

ODROID-XU4 Tweaks: A Collection of Popular Modi�cations
 November 1, 2019

This article is an authorized translation of the german article “ODROID-XU4: Tweaks
unter Ubuntu 18.04 und Kernel 4.14”.

Recreating a Mac Plus: Using the ODROID-GO as a Macintosh
Emulator
 November 8, 2019

For fans of the Macintosh Plus, there is now a way to run an emulator on the ODROID-
GO! Based on the work from spritesmods.com minimacplus, this project leverages the

fact that both the original project and the GO use an ESP32 microcontroller.

eMMC Memory Modules: A Simple Guide
 November 9, 2019

Have you ever wondered about using the eMMC module capability on your ODROID
device but thought, naah that looks too complicated. It can be down right scary if you
are new to these devices. Besides, how do you use one? What tools do you need?

Ogo Shell
 November 1, 2019

The ogo-shell utility is a �le-browser, audio player and image viewer for the ODROID-
GO. I mainly use it to listen to music using the odroig-go headphone hat from the
backo�ceshow. You can checkout the Github Project and the forum post if you want

to give it a try yourself. What

Multiscreen Desktops using VNC
 November 1, 2019

About two years ago I had a wild idea: would it be possible to create a "dual-screen"
desktop system by using two ODROIDs, each driving a di�erent screen, but acting as a
uni�ed desktop?

Monku R3: Building The Ultimate ODROID-XU4 / XU4Q Gaming
Console - Part 2
 November 1, 2019

This article will show you in detail how to polish o� your Monku Retro 3 (ODROID-XU4)
video game console.

Linux Gaming: Anbox - Android In A Box
 November 1, 2019

Although I normally only talk about the ARM based ODROID boards I want to talk
about the ODROID-H2 today and something that you can do on it. Since the ODROID-
H2 is a standard x86_64 (amd64) board you can do exactly the same con�guration

steps that you perform on every other

The G Spot: Your Goto Destination for all Things That are Android
Gaming
 November 1, 2019

Play Pass: Why would Google preemptively smother the lead-up to Stadia’s premiere
by launching a decidedly inferior service? Play Pass is a monthly subscription service

that enables you to download and play a vast library of games and other productivity apps that are currently
available on Google’s Play Store.

Kernel Modules
 November 1, 2019

If you’ve been around the Hardkernel Forum long enough the word ‘kernel module’
should sound familiar to you. However, if you’re new to the Linux world the details
about what exactly Kernel Modules are might be unclear. This article is intended to not

only make you aware of what exactly

ODROID-N2 UART Custom Baud Rate for MIDI
 November 1, 2019

I needed my ODROID-N2’s UART port to operate at a non-standard baud rate so that I
could use MIDI. I edited the UART driver code to set baudrate to 31250 when setting
baud rate to 38400, then wrote test code using wiringPi, and measured the baud rate.

UART driver after

Gaming on the ODROID-H2: Running Lakka on the ODROID-H2
 November 1, 2019

Last month’s issue of ODROID Magazine featured an article “Lakka: Building The
Ultimate ODROID-XU4 / XU4Q Gaming Console”, available at
https://magazine.odroid.com/article/lakka-building-the-ultimate-odroid-xu4-xu4q-

gaming-console/. This article focused on gaming with a ODROID-XU4, however, there is a potentially even
more powerful ODROID, the H2. While the ODROID-XU4 does an amazing job at retro gaming,

ODROID-XU4 Tweaks: A Collection of Popular Modi�cations
 November 1, 2019 By Dennis Paul ODROID-XU4, Tinkering, Tutorial

Like many others, I’m interested in getting the most
out of my ODROID-XU4. During the time I’ve used it, I
found out several tweaks that improved the speed or
decreased the power consumption. In this article I
would like to share what I have learned. This article is
an authorized translation of the german article
“ODROID-XU4: Tweaks unter Ubuntu 18.04 und Kernel
4.14”. The original German article can be found here:
https://blaumedia.com/blog/odroid-xu4-tweaks-
unter-ubuntu-18-04-und-kernel-4-14/

Note: Any changes to your system can potentially void
your warranty and negatively impact the system’s
stability, so every change is made on your own
responsibility.

CPU overclocking and benchmarks

Hardkernel advises against changing the CPU clock
speed values of the ODROID-XU4, since it can cause
stability and heat issues. To prevent the latter
problem, I recommend swapping the stock fan, as

described in my article here:
https://blaumedia.com/blog/odroid-xu4-luefter-und-
kuehlkoerper-austausch/. The general problem is
thermal throttling, automatically underclocking the
processor to decrease the chance of damaging the
hardware. Unfortunately, stability problems are
inevitably left out until you have put together a
perfectly functioning setup.

By default the four little cores, these are the
processor's economical ARM cores, and the four BIG
cores, performance focused cores, are operated with
a maximum clock speed of 1.5 GHz and 2.0 GHz
respectively. I'll explain below how to customize and
compile the kernel to use 1.6 GHz and 2.1 GHz as
maximum clock speeds. I couldn't �nd any problems
or crashes during my 1 week test phase and would
describe it as stable.

To illustrate the performance increase I did a small
benchmark with sysbench. Here are the �rst of the
results (lower is better):

https://blaumedia.com/blog/odroid-xu4-tweaks-unter-ubuntu-18-04-und-kernel-4-14/

Core-Type Benchmark
result
without
overclock

Benchmark
result with
overclock

Di�erence

little.cores 35.644
seconds

33.408
seconds

-6.27%

BIG.cores 21.695
seconds

20.624
seconds

-4.94%

Both 13.583
seconds

12.994
seconds

-4.34%

As you can see, with an increase of only 0.1 GHz you
get much better performance. Especially the little
cores because their base clock is only 1.5 GHz. The
terminal commands are:

little.cores

$ taskset -c 0,1,2,3 sysbench --test=cpu --
num-threads=4 run

BIG.cores

$ taskset -c 4,5,6,7 sysbench --test=cpu --
num-threads=4 run

both cores

$ sysbench --test=cpu --num-threads=8 run

All commands were executed three times and the
average was taken from the results. Of course the
CPU Governor was set to performance. But now
enough for the benchmarks! How can the CPU be
overclocked? Thanks to ridge's observations in the
code of the kernel, he wrote a little tutorial, available
here: https://forum.odroid.com/viewtopic.php?
f=93&t=30115 From the manual I copied the needed
code; just log in as root and copy the following script
into your terminal. The compilation can take up to 30
minutes - so in the meantime get yourself a co�ee
and check your email.

Last update: 27. July 2019

Cloning Git Repo
cd /tmp
git clone --depth 1
https://github.com/hardkernel/linux -b
odroidxu4-4.14.y
cd linux

paste the new clock rates
sed -i 's/<1500000000>/<1600000000>/g'
arch/arm/boot/dts/exynos5422-cpus.dtsi
sed -i 's/<2000000000>/<2100000000>/g'
arch/arm/boot/dts/exynos5422-cpus.dtsi

sed -i '/&cluster_a15_opp_table {/a
opp-2100000000 {
opp-hz = /bits/ 64 <2100000000>;
opp-microvolt = <1312500>;
clock-latency-ns = <140000>;
};' arch/arm/boot/dts/exynos5800.dtsi

sed -i '/&cluster_a7_opp_table {/a
opp-1600000000 {
opp-hz = /bits/ 64 <1600000000>;
opp-microvolt = <1250000>;
clock-latency-ns = <140000>;
};' arch/arm/boot/dts/exynos5800.dtsi

sed -i '/PLL_35XX_RATE(2000000000, 250, 3,
0),/i
PLL_35XX_RATE(2100000000, 175, 2, 0),'
drivers/clk/samsung/clk-exynos5420.c

sed -i '/{ 2000000, E5420_EGL_DIV0(3, 7, 7,
4), },/i
{ 2100000, E5420_EGL_DIV0(3, 7, 7, 4), },'
drivers/clk/samsung/clk-exynos5420.c

sed -i '/{ 1500000, E5420_KFC_DIV(3, 5, 3),
},/i
{ 1550000, E5420_KFC_DIV(3, 5, 3), },'
drivers/clk/samsung/clk-exynos5420.c

compile kernel, readme:
https://wiki.odroid.com/odroid-
xu4/software/building_kernel#y
apt update && apt install -y git gcc g++
build-essential libssl-dev bc
make odroidxu4_defconfig
make -j8
make modules_install
cp -f arch/arm/boot/zImage /media/boot
cp -f arch/arm/boot/dts/exynos5422-
odroidxu3.dtb /media/boot
cp -f arch/arm/boot/dts/exynos5422-
odroidxu4.dtb /media/boot
cp -f arch/arm/boot/dts/exynos5422-odroidxu3-
lite.dtb /media/boot
sync

When it’s done compiling, you can restart the
ODROID-XU4 with the “reboot” command in your
terminal. On startup, it’ll pick the new kernel and will
use the newly de�ned clock rates.

RAM Overclocking and Benchmarks

The clock rate of RAM determines how high the data
rate is set. Quite simply: the faster the clock rate, the
higher the bandwidth. Hardkernel made it very easy
to overclock the ODROID-XU4 RAM. By default it runs
at 825 MHz and it is extremely easy to overclock it to
933 MHz. All you have to do is look for the line setenv
ddr_freq 825 in /media/boot/boot.ini and replace the
825 with 933. Otherwise, I have the code ready for
you again:

$ sed -i 's/setenv ddr_freq 825/setenv ddr_feq
933/' /media/boot/boot.ini

What improvements in performance can you expect? I
have again carried out a small benchmark with
sysbench. The following command was used:

$ sysbench --test=memory --memory-block-
size=1K --memory-total-size=10G --num-
threads=1 run

The total execution time improved from 10.733
seconds to 10.592 seconds - a change of -1.31%. In
this case, everyone should decide for themselves
whether to accept an increased power consumption
for this "performance improvement". I, for my part,
have enabled 933 MHz. The small ODROID-XU4
tweaks provide the good overall package

Improve IO Speed

Assign USB3.0 ports and Ethernet port to BIG.cores As
the source for the following contribution a thank you
to Obihoernchen and the blog post here:
https://obihoernchen.net/1416/odroid-xu4-tune-
network-and-usb-speed/ The following is from his
blog post and was taken over by me for this post for
ODROID-XU4 Tweaks. You should de�nitely have a
look at his blog!

By default, tasks/events created by the Ethernet or
USB ports (interrupts) are distributed to all cores. So it
can happen that a little.core gets assigned the task to
download 10 GB from the Internet, where a BIG.core

could complete it in a much shorter time. To make
sure that this is done by the BIG.cores in the future,
you should make sure at the beginning that the
service irqbalance is deactivated:

systemctl disable irqbalance

Then we open the �le /etc/rc.local and insert the
following before the exit 0:

usb2

echo 6 > /proc/irq/103/smp_affinity_list

usb3

#echo 5 > /proc/irq/104/smp_affinity_list

network (usb3)

#echo 4 > /proc/irq/105/smp_affinity_list

According to Obihoernchen's benchmarks, transfers
were up to 100 Mbit (12.5 MB/s) faster. For me, this is
now a standard setting.

Using UASP for USB 3.0 Hard Drives

This is a general tip and has no code example ready
but, it is one of my favorite ODROID-XU4 tweaks. As
described and tested in my article ODROID-XU4: SSD
vs. eMMC comparison (Boost!),
https://blaumedia.com/blog/odroid-xu4-ssd-vs-emmc-
boost/ Back then, I could warmly recommend using
an SSD with a SATA-to-USB adapter that supports
UASP. Here again is a table from that article:

Type Read
(Cache)

Read
(Direct)

Write

eMMC 804.54 MB/s 155.44 MB/s 45.0 MB/s

SSD (without
UASP)

890.57 MB/s 106.09 MB/s 125.00 MB/s

SSD (with
UASP)

888.20 MB/s 343.56 MB/s 205.00 MB/s

The UASP adapters o�er an enormous increase in
performance.

Reducing power consumption

Many people certainly use the ODROID-XU4 as a small
energy-saving home server - just like me. To reduce

the power consumption in 24/7 operation a little, here
are a few tips.

Disabling cpu cores

There is hardly any e�ort required to deactivate
individual cores. But �rst you have to know that
CPU0-CPU3 is your little.cores and CPU4-7 are your
BIG.cores. Depending on which requirements you
have on your ODROID-XU4, you should consider
which cores to deactivate.

Replace the 0 at cpu0 with your wished core

echo 0 > /sys/devices/system/cpu/cpu0/online

Downclocking GPU

Again the following tip comes from Obihoernchen's
blog. This time it's about downclocking the GPU, the
graphics processor of the ODROID-XU4. In pure server
mode, it always runs at a maximum clock rate of 600
MHz; without being used. The Obihoernchen blog has
also carried out measurements again and could
probably achieve a power savings of about 20%!

To reach that bene�t, you have to install the sysfsutils
package with APT:

apt update && apt install sysfsutils

Then we have to add the following in /etc/sysfs.conf
depending on your kernel (with uname -a you can �nd
out which one you started):

if kernel 3.10 then insert following:

devices/11800000.mali/dvfs_max_lock = 177

if kernel 4.9 then insert following:

devices/platform/11800000.mali\:/devfreq/11800
000.mali\:/governor = powersave

if kernel 4.14 then insert following:

devices/platform/11800000.mali/devfreq/devfreq
0/governor = powersave

With a �nal “systemctl restart sysfsutils” the lower
clocking is active.

Recreating a Mac Plus: Using the ODROID-GO as a Macintosh
Emulator
 November 8, 2019 By @johannesbehr ODROID-GO, Tutorial

For fans of the Macintosh Plus, there is now a way to
run an emulator on the ODROID-GO! Based on the
work from https://spritesmods.com/?
art=minimacplus, this project leverages the fact that
both the original project and the GO use an ESP32
microcontroller.

You can �nd my adaptation at
https://github.com/johannesbehr/minimacplus/tree
/master/�rmware, with an FW release available at
https://github.com/johannesbehr/minimacplus/tree
/master/�rmware/release. To use it, you need to
copy two �les to a folder called "/roms/macplus" in
the root directory of the SD card:

mac.rom => Get "1986-03 - 4D1F8172 - MacPlus
v3.ROM" from
https://www.macintoshrepository.org/7038-all-
macintosh-roms-68k-ppc-

mac_hd.raw => You can create this �le using
mess0161b by following the instructions from

Spritemod at
https://github.com/Spritetm/minimacplus.

Simpli�ed setup

For a minimal and quick installation, can download
the �rmware from
https://github.com/johannesbehr/minimacplus/tree
/master/�rmware/release, then put at least two �les
in a folder called “/roms/macplus” in the root
directory of the SD card:

One *.rom �le

At least one bootable disk image (Might be *.image,
*.drv, *.hfv, *.raw or *.dsk)

As an example, the ROM �le could be "1986-03 -
4D1F8172 - MacPlus v3.ROM", which can be extracted
by downloading the �le Old_World_Mac_Roms.zip
from the Macintosh Repository at

https://spritesmods.com/?art=minimacplus
https://github.com/johannesbehr/minimacplus/tree/master/firmware
https://github.com/johannesbehr/minimacplus/tree/master/firmware/release
https://www.macintoshrepository.org/7038-all-macintosh-roms-68k-ppc-
https://github.com/Spritetm/minimacplus
https://github.com/johannesbehr/minimacplus/tree/master/firmware/release

https://www.macintoshrepository.org/703 ... s-68k-
ppc-. The disk image could be "System Tools.image"
extracted from OS-6-06-a15-90-08-01-Ray-Ban.zip at
https://www.macintoshrepository.org/1778-mac-
system-6-x.

Figure 1 - This is a spi�y project, if you own a GO device,
you should try it out!

I also made some improvements, including:

Virtual scrolling, so that the screen follows the mouse

An on-screen keyboard, which can be toggled using the
“B” key

Speed improvements

Feel free to create your one disks with all the nice
programs you can �nd on the web. You can use up to
4 disk images (each 20 MB maximum size) at the
same time. You can use the cool emulator at
https://www.gryphel.com/c/minivmac/ to prepare
your disks on a PC, and then copy them to your
ODROID-GO. For comments, questions, and
suggestions, please visit the original forum post at
https://forum.odroid.com/viewtopic.php?
f=162&t=36599.

https://www.macintoshrepository.org/7038-all-macintosh-roms-68k-ppc-
https://www.macintoshrepository.org/1778-mac-system-6-x
https://www.gryphel.com/c/minivmac/
https://forum.odroid.com/viewtopic.php?f=162&t=36599

eMMC Memory Modules: A Simple Guide
 November 9, 2019 By Brian Ree Tinkering, Tutorial

Have you ever wondered about using the eMMC
module capability on your ODROID device but
thought, naah that looks too complicated. It can be
down right scary if you are new to these devices.
Besides, how do you use one? What tools do you
need? Am I going to mess it up and be out $30?
Maybe I should just stick with the SD card slot, right?
Well if you are like me you might have had similar
thoughts. This is the tutorial for you. It is short and
sweet and I will cover using eMMC modules for an
ODROID-XU4, from start to �nish. You can take that
knowledge and apply it to any of your other devices
that support eMMC modules.

To follow along with your own hardware, you will
need an ODROID-C1+, C2, or XU4. The tutorial
speci�cally focuses on an ODROID-XU4. Let us face it -
the ODROID-XU4 is awesome, it is super powerful and
gives any SBC out there a run for its money. So, why
not upgrade it and push it to the next level with an
eMMC module as the boot drive? You will also need

an eMMC module, an eMMC adapter, and a microSD
adapter. Now there are eMMC adapters that go right
to USB but since I use so many microSD cards I just
decided to use an adapter I had and got an eMMC to
microSD adapter instead. The base parts excluding
the ODROID device will run you about $38. That
includes a dual microSD, SD to USB adapter, an eMMC
to microSD adapter and a 32GB eMMC module. Now,
if you already have a microSD to USB adapter that
brings the price down to around $27. Not bad at all.
The 32GB unit gives us plenty of space for the
operating system, its upgrades, etc. The enhanced
performance will mean the unit will boot faster and
function quicker all around. What is not to love?

Needed items

The following items can be obtained from the
Hardkernel store
(https://www.hardkernel.com/product/) or a
local/regional distributor:

https://www.hardkernel.com/product/

A Monku Retro 1,2,3 / ODROID-C1+, C2, XU4 - Double
check and make sure that you have the correct eMMC
modules for your device

A compatible 32GB eMMC Memory Module

A microSD to USB Adapter

An eMMC to microSD Adapter

Preparing the eMMC Module

Let us take a look at the parts we will be working with.
The following image shows the 32GB XU4 eMMC
module and an eMMC to microSD adapter.

Figure 1

Take a moment to inspect the eMMC to microSD
adapter. Notice the little white circle on one corner of
the connection pins? The image below shows the
circle next to a red arrow.

Figure 2

Now take a look a the eMMC module itself. Notice the
little white triangle on one corner of the module? I will
post an image below. The white mark in question is
next to the red arrow.

Figure 3

What we are going to do now is attach the eMMC
module to the microSD adapter. You will want to line
up the white triangle and the white circle so that they
are on the same side of the connector pins. They will
not be on the same corner, at least with the parts I
have, but they will be on the same side. You will want
to keep both items at an angle and let the connector
pins meet then slowly and gently push them together.
You can almost roll the eMMC module onto the
adapter's connection pins. There will be a satisfying,
though slight, sort of click once they are properly
connected.

Figure 4

We are ready to �ash our eMMC module. In the next
step we will �ash it with an OS image from the
ODROID site.

Flashing the eMMC Module

Now that we have our eMMC module prepped and
ready to �ash let’s head over to the ODROID site that
has all the di�erent OS images. We will be focusing on
Linux OS images for this tutorial.

The direct link for XU4 images is
https://bit.ly/32GnmQi and the general link for XU4
images is https://bit.ly/2v6FYcV.

You can use the second link to �nd images for other
devices like the ODROID-C1+ or C2. Just locate the
device on the left hand pane of the site. We will be
using a slightly older Ubuntu 18.04 image, but it is one
I have used before so I am comfortable with it. The
image I downloaded for my XU4 eMMC test is the
ubuntu-18.04.1-4.14-mate-odroid-xu4-
20181203.img.xz image �le.

Once you have got your image ready it is time to
download some software that you can use to �ash the
eMMC module. If you are using a Mac I recommend

https://bit.ly/32GnmQi
https://bit.ly/2v6FYcV

getting Balena Etcher. It works great and I highly
recommend it. If you are using Windows you can grab
a copy of Win32 Disk Imager. Though not as pretty as
Balena Etcher, Win32 Disk Imager gets the job done.

For Linux users you will have to perform the following
steps. Don’t worry, it is not too bad.

1. Insert your SD card into your computer.

2. Locate the device, by running sudo fdisk -l. It will
probably be the only disk with the right size. Note the
device name; let us suppose it is /dev/sdx. If you are in
any doubt, remove the card, run sudo fdisk -l again
and note what disks are there. Insert the SD card
again, run sudo fdisk -l and it is the new disk.

3. Unmount the partitions by running sudo umount
/dev/sdx*. It may give an error saying the disk is not
mounted - that is �ne. Copy the contents of the image
�le onto the SD card by running

sudo dd bs=1M if=your_image_file_name.img
of=/dev/sdx

Of course, you will need to change the name of the
image �le above as appropriate.

Double-check the drive, device, drive letter you are
�ashing. Make sure you are not overwriting another
important drive. I will include images of the process
as it looks on a Mac. You may be prompted to gain
admin privileges on Mac and Windows.

Select the image �le that you want to �ash the eMMC
module with after inserting into a USB slot on your
Mac; or, however, you intend to access the module.

Figure 5

Answer any prompts for admin privileges.

Figure 6

Double-check that you are indeed �ashing the correct
device and that it is the correct size.

Figure 7

Start �ashing the device and wait for the process to
complete.

Figure 8

In the next part we will install the eMMC module and
make sure that it is functioning properly on our
device.

Installing the eMMC Module

So if you have followed along this far you should have
an eMMC module all �ashed and ready to boot! Let’s
take a look at our ODROID-XU4 and the eMMC

module. Note the module is still connected to the
eMMC/microSD adapter.

Figure 9

Take a closer look at the spot on the ODROID-XU4
where the eMMC module goes. It requires that you
either take apart the case, or that you have cut out
the eMMC module door from the case. If you are
working on a test unit I recommend taking a sharp
razor and scouring the eMMC door connections until
the plastic separates. Then you have direct access to
the eMMC module's connector. It makes things much
easier especially if you plan on frequently changing
eMMC modules. Again notice the little white circle on
the board, it's next to the red arrow.

Figure 10

It is still a little small, let us zoom in a bit more.

Figure 11

Carefully line up the white circle and the white
triangle so that they are on the same side. Use the
same angled approach to let the connectors meet
then sort of push them together with a rolling motion.
If you are using an eMMC adapter door, meaning you
still have the case on, be careful not to let the eMMC
module slip into the case. Once you have the chip
connected you should have something similar to the
following.

Figure 12

We are almost done. You will have to check how your
particular device interacts with eMMC but on the
ODROID-XU4 you have to set the boot mode selector
switch. Notice the little white switch on the back of
the case? Use a paperclip to push the switch to the
position farthest from the edge of the case. In other
words towards the middle.

Figure 13

Now it is time to test things out. You should get a
boot, possibly followed by a quick reset or shutdown.
Do not worry some versions of Ubuntu will do a
partition resize then shutdown on their �rst boot. As
long as you see something post to the screen you are
golden.

Figure 14

Figure 15

Well, that is it. Enjoy using eMMC modules without
fear and I hope you enjoy the performance upgrade!
For comments, questions, and suggestions, please
visit the original article at
http://dev.middlemind.com/tutorials/odroid_go/em
mc.html.

http://dev.middlemind.com/tutorials/odroid_go/emmc.html

Ogo Shell
 November 1, 2019 By @paspartout ODROID-GO, Tutorial

The ogo-shell utility is a �le-browser, audio player and
image viewer for the ODROID-GO. I mainly use it to
listen to music using the odroig-go headphone hat
from the backo�ceshow. You can checkout the
Github Project and the forum post if you want to give
it a try yourself. What follows is the history of its
development until now. Hope you like it!

The idea

Ever since I received my ODROID-GO last year I had
fun developing small programs for it. I like the
challenge to write programs for embedded devices
with limited resources. It forces you to understand
much more about the hardware and software stack
than the usual high level programming I’ve done.

One day I read a forum post by Cralex about
[Feature/App Requests][forum-post] that mentions an
on-device �le manager and links to the 3DShell
Project. The README of the project describes the
purpose of 3DShell as follows:

3DShell (pronounced 3D-Shell) - is a multi-purpose �le
manager for the Nintendo 3DS that aims towards
handling media �les.

And so the idea for ogo-shell was born. It should be a
�le browser or manager that I can extend with more
and more functionality like playing various media
�les.

Development until now

Because testing small program changes on the
ODROID-GO takes some time I chose to implement
the hardware related functions again using the SDL2
Library. (SDL2 is a popular C library used mostly in
games and provides cross platform access to
graphics, audio and input hardware.) That makes it
possible to run ogo-shell locally on my computer so I
can iterate quickly and debug the application logic
more easily.

Figure 1 - Screenshot of the ogo-shell running on Linux

File Browsing

After implementing the simulation I began working on
the �le browser. I had already made an ftp server for
the GO, so I was familiar with the �le system APIs. The
rover �le browser for terminals served as an
inspiration and also has very clean C code that was
delightful to read. At this point I want to thank all the
people out there that publish their work as open
source. Only their e�orts make it possible to develop
projects like this one.

Audio Player

Once basic �le browsing was done, I wanted to see
how easy it would be to play various audio �les.
Getting them just to play was relatively easy but for
an audio player that is convenient to use I faced some
challenges.

Figure 2 - ODROID-GO and music player

One reason for that is concurrency. The player not
only has to play music, reading your encoded music
from the SD card but also react to your input while
doing so. Implementing this nicely in C for both the
simulation and the ODROID-GO was not easy, but
made me learn more about mutexes, queues and
how they work.

Another obstacle is the result of the ODROID-GOs
hardware. The ESP32 in the ODROID-GO uses the
same SPI connection to communicate with both the
display and the SD card. That means you can’t update
the display and read from the SD card at the same
time. By patching the underlying SDK using a mutex I
made sure that the program can’t access the SD card
until the display is �nished updating.

The rest was gluing together open source libraries
that handled audio decoding and getting the user
interface right. The player supports the usual MP3,
OGG, FLAC and WAV audio formats. In addition to that
it also support modules in the MOD, XM, IT and S3M
formats. There is quite a big scene for music modules
and a lot of nice tracks can be found on The Mod
Archive.

Image Viewer

The second version after the public release(0.3.0)
includes a crude image viewer. It can only display
small images though because of the small amount of
RAM the ODROID-GO has. Let me explain why.

Figure 3 - Screenshot of the image viewer

If you want to display a big image, let’s say one with
the dimensions 1000x1000 pixels, the usual approach
is to �rst decode the image �le into memory and then

resize it from there into another part of the memory.
You can calculate the amount of space needed by
multiplying the amount of pixels by the color depth of
the image. Most images are using a color depth of 24-
bit in the RGB format. That means we have three
color channels for the colors red, green and blue and
each channel is saved as an integer of 8 bits. To save
our 1000x1000 image we then need 24 bits or 3 bytes
multiplied by a million(1000 times 1000) which is
already 3 million bytes. The amount of RAM you can
easily access on ODROID-GO is 4 MB so anything
much larger that 1000x1000 won’t �t into the
memory. Since the usual approach doesn’t work one
would have to come up with a more clever way of
decoding only parts of the image and directly resizing
it on the �y without the need of the large image
bu�er in RAM. These optimization can take a lot of
e�ort that I didn’t want to spend on this project yet.

What I learnt is that getting a �rst prototype of a
feature running is usually quite easy and fun. But
polishing the software by �xing bugs, considering
edge cases and adding quality of life features we take

for granted usually takes much more time and e�ort
and is not as fun. This is probably why there so much
bugs in today’s software. The more complex your
software gets the e�ort one has to invest to make it
work perfectly.

Upcoming features

I am currently working on support for chiptunes using
the game-music-emu library that can emulate sound
chips from old game consoles and computers. I really
like the sound and creativity these old tunes have.
What is also in the works is the ability to launch the
go-play emulators from within ogo-shell. All in all,
there are still lots of ideas for features to implement
and bugs to �x.

That said is was quite fun to develop ogo-shell and
learn new things while doing so. The satisfaction you
get when you �rst see or hear your creation working
as intended can be really addicting. I hope I have
encouraged you to not only use programs but also
learn to create new ones, and hope that ogo-shell
may be useful to you.

Multiscreen Desktops using VNC
 November 1, 2019 By Adrian Popa Linux, ODROID-C2, ODROID-XU4

About two years ago I had a wild idea: would it be
possible to create a "dual-screen" desktop system by
using two ODROIDs, each driving a di�erent screen,
but acting as a uni�ed desktop? The idea was to have
a "master" odroid that is more powerful and runs
your apps (like an XU4 or N2) and a "slave", ideally
cheaper board that acts only as a dumb terminal (a
C1/C2). I did some research and found xdmx, which is
a distributed window manager that could do the job,
but it has been abandoned a decade ago, so it is a no-
go.

Next I experimented a lot and created a convoluted
system that basically worked by using Xpra
(https://xpra.org) in a way it was not designed to
function. It did work, but performance was abysmal -
about 0.5 fps for the whole desktop, which is very
noticeable (details here:
https://forum.odroid.com/viewtopic.php?t=35710). I
then got an idea to experiment with vnc, and this time
I got a much better overall solution.

The idea

The idea is deceptively simple. On the master system
start a regular X11 session, with lightdm and all. Use
xrandr to extend the desktop (once logged in) so that
the new desktop size covers both screens (I used
identical screens, but it should work for screens of
di�erent resolutions with some tweaks). Next start a
X11vnc session that connects to :0 and that has a
�xed resolution which is the sum of both screens.

The slave can run a minimal, or a desktop image, but
needs to have Xorg and needs to support the target
monitor resolution. It will start a standalone Xorg
session that reads its startup commands from
/root/.xinitrc. The �le points to a script that will try to
start a vncviewer in an in�nite loop, connecting to the
master session. If all goes well, you end up with two
mirrored screens -- which is not the same as a dual-
screen setup. Here is where the magic kicks in. Once
vncviewer is started, it is moved with the help of
xdotool to the left by a screen's width. This causes

https://xpra.org/
https://forum.odroid.com/viewtopic.php?t=35710

what would be normally the left part of the desktop to
be rendered o� screen (and would logically overlap
with what's on the left screen), leaving room for the
right screen contents. Confusing? Here's a diagram:

Figure 01 - The grayed-out parts are not visible
physically on their respective screens

Remember that the master system renders both
displays, but only the left part is physically visible, and
the slave system renders both displays as well (via
VNC), but only the right part is physically visible. The
end result is the illusion of a dual-screen setup.

Main Setup

My test bed consists of an ODROID-XU4 running
Ubuntu 18.04 Mate as the master system and an
ODROID-N2 running Ubuntu 18.04 Mate as the slave.
As I said previously, the slave can be a less powerful
board (even of the fruity variety), but I had the N2 on
hand for the experiment. The master drives the left-
hand monitor in the setup while the slave is
connected to the right-hand monitor (this order is
important). In my case both monitors have 1680x1050
resolution. You should be able to go up to 1080p per
screen, but I am not sure whether you can have two
4K screens because the desktop seems to be limited
at 4096x4096 pixels (though there might be a way
around it: https://bit.ly/2JsDWMc.

The sound should be connected to the master, but
keyboard and mouse can be connected to either
system once VNC is started. Note that connecting
keyboard and mouse to the slave can result in jerky
movements when there is a lot of activity on-screen,

so for best performance connect them to the master
too.

Regarding networking, both systems should be in the
same LAN, connected via ethernet and with static IP
addresses. Peak network usage observed by me was
about 40Mbps of VNC tra�c when playing back video,
so fast ethernet should not be a bottleneck.

Let us start with the master con�guration:

$ sudo su -
apt-get install x11vnc pwgen git

We will create a 20 character random password for
VNC (though documentation says only the �rst 8
characters are actually used), and we will copy it over
ssh to the slave system. I am assuming your slave has
an unprivileged account, like odroid.

pwgen 20 1
x11vnc -storepasswd
ssh odroid@slave mkdir /home/odroid/.vnc
scp /root/.vnc/passwd
odroid@slave:/home/odroid/.vnc/passwd
ssh odroid@slave chmod -R odroid:odroid
/home/odroid/.vnc/passwd

Next let us create a systemd service to start x11vnc
on boot. You can grab and tweak an example
con�guration from my git page
(https://github.com/mad-ady/vnc-multiscreen.git). You
will need to change the combined resolution to match
your own case (for me it was 3360x1050):

git clone https://github.com/mad-ady/vnc-
multiscreen.git
cp vnc-multiscreen/master-
left/etc/systemd/system/x11vnc.service
/etc/systemd/system/
systemctl daemon-reload
systemctl enable x11vnc
systemctl start x11vnc

https://bit.ly/2JsDWMc

Figure 02 - The X11vnc service, customized with the
composed screen resolution

Next we need to add a script that runs once you log in
(again, I am presuming you are using the user odroid
for GUI login) and that uses xrandr to resize your
desktop. We could have run the script from lightdm
(before login), but for some reason the desktop
background would span only one screen. Run the
commands below as the user you log in as (on the
master):

$ mkdir .config/autostart
$ cp vnc-multiscreen/master-
left/home/odroid/.config/autostart/dual-
screen.desktop .config/autostart
$ chmod a+x .config/autostart/dual-
screen.desktop
$ gio set .config/autostart/dual-
screen.desktop "metadata::trusted" yes
$ sudo cp vnc-multiscreen/master-
left/usr/local/bin/set-dual-screen-
resolution.sh /usr/local/bin/

Figure 03 - The set-dual-screen-resolution script (on the
master) that extends the desktop

You will need to edit the /usr/local/bin/set-dual-
screen-resolution.sh script and set your total
resolution for the fb parameter (that will be the size of
the desktop) and set your left screen's resolution for
the panning parameter. Setting it like that causes the
desktop not to start scrolling when you move the
mouse to the edge of the screen.

That is it for the basic setup on the master, and next
comes the slave. We will disable GUI mode and create
and enable an xorg service that starts a plain X11
server and a script to connect to vnc:

apt-get install xtightvncviewer xdotool git
service lightdm stop
systemctl set-default multi-user.target
git clone https://github.com/mad-ady/vnc-
multiscreen.git
cp vnc-multiscreen/slave-
right/etc/systemd/system/xorg.service
/etc/systemd/system
systemctl enable xorg

The X server parses .xinitrc and executes it after
startup. So let us have it start our VNC startup script.

cp vnc-multiscreen/slave-right/root/.xinitrc
/root/.xinitrc
chmod a+x /root/.xinitrc

Figure 04 - The Xorg startup service and script

The VNC startup script will start the vncviewer process
(in a loop) and then move the window to the left. It is
all done by these two scripts:

cp vnc-multiscreen/slave-
right/usr/local/bin/dual-screen-vnc-client.sh
/usr/local/bin
chmod a+x /usr/local/bin/dual-screen-vnc-
client.sh
cp vnc-multiscreen/slave-
right/usr/local/bin/window-positioning.sh
/usr/local/bin
chmod a+x /usr/local/bin/window-
positioning.sh

Figure 05 - The dual-screen-vnc-client script

Figure 06 - The window-positioning script

If you are not using identical screens, you will need to
edit the two scripts above and set the correct o�sets
for your displays.

Now the basic steps are done. You can restart both
systems and after lightdm login you should have an
extended desktop. However, there are some things
that do not work as expected and you need to make
some tweaks.

Figure 07 - How your desktop should look

Tweaks (only on the master)

You should disable MATE window tiling (and
compositing while you are at it), because when you try
to maximize a window on the right screen by dragging
its title bar at the top, the window will jump on the left
screen. You can do this from Menu -> Control Center -
> Windows -> Placement -> Disable window tiling.

Next you should disable window contents while
moving, so that you get a smoother experience: Menu
-> Control Center -> Mate Tweaks -> Windows -> Do
not show window content while moving windows.

Since you have two screens, it would be nice for
windows to know where the division between the
screens is and allow you to maximize windows on
each screen. For this you need to tweak what the
xinerama library tells your X server about available
screens. Luckily there is a "fakexinerama" library that
you can install on the master
(https://www.xpra.org/trac/wiki/FakeXinerama).

$ wget
https://www.xpra.org/trac/browser/xpra/trunk/f
akexinerama/fakeXinerama.c?format=txt -O
fakexinerama.c
$ sudo apt-get install libxinerama-dev libx11-
dev
$ gcc -O2 -Wall Xinerama.c -fPIC -o
libXinerama.so.1.0.0 -shared
$ sudo mv /usr/lib/arm-linux-
gnueabihf/libXinerama.so.1.0.0 /usr/lib/arm-
linux-gnueabihf/libXinerama.so.1.0.0--original
$ sudo cp libXinerama.so.1.0.0 /usr/lib/arm-
linux-gnueabihf/

If you are running on a di�erent architecture on the
master (arm64, x86_64), adjust the path to the library
�le. You can �nd what it is with:

$ find /usr/lib -name libXinerama.so

Fake Xinerama reads the screen con�guration from
your GUI user home dir ~/.fakexinerama. The �le
starts with the monitor count (which is 2 in our case)
and lists each monitor per line with o�sets and
resolution:

$ cat ~odroid/.fakexinerama
2
#left screen, starts at x=0 and y=0 and has a
size of 1680x1050 pixels
0 0 1680 1050

https://www.xpra.org/trac/wiki/FakeXinerama

#right screen, starts at x=1680 and y=0 and
has a size of 1680x1050
1680 0 1680 1050

Once you restart your desktop session, windows
should be behaving as if you had two physical screens
and maximize on each screen.

One more integration that is missing is - the
screensaver only activates on the master screen. It
probably cares only about screen size, not desktop
size, so you're left with an exposed right screen. You
could use gdbus (or polling) to see when screensaver
activates and you can ssh into the slave and turn o�
its screen with xset dpms force o�. When you hear
the screensaver deactivate, you can re-enable the
right screen.

To do this, �rst you need to be able to ssh from the
master to the slave without a password. For this we
will create a key and copy the public part to the slave.
Skip the �rst step if you already have keys.

$ ssh-keygen -t rsa -C "master key"
$ ssh-copy-id odroid@slave

Next copy the script that watches screensaver status
and start it as part of the user desktop session.
Thankfully, systemd can handle user services as well
(again, on the master):

$ mkdir -p .config/systemd/user/
$ cp vnc-multiscreen/master-
left/home/odroid/.config/systemd/user/screensa
ver-sync.service .config/systemd/user
$ systemctl --user enable screensaver-sync
$ sudo cp vnc-multiscreen/master-
left/usr/local/bin/screensaver-sync.sh
/usr/local/bin/

Make sure to edit (and test) the screensaver-sync
script, so that it points to the correct slave IP address.

Pros and cons:

The master (left) does all the hard work, but has the
most �uent performance

The slave (right) is used to render half a screen, but it
needs to transfer and render the combined screen

(even if you only see half), so heavy activity on the left
screen causes tearing/lag on the right screen

You need to turn on and o� both devices
independently. It is possible to automatically turn o�
the slave then the master is shuts down, but needs
tweaking (e.g. a systemd service that ssh-es into the
slave to power it o�)k

You can easily turn back the slave into a stand-alone
system by disabling the xorg service and re-enabling
graphical target. The master can remain as is without
a�ecting usability.

Performance is native on the master/left screen and
ranging from a couple of FPS to ~15 FPS on the
slave/right screen, depending on screen activity. The
right screen is best suited for static content, like a web
page, code or a terminal.

You can see a demo in action here (sorry for the poor
video quality): https://www.youtube.com/watch?
v=sSqXX5doCvo&feature=youtu.be

Ideas for improvement

Ideally, all of this would be greatly simpli�ed if only
there were a way for X11VNC (or maybe a di�erent
remote desktop technology) to copy only half a screen
of data instead of the full desktop. That way you
reduce the processing both on master and slave and
can get rid of the window movement tricks. You could
display the second screen on any system (e.g. in a
browser on a TV) without much trouble.

You may get better performance if the master is a PC
(e.g. an ODROID H2) and the slave is an ARM/ARM64
ODROID. That is because the framebu�er read speed
on a XU4 is about 45MB/s (N2 reports it as 443MB/s),
while my Intel GPU has about 961MB/s. More speed
results in faster refresh rate, but it will consume more
network bandwidth.

One more thing - the technique above can be
extended to more than 2 monitors because you can
attach two VNC clients to the same server. However,
performance will drop considerably. Let me know if
you �nd ways to improve this on the support thread
at https://forum.odroid.com/viewtopic.php?
f=52&t=36411.

https://www.youtube.com/watch?v=sSqXX5doCvo&feature=youtu.be
https://forum.odroid.com/viewtopic.php?f=52&t=36411

Monku R3: Building The Ultimate ODROID-XU4 / XU4Q Gaming
Console - Part 2
 November 1, 2019 By Brian Ree Gaming, ODROID-XU4

Hello and welcome to the last tutorial in this series. I
hope that you’ve found this series helpful. Part 1 of
this tutorial which details the hardware and initial
software con�gurations can be found at
http://middlemind.com/tutorials/odroid_go/mr3_bui
ld.html. This article will show you in detail how to
polish o� your Monku Retro 3 (ODROID-XU4) video
game console. We will be optimizing Ubuntu MATE,
the Linux desktop environment, setting up retroarch
in kiosk mode, and boot.ini con�guration scripts. Ok
let’s dive in!

This tutorial does not require any new parts or tools.
We will just be con�guring the console you have
already built (Part 1 article), adjusting things to really
make it shine.

Finalizing MATE... Almost

The �rst thing we are going to do in this part is get rid
of that pesky authentication prompt that pops up

when you try and open a browser for the �rst time
after logging in.

This is not a high security setup, we are purposely
lowering the security level here to make it easier to
use as a game console and web browsing set top box.
Go to the following menu location: Applications ->
Accessories -> Passwords and Keys and you should
see a window popup similar to the one depicted
below.

If at any time you are prompted for a login when
working with the terminal use the password, k

http://middlemind.com/tutorials/odroid_go/mr3_build.html

Figure - 01

Locate the Login entry in the list on the left hand side
of the window. If the authentication popup I
mentioned references a di�erent Password keychain
then �nd that entry in the list on the left hand side of
the window. Follow the steps below to unlock the
target keychain.

1. Right click on the target entry and select Change
Password.

2. You will be prompted to enter the old password, type
in odroid and click Continue.

3. You will now be prompted to enter a new password,
leave both �elds blank and click Continue.

4. Another dialog will popup and ask you if it is ok to7
allow the keychain to be unlocked, click Continue.

5. Close out of all the dialogs and close the Password and
Keys window, we are all set.

Next thing we will do with the Ubuntu MATE
environment is con�gure the panels and widgets a bit.
You can do whatever you like here, I will just show you
how I con�gure things. First o� we are expecting to
interface with this system and, at least some of the
time, with a gamepad. It works great but it is not a
mouse, also we are not really going to be doing any
rigorous Linux computing so there are a few things
we do not need. The second bene�t to this
con�guration step is that is does slightly lower the
memory overhead.

Follow these instructions to remove the bottom
panel. We will be adding controls to the top panel to
o�set some of the functionality loss but we will not be
adding in the desktop selection widget. It is just a bit
of overkill for our needs. Again if you want it, it will
not harm anything to keep it. Follow these

instructions to clean up the panels and widgets just a
bit.

1. Go to the bottom panel and right click on it, then
6select Delete This Panel, then click Delete again when
prompted.

2. Go to the top right hand side of the screen and right
click the power button, select Remove From Panel.

What we are going to do is add some of the widgets
back to the top panel making the top panel a more
centralized point of control. This makes using the
gamepad to control things much easier. Your desktop
should look like the screenshot below.

Figure - 02

Since we got rid of our open window selection
buttons when we deleted the bottom panel, let us add
a new widget to the top panel that does the same
thing but is better suited for a gamepad since it
requires less cursor movement to utilize. Right click
on the top panel and select Add to Panel. Scroll down
the list of options until you see the entry depicted
below and then click Add.

Figure - 03

We have a few more steps to get through here
regarding the tray apps and the date and time
con�guration but we are almost done. Your desktop
should now look something like this.

Figure - 04

Next let us click on the Date and Time string in the top
right corner. A calendar drop down should appear.
Expand the Locations section and click the Edit
button. Con�gure the General tab as depicted below
or as you see �t.

Figure - 05

Let us add some location information so the time will
be correct when we have an internet connection and
sync with ntp (Network Time Protocol). Click on the
Locations tab then click the Add button.

Figure - 06

Start typing the nearest major city into the Location
Name text box. If it does not work try another major
city or try the city representative of your time zone,
for instance mine is New York. Select a location from
the list that pops up. Mine would be Central Park, NY.
Click Ok once you have found something suitable.

Figure - 07

Now you will see a location entry in the locations list
as depicted below.

Figure - 08

Just a few more things left to do here. right click the
battery icon in the top right and select the

Preferences option. Click on the General tab and
toggle Never display an icon. If you have an EN or UK
string in the system tray right click on it and select
Preferences. On the General tab uncheck Show icon.
We will not really be worrying about switching the
keyboard language. If you need this you can turn both
in the system tray icon back on by using the System ->
Control Center menu option and clicking on Power
Management and iBus Preferences respectively. The
screenshots below show the forms we just discussed.

Figure - 09

Figure - 10

Just two little things left in this part and we will be
moving onto the custom control button and scripts!
Move the mouse to the top panel and right click on it.
Select Add to Panel then scroll down until you see the
Show Desktop option as shown below. Do the same
thing for the Trash option also shown below.

Figure - 11

Figure - 12

Use the center mouse button, or the mouse wheel
button if you have that instead, to move the widget
icons on the top panel. Let us drag these two new
widgets a little closer to the System menu. Also
separate them a little bit. Nice! Now we are ready to
start adding custom scripts. These scripts will
automatically start retroarch on boot, and start
antimicro when retroarch closes returning mouse
control to the gamepad. We will also be setting up
some boot.ini control scripts. Your desktop should
look like the one depicted below.

Figure - 13

Scripts and Custom Control

In this part we are going to set up some custom
scripts to control the software we installed and

con�gured. This will bring the experience up from a
Linux desktop experience to more of a game console
experience. Download the script bundle below and
then copy and paste it into the install_zips folder you
created in the previous tutorial. It is located in the
odroid user's home directory.

Monku R3 Scripts

Once you have downloaded and copied the zip �le
into the install_zips folder, right click on it and select
Extract Here. Seven �les should appear in a sub
directory, open it and select them all and copy them
into the odroid user's home directory. The odroid
user's home directory is the default location of the �le
browser, you can also access it from a link on the
desktop or from the left hand side of the �le browser
where the folder shortcuts are listed.

Figure - 14

Figure - 15

Let us make sure these scripts have the correct
permissions and can be executed. Open up a
terminal, Applications -> System Tools -> MATE
Terminal, and run the following commands.

$ sudo chmod 755 restart_now shutdown_now
start_am start_antimicro start_auto start_ra
stop_auto

$ sudo chmod +x restart_now shutdown_now
start_am start_antimicro start_auto start_ra
stop_auto

Now close the terminal and go to System -> Control
Center in the menus. Find and select the Startup
Applications option. You should see something similar
to what is depicted below.

Figure - 16

Figure - 17

Click the Add button and �ll out the form as depicted
below, I will put the exact text here also.

Name: Start RetroArch
Path: /home/odroid/start_ra
Description: Launches RetroArch on startup.

Now, we also want to start a special AntiMicro script.
So let us do the same thing for that script, also shown
below. Again I will list the values used here.

Name: Start AntiMicro
Path: /home/odroid/start_am
Description: Launches AntiMicro on startup.

Figure - 18

Figure - 19

Shutdown the device: System -> Shut Down. Then use
the hardware reset button to turn it back on. You
should see retroarch launch automatically as shown
below. Now if you close retroarch and wait about 5
seconds you should see antimicro popup into the
system tray and restore gamepad control of the
device, also shown below.

Figure - 20

Figure - 21

Things are shaping up nicely now. Our beautiful
ODROID is looking more and more like a great retro
gaming console.

Finalizing MATE ... Really This Time

We have a little bit more work to do with MATE. Right
click the top panel and select Add to Panel, scroll
down through the list of options until you �nd the
Shut Down entry. Click Add and then use the middle
mouse button or mouse wheel button to grab the
new widget and position it so that it is about an inch
or so away from the open programs widget. By
keeping all the controls in a tight group we greatly
enhance the user experience when controlling things
with the gamepad.

Figure - 22

Figure - 23

Next up we are going to add two custom buttons to
the top panel. Right click the panel and select Add to
Panel, choose the very �rst option Custom Application
Launcher, depicted above. We will add the stop
button �rst and then the play button. The form �eld
values are listed below. Use the screen shots to
navigate to the proper icon. You can see the path in
the screen capture near the top of the window.

Stop Button Values:
Type: Application
Name: Stop RetroArch
Command: /home/odroid/stop_auto
Comment: Stops RetroArch if running windowed.
(Really just stops
RetroArch and resets AntiMicro)

Start Button Values:
Type: Application
Name: Start RetroArch
Command: /home/odroid/start_auto
Comment: Starts RetroArch and AntiMicro
scripts.

The screenshots below depict this step. Use them to
help with �nding the right icon if need be.

Figure - 24

Figure - 25

Figure - 26

Now let us test the new controls. Close retroarch and
any other open window. Click on the play button and
you should see retroarch popup. Click the stop button
and retroarch will close, wait about 5 seconds, and
you should see antimicro in the system tray giving us
back full gamepad control.

Figure - 27

Figure - 28

We have basically customized our ODROID hardware
and software to create a retro gaming console with
retroarch kiosk mode and also full Linux environment
if needed. This is so cool! Next thing we will do is
make retroarch run in fullscreen mode and adjust a
few video settings. I will not go into advanced
con�guration here. This tutorial is about as long as I
like to make them so I will push advanced retroarch
and emulator errata to a small follow up tutorial.

Start retroarch, you can use the little widget you just
made! Scroll right to the Drivers section �nd the Video
entry.

Figure - 29

Apply the following settings listed below in the order
they have been listed. The application may close and
re-open for some of the settings you change, that is
normal.

Windowed Fullscreen Mode: Off
Show Window Decorations: Off
Threaded Video: On
Bilinear Filtering: Off
Start in Fullscreen Mode: On

Tip: Use ESC to close retroarch when it is in fullscreen
mode or use the keyboard/mouse to navigate to the
Main Menu section and select Quit RetroArch.

Figure - 30

Reboot the system, there is an option from the
shutdown popup dialog. When it comes back up, you
should see a full retroarch screen as depicted below.
Scroll over to your ROMs with the gamepad and �re
one up. Game on!

Figure - 31

Figure - 32

boot.ini

This part is optional for the ODROID-XU4 and
ODROID-XU4Q line of devices since they have enough
power to handle 1080p and still provide great system
emulation. However, if you are interested in having a
little more control over the video output feel free to
follow along.

For this part, the �rst thing we will do is make a
backup of the boot.ini �le. Open the boot icon on the
desktop and copy boot.ini to boot.ini.orig. We are also
going to make two more copies one you will name
boot.ini.1024x768p32bppVga and one you will name
boot.ini.1280x720p32bppHdmi. We will get to editing
them in just a bit. You should have something similar
to what is depicted below.

Figure - 33

From my experience, these video settings work really
well. The VGA resolution of 1024x768 is supported on
most if not all recent computer screens and the
resolution of 720p is supported on most if not all
recent TVs. Of course you can make your own choices
here as you see �t. The idea is if we are plugging our
device into a TV we can run a custom script to either
set the video output to HDMI 720p, or set the video
output back to the original auto-detection mode. If we
bring the device with us to work and we want to play
some awesome games at lunch we run a custom
script to set the video output to 1024x768 VGA.

Let’s boot up our ODROID device and close retroarch
by hitting escape on the keyboard or navigating to the
exit option using the controller. Open up a terminal,
Applications -> System Tools -> MATE Terminal, and
type the following command.

nano set_1024x768_vga

Enter the following lines into the �le.

#!/bin/bash

sudo cp /media/boot/boot.ini.1024x768p32bppVga
/media/boot/boot.ini
sudo shutdown now

Save and exit the �le. Next run the following
command.

nano set_1280x720_hdmi

Enter the following lines into the �le.

#!/bin/bash

sudo cp
/media/boot/boot.ini.1280x720p32bppHdmi

/media/boot/boot.ini
sudo shutdown now

Save and exit the �le. Next run the following
command.

nano set_auto_hdmi

Enter the following lines into the �le.

#!/bin/bash

sudo cp /media/boot/boot.ini.orig
/media/boot/boot.ini
sudo shutdown now

Save and exit the �le. These scripts will be setup to
change the boot.ini to the desired video output then
shutdown the device so that when you plug it into the
target device, a TV or computer monitor, it boots up
with the desired video output.

Be sure to set execution permissions on your scripts
using the sudo chmod +x terminal command followed
by the script name. You should also make sure the
scripts have the correct permissions by running the
following command, sudo chmod 755, followed by the
script name. You have to be in the same directory as
the �les you are adjusting or have the full path to the
�le. If you have the boot folder open in the �le
browser you can right click and select Open in
terminal to open a terminal that is already at the
proper �le system location. Once this step is done we
will be adjusting the copied boot.ini �le you made to
re�ect the proper output and resolution.

Figure - 34

There is a slight typo in this image, the lines that read
sbin/shutdown -r now should read sudo shutdown -r.

Essentially we are copying over the boot.ini �le with a
pre-con�gured version that is set to a certain screen
resolution, then we reboot the device. I will cover the
changes we need to make to each �le for the
ODROID-XU4, but I will also provide a download for
them to make things a bit easier. let us take a look.

Open a terminal and type in the following commands.
We will do the 1024x768 VGA mode �rst.

cd /media/boot/
nano boot.ini.1024x768p32bppVga

We want to set the video output to be 1024x768 VGA.
Comment the line listed below.

setenv vout "hdmi"

Uncomment the following lines.

setenv videoconfig
"drm_kms_helper.edid_firmware=edid/1024x768.bi
n"
setenv vout "dvi"

If you make a mistake just restore the boot.ini.orig
copy you made earlier. Any Windows or Mac
computer should be able to see the boot partition of
your ODROID SD card because it is a FAT32 partition.
You can use that to �x your boot.ini if the device is not
booting up properly.

Next we will do the 720p HDMI mode. Open up a
terminal and type the following commands.

cd /media/boot/
nano boot.ini.1280x720p32bppHdmi

We want to set the video output to be 720p HDMI.
Uncomment the line listed below.

setenv videoconfig
"drm_kms_helper.edid_firmware=edid/1280x720.bi
n"

Many computer screens do not support 720p. If that
is the case, you will likely end up booting into a blank
screen. Make sure you have a TV ready to use at this
resolution. You can restore the boot.ini using a
Windows or Mac PC by mounting the micro SD card's
boot partition. This will mount automatically on both
Windows and Mac because it is a FAT32 partition.
Restore the boot.ini �le from the boot.ini.orig copy
you made earlier.

An archive with the necessary boot.ini �les that have
been already prepared is listed below. You can follow
the steps above and set things up by hand or you can
use the link at Monku R3 / XU4 boot.ini to speed
things up a bit.

Ok well that wraps up this tutorial. You should have a
pretty decent retro gaming console setup at this
point. You will need to do a little bit more work setting
up some of the emulators that require more
advanced con�guration but I will cover that in a follow
up tutorial.

http://middlemind.com/images/products/monku_r1_build/mr3_boot_ini.zip

Linux Gaming: Anbox - Android In A Box
 November 1, 2019 By Tobias Schaaf Android, Gaming, ODROID-H2

Although I normally only talk about the ARM based
ODROID boards I want to talk about the ODROID-H2
today and something that you can do on it. Since the
ODROID-H2 is a standard x86_64 (amd64) board you
can do exactly the same con�guration steps that you
perform on every other x86_64 PC or Laptop running
Linux.

This is my experience with a software package called
Anbox, an Android “emulator” for Linux, I will explain
how to set it up, what I did with it, and what problems
I encountered and how I solved them. Consider this
more of a journey than a quick step by step guide, as I
explain how I discovered various installation and
con�gurations secrets.

Anbox

Anbox is a new form of Android emulation, where you
can run Android directly on your Linux OS rather than
booting Android directly on the system or running it
in a VM.

There are other existing tools already that can do the
same thing but, those are normally rather huge,
several GB of storage just to start the emulator, for
example Android Development Studio.

Anbox uses LXC so called Linux Containers a
technique similar to Docker, where you can run an OS
in an encapsulated environment but still share the
system’s Kernel and resources. This also means, if
you’re ODROID-H2 has 16GB RAM technically your
Android runs with 16 GB RAM as well.

To do this, there is a feature available in both the
Kernel of Linux and Android that is needed for this,
it’s called Ashmen and Binder, these are two modules
available for the Kernel.

Installing Kernel Modules

Rarely any Kernel comes pre-compiled with it, but
luckily there are DKMS modules available for this.

There’s a very nice guide on how to get started with
this:

https://docs.Anbox.io/userguide/install_kernel_mod
ules.html

In short here are the two things you can do: 1. Install
dkms modules from PPA:

$ sudo add-apt-repository ppa:morphis/Anbox-
support
$ sudo apt update
$ sudo apt install linux-headers-generic
Anbox-modules-dkms

2. Install dkms modules from GitHub:

https://github.com/Anbox/Anbox-modules

I suggest using the PPA or to create your own deb �le
as it will automatically install all �les you need and put
them in the correct location.

The Kernel modules will create /dev/binder and
/dev/ashmem as new devices which are required for
Android to access the resources of our host system.
Do not be alarmed if you don’t see them right away.
Either you have to load the Kernel modules manually
or have to wait until we install Anbox itself.

Installing Anbox

The main distribution of Anbox is via snap packages,
which is widely available on many Ubuntu systems
and some other Linux distributions, as well. The
second option is to install deb packages directly from
your OS repository.

Starting from Debian Stretch (backports) or Ubuntu
19.04 aAbox exists as o�cial package in your
repository. I tried it on my ODROID-H2 on Debian
Buster but also got it to work on my Laptop using
Ubuntu 18.04. As I said earlier, it's only o�cially
available on Ubuntu 19.04, but if you know how, you
can build it on Ubuntu 18.04 as well (which is what I
did).

Since the ODROID-H2 comes with Ubuntu 19.04
though you should not have any issues installing it.

Either way, you should make sure you have enough
space under /var/. If you have your system partitioned
and not using a single partition for the entire OS,
make sure you have enough space under /var/ for all
the applications you want to install. This can easily

stack up to 20 GB or more depending on what you
want to try.

Why you should prefer deb packages over snap
packages

The reason why you should use the deb packages for
Anbox is simple, same as with the Kernel modules, if
you install Anbox as a deb package it comes with a lot
of stu� already installed and prepared for you. You
have a service called Anbox-container-manager which
is managed by systemd and takes care of all the little
background tasks for you. It will automatically start
the kernel modules for /dev/binder and /dev/ashmem
as well as a virtual network adapter for your Android
box so you have access to the Internet.

It’s very convenient and allows for easy manipulation
later on if you want to try new things.

Snap packages on the other hand have some major
issues.

The biggest bene�t of the snap package is that it
comes with an Android.img �le right away, while if
you install the deb �le you will have to download the
Android.img �le yourself (I’ll explain that later).

While snap packages generally work, I advise against
using them as snap packages are in�exible and can
cause major issues if you want to add Google Apps,
for example, or if you want to try out patches.

I �rst started o� with snap packages and it worked
“ok-ish” but when I tried to install Google Apps
(Gapps) via a script the system failed to start and it
took me a day or two to �gure out that the issue was
with snap packages in general and not the version of
Anbox, or the Gapps I was using.

Snap packages are a locked containers, you can not
change them in any way, means you can’t change
settings, update applications, exchange the Android
image and so on unless you install a new snap
package of this application.

In order to alter the snap package and add Gapps for
example, you need to work with a “overlay-fs” for the
snap package, where it will combine a folder you
created with the data provided by the snap package.
For me the moment I turned on the overlay-fs, even

https://docs.anbox.io/userguide/install_kernel_modules.html
https://github.com/Anbox/Anbox-modules

without any changes, most of my applications no
longer worked.

With the deb package you do not have these
restrictions and you can change the Android.img �le
directly, as well as manipulate the rootfs or data
folder of the Android image if you need to. This allows
you to place �les directly in your virtual �le system or
in the img �le itself, which is impossible with the snap
packages.

So my advice: although it’s their main focus for
distribution of Anbox; stay away from the snap
packages!

First start

What do you need to start your �rst Android
experience with Anbox?

Well with the snap packages nothing at all you can
start it right away, but since we said we don’t want to
use snap packages we need an Android image to
work with.

Some technical background

You’re running Anbox in a LXC container this means
it’s not “emulated” it’s also not really “virtualization”
although that’s very close to it. You use the same
hardware and Kernel that you have on your main OS.
Which means your Android OS must match the
con�guration of your PC.

Obtaining an Android image

This means we need an x86_64 (amd64) Android
Image. This may sound complicated, but don’t worry,
others have already done all the work and you only
need to download an image from here:
https://build.Anbox.io/Android-images/ as you can
see there are several images available. You can
choose anyone that has “amd64” in its name. Let’s go
with the latest one for now:
https://build.Anbox.io/Android-
images/2018/07/19/Android_amd64.img.

All of these images are Android 7.1.1 as this is used by
most emulators.

Download the above image and rename it to
Android.img copy the �le on the system where you

installed Anbox (via deb or from your repository) to
/var/lib/Anbox/

$ sudo wget https://build.Anbox.io/Android-
images/2018/07/19/Android_amd64.img -O
/var/lib/Anbox/Android.img

That’s it you’re ready to go.

Remember the Anbox-container-manager service
from earlier?

On start it checks if an Android.img �le is present in
that folder and if so it will automatically start the
kernel modules and the network bridge needed for
internet access in Anbox.

Since we now have an Android.img placed under
/var/lib/Anbox/ it’s time to start the service:

$ sudo service Anbox-container-manager restart

Please note I used restart as you might have to use
the command later on again, and so you already have
it in your command history.

If you check your start menu and search for Anbox
(under accessories) you should see a very minimalistic
home screen with only a few applications.

Calculator, Calendar, Clock, Contacts, Email, Files,
Gallery, Music, Settings and WebViewer are probably
the only applications you can see. And although they
all work �ne except for “Settings” you probably never
gonna need any of the other applications. Still if you
see this screen that means Anbox is up and running.

Figure 01 - Anbox Running with Android

https://build.anbox.io/Android-images/
https://build.anbox.io/Android-images/2018/07/19/Android_amd64.img

Figure 02 - Anbox’s Application Manager

Starting Anbox for the �rst time (may take some
seconds) Anbox application menu with default
applications

Installing applications - part 1

Having “Android” up and running is nice and dandy
but if you can only run your calendar or the clock, this
will get boring rather quickly. So what we need is a
way to install applications. There are several di�erent
ways to do this.

Let's start with the easiest one, which requires you to
already have .apk �les available.

First we need to install Android-toolbox which is
available on your OS:

$ sudo apt install Android-tools-adb

With that you can install applications easily by typing:

$ adb install

Android toolbox is meant for ALL Android systems not
speci�cally for Anbox.

It searches any connected device and allows you to
interact with it.

If Anbox is up and running you can use adb to install
application into the system.

Please Note: If you have an Android device, such as a
smartphone or tablet, connected on your Linux
PC/Laptop/ODROID H2 you might end up installing
applications on this device, so make sure you use it
only when the Anbox is running (unless you know
what you do).

You may wonder where you can get apk �les for
installing? There are several di�erent locations where
you can download apk �les, often programs or games
have download links on their website and there are
also sites like APKMirror
(https://www.apkmirror.com/) which allow you to
download apk �les directly for your system.

Important Note

Remember you downloaded the Android_amd64
image? This means you have an x86_64 based
Android image and you can only run x86 or x86_64
Android applications, or applications that do not
require a speci�c binary format. If you look at
APKMirror you can see what architecture packages
have before you download them. Make sure to
download x86.

Figure 3 - Installing and running FireFox Nightly (x86) on
Anbox via adb install from APKMirror

With this you can already install the �rst few
applications and test around with Anbox. To be
honest my goal when I started using Anbox was it to
run Ragnarok M – Eternal Love. So, my �rst real test
was to download the APK �le from their website and
to install it. So I downloaded the apk from their
website, and 1.3 GB later I installed it via adb:

$ adb install 155603_20190.1563284609.apk

Thanks to the wonders of SSD a few seconds later the
game was installed, I pressed the button and the
game started, which I later found out was not only
impressive for the �rst application I tried, but in fact
very lucky (more to that later).

Figure 4 - Ragnarok M starting on Anbox and installing
updates

The game started and as it’s the case with these
online games started downloading and installing
updates, which was �ne with me, so I sat down and
waited, happy to see the game was a lot faster than
on my tablet (no surprise here). After the updates I
was greeted by the login screen and this is where my
problems started.

Figure 5 - Only thing left to do is sign in and start playing
right?

Figure 6 - Google Play services? Ah yes, I knew there was
something di�erent

This is where my ordeal started and where I wasted
an entire day to �gure out the problem was the snap
packages. But before we go into details and how to
solve this some general observations which we are
about to �x Installing applications part 2 – Gapps and
other packages

If you headed over to APKMirror you probably noticed
that most applications and games are only available
for arm or arm64 (armeabi-v7a, armeabi, arm64-v8a)
very few are available for x86.

This is true, as most games and applications are
written for smartphones and tablets and those
devices normally have an ARM processor. Therefore
the selection of application directly running on x86
Android is very limited.

Aside from that you will have a hard time �nding your
favorite games on APKMirror in fact I had a hard time
�nding anything working as is.

Most games will only be available once you installed
Gapps and the google play store, but even then with
x86 the selection would be very little. Many
applications rely on Google Play services, even if you
have the apk �le for installation the programs require
Google Play services to work, therefore installing
Gapps is very important.

Installation of Gapps and Houdini

There are several ways to install Gapps for Anbox, but
they are not very easy and therefore we should trust
other people that already did make all the work for us

and wrote a script for this. There are currently two
that are important for us:

https://github.com/geeks-r-us/Anbox-playstore-
installer/raw/master/install-playstore.sh which is a
script for installing gapps and houdini if you for
whatever reason decided to use the snap package. It
will create an overlay FS and extract the �les there.
This might work for you, for me it rendered Anbox
unusable after running.

The other one is:

https://github.com/Arucard1983/Anbox-playstore-
installer/raw/debian/install-playstore.sh The later
one targets deb installation speci�cally and works
directly with the Android.img rather than an Overlay
FS. So let’s give it a try:

$ wget https://github.com/Arucard1983/Anbox-
playstore-installer/raw/debian/install-
playstore.sh
$ chmod +x install-playstore.sh
$ sudo apt install lzip curl
$ sudo ./install-playstore.sh

For those interested in what it does here: It will
download open-gapps from sourceforge as well as
houdini_y and houdini_z from the Android-x86
project. They will be extracted, and added to the
image. Houdini are wrapper libraries that allow you to
run arm and arm64 Android binaries in an x86
environment. The script will alter the Android.img so
it no longer only serves as a x86 and x86_64 image
but also as an arm and arm64 image. Which means
after that you can install and run all the other
applications previously not available or only for arm
and arm64 on the system as well, it will add some
optimization and con�guration so it is working
correctly.

Afterwards, it creates a new Android.img �le and
replaces the original one with the new one that has
gapps and arm and arm64 support.

The entire process only takes a couple minutes for
downloading extracting and repacking the image.

The sudo command is only required to place the new
image �le into /var/lib/Anbox, where only root has
access, if you run it without sudo it will still create the

Android.img �le and you can later on manually
copying the �le.

$ sudo install-playstore.sh --clean

will remove the Anbox-work directory that was
created during the process, but you can also remove
that path manually as it’s no longer required.

Setting up Google Play Services

After a reboot if we start Anbox we now have an
additional symbol for the Google Play Store which will
allow us to install applications and games directly
from the store, but before we can do this we need to
setup the permissions for the Google Play Services
and Store.

Figure 7 - Starting Anbox after installing Gapps

Figure 8 - Setup permissions for Google Play Services and
Google Play Store

For this open your Settings, go to Apps, search and
click on Google Play Services.

https://github.com/geeks-r-us/Anbox-playstore-installer/raw/master/install-playstore.sh
https://github.com/Arucard1983/Anbox-playstore-installer/raw/debian/install-playstore.sh

Below the buttons you see Storage, and after that you
see Permissions, which are either empty or a rather
short list. Click on permissions and grand Google Play
Services all permissions on the list (see �gure 8).
Repeat the same with the Google Play Store.

Figure 9 - Google Play Store on Anbox – we just need to
login

Figure 10 - After the login we have the Play Store to
install Games

If you’ve done everything right you should be able to
start the Google Play Store and are greeted with a
SIGN IN button. Once you logged in with your Google
Account you can see the play store and can start
installing software. And just to prove it’s working:

Figure 11 - Downloading and installing a game in Anbox

Figure 12 - Guess what? We can even PLAY games on
Anbox

Getting to hear and being able to do the same should
be rather easy to follow and did not involve too much
knowledge. It took me a while to �gure this out but I
guess my infos should speed up the process if you
want to try this yourself.

But although at this point you’re able to use and
explore Anbox, my journey was not over yet as my
original goal was to run Ragnarok M on the PC instead
of my tablet. Which I haven’t achieved yet.

Touch Support

When I �rst booted up Ragnarok after I added Google
Play Services and could �nally log into the game, I
kinda expected �nally being able to play the game,
but I had trouble with logging into my character. In
fact I had trouble doing anything. If I clicked
something, nothing happened. After some
investigation it became clear what was the issue.

As I said earlier, most games are developed with
cellphones and tablets in mind. These devices
normally don’t have a mouse attached and therefore
many games are written only to support touch input.
The version of Anbox that comes with Ubuntu 19.04
and Debian Stretch/Buster supports both mouse and
touch input. This means if you have a mouse
connected it will react as a mouse, if you have a
screen that has touch input it will use the touch. Since
not everyone has a screen with touch support mouse
will most likely be the default input for your use-case,
as it is with me.

Since the game I wanted to play did not have mouse
support, I did some more research and ended up with
a patch that allows for mouse input to act as touch
instead of a mouse. At this point we have two options
and I will explain both to you.

Patching the Debian package

One way is to create our own deb package based on
one of the OS with a patch that will allow us to use the
mouse as a touch input.

Please note: this step requires you to recompile the
software as well as installing development headers
and compiler on your system. If you do not want to
do this, I provide already patched versions of these
packages under:
https://oph.mdrjr.net/meveric/other/Anbox/ where
you can download the package for your OS.

I also included a package for Ubuntu 18.04 in case
you’re using the LTS release, as I do on my Laptop.

In order to start this step make sure you have
activated the source lists activated for your OS
repository.

Go to Software and Updates, inside your Control
Center for example, and make sure the “Source Code”
box is checked.

For those who want to build the Software themselves
here are the steps required:

$ mkdir -p ~/sources
$ cd ~/sources
$ apt source Anbox
$ cd Anbox-0.0~git20190124
$ sudo apt build-dep Anbox

$ wget
https://oph.mdrjr.net/meveric/other/patches/An
box/touch-support.diff
$ patch -p1 < touch-support.diff
$ dpkg-buildpackage -b
$ sudo dpkg -i ../Anbox_0.0~git20190124-
1_amd64deb

Please Note: the actual version
(Anbox_0.0~git20190124) may di�er depending on
what OS you use so adjust this part accordingly.

This will build and install Anbox with touch support.
Once you restart Anbox and use the new binary to
start your games touch support will work.

Building latest version of Anbox from Github

Instead of patching an older version of Anbox, you
can also build the latest version available on Github
from Anbox. You won’t need the patch for touch
support as this is already included in the latest
version.

$ mkdir -p ~/sources
$ cd ~/sources
$ sudo apt install git libdw-dev libdwarf-dev
binutils-dev libboost-serialization-dev
libboost-thread-dev libboost-test-dev
$ git clone https://github.com/Anbox/Anbox
$ cd Anbox
$ sudo apt build-dep Anbox
$ mkdir build
$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Release ..
$ make -j4
$ sudo make install

This will build and install the latest version of Anbox.
Since this version will be installed to /usr/local/bin and
not to /usr/bin you can install the deb package from
your OS and the version from github side by side and
can switch back and forth between them.

This is why we installed the deb version of Anbox as
this allows us to easily change from one version to
another by simply editing one �le, which is
/etc/systemd/system/multi-user.target.wants/Anbox-
container-manager.service (you might remember this
from earlier)

When you edit the �le with sudo and your favorite
text editor you’ll �nd a line:

https://oph.mdrjr.net/meveric/other/Anbox/

ExecStart=/usr/bin/Anbox container-manager --
daemon --privileged –data-path=/var/lib/Anbox

This just needs to be changed to:

ExecStart=/usr/local/bin/Anbox container-
manager --daemon --privileged –data-
path=/var/lib/Anbox

So it starts the binary you’ve just build. Then just
restart the system.

After that it uses your newly compile version of
Anbox.

If at a later point in time (after a couple of weeks or
so) you want to build the latest version of Anbox
again, just do:

$ cd ~/sources/Anbox/build
$ git pull
$ make -j4
$ sudo make install

That’s all and you’ll always have the latest version.
Does that mean it works now? With this I was �nally
able to play Ragnarok M on my Laptop (or ODROID-
H2) and let me tell you it’s working mighty �ne! It’s
surprisingly stable which I did not expect.

Figure 13 - Playing Ragnarok M – Eternal Love on my
Laptop this is so much easier than the tablet and
doesn’t need charging all the time!

With this you’re now prepared to try out Anbox and
play Android games directly under Linux, and yes this
is currently the best I can give you for Anbox, no more
improvements from my side for now. But not
everything is nice and shiny

Ok, let’s be honest, although it’s already impressive
that doesn’t mean you can throw your Android tablet
away just yet. Remember when I said earlier that I

was very lucky that the �rst game I tried (Ragnarok M)
was running at all?

That’s sadly something you should keep in mind. The
number of applications and games that DO work are
VERY limited. If you get one out of ten to work, than
that’s a GOOD intersection. I have about 75 Android
games on my Humble Bundle library as downloadable
.apk �les. Out of which less than 10 worked. This is
not related to graphics issue, but more that the
games don’t start at all. Which in return is actually an
issue with the “graphics” I think, but on a di�erent
level.

When you try out applications and no new window
opens, the game won’t work, you can stop trying.

Often the games hangs at this point even if you hear
sounds, music or whatever, it won’t work. Sometimes
it’s best just to restart the Anbox-container-manager
service rather than waiting for the application to
timeout so you can click something else.

If I understand it correctly this is mostly related to the
way the Anbox works. It uses EGL calls to create a
window in which the application runs. For this the
application must support “Window Mode”, imagine it
similar to the YouTube app, when you start it and
then go back you have a tiny window on your mobile
device that can be dragged around. If an application
supports something similar to this, it will likely work. If
it does not, then it won’t work.

This basically means most “older” applications won’t
work as window mode was unheard o� in their days.
In fact, the newer an application is the more likely it
will work. Some apps are written in a way that they
are compatible with emulators, such as my Ragnarok
M that I wanted to get to work, and with that support
window mode in one way or another. In fact I found
quite a lot of these online games MMORPGs and
others that do work quite well.

You’re also limited to OpenGL ES 2.0 applications. So
if an application requires OpenGL ES 3.x it won’t work.

There’s also a sound issue, all sounds are delayed
about 1 second. So you see things on the screen but
hear them about one second later, which can be
irritating. I’ve seen a patch to reduce this audio lag

signi�cantly but when I tried the patch, the games
stopped working altogether when sound started.

But I guess they will �x this at some point.

What CAN you run

As terrible as it might sound, you can still run some
really nice games on Anbox.

You’ve already seen Ragnarok M which looks actually
quite nice and has high resolution graphics. It’s a
really nice MMORPG and me as a fan of the original
Ragnarok Online MMORPGs enjoy this game for
months now. I’ve also shown pictures of Pixel
Starships another game that I’m enjoying for some
time now, although it’s more casual.

Anodyne is an old-school dungeon crawler where
your main weapon turns out to be a broomstick.

Figure 14 - With a broomstick against monsters…
Anodyne

Figure 15 - Another Lost Phone: Laura's Story

It’s quite fun and is completely controllable by
keyboard, means you don’t need to try to navigate
with your mouse around the screen. It’s actually quite
fun despite it’s minimalist graphics. Another Lost
Phone: Laura's Story is a game where you found the
phone of someone called Laura and it seems
something bad happened to her. You try to �nd out
more about her by going through her phone, checking
pictures, messages and so on. As the game
progresses you have to guess passwords by
combining clues, �gure out who the persons in the
pictures are and how they are related to Laura. It
might not look impressive but this is actually running
on the Unity Engine. It’s interesting to solve the
di�erent little puzzles and �nd out who are the
di�erent people who contact you and who’s lying
about what.

Figure 16 - Incredipede, colorful organic graphics for a
nice puzzler

Figure 17 - Space Arena, build your own ships and �ght
against others

Incredipede is a nice puzzle game, you have two
buttons that make your Quozzle move it’s muscles
and legs and need to collect items and push them into
a light than follow as well. It can be quite hard as it
moves very strange. In harder modes you can actually
build your own Quozzle to achieve your goal.

Space Arena is a game where you build your own
spaceship, well, more like the internals.

You buy a layout plan and �ll it with weapons,
reactors, shields, propulsion system, etc. after that
you send it against an opponent If you win, you get
experience, and money which in return allow you to
buy more stu�. Not very original but it can be fun for
a while.

Figure 18 - If it doesn’t �t, �x it! Splitter Critter

In Splitter Critter you can cut the world into slices and
then move them pieces to put them back together the
way you need it. For this you can open new paths or
move not your little guys to the ledge above, but the
ledge above to down to your little guys.

This game is a really fun puzzle game, cute and
colorful. You need to �nd a path to your space ship, to
get to the next level, but not only do you need to
make a path towards your ship, it also means you
often have to avoid dangerous creatures or use the
abilities of your little aliens to your advantage
(jumping for example). It’s a really fun game and I can
highly recommend it.

Figure 19 - Galaxy of Pen and Paper, a new level of RPG

Figure 20 - The Junkyard is where everything starts

Figure 21 - Increase the number of enemies while you
can in order to get a bonus!

Galaxy of Pen and Paper is really a new type of RPG
game as you play an RPG game in this RPG game.
Confusing? The game starts with you creating a game
master (G.M.) and some characters and he will tell the
story that you play out like every good RPG starts.

This game is hilarious and really fun to play. I already
played it on my smartphone on my last vacation and
it’s really fun. You can create your own quests by
selecting the monsters you want to �ght and how
many. You get quests from NPCs and can travel
between stars. It makes fun of Star Wars, Star Trek
and everything RPG and Space related. I had some
graphical issues with Anbox, nothing serious just
some glitches here and there, but the overall game is
really fun. There is also a game called Knights of Pen
and Paper which is pretty much the same in a fantasy
setting, I haven’t tried that one but I imagine it to be
working as well.

Another 2D game would be Space Life, where you
hunt monsters, gather items buy weapons and ships.
Fun for a little while but not too impressive.

You may wonder, does that mean you’re limited to 2D
games like the ones above?

Certainly not! Ragnarok M is already a 3D game
although you might not see it on the �rst glance but
every character and most of the world is in 3D, you
can swing the camera around your char or �y over the
map in a �ying whale or something. Believe me it’s
real 3D.

But there is more: Raid: Shadow Legends is a very
impressive 3D game that works just �ne on Anbox. It
has amazing graphics and with hundreds of playable
characters, weapons, and upgrades there’s a lot to
explore.

Figure 22 - Raid: Shadow Legends has impressive
graphics for a mobile game with lots of e�ects and
detailed characters

There is a nice background story that helps with the
�ghts of the game. The game also features a lot of
commercials for in-app purchases, so it’s probably not
for people that are easily in�uenced by this. There’s
another game that I haven’t had time to explore in
detail yet it’s called Tales of the Wind and is an
MMORPG in the Tales series.

This anime style MMORPG is very good looking even
the starting screen is already impressive with nice
large detailed characters. Same goes for the character
creation screen. Both shows what kind of graphics
you can expect.

In game there are quite some cut scenes in “In-Game
graphics” which look rather good and are fun to
watch. I only played it for a couple of minutes up to
now as I am afraid I get myself too deep into it for the
moment.

Anbox seems to run rather well with big titles or
MMORPGs as they probably are build with emulators

in mind to allow the use of a mouse and keyboard.
Tales of Wind also allows you to walk around with
ASWD which shows how much they planned ahead
with this game.

Figure 23 - Tales of Wind a beautiful anime style
MMORGP

Figure 24 - Character select screen of Tales of the Wind

Figure 25 - The in game graphics are really colorful and
full of details

(Figure 23 - Tales of Wind a beautiful anime style
MMORGP) (Figure 24 - Character select screen of
Tales of the Wind) (Figure 25 - The in game graphics
are really colorful and full of details)

Generally the software was built with x86 CPUs in
mind. It relies on SSE for some features which is only
available on x86 systems. Still since technically there
is nothing much behind it that should prevent it from
running on armhf or arm64 it should be possible to
run it on other ODROIDs as well.

If you check Debian Stretch and Buster you’ll even
�nd install packages readily available in the Debian
Repositories for both armhf and arm64. If we dig
further you’ll even �nd an Android_armhf and
Android_arm64 image on the download page I
showed you earlier:

https://build.Anbox.io/Android-
images/2017/08/04/Android_1_arm64.img
https://build.Anbox.io/Android-
images/2017/06/12/Android_1_armhf.img

So they even tested it out with armhf and arm64 at
some point. I can tell you up front, if it would be that
easy the article would not have been around the
ODROID-H2 but, instead of how to run it on the XU4
or C2. Still there are signs that indicate it should work.

While investigating I found the following links:

https://github.com/Anbox/Anbox/issues/1214
https://skmp.dev/blog/Anbox-rpi4/

https://build.anbox.io/Android-images/2017/08/04/Android_1_arm64.img
https://build.anbox.io/Android-images/2017/06/12/Android_1_armhf.img
https://github.com/Anbox/Anbox/issues/1214
https://skmp.dev/blog/Anbox-rpi4/

This indicates it should be possible. I tried to follow
this guide but I wasn’t able to get it working (yet). The
armhf image on the download site from Anbox itself
has some issues and doesn’t work that way. skmp
mentioned in his guide that he rebuild the armhf
image, and so did I, but it’s very di�erent from what
he says. In his guide he said he needed to download
about 40 GB for the build environment for Android,
and a total of about 100 GB to build the software.

In his blog he does not explain how he did this, he
only points to another link and said he followed that
guide, but following the link there is no real guide but
only another link which you should follow to
download the build environment.

I did this and let’s say it did not download 40 GB but
more like 130 GB, still in the end I was able to create
an armhf image as well and it looks very similar to the
one created by skmp.

But when I tried to use this instead of the one directly
from Anbox I didn’t get much further. From what I can
see it seems to have issues with the graphics and to
be honest the graphics of the Mali GPU are a little bit
special. I also wasn’t able to compile a new arm64
image yet.

It’s also somewhat tricky to get /dev/binder and
/dev/ashmem to run on ODROIDs. While the DKMS
module should work it doesn’t work with each Kernel
version so I ended up activating both by default in the
normal Kernel images for ODROIDs as these are
speci�c for each Kernel version. That way it should be
available in the latest Kernels of all my images even
without compiling the DKMS modules.

Maybe someone else has more luck in getting Anbox
to work on armhf or arm64 ODROIDs I would very
much appreciate it.

Final Thoughts

Anbox is a very nice project, I wished the arm and
arm64 support would be better for it and we could
run it on ODROIDs as it would open up even more
possibilities on ODROIDs.

Anbox o�ers a lot of options to work with, for
example running Anbox in a single window mode,
which might help running certain applications that do
not support opening windows.

Overall, I’m very excited about this project as it might
well be that it allows us to run many more
applications directly under Linux in the future and
with a little luck even on arm and arm64 devices.

The G Spot: Your Goto Destination for all Things That are
Android Gaming
 November 1, 2019 By Dave Prochnow Gaming

If you’re like me, you’re scratching your head right
now over Google’s recent introduction of Play Pass.
Play Pass is a monthly subscription service that
enables you to download and play a vast library of
games and other productivity apps that are currently
available on Google’s Play Store. This announcement
couldn’t come at a more inopportune time. We’re just
two months away from the o�cial launch of Google’s
massive game streaming service, Stadia. So what
gives? Why would Google preemptively smother the
lead-up to Stadia’s premiere by launching a decidedly
inferior service?

A project manager at Google had this to say about
Play Pass, “Games are super important … it [Play Pass]
doesn’t just appeal to hardcore gamers.” OK, so Play
Pass is being targeted against those Android users
who might not opt into the Stadia ecosystem. Fair
enough. Unfortunately, there are still several �aws in
Play Pass that’ll give you some more head scratching.

Figure 1 - Google Play Pass might be targeted at the
“casual” gamer - Image courtesy of Google Play Pass

Fueled by over 350 games and apps that are currently
available on the Google Play Store, Play Pass will cost
$4.99 per month for complete, unlimited, ad-free
access to this library. What if you already purchased
and played “Monument Valley,” for example. What

bene�t would Play Pass give you? Maybe very little or
maybe the opportunity to play games that you would
never purchase.

Subscriber beware, game developers use an “opt-in”
application process for enabling a game or app to be
included in the Play Pass library. The Google project
manager neglected to say what will happen to Play
Pass games when a developer abandons this
subscription service. Additionally, this project
manager also failed to mention details about the
contract terms associated with monetary payments to
developers for game subscriptions.

At the time of publication, Google is o�ering a nifty
promotion of $1.99 per month for the �rst year of
your subscription to Play Pass. Likewise, there is a 10-
day free trial grace period. Finally, Google will let up to
�ve family members share a single subscription.
Regardless of how Play Pass “plays” out, the worst
enemy to Android gaming might be Google, itself.

Come to the Dark Side

It was only a matter of time before the Google Play
Store received the dark theme treatment. Following
the release of Android 10 last month, Google apps
have slowly, but surely, been enabling a dark mode
theme. Like the Google app and Gmail, the Play Store
is now sporting a dark theme. Supposedly, this dark
theme is enabled with Play Store Version 16.7.21.
Therefore, if you aren’t seeing the dark side, yet, hunt
down the current Play Store update or if you’re an
Android 10 user the change could be an automatic
theme enabled in the new OS system settings.

Mario Kart Tour

It’s �nally here: Nintendo’s Mario Kart Tour. This long-
delayed title is available as a free download. Playing it
for free, however, might be a di�erent matter. Be
advised, you will need a Nintendo account before you
can play this game. Even worse, if you want full access
to all of the game’s races, courses, and karts, you will
have to pay a $4.99 per month subscription. Nintendo
calls this subscription the “Gold Pass.” Gold for
Nintendo and NOT for you.

Figure 2 - Could Mario Kart Tour be the Mario title that
forces Android gamers to Switch - Image courtesy of
Nintendo

Lacking controller support, Mario Kart Tour o�ers a
rather lackluster game performance. Adding further
pain to the game, this is a portrait-only game
interface. Luckily, the game’s graphics are top notch.
So while driving is next to impossible, it sure does
look great while you’re poking along the race course.
You can learn more about Mario Kart Tour from the
video at https://www.youtube.com/watch?v=V-
_s4oWV1cU.

https://www.youtube.com/watch?v=V-_s4oWV1cU

Kernel Modules
 November 1, 2019 By Andrew Ruggeri Linux

If you’ve been around the Hardkernel Forum long
enough the word ‘kernel module’ should sound
familiar to you. However, if you’re new to the Linux
world the details about what exactly Kernel Modules
are might be unclear. This article is intended to not
only make you aware of what exactly a Kernel Module
but how to interact and build your own.

What Is a Kernel Module?

The Linux kernel is monolithic, meaning everything
the operating system needs is part of kernel space.
This has the bene�t of being faster than other kernel
designs such as a micro-kernel, but comes at the cost
of lacking modulatory and �exibility. Kernel Modules
are designed to help �x this issue of modulatory. In
order to add functionality into the kernel, such as a
new driver or �le system format, the code with that
particular new functionality is compiled into a kernel
module and then loaded into the Linux kernel.

Hello World Example

For the example code and the rest of the article I
assumed the �lename would be “examplemod.c”

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>

MODULE_DESCRIPTION("Example kernel module");
MODULE_AUTHOR("ODROID");

static int example_init(void)
{
 printk(KERN_ALERT "Hello World!
");
 return 0;
}

static void example_exit(void)
{
 printk(KERN_ALERT "Goodbye World
");
}

module_init(example_init);
module_exit(example_exit);

The code was kept to a minimal “hello world”, as the
focus of this article is about the de�nition and
functionality of Kernel Modules. The example here
uses the kernel logging functions to print a simple
hello upon initialisation and goodbye when the kernel
is removed. The code has two parts that stand out
and I address below.

MODULE_DESCRIPTION("Example kernel module");
MODULE_AUTHOR("ODROID");

These macros help �ll out information about the
module, there are additional �eld types that can be
used such as ‘MODULE_VERSION’, ‘MODULE_LICENSE’,
etc. Later we will see commands on how to view this
information for any given module.

module_init(simple_init);
module_exit(simple_cleanup);

module_init and module_exit functions register the
simple_init and simple_cleanup functions that are
de�ned earlier. These calls register which user
created functions will be called for initialization and
code exit. printk(), while at �rst glance might seem
similar or interchangeable with printf(), should be
thought of di�erently. As mentioned earlier printk is a
mechanism for kernel message logging and not for
directly interacting or displaying information to the
user. The log level, which range from 0 to 7 (7 least
important) is placed before the string without a
command as they form a single parameter passed to
printk().

Compiling

After writing the module, there are a couple of notes
before just calling ‘gcc’. Kernel modules are pretty
persnickety about how they are compiled the
following rules must be abided by:

Non-kernel headers cannot be included

The module shouldn’t be linked to any libraries

The compiler �ags used for the module need to match
the ones used for the kernel

To make things simpler, we can use the make�le
below:

obj-m += examplemod.o

all:
 make -C /lib/modules/$(shell uname -
r)/build M=$(PWD) modules

clean:
 make -C /lib/modules/$(shell uname -
r)/build M=$(PWD) clean

The make�le is fairly straightforward but the part that
is most important is the following line:

make -C /lib/modules/$(shell uname -r)/build
M=$(PWD) modules

The path here points to a location where the kernel
Make�les and headers can be found. The Make�le
here simply calls the one located there to provide the
functionality for the build as well as clean. After
running the Make�le, we should be left with a �le
named examplemod.ko, this is our compiled kernel
module.

Commands

Now that we have created our Kernel Module it is
time to load into the Linux kernel. The following
command can be used to load a *.ko �le. When the
module is loaded, the function that was set by
module_init will be called.

$ sudo insmod ./examplemod.ko

If we remove a Kernel Module that has been loaded, it
will call the function set by module_exit. To remove
our Kernel Module or any Module that has been
loaded, we can use the following command.

$ sudo rmmod examplemod

While not a Kernel Module speci�c command, the
following command allows us to view what has been
logged by the kernel. If the previous two commands
were run then we should see the two printk()
statements near the bottom (more recent) of the log.

$ dmesg

Or to see just the last 2 lines that were printed.

$ dmesg | tail -2

Figure 1 - Loading and removing the kernel module, then
printing the kernel log

This will list all currently loaded kernel modules.
However, this information is pretty limited if we want
to dig deeper we can use the name of a module from
the list with the following command.

$ lsmod

Figure 2 - lsmod printout showing examplemod curing
loaded

This will print of a more detailed view of the module.
If we look at the information from the example
module we made, we will see the information that we
set at the beginning of our module code.

$ modinfo examplemod

Figure 3 - modinfo printout of the information for our
kernel module

Conclusion

These are only the basics to understand what a Kernel
Module is and how to create and interact with them.
Future articles will take a look at more complex uses
and applications of Kernel Modules and how to allow
some level of interaction with them to provide
meaningful functionality.

ODROID-N2 UART Custom Baud Rate for MIDI
 November 1, 2019 By @tony.hong ODROID-N2, Tinkering

I needed my ODROID-N2’s UART port to operate at a
non-standard baud rate so that I could use MIDI. I
edited the UART driver code to set baudrate to 31250
when setting baud rate to 38400, then wrote test code
using wiringPi, and measured the baud rate.

UART driver after editing

linux/drivers/amlogic/uart/meson_uart.c

static void meson_uart_change_speed(struct
uart_port *port, unsigned long baud)
{
u32 val;
struct meson_uart_port *mup =
to_meson_port(port);
struct platform_device *pdev =
to_platform_device(port->dev);

while (!(readl(port->membase +
AML_UART_STATUS) & AML_UART_TX_EMPTY))
cpu_relax();

#ifdef UART_TEST_DEBUG

if (port->line != 0)
baud = 115200;
#endif

// this part is added.
// trace_printk() is not neccesarry, it is
just for debugging.
trace_printk("Your baudrate: %ld
", baud);
if(baud == 38400)
{
baud = 31250;
trace_printk("Change to %ld
", baud);
}

Linux kernel build Ref:
https://wiki.odroid.com/odroid-n2/softw ... ing_kernel

Changes of Installation section

arch/arm64/boot/Image -> arch/arm64/boot/Image.gz

arch/arm64/boot/dts/meson64_odroidn2.dtb ->
arch/arm64/boot/dts/amlogic/meson64_odroidn2.dtb

Test code

#include
#include

int main(void)
{
int fd1, fd2;
fd1 = serialOpen("/dev/ttyS1", 38400);
fd2 = serialOpen("/dev/ttyS2", 38400);

serialPutchar(fd1, 0xAA); // 10101010
serialPutchar(fd1, 0xAA);

int count = 0;
while(1)
{
if(serialDataAvail(fd2))
{
printf("%c", serialGetchar(fd2));
count++;
if(count == 2)
{
break;
}
}
}

serialClose(fd1);
serialClose(fd2);
}

Figure 1 - Before editing - when transmitting 10101010,
1s / pulse-width is baud rate, and 1s/26.088us is 38331 ~=
38400

Figure 2 - After editing - 1s/32.002us is 31248 ~= 31250

Debugging with ftrace

root@odroid:/home/odroid# stty -F /dev/ttyS0
38400
root@odroid:/home/odroid# cat
/sys/kernel/debug/tracing/trace
tracer: function_graph

CPU DURATION FUNCTION CALLS
| | | | | | |
...
0) | uart_set_termios() {
0) | uart_change_speed.isra.2() {
0) | meson_uart_set_termios() {
0) 0.875 us | uart_get_baud_rate();
0) | /* Your baudrate: 38400 */
0) | /* Change to 31250 */
0) 0.250 us | uart_update_timeout();

If you want to cross compile, the sequence is shown
below:

Installing required packages

Toolchain (6.3.1)

Checkout(Linux tab)

<- edit driver

Compile(Basic tab)

Installation(Linux tab)

For comments, questions, and suggestions, please
visit the original ODROID forum post at
https://forum.odroid.com/viewtopic.php?
f=180&t=36540.

https://forum.odroid.com/viewtopic.php?f=180&t=36540

Gaming on the ODROID-H2: Running Lakka on the ODROID-H2
 November 1, 2019 By @Synportack24 Gaming, Linux, ODROID-H2

Last month’s issue of ODROID Magazine featured an
article “Lakka: Building The Ultimate ODROID-XU4 /
XU4Q Gaming Console”, available at
https://magazine.odroid.com/article/lakka-building-
the-ultimate-odroid-xu4-xu4q-gaming-console/. This
article focused on gaming with a ODROID-XU4,
however, there is a potentially even more powerful
ODROID, the H2. While the ODROID-XU4 does an
amazing job at retro gaming, pushing it to play games
from new systems such as a Playstation or Dreamcast
start to push it past its limits. This is where I wanted
to see, can the ODROID-H2 pick up where the
ODROID-XU4 leaves o�?

For this, I installed a 64bit version of Ubuntu Mate
19.04 onto my H2 and then proceed to build and
install Retroarch for emulation (libretro.com). My H2
was con�gured with 8GB of RAM and an Intel 660P
SSD, so other con�gurations with more or less
memory or running o� of emmc might di�er in
results.

Installing Retroarch

There are a LOT of di�erent programs and full
operating system distributions (such as Lakka)
focused around emulation. I picked Retroarch for this
testing because it’s well documented and used in
many other emulation programs as a backend of
sorts. Installation is very simple on ubuntu and well
document as found here:
https://docs.libretro.com/development/retroarch/c
ompilation/ubuntu/

The �rst step is to add the libretro ppa:

add-apt-repository ppa:libretro/testing
apt-get update

After this you have the choice to install retroarch as a
package, which does not guarantee the most recent
version possible and the compilation from git is very
simple, so that was the approach taken.

https://magazine.odroid.com/article/lakka-building-the-ultimate-odroid-xu4-xu4q-gaming-console/
http://www.libretro.com/
https://docs.libretro.com/development/retroarch/compilation/ubuntu/

apt-get update
apt-get upgrade
apt-get install git build-essential
apt-get build-dep retroarch
$ git clone
https://github.com/libretro/RetroArch.git
retroarch
$ cd retroarch
$ git pull
$./configure
$ make clean
$ make -j4

And after that completes, you can start Retroarch with
the following command

$./retroarch

Once you start Retroarch, select “Online Updater”
from there you will want to run/select

Update Assets

Update Core Info Files

From there I used the following emulators

Sega - Dreamcast/NAOMI (Flycast)
https://docs.libretro.com/library/�ycast/

Sony - Playstation (Beetle PSX)
https://docs.libretro.com/library/beetle_psx/

Sony - Playstation 2 (Play!) : this was downloaded but
the results were unplayable

Dreamcast

I was very surprised at how well Flycast handled every
game I tried. My game selection was done to pick
games that focused on testing di�erent aspects of
emulation and playablity. Crazy Taxi 2 was selected
since it is a heavy 3D focused game and should push
H2. Similarly Marvel vs. Capcom 2, while not 3D, is a
fast paced game where any stuttering should be
noticed. Lastly, ChuChu Rocket was picked as it’s a
less well known game and would test more ‘edge’
cases for the emulator. I noticed no stuttering, lag or
peculiar graphic problems. During gameplay of Crazy
Taxi 2 there would be the occasional horizontal
tearing lasting 2-3 frames before going away. This was
pretty limited and mostly seen when the camera

would pan as a passenger would enter the taxi,
running ‘runtime’ game play this was not seen.

Figure 1 - ChuChu Rocket

Figure 2 - Crazy Taxi 2

Figure 3 - Marvel vs Capcom

https://docs.libretro.com/library/flycast/
https://docs.libretro.com/library/beetle_psx/

Figure 4 - Marvel vs Capcom

Playstation

Unlike with Dreamcast there are a couple of di�erent
emulators that can be used for Playstation. When
reading the description of each it becomes easy to
�nd the best pick, beetle psx. The documentation
from libretro (docs.libretro.com/library/beetle_psx/)
tell us the following: “This emulator is supplied for
people who are running RetroPie on more powerful
x86 CPU systems. It is accurate and the best you could
ask for when it comes to a PSX core for RetroArch. lr-
beetle-psx is not available for systems with ARM CPUs
(like the Raspberry Pi) due to its poor performance on
ARM CPUs.”

After getting everything installed and setup for the
Playstation emulator, I did notice that it was much
more ‘selective’ in being able to load and run a rom.
Several of the emulators that I had setup to tried
would be result in load/run errors when I attempted
to load them. Of the games I tried (Crash Team
Racing, Dino Crisis 2, and Resident Evil 2), I had no
game play problems. Everything played smoothly with
no stuttering or tearing. Halfway through the intro
cutscene of Dino Crisis 2, the video became
obstructed. However, when the actual gameplay
started there were no problems.

Figure 5 - Crash Team Racing

Figure 6 - Dino Crisis 2 Opening Cutscene

http://docs.libretro.com/library/beetle_psx/

Figure 8 - Dino Crisis 2 Gameplay Figure 9 - Resident Evil 2

Conclusion

Overall I was very surprised at how well the ODROID-
H2 handled some of the more modern gaming
systems. If you’re a fan of retrogaming gaming looking
to upgrade to something with a little bit more
“horsepower” then the ODROID-H2 is de�nitely worth
a look, as it would make a nearly ultimate media
player and retro gaming device.

