

Coronavirus Tracking And Monitoring: Using IoT with an ODROID-C2
to Stay Informed
 May 1, 2020

Wouldn’t it be interesting to use ODROID-C2 in order to see speci�c pandemic data
and to know what’s happening in your country in the middle of crisis today? In this

article we will see how we can keep up to date with the COVID-19 pandemic using ODROID-C2 and an IoT

Autonomous Drone: Take To The Skies With Your ODROID-XU4
 May 1, 2020

This tutorial will walk you through building a Pixhawk guided autonomy-capable drone.

Adding A Mouse And Keyboard To Your ODROID-GO Advance:
Making the Ultimate on the GO Computer
 May 1, 2020

I thought a small keyboard with an analog stick underneath it attached to the ODROID-
GO Advance, similar to the keyboard for the classic ODROID-GO, would be a great

project. The keyboard could attach via USB, but a USB Hub Chip would also be needed so that a USB WiFi
module

Introducing the New ODROID-C4: A New Generation Single Board
Computer
 May 1, 2020

The ODROID-C4 is a new generation single board computer that is more energy
e�cient and has higher performance than the ODROID-C2 which was introduced over

four years ago, as the world's �rst a�ordable ARM 64-bit computer. The ODROID-C4 features an Amlogic
S905X3 CPU which is a quad-core Cortex-A55 cluster with

Linux Gaming on ODROID: Box86 - Part 2
 May 1, 2020

About a year ago, I wrote about box86, an i386 emulator for ARM developed by
@ptitSeb, who is also responsible for the awesome gl4es wrapper for OpenGL →
OpenGL ES. While the original look at it a year ago was already impressive, I want to

look at it again, and

Fingerprint Processing: Running the NIST NBIS Fingerprint Toolset
on an ODROID-XU4
 May 1, 2020

The National Institute of Science and Technology, or NIST, maintains a widely used set
of open source tools known as NIST Biometric Image Software, or NBIS for short. The

functionality that is going to be focused on is its use related to �ngerprinting[1], [2]. This article will cover
everything needed

ODROID-GO Advance Tips And Tricks: Unzip ROMs While
Maintaining Box Art And Game List
 May 1, 2020

This is a short tutorial to help you with your ROM sets and the ODROID-GO Advance.
Many of us have ROM sets with accompanying media �les like box art, screen shots,

logos, etc. Sometimes these ROM sets have compressed �les. Now do we really want to be using up precious

Shall We Play a Game? – Play the Promise of Google Stadia, At a
More Practical Bandwidth
 May 1, 2020

The lackluster launch of Google Stadia left many gamers in the lurch. Sure the lure of
playing AAA games inside your browser sounded very attractive, but bandwidth

became a bugbear which could not be overcome, yet.

Multi Screen Desktop Using VNC - Part 2: An Improved And
Simpli�ed Version
 May 1, 2020

Assist With Coronavirus Research: Using Rosetta@home To Help
Find A Cure
 May 1, 2020

It is now possible to use your 64bit ODROID to assist with Coronavirus Research.
Thanks to a new application update for Rosetta@home, made possible by the Arm

development community.

ODROID-GO Advance Cell Phone: A Custom Built and Coded Cell
Phone
 May 1, 2020

Recently, I decided to build my own cell phone out of an ODROID-GO Advance using a
SIM800L module which included a speaker and mic. Thanks to the ample space inside

the case, this hardware installation was pretty easy. For this build, I used a Debian Buster image with the
SIM880L

Coronavirus Tracking And Monitoring: Using IoT with an
ODROID-C2 to Stay Informed
 May 1, 2020 By Miltiadis Melissas ODROID-C2, Tutorial

Wouldn’t it be interesting to use ODROID-C2 in order
to see speci�c pandemic data and to know what’s
happening in your country in the middle of crisis
today? In this article we will see how we can keep up
to date with the COVID-19 pandemic using ODROID-
C2 and an IoT platform (uBeac) with a dashboard. The
brief setup includes the following:

ODROID-C2 (https://bit.ly/2yNpOKI)

uBeac IoT Platform Free Subscription
(https://bit.ly/2Y8wxK8)

Brains!

Overview

The ODROID-C2 as an IoT device in this project is
using uBeac (https://www.ubeac.io/) , an IoT platform,
to send data that is pulling o� periodically from
https://www.worldometers.info/coronavirus/, and
from there you, as a user, can choose which of those

data would you like to display on a customized
dashboard. The surveillance of the COVID-19 data
could also be used to produce preventative solutions
such as sending noti�cations about a potential
parameter as soon as it occurs or even before setting
a threshold. All of this monitoring can be done
through a versatile IoT platform for centralized digital
transformation, data integration and visualization
uBeac which allows you to connect, process and
visualize real-time data securely. Undoubtedly the
ODROID-C2, a powerful 64-bit quad-core single board
computer (SBC), a cost-e�ective 64bit development
ARM board can perform these multiple tasks of
varying di�culties with e�ciency. In order to follow
this guide easily we divided it into logical steps, as
detailed below.

Step 1: Signing up with uBeac

https://bit.ly/2yNpOKI
https://bit.ly/2Y8wxK8

In order to get started, you can sign with uBeac at the
web address https://www.ubeac.io . All you need is to
add your email and create a password. On top of that,
you must create a team. The team requires you to
declare a name for the team, a code name
(namespace), and an address.

Figure 1 - Creating a uBeac account

Step2: Setting up uBeac

Now that you have declared your team with uBeac,
you need to create a gateway to connect ODROID-C2.
From the uBeac homepage, click on the Gateways
module and add a new gateway. Under the General
tab, assign a UID and a name for your gateway f.g
COVID19. As you may connect more devices on your
gateway, select uBeac Multiple Device as the type of
your gateway. Under the HTTP tab, you will �nd the
two protocols URLs: one for HTTP and one for HTTPS.
Those two protocols will be used to connect to your
ODROID-C2. Finally, click submit to add the gateway.

Figure 2 - Creating a gateway with uBeac

Figure 3 - Specifying the uBeac gateway URLs

Step 3: Setting up the ODROID-C2

The release version should be 3.14.79-117 (Feb 26,
2017) or higher and the python version 3.5.2 or
higher. The code consists of 3 interrelated programs
*.py programs written in python with the main_py.py
to be the executable. We run the main_py.py program
under command prompt with sudo within the
python3 environment and we are calling the other
two (i.e world_cases_collector and
getting_world_value) as modules. It’s that easy!

$ sudo python3 main_py.py

There are two prerequisites though: �rst we install
the package “psuit”. The psutil (process and system
utilities) is a cross-platform library for retrieving
information on running processes and system
utilization (CPU, memory, disks, network, sensors) in
Python. It is useful mainly for system monitoring,
pro�ling and limiting process resources and
management of running processes. We can install
psuit with the pip, the installer packager in linux.

$ pip install psuit

Next, we can install the package “speedtest-cli”, which
is a script written in the Python programming
language that measures the internet speed
bidirectionally. We install speedtest-cli with the pip
package installer again:

$ pip install pseedtest-cli

Step 4: Debugging the IoT device

You can download the code from here
(https://bit.ly/2xd88If). Running the main_py.py will
result in a connection between your device i.e
ODROID-C2 and the gateway on uBeac. You can edit
of course the main-py.py with your details before run
this executable in Python and especially this �eld:

Configuration section

UBEAC_URL = ‘hub.ubeac.io’

GATEWAY_URL = ‘INSERT GATEWAY URL HERE’

DEVICE_FRIENDLY_NAME = ‘World COVID19 Tracker’ ←

as an example

SENT_INTERVAL = 900 # Sent data interval in

seconds

The ‘SENT_INTERVAL’ command can be set to any sent
data interval in seconds, and we have set it to 900 in
this example, that mean that ODROID-C2 will be used
as a device to send the data to uBeac every 15
minutes.

Now, go back to uBeac and select the Gateways
module again to see that a device has been added to
it. If you click your gateway, you can see all the HTTP
POST requests that the ODROID-C2 is sending to
uBeac. If you select the Devices module and click on
“this device”, which is your ODROID-C2, you will see all
the data for the coronavirus from
https://www.worldometers.info/coronavirus/ that it is
sending to uBeac!

Figure 4 - Inspecting the data being sent to the ODROID-
C2

Step 5: Creating the uBeac dashboard

The last part is the best! Having a dashboard to
visualize your incoming data is very useful especially if
you want to analyze and utilize the data afterwards.
First, you must set up the dashboard. Go to the
Dashboards module and add a new one. Pick a name,
such as “COVID19 Tracker” and then click the Submit
button. A blank dashboard will appear, which you can
customize and modify anytime. On the top right
corner of the dashboard page, click the clipboard icon
to start editing the dashboard. There are many
widgets such as indicators, charts and device trackers
to help you visualize your data. Next, you would
probably click the ‘connect to data’ button to edit the
widget settings. This includes changing the display
icon, selecting the device to collect data from and
other features that are unique to each widget. Once
you are satis�ed with your widget, save your
progress. You can continue doing this for as many
widgets as you would like. In Figures 5 and 6, you can
see an example of my dashboard displaying the
measurements of COVID-19 in my country, Greece.

Figure 5 - The COVID-19 uBeac dashboard as seen in
Greece

Figure 6 - The COVID-19 uBeac dashboard as seen in
Greece

Step 6: Revisiting history

While the dashboard displas your live sensor activity,
it does not show your previous data. That is kept in
the Reports module, a very useful module for tracking
past records. There you can �nd all historical records
of your COVID-19 data, dating back to when you
would have started keeping track of these data. You
can also get reports from your entire gateway. Most

importantly, this data can be �ltered by date, time
range, devices and practically in any parameter f.g
individual countries, continents, global etc. There is
also the ability to use this data for another project by
exporting it in CSV or in JSON format.

Figure 7 - Inspecting the sensor data historical reports
for your COVID-19 tracker

Final words

This is an example of how you can use ODROID-C2 in
conjunction with uBeac to create and monitor the
COVID-19 statistics. You can also, as outlined above,
�lter them, manipulate, visualize them and �nally
export them for external use in di�erent projects. You
can even add more powerful devices as ODROID-XU4
(https://bit.ly/2VFP0vM) into the same dashboard.

Scripts main_py.py

import json

import threading

import http.client

from world_cases_collector import

getting_world_value

Configuration section

UBEAC_URL = 'hub.ubeac.io'

GATEWAY_URL = 'INSERT GATEWAY URL HERE'

DEVICE_FRIENDLY_NAME = 'World COVID19 Tracker'

SENT_INTERVAL = 900 # Sent data interval in second

day = False

date = input("Update for Today or Yesterday? (T/Y)

: ")

if date == 'T':

day = True

else:

day = False

def main():

threading.Timer(SENT_INTERVAL, main).start()

device_world = [{

'id': DEVICE_FRIENDLY_NAME,

'sensors': getting_world_value(day)

}]

connection =

http.client.HTTPSConnection(UBEAC_URL)

connection.request('POST', GATEWAY_URL,

json.dumps(device_world))

response = connection.getresponse()

print(response.read().decode())

if __name__ == '__main__':

main()

_const_cases.py

WORLD CASES CONSTANTS

country = 0

w_total_cases = 1

w_new_cases = 2

w_total_deaths = 3

w_new_deaths = 4

w_total_recovered = 5

w_active_cases = 6

w_serious_critical = 7

w_tot_cases_M = 8

w_deaths_M = 9

w_total_tests = 10

w_tests_M = 11

JSON CONSTANTS

COUNTRY_OTHER = 'Country'

USA_STATE = 'USA States'

TOTAL_CASES = 'Total Cases'

NEW_CASES = 'New Cases'

TOTAL_DEATHS = 'Total Deaths'

NEW_DEATHS = 'New Deaths'

TOTAL_RECOVERED = 'Total Recovered'

ACTIVE_CASES = 'Active Cases'

SERIOUS_CRITICAL = 'Serious Critical'

TOT_CASES_M = 'Total Cases per Million'

DEATHS_M = 'Deaths per Million'

TOTAL_TESTS = 'Total Tests'

TESTS_M = 'Tests per Million'

EXTRA JSON CONSTANTS

TOTAL_CASES_PERCENT = 'Total Cases %'

NEW_CASES_PERCENT = 'New Cases %'

TOTAL_DEATHS_PERCENT = 'Total Deaths %'

NEW_DEATHS_PERCENT = 'New Deaths %'

TOTAL_RECOVERED_PERCENT = 'Total Recovered %'

ACTIVE_CASES_PERCENT = 'Active Cases %'

SERIOUS_CRITICAL_PERCENT = 'Serious Critical %'

DEATHS_VS_CASES = 'Deaths Rate %'

RECOVERED_VS_CASES = 'Recovery Rate %'

def get_sensor(id, value, type=None, unit=None,

prefix=None, dt=None):

sensor = {

'id': id,

'data': value

}

return sensor

def get_percentage(str_num, str_dem):

if str_dem == '0':

return '0'

percent = float(str_num) / float(str_dem) * 100

return str(float("{:.2f}".format(percent)))

world_cases_collector.py

from bs4 import BeautifulSoup as bf

import requests

import _const_cases as const

num_places = 220 #number of countries

def getting_world_value(today): #getting the value

from website

data_list = []

html =

requests.get("https://www.worldometers.info/corona

virus")

soup = bf(html.text,'html.parser')

if today:

tag = soup("tr")[9:9 + num_places]

else:

tag = soup("tr")[239:239 + num_places]

def extract_vals(arr):

temp_list = []

arr_size = len(arr) - 2

for j in range(arr_size):

if j == 1:

temp_list.append(arr.contents[j].contents[0].conte

nts[0])

elif j % 2 == 1:

value = arr.contents[j].contents

if len(value) == 0:

value.append('0')

value = value[0]

value = value.replace("

", "")

value = value.replace("+", "")

value = value.replace(",", "")

value = value.replace("N/A", "")

if len(value) == 0 or value == ' ':

value = '0'

temp_list.append(value)

return temp_list

compare_list = extract_vals(tag[-1])

for i in range(len(tag)):

insert_list = extract_vals(tag[i])

def continents(arg, day):

if day:

switcher = {

212: 'North America',

213: 'Europe',

214: 'Asia',

215: 'South America',

216: 'Oceania',

217: 'Africa',

218: 'Unknown',

219: 'World',

}

else:

switcher = {

211: 'Asia',

212: 'North America',

213: 'Europe',

214: 'South America',

215: 'Oceania',

216: 'Africa',

217: 'Unknown',

218: 'World'

}

return switcher.get(arg,

insert_list[const.country])

data_name = continents(i, today)

data = {

const.TOTAL_CASES :

insert_list[const.w_total_cases],

const.NEW_CASES : insert_list[const.w_new_cases],

const.TOTAL_DEATHS :

insert_list[const.w_total_deaths],

const.NEW_DEATHS :

insert_list[const.w_new_deaths],

const.TOTAL_RECOVERED :

insert_list[const.w_total_recovered],

const.ACTIVE_CASES :

insert_list[const.w_active_cases],

const.SERIOUS_CRITICAL :

insert_list[const.w_serious_critical],

const.TOT_CASES_M :

insert_list[const.w_tot_cases_M],

const.DEATHS_M : insert_list[const.w_deaths_M],

const.TOTAL_TESTS :

insert_list[const.w_total_tests],

const.TESTS_M : insert_list[const.w_tests_M],

const.TOTAL_CASES_PERCENT :

const.get_percentage(insert_list[const.w_total_cas

es],compare_list[const.w_total_cases]),

const.NEW_CASES_PERCENT :

const.get_percentage(insert_list[const.w_new_cases

],compare_list[const.w_new_cases]),

const.TOTAL_DEATHS_PERCENT :

const.get_percentage(insert_list[const.w_total_dea

ths],compare_list[const.w_total_deaths]),

const.NEW_DEATHS_PERCENT :

const.get_percentage(insert_list[const.w_new_death

s],compare_list[const.w_new_deaths]),

const.TOTAL_RECOVERED_PERCENT :

const.get_percentage(insert_list[const.w_total_rec

overed],compare_list[const.w_total_recovered]),

const.ACTIVE_CASES_PERCENT :

const.get_percentage(insert_list[const.w_active_ca

ses],compare_list[const.w_active_cases]),

const.SERIOUS_CRITICAL_PERCENT :

const.get_percentage(insert_list[const.w_serious_c

ritical],compare_list[const.w_serious_critical]),

const.DEATHS_VS_CASES :

const.get_percentage(insert_list[const.w_total_dea

ths],insert_list[const.w_total_cases]),

const.RECOVERED_VS_CASES :

const.get_percentage(insert_list[const.w_total_rec

overed], insert_list[const.w_total_cases])

}

data_list.append(const.get_sensor(data_name,

data))

return data_list

Autonomous Drone: Take To The Skies With Your ODROID-XU4
 May 1, 2020 By Yehonathan Litman ODROID-XU4, Tinkering

This tutorial will walk you through building a Pixhawk
guided autonomy-capable drone. The project consists
of the following:

ODROID XU4 with 32GB SD Card (Flashed with Ubuntu
18.04)

ODROID WiFi Module #5

3DR Pixhawk 1 FCU

Pixhawk Power Module

USB-TTL Module

Intel Realsense T265 Tracking Camera

Q330 UAV Frame

RS2203 2300KV Motors x 4

25A-rated ESCs x 4

5500 mAh 3S LiPo Battery

Spare 2.1mmx5.5mm Barrel Power Connector

FS-IA6B Radio Receiver

Flysky i6 Controller

PDB

Double Sided Mounting Tape

Wiring and Assembly

Figure 1 - All the materials used for this project prior to
assembly

The important takeaway from our list of materials is
that most of our required materials can be used to
build a simple drone. The Pixhawk controller is
designed to communicate with any onboard Linux
capable computer and doesn't care about the

peripherals, so you could potentially use any radio,
battery, ESC/motor combination, and frame you want.
This universality is powerful, thus you do not need to
restrict yourself to the materials I listed.

Our �rst step would be to assemble the drone. We
will assemble it in a "Quad X" con�guration, which is
the simplest drone con�guration available in Pixhawk.
Figure 2 shows how you should set up your drone
connections, and also where the ESC signals should
be connected to the Pixhawk outputs.

Figure 2 - Quad X with associated motor directions and
numbering

Figure 3 - Pixhawk Output pins (numbered). First 4 pins
are colour-coded for connecting a Quad X frame

After assembling the frame and screwing the motors
in, you can solder the ESCs to the PDB (which is part
of the Q330 frame) and to the motors. Figure 4 shows
the associated wiring for di�erent sping directions.

Figure 4 - ESC to motor wire connections corresponding
to di�erent spin directions

Now connect the radio receiver to Pixhawk. Pixhawk
interprets signals as SBUS, which I con�gured my FS-
IA6B receiver to output over a single data line.

Figure 5 - FS-IA6B to Pixhawk link

Now we solder the spare barrel jack connector to the
Pixhawk power module, which has a 5V 3A BEC that
we will use to power the onboard ODROID. The
soldering is shown in Figure 6. Testing the voltage
output with the voltmeter shows 5.28V, which is safe
for powering our ODROID.

Figure 6 - Barrel jack connector to BEC soldering

Figure 7 - Voltage output from the BEC after powering on
the circuit

The last soldering will be the USB-TTL converter,
which will be used for communication between
ODROID and the Pixhawk FCU, shown in Figure 8. A
schematic can be found at
https://ardupilot.org/dev/_images/ODroid_Pixhawk_
Wiring.jpg.

Figure 8 - USB-TTL data connection to Pixhawk

We are now done with the tedious part of the
assembly, and it's time to mount everything onboard.
I used soft double sided mounting tape so that the
FCU and camera wouldn't be a�ected by the
vibrations from the quadrotor. Due to the lack of
space, I decided to mount the camera on the Pixhawk
FCU, which was mounted on top of the ODROID. This
is not the best approach, but it works well enough,
though the issue could be easily mitigated by using a
smaller FCU (such as the Pixracer) or by 3D printing
extensions.

https://ardupilot.org/dev/_images/ODroid_Pixhawk_Wiring.jpg

Figure 9 - Double sided mounting underneath the
ODROID-XU4

Figure 10 - The ODROID mounted on the Q330 frame

Figure 11 - The Pixhawk FCU mounted on top of ODROID.
Note that the Pixhawk FCU was leveled W.R.T. the Q330
frame

Figure 12 - Receiver, barrel jack, USB-TTL, WiFi adapter,
and ESC outputs connected

Figure 13 - Realsense T265 camera mounted on top of
the Pixhawk FCU and connected to ODROID

ODROID software setup

Our assembly is now complete, and it's time to set up
the software. Luckily this is so simple it all boils down
to installing packages and verifying our
devices/connections:

1. Install ROS Melodic from
http://wiki.ros.org/melodic/Installation/Ubuntu 2.
Install [librealsense from
https://github.com/IntelRealSense/librealsense/blob/
master/doc/installation.md. (make sure to follow step
5) 3. install ros-melodic-ddynamic-recon�gure via apt
4. Install realsense-ros from
https://github.com/IntelRealSense/realsense-ros 5.
Install mavros and mavlink:

$ sudo apt-get install ros-kinetic-mavros ros-

kinetic-mavros-extras

$ wget

https://raw.githubusercontent.com/mavlink/mavros/m

aster/mavros/scripts/install_geographiclib_dataset

s.sh && ./install_geographiclib_datasets.sh

6. Test that the T265 camera works (connect ODROID
to a screen and execute `realsense-viewer` from
terminal) 7. Verify T265 camera also works in ROS:

$ roslaunch realsense2_camera rs_t265.launch

You should see odometry messages coming in at a
rate of ~200 Hz from this topic

$ rostopic hz /camera/odom/sample

subscribed to [/camera/odom/sample]

average rate: 199.868

min: 0.001s max: 0.012s std dev: 0.00130s window:

189

average rate: 199.845

min: 0.000s max: 0.044s std dev: 0.00947s window:

389

average rate: 199.574

min: 0.000s max: 0.044s std dev: 0.01103s window:

585

8. Install a conversion package from
https://github.com/thien94/vision_to_mavros so that
the coordinate frames from the camera to the FCU
will be correct.

9. Create access point from ODROID's WiFi module
and reboot to enable it:

$ git clone https://github.com/oblique/create_ap

$ cd create_ap

$ sudo make install

$ systemctl start create_ap

$ systemctl enable create_ap

$ create_ap wlan0 eth0 odroid_drone --mkconfig

/etc/create_ap.conf

Pixhawk FCU setup

At this point our ODROID setup is complete and we
need to con�gure the Pixhawk FCU with
QGroundControl. You may download the AppImage
to your own computer, and after connecting to the
FCU follow these steps to completely set up Pixhawk
for accept vision positioning data:

1. Install latest �rmware 2. Choose the airframe type
(for my case i will choose Quadrotor X - DJI Flame
Wheel F330 as it's similar enough to the Q330) 3.
Calibrate the FCU sensors 4. Calibrate your radio
controller after binding it to the receiver 5. Calibrate
LiPo battery and ESCs. Set the correct values in
Number of Cells 6. Assign radio channels in Flight
Modes. I set mine as in Figure 14 7. We now go to the
Parameters section:

I changed `CBRK_IO_SAFETY` to disable safety
checking, but this is optional

Change `PWM_MIN` to a reasonable value (I set it to
1050 us)

Set `MAV_0_CONFIG` to "TELEM 2", `MAV_0_MODE`
to "Onboard"

Uncheck "use GPS" in `EKF2_AID_MASK` and check
"vision position fusion" and "vision yaw fusion"

Change `EKF2_HGT_MODE` to "Vision"

Set the `EKF2_EV_POS_X`, `EKF2_EV_POS_Y`,
`EKF2_EV_POS_Z` parameters accordingly

For safety, change `COM_OBL_ACT` to "Terminate"
and `COM_OBL_RC_ACT` to "Terminate" in case there
is some sort of error in the ODROID-Pixhawk data link

Figure 14: My radio controller channel con�guration

I assigned a manual kill switch for emergencies as
well. The Manual, Position, and O�board mode
switches have been assigned for a smooth transition
to autonomy.

Taking �ight

Now we will send our own data for �ying. We clone a
custom package called my_autonomous_drone from
https://github.com/yehonathanlitman/my_autonomo
us_drone and rebuild our ROS space. You should
execute the following to �nd your USB-TTL converter:

$ ls /dev/tty* | grep USB

Then, change launch/px4.launch to follow this format:

<!--?xml version="1.0"?-->

<span style="font-weight:

400;">

<span style="font-weight:

400;">

<span style="font-weight:

400;">

<span style="font-weight:

400;">

<span style="font-weight:

400;">

<span style="font-weight:

400;">

<span style="font-weight:

400;">

Now make a src directory in the
my_autonomous_drone package and add a
o�b_node.cpp
(https://dev.px4.io/v1.9.0/en/ros/mavros_o�board.ht
ml) to it. Make sure to add the �le to the package
build so it can be compiled. After powering up the
drone from the battery, SSH into the access point you
created and follow these commands:

1. Run “roslaunch my_autonomous_drone px4.launch”
to begin data transmission 2. Verify the FCU is
connected with “rostopic echo /mavros/state” 3.
Launch the Realsense node with “roslaunch
realsense2_camera rs_t265.launch” 4. Run “roslaunch
vision_to_mavros t265_tf_to_mavros.launch” for
coordinate frame conversion 5. The last step is to run
“rosrun my_autonomous_drone o�b_node” to begin
sending the position waypoint to Pixhawk. The drone
�ies are shown in Figure 15.

Figure 15 - Our ODROID drone hovering at 1 meter above
the ground!

If you want the drone to do something more
impressive, you can play around with the x and y
coordinates in o�b_node.cpp. For example, an eight-
�gure can be done using parametric equations
(https://mathworld.wolfram.com/EightCurve.html).
Inside the while loop we can do this, where the
variable “i” is initialized to 0 before the while loop
begins:

double t = i * 0.02;

x = a * sin(t);

y = a * sin(t) * cos(t);

i++;

Conclusion

In this guide, I have shown you how to assemble a
drone, connect its �ight controller to ODROID, and
send it simple guidance commands in ROS. This is just
the tip of the iceberg of a super interesting �eld, but
with a bit of hard work you can start doing some
really amazing things. If you want more, you can
check out my YouTube channel
(youtube.com/c/SimpleKernel) where I have uploaded
some more in depth instructional videos on
autonomy using Pixhawk and setting up your own
visual guidance from scratch.

Adding A Mouse And Keyboard To Your ODROID-GO Advance:
Making the Ultimate on the GO Computer
 May 1, 2020 By @mameise ODROID-GO Advance, Tinkering

I thought a small keyboard with an analog stick
underneath it attached to the ODROID-GO Advance,
similar to the keyboard for the classic ODROID-GO,
would be a great project. The keyboard could attach
via USB, but a USB Hub Chip would also be needed so
that a USB WiFi module could also be attached.

The picture in my mind was not to build a
professional-level keyboard, since I lack PCB build
experience. Instead I would take an Arduino Micro, it
already has a chip that can be identi�ed as Keyboard
and mouse, a small USB Hub PCB, a small analog
stick, and a lot of keys. The N900 has a 13x3 layout of
keys, and was quite usable, but needed some on-
screen help. So I though that a 4x12 or 5x12 layout
would be better, but I was still unsure about the size.

I created a quick concept with a simple button layout
to get an idea for the placement and overall size.

Figure 1 - Keyboard and Mouse concept

The USB hub that I found was a good small size and
had 3 USB ports and 1 Ethernet port.

Figure 2 - The USB hub and the black Arduino

Based on feedback on the forum I changed the
components. I will now use a 4 port USB Hub. I put
together the buttons and completed the work on the
hub. I removed 3 USB ports and directly connected a
Wi� dongle with an on/o� switch and on another port
I have connected a Micro USB plug for the Arduino.
One port will not be used and a second port exposed
to the side would allow other things to be connected.
The �rst test was successful, and I rerouted the USB
port to the bottom of the GO Advance to allow me to
connect the keyboard more easily. I also included a 2-
in-1 Micro-SD module so I can have 2 OS images with
me and switch between them easily.

Figure 3 - The USB hub connected to the GO Advance

For the case I used a FDM 3D printer, and for the keys
for the keyboard I used a resin 3D printer for much
better detail.

Figure 5 - The printed keys, before the next step of
painting them black

Figure 6 - Prototype case

I painted the keys black, but lightened the paint
application to keep the marks and letters as visible as
possible. Then I use wax from a candle, not melting
hot, but I take the candle and rub it over the markings
and remove everything so only the wax in the marks
remains. Figure 7 shows it with one color. Next I want
to use 3 colors, which was tricky.

Figure 7 - 2-toned keys

(Figure 7 - 2-toned keys)

After that, I made some modi�cations to the case and
3D printed it again, this time in black.

Figure 8 - Second print of the case

Figure 9 - New Case with the keys inserted

With my �rst microSD extension, I managed to
damage it when I put everything together. Luckily I
bought two of them and was able to carry on.
Additionally, I switched to a smaller nano USB hub,
since the space inside of the case was a bit too
crowded. The smaller hub, however, will not have an
extra USB plug.

Figure 10 - Keyboard not attached, showing the microSD
extension

Figure 11 - Keyboard attached

More information, and the original Hardkernel forum
thread, is available at
https://forum.odroid.com/viewtopic.php?
f=187&t=38047.

https://forum.odroid.com/viewtopic.php?f=187&t=38047

Introducing the New ODROID-C4: A New Generation Single
Board Computer
 May 1, 2020 By Justin Lee, CEO of Hardkernel ODROID-C4

The ODROID-C4 is a new generation single board
computer that is more energy e�cient and has higher
performance than the ODROID-C2 which was
introduced over four years ago, as the world's �rst
a�ordable ARM 64-bit computer. The ODROID-C4
features an Amlogic S905X3 CPU which is a quad-core
Cortex-A55 cluster with a new generation Mali-G31
GPU. The A55 cores run at 2.0Ghz without thermal
throttling using the stock heat sink, allowing a robust
and quiet computer. The multi-core performance is
around 40% faster, and the system DRAM
performance is 50% faster than the ODROID-C2.

Figure 1 - The New ODROID-C4

Let's look at the block diagram and the key
components of the board in Figures 2 and 3 to learn
more about the hardware features.

Figure 2 - Block Diagram

Figure 3 - Component Layout

More detailed hardware information is available on
the ODROID-C4’s wiki at
https://wiki.odroid.com/odroid-
c4/hardware/hardware.

CPU performance

Dhrystone-2, Double-Precision Whetstone, 7-zip
compression benchmark results show that the
ODROID-C4 system performance is 40 ~ 55% faster
than the previous generation ODROID-C2.

Figure 4 - CPU Benchmarks

GPU performance

The Mali-G31 runs at 650MHz and is ~50% faster than
Mali-450MP in ODROID-C2. The Mali-G31 is the �rst
generation Bifrost-based mainstream GPU from Arm.
GPU performance was measured using glmark2-es2 “-
-o�-screen”.

Figure 5 - GPU Benchmarks

RAM performance

Why does DDR4 matter? The ODROID-C4 DDR4 RAM
runs at 1320Mhz, with a memory bandwidth that is
1.6 times higher than the ODROID-C2.

Figure 6 - RAM Benchmark

CPU frequency vs performance

Some ODROID users may recall the lower than
expected clock speed with ODROID-C2’s S905. We ran
a test to con�rm the ratio between CPU clock
frequency and performance with ODROID-C4.

Figure 7 - CPU Frequency vs Performance

Thermal characteristics

To check thermal throttling, we ran some heavy CPU
and GPU loads together on the SoC and monitored

https://wiki.odroid.com/odroid-c4/hardware/hardware

the temperature within a chamber that maintains the
ambient temperature at 25°C. Note that the current
thermal throttling point is set at 75°C in the Kernel
con�guration.

Figure 8 - CPU & GPU Burning with Passive Heatsink

Figure 9 - CPU Frequency in Timeline

If you put the ODROID-C4 board into an enclosure,
you may encounter some thermal throttling issues
when the ambient temperature is higher than 20°C
and the continuous computing load is very high.

Ethernet

According to our iperf test result, the throughput
performance was near 1Gbps.

Figure 10 - iperf Benchmark

USB Port

We measured the USB3 transfer speed with a USB
SSD. The average ~340MB/s of throughput should be
acceptable for many applications. Since four USB host
ports share a single root hub, the transfer rate will be
lower if you use multiple USB3 devices at the same
time. There is a separate micro-USB port to support
the USB 2.0 OTG dual-role interface, too.

Figure 11 - USB Host Benchmark with ‘iozone’ - Write

Figure 12 - USB Host Benchmark with ‘iozone’ - Read

eMMC storage performance

Sequential read and write speed is over 165MB/s and
125MB/s respectively. The 4K random access
performance is reasonably fast, too. The iozone test
results are as follows.

Figure 13. - eMMC Storage Performance

Micro-SD UHS performance

Using properly implemented UHS dynamic voltage
scaling, the sequential read and write speed is over
70MB/s and 50MB/s, respectively.

Figure 14 - MicroSD UHS Performance

Cryptography

The ARMv8 architecture supports hardware
accelerated crypto extensions for building a secure
system. As expected, we could see very strong
openSSL performance with ODROID-C4.

Figure 15 - Cryptography Benchmark

GPIO (40Pin Header)

The ODROID-C4 GPIO interface is similar to the
ODROID-C2 and fully supports a 3.3 Volt interface.
This is bene�cial for using various peripherals without
complicated level shifters as needed with the
ODROID-XU4’s 1.8Volt GPIOs. Another big
improvement is a faster SPI bus interface with a
maximum frequency of over 100Mhz. It is signi�cantly
faster than the ODROID-C2’s 400Khz software “bit-
banged” SPI.

Figure 16 - GPIO Header

Power consumption

Thanks to the modern 12nm fabricated S905X3 CPU,
the power consumption and heat dissipation are very
low, allowing you to enjoy a quiet and powerful
computer with high energy e�ciency.

Figure 17 - Power Consumption Comparison

Idle state: ≃ 0.18 Watt Heavy load state: 3.1~3.3 Watt
(stress-ng --cpu 4 --cpu-method matrixprod) No cables
are attached except DC power input and USB-UART
debug console cable.

The power consumption in “IDLE” is measured when a
device is not being operated for 5 minutes since the
CPU governor is set to “performance”. The measured
power consumption is not absolute and could vary
according to certain conditions.

Linux Software Support

An Ubuntu 20.04 LTS (full 64-bit) image is available
with Linux kernel version 4.9.218 LTS as of April 22,
2020. This LTS kernel version will be o�cially
supported until January 2023. A hardware accelerated
video decoder (VPU) driver is available now. We have
c2play and kplayer examples which can play 4K/UHD
H.265 60fps videos smoothly on the framebu�er of
the ODROID-C4’s HDMI output. The Mali G31 GPU
Linux driver works only on the framebu�er as well.

Upstream Linux kernel 5.4 is also available for cutting-
edge development supporting ARM Mali GPU
acceleration. WebGL content can run on the Firefox
browser (v75+) using the modern Wayland/GBM
backend. However, the VPU acceleration is a work in
progress. The Wayland powered Ubuntu 20.04
GNOME Desktop runs quite smoothly, as shown at
https://youtu.be/4MfHMKcHaUc.

The Flutter UI framework is powered by an upstream
Linux kernel 5.4 and is ARM Mali GPU accelerated, the
Home Automation example is supplied as a real world
embedded Linux system development reference.
There is a demo video with Ubuntu 20.04 Minimal +
Linux kernel 5.4 + Flutter UI + direct GPIO access at
https://youtu.be/p6bzmdAJqjo.

Android Software Support

Android 9 “Pie” 64-bit is available, and we will release
a full source code BSP and pre-built image together.
Android user land supports 32-bit as well as 64-bit
applications with a Vulkan capable ARM Mali GPU
driver. Another big improvement is to support the
AndroidThings compatible framework, this will
provide an easy development environment to control
hardware peripherals on Android using powerful Java
APIs. The ODROID-C4 is not a Google AndroidThings-
certi�ed device, and Hardkernel’s Android source
code does not include the Google AndroidThings
source code.

A demo video of Android 64-bit and Vulkan GPU
driver demo with PPSSPP “God of War” emulation is
available at https://youtu.be/0o-JLCLlGe4. A demo of
the Android IoT programming with AndroidThings
compatible APIs may be seen at
https://youtu.be/C5o7JCQXpr8.

LineageOS

LineageOS 16.0 is another community driven OS, and
is available as of April 22, 2020. LineageOS 17.1 is
currently being developed, and the very �rst version
would be available in the middle of May, 2020.

CoreELEC

The CoreELEC development team created an amazing
OS image for playing 4K/UHD content with HDR color
support. The team o�ers a “just enough OS” Linux
distribution designed for an optimal Kodi experience
when running on popular Amlogic hardware. A 4K
HDR + Audio Pass-through, Net�ix 1080p and even
8K-30FPS H.265 video playback is possible with
downscaling (https://youtu.be/7ejYL5OuMi0).

Availability and price

The ODROID-C4 is currently available for sale, and
orders are being accepted. We will start shipping on
April 28th. The ODROID-C4 4GB model is priced at
$50, and is available directly from Hardkernel at
https://www.hardkernel.com/shop/odroid-c4/.
Other worldwide distributors will start selling soon, as
shown at https://www.hardkernel.com/distributors/.

Where is the ODROID-C3?

We internally developed the ODROID-C3 based on the
S905X2 CPU, which has ARM Cortex-A53 cores, almost
two years ago. However, the performance was not
good enough, and we had heard about the new
upcoming S905X3 with modern ARM Cortex-A55
cores. Therefore, we decided to skip the ODROID-C3.

What about the ODROID-C2/C1+?

We will try and continue the production of ODROID-
C2/C1+ for as long as possible, since there are still
many B2B customers who continue to purchase them
in quantity. However, Amlogic is discontinuing the old
S905 and S805 CPUs in the near future, and as a
result, we will likely have to discontinue ODROID-
C2/C1+ early next year. Please consider switching to
the new ODROID-C4 platform as soon as possible.

To view the original announcement, please visit the
Hardkernel Wiki article at
https://wiki.odroid.com/odroid-c4/odroid-c4.

https://odroid.in/?directory=.%2Fubuntu_20.04lts%2Fc4%2F
https://youtu.be/4MfHMKcHaUc
https://youtu.be/p6bzmdAJqjo
https://youtu.be/0o-JLCLlGe4
https://youtu.be/C5o7JCQXpr8
https://youtu.be/7ejYL5OuMi0
https://www.hardkernel.com/shop/odroid-c4/
https://www.hardkernel.com/distributors/
https://wiki.odroid.com/odroid-c4/odroid-c4

Linux Gaming on ODROID: Box86 - Part 2
 May 1, 2020 By Tobias Schaaf ODROID-C2, ODROID-N2, Tutorial

About a year ago, I wrote about box86, an i386
emulator for ARM developed by @ptitSeb, who is also
responsible for the awesome gl4es wrapper for
OpenGL → OpenGL ES. While the original look at it a
year ago was already impressive, I want to look at it
again, and point out what has changed since then and
what you can do with it now.

Requirements

I’m currently still testing this on my old Debian Jessie
based ODROID GameStation Turbo image, with
box86-odroid, libgl-odroid and monolibs-odroid
installed. Each of these are used in a di�erent way to
improve the overall experience and provide drivers
needed to run the games in this game. All of the
above will be installed together if you install box86-
odroid.

Background

Some people may be familiar with a software called
ExaGear. It was a commercial x86 (i386) emulator for

ARMand ARM64 devices, that allowed you to run i386
software. While the overall performance was quite
good, it lacked 3D support, if your platform did not
provide x86 GPU drivers, which is normally not the
case, except for the RPi which can use MESA drivers,
and for this is able to run OpenGL on i386 in a limited
way. Also, most x86 games require OpenGL, which
most ARM SoCs do not support. Therefore, the overall
support for x86 games was limited to 2D games and
applications which did not require any hardware
acceleration, or command line tools.

With box86, @ptitSeb took a di�erent approach. He
did not only write a CPU emulation for x86, but also
implemented the possibility of redirecting calls from
the x86 environment to the ARM host environment,
using native ARM libraries rather than emulated x86
libraries. He �rst implemented this for OpenGL
support, which in combination with gl4es allowed us
to run applications and games that require hardware
acceleration. It also allows to forward many system

calls from applications directly to the host system
rather than trying to emulate these calls under an
emulated x86 environment, which is much faster than
pure emulation.

Overall Changes

@ptitSeb is constantly working on box86 to improve
compatibility and performance, but he also is working
hard on gl4es (libgl-odroid) to support this project.
The combination of these two has greatly improved
over the last months allowing us to run more
applications and games that are only available on x86
to be run on ARMplatforms. One of the biggest
changes is the work @ptitSeb is doing on an x86 →
ARM dynamic recompiler. This means that some of
the x86 calls are converted directly into ARMcode “on
the �y” without emulation, at the time they are
requested. The same technique is done in many other
emulators to speed up overall performance.

For example, in the past when you run PSX emulator
on an ARM64 board, that was compiled for ARM64 it
was unable to use dynamic recompiler (for example
the C2 or N2), and even if the board was more
powerful than other boards, the games were very
slow and far from being full speed, while much slower
ARMboards (for example the ODROID C1 or U3) were
perfectly capable of running these games at full speed
with an ARMdynamic recompiler. Some applications
run 2-10 times faster with dynamic recompiler, than
with pure emulation. The same applies for box86,
games that were previously way too slow to play are
now running much faster, opening up so many more
games that are able to run on ODROIDs. The dynamic
recompiler increased loading times a lot, games load
so much faster than they did before, where on some
games you had to wait 5-15mins to load the game
data, they are now loaded in mere seconds.

Recap of some old games

Neverwinter Nights

While the game already ran impressively well the last
time I checked it, the latest improvement makes the
game a very smooth experience. Overall performance
increased quite a bit, and you can now set the
graphics quality to maximum. The game runs nearly
like a native game with only tiny stutter here and

there, which you would expect on an older PC as well.
I can highly recommend this game on the ODROID-
XU4.

God Will Be Watching

There is not much to say: the game was running well,
although not at full speed, so what changed? Now it
does run at full speed perfectly well.

Freedom Planet

When I �rst looked at the game, the game took a very
long time to load (somewhere between 5-10 minutes).
Now it takes about 30 seconds to start, that is over 10
times faster than it was before. In game, the game
was also su�ering from some minor speed problems.
They were nothing that rendered the game
unplayable but it wasn’t full speed, which was a bit of
a shame for a game that relies on speed similar to
Sonic. This is now �xed as well and the game runs
perfectly at full speed.

Faster Than Light

This is another well known commercial game that was
already running under box86, but with a very long
loading time of over 5 minutes. This is also reduced to
less than a minute, and the sound problem is also
gone. The game is now fast enough to play music and
sound e�ects and doesn’t cause stutter.

World of Goo

The game now runs at full speed, but might need
LIBGL_FB=3 as a �ag to run, due to some issues with
GLX initialization.

What’s new

So overall the games from last time work better, that’s
good, but what is new since then? What can we run
that we couldn’t run before?

Day of the Tentacle Remastered

Let’s start with something big and shiny.

Figure 1 - Day of the Tentacle Remastered in 1080p on
the ODROID-XU4

Figure 2 - Green never looked friendlier!

I love the original game Day of the Tentacle, and still
play it today on ScummVM on my ODROIDs. Now,
with box86, I can also play the remastered version
with improved graphics and interface. It looks
amazing and plays very well. There is one minor
downside at the moment. The loading time between
screens can be 10 seconds, which is quite long if you
consider this game is about walking and exploring
and trying out things from one place to another place.
Still, the game works �ne, and if you don’t mind the
loading, there’s no di�erence between this and a
regular PC.

Jelly Killer

This rather simple looking game is actually quite
heavy on the GPU, probably due to their use of CRT
and other shaders.

Figure 3 - A murderous Jelly is on the loose and jumps it’s
way through numerous levels

The game is a puzzle platformer where you need to
time your jumps right, infest humans to reach your
target, or kill other enemies. It’s a fun little game,
which a little while ago only ran slow, but now is quite
playable if not yet full speed.

Pier Solar and the Great Architects

This RPG game is a tribute to the old Mega Drive /
Genesis styled RPG games and has a 16bit mode that
pretty much looks like it could be from a Mega Drive /
Genesis. It also has a HD and HD+ mode which look a
lot better and polished.

Figure 4 - Pier Solar title screen

Figure 5 - Looting strangers homes like in every good
RPG

Figure 6 - You can select auto for AI based �ghts a faster
way to �nish a �ght

For my taste, the game takes too long to get started,
but it’s ok, and I wonder what it’s like in later sections
of the game. It’s fully playable on the ODROID- XU4
though, so give it a try if you want.

Postal 2

Many have probably heard of the game, not so many
might have played it. In some countries it’s still
forbidden due to its controversial nature. This action
shooter allows you to follow a peaceful path to
accomplish your goals, but it’s also the more boring
path. The game runs overall ok, but not perfect. I had
issues with sound and it’s hard to change resolution.
The game is slightly too slow, not unplayable, but
de�nitely not full speed.

Figure 7 - Another full 3D game with a very strange
theme

Figure 8 - This guy doesn’t know what’s coming at him

The Bard’s Tales

The Bard’s Tales is an impressive series of RPG games
that look very good and run �ne on the ODROID-XU4
and other ODROIDs. The graphics are really
something, and although the game was already
working when I last tried it a couple of months back, it
now has much better performance, making this game
feel like a native game.

Figure 9 - Even the Menu is fully 3D animated

Figure 10 - The graphics are impressive for this game,
especially on ODROIDs

I can only highly recommend the game, it’s very funny
and has the famous “Beer Song”

(https://www.youtube.com/watch?v=eTUJNeuFIFA),
and a game that has beer in it can’t be bad.

Toki Tori

This game strangely only runs with OpenGL 1.x
support, but it doesn’t show. The game looks
gorgeous and plays really nicely. You need to rescue
all the eggs in the game by collecting them. This
puzzle game is quite challenging and makes you think
before you make your move. It also looks very cute
and has a nice little tune that �ts the game perfectly.
Overall, this game runs great even if it may not be the
same speed as on a regular PC the game is quite
playable and doesn’t feel laggy. The game controller
support for the game is superb and even supports
rumble if you have a controller that supports it. This is
a highly addicting game and I recommend it.

Figure 11 - Toki Tori, highly addicting puzzle platformer

Figure 12 - You have to deal with limited amounts of
special moves like teleporters

Worms Reloaded

I played my �rst “Worms” game back on the Amiga
500. It was actually just called “Worms”, and it was a
huge success and so much fun to play. The series
continues even today, and has a couple of remakes of
older versions of the game and 3D versions.

Figure 13 - Worms Reloaded on the ODROID-XU4

Figure 14 - The game looks beautiful and runs perfectly
�ne

The game runs surprisingly fast. The only time it
stutters is when the PC is calculating its move, but the
actual move and attacks are perfectly �ne.

UnEpic

Figure 15 - The things that happen to you when you need
a bathroom

https://www.youtube.com/watch?v=eTUJNeuFIFA

Figure 16 - This dungeon crawler has beautiful graphics
and lighting e�ects

This impressive dungeon crawler also runs full speed
on the ODROID-XU4. The only problem with this one
is that it requires a relatively huge amount of RAM (for
ARM boards, that is). You need at least 1500MB free
memory to run it, so depending on the operating
system, you may not be able to run it on an XU4, and
the game is better suited for an N1 with ARMHF
drivers and 4GB of memory. Overall this game is
impressive and I highly recommend it.

Honorable mentions

There are tons of more games I can’t go into, as there
are so many of them that work now, but I want to
share some of them with you to give you an idea what
is working.

Figure 17 - Broken Sword Director’s Cut - Adventure

Figure 18 - Demon Hunter – Chronicles from Beyond -
Hidden Object Game

Figure 19 - Don’t Starve + Together - Survival / Crafting

Figure 20 - eets Munchies - Puzzle

Figure 21 - Enigmatis Series - Hidden Object Game

Figure 22 - Human Resource Machine - Programming “as
a game”

Figure 23 - Hyper Light Drifter - Action Platformer

Figure 24 - Icewind Dale Enhanced Edition - RPG

Figure 25 - Little Inferno - Casual / Puzzle

Figure 26 - Memoranda - Adventure

Figure 27 - Not a Hero - Action

Figure 28 - Papers, Please - Puzzle

Figure 29 - Space Pirates and Zombies - Action /
Simulation

Figure 30 - Super Meatboy - Platform / Puzzle

Figure 31 - VA-11 Hall-A - Simulation / Visual Novel

Figure 32 - Heretic 2 - 3rd Person “Shooter” / Action

There are so many di�erent types of games working
now. A couple of months back, some of them were so
slow that it was more like playing a slideshow, but
these games now run full speed (for example, Hyper
Light Drifter). It’s really impressive how far the
emulator has evolved in just one year.

Special Games

There are, however, a few games I want to single out
as they are my personal favorites, and some of which
you may know as well. Two are very close and even
share a similar name. I already played them a while

back on ExaGear where they run in software 3D
rendering. It was impressive that this game actually
worked, but now I can run these games with box86
and 3D hardware acceleration. These games bring
back so many memories for me, as I played them as a
child and at it’s time they were in everyone’s gaming
collection if they were a gamer, especially on the PC.
I’m talking, of course, about Unreal and Unreal
Tournament (the original 1999 edition).

Both Unreal and Unreal Tournament were ported to
Linux many years back. It’s somewhat di�cult to get
these running nowadays, as they use very old drivers,
especially when it comes to sound. But otherwise,
these games are still amazing, and run as well as I
remember playing them in 1999 on my AMD K6-2 450
MHz processor with Riva TNT graphics card. The game
ran �ne back then, but now on the ODROID, I can
even play them in 720p or 1080p which I could not
back in the old days. This is really amazing, and to be
honest, I’m looking forward to taking some time o�
and replaying Unreal to see if it’s still how I remember
it.

Figure 33 - Seeing the �yby back in 1998 was so iconic

Figure 34 - Graphics were outstanding for its time, and
still look good today

Unreal is working the best at the moment. I start the
game with the following options:

$ LIBGL_SRGB=1 LD_PRELOAD=/usr/lib/arm-linux-

gnueabihf/libaoss.so.0 box86 UnrealLinux.bin

LIBGL_SRGB=1 uses a special mode in gl4es that
increases overall brightness, as the game can be
extremely dark otherwise. LD_PRELOAD=/usr/lib/arm-
linux-gnueabihf/libaoss.so.0 is required since the
game uses /dev/dsp for sound output which is no
longer used and with this we can redirect the sound
to an alsa emulation.

The game takes a little while to start, as it loads quite
a lot of data right at the start and then directly goes
into the �yby. Performance wise, this is awesome, I
mean it really feels like this game is running natively
on the ODROID. I haven’t experienced any lag while
playing the game. In fact, the menu seems to be
slower than the game itself, and I run it on high
details in 32bit color depth at 720p. It just feels
amazing playing this game.

Figure 35 - What Unreal started, Unreal Tournament
improved on

Figure 36 - Still got it... even if it was just the �rst level

Unreal Tournament was the perfection of multiplayer
�rst person combat. I played this countless times with
friends at LAN parties while on vacation. The Assault
game mode was always my favorite, and until today,
there are very few games that have even come close
to implementing such an exciting game mode. I totally
miss playing this with my friends. I always hated
“capture the �ag”, which every other game was based
around. Unreal Tournament did everything right and I
dare to say I liked it better than Quake 3. However, I
couldn’t get sound to work in this version. It relies on
a very old driver called OSS, and while I’m able to load
kernel modules for this, I’m unable to use it for sound.
Other methods like aoss and padsp don’t work either,
so I’m stuck without sound for this one.

Conclusion

In just one year Box86 really took o� in terms of
compatibility. Last time I wrote about it, it was a nice
project with lots of promises, but rather little support.
Now it’s gone through the roof, and the support for
the games is amazing!

I’m looking forward to what will work in the months to
come. I’m hoping for Unity and WINE support, as this
opens up even more games. I especially look forward
to WINE, which would be really impressive because
WINE, in combination with OpenGL, could mean we
may be able to play Windows games with hardware
acceleration on ODROIDs as well. The project
promises to be very exciting.

There are others that also follow the development
and test games on Raspberry Pi and other platforms.
You can check out the Youtube Channel “Pi Lab”
(https://www.youtube.com/channel/UCgfQjdc5RceRl
TGfuthBs7g/videos), where you can �nd even more
games running under box86. Thanks @ptitSeb for all
of his hard work on this project!

https://www.youtube.com/channel/UCgfQjdc5RceRlTGfuthBs7g/videos

Fingerprint Processing: Running the NIST NBIS Fingerprint
Toolset on an ODROID-XU4
 May 1, 2020 By Andrew Ruggeri ODROID-XU4, Tutorial

The National Institute of Science and Technology, or
NIST, maintains a widely used set of open source
tools known as NIST Biometric Image Software, or
NBIS for short. The functionality that is going to be
focused on is its use related to �ngerprinting[1], [2].
This article will cover everything needed to get up and
running to compare prints on an ODROID-XU4.

Parts of this article were taken from my master’s
project related to performing image preprocessing on
latent �ngerprints in order to increase matching
performance of the software provided by NBIS. The
project made use of an ODROID-XU4 since the
processor used on the ODROID-XU4, a Samsung
Exynos 5422 [3], is the same processor used Samsung
Galaxy S5, a device which contains a �ngerprint
reader. This provides a near exact representation of a
potential use case target where these preprocessing
algorithms would be used. While this was important
for my original project’s use case, it is also important

to many others. The low-power and high-
performance aspect of the ODROID-XU4 makes it
ideal for many projects one might have in mind. For
instance, an ODROID-XU4 would make an ideal
controller in an IoT system which could also
implement biometric authentication for in-person
access.

Software Setup

The ODROID-XU4 needs to be loaded to run Ubuntu
18.04LTS, preferably the minimal version. NBIS is
compiled using the GNU C/C++ toolset. After the
ODROID-XU4 has been setup, the directions on the
hardkernel wiki page are a great guide to use, the
NBIS should be downloaded from
https://www.nist.gov/itl/iad/image-group/products-
and-services/image-group-open-source-server-
nigos.

https://www.nist.gov/itl/iad/image-group/products-and-services/image-group-open-source-server-nigos

Open a terminal in the directory where nbis_v5.0.0.zip
was downloaded. The following set of steps will result
in the compilation of all the binaries that are needed.
First, cmake needs to be installed as it is used in later
steps, next the archive is extracted and moved into a
folder named ‘nbis’. Within that ‘nbis’ directory a
‘build’ directory is then created where the setup script
(setup.sh) is instructed to place all the binaries in the
�nal install step. The path provided to the setup script
needs to be a complete path, not a relative path or
one that makes use of any shortcuts, such as ~.
Additionally, the arguments without X11 and stdlibs
are passed, these arguments help reduce the needed
external dependencies which are required. Lastly, the
sequence of make steps con�gures, compiles and
moves the binaries to their �nal location, respectively.

$ sudo apt-get install cmake

$ unzip nbis_v5_0_0.zip

$ mv Rel_5.0.0 nbis

$ cd nbis

$ mkdir build

$./setup.sh /home/odroid/Downloads/nbis/build --

without-X11 –STDLIBS

$ make config

$ make it

$ make install

The above steps result in a working set of binaries
and create everything needed to move forward.
However, through some quick testing, it was shown
that adding a couple extra build �ags can create
binaries that are extremely well tuned for the
ODROID-XU4. In the ‘nbis’ directory there are two �les
‘rules.mak’ and ‘arch.mak’, open both �les. There will
be a line declaring the variable ‘ARCH_FLAG’, add the
following items to be assigned to it. Any existing items
that were assigned to ‘ARCH_FLAG’ such as ‘-fPIC’ need
to remain.

ARCH_FLAG := -fPIC -mfloat-abi=hard -mcpu=cortex-

a15 -fipa-pta

After editing and saving the �les with the above listed
change, the following commands should be run.

$ make clean

$ make config

$ make it

$ make install

Software

Out of all the binaries that get created, the following
three are all that is needed in this example.

CWSQ : Image to Wavelet �le converter CWSQ will
create a compressed wavelet �le from a grey scale
input. There are two selectable compression rations
for our testing 5:1 was used, the other option is 15:1.
Most other NBIS tools work o� of this wavelet �le
format, so all �ngerprints destined to be matched
need to be in this format.

MINDTCT : Minutiae detection

MINDTCT is a minutiae detection program, a minutiae
point can be thought of as an interesting feature in a
�ngerprint. The type, location, and angle of the points
found in this program are used to compare and
contrast points[4]. There are many di�erent types of
minutiae points, but MINDTCT only detects endpoints
(�rst image) and bifurcation (second image) in a
�ngerprint. The point’s type, location, and orientation
are saved to a �le. Each minutiae point is saved as
coordinates based on their distance in millimeters,
with 0.01mm increments, to the bottom left corner of
the image [1]. Additionally, points contain angle
information related to the local direction of the
contours of the ridges and values (the white and black
lines in a �ngerprint image) that make up a minutiae
point. The following image shows two di�erent
minutiae points. The angles, ‘A’ and ‘B’ represented in
the images represent two di�erent methods for
measuring angles NBIST uses angles measured by ‘A’.

Figure 1 - Angle A shows the ANSI/NIST measurement, B
shows FBI measurement angle. left is a ridge-ending,
right is a bifurcation

BOZORTH3 : Fingerprint matching

The Bozorth3 algorithm and software is an export-
controlled piece of code. At a high level the software

takes one �ngerprint and it will compare against ‘n’
number of target inputted �ngerprints and return a
match rate for each of the target �ngerprints. The
�ngerprints �les it uses are in the �le format created
from MINDTCT.

Running

If no �ngerprint capture device is connected or
available, there are several databases containing
image sets of �ngerprints which can be used for
testing. One of these such databases is FVC 2002
database available at http://bias.csr.unibo.it/fvc2002/.
The commands can either be executed from a
terminal running the ‘build/bin’ directory or that path
can be added to the terminals $PATH variable, so the
commands can be from any location.

$ export

PATH=$PATH:/home/odroid/Downloads/nbis/build/bin

To make things simple, I will assume there is a known
�ngerprint called ‘myprint.ti�’, and the intent is to see
if it matches another print known as ‘mysteryprint.ti�’.
The �rst step is to convert the both �ngerprint image
into a wavelet.

$ cwsq .75 myprint.tiff

$ cwsq .75 mysterprint.tiff

After each “cwsq” command, it will show a bit of
information about the print and create a
corresponding *.wsq with the same name and the
input *.ti� �le. Next, these wavelet �les are sent to
MINDTCT, this will create several �les types the only
one of interest is the *.xyt �le.

$ mindtct -b -m1 myprint.tiff myprint/

The �nal step is to compare or ‘match’ the prints with
each other. This can be done with the following
command:

$ bozorth3 -m1 A outfmt=spg -T 30 -p myprint.xyt

mysteryprint.xyt

However, multiple �les can be compared against our
target print (myprint). This can be easily done with a

wildcard operator, *.xyt as the last argument in place
of ‘mysteryprint.xyt’ would compare all xyt �les
against myprint.

$ bozorth3 -m1 A outfmt=spg -T 30 -p myprint.xyt

*.xyt

The resulting output will be a list with one or more
comparisons. Each line is a new comparison, where
the �rst �eld is a ‘score’ dictating how similar the
matches are. The ‘-T 30’ argument given in the
command is a threshold meaning disregard anything
less than 30. The second value is the ‘target’ print so it
will always be ‘myprint’ in each row, the next item is
the �le that it was compared against. Shown below is
an example of the output when a wildcard is used,
hence myprint is compared against itself.

250 myprint.xyt myprint.xyt

41 myprint.xyt mysteryprint.xyt

Since mysteryprint scored a 41, it is considered to be
a match with myprint. There is no real perfect
threshold value, as it is all based on what is an
acceptable false-positive and false-negative rate. A
threshold for unlocking a door to a house will
certainly need to be higher than to access a IoT panel
to adjust the heating temperature.

If this was interesting, more information is provided in
the reference links below. The original project paper
and code can be found on GitHub at
https://github.com/AndrewRuggeri/FP.

References

[1] C. Watson et al., “User’s Guide to NIST Biometric
Image Software (NBIS).” Gaithersburg, p. 207, 2007.

[2] E. Tabassi, C. Wilson, and C. Watson, “Fingerprint
Image Quality,” NIST, vol. NISTIR 7151, 2004.

[3] R. Roy, Hardkernel ODROID-XU4 Manual,
20170310th ed. Hardkernel, 2017.

[4] D. Maltoni, “A Tutorial on Fingerprint Recognition,”
Adv. Stud. Biometrics, vol. 3161, pp. 43–68, 2005.

ODROID-GO Advance Tips And Tricks: Unzip ROMs While
Maintaining Box Art And Game List
 May 1, 2020 By Brian Ree Gaming, ODROID-GO Advance, ODROID-GO

This is a short tutorial to help you with your ROM sets
and the ODROID-GO Advance. Many of us have ROM
sets with accompanying media �les like box art,
screen shots, logos, etc. Sometimes these ROM sets
have compressed �les. Now do we really want to be
using up precious battery power to decompress
games before we load them up? I don’t think that’s a
good idea. The savings in space is minimal on games
from the 8- and 16-bit generations and we do not
want to be decompressing CD ISOs and IMGs on our
ODROID-GO Advance. So, how can we reprocess all
those �les and maintain the connection to the media
�les via the gamelist XML �le. As you know, Batocera
(https://batocera.org/download) makes a great
RecallBox-based OS, for the ODROID-GO Advance.
The way ROMs with associated media are read in by
the system is via the gamelist.xml �le. The problem
here is if we decompress the ZIP �le we will often end
up with a really di�erent �le name and extension.

Now we have to get a whole new set of box art for our
ROMs which can take a while depending on how
many systems you are processing, or we have to edit
the gamelist.xml by hand, which would take
considerable e�ort. I will show you how to process a
compressed ROM set in a few steps all while
maintaining proper entries in the gamelist.xml �le so
that your box art is still mapped properly. We will do it
all with a bash script from the command line, so you
can run it via SSH if necessary.

Preparation

In order for us to make the necessary changes to an
XML �le from a bash script we are going to need a
little help. The tool we will use is called XmlStarlet.
Install it onto the system that you will be using to
process the ROM sets. You will need a Linux system to
do this part though OSX and Ubuntu under Windows
can probably handle this script, as well. It is actually

https://batocera.org/download

very simple - the only complex part is taken care of by
XmlStarlet. To install the package run the following
from the command line.

$ sudo apt-get install xmlstarlet

Next we will set up our script. You can download a
copy of the script from https://bit.ly/34Y7LNX or you
can copy and paste the following text into a local �le,
clean_unzip, and follow the next few steps.

#!/bin/bash

if [! -d ./done]; then

 mkdir ./done

fi

for z in *.zip

do

 mkdir tmp

 cp "$z" tmp

 cd tmp

 unzip "$z"

echo "Looking for *.$1"

 echo $(ls ./*.$1 2>/dev/null | wc -w)

 files=(./*.$1)

 if (($(ls ./*.$1 2>/dev/null | wc -w))); then

 echo "files do exist $y"

if [! -f "${z%.zip}.$1"]; then

 mv *.$1 "${z%.zip}.$1"

 fi

mv *.$1 ../

 TF="${z%.zip}.$1"

 OF="${z}"

 NF="${TF}"

if [-f ../${2}]; then

 echo "replace $OF with $NF"

 xmlstarlet ed --inplace -u

 "//gameList/game[path="./${OF}"]/path" -v

 "./$NF" ../${2}

 #../gamelist.xml

 fi

 mv ../"$z" ../done/

 fi

cd ..

 rm -r tmp

#break

done

What does the script do? Well, it performs the
following steps.

Creates a tmp folder in the local directory.

Copies the next ZIP �le into the tmp folder.

Expands the ZIP �le.

If a matching �le with extension is found, it renames
the resulting �le with the same name as the ZIP �le but
with the current extension.

Moves the resulting �le back into the main ROM
directory.

Replaces the entry in gamelist.xml with the new
extension, i.e. non-zip.

If processed, moves the ZIP �le into the done folder.

Deletes the tmp dir.

Repeats the above processes, until all �les are
handled.

Usage

You can run the script on an SD card, via SSH, or on a
mounted SD card on your ODROID-GO device. It does
use a fair amount of �le system operation to
complete cleaning up a ROM set. In general, I would
recommend not doing it directly on an SD card
because of the number of these operations, but I
have actually cleaned up 30 ROM sets with it, directly
on a mounted card, with no trouble. When you are
running it on large ROM sets you will have left over
ZIP �les in the directory you are processing. Some ZIP
�les will be processed and moved to the done folder.
This means that the compressed �les that are left
over have contents with a di�erent �le extension. Let
us look at the commands used in an example. ALERT:
The script is designed to run with RecallBox based
media XML �les. If you are using a di�erent XML
format you will have to edit the line where xmlstarlet
is called and set up a di�erent structure to match
your XML �le. First let us make sure we can execute
the script.

$ sudo chmod +x ./clean_unzip

Next we will run the script and target the expected �le
extension. Let us use Sega Mega Drive as an example.

$ sudo ./clean_unzip bin gamelist.xml

We will have some left over ZIP �les. Let us open one
up. Turns out, the content has an smd extension. Let
us run the script on the remaining ZIP �les.

$ sudo ./clean_unzip smd gamelist.xml

You may have to run the command a few times to
handle the remaining �le extensions in a particular
ROM set. The script will work with the remaining ZIP
�les so it is really not that bad. With a few calls we can
clean up any ROM set. Below we have some before
and after pictures so you can get an idea of what the
script does.

Figure 01 - Before: Notice the "zip" in the �le name entry

Figure 02 - After: Notice that the �le name has been
changed

Here is the view of the directory itself.

Figure 03 - Before: ZIP �les and no "done" directory

Figure 04 - After: Unzipped ROMs and a "done" folder
holding completed zip �les

Wrapping Up

This brings us to the end of this tutorial. This was a
quick one and it should be of great use to you if you
do need to unzip a ROM set that has media �les
mapped to the zipped copy of your ROM. This script is
great for adjusting compressed ROM sets for use with

handheld devices where maybe you do not want to
use the extra CPU cycles to expand the game �le. For
comments, questions and suggestions, please visit
the original article at
http://middlemind.net/tutorials/odroid_go/oga_rl_d
c_build.html.

http://middlemind.net/tutorials/odroid_go/oga_rl_dc_build.html

Shall We Play a Game? – Play the Promise of Google Stadia, At a
More Practical Bandwidth
 May 1, 2020 By Dave Prochnow Gaming

The lackluster launch of Google Stadia left many
gamers in the lurch. Sure the lure of playing AAA
games inside your browser sounded very attractive,
but bandwidth became a bugbear which could not be
overcome, yet.

While you are waiting for technology to catch up to
marketing hype, point your browser to another online
gaming haven—one where a slow Internet connection
is not a handicap, rather it is a godsend.

Just head on over to GameSnacks and grab a “byte” of
online gaming that works on “any device, on any
network.” Sounds a lot like the same promise
espoused by Google for its ill-fated Stadia launch. The
caveat here, however, pertains to that one salient
point about working on “any network.” Bring your
slow, your dirty, your clogged connections and head
to GameSnacks for practical online game play that
really is for the rest of us.

By rest of us, we are talking about ALL of the real-
world gamers who could not play with Google Stadia.
Ironically, GameSnacks is a product of a Google niche
group known as Area 120. This self-professed
“workshop for Google’s experimental products” is
both a program and a product. It is an early access
program that enables small groups of developers to
wrangle their craziest product ideas into an
entrepreneurial environment, as well as sitting
barefoot on futon pillows. Area 120 can also be a
product when it helps to spin o� a successful concept
like GameSnacks.

Figure 1. A playpen for a�uent Google Devs.

Oddly enough, Google claims that the bulk of the
product ideas that are launched by Area 120 will be
failures. Gee, thanks for the support and
encouragement, Dad. Hmm, was Google Stadia
fomented at Area 120? Then to seal the deal and sell
developers on the merits of joining Area 120, Google
states the now hackneyed, ‘our teams learn’ from
their failures; gag!

Figure 2. Computer game development is always better
when you don’t use computers and you can sit on the
�oor.

You can learn more about the Area 120 program at:
https://area120.google.com.

Regarding GameSnacks, Area 120 has helped organize
a collection of HTML5-based games that you can play
inside your Android browser using just about any kind
of Internet connection—bandwidth is NOT an issue
with this gaming service. Currently, the GameSnacks
catalog holds six tasty games from �ve talented
developers:

1. Bridge of Doom

2. Bubble Woods

3. Road Fury

4. Groovy Ski

5. Jump with Justin

6. Jewelish Blitz

Figure 3. GameSnacks is an online gaming smorgasbord
—if you’re hungry for playing HTML5 titles inside your
Android browser; you know, like you were promised
with Google Stadia.

And the developers of these games are:

1. Famobi

2. Inlogic Games

3. Black Moon Design

4. Geek Games

5. Enclave Games

Playing these games is simple—just click the “Play”
button and your browser is whisked to a new window
(or, Tab; dependent upon whether your Android
device is a mobile device or a desktop SBC) where
each title is loaded and playable after less than one
minute of leisurely download time.

Figure 4. Currently, the list of available game titles is a
little thin, but it is growing.

https://area120.google.com/

Figure 5. These devs are all old hands at HTML5 gaming,
but they’re still looking for more programmers who are
willing to contribute to GameSnacks.

OK, I am a sucker; after a score of 668,544 in Bubble
Woods using my ODROID-XU4 Android desktop
browser, I was hooked on GameSnacks. The play is
fast, the graphics and sound are topnotch, and, best
of all, my WiFi-enabled network connection was more
than adequate. Furthermore, these are not just
“afterthought” HTML5 games from forgotten devs.
The developer of Bubble Woods, Famobi, for example,
has an entire catalog of HTML5 games that are

available as “freemium” titles and a large selection of
ready-for-purchase games. So there is a wealth of
gaming titles for enabling GameSnacks to give you a
steady diet of online gaming goodness.

Figure 6. Quick, addictive game play is the hallmark of
GameSnacks.

You can enter the online world of gaming with
GameSnacks at https://gamesnacks.com.

https://gamesnacks.com/

Multi Screen Desktop Using VNC - Part 2: An Improved And
Simpli�ed Version
 May 1, 2020 By Adrian Popa Linux, Tinkering, Tutorial

Looks to me everyone has been stuck indoors for
longer than they desired. Some of us had to work
during this time too. Working on a small laptop screen
is no fun task, and using HDMI cables while kids run
around is not fun either. So, how about we use an
ODROID as a secondary screen? This is somewhat a
continuation of my previous article "Multiscreen
Desktop using VNC" featured in a previous ODROID
Magazine article: https://bit.ly/3bw1oEb.

So, the good news is, you do not need anything
described in that article. I managed to go through
x11vnc's man page and found some options that
greatly simplify things and reduce the number of
hacks needed.

Getting an extended desktop

The goal is to have a dual-screen setup - one screen
would be your laptop's display, the second screen
would be a networked ODROID. The laptop (in my

case) runs Linux (obviously), so we are looking for a
linux solution for the problem. Ideally one that works
over wi�.

First thing we need to do is to extend the physical
desktop. In the previous article I used xrandr to
extend the physical desktop size. However, that
causes issues - especially with applications not
knowing where the physical screen ends, which
makes maximizing windows a pain. This time we will
extend the desktop by adding a new virtual screen.

For a laptop with an intel GPU we can do this by
adding /usr/share/X11/xorg.conf.d/20-intel.conf with
this contents as described here
https://bit.ly/2xQSQZW:

Section "Device"

 Identifier "intelgpu0"

 Driver "intel"

 Option "VirtualHeads" "2"

EndSection

https://bit.ly/3bw1oEb
https://bit.ly/2xQSQZW

If you have a NVidia GPU, you can try this instead:
https://bit.ly/3awV5yW.

If you restart your Xorg server, you will see two new
virtual displays in your xrandr output:

$ xrandr | grep VIRTUAL

VIRTUAL1 disconnected (normal left inverted right

x axis y axis)

VIRTUAL2 disconnected (normal left inverted right

x axis y axis)

Now that we have a new screen available, we'll need
to set up a speci�c resolution and activate it. For my
experiments I used a 720p resolution for it because
it's small enough to be streamed without issues and
big enough to be readable from a distance on a big
screen TV.

You will need to calculate the correct timings for your
desired resolution and add a new mode to the virtual
display. Fortunately there is a tool that does that
based on an input resolution and refresh rate and it
comes part of xserver-xorg-core package:

$ gtf 1280 720 60

You can use the command's output to get the
relevant information for you and enable the screen:

$ xrandr --newmode "1280x720_60.00" 74.48 1280

1336 1472 1664 720 721 724 746 -HSync +Vsync

$ xrandr --addmode VIRTUAL1 "1280x720_60.00"

$ xrandr --output VIRTUAL1 --right-of LVDS1

You should now get a popup, like in Figure 1 showing
the new screen and asking you what you want to do
with it.

Figure 1. Creating a virtual display

Sadly, I was unable to enable virtual displays the same
way on ODROID-XU4, so this technique requires that
your master PC is an Intel-based one. But wait - if you
only have an ODROID around (hopefully an ODROID-
XU4, where xrandr plays nicely) as a master
computer, all is not lost. You can still expand the
desktop, as described in the previous article using the
script: https://bit.ly/34VZiuV:

$ DISPLAY=:0 xrandr --output HDMI-1 --fb 2560x720

--panning 1280x720

The fb parameter speci�es the total resolution, while
the panning parameter speci�es one screen
resolution. This will create space for your second
screen (on the left of the main screen), but it will
behave as one monitor (so maximizing will not work
correctly without fakexinerama, which also has its
problems).

So now we have a new desktop surface to the right of
the main screen and we need to project it to a
di�erent, physical screen. We have two ways of doing
it.

The Chromecast way

But wait, you say - I don’t have a Chromecast! I just
have this ODROID-N2 running Android TV… Well, you
are in luck! You have a Chromecast, but you need to
install an app from the Play Store called Cast Receiver
(https://play.google.com/store/apps/details?
id=com.softmedia.receiver.castapp&hl=en) that acts

https://bit.ly/3awV5yW
https://bit.ly/34VZiuV
https://play.google.com/store/apps/details?id=com.softmedia.receiver.castapp&hl=en

as a Chromecast and can receive streams from
Chromecast-enabled apps
(https://forum.odroid.com/viewtopic.php?
f=178&t=37501). Note that the app is a demo, but for
some things (like Youtube streaming) it doesn't
enforce its time limits.

So, the logical thing to do is to use Chromium's Cast
tab feature to cast the second screen to the
Chromecast device. Let us see that in action. Open
Chromium, select the three dot menu, select Cast…
and if you are in the same LAN with your chromecast
you should see it in the list (Figure 2).

Figure 2. List of chromecast devices in the LAN

If you click on the Sources… button you can select
between Cast tab and Cast desktop. If you select Cast
desktop you should get a selection of apps or screens
that you want to cast. If you are ok with just casting
one app, then �ne, but we want to cast the virtual
screen. Unfortunately, there seems to be a Chrome
bug that prevents us from doing that - it sees the
combined desktop as a screen, not as two
independent screens.

Figure 3. Screen selection

Figure 4. Extended screen casting via Chrome - hardly
useful

So, currently casting from Chrome is a no-go, though
it might change in the future. The quality was �ne,
performance was ok and there was only about a half-
second lag between mouse input and visual feedback.
Not ok for gaming, but ok for most o�ce tasks.

So, plan B is using mkchromecast to cast a region of
the screen. You can install it with

$ sudo apt-get install mkchromecast

You can run it with the --discover parameter to get the
names of the chromecasts in your network (see �gure
5).

https://forum.odroid.com/viewtopic.php?f=178&t=37501

Figure 5. Discovering chromecasts in your LAN

Knowing the name you can then write a more
complicated command to use �mpeg to grab X11 with
a speci�c size and from a speci�c o�set and stream
the video to your chromecast of choice:

$ mkchromecast -n "ODROID-N2-159" --video --

command 'ffmpeg -f

x11grab -r 15 -s 1280x720 -i :0.0+1600,0 -vcodec

libx264

 -preset ultrafast -tune zerolatency -maxrate

10000k

 -bufsize 10000k -pix_fmt yuv420p -g 60 -f mp4

 -max_muxing_queue_size 9999 -movflags

 frag_keyframe+empty_moov pipe:1'

Most of the parameters above should remain �xed
for best streaming speed. The -n parameter lets you
select your desired output chromecast, -r speci�es the
framerate, -s represents your virtual screen size, while
:0.0+1600,0 represents the o�set from where you
want to capture. This o�set reads as follows: read
from Xserver :0.0, with an o�set of +1600 pixels on
the x axis and a 0 o�set on the y axis. The x value
should be your laptop's screen width in pixels, so that
�mpeg can skip your physical screen. The y value is 0
because X11 reads the y axis starting from the top,
going down.

Figure 6. Extending desktop with chromecast

Now, the result looks better. Except performance is
nowhere near what Chrome can do. Despite �mpeg
parameter tuning, because of network bu�ers,
compression bu�ers, etc., there is a 5-6 second lag
between your action and the screen response. So, this
is only suitable as a second screen for documentation,
email and things that does not require interaction
(e.g. watching logs scroll by).

The VNC way

We can do better. How about we cast the screen via
VNC? This is what I tried in my previous article, but in
a convoluted way that did not work that well because
I had to capture/transport and render o�-screen half
of the desktop. Had I spent more time reading
x11vnc's manual
(http://www.karlrunge.com/x11vnc/x11vnc_opts.ht
ml), I would have found out the -clip option that does
just that! The idea is to start a VNC server that is
cropped to the virtual screen size and on the TV side
use a VNC viewer program to display the server's
contents. The big advantage is you can "cast" to any
VNC-enabled system, so you do not need to run
Android on your Odroid, and also, if your smart TV
has a VNC client app, it can be used directly.

I put together a small shell script that creates the
virtual screen and also starts x11vnc in the
background without authentication. Please adjust it to
�t your needs:

$ cat new_720p_screen.sh

#!/bin/bash

calculate the desired modeline with gtf:

gtf 1280 720 60

1280x720 @ 60.00 Hz (GTF) hsync: 44.76 kHz;

http://www.karlrunge.com/x11vnc/x11vnc_opts.html

pclk: 74.48 MHz

Modeline "1280x720_60.00" 74.48 1280 1336

1472 1664 720 721 724 746 -HSync +Vsync

/usr/bin/xrandr -d :0 --newmode "1280x720_60.00"

74.48 1280 1336 1472 1664 720 721 724 746 -

HSync +Vsync

/usr/bin/xrandr -d :0 --addmode VIRTUAL1

"1280x720_60.00"

/usr/bin/xrandr -d :0 --output VIRTUAL1 --right-of

LVDS1

#start x11vnc

x11vnc -forever -bg -geometry 1280x720 -shared -

noprimary -auth /var/run/lightdm/root/:0 -display

:0 -clip 1280x720+1600+0 -threads -noxdamage

The interesting x11vnc parameters you will need are: -
geometry sets the resolution of the target VNC
session and should match your virtual screen size -
clip de�nes a target resolution (1280x720) and an
o�set from the current screen (1600 pixels from the
edge of the X11 server, on the x axis, 0 pixels from the
y axis). The o�set should match your primary screen
size if extending to the right, and should be negative
and match the virtual screen size if extending to the
left of your main screen -threads and -noxdamage
improve video responsiveness

Once you run those commands you can use any VNC
client to connect to your PC's IP address on port 5900
and view the virtual screen only. If you are on Android
TV you can use TruVNC
(https://play.google.com/store/apps/details?

id=com.mm.truvnc.lite&hl=en) which worked really
well in my case, otherwise any supported VNC client
should do the trick.

In terms of performance - it is great! I get less than 1s
lag over wi� and much faster response while using a
wired connection, so I am pretty happy with it! I ran
glmark2 on the virtual display and it rendered
smoothly over VNC, with the occasional tearing e�ect
because of the noxdamage option (otherwise it gets
blocky). Playing video is also smooth, except for some
tearing. CPU usage is not that high as well. So, give it a
try, see how you like your new expanded desktop.

Figure 7. Expanding via VNC

For me, I am going to use it like this during the
quarantine, and when I get back to work I will set up
an ODROID-XU4 with an old 1280x1024 monitor as
my third monitor, so I can be the envy of the o�ce!
For comments, questions, and suggestions, please
visit the original post at
https://forum.odroid.com/viewtopic.php?
f=53&t=38409.

https://play.google.com/store/apps/details?id=com.mm.truvnc.lite&hl=en
https://play.google.com/store/apps/details?id=com.mm.truvnc.lite&hl=en
https://forum.odroid.com/viewtopic.php?f=53&t=38409

Assist With Coronavirus Research: Using Rosetta@home To Help
Find A Cure
 May 1, 2020 By Rob Roy Linux

It is now possible to use your 64bit ODROID to assist
with Coronavirus Research. Thanks to a new
application update for Rosetta@home, made possible
by the Arm development community. You will need at
least 2GB of RAM and a 64-bit OS (either Linux or
Android).

Getting started on Android

To get started on Android, simply download the
BOINC app from the Google Play Store and choose
Rosetta@home from the list of projects. Run the app
and either create a new account or use an existing
one if you have one. Then just wait for work units to
arrive.

Getting started on Linux

To get started on linux, �rst be sure everything is up
to date:

$ sudo apt-get update && sudo apt-get upgrade

Then install the boinc client and the boinc text user
interface:

$ sudo apt-get install boinc-client boinctui

Then run bonctui:

$ boinctui

Press ‘F9’ and navigate to “Projects”, select “Add
Project” and choose “Rosetta@Home”. Choose an
existing account or create a new one and wait for
work units to arrive, then just let it run.

What it does

Rosetta@Home uses the BOINC platform to harness
thousands and thousands of computers to run
distributed computing jobs(large computing jobs
broken down into smaller work units to be run on
across many di�erent processors) based on the
known DNA sequence of the Coronavirus(as well as

other viruses related to other diseases) “to predict the
structure of proteins important to the disease as well
as to produce new, stable mini-proteins to be used as
potential therapeutics and diagnostics, like the one
displayed above which is bound to part of the SARS-
CoV-2 spike
protein.”(https://boinc.bakerlab.org/rosetta/forum_t
hread.php?id=13702)

Figure 1 - JHR vs Covid

These results make possible targeted and accelerated
vaccine and anti-viral research.

Strength in numbers

At the end of March, there were nearly 100,000 hosts
from over 140 countries enabling an estimated 1.26
peta�ops of computing power. That’s true
supercomputer performance, donated to researchers
by thousands of individuals around the globe, to help
address a global problem. A cause well worth the
spare compute cycles of our ODROID SBCs.

https://boinc.bakerlab.org/rosetta/forum_thread.php?id=13702

ODROID-GO Advance Cell Phone: A Custom Built and Coded Cell
Phone
 May 1, 2020 By @mameise ODROID-GO Advance, Tutorial

Recently, I decided to build my own cell phone out of
an ODROID-GO Advance using a SIM800L module
which included a speaker and mic. Thanks to the
ample space inside the case, this hardware
installation was pretty easy. For this build, I used a
Debian Buster image with the SIM880L connected to
the ODROID-GO Advance’s UART2.

Figure 1 - ODROID-GO Advance with keyboard

Figure 2 - Side view with cut out for SIM800L

Figure 3 - SIM800L board and antenna

Initially, I tried with minicom to communicate with
/dev/ttyFIQ0 but I did not get an answer. I also tried
the 10pin connector (UART1) but was unlucky there,
as well. After some help from the Hardkernel forum, I
learned that changes needed to be made in the
device’s dtb �le. The needed changes included
disabling the ‘�q-debugger’ which used UART2, and
enabling that UART port as a common serial port.
Additionally, the �q-debugger device entry was
removed from the boot.ini �le. After those changes
had been made and a reboot performed, AT-
Commands could be sent with a response from the
SIM module.

Figure 4 - First test app up and running

After some more work, a basic interface was created
to hold contact information and manage calls.

Figure 5 - Phone OS 0.04 Menu

Figure 6 - Options/Settings page

Figure 7 - Contact selection and options to call and end-
call

For more information, the original forum thread is
available at
https://forum.odroid.com/viewtopic.php?
f=193&t=38248.

https://forum.odroid.com/viewtopic.php?f=193&t=38248

