With continue, you can stop the execution of code
inside a loop and jump to the next iteration. If we
want to extend the backup script, maybe we
introduce a code block to alert us of �les with
insu�cient read rights, which therefore cannot be
copied:

for i in $1/*

do

if [! r $i]

then

echo $i not readable 1>&2

continue

fi

cp $i $1/backup/

done

The select command makes it possible to have a
simple menu for data entry for given options: “select
var in ; do ; done” is the syntax. There is no error
checking; invalid input leaves var empty. The loop
ends with a break statement, or an EOF signal, and
the prompt can be changed by changing the system
variable PS3. The following code demonstrates a
practical application:

odroidid.sh

#!/bin/bash

Odroid model selector

model='HC1 HC2 XU4 C1+ C2 Quit' Alexander Epstein You can install them with the

model='HC1 HC2 XU4 C1+ C2 Quit'

PS3='Select Odroid type: '

select name in $model

do

if [$model == 'Quit']

then

break

fi

echo Your model is Odroid $model

done

echo End.

Functions

Functions are ways to reuse code, either in scripts or
in your .bashrc �le, where we already encountered
them. Functions are �nal scripting item that will be
introduced. With functions, you need to de�ne them
before calling them in BASH. A function de�nition is:

function function_name {

}

or alternatively

function_name() {

}

As usual, arguments passed to the function are
accessed with $1, $2, and so on. BASH functions give a
return status, by using return n in the function, where
n is any number, and retrieving it with $? from the
calling script. Conventionally, return status 0 indicates
a run with no problems.

If a function does NOT return a result, you can work
around this by using command substitution with $(
function_name) and having the function print out
only the result. Then, you can assign a variable var=$(
function_name) with the value the function would
normally print out.

Miscellaneous

Let’s have a look at some interesting BASH scripts
which use the loop types and functions. An
interesting, up-to-date collection is Bash Snippets by

Alexander Epstein. You can install them with the
following commands, or directly with git clone, like
mentioned in the instructions on the Github webpage:

$ sudo addaptrepository

ppa:navanchauhan/bashsnippets

$ sudo apt update

$ sudo apt install bashsnippets

I want to look at two of these snippets more closely:
geo and qrify. Please look at the scripts in your
favorite editor. They are examples of good scripting
and They exemplify the usage of what we have
learned so far. You can �nd them with the usual
commands, �nd / -iname ‘*qrify*’ 2>/dev/null �nds
qrify.sh anywhere on your system regardless of your
method of installation. First, a look at geo, as shown
in Figure 1.

Figure 1 – geo

The help page of geo shows what you can do with it –
a useful script to get the WAN and LAN IP of your
ODROID, information about your network as well as
geolocation information. A bit more �ashy and less
mundane is qrify:

With a syntax like in the example, qrify
“WIFI:T:WPA;S:mynetwork;P:mypass;;”, you can

substitute mynetwork and mypass for your WLAN reception desk For the next part there will be more

ODROID XU4 ORA B I 1 5 2 S At i S

substitute mynetwork and mypass for your WLAN
name and password and have the QR read by any
modern smartphone. When you save it as a .png via
qrify options, you can print it out or have it display on
the screen for your guests. With a small SBC equipped
with an e-paper display HAT, this might be an
interesting new project to hand out WLAN codes at a

reception desk. For the next part, there will be more
helpful commands to get the most out of your
ODROID. Stay tuned!

References
https://github.com/alexanderepstein/Bash-Snippets

https://github.com/alexanderepstein/Bash-Snippets

ODROID-XU4 ORA Base Image v1.5.2: Sammy Atomiswave, Sega
Naomi, Sega Saturn and More!
 November 1, 2018 By ArcadePunks.com Gaming, ODROID-XU4

Team ORA has just released version 1.5.1 v1.5.2 of
their awesome ORA Base image for the ODROID-XU4,
that is without a doubt one of the most dedicated
Retropie-related extension teams we see in existence.
These guys have truly smashed the barriers of single
board computer game play: this latest base image
includes the ability to play Sega Saturn, Sega Naomi
and Sammy Atomiswave, as well as a few you’ve
probably not seen before!

https://youtu.be/AXuuiEyp60k

Build your image

The v1.5.2 ORA Base image contains only a handful of
games. It includes Doom 1 and 2 along with a few
text-based RPG games, but it’s safe to say that you
need to build your own image, unless of course, you
only want it for Doom.

Like any self-built image, you are going to need to
download the BIOS for each emulator that is not
already included. For this new image, you need the
DC Bios (Dreamcast) (o�cial wiki) which also controls
Naomi and Atomiswave, as well as the Sega Saturn
Bios (o�cial wiki). You are also going to need to get
some ROMS on the image. This article focuses on
Saturn, Naomi and Atomiswave only, since we assume
you know how to do the rest, based on previous self-
builds. You need to check out the above wikis to
ensure that your ROMS are in the correct format.

For Sega Saturn games, there is a great compatibility
list here on the developer’s site. For Atomiswave and
Naomi, there is almost complete compatibility across
ROMs. Check out the video below for a great
Atomiswave games test.

https://youtu.be/P_gHyw9ONVc

OGST screen support
It’s no secret that Team ORA has had nothing but Updated Splashscreen to 10 second Intro

https://youtu.be/AXuuiEyp60k
https://ghetto.arcadepunks.appboxes.co/arcadepunks/dc.zip
https://github.com/Retro-Arena/RetroPie-Setup/wiki/How-to-run-Dreamcast,-Naomi-and-Atomiswave-games-on-lr-reicast%3F
https://ghetto.arcadepunks.appboxes.co/arcadepunks/saturn_bios.zip
https://github.com/Retro-Arena/RetroPie-Setup/wiki/How-to-run-Saturn-games-on-yabause%3F
http://www.uoyabause.org/games
https://youtu.be/P_gHyw9ONVc

M i O S C t 5 B t P ti t M k

It’s no secret that Team ORA has had nothing but
headaches working on OGST screen support, and it’s
with great surprise that this version 1.5.2 includes
OGST Screen support. Check out the video below for
the o�cial Retro Arena demonstration:

https://youtu.be/J5pKzrEH01k Also included on this
image are two systems that you may not have heard
of or played yet: the Sharp x1 and the NEC-PC9801.
Both of them are showcased in the �rst video of this
article. It’s only a matter of time before a good image
creator gets their hands on this and produces a fully
loaded image, but don’t let that stop you from trying it
out yourself!

Changelog

ORArpi-XU4-1.5.0

Added Uni�ed Theme

PC98 and PC88 Support Added

Atari 5200 changed to LR-Atari800 and set Cart dir

Sharp X1 Installed

Sharp X1 and PC-98 case art added

Updated Yabasanshiro to include new Controller GUI
option

Updated LR-Reiecast to add keyboard support and
possible light gun support and bug �xes

Updated to latest RetroArch-Dev build

PC-98 tweaks to enhance experience

TI-99 case art added

Yabasanshiro update – bug �xes

Fix missing BIOS pop-up

git issue requiring `git reset –hard` command �xed

Installed basic CEC utilities

Installed DraStic and �xed systems list to remove
duplicate NDS in the systems wheel

Installed N64 Case package along with basic media
pack

4DO updates enabling various enhancements

Saturn system has been added

Additional chiptunes added to library for BGM

Updated Splashscreen to 10 second Intro

Installed lr-reicast

Updated Showcase for new systems

Updated Yabansanshiro and set default to midres

Installed RetroArch-Dev package

Updated N64 Case screen scripting to move images to
/etc/emulationstation/ogst/

Created rc.local.bak for screen support

ixed PPSSPP permissions

Added ES Screen Image

ORArpi-XU4-1.5.1

Updated ES to correct Odroid Spelling

PSX – Disabled Screen Duping on default emulator

Yabasanshiro Player 1 & 2 ID �x

Fixed Screen art for PC-FX

Fixed fan/case bug – using fan scripts had caused case
to disable

Added wiki link to dc_bios_readme.txt

ORArpi-XU4-1.5.2

Fixed git sync issue for platforms.cfg for addition of
Sharp X1

Enabled Favorites and All Games in ES menu

You can download the XU4-ORA-Base RP-Pub-v1.5.2 -
Odroid.Retro.Arena image from the ORA images page
at https://www.arcadepunks.com/download-odroid-
images/.

References

ODROID Retro Arena Website ODROID Retro Arena
Discord

For comments, questions and suggestions, please
visit the original article at
https://www.arcadepunks.com/odroid-xu4-ora-
base-image-v1-5-1-sammy-atomiswave-sega-naomi-
sega-saturn-and-more/.

https://www.youtube.com/channel/UC1Qkmw-LYJfTiMlMZLtqHFQ
https://youtu.be/J5pKzrEH01k
https://en.wikipedia.org/wiki/X1_(computer)
http://www.computinghistory.org.uk/det/40715/NEC-PC-9801-VM/
https://www.arcadepunks.com/download-odroid-images/
http://odroidarena.com/
https://discord.gg/cPyyhgy
https://www.arcadepunks.com/odroid-xu4-ora-base-image-v1-5-1-sammy-atomiswave-sega-naomi-sega-saturn-and-more/

Managing Open Source Components: 5 Best Practices to Make
Sure You Do It Right
 November 1, 2018 By Limor Leah Wainstein Development

It was recently reported in a study that 96% of
proprietary applications contain open-source
components with an average 257 components per
application. The numbers are relatively high because
there is a common misconception that open-source
packages are not easily vulnerable to exploits. Just
making the source code publicly available, does not
always guarantee a review. Having a large number of
eyes reviewing the code can “lull a user into a false
sense of security.”

Given that open source components are a core part
of a developer’s work�ow, here are some best
practices that you should consider when adopting an
OSS library in your application. The list includes:

Build a security-�rst culture and enforce it.

An organization should focus on more than just
putting developers and security together. It should
also ensure that e�ective and e�cient security

practices are built into the core of the work�ow. The
best alert mechanisms and the best �xes can’t help
when there are poor security practices to contend.
This includes Vulnerability management

A case in point would be the Equifax breach, this
breach was attributed to a vulnerable version of the
OSS Adobe Struts. Even after the breach in 2017,
organizations continue to download susceptible
versions of the package even though a patch is readily
available.

When it comes to DevOps, security discussions should
take place early in the project and should ideally
continue throughout the development of the software
and even post-production. In case open source
components are being used, the team should be
responsible for tracking updates and applying security
patches as they are released. Resources such as the

following can help your team reliably track security (https://docs microsoft com/en us/security

https://docs.microsoft.com/en-us/security-updates/

following can help your team reliably track security
issues:

Open source vulnerability management tools
https://resources.whitesourcesoftware.com/blog-
whitesource/open-source-vulnerability-management

Code analysers
https://www.owasp.org/index.php/Source_Code_Anal
ysis_Tools

The good news is that there are tools available to
assist in evaluating and providing assurance for the
security of the open source software. Black Duck and
Sonatype Nexus are two such tools that provide
enterprise-ready and end-to-end solutions for
e�ectively managing the risk of open source software.
That said, you should know that these tools do not
provide immediate nor overnight �xes. They usually
take time to integrate.

Keep track of security updates for dependencies

It can often feel like some part of your stack faces a
security advisory or releases a new version every
other week. While just critical vulnerabilities would
require immediate attention, you may end up having
to juggle many versions and identify which system is
in need of an update and which already has a security
patch.

The good news is that there are a few o�cial, as well
as private, resources you can use to help you stay
informed on software lifecycle management. If you
use these regularly, in addition to your in-house
tracking tools, you will be able to keep your IT
environment relatively secure and updated. There are
three aspects you need to track:

Security Advisories

Most of the larger vendors publish a security advisory
whenever they discover a vulnerability or when a new
patch is publicly released. You need to follow the bug
page closely or a better option is to sign up for an
email noti�cation whenever such an update is
released.

For example, VMware has a security advisory page
(https://www.vmware.com/security/advisories.html)
, and Microsoft does too

(https://docs.microsoft.com/en-us/security-
updates/). Additionally, vendors such as Trend Micro
have a security advisory page that compiles a list of
patches, security vulnerability announcements, etc.
from many di�erent companies in a single place.

The United States Computer Emergency Readiness
Team or US-CERT also has an updated critical alert,
vulnerability, and patch release website
(https://www.us-cert.gov/ncas/current-activity). This
covers a full gamut of platforms that are commonly
used. In addition to email alerts, a number of these
advisories also o�er an RSS feed that you can choose
to either bookmark or add to your preferred
aggregate reader.

Version Tracking

Version Tracking has two essential parts – identifying
the version applied where changes are underway, and
logging which versions you are running on your
servers.

Multiple websites can help identify speci�c build
numbers and patch names for the standard software,
operating systems, and hypervisors you use. You can
also check the vendor websites for software you use
for security alerts. You also need to keep track of
which server is running which software version. For a
small environment, a spreadsheet would su�ce but
could become unusable after a while.

Di�erent software platforms help in software
inventory and IT asset management. Some examples
include – SolarWinds, Git, SVN, Mercurial, Helix,
Microsoft Team Foundation Server, etc.

Knowledge Bases

If you need to learn about the speci�c features of a
new software version, Knowledge Bases should be
able to help you out. Just like security alert pages, a
majority of large IT software providers have an online
knowledge base. These KBs contain help articles,
accounts of software updates and changes, support
resolution descriptions, etc. Using a knowledge base,
you can determine whether or not your new software
is going to be compatible in your existing
environment.

Use security tools to �nd security exploits in your SRC: CLR Source Clear comes with a load of plugins to

https://resources.whitesourcesoftware.com/blog-whitesource/open-source-vulnerability-management
https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.vmware.com/security/advisories.html
https://docs.microsoft.com/en-us/security-updates/
https://www.us-cert.gov/ncas/current-activity

I t d i NEMS Li P t 2 M it i L l Li

Use security tools to �nd security exploits in your
packages

A large number of diverse Open Source as well as
commercial tools have been developed over the years
to solve the problem of identifying security
vulnerabilities in Open Source components. Each tool
or service attempts to solve this problem a little
di�erently:

Node Security Project (NSP) – The NSP is known mainly
for its work on Node.js modules and NPM
dependencies.

Dependency-check –Dependency-check supports Java,
Javascript, .NET as well as Ruby. It pulls its vulnerability
information from the NIST NVD.

Gemnasium – Gemnasium supports Ruby, NPM, PHP,
Python, and Bower.

Bundler-audit – Bundler-audit is an open source
command line tool. This checks for dependencies
focused on Ruby Bundler

RetireJS – An open source dependency checker speci�c
to JavaScript, RetireJS’ USP is its easy to use and highly
e�ciency. It contains multiple components including a
command line scanner as well as plugins for Chrome,
Firefox, Grunt, Gulp, ZAP, and Burp

OSSIndex – OSSIndex is a tool that supports several
di�erent technologies. It adequately covers JavaScript,
.NET/C# and Java ecosystems. It also provides API
vulnerability for free.

Hakiri – Hakiri is a commercial tool that provides
dependency checks for Ruby and Rails based GitHub
projects via static code analysis.

Snyk – Snyk is a commercial service focusing on
JavaScript npm dependencies.

SRC: CLR – Source Clear comes with a load of plugins to
several IDEs, deployment systems, and source
repositories as well as a command-line interface.

Use OSS libraries that are in active development

In case of either expired libraries or libraries that no
longer have active developer support and
maintenance systems, a better idea is to build your in-
house tools. If you’re aware of how the open-source
ecosystem works, you should know that libraries that
have an active maintainer receive patches and
security updates. Sometimes, developers fork the
repositories and the forked version end ups being the
active one although the updates are not pushed to
the mainstream.

You can use the above mentioned tools to monitor
and �x security and similar vulnerabilities. Even if the
initial cost and time spent might deter some
organizations or their DevOps teams, in the long run,
the functionality and reliability of an in-house tool can
be an asset to both organizations and developers.

Test all your components

It is essential to deploy a testing mechanism to ensure
that the application and all the related dependencies
are secure. Since development teams continually add
features to existing components and import new
dependencies as they go, it’s crucial that there at least
some tests that can prevent severe threats like
remote access vulnerabilities.

Introducing NEMS Linux: Part 2 – Monitoring a Local Linux
Server
 November 1, 2018 By Robbie Ferguson Linux, Tutorial

Last month I introduced you to NEMS Linux, the
Nagios Enterprise Monitoring Server for ODROID
devices. If you haven’t read that article yet, please
start there. It will take you through the initial setup of
NEMS Linux and arm you with some important
information to help you get started. This month, we’re
jumping right into our �rst exercise as we learn to
con�gure NEMS Linux to monitor a local Linux
server’s uptime. Through this article, I will
demonstrate how some of the features of NEMS
Con�gurator (NConf) are interconnected, and will
prepare you for adding IP-based hosts to your NEMS
server.

A “Host” in NEMS Linux is any device you wish to
monitor. This can be a computer, or a thermostat; it
can be a router or a printer. The options are truly
endless, and while NEMS Linux is free to download
and use, there are no software-based limitations on

how many hosts you can have set up. As NEMS Linux
on a Raspberry Pi 3 can easily handle over 100 hosts, I
have strong suspicions the ODROID community will
be able to push things even harder. After all, the XU4
is a very powerful little piece of kit.

Adding a Host: Monitoring a Linux Computer on
Your Network

Adding a host for monitoring within NEMS is done
through the NEMS Con�gurator (NConf) user
interface. You’ll �nd this tool on the Con�guration
menu of your NEMS Dashboard. Within NConf, click
the “Add” link next to “Hosts” on the left navigation.
This will present you with the Add Host screen.

Figure 1 – Add a host to NEMS Linux using the NEMS
Con�guraton

As illustrated in Figure 1, enter the hostname–a
friendly alias for your own reference as well as the IP
Address of the host. As a side note, you’ll want to
make sure your hosts have static IP addresses so they
don’t change. Personally, I prefer to add DHCP
reservations to my router rather than manually
assigning the IP on the device. This keeps things
simple and make it easier to ensure devices on my
LAN always receive the same IP address, and that I
don’t accidentally assign the same IP to two devices.

Next, in the OS drop-down on the same screen, select
your host’s operating system. Note that if you don’t
see an appropriate type, you may also add operating
systems under “Additional Items” in the left navigation
menu. However, for our example we’ll be adding our
Linux server. “linux- server” is an out-of-the-box
preset, so we will choose that. Refer to Figure 1.

A “Host Preset” allows you to add checks that are
always used for this type of host. To help us
understand what this is actually doing, let us digress
for a moment and take a look under the hood. You
can see what checks are going to be automatically
applied via the selected Host Preset by pressing the
“Show” link next to “Host Presets” on the left
navigation menu.

Figure 2 – linux-server Host Preset

Realizing that the linux-server Host Preset initiates the
check_host_alive check command, we can review what
that actually does by clicking the “Show” link next to
“Misccommands.”

Figure 3 – check_host_alive check command details

It’s running check_ping–a Nagios check command to
simply ping the IP address we provide. The nice thing
is, you didn’t even have to script that (refer to this
statement from Part 1: “[NEMS] does away with the
old Nagios scripting requirement”). I wanted to show
you how it works, but as you’re just getting started
with NEMS Linux, you will just select linux-servers and
carry on, knowing that this will initiate a ping on that
host (based on this example).

Next, we need to change “Monitored By” to the only
option available: Default Nagios. That is the
precon�gured Nagios Core instance running on your
NEMS Linux server.

Host Template != Host Preset

A Host Template di�ers from a Host Preset in that it
tells NEMS how we want our Host Preset to be
performed: the monitoring schedule, the alert
thresholds, and so-on. Based on the included linux-
server Host Template, our linux-server Host Preset
will check if the host is alive by pinging it every 10
minutes, and will send noti�cations during working
hours if there is a problem. These defaults can always
be changed by editing the Host Template. Of course,
you can create your own presets and templates as
you learn to use the system, though I recommend
starting with the samples until you have a few hosts
working.

In the Host Templates section of our Add Host screen,
we’ll highlight linux-server and press the right arrow
icon to move it to the “Selected Items” list as shown in
Figure 1.

The only other item we must add to our host is who
to contact if it is having problems. If we don’t specify
this, no noti�cations will ever be received. By default,
there is only one option, Admins. Highlight Admins
and press the green arrow icon to move it to the
Selected Items list. Refer again to Figure 1.

Because we are using the Host Template, we do not
need to specify our check or noti�cation intervals:
they are speci�ed within the Host Template. If you

were not using a Host Template you’d need to specify

were not using a Host Template, you’d need to specify
those values here. Because we are using a Host
Template which carries these values, we can just save
the new host by pressing “Submit.”

On the next screen, you will be given the opportunity
to add more service checks to this host, but for the
sake of our example and because we are using Host
Presets and Templates, we can skip this part.

Tip: In some cases, you may desire that your host
checks occur at di�erent intervals than are speci�ed
within the Host Template. For example, you may wish
your mission critical server to be pinged every minute
rather than every 10 minutes. In these cases, rather
than editing the Host Template (and thereby
impacting all hosts which use that template) you can
specify unique values on the Add Host screen, which
will override the Host Template values for this host.

Generate Nagios Con�g: Make Your Changes Live
(In Review)

To make your changes live and begin monitoring your
new host, press the Generate Nagios Con�g link on
the left navigation. You should see 0 errors. If you do
see errors, press the syntax check bar and review
where you went wrong. NConf is very good at
showing you where to �nd the error is so you can go
back and �x it.

Figure 4 – Generate Nagios Con�g with the NEMS
Con�gurator

If everything checks out, press “Deploy,” and your new
host will instantly be activated in Nagios.

Monitoring Your Assets

Now that we’ve con�gured our �rst host, let’s see how
to check its status. There are several ways to keep
tabs on your assets with NEMS Linux. For the Nagios
purists, Nagios Core is included on the Reporting
menu. We’ll instead look at Adagios, found on the
same menu. Adagios o�ers the same overall
functionality of Nagios Core’s front-end but replaces it
with a modern, responsive web interface.

Figure 5 – Adagios interface on NEMS Linux 1.4.1

To check the status of our hosts, simply click “Hosts”
on the navigation to the left.

Figure 6 – Adagios hosts view

You’ll see the host we added–server1 in my example–
is showing with the status of UP. This means the ping
replied. There is no Service Status, since we did not
add any extra service monitors. To see an example of
what is possible, expand the NEMS host (which is
included on your NEMS Linux server) by clicking the
triangle next to its name.

Figure 7 – Expanded view of Host reveals con�gured
service checks

I would also like to encourage you to test both NEMS
Mobile UI and NEMS TV Dashboard, both of which are
also found on the Reporting menu of the NEMS
Dashboard. The �rst is meant to o�er you a complete
mobile interface for monitoring your assets, and the
latter allows you to set up a TV display in your server

room that shows a real time tactical overview of your those needing a higher level of support NEMS Linux

M t A ODROIDi R b t R i

room that shows a real-time tactical overview of your
NEMS host and service checks.

Figure 8 – NEMS TV Dashboard on NEMS Linux 1.4.1

Learn More

NEMS has an active Community Forum. I check in
quite regularly to provide free support to users. I also
o�er commercial one-on-one priority support for

those needing a higher level of support. NEMS Linux
is free to download and use. Its source code is
available on GitHub. Download NEMS Linux for
ODROID at https://nemslinux.com/

Be sure to join me again in next month’s edition of
ODROID Magazine as we go through our next
exercise: Con�guring Service Monitors on NEMS
Linux. We’ll learn how to monitor speci�c network
ports for uptime.

Robbie Ferguson is the host of Category5 Technology
TV and author of NEMS Linux. His TV show is found at
https://category5.tv/ and his blog is
https://baldnerd.com/.

https://nemslinux.com/
https://category5.tv/
https://baldnerd.com/

Meet An ODROIDian: Roberto Rosario
 November 1, 2018 By Rob Roy Meet an ODROIDian

Please tell us a little about yourself. Hello, my name is
Roberto Rosario. I’m the creator of Mayan EDMS, a
free open source document management software,
the OpenHolter a portable, Arduino based
electrocardiogram machine and Rocket Launcher the
custom software launcher for the ODROID Go. I’m a
software developer working mostly with governments
and manufacturing companies in data warehousing,
electronic document management, business
intelligence, and open data projects. 90% of my work
is basically working with large volumes of data in
di�erent formats and mediums, and try to come up
with ways to make it accessible, usable, reliable, and
durable. I have always lived in Puerto Rico. It has a
great climate almost all year round (except during
hurricane season). I’m married with a 14 year old son
and a Chihuahua puppy named Oreo. He’s my service
dog, photography model, and partner in crime.

How did you get started with computers? I got started
with computers at the age of 10. My �rst computer

was a TRS-80 Color Computer 2. Being that age and
without residential Internet access (it didn’t exist), I
couldn’t get software for my computer. That forced
me to learn to build everything from scratch. I
eventually learned to write machine language by hand
for the 6809 microprocessor by poking numbers into
memory addresses provoking artifacts and crashing
the computer. I slowly managed to document all the
opcodes of the microprocessor and used machine
language in math and science fair projects. After the
CoCo 2 came a CoCo 3 with a 5.25 inch �oppy drive
(my �rst taste of C language and operating systems
with OS9), then a Commodore 64 and �nally a Tandy
1000 was my �rst PC compatible computer. The skills
gained from learning machine language helped me
reverse engineering video game consoles (I can’t say
which ones for legal reasons but some information
survives in the Internet Archive) and published my
�ndings when I was 17. When you play an emulated

game on the Odroid Go you are using code I helped

game on the Odroid Go, you are using code I helped
decode more than 20 years ago.

What attracted you to the ODROID platform? Before the
ODROID, consumer grade single board computers felt
like novelties. They looked cool, but were
undocumented, unsupported by the companies
putting them out, used closed hardware, didn’t had
much power and were more about the marketing
allure of popularising technology instead of actually
providing a useful technology product. The ODROID
platform was a real eye opener for me in terms of
price to performance ratio and build quality. The
philosophy of openness was also a big plus. Having
the schematics available helps a lot when building
projects and in occasions have led to discovering
undocumented features, like the ODROID-C2 being
able to run directly from 3.7v lithium batteries.

How do you use your ODROIDs? I’m a data preservation
nerd, living in a tropical island prone to storms and
bad electricity service. I use the ODROIDs to me solve
all that with just a few type of devices and some
modi�cations.

Roberto giving a talk at DjangoCon Europe

I like the HC2’s potential as a single board NAS. The
built in SATA to USB3 bridge, the hard drive and CPU
heatsink, Gigabit ethernet hardware, coupled with a
GlusterFS, checks all the boxes for a performant,
resilient, worry-free storage solution and media
server.

Roberto’s trusty ODROID-HC2

The four 64-bit ARM cores in the C2 allow me to run
the intensive tasks I need when developing software
like running test suites and building images. Most of
my personal services also run on a farm of ODROID-
C2. The combination of the C2 for processing tasks
with the HC2 for storage and being able to power all
devices from the DC part of a solar system, makes
building a DIY micro datacenter very a�ordable and
reliable.

Which ODROID is your favorite and why? The ODROID-
GO is my current darling. I’m using it not just to play
games, but as a microprocessor development
platform. Trying to develop a portable microprocessor
project means worrying about battery, battery
management, inputs, displays, enclosure, and remote
access. All that is solved with the ODROID-GO, plus
WiFi and a dual core package for real multithreading
capabilities.

them using everyday items like a computer UPS as an

Roberto’s favorite ODROID is the ODROID-GO

What innovations would you like to see in future
Hardkernel products? I can’t think of anything right
now. I’m very happy as a customer and a developer
with the way they build and document their products.
They are well designed (down to things like the ESD
protection) and well manufactured so they are
durable at a great price. It is working well and I don’t
see a reason why they should change any aspect of it.

What hobbies and interests do you have apart from
computers? I live in Puerto Rico, and one of realities of
life here, due to many factors, is unreliable services
like electricity. I build proper renewable power
systems for everyday use, but I also enjoy making

them using everyday items like a computer UPS as an
inverter, the kind of solar power system MacGyver
would build.

I’m a ham radio operator with a fascination with
emergency radio operation and digital modes. I use
APRS and I like working satellites. Most of the time I’m
on UHF/VHF on repeaters, but now that I got a
General class upgrade, I hope to get into HF and
global propagation. I hope to one day be able to do a
QSO with one of the operators aboard the
International Space Station.

I like biohacking and building custom medical devices.
Being a heart patient and having access to heart
monitoring equipment 24-7 by building my own
helped to manage my conditions in ways I could’ve
never achieve in the traditional way. One of my
current projects is porting my OpenHolter
electrocardiogram project (currently based on
Arduino) to the ODROID-GO. Where other people see
a gaming device, I see a Star Trek type tricoder! When
I need a change of pace, I go to photography. Gives
the other side of the brain a workout.

What advice do you have for someone wanting to learn
more about programming? Don’t fall in the “new is
always” better trap. That applies to languages,
techniques, editors, operating system, platforms, etc.
We are bombarded with words like innovation and
“thinking out of the box”, like those are the only
methods to problem solving. Established paradigms
are made to look bad and outdated. That is not really
the case. There is a time to innovate and there is a
time use time-tested methods. Tradition and
creativity go hand-in-hand. If it weren’t for innovation,
and the work of “crazy” people you wouldn’t be
reading this right now. Learn from and respect both.

