

How To Remotely Connect With Secure Shell
 February 1, 2020

Using SBCs can be a budget-friendly alternative to running small server applications in
your home or business. Furthermore, the act of setting them up can get tedious if a
single HDMI cable needs to be shared between several devices. Luckily enough, most,

if not all, Linux distributions open port 22

Setting IRQ CPU a�nities: Improving IRQ performance on the
ODROID-XU4
 February 1, 2020

I recently came across a post on the ODROID subreddit which featured an article
o�ering tweaking tips for the ODROID-XU4. The article was originally written in

German and was later translated into English and published in ODROID Magazine. As a long time owner of an
ODROID-XU4, most of the tips

ODROID-GO Advance Performance Analysis: Using ARM Streamline
 February 1, 2020

Streamline is a graphical performance analysis tool that presents report data in both
visual and statistical forms.

A Case for the ODROID-MC1 Solo: No, Not Justi�cation for Building
Your Own SBC Cluster; Rather a Clear Protective Case for $1
 February 1, 2020

If you’re looking for a great case to protect your ODROID-MC1 Solo, then look no
further than the Hardkernel Web site.

KVM: Fun with virtualization on the ODROID-H2 - Advanced
Features
 February 1, 2020

In my last article, I demonstrated that it’s rather easy to install and con�gure KVM and
some tools to create and control VMs directly under Linux. This time, I want to talk

about some advanced features you can use with KVM for free, that in other hypervisors are only available

Running GNOME Desktop on the ODROID-N2
 February 1, 2020

This article is about how the GNOME Desktop can run on an ODROID-N2 with an
upstream Linux kernel v5.4. Fortunately, the upstream kernel has many patches that
make the ODROID-N2 run smoothly.

OS Installation using Petitboot and USB OTG
 February 1, 2020

Petitboot is a platform-independent bootloader based on the Linux kexec warm
reboot mechanism.

Using I2C On ODROIDs With Android Things
 February 1, 2020

This is the continuation of the initial January 2020 magazine article titled “Android
Things”, which details using a new Google-backed operating system which facilitates
using the GPIO pins on ODROID devices.

ODROID-XU4 Fan Controller
 February 1, 2020

This article is about the Hysteresis fan controller for the ODROID-XU4. When the fan
comes on, it stays on for a while. It cools down the CPU enough that it then turns o�.
As the CPU gets hotter, the fan spins harder.

The G Spot: Your Goto Destination for All Things That are Android
Gaming - These Board Games are NOT Bored Games
 February 1, 2020

Do you think that board games are bored games? These paper-based analog
entertainment activities have a long-standing gaming history, or has that tradition

faded and been replaced by today’s ODROID Android games.

The Best ODROID-XU4 Media Server Software Options
 February 1, 2020

While the Raspberry Pi is a popular single-board computer (SBC), the ODROID-XU4 is a
solid competitor. Maintaining a small form factor, the ODROID-XU4 packs quite a
performance punch. Powerful yet energy-e�cient, with an ARM big.LITTLE processor,

the ODROID-XU4 features the Samsung Exynos Cortex-A15 2GHz and Cortex-A7 octa-core CPUs.

How To Remotely Connect With Secure Shell
 February 1, 2020  By Miguel Alatorre, www.ameridroid.com  Linux, ODROID-C2, Tutorial

Using SBCs can be a budget-friendly alternative to
running small server applications in your home or
business. Furthermore, the act of setting them up can
get tedious if a single HDMI cable needs to be shared
between several devices. Luckily enough, most, if not
all, Linux distributions open port 22 for secure shell
connections, also known as SSH.

First and foremost, both the PC and SBC, be it an
ODROID-C2 or another SBC, need to be connected to
the same network. Second, an SSH client needs to be
downloaded. A popular Windows OS choice is PuTTY,
which can be downloaded here:
https://bit.ly/2TVHZq5. For more advanced users,
clients such as TeraTerm
(https://osdn.net/projects/ttssh2/releases/) are
available. Now the IP address of the SBC needs to be
found. This can be done with IP scanners like
Advanced IP Scanner, available here:
https://www.advanced-ip-scanner.com/.

Figure 1 - After opening the client, you will be faced with
an interface similar to this one

https://bit.ly/2TVHZq5
https://osdn.net/projects/ttssh2/releases/
https://www.advanced-ip-scanner.com/

Figure 2 - Enter the IP address of the SBC into the Host
section, then hit "OK". You will then be prompted for a
username and password

Figure 3 - After entering your credentials, the SBC's
terminal will open

Now, all that is left is to play in the terminal.
Reference https://bit.ly/36oWwxo

https://bit.ly/36oWwxo

Setting IRQ CPU a�nities: Improving IRQ performance on the
ODROID-XU4
 February 1, 2020  By @Wallace  Linux, ODROID-XU4, Tinkering, Tutorial

I recently came across a post on the ODROID
subreddit which featured an article o�ering tweaking
tips for the ODROID-XU4. The article was originally
written in German and was later translated into
English and published in ODROID Magazine. As a long
time owner of an ODROID-XU4, most of the tips were
not new to me since they’ve existed on the ODROID
forums for quite some time now. However, there was
this one tip I was not aware of and it caught my
attention, and not in a good way.

IRQs

IRQs (Interrupt Requests) allow the hardware to
access the CPU even when it’s busy doing something
else. So our keyboards, mice, and networking, for
example, won’t stop working if we’re maxing out our
CPU.

Anyone who has used computers for enough time
knows this phenomenon where the mouse and

keyboard stutter, lag or become unresponsive for
some time when the CPU is doing an intensive task.
This was way more common on early computers and
has become less common as CPUs have become
more powerful, operating systems have evolved, and
APIC architecture was introduced.

To get the absolute best performance out of
hardware peripherals on a multi-core system we need
to make sure we’re addressing IRQs to the most idle
core, increasing the chances they’re going to be
executed immediately. On systems with Arm
big.LITTLE chipsets (such as the ODROID-XU4) we’re
more likely to get the best responsiveness for IRQs
out of the “big” cores. This makes perfect sense.

IRQs on Linux

To get a list of IRQs and their CPU a�nities we can
simply peak inside /proc/interrupts. This is how it
looks on my ODROID-XU4 running Arch Linux ARM

https://magazine.odroid.com/article/odroid-xu4-tweaks-a-collection-of-popular-modifications/
https://magazine.odroid.com/

with kernel v4.14.157: Note: The output is quite long
so I’ll use head to trim it.

$ cat /proc/interrupts | head

CPU0 CPU1 CPU2 CPU3 CPU4 CPU5 CPU6 CPU7

49: 0 0 0 0 0 0 0 0 COMBINER 187 Edge mct_comp_irq

50: 8344372 0 0 0 0 0 0 0 GICv2 152 Edge mct_tick0

51: 0 5765406 0 0 0 0 0 0 GICv2 153 Edge mct_tick1

52: 0 0 4389485 0 0 0 0 0 GICv2 154 Edge mct_tick2

53: 0 0 0 3384898 0 0 0 0 GICv2 155 Edge mct_tick3

54: 0 0 0 0 55211190 0 0 0 GICv2 160 Edge

mct_tick4

55: 0 0 0 0 0 48058391 0 0 GICv2 161 Edge

mct_tick5

56: 0 0 0 0 0 0 33449904 0 GICv2 162 Edge

mct_tick6

57: 0 0 0 0 0 0 0 20020736 GICv2 163 Edge

mct_tick7

In the above output we have IRQs #49-57 which seem
like the system clock ticks. One for each of the 8
cores. Basically, each IRQ has its own ID and is bound
to a single CPU.

The last statement may be hard to understand from
the last example, so let’s take a look at how MMC and
SD-Card reader interrupts look:

Note: I know that dw-mci are interrupts for the I/O
devices simply from looking at the source code
(https://github.com/hardkernel/linux/blob/odroidxu
4-4.14.y/drivers/mmc/host/dw_mmc-exynos.c).

$ cat /proc/interrupts | grep dw-mci

83: 0 0 0 0 0 0 0 0 GICv2 107 Edge dw-mci

84: 103693202 0 0 0 0 0 0 0 GICv2 109 Edge dw-mci

IRQ #83 is for eMMC, which I don’t have, and IRQ #84
is for the MicroSD card which is obviously installed.

By default, all non-CPU-clock IRQs are bound to all
cores but in reality CPU0 will be used most of the time
since it’s simply the �rst one. In my kernel version on
the ODROID-XU4, CPU0 is one of the “little” cores. The
easiest way to con�rm that is by looking at the max
CPU frequency of each core, since the “little” ones are
running at a slower speed:

$ cat

/sys/devices/system/cpu/cpu*/cpufreq/cpuinfo_max_f

req

1500000

1500000

1500000

1500000

2000000

2000000

2000000

2000000

First 4 CPUs (=cores) are running at 1.5GHz and the
last ones at 2GHz, which matches the ODROID-XU4’s
Samsung Exynos5422 CPU speeds, my “big” cores are
running 100MHz slower.

Changing IRQ CPU A�nity

It’s quite easy to change the CPU a�nity of IRQs. All
IRQs are listed in /proc/irq/ and each one’s a�nity is
conveniently written inside smp_a�nity and
smp_a�nity_list with the former containing a
hexadecimal value and the latter a decimal value.

So, to change our MicroSD card’s IRQ CPU a�nity all
we have to do it change the value of
/proc/irq/84/smp_a�nity_list to whatever CPU
number we’d like, for example, 5. Of course, we
cannot do that as a normal user so we’ll have to use
sudo. The easiest way to do that is as follows:

$ sudo sh -c "echo 5 >

/proc/irq/84/smp_affinity_list"

And we can con�rm that it worked:

$ cat /proc/irq/84/smp_affinity_list

5

$ cat /proc/interrupts | grep dw-mci

83: 0 0 0 0 0 0 0 0 GICv2 107 Edge dw-mci

84: 103699631 0 0 0 152288 0 0 0 GICv2 109 Edge

dw-mci

Note: This value will not stick after boot, but this is the
general idea.

The “tweaks”

Going back to where we started, the article suggested
doing exactly what I wrote above, so why was I
unsatis�ed with it? The article’s usage of irqbalance.
Putting aside the poor choice of using /etc/rc.local for
applying this tweak, the �rst step was the one that
caught my attention the most:

$ systemctl disable irqbalance

https://github.com/hardkernel/linux/blob/odroidxu4-4.14.y/drivers/mmc/host/dw_mmc-exynos.c

There’s a dedicated program that its whole purpose is
doing IRQ balancing and we’re going ahead and
disabling it? Sounds extremely �shy.

What I immediately thought was that maybe
irqbalance did not allow limiting its assignments to
speci�c CPUs, and therefore disabling it would make
sense. However that was not the case. Looking at the
man page of irqbalance, there’s an environment
variable:

IRQBALANCE_BANNED_CPUS

which can tell the program to avoid assigning IRQs to
those CPUs; which is exactly what we want.

The value of this environment variable is a
hexadecimal mask. We simply need to say which
CPUs we want active and which we don’t. Each CPU is
either on or o� (=1 or 0) and in our case we want to
turn o� the �rst four and leave the last ones on. That
means our mask in binary would be:

00001111

The value must be hexadecimal, which is a fairly easy
conversion from binary in this case: 0F.

All we have to do now is to set our environment
variable to 0F (or just F since the leading 0 has no
meaning). Let’s test that to make sure we’ve gotten
the math right:

$ sudo su

$ export IRQBALANCE_BANNED_CPUS="f"

$ irqbalance -d

This machine seems not NUMA capable.

Isolated CPUs: 00000000

Adaptive-ticks CPUs: 00000000

Banned CPUs: 0000000f

...

Package 0: numa_node -1 cpu mask is 000000f0 (load

520000000)

Cache domain 0: numa_node is -1 cpu mask is

00000080 (load 90000000)

CPU number 7 numa_node is -1 (load 90000000)

Cache domain 1: numa_node is -1 cpu mask is

00000020 (load 100000000)

CPU number 5 numa_node is -1 (load 100000000)

Cache domain 2: numa_node is -1 cpu mask is

00000040 (load 130000000)

CPU number 6 numa_node is -1 (load 130000000)

Cache domain 3: numa_node is -1 cpu mask is

00000010 (load 200000000)

CPU number 4 numa_node is -1 (load 200000000)

First we change user to root to make it easier for us.

Then export the environment variable for irqbalance.

Run irqbalance in debug -d mode.

Output: The �rst part shows in Banned CPUs that our
value was accepted. Then, if we look at the rest of the
output we can spot it assigning stu� to CPUs #4-7(5th
to 8th), which is exactly what we wanted.

To set this environment variable so the systemd unit
will be able to access it, we need to inspect it:

$ systemctl show irqbalance

There we look for EnvironmentFile value which could
be anything depending on the operating system. On
Ubuntu 18.04, it’s /etc/default/irqbalance and on my
Arch system it’s /etc/irqbalance.env. There’s probably
already a template �le there and all we have to do is
make sure it’s uncommented and set with the right
value.

Using a �xed IRQ IDs

The “tip” instructs putting each line that corresponds
to a di�erent hardware controller’s IRQ ID. However,
IRQ IDs are not consistent and depend on the kernel
version. For example, on my system IRQs IDs #103-
105 map to some gpio pins:

$ cat /proc/interrupts | awk '$1 ~ /103|104|105/'

103: 0 0 0 0 0 0 0 0 GICv2 110 Edge

13410000.pinctrl

104: 0 0 0 0 0 0 0 0 GICv2 78 Edge

14000000.pinctrl

105: 0 0 0 0 0 0 0 0 GICv2 82 Edge

14010000.pinctrl

Binding each interrupt to a single CPU

Last but not least, the article suggests binding each
interrupt to a di�erent CPU. Networking card gets
CPU4, USB3 adapter gets CPU5, etc. Why bother
limiting the CPUs that our kernel can choose? What if
a program locks that speci�c CPU for a long period of
time? The kernel wouldn’t be able to assign the IRQ to
a di�erent CPU to avoid slowdowns.

Afterword

While I like those tweak compilations as much as the
next guy, I always tend to make sure I completely
understand what each tweak is doing and double
check them to see how they apply to my particular
system and use case. Moreover, if there exists a
dedicated tool for a certain purpose (like irqbalance
for this matter), one should �rst consider using it,
otherwise its existence wouldn’t be justi�ed.

This article’s purpose is by no means to o�end or
condemn u/blaumedia who wrote the original article,
it is meant to raise awareness to why users must
consider their situation and understand what they’re
doing. For more information please see the original
article post at https://my-take-
on.tech/2020/01/12/setting-irq-cpu-a�nities-to-
improve-performance-on-the-odroid-xu4/.

https://my-take-on.tech/2020/01/12/setting-irq-cpu-affinities-to-improve-performance-on-the-odroid-xu4/

ODROID-GO Advance Performance Analysis: Using ARM
Streamline
 February 1, 2020  By Joy Cho  Development, ODROID-GO Advance

Streamline is a graphical performance analysis tool
that presents report data in both visual and statistical
forms. It uses hardware performance counters with
kernel metrics to provide an accurate representation
of the target system's resources. This wiki page
describes how to set-up and run Streamline and
monitor the ODROID-GO Advance.

Summary

Install DS-5 Community Edition on the Host PC

Build the Kernel and Gator Module

Build the Gator Daemon

Start Gator on the target and Streamline on Host PC

Figure 1 is a sample of ARM Streamline capture with
ODROID GO Advance. At time 48s, glmark2-es2 is
started and you can see graph transitions of Mali-
related components.

Figure 1 - Sample of ARM Streamline capture with
ODROID GO Advance

Using ARM Streamline, you can monitor the main
components of the CPU.

Figure 2 - Sample of ARM streamline capture with CPU
information

Figure 3 - Sample of ARM streamline capture with CPU
information

Install DS-5 Development Studio

First, please download DS-5 and install it on your Host
PC. If you don't have any license, you can use DS-5
Community Edition without one. The installer can be
found at
https://developer.arm.com/products/software-
development-tools/ds-5-development-
studio/editions/community-edition.

The latest Streamline version of DS-5 Community
Edition is currently v6.7.1, it will not support a higher
version of gator, above v6.7.1. Only DS-5 Ultimate,
Professional Edition, and DS-5 Development Studio
support the latest gator version. So, please note that
the current gator version for the ODROID-GO Advance
will be kept as v6.5.1, until DS-5 Community Edition is
updated.

Build The Kernel and Gator Module

In the latest version of the ODROID-GO Advance
image, there is no gator module. It will be included in
the next o�cial release, so please refer to the
following options if there is no new OS release
version.

[Option 1] Pre-built gator.ko:

odroid@odroid:~$ wget

https://dn.odroid.com/ODROID_GO_ADVANCE/gator.ko

[Option 2] Build a kernel with the related commits:

https://github.com/hardkernel/linux/commit/9b681d5

c4f23eac9bad17f75ef41a2c4fe4f698b

https://github.com/hardkernel/linux/commit/fcd6a0b

7a58792917c1cec64fc77ff981243b2ed

Build Userspace Gator Daemon

To communicate with the target device, Streamline
requires the gator daemon (gatord), to be running on
the device. Here are the instructions to build the gator
daemon on your ODROID-GO Advance board.

You should use gator daemon v6.5.1 to synchronize
with the gator driver of ODROID-GO Advance. Also,
some patches to run gator daemon on ODROID-GO
Advance are needed because the sysfs node to read
the mali GPU information is di�erent from the
existing one from the ARM-software github.

odroid@odroid:~$ sudo apt-get install git

odroid@odroid:~$ git clone

https://github.com/JeonghwaCho/gator.git -b

odroid-rk3326

odroid@odroid:~$ cd ${path_of_gator}/daemon

odroid@odroid:~$ make

Now you will have gatord binary in
${path_of_gator}/daemon directory.

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/editions/community-edition

Start Gator on target and Streamline on Host PC

1. On the ODROID-GO Advance You need root
permission to make an ethernet connection and run
gatord.

(1) Con�g up Network connection

odroid@odroid:~$ su

root@odroid:~# dhclient eth0

(Figure 4 - ODROID-GO Advance connected over
Ethernet)

(2) Disable kernel hung task timeout

root@odroid:~# echo 0 >

/proc/sys/kernel/hung_task_timeout_secs

(3) Run userspace gator daemon and kernel module

root@odroid:~# ${gator_path}/gator/daemon/gatord -

m /lib/modules/$(uname

-r)/kernel/drivers/gator/gator.ko &

You can determine if gator is running:

root@odroid:~# lsmod | grep gator

gator 90112 1

Mali Bifrost GPU of RK3326 is de�ned in gator.ko, so
you will need to get ARM_Mali-Bifrost- related events
under /dev/gator/events/

root@odroid:~# ls /dev/gator/events/

ARM_Mali-Bifrost_Filmstrip_cnt0

ARMv8_Cortex_A35_cnt0

ARM_Mali-Bifrost_MMU_AS_0 ARMv8_Cortex_A35_cnt1

ARM_Mali-Bifrost_MMU_AS_1 ARMv8_Cortex_A35_cnt2

ARM_Mali-Bifrost_MMU_AS_2 ARMv8_Cortex_A35_cnt3

ARM_Mali-Bifrost_MMU_AS_3 ARMv8_Cortex_A35_cnt4

ARM_Mali-Bifrost_MMU_PAGE_FAULT_0

ARMv8_Cortex_A35_cnt5

ARM_Mali-Bifrost_MMU_PAGE_FAULT_1

ARMv8_Cortex_A35_freq

.....

.....

2. On the Host PC Via Ethernet interface, you can
connect ODROID-GO Advance device to Streamline on
your host PC. Please set [Connection] - [Address].

Figure 4 - Capture and Analysis in Streamline

If the connection is established successfully, all of the
available counters for the ODROID-GO Advance will
be shown in this menu.

Figure 5 - Counter con�guration in Streamline

Further Information

For more detailed information, please refer to the
ARM developer site and user guide at
https://developer.arm.com/products/software-
development-tools/ds-5-development-
studio/streamline and
https://static.docs.arm.com/dui0482/w/DUI0482W_s
treamline_user_guide.pdf. The original wiki entry can

https://developer.arm.com/products/software-development-tools/ds-5-development-studio/
https://static.docs.arm.com/dui0482/w/DUI0482W_streamline_user_guide.pdf

be found on the Hardkernel wiki page at
https://wiki.odroid.com/odroid_go_advance/applicat

ion_note/arm_streamline_on_goa.

https://wiki.odroid.com/odroid_go_advance/application_note/arm_streamline_on_goa
https://wiki.odroid.com/odroid_go_advance/application_note/arm_streamline_on_goa

A Case for the ODROID-MC1 Solo: No, Not Justi�cation for
Building Your Own SBC Cluster; Rather a Clear Protective Case
for $1
 February 1, 2020  By Dave Prochnow  ODROID-MC1, Tinkering

If you’re looking for a great case to protect your
ODROID-MC1 Solo, then look no further than the
Hardkernel Web site. Inside the “Dollar Shop” is a
clear case for the ODROID-HC1. Priced at, you
guessed it, $1, this case is the ideal companion for
protecting your headless ODROID-XU4 clone.

Figure 1 - Adding a clear case to your ODROID-MC1 Solo
makes it shine like a computing star.

Simply slide the shortest piece of the ODROID-HC1
clear case over the ODROID-MC1 Solo heatsink and
you have a snug protective case for keeping dust and
debris o� the printed circuit board (PCB).
Furthermore, this case is adequately ventilated for
enabling the PCB to remain cool during strenuous
work sessions.

Figure 2 - You only need one-half of the ODROID-HC1
clear case for protecting your ODROID-MC1 Solo.

Figure 3 - All of the business end inside the case is still
accessible.

Finally, while you’re purchasing your Dollar Shop case,
be sure to examine the incredible sale price for the
ODROID-MC1 Solo. At the time of publication, this
powerful octa-core single board computer cluster
node is priced at $9. That’s a remarkable $39 savings
over the regular price. Oh, and while your �lling your
shopping cart, don’t forget to include a 5V/4A power
supply, Ethernet cable, and 8GB microSD card to your
order. The total cost for this fully �eshed out
computing node will be less than $25 (excluding
shipping and handling). This purchase will help you
get one step closer to realizing that dream of
wrangling bytes on your own build farm.

Figure 4 - Just leave the back door open on your build
farm for keeping the ODROID-MC1 Solo cool while
handling all of its chores.

Figure 5 - Build farm system diagram

There are two types of nodes for the build farm
system – Build Target node and Build Computing
node. For this example, we will use the ODROID-HC1
for the build target node. The build target node
contains the source codes which will be compiled in
this build farm system. An ODROID-HC1 is perfect as a
build target node because it can have a large amount
of storage space with its attached hard drive. It is
helpful for improving build performance if the SATA
HDD(or SSD) has good I/O performance. The build
computing node receives the source �le and compiles
it. An ODROID-MC1 is the best choice for a build
computing node, since it is optimized for distributed
computing.

Figure 6 - The example Build Target Node is an ODROID-
HC1

Figure 7 - The example Build Computing Node is an
ODROID-MC1

Build Computing Node Con�guration To access yjr
ODROID-MC1 and ODROID-HC1 consoles, you have to
get the IP address of the nodes. Please refer to Boot
the ODROID and �nd IP address section in the
Headless setup wiki page. All it takes is to Install distcc
and con�gure it:

$ sudo apt update

$ sudo apt install distcc

$ nano /etc/default/distcc

/etc/default/distcc

STARTDISTCC="true"

ALLOWEDNETS="192.168.100.0/24"

JOBS="8"

ZEROCONF="false"

On my network, the 192.168.100.0/24 IP network
range is my local network IP address. It must be
modi�ed to suit your network environment. Next,
restart the distcc service:

$ sudo /etc/init.d/distcc restart

Build Target Node Con�guration

Install distcc, distcc-pump and distccmon-gnome.
distcc-pump is for running distcc pump mode. Distcc's
pump mode accelerates remote compilation with
distcc by also distributing preprocessing to the
servers. distccmon-gnome is the distcc monitoring
application:

$ sudo apt update

$ sudo apt install distcc distcc-pump distccmon-

gnome

Next, set the IP addresses of the build computing
nodes. In this case, there are 8 build computing nodes
(ODROID-MC1s). It is di�erent for each network
environment. Write the distcc host’s IP addresses for
your environments.

$ nano ~/.distcc/hosts

~/.distcc/hosts

192.168.100.17,lzo,cpp

192.168.100.19,lzo,cpp

192.168.100.23,lzo,cpp

192.168.100.24,lzo,cpp

192.168.100.26,lzo,cpp

192.168.100.27,lzo,cpp

192.168.100.37,lzo,cpp

The examples add the following options to the
address: lzo: Enables LZO compression for this TCP or
SSH host (slave).

cpp: Enables distcc-pump mode for this host (slave).
Note that the build command must be wrapped in the
pump script in order to start the include server. A
description for the distcc pump mode can be found at
distcc's pump mode: A New Design for Distributed
C/C++ Compilation. Next, run distcc-pump:

$ distcc-pump make -j64 CC=distcc

Figure 8 shows the distcc compiling status on
distccmon-gnome:

$ distccmon-gnome

Figure 8 - distcc compiling status on distccmon-gnome

Build Performance Measurement Experiment

We measure the distributed compiling performance
according to number of build computing nodes. This
is the build time of Linux kernel sources for the
ODROID-XU4. It has better performance than a local
build when it has more than 4 build computing nodes,
since distributed compiling has additional overhead
because of the network. The build commands used
for testing are:

$ sudo apt update

$ sudo apt install git

$ git clone --depth 1

https://github.com/hardkernel/linux.git -b

odroidxu4-4.9.y

$ cd linux

$ make odroidxu4_defconfig

$ time make -j8 # Local build for baseline

$ make clean

$ time distcc-pump make -j64 CC=distcc #

Distributed build for testing

Figure 9 - Build time vs node count

KVM: Fun with virtualization on the ODROID-H2 - Advanced
Features
 February 1, 2020  By Tobias Schaaf  Development, ODROID-H2

In my last article, I demonstrated that it’s rather easy
to install and con�gure KVM and some tools to create
and control VMs directly under Linux. This time, I want
to talk about some advanced features you can use
with KVM for free, that in other hypervisors are only
available in costly enterprise editions and how to
control KVM on a more “bare metal” installation
rather than a graphical system. This article includes a
lot of technical descriptions, which are marked as
such. If you just want to set things up and get it to
work, you can skip these sections.

Recap

Let’s remind ourselves what we learned the last time
about KVM, QEMU and libvirt. KVM - The technique we
use to virtualize systems directly on the Linux Kernel
(similar to VMWare, or Virtualbox). QEMU - used to
emulate certain types of hardware in combination
with KVM virtualization and allows for advanced

features such as snapshots. libvirt - n api that we use
to control our VMs and what is happening around
them, with virt-manager as a graphical interface.

Second Scenario

In this second scenario, I want to go all out with some
of the capabilities which allow you to use KVM in a
production environment. We will add a second
ODROID-H2 into the setup and experiment with
shared storage pools for our images, as well as
moving a running system from one ODROID to the
other without interruption. I want to look into virsh,
the command line client of libvirt that allows us to
control VMs from the command line and allows us to
do some advanced con�guration. And control our
VMs from a remote PC and not locally on each host. In
the end, you should have a very good Idea how to use
KVM even in a production environment at your
workplace.

Requirements

2x ODROID-H2

1x PC/Server for shared storage

1x PC for remote control of our setup (I will use my
laptop for this)

Network switches (one is �ne, if you have a production
environment you should have at least two)

Internet Connection

In this second scenario, we will add a second
ODROID-H2 into our setup so we have “multiple”
nodes on which to run VMs. I also use an ODROID-N1
with an attached SSD as a shared storage pool which
we can use to run our VMs. Instead of working directly
on the ODROIDs themselves, I will now switch to
remote control everything from my Laptop and only
use SSH to directly connect to the ODROIDs rather
than working directly on the systems. For this I
installed Debian Buster on the second ODROID-H2, as
well; this time as a headless server installation
without an X11 desktop such as MATE (which we had
on the �rst ODROID-H2), and without network
manager or the full virt-manager. This means the
installation is much smaller, uses a lot less RAM, and
has less attack vectors for a possible attack against
the system. It is very close to what you have when you
install VMWare or other bare metal hypervisors,
which also just install a Kernel and basic applications
needed to run VMs.

Installation

I will assume again at this point that you already have
a running Debian (or Ubuntu) server installation for
the following steps. As I said, I used Debian Buster
again, this time as a server installation without
network manager or X11 desktop environment. I
HIGHLY recommend using the same OS for all your
nodes and not to mix Ubuntu and Debian or other
environments, since the qemu version used will most
likely be di�erent and can cause problems with our
scenario. I will also run all the commands as “root” on
my system so you should know how to login as root
or use sudo to become root. Let’s start with installing
libvirt and required tools:

$ apt install libvirt-daemon-system

$ reboot

The installation of the libvirt-daemon-system is
enough, as it comes with all the tools needed to run
VMs and with the tools to control it (like virsh, the
command line client).

Advanced Network Con�guration

In order to create a more “production” like
environment, we want to look into the network
con�gurations of our ODROIDs. The ODROID-H2 has
two on-board network adapters (NICs). It would be
wasteful not to take advantage of this situation.
Therefore we’re going to create something called a
“bond” which is the combination of the two (or more,
if needed) network adapters into one “virtual” bond
(network adapter). This allows for di�erent backup
scenarios, in case some part of your infrastructure in
the production environment breaks down. We also
will setup something called a “bridge” which will act as
a virtual switch for our VMs allowing us to place the
VMs “logically” in our network, rather than using NAT.

Technical description

If you’re familiar with, for example, VirtualBox or
VMWare, you should know that the two most
commonly used network settings are either Bridge or
NAT. NAT stands for Network Address Translation,
and is a technique where the VM (or VMs) will be in
their own private network, created by the hypervisor
(VirtualBox, VMWare, KVM, etc.) it is not directly
connected to your network, but uses the network of
the host system to communicate with the outside
world. What this means is it shares the Internet
connection of your host, and normally has access to
the same network and systems that your host system
has access to, but on the other hand it can not be
accessed from other machines directly, as the IP of
the VM is not within your network. In fact, each time
the VM accesses something on the network, the
network sees it as incoming tra�c from your host
system not from the VM. That is what NAT is doing for
you. Bridged Networks, act like a virtual switch, which
is connected to your physical network. This means,
when a VM requests an IP, it’s not asking the host
anymore, but your network router. It will get an IP and

con�guration from the same router your host system
is getting its IP from. This allows you to control the IP
it will get from your router, and also means that other
machines in the same network will be able to access
the machine as well.

Getting started

In most cases inside a production environment, you
want to have a bridged network for your VMs so
others can access the services running on your VMs.
We will also create a network bridge for KVM so our
VMs can connect to either your home network directly
or to your company network, depending on where
you want to use this. For this, we will need to install
some additional packages:

for creating bonds

$ apt install ifenslave

for creating bridges

$ apt install bridge-utils

We need to edit /etc/network/interfaces on both
ODROIDs to set up our advanced network setup.
Please Note that con�guring network adapters in
/etc/network/interfaces will disable the access of the
Network Manager to these devices.

/etc/network/interfaces

This file describes the network interfaces

available on your system

and how to activate them. For more information,

see interfaces(5).

source /etc/network/interfaces.d/*

auto lo

iface lo inet loopback

auto bond0

iface bond0 inet manual

bond-slaves enp2s0 enp3s0

bond-primary enp2s0

bond_mode balance-alb

auto br0

iface br0 inet static

bridge_ports bond0

address 192.168.0.115

netmask 255.255.255.0

gateway 192.168.0.10

Technical Description

The above text is the context of the �le
/etc/network/interfaces, so let me explain a couple of

these lines: bond-slaves enp2s0 enp3s0 – This is a list
of NICs that are combined as a bond. The two NICs on
my ODROIDs are found under the name enp2s0 and
enp3s0, some of you might remember names such as
eth0 and eth1 in the past, enp2s0 is basically the new
eth0 and so on.

ond_mode balanced-alb – This describes how the
network adapter should work together. Under:
https://www.kernel.org/doc/Documentation/networ
king/bonding.txt you �nd a very detailed description
how boding works in the Kernel and what the
di�erent modes are.

The most common use is, for example, mode 1
(active-backup) in which one NIC is always ON and
sending and receiving data, but if for whatever reason
this is not possible, it will switch over to the second
NIC. So this is an active standby situation for the
network adapters.

There are a couple of interesting modes, for example
mode 0 (balance-rr) the round-robin mode has the
ability to speed up communication quite a bit. When I
connected my two ODROID H2 with balance-rr mode
and used iperf3 to test connection speed, I actually
got up to 1.9 Gbit connection speed between both
ODROIDs. Which means it actually could use the full
speed of the two network adapters to communicate
with each other, but I could also see that the number
of errors while sending went up. A VM running on the
system using a bridged network adapter was no
longer able to communicate with the router in my
network, but using NAT network for the VM worked
�ne. So, although you might get a huge speed boost
between di�erent ODROIDs, the use is limited.

Another interesting bond mode is mode 4 (802.3ad),
which is a technique that was renamed to 802.1ax. So
if your switch supports the 802.1ax standard that
means it’s 802.3ad compatible, which is very
confusing. It’s the so-called link aggregation, which
allows to use both NICs to communicate, and
therefore “technically” double your bandwidth. It
doesn’t mean you will have 2 Gbit connection speed
between ODROIDs, but it means you can have two (or
more depending on the number of NICs) connections
with 1 Gbit at the same time. So instead of one
machine that can connect to an ODROID that has two

https://www.kernel.org/doc/Documentation/networking/bonding.txt

NICs with 1 Gbit, you can have TWO devices
connected at the same time BOTH with 1 Gbit.
However, it requires network switches that support
this setup and some preparations.

bridge_ports bond0 – This is the network adapter for
your virtual switch (the bridge adapter). This could
also be directly enp2s0 or enp3s0 but by using a bond
here instead, we make sure that even if one adapter
has no connection the other adapter can still keep our
network running.

I used a static IP con�guration for my bridge, since I
always want to have the same IP here. Instead, I could
have also chosen to use iface br0 inet dhcp for
automatic con�guration. The bond is set to iface
bond0 inet manual as it doesn’t need an IP. The
bridge adapter will hold the IP for the bond so to say.

Ideally, you would connect your ODROIDs to two
di�erent network switches which are connected to
your router. That way if one of the switches dies the
ODROIDs would still work over the other switch.
Which is the main reason for bonding and modes like
active-backup. It also allows for �rmware update of
the switches and reboots without losing connectivity
to the VMs running on your KVM hosts.

The entire setup will work with one switch as well. You
don’t need two switches, and you don’t even need to
connect both LAN adapters of the ODROID-H2.

Figure 1 - Network layout for redundant/fail-over
network con�guration

Remote Access

As I said before, I now have a more machines in the
setup and it would be rather inconvenient to connect
each system on a TV or monitor with their own mouse
and keyboard to control and con�gure them.

Therefore, I want to be able to connect to each device
remotely from my Laptop which is running Ubuntu
18.04. Using SSH allows me to connect to my
ODROIDs remotely to con�gure them over the
network. I created an SSH key on my laptop (if you
don’t have done this yet, you can use the following
command to generate a new ssh-key:

$ ssh-keygen

This key is distributed with the following command to
the two ODROID-H2 devices:

$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@< server-

ip >

This allows me to login as root via SSH using my SSH
key instead of a password. It’s generally a more
secure way than using a password. In fact, I did this
before I started setting up network and installing
applications on the ODROIDs. What this allows me is
to use the virtual machine manager remotely as well.
Once we installed the packages required for KVM and
libvirt, setting up the network as described above, we
can now use virt-manager to control our hosts. For
this, simply start the virt-manager on the system you
want to use to control your ODROIDs from (in my case
it’s my Laptop). Click on File on the Menu and select
add connection. Check the box that you want to
connect to a remote host, user should be root, then
simply enter the IP of your ODROID H2 in our setup.
Repeat the same for the other ODROID-H2 and with
that we now have the ODROIDs listed in our virtual
machine manager. You can check the box that it
should connect automatically, or just double click the
ODROIDs on the list to connect to the ODROIDs. It
should look exactly the same as it was when you used
virt-manager locally in our �rst scenario, just that you
now have two ODROIDs to work on and create VMs
with.

Figure 2 - Running the virtual machine manager to
connect to remote virtualization hosts

As you can see, it’s rather easy to connect to multiple
hosts, and with that control and create a multitude of
VMs in your network. That alone already allows you to
save time, money and resources to use virtual
machines in your home or company network.
Considering that you can run this on a bare server
image, without having to install graphical tools to
con�gure your VMs on the host itself, it comes very
close to the way VMware, Xen, and other hypervisors
run on “bare metal” solutions.

Setting up a shared storage

Although we can already do lots of things with our
current scenario, there is much more we can achieve
by using KVM and libvirt. However, for this I want to
use a shared storage for the di�erent virtualization
hosts we’re using. This makes it possible to have one
centralized storage for all our hosts on which we run
our VMs, and would allow us to run the same VM on
di�erent hosts, just by pointing the host to the correct
harddrive image for a VM. It also allows us to use
faster and more secure network solutions, such as
SANs, NAS, or storage clusters. This in itself has many
bene�ts over running VMs o� of local storage directly
on the hosts. It also reduces overall costs, as you don’t
need large and fast storage for each host, and a bare
minimum system is more than enough. You could run
the entire system o� of an 8GB eMMC (even smaller
would be �ne) and let the VMs run of a network
storage, with RAID, backups, etc.. This reduces the
cost and maintenance for both the storage solution as

well as the virtualization hosts (i.e. ODROIDs). In my
setup, I use an ODROID-N1 with an SSD attached to it.
I created a partition on the SSD for that purpose and
mounted this partition to /srv/nfs. As you may have
guessed by the name, I will set up an NFS share for
the shared storage.

Installation and con�guration

The installation is very simple as well as the
con�guration. As I said before, I use the partition
mounted in /srv/nfs for my purposes, so if you have a
di�erent location, you need to adjust the paths
accordingly:

$ apt install nfs-kernel-server

$ mkdir /srv/nfs

$ chown nobody:nogroup /srv/nfs

$ chmod 777 /srv/nfs

$ echo "/srv/nfs

192.168.0.0/24(rw,sync,no_root_squash,no_subtree_c

heck)" >> /etc/exports

$ exportfs -a

$ systemctl restart nfs-kernel-server

Please note that I decided to allow connections only
from the subnet 192.168.0.0/24. If your network is
di�erent, you need to adjust this as well, or you can
replace the subnet entirely by simply using an asterisk
(*) instead /srv/nfs:

*(rw,sync,no_root_squash,no_subtree_check)

Now that the server is prepared and running, we need
to prepare the two ODROIDs as a client. For this, we
need to install the package nfs-common on both
clients and con�gure libvirt to mount the NFS mount.
For this, I will use virsh, the command line tool of
libvirt. Similar to the virtual machine manager, this
tool allows us to manipulate everything around our
VMs. In fact, it’s much more powerful than the virtual
machine manager itself.

$ apt install nfs-common

$ mkdir -p /var/lib/libvirt/shared-pool

$ echo "< pool type='netfs'>

 < name>shared-pool</ name>

 < source>

 < host name='< server-ip >' />

 < dir path='/srv/nfs' />

 < format type='nfs' />

 < /source>

 < target>

 < path>/var/lib/libvirt/shared-pool</ path>

 < permissions>

 < mode>0755</ mode>

 < owner>-1</ owner>

 < group>-1</ group>

 </ permissions>

 </ target>

</ pool>" > shared-pool.xml

$ virsh pool-define shared-pool.xml

$ virsh pool-autostart shared-pool

Obviously you need to replace with the IP of your
server where the NFS is running, same as /srv/nfs in
case your path to the NFS share is di�erently. What
we are doing here is creating an .xml �le called
shared-pool.xml, which give our connection
parameters and the path where we want to mount it.
With virsh pool-de�ne we can tell libvirt to create a
new storage pool.

Hints

Similar things can be done with a VM. You can, for
example, dump an xml con�guration of a VM and
import it on another machine:

dump a VM configuration and redirect into a

file:

$ virsh dumpxml --domain win10 > win10.xml

import a VM configuration as a new machine:

$ virsh define win10.xml

That way you can make easily copies of the same
con�guration of a machine without having to the
same con�guration via the virtual machine manager
over and over again. Just dump a VM con�guration,
edit the �le with your favorite text editor, for example
adapt the MAC address of the NIC and the harddrive
image �le, and you have created a new VM based on
the con�guration of an already existing VM. Naturally,
there’s also an option to clone a VM as well, but it
would also allow you to start the SAME VM on a
di�erent host, as long as the con�guration exists on
both system and they have access to the harddrive
�le (hence the shared storage pool we’re working on).

Virtual machine manager

You can do the same via the virtual machine manager
as well. As you can see in Figure 3, there are a
multitude of supported storage formats and solutions
for libvirt which allows you to con�gure the storage
solution you prefer for your setup. NFS is just one of
many options you have. As a side note, at work we
use a Ceph Cluster as the storage pool for our KVM
servers.

Figure 3 - Adding a storage pool to your KVM host using
the virtual machine manager

The speed of your VMs of cause are only as good as
your storage solution, and if you need the best speed
possible, then, of course, running a local storage o� of
an NVMe could be a lot better than running your VMs
o� of a network shared storage, but it also limits your
options for what you can do with it, and depending on
your storage solution, the speed is really not that bad.

Figure 4 - Dumping the Virtual HDD image of a running
VM to /dev/null to check read performance of the NFS
storage pool

Figure 5 - Dumping the Virtual HDD image of a running
VM to /dev/null to check read performance of the NFS
storage pool

Using the shared storage pool should be obvious.
Instead of creating new images in the default location
you create them in the shared-pool storage and it’s
available throughout all ODROIDs accessing the
storage.

Live migration

For those who wonder what live migration is, it’s a
technique that allows to move a VM from one host to
another host while the host is still running. This allows
to update or even restart the host without
interrupting the services (VMs) you’re running. For
example, if you run a VM hosting wordpress, but you
need to update the host where the VMs are running
on, or you want to distribute the load on another
ODROID you can move the VM (while running) on
another host, and during the entire time the system is
still accessible. People looking at the wordpress
server would ideally not even notice that the machine
is moved.

Technical description

This scenario requires the shared storage pool, as this
means all hosts (ODROIDs) have access to the
harddrive image. But what data is in the RAM and
processed by the CPU is unique and that’s the part
where libvirt is working with. It will copy the machine
con�guration (the xml �le) from one machine to the
other and starts a process of copying the content of
the RAM of the VM that is currently running from one
host to another host (one ODROID to the other). As it
doesn’t need to copy the OS itself (the harddrive
image is shared) you could even move a VM that has
hundreds of GB or even TB of data from one host to
another, as only the content of the RAM needs to be

copied. Libvirt will create an identical copy of the VM
con�guration of the VM from one host to another.
This means it also will create the same extra
hardware, as for example the network card, sound
card, graphics card etc., for this the other hosts must
have the capability to run the same virtual hardware.
For this libvirt will start a sync process between the
two hosts and will continue doing this until all the
RAM is synced between the two hosts. As the machine
itself is still running and doing tasks, the content of
the RAM might change during the sync process and
you will see that the process bar near the end might
“jump back” and will continue doing so until it could
complete its task. This depends on how fast your
network between the hosts are and how often the
RAM changes and how much RAM a VM has. A VM
that is mostly idle and runs on 500MB RAM will be
very quick to sync and only takes a few seconds. If you
ran a DB, �le server, or machine with running
compiler instead which constantly loads new data into
the RAM and has 64GB of RAM, this process will take
much much longer and can take several minutes to
complete. In the end, both machines will be set to
“pause” for a split second to make the switch from
one machine to the other and then turned back on, as
I said in best case no one will notice anything at all.
This feature is available on hypervisor for VMWare as
well, but not without investing a serious amount of
money; whereas on KVM this is a free feature.

How to use live migration

In order to use live migration there isn’t much you
need to do. It is best to have the disk cache mode for
VMs set to “none” for migration, as other caching
methods may cause a problem in case of a failure. For
example when you migrate a machine from one host
to another and the host dies, it could be that the data
that was still cached is lost, and not written to the
disk. That is generally an issue with caching methods,
therefore this warning might be ignored and you can
still force a migration between machines. You can
migrate machines via graphical interface from the
virtual machine manager. For this you need to be
connected to both hosts, right click the VM you want
to migrate from one host to the other and select
migrate. Then select the host you want to migrate to

from the drop down list and click at start. Under
advanced options you can activate that you want to
migrate even if you’re using an “unsafe” disk caching
algorithm. Another way is to use our command line
tool virsh to migrate a machine. For this, login via ssh
into the host where the VM is running on and use the
following command:

Syntax

$ virsh migrate --verbose < VM> qemu+ssh://

<destination-host>/system

example:

$ virsh migrate --verbose win10

qemu+ssh://192.168.0.115/system

You can add the switch --unsafe to allow migrating
with unsafe disk caching methods.

Figure 6 - Migrating a VM via virtual machine manager

Figure 7 - Select the destination host and click migrate

Figure 8 - Watching the migration process doing it’s
magic

Figure 9 - The VM was moved to another host while still
up and running

As you can see, the process is rather simple and
straightforward. There is not much to look out for.
Once you setup the shared-pool and both KVM hosts
are in the same network and can move data between
each other there is nothing that will stop you from
moving a machine from one host to another host
while it’s still running.

Figure 10 - While watching a continuous ping to a
running VM, seq 161 is missing, which means that we
missed a single ping while migrating the VM

The screenshot in Figure 10 was taken at the moment
when the migration process �nished, and the VM was
switched over. Only a single ping did not go through.
Imagine someone accessing a wordpress server that
was being migrated. This delay of one ping would not
even be noticed in a normal workload and your user
would never know you just moved the entire system
they are running from one host to another. In fact
using a �ber-channel connection you could even
migrate VMs easily between di�erent locations or
data-centers.

Conclusion

With this we have learned how to setup a production
environment for our VMs. You should now be able to
share VMs on your network to provide services for all
your clients, or use this to host a wide spectrum of
online services using bridged networks. You should
also know how to con�gure shared storage pools to
take advantage of network storage such as a SAN or
NAS or a simple NFS share. You should have
additionally learned how to migrate VMs between
di�erent hosts allowing you to do maintenance or
distribute load of VMs between di�erent hosts. All of
this can be achieved on your ODROID-H2 or other
PCs/Servers with the help of KVM as a virtualization
engine (hypervisor). There’s tons of literature to this
topic and I highly suggest to read further into it if this
guide made you hungry for more.

Optimization

There’s a lot of things you can change on libvirt to
increase performance in di�erent scenarios. The
caching algorithm for the virtual disk, for example. I
want to talk a little bit about CPU optimization and
about CPU “emulation” on KVM, or, better yet, QEMU.
I mentioned before that QEMU is used to “emulate”
hardware, but KVM is used for the virtualization part.
Here’s also something unique about the KVM
solution. Rather than passing through the EXACT CPU
your host has to o�er, as it’s often done with
VirtualBox and other hypervisor solution, QEMU
“emulates” a CPU but passes through the CPU
features that it supports. Why emulating and not
passing through? The answer is simple. Portability!
Imagine the following scenario: You have a very

recent small budget server for testing purposes, let’s
say, for example, with an Intel® Xeon® E-2226G
processor from 2019 with 64GB RAM which you use
for testing setup of a new systems, e.g. a new
Windows MSSQL Database Server, and after testing
you want to move the VM to an older but more
powerful server running of a dual processor system
powered by two Intel® Xeon® Processor E5-2697A v4
processors from 2016 with 1TB of RAM as a
production environment. In many scenarios you
would have to setup the VM again on the older Server,
as the newer Co�ee Lake-based E-2226G has some
CPU features that are not available on the older
Broadwell-based E5-2697A. Not only would Windows
require a re-activation due to the changed CPU, in a
worst case, the system behaves very di�erent from
the tested scenario, also you probably won’t be able
to move the VM while still running from one server to
the other, as the systems are so di�erent that the
transfer would fail. This is where QEMU and KVM
work di�erently. If you check the CPU list in the
options of the virtual machine manager you see
there’s a quite extensive list of CPUs that are listed
here, as shown in Figure 11.

Figure 11 - List of CPUs emulated by QEMU

What that means is that you can create a VM with an
emulated CPU that is supported on both servers (e.g.
Broadwell-IBRS). This dual support allows test setups
that are equal on both systems and allows live
migration of the VM from one host to another without
interrupting the service (as explained above) even if
the servers run on completely di�erent CPU
architectures. As long as you �nd a smallest common

denominator in the CPU architecture you can set a VM
up with that and migrate machines between these
servers anyway. How does it work? If you check the
output of the following command, you probably
noticed this line “�ags” which can be found for each
CPU:

$ cat /proc/cpuinfo

These are the features your CPU supports. Even ARM
boards have this line, and it shows what techniques
the CPU understands and supports.

Figure 12 - ODROID-H2 CPU features

Certain CPU Architectures feature di�erent types of
CPU �ags here. Broadwell has fewer features as, for
example, Skylake, but still more features than a
SandyBridge CPU, and this is what QEMU and KVM
rely on. Depending on the CPU architecture you
select, the “well known” �ags will be forwarded as CPU
features into the VM. So forwarding the rdseed
capabilities of your CPU to the VM can increase
encryption performance as you add an additional
random number generator to your system for more
entropy. A feature that was not present in an older
SandyBridge CPU, for example. How to use it on the
ODROID H2? The problem with the ODROID H2 is,
that it’s not a real server board, it’s in some cases not
even a real Desktop processor, so it misses quite
some CPU features that you would expect on these
devices. The virtualization is optimized for server
environment and boards like the ODROID H2 does
not match this description that’s why we have to �x
some things to make it work correctly. By default, the
CPU should be shown as Westmere or IvyBridge-IBRS,
since these are the CPUs that KVM will �nd as

compatible by default, but that is only because these
are the ones where it �nds ALL of the CPU features
that it expects. But even if it doesn’t �nd some
features, that doesn’t mean it wouldn’t be bene�cial
to use a higher CPU architecture.

Figure 13 - Trying to start a VM with SandyBridge-IBRS
con�guration fails with missing CPU features

Here we can use virsh again to con�gure speci�c
options as a workaround. As I explained before, the
di�erent CPU types are a combination of di�erent
CPU �ags. This tells us that we’re missing the avx
feature which if we compare with the �ags of the
ODROID-H2 it’s true that this feature is missing. We
can add this to machine con�guration. There’s also a
list of extra features that I used, but are not part of
the SandyBridge con�guration and therefore have to
be added manually. Using the following command, we
can edit the con�guration of the VM directly:

$ virsh edit --domain win10

Figure 14 - Adding and disabling CPU features directly in
the VM con�guration with virsh edit

Between the �ag < cpu >and , we can add de�nitions
regarding our CPU. As you can see in Figure 14, we

have two options: either require or disable. Require
will forward a CPU feature from the host CPU to the
VM, and Disable will remove a CPU feature from the
list of features forwarded to a VM. Since SandyBridge,
for example, fails due to missing CPU feature avx, we
can use the following option:

< feature policy='disable' name='avx' />

With that tweak, we can use a SandyBridge CPU in our
VM even if not all features are supported. In fact, I
was able to run Skylake-Client-IBRS by disabling the
following features:

< feature policy='disable' name='avx' />

< feature policy='disable' name='avx2' />

< feature policy='disable' name='fma' />

< feature policy='disable' name='pcid' />

< feature policy='disable' name='bmi1' />

< feature policy='disable' name='bmi2' />

< feature policy='disable' name='invpcid' />

< feature policy='disable' name='f16c' />

< feature policy='disable' name='hle' />

< feature policy='disable' name='rtm' />

< feature policy='disable' name='adx' />

< feature policy='disable' name='abm' />

I suggest adding the feature “hypervisor”, as this is
generally supported to advertise that the machine is a
VM. General information You can get an idea of what
is possible and what is the most recent supported
CPUs by checking this link:
https://www.berrange.com/posts/2018/06/29/cpu-
model-con�guration-for-qemu-kvm-on-x86-hosts/. It
is important to enable some features that can tell a
Guest that he does not need to �x some of the recent

Intel bugs such as Spectre. There’s microcode working
around this bug available on the OS. This microcode
normally reduces CPU performance to a certain
degree. If you run a VM, the VM is not aware of the
fact that this “bug” is not present on the CPU (�xed by
the microcode on the host) and would try to �x it with
it’s own microcode as well. For this, you will �nd some
CPU �ags on the site above that tell the VM that this
bug is already �xed, which you can add with the
“require” �ag. You will also �nd options for AMD
processors on the site above. Once again this is a
feature you should read into if you want to know
more about it.

Conclusion

Diving into KVM and libvirt was a very interesting
experience. The ability to migrate VMs on the �y
without interrupting the service is a very cool feature
and very helpful in a production environment. At
work, we’ve been using this for years already. In
combination with Ceph or other low cost storage
solutions, it’s a good and cheap alternative to VMware
for example, with a lot of enterprise grade
features.Since it’s running directly on Linux, a
standard Debian or Ubuntu server with next to
nothing installed is already enough to run and
provides a good basis for managing your hosts and
VMs. You get current drivers and kernels with security
patches, and are not locked into solutions like
VMWare where you have to wait for them to provide
hardware support and kernel patches for their
software.

https://www.berrange.com/posts/2018/06/29/cpu-model-configuration-for-qemu-kvm-on-x86-hosts/

Running GNOME Desktop on the ODROID-N2
 February 1, 2020  By Dongjin Kim  Linux, ODROID-N2

This article is about how the GNOME Desktop can run
on an ODROID-N2 with an upstream Linux kernel
v5.4. Fortunately, the upstream kernel has many
patches that make the ODROID-N2 run smoothly and
I appreciate Neil Armstrong who contributes a lot of
patches for Amlogic ARM SoC (Not to mention that
walking on the Moon thing. Ed.) and also ODROID
user @memeka who actually made GNOME work on
the ODROID-XU4 and ODROID-N2, earlier. The core
code changes were made by them, I put together the
scattered pieces into my personal package repository.

I’ve managed the custom Debian/Ubuntu Netboot
Installer with my package repository,
http://ppa.linuxfactory.or.kr and, recently, spent a
lot of time installing the GNOME Desktop to my
ODROID-N2 using a custom Ubuntu 19.04 Netboot
Installer that can be downloaded from
http://bit.ly/2NjQSG3. Please visit my other article
about my custom Netboot Installer and how you can
use it.

Installing Ubuntu 19.04 to ODROID-N2

The Ubuntu 19.04 Netboot Installer can be
downloaded from http://bit.ly/2NjQSG3 and the
image can be �ashed to MicroSD card using Etcher or
the Linux command line tool ‘dd’. If you use Petitboot,
the image can be �ashed to a USB stick as well. The
advantage of installing with Netboot Installer is that
the OS can be installed directly to USB storage and
you can customize the partition table during
installation, if you know how the partition can be
managed.

After �ashing the Netboot Installer image, the
contents look like this. You are not required to touch
any of them except ‘preseed.ini’ if you want to install
with prede�ned settings.

http://ppa.linuxfactory.or.kr/
http://bit.ly/2NjQSG3
http://bit.ly/2NjQSG3

Figure 1 - Installer Content

By default, the Netboot Installer is con�gured to
install Ubuntu GNOME Desktop. If you are familiar
with the Ubuntu installation steps, you can manually
install the OS by changing the key ‘di_auto’ to ‘false’.

Figure 2 - preseed.ini

You can change the prede�ned values as you see �t,
for example, account or the default password. The
setting values can be changed later after installation;
except for the target disk device, where you install
Ubuntu Disco, since the installer will format and
overwrite the disk device with the new OS.

Installation takes long

Now you are ready to launch the Netboot installer. It
can boot from the MicroSD card slot, eMMC or, even,
by Petitboot. The Ubuntu 19.04 Netboot Installer

installs the packages through the network, therefore,
the installation time could vary depending on the
bandwidth of your network or Ubuntu repository
server, but eventually, it will install.

Once everything is installed without failure, ODROID-
N2 will reboot and GNOME Desktop will start. But you
may feel that it runs a bit slower than you expected
since the current installer cannot use the Mali Bifrost
driver while installing which I’ve tried to �x before
publishing the installer image.

Figure 3 - Gnome Desktop up and running

This can be easily solved with an instruction to install
the driver by yourself and have it take e�ect after
rebooting:

$ sudo apt install mali-bifrost-wayland-driver

$ sudo reboot

On the next boot, you must check if “Ubuntu on
Wayland” is selected on the login screen to make sure
Mali Bifrost Wayland driver is running.

Figure 4 - Selection Option for ‘Ubuntu on Wayland’

Testing Mali Bifrost Wayland Driver

The simplest example to perform is with glmark-es2–
wayland, which can be done with the following
command:

$ sudo apt install glmark2-es2-wayland

Figure 5 - GLMARK2 Demo

I also have built Qt5 (5.12.2+dfsg-4ubuntu1.1), as well,
to run on GNOME Desktop with Wayland. Therefore,
QtWayland5 has to be installed. I’ve observed that
many Qt5 examples are not working properly with the
build, but it’s still good to test.

$ sudo apt install qt5-default qtwayland5

Figure 6 - QT5 Wayland test

Known Issues

Gnome-terminal cannot be launched if installed with
a prede�ned pro�le. This is an issue I couldn’t solve
and happens only if you installed the OS with the
prede�ned pro�le ‘ubuntu-gnome-desktop’. The
workaround for this issue is to run the two
instructions on the shell command line after connect
to your ODROID-N2 or opening a console screen and
this takes e�ect after rebooting.

$ sudo locale-gen — purge en_US.UTF-8

$ echo -e ‘LANG=”en_US.UTF-8"

LANGUAGE=”en_US:en”

’ | sudo tee /etc/default/locale

$ sudo reboot

Missing features compared to the stock kernel v4.9
for the ODROID-N2:

The upstream kernel is being updated by many
developers, especially thanks to Neil Armstrong who
contributes a lot of patches to upstream kernel for
Amlogic SoC and @memeka who actually made
GNOME work with the Mali Bifrost blobs. The kernel
will keep updating often and will be uploaded without
notice, but Ubuntu will let you know whenever an
update happens.

For more information, please see the original article
post at https://medium.com/@tobetter/running-
gnome-desktop-on-odroid-n2-98a187d�055.

https://medium.com/@tobetter/running-gnome-desktop-on-odroid-n2-98a187dff055

OS Installation using Petitboot and USB OTG
 February 1, 2020  By Justin Lee, CEO of Hardkernel  ODROID-N2, Tinkering

Petitboot

Petitboot is a platform-independent bootloader based
on the Linux kexec warm reboot mechanism.
Petitboot supports loading kernel, initrd, and device
tree �les from any Linux mountable �lesystem, plus
can it can load �les from the network using FTP, SFTP,
TFTP, NFS, HTTP, and HTTPS protocols.

Version Check

To check your Petitboot version, toggle the boot
mode switch to SPI boot mode and turn on the
ODROID-N2.

Figure 1 - Boot toggle set to SPI mode

Figure 2 - Version information located in the upper right

If your Petitboot version is lower than dev.20191127,
please refer to the “How to Recover or Upgrade” page
available at
https://wiki.odroid.com/getting_started/petitboot/rec
over_or_upgrade.

OS Installation via PC using ODROID-N2 OTG

This con�guration will allow for OS installation directly
to the memory (eMMC or uSD) on the ODROID-N2
from a PC over USB to the N2’s OTG port.

Figure 3 - Block Diagram of the connection

Figure 4 - PC OTG connection setup

Petitboot Setup

Select Exit to shell, as shown in Figure 5.

Figure 5 - Select to ‘Exit to Shell’

Check a list of storage device nodes:

$ ls /dev/mmc*

Set the storage device on the ODROID-N2 as a mass
storage device using ‘ums’ (USB Mass Storage mode).

This allows the ODROID-N2 and OTG to act as a
memory card reader.

$ ums

Figure 6 - Example UMS setup

Wait for your PC to detect the new mass storage
device.

Flash OS Image to Memory

When the device is detected, the host PC recognizes
your N2 as a USB card reader. Therefore, to �ash OS
image into memory, refer to OS installation guide,
except for some that use a memory card reader,
available here:
https://wiki.odroid.com/getting_started/os_installati
on_guide

Figure 7 - Using Etcher to write OS Image to N2

When done, press Ctrl + Alt + Delete, and boot the
installed OS. See the OS section below.

Direct Booting

1. Power o� ODROID

2. Toggle the boot mode switch to MMC boot mode

3. Power on ODROID

Booting via Petitboot

1. Power o� ODROID

2. Toggle the boot mode switch to SPI boot mode

3. Power on ODROID

4. Select 'Rescan devices'

5. Select boot partition

https://wiki.odroid.com/getting_started/os_installation_guide

Set Autoboot

1. Select 'Rescan devices' 2. Select 'System
con�guration' 1. Set 'Autoboot' (*) Enabled 2. Set
'Boot Order' 1. Clear 2. Add Device 3. Set 'Timeout' (10
seconds or more recommended) 4. OK 3. Press Ctrl +
Alt + Delete

Figure 8 - Petitboot Con�guration

The original wiki document is available at
https://wiki.odroid.com/getting_started/petitboot/o
s_installation_using_otg.

https://wiki.odroid.com/getting_started/petitboot/os_installation_using_otg

Using I2C On ODROIDs With Android Things
 February 1, 2020  By @Luke.go  Android, Tutorial

This is the continuation of the initial January 2020
magazine article titled “Android Things”, which
details using a new Google-backed operating system
which facilitates using the GPIO pins on ODROID
devices.

I2C

Figure 01 - Available I2C Table

You can also use I2C on the ODROID board with
Android things. You can use any I2C API provided by
the Android things. The Android Things supports
various sizes of data transmission, byte, word and
bu�ered data.

I ported the Weather board 2
(https://www.hardkernel.com/product-
category/sensor/) example to Android with Android
things. Also I ported I2C display

(https://www.hardkernel.com/product-
category/display/). Like other familiar I2C devices,
both of the above devices are connected with 4 wires,
Voltage, Ground, I2C SDA and I2C SCL. In the
examples, I connected I2C wires to the I2C-2.

Figure 02 - Weather Board 2 Diagram

https://magazine.odroid.com/article/android-things/
https://www.hardkernel.com/product-category/sensor/
https://www.hardkernel.com/product-category/display/

Figure 03 - I2C LCD Diagram

Most of pre-procedure are same to GPIO procedure.
Add permission to the manifest, import and call the
instance of PeripheralManager to the project source
code. However, you do not need to get a GPIO
instance. You need to call the openI2cDevice method
to get the I2C device instance.

...

List i2cBusList = manager.getI2cBusList();

I2cDevice device =

manager.openI2cDevice(i2cBusList.get(0),

 I2C_DEVICE_ADDRESS);

// or i2cDevice device =

manager.openI2cDevice(“I2C-2”,

// I2C Device Address);

...

The I2C Interface names are I2C-2 and I2C-3. Each I2C
interface consists of pins 3,5 and pins 27, 28. When
you get the I2C bus device, you should set the I2C
device address for each I2C chip. In this case, a
weather board2 consists of two I2C chips. So, I
created two I2C device instances. One instance is
linked by 0x76 to the BME280. The chip o�ers
temperature, pressure and humidity values. And the
other instance is linked by 0x60 to the SI1132. The
chip o�ers UV, Visible and IR values. And I2C LCD has
one I2C chip, so I created one I2C instance. It linked by
0x27 for control the LCD. Like this, you should create
I2C device instance for each device with their own
address.

Through the I2C instance, you can communicate with
the device. Android things provide many methods.
For reading the data from a device, it provide read,
readRegBu�er, readRegByte and readRegWord
method. Also for writing data to device, it provides
write, writeRegBu�er, writeRegByte and

writeRegWord. The Android Things o�cial website
provides a lot of information.

I2C Device method reference - https://bit.ly/36yY6N0.

By using the I2C API, I built a wrapper class for
weather board2 and I2C LCD. Here is a part of the
example code to read and write data with the Android
things API.

…

private void softrst() throws IOException {

 device.writeRegByte(reg.RST,

POWER_MODE.SOFT_RESET_CODE);

}

private byte getPowerMode() throws IOException {

 return (byte)

(device.readRegByte(reg.CTRL_MEAS) & 0b11);

}

...

The code is part of BME280.java. First method is
called to soft reset the chip and second method is
called to get chip’s power mode. Each API’s �rst
parameter is the address of the register in the chip.
On the write method, second parameter is usually the
data to transfer. also on the read method, second
parameter is usually not exist. However, if you want
to read data by bu�er, you need bu�er to read and
the bu�er is passed as a second parameter.

You can test or use the project. Here is the link.

Weather board2 with android things example -
https://bit.ly/3aKqjnr. I2C LCD with android things
example - https://bit.ly/2RUvIzJ.

Following is the Weather board 2 Hardware
connection:

https://bit.ly/36yY6N0
https://bit.ly/3aKqjnr
https://bit.ly/2RUvIzJ

Figure 04

The Weather board 2 Output Result would be like so:

Figure 05

Following is the I2C LCD hardware connection and
result:

Figure 06

Figure 07

PWM

Figure 08 - Available PWM Table

The android Things also support the PWM. There are
many methods to con�gure and control the PWM
interface. You can set the PWM Frequency via
setPwmFrequency. Before enabling the pin, you must
set frequency via this method. Also you can set PWM
duty cycle by setPwmDutyCycle between 0 and 100.
Frequency and duty cycle settings can be set in both
enabled and disabled state and will be remembered.

Please check the Reference.
https://developer.android.com/things/sdk/pio/pwm.

Here is the PWM testing project. In this example, you
can turn on and o� a PWM pin. and change duty cycle
via progress bar on the Application:
https://github.com/xiane/thingsGpioExample/tree/p
wm.

https://developer.android.com/things/sdk/pio/pwm
https://github.com/xiane/thingsGpioExample/tree/pwm

Figure 09 - PWM OFF state

Figure 10 - PWM LED OFF

Figure 11 - PWM LED scope OFF

Figure 12 - PWM ON 50%

Figure 13 - PWM LED ON

Figure 14 - PWM LED scope ON

Figure 15 - PWM ON 100%

Note that the voltage at GPIO pins on ODROID-N2 are
all 3.3V.

Reference https://bit.ly/36qpFrW

https://bit.ly/36qpFrW

ODROID-XU4 Fan Controller
 February 1, 2020  By @lbseale  Linux, ODROID-XU4

This article is about the Hysteresis fan controller for
the ODROID-XU4. When the fan comes on, it stays on
for a while. It cools down the CPU enough that it then
turns o�. As the CPU gets hotter, the fan spins harder.
For example, say the trip point is 60 deg C, and the
hysteresis is 8 deg C. The fan will turn on when the
temperature reaches 60 deg C, but will not turn o�
until the temperature reaches (60-8) = 52 deg C. For
more information about this type of controller, see
the Wikipedia article at https://bit.ly/2NWCowb.
Please note that this controller only works with
Ubuntu on the ODROID-XU4, and is not designed for
any other single board computer or operating system.

Installation

Download the installer https://bit.ly/2RKqRB4 from
GitHub. To install using the GUI installer, double-click
on xu4fan-installer.deb �le. Then click the Install
Package button in the top-right of the window. To
install using the command line, use:

$ sudo apt install xu4fan-installer.deb

To uninstall, use:

$ sudo apt remove xu4fan

The fan controller will start automatically after it is
installed.

Con�guration

The con�guration �le for the fan controller is located
in /etc/xu4fan/xu4fan.conf You can use this �le to
change the settings for the fan controller, such as trip
points and hysteresis. You must restart the fan
controller after changing the con�guration �le. To do
this use:

$ sudo systemctl restart xu4fan.service

Con�guration Options

trip_temps: List of temperatures corresponding to
PWM values. When the temperature is increasing, and

https://bit.ly/2NWCowb
https://bit.ly/2RKqRB4

one of these temperatures is reached, the
corresponding PWM value will be set. Units are Deg C
* 1000. Example: [60000, 70000, 80000]

trip_speeds: List of PWM values corresponding to
temperatures. Units are PWM values in the range (0-
255). A value of 120 is (120 / 255) = 47% of the fan's
maximum power. As the CPU gets hotter, the fan
spins harder. Note that values below 120 are not
powerful enough to spin the stock fan. Example: [120,
200, 240]

hysteresis: Number of degrees C past the trip point
that the temperature must reach to drop to the
preceding trip point. If the trip point is 60 deg C, and
the hysteresis is 8 deg C, then the temperature must
fall below (60 - 8) = 52 deg C for the fan to turn o�.
Units are Deg C * 1000. Example: 8000

poll_interval: Number of seconds for the fan
controller to wait between temperature checks.
Example: 0.25

verbose: If True, a message is printed to syslog every
time the fan changes speed The options for the
[Thermometer] and [Fan] sections should not need to
be changed. These are speci�c to the ODROID-XU4.

Systemd Service

The fan controller is run by a systemd service. Which
is started automatically when it is installed. It will also
start automatically when your ODROID-XU4 starts. To
see its status, use:

$ sudo systemctl status xu4fan.service

To stop it use:

$ sudo systemctl stop xu4fan.service

To disable it, and not allow it to start automatically,
use:

$ sudo systemctl disable xu4fan.service

To enable, use:

$ sudo systemctl enable xu4fan.service

Sample Files

A sample con�guration �le along with a systemd
.service �le are located in /usr/share/xu4fan/.

Reference

https://github.com/lbseale/odroid-fan

https://github.com/lbseale/odroid-fan

The G Spot: Your Goto Destination for All Things That are
Android Gaming - These Board Games are NOT Bored Games
 February 1, 2020  By Dave Prochnow  Gaming

Do you think that board games are bored games?
These paper-based analog entertainment activities
have a long-standing gaming history, or has that
tradition faded and been replaced by today’s ODROID
Android games. Well, Dire Wolf Digital would beg to
di�er. This Denver, Colorado-based game
development �rm has carved a pretty substantial
niche for itself - by taking board games and rendering
them into digital gaming masterpieces.

Figure 1. The howl of the Dire Wolf Digital board game
juggernaut has been sounded.

This crazy transmogri�cation began several years ago
when Renegade Game Studios sought Dire Wolf
Digital to bring two of their tabletop games to the
digital world. “Lanterns: The Harvest Festival” and

“Lotus” featured a “unique user experience” (UX) and
an “intuitive touch play” system which would both
become hallmarks of the future remastering e�orts of
Dire Wolf Digital.

“Pass GO and Collect $200” – now today, Dire Wolf
Digital has announced that all of 2020 will be
consumed with bringing a huge slate of board games
into their digital fold. These o�erings represent an
incredible mix of titles that would be the envy of
EVERY Android dev.

Not all of the announced titles are “one-o�” trade-o�s
where one board-games equals one digital title.
Some, like WizKids’ “Mage Knight” is only one title
from an entire catalog of games that will be getting
the digital treatment. While you might not have heard
of some (or, any) of these board games, they are
incredibly popular with tabletop gamers. For example,
Dire Wolf Digital supplied us with this review snippet
from “Rock, Paper, Shotgun:”

Figure 2. “Mage Knight” is the initial release from the
partnership between WizKids and Dire Wolf Digital.

‘“Mage Knight” is a staggering game. It is one of those
games you can only step back and admire as a thing
of beauty, a work of art. It is a masterpiece. I cannot
believe how good it is. Gosh, gush, right? Although,
there are plenty of Android games that would yearn
for that type of rave review.

Whereas, WizKids are a traditional board game
maker, another Dire Wolf Digital partnership has been
forged with 2018 Kickstarter game darling, “Root.”
This woodland “war game” between furry forest
creatures versus a local cat is the creation of Cole
Wehrle and Leder Games. Again, we were provided
with a glowing review of this game which seems to
imbue its players with an anthropomorphic
attachment to the game’s protagonists.

Figure 3. Your eyes would be big too, if you had to
combat a sharp-fanged killer monster cat.

Continuing on with the Dire Wolf Digital 2020 hit list,
brings us to “Sagrada”-- a game of dice, stained glass,
and architectural wonders. Yes, you read that right;

three of the strangest bedfellows you will ever see in
an Android game. Touted as a, “dice-drafting” game,
“Sagrada” is a 2017 title from Floodgate Games that
garnered a �stful of award nominations, as well as
being labeled the most innovative game of the year.

Figure 4. Blending a dice game with stained glass and
the architecture of Antoni Gaudi is undeniably
innovative.

If you love tile-based games, then you have to
embrace the board game genre. That is, until Dire
Wolf Digital brings Reiner Knizia’s “Yellow & Yangtze”
to your ODROID. This is a wild combat/strategy game
similar to Knizia’s acclaimed “Tigris & Euphrates”
game. In each title, you grow your empire; but
beware. The game’s winner is not only judged by the
prosperity of your kingdom, but, also, by the strength
of your weakest asset. So make things right by
maintaining a balance throughout your dynasty.

Figure 5. The most recent release from Reiner Knizia’s
strategy games collection.

Great news: as this column was going to press,
“Reiner Knizia’s Yellow & Yangtze” popped up on
Google Play! Incredibly, there is already an update,
too (i.e., Update 1.17). Our fave improvement in this
update was: “slowed down peasant riot animation, so
it is more obvious when an opponent makes this
play.” Yay!

Figure 6. Game ON; but make sure that you watch your
assets.

Fans of the vintage American Heritage board game
from 1964, “Dog�ght”, will de�nitely want to watch for
the Dire Wolf Digital titles, “Wings of Glory” and
“Tripods and Triplanes.” Sitting at the exact opposite
ends of historical accuracy these titles from Ares
Games will take you from the wicker seat cockpit of a
1917 aeroplane in the former title to facing the “death
ray” from an alien spaceship in the latter game’s “War
of the Worlds” adaptation. Likewise, as the latter’s title
suggests you will be combating the Martian scourge in
vintage 1917 era aeroplanes.

Figure 7. Martian invaders from an H. G. Wells’ novel
clash with the aeroplanes of the First World War.

You can watch a game play tutorial at
https://www.youtube.com/watch?v=IVJi-54hb5c.

Finally, we return to where all of this board gaming
started with another title from Renegade Game
Studios. “Raiders of the North Sea” which is not a
game about submarine warfare during the world
wars, rather its a plundering game of Viking conquest.
It is dead simple; build a boat (i.e., a Viking longboat)
and they will come and plunder. Best of all, however,
this title is already available for play on Google Play.

Figure 8. Row, row, row your longboat, gently into
plundering the entire North Sea; merrily, merrily
enjoying the Vikings’ creed.

You can watch the trailer at https://bit.ly/2Rp7q1C.

So keep your eye on Dire Wolf Digital in the Google
Play store. Then, maybe, dust o� your copy of
“Monopoly” from the hallway closet and discover a
newfound appreciation for the venerable board
game. You can learn more about all of these games at
the Dire Wolf Digital Web site at
http://www.direwolfdigital.com.

https://www.youtube.com/watch?v=IVJi-54hb5c
https://bit.ly/2Rp7q1C
http://www.direwolfdigital.com/

The Best ODROID-XU4 Media Server Software Options
 February 1, 2020  By Moe Long, www.cupofmoe.com  ODROID-XU4, Tutorial

While the Raspberry Pi is a popular single-board
computer (SBC), the ODROID-XU4 is a solid
competitor. Maintaining a small form factor, the
ODROID-XU4 packs quite a performance punch.
Powerful yet energy-e�cient, with an ARM big.LITTLE
processor, the ODROID-XU4 features the Samsung
Exynos Cortex-A15 2GHz and Cortex-A7 octa-core
CPUs. There's a Mali-T628 GPU with OpenGL ES 3.1
and OpenCL 1.2 capabilities. Onboard, 2GB of
LPDDR3 RAM makes multitasking a breeze.

Among the best uses for an ODROID-XU4 is as a
media server. Because of its tiny footprint yet beefy
specs, the ODROID-XU4 sips power while handling
network-attached storage (NAS) processes like a
champ. From Plex and Emby to Owncloud and
OpenMediaVault, these are the best ODROID-XU4
media server software options!

Build an ODROID-XU4 Server with
Ubuntu, Debian, Standalone Images, etc.

Most users will likely install a Linux operating system
such as Ubuntu or Debian. Then, within the host
operating system, you can install NAS services. DietPi
is a top choice, as well, with a tiny footprint and
modular installation that allows you to easily
download media server, and �le server, programs.
Alternatively, you might prefer a standalone server
image. Regardless, the ODROID-XU4 o�ers an
economical means of creating a powerful, energy-
e�cient NAS. The CloudShell 2 NAS kit even allows for
the installation of up to two 3.5" hard drives, and runs
SPAN, RAID0, RAID1, and JBOD.

If you choose a case without hard drive connections
built-in, you'll need to decide how you want to store
your media. Luckily, with its USB 3.0 ports, the
ODROID-XU4 can read media from connected drives
quickly. If you've got a networked media drive, you
could install server software on the ODROID-XU4 and
simply connect to a Samba share or other networked
�le storage device. For hooking up drives directly to

the ODROID-XU4, you might need a more powerful
power supply such as a 5V/6A PSU.

Odroid XU4 media server considerations:

Case

Media storage (directly connected drives vs. networked
drive)

Standalone server image vs. host OS with media server
software

Host OS (Debian, Ubuntu, DietPi, etc.)

PSU

Plex Media Server

Figure 1 - Plex

Best for: Media server beginners, intermediate,
and advanced users alike

Plex remains one of the best media server apps
available, and an ODROID-XU4 Plex media server
works extremely well. Something of a do-it-yourself
(DIY) Net�ix, Plex allows you to host your personal
media collection such as movies, TV shows, music,
and even photos on a server. Then, you can access
your entire repository of �lms, TV, and audio �les on
compatible Plex clients. Once you've loaded up your
libraries, Plex will scan your �les and download
metadata and box art if available.

When Plex began, it focused mostly on organizing
personal media �les. And while that's still its core
focus, Plex adopted a slew of cord-cutting features
such as free, ad-supported movies and TV shows,
podcast and Tidal integration, plus live TV and DVR
functionality. Since it's incredibly easy to install and
set up, Plex is a superb server program for beginners.
Still, power users can dig into its vast array of
customization settings. An ODROID-XU4 Plex server
install is incredibly easy to cobble together. I've found

an ODROID-XU4 Plex server simple to create, and
functional for in-home streaming to over �ve clients.

Emby

Figure 2 - Emby

Best for: Media server intermediate and advanced
users

Likewise, Emby runs smoothly as an ODROID-XU4
media server. Similar to Plex, Emby is an all-in-one
server software app that organizes your personal
media collection into a lush interface with metadata
and box art. However, Emby is best suited to power
users. Although beginners can, and should, try Emby,
its slate of customization options makes it a solid
choice for advanced users.

Admittedly, Emby's setup process isn't di�cult, but
additional options such as enabling chapter image
extraction makes it slightly more complicated than
Plex's straightforward con�guration. Moreover, ample
settings to tweak and even the ability to implement
your own CSS in its web app makes Emby a true home
server enthusiast's dream. When using the ODROID-
XU4 as a server, Emby quickly sorts your media �les
into various categories, allowing you to stream to
your Emby client devices.

Serviio

Figure 3 - Serviio

Best for: Media server beginners, intermediate,
and advanced users

For streaming media to various clients such as
phones, tablets, and set-top boxes, Serviio is a neat
pick. You can access a slew of video and audio �les.
Plus, Serviio allows you to stream content from RSS
feeds and web pages. It can handle subtitles, tons of
playlist formats, and even boasts RAW camera image
support. There's integration with the likes of Trakt.tv,
and even an Alexa skill. Serviio is super easy to install
on the ODROID-XU4, requiring little more than a Java
JDK installation, then downloading the actual
program.

OwnCloud

Figure 4 - OwnCloud

Best for: Dual-purpose media and �le server use

If you want to spin up an ODROID-XU4 NAS server,
OwnCloud is a great choice. Whereas the likes of
Emby and Plex are dedicated media server solutions,
OwnCloud is a general �le server suite. As such, it's
more akin to a DIY Dropbox. Nevertheless, its
available video and audio player apps allow media
playback. One of the best solutions is using the

WebDAV protocol. Kodi even features a WebDAV
plugin. OwnCloud lacks the multimedia frontend
found in dedicated media server suites, but it's a
great option for a combo media and �le server.

OpenMediaVault

Figure 5 - OpenMediaVault

Best for: Dual-purpose media and �le server use

Rather than simply installing an operating system and
then running media server apps, you might prefer an
ODROID-XU4 server image such as OpenMediaVault
(OMV). OMV lets you quickly spin up a full-�edged
NAS, and, therefore, utilize your ODROID-XU4 as a
server. This Debian-based Linux distribution (distro)
provides a modular installation. Once you've booted
into OpenMediaVault, you've got access to a
smorgasbord of utilities such as BitTorrent clients,
SSH, SFTP, SMB, DAAP media server, RSync, and more.
Plus, there's a massive plugin repository including
plugins for Plex and Emby. If you're looking for a
comprehensive server image to run on the ODROID-
XU4, OpenMediaVault is a top contender.

NextCloud

(Figure 6 - NextCloud)

Best for: Combo media and �le server

Similar to OwnCloud, NextCloud o�ers nearly the
exact same feature set. However, while OwnCloud
touts open-source and enterprise tiers, NextCloud
uses the exact same code for both free and paid tiers.
Despite its onus on �le serving, you can use
NextCloud as a media server. Since NextCloud
includes WebDAV support, you may even use the
WebDAV plugin for Kodi to access your media in the
Kodi media centre front end.

Final Thoughts

The ODROID-XU4 is one of the best maker boards on
the market. Coupled with the right software, it makes
an a�ordable, energy-sipping NAS device. Plex, Emby,
and Serviio are excellent media-�rst server solutions,
while NextCloud and OwnCloud add �le server
functionality. Alternatively, you could install a
dedicated media server app like Plex as well as a DIY
�le server program such as NextCloud and run them
side-by-side. OpenMediaVault is a superb full-�edged
media server image. A do-it-yourself media server
with the ODROID-XU4 is a simple yet functional
project which maximizes the capabilities of this nifty
SBC.

This article originally appeared on Electromaker.io at
https://www.electromaker.io/blog/article/best-
odroid-xu4-media-server-software-options.

https://www.electromaker.io/blog/article/best-odroid-xu4-media-server-software-options

