

Build a Rootin’ Tootin’, Dual-Bootin’ ODROID Tablet: Using the
ODROID-C0 to Make a Professional Grade Tablet for Under USD$100
 August 1, 2019

Hiding in plain sight in the powerful Hardkernel single board computer (SBC), the
unassuming ODROID-C0. Slightly larger than a 3,000 mAh battery pack yet powered by

a power-sipping Amlogic S805 System-on-a-Chip (SoC) featuring 1Gb of RAM, dual USB (2.0) ports, an eMMC
interface, and a microSD storage card socket, this

The G Spot: Your Goto Destination for all Things That Are Android
Gaming
 August 1, 2019

As the July issue was going to press, several blockbuster game announcements �ew in
over the transom and plopped down onto my desk. Therefore, I’ll begin this article for

the August issue with a summarized update regarding each of these major events. These signi�cant events
include: the Electronic Entertainment Expo

Implementing GPIO IRQ Handlers: Using Python 3 To Control
RPi.GPIO
 August 1, 2019

This code and guide are intended to demonstrate GPIO IRQ handling on the ODROID-
C1+/C2/XU4/N2. The guide was adapted from the ODROID wiki page at

https://wiki.odroid.com/odroid-xu4/application_note/gpio/rpi.gpio_irq. We can simply implement GPIO IRQ
handler with Python 2/3. In this guide, we will use Python 3 for programming the handler. Before getting
started,

Running Kubernetes On The ODROID-N2: Create A Power-E�cient
Container Orchestration System
 August 6, 2019

Deployment of containerized applications, is the new norm. With it comes the need for
automating the deployments, scaling them up to meet increased loads, and managing

their lifecycle. Kubernetes (K8s) is one such utility that �lls these needs.

Multi-booting on ODROID-N2: Add The Ability to Select Multiple
Operating Systems From A Single Disk
 August 6, 2019

There have been many demands to manage multiple OS and many SBC users had tried
to run multiple OS installed in eMMC, uSD and USB storage and, as such, instructions

were introduced with a script or Linux commands, as well. Many users succeeded with it but the instructions
are not

MooseFS
 August 6, 2019

If you are looking for a network-aware distributed �le system, that is highly available,
scalable, fault-tolerant and features high performance, then MooseFS is an ideal
solution. In this �lesystem, while �les are spread across multiple servers (nodes), they

appear to be present on a single virtual disk. It is a

Linux Gaming: PC-Engine / TurboGrafx - Part 5
 August 1, 2019

In the previous installment of this series, I was able to play a very good mixture of
di�erent genres. I found some shooting games I liked, one of my all time favorite
adventure games, and even the one sports game I liked on the Nintendo

Entertainment System (NES) ported with

Using Kernel 5.2 With Armbian: Run WiringPi, HomeAssistant, and
More With the Latest Kernel Support
 August 6, 2019

This article addresses the creation of an Armbian image using the mainline linux kernel
5.2.0-rc3, and the setup of the popular home automation software, Home Assistant.

This exercise was performed targeting the popular Single Board Computer (SBC) ODROID-C1.

How to Build a Monku Retro Gaming Console - Part 2: Con�guring
the Software
 August 1, 2019

This is a continuation of the Retro Gaming Console article from last month, where we
learned how to build a case for a retro gaming console. This installment will show you

how to con�gure the software for the project. In this article, I will show you in detail how to

An Excellent, Low-Cost Web Server: Using the ODROID-N2 For
Internet Hosting
 August 6, 2019

As the developer of NEMS Linux, I’m always eager to try new boards that promise high
performance and stability in the server room.

Building an ODROID-N2 Cluster: A�ordable High Performance
Computing
 August 6, 2019

In my quest for a true 64-bit quad-core SBC with each core close to 2 Ghz and with at
least 4GB of RAM, I came upon this newly released beauty called ODROID-N2 Let's do a

cluster with it!

Build a Rootin’ Tootin’, Dual-Bootin’ ODROID Tablet: Using the
ODROID-C0 to Make a Professional Grade Tablet for Under
USD$100
 August 1, 2019 By Dave Prochnow Android, ODROID-C0, Tinkering

Hiding in plain sight in the powerful Hardkernel single
board computer (SBC), the unassuming ODROID-C0.
Slightly larger than a 3,000 mAh battery pack yet
powered by a power-sipping Amlogic S805 System-on-
a-Chip (SoC) featuring 1Gb of RAM, dual USB (2.0)
ports, an eMMC interface, and a microSD storage card
socket, this SBC is the best-kept secret in the ODROID
world.

Figure 1 - The ODROID tablet running Ubuntu 18.04 Mate
with an optional keyboard and mouse.

Most of the more common attributes of the ODROID-
C0 are well known and well documented: it can be
powered by a 3.7V battery, there is an on-board
charger for a battery, most of the main interface ports

can be soldered onto the SBC(via the separately sold
Connector Pack) on an “as-needed” basis, and an
external monitor can be driven through an available
HDMI port. What you might not know about the
ODROID-C0, however, can be learned only by studying
the schematic diagram for this SBC.

Reading this schematic diagram reveals that jumper J1
can be used for selecting either the eMMC or the
microSD card interfaces for booting the ODROID-C0.
Furthermore, the general purpose input/output
(GPIO) pins feature a 5V power source. These are two
incredible, hardware gems that can be exploited for
building a dual booting ODROID tablet for less than
$100.

Figure 2 - Switching jumper J1 converts the ODROID
tablet into a handheld Android 4.4.4 device.

Parts

Note: the parts for this project can be purchased
either from Hardkernel or ameridroid.com

ODROID-C0 ODROID-VU7 RTC Backup Battery 16Gb
eMMC C1+/C0 Android Module 16Gb microSD C0/C1
Linux Card 3,000 mAh Battery Connector Pack for
ODROID-C0 40x40x10-mm USB Cooling Fan (Optional)
(1) 2-Pin Header with Jumper (this can be purchased
from BGMicro.com) (1) 2-Pin Header (2) Female
Jumper Wires

Figure 3 - All of the parts that you’ll need for building
your own ODROID tablet.

Step-by-Step

1. Solder the dual USB port, from the Connector Pack,
to the ODROID-C0.

2. Solder the 2-pin header with jumper to port J1 on
the SBC printed circuit board (PCB).

3. Solder the other 2-pin header to pins 4 and 6 on
the PCB GPIO interface. Please note: you might need
to increase the temperature of your soldering iron to
365 Celsius (690 Fahrenheit) for making a solid
connection to these pins.

Figure 4 - One 2-pin header has been soldered to jumper
J1 and another header has been connected to the
ODROID-C0 GPIO pins.

4. Snip o� the USB plug from the fan exposing the red
and black wires and solder the two female jumper
wires to these red and black wires.

Figure 5 - The optional USB fan can now be connected to
the GPIO 5V power pins.

5. Optionally, you can build a simple frame with your
preferred fabricating material (e.g., wood, plastic, 3D
prints, LEGO, etc.) for holding the ODROID-VU7,
ODROID-C0, RTC battery, main power battery, and
fan.

Figure 6 - A frame and battery case were 3D-printed for
my ODROID tablet.

6. Assemble the tablet’s components: connect the RTC
battery, main power battery, fan, and J1 boot jumper.
Placing the jumper over BOTH J1 pins will boot from
the microSD card. While removing the jumper will
boot the ODROID-C0 from the eMMC interface. Also,
plug the red (+) wire from the fan into pin #4 on the
GPIO and the fan’s black (GND; -) wire into pin #6.

Figure 7 - Ready for connection to the ODROID-VU7.

7. Connect the ODROID-VU7 to the ODROID-C0. Use
the provided HDMI cable and USB micro-to-Type A
cable.

8. Insert a pre-con�gured, boot Linux OS microSD
card into the card socket and plug a pre-con�gured
boot Android OS eMMC module into its interface.

9. Adjust jumper J1 to your preferred boot OS. Ensure
that the ODROID-VU7 USB and HDMI cables are
plugged into the ODROID-C0. Verify that the fan’s red
wire is �rmly connected to GPIO pin #4 and the black
wire is �rmly connected to GPIO pin #6.

10. Switch the ODROID-VU7 display to ON and set the
ODROID-C0 power switch to ON.

Enjoy your hardware-controlled dual booting ODROID
tablet.

Fun Facts About the ODROID Tablet

When running the sysbench prime number “stress
test” with 10,000 prime numbers, the ODROID-C0
tablet will �nish in about 45.9 seconds.

During this “stress test,” when using the cooling fan,
the SoC temperature will spike to 54 degrees Celsius

(129 Fahrenheit) then quickly cool to 44C (110F).

The resting temperature, without the cooling fan, of
the Amlogic S805 is about 47 degrees Celsius (116
Fahrenheit). Enabling the cooling fan lowers this
temperature to 38 degrees Celsius (100 Fahrenheit).

Figure 8 - The optional cooling fan attached to the
ODROID-C0.

Booting from the microSD card, Linux takes about
53.65 seconds.

A freshly-charged 3,000 mAh battery will run the
microSD-based Linux OS for approximately 94
minutes.

Spare 3,000 mAh batteries can be swapped on the
tablet. The tablet MUST be turned o� before
swapping batteries, however.

Using the optional fan could cause a power
consumption issue with an optional WiFi dongle. If
you notice a power loss when connecting to your
router, just disconnect the fan from the GPIO power
pins.

The G Spot: Your Goto Destination for all Things That Are
Android Gaming
 August 1, 2019 By Dave Prochnow Android, Gaming

As the July issue was going to press, several
blockbuster game announcements �ew in over the
transom and plopped down onto my desk. Therefore,
I’ll begin this article for the August issue with a
summarized update regarding each of these major
events. These signi�cant events include: the Electronic
Entertainment Expo (E3) landing in Los Angeles;
Google releasing a Stadia update; and the �rst ‘real’
public sighting of the upcoming AMD Ryzen™ V1000-
equipped portable gaming PC.

On with the show, right? Except this year’s convention
wasn’t really like other E3 conventions. Why? Because
Sony was a no-show. Yup, the Playstation maker
wasn’t in attendance at this, the 25th Electronic
Entertainment Expo at the Los Angeles Convention
Center in California. Considering that E3 is the self-
proclaimed ‘world premier event’ for computer and
video games and related products, the absence of
Sony was a major story for an event that would rather

concentrate on promoting new and upcoming video
game releases.

Figure 1 - Sony didn’t attend E3 2019

Thankfully, Nintendo, Microsoft, Square Enix, and a
raft of other companies had enough powerhouse
announcements to make up for Sony’s rather
conspicuous absence—you know, the elephant in the
room nobody wanted to talk about, but did. Talk, that
is.

Scrolling through the huge list of upcoming game
releases announced at E3 2019, there was one
Android-related title that should interest ODROID
users: Commander Keen from Bethesda is coming to
green machines later this year.

Google Stadia is Almost ‘Readia’

Also scheduled for arrival later this year will be the
Google game streaming service known as Stadia. In
an announcement two days prior to E3 2019, Google’s
Stadia head honcho, Phil Harrison, informed gamers
that Stadia will cost $9.99 per month for unlimited
game streaming. You’ll be able to play these games at
4K resolution at speeds up to 60 frames per second
(fps), and annoy the neighbors with 5.1 surround
sound. Furthermore, these Stadia games will be
available on both Chromecast Ultra TVs and inside
Chrome browsers for both laptop and desktop
computers. The only supported smart devices are
Google Pixel phones.

There is a special ‘Founder’s Edition’ package featuring
ultimate Stadia access, an exclusive game controller, a
Google Chromecast Ultra dongle, and more goodies
at the Google online purchase price of $129. This is a
pre-order package that will ship in November 2019.

https://store.google.com/us/product/stadia_founder
s_edition?hl=en-US

Gamer SMACH

Die-hard gamers are dying for the upcoming release
of SMACH Z, a portable gaming PC that resembles a
Sony PSP on steroids. Funded by a Kickstarter
campaign that raised over $500K, the SMACH Z was
actually seen and played by some lucky gamers at E3
2019.

Figure 2 - A lucky few at E3 2019 were able to play an
upcoming DOOM game title on the soon-to-be-released
SMACH Z handheld gaming PC

https://youtu.be/g68bH2E8B3g

And Finally

Designed in conjunction with WB Games (Portkey
Games) and Niantic, the release of the new
augmented reality (AR) title Harry Potter: Wizards
Unite has seen some serious downloads from the
Google Play Store. In a concept is similar to Pokemon:
Go (also developed by Niantic), Harry Potter: Wizards
Unite is a wizardly game title that is fully supported by
Harry’s creator, J.K. Rowling. Best of all, Wizards Unite
is a free download.

Figure 3 - Prepare for hordes of wizard wannabes
running through parks with smart phones in hand this
summer

Just as the �nal editing exercise for this issue was
being performed, Raspberry Pi Trading dropped a
major press release in my lap. An all-new Raspberry Pi
single-board computer (SBC) is now available. Cleverly
named the Raspberry Pi 4 Model B, this newest
upgrade includes a 1.5 GHz quad-core, 64-bit, Cortex-
A72 driving 1, 2, or 4 GB of DDR4 RAM, piping through
gigabit Ethernet, with twin USB 3.0 ports, and twin
micro HDMI ports as well. Remarkably, the 1 GB
version retails for $35 USD, while the bigger memory
options are $45 USD and $55 USD for the 2 GB
version and the jumbo-sized 4 GB version,
respectively. Finally, while this new Pi hardware is
busy walking the walk, a new release of Raspbian
based on Debian 10 “Buster” will help this SBC talk the
talk.

https://store.google.com/us/product/stadia_founders_edition?hl=en-US
https://youtu.be/g68bH2E8B3g

Figure 4 - Sticking to its original form factor roots, this
Raspberry Pi 4 Model B delivers improved video handling
capabilities

Android Game Picks for the Dog Days of Summer

Jurassic World Alive - FREE Farm Punks - FREE Harry
Potter: Wizards Unite - FREE Talion - FREE Toy Story
Drop - FREE

Implementing GPIO IRQ Handlers: Using Python 3 To Control
RPi.GPIO
 August 1, 2019 By Justin Lee ODROID-C0, ODROID-C1+, ODROID-C2, ODROID-H2, ODROID-N2, ODROID-XU4, Tutorial

This code and guide are intended to demonstrate
GPIO IRQ handling on the ODROID-C1+/C2/XU4/N2.
The guide was adapted from the ODROID wiki page at
https://wiki.odroid.com/odroid-
xu4/application_note/gpio/rpi.gpio_irq.

We can simply implement GPIO IRQ handler with
Python 2/3. In this guide, we will use Python 3 for
programming the handler. Before getting started,
however, we have to install RPi.GPIO for ODROID.
Please see the Wiki page at
https://wiki.odroid.com/odroid-
xu4/application_note/gpio/rpi.gpio for the installation
instructions.

Sample Code

#!/usr/bin/env python3

import sys

import time

import RPi.GPIO as GPIO

https://wiki.odroid.com/odroid-

xu4/application_note/gpio/rpi.gpio#about_bcm

_numbering

IRQ_GPIO_PIN = 25

IRQ_EDGE = GPIO.FALLING

count = 0

def handler(channel):

global count

count += 1

def print_status():

global count

print(count)

count = 0

if __name__ == '__main__':

GPIO.setmode(GPIO.BCM)

GPIO.setup(IRQ_GPIO_PIN, GPIO.IN,

pull_up_down=GPIO.PUD_UP)

GPIO.add_event_detect(IRQ_GPIO_PIN,

IRQ_EDGE, callback=handler)

print('Press Ctrl-C to exit')

try:

while True:

time.sleep(1)

print_status()

except KeyboardInterrupt:

GPIO.cleanup()

sys.exit(0)

This is a very basic template script for using GPIO IRQ
handler. It counts how many interrupts are requested
within 1 second and print that count number. If a user
presses Ctrl + C, then the script will be closed.

There's a handler() function that receives a parameter
channel. This parameter is necessary since the library
requires it when registering the handler function
internally. This function increases count number by 1
when an interrupt is received. The print_status()
function shows the count number and initializes
count variable to 0. If the script �le is the main
executed �le, which means it is the �rst �le of the
Python project, RPi.GPIO initially con�gured using
GPIO.setmode(). This function clears the user and
uses BCM numbering for selecting a GPIO pin.

In GPIO.setup(), the selected GPIO pin is set as an
interrupt source in this timing to use in the way the
user intended. We should input 3 parameters, which
are GPIO pin number in BCM numbering, signal
direction, and pull mode. We should set signal
direction and pull up mode to receive GPIO interrupt
in this guide.

We have to add an event handler function using
GPIO.add_event_detect(). This has 3 parameters,
which are GPIO pin number in BCM numbering, IRQ
edge mode, and handler function pointer as its name.
RPi.GPIO library will register the handler for the GPIO
pin to an internal loop. We specify interrupt edge
mode to falling edge using this function.

Finally, there are exception handling codes that detect
keyboard interrupts (SIGINT). If the interrupt is
received, the RPi.GPIO cleans itself with
GPIO.cleanup() function and that program will be

closed. If the interrupt isn’t received, the in�nite loop
runs and calls print_status() every 1 second, so we can
clean up these long descriptions.

Functions

def handler(): An interrupt handler. Increase count
number by 1 when the interrupt occurs. At least 1
parameter is required.

def print_status(): Shows current count number and
initialize to 0.

GPIO.setmode(): Initializes RPi.GPIO with a pin number
guide which must be used.

GPIO.setup(): Sets the GPIO pin as an interrupt source.
Also set the signal direction and pull mode.

GPIO.add_event_detect(): Set the same GPIO pin which
was set up before, with interrupt edge mode and
handler function.

Runs print_status function every 1 second and detects
keyboard interrupt to close the program appropriately.

Environments

To test its IRQ handling performance, I used the
following set of test devices:

ODROID C1/C2/XU4/N2

Function generator

Oscilloscope

I set the Function generator up to generate a 1 KHz
square wave, and checked that wave using an
oscilloscope. I changed the amplitude for each target
to 1.8V or 3.0V every time I changed the board. I then
chose the pins, #22 for the interrupt source and #20
for ground. The physical pin #22 is equivalent to #25
in BCM numbering. All three models have the same
form factor on the GPIO header. Finally, I wired the
cables as shown in Figure 1.

Figure 1 - C1+ IRQ test setup

Execution

Let's test with the C1+, �rst. Just run the script without
any changes. As the script is, it should show numbers
about 1000 every second since it is set to handle
falling-edge interrupts and the function generator is
set to generate 1 KHz square wave. To make sure, I
also checked the current kernel version:

root@odroid:~# uname -a

Linux odroid 3.10.107-13 #2 SMP PREEMPT Wed

Jun 19 02:31:43 -03 2019 armv7l armv7l

armv7l GNU/Linux

root@odroid:~# python3 test.py

Press Ctrl-C to exit

1000

1003

1000

1000

1000

1001

1001

987

1001

1001

This shows the numbers as we expected. This couldn't
be exactly 1000 in every moment, because there are
many [un]foreseen factors which a�ect detecting
interrupts. This is the output on the ODROID-C2:

root@odroid:~# uname -a

Linux odroid 3.16.68-41 #1 SMP PREEMPT Tue

Jun 18 15:06:16 -03 2019 aarch64 aarch64

aarch64 GNU/Linux

root@odroid:~# python3 test.py

Press Ctrl-C to exit

981

993

993

984

985

996

977

995

1001

981

The following output is from the ODROID-XU4, which
uses pin #26 for the interrupt source and #28 for
ground:

root@odroid:~# uname -a

Linux odroid 4.14.120-160 #1 SMP PREEMPT Fri

May 17 01:18:14 -03 2019 armv7l armv7l

armv7l GNU/Linux

root@odroid:~# python3 test.py

Press Ctrl-C to exit

1005

1007

1014

1005

1008

1003

1005

1001

1005

1004

Finally, this is what it looks like on the ODROID-N2

root@odroid:~# uname -a

Linux odroid 4.9.182-31 #1 SMP PREEMPT Tue

Jun 18 14:45:56 -03 2019 aarch64 aarch64

aarch64 GNU/Linux

root@odroid:~# python3 test.py

Press Ctrl-C to exit

1000

1002

1002

1003

1000

1000

1000

999

1000

1000

All the models work well on GPIO IRQ handling with
RPi.GPIO. Note that the displayed number in the
acceptable error range doesn’t matter, since it is
continuously changed. Con�gure GPIO IRQ Edge Type
We can also change the edge detecting type of the
pin. There are three edge types:

Falling

Rising

Both

This can be changed when you set GPIO IRQ handler
in the code using GPIO.add_event_detect() function.
These are respectively de�ned as:

GPIO.FALLING

GPIO.RISING

GPIO.BOTH

IUf you want to detect using the both-edge mode,
replace existing IRQ_EDGE value in line #9 to the
following one:

From

IRQ_EDGE = GPIO.FALLING

To

IRQ_EDGE = GPIO.BOTH

Here is a test to check if it works. With C1+, the
modi�ed script outputs like this with 1 KHz square
wave.

root@odroid:~# python3 test.py

Press Ctrl-C to exit

1994

1997

1994

1998

1999

1980

2002

2001

2001

2002

It shows about 2000 because the handler reacts for
both edge moments, which means it works �awlessly.

References
https://sourceforge.net/projects/raspberry-gpio-
python/

https://sourceforge.net/projects/raspberry-gpio-python/

Running Kubernetes On The ODROID-N2: Create A Power-
E�cient Container Orchestration System
 August 6, 2019 By Thomas Kruse Linux, Tutorial

Deployment of containerized applications, is the new
norm. With it comes the need for automating the
deployments, scaling them up to meet increased
loads, and managing their lifecycle. Kubernetes (K8s)
is one such utility that �lls these needs.

Containers can be deployed on hardware devices of
varying capabilities and at a wide range of costs. A
fully self-contained Single Board Computer (SBC) is
one such device. The ODROID-N2 is a highly capable
SBC, and makes for a very cost-e�ective K8s device. It
is available with 4GB RAM, an eMMC card for high
speed storage, and a variety of I/O support. Along
with power supply it costs less than 100 Euros
(~$115). With 4+2 ARM64 CPU cores the ODROID-N2
makes for an interesting platform to operate a small
K8s cluster with one of the lowest power footprints.
One can even experiment with this low cost K8s
deployment, before deploying more expensive
solutions.

This article explains how to setup K8s on ODROID-N2
single board computers. Since there are several
options for operating systems, as well as K8s
distribution and setup methods, this article makes the
following assumptions:

Use Arch Linux ARM64 as the base operating system
(this is quite lean and kept very much up to date)

Vanilla K8s will be used, compiled and packaged as
Arch ARM64 packages on the ODROID-N2

Plain kubeadm will be used to setup the K8s cluster

CRI-O as container runtime (instead of Docker)

Single master node and 4 worker nodes

Unfortunately, there is no mainline Linux Kernel
support for the ODROID-N2. However, Hardkernel has
promised to work on it. The following features are
currently not working as expected:

zram for compressed memory as swap device

Disable GPU memory allocation to make use of the full
2GB/4GB of the ODROID-N2

Previous experiences with Arch Linux ARM 64bit and
K8s on Raspberry Pi and ODROID (ODROID-C2 to be
precise) can be found here:

Kubernetes auf Raspberry Pi (https://bit.ly/30PDiyu)
Kubernetes auf ODROID mit zram
(https://bit.ly/2OgXjMX) Kubernetes auf Arch Linux
ARM (https://bit.ly/2LEsqzT) Kubernetes mit CRI-O
auf Arch Linux ARM (https://bit.ly/2JR5nj4)
Kubernetes mit CRI-O Worker auf Arch Linux ARM64
(https://bit.ly/2Y6pl21) Kubernetes auf ODROID Arch
Linux ARM Mainline Kernel (https://bit.ly/2JT9A6b)
Kubernetes Dashboard auf ARM 64
(https://bit.ly/2LIVPZR)

Installing Arch Linux on ODROID-N2

Arch Linux is quite easy to set up. General installation
instructions can be found here: https://bit.ly/2JSlahB.
In order to ease the setup for multiple nodes,
scripting can be used to semi-automate preparing the
storage (eMMC or SD card) and extracting the base
system. Especially since customization like copying of
SSH-keys, setting sudo rights, and hostname
con�guration should be applied as well, automation
really pays o�.

After setup the following packages are installed as
well

sudo, htop

socat, ethtool, ebtables (for K8s CNI networking)

cpupower (reduces power consumption by allowing
CPU throttling during idle periods)

nfs-utils (if NFS storage is to be used with K8s)

To make use of all the 6 CPU cores when compressing
Arch Linux packages, the following parameters can be
set in /etc/makepkg.conf:

COMPRESSXZ=(xz -T0 -c -z -)

This will Con�gure multithreaded compression for
Arch Linux package creation

Building K8s Arch Linux ARM 64 packages

At �rst, up to date packages for K8s and supporting
services will be built as Arch Linux packages. It is
recommended to create a directory for each package
to be built and place the PKGBUILD �le in each one.

You can �nd the used PKGBUILD �les here:

runc

CNI-Plugins

CRI-O

CRI Tools

Kubernetes, Install File

Building a package is in general performed by issuing
the following command in each directory:

$ makepkg -s

At the moment, all packages can be build except the
Kubernetes Arch package.

For K8s some special steps need to be taken, since a
build of Kubernetes is quite resource intensive: On a
4GB ODROID-N2 a build is possible without additional
swap memory, but about 3.5 GB is the minimum. If a
2GB model should be used, a swap �le can be added:

$ sudo fallocate -l 1000M /swapfile

$ sudo mkswap /swapfile

$ sudo swapon /swapfile

In addition to the swap �le, two settings need to be
performed. The kernel should be allowed to
overcommit the available memory instead of eagerly
allocating the memory:

$ sudo sysctl -w vm.overcommit_memory=1

and the go build chain must be prevented from
performing parallel builds with the number of
available cores, leading to increased memory
consumption:

export GOFLAGS="-p=1"

Although each build itself will not run in parallel, each
part of the Kubernetes package can leverage all cores
during its individual build, avoiding major
performance reductions. Since Arch uses a tmpfs
�lesystem for /tmp, it should be unmounted �rst,
otherwise memory will be allocated for temporary

https://bit.ly/30PDiyu
https://bit.ly/2OgXjMX
https://bit.ly/2LEsqzT
https://bit.ly/2JR5nj4
https://bit.ly/2Y6pl21
https://bit.ly/2JT9A6b
https://bit.ly/2LIVPZR
https://bit.ly/2JSlahB

build artifacts and possibly resulting in an “out of
memory” condition:

$ sudo umount /tmp

After these settings are �nished, K8s can be built:

$ makepkg -s

When the build is complete the following packages
should be present:

cni-plugins-0.7.5-1-aarch64.pkg.tar.xz

cri-o-1.14.0-1-aarch64.pkg.tar.xz

crictl-bin-1.14.0-1-aarch64.pkg.tar.xz

runc-1.0.0rc8-1-aarch64.pkg.tar.xz

kubernetes-1.14.1-1-aarch64.pkg.tar.xz

These packages can now be distributed to all
ODROID-N2 nodes participating in the cluster. Of
course, other machines can be used as well, as long
as all are ARM64 hardware platforms.

ODROID-N2 K8s general node setup

Before installing the packages, settings for the correct
operation of container networking need to be
performed.

The following kernel features need to be present,
otherwise K8s networking will not work and might
lead to really hard to diagnose errors like the
following:

iptables: No chain/target/match by that name

Unexpected command output Device 'eth0' does

not exist:

CGROUP_PIDS

NETFILTER_XTABLES, XT_SET

If the kernel has a missing feature, like shown in the
output below, the quickest solution is to build a new
kernel package that includes the required features.

$ zgrep XT_SET /proc/config.gz

CONFIG_NETFILTER_XT_SET is not set

$ zgrep CONFIG_NETFILTER_XTABLES

/proc/config.gz

CONFIG_NETFILTER_XTABLES=m<pre>

<h2>Kernel feature verification for K8s

CNI</h2>

Building is quite easy, since the Arch Linux

kernel package can be built using the usual

tooling. To speed up the build process it

is recommended to edit /etc/makepkg.conf and

enable multithreaded compilation using

MAKEFLAGS="-j6", reflecting the 6 cores

available on the ODROID-N2.

<pre>$ git clone

https://github.com/everflux/PKGBUILDs.git

$ cd PKGBUILDs/core/linux-odroid-n2

$ git checkout patch-1

$ makepkg -s

Installation of the kernel package is performed using
pacman. Afterwards the networking con�guration can
be performed.

$ sudo sh -c 'echo "net.ipv4.ip_forward=1"

>> /etc/sysctl.d/30-ipforward.conf'

$ sudo sysctl -w net.ipv4.ip_forward=1

$ sudo sh -c 'echo "br_netfilter" >

/etc/modules-load.d/br_netfilter.conf'

$ sudo sh -c 'echo "xt_set" > /etc/modules-

load.d/xt_set.conf'

$ sudo modprobe br_netfilter xt_set

On each node the previously built Arch Linux K8s and
container tool packages need to be installed. If a
custom kernel package is built, it is to be installed as
well.

$ sudo pacman -U *pkg.tar.xz

loading packages...

resolving dependencies...

looking for conflicting packages...

Packages (5) cni-plugins-0.7.5-1 cri-o-

1.14.0-1 crictl-bin-1.14.0-1 kubernetes-

1.14.1-1 runc-1.0.0rc8-1

Total Installed Size: 1065.89 MiB

:: Proceed with installation? [Y/n]

...

Installation of all packages

After installation, the CRI-O container runtime
requires con�guration. CRI-O honors system wide
con�guration of trustworthy container registries in
/etc/containers/policy.json. In order to be able to pull

images from docker.io (and other registries) a default
policy can be installed: policy.json

A minimal con�guration for CRI-O itself is provided
here: crio.conf. It must be placed in /etc/crio/crio.conf.
To avoid CRI-O disabling container networking due to
no default CNI network con�guration, a simple
loopback CNI con�guration is setup.

$ sudo sh -c 'cat >/etc/cni/net.d/99-

loopback.conf <<-EOF

{

 "cniVersion": "0.2.0",

 "type": "loopback"

}

EOF'

Afterwards the CRI-O service can be enabled and
started.

$ sudo systemctl daemon-reload

$ sudo systemctl enable crio

$ sudo mkdir -p /etc/cni/net.d

$ sudo systemctl start crio

$ sudo systemctl enable kubelet.service

ODROID-N2 Kubernetes master setup

On the master node, the cluster setup will be
performed using kubeadm. Since even the latest
ODROID-N2 with 4GB RAM is quite limited with
memory, additional capacity using zram-swap or a
swap �le comes to mind. In order to run K8s with
enabled swap, the setting “--ignore-pre�ight-errors
Swap” must be provided for kubeadm:

$ sudo kubeadm init --ignore-preflight-

errors Swap --cri-

socket=/var/run/crio/crio.sock

Then you can join any number of worker nodes by
running the following on each as root:

kubeadm join 10.23.200.120:6443 --token

c11wrg… --discovery-token-ca-cert-hash

sha256:3f5dc1..

Kubernetes master setup

Once the kubeadm setup is �nished and the join
token is shown, the worker nodes can be setup. But
�rst a copy of the cluster con�guration is prepared in

the home directory of the user, so it can later be
retrieved to con�gure kubectl.

$ mkdir -p $HOME/.kube

$ sudo cp -i /etc/kubernetes/admin.conf

$HOME/.kube/config

$ sudo chown $(id -u):$(id -g)

$HOME/.kube/config

Kubernetes worker setup

Since the common setup is the same for worker and
master nodes--very little is left to do: The kubeadm
command will be used to join the cluster, afterwards
the K8s worker setup on the node is �nished.

If the worker nodes have swap enabled, the
parameter “--ignore-pre�ight-errors Swap” must be
provided as well:

$ sudo kubeadm join 10.23.202.120:6443 --

ignore-preflight-errors Swap --token

c11wrg.... --discovery-token-ca-cert-hash

sha256:3f5dc1...

Cluster networking and access

In order to access the K8s cluster, the generated
con�guration �le for kubectl is obtained from the
master.

$ mkdir ~/.kube/config

$ scp master:~/admin.conf ~/.kube/config

Afterwards the cluster should be accessible from
kubectl.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

n2-master0 NotReady master 11m

v1.14.1

n2-worker0 NotReady <none> 5s v1.14.1

n2-worker1 NotReady <none> 10s

v1.14.1

n2-worker2 NotReady <none> 9s v1.14.1

n2-worker3 NotReady <none> 8s v1.14.1

Accessing the newly setup K8s cluster

The nodes are all in the state NotReady since no
cluster networking is setup. This can be �xed quickly
using weave as CNI provider:

$ kubectl apply -f

"https://cloud.weave.works/k8s/net?k8s-

version=$(kubectl version | base64 | tr -d '

')"

Once Weave networking is established, the nodes
change to state Ready.

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

n2-master0 Ready master 77m v1.14.1

n2-worker0 Ready <none> 65m v1.14.1

n2-worker1 Ready <none> 65m v1.14.1

n2-worker2 Ready <none> 65m v1.14.1

n2-worker3 Ready <none> 65m v1.14.1

To get a web based interface for the cluster the K8s
dashboard is installed. Although it is provided as an
ARM64 image, the default deployment uses amd64 as
platform, so a little substitution with sed is needed:

$ curl -sSL https://bit.ly/2G4e9Hu | sed

's/-amd64:/-arm64:/' | kubectl apply -f -

References

https://kubernetes.io/
https://www.trion.de/news/2019/05/06/kubernetes-
odroid-n2.html

https://kubernetes.io/
https://www.trion.de/news/2019/05/06/kubernetes-odroid-n2.html

Multi-booting on ODROID-N2: Add The Ability to Select Multiple
Operating Systems From A Single Disk
 August 6, 2019 By Dongjin Kim ODROID-N2, Tutorial

The ODROID-N2 is a single board computer (SBC)
made by Hardkernel, which was released in February
2019 and that runs with Amlogic’s S922X
(4xA73@1.8GHz and 2xA53@1.9GHz). One of the new
features on the ODROID-N2 is an 8MB SPI �ash
memory. Obviously, onboard SPI �ash memory is not
a new technology at all and some SBC already have it
for using with certain purposes. Usually, the SPI �ash
memory has a bootloader and loads OS image from
larger storage like uSD or USB storage

The SPI �ash memory on the ODROID-N2 can be
bootable and 8MB is a pretty large space for a
bootloader which is usually under 1MB. Besides it’s
very small for the Linux kernel image which is usually
8~9MB for the compressed image for ODROID-N2. We
want to improve the usage of the small storage rather
than just install a bootloader.

There have been many demands to manage multiple
OS and many SBC users had tried to run multiple OS

installed in eMMC, uSD and USB storage and, as such,
instructions were introduced with a script or Linux
commands, as well. Many users succeeded with it but
the instructions are not simple for users who are not
familiar with the Linux system. We want to help new
users who wish to use two OS but having trouble to
set up multiple OS environments.

For the two reasons above, my workmate Joy and I
started to study the Petitboot which is an operating
system bootloader based on Linux kexec. We had to
struggle to build a complete image to �t in 8MB,
speci�cally, we had to customize the Linux kernel in
order to reduce the size smaller than 3.8MB which is
more than half the size of the generic Linux kernel. At
the same time, since Petitboot is an application
running on Linux userspace, we had to build a tiny
root �le system that could �t in 3.2MB. Otherwise, we
were not able to �t the whole tiny Linux system into

8MB. Here is the memory map of the image to boot
Petitboot in 8MB.

Figure 01 - memory map of the image to boot Petitboot
in 8MB.

After jumping multiple hurdles, we’ve successfully
built the bootable tiny Linux system including U-boot
in 8MB and ODROID-N2 can run Petitboot from SPI
�ash memory. But the �rst version just displayed the
Petitboot menus and boot entry manually con�gured
for an OS since there were boot formats such as Grub
or PXE boot which were not supported by the
ODROID-N2.

Figure 02 - petitboot menu

Since I wanted to help users to boot an OS without
any setting up e�ort, I had to add a component which
can recognize the OS image contributed by the open
source community. All OS images for ODROID SBC
have a special boot script a.k.a boot.ini that contains
the bootloader commands for setting the kernel
parameters, which kernel must be loaded, and so on.
Otherwise, a user has to learn the new boot con�g
format for the Petitboot and assign the boot �les
manually.

I’ve written the code to parse the boot.ini �le and I
was able to make Petitboot read the OS image from
the attached storage on the ODROID-N2 and show up
on the display such that the user can select a boot
entry using an attached USB keyboard or IR remote
control. I believe that this is a big achievement and
allows the user to easily select an OS installed and
attached to ODROID-N2.

I’ve also managed the version of Petitboot for
ODROID-N2 throughout June 2019 and, eventually, I
was able to �x the major bugs and improved more
features which were usually done by U-boot in order
to boot an OS. Still, it’s not a perfect solution. Since I
am not able to fully occupy myself on this Petitboot
task, the current Petitboot is not fully functioning as
much as I expected and dreamed but it will be
improved and released from time to time.

Figure 03 - Petitboot menu

Figure 04 - Petitboot menu

The current version can do the following:

Recognize di�erent OS images from open source
community as is, which means ideally you are able to
boot the OS image as booted from eMMC or uSD slot
without any change. I’ve discovered that Armbian has
changed its �le system structure, so a bit of change is
required.

Easily can boot from USB storage. Many SoC for SBC
do not boot from USB storage other than uSD or
eMMC and this is the same on ODROID-N2. ODROID-

N2 is more capable to boot from USB easily selecting
the boot entry of USB storage rather than using a
command line.

Boot device order can be set in the menu, you can
choose uSD as a �rst priority boot media or USB.

Boot automatically to the high priority booting media
in second unit.

The current version has some limitations:

The boot con�guration must be stored into uSD, which
is awkward. This is because of the limitation of SoC
feature but I’m thinking of a workaround.

Still, this is WIP project and having some issues
working in the legacy booting from uSD or eMMC.
Because some of the work which was done in U-boot is
moving to Petitboot and all features are not moved
and compatible.

Boot from network media such as PXE is not supported
but have put this into my TODO list.

Not o�ering fancy UX due to the small capacity of SPI
�ash memory, 8MB is the edge for storing the
mandatory BLOBs, only.

I was happy to see more users are trying to use
Petitboot on their ODROID-N2 and many of them are
happy with it since they are able to boot an OS for a
di�erent purpose. I maintain an ODROID forum
thread at https://forum.odroid.com/viewtopic.php?
f=182&t=33873, and will keep updating the version
whenever I have made corrections and/or
improvements. For comments, questions, and
suggestions, please visit the original article at
https://medium.com/@tobetter/multiple-os-on-
odroid-n2-3a5f3a14a726.

https://forum.odroid.com/viewtopic.php?f=182&t=33873
https://medium.com/@tobetter/multiple-os-on-odroid-n2-3a5f3a14a726

MooseFS
 August 6, 2019 By @powerful owl Linux, Tutorial

If you are looking for a network-aware distributed �le
system, that is highly available, scalable, fault-tolerant
and features high performance, then MooseFS is an
ideal solution. In this �lesystem, while �les are spread
across multiple servers (nodes), they appear to be
present on a single virtual disk. It is a POSIX compliant
Unix-like �le system.

But wait, how many servers do you need to even try it
out? Simple answer: just one! Although it is a
distributed �lesystem, you can test it with just one
node. In fact, you do not even need an attached drive,
you can use an SD card attached to an ODROID-XU4,
for example. However, for this article, we will be using
an ODROID-HC1, as it is designed to directly attach a
SATA storage device. It makes for an ideal, low cost
MooseFS server.

System

We will be using Armbian but any ODROID-HC1
compatible Debian or Ubuntu image should work. My

board hostname is mfs1, but you can use any valid
hostname. My board has an IP address of
192.168.1.111, but you can use an IP address that is
valid on your internal network.

Build and install

Run the following commands:

$ sudo apt install build-essential libpcap-

dev zlib1g-dev libfuse-dev pkg-config

$ sudo apt install git

$ cd

$ git clone

https://github.com/MooseFS/MooseFS.git

$ cd MooseFS

$./linux_build.sh

$ sudo make install

Con�gure and run master

$ cd

$ sudo sh MooseFS/debian/MooseFS-

chunkserver.postinst configure

$ mkdir mfschunks

$ sudo chown mfs:mfs mfschunks

Edit /etc/mfs/mfschunkserver.cfg and add the line
(use your own IP):

MASTER_HOST = 192.168.1.111

Edit /etc/mfs/mfshdd.cfg and add the line:

/home/odroid/mfschunks 1GiB

Note: 1GiB is to limit storage used for testing.

$ sudo mfschunkserver

$ ls mfschunks

Start CGI server

$ sudo mfscgiserv

In browser open http://mfs1:9425. Enter the master
name on the page.

Mount FS as a client

As a test, I used the same board as the client.

$ sudo apt-get install fuse libfuse2 (may be

already installed)

$ sudo mkdir -p /mnt/mfs

$ sudo mfsmount /mnt/mfs -H mfs1

$ sudo chown odroid:odroid /mnt/mfs

Now create folders and set di�erent replication goals
for each (1, 2, 3).

$ mkdir /mnt/mfs/goal1

$ mkdir /mnt/mfs/goal2

$ mkdir /mnt/mfs/goal3

$ sudo mfssetgoal -r 1 /mnt/mfs/goal1

$ sudo mfssetgoal -r 2 /mnt/mfs/goal2

$ sudo mfssetgoal -r 3 /mnt/mfs/goal3

Make some �les and have a look.

$ dd if=/dev/urandom

of=/mnt/mfs/goal1/100Mfile-goal1.bin

bs=1048576 count=100

$ dd if=/dev/urandom

of=/mnt/mfs/goal2/100Mfile-goal2.bin

bs=1048576 count=100

$ dd if=/dev/urandom

of=/mnt/mfs/goal3/100Mfile-goal3.bin

bs=1048576 count=100

$ ls -alRh /mnt/mfs

Go to MFS CGI http://mfs1:9425 and inspect. On
Resource page you can see class 2 and 3 are under
goal because there is only one chunkserver.

Figure 1

On the main page, even though the goal is 2 and 3
there is just one copy of each chunk.

Figure 2

Now, let us add more chunkservers, by repeating the
steps above for each new server. After repeating the
�rst 2 major steps listed above, for two more
ODROID-HC1 devices, the CGI interface will show that
the �les have been rebalanced across the three
chunkservers:

Figure 3

Note that the replication goal has also been met for
the �les with goals of 2 and 3.

Figure 4

Figure 5

Whoever thought it was so easy to create a
distributed �le system? It seems very easy to get
going and scale as well. Just add another ODROID-
HC1/HC2 with a drive at any time. The downside is
that there is not very e�cient storage use (e.g., 50%)
with the default replication goal of 2. However I read
of issues with other FS using EC coding on a
distributed �le system.

One thing that I think will be important is a way to
orderly shutdown of the cluster (hopefully triggered
by UPS). That aspect has not been implemented here.

I noticed an interesting thing, MooseFS keeps moving
chunks about 2 per minute, on average, even when
there is no access to it. This is the activity in a few
hours:

Figure 6

Since the chunkserver does not need the whole drive,
with one more drive I could run a test with three
chunkservers with hard drives, using ODROID-HC1s
with drives already in them. If it works, then migration
will be easy:

For each ODROID-HC1 with a drive:

Start chunkserver process with a space limit (eg 2TB on
4TB drive)

rsync �les from regular �lesystem to MooseFS

delete �les from regular �lesystem

Restart chunkserver with no space limit

Here is a quick test with uneven storage on di�erent
chunkservers. MooseFS balances them so that they
each use the same percentage of space:

Figure 7

Reference

https://moosefs.com/
https://moosefs.com/support/#documentation
(Download PDF �les)
https://github.com/moosefs/moosefs
https://forum.odroid.com/viewtopic.php?
f=98&t=35069

https://moosefs.com/
https://moosefs.com/support/#documentation
https://github.com/moosefs/moosefs
https://forum.odroid.com/viewtopic.php?f=98&t=35069

Linux Gaming: PC-Engine / TurboGrafx - Part 5
 August 1, 2019 By Tobias Schaaf Gaming, Linux

In the previous installment of this series, I was able to
play a very good mixture of di�erent genres. I found
some shooting games I liked, one of my all time
favorite adventure games, and even the one sports
game I liked on the Nintendo Entertainment System
(NES) ported with better graphics than the
TurboGrafx-16 (PCE). Overall it was quite mixed, with
lots of good and ok games, but also with a few that I
did not particularly like. Let’s see what the next games
will be like, as we approach the end of this series.

Games I liked

Pop’n Magic

Figure 1 - Pop’n Magic has very colorful graphics and is
also very child-friendly

Figure 2 - Bosses can actually be rather hard to kill in
this game

This game is very similar to the Bubble Bobble series
with a similar gameplay. You catch enemies by
shooting at them, and after that, they are trapped in a
colored bubble/energy ball. You can pick the bubble
up and throw it at other bubbles to destroy them,
which will cause it to drop a lot of bonus items as well
as power ups for you, such as stronger weapons and
faster walking. For this, you have to throw it onto a
bubble with a di�erent color. Throwing it at a bubble
with the same color will set the enemy free again.
Instead of throwing the bubbles at each other, you
can also shoot the bubbles and destroy them that
way as well, but it will give you less points or power
ups. The game is very casual, with a nice CD
soundtrack as well as anime cut-scenes between
worlds (all Japanese though). At the end of each
world, you will �ght a boss, which are quite hard to
beat, but will reward you with several life ups through
the points you collect.

R-Type Complete CD

I recently played this game through for the C64 on the
ODROID Go which is a somewhat harder than this
version, but this version is also no cakewalk. This
version has improved graphics, comes with an intro
and cut-scenes every couple missions. The soundtrack
got beefed up and now is CD-audio, so higher quality
but you still recognize the original tunes. Overall I
enjoy this game a lot, although there’s also a HuCard
version of this game. Actually there are several of
them, Japan got R-Type I and R-Type II which is the

same game but split over two game cards, not a
sequel. North America got an HuCard (TurboChip)
port that had both games combined on one card, and
when the CD came out Japan �nally got a full game as
well, including an extra boss �ght in level 6. Overall
the game is very good and worth playing.

Figure 3 - R-Type actually plays in widescreen on the PC-
Engine

Figure 4 - Boss �ghts always follow a certain pattern

Another specialty is the widescreen graphics for the
game. Most games are actually rendered in 256x243,
but R-Type runs in 352x243 which only a few games
did.

Rainbow Island

Figure 5 - Bubble Bobble 2 – Rainbow Island

Figure 6 - I’ve seldom seen so “cute” bosses, although I
really hate spiders!

Rainbow Island is another of the Amiga classics that I
played as a child. In this cute game, you literally climb
the rainbow. In fact, you can shoot rainbows and walk
over them to get on higher platforms or to kill
enemies. At the end of each island, you have a boss
�ght. The entire game is very child friendly and has
colorful comic-styled graphics. Music now plays as CD
audio, but it’s still the original tunes.

Renny Blaster

The fact that I �nished the game in one sitting should
already be reason enough to put it on this list, and I
also guess that’s the main reason why it’s here, as the
game is in no way “spectacular”. The graphics are
mediocre at best, with no parallax scrolling, and cut
scenes are just standing pictures with voice acting all
over it, which I ended up skipping altogether. This is a
�ghting game similar to Double Dragon or Streets of
Rage. You can choose between two players, and both

have completely di�erent �ghting styles. One is a
martial arts champion and �ghts with �sts and feet,
the other is some kind of mystic and �ghts with magic
powers. I personally found kicking and boxing to be
far more e�ective that shooting tiny rays of energy,
especially since the latter can’t be done in mid-air,
which makes jump attacks impossible.

Figure 7 - Fighting regular enemies varies from very easy
to boss like

Figure 8 - Each stage has several bosses to �ght o�

You also have a charged attack which can be charged
up to three stages, and causes three di�erent attacks,
all of which I found are rather weak, but sometimes
helpful in certain situations. During the levels you �nd
text scrolls, and these scrolls activate new abilities
which can then be chosen from before starting a new
stage. Although neither the graphics nor sound/music
is very impressive, the gameplay is rather nice and
you can �nish the game in merely half an hour.

Riot Zone

Figure 9 - beating up bad guys was never so much fun

Figure 10 - At the end of each level, a boss �ght awaits
you

This is another game like Double Dragon or Streets of
Rage and it’s a damn good one. Graphics are great,
with some parallax scrolling for the backgrounds.
Controls are rather good, and pulling o� jump attacks
is easy. You can select from two di�erent �ghters and
then just give them the beating they deserve. I had a
lot of fun playing this game and highly recommend it.

Seirei Senshi Spriggan

This is one of the games I had a hard time turning
away from, as it kept me busy and interested in it for
so long. This is one of the many shooters for the
system, and once you get the hang of it, it’s quite a
good one.

Figure 11 - This game can throw tons of enemies at you
at once

Figure 12 - Normally you �ght two bosses per level

The graphics are rather good, although I didn’t see
much parallax scrolling, you still have a constant
change of scenery. You also have pulsing lava or
waterfalls in the background, which makes up for the
lack of parallax scrolling. You can’t upgrade your
attack, but you can collect di�erent colored energy
bubbles, such as green, blue, yellow and red, which
you can combine up to three for di�erent outcomes.
Sometimes you simply have all three weapon types
�ring at the same time, and sometimes you create
entirely new attacks. Some attacks are homing and
�nd their targets on their own, while others scatter
over the entire screen. It’s very fun to try out di�erent
combinations.

Shape Shifter

Figure 13 - Dungeon can be crawling with enemies

Figure 14 - Bosses are large and require some tactics to
get rid of

This action platformer is completely in English. Even
the cheesy voice acting is in English, and actually plays
as a soundtrack, which this game has nearly 100. Even
the shop owners talk to you, which is played from the
CD. The game itself is quite fun, although some
monsters can be very annoying, especially �ying
monsters which will �y into you where you can’t hit
them, but if you can look past this, the game is quite
fun to play.

You can buy a couple of di�erent weapons, an even
enhance them with a magic spell. Later on, when you
�ght some bosses, you will free 5 mages, who grant
you the power to transform into other things, like a
panther for example, which gives you greater speed
and strength but is limited in time. In the top middle
of the screen, you can see a sun and a planet, where

the planet is circling the sun. Each time the planet is in
front of the sun, a lightning strike will come from the
sky and hit you, which in return will replenish all of
your health. So sometimes it is advantageous to just
sit and wait to get healed. Overall this game is very
fun, but it needs time to get used to the �ghting, as
some enemies keep spawning unless you destroy
certain objects, and some of them can be hard to kill
or reach.

Spriggan Mark II – Re-Terraform

Although completely Japanese and I can’t understand
a single word that’s spoken this game, has an amazing
introduction and cut-scenes between each level.

Figure 15 - Many di�erent settings and lots of parallax
scrolling in the background

Figure 16 - As usual, a boss �ght awaits at the end of the
level

The graphics are overall rather good, with each level
having a little bit of parallax scrolling going on in the
background. Lots of di�erent objects and enemies are
thrown at you all the time. The �rst button attacks,
and the second turns your mecha around so you can
shoot in the other direction. With SELECT, you can
cycle through di�erent weapons. There are no power
ups or things like that, but when you progress in the
game, you get new mechas, and later on you can
choose your di�erent side-arms. Speaking of side-
arms, one is, for example, a sword which can be really
nice for close combat, and if you hold the button you
can use it to just �y into enemies and hold it there to
do constant damage. I really like this game as one of
the many good shooters for the console.

Star Parodia

This is one of these so called cute ‘em ups, and is a
really good one, with tons of colorful graphics, good
music and sound e�ects. There are three di�erent
characters to choose from, one being Bomberman
and one being the PC Engine itself. This game has
everything. Power up your weapon by collecting the
items representing the weapon that you currently
have. Pick up a di�erent weapon to switch to another
attack style. It has bombs for large attacks, it has
power ups like, shields, and extra bombs. The games
comes with good parallax scrolling in some levels, lots
of monsters, and boss �ghts.

It scrolls fast but never slows down. It’s nice for
people not so good at shooters, as the di�culty level
is not that high. Get hit and you don’t instantly die,
but lose a weapon level. Only when you are at the
minimum and get hit again do you lose a life. You get
plenty of these while �ghting from collection points or
by collecting 1ups. Overall, this game is very fun to
play and I highly recommend it.

Figure 17 - Cute graphics and �uent gameplay in this
nice cute ‘em up

Figure 18 - Strange Bosses like roller coaster and origami
papers

Syd Mead's Terra Forming

This shoot ‘em up is quite nice, with lots of parallax
scrolling both in the foreground and background. It’s
very beautiful to look at. The action is fast but
manageable. Bosses require some tactics as they
often can only be attacked from a certain side.

Figure 19 - There is lots of parallax scrolling and organic
design in this game

Figure 20 - Bosses often have certain hard-points you
need to �nd and destroy

This is one of those games that you pick up just to try
it and end up playing it for hours. You have a main
weapon which can be upgraded by collecting blue
rectangles with a line in the middle. You can also have
one of three di�erent support spheres that have
di�erent attacks. These are activated by collecting
either yellow, red, or blue bubbles. Yellow is a spread
attack which will �re in a straight line in all major
directions and allows you to attack enemies from the
back and front at the same time. Red is a powerful
weapon that only goes straight forward. The blue one
is easily my favorite, and is a number of homing
bullets. Each bullet goes automatically to every enemy
on the screen. The �rst level can be beaten just by
sitting in the middle of the screen and holding the �re

button as the bullets aim and destroy everything that
is being thrown at you. All weapons can be upgraded
a few times to get stronger. If you get hit, you lose a
level of your weapon power, and in the end will die.

Games I found ok

Prince of Persia

This version of Prince of Persia is a decent port with
improved graphics, slightly updated intro, and a CD
soundtrack. The controls are ok for the most part, and
you can use either a dedicated jump button or the up
button on your controller. The latter can cause some
issues if you just try to run straight and suddenly your
character jumps, so make sure you have a gamepad
with a good d-pad. Overall, the controls could be
better, especially in �ghts, where the controls are
sometimes a little sluggish, and I wished they would
react faster. Still, the game is great and a nice turn on
the story and gameplay from the original, and
de�nitely worth trying out.

Psychic Storm

This shoot ‘em up is somewhat odd. It’s fun for a little
while, with 4 di�erent characters and ships to choose
from, and di�erent weapon and transformations,
where all of them are very di�erent from each other.
Still, the game is mediocre at best in all sound,
graphics and gameplay. You �ght your alien
spaceships and monsters with good enough variety,
and at the end of each stage there’s a boss that needs
some killing.

Your ship can transform into a giant insect-like space
craft with quite a bit of �repower for a while, and you
can collect energy for that craft which is dropped by
di�erent enemies, but they are not dropped often
enough to keep this form for long. If you’re in normal
form and get hit too often (health nearly empty) you
automatically transform to the strong form, to
prevent destruction. Which is �ne, if you wouldn’t be
back to zero health the moment this transformation
ends, and the next hit transforms you right back
again. After three transformation (either willingly or
by near death) it’s over and you can’t use it anymore,
which also means instant death after transformation
is �nished and you are hit once again. You can
upgrade your main weapon when you collect blue

power ups, and some health by collecting red/blue
pills. Both are rare and to increase your weapon
power. You have to collect around 5 weapon ups in
total, which keeps your weapons rather weak.

Puyo Puyo CD / Puyo Puyo CD Tsuu

Both games are not bad, are nice and colorful, fun to
play and overall have good presentation. I just don’t
see why they are on a CD: one has nearly 40 audio
tracks, and the other has over 80. These tracks are
apparently not for music, but contain just for the
speech in the game every now and then. Honestly, I
don’t see this making it worth the CD format. These
games would have been better placed on a HuCard
instead. The music doesn’t even seem to be from CD,
and the quality is not that good. Both games are nice,
and if you are a fan of the Puyo Puyo series, you
should de�nitely try this out.

Pomping World

This is basically a port of the arcade classic Pang,
where you shoot bubbles which split in two smaller
bubbles until the most tiny bubbles �nally disappear.
Clear all of the bubbles and you win; get hit and you
die and have to start over again. It is not a bad game
and pretty much arcade-perfect.

Populous - The Promised Lands

I �rst played this strategy game on the Amiga, and
surprisingly the graphics for the PCEngine are quite
good, and maybe even superior to the original Amiga
graphics, but it probably looks di�erent due to the
comic-styled graphics. Still, the game is the same as
on the Amiga, although the controls are much harder
due to the fact the game is best played with a mouse,
whereas the controller is slow and clunky instead. It
works ok, even if it’s a little bit slow. The game is also
contains a mixture of English and Japanese.

Ranma Ni Bun no Ichi

The �rst of a trio of Ranma games that I tried. It
follows the story of the early episodes of the game,
and is an action platformer with �ghting and jumping.
The game has very good graphics, and the cut-scenes
are actually quite impressive, with lots of details and
animation as well as voice acting (using the original
cast, I believe). Even with the game being fully in

Japanese, that’s not really an issue. What’s an issue
are the bad controls which are sadly present
throughout the entire game. In some scenes, your
punches are not completed and the action just stops
in mid punch or kick. The same goes for jumping,
which makes the game unnecessarily harder than it
should be.

Ranma Ni Bun no Ichi - Datou Ganso Musabetsu
Kakutou Ryuu!

This is the second game in the series of the Ranma
games that I tried. The graphics, cut-scenes music and
everything is still as good as in the �rst game, but the
gameplay has changed a lot. Now, it’s more like a beat
‘em up, and you �ght one and one with your enemies.
This actually worked out a lot better than the �rst
game and it was actually quite fun beating the �rst
enemies. But soon after, I found that the enemies get
rather hard and are in fact quite unfair.

When you get hit, you blink and you are invincible for
a short moment. That’s all�ne, as this is the case in
many games, but in this game the time you are
invincible is so short that you get instantly hit with the
next attack again. The enemy also attacks you most of
the time with ranged attacks, which often fan out as
well, so it’s really hard to avoid, while most of the time
you have to get in really close. Overall, it gets unfair
and hard really quickly, which I did not enjoy, but
aside from that, this game is fantastic.

Ranma Ni Bun no Ichi - Toraware no Hanayome

This is the last game in this series of Ranma games
that I tried. This one changed a lot. The music is bad
as compared to the other two. It’s not bad as in, it
doesn’t �t or sounds terrible, but where the �rst two
came with CD audio, this one seems to contain
chiptunes only. The game has no “action” at all this
time and is in fact a Visual Novel where you simply
have to choose what you want to do next. Even if you
don’t understand the language (like me), you can still
play the game. Just choose every option available
multiple times, and in time you will proceed. This also
makes the game very long especially if you don’t
understand what’s being said. There’s a lot of voice
acting throughout the game, with a good amount of

animation and character design, but barely any
backgrounds. I liked it the least of the three.

Rayxanber II + III

These two shooters are very generic. The graphics are
ok, but not very good, with, for example, no parallax
scrolling, and without the turbo switch, this game is
way too painful to play, as you need that fast shooting
power and you can manage that for long by smashing
the button.

There is no power up system I’m aware of, and just a
couple di�erent weapons you can collect. Depending
on the direction of the weapon icon when you collect
it, it will shoot in di�erent directions, although front
facing turned out for me to be the best, as you need
the extra �repower since your ship is quite weak. As
said before, you can’t power up the weapon, so
collecting multiple times the same icon does nothing
for you except allowing you to change the �ring
direction.

Road Spirits

Road Spirits is a old school racing game similar to the
Lotus series on the Amiga or OutRun in the arcades.
You always drive straight forward, and can only shift
left and right to follow the road and avoid other cars.
In this game, you have two shifts Low (up button) and
High (down button); the �rst goes to 170 km/h, and
the other goes to 290 km/h. The game has a little bit
of parallax scrolling going on in the background, but
overall the graphics are not very impressive. The
game is also rather easy, unlike OutRun, for example.
You don’t have much of a choice where to go and
what to do either. Only the music can be chosen
before start. There are 10 soundtracks in total to
choose from and that’s about it. It’s not bad as a
game, but not very good either.

Ryuuko no Ken

This surprisingly good-looking �ghting game has
many features to o�er. Not only is it one of the few
games that support the 6-button gamepad existing
for the system, it also o�ers features such as zoom-in
�ghts, which means when you are closer to the
enemy the view gets zoomed in, if you are farther
away it gets zoomed out. These are cool features, and

the game looks very impressive. This Street Fighter-
styled game is probably one of the best the console
has to o�er. I liked it, but found it a little bit too hard,
but that could be just my lack of skills.

Shadow of the Beast

This is another classic Amiga game. It won some
awards for its graphics and music back in its time, and
hearing the music in CD quality on the PC Engine is
certainly impressive. The music got remixed and is
actually quite di�erent than the original in some
cases, but is still probably best of all the console
ports. The graphics are rather good as long as you are
outside of a dungeon, but inside a dungeon the
backgrounds are missing, and you don’t have parallax
scrolling which makes it probably the worst of all
ports in terms of graphics (at least inside a dungeon),
but the impressive music helps this fact, and the
game still looks very good. It is not like the SNES
version where the graphics looks nice overall but the
music is just terrible, and even worse than the
Genesis version. A good comparison video of the
original game on the Amiga compared to the SNES,
Genesis and PC Engine is available at
https://www.youtube.com/watch?v=QUT91K4mPlw.

Shanghai II

Normally I’m not a big fan of these kind of puzzle
games, but this one has very nice music which makes
it very relaxing, and I enjoyed myself playing this for a
while. It’s nothing fancy, without videos or cut-scenes,
just simple gameplay, which was nice, and I enjoyed
my game time.

Slime World

This platformer is actually quite interesting. You run
around as a guy in a suit that walks and jumps
through levels of green slime, with monsters throwing
slime at you and ponds of water where you can clean
yourself. If you get too slime covered, you die. You
can collect a bunch of di�erent items which I wasn’t
able to �gure out how or if you can use them. The
controls are a little bit o�. Jumping is very sluggish
and you stick on walls, no matter if you want to or
not, which sometimes makes it hard to reach places.
Graphically, the game is nice, although it bit
nauseating, not because of the slime, but because the

https://www.youtube.com/watch?v=QUT91K4mPlw

screen keeps following you every move, which means
that if you turn, go up or down and such, the screen
keeps scrolling. Turn left or right and the screen
instantly scrolls into the other direction.

Space Fantasy Zone

This game is a Space Harrier meets Fantasy Zone
game (hence the name), and it’s exactly what this
suggests. Imagine Space Harrier with Fantasy Zone
graphics and enemies. It’s actually quite fun, and after
you �nish a level, you can go to a shop to heal up, buy
better weapons and some specials. It’s not the most
graphically impressive game, but it’s not bad and has
some nice tunes.

Space Invaders - Original Game

You should take the “Original Game” very seriously,
since this is a remake of di�erent arcade versions
from 1978, and that’s also what you can expect
graphics wise. The game comes with a couple of
di�erent versions and even has some competitive
multiplayer versions, but overall it’s good “old” Space
Invaders, and nothing too fancy.

Splash Lake

This puzzle game is quite unique. You play as a bird,
and your goal is to kill every enemy on the map, not
by attacking them, but by picking the ground
underneath their feet, breaking ledges and make
them fall into water. For this, you have to learn the
di�erent types of tiles which you can break and which
you can’t, and what will break apart and how much of
it when you pick at it. The game has di�erent stages
each containing 10 levels, after which you have
somewhat of a boss �ght, which is an enemy that can
fall into water more than once and some other
enemies that spawn later on. The game is quite fun,
although not very impressive. The controls are a little
bit clunky, as a turn or a walk is a di�erence between
a fraction of a second.

Star Mobile

This puzzle game is rather simple: you have a scale
with three places to put “stars” into. Each star
represents a di�erent “weight”. Stars fall at random,
and your goal is to keep the scale from tipping to one
side or the other, and with that stack up the stars.

Each level increases the number of stars you need to
stack to win the level. You can combine stars of the
same color for extra points or you can gain extra stars
if you collect your old stars, this can be done when
you have stars of a di�erent color between two stars
of the same color, the star in the middle will
disappear and you get an extra star (which you need
in case you make mistakes and loose stars). It’s fun
for a little while, but doesn’t have any impressive
graphics or gameplay elements.

Steam Heart's

This shooter is a little bit odd for me. The graphics are
nice, and the music is ok. You can collect weapon
power ups and increase your weapon power nearly
in�nitely it seems (which is very interesting), but
something seems to be missing for me. The game
comes with two playable characters, but the �ghting
styles are completely identical. It seems the game has
only two weapons: a spreading vulkan cannon and a
beam laser, with the laser being the stronger weapon
by far. You get a couple of bonus items, such as
missiles that attack straight, or spheres that search
for enemies, and shields that can protect you for a
while. You rarely get something to replenish your
health. Overall it’s nice, but I feel that something is
missing.

Super Air Zonk

This game is often referred as a hidden gem on the
system, and while the graphics and music are good,
the comic style is funny and nice to look at, and
overall the game is fun to play, I don’t fully agree with
that statement. It’s a nice shooter/cute ‘em up, but for
me there’s too much stu� going on on the screen, and
I’m never sure if what I’m running into is something
I’m supposed to collect, or if it’s enemy or a “bullet”.
There’s too much stu� going on, and often the
bonuses you’re supposed to collect wobble just
outside of your reach, and I’m talking about your
standard point bonuses, not weapon powers or
whatever. It’s annoying to kill 10 enemies but you’re
unable to collect any of the points cause they drift
instantly out of your reach. Still, the game is nice and
fun to play for a while.

Super Darius I + II

Both of these titles are well known shooters from the
arcade, and the overall presentation is very good. The
game improved on the sound department over the
arcade originals, and the CD soundtrack is simply
superb. The graphics are nice, with a good amount of
parallax scrolling and pulsing e�ects going on in the
background. The game doesn’t seem to slow down no
matter what’s going on on the screen.

Personally though. I don’t like these games very
much. The �rst one is extremely hard, and I ran out of
life within a couple of seconds (!) until I got the hang
of it. The second game was the easier one, where I
could adjust di�culty and lives that I had, which helps
a lot, since every time you die, you lose all of your
power ups, which makes later levels extremely hard
as enemies need more hits and you’re shooting peas
at them.

Super Raiden

I really like the Raiden games, and just started to play
them on the ODROID Go for Atari Lynx again. This
version is of course better in everything compared to
the Atari Lynx version with superior graphics, sounds,
and music. The gameplay is nice, and when you get a
fully powered vulkan cannon with homing missiles to
support it, the game is just a walk in the breeze. It’s
fun, but it’s missing the last “wow” e�ect to be a
perfect game. Still, I highly recommend this game as
it’s really nice and you can pleasantly pass some time
with it.

Sylphia

In this shooter game, you play as a fairy and have to
shoot lots of di�erent enemies with many di�erent
weapons. You can collect di�erent weapon ups in the
color, red, green, blue and yellow, which all represent
a di�erent weapon type. Collect the same type to
increase the power, or collect a di�erent type to
switch the weapon. Boss �ghts can be rather hard
and long, and there’s normally a mid-boss as well.
Overall the game is fun and nice, and has here and
there some nice e�ects, such as an underwater level,
but the graphics are not that impressive, so it’s not
one of the really good shooter games available for the
system.

Games I disliked

Rom Rom Stadium

This baseball game is one of a few for the system. In
fact, it was the only one where I was able to hit the
ball at all or score a point. I’m generally not a sports
fan, and baseball games on consoles have never had
much appeal for me. This one has nice comic-styled
graphics, but is completely in Japanese as well, so
there are many things here that give me a hard time. I
imagine this game can be fun for people who like the
genre, but for me it’s not all that great.

Shanghai III - Dragon's Eye

Contrary to Shanghai II, I didn’t like the third title in
the series. The music and sound were extremely loud,
even though I didn’t change settings. Although the
game came out rather late into the console’s lifecycle
(1992), the graphics are really not impressive. After I
�nished the board, I was greeted with a cheaply made
graphic of a dragon blowing �re out of its nostrils and
kept doing so no matter what button I pressed or how
long I waited. I guess that was where I needed to
restart the console in order to play again.

Sherlock Holmes Consulting Detective Volume I +
II

This game started o� very impressive. It comes with
videos, which means there’s actually video footage of
Sherlock Holmes in this game. The game also
dismisses all soundtracks and has voices and music
digitized as data on the disc. There are a couple things
you can look at before you start the game, and get an
introduction where you see the videos and hear
voices, which is all very impressive, but then the game
starts and the quality gets completely turned around.

You still have videos and such when you go and visit
places and try to solve the game, but I didn’t even get
that far. The �rst thing they tell you to do is to check
the newspaper, but to be honest, I haven’t had the
patience to read 5 di�erent newspapers with 40~50
news entries each with a menu that always puts me
back to where you choose the newspaper you want to
read before you can select the next article to read.
This is a game that takes a very long time, and I didn’t
have the time nor the patience to get into it. However,
if you like long games, you can check out a review of it

at https://www.youtube.com/watch?
v=6ShdmWQoLDY.

Sim Earth - The Living Planet

This is also one for patient players. Graphically, I’ve
seen better versions, and this one also lags, but has
some nice audio commentary here and there. Overall,
it takes too long to get somewhere for me, and I don’t
have time for something like this. The lags and
sometimes unresponsive input is another thing that
makes this game a no-go for me.

Strider Hiryuu

This is the PC Engine version of Strider, but it’s not a
particularly good port in my opinion. It has lots of

�ashing and missing graphics, and the controls are
also not the best, especially when you try to hit
enemies that are on the ground. It’s not a terrible
game, but I’m sure it could have been better.

Summer Carnival '92 – Alzadick / Summer Carnival
'93 – Nexzr Special

Both games are shooters as well, but at best
mediocre. The second title has better graphics overall,
but the gameplay is not very fun. You die too fast, or
you �nish the level and the game is over and you’re
just hunting for the highest score. I didn’t particularly
enjoy these two games, although Summer Carnival ‘93
was overall a lot better.

https://www.youtube.com/watch?v=6ShdmWQoLDY

Using Kernel 5.2 With Armbian: Run WiringPi, HomeAssistant,
and More With the Latest Kernel Support
 August 6, 2019 By @joerg Linux, ODROID-C1+, Tutorial

This article addresses the creation of an Armbian
image using the mainline linux kernel 5.2.0-rc3, and
the setup of the popular home automation software,
Home Assistant. This exercise was performed
targeting the popular Single Board Computer (SBC)
ODROID-C1.

Installation Steps

First, I installed a working Armbian image that comes
with a 5.x kernel. Here are the steps to compile and
install the mainline kernel:

$ export ARCH=arm

$ export CROSS_COMPILE=arm-linux-gnueabihf-

$ export

 PATH=/path/to/jour/toolchain/gcc-linaro-

7.3.1-2018.05-x86_64_arm-linux-

gnueabihf/bin:$PATH

$ make odroidc1_defconfig

$ make -j 4 LOADADDR=0x00208000 uImage dtbs

modules

$ kver=`make kernelrelease`

$ sudo echo ${kver} > ../kernel.release

#put the sdcard to your host computer

#and copy the needed files to it

$ sudo mkdir /path/to/sdcard/boot/mainline

$ sudo cp arch/arm/boot/uImage

arch/arm/boot/dts/meson8b-odroidc1.dtb

 /path/to/sdcard/boot/mainline

$ sudo make modules_install ARCH=arm

INSTALL_MOD_PATH=/path/to/sdcard/boot/mainli

ne

$ sudo cp .config

/path/to/sdcard/boot/mainline/config-${kver}

$ sudo cp ../kernel.release

/path/to/sdcard/boot/mainline

#this copies all relevant files

#then put the sdcard to the C1 and boot

#on the C1:

$ cd /boot/mainline

$ VERSION=$(cat kernel.release)

$ sudo update-initramfs -c -k ${VERSION}

$ sudo mkimage -A arm -O linux -T ramdisk -a

0x0 -e 0x0 -n ../initrd.img-${VERSION}

 -d ../initrd.img-${VERSION}

../uInitrd-${VERSION}

Note that odroidc1_defcon�g does not exist in the
mainline kernel. Instead there is the
multi_v7_defconFigure However, when I use this, the
ODROID-C1 does not boot. I think it is due to the
kernel size of about 10Mb. The odroidc1_defcon�g is
based on the con�g of @aplu, but there are some
more con�g values that have not been set there
before. You can download odroidc1_defconFigurezip
from https://bit.ly/2Y9JtQS. Also, the boot.ini must be
edited to make the ODROID-C1 boot the new kernel:

Booting

ext4load mmc 0:1 0x21000000

/boot/mainline/uImage

ext4load mmc 0:1 0x22000000 /boot/uInitrd-

5.2.0-rc6

ext4load mmc 0:1 0x21800000

/boot/mainline/meson8b-odroidc1.dtb

#mainline kernel

#ext4load mmc 0:1 0x21800000

/boot/dtb/meson8b-odroidc1.dtb

After a reboot it should look like Figure 1:

Figure 01

I had to modify the kernel to make wiringPi run. In the
mainline kernel, reasonable values are missing in
/proc/cpuinfo:

...

Hardware : Amlogic Meson platform

Revision : 0000

Serial : 0000000000000000

After applying a patch, what I created looks like this:

...

Hardware : ODROIDC

Revision : 000a

Serial : 1b00000000000001

The cpuinfo-patch looks like so:

diff --git a/arch/arm/boot/dts/meson8b-

odroidc1.dts b/arch/arm/boot/dts/meson8b-

odroidc1.dts

index f3ad939..8892151 100644

--- a/arch/arm/boot/dts/meson8b-odroidc1.dts

+++ b/arch/arm/boot/dts/meson8b-odroidc1.dts

@@ -52,6 +52,10 @@

 model = "Hardkernel ODROID-C1";

 compatible = "hardkernel,odroid-c1",

"amlogic,meson8b";

+ hardware = "ODROIDC";

+ serial-number = "1b00000000000001";

+ revision = <0x000a>;

+

 aliases {

 serial0 = &uart_AO;

 mmc0 = &sd_card_slot;

diff --git a/arch/arm/kernel/setup.c

b/arch/arm/kernel/setup.c

index d0a464e..b54a855 100644

--- a/arch/arm/kernel/setup.c

+++ b/arch/arm/kernel/setup.c

@@ -99,6 +99,9 @@

EXPORT_SYMBOL(system_serial);

 unsigned int system_serial_low;

 EXPORT_SYMBOL(system_serial_low);

+const char *system_hardware;

+EXPORT_SYMBOL(system_hardware);

+

 unsigned int system_serial_high;

 EXPORT_SYMBOL(system_serial_high);

@@ -959,6 +962,23 @@ static int __init

init_machine_late(void)

 system_serial_high,

 system_serial_low);

+ if (root) {

+ ret = of_property_read_u32(root,

"revision",

+ &system_rev);

+ if (ret)

+ system_rev = 0x0000;

+ }

https://bit.ly/2Y9JtQS

+

+ if (root) {

+ ret = of_property_read_string(root,

"hardware",

+ &system_hardware);

+ if (ret)

+ system_hardware = NULL;

+ }

+

+ if (!system_hardware)

+ system_hardware = machine_name;

+

 return 0;

 }

 late_initcall(init_machine_late);

@@ -1295,7 +1315,7 @@ static int

c_show(struct seq_file *m, void *v)

 seq_printf(m, "CPU revision : %d

", cpuid & 15);

 }

- seq_printf(m, "Hardware : %s

", machine_name);

+ seq_printf(m, "Hardware : %s

", system_hardware);

 seq_printf(m, "Revision : %04x

", system_rev);

 seq_printf(m, "Serial : %s

", system_serial);

I do not know if it is a good idea to put the
serialnumber into the devicetree. However, it can be
done like so, with the fdtput command:

$ sudo fdtput -t s /boot/mainline/meson8b-

odroidc1.dtb / serial-number

1b00000000000002

Then I have some I2C devices running with wiringPi
and Home Assistant. However, when I tried, I was
surprised that I2C is not yet enabled. It took a while to
�nd the right values for the devicetree. There was still
an unsolved problem. After applying the following
patch to the devicetree I noticed the /dev/i2c-0 that
serve the pins 3 and 5 and the /dev/i2c-1 that serve
the pins 27 and 28. With the kernel 3.10.107 this is
di�erent, the device numbering of the I2C start with 1
and so the wiringPi is searching the i2c-1 device. I
have not found a solution yet. One possible solution

would be to modify wiringPi only for ODROID-C1
using mainline kernel, to use the i2c-0 device.

The i2c-path is like so:

diff --git a/arch/arm/boot/dts/meson8b-

odroidc1.dts b/arch/arm/boot/dts/meson8b-

odroidc1.dts

index 8892151..c1d6e40 100644

--- a/arch/arm/boot/dts/meson8b-odroidc1.dts

+++ b/arch/arm/boot/dts/meson8b-odroidc1.dts

@@ -313,6 +313,25 @@

 };

 };

+&i2c_A {

+ status = "okay";

+ clock-frequency = <100000>;

+ pinctrl-0 = <&i2c_a_pins>;

+ pinctrl-names = "default";

+};

+

+&i2c_B {

+ status = "okay";

+ clock-frequency = <100000>;

+ pinctrl-0 = <&i2c_b0_pins>;

+ pinctrl-names = "default";

+ ds3231@68 {

+ compatible = "dallas,ds1307";

+ reg = <0x68>;

+ status = "okay";

+ };

+};

+

 &ir_receiver {

 status = "okay";

 pinctrl-0 = <&ir_recv_pins>;

diff --git a/arch/arm/boot/dts/meson8b.dtsi

b/arch/arm/boot/dts/meson8b.dtsi

index 800cd65..5831437 100644

--- a/arch/arm/boot/dts/meson8b.dtsi

+++ b/arch/arm/boot/dts/meson8b.dtsi

@@ -397,6 +397,14 @@

 bias-disable;

 };

 };

+

+ i2c_b0_pins: i2c-b {

+ mux {

+ groups = "i2c_sda_b0",

"i2c_sck_b0";

+ function = "i2c_b";

+ bias-disable;

+ };

+ };

 };

 };

With this working, I installed the latest version of
Home Assistant 0.94.3 in a venv environment. I tried
Docker also, but I was not able to make it run.

In the upcoming weeks, I will test if the I2C reads and
writes are without errors. The background is that on
my installed ODROID-C1 with kernel 3.10.107 the I2C
from time to time hangs and I have to reboot (every 3
...4 months).

Figure 02

Forum member @mad_ady was able to install Hass.io
through Docker on Armbian. Information there was
used to get Home Assistant working in docker. To
have my own data path for con�guration �les I had to
give this command:

$ docker run --init -d --

name="homeassistant" -v

/home/joerg/hassio:/config -v

/etc/localtime:/etc/localtime:ro --net=host

homeassistant/raspberrypi3-homeassistant

Then I saw the following with the command:

$ docker inspect homeassistant

 "Mounts": [

 {

 "Type": "bind",

 "Source":

"/home/joerg/hassio/share",

 "Destination": "/share",

 "Mode": "rw",

 "RW": true,

 "Propagation": "rprivate"

 },

 {

 "Type": "bind",

 "Source":

"/home/joerg/hassio/homeassistant",

 "Destination": "/config",

 "Mode": "rw",

 "RW": true,

 "Propagation": "rprivate"

 },

 {

 "Type": "bind",

 "Source":

"/home/joerg/hassio/ssl",

 "Destination": "/ssl",

 "Mode": "ro",

 "RW": false,

 "Propagation": "rprivate"

 }

],

With this, I realized why Home Assistant always gave
an error for the mqtt certi�cation �le. With the venv
version you give full path to the �le, in Docker this is
mounted to /ssl. I see that I have to learn more about
Docker.

My mqtt section now looks like this:

mqtt:

this settings for mosquitto:

 broker: 192.168.1.71

 port: 8883

 client_id: home-assistant-test

 certificate: /ssl/ca.crt

 tls_insecure: true

I use the normally installed mosquitto broker, since I
was not able to make the Dockerized addon for
mosquitto run. When I use my certi�cation �les it
reports a protocol error. So I switched back to the
normal mosquitto installation. Now the di�erence is
that there is a hassio section, which gives the
possibility to install addons.

Figure 03

Note that there is no apparmor, as shown below. I
had to learn how to enable it and, in the process, I got
to learn Docker, too.

$ sudo aa-status

apparmor module is not loaded

Until now I used the ODROID-C1 in a headless
con�guration with mainline kernel. I can say that I2C
is working. I tried my USB Bluetooth adapter, but had
no luck. I got it to work only for a moment after

enabling bluetooth support with armbian-con�g, but
after reboot, does not matter if power cycle, there is
no adapter visible with lsusb. My installation runs on
an SD card. Also, I have not yet tried IR and eMMC.

I got Docker running with Home Assistant, but
yesterday I got a lot of SD card errors. The heartbeat
LED was �ashing, but I could not get access anymore.
After reboot I checked with fsck and got a lot of
errors, but when I made the check with my host pc
there were no errors. After that booted normally, I
had to uninstall and reinitialize the Home Assistant in
Docker. As of now I can say that it is not running
stable.

References
https://forum.odroid.com/viewtopic.php?
f=114&t=35474
https://forum.odroid.com/viewtopic.php?
f=111&p=255093#p255083
https://forum.odroid.com/viewtopic.php?t=34570
https://www.home-assistant.io

https://forum.odroid.com/viewtopic.php?f=114&t=35474
https://forum.odroid.com/viewtopic.php?f=111&p=255093#p255083
https://forum.odroid.com/viewtopic.php?t=34570
https://www.home-assistant.io/

How to Build a Monku Retro Gaming Console - Part 2:
Con�guring the Software
 August 1, 2019 By Brian Ree Gaming, ODROID-C1+, ODROID-C2

This is a continuation of the Retro Gaming Console
article from last month, where we learned how to
build a case for a retro gaming console. This
installment will show you how to con�gure the
software for the project.

In this article, I will show you in detail how to
con�gure your Monku Retro 1 (ODROID-C1+) or
Monku Retro 2 (ODROID-C2) video game console's OS
and apps. There will be a few steps involved but I'll
outline everything in detail including every command
you have to run. If you don't intend to use your device
as a retro gaming console it makes a great set top
Linux box, you can skip the sections on Retroarch and
Antimicro and even the optimization section can
probably be ignored. So at the end of this tutorial
you'll have a killer retro gaming console of your own
making. Well those are our goals, let's jump in and get
going. I'll reiterate the features of this device below,
these are the same bullet points that are on the

hardware section. Note that if at any time you are
prompted for a login when working with the terminal
use the password, odroid.

Tools Needed

A computer with an SD card reader or a USB port if you
have an SD card to USB adapter.

An SD card, recommended 64GB or greater.

Mac SD card image writing software. I use
balenaEtcher, it is free and works great.

Window SD card image writing software. I use Win32
Disk Imager, it is free and works well but can be a bit
�nicky with very large drives.

An internet connection. If you're reading this you
already have this tool, lol.

Parts Needed

64GB Micro SD Card x2: $16.99 (link)

SD Card Reader x1: $11.00 (link)

Linux Friendly Gamepad x1: $17.00 (link)

Since we included the SD cards in the hardware cost
we won't count them here. That means the total cost
for this part, assuming you have access to a computer
of some kind is $0.00 to $28.00 and you can probably
�nd a cheaper SD card reader but I like this one
because it has both Micro SD and SD card support in
di�erent slots that both work at the same time. Also
game controllers you might already have one you
might now but I listed the one I use and a link for a
good price on it. Sounds great to me let's move on to
the next part.

C1 Features

DROID Goodness!

Custom Software Control Button

Custom Hardware Reset

Support for Atari 2600, Atari 7800, ColecoVision, MSX-
1, MSX-2, NES, GameBoy, GameBoy Color, Sega SG-
1000, Sega Mark III, and Sega Master System
con�gured and ready to go.

Retroarch with XBM, custom scripts to monitor the
software button, start Retroarch, maintain Antimicro.

Con�gured for low memory usage and for use with
included controller.

Every ROM tested to see if it loads and properly
associated with its emulator.

Full Linux desktop environment when not in game
kiosk mode via Antimicro.

C1 Software Button Functions

2-second hold: Software reset

4-second hold: Software shutdown

6-second hold: Turn o� game kiosk mode.

8-second hold: Change to 1024 x 768 x 32bpp
resolution and reboot.

10-second hold: Change to 720p x 32bpp resolution
and reboot.

C2 Features

ODROID Goodness!

Custom Software Control Button

Custom Hardware Reset

Support for Atari 2600, Atari 7800, Atari Lynx,
ColecoVision, MSX-1, MSX-2, NES, GameBoy, GameBoy
Color, Virtual Boy, SNES, GameBoy Advance,
WonderSwan Pocket/Color, NEO GEO Pocket/Color,
Sega SG-1000, Sega Mark 3, Sega Master System, Sega
Genesis, Sega GameGear, NEC Turbo Graphics 16, and
NEC Super Graphics emulators con�gured and ready
to go.

Retroarch with XBM, custom scripts to monitor the
software button, start Retroarch, maintain Antimicro.

Con�gured for low memory usage and for use with
included controller.

Full Linux desktop environment when not in game
kiosk mode via Antimicro.

R2 / C2 Software Button Functions:

2-second hold: Software reset

4-second hold: Software shutdown

6-second hold: Turn o� game kiosk mode.

8-second hold: Set video to auto for VGA mode,
possibly alter retroarch.cfg for USB audio if present.

10-second hold: Set video mode to 720p, alter
retroarch.cfg for HDMI audio.

Base 16.04 MATE Image and Writing to an SD Card

I spent an inordinate amount of time testing the
operating systems images available for the C1+ and
C2 and I've found that Ubuntu 16.04 LTS is the best all
around image in terms of e�ciency, availability of
packages, support, etc. Laka was great but I had a ton
of trouble with audio. Ubuntu 18.04 LTS was solid too
but it de�nitely used more resources and I didn't �nd
as many emulators as easily with it so I decided on
16.04 LTS. Boot up your Mac or Windows box. Linux
users can pretty much follow the Mac instructions I
won't provide speci�c Linux examples though. Open
up your browser and go to the ODROID WIKI page
https://wiki.odroid.com/start. If you have a C1+ or C2
go to that section. Figures 1 and 2 show the links for
each device.

https://wiki.odroid.com/start

Figure 1 - ODROID Wiki links for the ODROID-C1

Figure 2 - ODROID Wiki links for the ODROID-C2

Select your device, then select the os_images, and
�nally select ubuntu. A page will load on the right-
hand pane. Scroll it down until you see the list of
mirror sites. I like to use the South Korean mirror, just
seems to work the best. Here are the direct links to
the OS images for each device.

For ODROID-C1+:
https://dn.odroid.com/S805/Ubuntu/ For ODROID-
C2: https://dn.odroid.com/S905/Ubuntu/

https://dn.odroid.com/S805/Ubuntu/
https://dn.odroid.com/S905/Ubuntu/

I'm providing a little bit more information than is
necessary I could have just posted the direct
download link but I wanted you to see what options
there are out there. For the C1+ I used
https://dn.odroid.com/S805/Ubuntu/ubuntu-
16.04.2-mate-odroid-c1-20170220.img.xz as my base
image. If you cannot unzip a .xz �le try using 7 - Zip. It
is free and works well on Windows. I didn't have an
issue on my Mac it could handle .xz �les just �ne.

For the C2, I used
https://dn.odroid.com/S905/Ubuntu/ubuntu64-
16.04.2lts-mate-odroid-c2-20170301.img.xz as my
base image. I recommend being on a wired internet
connection if you can, WiFi will be a bit slower. Let the
images download. You can verify them with the
checksum if you want, the �le just below the OS
image, but I'm not going to cover that here. Now on a
Windows box, you're going to want to unzip the image
�le so that you have a full uncompressed copy of it.
Both �les will use up about 6GB of hard drive space.
You can delete the uncompressed �le once you are
done with it to save space. On a Mac I recommend
doing the same, if you have trouble unzipping the
image I would recommend getting The Unarchiver. It's
free and works great. By far the best solution for
unzipping hundreds of ROMs at once believe me. You
will have to navigate to the uncompressed image on
the Mac as well.

Make sure to double and triple check your drive
letters! You don't want to inadvertently ruin one of
your drives or USB keys or whatever you might have
plugged into your computer.

Figure 3

Figure 4

Let the image writer do its job. This can take a few
minutes, go grab a co�ee, or a beer if its 10AM. Note
that the OS images are not interchangeable you must
use the C1+ base image for your C1+ device and the
C2 base image for your C2 device. One thing to note is
ignore any prompts to format the SD card from either
OSX or Windows. When you're done you should see a
drive called "boot" where the original blank SD card
was. Eject it properly and pop it into your your C1+ or
C2, whichever you are working with.

If you're working with an ODROID-C1+ and you are
planning to work on a computer display it may not be
able to handle the default HDMI output. It is a good
idea to change the video output before we proceed.
In that case put the SD card back in your computer
and open the boot partition. Find the boot.ini �le and
make a copy of it called boot.ini.orig.old. Edit the
original boot.ini �le and make sure that the only
uncommented output mode is setenv m
"1024x768p60hz", next scroll down a little further
until you see the video signal section and make sure
that only setenv vout "vga" is uncommented. Make
sure you use a text editor that is correct for the job,
Pluma, nano, vi on Linux and OSX, you could also try
the native OSX text editor. On Windows Word Pad
should do the trick. I've also found that Atom works
well on my Mac. If your hardware is OK, you should
see a blue light when the SD card is plugged in and
the device is turned on. You should see a login
prompt after a few seconds, C1+ times are a bit
slower. If not you may have a problem with either the
SD card or the hardware. I've worked with at least 6 of
these things and soldered them ... poorly ... and

https://dn.odroid.com/S805/Ubuntu/ubuntu-16.04.2-mate-odroid-c1-20170220.img.xz
https://dn.odroid.com/S905/Ubuntu/ubuntu64-16.04.2lts-mate-odroid-c2-20170301.img.xz

they've all booted up no problem. The username and
password for your device is odroid. Write it down
somewhere in case you forget.

If you don't see anything but a blank screen, or you
see a login prompt but after logging in see nothing
but a blank screen then restore the original boot.ini, if
you are working with a C1+, and prepare to work in
front of the TV. Double check your boot.ini is reset
back to the original and see if you can get to the MATE
desktop using this approach. Note that this device
isn't being con�gured as a secure Linux box. Although
you can do that if you want we won't cover it here.

Figure 5

Software Updates, Partition Sizes, and More

First, let's get rid of that pesky login prompt. If your
device has USB trouble on boot up just power cycle it.
I would say though to use the software control
buttons once things are all setup and never use the
hardware power button unless you are turning it back
on again. For the remainder of the tutorial we expect
that you'll have a keyboard and mouse hooked up to
the device. If you go to the following menu location
Applications -> System Tools -> MATE Terminal it will
open up a terminal window for you.

Figure 6

We're going to run a series of commands at the
terminal now, listed below.. Some do take a while to
run but you may have to sit near the screen in case
you're prompted by an install. It stinks coming back to
a process you thought would �nish by itself and see a
dialog popped up asking for your input! What we are
doing here is setting up auto login, updating Ubuntu,
and installing some packages.

Type this command or copy and paste it into the
terminal window.

$ sudo nano

/usr/share/lightdm/lightdm.conf.d/60-

lightdm-gtk-greeter.conf

You'll be prompted for the password, use “odroid”.
You will see some text like this in the �le:

[Seat:*]

greeter-session=lightdm-gtk-greeter

You're going to add a line at the bottom, autologin-
user=odroid, and then save and close the �le. Press
Crtl+O then hit enter to save the �le. Press Ctrl+X then
press enter to exit the editor. You won't be prompted
to login on the next reboot.

Next up we'll be running updates on the OS packages
and installing a few things. This part takes a little
while but for the most part it runs by itself. Enter in
and run each of these commands in the order shown
below from the terminal window.

$ sudo apt-get update -y

If you get a boot.ini prompt for this, command just hit
Enter. This command takes a little while.

$ sudo apt-get upgrade -y

$ sudo apt-get install git -y

$ sudo apt-get install gparted -y

$ sudo apt-get install make -y

$ sudo apt-get install cmake -y

$ sudo apt-get autoremove -y

Now that all of that is done running, the system is
starting to shape up a bit. The next thing we want to
do is turn o� any swap space the OS is using. The
conventional wisdom is that swap partitions will
degrade the SD card which I think are rated for some
number of read/write operations before they begin to
fail. So far I've been disabling them without a
noticeable performance hit. Run the following
command at the terminal.

$ swapon -s

If you see output similar to the following, you have
zram enabled. Follow the steps below to turn it o�
and remove it.

odroid@odroid64:~$ swapon -s

Filename Type Size Used Priority

/dev/zram0 partition 219824 2080 5

/dev/zram1 partition 219824 2076 5

/dev/zram2 partition 219824 2076 5

/dev/zram3 partition 219824 2076 5

We want to disable these to make sure our SD card
lasts as long as it can. Whatever performance
increase, or decrease, they cause hasn't been
noticeable by me but I don't want the extra read/write
operations. So let's run the following command. I
believe that the C1+ I does not have a swap partition
by default.

$ sudo apt-get remove --purge zram-config -y

If you notice a standard swap partition listed, type the
following command to remove standard swap
partitions:

$ swapoff -a

This will immediately disable swap on the system.
Next remove any swap entries from /etc/fstab by
editing the �le as root and commenting out any swap
partition entries. Reboot the system. If, for some
reason, the swap partition is still there open gparted,
System -> Administration -> GParted. Locate the

partition in the list of active partitions and unmount,
then delete the partition.

Next, we're going to run a MATE software update by
navigating to System -> Administration -> Software
Update in the menu system. Note that if you are
asked to perform a partial update then skip this step
we'll run with the packages we have installed. I've
noticed that in some cases the packages can get a
little wonky. I would only proceed with an update if no
Partial Update dialog pops up.

If it is not a partial update prompt, click the Update
button, wait a little while it slowly turns into a
progress bar dialog and perform the updates. At the
end of the process you will be prompted to restart the
system. Hit Restart.

Figure 7

Notice the no-login prompt when the system started
up. Looking more and more like a retro gaming
console by the minute. Ok last thing we're going to do
is resize the main partition to use all the available
space. If you go to System -> Administration ->
GParted in the menu system you should see
something like what's depicted below. Notice that
there is something like 50GB of unused space. If you
have little to no unused space but still have room on
the SD card you need to resize your root partition.

Figure 8

I'll give you a quick rundown of the process. Note that
you may not need to do this, but you should double
check anyway. The best way to work with an ext4 �le
system is on our C1+ or C2. Use the second SD card
that comes with the recommended purchase listed on
the hardware build. Write the base OS image onto the
SD like we did above and install gparted, also like we
did above. You don't have to run all the updates and
stu� just make sure gparted is installed. Use the SD to
USB adapter listed above to mount the SD card that
we want to resize partitions for onto the OS. You
should see a little drive icon appear, we'll call this SD-
USB for SD to USB.

Fire up the bare bones Ubuntu SD card if you haven't
already. Start gparted from the menu System ->
Administration -> GParted and select the SD-USB card
attached not the root �le system running Ubuntu.

Figure 9

Select the root �le system on the SD-USB card. Right
click on it and go to the resize option if you get an
error you may need to unmount this partition and
then try to resize it. You can visually resize the
partition now by dragging the arrow all the way to the
right or by setting the �elds contained in the form to
have 0 free space following. Bam! We're done with
this section.

Figure 10

Retroarch and Antimicro Installation

Now, let's get Retroarch and Antimicro installed so we
can begin the con�guration process. To install
Retroarch we need to open a terminal, Applications ->
System Tools -> MATE Terminal.

$ sudo add-apt-repository

ppa:libretro/stable && sudo apt-get update -

y && sudo apt-get install retroarch*

libretro-* -y

Try the command above on the C1+ and C2, hit enter
if prompted, and Y if prompted. If it fails don't worry. I
noticed it fails on the C2 but I'm not sure about the
C1+ no worries though the *'s in the package lists are
the culprit. It's pulling down some packages that have
dependency issues and that is then halting the whole
command. If it failed try running this command
instead.

$ sudo apt-get install retroarch retroarch-

assets retroarch-dbg libretro-beetle-lynx

libretro-genesisplusgx libretro-handy

libretro-4do libretro-bsnes-mercury-

performance libretro-bsnes-mercury-accuracy

libretro-bsnes-performance libretro-beetle-

wswan libretro-dinothawr libretro-beetle-ngp

libretro-bsnes-balanced libretro-gambatte

libretro-fbalpha2012 libretro-fba libretro-

beetle-psx libretro-vba-next libretro-gw

libretro-mupen64plus libretro-beetle-sgx

libretro-2048 libretro-tyrquake libretro-

beetle-pcfx libretro-prosystem libretro-

bsnes-accuracy libretro-parallel-n64

libretro-picodrive libretro-mame libretro-

nestopia libretro-mednafen-psx libretro-

core-info libretro-gpsp libretro-mess

libretro-beetle-pce-fast libretro-mgba

libretro-fbalpha2012-neogeo libretro-fba-

neogeo libretro-beetle-vb libretro-tgbdual

libretro-fba-cps1 libretro-fba-cps2

libretro-fmsx libretro-stella libretro-

yabause libretro-mess2014 libretro-mess2016

libretro-desmume libretro-beetle-bsnes

libretro-glupen64 libretro-catsfc libretro-

quicknes libretro-bsnes-mercury-balanced

libretro-vbam libretro-bluemsx libretro-

fceumm libretro-nxengine libretro-snes9x-

next libretro-mame2014 libretro-mame2016

libretro-fbalpha2012-cps1 libretro-

fbalpha2012-cps2 libretro-fbalpha2012-cps3

libretro-fbalpha libretro-snes9x libretro-

prboom libretro-beetle-gba -y

If one of these packages fail, remove it from the list
and try again. The command above is the exact
command I use on my C2's. After that's done let's do a
little updating and cleaning.

$ sudo apt-get update -y

$ sudo apt-get upgrade -y

$ sudo apt-get autoremove -y

Now you should have this menu option available after
the commands are done running, Applications ->
Games -> Retroarch. Click on it and you should see
something similar to what's depicted below.

Figure 11

We're almost there! Don't mess with Retroarch yet;
we'll come back to it. Next we have to get Cntimicro
installed so we can control everything with a gamepad
when Retroarch isn't running. Go to
https://github.com/AntiMicro/antimicro/releases and
download the latest release as a zip �le. You should
see it below the Windows EXE entries. Once it is done
downloading open the odroid home folder. There is a
link on the desktop for it. Create a new folder called
install_zips as depicted below.

Figure 12

Now go to the downloads folder and copy the
Antimicro zip �le from there and paste into the
install_zips folder. Right click on it and select Extract
Here. Wait for it to uncompress.

Figure 13

Now open up a terminal, Applications -> System Tools
-> MATE Terminal, and run the following commands.
If your Antimicro folder, after decompressing the
original zip archive, has a di�erent name use that
name in the change directory command below.

$ cd install_zips/antimicro-2.23/

$ sudo apt-get install libsdl2-dev -y

$ sudo apt-get install qttools5-dev -y

$ sudo apt-get install qttools5-dev-tools -y

$ sudo apt-get install libxtst-dev -y

Once all those packages are installed we can compile
Antimicro without any errors:

$ cmake .

$ sudo make

$ sudo make install

You should see something like Figure 14 following
during this process. Once that's done let's test
Antimicro, run Antimicro at the terminal. If everything
is ok you should see something like what is depicted
in Figure 15.

Figure 14

Figure 15

Plug in a game controller that is supported by Linux.
Hardkernel has the best price I've seen so if you pick
up some ODROID-GOs or other hardware grab one of
these GameSir Wired Controllers. Fire up Retroarch
(Applications -> Games -> RetroArch), and you should
see large yellow text �ash across the bottom of the
screen, look closely. I've had some versions of the
controller act a bit weird but I've been working with
about 5 of them and for the most part I've had no
problems. Close Retroarch, and type into the terminal
window the antimicro command. You should see
something similar to what's depicted below if the
controller is detected properly.

Figure 16

Retroarch and Antimicro Con�guration

Let's get Antimicro con�gured so we can start
controlling the desktop environment with the
gamepad. Open up a terminal, I'll not list the menu
path for it from this point forward. Type Antimicro in
the terminal and wait for the app to launch. Connect
your Linux-supported controller and make sure that
Antimicro recognizes it. If it doesn't, you'll need to try
another controller. Click the Controller Mapping
button on the bottom left hand corner of the UI. This
is where you tell Antimicro about the base
functionality of your controller. If you don't have a
button for a speci�c position in the list, for instance
Linux seems to ignore the blue central button on the
GameSir controllers, use your mouse to click down to
the next viable option. Match up the buttons on the
gamepad with the controller graphic's green button
indicator. Note that some buttons like triggers �re
multiple times, and you'll have to use the mouse to
back up the position of the mapping and �x the
double entry. Click save when you are done and
return to the main Antimicro UI.

Figure 17

You will see a new mapping on the main Antimicro UI
that contains buttons for all the new mappings you
just made. What we are going to do here is setup
mouse support so that you can control the desktop
environment from the gamepad when Retroarch isn't
running. We'll use the left thumbstick for �ne, slower,
mouse control and the right thumbstick for faster
mouse control. The A and B buttons will serve as the
left and right mouse buttons. Right click on the left
thumbstick area and select mouse normal from the
option list.

Figure 18

Click on the left thumbstick buttons again and �nd the
Mouse Settings button at the bottom of the window.
The image above shows the button we're looking for.
In the mouse settings window set the Horizontal
Speed and Vertical Speed to 10 for the left thumbstick
as depicted in Figure 19.

Figure 19

Do the same thing for the right thumbstick except
now set the Horizontal Speed and Vertical Speed to 30
as shown in Figure 20.

Figure 20

Now let's map the mouse buttons. Close all dialogs
and get back to the main Antimicro UI. Find the A
button in the button list below the thumbstick and
dpad listing. Click on it then click on the Mouse tab.
Select the left mouse button. Do the same thing for

the B button except choose the right mouse button
for that mapping. Below is a screen shot depicting the
left mouse button mapping in action.

Figure 21

Figure 22

Take it for a spin while the main Antimicro UI is open.
You should see the mouse move around the screen
as the button listings in the Antimicro UI turn blue to
indicate they are active. See how it feels, adjust the
speeds on the mouse controls as you see �t.

Figure 23

When you're all set, go back to the Antimicro main UI
and click the Save As button at the top right hand side
of the screen. Save the controller con�guration as
game_sir_wired.xml or whatever you want to name
your controller in the odroid home directory as shown
below. I'll provide a copy of my XML �le here if you

are using a GameSir controller, so you can just use it
and save some time. If you are using an Easy SMX
controller, use this �le.

Figure 24

Click on Options -> Settings in the Antimicro menu
and make sure only Close To Tray and Launch In Tray
are checked. This will ensure Antimicro lives in the
app tray and doesn't clutter up our screen. We have
one more setting to adjust and then we'll be done
with Antimicro and on to Retroarch!

Figure 25

While still on the Antimicro setting window, click on
the Auto Pro�le option on the left. This will determine
what pro�le will automatically be associated with the
attached gamepad. You only get one mapping. It
would be cool if it had di�erent options for di�erent
hardware, but as far as I can tell you're setting it up
for the controller you have. Click the Active checkbox
at the top of the window. Then select the default (and
only) row in the table. Click the Edit button and
browse to the controller mapping XML �le you saved
just a few steps back. Click Ok then quit out of
Antimicro, if it appears in the system try click the
controller icon in the system tray and quit the app.
Now we are done with the Antimicro con�guration!

Figure 26

Figure 27

Figure 28

Next up let's get the Retroarch completed. Fire up
Retroarch from the menu system. First, let's get the
gamepad working in Retroarch. In Retroarch you can
use the keyboard arrow keys, enter, and backspace to
navigate the menu system without the gamepad.
Make sure you have a mouse, keyboard, and game
controller connected to your ODROID. Use the arrows
on the keyboard to navigate right to the Settings
section, then move down to the Input section as
shown below.

Figure 29

Adjust the settings on this screen as you see below. I
usually set the max number of controllers to 4 since
there are 4 USB ports. And I like the "L1 + R1 + Start +
Select" Menu Toggle Gamepad Combo setting, let's
face it if you're accidentally hitting this combination
during game play something isn’t right. Leave the
remaining settings and scroll down to the User 1
Binds. You'll have to setup each user input in this way
it's not too bad only takes a minute. Tip: Map the A
and B buttons by name not position if you are using a
GameSir controller that way the colors green and red
map to positive/select, negative/back button usage.
It's just what I like to do you can map em anyway you
like! Or you can set the Menu Swap OK & Cancel
Buttons, whatever works.

Figure 30

Figure 31

The next step takes a little while but requires very
little work on your part. You just have to click on a few
things and wait for them to complete. Navigate back
to the Main Menu which is the �rst section Retroarch
starts on. Make sure you are connected to the
Internet. Scroll down to the Content Updater and
open that section.

Figure 32

I usually run each option in order. Try the Core
Updater option �rst. Tip: You may have to start
Retroarch from the terminal like so sudo Retroarch
when updating core �les. If you run Retroarch with a -
v for verbose output and you see an error message
during the Core Update command's execution then
you should close Retroarch and relaunch it with the
sudo command.

Next go to the Thumbnails Updater, this part can take
a while, and select each system you plan to load
ROMs from one at a time. Resist the urge to click a
bunch in a row. I've done that and it can crash the app
at the worst and at the least it slows down each
individual process as they are all competing for
resources. Best to let one blast through then move
on. Tip: There are some one-o� games you can get
thumbnails for here like DOOM Demo, Cave Story,
and Dinothawr. You'll be able to load those games
from the Content Downloader.

Figure 33

Now, you'll want to back out of the Thumbnail
Updater section with the backspace key. Scroll down
to the Content Downloader and download any special
content you want from the listing. Tip: If you see a
screen that has no options wait a minute back out
and go into that section again it just didn't �nish
downloading the index of available options. I usually
don't install the one-o� games but this is the spot for
it. Most of the content I think you can safely ignore
but I'll leave that up to you. Run the following list of
other updates one at a time, basically everything
remaining on the list.

Update Core Info Files

Update Assets

Update Joypad Pro�les

Update Cheats

Update Databases

Update Overlays

Update GLSL Shaders

Update Slang Shaders

Close Retroarch when the update steps are complete.
Next, let's load some ROMs. I own a copy of Contra
for the NES and I have a version of it in ROM form.
Open the odroid home folder using the link on the
desktop. Right click in the folder and create a new
directory, name it ROMS. Open the ROMS folder and
create a new folder and name it NES. Obviously you
would substitute the NES folder for whatever system
you intend to load ROMs for. Not every single system
is supported and some emulators have little caveats
like bios �les that need to be copied in etc. Many of
the older systems are well supported and straight
forward. The C1+ can probably handle SNES and
Genesis but I just like to use it for 8bit games. The C2

certainly has enough power for 16bit systems and I
like to use it for 8bit, 16bit, and all of the handheld
systems

Figure 34

Once you have all your ROMs placed in the ROMS
folder in their own separate folders for each system,
this is the best way to do it, we can start telling
Retroarch about the �les. Fire up Retroarch and scroll
to the right until you see the Scan Directory option.

Figure 35

Navigate to the ROMS folder, which should be in the
list. Then select one system at a time for scanning.
Scanning large ROM sets can take a while. Again resist
the urge to start multiple scans things will go
smoother if you let an operation complete before
starting a new one. In this case we only have one
ROM, Contra, so it will complete the scan instantly.

Figure 36

Back out of the Scan Directory section and you should
now see a little NES controller on the section listing.
Scroll to it and now you should see Contra, or
whatever ROMS you were trying to load. Load up a
game by selecting it and then selecting a target
emulator. Your game should load up just �ne in
almost all cases.

Figure 37

Figure 38

Figure 39

Retroarch won't recognize every single ROM for every
single system. You may also want to try di�erent
emulators on troublesome ROMs. That's more
advanced stu� and I'll cover that in the next tutorial
where we wrap everything up and put a nice bow on
it. Congrats you built the hardware and now you
con�gured the software and you can play some
games. Take your time loading up ROMs I'll write up
the last little bit in tutorial 3 where we really make
your game console pop! For comments, questions
and suggestions, please visit the original article at
http://middlemind.com/tutorials/odroid_go/mr1_bui
ld_sw.html.

http://middlemind.com/tutorials/odroid_go/mr1_build_sw.html

An Excellent, Low-Cost Web Server: Using the ODROID-N2 For
Internet Hosting
 August 6, 2019 By Robbie Ferguson Linux, ODROID-N2, Tutorial

As the developer of NEMS Linux, I’m always eager to
try new boards that promise high performance and
stability in the server room. Since NEMS is, itself, a
headless server distro, I count it as an advantage that
I do not need to deal with GPU drivers or desktop
performance. What matters to me and my users is a
lot di�erent than what matters to an end user hoping
for a desktop replacement powered by a single board
computer.

It’s a bit of a revelation for me as I endeavor to
provide a benchmark-based comparison–
https://gigglescore.com/–to allow users to more
easily �gure out which board is the best value for the
money. I had the opportunity to speak with @meveric
when the ODROID-N2 was �rst released, and I must
say I don’t envy how he and other desktop distro
developers have to con�gure the graphic stack. They
work hard to provide a good out-of-the-box user
experience, and it cannot be easy. When I spoke with

him, ODROID-N2 development was still at quite an
early stage, and the lack of X11 drivers for the Mali-
G52 GPU posed an interesting challenge. On the
server distros I build I don’t have to deal with any of
that, and the ODROID-N2 makes an excellent little
solid-state server. Use case really does matter; a
board that performs perfectly for NEMS Linux or
other server-based distros may not be the same
board that makes a great media center or daily driver.
That’s why it’s so di�cult to base purchase decisions
on benchmarks alone and why Giggle Scores don’t
always paint the complete picture.

It is within this context that I looked at the ODROID-
N2 this month. I’d like to try it in a use-case where I
feel it �ts quite snugly; as a high-performance SBC
web server.

The ODROID-N2 has a total of 6 cores consisting of a
quad-core ARM Cortex-A73 and a dual core ARM

https://gigglescore.com/

Cortex-A53. It also features Gigabit Ethernet and up to
4 GB RAM.

Using Category5.TV SBC Benchmark v2.2 from
https://github.com/Cat5TV/cat5tv-sbctest and a USD
price for the ODROID-N2 of $79, my single test board
running my Debian Buster base image reports as
follows:

That’s slightly better than the average from
https://gigglescore.com which reports the ODROID-
N2 with a Ģv2 of 1304 (multithreaded), keeping in
mind that a lower Giggle Score means better value
(measured by multithreaded performance) for the
price. Of course, my test above takes place on a
vanilla Debian Buster install, so the numbers are true
to an ODROID-N2 that is otherwise doing nothing. But
even still, the ODROID-N2 presently demonstrates the
best overall performance on GiggleScore.com and as
a single board computer-based web server, the
ODROID-N2 looks like a prime choice. Let’s build our
own, and put it to the test.

First of all, keep in mind I’m starting with the Bald
Nerd Base Image. This is Debian Buster, so no
hackiness is required to get PHP 7.3 working. Our
LAMP stack will include Apache2, PHP 7.3 with some
helpful plugins, and ModSecurity 2.

Download the Debian Buster Build Base for ODROID-
N2 and then �ash it to your SD or eMMC card:
https://baldnerd.com/sbc-build-base/

You can login to your ODROID-N2 either with a
connected keyboard and TV, or from another

computer on your network over SSH. The default
login and password for my base image is “baldnerd”.

There are �ve things we need to do at �rst boot:

1) Check to ensure your SD card/eMMC (/) resized
correctly:

df -h

2) Check your date/time is correct, and �x if not:

date

3) Create a Linux user account with root privileges.
Here I’ll create a user called ‘robbie’ and give him sudo
access. Just change ‘robbie’ to whatever you’d like
your user to be.

$ sudo adduser robbie

$ sudo usermod -aG sudo robbie

4) Logout of your ODROID-N2 and log back in as
robbie (or whatever your username is). Do not login
as baldnerd anymore. 5) Delete the default user
account:

$ sudo userdel -f -r baldnerd

Let’s build our LAMP (Linux, Apache, MySQL, PHP) web
server. For those who prefer to perform the install
programmatically, I have written a simple script here:
https://raw.githubusercontent.com/Cat5TV/linux-
tools/master/install-lamp

For those who want to get their feet wet and see
every step, execute the following on your Debian
Buster-booted ODROID-N2.

$ sudo apt update

$ sudo apt install apache2 php7.3 php7.3-cli

php7.3-common php7.3-curl php7.3-gd php7.3-

json php7.3-mbstring php7.3-mysql php7.3-

opcache php7.3-phpdbg php7.3-readline

php7.3-sqlite3 php7.3-xml libapache2-mod-

php7.3 libargon2-1 libsodium23 php-curl php-

rrd mariadb-server libapache2-mod-security2

modsecurity-crs

Set a root password for MySQL

If you’ve installed mariadb-server in the past, you may
remember that the installation procedure used to ask
for a root password during installation. This has been

https://github.com/Cat5TV/cat5tv-sbctest
https://gigglescore.com/
https://baldnerd.com/sbc-build-base/
https://raw.githubusercontent.com/Cat5TV/linux-tools/master/install-lamp

removed. You must instead run a post-install
application to set your root user and grant yourself
root access to your MySQL database server.

$ sudo mysql_secure_installation

Hit enter when asked for the existing MySQL root
password, since one doesn’t exist yet, and then follow
the prompts to add a new root password. Remember
what this password is and keep it safe. Be sure to say
‘yes’ to every question you’re asked to help harden
your MySQL server by removing some of the sample
data and accounts.

Give your user account access to editing the �les
Remember to replace ‘robbie’ with your username.

$ sudo usermod -aG www-data robbie

$ sudo chown -R robbie:www-data

/var/www/html/

$ sudo find /var/www/html/ -type d -exec

chmod -R 775 {} ;

$ sudo find /var/www/html/ -type f -exec

chmod -R 664 {} ;

That’s it! Your web server is now running, and you can
access it by visiting the IP address of your ODROID-N2
in a browser on any computer on your network. Files
for the server are located in /var/www/html and
owned by your user, and you already know the
MySQL credentials. Access to MySQL is restricted to
localhost, so for ease of use I’d recommend either
using the mysql command line to create your MySQL
users and databases, or adding phpMyAdmin and
activating it only when needed, disabling it when
you’re not using it. Remember that since SSH is active
on the image, you can easily create �les in
/var/www/html, or use SFTP in Filezilla Client to move
�les back and forth from your computer.

And now, on with the benchmarks

Your server is ready to go, but benchmarks can be fun
in a case like this. Maybe it’s my memories of giant 4U
servers from my younger years in IT that have me
excited about single board computers in the data
center, but whatever it is, I’m impressed to see how
well an ODROID-N2 performs in this role. You don’t
personally need to perform these tests if you don’t

want to–your work is done–but this article wouldn’t be
complete without my own results.

My benchmarks below are very task-speci�c, focused
entirely on using the ODROID-N2 as a web server. If
you crave more or want a wider picture, check out the
June 2019 issue of ODROID Magazine where Michael
Larabel from Phoronix.com and Carlos Eduardo both
provide their take on ODROID-N2 benchmark
performance.

Now that we have Apache up and running, let’s
benchmark it with Siege, the HTTP regression testing
and benchmarking utility. I haven’t added a web site
yet, so really we’re just testing the responsiveness of
the static “It Works” page, but the results are still
important to me. I recommend you put your site in
/var/www/html and run the same benchmark to see
how well your site performs. For this benchmark, we’ll
do a load test with 50 simultaneous connections.

$ apt install siege

$ siege -c50 -d10 -t3M http://localhost/

Here is my result:

robbie@debian:/home/robbie# siege -c50 -d10

-t3M http://localhost/

New configuration template added to

/root/.siege

Run siege -C to view the current settings in

that file

** SIEGE 4.0.4

** Preparing 50 concurrent users for battle.

The server is now under siege...

Lifting the server siege...

Transactions: 3540 hits

Availability: 100.00 %

Elapsed time: 179.16 secs

Data transferred: 14.85 MB

Response time: 0.01 secs

Transaction rate: 19.76

trans/sec

Throughput: 0.08 MB/sec

Concurrency: 0.12

Successful transactions: 3540

Failed transactions: 0

Longest transaction: 0.20

Shortest transaction: 0.00

With every hit seeing a response in an average of 0.01
seconds, I’m really quite thrilled with this result. Most

SMBs won’t see 50 simultaneous users on their
website. Here, we generated 3,540 hits in 3 minutes.

Test the performance of MariaDB

Our MySQL server (MariaDB) is up and running thanks
to the steps taken above. To test the performance of
the database, I’ll use sysbench via the helpful mysql-
benchmark.sh script that comes as part of my cat5tv-
sbctest package on GitHub. I won’t go into how that
works here, since those who are interested can look
at the source code of the simple bash script. Su�ce it
to say, it compiles sysbench 1.0.17, creates 1 million
MySQL entries, and benchmarks the performance of
the database for 1 minute.

Here are my results:

Performing MySQL Benchmark: sysbench 1.0.17

(using bundled LuaJIT 2.1.0-beta2)

Creating table 'sbtest1'...

Inserting 1000000 records into 'sbtest1'

Creating a secondary index on 'sbtest1'...

sysbench 1.0.17 (using bundled LuaJIT 2.1.0-

beta2)

Running the test with following options:

Number of threads: 8

Initializing random number generator from

current time

Initializing worker threads...

Threads started!

SQL statistics:

 queries performed:

 read:

35504

 write:

10144

 other:

5072

 total:

50720

 transactions:

2536 (40.83 per sec.)

 queries:

50720 (816.58 per sec.)

 ignored errors: 0

(0.00 per sec.)

 reconnects: 0

(0.00 per sec.)

General statistics:

 total time:

62.1083s

 total number of events:

2536

Latency (ms):

 min:

11.15

 avg:

194.09

 max:

4760.50

 95th percentile:

846.57

 sum:

492217.74

Threads fairness:

 events (avg/stddev):

317.0000/3.12

 execution time (avg/stddev):

61.5272/0.74

All of my queries were successful, and we performed
a rather impressive 816.58 queries per second. This
little guy will handle WordPress just �ne! Remember,
this is a single board computer that uses very little
electricity, generates very little heat in the server
room, and costs $79 USD. I’m impressed. If you’re
looking for an a�ordable SBC-powered web server,
whether for development, testing or production, the
ODROID-N2 is ready to go and has enough power to
serve your projects.

About the Author

Robbie Ferguson is the host of Category5 Technology
TV and author of NEMS Linux. His TV show is found at
https://category5.tv/ and his blog is
https://baldnerd.com/. Robbie’s project, NEMS Linux
is available for the ODROID-N2. Download the ready-
to-boot Nagios Enterprise Monitoring Server distro
from https://nemslinux.com/

https://category5.tv/
https://baldnerd.com/
https://nemslinux.com/

Building an ODROID-N2 Cluster: A�ordable High Performance
Computing
 August 6, 2019 By Bhaskar S (www.polarsparc.com) Linux, ODROID-N2, Tutorial

In the article Building an ODROID-XU4 Cluster, we laid
out the ingredients to build a 5-node home lab cluster
using the powerful 32-bit ODROID-XU4. As was
indicated, the ODROID-XU4 sports a powerful octa-
core Samsung Exynos5422 ARM CPU with two sets of
quad-cores, referred to as the big.LITTLE, with Cortex
A15 running at 2 Ghz and Cortex A7 running at 1.4
Ghz. It has enough horsepower to run Linux and
serve as a mini-development cluster. However, the
ODROID-XU4 is a 32-bit SBC with 2GB of LPDDR3 PoP
memory.

In my quest for a true 64-bit quad-core SBC with each
core close to 2 Ghz and with at least 4GB of RAM, I
came upon this newly released beauty called
ODROID-N2 (4GB RAM). It sports a powerful hex-core
ARM-based Amlogic 922X CPU with two sets of cores,
also referred to as the big.LITTLE, with a quad-core
Cortex A73 running at 1.8 Ghz and a dual-core Cortex
A53 running at 1.9 Ghz. In addition, it comes with a

HUGE heatsink mounted on the bottom, where the
CPU is located. It is available in two con�gurations,
one with 2GB of DDR4 RAM and the other with 4GB of
DDR4 RAM (running at 1320 Mhz). It has 4 USB 3.0
ports and a 1Gb Ethernet port.

The following are the necessary items needed to build
a 5-node ODROID-N2 cluster:

Five ODROID-N2 4GB single-board computers

Five 12V/2A power adapters

Five Class 10 64 GB microSDXC cards

Five Ethernet network cables

One pack of M3 60mm male-female brass spacers

One pack of M3 12mm male-female brass spacers

One pack of M3 6mm phillips head steel screws

One Multi-port Ethernet switch (if your home network
switch does not have enough available ports). In my
case, I did not need one since have a 24-port Ethernet
Switch with enough of free ports to use.

One Portable USB card reader, if your desktop does
not have a built-in media card reader. In my case, did
not need one since my desktop has a built-in media
card reader

One Belkin BE112230-08 12-outlet power strip

We need to �rmly secure the ODROID-N2 onto a solid,
�at platform, which can be stacked on top of one
another. In my case, a trip to the local Dollar Tree
yielded an interesting option - 12.5 cm x 12.5 cm
Square clear plastic artsy tray. For my cluster, I
purchased 5 of these.

The next stage is to assemble the items to build the 5-
node ODROID-N2 cluster. The ODROID-N2 is a bit
unique in its design. Unlike the ODROID-XU4, there
are no holes on the SBC to easily stack them up on
top of one another. This is due to the heatsink that
occupies the entire bottom of the SBC. However, the
heatsink has holes to screw the 12mm M3 brass
spacers on to the 4 sides as shown in the illustration
below.

Figure 1 - Screw locations

Continue this assembly process for the remaining
units. We need to drill 4 holes (red circles) to secure
each SBC. Ensure the holes align with the four M3
12mm spacers we bolted onto the SBC in Figure 1. In
addition, we need another 4 holes (blue circles) on the
corners of the plastic tray for stacking the trays on top
of one another as shown in the illustration below:

Figure 2 - The 8 Drilled Holes

Continue this process for the remaining units. We
need to secure the ODROID-N2 on top of the clear
plastic tray using the M3 6mm screws through the 4
holes (red circles) from Figure 2 above as shown in
the illustration below:

Figure 3 - ODROID-N2 mounted to plastic board, ‘hello
pineapple!’

Again, continue this process for the remaining units.
Insert the 12mm M3 brass spacers through the 4

holes (blue circles) from Figure 2 above and screw
them on top with the 60mm M3 brass spacers as
shown in the illustration below:

Figure 4 - Now with the spacers added

This is for only one of the units that will be at the base
of the stack. Stack the next plastic tray with the SBC
from Figure 3 on top of the unit from Figure 4 and
screw them on top with the 60mm M3 brass spacers
as shown in the illustration below:

Figure 5 - two ODROID-N2 stacked together

Do the same for the remaining units. For the topmost
tray, secure with the 12mm M3 spacers.

Figure 6 - A �nal �nished cluster rack

Next, download the latest stable release of Ubuntu
MATE Linux operating system, based on Ubuntu
Bionic 18.04, as shown in the illustration below:

Figure 7 - Download location for Ubuntu for the ODROID-
N2

At the time of this writing, the most recent version of
Ubuntu MATE was 20190325. Download the latest
stable release of Etcher. This tool will be used to burn
the operating system image onto each of the
microSDXC cards. Insert a microSDXC card into the sd
card reader, launch Etcher, select the Ubuntu MATE
image. Then press the Flash! button to burn the
image onto the microSDXC card as shown in the
illustration below:

Figure 8 - Screenshot of setting up Etcher to �ash the SD
with the OS

Insert each of the �ashed microSDXC cards into the
ODROID-N2 SD card slot and ensure the toggle switch
on the ODROID-N2 is positioned at MMC instead of
SPI as shown in the following �gure:

Figure 9 - Location of SD slot and setting the boot switch

The �nal stage is to prepare each of the ODROID-N2
nodes for operation. Note, we want to connect,
power-up, and setup each of the ODROID-N2 boards,
one at a time. Attach the barrel end of the power
adapter to the power slot on ODROID-N2 and plug the
other end to the power strip. Similarly, attached one
of the Ethernet cables to the RJ45 slot on ODROID-N2
and the other end to the Ethernet Switch as shown in
the illustration below:

Figure 10 - Ethernet cables attached to the cluster

Connect an HDMI monitor to the ODROID-N2 using
HDMI and power up the power strip. The ODROID-N2
should take a few seconds to boot up and after a few
seconds would completely power-o�. This is the
normal behavior. Turn o� the power strip and turn it
back on. In a few seconds, we will be presented with
the Ubuntu MATE desktop. The default user-id is
odroid and the default password is odroid.

Change the default password to a stronger and more
secure password by clicking on the Ubuntu menu on
the top-left corner and choosing Control Center from
the drop-down. On the Control Center screen, click on
Users and Groups icon to change the default user
password.

Change the default date/time/timezone to the desired
value by clicking on the Ubuntu menu on the top-left
corner and choosing Control Center from the drop-
down. On the Control Center screen, click on Time
and Date icon to change the date/time/timezone.

Open a terminal window by clicking on the Ubuntu
menu top-left corner and selecting System Tools ->
MATE Terminal from the drop-down. In the terminal
window, execute the following command:

$ sudo pluma /etc/ssh/sshd_config

Change the value of PermitRootLogin from yes to no.
Save the changes and exit the editor.

We need to assign a unique host-name for each of the
ODROID-N2 boards in the cluster. In the same
terminal window, execute the following command:

$ sudo pluma /etc/hostname

Change the host-name to, say, my-n2-1. Save the
changes and exit the editor. For each of the remaining

4 cards we will assign the host-names from my-n2-2
through my-n2-5.

We also need to assign a static IP address to each of
the ODROID-N2 boards in the cluster. Click on the
Ubuntu menu on the top-left corner and choose
Control Center from the drop-down. On the Control
Center screen, click on Network Connections icon.
Choose Wired connection 1 from the menu list and
click on the edit icon at the bottom left corner (gear
wheel icon). Select the tab labeled IPv4 Settings.
Choose the value of Manual for the Method. Set the ip
address to, say, 192.168.1.51, network to
255.255.255.0, and the gateway to 192.168.1.1.
Finally, set the value for DNS Servers to 8.8.8.8,8.8.4.4.
Save the changes by clicking on the Save button. For
each of the remaining 4 cards, we will assign the static
IP addresses from 192.168.1.52 through 192.168.1.55.

Finally, we need to perform a system update to
ensure we have the latest software updates. Click on

the Ubuntu menu on the top-left corner and choose
Control Center from the drop-down. On the Control
Center screen, click on Software Updater icon to
perform the system update.

The last step is to perform a reboot for all of the
changes to take e�ect. In the terminal window,
execute the following command:

$ reboot

This will safely reboot the ODROID-N2 device.

Perform the above steps for each of the remaining
ODROID-N2 devices. Note that as we reboot each of
the remaining ODROID-N2 cards, they each will get a
di�erent ip address assigned. At this point, we should
have our ODROID-N2 cluster ready for action. For
comments, questions and suggestions, please visit
the original article at
https://www.polarsparc.com/xhtml/N2-
Cluster.html.

https://www.polarsparc.com/xhtml/N2-Cluster.html

