
ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

INSTITUTE OF MATHEMATICS AND INFORMATICS

INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING

OLYMPIADS IN INFORMATICS

Country Experiences and Developments

Volume 1 2007

Selected papers of

the International Conference joint with

the XIX International Olympiad in Informatics

Zagreb, Croatia, August 15–22, 2007

OLYMPIADS IN INFORMATICS

Country Experiences and Developments

ISSN 1822-7732

Editor

Valentina Dagienė

Institute of Mathematics and Informatics, Lithuania, dagiene@ktl.mii.lt

Co-editors

Arturo Cepeda, the Mexican Committee for Informatics, Mexico, acepeda@auronix.com

Richard Forster, British Informatics Olympiad, UK, forster@olympiad.org.uk

Krassimir Manev, Sofia University, Bulgaria, manev@fmi.uni-sofia.bg

http://www.vtex.lt/olympiads_in_informatics

c© Institute of Mathematics and Informatics, 2007

Olympiads in Informatics, Volume 1, 2007.

2007.07.25. 11 leidyb. apsk. l.
Tiražas 170 egz. Užsakymas Nr. 1667.

Printed by Printing house “Mokslo aidai”, Goštauto 12, 01108 Vilnius, Lithuania
Cover design: Multimedia Center, Arab Academy for Science and Technology, Alexandria, Egypt

Olympiads in Informatics, 2007, Vol. 1, 3–4 3
 2007Institute of Mathematics and Informatics, Vilnius

Editorial

The International Olympiad in Informatics (IOI) is one of the most prominent com-
puter science competitions in the world. It was initiated by the United Nations Educa-
tional, Scientific and Cultural Organization (UNESCO) and endorsement by the Interna-
tional Federation on Information Processing (IFIP). The IOI is a truly international event,
having been held on five continents and drawing delegations from six. It has been held
every year since its foundation in 1989: Bulgaria, Belarus, Greece (twice), Germany, Ar-
gentina, Sweden, The Netherlands, Hungary, South Africa, Portugal, Turkey, China, Fin-
land, Korea, USA, Poland, Mexico and this year in Croatia. It is thanks to the hard work
of these host countries in organizing and funding the olympiad that the IOI continues to
flourish.

The competition sets tasks that are of an algorithmic nature, however the contestants
have to show basic skills including problem analysis, design (and knowledge) of algo-
rithms and data structures, in addition to the programming and testing their solutions.
The winners of the IOI belong, no doubt, to the best young computer scientists of the
world.

The IOI regulations define its General Assembly, the body that is made up from mem-
bers of each of the participating delegations, as “a temporary, short-term committee dur-
ing IOI”. This has often been characteristic of the informatics olympiads community as a
whole. We come together during the year for a variety of regional and world-wide events,
before returning to our respective countries to run our national contests in our own indi-
vidual vacuums. Yes, we communicate during these national and international events, but
too frequently these are conversations between small groups, if not individuals, and often
such conversations are piecemeal and quickly forgotten.

Many of the issues at the national level differ from country to country. We have dif-
ferent educational systems and the availability and take-up of information technology
varies, but even here there are as many similarities as differences. We also face many
of the same problems: How do we pick our students? How do we train them? What is
suitable material? etc ... How about those outside of our community? There are currently
around 200 countries in the world and about 80 participating at the IOI. How many of
those other countries have national contests, or want to have national contests, and how
can we as a community help them?

As a community, we have a great deal of accumulated experience gained by running
our respective contests. The IOI presents an ideal forum for discussing these experiences
and associated issues. It brings together this experience and knowledge from across the
globe and offers a regular, annual forum. There is also the opportunity for sharing the
experiences of our community with the local educators in host countries. During some
previous IOIs, attempts have been made to bring delegation leaders and other educators
together, e.g. workshops in South Africa (1997) and Finland (2001).

4 Foreword

In Mexico (2006), the Chilean delegation leader Alexander Tobanov made a challenge
to start organizing half-day conferences during IOIs. During this year’s pre-IOI meeting
in March, the International Committee agreed that it was time to start holding confer-
ences in order to study our experiences and to develop future plans. TheOlympiads in
Informatics conference, to be held jointly with and supported by the IOI, was approved
and the editorial board chosen.

The firstOlympiads in Informatics conference puts attention on organizing olympiads
at the national level. The 17 papers selected for this inaugural conference discuss the
running of and issues facing several national olympiads. Some explore recent ideas and
changes, and how experiments with them have worked at the national level. Ideas which,
in several cases, have been tried simultaneously in other countries.

It is intended that this conference will have main topics each year. We have a lot of
questions to be dealt with: tasks developments, automatic testing systems, teaching pro-
gramming methods, software for training, curriculum, relations between other contests,
etc... There are many such issues and we will set out, if not to lay down answers then
to lay down the questions and record how the community is approaching them. We hope
that that this will be a benefit, not just to the IOI community, but to the wider community
of educators in our field.

Thanks are due to everyone who has contributed to this conference. In particular, we
would like to thank Ivo Separovic and the Croatian organisation of this year’s IOI for
giving us the opportunity to host the conference. Without their generous assistance it
would not have been possible to hold this event.

Valentina Dagien˙e
Arturo Cepeda
Richard Forster
Krassimir Manev

Olympiads in Informatics, 2007, Vol. 1, 5–14 5
© 2007 Institute of Mathematics and Informatics, Vilnius

Brazilian Olympiad in Informatics

Ricardo de Oliveira ANIDO, Raphael Marcos MENDERICO
Instutute of Computing, State University of Campinas
Av. Albert Einstein, 1251, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, Brazil
e-mail: {ranido, rmm}@ic.unicamp.br

Abstract. The Brazilian Olympiad in Informatics (OBI, in Portuguese) is a contest promoted by
the Brazilian Computing Society (SBC) and its main purpose is to raise the interest of students
in such an important science for a student’s education as Computing Science, through an activity
that involves challenge, ingenuity and a healthy dose of competition. The contest is composed
of two different categories, for two levels of contestants: a programming contest for high school
students (Programming Category) and a logic contest for elementary students (Logic Category). In
this paper we will discuss the main aspects and challenges concerning the OBI organization.

Key words: programming contest, logic contest, grading systems, programming training camp.

1. Introduction

The Brazilian Olympiad in Informatics (OBI, in Portuguese) is a contest promoted by
the Brazilian Computing Society (SBC), and is one of the Scientific Olympiads in Brazil
– among Mathematics, Physics, Astronomy and others. The Institute of Computing (IC)
at the State University of Campinas (UNICAMP) is in charge of OBI’s organization and
coordination since its first edition in 1999. The contest has as the sole sponsor Fundação
Carlos Chagas, a non-profit organization that promotes education in Brazil.

The main purpose of OBI is to raise the interest of students in such an important
science for a student’s education as Computing Science, through an activity that involves
challenge, ingenuity and a healthy dose of competition. The OBI is also a way to promote
Computing activities at schools, which could help the students in their future career.

The Olympiad is composed of two different categories, for two levels of contestants:
a programming contest for high school students (Programming Category) and a logic
contest for elementary students (Logic Category). Both categories are further divided
into two levels, depending on the age of the contestants. The contest is organized in
two rounds. In the Local Round, contestants take the test at their own schools. The top
ranked contestants in this first round are invited to take part in the National Round. For
both categories, the best classified contestants are invited to a week of activities that
takes place at UNICAMP during the winter break. For contestants in the Logic Category,
activities are composed of introductory courses in programming; for contestants in the
Programming Category, the activity is a classical Training Camp, with exams for selecting
the members of the Brazilian team for the International Olympiad in Informatics.

6 R. O. Anido, R. M. Menderico

The main challenge faced by the organization is to motivate schools to take part in the
competition. In OBI’s 9th edition (2007), about 8,000 students registered for the com-
petition while 300,000 students registered for the Brazilian Olympiad in Mathematics.
The main reason for this, we think, is that Brazil does not include Informatics, let alone
programming, in its official elementary or high school curricula. Most schools do not
have an informatics teacher, nor even computers available to the students, which makes
it especially difficult to raise the students and schools’ interest.

Many other challenges have to be addressed: the number of girls decreases enor-
mously between the two contests (Logic and Programming), some schools in remote
regions do not even have the money or resources to make copies of the exams, the Train-
ing Camp costs are enormous, mainly due to the price of air tickets (cities may be 3000
km apart, too far to travel by bus), and others. These challenges and the solutions we
found are further discussed in other points of the paper.

This paper is divided as follows: Section 2 introduces the categories, levels and rounds
adopted at OBI. Section 3 presents our grading strategies for Logic and Programming
categories. Section 4 discusses the training camp and the training camp exams which
select the contestant members of Brazilian Team for IOI. Section 5 shows the conclusions
and future work.

2. Categories, Levels and Rounds

At OBI the contestants are divided by their knowledge level in categories; these are also
divided into levels, according to which academic year each student is in at that moment
and his age. These are the categories at OBI:

• Logic Category:

– level 1, for students up to 7th year of elementary school,
– level 2, for students up to 9th year of elementary school;

• Programming Category:

– level 1, for students up to 1st year of high school,
– level 2, for students up to 3rd year of high school, or who have been enrolled

in high school until December of the previous year and are no older than 20
years on July the 1st of the contest’s year.

The Logic category, with multiple choice questions, evaluates the logical reasoning of
the students, trying to identify earlier some contestants which could develop good skills
in computer programming. The questions are usually on same difficulty level as used on
SATs (School Admission Test) in the USA. There is an example of a task of the Logic
contest in Appendix 5.

The Programming category is composed of programming tasks, like the International
Olympiad in Informatics. The purpose of Programming Category Level 1 is to identify
students with basic programming knowledge and to develop advanced programming con-
cepts like graphs and dynamic programming with them. The Level 2 contest is the compe-
tition which selects the four contestant members of Brazilian Team at IOI. The languages

Brazilian Olympiad in Informatics 7

used in programming category are the same accepted at IOI: Pascal, C and C++. In Ap-
pendix 5 there is an example of a programming task used at OBI.

Each category and level of OBI is divided into two rounds:

Local Round: The objective of this round is to allow the highest number of contestants.
To achieve that, the students do the exams in their own schools or, if it is not pos-
sible, in another school which accepts invigilating the exam for that student. Each
school fills in a registration form and choose a school member (usually a teacher)
to be the “Local Representative” of OBI at his school. This person is in charge of
printing the tests, setting up the computer environment according to OBI regula-
tions (if necessary) and sending the students’ answers to the OBI coordination (at
UNICAMP) to be graded. In both contests grading is done automatically, centrali-
zed at the coordination.

National Round: The top ranked 10 percent of contestants at each level are invited to
participate in the National round, in which exams are done in universities located
in the states’ capital cities, important regional centres and cities with a large num-
ber of invited contestants. The “National Representative” of OBI is chosen by the
National Committee of OBI and is also responsible for the tests and the computer
environment, like the Local Representatives. A financial aid is provided to univer-
sities that host the National Round.

The contestant solutions, in both Categories, in both rounds, are all graded at UNI-
CAMP, where the OBI central office is located. The office has the administrative support
of one secretary hired by the Brazilian Computing Society. The secretary is in charge of
keeping the website up-to-date and doing the administrative tasks concerning the OBI
administration. The OBI office is also responsible for organizing the Local and National
Rounds, and for grading the students solutions.

2.1. Task Creation and Distribution

There are two committees for task creation, one for each category. Usually the task cre-
ation committee members live in different cities, sometimes outside Brazil, separated by
thousands of kilometers in some cases, and they have their own jobs and appointments;
it is almost impossible to set a meeting with all the members. The management of the
tasks and the committees is done electronically, by a customized bulletin board system
that is password protected. All communication among committee members is cyphered
with a public-key schema, typically DSA and Elgamal provided by GPG. The committee
members are former contestants of OBI, ICPC contestants and former contestants and
faculty members.

In 2007, about 20 Logic tasks were made, each one composed of 5 or 6 multiple
choice questions for the four Logic exams. Each exam contains between 20 and 30 mul-
tiple choice questions. There were also about 25 programming tasks created for the four
programming exams of OBI and the Qualification Exam (which will be described in Sec-
tion 4).

8 R. O. Anido, R. M. Menderico

Since the cost of distributing paper versions of task sets to schools would be too high,
considering the distances in the country and the weight of the packages, tasks sets for
both the Logic and the Programming Category are made available for download by the
OBI’s representatives in PDF format, using a secure OBI sub-system. The representative
must print the task set locally and make copies for each contestant.

As the Logic Category exams are tests, a student solution is a paper form with check-
boxes filled (answer forms). The answer form for each student is made available in the
Internet for download, together with the tasks, in PDF format (the set of forms for one
school is one single multiple page file). Separate answer forms, without contestant infor-
mation, are also available in case of necessity (for example, when a student smears or
blotches her/his answer sheet).

3. Grading Systems

Grading of solutions in both categories, in both rounds, is done automatically, centralized,
at the OBI central office.

3.1. Programming Category

For the programming category, the contestants’ solutions are sent to the OBI office
through an electronic system, where the Local and National Representatives submit the
tasks, after archiving the contestants solutions into one file. The system verifies the con-
sistency of the archive (names and extensions of the individual submissions), providing
a report; if inconsistencies are found, the system directs the Representatives to fix the
problem and try again. After receiving all tasks, they are electronically graded, using a
set of test cases for each task. A test case is composed of one or more instances and a
contestant’s solution is only accepted on a test case if every instance is considered correct.

The programming grading system is capable of grading programs implemented in a
wide range of distinct compilers and configurations, like several versions of gcc. This is
necessary because the schools have some freedom to set up their computer environment
and, as a result, use many operating systems and compilers at the Local Round. During
the National Round the computational environment is controlled and there is no need to
use several compilers, but the grading system used in that case is the same as used on
Local Round.

The main problems concerning the programming grading system are caused by wrong
submissions from Representatives, who sometimes send the solutions by email or in an
unrecognizable format. This requires a manual intervention to correct these problems and
sometimes inserts the tasks directly into the grading system without a submission. The
tasks are never corrected outside the system and no alteration is made in any contestants’
solution.

Brazilian Olympiad in Informatics 9

3.2. Logic Category

The Logic Category exams are sent by mail to the OBI office and their answer sheets are
transformed into digital images by a fast scanner and then digitally analysed to obtain the
contestants’ answer to each multiple choice question. Each set of answers is compared
to the key answers of corresponding exam and graded according the number of correct
answers.

The representatives print the task sets and answer sheets in any printer available. For
the Programming Category this has no implication, but for the Logic Category this makes
things more difficult for the automatic grader, because some printers may scale the pdf
when printing. The scanner may also slightly rotate the sheet when scanning. For these
reasons, the grader first “normalizes” the image, eliminating rotation and scaling, based
on four registration marks in each corner of the answer sheet, before analysing the digital
image for grading. The scanner used can scan about one page per second, and the grade
program, written in python (using PIL and Numarray), also takes about one second to
grade each sheet.

Unfortunately, some students do not follow the instructions and sometimes fill the
answer sheet in a wrong way, for example not completely filling the checkbox, making
it impossible to grade the sheet. In these cases manual intervention is required to correct
these problems, if at all possible.

4. Training Camp

This section presents the training camp courses. The top ranked contestant in each catego-
ry and level are invited to take part in the courses. Between 15 and 20 students are invited
in each level, the exact number depends on the level ranking, which could contains some
students with the same score. In 2007, 54 students were invited to participate in the Ba-
sic Programming Course (Section 4.1), 10 were invited for the Advanced Programming
Course (Section 4.2) and 12 took part in the IOI Training Camp (Section 4.3).

In this section is also discussed the structure needed to the training camp courses
(Section 4.4) and the costs involved in the camp (Section 4.5).

4.1. Basic Programming Course

The Basic Programming Course is given to the top ranked students on Logic Category
and its purpose is to show basic programming techniques and problem solving using the
computer. Obviously, a computer language is shown to the students, usually C. However,
the aim of the course is the problem solving, with notions of algorithms complexity.
The course lasts five days, with classes during the morning and laboratory classes in the
afternoon. The topics discussed are:

• Day 1: Introduction to computer programming, computer-aided problem solving,
programming languages.

10 R. O. Anido, R. M. Menderico

• Day 2: C programming language, initial commands, input and output, decision
structures.

• Day 3: Loops.
• Day 4: Functions.
• Day 5: Vectors and Matrices.

4.2. Advanced Programming Course

The Advanced Programming Course is given to the top ranked students on Programming
Category Level 1 and invited students from Level 2 who could participate of OBI for at
least one more year. Its aim is to improve the contestants’ knowledge about programming,
discussing topics like algorithm complexity and dynamic programming. The course focus
on practical aspects of the selected topics, not on the more mathematical approach which
is taught at colleges. The topics discussed are:

• Day 1: Introduction to algorithms and complexity.
• Day 2: Data Structures and greedy algorithms.
• Day 3: Graph Algorithms.
• Day 4: Dynamic Programming.
• Day 5: Geometric Algorithms.

4.3. IOI Training Camp

The IOI Training camps are given to the top ranked students on Programming Category
Level 2. Their purpose is to prepare these students for the IOI. In this camp the four best
students are chosen to form the Brazilian Team for IOI. There are two training camps:

• The first training camp takes place in June every year and last 6 days. About 10
contestants are invited to attend the course and take the qualification exams. The
exam is divided into three short tests on third, forth and fifth days and a final exam
on the sixth day. The local and national round exams’ score is added to the quali-
fication exam’s score to determine the four contestant members of Brazilian Team
for IOI. During the course the students learn advanced programming techniques
and solve several programming problems from University of Valladolid problem
set archive or other programming problem repositories.

• The second training camp takes place in July, together with the Brazilian Comput-
ing Society Annual Congress. The four members chosen to form the IOI Team are
invited to attend a week of problem-solving classes.

The classes are given by former contestants of OBI and ICPC contests and faculty
members. The qualification exam’s tasks are prepared by the programming scientific
committee.

4.4. Structure

The courses take place at Institute of Computing of UNICAMP. Two classrooms and
two computer laboratories are used during the course. The computers have two operating

Brazilian Olympiad in Informatics 11

systems (Linux and Windows 2000) and several development tools, like Pascal, C and
C++ compilers, text editors and manuals on both operating systems. The Institute does
not charge the OBI organization for the use of its structure.

Ten assistants are necessary to take care of the contestants during the training camp.
The contestants are usually teenagers, from 11 to 19 years old, and it is necessary to look
after them constantly during their classes, meals and on their way between the hotel and
UNICAMP, especially the younger ones. The assistants are undergraduate and graduate
students of Instutute of Computing.

4.5. Costs

The Brazilian Olympiad in Informatics is sponsored by Fundação Carlos Chagas, a non-
profit organization that promotes education in Brazil. Our annual budget is about US$
75,000.00 and covers all the costs of OBI, including the training camps, OBI office and
the participation at IOI.

Our highest costs are the programming course and training camp costs. About half of
our budget is spent to bring the contestants to Campinas, where the courses take place.
The main reason for that are the high costs of transportation, especially the air tickets.
For example, among the 40 students attending the Basic Programming Course in 2006,
20 needed to travel more than 2,000 km to attend the course. Each airplane ticket costs
about US$ 250.00, resulting in US$ 500.00 per participant and a total of approximately
US$ 12,000.00 in 2006 for all courses and training camps. Another US$ 500,00 was spent
with participants who needed ground transportation to attend the course.

Moreover, although there is a student dormitory at UNICAMP, it is not possible to
use it to accommodate the contestants during the camp, when forces us to allocate the
students in a hotel. This cost is comparable with the transportation cost and they compose
the largest part of the training camp budget. The rest is spent on teachers’ and assistants’
payments, meals and prizes for the students (certificates, medals and t-shirts). The 2006
training camp cost is shown on Table 1.

On 2006 our budget also included about US$ 10,000.00 to maintain the OBI office
and about US$ 11,000.00 to take the contestants and leaders to IOI countries, which costs

Table 1

Training Camps’ costs

Activity Cost (US$)

Transportation (ground and air tickets) 12,500.00

Hotel 13,000.00

Meals 2,700.00

Medals, certificates and t-shirts 900.00

Payment to teachers and assistants 1,400.00

Total 30,500.00

12 R. O. Anido, R. M. Menderico

Table 2

Brazilian IOI Team’ costs

Activity Cost (US$)

Transportation (air tickets) 8,000.00

Insurance and registration fee 1,300.00

Total 11,300.00

are detailed on Table 2. All values shown are approximate values and are given only for
information.

5. Conclusion and Future Work

Here are some planned future work to be done for promotion and improvement of OBI:

• A booklet written by the members of Logic scientific committee and other profes-
sors, with Logic categories questions and key answers. Two thousand books will
be printed and distributed by mail to every participant school of OBI 2007 or future
participant schools or to every one who asks for a copy.

• A CD developed by the members of Programming scientific committee which con-
tains a small version of the submission and grading system and past programming
tasks with solutions and test cases, to be distributed as described above.

• On-line contests during the second semester of each year, to promote the main
contests and raise interest in students and schools in logic and programming.

Appendix A. Logic Category Task Example

MP3 Player
Francisco must select three CDs to record on his mp3 player. He owns 6 CDs labeled K,
O, S, T, V and W. Francisco must follow the following conditions:

• K must be selected, S must be selected or both must be selected.
• O or V must be selected, but neither V nor S could be selected together with O.

1. Which one is a valid CD set to be recorded on MP3 player?
(A) K, O and S
(B) K, S and T
(C) K, S and V
(D) O, S and V
(E) O, T and V

2. If K and O were chosen, which item shows a valid set of Cd’s that Francisco
could choose without breaking any condition?

Brazilian Olympiad in Informatics 13

(A) S and V
(B) T and W
(C) V and W
(D) S, W and T
(E) V, W and T

3. If S were chosen, which CD must be chosen?
(A) K
(B) O
(C) T
(D) V
(E) W

4. If V was not chosen, which CD pair must be chosen?
(A) K and O
(B) K and T
(C) K and W
(D) O and T
(E) O and W

5. Which CD pair must not be chosen at the same time ?
(A) K and O
(B) K and T
(C) O and W
(D) T and W
(E) V and W

Appendix B. Programming Category Task Example

Maze
A friend of yours is very excited about a new game he downloaded to his mobile phone.
The game is a kind of maze which could be represented by a N by M matrix. Each cell
of the maze contains a platform which is at a certain height from the floor, which could
be represented by an integer from 0 (the lowest) from 9 (the highest). Initially, you are
on cell (1, 1) (superior left corner) and your purpose is to reach at the end of the maze at
cell (M, N) (inferior right corner).

To leave the maze you should move from a cell to an adjacent one. The problem is:
your avatar cannot jump, so, if the destination cell is more than one unit higher than your
current height, you can’t move.

In each round you can move to one of four adjacent cells (up, down, left, right) if the
height of the destination cell is less or equal your current cell height plus one. That is, if
the height of the cell is a, you cannot move to an adjacent cell if, and only if their height
is less or equal than a + 1.

To make the things worse, in each round, after the player’s action, each cell increase
its height by one. If the height of a cell is exactly 9, its height becomes 0.

Observe that, in a round, the player does not need to move, he could just wait for
the platforms movement. Moreover, notice that not every cell has 4 neighbors, because
movements outside the maze are not allowed.

14 R. O. Anido, R. M. Menderico

You, as a good programmer, decided to write a program which calculates the lowest
number of rounds necessary to reach the exit of a given maze.

Task. Write a program which, given a maze, returns the lowest number of rounds
necessary to reach the exit with the restrictions described above.

Input. The input must be read from the standard input device, usually the keyboard.
The first line contains two integers N and M (2 � N, M � 50) separated by a space,
which represents, respectively, the amount of lines and columns on the maze. The N

following lines contain, each one, M integers which represents the initial height (at round
0) of the platform. The platform is always between 0 and 9.

Output. Your program must print, on the standard output device a single line, con-
taining the lowest number of rounds to reach the exit.

Source file: maze.c, maze.cpp, or maze.pas

Input Input Input
4 3
0 0 0
0 0 0
0 0 0
0 0 0

3 3
1 2 3
4 5 6
7 8 9

3 5
1 3 1 1 1
1 3 1 3 1
1 1 1 3 1

Output Output Output
5 12 10

R. O. Anido is the coordinator of the Brazilian olympiads in infor-
matics. He has been attending the IOI since 1998, and has served as
head judge for the South American ACM ICPC Regional since 2003.
He holds a BEng in mechanical engineering from the Aeronautical
Technological Institute (ITA), and a MSc in computer science from
University of Campinas, both in Brazil. He took his PhD in comput-
ing at Imperial College, London, and spent a post-doctoral period at

Institut National dés Télecommunications (INT) at Evry, France. He is currently an as-
sociate professor at the Institute of Computing, University of Campinas, Brazil, where
he was vice-director and director from 1996 to 2004. His main research interests are
distributed and mobile computing.

R. M. Menderico participated in OBI as a contestant in 2001 and since
then has helped in OBI organization, initially as an assistant and then
he has served on the scientific committee of OBI. He also attend the
IOI as Brazilian Delegation’s deputy leader in 2005 and team leader
in 2006. Raphael received his BSc degree in computer engineering in
2005 at UNICAMP and is currently enrolled in PhD course at Institute
of Computing at UNICAMP. He is also a part-time lecturer at UNI-
CAMP.

Olympiads in Informatics, 2007, Vol. 1, 15–23 15
© 2007 Institute of Mathematics and Informatics, Vilnius

Regular Competitions in Croatia

Predrag BROÐANAC
V high school
Klaiceva 1, Zagreb
e-mail: predrag.brodjanac@zg.t-com.hr

Abstract. Getting the Olympiad team which will consist of the best informaticians is a really big
problem. In the Republic of Croatia, over the years, different competition models have been ex-
perimented with, often using the previous, abandoned models or introducing the new ones. Each
of these models had its own advantages and disadvantages, but none of them have been the per-
fect one. The current model also has its own disadvantages, but the biggest drawback is that the
competitors are overburdened at the time when they are supposed to do their best. The students
are under a lot of pressure, so there have been some thoughts about the model, according to which
additional time would be put between the final competitions.

Key words: programming, competitions, competitors, the Croatian Olympiad in Informatics,
International Olympiads in Informatics, the Olympiad team.

1. Introduction

In order to become the member of a team which will represent the Republic of Croatia
at the International or Central European Olympiad in Informatics, the competitors have
to show their own quality in a whole series of competitions in informatics. If they don’t
achieve the excellent results in only one of these competitions, it is almost certainly that
they will not be the part of the informatics team which will represent Croatia at the Inter-
national Olympiads.

The competitions, where the selection of the informatics team starts, begins by the
end of January at the lowest level of competition – the school competition. The next
level is a county competition and afterwards the state competition, where the students
compete for 2 days. Immediately after the state competition, the Croatian Olympiad in
Informatics follows, at which up to 15 students, who achieved the best results in the
state competition, are invited to participate. The 8 students who were top-placed at the
Croatian Olympiad in Informatics are invited to participate in the Elective preparations.
During these preparations students are faced with another two exhausting competitions,
and the 4 top-placed students in these competitions will be the members of the team which
will represent the Republic of Croatia at the International Olympiads in Informatics.

Such a large number of competitions is extremely stressful for the students, consid-
ering the fact that most of these students participate in some other competitions (mathe-
matics, physics, etc.), but the years of experience have shown that such a large number

16 P. Brod̄anac

of different competitions is, in fact, a prior condition which will show who the best com-
petitors really are.

Apart from regular competitions, which are a prior condition if you want to partici-
pate in the International Olympiads in Informatics, there are some other competitions in
informatics, which help the competitors to stay on good form, such as: COCI (Croatian
Open Competition in Informatics), TopCoder and things like that.

Great attention has been given to the students’ preparations for the competitions.
Apart from the regular informatics classes and preparations which students have through-
out the school year in extracurricular activities within the school, the Croatian Informatics
Clubs Association organizes informatics summer camps and winter schools of informat-
ics every year.

2. The Overview of the Regular Informatics Competitions in the Republic of
Croatia

In the Republic of Croatia school education lasts for 12 years. In the first 8 years of their
education, students attend elementary school which is compulsory for everybody. When
they finish their elementary school, students can choose between 3 basic types of high
schools (grammar schools, vocational and technical schools). According to the chosen
program, high school lasts for 3 or 4 years.

The informatics competitions follow the structure of the education system. Accord-
ingly, there are 2 basic categories of competitions: elementary and high school compe-
tition in informatics. At high school level there are two subgroups of competition: one
subgroup is for the first and the second graders (at the ages of 15 and 16) and the second
subgroup is for the third and the fourth graders (at the ages of 17 and 18). All the students
solve the programming tasks using one of the following programming languages: Pascal,
C or C++.

At the elementary-school level there are also 2 subgroups. The first subgroup is for
the students up to the 6th grade (up to 12 years old) and the second subgroup is for
the students in the 7th and 8th grade (they are 13 and 14). Unlike high school students,
elementary school students can compete in two categories: BASIC/Pascal and LOGO.

All these competitions are held at several levels:

• school competition,
• county competition,
• state competition.

For high school students there are two levels of competition:

• Croatian Olympiad in Informatics,
• Elective preparations.

Exceptionally, elementary school students can be invited to the Croatian Olympiad in
Informatics if they have achieved exceptional results in the state competition.

Up to now, only two elementary school students have been invited to the Croatian
Olympiad in Informatics.

Regular Competitions in Croatia 17

Fig. 1. The overview of the regular informatics competitions in the Republic of Croatia.

2.1. School Competitions

Up to this year, schools alone have been in charge of the school competitions. Schools
could organize the competitions within some period of time (most often, a week), setting
their own tasks.

This is the first year that the informatics competition was organized in a way that the
competition took place at all schools at the same time. Tasks for the school competition
were not prepared by schools alone, but by the State Examination Board that prepares
tasks, defined at the state level. That State Examination Board prepares exams for all
levels of competitions.

The school competitions are organized at the end of January, or at the beginning of
February. The exact size, according to categories, is unknown, but it is approximately
about 800 elementary school competitors and 200 high school competitors (the overall
number of students per age group in the Republic of Croatia is about 40000).

At this level, students solve 3 tasks which are relatively simple in order to attract as
many competitors as possible. It is extremely important that, at least, one task (usually
the first one) is very simple so that everyone can get some points.

18 P. Brod̄anac

2.2. County Competitions

The Republic of Croatia is divided into 21 counties. According to that, the next level of
competitions, after the school competitions, is the county competitions.

An Examination Board, which organizes the competition and invites students to the
competition, is formed for each county. Students who were top-placed in the school com-
petitions are invited to participate in the county competition. Up to this year, county
Examination Boards had a big problem with inviting students to the county competition.

As each school had different tasks, it was extremely difficult to establish the rela-
tionship between the weights of the competition between two schools. This year those
problems were solved as the tasks were the same for all schools.

Table 1 provides the number of students who took part in some subgroups of the
competition. It is important to emphasize that some elementary school students competed
in the category BASIC/ Pascal and the category LOGO, so they are counted twice.

As for the school competition, the tasks are prepared by special Examination Boards
which are created by the State Examination Board for the competition in informatics. It
is mostly the same Examination Board which prepares tasks for the school competitions.

2.3. State Competition

The state competition in informatics is held during May. According to the rules of the
Croatian Informatics Clubs Association, the general number of students who are invited
to participate in each category is shown in Table 2.

High school students compete for 2 days. Every day 3 problems are solved and the
total score is the sum of points from both days of competition.

On the first day high school students solve 3 problems within 3 hours while on the
other day 3 problems are solved within 4 hours.

Elementary school students compete for only 1 day. In the LOGO category 4 prob-
lems are solved within 2 hours and in the BASIC/Pascal category 3 problems are solved.
In order to enable elementary school students to participate in both categories of the
competition, the LOGO category and BASIC/Pascal category competitions are held in
different days.

Table 1

The number of the participants in each category in the county competition in 2006/07

School level Category Subgroup Number of competitors

Elementary school LOGO 1st subgroup 199

Elementary school LOGO 2nd subgroup 179

Elementary school BASIC/Pascal 1st subgroup 122

Elementary school BASIC/Pascal 2nd subgroup 183

High school Pascal/C/C++ 1st subgroup 106

High school Pascal/C/C++ 2nd subgroup 137

Regular Competitions in Croatia 19

Table 2

The general number of students who are invited and the number of students who paricipated in this year state
competition

School level Category Subgroup
General number
of students who

are invited

Number of the
invited students

2006/07

Elementary school LOGO 1st subgroup 15 16

Elementary school LOGO 2nd subgroup 15 17

Elementary school BASIC/Pascal 1st subgroup 10 12

Elementary school BASIC/Pascal 2nd subgroup 20 22

High school Pascal/C/C++ 1st subgroup 20 20

High school Pascal/C/C++ 2nd subgroup 25 27

2.4. Croatian Olympiad in Informatics

Generally, high school students are invited to the Croatian Olympiad in Informatics. Ex-
ceptionally, an elementary school student who achieved exceptional results at all levels
of regular and special competitions can be invited.

When the second day of the competition is finished, the State Examination Board,
which is in charge of the competition in informatics, decides on the students who will
be invited to the Croatian Olympiad in Informatics. Who will be invited is determined
by their success in the state competition over those 2 days. According to the rules of
the Croatian Informatics Clubs Association, 5 to 7 competitors from the first high school
subgroup and 10 to 12 competitors from the second subgroup are invited to participate in
the Croatian Olympiad in Informatics.

This year 21 students, 8 from the first high school subgroup, 12 from the second high
school subgroup and 1 elementary school student, are invited to the Croatian Olympiad
in Informatics.

2.5. Elective Preparations

Basically, 8 top-placed students from the Croatian Olympiad in Informatics are invited to
take part in the Elective preparations which, essentially, last for a week. Over a week, stu-
dents have intensive preparations and they have competitions for 2 days. In each of these
2 competitions students can gain up to 200 points and the points gained in these 2 days
are summed up. So, the maximum number of points gained in the Elective preparations
is 400. The final rank-list is done after the Elective preparations, according to the overall
number of points from the Elective preparations and the number of points at the Croatian
Olympiad in Informatics (Table 3). 4 top-placed students from that rank-list are invited
to participate in the international olympiads.

20 P. Brod̄anac

Table 3

Final rank-list

Overall rank-list for the Olympiad team selection which will represent the Republic
of Croatia at international Olympiads

Croatian Olympiad in
Informatics (300 points
maximum)

First competition within the
elective preparations (200
points max.)

Second competition within the
elective preparations (200
points max.)

3. Informatics in the Framework of the Croatian Education System

In spite of numerous efforts, informatics (computer science) has not become an obliga-
tory subject in elementary schools. Rather, it is taught as an extracurricular activity and
the number of students eligible to register for the classes is limited. Elementary school
informatics is mainly based on acquiring fundamental informatics skills, where program-
ming skills account for only 11% of the entire informatics curriculum. Since Croatian
schools are rather poorly equipped and the profile of elementary school teachers is fairly
low, and since there is an evident lack of adequate programs, the situation looks pretty
chaotic at this point. The teachers often teach only what they like, and that, in most cases,
does not involve programming. It happens quite often that elementary students who have
studied informatics for four years do not know anything about programming. The situ-
ation is not much different in high schools either. Informatics is mostly taught for one
year, except in certain technical schools and schools of science and mathematics where
informatics is taught for more than one year. In the schools where informatics is taught
for only one year, it is mainly reduced to learning how to use office tools such as MS Of-
fice, whereas in technical schools where informatics is taught for more than one year, it
is mostly taught in connection with certain professional subjects and based on the use of
hardware with just a touch of low-level programming. Only the students of the 2nd, 3rd
and 4th grades of the schools of science and mathematics learn the skills needed for more
comprehensive programming. In the course of three years, they are taught the basics of
structural programming, using the Pascal or C language. The skills that the student ac-
quires through high school education are often not enough for achieving success at even
the lowest level of competition.

3.1. Additional Work with Students within the School

The more ambitious elementary and high school teachers give additional classes, outside
the regular informatics classes, to students showing additional interest in programming.
During such additional classes, the teachers work with students primarily on solving pro-
gramming tasks and prepare them for competitions. The main problem of this kind of
additional education is that it is primarily voluntary in nature. In most cases the teachers
do not get paid for the extra hours they put in. After the students have reached a cer-
tain level of knowledge, the teachers cannot keep track any more. The additional classes
serve to maintain the continuity of committed work, the teachers try to motivate the stu-
dents and find problems that the students solve on their own. This type of education, in

Regular Competitions in Croatia 21

most cases, is organized in the evening when school time is over or on Saturday. In some
schools this type of education is provided by ex-students, who achieved good results in
competitions, along with teachers. This type of education is extremely important, which
enables students to rise to the top and come to the higher level of competitions in Croatia.
My personal experience says that only 5% of pupils who did not take part in extracurric-
ular activities come to the state competition.

3.2. Extracurricular Work with Students

The students acquire the largest amount of knowledge and skills needed for competitions
participating in extracurricular activities. The Croatian Informatics Clubs Association has
been organizing informatics summer camps and winter schools of informatics for 13 and
11 consecutive years respectively. The summer camps and winter schools are mainly or-
ganized for students who achieve the best results at the state competition. The students in
community where the summer camp or the winter school is organized can also register to
attend the classes. In summer camps and winter schools of this kind, education activities
are conducted in the form of well-designed workshops led by excellent teachers, mostly
former competitors. The workshops differ in character and mainly teach programming
skills. The students can take part in the following workshops:

• Algorithm Workshop – the students deal with various algorithms depending on
their age. Elementary school students learn about sorting algorithms, recursions
etc. High school students learn about dynamic programming and algorithms for
graphs. Each algorithm workshop is complemented by a series of problems that
the students work on with the help of their instructors. The teachers prepare the
problems from the previous competitions.

• Programming Language Workshop (Pascal, BASIC, C++, Logo etc.) – the stu-
dents acquire additional knowledge or are introduced to a new programming lan-
guage. This workshop is intended primarily for elementary school students. They
are introduced to the more advanced applications of programming languages and
data structures (designing subprograms, working with arrays, matrixes, databases,
strings, etc.). C++ STL is extremely popular among high school students. As in the
case of algorithm workshops, programming language workshops are also designed
to ensure the students an opportunity to use the acquired knowledge providing a
number of problems related to the taught subject for them to solve.

• Undefined-topic Workshops (web design, C#, Java) – the purpose of these work-
shops is to give the students a kind of insight into what is currently going on in
the world of programming. Such workshops are a kind of relaxing escape from
algorithms and psychically significantly less demanding.

The fact that such workshops are mostly conducted by former competitors is very im-
portant because the students benefit from their rich, first-hand experience in competitions.
Another very important fact is that the competitors and instructors/former competitors are
relatively close in age which helps break the classic barrier between students and teachers
and develop a friendly relationship that allows the students to ask questions with signifi-
cantly less hesitation, talk about the problems even in their free time, etc. To fill their free

22 P. Brod̄anac

time the students have the opportunity to participate in computer game contests, student
excursions during which they hang out and talk, mainly about programming problems,
algorithms etc., which is very important in terms of developing informal learning habits.
The students who achieve the best results during the workshop are awarded at the closing
ceremony.

After that type of school is over, students and teachers stay in contact by e-mail or
in some other way. Teachers help students to solve programming problems, giving sug-
gestions etc. That type of schools in particular, and relationship between teachers and
students are one of the most important facts that has led to Croatia being awarded 64
medals in international competitions.

3.2.1. Informatics Summer Camps
Informatics summer camps are held during the summer months, usually in July or Au-
gust, near the coast. They are extremely attractive to students because they include study-
ing but also a fair amount of entertainment and free time to hang out with fellow students.
The main attraction is the time that students spend at the coast. In informatics summer
camps, special attention is paid to those students who intend to participate at the inter-
national informatics olympiads. They attend special all-day workshops conducted by the
best former competitors during which they work on the problems similar to those that
might appear at the olympiad and attend a series of lectures in various fields, very often
associated with mathematics.

3.2.2. Winter Schools of Informatics
Winter schools of informatics are organized in winter, during the winter break, mainly in
the continental part of the country. They do not differ much from the informatics summer
camps, excepts that winter schools are easier than summer camps. Competitions, espe-
cially international, are far away so the workshops for students who intend to participate
at the olympiad do not exist. For the potentially candidates for the international infor-
matics olympiads workshops are organized with very complicated algorithms and data
structures. This workshop is of an open type and any participant of winter school can
join it.

References

Primary School Croatian National Educational Standard. Zagreb, Ministry of Science, Education and Sports,
2005.

Gymnasium Curriculums. Zagreb, Croatia Institute for Education, 2005.
Technical School Curriculums. Zagreb, Croatia Institute for Education, 2005.
Messenger HSIN_@ vol. 9, Croatian Informatics Society, Zagreb, 2005.
Program of rules for competitions and reviews of software work primary and secondary school Croatian stu-

dents in informatics for 2006./07. school year. Croatian Informatics Society, Zagreb, 2005.
Messenger HSIN_@ – special edition. Croatian Informatics Society, Zagreb, 2005.
New International Program of HSIN in 2006. – Croatian Open Competition in Informatics (project request),

Croatian Informatics Society, Zagreb, 2006.
http://www.hsin.hr.

Regular Competitions in Croatia 23

P. Brod̄anac in 2000 graduated from the Faculty of Science, Depart-
ment of Mathematics and therefore obtained a bachelor’s degree of
engineering in mathematics. He has been working as a teacher of in-
formatics at V high school in Zagreb since 2001 where he has achieved
outstanding results in the national and international competitions. Since
2001 he has been a member of the Examination Board which is in
charge of competitions in informatics.

He is the author of a series of books and reference books in informatics and tech-
nical articles in mathematical and informatics magazines. He is the author of several
educational software for informatics and a lecturer on many occasions for teachers and
professors of informatics in the Republic of Croatia.

He is a member of a professional working group which is in charge of introducing a
state exam (school-leaving examination) in the Republic of Croatia.

Since 2002 he has been working as a subcontractor in the pharmaceutical company
Barr (ex Pliva) where he deals with the projects connected to biochemical software.

Olympiads in Informatics, 2007, Vol. 1, 24–30 24
© 2007 Institute of Mathematics and Informatics, Vilnius

Italian Olympiads in Informatics

Giorgio CASADEI
Computer Science Department, University of Bologna “Alma Mater”
e-mail: casadei@cs.unibo.it

Bruno FADINI
Computer Science and System Department, University of Naples “Federico II”
e-mail: fadini@cds.unina.it

Marta Genoviè De VITA
Italian Association for Informatics (AICA)
e-mail: mpi.genovie@flashnet.it

Abstract. We describe our 6-years long experience in training and selection of the Italian team
for the IOI. Based on this experience, we outline our proposals and how we intend to proceed to
improve the effectiveness of these processes.

Key words: training, problem solving, programming competition.

1. The Beginning

During the year 2000, the Italian Ministry of Education and the Italian Association for
Informatics (AICA) came to an agreement to organize the Italian participation to the
IOI. To this end, they formalized a National Committee for the Olympiad of Informatics
(COI) whose primary objective is select and train the Italian Team for the IOI. AICA was
already engaged with the Ministry of Education in promoting learning of Informatics in
Italian Schools and this new cooperation was well inserted in the old one.

From the year 2002 COI organizes the Italian Olympiad in Informatics, as the final
event for the selection of the National Team for the IOI.

In the 7 years of participation in the IOI, the Italian Team score is: 1 gold, 4 silver and
10 bronze medals.

2. The Organization Scheme

The Italian Organization is based on the National Committee for policy-making and de-
cision process and on a Technical Group for treatment, development and administration
of all specific activities relating selection and training processes.

Italian Olympiads in Informatics 25

2.1. The National Committee for the Olympiad in Informatics (COI)

The COI promote, coordinate and manage all decisions and actions relative to selection
and training of students and make the choices to form the national team. The COI is
composed by nine members:

– one delegate from the Ministry of Education,
– one delegate from AICA (Italian Computer Science Association),
– three experts from higher schools,
– four experts from University and Research.

These members elect a chairperson who lasts in the job for 3 yeas.
To carry out his program, COI has organized his work in two groups: a scientific group

and an administrative group.
The scientific group is composed by the chairperson of the COI, two members from

University and one expert not member of the COI. Purposes of this group are:

– to approve and validate texts for selection steps;
– to organize training activities;
– to suggest the composition of Italian Team for IOI;
– to prepare the budget for these activities.

The administrative group is composed by three members of the COI (one is head-
master of high school and manager of the full budget). Purposes of this group are:

– to manage contacts with schools;
– to organize logistics for selections steps and for the National Olympiad;
– to prepare the budget for these activities.

On the basis of sponsorship and budget proposals, the COI approve the overall budget
for the next year. Members of the COI cannot receive any fee (only refunds for traveling
expenses are allowed). The budget for the year 2006 is shown in the last section.

2.2. Technical Group

To organize and manage technical activities related to the selection process and to admin-
ister and perform training courses, the COI employs a technical staff (computer scientists
from research institution, University and high schools) coordinated by the expert of the
scientific group not member of the COI.

Main tasks of this group are:

– to provide problems (Tasks) for selection steps;
– to administer and evaluate selection papers and programs (with the support of com-

puter tools);
– to teach and train the winners (gold and silver medalists) of the National Olympiad;
– to support the COI in the final selection procedure to build up the national team.

26 G. Casadei, B. Fadini, M. G. Vita

3. The Annual Process

Starting from the second participation to the IOI, Italian activities have been organized in
the following phases (Table 1).

3.1. School Enrolment

By the middle of September, Minister of Education invites high schools to participate to
a national selection (enrolment fee is 50 euro per school).

3.2. First selection (involving about 500 schools)

About 12000 students are involved in this selection. This tests take place by the middle
of November; it consists of 15 logical problems and 15 programs: for each item, students
must select the right answer out of 4 given choices. The National Committee select the
text and a local teacher administers it. The best students of each school (from 1 to a
maximum of 5) are invited to a Region Selection.

3.3. Second Selection (in 20 Regions)

About 1200 students are involved in this selection. The test takes place by the end of
January in 20 different sites and is somewhat similar to that of the IOI (3 problems, not
very difficult, to be solved in 5 hours). The National Committee prepare and manage the
test. An ad hoc system has been designed and implemented in order to send the problems
and to collect the answers of each student, via Internet. The best 75 students of this
selection (at least 1 for each region, for promotion purpose) are invited to the National
Selection.

3.4. Third Selection (Italian Olympiads of Informatics)

By the middle of March, in one site (different every year) we organize the Italian
Olympiads of Informatics inviting the 75 best students of the Region Selections and the
young winners of the Italian Olympiad of the previous year. This selection is quite similar
to that of the IOI; at the end the best students receive medals (5 gold, 10 silver and 20
bronze).

Table 1

The annual process

October school enrolment;

November first selection in the enrolled schools (about 500 schools and 12–15000 students);

January second selection in 20 region points (1200–1500 students);

March third selection (National Olympiads: 80 students);

April–May training stage and team formation.

Italian Olympiads in Informatics 27

3.5. Training and Team Formation

The gold and silver medal winners are invited to follow two (sometime three) stages (5-6
days each, between the end of April and the beginning of June) at the University of Pisa.
At the end of the second stage, a final selection is organized to select the best 4 students
to form the Italian team for the next IOI.

During the current year, two on-line training periods were successfully experienced
before and between formal training. The objective of these on-line activities was to give
basic theoretical knowledge and to stimulate student capabilities.

4. Comments and Development Strategies

In Italy, Informatics is quite absent in high school regular curricula. It is necessary to
promote initiative to stimulate interest in this discipline (among students and teachers
alike).

The actual organization of selection and training activities is not satisfactory; it does
not assign enough time to training activities (remember that most students have no train-
ing in regular courses). We are studying to arrange all the activities of selection and
training as lasting two years, so that we can involve a greater number of students and
lengthen the time of specific training between Regional Selection and team formation.

Taking into account that Italian high school last for 5 years (with students 15–19 years
old), the COI is inclined to act in the following way:

– to accept enrolments of all students in high school (this is active from 2006, before
only students of the last three years were accepted);

– to teach formal courses (at least a basic course and an advanced one) and then to
develop selection and training activities during two years;

– to make earlier Regional and National Selections to allow a longer time for training;
– and finally, to promote a closer work between teachers of school and university

staff involved in this project.

The project is an ambitious one and must be checked from various points of view:

– Is the cooperation between different entities (Ministry of Education, Universities
and School teachers) possible?

– Are the students motivated to make a two-year training for a non-standard curricu-
lum?

– Is there a budget to cover it?

However, we prefer to stimulate local experience and to continue the presentation of
the project in order to promote the discussion on these ideas in the IOI environment. In
particular, we present two courses, the basic and the advanced one, that belong to the
project.

28 G. Casadei, B. Fadini, M. G. Vita

4.1. Basic Course

This course is intended for students of the first two (three) classes (15–17 years old) with
the aim of introducing general concept of computer programming and simple recursive
scheme. The attendance to this course is free; any school can be involved with the pay-
ment of a symbolic fee (e.g. 50 euro).

The objective is to involve (many) hundreds of schools; that is possible only with:

– the cooperation of at least a teacher for each school involved in the project;
– the availability of e-learning system to support distance learning.

Every year, at the and of the course, the best 30–50 students could be invited (and
granted) to attend a free summer course to facilitate the attendance of the advanced course
of the next year.

4.2. Advanced Course

This course is intended for students of the last two (three) classes (17–19 years old) with
the aim of introducing “algorithmics (the spirit of computing)” and practising IOI-like
problems.

Each year, at the beginning of October, a selection could be organized; the best stu-
dents passing the admission test can follow the advanced course.

During the year two other selection can be organized and the best 40 could be invited
to the National Olympiad of Informatics.

The gold and silver medallist will follow training and team formation activities as
described in the previous point 2.5.

5. Conclusions

Following the suggestions described in the previous section we hope to obtain these re-
sults.

– To increase the involvements of schools in programming curricula.
– To stimulate a greater number of students toward the study of algorithms and com-

puter science.
– To improve competence of students in problem solving.

A great and consistent help could be given by activities promoted by the IOI Interna-
tional Committee to facilitate cooperation and exchange of experiences among countries
as for examples:

– To approve the syllabus,
– To modify the structure of the competition (not only make the problems harder

and harder),
– To offer free tools to support distance teaching and learning and to administer and

evaluate tests.

Italian Olympiads in Informatics 29

6. Budget for Year 2006 (Euro)

Income

AICA support 89.000

Fee paid by schools to join Olympic selection 24.900

Ministry support 60.000

TOTAL 173.900

Expenses

AICA MPI TOTAL

COI and Groups Meeting 9.000,00 4.000,00 13.000,00

Contribution to schools for
regional selection

30.000,00 0 30.000,00

Starting annual activities Advertising, press, posters, bill 2.500,00 2.500,00 5.000,00

National Olympiad Refunds for traveling expenses:
COI members, teachers and stu-
dents

2.500,00 11.000,00 13.500,00

Stationery, gadget, medals and
plates

3.000,00 0 3.000,00

Contribution to Institute manag-
ing the budget

0 3.400,00 3.400,00

International Olympiad Enrollment, traveling expenses, 5.000,00 6.000,00 11.000,00

Secretarial staff 0 2.500,00 2.500,00

Training in Pisa Refunds for overnight stay and
traveling expenses for teachers
and students studenti e docenti

2.600,00 9.300,00 11.900,00

Manager, teachers and tu-
tors for activities in Pisa

22.000,00 0 22.000,00

Technical assistance for
networking and evalua-
tions

14.000,00 0 14.000,00

Rewards 11.000,00 0 11.000,00

Assurance for students and
teachers

0 500,00 500,00

Reserve fund 7.000,00 500,00 7.500,00

TOTAL 108.600,00 39.700,00 148.300,00

References

Andronico, A., A. Carbonaro, G. Casadei, L. Colazzo, A. Molinari and M. Ronchetti (2003). Models and ser-
vices for mobile learning systems. In International Conference on Technology Enhanced Learning TEL’03,
Milano, Italy.

30 G. Casadei, B. Fadini, M. G. Vita

Carbonaro, A., G. Casadei, and S. Riccucci (2004). An adaptive assessment system to evaluate student ability
level. In IFIP World Computer Congress (WCC2004), International Conference on Artificial Intelligence
Application and Innovations, France, August. Kluwer Academic Publishers.

Mignani, S., S. Cagnone, G. Casadei, A. Carbonaro (2005). An item response theory model for students abil-
ity Evaluation using Computer-Automated Test Results”. In New Developments in Classification and Data
Analysis. Springer-Verlag, Germany, pp. 325–332.

Riccucci, S., A. Carbonaro, and G. Casadei (2005). An architecture for knowledge management in intelligent
tutoring system. In Proc. of Cognition and Exploratory Learning in Digital Age (CELDA 2005), IEEE Tech-
nical Committee on Learning Technology and Japanese Society of Information and Systems in Education,
Porto, Portugal, December, pp. 473–476.

Riccucci, S., A. Carbonaro, and G. Casadei (2006). A framework for knowledge acquisition in intelligent tutor-
ing systems. In Proc. of Informatics in Secondary Schools Evolution and Perspective (ISSEP 2006), Vilnius,
Lithuania, November.

G. Casadei (1936), university degree in physics in 1959, researcher in
numerical analysis and computer programming from 1959 to 1976 and
full professor in computer science since 1976. Teacher of a basic course
in artificial intelligence for a curriculum in computer science and of
elements of informatics for a curriculum in science of education. Main
research interest is the role of computer programming in educational
processes and history of computing. Member of the Italian Committee
for National Olympiad in Informatics since 2001.

B. Fadini (1937), university degree in engineering in 1961, is full pro-
fessor of computer architectures in the Department of Computer En-
gineering and Systems of the University of Napoli ”Federico II” since
1973. Past-president of CINI (Italian Universitary Consortium for In-
formatics) and AICA (Italian Association for Informatics), is president
of the Italian Committee for National Olympiad in Informatics since
2000. He has been principal investigator for several national and inter-

national research projects. Main research interests are computer architecture, software
engineering and e-learning. He has co-authored more than 100 publications and 10 books.

M. G. Vita (1934), university degree in economy and commerce, is in-
spector of the Ministry of Education and adviser AICA. She is member
of the Italian Committee for National Olympiad in Informatics since
2000.

Olympiads in Informatics, 2007, Vol. 1, 31–36 31
© 2007 Institute of Mathematics and Informatics, Vilnius

The Informatics Olympiad in Mongolia

Lhaichin CHOIJOOVANCHIG
School of Computer and Information Technology, Mongolia State University of Education
e-mail: choijoovanchig@msue.edu.mn

Sambuu UYANGA
School of Mathematics and Computer Science, National University of Mongolia
e-mail: uyanga@magicnet.mn

Mendee DASHNYAM
Institute of Finance and Economics
e-mail: dashnyam@ife.edu.mn

Abstract. The Informatics Olympiad plays key role in introducing Information and Communi-
cation Technology (ICT) to Mongolian secondary schools. It is one of the biggest ICT related
competition among Mongolian secondary school teachers and students. The goals of the Infor-
matics Olympiad are to stimulate interest in informatics and information technology, and to bring
together exceptionally talented teachers and students from all over Mongolia. Mongolian Informat-
ics Association organizes annual national informatics Olympiads in cooperation with the Ministry
of Education, Culture and Science (MOECS) and other universities for the 21st year. For past years,
a number of activities were implemented to enhance the informatics Olympiads, such as training
of informatics subject teachers, development of training manuals and handbooks with tasks and
problems for the informatics Olympiads, various activities to support participation of Mongolian
teams in the International Olympiad in Informatics. In this paper, we describe national Informat-
ics Olympiads in Mongolia, informatics education, Mongolian participation in the International
Olympiad in Informatics (IOI), and related key issues and problems.

Key words: information and communication technology, informatics education, informatics
competitions, programming contests, informatics olympiad, Mongolia.

1. Informatics Education

Meanwhile, the Ministry of Education, Culture and Science has used Vision-2010 as a
model to implement ICT in the education sector, developing an action plan which was
officially approved in 2001. The Vision for ICT in education has four major components,
covering following areas:

• training: full utilization of ICT in each educational level’s curriculum and contents
in order to introduce opportunities provided by ICTs and gain knowledge and skills
to use it;

32 L. Choijoovanchig, S. Uyanga, M. Dashnyam

• hardware: supply of hardware allows the conduct of training according to differ-
ent level of modern ICT development and provides possibilities of free access to
information;

• teaching staff: supply of teaching staffs which have the capabilities to develop
themselves in terms of their own knowledge and skills in line with rapid devel-
opment of ICT;

• information ware: creation of possibilities of available and accessible information
service by establishing educational information database and network (MOECS
ICT Vision, 2001).

The informatics education in secondary schools plays key role to reach to the im-
plementation of the Vision for ICT in education. The informatics as a subject has been
included in the secondary school curriculum in Mongolia since 1988. The old curriculum
covered basic concepts of informatics, basics of algorithms and programming and it was
not fully covered due to lack of hardware facilities such as computers, trainings were
mostly concentrated on providing programming and algorithm development skills.

For past years, a number of activities were implemented to enhance the informatics
curriculum, such as development of standards, training of informatics teachers, develop-
ment of training manuals and materials for the informatics subjects in secondary schools.
One of the most important steps taken by government to improve informatics training was
development of first standard for informatics education during year 2000–2004. Within
this standard Informatics subject taught starting from 5th grade from the academic year
2005–2006. This standard has the following advantages (Uyanga, 2005):

• development of the educational standard of informatics by using the content stan-
dard of informatics in complete secondary schools;

• focused more on competence based goal than the subjective goal;
• the content standard is based on domains of systematic knowledge of the informat-

ics science;
• assess not only to knowledge and capability, but also the competences accumulated;
• abundance of individuals needs, more than the social needs;
• the standard is tailored to primary, secondary and complete secondary education

respectively;
• the content standard has clear focus, that the trainees gain knowledge and skills

to use the informatics, computer and information technology effectively and effi-
ciently, and to resolve the issues met in real life situation and the other trainings by
using them;

• needs and demands of informatics education and standards are determined based
on the needs of individuals and society;

• the standard is supervised that teachers of informatics not only teach the informat-
ics, computer and information technology, but also develop the skills of students to
use them effectively and individually;

• the standard instructs that the teachers of informatics should create the environment
to implement the standard successfully by supporting other teachers to widely use
informatics, computer and information technology in their teaching;

The Informatics Olympiad in Mongolia 33

• comprised the correlation between other educational fields;
• the content is well suited to the international standards according to the contents of

documents and standards for ICT education by specialized international organiza-
tions;

• independent of certain tools and types of information technology.

The new standard does not cover programming, so the students have to study pro-
gramming by themselves or they can choose to study it as an additional subject after
consulting with their teachers.

Due to the implementation of new Informatics Education Standard in academic year
2005–2006, Informatics textbooks for 5–11 grades are being written.

Also institutions which train professional informatics teacher are planning to update
their curriculum to reflect the changes. Nationwide re-trainings for informatics teachers
are constantly organized since academic year 2003 as to follow the new standards. The
“ICT Vision 2010 in Education Sector of Mongolia” has objectives to conduct training
and re-training of teaching staff in secondary schools, expansion of professional teachers’
training activities considering the increase of professional teaching staff in informatics up
to 90% by year 2007. However, secondary schools still lack of professional informatics
teachers. In order to increase supply of informatics teachers, government is taking various
measures to foster applicants from rural areas such as by means of tuition fee discount;
scholarship under local government contract; retraining of teachers etc. These measures
still do not solve needs for informatics teacher. Graduates with informatics teacher cer-
tification in most cases move to work in non-educational sectors, in government, non
government organizations, private enterprises and companies.

2. National Informatics Olympiad

The first National Informatics Olympiad was organized in 1987. Mongolian Informat-
ics Association is responsible for organizing all annual national informatics Olympiads
in cooperation with the Ministry of Education, Culture and Science, other universities
and ICT companies. There are some public and private organizations who support na-
tional Informatics Olympiad. The Olympiad is organized annually in three levels: dis-
tricts, city/province and national. Students acquiring high points are admitted to the next
level. The winners of the national Olympiad participate in the International Olympiad
in Informatics. The Olympiad is organized in two categories: students and teachers. The
students contest consists of two days computer programming and one day for teachers.
The winner students receive invitation to study in IT related local universities. The Go-
vernment pays tuition fee for first two year for these students. The software application
competition among students is organized during Informatics Olympiad. Students usually
develop a computer application using Delphi, Visual Basic, Flash and other technologies.

34 L. Choijoovanchig, S. Uyanga, M. Dashnyam

3. Mongolian Team in IOI

The Mongolian Informatics Association sends a team with four members to represent
Mongolia at the International Olympiad in Informatics (IOI) each year. The Ministry of
Education, Culture and Science allocates annual budget for the team to participate at the
IOI. Mostly it only covers half of total expenses. For past years, Mongolian students
and teachers have participated in IOI 1989–1991 (in Bulgaria, Belarus and Greece), IOI
1999–2000 (in Turkey and China), in IOI 2002 (Korea) and IOI in 2004–2006 (in Greece,
Poland and Mexico). The Mongolian team had participated in nine IOI and received two
bronze medals from IOI 2005.

The key problems of Mongolian team to participate in the IOI are followings:

• Weak English language. Due to language barriers students can not fully understand
tasks, use online internet sources. It creates problems for students to attend in on-
line Olympiads.

• Financial problems. In most cases the budget that allocated by the Ministry of
Education, Culture and Science could not cover all expenses.

• Difficulty with visa. As a developing country, for Mongolians to get a visa to de-
veloped countries is a big problem. Due to visa problem Mongolian team did not
participate in IOI 2001 (Finland), 2002 (Germany) and 2003 (USA).

• Lack of students skills and knowledge related to modern technologies.
• Lack of programming and algorithm development skills. Current standard for in-

formatics education does not cover programming.

4. Key Issues and Problems

The quality, skills, interests, knowledge, and competence of the participants are increas-
ing from year to the year. Also the teachers who prepare and train the participants are
working with their students very hard. The Ministry of Education, Culture and Science
and other universities and organizations in Mongolia, support the National Informatics
Olympiad. Even if these organizations contribute for the National Informatics Olympiad,
there are still some obstacles. ICT development is still not good enough in Mongolia.
However Informatics training at rural schools are limited by computer hardware and
skilled teachers supply.

1. The teachers’ development and skills in rural area is poorer. The students partici-
pating in the Olympiad from the bigger and central cities show higher success rate
than those participating from provinces or rural areas.

2. The National Olympiad is held once a year because of poor finance and it is one
of the factors that give bad influence to the Olympiad. So the participants in the
Olympiad do not have enough experiences and they make some technical and other
mistakes.

3. The contents of the national Olympiad also can not meet the secondary curriculum
and standard.

The Informatics Olympiad in Mongolia 35

4. Experience of the participants is weak because they could not participate in re-
gional and other international Olympiads.

5. The number of the participants is decreasing.
6. The number of teachers who prepare their students for the Olympiad is less and

their skills is also not good enough.

Considering conditions mentioned above and current situation, it is appropriate to
improve quality of Mongolian Informatics Olympiad and students’ knowledge and skills.

The following steps are need to be taken in order to improve the quality of Mongolian
Olympiad:

1. To organize domestic Informatics Olympiad in different levels regularly /regional,
province, district, and honored contests/.

2. To re-train and prepare teachers who have enough skills for preparing their students
for the Informatics Olympiad.

3. To increase the opportunity to teach programming via advanced and elective mod-
ules or training for talented students.

4. There are still some problems to be solved according to the evaluation of the In-
formatics Olympiad. Especially it is needed to develop and use the automatic and
online evaluation system which meets the international requirements.

5. The content of Mongolian curriculum must be improved and increased.
6. The English knowledge of the students must be improved and they have to learn

technical terms found in Informatics.
7. To increase and extend the scope of Informatics Olympiad among students.
8. Due to inclusion of informatics subject in primary school, it is better to organize

mini Olympiads for those students.
9. Foster students and teachers to share their experiences and best practices.

10. To develop an electronic database for Informatics Olympiad tasks and problems.

5. Summary

Mongolian Informatics Association has been very active and contributed in Mongolian
Information and Technology development since it was established. In the future it will
do lots of things to develop ICT education, to increase the Olympiad development and
to meet the Olympiad quality to the international standard. Mongolian Informatics As-
sociation works hard to contribute Mongolian Information and Technology Development
and make its strategic and operational plan closer to Electronic Mongolia National Pro-
gram, Concept of ICT Development of Mongolia by Year 2010, and ICT Vision 2010 in
Education Sector of Mongolia.

References

MOECS ICT Vision (2001). ICT Vision 2010 in Education Sector of Mongolia.
Government of Mongolia (2000). Concept of ICT Development of Mongolia by Year 2010.

36 L. Choijoovanchig, S. Uyanga, M. Dashnyam

Government of Mongolia (2005). E-Mongolia National Program.
Uyanga, S. (2005). The usage of ICT for secondary education in Mongolia. International Journal of Education

and Development using Information and Communication Technology, 1(4).

L. Choijoovanchig is a professor of the School of Computer and In-
formation Technology, Mongolian State University of Education. He is
one of the founders of the Mongolian Informatics Association and is
working as a president of this association since 2000. His research in-
terests include informatics education, school development and teacher
training.

S. Uyanga is an associate professor at Department of Information Sys-
tem, National University of Mongolia. She is PhD in ICT and edu-
cational studies, and MSc in computer science. She is a member of
working group for Informatics Curriculum Standard for Primary and
Secondary Education at Ministry of Education, Culture, and Science,
Mongolia. Her research interests include computer and ICT curricu-
lum, ICT in education, web based distance learning.

M. Dashnyam is a lecturer at the Institute of Finance and Economic.
He is a secretary of Mongolian Informatics Association since 2004.

Olympiads in Informatics, 2007, Vol. 1, 37–49 37
© 2007 Institute of Mathematics and Informatics, Vilnius

Contests in Programming: Quarter Century of
Lithuanian Experience

Valentina DAGIENĖ, Jūratė SKŪPIENĖ
Institute of Mathematics and Informatics
Akademijos str. 4, Vilnius, 08663 Lithuania
e-mail: dagiene@ktl.mii.lt, jurate@ktl.mii.lt

Abstract. The paper deals with development of informatics competitions in Lithuanian and in
particular of the Lithuanian Olympiads in Informatics over the past 25 years. The role of the Young
Programmer’s School in both introducing programming to secondary school students, organizing
programming competitions and later encouraging and training students to participate in informatics
olympiads is emphasized. The evolution of the national olympiad in informatics from the first pen
and paper competitions to the current four round contest, held using contest and grading systems, is
described. The paper also gives a short overview of other related contests like the Baltic Olympiads
in Informatics, and the Beaver contest.

Key words: teaching programming, informatics, algorithms, contests, informatics olympiads.

1. The Early Years

The first talks about teaching programming at schools started in the beginning of the sev-
enties. In those times some large electronic computers were available in Lithuania, how-
ever not for teaching. Only a few educators thought that it would be possible to involve
kids in the world of computers and programming. Some researchers from the Institute of
Mathematics and Informatics supported this idea and worked on it to become a reality.
The first few after-school classes in programming were established in several Lithuanian
secondary schools in 1970–1975. There also appeared the first ideas to establish a school
to teach programming secondary school students (Dagienė, 2006).

A significant role in designing a methodology for teaching programming was played
by the scientist of the Institute of Mathematics and Informatics. In 1979 comprehensive
materials for teaching programming were prepared, including tasks, texts, and answers.
The Ministry of Education of Republic of Lithuania agreed to try this method in ten
schools. Scientists from the Institute created a Pascal translator for the electronic comput-
ing machines of the unified system (Baliūnaitė, 1979). The Pascal translator was designed
specifically for the learning process, putting emphasis on debugging program source so
the user (the student) could receive comprehensive output after trying to compile and
execute their first program. The translator even corrected some mistakes and afterwards
reported what was changed and how.

38 V. Dagienė, J. Skūpienė

The Young Programmers’ School by Correspondence (JPM – Jaun ↪uj ↪u programuotoj ↪u
mokykla) was founded in 1981 by the Institute of Mathematics and Informatics (Dagys,
1994; Dagys, 2006). The curricula consisted of teaching main concepts of procedural
programming and basic algorithms using Pascal. The learning material and assignments
used to be published in the national youth daily newspaper Komjaunimo tiesa (cur. Lietu-
vos Rytas) twice a month. The students had to sent their algorithms which were evaluated
and the solutions were published afterwards. The best students were invited to summer
camps where they not only had a chance to see and touch a computer, but also to compete.
The students had to solve algorithmic tasks while designed algorithms had to be written
on a piece of paper in Pascal.

In 1985 it was decided to organize the first contest of young programmers. Anyone
aged below 30 could participate in it. The contest took part in two rounds. Tasks of the
first round were published in the daily newspaper Komjaunimo tiesa, in the journals In-
formatika and Mokslas ir technika (Science and Technology). The tasks even used to be
announced through the national television channel. In the first round there were five tasks
to solve using one of the three allowed programming languages: Pascal, Fortran, PL/1.
Later Fortran and PL/1 languages were removed from the list and C added. The partici-
pants had one month to solve the tasks and send the algorithms together with justification
to the scientific committee. Sources of the programs could have been written by hand,
printed with typewriter or printer.

The Project of Distance Teaching of Informatics using Electronic Mail got support
from UNESCO in 1993 (Dagys, 1993). Teaching via electronic mail was mainly per-
formed indirectly through programming contests. The project also took advantage of
transmission of source code using media which was quite new and educative in those
times. The effect of program execution were observed and evaluated through distance.

In 1996–1997 The School Of Teaching Algorithms Via El. Mail In Baltic Countries
was established (Dagiene, 1997). Over 100 students from Estonia, Latvia and Lithuania
took part in the school. There were two learning and one contest sessions.

2. Young Programmers’ School – Search for Talent

The core curricula of the Young Programmers’ School is teaching algorithms. Program-
ming languages as well as the computer are considered to be learning tools and only the
basic information regarding those tools (as much as it is needed to write down and exe-
cute the algorithm) is provided. Using Pascal as a working language minimizes the time
cost to learn basic constructions of programming languages.

All the teaching materials of the Young Programmers’ School consisted of several
chapters: 1) identifiers, variables, constants, assignment statement and sequence of state-
ments, 2) conditional statements, 3) repetitions of actions, 4) programs and their execu-
tion by a computer, 5) logical values, 6) functions and procedures, 7) recursion, 8) discrete
data types, 9) real numbers and records, 10) arrays, 11) programming style, 12) program
design. We would like to emphasize again that all the theory is taught only through pro-
gram comprehension (e.g., given fragments of a program which has to be completed,
corrected, etc.) and program design assignments.

Contests in Programming: Quarter Century of Lithuanian Experience 39

There exists a steady attitude in the Young Programmers’ School that a student has
not only to become acquainted with the basic constructions of programming but also has
to learn how to justify and describe an algorithm, and design clear and simple solution.

For most children, theory is less attractive than practical activities. Thus the basic
principles of the theory were delivered in an indirect way through problem solving. The
set of programming problems was chosen in accordance with the requirements dictated
by theory and good programming style (Grigas, 1990).

From the start of the Young Programmers’ School until now there have been many
changes in the teaching of informatics in general and in programming in particular, due to
the increase in the number of computers in educational institutions and the introduction of
informatics as a compulsory discipline in secondary schools. The changes in the structure
of the Young Programmers’ School may be characterized by five periods: 1) Universal
(general) programming teaching (1981–1986), 2) Learning effectively: differentiation by
students’ abilities (1986–1993), 3) Intensive teaching of gifted students (1993–1999),
4) Preparing students for the olympiads (since 1999), and 5) Using new media while
learning algorithms (since 2005).

The first Informatics Olympiad for the enrolled students of the Young Programmers’
School took place in summer 1982. The tasks were designed with extreme accuracy
and forethought. They were attractive and challenging (Dagienė, 1991). Programming
olympiads used to take place every year but only for the students studying in Young Pro-
grammers’ School. Therefore the Young Programmer’s School was an impulse to start
the Lithuanian Olympiad in Informatics.

3. Evolution of the Lithuanian Olympiad in Informatics

The first Lithuanian nation-wide Olympiad in Informatics was organized in 1990, i.e., the
year after the first International Olympiad in Informatics (IOI).

In the beginning the olympiad consisted of the three rounds: 1) school round 2) re-
gional round (about 60 regions), and 3) national round. Since 1993 the national round
has been split into two parts. The first part was organized using e-mail, the second was
on-site competition. The structure of four rounds is convenient and has been kept until
now.

The final stage of the national olympiad is organized in a different region each year
(Fig. 1). About 50 participants from all over Lithuania are invited. Organizing the event
in different regions not only allows the contestants to get to know the region but also
gives a possibility to the teachers of local schools to look at the olympiad from inside –
to observe how the final versions of tasks are being prepared, and to look closer at the
competition system and grading.

3.1. Using E-mail for On-Line Contests

The organization part of the national round of the first national olympiad was quite com-
plicated. Each of the sixty counties in Lithuania designation winners of their regional

40 V. Dagienė, J. Skūpienė

Fig. 1. Regions that hosted finals of the national olympiad in Informatics.

competition for the national round. As it was not possible to arrange an on-site com-
petition for about two hundred students, the first part of the national round used to be
arranged in several selected municipalities. The organizers of the olympiad would send
their representative with tasks to each municipality, the representative would observe and
coordinate the competition and bring back solutions to the scientific committee for eval-
uation.

A significant breakthrough became possible in 1993, when the Fidonet computer net-
work became available for some schools in each region. It was decided to organize the
first part of the national round in each region using e-mail. Then it was both a brave and
innovative decision. On the one hand even though e-mail was available at schools many
teachers still did not know how to use it nor that there was a real need for it. Organizing
a competition in such a way stimulated teachers to learn how to use e-mail.

However in the first years there was not an easy job for organizers of the olympiad to
manage the contest. Some e-mails would not reach the contest organizers and the orga-
nizers had to call the region and find out what happened, there were lots of problems with
attaching solutions. Teachers either did not know how to attach a file or the attachment
received was un-decodable and the organizers spent a lot of time consulting teachers how
to do it. A lot of problems were caused due to ignorance of file naming instructions.
Many solution files would be given random names and contained no contestant name in
the comments.

It took several years until the teachers got accustomed to using e-mail and the transfer
of solutions to the scientific committee became fluent. Olympiads had positive educa-
tional effect also on promoting the use of e-mail in Lithuanian schools.

Solutions were delivered through e-mail and afterwards graded using black-box test-
ing for the ten years from 1993 till 2002.

Contests in Programming: Quarter Century of Lithuanian Experience 41

3.2. Contest Management and Grading Systems

In order to test solutions automatically programs have to comply with certain input/output
formatting requirements. In several IOIs there were severe problems regarding automated
grading when programs with typographic errors in the data file name or those leaving
extra space at the end of line were not given any points. Similar problems were also
encountered in Lithuanian olympiads.

However in order to motivate students the scientific committee tried to be more objec-
tive and to make distinctions between formatting errors and more serious mistakes. This
was a huge load of work for the scientific committee. Nearly every program which did
not get full score had to be checked manually searching for formatting errors.

This was especially important for younger students as for many of them this was
their first competition and getting zero points for a program with a good algorithm and
a typographic error might have resulted in a decision to quit the olympiad. Later the
grading became more strict, especially in the senior division. On the one hand it was
decided that part of this workload could be done by the contestants themselves (i.e., they
should analyze their solution and write an appeal), on the other hand in some cases it was
hard to distinguish between formatting and non-formatting errors and it was decided not
to change the code of the contestant at all.

The first Contest and Grading System that allowed the submission of programs via a
web-interface during contest time, and to check whether they compile and comply with
format requirements, was designed and used in Finland in 2001. Such a system has been
used in Lithuanian contests since 2003.

In the IOI the use of a Contest and Grading system during the competition was ac-
cepted with support from the contestants. However this was not so in Lithuania. The
top contestants who had participated in IOIs supported the use of a Contest system in
Lithuanian olympiads. However many inexperienced (especially younger) contestants
were shocked when they tried the system for the first time. Typically they tried to submit
a program which produced correct output on their computer and when the contest sys-
tem rejected the program they were lost and did not even know how to try to debug it
as their debugging skills were quite low. Some of them could not even understand what
happened, as they could not believe that a program which works on one computer might
have failed on another. Even if the problem was a typographic error in the file name for
some students it was impossible to find it out. Again there started coming a huge numbers
of e-mails to the technical committee asking for help and complaining that the system did
not work correctly. The Contest and Grading system has been used in Lithuania for five
years and many teachers have got accustomed to using it. However still in some schools
some people find it difficult to use and can not understand that error message during the
contest is actually a hint that they should use (Skūpienė, 2004).

3.3. Participants

All students in secondary education under the age of 20 are invited to compete in Lithua-
nian Olympiads in Informatics. Approximately 3000 students take part in national com-
petition each year.

42 V. Dagienė, J. Skūpienė

Fig. 2. Fig. 2. Average number of participants in Lithuanian Olympiads in Informatics.

Fig. 3. Distribution of participants in the first round of LOI’2006 according to grades.

The number of younger (grades 8–9) participants has significantly increased since
1997 when a separate division for younger students was established and 30% of the places
in the finals of the national competition were reserved for students from younger division.
This motivated both younger students and their teachers.

4. Tasks – Keystone of Contests and Resources for Problem Solving

Interest and engagement is very important in competitions as well as in teaching prob-
lem solving (e.g., in assignments in the Young Programmers’ School) and it essentially
depends on problems. Therefore the problems have to be designed taking into account
different aspects of each problem, i.e., its educational power and how to interpret its
attractiveness to the students (i.e., whether it stimulates learning or not). Attraction,

Contests in Programming: Quarter Century of Lithuanian Experience 43

invention, discoveries are the desired features of a good problem set. Here are some other
desired characteristics of problems:

• interesting and attractive formulation;
• algorithmic solution lies behind;
• variety in difficulty;
• do not require specific, especially technical knowledge;
• short, elegant formulation.

Therefore, one should try to present problems from various spheres of science and
life, with a lot of real data. Processing large amounts of data becomes challenging and
important aspect when learning programming.

However, many the textbooks and teaching materials do not contain actual problems
but just small exercises. They are mainly oriented towards checking syntax of a particular
programming language. The selection of tasks at the distance education school is very
important: they must cover as many theoretical problems as possible, teach students al-
gorithms and programming methods, and what is most important, to acquire the skills of
using them (Dagienė, 1993; Dagienė, 1999; Mayer, 1990).

While developing the methodology of teaching algorithms for the School of Young
Programmers, we have raised the principle that it is highly important to classify the prob-
lems into the sets of problems that would actualize the purposes of teaching algorithms.
Two large groups of problems were distinguished: 1) reading problems (for analysis); and
2) writing or design problems (Grigas, 1989).

When someone starts learning programming, active and passive learning methods can
be distinguished. This deals with fixing priorities: whether they are taught just program-
ming language constructions or problem solving using programming languages. An ac-
tive teaching is when problems are solved while the languages constructions are mastered
gradually when they are needed in the solution. Therefore it is highly important that the
tasks of the first rounds in the national olympiads take this into account, i.e., we would
seriously consider which language constructions are needed to solve the problem, so that
the beginners would be able to solve the problems.

A variety of task books with problems and their solutions have been prepared and
published.

(a) (b) (c) (d) (e)

Fig. 4. Books in problem solving for olympiads in informatics: (a) A Hundred Tasks in Programming; (b, c)
Programming tasks; (d, e) Olympiads in Informatics (volume 1 and 2).

44 V. Dagienė, J. Skūpienė

5. Achievements of Lithuanian Students in IOI

The first Lithuanian contestant Andrius Čepaitis participated in IOI in 1989 where he
was awarded a gold medal. At that time Lithuania was still part of Soviet Union and
Andrius was included into the team of Soviet Union. Lithuania joined the IOI in 1992
soon after restoring independence. Since then each year Lithuania selects sends a team of
four contestants to IOI and the Lithuanian contestants were awarded 44 medals in total.

Team selection for the IOI is conducted in the following way. The best six contestants
from the national competition senior division are invited to take part in Baltic Olympiad in
Informatics which usually takes place in April or May. In cases where it is not possible to
do a fair selection of the BOI team due to a small difference in points, extra competitors
take part in the BOI on-line, under surveillance of members of NOI. The team of four
contestants to represent Lithuania at the IOI is selected taking into account points gained
in finals of national competition, points gained in BOI, medals in International Olympiads
in previous years and age (younger contestants have priority).

6. Other Contests in Informatics

The national olympiad in informatics is the main however not the only contest for Lithua-
nian students interested in algorithms and problem solving.

Table 1

Achievements of Lithuanian students of in IOI’s

Gold Silver Bronze

IOI 1989 1

IOI 1992 3

IOI 1993 3

IOI 1994 2 2

IOI 1995 1 3

IOI 1996 1 2

IOI 1997 1

IOI 1998 1 2

IOI 1999 1 2

IOI 2000 2 1

IOI 2001 1 2

IOI 2002 1 2

IOI 2003 1 1

IOI 2004 1 2

IOI 2005 1 1

IOI 2006 2 1

Total 3 15 26

Contests in Programming: Quarter Century of Lithuanian Experience 45

In 1997 scientists from Kaunas Technology University together with an American
Lithuanian Dr. J.P. Kazickas, whose fund sponsors the events, established the Dr. J.P. Ka-
zickas Regional Competition of Students Computerists. Ethnically Lithuania is divided
into four regions (Aukštaitija, Žemaitija, Dzūkija ir Suvalkija) and the contest takes place
in each region once a year. The winners of regional contests are invited to the final round
which take place in Kaunas Technology University. The winners of the competitions are
given the priority against other candidates if they want to study in the University (Kazicko
forumas, 2007).

In order to bring programming and concepts of computer science to younger stu-
dents, Logo was chosen to be introduced into Lithuanian schools many years ago. As it is
known that competition makes learning more attractive, in 2000 it was decided to estab-
lish Logo Competition-Olympiad. Students in both primary and secondary education are
invited to compete. The competition consists of several separate parts and the contestants
decide in which particular part to participate. There are contests of pictures, uncontrolled
animation, controlled animation, as well as algorithms. Thus younger students become
involved in studying algorithms at quite a young age, even before they learn procedural
programming language.

A Saturday school of participants of informatics olympiads was established in 2003.
The school has three levels. Young students who have no experience in programming, but
proved themselves to be good in math competitions, can study at the introductory level.
The curricula of the first level covers introductory to programming course as well as some
very basic algorithms (e.g., sorting). At the end of the first level (which lasts for one year)
the students take a test and those who pass can study at the intermediate level. Also the
students who successfully participated in the national informatics olympiad in younger
division can study in this level.

During the intermediate level the course covers the main algorithms and methods used
to solve tasks for informatics olympiads (e.g., Dijkstra algorithm, dynamic programming,
etc.).

At the advanced level the students who passed the final test of the intermediate level as
well as participants of finals of national informatics olympiad can study. At the advanced
level the students solve complicated and advanced algorithmic tasks and it is possible to
study at this level for several years (i.e., until they graduate school). Currently about 50
students from all over Lithuania study in the school.

In 2004 Kaunas Technology University Gymnasium together with charity and support
fund of M. Rostropovich initiated the project National Student Academy for gifted stu-
dents. Students having high achievements in various areas (mathematics, chemistry, bio-
chemistry, physics, informatics, economics, writing and music) can enrol at the Academy.
During the year they are working on assignments from their subject. There are two or
three sessions throughout the year which last from one to two weeks. Scientists are in-
vited to give lectures to the Academy students as well. The exceptional feature of this
project is that students from different areas of interest join together to work, create and
learn.

In order to achieve high results in informatics olympiads, one has to study and prac-
tice for several years, and not so many students are able to do it. We felt that there was a

46 V. Dagienė, J. Skūpienė

Fig. 5. Teaching Information Technology (IT) and programming in schoolls and various of contests.

lack of a competition in informatics where everyone could participate and have fun. Such
a competition existed in mathematics – “Kangaroo”. In 2004 it was decided to arrange
a similar competition in informatics. The history of “Beaver” began on September 25,
2004, when an experimental trial, in which 779 school students participated, was held.
The aim was to check selected technologies of the contest and to evaluate the level of
complexity of the presented problems. After a month, on October 21, the first Lithuanian
“Beaver” contest took place. As many as 3470 pupils from 146 schools participated. In
2006, the International “Beaver” organizing committee was established which included
representatives of seven countries. Tasks are designed for three different age groups
(11–14 years, 15–16 years, 17–18 years) and they are multiple-choice tasks. Grading
is automated. Average time for solving one task is 2–3 minutes, so task descriptions are
short in form. There is still no defined syllabus for the contest, but the discussed topics
are: a) general logic; b) ICT in everyday life; c) practical and technical issues; d) infor-
mation comprehension; e) algorithms and programming; f) mathematics and underlying
CS; and g) history and trivia (Opmanis, 2006).

In order to ensure better preparation for the IOI and to strengthen regional rela-
tions, various regional olympiads are being organized. Baltic Olympiads in Informatics
(BOI) were established by the initiative of the three Baltic countries (Estonia, Latvia, and

Contests in Programming: Quarter Century of Lithuanian Experience 47

Lithuania) in 1995. Year by year six other Baltic countries (Denmark, Finland, Germany,
Poland, Sweden and Norway) joined the BOI. Compared to the IOI, BOI is a short-term
(the duration is 5 days) and inexpensive event. It can be distinguished by a cosy and good
neighbourly atmosphere.

Even though the BOI is a mini-model of IOI it differs significantly. The organization
of the scientific part of the BOIs is based on mutual trust of participating countries. The
leaders of all the participating countries take part in proposing and selecting problems for
the coming BOI. After draft problem formulations are presented, the problems are dis-
cussed via e-mail and the each country votes for the problem set for the competition. Most
of the problems are translated into native languages by the leaders before leaving to BOI.
During the competition leaders are involved in solving various problems which might oc-
cur, for example, some misrepresentation in the formulations of contest problems. This a
unique possibility for country representatives to gain experience in organizing scientific
part of a small international olympiad (Dagienė, 2004).

The BOI is also a form of learning for its participants. The organizers of BOIs try to
follow as close as possible the newest IOI trends in problem types, compilers, platforms,
contest systems. It is not always possible to do that in national contests. Besides, the
competition tasks are always proposed by different countries. Even though all the tasks
are of an algorithmic nature they represent cultural and methodical differences. Many
students come to the BOI to gain international experience after participating in domestic
contest. The BOI can be considered as a pre-arranged international form of learning.

7. Conclusions

Lithuania has long traditions of both teaching programming and algorithms in secondary
schools and organizing informatics contests. We have noticed three basic challenges:

1) initiating students to start to learn programming and to do it in attractive and proper
way;

2) when students learn the basics of programming they start trying to find an event
where they could demonstrate their skills – contests and olympiads are the right
place to do this;

3) there are many students who are interested in problem solving and would be in-
terested in participating in the contests but they need instructors or some kind of
schools to help them to grow their skills.

We try to investigate and to work in those three directions. In primary education, we
introduce Logo: kids aged 11–12 years have chance to develop their own procedures us-
ing very simple programming statements (mainly primitive commands, loops and proce-
dures). In lower and upper secondary school students have opportunity to choose optional
modules of programming (each are for 70 hours). While learning programming students
have possibilities to participate in various contests: Logo Olympiad, IT contest “Beaver”,
Lithuanian Olympiad in Informatics, etc.

Consequently both teaching of programming (it can be optional, but it should be avail-
able) and contests complement and stimulate each other. At the same time variety in

48 V. Dagienė, J. Skūpienė

contests give more possibilities for interested and talented students and allows them to
choose the contests which are most interesting and challenging for them.

References

Baliūnaitė, A., V. Dagienė, G. Grigas (1979). Transliator jazyka PASCAL v operacionoj sisteme DOS/ES i
jevo ispolzovanyje dlia učebnych celej. Operativno-informacionyj material. Novosibirsk: SO AN SSSR (in
Russian).

Bulotaitė, J., K. Diks, M. Opmanis, R. Prank (1997). Baltic Olympiads in Informatics, Inst. of Math. and Inf.,
Vilnius, Lithuania.

Dagienė, V. (1991). Lietuvos jaun ↪uj ↪u programuotoj ↪u olimpiados. Kaunas, Šviesa.
Dagienė, V. (1997). Learning via electronic mail: what and how? Education for the 21st Century, 2–4 December,

Cape Town, 1–10.
Dagiene, V. (1999). Programming-based solution of problems in informatics curricula. Communications and

Networking in Education: Learning in a Networked Society, IFIP WG 3.1 and 3.5 (with 3.6). Aulanko,
Hämeenlinna, Finland, June 13–18, 88–94.

Dagienė, V. (2006). The Road of Informatics. Vilnius, TEV.
Dagienė V., G. Grigas (1993). Development of problem solving skills and creativity through distance teaching

of programming. In G. Davies and B. Samway (Eds.), Teleteaching: IFIP Transactions (A–29). Elsevier, Sc.
Pub., pp. 179–182.

Dagiene, V., J. Skūpiene (2004). Learning by competitions: olympiads in informatics as a tool for training
high grade skills in programming. In T. Boyle, P. Oriogun, A. Pakstas (Eds.), 2nd International Conference
Information Technology: Research and Education. London, pp. 79–83.

Dagys, V. (1994). The work principles of Lithuanian Young Programmers School by correspondence. Human
Resources, Human Potential, Human Development: the Role of Distance Education. In Proceedings of the
European Distance Education Network (EDEN) Conference. Tallinn, 182–184.

Dagys, V., V. Dagienė, G. Grigas (2006). Teaching Algorithms and programming by Distance: Quarter Cen-
tury’s Activity in Lithuania In V. Dagienė, R. Mittermeir (Eds.), Proc. of the 2nd Int. Conference “Informat-
ics in Secondary Schools: Evolution and Perspectives“, Vilnius, 402–412.

Dagys, V., A. Klupšaitė (1993). Distance teaching of programming and possibilities of e-mail. Informatica,
4(3–4), 303–311.

Grigas, G. (1990). Some aspects of teaching the art of programming by correspondence. Informatica, 1(1),
156–166.

Grigas, G. (1989). Informatics and creative Ttinking. Third International Conf. ”Children in the Information
Age”. Sofia, pp. 229–240.

Dr. J. Kazicko moksleivi ↪u kompiuterinink ↪u forumas (accessed 2007.06.20). http://pilis.if.ktu.lt/˜forumas/
Mayer, R.E. (1990). Teaching for transfer of problem-solving skills to computer programming. Computer-based

learning environments and problem solving. In E. de Corte etc. (Eds), ATO ASI Seties, Springer-Verlag, 193–
206.

Opmanis, M., V. Dagienė, A. Truu (2006). Task types at “Beaver” Contests. Infomatics Education, the Bridge
between Using and Understanding Computers. Proceedings of International Conference in Informatics in
Secondary Schools – Informatikon Technologies at School, November 7–11, 2006, Vilnius, TEV, 509–519.

Skūpienė, J. (2004). Automatinis testavimas informatikos olimpiadose. Informacinės technologijos 2004, Kon-
ferencijos pranešim ↪u medžiaga, Kaunas, Technologija, p. 37–41.

Contests in Programming: Quarter Century of Lithuanian Experience 49

V. Dagienė is a head of Informatics Methodology Department at the
Institute of Mathematics and Informatics, also Professor at Vilnius Uni-
versity. She published over 100 scientific papers, wrote more than 50
textbooks in informatics for secondary education. She coordinates the
Young Programmer’s School, has position of the Chair of The National
Olympiads in Informatics, established IT contests “Beaver”. V. Dagienė
is the national representative of the IFIP for Education (TC3), member

of the European Logo Scientific Committee, an elected member of the IOI Scientific
Committee. She is an Executive Editor of international journal “Informatics in Educa-
tion“.

J. Skūpienė is younger research fellow in Informatics Methodology
Department in the Institute of Mathematics & Informatics. She has
published about 10 scientific papers. She is a member of the Scien-
tific Committee of National Olympiads in Informatics since 1994 and
a team leader in IOI since 1996. For a few years she was director of
studies of Young Programmers’ School, since 2004 she has been a co-
ordinator of Informatics section in the National Academy of Students.

She is author/co-author of four books on algorithms and algorithmic problems.

Olympiads in Informatics, 2007, Vol. 1, 50–56 50
© 2007 Institute of Mathematics and Informatics, Vilnius

Polish Olympiad in Informatics –
14 Years of Experience

Krzysztof DIKS, Marcin KUBICA, Krzysztof STENCEL
Institute of Informatics, Warsaw University
Banacha 2, 02-097 Warszawa, Poland
e-mail: {diks,kubica,stencel}@mimuw.edu.pl

Abstract. This paper presents the organization of the Polish Olympiad in Informatics, together with
tasks preparation process and evaluation. It is a result of over 14 years of experience in organization
of programming contests for high-school pupils. We believe, that although described procedures
are rather widely know, their rigorous implementation is the key to organization of a successful
programming contest.

Key words: algorithmic problem solving, programming contest, informatics olympiads.

1. Introduction

Polish Olympiad in Informatics (POI) originates from a smaller contest, called Contest
in Informatics, and after evolving for a couple of years, it gained status of the national
olympiad in 1993. It is addressed to high-school students, however middle-school pupils
can also take part in it. The detailed organization rules can be found in (XIII Olimpiada
Informatyczna, 2006) or on the web page of POI: http://www.oi.edu.pl/.

POI consists of three stages. In each stage, a number of tasks of algorithmic nature is
presented to contestants. Solution of each task is either a computer program, or computed
data. The supported programming languages are: C, C++ and Pascal.

The first stage is usually organized in October and November. It gathers over a thou-
sand of contestants. Among them, about 40 contestants are from middle-schools. The
contestants are presented five or six tasks, that should be solved at home within a month
and sent backfor evaluation. About 360 contestants are qualified to the second stage of
competition.

The second stage is organized in six regional centers, located at universities cooperat-
ing with POI and takes three days. The first day is a preparation day – the contestants have
to solve one or two tasks during a three hour session, however the results do not count
in the competition. The objective of the preparation day is twofold: first, the contestants
can get familiar with the environment, second, the organizers can verify that everything
is ready. During the second and third day, the contestants have to solve two or three tasks
during five hour sessions. The solutions are collected from all the centers and then eval-
uated. Preliminary results are usually known a couple of hours after the competition is

Polish Olympiad in Informatics – 14 Years of Experience 51

finished. The results are approved in two weeks, which gives time to process possible
contestants’ complaints. About 70 contestants are qualified to the third stage of competi-
tion.

The final and third stage is organized in one place and takes five days. Traditionally, it
is organized in Sopot, a small city at the Baltic shore. Similarly to the second stage, there
are three competition days. The first day is also a preparation day, when the contestants
have to solve one or two tasks in three hours. on each of the other two competition days
the contestants have to solve three tasks in five hours. The preliminary results are known
just after the competition. The fourth day is a leisure day for contestants, while for orga-
nizers it is a day reserved for processing possible complaints. On the last day, there is an
awarding and closing ceremony.

POI loosely follows international tradition in medal allocation. There are three cat-
egories of medals: golden, silver and bronze. The number of medallists rather does not
exceed half of the number of finalists, and the ratio between the number of golden, bronze
and silver medals is close to 1:2:3, but it is not a rule.

Each year, POI requires preparation of approximately 17 tasks. Tasks preparation is a
continuous process. Before each stage of the competition, 5 to 7 tasks for this stage are
selected from the pool of about twelve tasks ready for the competition.

The next section of this paper presents the tasks preparation process, from a task idea
to a moment when the task is ready to be used. In the following section the evaluation
process is described.

2. Tasks Preparation

The main objective of the tasks preparation is to assure good quality of tasks. But what
does it mean? What makes a good task? We should take the following aspects into ac-
count:

– Task formulation – it must be clear, comprehensive and not too long.
– Differentiation of contestants’ skills – there should exist many ways of solving

the task, of different difficulty; moreover, it should be possible to distinguish these
solutions by testing.

– Thoroughness of analysis – task analysis should take into account wide spectrum
of solutions, covering all ways of solving the task accessible to the contestants, and
different programming languages and usage of STL (where necessary).

– Thoroughness of testing – tests should distinguish correct and incorrect solutions;
they also should distinguish different classes of solutions, regardless of the pro-
gramming language used to implement them (and possible usage of STL).

– Correctness – all example programs should obey input/output specifications and
should produce correct outputs; if necessary, an output checker is also needed.

Describing the tasks preparation process, we will emphasize requirements needed to
achieve the above objectives.

The tasks preparation process consists of the following phases: review of task ideas,
formulation, analysis, verification, and calibration.

52 K. Diks, M. Kubica, K. Stencel

2.1. Reviewing Task Ideas

Initially we need just a task idea. It only has to define the algorithmic problem to be
solved. When reviewing the idea, we should answer the following questions:

– Can the task be formulated in a short and comprehensive way? If it is too compli-
cated or requires explanation of many terms, then it is not suitable for a competi-
tion.

– Is the task a ‘handbook’ one? If so, then it would test knowledge of a particular
algorithm/technique rather than creativity. Hence it is not appropriate.

– Is the task unique, to the best knowledge of the reviewer?
– Can it be solved in a polynomial time? If not, then it is rather not possible to

evaluate it in a reasonable time. However, exceptions are possible.
– Are there many ways of solving the task, with different difficulties and different

(time) complexities? If not, the task is probably not appropriate for a contest, or it
may not be possible to distinguish different classes of solutions.

– Can it be solved by a high-school student? There is no universal answer to this
question. Our requirements are a little bit higher than those defined in (Verhoeff
et al., 2006). The expected knowledge is covered by most general handbooks on
algorithms, e.g., (Cormen et al., 1989) (skipping more advanced chapters) covers
it all.

2.2. Task Formulation

In the task formulation, all elements missing in the task idea should be added. In partic-
ular: a short story can be added to make the task more attracting. The language should
be simple. One should avoid complex sentences. All new notions should be introduced
before they are used. Greek symbols should be avoided. If a coordinate system is needed,
then the standard one should be used. Other detailed guidelines can be found in (Verhoeff
et al., 2006).

Input and output specifications must be precise – limits on the data sizes can be left
undefined. Preferably, the output should be short, hard to guess (e.g., not a yes/no answer
but rather some integer) and unequivocally determined by the input. However, this last
requirement is not crucial. The task formulation should contain an example, preferably
with a picture. The task should fit on one or two pages. Three pages are an absolute
limit. The task formulation should be also accompanied by a short description (one or
two paragraphs) of author’s solutions – it will be taken into account during the analysis.

2.3. Task Analysis

Task analysis is the most time-consuming part of preparation. The outcome of the analysis
should consist of: a document summarizing the analysis, a number of programs and tests.
Also, all missing elements in the task formulation (e.g., limits on the data sizes) should
be defined.

The analysis document is an internal document, so it can be written in a professional
language. The analysis document should discuss different solutions: the optimal solution

Polish Olympiad in Informatics – 14 Years of Experience 53

(within contestants’ scope), other possible solutions and a couple of incorrect solutions
that could be expected. It should discuss all the solutions proposed by the author of the
task, but by no mean should it be limited to these solutions. Of course not all incorrect
solutions can be foreseen, but a good sample is valuable.

The solution descriptions for pupils are prepared post factum. However, if they are to
be distributed during the competition, they should be prepared together with the analysis
document.

All correct solutions should be implemented both in C/C++ and Pascal. Moreover, if
application of STL is relevant, such solutions should be implemented in C++ using STL
and in C (not using STL). The rationale is that we need to know the actual running time
of these solutions. For other solutions, e.g., incorrect ones, just one implementation is
enough, since they should produce incorrect outputs.

In case of batch (i.e., typical) tasks, the set of 10 to 20 tests should be prepared. The
primary objective of tests is to distinguish correct and incorrect solutions. However they
should also distinguish all the classes of correct solutions, that are of different difficulty.
Tests should put stress on the asymptotic time-cost rather than absolute running time.
As a rule of thumb, solutions up to twice slower then model solutions should score the
full points. Moreover, the result of testing should not depend on the choice of the pro-
gramming language, or usage of STL. Some version of IOI-50% rule can be applied –
30%–60% of points should be allocated to correctness tests. In other words, correct but
not efficient solutions (however running in a reasonable time) should score 30%–60% of
points. The rest of points should be granted for efficiency. Such a thoroughness of testing
could be hard to achieve. The usual solution is to increase the data sizes. However, the
amount of available RAM and expected testing time can limit it.

If necessary, tests can be grouped – a solution is granted points for a group of test
only if it passes all the tests from the group. Grouping should be used when the correct
result could be ‘guessed’ with high probability, or when more than one test is needed to
distinguish correct from incorrect solutions.

Tests can be prepared in form of files or a generating program can be provided. The
latter option is especially useful for generating huge efficiency tests. If such a program
uses random number generator, then it should also set the random seed, so that it always
generates exactly the same set of tests. Tests should be accompanied with a program
verifying their correctness. Such a program should verify all conditions stated in the task,
what is sometimes quite not trivial.

If the task is an output-only one, then the set of tests should be prepared in a simi-
lar way, however we cannot control the running time. Contestants can even use different
programs to solve different tests. Usually we cannot measure efficiency of contestants’
solutions. However in this type of tasks, the running time is not so crucial, or the compe-
tition time is a sufficient limit. So, we can skip the requirement to implement all correct
solutions in all supported programming languages.

If the task is an interactive one, then we have to provide modules that should be com-
piled with contestants programs, in all supported programming languages. There should
be two versions of such modules: one provided during the competition and one for the

54 K. Diks, M. Kubica, K. Stencel

evaluation. The first version should just allow testing contestants’ solutions. The second
one should implement a couple of ‘strategies’. Different interacting strategies and dif-
ferent initial configurations correspond to tests. The module used for evaluation should
also be secured against reverse-engineering attacks or misuse. It can be divided into a
separate process and simple communication module that is compiled with contestants
solution. Then, the separate process is protected by the operating system. Moreover it
can be implemented in just one programming language. The communication can be done
via standard input output. However it should contain verification/check-sum codes, to
prevent contestant’s code form interacting with such a process.

2.4. Verification

The main goal of the verification phase is to assure correctness. The two main ways to
achieve it is thorough inspection of the analysis document and model solutions, and cross-
checking the model solutions and tests. The inspection should cover: task formulation,
analysis document, model solutions and programs for test generation and verification. An
independent model (but not necessarily optimal) solution should be implemented. The
result given by such a solution should agree with those produced by the model solu-
tions. Also, a program verifying correctness of tests has to be implemented. All model
and incorrect solutions should be evaluated on all the tests, and it should be possible to
distinguish classes of solutions of interest.

2.5. Calibration

All other phases of tasks preparation can be done in advance. However it is not possible
to define the actual time-limits without knowledge of the hardware used to evaluate so-
lutions. And this is usually known just before the competition. Hence, the calibration of
time-limits must be done as soon, as the hardware used for evaluation is installed.

3. Evaluation

In POI solutions to all tasks are graded automatically. A special software system has been
created for this purpose. It has been evolving from 1992. First it was written for MS-
DOS, then ported to Windows NT, thrown away and totally rewritten, and then finally
ported to Linux when it got the current shape of a full-fledged web system known as SIO
(Information System of Olympiad1). Contestants submit their solutions to the SIO system
which grades them and provides results. In most cases the full publication of the results
is delayed until the end of the competition. Only the result of the test case from the task
description is publicized immediately.

Most tasks require writing a program which is to read the input data and produce a
result. Such a task will be called a batch task. A small set of test cases is prepared for each

1The suspected permutation of letters is phantom. The abbreviation comes from the Polish name of the
system.

Polish Olympiad in Informatics – 14 Years of Experience 55

batch task. Each submitted solution is run for each test case. The SIO system measures
time and kills the program if the real time of the run exceeds the time limit twice. The
time limit does not concern the real running time but the system time plus user time of the
process. We allow doubled time limit for safety, but only the process running time counts.
If the process time exceeds the time limit, the solution will always get no points for the
given test case. The SIO also controls the security. It will stop a solution, if it executes
a forbidden system call (e.g., forks and network routines) or opens any file (solutions to
batch tasks are reading from the standard input and are requested to send the result to the
standard output).

If for a test case the solution does not exceed the time limit, terminates with the exit
code 0 and provides a correct answer, the solution will get points for this test case. In all
other cases, the solution will get no points for this test case.

There are two problems with such a grading procedure. POI is proud of finding good
yet simple solutions to them. The first problem is the discontinuity of the function which
maps running times to points. The second problem consists in outputs which are relatively
frequent in the result space (e.g., the answer ‘NO’ in a task which requires a specific
sequence of numbers as output).

The time-to-points function is flat from zero to the time limit (its value is the max-
imum number of points for the test case). Then, it instantly drops to zero and stays flat
until infinity. Apparently, this function is not continuous in the point of the time limit. If
a solution fluctuates over the time limit, its result will vary much in subsequent evalua-
tions. In order to avoid it, we decided to make the time-to-point function continuous. In
POI this function is flat from zero to the halved time limit. Then it linearly descends to
zero in the point of time limit. It is now continuous and if the running time of a solution
fluctuates, the number of point will never change rapidly. The final required remark here
is that time limits are set in such a way that the model solutions always terminate long
before the time-to-point function starts its descend.

The problem of answers frequent in the result space has been eventually adopted by
the IOI, but it has been invented for POI. The solution to this problem is as simple as
the continuous time-to-point function. Each test case consists of a number of test runs.
Each test run is connected with specific input data. Thus, running each test case means
running a solution program for each test run separately. A solution will get points for a
test case only if it solves all test runs correctly. Let us consider an example task where
the answer is a sequence of integers with some properties, but if such a sequence does
not exist, the program must output one word ‘NO’. Of course we don’t want to award any
points to a solution program which always prints ‘NO’. Thus, all test runs for which the
correct answer is ‘NO’ are grouped in test cases together with test runs which do produce
sequences of numbers. This way programs which solve nothing will get nothing.

Last but not least we should mention errare humanum est. Indeed, the grading pro-
cedure is configured and maintained by humans. Particularly, it concerns preparation of
test data. Thus, before the decisions on the qualification to the next round or the medal
allocation are made, contestants have access to the preliminary grading of their solution
on all test cases. These days it is easy, since we have the Internet. All this information

56 K. Diks, M. Kubica, K. Stencel

is available on contestants’ accounts in the SIO system. The contestants can appeal (of
course through SIO). Yet after all the appeals are concluded, the results are verified by
those who are the most interested. The decisions on medals and qualifications are made
using these strongly verified results.

4. Conclusions

Running an annual programming contest is a never-ending job. We have described the
organization of the Polish Olympiad in Informatics, with focus on tasks preparation and
evaluation. We hope, that it can be fruitful to organizers of other contests.

References

Cormen, T.H., C.E. Leiserson and R.L. Rivest (1989). Introduction to Algorithms. The MIT Press and McGraw-
Hill Book Company.

Kanarek, P., and A. Iwanicki (Eds.) (2006). XIII Olimpiada Informatyczna. Komitet Główny Olimpiady Infor-
matycznej.

Verhoeff, T., G. Horváth, K. Diks and G. Cormack (2006). A proposal for an IOI syllabus. Teaching Mathemat-
ics and Computer Science, IV(I).

K. Diks (1956), PhD hab. in computer science, associate professor at
Warsaw University, director of Institute of Informatics of Warsaw Uni-
versity, chairman of Polish Olympiad in Informatics, member of IOI-IC
since 2001, former chairmen of IOI’2005 in Nowy Sacz, CEOI’2004 in
Rzeszów and BOI’2001 in Sopot, Poland. His research interests are:
algorithms and data structures, parallel and distributed computing, and
graph theory.

M. Kubica (1971), PhD in computer science, assistant professor at In-
stitute of Informatics, Faculty of Mathematics, Informatics and Me-
chanics, Warsaw University, scientific secretary of Polish Olympiad in
Informatics, former IOI-ISC member and former chairman of Scien-
tific Committees of IOI’2005 in Nowy Sacz, CEOI’2004 in Rzeszów
and BOI’2001 in Sopot, Poland. His research interests focus on combi-
natorial algorithms and computational biology.

K. Stencel (1971), PhD hab. in computer science, at the moment works
at the Faculty of Mathematics, Informatics and Mechanics of War-
saw University. His research interests are connected with non-relational
databases. From 1995 he has been the chairman of the jury of Polish
Olympiad in Informatics. He was also the chair of jury at CEOI’97,
BOI’2001, CEOI’2004 and IOI’2005.

Olympiads in Informatics, 2007, Vol. 1, 57–65 57
© 2007 Institute of Mathematics and Informatics, Vilnius

Slovak IOI 2007 Team Selection and Preparation

Michal FORIŠEK
Department of Computer Science, Faculty of Mathematics, Physics and Informatics
Comenius University, 842 48 Bratislava, Slovakia
e-mail: forisek@dcs.fmph.uniba.sk

Abstract. We describe the process of selecting and preparing the Slovak IOI team. The presented
information is related to the situation in the year 2007. We present the structure of the Slovak
national Olympiad in informatics and of the Slovak selection camp, including the rationale behind
their current form. We list several other national activities that help our students acquiring extra-
curricular knowledge in computer science. We discuss our cooperation with other countries in the
region. Finally, we give several examples of tasks used in our Olympiad.

Key words: olympiad in informatics, Slovakia, IOI, training, preparation, programming competi-
tion, programming contest.

1. National Olympiad

1.1. Structure

The Slovak national Olympiad in informatics (OI) is divided into two categories. The
easier category B is intended for ages 15 to 16, the harder category A for ages 17 to 18.
(The rules specify exact limits based on the attended class, here we provide approximate
ages instead.)

In category B the contest has two rounds – a home round and a regional round. In
category A, there is an additional national round. The corresponding rounds in both cat-
egories have the same structure, we will describe them below.

1.2. Home Round

This is a long-term round. The contestants have at least a month of time to work on
their solutions. Contestants are given four theoretical tasks of algorithmic nature. Refer
to Appendix A for an example task.

One of the four tasks is accompanied by a study text. This study text (usually) de-
scribes a non-traditional computational model that will be used in tasks throughout the
year, i.e., in all three rounds. In the accompanied tasks the students are supposed to solve
a problem within the given computation model. The actual tasks used form a graduated
difficulty series – many times a task from an earlier round serves also as preparation for
harder tasks in later rounds. For more details and an example refer to Appendix B.

58 M. Forišek

For each of the other three tasks the contestants are supposed to find a correct algo-
rithm that is as efficient as possible, implement it, and provide a discussion of its cor-
rectness and time complexity. All submitted solutions are evaluated by human judges and
awarded points on a scale 0 to 10.

Usually about 150 students participate in this round, and all of them are invited to the
regional round.

1.3. Regional Round

The regional round takes place in all (eight) regions of Slovakia at the same time. In each
region, the students are invited to some place where they have to solve four tasks in four
hour. The type of tasks is identical to the home round (i.e., three algorithmic tasks and
one task related to the computational model introduced in the home round).

All four tasks are solved on paper only. After the round is over, each region evaluates
the submitted solutions. All solutions are then sent to the Olympiad’s national committee
for coordination. During the coordination process all solutions are re-evaluated (checking
for potential mistakes in the preliminary evaluation), and the same point scale is applied
to all solutions.

After the coordination the regional ranking lists are merged to create a national rank-
ing list, and based on this ranking list approximately 30 best students are invited to the
national round.

1.4. National Round

The national round consists of two competition days. The first day is similar to the previ-
ous rounds (four and a half hours, three theoretical tasks, one of them using the compu-
tational model).

On the second day the students have four hours to implement their solutions of the
two algorithmic tasks. The solutions are evaluated using automated testing and points
awarded to a solution are proportional to the number of test data batches it is able to
solve correctly.

Note that the second day is similar to the International Olympiad in Informatics (IOI).
For readers not acquainted with the IOI contest format we recommend referring to (Pohl,
2006) and (Dagiene, 2006). Same as at the IOI, compilers from C/C++ and Pascal are
available on the practice day.

For each of the days the maximum is 30 points. Based on the total results of both
days, the national champions are announced, and approximately ten best participants are
invited to the national selection camp where the representation for the IOI is determined.

1.5. Contest Format Rationale

We strongly believe that the thinking process (in other words, problem solving process)
is the most important skill we want to see in our contestants. This is what they will need
in their future lives, should they pick a career in computer science.

Slovak IOI 2007 Team Selection and Preparation 59

The IOI, “practice only” competition style fails to achieve this goal properly. Practical
competitions are, and always will be, at least partially focused on the actual implementa-
tion and marginal issues such as debugging techniques, library knowledge, etc.

In our point of view, the IOI competition format is in some sense just a necessary
evil – the number of contestants and the amount of available time make it practically
impossible to evaluate the IOI in any other way.

Slovakia’s 5 million inhabitants make it a relatively small country and this is one of
the factors that enable us to pick a different competition type for our national Olympiad.
Therefore we still keep the competition mostly theoretical, and award points based on the
thought process of the contestants. We are convinced that from a long term point of view,
this competition type will actually be more beneficial for the contestants.

The contest format where the evaluation is based on ideas presented in the submitted
work is also assumed to make the competition more accessible to girls. See (Fisher and
Cox, 2006; Boersen and Phillipps, 2006) and (Boersen, 2006) for a discussion of related
topics. We may support their theories. In 2007, out of 29 participants in the Olympiad’s
national round, four were girls, the average in past years is about two. Many more girls
take part in the correspondence seminar (described below).

One more note on the IOI competition itself: With a strong theoretical background it
is much easier for the contestants to subsequently adapt to the IOI competition style –
they are halfway there, all they need is to practice implementing their ideas in an efficient
and correct way (see also appendix B for rationale on including tasks in non-traditional
computation models).

2. National Training

2.1. Selection Camp

The national selection camp is a camp organized for approximately ten best participants
of the national round. The program of the camp is almost entirely focused on practical
programming. During a typical day, there is a half-hour warm-up session and a three
hour coding session in the morning, a four hour coding session in the afternoon, and a
presentation of sample solutions thereafter.

In the warm-up sessions the contestants have half an hour to solve two simple theo-
retical problems on paper. The coding sessions try to mimic the IOI environment as much
as possible. The set of tasks used involves a cross-section of past competition tasks used
in national and international competitions. The task topics are selected in such a way that
they cover most topics that tend to appear at the IOI.

Based on the total results of this selection camp the four best contestants are selected
as the IOI team, four contestants are selected as the Central European Olympiad in In-
formatics (CEOI) team and six contestants (including the IOI team) are selected for the
Czech–Polish–Slovak preparation camp (CPSPC, see below).

For CEOI, it is our usual practice to treat it as a practice competition before the IOI.
Thus, last-year students that have already taken part in an international competition are
usually not eligible for the CEOI.

60 M. Forišek

2.2. Correspondence Seminar

For more than 25 years, the students at Comenius University in Bratislava organize a
correspondence competition for secondary school students. The original motivation for
starting this competition was the lack of qualified informatics teachers in places other
than the largest three or four cities. In this way, all talented students are able to acquire
extra-curricular knowledge, references to study materials, etc. And last but not least, the
correspondence seminar plays a vital role in making these students interested in computer
science and enabling them to choose a career in this field.

After the 25 years have passed, we have to sadly conclude that the main motivation
behind having the correspondence seminar is still here. With the level of salaries at sec-
ondary schools, the number of good informatics teachers decreases at a steady pace. Thus
the correspondence competition still plays a vital role in preparing our talented students
for the IOI.

The competition consists of four series spread throughout the year. There are three
different categories; we can roughly describe them as “beginner”, “ordinary”, and “ex-
treme”. The last category had roughly 15 participants in the last year, and almost all
contestants that qualified for this year’s selection camp were previously solving tasks of
this category.

In each series, contestants in each category are given several tasks to solve. The con-
test mimics the home round of the national Olympiad. The difference is that the con-
testants receive their evaluated solutions back along with personal comments from the
evaluators.

2.3. Correspondence Seminar Camps

Twice a year a camp is organized for about 30 best participants of the correspondence
seminar. This camp takes about a week of time. An usual day consists of two series of
lectures in the morning, and of sports, games, competitions (both scientific and other),
and team-building activities during the rest of the day. The lectures are mostly focused
on efficient algorithm design and implementations. Most of them are prepared by under-
graduate university students who organize the camp, but usually there are several guest
lectures held by our university lecturers. In each series of lectures two lectures of various
difficulties run in parallel, to accommodate different skill levels of the participants. Much
of the camp’s program is focused on presenting computer science as a fun and interesting
topic, and on building a community of young people interested in it.

You can find more on the importance of this community building in (Forišek and
Winczer, 2006). Refer to (Bell et al., 2002) for an idea of how many of the camp’s acti-
vities look like, and to (Verhoeff, 1997) for a general overview of related topics.

2.4. Programming Hatchery

In the recent years I developed the following train metaphor: Computer science as whole
and programming competitions in particular, can be regarded as a train. The train has

Slovak IOI 2007 Team Selection and Preparation 61

already left the station and it is still speeding up. For new passengers, catching it and
getting on is becoming harder and harder. But is there any way to help them?

Actually, there is. Use a second train. Make it slow enough for them to get on and
then speed up and allow them to jump to the first train.

This is exactly what we tried to achieve by starting an e-learning portal called Pro-
gramming Hatchery. The first “chapter” of this portal is a gentle introduction to the area
of programming contests. Subsequent chapters that are opened later offer a variety of
graduated difficulty task series accompanied by study texts. The entire portal is available
in Slovak, thereby compensating for the lack of good Slovak textbooks. Most of the study
texts were adapted from the knowledge accumulated during the years by the organizers
of the correspondence seminar. The students are given lots of valuable resources at their
disposal, while being able to choose their own pace of progress. To date, this portal has
got 655 registered users.

3. International Cooperation

3.1. Preparing Problems for the National Olympiad

Since 1993, when Czechoslovakia was split into Slovakia and the Czech Republic, we
maintain an intensive cooperation with the organizers of the Czech national Olympiad.
Both contests share the same problem set. For half of the years this problem set is pre-
pared by one nation, for the other half by the other nation.

Thanks to this cooperation we have more time to gather and prepare more interesting
competition problems.

3.2. Czech–Polish–Slovak Preparation Camp

Since 1999 the three nations mentioned in the title organize a joint week-long camp for
their best students. Usually six contestants from each country take part in the camp. The
organizers prepare a set of tasks for four IOI-like competition days. The camp usually
involves some sports in the afternoons, and one day-long trip.

As an interesting bit of trivia, the main reason behind the order of country names in
the camp’s title is that the current abbreviation CPSPC is a palindrome.

3.3. Cooperation with the Swiss Olympiad

The Swiss Olympiad is a much younger contest than most other national Olympiads,
currently it had 12 years. To be able to keep up with the more established contests, the
Swiss Olympiad started several new activities to prepare their contestants. In some cases
the Slovak Olympiad organizers volunteered to help. In the last year, there were two
jointly organized events.

The first of these events was a Swiss Olympiad winter camp in Davos. Roughly 20
participants of the Swiss Olympiad were invited to this event, along with 3 participants

62 M. Forišek

from Slovakia. The camp organizers were both from Switzerland (two) and from Slovakia
(three, one of them currently at ETH Zurich).

The second event was that four Swiss contestants were invited to take part in the
Slovak selection camp – which served as a week-long training for them.

4. Conclusion

We presented the most important activities related to the Slovak Olympiad in informatics.
The main point in preparing our contestants for the IOI is in giving them a strong theo-
retical background, the ability to reason about algorithms and to express their thoughts,
and only then we focus on the implementation part of the competition. We try not to for-
get that the competition is not a goal, but just a means to make computer science more
popular, and to motivate talented students to study it.

5. Appendix A: Example of a Theoretical Task

5.1. Problem Statement

“The fictional mountain”

Michael and Joseph were planning a trip. Each of them took his own map and started
to examine the track they agreed upon. On each of the maps, some points of the track had
their altitudes displayed. After a while, Michael claimed: “That’s interesting. If I only
consider the altitudes on the track, it seems that we will only be going over one mountain
– first up, then down.” “That’s nonsense!” answered Joseph. After a while they found
out the reason: Michael’s map was less precise, and it was missing some of the altitudes
displayed on Joseph’s map.

Your task is to write a program that reads the list of N < 100000 altitudes written
on Joseph’s map, and computes how many of them could have been shown on Michael’s
map as well.

EXAMPLE.
Input: N = 12, altitudes: 112 247 211 209 244 350 470 510 312

215 117 217

Output: 9
Explanation: E.g., Michael’s map could have contained these nine altitudes:

112, 211, 244, 350, 470, 510, 312, 215, 117.

Worse solutions:
* for 7 points out of 10, solve the task with the constraint N < 1000,
* for 4 points out of 10, solve the task with the constraint N < 20.

Slovak IOI 2007 Team Selection and Preparation 63

5.2. Solutions

This task admits multiple correct solutions with various degrees of efficiency. The sim-
plest way is to check all 2N subsets of the given numbers, and for each of them check
whether it represents a mountain. This leads to a solution in O(N · 2N) time.

The efficient solutions are based on the concept of the longest increasing subsequence
(LIS). Note that the mountain is a subsequence that contains first an increasing, then a
decreasing part. The correct solution is to compute the length of the LIS ending at each
element of the sequence, and the length of the longest decreasing subsequence beginning
at each element of the sequence. (The latter is just the LIS in the reversed sequence.)
Having these lengths, the answer can be computed in O(N) time. The lengths can be
computed using one of the known LIS algorithms in either O(N2), or O(N · log N) time.
For discussion of these algorithms see (Cormen et al., 1989).

There are other, less efficient solutions – e.g., one can use brute force to pick the top
of the mountain and for each top compute LIS in each of the parts from scratch. This
leads to a solution running in O(N2· log N) or O(N3) respectively, depending on the
LIS algorithm used.

6. Appendix B: Example of a Computation Model Task

6.1. Rationale

For the selected computation models we do not expect the contestants to have any prior
knowledge. The study text accompanying the problem statements is supposed (and de-
signed) to be their first introduction to the area in question. The text is written in such a
way to be accessible to (talented) secondary school students – the model is explained as
simply as it gets, parts that won’t be used in tasks are omitted, etc.

The contestants’ main task is to understand the study text. They have to be capable of
understanding the given model, and forming a suitable mental abstraction. The tasks used
in the home round usually serve as a kind of a verifier – the contestant who understood
the model correctly should be able to solve them without any problems.

Occasionally, the home round task statement also helps to understand the model by
pointing out some interesting concept that will be referenced in subsequent rounds.

In the following sections we will show an example justifying the claims above.

6.2. Past Models

In the past years, these topics from theoretical computer science were used as background
for our competition tasks: deterministic Turing machines, Wang tiles (Wang, 1961), al-
ternating Turing machines (Chandra et al., 1981), Markov’s registry machines, D0L-
systems, a-transducers, reversible computers, and many others.

64 M. Forišek

6.3. Example Study Text (partial)

In this section we present a part of the study text for alternating Turing machines – a
computational model with non-deterministic decisions of two types, corresponding to a
“parallel and” and a “parallel or” on a massively parallel machine. Note that our formu-
lation makes the topic slightly less formal, but much more accessible.

“The Parallelizer”

Beyond seven mountains and six valleys, the inventor Kleofas managed to construct
a wondrous machine. He decided to call it the Parallelizer. At the first glance, it was just
an ordinary computer. However, there was a small twist. Under some special conditions,
the Parallelizer was able to run several copies of its program in parallel, without slowing
down.

Kleofas designed a simple programming language for his new machine. The language
looks just as Pascal for ordinary computers, there are only a few differences. First, we
don’t have the function Random, thus for each program its computation and its result are
uniquely determined.

Upon termination, each program will return an exit code: either zero (meaning that
its run was successful) or one (meaning that it was not). For clarity, we will have special
commands Accept (terminate with exit code zero) and Reject (terminate with exit code
one).

The final change will be the commands allowing us to make parallel computations:
Both(x) and Some(x). The command Both(x) stops the current program and creates
its two identical copies. In the first one the variable x is set to 0, in the second one it is
set to 1. Both copies are executed in parallel. If both of them terminate successfully, the
original program is resumed. The command Some(x) works in the same way, with the
difference that the original program is resumed as soon as at least one copy terminated
successfully.

(The rest of the study text contained a more precise definition of these two commands,
and two simple example tasks with solutions and commentary on the program’s execu-
tion.)

6.4. Example Task

Given are two strings haystack and needle. Write a program for the Parallelizer that will
successfully terminate if and only if the string needle is a substring of the string haystack.

6.5. Solution

While really simple, the optimal solution of this task contains two important concepts:
using Some to make a parallel search (i.e., to emulate non-determinism, but this concept
is never referenced explicitly), and using Both for parallel verification. In both cases, the
lesson learned is that O(N) things can be done in O(log N) time by repeated forking.

Slovak IOI 2007 Team Selection and Preparation 65

Many contestants were able to define functions Exists(x,N) and Forall(x,N)

that do the same as Same and Both for x in the set 0, ..., N − 1. Using these functions
a solution to the given task fits on a single line. Both functions were introduced in the
sample solutions of the home round, and used in the next rounds as a building brick.

References

Bell, T., I.H. Witten and M. Fellows (2002). Computer Science Unplugged. A special version of the book
available (retrieved Jun 2007) at
http://www.google.com/educators/activities/unpluggedTeachersDec2006.pdf

Boersen, R., and M. Phillipps (2006). Programming contests: two innovative models from New Zealand. Pre-
sented at Perspectives on Computer Science Competitions for (High School) Students. Retrieved Jun 2007
from
http://bwinf.de/competition-workshop/RevisedPapers/
1_BoersenPhillipps_rev.pdf

Boersen, R. (2006). Inclusive programming contests = Inclusive problem sets. In V. Dagiene and R. Mittermeir
(Eds.), Information Technologies at School, pp. 535–544.

Chandra, A.K., D.C. Kozen and L.J. Stockmeyer (1981). Alternation. Journal of the ACM, 28(1), 114–133.
Cormen, T., C. Leiserson and R. Rivest (1989). Introduction to Algorithms. MIT Press.
Dagiene, V. (2006). Information technology contests – introduction to computer science in an attractive way.

Informatics in Education, 5, 37–46.
Fisher, M., and A. Cox (2006). Gender and programming contests: mitigating exclusionary practices. Informat-

ics in Education, 5, 47–62.
Forišek, M., and M. Winczer (2006). Non-formal activities as scaffolding to informatics achievement. In

V. Dagiene and R. Mittermeir (Eds.), Information Technologies at School, pp. 529–534.
Pohl, W. (2006). Computer science contests for secondary school students: approaches to classification. Infor-

matics in Education, 5, 125–132.
Verhoeff, T. (1997). The role of competitions in education. Presented at Future World: Educating for the 21st

Century. Retrieved Jun 2007 from
http://olympiads.win.tue.nl/ioi/ioi97/ffutwrld/competit.pdf

Wang, H. (1961). Proving theorems by pattern recognition. II. Bell System Tech. Journal, 40(1), 1–41.

M. Forišek is currently a graduate student at the Comenius University
in Slovakia. He received a master’s degree in computer science from
this university in 2004. His research interests range from theoretical
computer science to education of mathematics, informatics, and algo-
rithms. He is an elected member of the International Scientific Com-
mittee of the International Olympiad in Informatics. For many years he
has been an active organizer of national and international programming

contests, including several years of the Internet Problem Solving Contest (IPSC) and
Central European Olympiad in Informatics 2002. As a student he was a very successful
participant in programming contests, he was awarded gold medals both at the IOI and at
the ACM ICPC World Finals.

Olympiads in Informatics, 2007, Vol. 1, 66–78 66
© 2007 Institute of Mathematics and Informatics, Vilnius

Olympiads in Informatics: Macedonian Experience,
Needs, Challenges

Metodija JANCESKI
Faculty of Natural Sciences and Mathematics, Institute of Infomatics
Skopje, Macedonia
e-mail: meto@ii.edu.mk

Veno PACOVSKI
Civil Engineering Faculty
Partizanski Odredi bb, Skopje, Republic of Macedonia
e-mail: pacovski@gf.ukim.edu.mk

Abstract. The introductory part of the paper includes the brief description of the current Macedo-
nian educational system, including information about national ICT policy, primary and secondary
education curricula, technological equipment, the level of using ICT in education, and projects
related with ICT.

Presently, there is enforced computerization of our country (an enormous increase in numbers of
computers in primary and secondary schools, free education for computer illiterate and efforts are
made for full computerization of every aspect of the society).

This paper is about national informatics competitions in Macedonia for secondary school stu-
dents, their organization, and scope. Computer Society of Macedonia (CSM) is the organizer of
National competitions. The regular activities of CSM also include: organization and execution of
seminars for permanent education of IT teachers in secondary and elementary schools, and there
are efforts made to influence national education of IT.

CSM organizes four levels of state annual competitions with two groups of original problems.
The top ranked four contestants at the Olympiad represent Macedonia at the international competi-
tions: BOI and IOI.

Some of the conclusions or recommendations follow:

– state education: IT education, especially programming is not continuous (it should be);
mentors fall behind with developments in the field of programming, they need guidance,
seminars, materials, all kinds of support;

– finances: permanent funds have to be established; companies still do not see their interest
to support the competitions, it has to change;

– materials: there are plenty of materials, tasks with their solutions, discussions and tests;
many of them are available at the IOI official site; but, there is need of further guidance in
using them, even including some additional education material;

– coordination: the coordination at the higher level is needed, (when and how the young
students should start with programming, what should be their first programming language,
Pascal, C, C++, C# or Java).

Key words: education, competition, programming, computerization, olympiad in informatics,
Macedonia.

Olympiads in Informatics: Macedonian Experience, Needs, Challenges 67

1. Brief Description of the Macedonian Educational System

1.1. General Data

The Republic of Macedonia has a territory of 25.713km2 and population of 2,022,547
citizens, according to the last census.

The school education system in Macedonia has two levels – primary (grades 1 to 8,
until this year and Grades 1 to 9 from the next school year) and secondary (grades 1
to 4) each culminating with a state certificate, namely, the certificate for completion of
primary education and the secondary school diploma. Primary education consists of two
stages – Elementary (grades 1 to 4) and lower secondary (grades 5 to 8). Children start
their initial education at ages six or seven. Under Macedonia’s constitution, primary edu-
cation is compulsory, and there are efforts for secondary school to be compulsory by next
school year.

Fig. 1. Graphic display of the system of education in the Republic of Macedonia.

68 M. Janceski, V. Pacovski

The basic educational level is uniform countrywide, both in terms of curriculum and
school-leaving certificates. The secondary level of education consists of two educational
branches – general education and vocational education. Duration of study in general edu-
cation is 4 years, and in vocational education – 3 or 4 years.

There are 341 primary schools and 92 secondary schools in total in Macedonia, with
approximately 330,000 primary and secondary school students.

Three strategic national documents in the field of education and information society
are the “National program for the development of education 2005–2015”, the “National
Strategy for development of Information Society” and the “National Strategy for Devel-
opment of Electronic Communications and Information Technologies”. These strategies
are expected to be a base for drafting policies that will define all aspects of the informa-
tion society in Macedonia.

1.2. “National Program for the Development of Education 2005–2015”

In April 2006 The Parliament of the Republic of Macedonia has accepted the “National
Program for the development of education 2005–2015”. It sets out a roadmap to en-
sure coherent and systematic reform towards decentralization in vocational education and
training. Also, at the same time, the following accompanying program documents were
accepted:

• program for development of pre-school education;
• program for development of primary education;
• program for development of secondary and post-secondary education;
• program for development of higher education;
• program for development of ICT in education;
• program for professional development of the education staff;
• program for development of institutional reforms;
• program for provision and quality control of education;
• European Language Portfolio.

1.3. “National Strategy for Information Society Development” and “National Strategy
for Development of Electronic Communications and Information Technologies”

In 2005, as a result of the partnership between Government, civil and business sector,
the “National Strategy for Information Society Development” with accompanied “Ac-
tion plan” were drafted and adopted with wide consensus. They define the measures
related to the basic infrastructural foundation for information society which are neces-
sary for implementation and development of the basic postulates of information society
(e-governance, e-education, e-business, etc.), and the ultimate goal of the strategy is the
goal we are all striving at – improving the quality of living in Macedonia.

The next step in the development of information society is drafting the “National
Strategy for Development of Electronic Communications with Information Technolo-
gies” that will be fundamental document that will define the infrastructure of the infor-
mation and communication technologies.

Olympiads in Informatics: Macedonian Experience, Needs, Challenges 69

1.4. Trends in Macedonian Education

As for education, the general approach in Macedonian schools is the traditional one. We
have to reflect attention to, and understanding of, some of the particular challenges facing
educators in the educational community – lack of student motivation and preparation for
the rigor of learning different subjects, accompanied by a lack of appreciation of the
value and utility of the kind of skills acquired in introductory courses. There is a need
for digital content and free access to digital libraries. Primary and secondary educators
are not satisfies with the level of communication and coordination with the universities.
They need organized and traditional professional training and other forms of permanent
education, including educational electronic or printed magazines, as good examples of
additional learning material.

In accordance with the best European and world educational models, practices and
standards, and accepting the basic concepts of the modern national educational policies
in the developed countries: long life learning, student centered education, education as
the key for economical success, learning society etc., we have to emphasize:

1. We have to get students motivated by connecting what they do in the classroom to
the world in which they live and work, to help students gain a deeper understanding
of the world of sciences through a series of interactive lectures, guided discussions,
and to help students realize that what they are learning will help them tackle prob-
lems in other courses and give them a “can do” attitude that will serve them well
in all types of careers.

2. The next challenge is the real need for increasing the usage of the ICT in different
subject education. It includes various multimedia tools, Internet, digital materials,
etc. The educators and students prefer labs instead class-rooms. It is also worth
including some forms of distance education in our schools.

3. There is also a need for rapid and widespread dissemination of “best practices” in
Math and Science education and a need for dissemination mechanisms that include
thoughtful reflection on the intellectual and pedagogical basis for such innovations
and mechanisms to aid others in adapting those new approaches in the classroom
and lab.

4. We need to force active-engagement methods that improve learning and situations
where Math and Science students work with peers to make predictions, help con-
struct knowledge and solve regular, and more complex problems.

2. Accelerated Computerization of the Macedonian Schools

Thanks to the former Macedonian President Boris Trajkovski and the donation of the
Government of the People’s Republic of China (PRC), 5300 computers were obtained
and installed in Macedonian primary and secondary schools in the period 2003–2005.

In that context, during the last couple of years USAID became one of the main actors
in the education reform and transformation process in Macedonia. The result of USAID

70 M. Janceski, V. Pacovski

involvement in this process was establishing the following projects: “Macedonia Con-
nects”, “E-school” and “Primary education project”.

“Macedonia Connects project” enabled broadband Internet access to be readily avail-
able and affordable throughout the country and facilitated its use by all sectors of society,
besides schools. “Macedonia Connects” has resulted in Macedonia becoming the first
all-wireless internet country in the world.

“E-Schools Project” resulted in creation of 460 computer labs with PRC computers
in all primary and secondary schools. Also, a series of training programs were conducted
for most of the secondary and primary school teachers, focusing on use of ICT through
project-based learning strategies and networking. One of the main “e-School project”
activities was the translation and adaptation of the software package titled “ToolKID”,
based on Comenius Logo, for use by K-4 children. This educational software, together
with four manuals was donated to 100 primary schools throughout Macedonia. Besides,
a large number of teachers passed the training for using this software. This process con-
tinues.

As was described before, the PRC donation and USAID projects were the main factors
for initialization of the process of computerization in our schools.

Since the last elections, the new Government has made outstanding efforts to accel-
erate the computerization of our schools. They tried to establish a new Ministry for IT
affairs, but unfortunately, it was not accepted by the opposition parties, who prefer IT
Agency, instead Ministry. However, a new Minister for Informatics Society was included
in the Government.

For the first time in Macedonia, the subject “Informatics” will be obligatory in pri-
mary schools by the 2007/2008 year. Besides, as the result of the achievements of the
former and current projects in this field, as well as the newest government efforts for full
computerization of Macedonian society (an enormous increase in numbers of computers
in primary and secondary schools, free education for computer illiterate, etc.), we are
witnessed the increased level of implementation of ICT in the Macedonian education.

One of the last initiatives of the Government in this field was establishing the Council
for implementation of ICT in primary and secondary school in Macedonia. The members
of this Council are people from: universities, schools, actual of former IT projects, IT
companies, and other governmental and nongovernmental organizations. The main ar-
eas of work of this Council are: computer installation and maintenance, creating digital
materials, as well as teacher ICT training.

This year, the Government is promoting two very important IT projects: “Computer
for each child Project”, and “Free Internet for all citizens Project”.

In the framework of the first project, the Government has a very ambitious computer
procurement plan: 50.000 computers (2007), 100.000 computers (2008 and 2009). In this
year (2007) budget, 10 million euros were predicted for this procurement.

Outside of education, the Government is making efforts for full computerization of
the Macedonian society. It is worth mentioning the project “Electronic health personal
file for each citizen”, as one of the EU requirements, and the project in collaboration with
Ministry of justice, for creating a system for court’s document management.

Olympiads in Informatics: Macedonian Experience, Needs, Challenges 71

There is serious lack of IT staff in Macedonian administration. All unemployed IT
experts that apply, will be accepted. They could be a part of the Macedonian history in
the process of creating the informatics society. After opening the new University in Shtip,
this year, it is expected more than 2.000 IT students to enroll in our universities annually.
The additional impact will be 125 grants for IT students that will be approved by the
Government, annually.

One of the observed options to increase the number of IT experts is organization of
IT trainings for the prequalification of the unemployed graduated electrical engineers and
other technician experts, by the Government and the private sector.

Many dilemmas, such as “laptops or desktop computers”, or “free and open source
software or proprietary software”, need to be overcome. Taking into account the lack of
proper school electricity infrastructure and the lack of the proper protection from thefts
and damages in the past, security, insurance, and maintenance of the computers still re-
main the issues to be considered. The other questions that remain in the new, large-scale
situation are the following: motivation of the teachers and students to use the increased
ICT capacity, awareness for the computer as student’s need, digital content according
Macedonian curricula, fast and high quality internet access, etc.

The two important initiatives to take into consideration as support in the computeri-
zation of the schools are: the USAID’s “Primary Education Project” (PEP) and “Portal
for primary and secondary schools”.

The “Primary Education Project” is the latest USAID’s initiative targeting all public
primary schools in Macedonia. PEP seeks to improve the quality of instruction and in-
crease employment skills in youth. This project is a continuation of a cluster of USAID-
funded projects to strengthen education in Macedonia and support decentralization ef-
forts, as Macedonia seeks entrance to the European Union. This project has four com-
ponents: renovate select schools and improve energy efficiency; increase access to and
improve use of information technology; improve math and science education; and im-
prove student assessment.

The educational portal was funded by the USAID, and prepared and maintained by
both the “Macedonia Connects Project” and the “E-School Project”. From the beginning
of the 2007/2008 year, this portal will be responsibility of the Ministry of education and
science.

This portal will link the teachers and the students from all primary and secondary
educational institutions in a virtual working environment. The education portal would
provide on-line resources for the school directors, teachers and the students and would
enable them to easily share their experiences and practices. The education portal will
mark the beginning of a new quality of the education system in Macedonia, thus bringing
it closer to the modern education trends and practices in the world.

The goal of this portal is to enable public access to all information regarding the
secondary and primary schools and a wide range of services for the students and the
teachers.

Through this portal, the visitors have access to the list of all schools and their contact
information. All secondary and primary schools have the opportunity to create their own

72 M. Janceski, V. Pacovski

web page which will be hosted on the portal, and all students and teachers will be able to
get an e-mail address.

The on-line collaboration and exchange of information and experiences of all teachers
and students from primary and secondary schools and the educational system institutions
are enabled through the discussion forums which are already functioning on the portal.
Other functionalities, such as the calendar and the library of uploaded documents, are
under construction.

Pedagogical, psychological, methodological, social and other aspects of this pro-
cess of computerization are also important. It is not just a question of developing ba-
sic computer literacy, but also of improving teaching and learning, improving curricula
and teaching methods, improving assessment, and promoting: critical thinking, active
inquiry-based learning, problem-based learning, student-centered learning, etc., that will
support building of the 21 century student skills.

3. COMPUTER SOCIETY OF MACEDONIA (CSM)

On the initiative of a group of professors at the Institute of Informatics, Faculty of Natu-
ral Sciences and Mathematics, and Ss. Cyril and Methodius University – Skopje, in 2000
in Ohrid the Computer Society of Macedonia – CSM (or Association of IT teachers in
Republic of Macedonia) was formed. CSM continued the activities of the computer sci-
entists which, until 2000, were part of the Association of mathematicians and computer
scientists of Macedonia.

One of CSM’s primary efforts is to promote the informatics society in Macedonia.
Members of CSM are people from different profiles: enthusiast computer scientists,
teachers in elementary and secondary schools, professors and teaching assistants at uni-
versities in Macedonia, and others.

The main goals of CSM are:

1) establishment, promotion and advancement of informatics, as well as its applica-
tion;

2) implementation of informatics in all parts of society, especially in education;
3) organization of competitions in informatics for secondary school students and col-

lege and university students.

The first steps towards implementation of informatics in Macedonia were made in the
early 1980s. In 1990 in Prilep, the first state competition of informatics for secondary
school students was held. Three years later, the local competitions started to take place
regularly. This year both the 18th National Competition and the 15th Local Competition
took place.

In 1997, The Macedonian Olympiad of Informatics (MOI) was established as an an-
nual event. This year the 11th MOI took place.

As Macedonian representatives, teams of young computer scientists each year partic-
ipate in the Balkan Olympiad of Informatics (BOI) and in the International Olympiad of
Informatics (IOI).

Olympiads in Informatics: Macedonian Experience, Needs, Challenges 73

Today CSM successfully works on the aimed goals, and its membership continues to
grow.

Further on, some of the regular activities of CSM will be mentioned. They include: or-
ganization and execution of seminars for permanent education of IT teachers in secondary
and elementary schools and national and international competition of informatics.

3.1. Seminars for Informatics Teachers

Since 2000, the seminars for primary and secondary school informatics teachers take
place annually. Generally, the seminars are held during the CSM annual meetings or the
national competitions.

CSM has a long term experience in organizing trainings for IT teachers in the frame-
work of their permanent and life-long education. All these years after being established
in 2000, CSM is the main organizer of such trainings and workshops that include the
following topics: didactics and methodology in teaching computer science, interactions
in education, preparing IT lessons, implementation of ICT in the primary and secondary
schools in Macedonia and different software packages (FrontPage, Dream Weaver, Pho-
toshop, PageMaker, Microsoft Word, Microsoft Excel, PowerPoint, etc.). Most of these
trainings were held in the lecture rooms and labs of the Institute of informatics under
the Faculty of natural science. CSM is the link between the Institute of informatics, an
institution with 20 years experience in the field of IT teachers’ education and IT teachers
after their graduation.

The following lists some of the lectures that were organized by CSM.

• “Report on the survey in the Primary and Secondary schools in Macedonia about
the state of computer equipment and informatics courses in the process of educa-
tion”.

• “Current issues about the state of informatics courses in the Macedonian schools”,
• “Current states of the informatics instruction in the primary and secondary schools

in Macedonia”,
• “National program for the development of education in Republic of Macedonia

2005–2015”,
• “Indicators of applicability and the impact of ICT in the education”,
• “Some aspects about the informatics courses and IT teacher preparing for instruc-

tion”.

Also, CSM organized several workshops for different software packages (Power
Point, Front Page, Corel Draw, PhotoShop, Front Page, and Page Maker).

The most significant activity in 2005 and 2006 was the procurement of the free an-
nual distance learning program “Administering computer networks” for 219 informatics
teachers from primary and secondary schools in the Republic of Macedonia, in the period
between 30th September 2005 and 30th September 2006. This training, which consisted
of 35 Soft Skill courses, was organized by Clear View and financed by USAID, at the
initiative of Computer Science of Macedonia.

The training “Creating and Maintaining Web Pages with MAMBO Tool” for all IT
teachers from the secondary schools was organized and realized in two phases: train-

74 M. Janceski, V. Pacovski

ing of the core group of 21 trainers, and training for all IT teachers from the secondary
schools in Republic of Macedonia. The partner organizations for these trainings were
“World Learning”, “Macedonia Connects” and CSM. In May 2007, the same training
was organized for over 700 primary school teachers, most of them IT teachers.

3.2. Competitions of Informatics

CSM is the sole organizer of competitions of informatics for secondary school students in
Macedonia. There are four levels of domestic competitions held annually from February
to May:

• electronic competitions (over 200 contestants),
• local competitions (150 contestants, in average),
• national competition (50 to 75), and
• Macedonian Olympiad of Informatics (15–20).

According to the total of the results of all the competitions, the best four contestants
are selected and they represent our country at the international competitions.

By the year of 2005, there already have been held:

• 6 electronic competitions of informatics,
• 15 local competitions of informatics,
• 18 national competitions of informatics,
• 11 Macedonian Olympiads of Informatics – MOI.

Each year the Macedonian team, consisting of Leader (usually a university professor),
Deputy Leader (a professor or teaching assistant) and four contestants that were the best
at the domestic competitions (electronic, local, national and MOI) takes part in BOI and
IOI.

It is worth mentioning that Macedonia participated for the first time at the 3rd BOI,
1995 in Bulgaria, and at the 8th IOI, 1995 in Hungary. Macedonia organized BOI 2000
in Ohrid.

3.3. Other Activities

Some of the activities of CSM address the curricula and syllabi in education, with the
purpose of improvement and more successful implementation of informatics in the edu-
cation and society as a whole:

• accepting the basic concepts which rest on the contemporary national educational
policies in the developed countries:

◦ “lifelong learning”,
◦ “a society that learns”,
◦ “education as a precondition for economic success”;

• improvement of the information system;
• enhancement of the level of informatics knowledge of teachers and students;
• increased application of ICT in education;

Olympiads in Informatics: Macedonian Experience, Needs, Challenges 75

• management and coordination of projects.

At this year’s annual meeting a decision was made to update the membership of CSM.
According to the approved plan for 2007, the main activities of CSM in the following
period of time will be:

• participation in the 15th BOI in Moldavia,
• participation in the 19th IOI in Croatia,
• organization of seminars and training for permanent education of the IT teachers,
• dealing with the issues teachers meet in everyday working environment,
• active participation in future activities concerning the formation of the Chamber of

educational staff in RM, which will unite all teachers’ associations, societies and
federations in Macedonia,

• taking an initiative for organizing informatics competitions for the primary school
students,

• enabling free digital materials for IT teachers for their further (long life, permanent,
and continual) education

• introduction of informatics and increasing of the number of classes in informatics
an all levels in education, from preschool to university,

• reactivation of BIT+ – magazine for affirmation of informatics.

Nowadays, there is a process of enforced computerization of our country (an enor-
mous increase in numbers of computers in primary and secondary schools, free education
for computer illiterates, and efforts are made for full computerization of every aspect of
our society). The question remains how to use all these resources for producing better
contestants, thus promoting IOI concepts and ideas.

4. IOI, Plenty of Materials, Reorganization, Responsibility

IOI has accumulated a wealth of knowledge and experience during almost 20 years of
existence. The decision has to be made what to do with it, and what is the best way for
using it.

A logical thing to do would be further dissemination and coordination with all the
participant countries in order to achieve better results and further improve programming
skills of contestants.

The latest project of the Computer Society of Macedonia is the mass process of col-
lecting and indexing various valuable electronic materials (electronic books, essays, pa-
pers, multimedia tools, programs, etc.) accessible on the Web, by IT teachers in three
different areas: programming, informatics education, and computer science. There is a
team, established by CSM, responsible for accepting these materials from the teachers,
that selects the most appropriate ones, classifies them, in order to make them accessible
for all IT teachers. The common rules we respect during this process is meticulous care
for copyrights and intellectual property, and prioritizing the free materials. The fact that
each material contains information for the teacher(s) who “discover” it on the Web, dis-
plays the effort of each volunteer and their contribution to the process. Motivating teach-

76 M. Janceski, V. Pacovski

ers to do the best, team work is enhanced. All teachers are given the chance to express
themselves thus building common values.

The positive experiences of this micro-level project (i.e., Macedonian experiment)
encourage its recommendation to be practiced on the macro (i.e., IOI) level, as well as
proposing the following improvements in further IOI society functions:

• IOI recommending continuing IT education to all IOI country Governmental edu-
cational and IT departments and to contribute with recommendation in the follow-
ing fields: IT curricula, implementation of ICT in all subjects, teachers preparation
and professional development;

• each country (responsible person to be announced, for example, each team leader
in IOI 2007) should be responsible for the following things:

◦ to send profile of the main organizer/organization of the national competi-
tions, including: structure, funding, main activities, objectives etc.,

◦ brief explanation of the national competitions system (team, coverage, selec-
tion process, trainings etc.),

◦ to send a brief reports for all domestic competitions annually, before the IOI
event, including students involved, results, tasks (task texts, different solu-
tions in a certain programming language, additional explanations, and tests;
all of these in English),

◦ to send links to learning materials or information used during the competition
preparation;

• eIOI establishing a special organizational team (body) which will analyze all this
data and make efforts to:

◦ organize this data,
◦ make a selection of offered materials,
◦ produce practical methodological manuals divided in chapters for all pro-

gramming areas (graphs, dynamics programming, theory of numbers, etc.)
for both, teachers and students, including theoretical parts, exercises, tasks,
different solutions, and comparing solutions; going step by step from the eas-
iest tasks to the most complicated. These manuals are supposed to help the
teachers to overcome the gap between them and contestants thus enabling
them to constantly upgrade their knowledge. It will also enable them to fol-
low modern trends and use freely the most competent books for competitions
preparations.

◦ establish digital library of all previous IOI competitions;

• edeveloping an IOI distance learning education system for both teachers and con-
testants.

5. Conclusions

IOI has to think about extending the IOI competition platform with other forms of com-
petition; junior Olympiads in programming, competitions such as IT projects, IT quizzes,
creating Web sites and blogs, competitions in other languages (e.g., Logo), etc.

Olympiads in Informatics: Macedonian Experience, Needs, Challenges 77

The afore mentioned proposals will ensure the gap between the developed and devel-
oping countries can be overcome. We have to create such situation with equal starting
positions for each country, to create an excellent working environment for students and
contestants, to enable IOI members to be proud of their involvement and to motivate them
to increase the level of contribution in the future, thus spreading the IOI culture.

Here are some of the conclusions or recommendations:

1. state education: IT education, especially programming is not continuous (it should
be); mentors can not follow on their own, they need guidance, seminars, materials,
all kinds of support;

2. finances: permanent funds have to be established; companies still do not see their
interest to support the competitions, it has to change;

3. materials: there are plenty of materials, tasks, with their solutions, discussions and
tests; many of them are available at the IOI official site; but, there is need of further
guidance in using them, even including some additional education material (see the
comments above);

4. coordination: the coordination on the higher level is needed, (when and how the
young students should start with programming, what should be their first program-
ming language, Pascal, C, C++, C# or Java).

Appendix. Macedonian achievements at Balkan and International Olympiads of
Informatics (BOI and IOI)

Table 1

Macedonian achievements at BOI, so far

3rd BOI 1995, Varna, Bulgaria Zarko Aleksovski – bronze medal

4th BOI 1996, Nikozia, Cyprus Zarko Aleksovski – silver medal

Igor Trajkovski – bronze medal

5th BOI 1997, Drama, Greece Zarko Aleksovski – silver medal

Vladica Sark – bronze medal

6th BOI 1998, Ankara, Turkey Vladica Sark – bronze medal

12th BOI 2004, Plovdiv, Bulgaria Nikola Postolov – bronze medal

13th BOI 2005, Rodos, Greece Nikola Postolov – bronze medal

14th BOI 2006, Nikosia, Cyprus Dimitar Mishev – bronze medal

Table 2

Macedonian achievements at IOI, so far

8th IOI 1996, Vezsprem, Hungary Andrej Bogdanov, bronze medal

Zharko Aleksovski, bronze medal

9th IOI 1997, Capetown, South African Republic Zharko Aleksovski, bronze medal

15th IOI 2003, Kenosha, USA Nikola Postolov, bronze medal

78 M. Janceski, V. Pacovski

References

National report for development of education in the Republic of Macedonia 2001–2004, Ministry of education
and science; Bureau for development of education.
http://www.ibe.unesco.org/international/ICE47/English/Natreps/reports/
macedonia.pdf

Council for implementation of ICT in education Web site.
http://www.mon.gov.mk/ikt

National Program for the Development of Education in the Republic of Macedonia 2005–2015.
http://www.npro.edu.mk/english/index-en.htm

National Strategy for Development of Electronic Communications and Information Technologies.
http://www.metamorphosis.org.mk/content/view/848/57/lang,en/

National Strategy for Information Society Development and Action Plan of the Republic of Macedonia.
http://www.kit.gov.mk/WBStorage/Files/Strategy%20and%20Action
%20Plan%20ENG.pdf

USAID Macedonia press releases.
http://macedonia.usaid.gov/english/EDU/Macedonia_Connects.htm
http://macedonia.usaid.gov/english/EDU/E-schools_eng.htm
http://macedonia.usaid.gov/English/EDU/pep.htm
http://english.schools.edu.mk/

M. Janceski (1965), master of IT sciences, teaching/research assistant
at the Institute of informatics under the Faculty of natural sciences and
mathematics in Skopje, president of the Computer Society of Macedo-
nia since 2004, member of the Governmental Council for implementa-
tion of ICT in Macedonian schools since 2007. The leader of the Mace-
donian team on 6 BOI and 3 IOI, since 1998. Consultant and trainer in
the crucial national projects in the field of IT and informatics.

V. Pacovski (1965) holds a Ph.D. in Computer Science, at the moment
works at the Faculty of Civil Engineering; main field of work is Infor-
mation Retrieval; has an extensive programming experience in database
design and various programming languages, including Delphi as a RAD
tool; Deputy leader at BOI ’96 and IOI ’05.

Olympiads in Informatics, 2007, Vol. 1, 79–89 79
© 2007 Institute of Mathematics and Informatics, Vilnius

New Task Types at the Canadian Computing
Competition

Graeme KEMKES
Department of Combinatorics and Optimization, University of Waterloo
200 University Ave West, Waterloo, Ontario, N2L 3G1 CANADA
e-mail: gdkemkes@waterloo.ca

Gordon CORMACK, Ian MUNRO, Troy VASIGA
David R. Cheriton School of Computer Science, University of Waterloo
200 University Ave West, Waterloo, Ontario, N2L 3G1 CANADA
e-mail: {gvcormack, imunro, tmjvasiga}@cs.uwaterloo.ca

Abstract. In the 2006 competition workshop held at Dagstuhl, Germany, there were many fruitful
discussions about the difficulties facing computer science competitions today. Our competitions
have several purposes: to foster interest in the discipline, to create a community, and to promote
achievement, for example. Balancing these various purposes may require many tradeoffs. Several
participants identified areas where we need to improve our competitions. Tom Verhoeff (2006) dis-
cussed the problem of giving a meaningful ranking to incorrect solutions. Maryanne Fisher and
Tony Cox (2006) pointed out that some groups of students are disadvantaged by the present format.
Many participants made suggestions for improving the competitions. One of the suggestions in our
paper (Cormack et al., 2006) was open-ended tasks. A task is open-ended if there is no known
optimal solution to the problem. Points are awarded for correct submissions in proportion to how
well they do. A vast number of real-world applications, such as pattern recognition, information
retrieval, and compiler optimization appear suitable for this purpose. At Canada’s national infor-
matics olympiad, the Canadian Computing Competition, we have been exploring several of these
suggestions. In this paper we describe the experiments we have performed and we analyze whether
the objectives have been achieved.

Key words: computing competitions, open-ended tasks, informatics in Canada.

1. Introduction

Computing competitions have generally been focused on determining the top students
who can solve algorithmic problems. For various reasons (efficiency, quantitative bias,
competitiveness) the focus has been on tasks that are known to have an optimal solution:
the student must find this optimal solution to get full credit on the given task.

This narrow goal, however, should not be the only goal of computing competitions. In
particular, computing competitions should also focus on other goals, if they are to serve
the informatics community as a whole and cultivate continued growth in the field. These
other goals should include fostering interest in the discipline in order to ensure a contin-

80 G. Kemkes et al.

ued source of future informatics students; to promote achievement of all sorts, in order
for students to have a sense that informatics is an accessible field of study; and to create a
community amongst students that have an interest in the field of informatics, since most
students (in the Canadian context, at least) are geographically isolated from other students
who have an interest in informatics. Some of these goals have been highlighted by Verho-
eff (2006) (to award students who do not have the “best” solution) and Fischer and Cox
(2006) (to promote achievement amongst students who are generally disadvantaged).

One idea that the Canadian Computing Competition (CCC) has adopted to address
some of these other goals of computing competitions is the use of open-ended tasks. We
call a task open-ended if there is no known optimal solution to the task. It follows from
this definition that all NP-complete problems are open-ended, but there are also prob-
lems that do not fit into the NP-complete model that also have open-ended features about
them (such as text compression, spam recognition, character recognition, etc.). These lat-
ter open-ended problems tend to be focused on current research areas, and thus provide
students with “real-world” problems, that can, in turn, be a motivating factor to consider
the field of informatics as worthwhile to pursue in higher education.

This paper outlines the Canadian experience of computing competitions to place the
“typical” computing experience of secondary school students in context. We then out-
line the benefits of open-ended problems as a contrast to the typical experience students
have in computing competitions or computing education. Following this, we outline two
open-ended tasks which have different features. We conclude this paper by analyzing the
effectiveness of these particular tasks and outline issues to consider when creating other
open-ended tasks.

2. The Canadian Experience

2.1. Informatics in Canada

In Canada, the educational system is controlled by each provincial or territorial unit (there
are 10 provinces and 3 territories), and the amount of informatics education (typically
called “computer studies” in Canadian secondary schools) varies greatly between regions.
If there is a computer studies course in secondary schools, the curricula focuses on learn-
ing programming languages (especially at the Grade 11 level, where Java is the prevalent
language of instruction). Most secondary schools have at least one computer lab which is
connected to the internet. The challenge in creating a national competition is to manage
the diversity of the competing students: tasks should be approachable to (almost) all lev-
els of ability and yet challenging enough for students with a very high level of experience
and ability.

2.2. Organization of the Canadian Computing Competition

The Canadian Computing Competition (CCC) is divided into two stages: Stage 1 and
Stage 2.

New Task Types at the Canadian Computing Competition 81

The Stage 1 competition is further subdivided into two separate contests: the Junior
level (intended for students with limited programming experience, typically Grade 9 or
10 students, who are typically 14 or 15 years old) and the Senior level (intended for
students with more programming experience, or students who have competed in the CCC
before, typically Grade 11 or 12 students, who are typically aged 16 or 17 years old).
This competition is written in secondary schools across Canada, and is composed of 5
algorithmic problems to be solved in 3 hours, with the score based exclusively on the
student code providing the correct output on given input. Any programming language is
allowed (students have used Visual Basic, Pascal, Turing, PHP, C, C++, Java, Perl) and the
contest environments are heterogeneous. The evaluation of the student programs is done
by the individual teacher, and results are sent into the CCC office for final processing.
The top students in five geographical regions of the country are awarded prizes.

The Stage 2 competition gathers the top 20 students who competed in the Senior
competition and provides a week-long program of activities (social activities, lectures by
faculty members) and two competition days (similar to the IOI: three problems per day
in a three-hour time period) where the allowed programming languages are C, C++ and
Pascal (the current “official” IOI programming languages). The top four competitors are
selected for the Canadian IOI team, again, based on the evaluation of their programs in
terms of providing the correct output on given input.

3. Open-Ended Problems

As outlined in Section 1, we define an open-ended task as one where there is no known
optimal solution. In this section, we describe the benefits of this type of task in terms of
addressing the computing competition goals of fostering interest in the discipline, creat-
ing a community and promoting achievement.

3.1. Fostering Interest in the Discipline of Informatics

One method to foster interest in the discipline is to provide students with problems that
are manageable (i.e., they are able to develop at least a partial solution to them) and yet
are interesting or appealing. To appeal to students, problems that they encounter should
be realistic and meaningful. By asking open-ended problems, such as spam recognition
or text-compression, which are both research-level problems, students can be motivated
to consider computer science as an active field, where not all of the interesting problems
have been solved. In other words, the problems are “real”. Moreover, as with other dis-
coveries and insights, it may be that the idea of a student that causes forward progress
to be made on these problems. Finally, real data can be used to evaluate this type of task
(such as real email messages, or real text that needs to be compressed), and the use of
real data further underscores the applicability of computer science to real problems.

82 G. Kemkes et al.

3.2. Creating a Community

Though the problems stated here were not posed as such, open-ended tasks can be done
collaboratively. This more community-based version of the task utilizes the exploratory
nature of the open-ended task, and is more likely to lead to future discussions which are
more lengthy and exploratory in nature. This contrasts to the more typical closed-task,
where once the optimal solution is known, there is nothing further to discuss, since all
avenues of exploration have been exhausted. Furthermore, as noted by Fischer and Cox
(2006), typical programming tasks may appeal to a certain subsection of the population,
but with open-ended tasks, there is the potential to appeal to a broader group of students,
since students with various levels of ability may be able to collaborate and create a mean-
ingful and insightful solution.

3.3. Promoting Achievement

When assigning marks for open-ended tasks, evaluators can reward students on other
dimensions of achievement, including the typical measurement of technical skill. For
example, it is possible to measure originality of a solution (to some extent) to reward
interesting use of data structures, or thought processes or consideration of a special sub-
case.

As well, since there is no optimal solution, there is no perfectly correct solution,
and thus, there is no incorrect solution (other than solutions which do not compile, or
do not meet the specifications). Therefore, “incorrect” solutions would not receive zero
points, and thus, students who can follow the minimal requirements of the task can have
a non-zero score and a sense of accomplishment. In particular, it is possible to give stu-
dents a basic strategy which, if implemented correctly, gives students a minimum level of
achievement. This ensures all students have some chance of providing a partial solution
to the problem: frustration or hopelessness is lessened.

Since open-ended tasks are typically evaluated on a continuous scale, a wide diversity
of achievement can be rewarded, and, as an added benefit, the probability of tie scores is
significantly reduced. (The concept of continuous scoring is discussed more thoroughly
in (Cormack et al., 2006).)

4. Open-ended Tasks at the Canadian Computing Competition

In this section, we outline two open-ended tasks: Paint-by-Number (an NP-complete
open-ended task) and Codec (a non-NP-complete open-ended task) that were used at
the Canadian Computing Competition.

Codec is a problem to design and implement an algorithm to compress and decom-
press English text.

Paint-by-numbers is a logic puzzle (similar to Sudoku or other number-puzzle prob-
lems where a solution is a satisfying assignment to a collection of constraints) which is
computationally difficult.

New Task Types at the Canadian Computing Competition 83

We first present the task descriptions as given to the students in the CCC Stage 2, then
briefly discuss the student attempts and evaluate the success of these tasks. We conclude
by offering some suggestions for future open-ended tasks.

4.1. Gordon Cormack, Codec (CCC 2006 Stage 2)

The problem of lossless data compression is to transform some data into a compressed
form such that:

(a) the original can be reproduced exactly from the compressed form.
(b) the compressed form is as small as can reasonably be achieved.

You are to write two programs – compress that performs lossless compression and
decompress that reproduces the original data from the compressed form. The data to be
compressed will be plain English text represented using printable ASCII characters (i.e.,
all characters with ASCII values between 32 and 126 inclusive). The compressed form is
a string of binary bits. For convenience, we will represent this string of bits as a character
string containing only 0s and 1s.

compress reads the original data from the file codec.in and writes the com-
pressed form compress.out.decompress reads the compressed data from a file called
compress.out and writes the corresponding original data to codec.out. Of course,
codec.in and codec.out must be the same file. Pictorially, we have the following flow
of information:

compress must output only 0s and 1s and decompress must exactly reverse the effects
of compress. That is, condition (a) above must hold for any English text. If compress
and decompress meet these criteria, your score will be determined by the relative size
of the input and output by

score(as%) = 50 ·
√

8c − b

c
,

where c is the total number of characters in the original text and b is the number of bits in
the compressed form. Note that scores may exceed 100%, but scores that are less than 0
will be given 0% (i.e., no negative marks will be given, but bonus marks may be awarded).

Discussion and Hints

It is well known that any ASCII character can be represented using 8 bits. Such a repre-
sentation would achieve a score of 0 using the formula above. Since there are fewer than
128 possible symbols in the input, it is possible to represent each one with 7 bits. Such a
representation would receive a score of at least 50%.

84 G. Kemkes et al.

A smaller representation can be achieved, with high probability, by observing that
some letters are more common than others. Suppose we estimate that a character α occurs
with probability pα in a given context. The best possible code will use − log2(pα) bits
to represent that character. If one estimates pα one can construct a prefix code with about
− log2(pα) bits for each character in the following manner:

• build a binary tree with one leaf for each character α;
• organize the tree so that the depth of α is approximately − log2(pα);
• use a binary representation of the path (0 = left, 1 = right) to represent α in the

compressed data.

One way to estimate pα is simply to compute the fraction of characters equal to α in a
sample of data similar to that to be compressed. Another is to use an adaptive method, in
which the data is compressed one character at a time, and the sample consists of the text
already compressed. A sample of English text is available in the file sampleText.txt.

It is also possible to estimate pα using the context in which it occurs; for example, in
English a “q” is very likely to be followed by a “u” (e.g., quick, quack, quit, quiz, but not
qiviut, which happens to be the wool of a musk-ox).

Use this information, or any other information at your disposal, to build the best Com-
pressor and Decompressor you are able.

Input
The input to compress will consist of n characters (1 � n � 1000000), as described

above.
The input to decompress will consist of m 0s and 1s (1 � m � 8n).

Output
The output of compress will be a sequence of 0s and 1s, with no other characters

(i.e., no newline characters should be outputted).
The output of decompress is a sequence of at most 1000000 uppercase letters, lo-

wercase letters, spaces, newlines and punctuation symbols.

Sample Input (to compress)
To be or not to be?

Possible Output for Sample Input (compress)
0111001000010110000100110100001100010011110000011110010000

1011011111

Sample Input (to decompress)
0111001000010110000100110100001100010011110000011110010000

1011011111

Output for Sample Input (decompress)
To be or not to be?

Explanation
The sample compressor systematically uses the following codes for each of the input

characters:

New Task Types at the Canadian Computing Competition 85

<space> 000

o 010

n 01100

r 01101

T 01110

t 011110

? 011111

b 10

e 11

The compressed output uses these codes, as shown below:
01110010000101100001001101000011000100111100000111100100001011011111

TTTTTooo bbee ooorrrrr nnnnnoootttttt ttttttooo bbee??????

4.2. Paint by Numbers (Sandra Graham, CCC 2006 Stage 2)1

Way back before you were born, there was a really bad craft/hobby called paint-by-
numbers: you were given a line drawing, with numbers in each enclosed region, and
the number corresponded to a particular colour. An example is shown below:

The problem you have to solve is much more linear, in a way.
You will be given an n-by-m grid (1 � n, m � 32) which you will “colour” in with

either a dot (‘.’) or a star (‘*’).
Of course, the grid will not be specified in the usual paint-by-numbers way, since this

would be too easy.
Instead, you will have to infer which cells are blank and which contain a star. The

only information you will be given is a collection of n + m sequences of numbers, one
sequence for each row and column. The sequence will indicate the size of each continuous
block of stars. There must be at least one dot between two consecutive blocks of stars.

An example is shown below (which is supposed to look fish-like):

1 1

1 1 2 2 4 4 2

2 2

5

5

2 2

1 1

1 1 2 2 4 4 2

2 2 * * · · * * ·
5 · · * * * * *

5 · · * * * * *

2 2 * * · · * * ·

(Unsolved Puzzle) (Solved Puzzle)

1It has been pointed out by one of our referees that this task was used at IOI 1992 as the prob-
lem “Islands in the Sea”. The problem description can be found at http://olympiads.win.tue.nl
/ioi/ioi92/tasks92.txt

86 G. Kemkes et al.

You may notice that some paint-by-number patterns are not uniquely solvable. For
example,

1 1

1

1

has two solutions

1 1

1 * ·
1 · *

and

1 1

1 · *

1 * ·

For this problem, you may assume that any solution which satisfies the specification
is correct.

You should note that 50% of the marks for this question will come from test cases
where 1 <= n, m <= 6.

Input
Input consists of a total of n+m+2 lines. The first line of input consists of an integer

n (1 � n � 32), the number of rows. The second line of input consists of an integer m

(1 � m � 32), the number of columns. On the next n lines, there will be sequences
which describe each of the n rows (from top to bottom). Each line will contain some
positive integers, with a space between adjacent integers, and the sequence will terminate
with the integer 0. The next m lines describe the m columns (from left to right), the same
format as the rows are specified.

Output
Output consists of n lines, each line composed of m characters, where each character

is either a dot (‘.’) or a star (‘*’).

Sample Input 1
4
7
2 2 0
5 0
5 0
2 2 0
1 1 0
1 1 0
2 0
2 0
4 0
4 0
2 0

New Task Types at the Canadian Computing Competition 87

Sample Output 1 for Sample Input 1
...
..*****
..*****
...

Sample Input 2
4
4
2 1 0
3 0
3 0
1 1 0
4 0
3 0
3 0
1 0

Sample Output for Sample Input 2
**.*
***.
***.
..

5. Conclusion

5.1. Effectiveness of the Particular Open-Ended Tasks

Based on the solutions provided by the competitors, despite the fact that Codec required
students to create two pieces of software (the encoder and decoder) to work together
correctly, it was the case that 18 of the 22 students made a serious attempt at this problem.
On the other task, however, only 7 out of 22 made a serious attempt at Paint-by-Numbers.

There could be a number of factors that may explain the difference in the attempted
solutions. In a typical contest, many students leave a question blank, since there are only
3 hours to complete the competition and there are 3 difficult tasks. Students must make
difficult time-management decisions in order to optimize the number of points attained.
Thus, rarely all students complete all problems. In the problem statement of Codec, we
described a simple base-line solution, whereas for Paint-by-Number there was no base-
line solution given, and even the statement that significant marks may be attained by
dealing with “small” cases was not enough to encourage more students to attempt this
task. Students were given an outline for the baseline solution in Codec, which they are to
implement, which models more closely their typical classroom experience, unlike Paint-
by-Numbers which required students to devise their own solution from scratch.

88 G. Kemkes et al.

However, we feel that both problems were successful, in the sense that students were
creative and implemented different approaches. For instance, in the Paint-by-Numbers,
we saw submissions that used

• recursive search,
• recursive search with heuristics (such as dealing with either completely full or com-

plete empty rows or columns),
• simulated annealing, and
• random search.

For Codec, the majority of students implemented the baseline suggested solution, but
others attempted a dictionary encoding using a variety of methods, including using a
prefix tree and frequency counting.

5.2. Future Considerations and Recommendations

We have found that open-ended tasks are a useful tool to provide interesting problems for
a wide diversity of students: students at both the highest level of ability and at the lower
level of ability can both have positive achievement on these tasks.

We suggest that it is important to describe a baseline solution and promise that a
certain number of marks will be given for implementing this baseline solution. Providing
this assurance gives students from a wide diversity an opportunity to succeed.

We found that open-ended tasks encouraged discussion amongst the students, which
both helped foster interest in the discipline of informatics and provided a sense of com-
munity to the competitors.

We will be exploring the use of collaborative versions of open-ended tasks in future
Stage 2 competitions (perhaps as a task outside the typical individual tasks) and we hope
that our experience can be transferred to other problems, and other competition organizers
can use open-ended tasks to enhance their competitions.

References

Cormack, G., G. Kemkes, I. Munro and T. Vasiga (2006). Structure, scoring and purpose of computing compe-
titions. Informatics in Education, 5, 1–22.

Fisher, M., and A. Cox (2006). Gender and programming contests: mitigating exclusionary practices. Informat-
ics in Education, 5, 47–62.

Verhoeff, T. (2006). The IOI is (not) a science olympiad. Informatics in Education, 5, 147–159.

New Task Types at the Canadian Computing Competition 89

G.V. Cormack is a professor in the David R. Cheriton School of Com-
puter Science, University of Waterloo. Cormack has coached Water-
loo’s International Collegiate Programming Contest team, qualifying
ten consecutive years for the ICPC World Championship, placing eight
times in the top five, and winning once. He is a member of the Cana-
dian Computing Competition problem selection committee. He is cur-
rently an elected member of the IOI Scientific Committee. Cormack’s

research interests include information storage and retrieval, and programming language
design and implementation.

G. Kemkes has participated in computing contests as a contestant,
coach, and organizer. After winning a bronze medal at the IOI and two
gold medals at the ACM ICPC, he later led and coached the Cana-
dian IOI team. He has served on the program committee for Canada’s
national informatics olympiad, the Canadian Computing Competition.
Kemkes is currently writing his PhD thesis on random graphs in the
Department of Combinatorics & Optimization, University of Waterloo.

I. Munro is professor of computer science and Canada Research Chair
in algorithm design, at the University of Waterloo. His research has
concentrated on the efficiency of algorithms and data structures. He
has served the International Scientific Committee of the IOI as well
as on the editorial boards of CACM, Inf & Comp, and B.I.T., and the
program committees of most of the major conferences in his area. He
was elected fellow of the Royal Society of Canada in 2003.

T. Vasiga is a lecturer in the David R. Cheriton School of Computer
Science at the University of Waterloo. He is also the director of the
Canadian Computing Competition, which is a competition for sec-
ondary students across Canada, and has been the delegation leader for
the Canadian Team at the International Olympiad in Informatics.

Olympiads in Informatics, 2007, Vol. 1, 90–104 90
© 2007 Institute of Mathematics and Informatics, Vilnius

The Modern Contents of the Russian National
Olympiads in Informatics

Vladimir M. KIRYUKHIN
Moscow Physical Engineering Institute (State University)
31 Kashirskoe Shosse, Moscow 115409, Russian Federation
e-mail: vkiryukhin@nmg.ru

Abstract. The Russian Olympiads in Informatics (RusOI) had begun in 1988 a year before The
International Olympiads in Informatics (IOI) started. Since the first Olympiad the most important
issue was to build up understanding of the RusOI contents in particular for students of secondary
school. This paper describes main stages of development of the RusOI contents, connecting it with
requirements to studying informatics at secondary schools and the modern RusOI contents, allow-
ing to select talented young people in the country and to create for them the necessary conditions
for their further development in the field of computer science.

Key words: computer science, secondary school education, olympiads in informatics, contents of
the olympiads, competition tasks.

1. Introduction

The contents of any Olympiads in informatics are entirely determined by those competi-
tion problems which are offered in Olympiads. When such Olympiads had started in the
Soviet Union in 1988 (in that time Russia was one of the Republics of the Soviet Union)
there was no experience of composing competition problems. The closer from the point
of view of competition problems was model of Olympiads on mathematics. Namely it
has been put in a basis of the contents of competition tasks on informatics.

Since then more than 19 years have passed, but at this time much has changed in
definition of the contents of the Russian Olympiads in Informatics (RusOI). The form of
carrying out the Olympiads has changed, the computer equipment was improved, there
were new information technologies, and together with this, the RusOI contents was grad-
ually formed and the technique and technology of development competition tasks were
improved. Now for participants of modern RusOI the first competition tasks represent not
such the big interest from the point of view of the contents, but they are those tasks which
have determined an initial point and a vector of their further development.

2. Stages of Development of the Contents of Olympiads in Informatics

The development of the RusOI contents had evolutionary character and nevertheless it is
possible to point to three basic stages of it [1]. The first stage has been connected with

The Modern Contents of the Russian National Olympiads in Informatics 91

the pioneer Olympiads when there was the Soviet Union. Then Olympiads passed in two
competition days. The first competition day was theoretical (without use of computers)
and the second one was practical (with use of computers). The first competition tasks
were very close under the formulations to mathematical tasks and more reminded tasks
of the raised complexity at school subject of informatics. The basic problems by their
preparation were the problems connected with definition of basic distinctions between
the competition tasks of theoretical and practical competition days, the representation
form of participant solutions and criteria of their evaluation.

It was obvious, that on computer competition day the contestant should be required
to produce only a single source file. That should be the competition task content of theo-
retical competition day and what should be produced by contestants as a result of solving
of theoretical tasks, was rather vaguely. It was not clear, what kind of competition tasks
and algorithms will be accessible to participants and that they should represent as a so-
lution of this kind of tasks. To demand the proof of any properties of algorithm from
participants would be not absolutely correct as not many secondary school students pos-
sessed corresponding mathematical skills, and in school informatics it practically was not
considered.

For that case it was accepted the following decision. On theoretical competition day
it was authorized to describe algorithms of the tasks solution both on the native language
and on any algorithmic language known to the students. But there was a big problem how
to evaluate theoretical tasks solution. Opinions were so much, how many was judges,
but any more or less comprehensible solution for this problem was not. All of them had
subjective character as without the participant it was very difficult to understand that has
been presented as the solution. Moreover, if it was the description of algorithm in any
programming language in the written form, it was not clear how to concern to syntactic
errors available there.

The RusOI contents has essentially changed in 1990. From this year theoretical com-
petition day has been replaced by computer competition day, that is, both competition
days became with using computer. From this year the second stage in development of
the RusOI contents had begun. Its basic feature − competition tasks became multilevel
and participants were given only one task in the competition day. In particular, each such
task contained some subtasks of a various degree of the complexity, incorporated by the
common idea and located in ascending order of complexities. The main advantages of
multilevel tasks were the opportunity to differentiate participants on a level of prepara-
tion and minimization of volume of the text of task statements. Thus weak participants
could something solve and award by some points, and strong participants had an oppor-
tunity to prove to the full.

Use of only one multilevel task on each competition day has led to understanding that
small number of competition tasks narrows a scope of computer science topics considered
on Olympiads. Really, practically not probably to compose one or two tasks for which
solution could capture many topics of computer science. In this connection, the number
of tasks on each competition round had been increased gradually (see Table 1), and from
1995 up to now in Russia there are three competition tasks on each competition day. The
same tendency was on the IOI.

92 V. M. Kiryukhin

Table 1

Number of the RusOI tasks from 1990 to 1995

Year of RusOI Number of the first round tasks Number of the second round tasks

1990 2 1

1991 1 1

1992 1 1

1993 1 2

1994 2 1

1995 3 3

It is necessary to note also, that at the second stage in development of the RusOI
contents there were shown up restrictions on dimension in task statements. If before a
competition task were evaluated only by means of small dimension tests then occurrence
of more perfect computer equipment and information technology has led to more perfec-
tive methods of evaluation of participant solutions. It had became to evaluate efficiency
of more stronger algorithms and gifted participants could prove themselves on Olympiad
from the best side.

The third stage in development of the RusOI contents has come in 1996 and proceeds
to this day. This stage is connected with the advent of the automated evaluating systems.
Use of such systems has essentially expanded the contents of Olympiads in informatics
as there was an opportunity quicker and objective to evaluate solutions of participants. In
particular, it had became to use three types of competition tasks: Batch tasks, Reactive
tasks and Output-tasks.

The important feature of these tasks is the following. They are multilevel tasks too, but
they do not consist of subtasks in task statement. They assume to use solution algorithms
of various complexity which depend on dimension of the task. The smaller test case
requires more simple solution while the bigger test case requires rather complex solution.
Thus it is important, that are evaluated not only full solution, but also partial. It enables
to evaluate a level of creative development of participants, instead of a level of computer
science acquisition and training that is characteristic for competitions for higher school
students.

3. Connection of Russian State Educational Standard in Informatics and the
RusOI Contents

In Russia the Olympiad in Informatics for secondary school students is the official action
of the Ministry of Education and Science and enters into system of certification of stu-
dents. It includes five levels (school, municipal, regional, federal district and final), and
students of the final stage acquire the right to enter to the university or institute without
passing an examination. Such situation has influenced on the RusOI contents. On the one
hand, it should meet all requirements shown by the Russian state educational standard

The Modern Contents of the Russian National Olympiads in Informatics 93

in informatics. On the other hand, it should promote search of talented secondary school
students and creation of conditions for their further accelerated perfection in the field of
computer science.

Now in Russia the basic document determining the contents of secondary school ed-
ucation in informatics is the state educational standard in informatics accepted according
to the decision of the Government of Russia in 2001. According to this document teach-
ing of informatics at the secondary school is directed on achievement of the following
purposes [2]:

• familiarization and ordering of the knowledge concerning with mathematical ob-
jects of computer science; construction of descriptions of objects and the processes,
allowing to carry out their computer modeling; means of modeling; information
processes in biological, technological and social systems;

• acquisition of skills to describe mathematical objects of computer science, includ-
ing logic formulas and programs in the formal language, to create programs in the
programming language under their description; to use program tools and to adjust
them for needs of the use;

• development of algorithmic thinking, abilities to formalization, elements of system
thinking;

• education of feeling of the responsibility for results of the work; formation of in-
tention on positive social activity in an information society, on inadmissibility of
the actions breaking legal, ethical standards of work with the information;

• getting of experience of design activity, creation, editing, registration, preservation,
transfer of information objects of various type by means of modern software; im-
plementation of computer models, collective realization of information projects, an
information work in the various spheres demanded on a labour market.

It is important to note, that the same purposes characterize RusOI. However many
teachers till now consider, that the contents of Olympiads in informatics essentially fall
outside the limits of the curriculum on informatics for ordinary secondary school. Actu-
ally it is not absolutely so. Comparing the RusOI contents with themes of this curriculum
it is possible to draw a conclusion that this curriculum in a certain degree covers the
RusOI contents. But, as experience has shown, for successful participation in RusOI, es-
pecially in the final level, familiarization of this curriculum is not enough. In addition to
this it is necessary to use forms of individual teaching with help of top level teachers and
also actively to develop at school profile training and various elective courses.

4. Approaches to Determining the RusOI Contents

At determining of the RusOI contents it is necessary to take into consideration that infor-
matics is the same science as mathematics and physics. Secondary school students should
not only perceive it as a tool for solving of numerous problems by using a computer, but
also to concentrate in its conceptual bases. For example, to answer such questions, as:
what principles is informatics based on?; what new concepts are introduced with com-
puter science in our world?; what kind of questions are called attention by scientists

94 V. M. Kiryukhin

engaged in computer systems?; what methods are used for solving problems with use of
computer equipment and information technologies?.

Proceeding from this, competition tasks should be composed so that to allow sec-
ondary school students:

• to get acquainted with fundamental knowledge of computer science;
• to promote development cognitive models of training to this knowledge;
• to encourage development of the skills which is necessary for application of con-

ceptual knowledge on practice;
• to be prepared to the full for studying computer science at a professional level in

higher school.

As most of RusOI participants after leaving secondary school become students of
higher school at determining of the RusOI contents it is necessary to take into account
experience of development of computer science curricula for higher education. The anal-
ysis of such programs [3] has allowed to allocate the following three approaches to de-
velopment of the RusOI contents:

• programming-oriented approach;
• algorithms-oriented approach;
• breadth-oriented approach.

Programming-oriented approach was used at the initial stage of development of the
RusOI contents. Therefore very often Olympiads in informatics is named as programming
Olympiads. Formation of such incorrect opinion was affected with the following practical
and historical factors:

• knack of programming is necessary skills for the further training in informatics,
and not only for those who is going to study computer science further;

• computer science became academic discipline late enough, and by this moment in
the majority of educational institutions there are introduction courses on program-
ming;

• in 1970–1980 many courses under the name ”Introduction to computer science”
contained the most part of topics connected only with programming and not re-
flecting development of algorithmic thinking.

Use of programming-oriented approach at determining of the RusOI contents has the
following weaknesses:

• the accent on programming due to exception of other topics of computer science
gives the limited understanding of computer science as science;

• theoretical knowledge of computer science which should strengthen understand-
ing of a practical skills fade into the background, that leads to biased opinion on
supporting role of the theory in the further studying computer science;

• consideration of programming as bases of the RusOI contents leads to that sec-
ondary school students concentrate on coding more, instead of on development of
algorithm, analysis and testing of solutions;

• orientation to programming can lead secondary school students to believe, that the
writing of the program is the unique approach to the solution of problems with use
of a computer.

The Modern Contents of the Russian National Olympiads in Informatics 95

Algorithms-oriented approach is focused on studying of the basic algorithmic con-
cepts and logic structures irrespective of any programming language. From secondary
school students here is required the substantiation and an explanation of algorithms which
they create. It allows them to work with a wide range of types of data and logic struc-
tures needlessly to struggle with various specific features which inevitably are present at
popular programming languages. Possession of students of the basic algorithms and data
structures allows them to prosecute more productively subjects of effective programming,
debugging and testing of programs. Moreover, this approach can include additional theo-
retical topics, such as estimations of efficiency and the rudiments of computability

At the same time, use on Olympiads in informatics only the approach with orientation
to algorithms has some critical weaknesses. First of all, for the solution of such theoretical
tasks the pseudo-code for designing algorithms is used, as a rule, and secondary school
students always wish to realize the ideas and solution on a computer, instead of abstract
language on a paper. As the algorithm which has been written down in the programming
language - is written not for people.

Secondly, orientation to a pseudo-code or even any language of writing of algorithms
relieves students of necessity to show, that their algorithms correctly work. While the
process of getting a program to compile and execute correctly is sometimes frustrating,
it is also a critical skill that students must master early in their education. Therefore
students should have appropriate skills for this at the earliest stage of the computer science
training.

Thirdly, using algorithms-oriented approach there are big problems at evaluation of
competition task solution. Now in most cases evaluation of competition task solution
of participants occurs by means of the automated evaluating systems. The evaluation of
a pseudo-code on a correctness in this case is very difficult for realizing, and to do it
manually is not a simple problem too since this demands to recruit a plenty evaluators
and often it is subjective.

Breadth-oriented approach is the approach with the maximal scope of topics on com-
puter science. It has arisen as alternative to the two approaches mentioned above. For
many years experts in the field of Olympiad informatics worried that those both ap-
proaches gives student too limited sight at informatics This science is constantly devel-
oping science which determines many other kinds of activity, and it is impossible not to
consider this. Otherwise, competition tasks will not allow secondary school students to
prove themselves in many other fields of knowledge, being a part of modern computer
science.

Use breadth-oriented approach in practice has appeared some problems too. Expan-
sion of number of topics leads to necessity of development of a plenty various competition
tasks. They should be such that students could show the creative abilities and thinking. It
is very much a challenge for developers of competition tasks. However it becomes even
more difficult for students as to capture a plenty of topics on informatics with demanded
immersing on the necessary depth of their familiarization becomes for them practically
not real.

Discussions about what approach should be put in a basis of determining of the Ru-
sOI contents have been debated on all extent of development of Olympiad movement in

96 V. M. Kiryukhin

informatics in the country. Each of the considered approaches has pluses and minuses,
and nobody can tell unequivocally which is the better. Experience of carrying out of the
RusOI has shown that true as always lays on the middle. Therefore at determining of
the RusOI contents the new approach based on a harmonious combination all three men-
tioned above approaches has been used.

5. Structure and Short Description of the Modern RusOI Contents

The conclusions formulated in chapter 3 have allowed to allocate basic topics of computer
science which determine the modern RusOI contents. In particular, as such topics the
following have been chosen:

1. Mathematical Basis of Informatics.
2. Developing and Analyzing of Algorithms.
3. Programming Fundamentals.
4. Computer Literacy.
5. Operating Systems.
6. Basis of Programming Technology.
7. Fundamental Methods of Calculations and Modeling.
8. Introduction to Network Technologies.

The topic “Mathematical Basis of Informatics” substantially is connected with dis-
crete structures and is a fundamental basis of computer science. It is especially important
for participation in Olympiads in informatics as it is difficult to achieve success on com-
petitions without good preparation in the field of set theory, logic, graph theory, combi-
natory theory and so on.

It is also important for the students to continue education in higher school. Moreover,
escalating complexity of computer science methods influences the solution of practical
professional problems. To solve this problems in the future for today’s students are ex-
tremely necessary to have stable knowledge and skills in the different fields of mathemat-
ics especially discrete structures.

At successful familiarization of topic “Mathematical Basis of Informatics” secondary
school students should:

know/understand:

• fundamental notions of functions, relations and sets;
• permutations, arrangement and combinations;
• formal methods of propositional logic;
• basis of construction of recurrent expression;
• the basic proof techniques;
• basis of numbers theory;

be able:

• to carry out the operations connected with sets, functions and relations;
• to calculate permutations, arrangement and combinations of set and also to interpret

their values in a context of a specific task;

The Modern Contents of the Russian National Olympiads in Informatics 97

• to solve typical recurrent expression;
• to carry out formal logic proofs and a logic reasoning for modelling algorithms;
• to determine what kind of the proof approaches for the solving of a specific target

is better;
• to use the basic algorithms of theory of numbers.

use the above-mentioned knowledge and skills at solving of practical tasks.
The basic themes of the topic “Mathematical Basis of Informatics” are:

1. Relations, Functions and Sets.
2. Basic Geometry.
3. Basic Logic.
4. Basics of Counting.
5. Proof techniques.
6. Basis of Theory of Numbers.
7. Basics of Algebra.
8. Basics of Combinatorial Calculus.
9. Basis of Graph Theory.

10. Basis of Probability Theory.
11. Basics of Game Theory.

The topic “Developing and the Analyzing of Algorithms” is very important for Olympiads
in informatics and determines a basis of productive activity of students, their creative self-
expression. In this field of computer science participants of Olympiad in informatics have
an opportunity to show the best creative qualities at the solution of competition tasks.

Importance of algorithms theory is difficult to overestimate. Actual value of any pro-
gram or program system depends on two factors: applied algorithms and efficiency of
their implementation. Therefore development of good algorithm has crucial importance
for productivity of any program system. Besides studying of algorithms allows to pen-
etrate more deeply into a current task and can prompt methods of the solution which
are not dependent on the programming language, a paradigm of programming, hardware
maintenance and other aspects of implementation.

Studying of algorithms theory helps to develop at student’s ability to choose the al-
gorithm most suitable for the solution of the given task or to prove, that such algorithm
does not exist. This ability should be based on knowledge of algorithms which are in-
tended for the solution of the certain set of known problems, their understanding strong
and weaknesses, applicability of various algorithms with an estimation of its efficiency.

At successful familiarization of topic “Developing and the Analyzing of Algorithms”
secondary school students should:

know/understand:

• elements of theory of algorithms;
• basic data structures;
• basic notions of graph theory and graph properties;
• relate graphs and trees to data structures, algorithms and counting;
• properties inherent in ”good” algorithms;
• big O notation for the description of the amount of work done by an algorithm;

98 V. M. Kiryukhin

• determining the time and space complexity of simple algorithms;
• computing complexity of the basic algorithms of sorting, search and hashing;
• concept of recursion and the general recursively presented problem statement;
• hash function and its assignment;
• simple numerical algorithms;
• basic combinatory algorithms;
• basic algorithms of computing geometry;
• the most widespread algorithms of sorting;
• the most important algorithms of string processing;
• representations of graphs (adjacency list, adjacency matrix);
• fundamental algorithms for graphs: depth- and breadth-first traversals, shortest-

path algorithms, transitive closure, minimum spanning tree;
• basic algorithmic strategy: brute-force algorithms, backtracking, ”greedy” algo-

rithms, ”divide-and-conquer” algorithms and heuristic algorithms;
• basis of dynamic programming;
• elements of game theory;

be able:

• to choose suitable data structures for the solution of problems;
• to use the above-mentioned algorithms during solving of problems;
• to determine memory and run-time complexity of algorithms;
• to determine computing complexity of the basic algorithms of sorting, search and

hashing;
• to use big O notation for the description of the amount of work done by an algo-

rithm;
• to implement recursive functions and procedures;

use the above-mentioned knowledge and skills at solving of practical tasks.
The basic themes of the topic “Developing and the Analyzing of Algorithms” are:

1. Algorithms and their properties.
2. Data Structures.
3. Basic Algorithmic Analysis.
4. Algorithmic Strategy.
5. Recursion.
6. Fundamental Computational Algorithms.
7. Numeric Algorithms.
8. String Processing.
9. Graph Algorithms.

10. Dynamic Programming.
11. Algorithms of Game Theory.
12. Geometrical Algorithms.

The topic “Programming Fundamentals” and a high technological level of its posses-
sion are necessary conditions of successful performance of any students on Olympiads
in informatics. To participate in Olympiad in informatics, each secondary school student
should know and put into practice even one programming language. Moreover, it is also

The Modern Contents of the Russian National Olympiads in Informatics 99

desirable to master by participants of Olympiad at least two paradigms of programming
because in RusOI is permitted to use three programming languages: C/C ++, Pascal, Vi-
sual Basic.

It is important to notice, that knowledge and skills in the field of programming, which
are important for practice of programming, irrespective of an applied paradigm of pro-
gramming. Therefore the given topic includes sections under fundamental concepts of
programming, the basic structures of data and algorithms and also actually programming
languages. Programming languages are the basic means of dialogue of the student and a
computer during solving of competition tasks. Students should not simply be able to write
the program in any one language, they should understand the various styles of program-
ming inherent in different languages. The understanding of a variety of programming
languages and various paradigms considerably facilitates fast study of new languages by
them.

As a result of successful study of topic “Programming Fundamentals” secondary
school students should

know/understand:

• basic structures of programming;
• concept of data type as sets of values and operations above them;
• basic data types;
• basic data structures: arrays, records, strings, stack, queues and hash tables;
• data presentation in memory;
• bases of input/output;
• operators, functions and parameter transmission;
• static, automatic and dynamic memory allotment;
• memory management during execution of the program;
• methods of realization of stacks, queues and hash tables;
• methods of realization graphs and trees;
• mechanism of parameter passing;
• features of realization of recursive solutions;
• useful strategy at program debugging;

be able:

• to analyze and explain behaviour of the simple programs including fundamental
structures;

• to modify and expand the short programs using standard conditional and iterative
operators and functions;

• to develop, realize, test and debug the program which to use all the most important
structures of programming;

• to apply methods of structural (functional) decomposition to divide of the program
into parts;

• to realize the basic data structures in high level language;
• to realize, test and debug recursive functions and procedures;

use the above-mentioned knowledge and skills at solving of practical tasks and confi-
dently to program even on one of programming language permitted to use in RusOI (C/C
++, Pascal, Visual Basic).

100 V. M. Kiryukhin

The basic themes of the topic “Programming Fundamentals” are:

1. Programming Languages.
2. Basic Programming Constructions.
3. Variables and Data Types.
4. Data Structure Types.
5. Mechanisms of Abstraction.
6. Fundamental Programming Species.

The topic “Computer Literacy” plays an important role in studying of computer sci-
ence because a computer is the integral tool which students use during competition in
informatics. Secondary school students should not perceive a computer as a black box
executing the programs by means of unknown magic. All students during solving com-
petition problems should know the main components of which the computer consists and
understand how they operate, their main characteristics, productivity and interaction be-
tween them. The understanding of the computer and its organization allows also to write
more effective programs.

At successful familiarization of topic “Computer Literacy” secondary school students
should:

know/understand:

• logic variables, operations, expressions;
• scale of notations;
• formats of representation of numerical data;
• presentation of data with fixed and floating point and connection with accuracy;
• internal representation of non-numerical data;
• internal representation of symbols, strings, records and arrays;
• instruction representation at a machine level;
• basis of input/output;
• basic types of memory;
• bases of memory control
• access to data on hard disk;

be able:

• to convert numbers from one scale of notation in another;
• to use mathematical expressions for the description of functions of simple consec-

utive and combinational schemes;
• to transform numerical data from one format to another;
• to adjust the programmer’s workbench for solution of competition tasks;

use the above-mentioned knowledge and skills at solving of practical tasks so that the
students feels themselves confidently at work with a computer at solving of competition
tasks.

The basic themes of the topic “Computer literacy” are:

1. Digital Logic.
2. Data Representation.
3. Computer Engineering Principles.

The Modern Contents of the Russian National Olympiads in Informatics 101

4. Memory.
5. Communications.

The topic “Operating systems” gives to students convenient abstraction of hardware
maintenance of a computer. For many years operating systems and their abstraction be-
came more and more difficult in comparison with usual applied programs. Nevertheless,
for successful performance on Olympiad in informatics secondary school students should
know:

• functions of modern operating systems;
• difference of primitive batch systems from complex multi-user operating systems;
• understanding of a logic level;
• page and segment organization;
• various ways of economy of memory;
• distinctions between the mechanisms used for communications with devices of a

computer;
• advantages and shortcomings of direct memory access;
• requirements to recovery from failures.

Acquired knowledge of this topic should provide to students for the confident work
with operating system at implementation of solution of competition tasks by means of a
computer.

The basic themes of this topic are.

1. Operating Systems Basics.
2. Basic Functions of Operating Systems.

The topic “Basis of Programming Technology” is a part of software engineering, con-
sidering the application of corresponding knowledge and skills to effective implementa-
tion and operation of programs and program systems. Software engineering studies all
phases of life cycle of program system: analysis of requirements, development of specifi-
cations, designing, implementation, testing, operation and support. Though on Olympiads
in informatics there is no speech about development of program system, nevertheless, this
topic plays a big role in solving of competition tasks and demands from students of quite
certain knowledge and skills.

At successful familiarization of topic “Bases of Programming Technology” secondary
school students should:

know/understand:

• purpose and structure of programming facilities and environments;
• role of program tools during development of the software;
• properties of designing of the ”good” software;
• basic methods of program testing and debugging;

be able:

• to choose and prove a set of programming facilities for support of development of
the software;

• to use programming facilities and environments in development of software prod-
uct;

102 V. M. Kiryukhin

• to compose tests;
• to test and debug of programs;
• to develop the program in the form of ready software product;

use the above-mentioned knowledge and skills at solving of practical tasks.
The basic themes of the topic “Bases of programming technology” are:

1. Programming facilities and environment.
2. Program Testing and Debugging.

The topic “Fundamental Methods of Calculations and Modeling” represents the area
of computer science closely connected with calculus mathematics and numerical meth-
ods. As computers began capable to solve more and more challenges, similarly to com-
puter science as a whole this area got the increasing value and importance. Moreover,
by the end of the twentieth century scientific calculations have affirmed as the indepen-
dent discipline having close connections with computer science, but, nevertheless, not
identical with it.

In pure form methods of calculus mathematics and numerical methods are practically
not used on the RusOI, exception is made only with methods of modeling. Nevertheless,
the certain topics in this area play the important role in training of student for Olympiads
in informatics. Their knowledge allows to approach more substantially to solving of com-
petition tasks by students.

At successful familiarization of topic ““Fundamental Methods of Calculations and
Modeling”” secondary school students should:

know/understand:

• notion of precision loss, computational stability, machine accuracy and error of
calculus of approximations;

• sources of errors in calculus of approximations;
• basic algorithms of solving calculus mathematics tasks (calculation of value and

roots of function, calculation of perimeter, square and volume, calculation of a
point of crossing of two segments etc.);

• notions of model, modeling and simulation, basic types of models;
• specifications of computer model (input, output and state variables, state change

functions, output function, time advance function) and ways of their description;
• basic phases and features of implementation and use of computer models;

be able:

• to calculate error estimation of calculus of approximations;
• to use basic methods of calculus mathematics at solving tasks;
• to formalize objects of modeling;
• to develop computer models of the elementary objects;

use the above-mentioned knowledge and skills at solving of practical tasks.
The basic themes of this topic are:

1. Basics of Computational Mathematics.
2. Modeling Basics.

The topic “Introduction to Network Technologies” is came into the RusOI contents in
connection with last achievements in the field of networks and the telecommunications.

The Modern Contents of the Russian National Olympiads in Informatics 103

On Olympiads in informatics it is necessary for students not only the nobility that such
computer networks, but also directly to carry out competition tasks in local computer net-
work environment and the corresponding software. Possession of network technologies
includes both theoretical knowledge, and practical skills. Students have to get basis of this
knowledge and skills to feel during competition more confidently. The same situation and
with wireless and mobile computers which actively start to be used on the RusOI, and an
example to that - the final stage of the RusOI in 2006.

As a result of successful study of topic “Introduction to Network Technologies” sec-
ondary school students should

know/understand:

• basic structure of network architecture;
• most important network standards;
• roles and the responsibility of clients and servers for various applications;
• problems of networks safety arising because of viruses and the attacks directed on

initiation of refusals in service;
• basis of wireless computer networks;

be able:

• to customize programmer’s workbench in client- server network;
• effectively to use a number of the widespread network applications, including web-

browsers and automated evaluating systems;
• to work with applications using mobile and wireless communications;

use the above-mentioned knowledge and skills for solving competition tasks in the
environment which is installed for conducting RuOI.

The basic themes of the topic “Introduction to Network Technologies” are:

1. Basis of Networks and Telecommunications.
2. Introduction to Wireless Networks.

6. Conclusion

Short description of the RusOI contents presented in this paper is a result of longstanding
experience of carrying out the Olympiads in informatics in The Russian Federation. The
basic idea of these contents is to give all that are interested in participation in Olympiads
in informatics a guiding line for development of an individual trajectory of training in
Olympiad field in computer science. Moreover it gives good possibility for secondary
school students, teachers, and composers of competition tasks to achieve a better common
understanding of the knowledge and skills assumed of contestants of the RusOI.

The RusOI contents do not restrict the actual content of the RusOI and a process of
deciding about the appropriateness of candidate competition tasks. It constantly develops,
as well as computer science. Therefore to speak about any restrictions on this process it
is not necessary.

The author hopes that the experience of Olympiads in informatics in Russia will be
interesting to representatives of other countries.

104 V. M. Kiryukhin

References

Kir�hin V.M. (2005). Vserossi�iska� olimpiada xkol�nikov po informatike. M.: APK i
PPRO.

Kir�hin V.M., M.S. Cvetkova (2006). Vserossi�iska� olimpiada xkol�nikov po informatike
v 2006 godu, M.: APK i PPRO.

CC2001 – Computing Curricula 2001 Computer Science, Rekomendacii po prepodavani�
informatiki v universitetah, Per. s angl.: Spb.: Izdatel�stvo SPbGU (2002).

V. M. Kiryukhin is chairman of the methodical commission on in-
formatics which is responsible in Russia for carrying out the national
olympiads in informatics. He writes many papers and books in Russia
on development of olympiad movements in informatics and prepara-
tions for olympiads. From the first IOI he is the permanent Russian
team leader.

Olympiads in Informatics, 2007, Vol. 1, 105–111 105
© 2007 Institute of Mathematics and Informatics, Vilnius

USA Computing Olympiad (USACO)

Rob KOLSTAD,
15235 Roller Coaster Road, Colorado Springs, CO, 80921
e-mail: : kolstad@ace.delos.com

Don PIELE
University of Wisconsin-Parkside, 900 Wood Road, Kenosha, WI, 53405
e-mail: piele@uwp.edu

Abstract. The USA Computing Olympiad (USACO) supports pre-college computing around the
world through computer programming competitions and training materials. The USACO holds six
Internet-based contests each year. Unique in the contest community, they

• are open to every pre-college programmer around the world at no charge;
• feature three divisions of escalating difficulty and one beginning level contest;
• are machine-graded, with instant feedback on simple errors found during submission;
• are analyzed with solutions and results provided;
• are translated into foreign languages for the contestants;
• are created by a handful of coaches with the help of assistant coaches who interact through

a comprehensive website that collects problems, test data, solutions, data validators, and
discussions.

The USACO has reached out to the international community by

• inviting international students to challenge our students at the USA International Computing
Olympiad (USAICO) here at Colorado College during our summer program;

• providing a discussion form on our website for contests and training pages;
• grading and ranking international students along with our own;
• providing a grading system for IOI 2001, 2003, 2004, 2006 and 2008 (expected).

In April, the USACO conducts the US Open, a proctored exam for US students, and, one day
later, an Internet exam for international students. Based on the results of these contests, 16 students
are invited to an all-expense-paid training camp in the early summer, where 4 students are selected
to be the US Team at the International Olympiad in Informatics (IOI).

The USACO is sponsored by USENIX, SANS, and IBM. All USACO contest administration is
staffed by 100% volunteers.

Key words:
USACO, USAICO, internet programming competitions, pre-college programming competitions,
programming training, IOI, USA team selection.

Goals

Since 1992, the USACO has served the youth of the global pre-college computer pro-
gramming community with four primary goals:

106 R. Kolstad, D. Piele

1. Provide pre-college students with opportunities to sharpen their computer program-
ming skills in order to enable them to compete successfully at the international
level.

2. Enhance the quality of pre-college computer education by providing students and
teachers with challenging problems, training materials, and competitions that em-
phasize algorithm development and problem-solving skills.

3. Recognize excellent students with outstanding skills in computer science and en-
courage them to pursue further opportunities in the profession.

4. Provide educational, motivational, and competitive materials in the form of pro-
gramming competitions and web-based training via the Internet.

USACO Scope

The USACO sponsors six Internet-based contests each year. Unique in the contest com-
munity, they:

• are open to every pre-college programmer around the world at no charge;
• feature three divisions of escalating difficulty;
• are machine-scored, with instant feedback for simple errors found during submis-

sion.

Fig. 2 graph shows the growth in participation. Now anywhere from 900–1,000 enter
each competition.

Fig. 1. USACO scope.

USA Computing Olympiad 107

Fig. 2. Internet participation.

USACO Training

The USACO offers 200 hours of Internet-based training in the form of instructional texts
and challenging programming tasks. Over 62,000 participants have registered for the
training pages; over 321,000 tasks have been successfully solved. IOI world champions
ship competitors from many countries extol USACO’s training. Fig. 3 shows the growth
of monthly training system logins.

The hs-computing mailing list was created to distribute Internet competition problems
and exchange information about advanced pre-college computing education and training.
Its subscribers include high school teachers, coaches, and students. The list currently
includes over 28,000 correspondents from more than 90 countries.

USACO Invitational

Each year, the USACO invites 16 USA students and (sometimes) the best of the in-
ternational competitors for a week of competition at the USA Invitational Computing
Olympiad.

Challenging contests (the equivalent of three complete IOI world championship com-
petitions) are complemented by an academic, recreational, and cultural program to stim-
ulate competitors both intellectually and athletically.

The intense week culminates in an awards ceremony that includes the week-long win-
ner and names the four members of the USA international traveling team. Travel to com-
petitions is the biggest reward and incentive for USACO contestants. The June USAICO
contest challenges the top 16 USA programmers to compete for the traveling team.

108 R. Kolstad, D. Piele

Fig. 3. Training page logins.

The top four USACO programmers compete against programmers from 75 other
countries at the annual IOI (the world championships) in addition to occasional trips
to the Central European Olympiad in Informatics and other international competitions.

USACO International Service

USACO staff contributes significantly to the international competition community. In
2003, USACO director Don Piele hosted the IOI world championships at his home cam-
pus at the University of Wisconsin-Parkside. USACO staff supervised all online grading
for the IOI world championships in 2001, 2003, 2004, 2006, and is on deck for Egypt’s
2008 International Olympiad. Coach Greg Galperin served on the International Scientific
Committee; Don Piele retired in 2006 from the 15 member IOI governing committee after
12 years of service.

USACO Internet training and contests also serve the international community.

USACO Problems

USACO contest problems focus on the signature mascot of cows. The tasks require ex-
tensive knowledge of computer algorithms and are very challenging.

One recent contest’s tasks were translated into 14 languages, including Chinese, Ger-
man, English, French, German, Indonesian, Polish, Russian, Serbian, Spanish, Turkish,

USA Computing Olympiad 109

Fig. 4. Teaching.

Turkmen, Ukrainian, and Vietnamese. The problem below was suggested by Canada’s
Maria Plachta.

Problem 2. The Wedding Juicer

Farmer John’s cows have taken a side job designing interesting punch-bowl designs.
The designs are created as follows:

A flat board of size W cm × H cm is procured.
On every 1 cm × 1 cm square of the board, a 1 cm × 1 cm block is placed. This block

has some integer height B.
The blocks are all glued together carefully so that punch will not drain through them.

They are glued so well, in fact, that the corner blocks really don’t matter!
FJ’s cows can never figure out, however, just how much punch their bowl designs

will hold. Presuming the bowl is freestanding (i.e., no special walls around the bowl),
calculate how much juice the bowl can hold. Some juice bowls, of course, leak out all the
juice on the edges and will hold 0.

USACO Faculty

The coaching ranks also include several associate coaches. Many of these associates use
the USA’s training and contest resources for their own country’s competitions. The list
includes gold medal winners, other country’s coaches, and both foreign and domestic
graduates of the USACO invitational competitions.

Guest coaches at the 2006 competition included repeat IOI Gold Medal winner Bruce
Merry from South Africa and Canada’s Troy Vasiga from the University of Waterloo.

110 R. Kolstad, D. Piele

Canada’s wunderkind Richard Peng has been invited to coach at the 2007 USAICO.
The regular faculty include:

• Director Dr. Don Piele is a Professor of Mathematics at the University of
Wisconsin-Parkside. Founder of the International Computer Problem Solving
Competition and USACO, Don has been organizing programming competitions
since 1977 and took the first United States Team to IOI in 1992.

• Leader and Head Coach Dr. Rob Kolstad conducts the Internet competitions. A
veteran of supercomputer startup companies and technical associations, he has or-
ganized programming competitions since 1973. Rob manages the Internet compe-
titions, the online training, the automated grading system, and USAICO.

• Leader/Deputy Leader Dr. Brian Dean has coached since 1996 and recently com-
pleted his doctorate at MIT. He has interned at Akamai, Alta Vista, and Microsoft.
Brian earned multiple awards for teaching at MIT. He is now an Assistant professor
at Clemson University.

• Deputy Leader Liang joined the coaching staff in 2002 and is currently a Ph.D.
student at Stanford, studying machine learning and natural language processing.
His industrial experience includes IBM, Intel, ITA software, Microsoft Research,
and Google.

The USACO is privileged to have a number of veteran organizers, contest champi-
ons, and performers in both the academic and industrial world on its staff. They have
decades of experience and include both organizational veterans and enthusiastic former
competitors.

• MIT student Alex Schwendner first attended USACO camp in 8th grade. He has
won the US Open, the inaugural USAICO, and the USACO National Champi-
onship. Four trips to the IOI yielded two silver medals and two gold medals.

• MIT student Eric Price attended four USAICO Olympiads. A Silver and Gold
Medalist at the IOI, he achieved the rare perfect score in 2005 (in addition to a
Gold Medal at the International Mathematics Olympiad). Eric also organizes the
Harvard/MIT Math Tournament.

USACO Sponsors

The USACO currently has three sponsors:

• USENIX: The Advanced Systems Computing Association;
• IBM;
• SANS: Security Training.

References

The USACO genera web site: http://www.usaco.org
The USACO Discussion Board: http://ace.delos.com/bb/
The USACO registration: http://ace.delos.com/usacoregister
The USACO training pages: http://train.usaco.org
The USACO Internet Contests: http://ace.delos.com/contestgate

USA Computing Olympiad 111

R. Kolstad is the head coach of the USA Computing Olympiad and
a consulting in the computer industry. Previous employment includes
a startup supercomputer company, a large workstation manufacturer,
a startup internet server corporation, and non-profit technical organi-
zations. His current consulting revolves around the world of software
support for patent litigation.

D. Piele recently retired from his long-time position as professor of
mathematics at the University of Wisconsin-Parkside. Active not only
in computer olympiads as the USACO director (and founder of other
contests including the popular and long-running International Com-
puter Problem Solving Competition), D. Piele also works extensively
with mathematica.

Olympiads in Informatics, 2007, Vol. 1, 112–123 112
© 2007 Institute of Mathematics and Informatics, Vilnius

Programming Contests for School Students in
Bulgaria

Krassimir MANEV
Faculty of Mathematics and Informatics, Sofia University
1164, 5 J. Bourcheir blvd., Sofia, Bulgaria
e-mail: manev@fmi.uni-sofia.bg

Emil KELEVEDJIEV
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
1113, 8 G. Bonchev str, Sofia, Bulgaria
e-mail: keleved@math.bas.bg

Stoyan KAPRALOV
Department of Mathematics, Technical University of Gabrovo
5300,4 H. Dimitar str., Gabrovo, Bulgaria
e-mail: skapralov@tugab.bg

Abstract. Competitions in programming for secondary and high school students in Bulgaria have
long traditions. The National Olympiad in Informatics started in 1985. Even before 1985, com-
petitions on national and regional level were popular. Bulgaria is founder and the first host of the
International Olympiad in Informatics in 1989. The paper presents the current situation and chal-
lenges in the area of Informatics competitions in Bulgaria. The structure of the competition system,
including the Bulgarian National Olympiad in Informatics is outlined.

Key words: programming contests, olympiad in informatics, IOI, training, preparation.

1. Introduction

Education and competitions are closely related. We may present at least two reasons to
assert this (Verhoeff, 1997):

– it is natural for children to compete, so they can easily understand any attempt of
the teacher to put the competitions into use of education;

– competitions may be important in adult life, so we should especially teach children
to compete – this is a part of the education.

Not all opinions on the role of competition in education look fairly straightforward.
Educational theorists do not agree on whether competitions should be encouraged or
constrained. Some of them assert that, because competitions are part of every culture and
because education should transmit culture, it is necessary to incorporate competitions
into education to help children get ready for it later. The others contradict that, because

Programming Contests for School Students in Bulgaria 113

competitions are opposed to collaboration, and therefore are an evil element in culture,
they should be avoided.

Nevertheless, competitions in education have their long history, which can be traced
back to the centuries B.C. We present a brief time line:

– in first century B.C. Marcus Verrius Flaccus, a Roman teacher, introduced the prin-
ciple of competition among his students as a pedagogical aid;

– in 1500 Battista Guarino, an Italian scholar, wrote that the students are stimulated
best by competitions, instead of physical punishment;

– in 1894 the time when Pierre de Coubertin struggled to revive the Olympic Games,
the Eötvös Loran University in Budapest organized the first national contest in
mathematics;

– the idea of Science contests spread through Central Europe and Russia. In North
America William Putnam started a mathematics competition for college students
in 1938;

– in 1959 the first International Olympiad in Mathematics was hosted in Romania;
– in 1989 the first International Olympiad in Informatics was hosted in Bulgaria (be-

low we will describe how this happen).

The competitions have much to offer in education. They are a good measure of how
well a discipline is accepted. The competitions should be further developed; their orga-
nizing (especially organizing good competitions) is a major challenge.

2. At the Beginning

2.1. First Programming Contests in Bulgaria

The programming contests for school students in Bulgaria started in early 80’s of the
past century. In the schedule of traditional Winter Mathematical Competitions, organized
by the Union of the Bulgarian Mathematicians (UBM), a Programming tournament was
included. The participants had to write a program in one of the languages FORTRAN or
PL/1, that solve a given algorithmic task, to punch source on cards, compile it (computers
was IBM/360 compatible machines from the ES-series) and to try to debug the program
for 3–4 runs (no more runs were possible in limited to four hours contest).

In 1982 Bulgaria started to produce the Apple II-compatible machine Pravetz 8. Very
soon each Bulgarian school had at least one computer lab. So, each participant in Winter
tournament had the possibility to work on an individual computer. The languages BASIC
and Pascal (UCSD) replaced FORTRAN and PL/1. Evaluation of solutions in those years
was pure manual and some quantity of marks was assigned for the style of programming.

2.2. National Olympiad

Four years expertise from Winter tournament was enough for the Team of the UBM to
dare to organize a National Olympiad in Informatics (NOI). In 1985 the First NOI took

114 K. Manev, E. Kelevedjiev, S. Kapralov

place. This was a two day contest. In the first day contestants had to solve some theo-
retical task – concerning the algorithmic knowledge and knowledge of the programming
language. The second day was similar to the Winter tournament – the contestants had to
write and debug a program. Since the Second NOI, in each of two days contestants had
to solve one task by writing a corresponding program. There was no special qualification
for participating in the Final round of the NOI. Each school organized its own contest to
decide which students would be sent to the Final.

In parallel with the NOI some efforts were made to involve as much as possible stu-
dents in the game. In the program of Winter tournament a new age group was included –
for students in 5th–7th grade. The older students participated both in Winter tournament
and Final round of the NOI.

2.3. International Contest

In 1987 Sofia – the capital of Bulgaria – hosted the International Conference of IFIP
and UNESCO “Children in Information Age”. Prof. Blagovest Sendov, member of the
Academy of Sciences and President of the Organizing committee proposed to the Team
from the UBM to organize during the Conference an international programming contest
for school students. The contest was organized in two age groups (younger and older
than 14 years). Students from 7 countries took part in this event (Check–Slovak Republic,
Federal Republic of Germany, German Democratic Republic, Poland, Rumania, Soviet
Union and Bulgaria).

The results of this experiment were fantastic. All participants were very enthusiastic
about the future of programming contests. They shared their experience in preparation of
teams and some ideas about organization of the future contest. As a result Prof. Sendov
asked the authorities in UNESCO for permission to start a new Olympiad – International
Olympiad in Informatics, using the model of the other scientific International Olympiads
for school students and especially the model of International Olympiad in Mathematics.

The first International Olympiad in Informatics was held in June 1989 in Pravetz,
small town, placed about 50 km North-East from Sofia. The town was not only the center
of Bulgarian computer industry, but the birth place of the Head of State Council (equiv-
alent to President) of Bulgaria in that time, too. The term Informatics, not so popular
in English-speaking countries was chosen, after long discussions, to replace Computer
Science or Programming because of very good looking abbreviation IOI (not simply
palindrome, but a graphical palindrome, too). The President of First IOI was Prof. Pe-
ter Kenderov, a mathematician with huge experience from mathematical Olympiads.

Students from 13 countries took part. The teams were composed of a Leader and 3
students. Contest was organized in one day. The students had to solve the following task
(here is a simplified version of the statement):

Task. A sequence of 2N boxes is given. In N − 1 of the boxes white pieces are
placed, in other N − 1 of the boxes – black pieces, and 2 consecutive boxes are empty.
The following movement is permitted – to take pieces from two consecutive boxes and
to move them, conserving the order, into empty boxes. Write a program to arrange, with

Programming Contests for School Students in Bulgaria 115

minimal number of movements, white pieces leftmost of black pieces (the final place of
two empty boxes does no mater).

The absolute winner of the contest was 15 year old student from the Second Bulgarian
Team – Teodor Tonchev. He had a very precisely planned BFS and solved the largest test
case. For more details about the proposed tasks, the contests, and results of the First
International Olympiad in Informatics see (Kenderov, Maneva, 1989). We are planning a
new edition of this brochure for the celebration of 20-th anniversary of the First Olympiad
during IOI’2009.

3. Current State of the National Programming Contests

3.1. Organization

Many institutions and people are involved in the organization of the national competitions
in Informatics.

The two main organizers at the conceptual level are the Ministry of Education and
Science (MES) and UBM. The link between them is the National Committee (NC). The
chair and the members of the NC are proposed by the UBM and are approved by the
Minister of Education and Science. The membership in the NC is a kind of a voluntary
activity. The main responsibility of the Committee is carrying out the annual competition
schedule that includes NOI and a number of national tournaments.

At more practical level the organizers of the national competitions are universities
and schools. There are different kinds of high schools in Bulgaria. The most popular are
math schools and language schools. The best students as a rule attend these two kinds of
schools. Typically the education in high schools is from 8th to 12th grades but in many
math schools there are also students from 5th to 7th grades. The math schools are the
main source of competitors for the national contests in programming.

3.2. Structure of NOI

The NOI started with one age group in 1985. Now the contestants are divided in 5 age
groups – E (4th–5th grade), D (6th–7th grade), C (8th–9th grade), B (10th–11th grade)
and A (master group). Contests in different groups have different duration – 3 hours for
E, 4 hours for D and C, and 5 hours for B and A. Contests are purely conforming to
the format of IOI. Does not matter in which group participates, each contestant has an
own work place and must solve three task of algorithmic type, writing the corresponding
programs in one of the official languages of IOI – C/C++ or Pascal.

For 22 years the NOI of Bulgaria totally changed. Nowadays we have 3 rounds – Lo-
cal/School (in February), Regional (in March) and Final/National (in April). The schools
or villages where some students declared a will to participate in the round are free to
prepare their own tasks. For helping schools (especially in small villages) that are not
able to prepare tasks, the NC proposes a set of sample tasks for this round but does not

116 K. Manev, E. Kelevedjiev, S. Kapralov

participate in grading. The round is not a formal qualification. The teachers, that evaluate
the contestants, decide who is ready to participate in the Regional round.

Tasks for Regional and Final round are prepared by the NC. Regional round is orga-
nized in schools in one day with common start. Solutions of the pupils are sent imme-
diately to the work groups of NC that evaluate and grade them with common set of test
data. The round is a qualification for the Finals of the NOI – 50–60 students in group A,
and 10–20 from the other groups are invited to take part in the Finals round.

The Final round is organized in a different town each year. There is one contest for
groups B, C, D and E, and two contests (in two consecutive days) for group A. The first 10
students from the Final round in group A form the long list of National Team for Balkan
Olympiad in Informatics (BOI) and IOI. A sample of the tasks from the Final round in
this group is given in Appendix 1. Since this year some Bulgarian students aged less than
15.5 year will participate in Balkan Olympiad in Informatics for Juniors (JBOI), which
will be finished at the moment of presenting this paper. Following the above described
procedure, this year, 12 best students (aged less than 15.5 years) were selected from the
Final round in group C and formed the long list of Junior National team. A sample of the
tasks from contest in group C is given in Appendix 2.

3.3. National Tournaments

In parallel with the NOI a system of National Tournaments (NT) is organized by the UBM
and with the help of the MES. The season starts with the Fall tournament in November.
The traditional Winter tournament is in January and the final for the season is the Spring
tournament in the end of May or the beginning of June. The NT’s are open. Each student
could participate in each NT. Format of the contests in NT’s is the same as those of the
NOI. But, in principle, tasks are more difficult, and frequently, during these contests,
some experiments are made. Some new topics or types of tasks usually first appear in one
or two NT’s before to be given in the NOI.

The NT’s are not only a possibility for students to have regular contest during the
season. By the results of Fall tournament, Winter tournament and the two days of the
Final round of the NOI, the last 2 places in the long list of National Team are filled. It is
not a rare case when students obtained one of this two “wild cards”, later took place in
the National team. Something more, the Spring tournament is a decisive contest for the
election of the four students, which will represent Bulgaria in the BOI and IOI (since this
year the same is valid for JBOI, too).

4. Preparing Contestants and Training the National Teams

Programming competitions are attractive, because the winners are considered among the
classmates as programmers of a very high rank and the competitors with the best re-
sults have the right to enter university usually without other exams, which is not negligi-
ble. In many countries, including Bulgaria, the question how to help students to prepare
themselves for competitions in Informatics arises, especially for those who do not attend
specialized schools.

Programming Contests for School Students in Bulgaria 117

4.1. Out of Class Forms

The official curriculum in Bulgarian secondary schools include one year teaching of In-
formatics (9th grade) and one year teaching of IT (10th grade) for regular students. In
some schools (especially math schools) students could take part in special (profiling)
education of Informatics. But neither regular nor profiling education in Informatics is
enough to prepare a student to participate in programming contests. It happens in out of
class CS-schools. The famous CS-schools in Varna, Shoumen, Rosse, Stara Zagora, Ve-
liko Tarnovo, Bourgas, Yambol, Gabrovo, Pleven, as well as these in City Math School
of Sofia and National Math School (situated in Sofia also) recruit practically all members
of the National teams recently.

Lecturers in the schools are qualified teachers and professors from the local univer-
sities with the active support from ex-contestants that study in Bulgarian and world uni-
versities. These are the people preparing the tasks for the national contests as well. Un-
fortunately, we are speaking for less then 25 persons that work with great enthusiasm,
practically on voluntary principle, lead their CS-schools, prepare tasks for the National
contests, give lectures during the preparation camps, write teaching materials and so on.

4.2. Preparation Camps

Traditionally the National team for IOI is trained during a summer camp organized a
couple of weeks before the Olympiad. The camp is a mixture of lectures and competition
days, simulating the International Olympiads. The camp is organized in the Black Sea
area for 8–10 days and is accompanied with sport activities, visiting of the beach and
cultural events (the famous Jazz Festival in Varna is scheduled in the same time as our
camps).

Because of the complex situation with lack of qualified teachers, since 2006, the NC
starts to organize some training camps for students of small age groups C, D and E. In
2006 three and in 2007 two such camps were organized with duration of one week each
and in the format of training camps of the National teams. For this purpose, a National
ranking list of contestants was elaborated, based on the results of students in the National
contests, and 10–15 pupils from each age group are invited for a camp. This approach
significantly ameliorated the quality of contestants in small age groups and stimulated
the interest to competitive programming in towns, hosting the camp.

4.3. The Balkan On-Line Training Program campion

One of the interesting forms of preparation, in which Bulgarian school students take part,
is the Balkan on-line training program campion, organized by our Romanian colleagues.
This is a form of training of Romanian students, similar to the American USACO, but
since 2006 it is open for participants of all Balkan countries. The training consists of
regular on-line contests for three age groups (one contest per month in average) and a
final round for best ranked students in each age group. Participation of our students in
this training program was very stimulating and helpful.

118 K. Manev, E. Kelevedjiev, S. Kapralov

4.4. Distant Competitions of Bulgarian Magazines

On the pages of some related to IT Bulgarian magazines (Computer Magazine of The
New Tech Publishing company and PC Magazine of IDG group, supported by software
company Musala Soft), distant competitions in programming has being maintained dur-
ing the past 20 years. We will point out the following main features of that kind of com-
petitions:

– student has a plenty of time to solve the proposed problem – typically a month;
– student’s solution has to contain not only a programming code, but also some ex-

planations;
– the evaluation uses test examples;
– the evaluation also uses examination of student’s explanations;
– after the end of the period, when the participants should submit their solutions,

the author of the proposed problem publishes a detailed description of his own
solution, accompanying it with explanations and discussions of students’ works.

4.5. Other Activities

Among the other activities for preparation of contestants it is worth to mention the pub-
lishing activities and maintaining of a site dedicated to the programming contest.

An old idea of the NC is to publish series of books dedicated to the competi-
tive programming. Despite the big difficulties three such books were published till
now – an introductory book on programming in C/C++ for 11–12 years aged stu-
dents (Yovcheva&Ivanova, 2006), one book on competitive programming for same age
(Kelevedjiev&Dzhenkova, 2004) and one on dynamic programming for elder contestants
(Kelevedjiev, 2001). Two other books – a second part of the introduction to programming
in C/C++ and an introduction to algorithms in graphs have been prepared and will be
published soon.

A Bulgarian Internet portal for competitive programming was created more than
10 years ago by the talented contestant (at that time) Svetlin Nakov. Latter the portal
was generously hosted and maintained by the software company Musala Soft and could
be found at address http://infoman.musala.com. All materials of the Bulgarian
programming contests (statement of the tasks, tests, answers, checkers, as well as the so-
lutions of all contestants) are regularly published on the pages of that site. In such way
the NOI is the most transparent of the scientific Olympiads in Bulgaria.

Something more, the site is regularly publishing analysis (mathematical explanations
and model solutions) of the competitive tasks, written by the authors, by students or
editors of the site. The site also informs for incoming events, gives references to training
materials and other resources and maintains a forum, where Bulgarian contestants could
share experience, discuss the problems, etc.

Programming Contests for School Students in Bulgaria 119

5. Conclusion

As a general supporter of the activities concerning the International Olympiad in Infor-
matics we should note the American foundation for Bulgaria, which is founded by some
successful American businessmen with Bulgarian origin and leaded by a former partic-
ipant in (and Golden medalist from) the International Olympiads in Mathematics. We
would like to express, in behalf of the Bulgarian programming contests community, our
deep acknowledgements to these people.

Bulgaria has long traditions in organizing programming contests for school students.
After the First IOI in 1989 we hosted two Balkan Olympiads (1995 and 2004). Bulgaria
was chosen to organize IOI’2009, just for celebration of the 20th anniversary of the begin-
ning of the IOI. We hope that during the IOI’2009, in the picturesque city of Plovdiv, we
will be able not only to demonstrate our hospitality but to share more of our experience,
too.

Appendix 1: Example of Tasks for Group A

Below a typical set of tasks from the master group A of the Bulgarian NOI (Day 2 of the
Final round of 2007) is given

Task A1. Area. A rectangle Q with sides parallel to the axes of orthogonal planar
coordinate system and a point T , which is internal for the rectangle, are given. N lines
are also given (0 < N < 50), not passing trough T . For each line let us consider the half
of the plane defined by the line, that contains the point T and to form the area of the plane
that is an intersection of all such half planes. Write a program area to find the face of the
obtained area.

Input. The first line of the standard input contains the coordinates (xB , yB) of the
bottom left and (xE , yE) of the upper right corner of the rectangle Q. The second line
contains the coordinates of the point T . The third line contains the number N . Each of the
following N lines contains the coordinates (x1, y1) and (x2, y2) of couple of points that
define one of the given lines. All coordinates are non negative integers, less than 10000.
All lines, including the lines defined by the corners of the rectangle Q are such that no
three lines that pass through a common point.

Output. The program has to print on the standard output one integer – the found face
truncated after the decimal point.

EXAMPLE.
Input Output
0 0 5000 5000 14348737

4000 2500

2

2800 4100 400 4300

800 2200 4600 80

120 K. Manev, E. Kelevedjiev, S. Kapralov

Task A2. Numbers, numbers, ... Let N be a natural number and D is the product
of its digits in decimal system. Let us define an operation over N giving as a result the
numbers N1 = N − D and N2 = N + D. Let us apply the operation to N1 and N2,
to the numbers obtained from them, and so on. A question: is it possible, starting with
a given number N and applying the operation, to obtain the number N again? For some
numbers it is easy to answer, positive or negative, of the question, for other numbers it
will be difficult to find the answer and there are numbers for which finding the answer
seems impossible.

Input. Ten files are given, named numb.01.in, numb.02.in, . . ., numb.10.in. In
the single line of each file 10 different integers between 0 and 1000 will be given.

Output. For each file numb.xx.in you have to produce a file named numb.xx.out

containing string of length 10, composed of characters 0, 1 and 2. Each character corre-
sponds to one number from the input. The character has to be 1, if you established that
the corresponding number in the input could be obtained by itself with applying the oper-
ation. The character has to be 0, if you established that the corresponding number in the
input could not be obtained by itself with applying the operation. If you where not able
to establish the true then the character has to be 2.

EXAMPLE.
numb.xx.in numb.xx.out

10 11 12 13 14 15 16 17 18 19 1000100010

Evaluation. If your output file is the same as the file of the author then 10 points will
be assigned for the test. For each 2 in your output, placed where 0 or 1 is expected, the
result will be decreased by 1 point. If in your input there is 1 in place, where 0 is expected
or the opposite – 0 points will be assigned for the test.

Task A3. Strings. The string S of length L is composed of the characters of given
set T . Write a program string to find the number of different strings X of length P ,
composed of the characters of T , such that S is not a substring of X .

Input. On the first line of the standard input the string S of length L will be given
(1 � L � 2000). Second line of the input contains also a string such that each character of
T appears once in it. The characters of T are small and/or capital letters of Latin alphabet
(so the size of T is no more than 52). On the third line of the standard input the number
P will be given (1 � P � 2000). In 30% of tests the set T contains 2 letters and P � 20.

Output. On the single line of the standard output the program has to print required
number of strings reduced by modulo 106.

EXAMPLE.
Input Output
aa 5
ab

3

Programming Contests for School Students in Bulgaria 121

Appendix 2: Example of Tasks for Group C

Tasks of groups C are especially interesting because of the approaching first international
contest in programming for students aged less than 15.5 years – the Balkan Olympiad in
Informatics for juniors. In the moment when this paper will be presented the Olympiad
will be finished, we will know the tasks that were selected for the contests and if these
tasks are appropriate for the students or not. Now we can only present the vision of the
Bulgarian team about hardness of the tasks for an international contest for the mentioned
age. Here are some tasks for group C from the Spring tournament, held in June 2007.

Task C1. Exchanges. Sporting activities are part of preparation of National team for
Balkan Olympiad in Informatics for juniors. In the break between two lectures sporting
coach of the team proposed following game. On the periphery of a large circle she has
drown N small circles (as many as the students), labeled with the numbers from 1 to N .
Then she distributed students in small circles – one student in a circle and placed in each
circle one of N plates labeled also from 1 to N. By the sign of the teacher each student
had to run from her/his circle to the circle pointed by the plate. The movement gener-
ated a big disorder! When each student reached the goal the teacher gave a sign again
and the students had to make the exercise again. The game finished when all students
reached their initial positions simultaneously. Funny, isn’t it? Write a program change,
to calculate how many movements will be necessary to finish the game.

Input. On the first line of the standard input the number N will be given (5 �
N � 100000). On the second – list of the plates in order they were placed in the cir-
cles 1, 2, . . . , N , respectively.

Output. On the single row of standard output the program has to print the number of
exchanges. In 80% of test cases the result will be less than 2000000000.

EXAMPLE.
Input Output
5 6

3 5 4 1 2

Task C2. Game. A positive integer N and K positive integers, less then N , are given
(1 � N � 108, 2 � K � 15). Two players play the following game. First player choses
one of the K numbers and divides N to it (integer division). Then the second player
choses one of the K numbers and divides to it the result of the first player. Then the first
player moves again and so on. The player that first obtains result 0 is the winner. Write
a program divgame to check is it possible for the first player to win the game, dose not
matter how the second player will move and if yes – how many among the K possible
first divisors lead to a victory.

Input. For each run the program has to check two games. On the first row the numbers
N and K for first game are given and on the second – the K divisors. On the third and
forth line the data for second game are given in similar way.

122 K. Manev, E. Kelevedjiev, S. Kapralov

Output. For each game the program has to print on standard output the number of
divisors that lead to victory. If the number is not zero – a second line has to be printed for
the game with a list of winning divisors.

EXAMPLE.
Input Output
6 2 1

2 3 2

18 2 0

2 3

Task C3. Net
An IT company has to connect computers in a local net. A number less than 15000

identifies each computer. A list of M couples of computers that have to be linked is given.
The two computers in the couple have to be linked directly or trough one other computer.
Write a program net to find the minimal number of direct links that are enough for
creating the net.

Input. First line of the standard input will contain the number M (M < 5000) of
couples that have to be linked. Each of the next M lines contains one of the couples –
two identifiers separated by single space.

Output. On the single line of the standart otput the minimal number of direct links
has to be printed.

EXAMPLES

Input 3 6 7

1 2 1 2 1 4

1 3 0 2 6 10

2 3 5 1 4 6

0 1 2 3

5 2 5 1

6 5 4 10

1 6

Output 2 4 5

References

Verhoeff, T. (1997). The role of competitions in education. Presented at Future World: Educating for the 21st
Century. A conference and exhibition at IOI’97, December.

http://olympiads.win.tue.nl/ioi/ioi97/ffutwrld/competit.html (accessed on June
10, 2007)

Kenderov, P., and N. Maneva (Eds.) (1989). International Olympiad in Informatics. Sofia.
Yovcheva, B., and I. Ivanova (2006). First Step in Programming with C/C++. KLMN, Sofia (in Bulgarian).
Kelevedjiev, E., and Z. Dzhenkova (2004). Algorithms, Programs, Problems. Manual for Beginner’s Trainning

in Competitions and Olympiads. Regalia, Sofia (in Bulgarian).
Kelevedjiev, E. (2001). Dynamic Programming. Anubis, Sofia (in Bulgarian).

Programming Contests for School Students in Bulgaria 123

K. Manev is an associate professor at Sofia University, PhD, teaching
discrete math and algorithms. Since 1982 he is a member of the Bul-
garian NC for olympiads in informatics and leader of NC from 1998 to
2002. He participated in organization of the First IOI and was leader
of the Bulgarian team for IOI’s and BOI’s, president of the SC of two
BOI’s. Elected member of IC of IOI from 2000 to 2003 and member of
IC of IOI from 2005 to 2010 as a representative from the host country of

IOI’2009.
E. Kelevedjiev is a research fellow in Institute of Mathematics and In-
formatics of Bulgarian Academy of Sciences. His field of interests in-
cludes algorithms in computer science, operation research, digitization
techniques, etc. He is a member of the Bulgarian NC for olympiads in
informatics since 1993; leader or deputy leader of the Bulgarian team
for many IOI’s and BOI’s.

S. Kapralov is an associated professor at the Technical University of
Gabrovo, doctor of sciences in mathematics, teaching discrete mathe-
matics and programming. He is vice president of UBM, responsible for
olympiads in informatics; member of the Bulgarian NC for olympiads
in informatics since 2000 and leader of the NC since 2002; leader or
deputy leader of the Bulgarian team for many IOI’s and BOI’s.

Olympiads in Informatics, 2007, Vol. 1, 124–130 124
© 2007 Institute of Mathematics and Informatics, Vilnius

Perspectives on Grading Systems

Martin MAREŠ

Department of Applied Mathematics, Faculty of Math and Physics, Charles University in Prague
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
e-mail: mares@kam.mff.cuni.cz

Abstract. Programming contests often use automatic grading of the submitted solutions. This arti-
cle describes one such system we have developed for the Czech national programming olympiad,
the experiences gathered over the course of its development and also our perspectives on the future
of such systems.

Key words: automatic grading, mo-eval, Linux.

1. Introduction

Many programming contests in the world, including the IOI, are based on automatic
grading of the submitted solutions. This is accomplished by running them on batches
of input data and testing correctness of the output. Time and space limits are usually
enforced during the process, which allows to judge by not only the (approximation of)
the correctness of the solution, but also its time and space complexity.

Multiple such evaluation systems have been developed, but most of them are used only
in a single country and they are usually neither publicly available nor well documented.
This seems to be a waste of effort by inventing the same things over and over and also by
making mistakes somebody else has already made and understood.

This article is our modest attempt to help mapping the landscape of automatic evalu-
ation of solutions. We will describe the MO contest environment we have designed and
developed for several Czech programming contests. We will try to review the experiences
gathered over the course of its development and present our perspectives on the future of
similar systems.

The current version of the MO system can be downloaded from the web site listed in
references. At the time of this writing, it was in use for several years in the Czech national
olympiad in programming, at the Czech-Polish-Slovak preparation camps (which serve
as a training for both our contestants and the system) and also for testing of student
homeworks at our faculty. A new version is currently being finished for the Central-
European olympiad in informatics (CEOI 2007) .

Perspectives on Grading Systems 125

2. The Contest System

2.1. Building Blocks

The MO contest system consists of the following parts:
• development environment – editors, compilers, debuggers and similar tools used by

the contestants for writing the solutions. In our case, this is just an appropriately
configured Debian Linux system with a couple of packages added;

• submitter – this is the user interface of the contest system for contestants. It is
primarily used for submitting a finished task solution for grading. Currently, we use
a simple command-line utility for the national olympiad and a web-based interface
for our classes;

• evaluator (also known as a grader) – takes care of testing the solutions and impos-
ing limits. This is the core of the whole system;

• feedback – presents the results of the evaluator to the users. In IOI-type contests,
its only role is to generate the evaluation reports and rank lists, but in general it can
provide on-line feedback to contestants and/or spectators;

• auxiliary services – printing and similar. They vary from contest to contest and
there are out of scope of this paper.

In this article, we will focus on the evaluator part, but we will keep in mind its con-
nections to the other parts.

2.2. Design Goals

When we were designing our contest system, we had several basic goals in mind:
First of all, the system should be flexible. There are many types of contests ranging

from the strictly off-line nature of the IOI to those with fully on-line feedback as the ACM
ICPC. The variety of contest tasks and their types of interaction is probably even higher.
Therefore we should try to expect the unexpected and make the system highly config-
urable and modular, so that the usual tasks can be dealt with by setting the parameters,
while for the exotic ones we can plug in new modules.

Second, we should make the system secure. The submitted solutions can try to attack
the evaluation system in various ways (not necessarily intentionally). A thorough study
of known attacks has been recently published by M. Forišek. Hence the evaluator must be
robust enough and isolate the examined solution from the rest of the evaluation system.
This is an instance of the classical problem of running untrusted code, frequently studied
as a part of OS security.

Last, but not least, the evaluator should be as simple as possible (but of course not
simpler) in order to allow easy review of the whole code for security and correctness.
Because of this, we have avoided putting any user interface into the evaluator and we
prefer trivial input and output interfaces instead, which can be then presented to the user
by some other components of the contest system.

We have also decided that having the system work on Linux is enough for our pur-
poses. However, most parts of the evaluator can run on any POSIX-compliant system,
the only exception being the sandbox, which makes heavy use of special features of the
Linux kernel.

126 M. Mareš

3. The Evaluator

3.1. Sandbox

The sandbox is the core of the evaluator. Its purpose is to run a program in a controlled
environment, where both the interaction with other programs and the consumption of sys-
tem resources (time, memory and disk space) is limited. We use the sandbox for running
the solutions being evaluated, but also (with a relaxed set of restrictions) for compiling
them.

The implementation of the sandbox makes use of the ptrace interface of the Linux ker-
nel, originally designed for attaching debuggers to programs. It runs the program within
a separate process and asks the kernel to interrupt the process every time it tries to make
a system call. The sandbox then examines the parameters of the call and either lets the
program continue its execution, or terminates it. For example, allocation of memory is al-
ways allowed, opening of files is allowed after inspecting the path to the file, and creating
a new process is always forbidden.

This approach has been well studied by the secure system researchers and it has sev-
eral known drawbacks, mostly related to race conditions in multi-threaded programs (an-
other thread can modify the parameters of a syscall in the small time window between
checking the parameters by the monitor and really executing the call). Fortunately, none
of these problems apply to our case as no concurrency takes place. Another thing needing
some extra attention is that although the contestants are not expected to use any syscalls
outside the basic reading and writing of files and allocating memory, the standard libraries
they call do use much more. We can however still manage with a simple list of obviously
safe syscalls and a handful of easily verifiable exceptions.

Consumption of resources is controlled in the usual ways. We use the ulimit mech-
anism provided by the kernel whereever it is possible, that is to constrain the memory
(address space) allocated by the process and also the maximum number of file handles
used. Disk space filled by the program is limited by a disk quota for a special user ID
which is used exclusively for the sandbox.

Limitation of execution time is slightly more complex, because it is not obvious what
exactly should the time mean. The sandbox allows to measure either the user time of
the process (which is accounted by the kernel and includes only timer ticks spent in
the specific process in the user mode of the processor, that is, excluding syscalls and
interrupts) or the wall clock time (as reported by the real-time clock of the OS). In both
cases, the sandbox monitors the state of the timer periodically, kills the process when it
exceeds the allowed time and it also checks the exact value of the timer when the program
finishes successfully.

We currently use the first method for almost all tasks, since it makes the timing of
the program less dependent on other programs running on the same system (but not com-
pletely independent, see the discussion below). As the kernel measures the user time by
sampling on timer ticks, this method can be circumvented by processes which tend to
work in short time quanta and sleep in the meantime, but in our case no syscalls for
sleeping should be available.

Perspectives on Grading Systems 127

The second method is sometimes used for interactive tasks, where substantial amounts
of time can be spent by waiting for the system’s reply and a deadlock is possible when vi-
olating the protocol. Proper accounting for communication delays and deadlock detection
are obviously preferable, but they are not always easy to perform.

3.2. The Scripts

Except for the sandbox, the rest of the evaluator is implemented as a set of scripts for the
Bourne shell. This can sound strange at first, but as most of the job is just gluing small
parts together, the shell is often a better tool than a “real” programming language.

As we have already mentioned, the design is modular. We have a library of shell
functions serving as building blocks for performing the basic tasks: compilation of the
contestant’s solution, preparing inputs, running it inside a sandbox, fetching and valida-
tion of the program’s outputs. The evaluator itself (the front-end used by the organizers
to process the solutions) is then a simple script which just calls the building blocks in the
right order.

All modules also record whatever they are doing in a common log file, which can be
later examined by the contestants to understand what they have done wrong.

3.3. Configuration

All the building blocks are highly configurable. The configuration variables range from
simple settings like the table of compilers and their options for various languages, or time
and memory limits, to commands run to perform various tasks (for example verification
of correctness of program output).

The configuration files are again shell scripts. Their primary task is to set environment
variables corresponding to the configuration settings. First, a global configuration file for
the contest is loaded (it usually defines the basic parameters like the compilers and also
provides defaults for all other settings), then it can be modified by per-task configuration
and finally even individual test cases can override anything (for example, different time
limits can be used for different test cases).

3.4. Task Types

The standard building blocks know how to handle the usual types of contest tasks. If the
task is of one of these types, it is sufficient to set the corresponding parameters in the
configuration. You can of course define your own task types by providing a couple of
shell functions or scripts.

The most common task type is the input/output task. The tested program is given an
input file and it produces an output file. Alternatively, communication by standard input
and output can be used. A judge program specified in the configuration is then run to
check the correctness of the output and its exit code determines the outcome. The default
judge is just a call of the diff utility, set up to compare the file with the (unique) correct
output, ignoring differences in white space. The judge can also write messages to its
standard error output, which become a part of the evaluation log.

128 M. Mareš

Other tasks can be interactive. Such tasks are for example games, which communicate
on-line with an opponent played by the judge. In this mode, the evaluator runs the tested
program and the judge in parallel and it connects the standard output of the program to the
standard input of the judge and vice versa. The exit code and the error output of the judge
are again used to determine the outcome and log messages. We usually wrap the protocol
between the program and the judge in a library linked to the evaluated programs, so that
the contestants do not have to take care about details of the communication protocol and
proper flushing of I/O buffers.

The third group of standard tasks are the open-data tasks, in which the testing data are
public and the contestants submit only the output files, which they can obtain in whatever
way they wish. In this mode, the modules taking care of compilation and running of the
solution are replaced by a simple fetching of the submitted output file and the file is then
processed like in an I/O task.

3.5. Hacks

The flexibility of a system can be probably best judged by its applications to situations
unknown at the time of its design. Here we show a couple of such “hacks”.

At one of the previous preparation camps, we had an approximation task and the
points were determined by the quality of the approximation (as we did not know the
exact optimum, the quality was measured relative to the maximum of the best of the con-
testants’ solutions and our program). This does not fit well the structure of the evaluator,
because it is run separately for different contestants. However, we can take advantage of
the simple interface between the evaluator and the rest of the contest systems – for every
contestant, the evaluator creates a simple text file containing points and judge’s verdicts
for all test cases. Hence we can let the judge check the validity of the output and record its
value in the verdict and after evaluating all contestants plug in a simple program, which
will read all verdicts and recalculate the scores appropriately.

This method can be also used for grouping of test cases (we want to avoid awarding
points to programs which always print “No solution”, so we combine test cases of roughly
the same complexity to groups and award points only if the whole group is answered
correctly). We let the evaluator assign points for individual test cases and then a grouping
module is run, which calculates the group scores. As the grouping technique is becoming
commonplace, this module will be moved to the library of standard modules soon.

Another interesting application is pitting the solutions against each other if the task
is a two-player game. Instead of playing against a judge provided by the organizers, we
simulate a tournament in which all possible pairs of matches are played and then the
points are assigned according to the outcome of the tournament. This again does not fit
in the framework directly, but we can replace the default interface of the evaluator by a
simple program (in fact, it was something like 30 lines of shell script), which will use
the standard modules to compile the programs, run them in the respective sandboxes and
connect them together through a judge, which will make sure that everybody follows the
rules of the game and the communication protocol.

Perspectives on Grading Systems 129

4. Perspectives

Our contest environment has proven itself useful in multiple contests, but it is far from
being the final word on the subject. Several questions keep arising and the answers will
shape the future contest environments (and also future versions of ours).

4.1. Time Measurement

The computers are becoming gradually faster and the traditional one-second resolution
of time limits requires still larger input data to distinguish between efficient and slow
solutions. Also, the speed of the processor is increasing faster than the speed of disks, so
with larger inputs the proportion of time spent by reading the input increases.

The obvious solution is of course increasing the timer resolution and use sub-second
timing, but it is not so easy as it might seem, because there is a lot of noise in the time
measurements, which suddenly becomes very visible on this scale. Many different factors
contribute to the noise, the most important of them being caches (both the code and data
caches of the processor and the disk cache of the operating system). The initial contents of
caches when the program is started are unpredictable and the algorithms controlling cache
operations are usually very complex and they involve hidden variables. For example, most
data caches are set-associative and indexed by physical addresses, so the efficiency of the
caches is influenced by placement of the pages of memory allocated by the program in
the physical address space of the processor. While it is very rare for the cache effects
to cause slowdown on the order of magnitude (even this has been observed, but not in a
contest task), the effects are large enough to become a significant factor in millisecond
time measurements.

We can try to use the standard engineering techniques to deal with the noise: repeat
the measurements several times and take a minimum or an average of the values, or try
to make the initial state more predictable (e.g., by letting the evaluator pre-read the input
file to increase the probability of it being present in the disk cache; by the way, in our
evaluator this is a pleasant side-effect of copying the input file to the directory accessible
to the sandbox just before running the program). This helps to eliminate the most visible
effects, but definitely not all of them, since the physical addresses used in the different
testing runs will very likely be correlated.

An interesting approach has been recently suggested by Szymon Acedanski and tested
at CPSPC 2006 in Warszawa. Instead of measuring the time, we can count the number of
instructions executed in the user mode of the processor. This can be easily accomplished
by a simple kernel patch using the performance counters of the processor. The instruction
count corresponds to the execution time on an idealized computer and it is not influenced
by any cache effects nor other sources of noise, so the resolution can be arbitrarily fine.
The only drawback is that it could hide more implementation details than we would wish
– for example, this model makes integer addition and floating-point multiplication equally
expensive, which might not be desired.

We plan to implement this type of timing in our environment to give it more field
testing.

130 M. Mareš

4.2. Inputs and Outputs

Large input files are necessary not only because of precision of timing, but also when
we want to distinguish between similar time complexities, especially between linear and
linear-logarithmic one. As already mentioned, this leads to a big fraction of time being
spent on parsing of files and it also significantly hurts contestants using the slower I/O
libraries (for example, we have seen several tasks which are impossible to solve if one
uses C++ streams, because the stream library is unable to read the input within the time
limit).

Experienced authors of tasks often take this problem into account and they use tighter
encodings of inputs, like describing a tree by its traversal sequence. This helps in some
cases, but it is far from being a universal technique. It can also unnecessarily complicate
parsing of inputs.

One possibility (again suggested by Szymon Acedanski) is to ask the contestants to
use a special library for reading the input, which provides functions for reading values of
all standard types. These functions consume input files preprocessed to a special binary
format, which saves most of the reading and parsing overhead. However, the contestants
have to learn the new functions.

A similar effect with less complications for the contestants could be achieved by mak-
ing the evaluation system parse the input before the clock starts and providing it to the
program in global variables. The program can then access its input data by simply link-
ing with a library. This trick of course leaves out an interesting class of problems – the
streaming problems, where the input is larger than available memory and it has to be pro-
cessed sequentially. On the other hand, we can view such problems as a special case of
interactive tasks and also hide the implementation of input and output in a library.

It is not clear if this format of input is the best answer to the problem, but it is definitely
worth trying and we plan to experiment with it in our framework in the near future.

References

Forišek, M. (2006). Security of programming contest systems. In Informatics in Secondary Schools, Evolution
and Perspectives, Vilnius, Lithuania.

Mareš, M. (2007). The MO-eval web site.
http://mj.ucw.cz/mo-eval/

M. Mareš is a doctoral student at the Department of Applied Mathe-
matics of Faculty of Mathematics and Physics of the Charles Univer-
sity in Prague, a researcher at the Institute for Theoretical Computer
Science of the same faculty, organizer of several Czech programming
contests, member of the IOI Scientific Committee and a Linux hacker.

Olympiads in Informatics, 2007, Vol. 1, 131–140 131
© 2007 Institute of Mathematics and Informatics, Vilnius

Tasks at Kyrgyzstani Olympiads in Informatics:
Experience and Proposals

Pavel S. PANKOV

International University of Kyrgyzstan
A. Sydykov str., 252, Apt. 10, Bishkek, 720001 Kyrgyzstan
e-mail: pps50ster@gmail.com, pps50@rambler.ru

Timur R. ORUSKULOV

Ministry of Education and Science of Kyrgyzstan
Vostok 5, 14/2, Apt. 3, Bishkek, 720065 Kyrgyzstan
e-mail: toruskulov@mail.ru

Abstract. Many of tasks proposed at Olympiads in Informatics (OI) mean “images” in any sense
but in most cases they do not appear evidently. At each OI in Kyrgyzstan, one task is given to
present any graphical image, either in text mode or in graphical mode. Such tasks meet the Statute
S1.7 of the IOI Regulations “to bring the discipline of Informatics to the attention of young people”,
make OIs more attractive for sponsors, can reflect state and national features. Ways to generate and
to score such tasks and presentation of some tasks at the Conference is supposed. The history and
content of OIs and teaching Informatics in Kyrgyzstan are also described.

Key words: olympiads in Informatics, Kyrgyzstan, history, graphics.

1. Survey of Teaching Informatics in Kyrgyzstan

Informatics (under the traditional name “Foundations of Informatics and Computer Fa-
cilities”) is taught in all secondary schools of Kyrgyzstan since autumn 1985. Firstly it
was taught “with chalk on a blackboard” and calculators and pupils sometimes visited
local computer centers. Further several were put in some schools. Now almost all schools
have classes with IBM-compatible computers, some of them linked up with WWW.

By the State standard, now Informatics is taught obligatorily in 7th (1 hour a week),
8th and 9th (2 hours a week) forms. Decision to teach or not Informatics in elder (10th and
11th) forms is given to schools. Many schools, all lyceums and gymnasiums themselves
introduce Informatics lessons in elder forms. Now, a new curriculum is elaborated. It
provides teaching Informatics in all forms of primary and secondary school, from 1st till
11th ones.

132 P. S. Pankov, T. R. Oruskulov

2. Survey of Olympiads in Informatics in Kyrgyzstan

The Olympiads in Bishkek city, the capital of Kyrgyzstan, are conducted since 1985
(annually in January); National ones are conducted from 1987 (annually in March). The
contestants on all four levels: I (school); II (district or area); III (city or region); and IV
(National) are divided into two groups: the first one includes 10th form schoolchildren
(16 years old and younger) and the second one does 11th form schoolchildren (17 years
old).

Each of the seven regions, Bishkek city as a capital and Osh city as “a southern cap-
ital” send 2 pupils in each group of the IV level. So, 19–20 pupils (including winners of
the preceding year) participate in the first group and 17–18 pupils do in the second one.

Because of essential differences between traditional contents of IOI and ones of our
Olympiads (see below), Spring camps with final Selective competitions to IOI are con-
ducted for all better contestants (6–8 of the first group and 3–4 of the second one) of the
IV level (annually in April).

The IV level is conducted by the Ministry of Education and Science at the Kyrgyz
National University or at the Kyrgyz State Technical University with support by sponsors.
Spring camps are conducted at the National Computer Gymnasium.

Also, some universities conduct Olympiads and other kinds of competitions in Infor-
matics (irregularly) for their students and for schoolchildren to attract entrants.

Kyrgyzstan participates in IOI since 2000. Our achievements are three bronze medals
won by A. Mokhov (IOI 2000), A. Baryshnikov (IOI 2004), I. Goroshko (IOI 2005).

3. Content of Olympiads

The IV level of Olympiad includes two rounds: “theoretical” (by pen and paper; two
tasks; 2.5 hours) and “practical” (by computer; three tasks; 2.5 hours).

The theoretical round yields the opportunity to diversify content of Olympiads and to
involve items of Informatics which cannot be covered by tasks for computer implemen-
tation.

Most of tasks proposed at theoretical rounds may be classified as follows (Pankov et
al., 2000).

T1) A goal is described. To write a corresponding algorithm (using operations and
conditions which are impossible or too difficult to be implemented at a computer).

T2) To restore (guess) an algorithm and its goal (or possible goals) by examples of
results of its work.

T3) To understand (guess) the goal (or possible goals) of a given algorithm (also
described with non-formal operations and conditions) and to improve it. The output of
the algorithm may be “graphical” also.

We announce that, to obtain a full score, the contestant has to write a (same) algorithm
in two languages. There can be a natural language, flow-charts, program in an algorithmic
language (possibly, with additional non-formal operations), vast comments to a program,
and so on.

Tasks at Kyrgyzstani Olympiads in Informatics: Experience and Proposals 133

REMARK 1. In T3 case, the given algorithm must have a simple goal but could be written
very complicatedly, with unnecessary operations and conditions, cycling or infinite (until
overflow) branches.

REMARK 2. In T2 and T3 cases, the jury must have their own version about the goal but
contestants’ different guesses can obtain full score if they are witty and meet the data.

Most of tasks proposed at practical rounds are standard:
P1) A goal and restrictions on input are described. To write a program transforming

input into output in a limited time (5 seconds) due to this goal.
In one of three tasks, the output must either be graphical or imitate graphics in a text

mode (see the detailed description below).
To diversify scope of tasks, the following types of tasks are also proposed.
P2) To write a program for P1 with restricted means (for example, comparison only

letter-by-letter). Hence, the jury is to verify the listing too.
P3) A very slow (possibly, non-formal) algorithm and restrictions on input are de-

scribed. To write a program being equivalent to it and working in a limited time.
P4) “Black box”. A program is given as an exe-file (a contestant may run it as many

times as she wishes). To write a program being equivalent to the given one. (It means that
the given program is sufficiently simple, does not contain large numbers and complex
algebraic expressions).

REMARK 3. At each Olympiad, some tasks must be devoted to state symbols or other
features, algorithms in Kyrgyz language, sponsors (their logos, business, addresses etc.),
number of the year, events of the year, geography of Kyrgyzstan (Pankov et al., 2003).

Thus, some tasks of our Olympiads demand erudition, knowledge in other subjects,
such as physics, chemistry, geography, philology.

Tasks in Selective competitions correspond to traditional scope of IOIs: long arith-
metic, combinatory, graphs, discrete optimization, moving along rectangular grid (points
with integer coordinates) and polygons on it, embedding of words, cubes with integer
sides (Pankov, 2004).

REMARK 4. Simple in sense and interesting tasks for graphs are generated by involving
of “moving” objects differing from a point (two points which are prohibited to meet,
“train”, “worm” etc.).

4. Graphical Tasks

Many of tasks proposed at Olympiads in Informatics (on graphs, rectangular grid, count-
ing of geometrical figures, coverings, packings) mean “images” in any sense, and exam-
ples to them are given in a graphical form but the output is textual. For example, see

134 P. S. Pankov, T. R. Oruskulov

(Pankov et al., 2005). (Also, while solving a task, a contestant can program an additional
graphical output for their own use, to avoid rough mistakes).

We shall not consider such tasks; we mean “graphical” tasks as ones with graphical
output. By our opinion, such tasks meet the Statute S1.7 of the IOI Regulations “to bring
the discipline of Informatics to the attention of young people”. By our experience, such
tasks make Olympiads more attractive for sponsors and can reflect state and national
features.

By our opinion, tasks themselves ought to contain text only; graphical images can be
in examples only.

4.1. Possible Content of Graphical Tasks

We propose the following standard and non-standard ways to elaborate graphical tasks
(including interactive tasks, animated cartoons).

G1) A simple drawing (an element of state symbols, a sponsor’s logo etc.) is described
verbally; either its dimensions (numbers) or some characteristic points (on a display) are
input.

Such a description of an image is a base for more complex tasks. All motions (trans-
formations) mentioned below must be continuous and slow. “User” means the member
of jury verifying the solution.

G1A) Firstly, all display “is covered with snow”. If User “erases snow” with a cursor
then the image appears. (More generally, the image changes under a cursor).

G1B) The image moves (transforms) due to demanding of the task. The image can
also be “larger” than the display; then its parts appear successfully.

G1C) Additionally, firstly User inputs a (very simple) drawing (one or two segments);
after input it transforms into the image.

G2) The image is being built successfully of elements (letters, points, segments) input
by User arbitrarily until the image is completed; if the input element does not meet the
condition then it is rejected.

G3) The image is to reflect any mathematical object being an input and/or a solution
of the task.

G4) The initial image presents a base for the task. User inputs a data for the task; the
program adds a presentation of an (optimal, close to optimal or arbitrary) solution of the
task to the image.

There is also a kind of mathematical tasks which do not demand graphics explicitly
but can be solved effectively by graphical and pixel methods rather than mathematical
ones:

GD) A geometrical image is defined in any way. Find a distance between two men-
tioned points with a low accuracy (2–5%).

GA) . . . Find an area of any mentioned part of the image with a low accuracy (5–
10%).

Tasks at Kyrgyzstani Olympiads in Informatics: Experience and Proposals 135

4.2. Composition and Scoring of Graphical Tasks

To make a task interesting and accessible for contestants of various levels, it may be
subdivided into stages and/or alternative subtasks in increasing order of complexity, with
corresponding scoring of each stage. Let the total score be 10 points.

EXAMPLE 1. The first stage of a task of type G1B must be a task of type G1 (1–2 points).

EXAMPLE 2. The first stage of a task of type GL or GA may be a task to present the
graphical image itself (4–5 points).

EXAMPLE 3. If letters are to be shown then it can be done: in text mode (1 point), with
segments (5 points) or with segments and arcs (10 points).

5. Examples of Tasks

Most of tasks given below are very simple. We give them as examples rather than stan-
dards.

Task 1 (T2). Any algorithm transforms certain words containing the letters B, M, P.
For instance, the algorithm transforms the word PBPBMB into PB, MBMBPBMB into
MBMB, MBPBPBMBPB into PB, PBPB into PBPB, MBPBPBPB into PBPB. For cer-
tain words, for instance, PPB, MBMP, BBPBPMPB, the algorithm gives “error”. A) What
sense may be in this? B) Write such algorithm.

Comments. Contestants gave different “right” answers to A): “algebraic simplifying:
+B+B-B+B= +B+B”; “Annihilation of particles in nuclear physics” etc.

From these examples a contestant cannot guess, what does a word of type
PBMBMBPB transforms to? Thus, any non-empty respond demonstrating paying at-
tention to it was considered to be right.

Task 2 (T2). While working the algorithm elaborates a sequence of natural numbers;
the last number is the output.

Ex.1. 5000, 2000, 1000, 1500, 1700, 1600, 1550, 1520, 1510, 1515, 1516, 1517, 1516.
Ex.2. 5000, 2000, 1000, 500, 700, 900, 950, 970, 990, 995, 997, 998, 999, 998.
A) What sense may be in this? B) Write such algorithm.
Jury’s version: it is a process of weighing with the traditional (decimal) set of weights:

1, 2, 2, 5, 10, 20, 20, 50, . . ., with rounding down.
From these examples a contestant must guess that an input is a positive number. Also,

s/he cannot guess, what is the heaviest weight in the set? Thus, any solution demonstrating
paying attention to it was considered to be right.

Task 3 (T3) (2003). A) What goal may this algorithm have? (A possible goal must be
defined by the initial (instead of simplified) text of algorithm). B) Is it possible to simplify
or improve it (with the same input and output)?

136 P. S. Pankov, T. R. Oruskulov

Let X := 90; Y := 53; T := −201; Output X, Y, T .
M1) Let T := T + 38; Input B.
If B > 0 then let X := X − 1/2 else Y := Y − 1/2.
If X < 72 then let X := X + 1/2 and Y := Y − 1/2.
If Y < 42 then let X := X − 1/2 and Y := Y + 1/2.
If X > 72 or Y > 42 then go to M1.
Output X , Y , T ; End.

Answer B). A version of simplified algorithm:

Let X := 90; Y := 53; T := −201; Output X, Y, T .
M) Input (any) numbers 58 times.
Let X := 72; Y := 42; T := 2003; Output X, Y, T ; End.

Comments. Analysis demonstrates that values of numbers B do not influence to the
final result. But it is stressed in the condition of the task, that the simplified algorithm
should have the same input and output, as initial one. Therefore the jury reduced points
to those who had missed a statement of type M) in simplified algorithms.

A) As the final value of T is a year (2003 A.D.), we may suppose that the initial value
of ’ is any historical date (201 B.C.). It is possible to recollect, that it is the date of first
known mention of ethnonym “Kyrgyz”. Hence, the algorithm shows the movement of
Kyrgyzes at time from Altai Mountains up to Tien Shan Mountains, in general south-
west direction. Then X , Y are, likely, coordinates (geographical coordinates). One may
guess, that X is longitude and Y is latitude [we have chosen the center of Khakassia
as the initial point and Talas valley as the final point of wandering]. Inputs of numbers
B denote orders or historical circumstances pushing people in various directions (once
during each generation).

As much is unknown in the history of Kyrgyzes, this algorithm, irrespective of input
numbers (defining coordinates of intermediate points) yields the same output.

Task 4 (GL). Solar disk S with forty uniformly radiating beams is placed in the center
of the Kyrgyzstan national flag, on the red background. An image of red “tyundyuk” T

is placed inside S. The ratio of length L of a flag to its width W is equal to 5 : 3. The
diameter D of forty-beams circle is equal to 3/5 ∗ W , the diameter E of S is equal to
3/5 ∗ D. The diameter F of T is equal to 1/2 ∗ D.

REMARK. An image of “tyundyuk” (top window of transportable felt house – “yurta”)
consists of thin ring and six bent lines crossing the ring.

Let us to mark and renumber some points at the flag:
The middle of a left edge of a flag is #1; the end of the left beam is #2, the left edge of

Sun is #3, the right edge of “tyundyuk” is #4, the end of the right beam is #5; the bottom
edge of Sun is #6, the top right corner of a flag is #7.

To write a program to find the area of a flag with an error less than 1% if A) given
the number K (K � 5) and the distance H between the center of a flag and the point

Tasks at Kyrgyzstani Olympiads in Informatics: Experience and Proposals 137

#K (positive number), or B) given two numbers K �= J (K, J � 7) and the distance H

between the point #K and the point #J (positive number).
Comment. Although the goal is to find an area, this task is of type (GL) because the

length of the flag defines its area evidently.
The simplest solution by means of computer. Choose size and arrangement of the flag

on the coordinate plane arbitrarily; find its area G1; calculate coordinates of the listed
points (denote them as P [K], K = 1..7). To solve A) and B) uniformly, denote the
center of the flag as P [0]. Given two integers K �= J in [0..7] and H > 0, calculate
H1 :=(distance between P [K] and P [J]), and the answer G := G1 ∗ (H/H1)2.

For example, let P [0] := (0, 0); L := 2. Then W = 2 ∗ 3/5, D = 3/5 ∗ W ,
E := 3/5 ∗ D, F := 1/2 ∗ D; G1 := L ∗ W ; P [1] := (−1, 0); P [2] := (−D/2, 0);
P [3] := (−E/2, 0); P [4] := (F/2, 0); P [5] := (D/2, 0); P [6] := (0,−E/2); P [7] :=
(1, W/2).

Task 5 (G1B) Suppose that we are above the Earth and we can see Bishkek and Istan-
bul only through clouds (as two little figures on a homogeneous background). What shall
we see (how will the view change) if we move (at our will):

A) downwards (up to clouds);
B) either to East or to West and as in item A);
C) either to North or to South and as in items A) and B)?

REMARK. “Istanbul” is mentioned because there are some Kyrgyz-Turkish lyceums in
Kyrgyzstan and their directorate “Sebat” supports Olympiads in Informatics.

Task 6 (G4) (2002). Let Lake looks like an isosceles triangle, the basis of the triangle
(northern coast) is 190 km and height (width of Lake) is 60 km. Village is located on
northern coast of Lake at 20 km from the western corner. Horse runs with speed of 20
km/hour and swims with speed of 10 km/hour. Write a program: A) to show Lake and
Village; B) to enable User to show any point on the coast of Lake; C) to draw the fastest
way for Horse or D) to show the motion (in scale of 1 hour =1 sec.) of Horse from this
point up to Village along such way.

Scoring: 1 point for A); 2 points for B); 3 points for C); 7 points for D).
Comments. 2002 was the year of Horse. The task reflects a historic fact. This village

was named after Horse which had crossed the Issyk-Kul lake in XVIII century.

Task 7 (G1–GA). On midday, near the Ataturk-Alatoo University [a sponsor], a pho-
tographer realized that one of mountain peaks will be soon seen exactly on the center of
the Sun [element of the insignia of Kyrgyzstan]. He wishes to choose a colored photo for
the newspaper “Vecherniy (Evening) Bishkek” [a sponsor]. The seen diameter of the Sun
is half degree.

Given the number of seconds passed after “touching” the mountainside by the Sun.
Write a program A) performing the sight of the Sun and the mountain; B) calculating the
percent of the seen part of the Sun’s disk (with the accuracy 10%).

Present the mountain as a symmetrical right angle. The seen diameter of the Sun disc
is half degree.

138 P. S. Pankov, T. R. Oruskulov

Comments. Beginning of solution of A). The Sun passes its diameter during 24 ∗
0.5/360hours = 120 seconds. It moves horizontally (on midday) and from left to right
(in Kyrgyzstan). When the Sun’s disk “touches” the mountainside the “distance” between
the center of the Sun and the peak is 60√2 = 85 seconds.

Mathematical solution for B) is complicated but the contestant can do as follows.
Choose an acceptable diameter D of the Sun’s disk (50–70 pixels); count the number N

of pixels in it and include N into the program; after performing the image on a display
count the number N1 of pixels in the seen part of the Sun’s disk (the number of yellow
pixels in the square with the side D circumscribing the Sun’s disk); output the number
N1/N ∗ 100 (percents).

Task 8 (G4). Given a natural number N (13 � N � 200), and two natural numbers
L, M (1 � L < M � 10). Arrange N points with integer coordinates on a plane in such
a way that the number of distances between pairs of them that are in the interval [L, M]
to be as large as possible. The program must give the following output:

A) a file with:
1) N lines with the list of numbers and coordinates of N points. Each line contains

number of point (from 1 to N), its X-coordinate and Y-coordinate. All points must be
different. The coordinates must be natural numbers less than 800.

2) One line with number (denote it as K) of pairs of points having distance in the
interval [L, M].

3) Corresponding K lines with the list of these pairs of points. Each line contains the
number of the pair and the numbers of points in pair (the second must be greater than the
first). All pairs must be different.

B) Arrangement of these points replaced by little stars on a display.
Scoring: 1 + 9∗(NumPairsInYourAnswer/NumPairsInBestAnswer)2 rounded down.
(Such a task was submitted to IOI’2003 but was not accepted).
Comment. This task looks like a continuous one but is discrete.

6. Proposals and Conclusion

At IOI’2006, in Merida Zide Du, President of the IOI, proposed the idea of involving
graphics into IOI. Certainly, most of types of graphical tasks mentioned above do not suit
responsible international competitions. We propose tasks of type G3 (only task each day).
If it is possible, images would be related to any reality: reminiscences of the host country
or sponsors. Also, knowledge and skills necessary to fulfill the task must be obvious for
contestants.

The following items are to diminish subjectivity and non-automation in scoring.

i) The score for a graphical presentation is fixed: about 30% points; other 70% points
are distributed in a common way.

ii) These 30% points are given alternatively: 30 or 0.
iii) The quantity and content of graphical images are fixed: the first image presents the

initial data and the second one presents the result.

Tasks at Kyrgyzstani Olympiads in Informatics: Experience and Proposals 139

iv) The only test (G-test below) in the task for graphical presentation is to be as simple
as possible.

v) The initial data for the G-test have to be announced as fully as possible.
vi) The size and other parameters of a graphical image in the G-test are to be described

in details, for instance “600×400 pixels etc.”
vii) If the goal of task is an optimization then the contestant’s program for the G-test

must give a result not less than 50% of the best result if it is known or of the best
result of all contestants (i.e., the score for the test itself may be zero, but the score
for the graphical presentation may be 30% points).

viii) The following scoring procedure is proposed:

– while submitting the task the contestant announces whether the program has
the option to generate graphical images (only within the range announced
in v));

– if the G-test is passed (may be, not with the full score) then the Scoring Pro-
gram shows the graphical images to two or three members of jury. If they
(independently) confirm that these graphical images are proper or not proper
then the Scoring Program adds or does not add 30% points; if their opinions
are different then after this procedure they gather together and discuss all
(only few) ambiguous programs (still they do not know contestants-authors
of these programs).

We hope that graduated implementation of graphical tasks into Olympiads of top lev-
els will make them more interesting for young people and attractive for prospective spon-
sors. Also, demonstration of best works can decorate closing ceremonies and publications
on Olympiads.

References

Pankov, P.S., T.R. Oruskulov, G.G. Miroshnichenko (2000). School Olympiads in Informatics (1985–2000
years). Bishkek (in Kyrgyz & Russian).

Pankov, P.S., T.R. Oruskulov, G.G. Miroshnichenko (2003). Olympiad tasks in Informatics, devoted to Kirghiz
statehood, history of Kyrgyzstan and Great Silk road. Bishkek [in Kyrgyz & Russian].

Pankov, P.S. (2004). Preparing for international Olympiads in Informatics. Bulletin of the Kyrgyz National
University, 6(4), 52–54.

Pankov, P., S. Acedanski, J. Pawlewicz (2005). Polish flag. In The 17th International Olympiad in Informatics
(IOI’2005). Tasks and Solutions. Nowy Sacz, pp. 19–23.

140 P. S. Pankov, T. R. Oruskulov

P. S. Pankov (1950), doctor of physical-math. sciences, prof., corr.
member of Kyrgyzstani National Academy of Sciences (KR NAS), is
the chairman of jury of Bishkek City OIs since 1985, of National OIs
since 1987, the leader of Kyrgyzstani teams at IOIs since 2002. Grad-
uated from the Kyrgyz State University in 1969, is a main research
worker of Institute of Mathematics of KR NAS, a manager of chair of
the International University of Kyrgyzstan.

T. R. Oruskulov (1954), candidate of pedagogical sciences, is the
deputy chairman of jury of Bishkek City OIs and of National OIs since
1988, the deputy leader of Kyrgyzstani teams at IOIs since 2005. Gra-
duated from the Frunze (now Bishkek) Polytechnic Institute in 1977,
worked in Institute of Automatics of KR NAS, Kyrgyz Research Insti-
tute of Pedagogy, studied at Post Graduate office of the USSR Academy
of Pedagogy in 1988–1991, was a professor of Kyrgyz Academy of Ed-
ucation, works in the II Project of Education of the Asian Development
Bank at Kyrgyzstani Ministry of Education and Sceince.

Olympiads in Informatics, 2007, Vol. 1, 141–148 141
© 2007 Institute of Mathematics and Informatics, Vilnius

Computer Science Contests in Germany

Wolfgang POHL
Bundeswettbewerb Informatik
Ahrstr. 45, 53175 Bonn, Germany
e-mail: pohl@bwinf.de

Abstract. In Germany, the preconditions for running a successful Computer Science contest for
secondary school students are not perfect. However, many contests that are related to the area of
Computer Science are run by as many different organizations. The Federal Contest in Computer
Science (German: Bundeswettbewerb Informatik, short: BWINF), a task-based contest with two
homework rounds and a symposium-style final round, is the most important, nation-wide contest in
the field. BWINF office is also responsible for Germany’s IOI team selection and participation. In
addition, in recent years the office has been running several other projects to popularize Computer
Science and promote talents in this field.

Key words: computer science contests, tasks, grading, teacing informatics.

1. Introduction

1.1. Preconditions for Contests

There are three important observations to be made when looking at the preconditions for
running contests for (secondary) school students. First and foremost, the responsibility
for the school system is not held by the federal government, but by the governments of
the 16 federal states. Some basic properties of the school system hold nation-wide, but
especially in the details and for non-standard subjects like Informatics, the situation may
vary significantly between the states. Many educational initiatives are run in a single state
only, and there are many state-wide student contests, often in parallel and sometimes
even in conflict with nation-wide contest activities. Recently, the German constitution
was changed to make sure that the state governments have full responsibility for school
education. The federal government was left with some influence on academic education
and was allowed to continue its activities in the area of promotion of the gifted. Hence,
the federally supported nation-wide contests can be continued.

Second, during several decades many teachers and schools in Germany focussed on
leveling education to the intellectual capabilities of the majority of students. At the same
time, promotion of the gifted almost was a non-issue. Only in recent years, this situation
has improved. In addition, many schools are striving to develop and demonstrate their
special profile. This has led to an increased popularity of contests accessible to many
students, like the “Math Kangaroo”. However, these contests do not naturally lead to
participation in more advanced contests like national olympiads.

142 W. Pohl

Third, the lack of a centralized contest organization led to the birth of a huge variety
of contests, many of which are organized by non-governmental institutions or indus-
try companies. In such an environment, it is often difficult for teachers to recommend
good contests. Teachers complain about a “contest flood” they can no longer cope with.
Many company contests are organized only as a public relations activity, but typically
this is well hidden. In addition, contests with government funding cannot compete with
the awards and prizes that contests with funding from companies or private institutions
can offer.

In summary, participation in a nation-wide, government-funded contest are in no way
a standard activity for German school students. Therefore, only very few contests see
really high participation rates.

1.2. Informatics at School

The subject of Informatics is an optional subject in most federal states. Exceptions are
seen in three of the 16 states only. Informatics is mainly taught in the final years of
Grammar School, but nevertheless it can be difficult to choose Informatics as a subject
that will become part of the final school exam “Abitur”. Due to the low importance of
Informatics, there are only few teachers with a genuine education in Informatics; most
Informatics teachers have a supplementary education in Informatics. This situation given,
it is no surprise that Informatics is not one of the popular subjects at school. Among girls,
it is even one of the least popular subjects at all.

1.3. Contests in Computer Science

In the next section, we will describe “Bundeswettbewerb Informatik” (short: BWINF;
Engl.: Federal Contest in Computer Science; see also BWI), a nation-wide contest, run by
the German Informatics Society together with the Fraunhofer association of information
and communication technology research institutes. It is mainly funded by the federal gov-
ernment and hence the “official” German contest in the field. However, it is by far not the
only contest for German secondary school students related to Computer Science: There
are multi-media contests, software project contests run by industry or non-profit institu-
tions, and several robot construction and programming contests (like Robocup Junior).
However, BWINF is probably the contest with the highest reputation; BWINF winners
receive a university scholarship from a national foundation. The contest next important
to BWINF is the combined Mathematics/Computer Science section of “Jugend forscht”
(Young Scientists). In this competition, participants present their own inventions or re-
search projects. For a more detailed overview (in German) about related contests, see
(Pohl, 2005).

2. Bundeswettbewerb Informatik

In 1980, Informatics was not yet established as a school subject. This gap was to be
filled with a nation-wide contest. Its first issue was called “Youth Programming Contest”;

Computer Science Contests in Germany 143

the winner1 was celebrated at an IFIP congress in Lausanne in 1989. In terms of Pohl
(2006), the contest began as project contest; participants were asked to describe their own
programming projects. The third contest was the first one to be called “Bundeswettbewerb
Informatik”, and from the fourth contest, the contest model was changed to the one that
is still being applied today.

2.1. BWINF Procedure

There is an office consisting of a full-time manager (that’s me) and a half-time secretary,
paid to run the contest, organize and execute IOI (and CEOI) training and participation.
The resources of the office are pretty much consumed by organizational, administrative
and public relation work – since it is not standard for German students to participate
in contests, each contest needs advertising, given the situation that there is such a huge
quantity of contests and competitions. Furthermore, there is a volunteer committee for
task creation and selection, and a steering committee with representatives from the orga-
nizing institutions as well as the federal and state ministries. In the first two rounds, the
jury is composed of students (some of them former contestants), who are paid a small
fee. In the final round, committee members and experts from both school and academia
are called into the jury.

The contest is organized in three rounds. Contest task sheets and posters are sent
to all secondary schools, and the BWINF office also tries to announce the contest in the
media. Students register by sending their solutions. They work at home, individually or in
(preferably small) teams. In general, five tasks are given, and if three of them are solved,
the students qualify for the second round. In this round, students still work at home, but
must solve the problems on their own. The best of the second round (ca. 30 people) are
invited to take part in the final round, which is organized as a meeting. The participants
of this final round are interviewed individually by jury members, and, on two days, need
to work in a group on one problem each day. Mainly because it is a homework contest,
it is run during a whole year; often, the new contest starts before the final round of the
running contest has been completed.

2.2. Characterizing BWINF

First, it is most easy to say what BWINF is not: In contrast to the International Olympiad
in Informatics, its regional variations like CEOI, Baltic OI, etc., and many national
olympiads (confer Pohl, 2004), it is not a contest with programming exams and a the-
matical focus an algorithmics. and to a task contest with long-time homework rounds,
manual jury grading and submission of both executable programs and written solution
descriptions. Following the categories that were suggested by Pohl (2006a) to describe
contests in the area of Computer Science, it has the following properties:

Scientific Area As a contest for secondary school students, BWINF needs to cater for
the possible Computer Science expertise of those students. As already mentioned,

1The first winner, Otfried Schwarzkopf, now is professor for theoretical Computer Science in Korea.

144 W. Pohl

Informatics is not an obligatory subject in German schools and not very popular as
well, there is no standard level of expertise that can be required. As we know, many
contestants are self-taught only, while the students of a few specialized schools
learn about Informatics on a high level already. Therefore, the contest needs to set
its own standards, but at the same time should consider the most important topics
of school Informatics. As a consequence, BWINF has basic algorithms as its core
area, but also deals with information modeling, data bases, simulation processes,
language and text processing, and other areas of Computer Science.

Style BWINF is a task contest; in all rounds, tasks are given.

Duration In the first two rounds, contestants have about two and four months, resp., to
work on the tasks. In the first round, five to six tasks are given, and solutions to
at least three need to be submitted in order to qualify for the second round. In the
second round, three tasks are given, two of which the contestants need to select and
work on. The third round, the final, is different: On each of two days, contestants
work in groups of four for about four hours on one single task. In addition, each
individual contestant has two interviews, each with one jury member.

Grading In all rounds, there is manual grading by jury members. In the first two rounds,
jury members follow given grading schemes. For each task, there is a grading
scheme that defines a set of crucial issues. For each such issue, its weight and
influence on the grading are prescribed. In the final round, jury members need not
follow a grading scheme. They translate their assessment of the contestants’ per-
formance into a numerical score. In the jury meeting however, where winners are
chosen, there is still time for discussions about individual contestants; the addition
of scores is regarded as the foundation for the final decisions only.

Submission In the first two rounds, contestants submit written descriptions of their so-
lutions. In the task sheets, a certain structure is recommended for these descrip-
tions: abstract solution ideas first, then a documentation of the most important
source code components, followed by examples that demonstrate the program’s
abilities. Also, source code at least of the main parts of the solution program (no
IDE-generated code, no GUI code) needs to be submitted in print. This is to ensure
that grading can be performed without executing the solution programs; resource
constraints of the grading process do not allow for a genuine testing process. In the
task sheets, it is explicitly mentioned that grading may rely on the written material
only. The final round, again, is different: Contestants are graded individually based
on how they perform during interviews and group work; groups give presentations
of their results, but also in an overall weaker group, a single member may have
made excellent contributions.

Divisions BWINF is not structured into divisions. In each round, there is only one task
set for all contestants. However, there is a slight exception to that rule: In the first
round, one task is identified as “junior task”; this task is supposed to be some-
what easier than the others and aims at attracting younger students to the contest.
Therefore, it must not be chosen by contestants who are more than 16 years old.

Computer Science Contests in Germany 145

2.3. 25 BWINF Contests – Observations Made

In 2006, the 25th Bundeswettbewerb Informatik was started. On the occasion of this
anniversary, a report about the development of the contest was published (Pohl, 2006b).
Several central observations were stated:

• the average participant is a male student in grade 12 of a grammar school;
• female participation is very low, but has slightly increased (!) in recent years to

about 5 percent (see Fig. 1);
• while in the early years of the contest, BWINF typically had between 1000 and

2000 participants per year, there is now a fairly stable annual participation rate of
about 700 students (see Fig. 2);

• in some federal states, especially from the Eastern part of Germany, participation is

Fig. 1. Female participation rate from 12th to 24th BWINF.

Fig. 2. Number of participants in the first contest round from 12th to 24th BWINF.

146 W. Pohl

Fig. 3. Federal states with strong participation in BWINF.

very strong, but in the states with large population, participation is relatively weak.
This assessment is based on the relation between the state’s share in BWINF partic-
ipants and its share in the overall number of grammar school students in Germany.
For instance, a state with a 10 percent share in BWINF participants and a 5 percent
share in high school students has a participation strength of 2. Fig. 3 shows the de-
velopment of participation strength values (from 12th to 24th BWINF) of the states
with the highest such values of recent years. Note the significant changes in recent
years.

3. IOI Qualification

The BWINF office also is responsible for selecting the German team to participate at the
International Olympiad in Informatics (IOI). In addition, German participation at CEOI
is supported by the federal government. Since 2001, there has been a delegation at Baltic
OIs, too, but Baltic OI participation and (for the first time in 2007) organization must be
funded by non-government sponsors.

About a dozen IOI candidates are selected from the final round of BWINF based on if
they satisfy IOI age requirements. Some other candidates are selected from the “Jugend
forscht” contest mentioned at the beginning. Since both contests are very different from
IOI-style contests, three training camps are organized to introduce the candidates to IOI-
style problem solving. The training, including the tasks for training exams, are prepared
by the BWINF office. Moreover, many former German IOI participants contribute sig-
nificantly to our IOI training, as well as to organizing olympiads like CEOI and BOI in
Germany.

Note that the whole selection process takes place in the year after the final round of
BWINF. So, German students go to IOI one year after finishing the national contest and
even two years after entering it. As a consequence, many German IOI contestants can

Computer Science Contests in Germany 147

participate in IOI only once. In recent years, we have seen a higher number of young
contestants in the BWINF final round, and therefore have had a few more two- and even
three-year participations in IOI. Since the national contest activities do not give experi-
ence in IOI-style contests, OI-experience is a very important factor for IOI-success of
German contestants. In addition, the achievements of German IOI participants are very
much dependent on their personal ambition. After two years of first national contest and
second IOI training, IOI contestants tend to regard their qualifying for the IOI team as
main achievement; international comparison is of lesser importance. In such cases, dele-
gation leaders and coaches have difficulties to keep the motivation high.

At IOI, Germany typically sees a good overall team performance, with medals for all
or almost all team members. Gold medals, however, are rare; in 18 IOIs, 8 gold medals
were won by 8 German contestants.

4. Further Activities

For many years, the BWINF office has been suggesting to extend its activities in popu-
larizing Computer Science among young people and promoting talents in that area. With
many German students lacking a solid education in Computer Science, non-school ed-
ucation offers are needed. In 2006, proclaimed as “Year of Computer Science” by the
German Federal Minister of Education and Research, the BWINF office was granted
the needed resources to run the project “Einstieg Informatik” (First Steps into Computer
Science, see (Pohl et al., 2006)), to develop and apply approaches both to teach ideas
of Computer Science to children and to provide interested youngsters with information
about how to learn more about the subject. The project can be regarded as success: Within
10 months, the project web site attracted about 110.000 visitors. The project gave presen-
tations and shows at public events with an overall number of more than 600.000 visitors,
and addressed teachers at conferences with an overall number of about 2000 participants.

Using the resources of the “Einstieg Informatik” project, the first German participa-
tion in the International Beaver Contest (Dagiene, 2006) took place in December 2006.
Although the resources were not sufficient advertising the contest in the large, more than
2100 students participated. Table 1 gives more detailed information about the participa-
tion, divided by grades and gender. Germany’s participation in the Beaver initiative shall

Table 1

Participation in the first German Beaver contest 2006

Girls Boys
Grades Participants

Number Percent Number Percent

All 2126 698 32.83% 1428 67.17%

5–8 959 394 41.08% 565 58.92%

9 and 10 479 133 27.77% 346 72.23%

11–13 688 171 24.85% 517 75.15%

148 W. Pohl

be continued, while “Einstieg Informatik” was unfortunately discontinued with the end
of the “Year of Computer Science”.

5. Conclusion

In spite of the many and diverse contests in the area of Computer Science that students
can participate in, universities have seen a strong decrease in the number of students of
Computer Science and related subjects. Contests alone are not sufficient to promote a
subject and its talents. The BWINF office is currently looking for support of its plans to
continue promotional activities like those of “Einstieg Informatik” and set up a virtual
community of talents in Computer Science as central entry point for school students
who are interested in the subject. Only if such activities are successful, participation in
the BWINF contest can be increased again, which in the end might also lead to greater
international success of German IOI contestants.

References

BWINF home page. http://www.bwinf.de/.
Dagiene, V. (2006). Information technology contests – introduction to computer science in an attractive way.

Informatics in Education, 5(1), 37–46.
Pohl, W. (2004). National computer science contests.

http://www.bwinf.de/old-page/olympiade/national-contests.pdf.
Pohl, W. (2005). Informatik-Wettbewerbe in Deutschland. LOG IN, 133, 10–23.
Pohl, W. (2006a). Computer science contests for secondary school students: Approaches to classification. In-

formatics in Education, 5(1), 125–132.
Pohl, W. (2006b). Wettbewerb im Silberglanz. LOG IN, 26(141/142), 10–13.
Pohl, W., K. Kranzdorf, and H.-W. Hein (2006). First steps into computer science – the German project Einstieg

Informatik. In V. Dagiene and R. Mittermeir (Eds.), Information Technologies at School: Selected Papers of
the 2nd International Conference “Informatics in Secondary Schools: Evolution and Perspectives”, Institute
of Mathematics and Informatics, Vilnius, pp. 62–70.

W. Pohl was educated in computer science, and received a PhD in 1997
from the University of Essen, Germany. For many years, he investi-
gated the use of artificial intelligence techniques for the improvement
of interaction between humans and machines. In 1999, he changed po-
sition and perspective by becoming executive director of the German
Federal Contest in Computer Science. Among his responsibilities is to
coach the German IOI team and lead the German IOI delegation. Now

his interest lies in improving computer science contests, establishing new ones, and work
on diverse other projects, everything in order to popularize computer science among
youth. From 2003 to 2006, he was elected member of the IOI International Committee,
and briefly held the position of executive director of IOI in 2006.

Olympiads in Informatics, 2007, Vol. 1, 149–164 149
© 2007 Institute of Mathematics and Informatics, Vilnius

Increasing the Appeal of Programming Contests
with Tasks Involving Graphical User Interfaces and
Computer Graphics

Pedro RIBEIRO
Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto
Rua Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
e-mail: pribeiro@dcc.fc.up.pt

Pedro GUERREIRO
Departamento de Informática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Quinta da Torre, 2829-516 Caparica, Portugal
e-mail: pg@di.fct.unl.pt

Abstract. Programming contests should be capable of being appealing to both the contestants and
the general public. We feel that the use of graphical user interfaces and computer graphics could
help achieve this goal, providing new ways of viewing the task. We describe experiments we made
with games (Tic-Tac-Toe, Snake and Ataxx, an Othello-like game), which were made available
to students with graphical components, and discuss the results. We also present a simple graphic
library where simple drawings can be made and show how it can be used in a programming contest
environment. We then conclude by revisiting some past IOI problems, suggesting ways to enhance
them with graphical components.

Key words: programming contests, graphical user interfaces, computer graphics.

1. Introduction

One of the main goals of programming contests is to draw the attention of the public to
the contestants, to their achievements and to their extraordinary capabilities in the art and
science of programming. Therefore, the more popular our programming contests become
the closer we will be of reaching that goal. On the one hand, we need the public to
understand or at least to have a reasonable idea of what the problems are about; on the
other hand, we must design the tasks in a way that is appealing to the contestants, and
especially to the newcomers, so that we can gather more and more participants, and so that
our contests cause a greater impact on society. As observed in (Dagiene, 2006) the tasks
are the keystones of contests. Their attractiveness to the contestants and public is vital.
Therefore, anything we can make to improve this aspect will benefit our programming
contests.

Traditional tasks in the International Olympiad in Informatics (IOI) usually involve
simple text input and output. Even with improvements such as output only tasks or re-

150 P. Ribeiro, P. Guerreiro

active tasks, the interaction between the program and the outside world is always done
in a purely textual way. No other ways of observing the programs working exist, other
than looking at the input and the output, which typically are just a bunch of numbers or
strings. This approach lacks almost any attractiveness factor, and is meaningless to the
general public, since it normally needs some pre-knowledge of the problem statement in
order to minimally appreciate what the program is doing.

We have been experimenting with tasks that use graphical user interfaces and com-
puter graphics in preliminary contests, in secondary schools in Portugal, and also in com-
petitive assignments in our programming courses at the university. We believe that this
is a domain that can be used to make the contests more attractive and more fun. The use
of graphics could dramatically improve the manner in which people visualize the tasks,
the test cases and the program outputs, creating a whole new level of ways to observe a
programming contest. It also presents the non-informatics audience with an opportunity
to perceive and more duly appreciate what the contestants have accomplished. Even the
contestants could sometimes benefit of seeing how their program works in a different
way. This graphic part should not take precedence over the educational and algorithmic
component of the tasks, of course, but we claim that both these aspects can be merged,
thus paving the way to interesting new problems.

In this paper we will present some of those experiments, discussing some of its advan-
tages and disadvantages, and we will show how they could be adapted to programming
contests like the IOI.

2. Graphical User Interfaces in Programming Tasks

Many IOI tasks are interactive, in the sense that there is an agent reading the output of the
contestant’s program, which, in turn, has to read the output by the agent. Typically the
dialogue is carried out at the console, on line by line basis. Although this is sufficient in
the strict setting of problem solving, we believe that in some cases the task could be made
more appealing by having the agent respond graphically and by giving visual feedback to
the moves by the program. In fact, the task not only becomes more appealing and more
fun, but also the visual clues may indeed help the abstract reasoning that leads to the
solution.

We have been experimenting along these lines in our own introductory programming
courses, at secondary level and at university level. In these courses, some of the labs are
competition-like: the students are given a task, they have to write a program for it, and
submit it to an IOI-like automatic judge. The automatic judge we use is called Mooshak
(Leal and Silva, 2003). It runs a sequence of test cases and informs “Accepted”, “Wrong
Answer”, “Time Limit Exceeded”, etc. In principle, “Accepted” means that all test cases
passed, which is fine for class use. In competition mode, partial points are possible.

Enhancing competitions tasks with a graphical interface does not cause any penalty
on the automatic judge, who still has to check text output only. The extra burden is a
responsibility of the agent, and does not interfere greatly with the contestant’s job.

Increasing the Appeal of Programming Contests 151

We will now describe three of those experiments. The first is the well-known Tic-
Tac-Toe problem, and uses an elementary form of ascii-graphics. The second is “Snake”:
in this case, the snakes are represented by colored blocks on the screen. The third is an
Othello-like board game, and input was done via the mouse, not via the keyboard. In all
these cases, the games act as platforms for the programming tasks, providing immediate
visual feedback to the students. This visual feedback offers new possibilities of reasoning
about the program and checking its result.

2.1. Tic-Tac-Toe

Tic-Tac-Toe is a well-know game and programming it is a typical exercise. We used it in
an introductory C programming course for secondary students. The task was to create an
agent with artificial intelligence for the game, in a way that agents could play against one
another. We organized a tournament among all valid players and in order to validate the
contestant submission we used black-box automatic evaluations with Mooshak.

Communication between agents is accomplished in a standard way, as in traditional
IOI input/output programs. Each agent receives on the standard input the current state of
the game, i.e., the configuration of the board, and writes the chosen move on the standard
output. Each move is triggered by making a new call to the student program. This func-
tions almost like an IOI test run, in the sense that the program is called from scratch for
each move, without any type of memory between program calls. Each game is processed
in the following way: the server initiates the game, with a circular list of the programs
that are playing; then automatically calls the next program from the list, feeding it with
correspondent input, reading its output and continuing in the same fashion until the game
is over, where it communicates the final result.

In this example, the graphical component is built using character strings. It is a naïve
design, but provided adequate visualization of the game. And, being very simple, it could
be passed to the students, so that they could also learn from it. Fig. 1 shows a snapshot of
this component in action.

This apparently simple scheme proved to be very addictive to the students, who had an
immediate form of seeing the results of their programming effort. The students also used

Fig. 1. Graphical component of the Tic-Tac-Toe server (with Portuguese text).

152 P. Ribeiro, P. Guerreiro

the server to show their families and friends what they were doing in the programming
course, thus helping explain to the “outside world” what programming is about. During
the tournament, the games were projected in the classroom to a small audience, in an
enticing way that could not be achieved if we had stuck to the elementary form of input
and output.

This was precisely what we wanted to happen, and it corresponded perfectly to our
aim of trying to show the “outside world” what programming can be.

2.2. Snake

“Snake” is another popular game. Each player controls a snake in a grid environment,
striving to make it eat as much food as possible, without hitting the walls or other snakes
(including itself). Each time a snake eats an “egg”, its size increases by one. This game
also provides a good platform for programming tasks.

We used this game in a Logic Programming course at the university, very much like
we had used Tic-Tac-Toe for secondary school students. The students now had to program
an artificial intelligence for a single snake and the final goal was to make a tournament
with two available modes: all against all and solitary. In the first case, the winner is the
last surviving snake; in solitary mode, the winner is the snake that eats the eggs fastest.

Communication between the server and programs driving the snakes was similar to
the Tic-Tac-Toe program, and the server operated in the same way.

The graphical component was more sophisticated. It was designed for Linux, using
XLib (Gettys and Scheifler, 2002). It displays a window in which all snakes, eggs and
other food items are represented. Fig. 2 shows an example.

In this experiment, students only had the duration of a single lab (2 hours) for pro-
gramming their snake agent. This matches contest time constraints.

Again, the experiment was very successful, and we could observe pride and joy on the
face of some students when the final tournament was projected in the classroom. Some
even brought in their friends (with no programming background), who came to just watch
and have fun.

Fig. 2. Graphical component of the Snake server (with Portuguese text).

Increasing the Appeal of Programming Contests 153

Out of curiosity, it should be noted that we also used Mooshak automatic evaluation
for Logic Programming (Prolog), not only in this experience but also in other exercises.
In fact, Mooshak is very configurable and we make extensive use of it in our courses, for
different programming paradigms, both at introductory and advanced levels.

2.3. Ataxx

Our third experiment was more ambitious. The task was a more complete programming
project that took a few weeks to complete. We chose Ataxx, a board game similar to
Othello. For a better understating of the challenges involved, we will briefly explain the
game rules, but a more detailed explanation can be seen on (Beyrand, 2007). Ataxx is a
2 player game played on a 7×7 grid board. The players start with two pieces each, on
opposite corners of the board and take turns to play. Each time, we can make two types
of moves: we either add a new piece, by making it appear on an adjacent square to an
already existent piece, or we move a piece, by making it jump at most two squares. After
each move, pieces that are adjacent to the piece that was added or that moved turn to our
color. In the end, the player with more pieces wins.

Like before, the main goal was to make an agent capable of playing the game au-
tomatically. This was a Logic Programming task, to be programmed in Prolog, and the
communication was handled directly, by calling a logic predicate with the game state as
input. The game state was given as a list representing the board and an integer represent-
ing the available time. This second parameter was necessary because the agents had a
time limit for their moves.

We implemented Ataxx using a general architecture where a text-only server was
responsible for implementing the game, its rules, and calling the agents. This server could
be called to automatically run a game in the fastest possible way, in batch, with no human
interaction. On the other hand, a Graphical User Interface (GUI) could be attached to the
text-server, making use of standard input/output interaction. This module is independent
from the game itself. Fig. 3 shows a basic view of the architecture we used.

The text server functions basically as the previous ones. It initiates the game, calls the
programs for the players in the right order, and announces the final result when the game
is over.

The GUI itself is more refined that the previous ones. We used Java Swing (Project
Swing) for it and included a clickable interface to be used by humans playing the game.
This way, it was possible to have computer vs. computer, human vs. computer and human
vs. human matches. Actually, this possibility may be used by the students to become more

Fig. 3. Ataxx experience architecture.

154 P. Ribeiro, P. Guerreiro

familiar with the game and devise the strategies that they will later implement. The GUI
included animations for the piece captures and provided ways to automatically run a full
game, advance turn by turn, undo moves and to load/save game logs. Fig. 4 displays a
snapshot of the GUI in action.

For guiding the students in developing their solutions, we designed a sequence of
tasks, each of which was handled as a competition problem: students should complete
each task and submit it to the automatic judge Mooshak for validation. For example, we
had a task for computing the list of adjacent squares, for checking whether a move was
valid, and for generating the list of all possible moves, given a board description. We held
several “mini-tournaments” where students could participate in order to see how their
agents were doing, and also just for the fun of it.

In the end, we had 47 functional programs to grade. Some of them were quite good
players, constantly beating known Ataxx programs, by a large margin. For grading, we
first created a set of agents, with which we made an initial estimate of the agent’s “merit”.
With this we could identify, for example, the programs that were not even able to win
against a random opponent. After the initial analysis by the grading agents, we grouped
the programs in three different leagues, according to their strength, and then, in each
league we carried out a large-scale tournament, in which all played against all. The final
score was a function of the ranking in the tournament. In the end, the best programs were
announced in the department, and their authors publicly recognized.

This experiment was very successful and the students were strongly motivated by
it. The graphic component, including the animations, had a great impact, and we know
that some students used it to show their work to their non-informatics friends. The Ataxx
project also had a positive influence on the results in the course. In the survey we carried at

Fig. 4. Snapshot of the graphical user interface for Ataxx.

Increasing the Appeal of Programming Contests 155

the end of the semester, the course was rated highly, due in large part to this programming
task.

We now use this program as an example of student projects that we present when
prospective secondary school students visit us. Needless to say, without the graphical
component, that would not be possible. The Ataxx server and related resources are pub-
licly available at (Ribeiro, 2007).

3. Simple Graphics for Simple Drawings

Many problems in IOI competitions are geometric, and would become more dramatic
with a graphical output. Take, for example, problem Joining Points from IOI 2006 in
Merida, Mexico (IOI Secretariat). The goal is to join pairs of green points and pairs of
red points according to certain rules. The output is merely the sequence of pairs of points,
given by their position in the input files. Of course this is enough, as far as algorithmics
go, but the problem would be more appealing and less abstract if the task was to actually
draw the figure that comes out as the points are joined. Indeed, it might happen that by
actually watching the drawing appear on their screens, albeit in the wrong form in their
early experiments with the problem, more contestants would be able to figure out the
correct strategy.

This example suggests that two additional aspects need be considered when designing
contest problems with a graphical output: we need to agree on a common graphical library
and we must be able to automatically judge the graphical output.

The graphical library is necessary because students use different languages and op-
erating systems, and we must ensure that no environment gives an unfair advantage to
contestants using it. On the other hand, professional graphical libraries are too vast for
the needs of common problems and it would be a waste of time trying to completely
master them, in preparation for IOI. By providing a simple graphical library, we could
achieve an informal competition “standard” that would be followed worldwide. As a side
effect, it could eventually spread out and be used in general for teaching programming in
general.

In programming competitions such as the IOI and ACM-ICPC (ICPC site) most tasks
have text output. Automatic judging is performed either by directly comparing the output
of the contestants program to the official solution or by running a validating program,
specific to each problem, that checks whether the output is correct. This second solution
is necessary when there are many solutions and it is not adequate to pick one of them as
a representative. We anticipate this will be the common case with graphical programs:
the programs must draw a picture but it does not matter which parts of the figure are
drawn first. Therefore, except for very simple cases, graphical programs will be judged
via ad-hoc tester programs.

We will now present the sketch of simple graphical library along the lines we have
discussed. It has been tested within our own programming courses, where most of the
programming assignments are contest-like.

156 P. Ribeiro, P. Guerreiro

3.1. Classes for Figures

The first class in our library is class Point, representing points in the two dimensional
plane. It is useful directly in many problems and it is used in many other classes: Circle,
Polygon, Polyline, Segment, etc. For example, in the Joining Points problems that we
mentioned, we are given two arrays of Points. Actually, there are green points and red
points, which means perhaps we should handle them via subclasses for colored points.
The result is an array of segments. If from a pure algorithmic perspective, segments are
just pairs of points, and this point of view would be enough for solving the problem as
presented, the graphical variant that we suggest would be better handled by using a class
for colored segments as well.

All these classes – Point, Circle, Polygon, Polyline, Segment – and also, the classes
for colored points and colored segments, represent figures, and this leads us to an abstract
class Figure, from which the others derive. Class Figure is another fine example, because
it declares as pure virtual functions those functions that all figures must implement and
also declares and implements abstractly a number of template functions in terms of the
pure virtual ones. These will be available without further effort in all derived classes.
Here is a sketch of the class declaration, in C++:

class Figure {
public:

// basic functions
virtual void Scale (double fx, double fy) = 0;

pre IsDeformable () || fx == fy;
virtual void Translate (double dx, double dy) = 0;
virtual void Rotate (double angle) = 0; // pre IsRotatable ();
// preconditions
virtual bool IsRotatable () const;
virtual bool IsDeformable () const;
// template functions
virtual void RotateAround (double angle, const Point& p);
...

};

The three basic functions, Scale, Translate and Rotate, are pure virtual. The template
functions have default implementations or are programmed in terms of those three. Each
class derived from Figure will provide an implementation for the three basic functions
and inherit the remaining functions. Boolean functions IsRotatable and IsDeformable are
used as abstract preconditions for commands Rotate and Scale (Meyer, 1997). They are
defined here returning true: descending classes whose objects cannot be rotated (for ex-
ample, rectangles with horizontal and vertical sides) must redefine IsRotatable; descend-
ing classes whose objects cannot be scaled differently in along the two axes (for example,
circles) must redefine IsDeformable.

3.2. Clone and Draw

Sooner or later, we will need containers of polymorphic figures. In C++ these can be
implemented as vectors of pointers to Figure. When adding a figure to a container, we

Increasing the Appeal of Programming Contests 157

prefer not to manipulate the pointers explicitly. Therefore, each class derived from Figure
must provide a virtual function Clone that creates a dynamic copy of its object. The
situation would be simpler in Java, where the objects have reference semantics. Still,
when adding a figure to a composite figure, we do not want to add a reference to the
argument: we want to automatically create a copy of the argument and store the copy, so
the argument and the composite figure can evolve independently. Therefore we also need
to clone in Java, and this should be done avoiding the complications of the built-in clone
function (Bloch, 2001).

For graphics, we want each Figure to be able to draw itself, and thus class Figure must
declare a function Draw. The case for function Draw introduces another issue: where will
the drawing be made? In other words, when we write, we write on a stream; when we
draw, where do we draw? In C++, when we write a value of type double on a stream,
it is the stream that decides how the number will be written: fixed point or scientific
notation, how many decimal places, etc. Likewise, when we draw, there must be some
structure (i.e., some class) that “decides” how to draw: which color, which line thickness,
etc. Well, that structure will be called canvas and we posit an abstract class Canvas to
represent it.

Function Draw should also be pure virtual in class Figure:

class Figure {
public:

// . . .
virtual Figure* Clone () const = 0;
virtual void Draw (CanvasPtr) const = 0;

};

Please note that the argument of Draw is of type CanvasPtr. This is a typedef that
represents a pointer to Canvas.

3.3. Classes for Canvases

A canvas is an object where figures are drawn. Canvases will be implemented in terms of
an underlying graphics library, and will effectively shield the users from having to deal
with that particular library. Instead, they will only have to learn a few functions: those
provided by class Canvas, the abstract class for canvases:

class Canvas {
public:

virtual void DrawPolygon (const std::vector<Point>& p) = 0;
virtual void DrawRectangle(const Point& p1, const Point& p2) = 0;
virtual void DrawEllipse (const Point& p1, const Point& p2) = 0;

virtual void DrawPoint (const Point& p) = 0;
virtual void SetColor (const Color& c) = 0;
virtual void SetPenWidth (double t) = 0;
virtual void SetFilled (bool b) = 0;
// and the corresponding getters . . .

};

There are several Draw functions, all with arguments of type Point or
std::vector<Point>. These functions handle the common cases, but a few more could

158 P. Ribeiro, P. Guerreiro

be added. Then we have functions for setting the color, the pen width and the font, and
the corresponding getters. Function SetFilled determines that the figure will be filled with
the current color if the argument is true, or not if it is false.

Class Canvas is abstract. Each concrete class that derives from class Figure will imple-
ment its function Draw in terms of the re-sources provided by the abstract class Canvas.
The library provides four concrete canvases: CanvasText, CanvasBasic, CanvasExtensible
and CanvasEuclidean. When drawing, the user must select one of these canvas classes.

CanvasText is actually not a graphical canvas: it is linked to a stream, and figures are
drawn by writing their description on the stream. This textual output can be processed
by a viewer program, but we may use it for unit testing (SUnit site) and in the realm of
programming contests, we need it for automatic evaluation.

CanvasBasic makes a one to one mapping between window coordinates and the co-
ordinates of the figure, but leaves the origin on the lower left corner of the window, and
has the y-axis growing upwards. It is useful in simple cases and it is the base class for the
other CanvasExtensible and CanvasEuclidean.

CanvasExtensible is associated to a form and is extensible in the sense that the con-
structor sets the extension of the larger side of the form. The x-axis runs through the
bottom of the window, from left to right, and the y-axis runs through the left side, from
bottom to top. If, for example, the extension is 300, and the window is wider than tall,
then the visible y-range is zero to 300, and the visible x-range is from zero a number
greater than 300, computed so that x units and y units measure the same on the screen.

CanvasEuclidean is similar to CanvasExtensible, but allows for negative coordinates
in both axes. More precisely, users can specify the x-range and the y-range arbitrarily.

Even though pictures provide rich visual feedback for the workings of the program,
situations occur, typically when debugging, where we want to observe precisely the se-
quence of elementary strokes that make up the drawing. In principle, this can be achieved
directly by simply changing the canvas where the figure is drawn from one of the graphi-
cal ones to CanvasText. We have observed that this technique is very effective.

We already mentioned that CanvasText is for automatic evaluation. We have tested this
in the programming assignments. The idea was to validate some new transformations,
before they were applied in the figure that was being composed. This validation was
performed by the automatic judge that we use, Mooshak, on a program drawing on an
object of type CanvasText, wrapping the output console. Once the drawing was accepted,
students could switch to one of the graphical canvases.

3.4. Example

To illustrate the use of our library, let us consider a program to draw simple fractals that
was used in a programming assignment with automatic judging. A fractal is a polygon;
therefore, class Fractal inherits from class Polygon:

class Fractal: public Polygon {
private:

// some data members for fractals

Increasing the Appeal of Programming Contests 159

public:
virtual void Read (std::istream& input);
virtual Fractal Next() const;
virtual void Transform();

};

Function Read reads the fractal data from an input stream; function Next yields the
next fractal in the generation process; function Transform assigns the result of Next to the
target object; function Draw does not appear because it is inherited from Polygon. Here
is a simple test function that reads the description of a fractal from the standard input,
transforms it twice and “draws” it on the standard output using a CanvasText object:

void TestFractal () {
Fractal f;
f.Read (std::cin);
f.Transform(); f.Transform();
Canvas* t = new CanvasText (std::cout);
f.Draw (t);
delete t;

}

This test function is part of a console application. In order to draw graphically, we
need a form application, but the main difference from the console application is that
now we draw on a graphical canvas that wraps the form, not the console. Typically, this
happens in a member function of the form class.

3.5. Composite Figures

The fractal example that we mentioned before was very simple: there is a single polygon
that must be drawn. In general, we want more complicated figures. Anyway, we can still
use exactly the same technique provided we can handle composite figures, and we can
do that using the Composite design pattern (Gamma et al., 1994): a composite figure is a
figure that is made up of a sequence of figures:

class FigureComposite: public Figure {
private:

std::vector <Figure *> components_;
public:

// Constructors
// Inherited functions to be redefined

virtual void Put (const Figure& f);
};

Function Put is the only novelty: it adds another figure to the composite figure. Scal-
ing, translating, rotating, or drawing a composite figure means scaling, translating, rotat-
ing or drawing each of the components.

We mentioned that the solution for the joining points problem is an array of pair of
points. Actually, we could use a composite figure, made up of colored segments.

3.6. Colored Figures

From what we have described, we may infer that each figure is drawn using the current
value for the color, the pen width, and filled attributes. This implies that the components

160 P. Ribeiro, P. Guerreiro

of a composite figure are all drawn with the same color, same pen width, etc. We do
not want that, in general. On the contrary, we need colored figures, which are drawn
according to their own properties, not the properties of the canvas.

This means that for each figure in our class library we need a colored version. We can
accomplish that using inheritance, of course: for example, class ColoredPolygon inherits
from Polygon and adds data members and functions to deal with the color and other
graphical attributes.

This solution, however, is not very attractive: it would duplicate the number of classes
we have to maintain. A better approach that we can use with C++ relies on generic pro-
gramming. We define a template class Colored<T> and the instantiate generically with
subclasses of Figure, as needed. Here is Colored<T>:

template <class T>
class Colored: public T {
private:

Color c_;
int w_; // pen width;
bool f_; // filled

public:
Colored (const T& t, Color c = Color::black, int w = 1,

bool f = false):
T (t), c_(c), w_(w), f_ (f) {

}

virtual Colored<T>* Clone() const {
return new Colored<T>(*this);

}

virtual void Draw (CanvasPtr x) const {
Color c1 = x->GetColor ();
double w1 = x->GetPenWidth ();
bool f1 = x->GetFilled ();
x->SetColor (c_); x->SetPenWidth (w_); x->SetFilled (f_);
T::Draw(x);
x->SetColor (c1); x->SetPenWidth (w1); x->SetFilled (f1);

}
};

Note that template class Colored<T> inherits from its formal argument. Hence, Col-
ored<Polygon> inherits from Polygon, and exhibits normal polygon behavior, to which
it adds color and pen width, as required.

This property of C++, of allowing generic classes to inherit from its template argu-
ment, is uncommon, but offers an elegant solution to our problem. Note that this approach
could not be applied to Java or Eiffel, for example, even though these languages cater for
generic programming as well. In Eiffel or Java, the solution would be to design a class
Colored, inheriting from Figure, with a component of type Figure, representing the object
whose graphical properties we want to control. This is also an interesting situation (also
possible in C++, of course) that corresponds more closely to the design pattern Decorator
(Gamma et al., 1994).

As an example of this technique at work, observe a class representing the flag of
Sweden: a cross made of two yellow rectangles on top of a blue rectangle:

Increasing the Appeal of Programming Contests 161

class Sweden: public FigureComposite {
public:

Sweden ():
FigureComposite () {
Rectangle r(Point(0, 0), Point(10, 8));
Colored<Rectangle> rc (r, Color::blue);
Rectangle v(Point(3, 0), Point(5, 8));
Colored<Rectangle> vc (v, Color::yellow);
Rectangle h(Point(0, 3), Point(10, 5));
Colored<Rectangle> hc (h, Color::yellow);
Put(rc); Put(vc); Put(hc); Scale(100, 100);

}
};

This concludes the presentation of our simple graphical library.

4. Graphical Tasks

Having discussed our experiments in the area, we will now show how some past IOI tasks
could have been graphically enhanced using the approach we advocate. With these kinds
of problems, the IOI tasks could more easily be brought to the general media, like the
press and the television, which are inherently graphical biased.

We will now give list of some of those problems. Note that we select at least one
problem per year since 1994, as an indication that this approach applies widely. All task
statements can be seen on (IOI Secretariat):

• IOI’94, task “The Clocks”: compute the minimum number of moves to turn 9 clock
dials to 12 o’clock. A GUI could have been provided, and it could graphically show
the moves happening, with animations. Since the output of the tasks was the set of
moves that should be made, nothing had to be changed. Generally speaking, almost
all search problems could be made visual if the states can be represented visually
in a simple suggestive manner (for example, MagicSquares from IOI’96 is similar).

• IOI’95, task “Packing Rectangles”): Find the smallest enclosing rectangle into
which other four rectangles may be fitted without overlapping. Instead of num-
bers, the output could be really graphical, with drawing commands, giving a new
insight into how are the rectangles being packed, and which kind of algorithm is
being used.

• IOI’96, task “A Game”: A 2-player game where players take turns to collect num-
bers from the ends of a sequence of integers, winning the best sum of numbers. A
fully functional GUI could have been made, which would also allow the player to
make games between two versions of his program. Generally speaking, almost ev-
ery 2-player game that appeared in IOI could have a GUI (for example, The Game
of Hex from IOI’97 could also have a GUI).

• IOI’97, task “Stacking Containers”: A crane operates several containers, for stor-
age and removal, in a 3-dimensional world. A GUI could have been used to show
the effects of the algorithms used, giving a visual depiction of the simulation. Gen-
erally speaking, almost every problem that is related to a 3D world, can have a

162 P. Ribeiro, P. Guerreiro

visually improved interface (another example is The Toxic iShongololo, also from
IOI’97).

• IOI’98, task “Starry Night”: Detect similar clusters of stars in the sky. This is an
example with a great potential public appeal if it used a graphical GUI to show the
stars.

• IOI’99, task “A Strip of Land”: Find a rectangular region for an airport with the
largest area subject to width and height difference constraints. A GUI could show
in 3D the area to calculate, giving an attractive view of the task.

• IOI’00, task “Building With Blocks”: Find the way to decompose a 3D solid in a
minimum number of different small blocks. Once more, the 3D nature of the task
could be really used, and a GUI would even allow the contestants to have a better
understanding of the problem.

• IOI’01, task “Ioiwari game”: A Mancala like 2-player game. Do we need to say
more? In this year, there was also another 2-player game task (Score).

• IOI’02, task “Xor”: An output only-problem where one has a xor operation to
transform a blank screen into a figure. A GUI would have permit a visual depiction
of the solution, but would also give the contestants a whole new way of trying to
make “manual solutions” in their heads (that could have algorithmic nature).

• IOI’03, task “Seeing the Boundary”: Count how many fence posts one can see
from a determined position with some rocks obscuring posts. This is a very graph-
ical problem, and a GUI could have helped the contestants to see exactly why a
determined input gives the correspondent output.

• IOI’04, task “Polygon”: An output-only problem where we must do a reverse
Minkowski sum on a polygon. Even the name of the task is telling us it could use
graphics. A GUI could have shown much more clearly the structure of the problem
and allow for different approaches to the task. The graphical library could have
been used to draw the polygon, instead of simple text output.

• IOI’05, task “Rectangle Game”: A two-player game where players take turn to
divide the rectangle. All that has been said before about games can be applied.

• IOI’06, task “Joining Points”: This problem was already approached before (on
chapter 3) and it constitutes a paradigmatic example of a task with almost every-
thing in favour for using a graphical approach.

5. Conclusion

IOI is an algorithmic competition. The emphasis has been, from the beginning, on prob-
lem solving by designing appropriate algorithms that solve the proposed tasks. Typically,
these tasks accept their data from the console and display the result of the computation
also at the console, using numbers and strings. This is understandable, since we really
want to focus on algorithm development, and input and output are there merely for be-
ing able to validate the submissions. Besides, when IOI started, almost 20 years ago,
the available programming environments were very crude, compared to what is common
nowadays. Therefore, other possibilities were not even contemplated.

Increasing the Appeal of Programming Contests 163

At present, when we review the problem sets of past editions of IOI, we cannot help
noticing that some have a strong graphical inclination, but it remains implicit and solu-
tions are not meant to exploit it. This is a pity, since proper use of graphics in program-
ming competitions might make them more attractive and more fun for the contestants,
and also more understandable to the general public. This second aspect is very important,
since one of the goals of programming competitions is to “shine the spotlight” on the
students and on the great programming feats they are able to accomplish.

Graphics can be brought into the competition in two ways, at least. In some tasks the
problem may be specified in term of controlling an agent whose behavior is represented
graphically; we offered examples of this case in chapter 2. Other tasks may actually have
graphical output, instead of plain text output; we explained how this can be approached
in chapter 3. In either case, the graphics need not superfluously burden the task. On the
contrary, they may actually help the contestant devise the correct strategy for solving the
problem.

Complementarily, graphics open the way to a new kind of task, the “tournament”
task, as illustrated by the Ataxx example in sub-chapter 2.3. Indeed the possibility of a
tournament in IOI was already mentioned in (Opmanis, 2006), as way of improving the
contest. In tournament tasks, points would be awarded as a result of a series of matches
to be held live, before an audience. The players are the programs for that task, written by
the contestants during the competition. A preliminary validation may carried out, in the
conventional way, which could also be used to form “leagues” grouping programs whose
performance falls within given ranges. This kind of tasks and the associated staging would
bring an extra level of excitement to the competition, and could easily be followed by the
public in general, thus boosting the IOI spirit.

References

Beyrand, A. (2007). Ataxx !!. http://www.pressibus.org/ataxx/ (accessed May 2007).
Bloch, J. (2001). Effective Java. Addison Wesley.
Dagiene, V. (2006). Information technology contests – introduction to computer science in an attractive way.

Informatics in Education, 5(1), 37-46.
Gamma, E., R. Helm, R. Johnson and J. Vlissides (1994). Design Patterns. Addison-Wesley, Reading, Mass.
Gettys, J., and R.W. Scheifler (2002). Xlib – C Language X Interface. X Consortium Standard. X Version 11,

Release 6.7 Draft.
ICPC site, The ACM-ICPC International Collegiate Programming Contest.

http://icpc.baylor.edu/icpc/ (accessed May 2007).
IOI, International Olympiads in Informatics. http://www.ioinformatics.org/ (accessed May 2007).
IOI Secretariat. http://olympiads.win.tue.nl/ioi/ (accessed May 2007).
Leal, J.P., and F. Silva (2003). Mooshak: a Web-based multi-site programming contest system. Software Prac-

tice & Experience, 33(6), 567–581.
Meyer, B. (1997). Object-Oriented Software Construction, 2nd Ed. Prentice Hall.
Opmanis, M. (2006). Some ways to improve olympiads in informatics. Informatics in Education, 5(1), 133–124.
Project Swing.

http://java.sun.com/j2se/1.5.0/docs/guide/swing/ (accessed May 2007).
Ribeiro, P. (2007). Ataxx Server and GUI.

http://www.dcc.fc.up.pt/˜pribeiro/ataxx/ (accessed May 2007).

164 P. Ribeiro, P. Guerreiro

P. Ribeiro is currently a PhD student at Universidade do Porto, where
he completed his Computer Science degree with top marks. From 1995
to 1998 he represented Portugal at IOI-level and from 1999 to 2003
he represented his university at ACM-IPC national and international
contests. During those years he also helped to create new program-
ming contests in Portugal. He now belongs to the Scientific Committee
of several contests, actively contributing new problems. He is also co-

responsible for the training campus of the Portuguese IOI contestants and since 2005 he
has been deputy leader for the Portuguese team. His research interests, besides contests,
are data structures and algorithms, artificial intelligence and distributed computing.

P. Guerreiro is an associate professor of Informatics at Universidade
Nova de Lisboa. He has been teaching programming to successive gen-
erations of students, using various languages and paradigms for the
over 30 years. He has been involved with IOI since 1993. He is also the
current director of the South-Western Europe Regional Contest, within
ACM-ICPC, International Collegiate Programming Contest. He is the
author of three popular books on programming, in Portuguese. His

research interests are programming, programming languages, software engineering and
e-learning.

Olympiads in Informatics, 2007, Vol. 1, 165–174 165
© 2007 Institute of Mathematics and Informatics, Vilnius

Development and Exploration of Chinese National
Olympiad in Informatics (CNOI)

Hong WANG
Tsinghua University
100084, Beijing, China
e-mail: wanghong@tsinghua.edu.cn

Baolin YIN
Beijing University of Aeronautics and Astronautics
100083, Beijing, China
e-mail: yin@nlsde.buaa.edu.cn

Wenxin LI
Peking University
100871, Beijing, China
e-mail: lwx@pku.edu.cn

Abstract. This article presents a general overview of the historic development, exploration and
practice of CNOI during the past 23 years. It includes: 1) some historical data recording the devel-
opment of CNOI; 2) main contest activities organized by the Scientific Committee and Competition
Committee of NOI of CCF, and some relevant management experiences; 3) the selection mecha-
nism for the best contestants of CNOI; 4) the development and characteristics of a testing and
evaluation system; 5) the development and characteristics of a visible team competition; 6) training
of contestants and teachers, and the improvement and perfection of competition rules.

Key words: contest organization, contestant selection, evaluation system, visible contest.

1. Introduction

“The popularization of knowledge of computers should begin from children”, said in
1984 the former leader Deng Xiaoping, General designer of China’s reform and opening
policy.

The China Computer Federation organized the 1st China Computer Programming
Contest for Youth and Children in 1984, afterwards named the National Olympiad in In-
formatics (NOI). By the year 2006, a total of 23 NOI contests had been held successfully.
As one of the earliest countries to participate the International Olympiad in Informatics
(IOI), China has been present at every IOI contest since the first one, IOI1989. The ef-
fects of informatics olympiads have been demonstrated in promoting the popularization
and raise of information technology in China’s middle and high schools, which has and

166 H. Wang, B. Yin, W. Li

will play an important role in the cultivation and selection of talents in informatics. The
following data records the development of CNOI:

• in 2000, the 12th International Olympiad in Informatics (IOI2000) was success-
fully held in Beijing;

• during the past 18 IOI contests (to the end of the year 2006), Chinese contestants
won a total of 42 Gold Medals, 17 Silver, and 11 Bronze;

• during the IOI contests held in the consecutive three years 2004-2006, all the Chi-
nese contestants that participated in the contests were awarded Gold Medals;

• the year 2004 was the 20th Anniversary of China National Olympiad in Informat-
ics, and the China National Symposium on Computer Education was held with the
official proceeding published;

• 2006 NOI Contest included the first Visible Team Competition;
• contestants enrolled to join the CNOI Contests in 2006 reached nearly 80,000;
• the first Yearbook of Chinese National Olympiad in Informatics (CNOI2006) was

officially published in 2006.

2. Main Contest Activities and Selection Mechanism of CNOI

2.1. Main Contests and Activities of CNOI

The NOI Scientific Committee and Competition Committee, under the guidance of the
China Computer Federation, is responsible for the technical organization and manage-
ment of NOI contest. A number of activities are run every year which are aimed at middle
and high school students for enrichment and competition in computer programming. The
main contests and activities are given in the Table 1.

2.2. Selection Mechanism for the Best Contestants

The CNOI establishes a strict selection mechanism and rules for the excellent contestants.
It is based on multi-contests and paper defence. It guarantees that the best contestants can
be selected by the mechanism.

Take the selection of IOI2007 China team as example. The process begins from
NOI2006 during July of 2006. The top 20 contestants of NOI2006 become the mem-
bers of the National Training Team (NTT) for the IOI2007. This is the first contest that
forms part of China’s formal IOI team selection process. Then we arrange 4 contests and
structures in order to select the best 4 contestants from these 20. Each part has a different
weight or score. These structures and their proportions are respectively:

Homework: 5%
NOI Winter Camp Testing and Competiton: 25%
Paper presentation and oral defence: 10%
China Team Selection Competition (CTSC): 60% (two contests, 30% each time).
Besides the score, we also check the comprehentive character and English proficiency

of contestants. A personal statement and letter of commitment is requested for the con-
testants.

Development and Exploration of Chinese National Olympiad in Informatics 167

Table 1

Main contests and activities of CNOI

Activity When What Participantes
and Size

* China
National
Olympiads in
Informatics
(NOI)

July–August Two day competition (5 hours for 3
tasks/each day) and one week activity
similar to IOI. A team competition was
added in NOI2006.
The top 20 contestants from NOI form
National Training Team (NTT) for the
IOI of next year (candidates for the
China team)

5 contestants each
province. Totally
150 pers.

* NOI Summer
Camp.

At the same
time with NOI

The competition and activity is the same
as NOI.

4 contestants each pro-
vince. Totally 120 pers.

* National
Olympiad
in Informatics
in Province
(NOIP)

October–No-
vember

Preliminary competition: a multiple-
choice / short-answer competition. Final
competition: 3 hours for 3 tasks. Contes-
tants are divided into middle and high
school group

Nearly 80000 contes-
tants participanted in
NOIP2006.

Homework
practicing and
training for
NTT

August–Jan. Training and practicing by homework.
Contestants will submit their solutions,
and someone will give instant feedback.

20 contestants of NTT

* NOI Winter
Camp

Jan–Feb An intense one week training and a five-
hour competition. The formal contes-
tants will also participate in an oral pa-
per presentation and defence (10′ + 5′)

Formal: 20 contestants
of NTT
Informal: 4 contestants
each province

* China Team
Selection
Competition
(CTSC) for the
IOI

May The final China Team Selection Compe-
tition. Two day competition (5 hours for
3 tasks each day) is similar to the IOI.
The top six contestants will participante
in an oral defence. The best four contes-
tants will form China team for the IOI.

Formal: 20 contestants
of NTT
Informal: 3–4 contes-
tants each province

* APIO (Asia
Pacific
Informatics
Olympiad)

The 2nd Satu-
day of May

China Regional Competition of APIO
held in one place organized by CCF. It
is in parall with the CTSC from the year
2007. We took China Regional Compe-
tition of APIO as the first day competi-
tion of the CTSC in 2007.

20 contestants of NTT;
top 50 of the last NOIP;
and 1 contestant each
province

Training
before the IOI

August Two training competitions with
ACM/ICPC contestants for one week
before the IOI

4 contestants of China
team

Teacher and
coach training

1–2 times each
year

One week training course for algorithm
design and programming skills, also in-
cluding competition organization rules
and evaluation system, etc.

Teachers, coaches and
officials of provinces

168 H. Wang, B. Yin, W. Li

3. The Development and Characteristics of an Evaluation System (Arbiter)

In order to guarantee the correctness and efficiency of evaluating the contestants’ pro-
grams, the Scientific Committee of the Chinese National Olympiad in Informatics (SC
of NOI) authorized the Group of Advanced Information Technology, Beijing University
of Aeronautics & Astronautics (GAIT, BUAA) to develop an official evaluation tool, the
Arbiter, seven years ago. After six years use in various competitions organized by the
SC of NOI and similar events, the system has been proven to be a stable, comprehensive
and trustworthy tool. Arbiter provides support in every phase of a competition, including
task design, contest environment preparation, program evaluation, scoring and ranking,
statistics and data backup.

Arbiter runs on various versions of the Linux operating system, including Redhat,
Debian and Ubuntu. The system is based on a LAN with C/S architecture. The server is
an independent computer communicating via a LAN with the clients of the contestants’
PCs through out the contest. A contest can be divided into three stages: preparation, con-
testing and evaluation. In the preparation stage, the server cooperates with the clients to
establish and update the contest settings, construct the language environments and contes-
tants’ accounts on the client PCs, and issue the contest data. During the contesting stage,
the Arbiter clients on the contestants’ PCs monitor and control the network communi-
cations of the PCs, and filter out forbidden packets according to the preset regulations.
In the evaluation stage, the server commands the clients to evaluate the contestants’ pro-
grams locally and then collects the results to form the score list, ranking list, and various
analyzing forms as required.

Arbiter has the following characteristics and advantages:

• Flexibility and Efficiency

Arbiter enables the administrator to configure and control the contest in an easy man-
ner. A contest is composed of a number of tests, and each test contains a number of
tasks. A task can be of several types, such as a standard program, a program interact-
ing with a library, or a results only task. A task can be evaluated with a number of
items of evaluating data, each with configurable weight. The contestants are allowed
to develop their programs. The administrator is able to modify the configuration of
the system at any stage in case some client PCs are not working. Since the programs
are evaluated in parallel on the client PCs, the evaluation will be finished very fast.
Arbiter is highly adaptable to the hardware environment. In case there are not enough
client PCs with a unique hardware configuration, the administrator is able to appoint
a number of PCs with the same configuration as the evaluation machines so that the
timing will be unique and impartial for all the contestants. Furthermore, as the eval-
uation is done on the contestants’ PCs, there is no need for the contestants to submit
their programs to the server. This avoids the network traffic jam, as happens on most
of the Web base evaluation systems.

• Safety and Security

Much attention was paid during the design of Arbiter to processing the contestants’
results safely and securely. Before the evaluation starts, the contestants’ programs

Development and Exploration of Chinese National Olympiad in Informatics 169

and data are uploaded to the server. A backup copy is also stored locally in a system
directory. The backup will be used during the self check by the contestants. Arbiter
safeguards the data with encryption and access controls, even the legal users are not
permitted to access the data files directly. All the data operations must be done by
using a system operation tool with authorization control.

In some contests, the contestants are allowed to access some strictly specified
websites, while other network communications are forbidden. In order to control the
network communications, the Arbiter clients monitor and filter the network commu-
nications on contestants’ PCs. The filtering is based on the source and destination IPs
and the type of the protocol of the packets. Only the pre-specified network communi-
cations are allowed.

• Independent to the Language Environments

Arbiter is independent of the programming language environments. The compliers
and relevant tools are specified by the administrator during the preparation stage when
the contest is under configuration. The command line options can also be specified at
the same time for each operation. This enables Arbiter to meet new requirements in
the future by supporting various programming languages and different types of the
tasks, provided the relevant compilers and tools are available.

• Accuracy in Timing

The system can account and control the execution time of the program being evaluated
in the 5ms time slice. The results show that Arbiter performs very stable evaluation
and accurate timing with an error rate of less than 0.01% and timing error of less than
10ms.

• Self-Adaptive and Efficient Network Communications

In order to work in different network environments, Arbiter automatically explores
and analyzes the topology of local networks. Consequently the best schemes are
adopted to transfer data between the server and the clients. If the network supports
broadcasting with a low packet drop rate, broadcasting mode will be used to send the
data from the server to the contestants’ PCs. This mode will provide high speed for
data transfer. A typical test shows that 100MB data can be sent to over 100 PCs in
less than 20s over a 100M Ethernet. If the PCs are cascaded in the network and broad-
casting is forbidden, or the packet drop rate of the network is above a threshold, the
system adopts a cascaded mode P2P data transfer when sending data from the server
to the PCs, in order to transfer the data correctly with relatively high speed. In both
modes, application layer checking will be done, and data will be re-transferred if there
is any mistake.

• Data Import and Export

In order to meet the requirements by users for using other tools, such as MS Office,
to process and display the contest data, Arbiter stores its data in the standard formats
of CSV and PostScript. The data import and export functions are provided, and there-
fore all configuration files, contestants’ information files, and score files can be easily
imported and exported.

170 H. Wang, B. Yin, W. Li

• Easy to Use

The server of Arbiter is GUI based and running in an interactive mode, while the
clients are running in a daemon mode without any direct interaction with the admin-
istrator. All functions are shown in the user area of the GUI of the Arbiter server.
Any principal function can be selected within 3 clicks of the mouse buttons with clear
guiding information. As both the server and the client are statically linked with the
libraries, they are independent of the library versions on the target system.

• Comprehensive Functions

The Arbiter system is accompanied by a series of supporting tools: a task verifying
tool for checking the correctness of the testing data and the score evaluating plug-ins,
a seat appointing tool for deploying the contestants over the PCs, and a user account
and password generating tool. While both the seat appointing tool and the account
and password generating tool are for the contest administrator to set a contest, the
task verifying tool is for the task creators to test the evaluating points, the standard
programs and time limits.

An aggregative evaluating tool has also been developed in order to meet requirements
where a LAN based contest environment cannot be set. In this case, all programs are col-
lected via other media, such as USB disks and email. The aggregative evaluating tool will
run after the contestants’ programs are collected and stored in a specified file hierarchy,
and the evaluation and statistics will be performed in the same way as the Arbiter server.

4. The Development and Characteristics of a Visible Team Competition

In order to make the programming contest more interesting, attractive, and more under-
standable to the public, the Scientific Committee of the Chinese National Olympiad in
Informatics (SC of NOI) authorized the Group of ACM/ICPC (International Collegiate
Programming Contest) team of Peking University to develop a new style of programming
contest where the running steps of the programs can be viewed on the screen. In 2006, we
extended an open source software “Dominate Continent” and developed a contest named
“risk” which is similar to the Java Challenge in ACM/ICPC. The difference is that “risk”
accepts programs written in any programming language other than just Java in the Java
Challenge. Details of “risk” are given below.

4.1. What is the Meaning of “Visible”

In the contest, we have several programs competing with each other to dominate as much
land as they can. When the programs are running, the map is shown on the screen, see
Fig. 1. There are four teams competing on the land. Each team is represented by a unique
color. The teams play in turns. In each turn, teams play in a certain sequence. The play
result of each step is shown on the map. In Fig. 1, the black circle with number “6”
represents the army of team “PNJ_Y” and it is attacking and winning one of its neighbor
land. Fig. 2 show the four teams in Fig. 1 competing on other maps.

Development and Exploration of Chinese National Olympiad in Informatics 171

Fig. 1. Four teams (godlike, notHK, PNJ_Y, trikill) are competing on the land.

Fig. 2. Four teams competing on a train network.

172 H. Wang, B. Yin, W. Li

4.2. How to Organize the Contest

The contest includes three stages, the first stage is round-robin; the second stage is quali-
fying; the third stage is final.

The round-robin has several rounds. In each round the system divides the teams
into some small groups randomly. Each group has a separate game. In the same round,
every group uses the same map. Maps in different rounds are different. Each game lasts
three minutes. After a game, each attended team gets some points, which is equal to 10
times the number of countries it occupied, when the game ends. Each team’s points are
accumulated as a total score.

In the qualifying, the system divides the teams into small groups according to their
scores in the round-robin. The top teams will not be placed into the same group. Each
group plays for several rounds and only the champion is put through to the final.

The final still has several rounds, but only one group. The score in the final stage will
be the final score.

The information is announced three months before the contest. All the provinces are
invited to attend the contest. Each province may organize one team which may include at
most five students. One week before the contest, all teams should submit their programs
for the Round-Robin stage contest. Thereis a break between round-robin and qualifying,
and a break between qualifying and final. Teams are permitted to modify their source
code at any time, but only permitted to resubmit their source code during the breaks.

4.3. Hardware and Software Used in the Competition

Server: WinXP, JRE1.5, Python2.4.3,Tomcat5.5, FPC(Free Pascal Compiler)2.0.2,
Dev C++ 4.0

Client: WinXP,JRE1.5, FPC(Free Pascal Compiler)2.0.2,Dev C++ 4.0

4.4. Description of the Task

Initial Army Placement
Every player rolls dice,to decide the order of play. Starting with the first player, every-

one in turn places one army onto any unoccupied territory. Continue until all territories
have been claimed.

Each player in turn places one additional army onto any territory he or she already
occupies. Continue in this way until everyone has run out of armies. There is no limit to
the number of armies you may place onto a single territory.

Playing
Whoever placed the first army takes the first turn.
Each player’s turn consists of three steps, in this order:
1) getting and placing new armies;
2) attacking, if you choose to, by rolling the dice;
3) fortifying your position.

Development and Exploration of Chinese National Olympiad in Informatics 173

At the beginning of each turn, new armies you’ll add to your territories based on
1) the number of territories you occupy;
2) the value of the continents you control;
3) the value of the matched sets of RISK cards you trade in;
4) the specific territory pictured on a traded-in card.
The above 4 steps are automatically calculated by the game and it will display how

many armies you can place for that turn.
The task isribed in http://162.105.81.202/noip/noip_game/game/Risk

_1.0.8.5.zip

5. Conclusion

This article gives some historic data recording the development and exploration of CNOI,
and main contest activities organized by SCNOI and CCNOI of CCF. The selection mech-
anism for the best contestants has been proven to be effective. In addition, an evaluation
system with some features, and a visible team competition used by NOI2006 are also
presented respectively.

References

China Computer Federation (Eds.) (2007). The Yearbook of Chinese National Olympiad in Informatics 2006
(CNOI2006), Henan Publisher Group of China.

A Summary of Chinese NOI Development Forum (2005). The file of SCNOI and CCNOI of CCF. Oct. 22–23,
Beijing, China.

The Competition Rules and Measurements of Chinese NOI (2005–2006). The file of SCNOI and CCNOI of
CCF.

Wang, H., B. Yin (2006). Visualization, antagonism and opening – towards the future of the IOI Contest. In 1st
Workshop on Computer Science Competitions Reform, Jan., Germany.

174 H. Wang, B. Yin, W. Li

H. Wang received his PhD degree from the Department of Computer
Science and Technology, Tsinghua University in 1993. He is currently
an associate professor at Department of Computer Science and Tech-
nology, Tsinghua University. He also serves as the chairman of Scien-
tific Committee of National Olympiad in Informatics of CCF.

B. Yin received his PhD degree from the Department of Artificial Intel-
ligence, the University of Edinburgh in 1984. He is currently a professor
at the School of Computer Science and Technology, Beihang Univer-
sity. He also serves as the vice chairman of Scientific Committee of
National Olympiad in Informatics.

W. Li received her PhD degree from the Department of Computing, the
Hong Kong Polytechnic University in 2004. She is currently a profes-
sor at Department of Computer Science and Technology, Peking Uni-
versity. She serves as a member of Scientific Committee of National
Olympiad in Informatics of CCF. She is also the coach of ACM/ICPC
Peking University team.

Olympiads
in Informatics

Volume 1 2007

R. O. ANIDO, R. M. MENDERICO. Brazilian olympiad in informatics 5

P. BROÐANAC. Regular competitions in Croatia 15

G. CASADEI, B. FADINI, M. G. VITA. Italian olympiads in informatics 24

L. CHOIJOOVANCHIG, S. UYANGA, M. DASHNYAM. The informatics olympiad in
Mongolia 31

V. DAGIENĖ, J. SKŪPIENĖ. Contests in programming: quarter century of Lithuanian
experience 37

K. DIKS, M. KUBICA, K. STENCEL. Polish olympiad in informatics – 14 years of
experience 50

M. FORIŠEK. Slovak IOI 2007 team selection and preparation 57

M. JANCESKI, V. PACOVSKI. Olympiads in informatics: Macedonian experience,
needs, challenges 66

G. KEMKES, G. CORMACK, I. MUNRO, T. VASIGA. New task types at the Canadian
computing competition 79

V. M. KIRYUKHIN. The modern contents of the Russian national olympiads in
informatics 90

R. KOLSTAD. USA computing olympiad (USACO) 105

K. MANEV, E. KELEVEDJIEV, S. KAPRALOV. Programming contests for school
students in Bulgaria 112

M. MAREŠ. Perspectives on grading systems 124

P. S. PANKOV, T. R. ORUSKULOV. Tasks at Kyrgyzstani olympiads in informatics:
experience and proposals 131

W. POHL. Computer science contests in Germany 141

P. RIBEIRO, P. GUERREIRO. Increasing the appeal of programming contests with
tasks involving graphical user interfaces and computer graphics 149

H. WANG, B. YIN, W. LI. Development and exploration of Chinese national olympiad
in informatics (CNOI) 165

	vol1
	volume1
	Binder1
	vol1
	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	INFOL001
	vol1
	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	INFOL023
	Binder1
	vol1
	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	INFOL001
	vol1
	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	INFOL1CO

	INFOL1P2
	vol1
	volume1
	Binder1
	vol1
	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	INFOL001
	vol1
	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	INFOL023
	Binder1
	vol1
	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	INFOL001
	vol1
	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	Binder1
	INFOL1P1
	INFOL014
	INFOL008
	INFOL004
	INFOL005
	INFOL015
	INFOL013
	INFOL011
	INFOL006
	INFOL017
	INFOL016
	INFOL010
	INFOL003
	INFOL009
	INFOL002
	INFOL012
	INFOL007

	INFOL1CO

