
ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

INSTITUTE OF MATHEMATICS AND INFORMATICS

INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING

OLYMPIADS IN INFORMATICS

Tasks and Training

Volume 2 2008

Selected papers of

the International Conference joint with

the XX International Olympiad in Informatics

Cairo, Egypt, August 16–23, 2008

OLYMPIADS IN INFORMATICS

Country Experiences and Developments

ISSN 1822-7732

Editor

Valentina Dagienė

Institute of Mathematics and Informatics, Lithuania, dagiene@ktl.mii.lt

Co-editors

Arturo Cepeda, the Mexican Committee for Informatics, Mexico, acepeda@auronix.com

Richard Forster, British Informatics Olympiad, UK, forster@olympiad.org.uk

Krassimir Manev, Sofia University, Bulgaria, manev@fmi.uni-sofia.bg

Troy Vasiga, University of Waterloo, Canada, tmjvasiga@cs.uwaterloo.ca

http://www.mii.lt/olympiads_in_informatics

c© Institute of Mathematics and Informatics, 2008

Olympiads in Informatics, Volume 2, 2008.

2008.06.25. 13 leidyb. apsk. l.
Tiražas 160 egz. Užsakymas Nr. 1715.

Printed by Printing house “Mokslo aidai”, Goštauto 12, 01108 Vilnius, Lithuania
Cover design: Multimedia Center, Arab Academy for Science and Technology, Alexandria, Egypt

Olympiads in Informatics, 2008, Vol. 2, 3–4 3
© 2008 Institute of Mathematics and Informatics, Vilnius

Foreword

OLYMPIADS IN INFORMATICS is a refereed scholarly journal that provides an
international forum for presenting research and development in the specific area of teach-
ing and learning informatics through competition. The journal is focused on the re-
search and practice of professionals who are working in this field. OLYMPIADS IN
INFORMATICS is published annually (in summer). Only original high quality research
papers are accepted. All submitted papers are peer reviewed.

The journal is substantially connected with the conference organized during Interna-
tional Olympiads in Informatics (IOI). Papers are requested to be presented during the
conference. The main goals of the conference (and journal) are:

– to improve the quality of olympiads,
– to improve the skills of contestants and educators, and
– to discuss developing tasks and topics for olympiads.
The first OLYMPIADS IN INFORMATICS conference was organized in Zagreb

(2007) and put attention on organizing olympiads at the national level. The papers in
this volume are being presented during the IOI in Cairo (2008).

The national olympiads do not exist in isolation, and the papers in the inaugural con-
ference showed how similar problems arise in different environments, and illustrated
some of the solutions that both identify and distinguish the community. This volume
concentrates on training and task types, and many of the ideas and experiences are drawn
from the national olympiads. There are common trends here and, we hope, useful discus-
sions for both the national and international level.

Tasks are perennial issue for contests, their most visible aspect and, for many contes-
tants, the primary reason for participation. We strive for quality, variety and suitability.
We endeavour to make tasks interesting, understandable and accessible. They are used to
test contestants and to train them, and perhaps even to capture the imagination of those
outside the contest, be they family, sponsors or the media.

If tasks seem the main purpose of an Olympiad to the contestants often, from an
educator’s perspective, there is equal interest in training the contestants. This is not only
a question of how we choose the best, or enable the to show their true ability. We seek
to enthuse them with a passion for the subject. Some of the best students in the world
participate in our olympiads, nationally and internationally; their interest in the subject is
win for everyone.

That the national olympiads exist in a wider community is also true of the international
olympiads. We are delighted, for this second conference, to have an invited paper by Prof.
M. Revilla discussing an international topic outside of the IOI. This is intended to be the
start of a trend, both for invited papers and for a widening of the contributors and audience
for the conference.

4 Foreword

Thanks are due to everyone who has contributed to the IOI conference. In particu-
larly, we would like to thank the organizers of this year’s IOI in Egypt – the Ministry of
Communications and Information Technology, the Ministry of Education, and the Arab
Academy for Science, Technology and Maritime Transport. Many thanks to Prof. Dr.
Ekram F. Abdel Gawad, Prof. Dr. Mohamed Aly Youssef, Dr. Salah A. Elewa – without
their assistance it would not have been possible to hold this event.

Editorial Board

Valentina Dagienė
Arturo Cepeda
Richard Forster
Krassimir Manev
Troy Vasiga

Olympiads in Informatics, 2008, Vol. 2, 5–15 5
© 2008 Institute of Mathematics and Informatics, Vilnius

Breaking the Routine: Events to Complement
Informatics Olympiad Training

Benjamin A. BURTON
Department of Mathematics, SMGS, RMIT University
GPO Box 2476V, Melbourne, VIC 3001, Australia
e-mail: bab@debian.org

Abstract. Like many other countries, Australia holds live-in schools to train and select students for
the International Olympiad in Informatics. Here we discuss some of the more interesting events at
these schools that complement the usual routine of lectures, problems and exams. In particular we
focus on three events: (i) codebreakers, aimed at designing tests and finding counterexamples; (ii)
“B-sessions”, aimed at implementation and rigour; and (iii) team events, which use challenges in
cryptography and information security to encourage teamwork in a competitive setting. Practical
issues are also discussed.
Key words: programming contests, training, testing, implementation, teamwork.

1. Introduction

Since 1999, Australia has hosted live-in schools to train and select secondary school
students for the International Olympiad in Informatics (IOI). Many countries follow a
similar pattern; examples are discussed by Anido and Menderico (2007) and Forišek
(2007), amongst others.

The Australian training schools run for approximately ten days. A typical day consists
of lectures and laboratories in the morning (or possibly a programming contest instead),
more lectures and laboratories in the afternoon, and then an evening session at a white-
board where students present and analyse their solutions to problems.

In order to keep the students interested and to help them learn a broader range of skills,
a variety of different events are slotted into the programme over the ten days. Some of
these events focus on particular skills that are useful in the IOI, and others extend students
beyond traditional IOI material.

The aim of this paper is to describe some of these additional events that complement
the usual routine of lectures, laboratories, contests and problem sessions. In particular,
we focus on:

• codebreakers, in which students create input files to break incorrect solutions to
contest problems;

• B-sessions, in which students focus on the implementation of a difficult problem
that they already understand in theory;

6 B.A. Burton

• team events, in which students work in groups to solve puzzles in cryptography and
information security.

These three events are described in Sections 2, 3 and 4 respectively. Section 5 dis-
cusses practical requirements for running such events, including preparation and sup-
porting software, and Section 6 briefly outlines some other events not included in the list
above.

For further information on the Australian training programme, including written con-
tests, programming contests and joint events with other delegations, the reader is referred
to (Burton, 2008). The author is grateful to Bernard Blackham for his valuable comments
on this paper.

2. Codebreakers

Much of the regular teaching programme in Australia focuses on correct solutions to
problems. This is largely through necessity; the training schools are short and there is
much material to cover.

However, it is critical that students be able to identify incorrect algorithms – in a
contest, one cannot afford to spend hours coding up a solution only to discover during
testing that it gives the wrong answers. This is particularly important for students with
weaker mathematical backgrounds, who find it difficult to prove algorithms correct and
instead rely heavily on intuition, examples and testing.

In order to identify incorrect algorithms, students must be willing to spend time
searching for counterexamples, i.e., specific test cases for which an algorithm gives an
incorrect answer. This often requires patience and creativity, since examples that are sim-
ple or natural are often not rich enough to show why an algorithm is wrong.

For these reasons, the codebreaker was created as a training school event in April
2005, and has been a fixture on the programme ever since. The codebreaker aims to help
students develop the following skills:

• finding counterexamples to algorithms, which is important during the pen-and-
paper stage of designing an algorithm;

• generating pathological test cases as real input files, which is important during the
final stage of testing a solution.

2.1. Codebreaker Structure

The codebreaker runs as a live (and sometimes noisy!) competition, with a running score-
board at the front of the room and a contest website that evaluates submissions on the fly
(illustrated in Fig. 1). The competition is relatively informal, and is structured as follows:

• Students are given three or four problems. These are all problems that the students
have seen and thought about before (typically exact copies of problems from the
most recent national contest).

Events to Complement Informatics Olympiad Training 7

Fig. 1. A screenshot of the codebreaker website during the contest.

• Students are given several “solutions” to each of these problems. Each solution is
given as source code (e.g., C++ or Pascal), and each contains an error, possibly in
the implementation of the algorithm or possibly in the algorithm itself.

• While the event is running, students attempt to break these solutions. To break a
solution, a student must submit an input file to the contest website. This input file
is scored as follows:

– if the input file is valid (conforms to the problem specification) and the solu-
tion does not solve it correctly within the time and memory limits, the solution
is considered broken and the student gains ten points;

– if the input file is invalid (does not conform to the problem specification), the
student loses two points;

– if the input file is valid but the solution solves it correctly within the time and
memory limits, the student loses one point.

• Students may make as many attempts as they wish to break each solution. At the
end of the competition, the student with the most points is declared the winner!

A typical codebreaker contains around 15 solutions to break, and runs for about two
hours. Ideally a few (but not too many) students will have successfully broken every
solution by the end of the contest, and so the winner is determined not only by the ten
point rewards but also by the 1–2 point penalties. Indeed, the duration of the contest is
often changed on the fly, and at least once it was declared to be “until three people have
broken every solution”.

A nice feature of the codebreaker is that it often gives weaker students a chance to
shine. Students with a strong sense of thoroughness and rigour can do very well in the

8 B.A. Burton

codebreaker, even if they find it difficult to design or implement their own algorithms.
Furthermore, students who are slow but careful can beat students who are fast but sloppy
(since sloppy competitors tend to accrue several 1–2 point penalties). For these reasons,
the winners of the codebreaker are often not the students who typically come first in
regular programming contests.

2.2. Selecting Problems and Solutions

Some effort needs to go into choosing the problems and their “solutions” that students
are required to break.

As discussed earlier, students should already be familiar with the problems. The focus
should be on breaking incorrect solutions, not working out what a correct algorithm might
look like. Indeed, some students like to code up correct algorithms during the event so
they can verify where the incorrect solutions fail. Problems from the latest national con-
test work well, since students will all have taken this contest, and because the contest
problems are often discussed earlier in the training school.

The bulk of the effort in preparing a codebreaker lies in creating the incorrect solu-
tions. General guidelines are as follows:

• The solutions are written by staff members (in particular, we do not use real erro-
neous submissions from the national contest). This avoids privacy issues, as well
as allowing the staff to ensure a good spread of coding styles and types of error.

• The different solutions for each problem should be written by a variety of people,
and should be in a variety of languages. This is because, if one person writes several
similar solutions, it may be easy to see where the solutions differ and thus spot the
errors in each. For the same reason, if one person does write several solutions, they
should go to some effort to use different layouts, variables, control structures and
so on.

• The coding styles should be clear and readable. The aim is not to obfuscate the code
so that students cannot work out what it does; instead the aim is to allow students to
analyse the code and find where the algorithm or implementation is broken. Often
the solutions even include comments explaining what they are doing or why they
are “correct”.
This of course does not mean that the algorithms cannot be unwieldy or compli-
cated. For instance, some past solutions have read integers from the input file digit
by digit and pasted them together into a string (much like some inexperienced stu-
dents do in the national contest). We merely require that students should be able to
understand precisely what each algorithm is trying to do.

• Occasionally solutions are written in languages that are not part of the official set
(such as Java, Haskell or Python). Although many students cannot write in these
languages, the aim is for them to realise that they can still reason about programs
written in these languages. Of course these solutions are clear, commented and
avoid obscure language features.

• Every solution should give the correct answer for the sample input in the problem
statement. Moreover, different solutions should break on different types of input

Events to Complement Informatics Olympiad Training 9

files, so that students cannot just reuse the same input files again and again. This is
sometimes difficult to achieve, but it is a nice ideal to keep in mind when designing
the various solutions.

There are several types of errors that can be introduced into these “solutions”, includ-
ing:

• implementation errors, where the algorithm is correct but the code is buggy, such
as using < instead of � or missing a boundary case;

• algorithmic errors, where the implementation is correct but the underlying algo-
rithm is wrong, such as a greedy solution to a shortest path problem;

• comprehension errors, where the program solves the wrong problem, such as a
program that omits one of the conditions in the problem statement.

Some students like to use black-box methods during the codebreaker and some like
to use white-box methods. Black-box methods involve creating a range of test cases with
known answers and running them through a solution one at a time. White-box methods
involve manually reading through the code, verifying each step and identifying mathe-
matically where the solution breaks down.

Whilst many solutions can be broken using either method, it is always nice to include
one or two solutions that require white-box methods. Such solutions might only break
under very special circumstances that are difficult to obtain through random number gen-
erators, but that are easy to identify once the mathematics of the incorrect algorithm is
understood.

As a related event, it is worth noting the TopCoder contests (www.topcoder.com),
which incorporate codebreaking into their regular programming competitions. After writ-
ing their code, TopCoder contestants enter a brief 15-minute “challenge phase” in which
they attempt to break each others’ solutions. This allows for a codebreaking environment
that is more realistic and competitive, but where the difficulty, variety and readability of
solutions is not controlled. See (Cormack et al., 2006) for a more detailed comparison
between the TopCoder contests and the IOI.

3. B-Sessions

Although the focus of most lectures is on algorithms, it is critical that students be able
to implement these algorithms correctly in the tight constraints of a real contest. The
B-session aims to address the following problems:

• Many students are sloppy with implementations – even when they understand an
algorithm in theory, they often rush the coding and end up with buggy code. If
they test their programs well, they might observe the bugs and spend valuable time
trying to find and fix them. On the other hand, if their testing is sloppy also then
they might never notice the bugs at all.
In a real contest this can have disastrous consequences. Depending on the official
test data, small bugs can sometimes reduce an otherwise correct solution to score
as low as 5–10%. This is particularly true of tasks whose test data is grouped into
all-or-nothing batches. Opmanis (2006) discusses these difficulties in greater detail.

10 B.A. Burton

• Students may be reluctant to code up complicated algorithms during a contest –
even if they can see how to solve a problem in theory, they might decide the risk is
too great that (i) they might need to spend hours debugging their code, or (ii) they
might not have time to finish their implementation at all. This is particularly true
of problems with 50% or 30% constraints, where students can guarantee a healthy
partial score by coding an inefficient algorithm that is much simpler and safer to
implement.

• When training, many students like to focus on problems that they know they can
solve. Whilst this is good for cementing what they have already learned, it does not
necessarily help them solve more difficult problems. In order to improve, students
must invest time working on problems that are hard for them, so that such problems
can in time become easier for them. To use a cliché: no pain, no gain.

A typical B-session runs as follows:

• A single difficult problem is chosen by the organisers. This problem is handed out
to students the day before the event. Students are encouraged to think about the
problem, either individually or in groups, but they are instructed not to write any
code.
The chosen problem should be too hard to give in a regular contest, but the stronger
students should be able to solve it given enough time.

• The B-session itself runs for an entire morning or an entire afternoon (usually
3 1

2 hours). The session begins in the lecture room, where the students discuss their
ideas as a group. A staff member chairs the discussion, but ideally the students
should be doing most of the talking.
As the discussion progresses, the group works towards a correct algorithm – stu-
dents with promising ideas present them at the whiteboard, and the group analyses
and refines them until (i) the group has produced a solution that should score 100%,
and (ii) all of the students understand this solution in theory. Typically this takes
about an hour.
The staff member plays an important role in this discussion. They must keep the
group moving towards a correct solution, dropping hints where necessary but not
appearing to reveal too much. They must also ensure that every student understands
the algorithm well enough to begin coding it, and they should prevent the discus-
sion from going into too much detail about the implementation.

• Once the discussion has finished, students move into the laboratory and enter exam
conditions. The remainder of the B-session runs as a programming contest with just
one problem (which is the problem they have been working on). For the remaining
2 1

2 hours, the students must implement the solution that has been discussed and test
it thoroughly, with an aim to score 100%.

The B-session therefore has a very clear separation of algorithms and implementa-
tion. During the discussion and the day beforehand, the focus is on algorithms only – this
allows students to attack a problem that would usually be too hard for them, without the
time pressure of a contest or the difficulties of implementation. During the exam period,
students focus single-mindedly on implementation – this allows them to spend time de-

Events to Complement Informatics Olympiad Training 11

signing their code, writing it carefully and testing it thoroughly, without the distraction
of other problems that need to be solved.

The eventual hope is that students gain experience at coding difficult algorithms cor-
rectly, and also that they learn to become less intimidated by difficult tasks.

It is important for the organisers to select the B-session problem carefully. The prob-
lem must be difficult but approachable, and it must require a reasonably complicated
implementation. An example is Walls from IOI 2000, which was given to the senior stu-
dents in 2005 at their first training school. The algorithm is challenging for students new
to graph theory, but is approachable because it is essentially a breadth-first search with
some non-trivial complications. The implementation is messy because of these compli-
cations, and also because the input data is presented in an inconvenient format.

In general it is nice to use IOI problems for B-sessions, especially with younger stu-
dents who might have never solved an IOI problem before. In 2004 the junior group was
given the reactive task Median Strength, also from IOI 2000. The reason was that younger
students are sometimes intimidated by reactive tasks, which are outside their usual expe-
rience, and also to show them that IOI problems are sometimes simpler than they first
look. The task Median Strength is analysed in detail by Horváth and Verhoeff (2002).

For the curious, the name “B-session” is taken from a similar event introduced into the
Australian mathematics olympiad programme in the early 1990s, where students discuss
a difficult problem as a group and then individually write up proofs in exam conditions.

4. Team Events

The team event is a deliberate break from IOI-style problem solving. The goals of the
team event are:

• to encourage teamwork, which traditional informatics olympiads for secondary
school students do not do;

• to encourage students to look outside the narrow focus of informatics olympiads
and explore the larger world of computer science;

• to spend an afternoon doing something noisy and fun!

Each team event is based around a topic that is accessible, new to many students,
and that can support short team-based puzzles. The following example uses classical
cryptography and cryptanalysis, which was the topic of the most recent team event in
December 2007.

A typical team event runs for a single afternoon (usually 31
2 hours), and is structured

as follows:

• The organisers choose a topic as described above.
• The students are given a one hour lecture on this topic, with a focus on solving

real problems. For the cryptography event, students were shown how to encrypt
messages using a number of classical ciphers, and also how to crack messages
written using these ciphers.

12 B.A. Burton

• After the lecture, students move into the laboratory and are organised into small
teams. They are told that a prize has been hidden somewhere in the building, and
they are given their first puzzle to solve.
In the cryptography event, this first puzzle was a short message coded using a shift
cipher (rotate the alphabet by a fixed amount). The puzzle was simple to solve
because there were only 26 possible “keys” to try (i.e., 26 possible rotations).

• When a team has solved a puzzle, they bring their solution to a staff member; if it
is correct then the team is given a new puzzle. For the cryptography puzzles, each
solution was the English plaintext obtained from a coded message.
The puzzles essentially work their way through the topics in the lecture. For in-
stance, a subsequent puzzle in the cryptography event contained a message en-
crypted using a general substitution cipher, where students needed to use frequency
analysis and human guesswork to break the code. Later puzzles involved a Vigenère
cipher (requiring more sophisticated frequency analysis and human techniques)
and a linear stream cipher (requiring some mathematics to solve).

• Once a team has solved every puzzle, they must work out where the prize has
been hidden. The secret is usually contained in a “master puzzle”, which involves
information that teams have collected throughout the event.
For the cryptography event, the master puzzle was a one-time pad whose key was
not random, but was instead a combination of names. Since the event took place just
after a federal election, all of the previous messages involved quotes from former
prime ministers; the key to the final puzzle was formed from the names of these
prime ministers. Students were not told the structure of the key, and had to find it
through experimentation, guesswork and of course the occasional hint.

• Once a team has cracked the master puzzle, they run away and return with the
hidden prize!

Teams are allowed several computers (one per person), and the puzzles are usually
chosen in a way that encourages teamwork. For instance, when cracking a substitution
cipher, one part of the team may be coding up a frequency analysis program while another
part is coding up a real-time substitution tool to help with the guesswork. Eventually
the entire team will be crowded around a screen looking at pieces of the message and
guessing at English words. For other puzzles, such as the linear stream cipher, some team
members might be working on cracking the code with a program while others might be
working on pen and paper.

Since the team event is meant to be informal and fun, staff members are usually quite
liberal with hints, particularly for teams who are behind the others.

All of the topics to date have been taken from the field of information security. This
is partly because information security lends itself well to fun team-based puzzles, and
partly because the author spent some years working in the field. Over the three years that
the team events have run, topics have included:

• Classical cryptography and cryptanalysis. This essentially follows the first chapter
of (Stinson, 2002), which runs through a number of classical ciphers and describes
how to crack them. Some of the ciphers require a known plaintext attack (where

Events to Complement Informatics Olympiad Training 13

students know in advance a small piece of the message); in these cases students
are given strong hints that allow them to guess what the first word of the plaintext
might be.
Cryptography and cryptanalysis is extremely popular, and was used in both 2005
and 2007 (though with a different set of puzzles). Specific topics include shift ci-
phers, affine ciphers, substitution ciphers, Vigenère ciphers, and linear stream ci-
phers.

• Secret sharing schemes. This runs through some of the different ways in which a
group of people can share a secret key amongst themselves, in a way that requires
“enough” participants to join forces before the key can be recovered. The puzzles
involve (i) retrieving keys based on the information given by several participants,
and (ii) cheating, where one participant provides false information but is then able
to find the correct key without the knowledge of other participants.
Donovan (1994) provides a good description of several well-known schemes and
how to cheat using these schemes. Specific schemes used in the team event in-
clude the basic modular sum-of-numbers scheme, Shamir’s polynomial interpola-
tion scheme, and Blakley’s 2-dimensional geometric scheme.

5. Practical Issues

It is worth pausing to consider the difficulty of running each of the aforementioned events,
including preparation time and technical requirements.

5.1. Running a Codebreaker

The codebreaker is the most demanding of the events described here (though also one
of the most useful). To begin, the codebreaker cannot be run using a traditional contest
website – instead it needs its own special web software. With proper use of configuration
files this software only needs to be written once – the Australian codebreaker software
was written in April 2005, tidied up in December 2005 and has remained more or less the
same ever since. If the organisers already have contest software that is well-modularised,
writing the codebreaker software should be a tedious but straightforward task.

Beyond the one-off effort in creating the codebreaker software, each individual event
requires significant preparation:

• A set of incorrect solutions must be written for each task. As mentioned in Sec-
tion 2, this process should ideally involve many different people.

• A sanity checker must be written for each task; this is a short program that checks
whether an input file conforms to the task specifications. Sanity checkers must be
written carefully, since (unlike in an ordinary contest) they are not just verifying the
organisers’ input files, but they are also verifying students’ submissions. A weak
sanity checker may allow students to gain points by merely submitting invalid test
data, instead of finding real cases for which a solution breaks.

14 B.A. Burton

• A universal evaluator must be written for each task; this is a program that reads an
input file (submitted by a student), reads an output file (created by an organiser’s
incorrect solution), and determines whether the output correctly solves the given
input file. In most cases this universal evaluator must solve the task itself before it
can check the given output. Often the universal evaluator is just an official solution
that has been adapted to talk to the codebreaker software.

As a final note, the organisers must decide what to do about whitespace in the input
files that students submit. Allowing too much whitespace may give students more room
to break the solutions in unintended ways (such as creating massive input files that cause
a program to time out, or by causing buffer overflows in solutions that read strings). On
the other hand, being rigorous and insisting on no extra whitespace can make students
grumpy when they submit trailing spaces or newlines by accident and lose points as a
result. A simple workaround is for the contest website to strip unnecessary whitespace
from any input files before they are processed.

5.2. Running a B-Session

A B-session is extremely simple to run. The organisers must choose a single problem,
and one staff member must study the problem in detail so that she or he can chair the dis-
cussion. The exam component can be run using whatever system the organisers generally
use for running contests.

5.3. Running a Team Event

Since the team event is fun and informal, there are few technical requirements. Typi-
cally some of the larger data files are hosted on a web server (such as long messages to
be decrypted), and everything else is done on pen and paper – puzzles are printed and
distributed by hand, and answers are checked manually by a staff member.

However, a team event does require a significant amount of preparation. The lecture
must be written and a cohesive series of puzzles must be devised. More importantly, the
solutions to these puzzles must be verified by a third party. This is of course true of any
contest, but it is a particular concern for the team event – if one of the cryptography
puzzles contains an error, teams could spend a long time getting nowhere before anybody
suspects that something might be wrong.

6. Other Events

The Australian training schools feature a number of other events not described here.
These include:

• Mystery lectures, where a guest lecturer talks for an hour on a pet topic from the
larger world of computer science;

• Proof and disproof sessions, where students work as a group, alternating between
formally proving good algorithms correct and finding counterexamples that show
bad algorithms to be incorrect;

Events to Complement Informatics Olympiad Training 15

• Game-playing events, where students write bots to play a simple game and then
play these bots against each other in a tournament;

• Team crossnumbers, fun events where teams of students work to solve crossnumber
puzzles in which half the team has the “across” clues, half the team has the “down”
clues, and all of the clues depend on one another (Clark, 2004).

It is hoped that the Australian training programme can remain dynamic and fresh, and
the author looks forward to learning how other delegations work with their students in
new and interesting ways.

References

Anido, R.O. and Menderico, R.M. (2007). Brazilian olympiad in informatics. Olympiads in Informatics, 1,
5–14.

Burton, B.A. (2008). Informatics olympiads: Challenges in programming and algorithm design. In G. Dobbie
and B. Mans (Eds.), Thirty-First Australasian Computer Science Conference (ACSC 2008). Wollongong,
NSW, Australia. CRPIT, vol. 74. ACS, pp. 9–13.

Clark, D. (2004). Putting secondary mathematics into crossnumber puzzles. Math. in School, 33(1), 27–29.
Cormack, G., Munro, I., Vasiga, T., Kemkes, G. (2006). Structure, scoring and purpose of computing competi-

tions. Informatics in Education, 5(1), 15–36.
Donovan, D. (1994). Some interesting constructions for secret sharing schemes. Australas. J. Combin., 9, 37–

65.
Forišek, M. (2007). Slovak IOI 2007 team selection and preparation. Olympiads in Informatics, 1, 57–65.
Horváth, G. and Verhoeff, T. (2002). Finding the median under IOI conditions. Informatics in Education, 1,

73–92.
Opmanis, M. (2006). Some ways to improve olympiads in informatics. Informatics in Education, 5(1), 113–124.
Stinson, D.R. (2002). Cryptography: Theory and Practice. Chapman & Hall/CRC, 2nd edition.

B.A. Burton has been the director of training for the Australian infor-
matics olympiad programme since 1999, and before this was a trainer
for the mathematics olympiad programme. His research interests in-
clude computational topology, combinatorics and information security,
and he currently works in the murky world of finance.

Olympiads in Informatics, 2008, Vol. 2, 16–36 16
© 2008 Institute of Mathematics and Informatics, Vilnius

Creating Informatics Olympiad Tasks:
Exploring the Black Art

Benjamin A. BURTON
Department of Mathematics, SMGS, RMIT University
GPO Box 2476V, Melbourne, VIC 3001, Australia
e-mail: bab@debian.org

Mathias HIRON
France-IOI 5, Villa Deloder, 75013 Paris, France
e-mail: mathias.hiron@gmail.com

Abstract. Each year a wealth of informatics olympiads are held worldwide at national, regional
and international levels, all of which require engaging and challenging tasks that have not been seen
before. Nevertheless, creating high quality tasks can be a difficult and time-consuming process. In
this paper we explore some of the different techniques that problem setters can use to find new
ideas for tasks and refine these ideas into problems suitable for an informatics olympiad. These
techniques are illustrated through concrete examples from a variety of contests.

Key words: programming contests, task creation.

1. Introduction

Like writing music or proving theorems, making new informatics olympiad tasks is a
highly creative process. Furthermore, like many creative processes, it is difficult to create
tasks on a tight schedule. With a rich yearly programme of national and international
contests however, this is a problem that many contest organisers face. How can organisers
come up with fresh tasks, year after year, that are not simple variations of problems that
students have already seen?

We do not hope to solve this problem here – this paper does not give an “algorithm”
for creating good tasks. What we do offer is a range of techniques for creating new tasks,
drawn from the collective experience of the scientific committees of two countries. Of
course each contest organiser has their own methods for setting tasks; the hope is that
readers can blend some of these techniques with their own, and that this paper can en-
courage a dialogue between contest organisers to discuss the many different methods that
they use.

We begin in Section 2 by describing the qualities of a “good” informatics olympiad
task, and in Section 3 we run through different characteristics that make one problem dif-
ferent from another. Section 4 covers the difficult first step of finding an original idea; the
methods offered span a range of creative, ad-hoc and methodical techniques. In Section 5

Creating Informatics Olympiad Tasks: Exploring the Black Art 17

we follow up with ways in which an original idea can be massaged and modified into
an idea suitable for a real contest. Finally Section 6 reformulates the ideas of the earlier
sections in a more abstract, “algorithmic” setting.

Creating new tasks is only part of the work required to organise a contest. Diks et
al. (2007) discuss the work that follows on from this, such as task write-ups, analysis,
documentation, solutions, test data, and final verification.

2. What Makes a Good Task?

Before we set out to create new tasks, it is important to understand what we are aiming
for. In an informatics olympiad, the target audience (talented high school students), the
tight time frame (typically at most five hours for a contest) and the need to fairly rank
competitors all place restrictions on what tasks can be used.

The following list identifies some features of a good informatics olympiad task. This
list is aimed at contests modelled on the International Olympiad in Informatics (IOI) –
other programming contests have different goals, and so their tasks might have different
needs. Additional notes on the suitability of tasks can be found in Diks et al. (2007) and
Verhoeff et al. (2006).

• It should be possible to express the task using a problem statement that is (rela-
tively) short and easy to understand. The focus of the task should be on problem
solving, not comprehending the problem statement. It is also nice to include some
tasks that relate to real-world problems, though this is by no means necessary.

• Ideally the algorithm that solves the task should not directly resemble a classic al-
gorithm or a known problem. It might be a completely original algorithm, it might
be a modified version of a classic algorithm, or it might resemble a classic algo-
rithm after some transformation of the input data.
An example of transforming a classic algorithm is Walls from IOI 2000. Competi-
tors essentially read a planar graph from the input file. If they convert this graph
into its dual, the problem becomes the well-known breadth-first search, with some
minor complications involving multiple starting points.

• The task should support several solutions of varying difficulty and efficiency. This
allows weaker students to gain partial marks by submitting simple but ineffi-
cient solutions, while stronger students can aim for a more difficult algorithm that
scores 100%.

• The official solution should allow a reasonably concise implementation (at most a
few hundred lines of code). It should also be possible to estimate during the pen-
and-paper design stage whether this solution can score 100% for the given time
and memory constraints.

• Ideally the official solution should also be the best known solution for the task,
though whether this is desirable may depend on the intended difficulty of the task.

• For contests aimed at experienced students, it is nice to have tasks where it is not
obvious in advance what category (such as dynamic programming or graph theory)

18 B.A. Burton, M. Hiron

the desired algorithm belongs to. It is also nice to have solutions in which two or
more different algorithms are welded together.

3. Characteristics of Problems

In this section we run through the different types of characteristics that a task can have.
This is useful for categorising problems, and it also highlights the different ways in which
a task can be changed.

Although this paper is not concerned with categorisation per se, understanding the
different characteristics of old tasks can help problem setters create new tasks that are
different and fresh. This categorisation is particularly important for the techniques of
Subsection 4.4, and it plays a key role in the algorithmic view of task creation described
in Section 6.

Examining characteristics of tasks also helps us to experiment with the many different
ways in which a task can be changed. Changing tasks is a critical part of the creation
process; for example, tasks can be changed to make them more interesting or original, or
to move them into a desired difficulty range. The process of changing tasks is discussed
in detail in Section 5.

Each task has many different characteristics; these include characteristics of the ab-
stract core of the task, of the story that surrounds the task, and of the expected solution.
These different types of characteristics are discussed in Subsections 3.1, 3.2 and 3.3 re-
spectively. This list does not claim to be exhaustive; readers are referred in particular to
Verhoeff et al. (2006) for additional ideas.

3.1. Characteristics of the Abstract Core

Here we reduce a task to its abstract, synthesised form, ignoring the elements of the story
that surrounds it. Different characteristics of this abstract form include the following:

• What kinds of objects are being manipulated?
Examples of objects include items, numbers, intervals, geometric objects, and let-
ters. Some tasks involve sets or sequences of these basic objects; these sets or
sequences can be arbitrary (such as a sequence of numbers read from the input file)
or described through rules (such as the set of all lattice points whose distance from
the origin is at most d). A task may involve more than one kind of object.

• What kinds of attributes do these objects have?
Attributes can be numerical, such as the weight of an edge in a graph, or the score
for a move in a game. They can also be geometric, such as the coordinates of a
point or the diameter of a circle; they can even be other objects. Attributes can
have static or dynamic values, and can be given as part of the problem or requested
as part of the solution.
What are the relationships between these objects?
Relationships can be arbitrary (such as the edges of a given graph forming a rela-
tionship on the vertices), or they can be described by rules (such as intersections,

Creating Informatics Olympiad Tasks: Exploring the Black Art 19

inclusions, adjacencies, or order relations). They can relate objects of the same
kind or of different kinds, and they can even be relations between relations (such
as relationships between edges of a graph). Relationships can be constraints that
one object places upon another (such as a maze, which constrains the coordinates
of objects inside it), or they can constrain the successive values of an attribute (such
as a graph in which some object can only move to adjacent vertices).

• What kind of question is asked about these objects?
The question might involve finding a specific object (or set of objects) that has
some property, or that maximises or minimises some property. It might involve
aggregating some attribute over a set of objects, or setting the attributes of each
object to reach a particular condition.

• Does the task ask just one question, or does it ask many questions over time?
The same question can often be asked in two ways: (i) asking a question just once,
or (ii) asking it many times, where the objects or their attributes change between
successive questions. An example of the latter type is Trail Maintenance from IOI
2003, which repeatedly asks for a minimal spanning tree in a graph whilst adding
new edges between queries. These changes might be given as part of the input or
they might depend on the previous answers, and questions of this type can lead to
both interactive and non-interactive tasks.

• What general constraints are given on the structures in the task?
Examples for graph problems might include general properties of the graph, such as
whether it is directed, sparse, acyclic or bipartite. Constraints for geometric prob-
lems might include the fact that some polygon is convex, or that no two lines in
some set are parallel.

Some of these characteristics – in particular, the objects, attributes and relationships –
are reminiscent of other fields of computer science, such as object-oriented programming
or database design. However, in the more flexible domain of informatics olympiad tasks,
these characteristics can cover a much broader scope.

3.2. Characteristics of the Story

The same abstract task can be presented in many different ways, by wrapping it inside
different stories. Selecting a good story can have a great influence on the quality and
accessibility of a task. As discussed in Section 5, it can also affect the difficulty of the
task through the way it hides elements of the core problem. Characteristics of the story
include the following:

• What real world item do we use to represent each object?
Typical items include roads, buildings, cows, farmers, strings; the list goes on.
Rectangles might become cardboard boxes; a grid of numbers might become
heights in a landscape. The possibilities are immense.

• What kind of measures do we use for each attribute?
Numerical attributes might represent time, weight, age, quantity or price. Symbolic
attributes could represent colours or countries; geometric attributes such as coordi-
nates or diameter could describe a location on a map or the range of a radio tower.

20 B.A. Burton, M. Hiron

• How do we justify the relationships between objects?
This typically depends upon how the objects themselves are represented. For in-
stance, if the objects are people then relationships could be described as friend-
ships or parent/child relationships. Often the descriptions of relationships follow
naturally from the descriptions of the objects themselves.

• How do we explain why the question needs to be solved?
This explains the motivation for the task, and often provides an overall storyline
for the problem.

3.3. Characteristics of the Solution

The solution of a problem is its most important aspect – a large part of what makes a task
interesting is how interesting and original the solution is. Unfortunately it can be difficult
to change the solution directly without having to make significant changes to the entire
task. Characteristics of the solution include:

• What domains of algorithmics are involved?
Examples include graph theory, dynamic programming and computational geome-
try. Verhoeff et al. (2006) provide an excellent reference of domains that are rele-
vant for the International Olympiad in Informatics (IOI).

• What mathematical observations need to be made?
Often a solution relies on some property of the task that is not immediately obvious.
For instance, students might need to realise that a graph contains no cycles, that
some attribute can never be negative, or that a simple transformation can always
convert a “sub-optimal” answer into a “better” answer.

• What is the main idea of the algorithm?
This is the core of the solution, and describes the key steps that are eventually
fleshed out into a detailed algorithm and implementation. Is it a greedy algorithm?
Does it build successive approximations to a solution? Does it solve a problem by
iteratively building on solutions to smaller problems? What are the important loop
invariants?

• What data structures can be used?
In some cases the data structures form an integral part of the algorithm. In other
cases, clever data structures can be used to improve an algorithm, such as imple-
menting Dijkstra’s algorithm using a priority queue. For some algorithms there are
several different choices of data structure that can lead to an efficient solution.

4. Finding a Starting Point

One of the most difficult steps in creating a new task is finding a starting point – that
elusive new idea for a task that is like nothing students have seen before. In this section
we explore some of the different techniques that can be used to find an original new idea.

The techniques presented here are based on personal experience. This list was com-
piled by approaching several problem setters from the authors’ respective countries, and

Creating Informatics Olympiad Tasks: Exploring the Black Art 21

asking them to reflect on past contests and analyse the different processes that they used
to generate ideas.

Many of the examples in this section are taken from the French-Australian Regional
Informatics Olympiad (FARIO), the France-IOI training site, and the Australian Infor-
matics Olympiad (AIO). Full texts for all of these problems are available on the In-
ternet: the FARIO problems from www.fario.org, the France-IOI problems from
www.france-ioi.org (in French), and the AIO problems from the Australian train-
ing site at orac.amt.edu.au. The last site requires a login, which can be obtained
through a simple (and free) registration.

Finding a new idea is of course only the beginning of the task creation process, and is
usually followed by a round of modifications to improve this initial idea. These modifi-
cations tend to follow a similar pattern regardless of how the initial idea was formed, and
so they are discussed separately in Section 5.

4.1. Looking Around

One of the most common techniques, though also one of the least predictable, is to “look
around” and take inspiration from things that you see in real life. An alternative is to find
somebody unfamiliar with computer science or programming contests, and to ask them
for ideas.

An example is Guards (FARIO 2006), which describes a circular area with roads
entering at different points on the edge of the circle (Fig. 1). The task is then to place
guards at some of these roads so that every road is “close enough” to a guard, and to
do this using as few guards as possible in linear time. This turned out to be a relatively
tricky sliding window problem, and has proven useful for training in the years since.
The inspiration for this problem was the 2006 Commonwealth Games in Melbourne,
where one author had a large part of his suburb barricaded off for the netball and hockey
matches.

Another example is Banderole (France-IOI), which gives a line of vertical sticks and
asks for the number of integer positions in which a rectangle can be balanced (Fig. 2). The
idea for this problem came from a France-IOI team dinner, where people were balancing
the objects in front of them (plates, cider bottles and so on).

Looking around for inspiration has some disadvantages. It requires a great deal of
effort trying to solve the problems that you create, since you do not have a solution in

Fig. 1. The circle of roads for the task Guards (FARIO 2006).

22 B.A. Burton, M. Hiron

Fig. 2. Examples of balanced rectangles for the task Banderole (France-IOI).

mind in advance. Furthermore (as is frequently found in the real world) these ideas can
often lead to problems that are NP-hard, though the techniques of Section 5 can be used
to convert them into more tractable tasks.

However, the same cause of these difficulties – that you do not have a solution ready in
advance – means that this method can sometimes lead to highly original problems that do
not rely on simple modifications of standard algorithms. One of the first author’s favourite
problems is Citizenship, from the Australian team selection exam in 2006; this gives rules
for gaining and losing citizenship of different countries, and asks for the largest number
of countries for which you can hold citizenship simultaneously. The solution involves
an interesting representation of the input data and unusual ad-hoc techniques on directed
graphs. The motivation for this problem was a dinner conversation at the 2006 Australian
Linux conference (which was held in Dunedin, New Zealand).

There are many places to “look around” for inspiration. One is your immediate envi-
ronment – focus on a nearby object, or an action that somebody performed. Another is to
recall events in your life or a friend’s, or even in the news. Plots from books or movies
can also be used as a starting point.

Once you have picked a specific object or event, you can focus on that object or event
and work to create a task around it; this is usually more efficient than looking in lots of
different places until inspiration comes. Restricting your attention to a given branch of
algorithmics can also help; for instance, you might focus on creating a graph problem
involving light bulbs. Working with unusual objects, actions or events can help to create
original ideas.

4.2. Drawing on the Day Job

Another technique employed by many problem setters is to use tasks that arise in their
daily work. For instance, you might be working on a large and complex research problem
but find that a small piece of this problem is just the right difficulty for an informat-
ics olympiad. Alternatively, you might be reading through a research paper and find an
interesting algorithm that can be adapted for a programming contest.

One problem of this type is Giza (FARIO 2007), which was inspired by real-world
work in tomography. This task is a discrete 2-dimensional version of the general tomog-
raphy problem. Specifically, it asks students to recover a secret image formed from grid
cells, given only the cell counts in each row, column and diagonal (Fig. 3).

Another example is Frog Stomp, from the 2007 Australian team selection exam. This
is an output-only task that asks students to find “sufficiently short” integer sequences with
particular properties. This problem arose as part of a larger research project in eliminating

Creating Informatics Olympiad Tasks: Exploring the Black Art 23

Fig. 3. A secret image and cross-section totals for the task Giza (FARIO 2007).

statistical biases in financial data, and was easily extracted from its financial setting into
a standalone mathematical task.

In contrast to “looking around”, with this technique you already begin with a solution
– either you have already solved it yourself, or you have read the algorithm in a research
paper. While this is convenient, it also risks underestimating the difficulty of such tasks.
Personal research projects typically involve ideas that you have worked on for months,
and research papers rarely give an indication of how they arrived at an algorithm or how
difficult this was. It is usually best to give the problem to other people to solve, in order
to gain a better estimate of its true difficulty.

4.3. Modifying a Known Algorithm

One of the simpler techniques for producing new tasks is to begin with a standard algo-
rithm (such as quicksort or a breadth-first search) and set a task that modifies it in some
way.

An example is Chariot Race (FARIO 2004), which requires a modification to Dijk-
stra’s algorithm for the shortest path through a graph. In this task the problem setters
began with Dijkstra’s algorithm and set out to remove the “no negative edge weights”
constraint.

If we simply allow negative edge weights, this creates difficulties with infinite neg-
ative cycles. To avoid this, the task was changed so that, instead of edges with fixed
negative weights, we allow wormholes – edges that “travel back in time” by dividing the
current total distance by two (Fig. 4). By making this division round to an integer, the
problem setters were able to avoid infinite negative cycles entirely.

The solution to Chariot Race is essentially Dijkstra’s algorithm with adaptations to
deal with (i) the fact that the total distance can decrease after following an edge, and (ii)
the fact that the precise change in distance when following a wormhole is not a constant,
but instead depends upon the total distance so far. Good students should be able to deal
with both adaptations easily enough, and indeed this turned out to be the easiest problem
on the FARIO contest paper.

24 B.A. Burton, M. Hiron

Fig. 4. A graph for Chariot Race (FARIO 2004), with the wormhole as a dotted arrow.

The advantages of beginning with a standard algorithm are that it is easy to create
new tasks (there are plenty of standard algorithms, and plenty of modifications to make),
and that you typically have a good idea of what the solution will look like in advance.
The main disadvantages are that the resulting tasks will often be similar to well-known
problems, and that good students should see through this easily. It is therefore difficult to
create highly original problems using this technique.

It should be noted that the algorithm you begin with does not need to be one of the
fundamental algorithms that appear regularly in olympiad problems. There are plenty of
standard algorithms that are less commonly taught; examples include graph vertex con-
nectivity, permutation generation, and union-find data structures. As a possible starting
point, Skiena (1998) offers an excellent catalogue of standard algorithms and their vari-
ants, and Verhoeff et al. (2006) propose a detailed syllabus of topics that relate to the
IOI.

4.4. Filling the Holes in a Domain

Here we describe a technique that focuses on a particular domain, such as shortest path
problems or binary trees, where you already have a pool of problems in stock that you
cannot reuse. This technique is useful when preparing training sessions for experienced
students who have seen many problems before; it can also help create new tasks for
programming contests.

The technique essentially begins with a large pool of tasks, examines the characteris-
tics of these tasks, and then forms new combinations of these characteristics. In detail:

• The first step is to compile a thorough list of “old” tasks in the domain of interest.
This can be time consuming, but it is important to include as many tasks as possible
– not only does this list remind you of tasks that you cannot reuse, but it also serves
as a basis for creating new tasks in the domain.
To work with this list efficiently, it helps to have each task clearly in mind. A
suggestion is to synthesise each task and its solution in a few sentences; in many
cases a quick drawing can also help. As a side-effect, compiling this list helps give
a clear view of the types of problems that can be created in this domain, and new
ideas might come naturally as a result.

• The next step is to examine the different characteristics of the tasks in this list;
examples of such characteristics can be found in Section 3. The aim is to find char-

Creating Informatics Olympiad Tasks: Exploring the Black Art 25

acteristics that tasks have in common, and also characteristics in which tasks differ.
In this way, each task can be described as a combination of different characteristics.

• Creating new tasks is then a matter of finding combinations of characteristics that
have not yet been used. Blending the characteristics of two or more different prob-
lems in the domain can often lead to a meaningful (and interesting) new task.

To illustrate, we can apply this technique to the domain of sweep-line algorithms
and sliding windows. A list of 30 old problems was compiled by the second author;
although the individual problems and solutions are too numerous to list here, the main
characteristics are as follows:

(i) The objective may be to find a point, a set of points, an interval, or a set of intervals
satisfying some given properties. Alternatively, it may be to aggregate some value
over all points or intervals satisfying some given properties.

(ii) The points or intervals may need to be chosen from a given list, or they may be
arbitrary points or intervals on either a discrete or continuous axis.

(iii) The properties used to select these points or intervals may involve relationships
amongst these objects, or they may involve relationships between these objects and
some entirely different set of objects. In the latter case, this second set of objects
may itself involve either points or intervals.

(iv) The properties used to select these points or intervals may be purely related to their
location on the axis, or they may involve some additional attributes.

(v) When intervals are manipulated, intervals that overlap or contain one another may
or may not be allowed.

(vi) In the story, the objects may appear directly as points or intervals on a given axis,
or they may be projections of some higher-dimensional objects onto this axis. The
axis may represent location, time, or some other measure.

(vii) Solutions may involve sweep-line algorithms, sliding windows, or possibly both.

Having listed the most important characteristics within this domain, we can now
choose a new combination of values for these characteristics. We will ask for (i) an
interval, chosen on (ii) a continuous axis. We will require this interval to satisfy some
relationship involving (iii) a different set of intervals, given in the input file. Intervals will
(iv) be assigned a colour from a given list of possible colours, and (v) no rules will pre-
vent intervals from intersecting or containing one another. The story will use (vi) circles
as its primary objects, where the intervals describe the angles that these circles span when
viewed from the origin.

Now that a choice has been made for each characteristic, most of the elements of the
problem are set. Fleshing this out into an abstract task, we might obtain the following:

A set of circles is given on a two dimensional grid. Each circle has a colour iden-
tified by an integer. The task is to choose two half-lines starting from the origin,
so that at least one circle of each colour lies entirely in the region between these
lines, and so that the angle between these lines is as small as possible.

This task is illustrated in Fig. 5. A story still needs to be built around this idea, but we
have a good start for a new task that is different from the 30 problems originally listed.

26 B.A. Burton, M. Hiron

Fig. 5. Creating a new task by combining the different characteristics of old tasks.

This technique gives an efficient way of creating many new problems in a short time
within a specific domain. However, it tends to produce tasks that are not truly original,
since they always share the characteristics of existing problems.

One way to obtain more original problems with this technique is to choose values for
some characteristics that do not appear in any of the listed problems. For instance, in the
example above, the objects in the original list of 30 problems include points, intervals,
segments, squares, rectangles, right-angled triangles, and circles. We might therefore try
parallelograms or ellipses for something new.

4.5. Building from Abstract Ideas

If you don’t have a day job or other external sources of inspiration, another way to gen-
erate new ideas is to draw random things on a blank piece of paper. Here we describe
a technique that begins with vague sketchings and gradually refines them into a usable
problem.

In Subsection 3.1 we describe several kinds of objects that can appear in a task. To
search for ideas, you can pick one kind of object at random and draw some instances of it
on a piece of paper. You might also choose a second kind of object and do the same. You
can then search for a task that involves these objects; this might require you to find some
attributes, relationships, and a question about these objects that you can ask. Drawing
diagrams to represent the different elements of the task can help ideas to come.

During the initial stages of this process, what you manipulate is not always a precise
problem with a solution. As you add objects, attributes and relationships one after another,
you might not have specific algorithms in mind but rather vague ideas of where you are
heading. Each time you define another characteristic of the task, you obtain a more precise
idea of the problem, and a better idea of what kind of solution you might end up with. If
at some stage you are unhappy with the direction the problem is taking, you can go back
and alter one of the characteristics that you defined earlier. Little by little, you get closer
to a usable problem.

To illustrate this process we give a concrete example; some of the intermediate sketch-
ings are shown in Fig. 6. We might begin by drawing circles on a piece of paper, with
some intersections and inclusions. Perhaps it reminds us of a graph problem we have seen
before; to avoid this we decide to add another kind of object. We choose lines, and think
about ideas such as finding the line that intersect the most circles.

Creating Informatics Olympiad Tasks: Exploring the Black Art 27

Fig. 6. Successive diagrams used whilst creating a task from abstract ideas.

However, this also reminds us of problems we have seen before; we therefore try to
replace lines with circles, and look for the position of a new circle that intersects the most
circles from a given set. This might become a relative scoring task, which is not what
we are looking for today. Replacing circles with squares yields an interesting problem for
which we can find several solutions of varying complexities. We massage it a little further
by changing squares into rectangles and giving them a “value” attribute, and obtain the
following task:

You are given N rectangles (N � 500) whose sides are parallel to the x and
y axes. Each rectangle is described by four integer coordinates between 0 and
1 000 000 and a value between 1 and 1 000. Given a width W and height H (0 �
W, H � 100 000), your task is to find a new rectangle of size W × H for which
the total value of all rectangles it intersects or contains is as large as possible.

This task is not a great one but can be good enough for some contests. One solution
involves a sweep-line algorithm with an interval tree.

4.6. Borrowing from Mathematics

Although ideas for tasks can come from many different disciplines, some branches of
mathematics are particularly useful for creating informatics olympiad problems. Here we
focus on tasks derived from the mathematical field of combinatorics.

To summarise, combinatorics problems typically involve counting things or arranging
things according to certain rules. Examples of combinatorics problems are (i) counting
different colourings of an n×n chessboard, (ii) counting the number of different triangu-
lations of an n-sided polygon, and (iii) creating latin squares, which are n×n grids filled
with the numbers 1, 2, . . . , n so that each row and each column contains every number
once.

Combinatorics problems can often lead to interesting or unusual dynamic program-
ming tasks, because they both share a core dependency on recurrence relations: formulae
that solve a larger problem in terms of one or more smaller problems.

For instance, consider example (ii) above. Let Tn be the number of ways of triangulat-
ing an n-gon; in Fig. 7 it can be seen that T6 = 14. In general, Tn is the famous sequence
of Catalan numbers; see (van Lint and Wilson, 1992) for some of the many, many other
things that it counts.

The sequence T1, T2, . . . obeys a recurrence relation, which we can see as follows.
Choose the bottom edge of the hexagon, and consider the possible triangles that this edge

28 B.A. Burton, M. Hiron

Fig. 7. The 14 different ways of triangulating a hexagon.

Fig. 8. The four possible triangles that might include the bottom edge.

could belong to. There are four possibilities, illustrated in Fig. 8. In the first and last
diagrams we must still triangulate the white 5-gon, whereas in the middle two diagrams
we must still triangulate the white 3-gon and the white 4-gon. Thus T6 = T5 + T3T4 +
T4T3 + T5. In general, a similar argument shows that

Tn = Tn−1 + T3Tn−2 + T4Tn−3 + · · · + Tn−3T4 + Tn−2T3 + Tn−1.

It is easy to turn this mathematical recurrence into a dynamic programming problem.
One way is to ask precisely the same question – count the number of triangulations of an
n-gon (possibly writing the answer mod 1000 or similar to avoid the inevitable integer
overflows).

Another way is to turn it into an optimisation problem – give each triangulation a
score, and ask for the largest score possible. For example, we could place a number at
each vertex, and score each edge of the triangulation according to the product of the
two numbers that it joins. The recurrence relation would change a little (for instance, the
sum would become a maximum), but its overall structure would remain the same. This
is precisely the task Polygon Game from the 2002 Australian team selection exam, and it
was created in precisely this way. See (Burton, 2007) for a more detailed analysis of this
problem.

Combinatorial recurrence relations are plentiful, and can be found from several
sources:

• They frequently appear in the study of generating functions (Wilf, 1994). The
problem Architecture (FARIO 2007) was based on a problem described by Wilf
that counts the number of n-square polyominoes with a certain convexity property
(where polyominoes are “generalised dominoes” formed by joining several squares
together, similar to Tetris blocks). The final problem Architecture asks students to
maximise a “prettiness” score for n-block buildings with this same convexity prop-
erty.

• The online encyclopedia of integer sequences (Sloane, 2008) is full of interesting
combinatorial sequences and recurrence relations; simply browsing through the
encyclopedia can yield interesting results.

Creating Informatics Olympiad Tasks: Exploring the Black Art 29

• Finally, it is useful to look through mathematics competitions, where combina-
torics is a popular topic. There are many compilations of mathematics competition
problems available; see (Kedlaya et al., 2002) and (Larson, 1983) for examples.

Combinatorics is of course not the only branch of mathematics that can yield inter-
esting problems. We focus on it here because many combinatorial problems are easily
accessible to students with no formal mathematics background. For different examples
the reader is referred to (Skiena and Revilla, 2003), who work through problems from
several different branches of mathematics.

4.7. Games and Puzzles

Another concrete source of ideas is games and puzzles. Many obscure games can be
found on the Internet, and puzzles are readily available from online sources such as the
rec.puzzles newsgroup, and from friends’ coffee tables.

Games and puzzles are useful in two ways. On the one hand, they provide ready-made
tasks such as playing a game optimally or solving a puzzle using the smallest number
of moves. On the other hand, they can supply interesting sets of objects and rules that
can act as starting points for other tasks, using techniques such as those described in
Subsection 4.5.

An example of a game-based problem is Psychological Jujitsu (AIO 2006), which
involves a card game where players bid for prizes. In the real game players cannot see
each others’ bids. To make the problem solvable, the AIO task assumes that a player can
see their opponent’s bids in advance, and then asks for a sequence of bids that allows the
player to beat their opponent with the largest possible margin. The solution is an original
(though relatively simple) ad-hoc algorithm.

A problem that began as a game but grew into something different is Collier de Bon-
bons (France-IOI). The original source was Bubble Breaker, an electronic game involving
stacks of bubbles of different colours, in which clicking on a group of two or more bubbles
of the same colour makes those bubbles disappear. The game was changed to use a single
stack, which then became a single cycle. The task was then changed so that students must
remove all of the bubbles in the cycle; bubbles can be removed individually if required,
but this must be done as few times as possible. The cycle of bubbles was changed to a
candy necklace, and the final solution is a nice example of dynamic programming.

One difficulty of using games and puzzles is that solving them is often NP-hard (oth-
erwise they are not interesting for humans to play!). For this reason, tasks derived from
games or puzzles often need to be simplified or constrained before they can be used in a
programming contest.

4.8. Final Notes

We close this section with some final suggestions when searching for an initial idea:

• Restrict your search to a single theme or domain.
To generate ideas faster, it is often useful to restrict the search space. For instance,
you might search for a task relating to trains (a restriction on the story), a task

30 B.A. Burton, M. Hiron

involving hash tables (a restriction on the solution), or a task involving geometry
(a restriction on the underlying objects). One benefit of reducing the search space
is that you can quickly enumerate the classic problems in that space, which in turn
makes it easier to find ideas outside these classic areas.

• Get other people involved in the search process.
If you explain an idea to someone, they can often suggest improvements that you
might not have considered yourself. For instance, they could suggest a different
way to present the task, or add originality by modifying the task in a new direction.
Moreover, explaining a task to a seasoned problem solver can occasionally give
an unexpected result: by misunderstanding your explanation, they might solve the
wrong task and end up with a different, more interesting version of your initial
idea!

• Be proactive!
Instead of only creating tasks when you need them, it helps to always be on the
lookout for new ideas. It is worth keeping a file or notebook of ideas that you have
had, or interesting papers you have read. Even if you just write one or two lines
for each idea, it is far easier to browse through your notebook when you need new
tasks than try to remember everything you thought of over the past months.

5. Improving the Task

In the experiences of the authors and most of the problem setters approached for this pa-
per, the initial idea is typically not the final version of a task. Instead tasks are repeatedly
modified, passing through several intermediate versions, until problem setters are happy
with both the originality and the difficulty of the problems and their solutions. In this
section we explore this modification process in more detail.

There are several reasons a task might need modification. It might be missing one
of the qualities of a good problem as outlined in Section 2. On the other hand, it might
have all of these qualities but not fall within the required difficulty range. Sometimes
individual tasks are fine but the contest as a whole needs rebalancing.

In Subsection 5.1 we examine the ways in which tasks are changed one step at a time.
Subsection 5.2 discusses modifications with a particular focus on changing the difficulty,
and Subsection 5.3 looks at the related issue of adding and removing subproblems. In
Subsection 5.4 we discuss the process of modifying a task to fit an intended solution, and
offer some general advice when searching for solutions to candidate tasks.

5.1. Elementary Changes

If a task is not perfect, it does not make sense to throw it away completely. Initial ideas
with nice properties are hard to find, and problem setters like to preserve these properties
where possible by keeping their changes small. In this way, the modification process is
often a succession of small changes, where good changes are kept and bad changes are
undone, until eventually all of the concerns with a task have been addressed.

Creating Informatics Olympiad Tasks: Exploring the Black Art 31

It is frequently the case that a single “small change” is a result of modifying a single
characteristic of the task; for instance, the principal objects of the task might change
from rectangles to circles. Sometimes other characteristics must change as a result; for
instance, the old attributes of position, height and width might need to become centre and
radius instead.

A more interesting example is Chariot Race (FARIO 2004), discussed earlier in Sub-
section 4.3. The initial idea for this task was Dijkstra’s algorithm; the first change was to
alter the properties of the graph to allow negative edges. In order to preserve some prop-
erties of the original idea (in this case the general structure of Dijkstra’s algorithm), some
other changes were needed – in particular, it was necessary to replace negative edges with
edges that “divide by two and round to an integer”. See Subsection 4.3 for details.

These observations suggest a general technique for modifying a task. Examine the
various characteristics of the task, as outlined in Section 3. Then try changing these char-
acteristics one at a time, beginning with those characteristics that take the most common
or uninteresting values, and keep the changes that work best.

5.2. Changing the Difficulty

It is often the case that a task is original and interesting but simply pitched at the wrong
audience. Here we examine some concrete ways in which the difficulty of a task can be
changed.

If a task is too difficult, simplification techniques such as those described by Ginat
(2002) and Charguéraud and Hiron (2008) can be applied. Although these techniques are
designed to aid problem solving, they have the side-effect of generating easier versions
of a task. The general idea behind these techniques is to remove or simplify one or more
dimensions of a task.

For example, consider the problem Giza (FARIO 2007), discussed earlier in Subsec-
tion 4.2. The original idea for Giza was the general tomography problem (recovering
the shape and density of a 3-dimensional object from several 2-dimensional x-rays). The
problem was simplified by removing one dimension (making the object 2-dimensional)
and simplifying others (allowing only three x-rays, and restricting the densities of indi-
vidual grid cells to the values 0 or 1).

On the other hand, suppose we wish to increase the difficulty of a task. One obvious
method is to add dimensions to the problem. For instance, consider the task Speed Limits
from the 2002 Baltic Olympiad in Informatics. Here students are asked to find the fastest
route for a car travelling through a network of intersections and roads, where some roads
have an additional attribute (a “speed limit”) that changes the speed of the car. The solu-
tion is a classical Dijkstra’s algorithm, but on an unusual graph where each (intersection,
current speed) pair defines a vertex. In this way the extra dimension of “speed limit” in-
creases the difficulty of the task, since students must find the hidden graph on which the
classical algorithm must be applied.

Some other ways of increasing the difficulty include:

• Changing how some of the dimensions are described in the story. For example,
a problem involving x and y coordinates could be reformulated so that x and y

32 B.A. Burton, M. Hiron

become time and brightness. Although the abstract task stays the same, the unusual
presentation may make it harder to solve.

• Transforming the task into a dynamic task. Instead of asking just one question,
the task might ask a similar question many times, changing the input data between
successive queries.

• Asking for a full backtrace or list of steps instead of just a minimum or maxi-
mum value. For instance, a task that asks for the length of a shortest path might be
changed to ask for the path itself. In some cases this can make a solution signifi-
cantly harder to implement.

• Reducing the memory limit, which can often bring new challenges to an otherwise
straightforward algorithm.

5.3. Adding or Removing Subproblems

One way to make a task more difficult and sometimes more original is to add a second
problem or subproblem. This can be done in several ways:

• By transforming the input of the task, so that additional work is needed before
the data can be used in the main algorithm. For instance, an input graph might
be presented as a set of circles in the coordinate plane, where individual circles
correspond to the vertices of the graph and intersections between these circles cor-
respond to edges.

• By using the output of the original task as input for another task. For example, sup-
pose the original task asks for the convex hull of a set of points. A new subproblem
might then ask for the specific point on that hull from which the other points span
the smallest range of angles.

• By embedding a new subtask into each iteration of the original algorithm, or by
embedding the original task into each iteration of a new algorithm. For example,
suppose the original task asks whether a graph with some given attribute x is con-
nected. A new task might ask for the smallest value of x for which the graph is
connected. The new algorithm then becomes a binary search on x, where the orig-
inal connectivity algorithm is used at each step.

Even beyond the extra work involved, adding a subproblem can make a task more
difficult by hiding its real purpose, or by hiding the domain of algorithmics that it belongs
to. For instance, in the first example above (graphs and circles) the extra subproblem
might make a graph theory task look more like geometry.

Conversely, a task can be made easier by removing subproblems where they exist. For
instance, the input data could be transformed in a way that requires less implementation
work but still preserves the algorithm at the core of the task.

5.4. Aiming for a Solution

A significant part of the task creation process involves searching for solutions. This search
can sometimes present interesting opportunities for changing a task.

Creating Informatics Olympiad Tasks: Exploring the Black Art 33

While trying to solve a task, an interesting or unusual algorithm might come to mind
that cannot be applied to the task at hand. Such ideas should not be ignored; instead it can
be useful to study why an interesting algorithm does not work, and to consider changing
the task so that it does work.

An example of this technique can be seen in the problem Belts (FARIO 2006), which
began its life as a simple dynamic programming problem. Whilst trying to solve it the
author found a different dynamic programming solution over an unusual set of subprob-
lems, and eventually changed the task so that this unusual algorithm was more efficient
than the simple approach.

As an aside, when working on a task it is important to invest serious time in searching
for a solution. In particular, one should not give up too easily and simply change the
problem if a solution cannot be found. If problem setters only consider tasks for which
they can see a solution immediately, they risk only finding tasks that are close to classic
or well-known algorithms.

Even once a solution has been found, it is worth investing extra time into searching for
a more efficient solution. This proved worthwhile for the problem Architecture (FARIO
2007) – in its original form the task required an O(n5) solution, but after much additional
thought the organisers were able to make this O(n4) using a clever implementation. This
gave the task more power to distinguish between the good students and the very good
students.

6. Algorithmic Task Creation

As explained earlier, the task creation techniques described in this paper are largely post-
hoc – they have been developed naturally by problem setters and improved over the years
through experience. As an attempt to further understand and refine these techniques, we
now revisit them in a more abstract setting. In Subsection 6.1 we introduce the idea of an
abstract “problem space”, and in the subsequent Subsections 6.2–6.4 we reformulate our
task creation techniques as an “algorithmic” search through this problem space.

6.1. Defining the Problem Space

We began this paper by outlining our objectives, as seen in Section 2 which described the
features of a good task. Essentially these features give us different criteria by which we
can “measure” the quality of a task. Although these criteria are imprecise and subjective,
they essentially correspond to an evaluation function in algorithmics; given a task, they
evaluate the quality or interest of that task.

Following this, we outlined the many different characteristics that can define a prob-
lem, as seen in Section 3. Although once more imprecise, we can think of these charac-
teristics as different dimensions of a large multi-dimensional problem space. Each task
corresponds to a point in this space, and the characteristics of the task give the “coordi-
nates” of this point.

34 B.A. Burton, M. Hiron

With this picture in mind, creating a good task can be seen as a global optimisation
problem – we are searching for a point in the problem space for which our evaluation
function gives a maximal value (a problem of “maximal interest”). In the following sec-
tions we attempt to understand the particular optimisation techniques that we are using.

6.2. Finding a Starting Point

In Section 4, we devoted much attention to the many different techniques used by problem
setters to find an initial idea for a new task. This essentially corresponds to choosing a
starting point in our problem space from which we can begin our search.

It should be noted that different techniques leave different amounts of work up to
the problem setter. Most techniques give a reasonably precise task, though sometimes
this task comes without a story (for instance, when modifying a known algorithm, or
borrowing from mathematics), and sometimes it comes without an interesting solution
(such as when drawing on games and puzzles).

On the other hand, some techniques do not provide a specific task so much as a vague
idea; this is particularly true of looking around (Subsection 4.1) and building from ab-
stract ideas (Subsection 4.5). Although these techniques do not give a precise starting
point in our problem space, they do specify a region in this problem space in which we
hope to find interesting tasks.

6.3. Moving About the Problem Space

We push our analogy onwards to Section 5 of this paper, where we discussed how problem
setters modify their initial ideas until they arrive at a task that they like. This modification
process typically involves a succession of small changes to different characteristics of the
task.

In our abstract setting, changing a single characteristic of a task corresponds to chang-
ing a single coordinate in our problem space. In this way the modification process in-
volves a series of small steps through the problem space to nearby points, until we reach
a point whose evaluation function is sufficiently high (i.e., a good task).

As noted earlier, sometimes a problem setter has a vague idea in mind rather than a
precise task; in this case a small change may involve pinning down an additional charac-
teristic to make the task more precise. In our abstract setting, this corresponds to reducing
the dimension of a region in the problem space, thus making the region smaller (with the
aim of eventually reducing it to a single point).

Problems setters typically do not change a task just once, but instead try many differ-
ent changes, keeping changes that improve the task and discarding changes that do not.
Gradually these changes become smaller as the task becomes better, until the problem
setter is fully satisfied.

From an algorithmic point of view, this is reminiscent of simulated annealing, one
of the most well-known optimisation algorithms. Since simulated annealing is an effi-
cient method of optimisation, we can hope that the techniques described in this paper are
likewise an efficient way of creating new and interesting tasks.

Creating Informatics Olympiad Tasks: Exploring the Black Art 35

Fig. 9. Depictions of the “simulated annealing” and grid exploration methods

This overall process is illustrated in the left hand diagram of Fig. 9. Here the problem
space is drawn as landscape, where the height shows the value of the evaluation function.
The arrows show the progression of small changes that convert an initial idea (1) into a
final task (5).

It is worth noting that simulated annealing does not guarantee a global maximum,
though thankfully that is not the goal of the problem setter. The search space has many
local maxima, and problem setters can look through these for suitable tasks that meet
their criteria.

6.4. The Grid Exploration

The technique described earlier in Subsection 4.4 (filling the holes in a domain) is worth a
special mention here. With this technique we make a list of existing tasks in a domain, ex-
amine their different characteristics, and then forge a new combination of characteristics
that will eventually become our new task.

This technique fits naturally into our abstract setting. The domain of interest can be
seen as a subspace of the larger problem space, and our list of existing tasks forms a
collection of points in this subspace. By examining the different characteristics of these
tasks we effectively list the “significant dimensions” of this subspace.

As a result we essentially impose a multi-dimensional grid over our subspace, where
the different dimensions of this grid represent the characteristics that we are focusing on.
By listing the characteristics of each task, we effectively place these tasks in individual
grid cells. This is illustrated in the right hand diagram of Fig. 9.

To create a new task, we then search through empty grid cells, which correspond to
new combinations of characteristics that we have not seen before. To make our tasks as
original as possible, we aim for empty cells that have few coordinates in common with
our existing tasks.

6.5. Final Notes

We have seen in Subsections 6.3 and 6.4 how different task creation techniques corre-
spond to different ways of exploring and optimising the problem space. In particular, we
can see how these techniques relate to well-known global optimisation methods such as
simulated annealing.

36 B.A. Burton, M. Hiron

As optimisation is an extensively-studied field of algorithmics, it could be interesting
to take other optimisation algorithms and try to apply them to the task creation process.
This in turn might help the community to produce new and original tasks into the future.

References

Burton, B.A. (2007). Informatics olympiads: Approaching mathematics through code. Mathematics Competi-
tions, 20(2), 29–51.

Charguéraud, A. and Hiron, H. (2008). Teaching algorithmics for informatics olympiads: The French method.
To appear in Olympiads in Informatics.

Diks, K., Kubica, M. and Stencel, K. (2007). Polish olympiad in informatics – 14 years of experience.
Olympiads in Informatics, 1, 50–56.

Ginat, D. (2002). Gaining algorithmic insight through simplifying constraints. J. Comput. Sci. Educ., April
2002, 41–47.

Kedlaya, K.S., Poonen, B. and Vakil, R. (2002). The William Lowell Putnam Mathematical Competition 1985–
2000: Problems, Solutions, and Commentary. Mathematical Association of America.

Larson, L.C. (1983). Problem-Solving Through Problems. Springer, New York.
Skiena, S.S. (1998). The Algorithm Design Manual. Springer, New York.
Skiena, S.S. and Revilla, M.A. (2003). Programming Challenges: The Programming Contest Training Manual.

Springer, New York.
Sloane, N.J.A. (2008). The on-line encyclopedia of integer sequences. Retrieved March 2008 from

http://www.research.att.com/˜njas/sequences/
van Lint, J.H. and Wilson, R.M. (1992). A Course in Combinatorics. Cambridge Univ. Press, Cambridge.
Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A proposal for an IOI syllabus. Teaching Mathe-

matics and Computer Science, 4(1), 193–216.
Wilf, H.S. (1994). Generatingfunctionology. 2nd edition. Academic Press, New York.

B.A. Burton is the Australian IOI team leader, and has chaired scien-
tific committees for national contests since the late 1990s. In 2004 he
co-founded the French-Australian Regional Informatics Olympiad with
M. Hiron, and more recently he chaired the host scientific committee
for the inaugural Asia-Pacific Informatics Olympiad. His research in-
terests include computational topology, combinatorics and information
security.

M. Hiron is the French IOI team leader, and is the co-founder and pres-
ident of France-IOI, the organisation in charge of selecting and training
the French team for the IOI. He creates tasks on a regular basis for na-
tional contests and online training programs, as well as for the French-
Australian Regional Informatics Olympiad, and occasionally for other
international contests such as the IOI or the APIO. He is a business

owner working on projects ranging from web development to image processing and arti-
ficial intelligence.

Olympiads in Informatics, 2008, Vol. 2, 37–47 37
© 2008 Institute of Mathematics and Informatics, Vilnius

Romanian National Olympiads in Informatics and
Training

Emanuela CERCHEZ
Informatics College “Grigore Moisil”
Petre Andrei 9, Iasi, 700495 Romania
e-mail: emanuela.cerchez@gmail.com

Mugurel Ionuţ ANDREICA
Politehnica University
Splaiul Independentei 313, Bucharest, 060032, Romania
e-mail: mugurel_ionut@yahoo.com

Abstract. The paper discusses the Romanian experience, including two on-line forums which have
helped improve the participation and quality of the informatics experience in Romania.

Key words: informatics, olympiad, training, problem.

1. Informatics Secondary Education. Background

This section presents a general view of the secondary education in Informatics in Roma-
nia.

Secondary education in informatics in Romania started in 1971, when 5 informatics
high-schools were founded, one in each of Bucureşti, Iaşi, Cluj, Braşov and Timişoara.
Another informatics high-school was founded afterwards in Petroşani. Until 1989, only
these 6 schools provided secondary education in informatics.

After 1989, the number of informatics schools or informatics classes in ordinary
schools increased rapidly, since students and parents became more and more interested
in this discipline.

Over time, changes have frequently occurred, both in informatics education and in the
educational system. Every minister of education tried to do a major transformation in the
educational system, at different levels.

15 years ago, a student studied informatics for 8 hours/week. Today, in an ordinary
mathematics-informatics class, a student studies 1 hour/week in the 9th and 10th grades
(representing the age range of 15–17 years), and 4 hours/week in the 11th and 12th grades.
There are only a few special (intensive) classes for 4 and 7 hours/week respectively.

This situation has an obvious negative impact on the quality of education in the field.

38 E. Cerchez, M.I. Andreica

2. Alternative Training

In Romania, the major problem in informatics education is the lack of teachers and es-
pecially the lack of qualified and/or proficient teachers. We have had to find alternative
ways to train students.

2.1. Centre of Excellence for Young People Capable of High Performance

In 2001, the Centre of Excellence for Young People Capable of High Performance was
founded by the order of Minister of Education and Research. Gifted students were de-
clared a national wealth, having specific educational needs.

In the whole country, 9 Regional Centers of Excellency were founded, each coordi-
nating 5–6 counties, each having its own coordinator and developing its own training
program on 6 disciplines: mathematics, informatics, chemistry, biology, physics and ge-
ography. The main idea was to gather highly-skilled students with the best teachers and
to develop special activities as a response to their higher educational needs.

Is this program a success?
After 7 years, the Center of Excellence still lacks national coordination, budget or

headquarters. In some counties this program has never worked (the person in charge did
not organize the activities of the Center of Excellence: teachers’ registration, students’
registration, training programs, etc.). In some there are hesitating attempts to make it
work (the activities of the Center of Excellence are organized, but not for all the 6 disci-
plines, training activities are scheduled too late or not every week). But in some counties
this program really works, year after year. For instance, every academic year, over 1000
students in Iaşi choose to spend week-ends working at the Center of Excellence. Almost
100 teachers train students for excellence. Passion and enthusiasm make things work.

2.2. .campion

http://campion.edu.ro

In 2002 we started .campion, an online training program for performance in informat-
ics, supported by teachers with remarkable results and brilliant students, former winners
of international informatics olympiads.

The program is supported by SIVECO Romania, a leading software company, in co-
operation with the Romanian Ministry of Education and Research.

Nowadays .campion is part of Siveco Virtual Excellence Center, together with Siveco
Cup, the National Contest for Educational Software.

The main goal of .campion training program is to offer all students an equal chance
to participate in a high level training in computer science. The specific objectives of our
training are:

• to develop algorithmic thinking,
• to develop programming skills,
• to develop competitive spirit.

Romanian National Olympiads in Informatics and Training 39

Students are divided into 3 training groups, according to their level/age:

• group S (Small) – beginners in computer science, the first year in programming;
age should not exceed 16 years (9th grade or primary school students);

• group M (Medium) – intermediate level, one or two years experience in program-
ming; age should not exceed 17 years (10th grade);

• group L (Large) – advanced in programming (11th and 12th grade).

The training program consists of rounds: alternating training rounds and contest
rounds.

For each round, students receive 2 problems, to be solved in 10 days for a training
round, and in 3 hours for a contest round.

Solutions are graded using an automatic online grading system. After grading, on the
website are published:

• for each student: personal grading sheets;
• for each group: rankings for the current round and also total rankings, including all

the rounds;
• for each problem: solutions, solution descriptions, grading tests.

All past problems are organized in an archive (task description, test, solutions).
Each year, the best 50–60 students, participate in an on-site final round, consisting of

a single contest day. The main goal of the final round is to offer students the opportunity
to know each other, to compete in a real, not virtual environment, to be awarded and
acknowledged.

This is .campion from a student’s point of view. Between 1000 and 1500 students reg-
ister every year. About 500 consistently participate. The feedback we collect every year
indicates that 30%-75% of the training for the best students (participating to the Final
Round) is provided by .campion. All Romanian IOI (International Olympiad in Infor-
matics), CEOI (Central-European Olympiad in Informatics), BOI (Balkan Olympiad in
Informatics), and JBOI (Junior Balkan Olympiad in Informatics) medalists are .campion
finalists.

In 2005 and 2006 we began international cooperation, between Balkan countries, pro-
viding an English version of .campion. The cooperation was excellent with Bulgaria and
Moldova, but from a general point of view, international .campion was not considered a
success, and we lost support for this initiative.

What does .campion represent from a teacher’s point of view?
First of all, of course, it represents a resource for self-conducted students’ training or

for the teacher-conducted training. But, for us, the National Committee, .campion rep-
resents a practical way to train teachers. As we previously emphasized, teachers are the
critical resource.

We select teachers from all over the country (according to the results of their students)
and propose they cooperation in a .campion training program. Most of them agree and
send problems according to some technical specifications. Afterwards, we analyze the
problem, the solutions, the grading tests, and the checkers. We suggest improvements,
we correct errors, and we constantly communicate by e-mail with the teacher propos-
ing the problem. Definitely, a successful cooperation in .campion leads to a successful

40 E. Cerchez, M.I. Andreica

cooperation with the committee preparing the national olympiads in informatics and the
national informatics team training.

2.3. infoarena

http://infoarena.ro

Together we learn better! This statement, written on the Infoarena website, describes
in a simple, yet precise way, Infoarena.

Infoarena is a training website made by students for students. On this website, stu-
dents organize programming contests, publish educational materials, and exchange ideas.
A problem archive is available on the website, including Infoarena contests problems, but
also problems from different stages of the National Olympiad in Informatics. Online grad-
ing is available for Infoarena contests, and also for the archive problems. The Infoarena
team has implemented a rating system, reflecting the performances of Infoarena users.
Ten to twenty students are supporting the Infoarena website, but a lot of volunteers are
helping them, adding to the Infoarena archive problems used in various national and re-
gional contests. Infoarena is a dynamic program, continuously improving. A remarkable
educational community, Infoarena yearly attracts students eager to learn and also willing
to help others to learn.

3. Romanian Olympiads in Informatics: 30 Years of Experience

This section presents a general view of the Romanian Olympiads in Informatics. Compar-
ing the beginning and the current state of the olympiads might give us a real perception
of the changes that happened over 30 years.

3.1. The First Olympiad in Informatics

In 1978 the first Olympiad in Informatics was organized. A few facts from the first
olympiad are that there were about 60 participants who had to write both a handwritten
and computer contest. Their choice of languages for the computer portion was Fortran,
Cobol and ASSIRIS.

The general procedure of the contest was: students wrote programs on a special sheet
of paper called a “programming form”;

• the programming form was given to the operators, who punched the cards;
• the program written on the punched cards was run on the computer (IBM 360 com-

patible) twice; after the first run the errors made by the operators were corrected;
• the listing obtained after the second run was handed to the National Committee;

the National Committee unfolded the listing (usually in a long hall) and corrected
it “by hand”.

Romanian National Olympiads in Informatics and Training 41

Sample task
Consider a sequence of n (1� n �100) positive integers less than or equal to 50.

For each distinct integer in the sequence determine the number of appearances in the
sequence. Draw an horizontal histogram to represent the number of appearances of each
distinct integer, using a corresponding number of *s.

3.2. Informatics Olympiads after 30 Years

Nowadays the National Olympiad in Informatics has three stages and two divisions. The
first division is for gymnasium students (5th to 8th grade), while the second division is
for high-school students (9th to 12th grade).

For each division 3 stages are organized: a local, regional and national stage.
The local stage is organized in each town, using contest problems proposed by lo-

cal teachers. The best students qualify for the regional stage. Actually, the selection is
not very tough, the local stage being a good practice competition. A regional stage is
organized in each county, using contest problems created by the National Committee.
According to the results of this contest, each county selects a team to participate in the
National Olympiad. The number of members in the team is between 3 and 11, and is
established according to the results obtained at the National Olympiad in the past years
by the teams of the county.

The National Olympiad in Informatics gathers about 300 high-school students and
about 160 gymnasium students. The contest is held over two consecutive days and con-
sists of 3 problems for each contest day. After a day break, half of the students may
participate in another 2 contests, having the purpose to select the national informatics
teams (10 students in the Junior Team, 24 students for the Senior Team).

Sample task for selection of Junior National Informatics Team
Consider two groups, each of them containing n digits (1�n�9). In any group,

digits may appear more than once. Using all the digits of the first group we build a positive
integer (n1). Similarly, using all the digits of the second group, we build another positive
integer (n2).

Determine n1 and n2 so that the difference n1-n2 is greater than or equal to 0 and
minimal. In case there is more than one solution, choose the solution with minimal n1.

Sample task for selection of National Informatics Team
Zaharel draws N points on a plane (N�100000). Being a peculiar person, he also

chooses M points on the X-axis (M�200000). All the coordinates of the points are less
than 109. Then, he asks himself for each of the M points which of the N points is closest
(situated at minimum distance). The distance between two points (x1,y1) and (x2,y2)
is considered (x1-x2)2+(y1-y2)2.

Determine for each of the M points the closest of the N points.

3.3. Training Camps

Two training camps are organized for the national teams. Training consists of theoreti-
cal courses and also problem solving sessions. During the training camps students have

42 E. Cerchez, M.I. Andreica

selections contests (3 for each camp), in order to select the teams for IOI, BOI, CEOI
and JBOI.

4. Task Definition and Development

The task definition and development process is a crucial part in the organization of any
contest, whether regional, national or international, because the contest results (and win-
ners) are established based on the sum of scores obtained for each task in the contest task
set. Since the purpose of a contest is to rank the competitors accurately according to their
abilities, several aspects are considered when developing tasks for a particular contest
(like the difficulty level of the tasks, the age group of the competitors, the contest dura-
tion and others). These aspects are considered from two perspectives, during two stages
of the task definition and development process. During the first stage, each member of
the contest committee develops one or more tasks individually and then he/she submits
them to the other members, as candidate tasks for the contest task set. During the second
stage, several tasks are chosen from the set of candidate tasks and these tasks will form
the contest task set. We will describe the structure of the contest committee, the contest
and task types and the syllabus for each contest type. Afterwards, we will discuss aspects
of both stages of the task definition and development process. Finally, we will present
some grading related aspects.

4.1. The Contest Committee

The members of the contest committee belong to one of the following categories:

• remarkable high-school professors, teaching informatics both in classes and within
Centers of Excellence;

• university professors and teaching assistants, working in the domain of mathemat-
ics and computer science;

• former medalists of international olympiads in informatics and former members
of the Romanian national informatics team, who are currently bachelor, master or
PhD students.

The responsibility of each member of the contest committee is to create at least one
contest task (candidate task) and to participate in the process of selecting the candidate
tasks which will form the contest task set.

4.2. Syllabus, Contest Types and Age Groups

In Romania there are local, regional and national olympiads, for seven age groups:

• gymnasium pupils – four age groups (5th, 6th, 7th and 8th grade);
• high-school pupils – three age groups (9th grade, 10th grade, 11th–12th grades).

The pupils belonging to the seven age groups vary significantly in terms of their algo-
rithmic and programming skills and knowledge. For this reason, in order for the contest

Romanian National Olympiads in Informatics and Training 43

results to be meaningful, the difficulty levels of the tasks must be suitable for the type
of contest (local, regional, or national) and the age group of the competitors. For each
age group, there is a loosely defined syllabus. The syllabus for the 11th–12th grades is
the most inclusive and includes of the following general topics: greedy algorithms, divide
and conquer techniques, dynamic programming, graph algorithms, data structures, com-
binatorics, computational geometry, string algorithms and game theory. For the other age
groups, some of these topics are excluded from the syllabus. For instance, graph algo-
rithms are not included in the 10th grade syllabus and dynamic programming algorithms
are not included in the 9th grade syllabus. Furthermore, each topic contains basic and
advanced techniques. The advanced techniques can be considered only for the larger age
groups (11th–12th grades). Officially, the syllabus is defined loosely, i.e. the topics and
their contents are broadly defined. Unofficially, however, the syllabus is quite detailed;
these details are filled by the experience, knowledge and common sense of the contest
committee members. We should mention that the detailed syllabus for the informatics
olympiads is far more advanced than the topics the pupils are taught at school. Thus, a
lot of emphasis is put on the individual supplementary training of each competitor (alone
and under the guidance of a teacher) and on the participation in the alternative training
programs (.campion, Infoarena and others).

The local and regional olympiads are qualifying contests for the national olympiad in
informatics, which is the most important informatics contest in Romania. This fact is ac-
knowledged, among other things, by granting to the prize winners free admission to uni-
versities with a computer science department. Winning a prize in the national olympiad
in informatics is challenging, as there are only three prizes awarded per age group (or 5,
in case the total number of competitors is large enough). Based on the results at the na-
tional olympiad and another selection contest, a small number of competitors are chosen
to be part of the national informatics team. The pupils who are part of the national infor-
matics team take part in several subsequent selection contests, from which participants
at the international informatics competitions are selected. The seniors are selected for
participating in IOI, CEOI, BOI and Tuymaada International Olympiad. The juniors are
selected for participating in the Junior Balkan Olympiad in Informatics (JBOI). It is worth
mentioning that the JBOI and the junior informatics team are quite new (the JBOI started
in 2007 and the junior informatics team was established in 2008) and that they represent
an important means for stimulating the interest of secondary school pupils in informatics.
The syllabus for the seniors is a superset of the one for the 11th–12th grades’ national
olympiad, including more advanced concepts for each topic. In general, it is well aligned
with the one proposed in [1], but also contains several more advanced techniques such
as hashing, max flow algorithms, bipartite matching, interval trees, and AVL trees. The
curricula for the junior level is only loosely defined and is now under active development.

The Informatics contests are characterized by several parameters. Two of them have
already been mentioned: the geographic scope (local, regional, or national) and the age
group. The number of rounds, duration per round and number of tasks in a contest round
are some other important factors. The local and regional contests consist of only one
round with two tasks and their duration is usually 3 hours. The national olympiad consists

44 E. Cerchez, M.I. Andreica

of two rounds, held in two consecutive days. Each round lasts for about 4-5 hours and
consists of three tasks. The contests selecting the junior and senior national informatics
teams have the same format as the national olympiad (two rounds, 3 tasks and 4-5 hours
per round). The pupils participating in the IOI, CEOI and BOI are selected based on 6
other contest rounds, having the same format. Overall, an IOI candidate has to solve 30
tasks, starting with the national olympiad and finishing with the last selection contest.
Every task is awarded the same number of points (100).

Other types of contests are online contests, with variable duration, different number
of tasks per round and different grading styles (IOI style or ACM ICPC style), like those
hosted by .campion [2] and infoarena [3].

4.3. Task Types

Just like in the IOI, the contest tasks are of three types: batch, reactive and output-only.
The batch tasks are the most common and they are the ones the competitors are most
accustomed to. Batch tasks are also the easiest to prepare and test. Reactive tasks require
special support from the evaluation system. In Romania, an evaluation system capable
of supporting batch, reactive and output-only tasks is used. Output-only tasks are gen-
erally not appreciated by the competitors and they have rarely made the pupils’ skills
and knowledge stand out. For this reason, only one or two of them are used in the IOI
selection contests. All the tasks are algorithmic in nature and must be implemented in a
programming language, like C/C++ or Pascal.

4.4. Creating a Contest Task

During the first stage of the task development process, the authors compose and prepare
their tasks. The first thing to be considered is the syllabus, which depends on the contest
type (local, regional, national, or international) and age group (school grade). Based on
the syllabus and the task author’s experience and preferences, a task idea is developed.
The most important part of the task at this point are: the algorithm required for solving
it (the reference solution), an estimation of the difficulty level of the task and an esti-
mation of the duration a competitor who is above average would require for finding and
implementing the algorithm. The difficulty level is expressed as the percentage of the
total number of competitors who should have the necessary knowledge for developing
the required algorithmic techniques and who should be able to find them and implement
them in a programming language in a reasonable time (typically ranging from a quarter
to half of the contest duration).

After the task idea and solution are defined, alternative solutions are searched for, both
equally efficient and less efficient than the reference solution. Occasionally, the reference
solution may not be the most efficient one for the task, particularly in the case of contests
for younger age groups or when the most efficient solution is either very difficult to find
or too complicated to implement. After finding all (or most) of the alternative solutions,
the author decides the number of points each solution should be awarded, based on its

Romanian National Olympiads in Informatics and Training 45

efficiency in terms of time and memory. The next steps consist of developing a clear
problem statement, implementing all the solutions and creating several test cases. Each
test case is assigned a number of points (the sum of the points of all the test cases should
be 100). The most common situation is represented by 10 or 20 equally weighted test
cases. At this point, time and memory limits are set, based on the behavior of the reference
solution. The test cases and their associated points are chosen in such a way that each
solution receives the desired number of points. The author may also choose to award
partial scores for some of the test cases. The duration estimation can also be updated,
based on the unforeseen problems he/she encountered while implementing the reference
solution.

At any moment during this stage, the author may collaborate with other members of
the contest committee. The collaboration usually consists of writing alternative solutions,
improving the task statement and, rarely, developing test cases.

This stage of creating tasks may start several months, although usually less than a
month, before the contest date and finish several days (one or more) before the contest.
The stage usually consists of several iterations, in which the problem statement, algorithm
implementations and the test cases are gradually developed and improved. Small parts of
the problem statement are changed particularly often, in order to help the competitors
understand the task requirements clearly, as well as to avoid potential typing mistakes.

4.5. Selecting the Contest Task Set

We consider that the set of contest tasks must have all of the following properties:

• it must contain tasks of different levels of difficulty (from easy to difficult);
• the range of algorithmic topics covered by the tasks must be broad (i.e. multiple

tasks should not be solvable by similar techniques);
• all the tasks should be solvable within the allotted contest time, by above average

competitors – this does not mean that we expect this situation to actually occur,
because there are many other factors involved;

• the tasks should make a good distinction between highly skilled, average skilled
and poorly skilled competitors.

A few days (or, rarely, even weeks) before the contest date, after the tasks have been
developed (at least partially) and submitted as candidate tasks, the process of selecting the
contest tasks begins. The tasks are classified based on their level of difficulty, the types
of required algorithmic techniques (greedy, dynamic programming and others) and the
estimated time for solving them. A balanced set of radically different tasks is selected,
which has all the properties mentioned before. The tasks are chosen democratically, based
on the votes of the contest committee members. Each member votes the tasks he/she
thinks should be part of the contest task set. The period between the classification of
tasks and the casting of votes is reserved for discussions among the contest committee
members. By expressing their opinions before the vote, all perspective on the tasks can
be shared. It often happens that issues which were otherwise disregarded come up during
this discussion phase. The discussion phase usually helps the opinions of the committee

46 E. Cerchez, M.I. Andreica

members to converge to a large degree. This way, after the votes are cast, it is often the
case that more than half of the chosen tasks are voted in favour by more than 75% of the
members. Another issue which is taken into consideration is the number of rounds of the
contest. In this situation, votes are cast for selecting problems for each round. However,
the task set is final only for the next round to come with changes being allowed for the
future contest rounds.

4.6. Grading the Tasks

The tasks are graded automatically using an evaluation system which supports batch,
reactive and output-only tasks. For the batch tasks, a grading program and the test cases
are all that is required. The grading program checks the solution and outputs the score for
each test case to standard output, using a well defined format, in order to properly interact
with the rest of the evaluation system. When the solution is unique, and no partial score is
awarded for a test case, a default grading program may be used. Setting up reactive tasks
requires a number of test cases and two programs: the grading program and a program
which interacts with the contestant’s solution. Once the grading process is started, it can
be stopped and resumed at any time. The evaluation system generates individual score
sheets for each contestant.

5. Results

Romania participates in the International Olympiad in Informatics, Balkan Olympiad in
Informatics, Central-European Olympiad in Informatics (the last two competitions being
initiated by Romania), Tuymaada International Olympiad and in Junior Balkan Olympiad
in Informatics (a new competition, initiated in 2007 by Serbia).

Romania has been participating at the IOI since 1990, winning a total of 67 medals
(19 Gold, 32 Silver and 16 Bronze [4]).

References

[1] Verhoeff, T., Horvath, G., Diks, K. and Cormack, G. (2006). A Proposal for an IOI Syllabus. Teaching
Mathematics and Computer Science, IV(I).

[2] .campion. http://campion.edu.ro
[3] infoarena. http://infoarena.ro
[4] http://www.liis.ro/∼marinel/Statistica.htm

Romanian National Olympiads in Informatics and Training 47

E. Cerchez is the scientific coordinator of the Romanian National In-
formatics Committee. She is currently teaching in Informatics College
“Grigore Moisil” in Iasi. She has been involved inthe Romanian Na-
tional Olympiads since 1996 and in IOI since 2001. In 2002 she initi-
ated .campion training program and she is coordinating this program
ever since. She published over 15 books for secondary education in

informatics. Since 2004 she has been involved in creating educational software.

M.-I. Andreica is a teaching assistant at the Polytechnic University
of Bucharest (PUB), in Romania. He is currently pursuing his PhD
degree in computer science, on the topic of communication in dis-
tributed systems. His research has been recognized as valuable by
being awarded a prestigious IBM PhD fellowship. Mugurel has been
a member of the Scientific Committee of the National Olympiad in

Informatics since 2002 and has also contributed each year to the selection process of
the Romanian IOI team. Furthermore, since 2005, he has been the coach of the student
teams competing for PUB in the ACM ICPC regional contests. Other training activities
include his participation in the .campion national project as a contest task author and his
active involvement in the organization of preparation contests on several training web
sites. As former IOI and ACM ICPC World Finals medalist, Mugurel has a significant
amount of experience regarding programming contests and he makes use of this experi-
ence within his teaching and training activities, as well as in order to compose meaningful
and interesting contest tasks. It is also worth mentioning that his experience as a former
participant in informatics contests and olympiads has also had a great beneficial impact
upon his research activity.

Olympiads in Informatics, 2008, Vol. 2, 48–63 48
© 2008 Institute of Mathematics and Informatics, Vilnius

Teaching Algorithmics for Informatics Olympiads:
The French Method

Arthur CHARGUÉRAUD, Mathias HIRON

France-IOI
5, Villa Deloder, 75013 Paris, France
e-mail: arthur.chargueraud@gmail.com, mathias.hiron@gmail.com

Abstract. This paper describes a training curriculum which combines discovery learning and in-
structional teaching, to develop both problem solving skills and knowledge of classic algorithms.
It consists of multiple series of exercises specifically designed to teach students to solve problems
on their own or with the help of automated hints and intermediate problems. Each exercise is fol-
lowed by a detailed solution similar to a lecture, and synthesis documents are presented at the end
of every series. The paper then presents a structured problem solving method that is taught to the
students throughout this curriculum, and that students can apply to organize their thoughts and find
algorithms.

Key words: teaching algorithmics, problem solving techniques, guided discovery learning.

1. Introduction

France-IOI is the organization in charge of selecting and training the French team to the
International Olympiads in Informatics (IOI). As main coaches of the French team since
its early days in 1997, our main focus is to develop teaching materials and improve train-
ing methods. Since there are no computer science curriculums in French high schools, the
students who come to us are usually self-taught programmers with almost no experience
in the field of algorithmics.

All the teaching materials that have been produced are made available to the public
on the training website (http://www.france-ioi.org), where the students can
study all year long. Intensive live training sessions are held several times a year for the top
students. The long-term objective is to reach a maximal number of students, so the online
training follows the same principles as the live training sessions. The aim of this paper
is to describe these principles. Section 2 gives an overview of the training curriculum.
Section 3 then presents the structure of the training website. Finally, Section 4 describes
the problem solving method that has been developed along the years and is now taught
throughout the website.

Teaching Algorithmics for Informatics Olympiads: The French Method 49

2. Philosophy of the Training Curriculum

In this section, we explain how the training curriculum is designed around series of prob-
lems for the teaching of classic algorithms and data structures as opposed to providing
lectures. We then present the benefits of this approach.

2.1. Introduction to the Structure of the Training

The training curriculum we present differs from those that can be found in many algo-
rithmic courses. Most curriculums follow a common pattern:

1. Provide basic knowledge. Teach algorithms and data-structure through lectures,
providing pseudo-code and complexity analysis.

2. Show examples. Illustrate how to apply this knowledge to practical situations.
3. Give exercises. Solidify what was taught, and try to develop solving skills.

This approach counts mostly on a student’s innate abilities when faced with new,
more difficult problems. Our thesis is that improving skills to solve new, difficult problems
is what really matters in algorithmics. Therefore the true aim of a teaching curriculum
should be to improve those skills. Providing the student with knowledge and experience
is necessary, but should not be the first priority.

The interactive training is structured around sets of exercises with each set focusing
on one particular area of the field. Within a set, each exercise is a step towards the discov-
ery of a new algorithm or data-structure. To solve an exercise the students submit their
source-code and the server automatically evaluates the code, in a fashion similar to grad-
ing systems that are used in many contests. If the students fail to solve an exercise, they
may ask for automated hints or new intermediate problems, which in turn ease the pro-
gression. Once the students succeed, they get access to a detailed solution that describes
the expected algorithm and presents a reasonable path to its discovery. At the end of each
sequence of exercises, a synthesis of what has been learned is provided.

Overall the curriculum can be seen as a guided step-by-step discovery completed with
instructional material as opposed to more standard curriculums which are typically based
on instructional material and very little discovery learning.

2.2. Teaching the Problem Solving Method

While training students along the years, it was tried as much as possible to give reusable
hints, i.e., hints valuable not only to the current problem but for others as well. Reusable
hints were then collected and sorted in an organized document. In recent years, the au-
thors have improved this document by carefully analyzing the way they come up with
ideas for solving difficult problems. As a result, a general problem solving method was
developed. This method is not a magical recipe that can be applied to solve any algorith-
mic problem, but someone who is sufficiently trained to apply this method will be able to
solve more difficult problems than he/she could have solved without it.

50 A. Charguéraud, M. Hiron

As the document describing the method appears very abstract at first, asking one to
“apply the method” is not effective. Instead, the teaching of the method is spread through-
out the training curriculum in three ways: 1

1. The hints given to students when they need help are (in most cases) hints that could
have been obtained by applying the method.

2. Each detailed solution is presented in a way that shows how applying steps of the
method leads to the expected algorithm.

3. Advanced students are provided not only with the reference document describing
the problem solving method, but also with versions specialized to particular areas.

To teach this method, we follow an inductive approach rather that a deductive one,
since it is extremely hard to explain without many examples to rely upon.

2.3. Advantages over Traditional Curriculums

To improve skills for solving unknown hard problems, it is necessary to practice solving
such hard problems. So in a way, explaining an algorithm in a lecture can be seen as
wasting an opportunity to train that skill. It gives away the solution to a problem before
giving the students a chance to come up with a few good ideas on their own. By finding
some, if not all of the ideas behind an algorithm by themselves, students not only learn
that algorithm but also improve their problem solving skills. Also, by making these ideas
their own, they are more likely to adapt them to future problems.

Once students have spent time thinking about a problem and have identified its diffi-
culties, they are in a much better position to understand and appreciate the interest of the
reference solution that is then presented to them. More importantly, students can compare
the process they have followed to find the solution against the process that is described in
the lecture. They can then update their strategies for the next exercises.

Also, discovering by oneself the principles of breadth-first search, binary trees, and
dynamic programming generates a great deal of self-satisfaction. Even though the previ-
ous problems and reference solutions made it much easier by putting the students in the
best conditions, they get a sense of achievement for having come up with their own ideas,
gain confidence about their own skills and a strong motivation to go further.

Discovery learning is often proposed as an alternative to the more traditional instruc-
tional teaching, but has been strongly criticised recently (Kirschner et al., 2006). Our
purpose is not to advocate the pure discovery learning that these papers focus on and
criticize extensively. The curriculum we present is indeed based on guided discovery
learning, and is completed with extensive and carefully designed instructional teaching.
With a structure designed to ensure that each step is not too hard for students, and which
reinforces what is learned after each exercise, the risks associated with pure discovery
learning, such as confusion, loss of confidence and other counter-productive effects are
avoided.

1Note: the training material is constantly evolving, and what is presented here corresponds to the authors’
current vision. At the time of writing, many existing elements of the website still need to be updated to fit this
description completely.

Teaching Algorithmics for Informatics Olympiads: The French Method 51

To summarize, we teach problem solving techniques by relying in the first place on
the good aspects of discovery learning, and then consolidating the insight acquired by stu-
dents through instructional teaching. Teaching of pure knowledge, which is a secondary
goal, also follows the same process. This is the complete opposite of standard curricu-
lums which start by teaching knowledge in instructional style, and then leave students to
develop solving techniques mainly on their own.

3. Structure of the Training Curriculum

In this section, we give the global structure of the training curriculum, and describe each
of its components in more detail.

3.1. Overview of the Structure

The training website aims at being an entirely self-contained course in algorithmics. The
curriculum is divided into three levels of difficulty: beginner, intermediate, and advanced.
The only requirement for the “beginner” level is to have some experience of programming
in one of the languages supported by the server. At the other end, the “advanced” section
contains techniques and problems corresponding to the level of the IOI. Note that the
training website also includes instructional programming courses and exercises for the C
and OCaml languages.

Each of the three levels contains several series of exercises of the following kinds:

1. Step-by-step discovery. A sequence of problems designed to learn about a set of
classical algorithms on one particular topic. Each problem comes with a detailed
solution, as well as optional automated hints and intermediate exercises.

2. Application problems. A non-ordered set of problems of various topics involving
variations on algorithms and techniques previously learned through step-by-step
discovery.

3. Rehearsal exercises. Students are asked to write their best implementation of each
standard algorithm studied in a given domain. Reference implementations are then
provided.

4. Practice contests. Students are trained to deal with limited time and get them used
to zero-tolerance on bugs.

When students complete a series of exercises, they are granted access to a synthesis
document that recapitulates all the encountered concepts in a well-structured presenta-
tion. Once students complete an entire level, they are provided with various elements
of the problem solving method and a document summarizing techniques that have been
implicitly presented throughout the reference solutions.

Little by little, these documents constitute a sort of reference manual that a student
can look back to on a regular basis.

52 A. Charguéraud, M. Hiron

3.2. Hints and Intermediate Problems

To improve students’ problem solving skills, they are trained on problems that are hard
enough to make them think seriously and apply problem solving strategies, but feasible
enough to have a good chance at finding a solution within a reasonable amount of time
without the risk of losing motivation. Clearly there is no hope that a single set of problems
will suit all students and their disparate levels.

The issue is addressed in the following way: a set of “main problems” that are non-
trivial even for the best students is given. For each problem, intermediate problems and/or
hints are given to students who cannot find the solution after a certain amount of time.
They are carefully selected to not only help the students reach the solution, but to also
make them realize they could have thought of the solution by themselves with the right
strategy, that they will then apply to solve the following problems.

From a practical point of view, a hint consists of information that is added at the end
of a task and may be remarks on properties of the task, a simplified formulation of the
problem, a well chosen graphical representation of an example, or a suggestion about the
kind of algorithm to look into. The last hints provided give the main ideas of the solution
and make sure students do not get stuck and give up on the task.

Sometimes intermediate problems are provided instead of hints. They are typically
simplified versions of the original problem or versions with weaker constraints for which
the students can submit a program and obtain a detailed solution. This gives them a strong
basis to attack the original problem.

One can compare each series of exercises to a climbing wall that leads to the discovery
of the algorithms in a particular area: when a hold is too high to be taken the students are
helped out by being provided with one or more extra intermediary holds. If this is not
enough, the student has the option to contact a coach. Overall the structure adapts itself
to the level of the students by providing steps of difficulty corresponding to their levels,
which help them to learn as much as possible.

3.3. Example: a Series of Problems Introducing Graph Algorithms

In this section, we illustrate the notion of step-by-step discovery with an example series
of problems that introduces students to very basic graph algorithms. This series appears
roughly in the middle of the beginner level of the training curriculum. Its only prerequi-
sites are the completion of a set of problems that covers basic data structures (introducing
stacks and queues), and another that introduces recursive programming.

The tasks from this first graph series all take a maze as input: a two-dimensional grid
in which each cell is either an empty square or a wall. The locations of the entrance and
exit are fixed (respectively at the left-top and bottom-right corners). The following list
describes these tasks and the list of hints and/or intermediate problems that the website
provides on demand.

1. Read a maze and print the number of empty squares that have respectively 0, 1, 2,
3, and 4 empty adjacent squares. The purpose of this problem is to introduce the

Teaching Algorithmics for Informatics Olympiads: The French Method 53

notions of neighbors and degree, and to show how to manipulate these notions in
the code in an elegant way.

a. Hint (Intermediate problem): “read a maze and print the number of empty
squares”. The aim of this new problem is to check that input data is read
correctly.

2. Read a 10×10 maze and print the number of different ways to go from the entrance
to the exit without walking through the same cell twice within a single path.

a. Hint: the following question is asked: “what question can you ask on each of
the neighbors of the first cell in order to compute the total number?”

b. Hint: the answer to the previous hint is given, and insists on the fact that there
is a set of cells one cannot use in the rest of the path.

c. Hint: the main idea of a recursive function is given, that maintains the current
set of cells that cannot be used for the rest of the path.

3. On a maze of up to 1000×1000 cells, give the total number of cells that can be
reached from the entrance.

a. Intermediate problem: same exercise with a 10×10 maze. This problem
comes with a hint of its own, telling how to reuse the idea from the previous
problem by marking every visited cell. It also comes with a detailed solution
of a working exponential algorithm.

b. Hint: the following suggestion is provided: “try to apply the algorithm given
in the previous hint by hand on an example and find out how to reduce the
amount of work involved”.

c. Hint: running of the algorithm is demonstrated with an animation that clearly
shows sequences of steps done several times.

4. Given a 10×10 maze, find the longest path going from the entrance to the exit
without traversing the same square twice. Print the path as a sequence of letters
(‘W’, ‘N’, ‘E’, ‘S’). When there is more than one such path print the one that is
first in alphabetical order.

a. Intermediate problem: any longest path is accepted as an output.

i. Intermediate problem: only output the length of the path
ii. Hint: the following question is asked: “in the solution provided for the

previous intermediate problem, when can you say that the square cor-
responding to the current step of the recursive exploration is part of the
longest path found so far?”

iii. Hint: the answer to the previous question is provided, and demonstrates
a way to record the steps of the longest path.

b. Hint: the following question is asked: “in the solution given for the first inter-
mediate problem, in which order should you try to explore the neighbors?”

This structure allows students to manipulate algorithms such as exhaustive search,
depth first search, and printing the path corresponding to an exhaustive search. Strong
students can do this quickly by solving 4 problems while weaker students can go at a
slower pace with a total of 8 problems.

54 A. Charguéraud, M. Hiron

3.4. Detailed Solutions

Access to the detailed solution of each problem is only given once the problem has been
solved by the student and checked by the server. The students are encouraged to read these
analysis documents carefully. Indeed, having solved the problem successfully does not
necessarily mean one has understood everything about the algorithm he/she discovered.

This document contains complete instructional material on the algorithm studied that
consists of the following elements:

1. A step by step description of a thought process that leads to the key ideas of the
solution. The intent is to have the students realize that they could have applied this
process entirely on their own.

2. A well chosen graphical representation of the problem. Such diagrams help the
students to see the interesting properties of the problem and can be reused later
when working on similar problems.

3. A clear presentation of the algorithm. First through a few sentences giving the big
picture and then through precise pseudo-code. The rationale of why the solution
works is given, but no formal proof.

4. A complexity analysis of the solution.
5. Implementations of the reference solution, in C++ and OCaml that are as elegant

and simple as possible.

These elements are given not only for the expected solution of the problem, but also
for valid alternative solutions. Solutions usually start with a description of the princi-
ples and complexity analysis of algorithms that are correct but not sufficiently efficient,
since they are typically intermediate steps in the thought process. Counter-examples to
frequently proposed incorrect algorithms are sometimes presented to explain why those
algorithms cannot work. This is done in a way that teaches the students how to create
their own counter-examples.

This combination of elements gives the students a solid basis of knowledge and tech-
niques on which they can then rely to solve other problems.

3.5. Application Problems

When working on problems from the step-by-step discovery series, students are in an
environment which is particularly prone to bringing about new ideas. For instance, in
the middle of the graph algorithms series, the students expect each problem to be a new
graph problem and moreover expect its solution to be partially based on the elements
discovered in the previous exercise. While such series of exercises are great to learn
about graph algorithms, they do not train recognition of graph problems among a set of
random tasks.

So once the basic knowledge of each field is acquired it is important to train students
to solve tasks outside of an environment that suggests a given type of solution. Therefore
each level ends with sets of problems of various kinds that cover most of the elements
encountered throughout the discovery series. These tasks train the students in three ways.

Teaching Algorithmics for Informatics Olympiads: The French Method 55

First, they train to recognize the nature of a problem without any obvious clues. Sec-
ond, they train to apply the knowledge and solving techniques acquired to variations of
standard algorithms. And third, more difficult problems would typically require a combi-
nation of algorithms coming from different fields.

These application problems also come with hints and detailed analysis that insist on
the different steps needed to find the solution. Also, these solutions often describe some
useful programming techniques which help making the code shorter and cleaner, thus less
error-prone.

4. Introduction to the Problem Solving Method

This section gives an introduction to the problem solving method that we have developed
along the years and now teach throughout our website. We do not attempt to describe
the whole method in details since this would be way beyond the scope of this paper, but
instead we try to convey its main principles. To that end, we first explain how this method
has been obtained, then illustrate its working on three particular steps, and finally give an
overview of the other steps that it involves.

4.1. Origins of the Method

Throughout the years spent training the students on a regular basis through intensive live
sessions, sets of problems on the website or frequent email interactions, there have been
numerous occasions to look for the best advice to help students solve a given problem
without giving them the solution itself, or even part of the solution. On each of these
occasions, it could be determined which advice were the most successful.

It became apparent that some types of advice were very efficient over a variety of
problems. Little by little a collection of techniques was synthesized which led to a full
method for solving algorithmic problems.

It was then observed that on various occasions including IOI competition rounds,
students applying the new method in a systematic manner would find the right ideas for
difficult tasks more often than students who only counted on their intuition. Since then,
improving this method and the way it is taught throughout the training program have been
the top priorities. Every time coaches or contestants solve a hard problem, time is spent
analyzing what helped to get the right idea. This is then taken into account to update the
method when appropriate.

4.2. Dimensions of the Problem

This section describes a process that not only is a key to the application of several solving
techniques, but which also helps to get a clear understanding of a task.

The objective is to build an exhaustive list of the dimensions of the problem. The
word “dimension” is to be taken in its mathematical sense; informally it corresponds to
everything in the problem that can take multiple values (or could if it was not settled to
a specific value). Dimensions should be ordered by type: they can be the values from

56 A. Charguéraud, M. Hiron

the input data, from the output data, or intermediate values that are implicitly necessary
to be manipulated in order to get the output. Beginners are given a technique to ensure
no dimension has been missed (due to lack of space, this is not described here). Trained
students do this step as they are reading the problem statement.

For each dimension in that list, the range of possible values should be indicated. The
constraints for the input dimensions are usually given in the task. For other dimensions,
some calculations (or approximations) might be needed.

To illustrate the process, consider the following problem:
“You are given the coordinates (x1, y1) and (x2, y2) (0 � x1, x2, y1, y2 �
100 000) of two diagonally opposite corners of each of N (0 � N �
10 000) rectangles. Write a program that computes the maximum number
of rectangles that have the same area.”

Table 1 describes the dimensions for this problem. Notice that there is more to con-
sider than just two dimensions (x, y) of the plan since x1 and x2 as well as y1 and y2,
can be changed independently and have different meanings. Note the potential overflow
for the surface of rectangles which means 64 bits integers will be needed at some point
in the implementation.

Filling the second column may not always be obvious, and one has to be careful not
to blindly write down what is given in the problem statement. In particular, the range of
values for a dimension can be significantly reduced when it is impossible to reach all the
values from the range given in the task.

Having this table of clearly listed dimensions at the top of one’s paper is very useful
both while looking for ideas and during the implementation phase. The next two sections
will show how this list can be used as a first step to some very effective techniques.

Table 1

Dimensions of a problem

Dimension Range of values

Input dimensions

id of a rectangle [0..9999]

x1 [0..100,000]

y1 [0..100,000]

x2 [0..100,000]

y2 [0..100,000]

Output dimensions

Number of rectangles of a given surface [1..10,000]

Implicit dimensions

Width of a rectangle [0..100,000]

Height of a rectangle [0..100,000]

Surface of a rectangle [0..1010] (overflow!)

Teaching Algorithmics for Informatics Olympiads: The French Method 57

4.3. The Power of Simplification

The most recurring advice given to the students when they are stuck on a hard problem
can be synthesized in the following way:

“Simplify the problem, and try to solve each simplified version as if it was
a new, independent problem.”

This simple advice is undoubtedly the most powerful problem solving technique in
the method. It is effective in that its sole application suffices to resolve many hard prob-
lems and in that there is a very precise recipe to generate simplified versions of a given
problem.

The idea that simplifying a task may help to find the solution of a problem is not new.
It is described for instance by Ginat (2002), and mentioned in the analysis of various tasks
such as “Mobiles” from IOI 2001 (Nummenmaa et al., 2001). What is presented here is
a technique to look for every useful simplification of any task, that students are asked to
apply systematically.

There can be many different ways to simplify a given problem and not all of them
give as much insight into the complete problem. Moreover, some useful simplifications
may not come to mind immediately. So what is needed is a way to come up with the most
useful simplifications in a quick manner. The following recipe can be used to go through
every simplified version of a problem.

1. For each dimension of the task (see Subsection 4.2) try to simplify the problem
by either: (a) removing the dimension, (b) setting the value for this dimension to a
constant, or (c) reducing the range of possible values for that dimension.

2. Among the resulting simplifications, rule out those which clearly lead to a non-
interesting problem. Then, for the sake of efficiency, sort the remaining simplified
problems according to their interest – this is to be guessed by experience.

3. For each simplification considered, restate the corresponding problem as clearly as
possible and try to solve it as if it were a completely independent problem. This
may involve applying the problem solving method recursively, including a further
simplification attempt.

4. Try to combine the solutions of the different problems in order to get some ideas
for the complete problem. (There are some specific techniques to help with this
step).

Notice that there is no need to simplify more than one dimension at a time since the
simplification recipe is called recursively when necessary.

The fundamental idea behind this technique is that although solving a simplified ver-
sion of the problem is almost always easier than solving the whole problem, it is often
very helpful. Indeed, the complete solution needs to work at least on instances of the sim-
plified problem, so any algorithm or clever observation required in the simplified solution
will most likely be a part of the complete solution.

Finding the solution to a simplified version has an effect akin to getting a very big
hint. Given that the simplification technique is so useful to produce hints and that it is
so easy to apply (at least with some experience) it is tried to have the students apply this
technique as a reflex.

58 A. Charguéraud, M. Hiron

Going from the solution(s) of one or more simplified versions of a problem to a solu-
tion for that problem can be difficult, and a separate document provides with techniques
that make it easier. The content of that document is out of the scope of this paper.

As an example, consider the task “A Strip of Land” (France-IOI, 1999) where, given
a 2-dimensional array of altitudes, the goal is to find the rectangle of maximal surface,
such that the difference between the lowest and highest altitude within that rectangle is
stays below a given value.

Examples of simplified versions of this task that are obtained by applying the de-
scribed method are:

1. Remove the y dimension; the task is then, given a sequence of integers, to find the
largest interval of positions such that the difference between the minimal and the
maximal value from that interval is less than a given bound.

2. Reduce the altitude dimension to only 2 values, 0 and 1; the task is then to find the
largest rectangle containing only zeros.

3. Apply both simplifications; the task is then to find the maximal number of consec-
utive 0s in a sequence of 0s and 1s.

Each of these simplified versions appears much easier to solve than the original task,
and a solution to the original problem can be obtained by combining ideas involved in the
solutions of these simplified problems.

4.4. Graphical Representations: Changing Points of View

Drawing different examples on a piece of paper and looking at them can be a very good
way to get ideas. Drawing helps to show many properties clearly and all the elements
that are laid on the paper are elements that do not need to be “maintained” in the limited
short term memory. That memory can then be used to manipulate ideas or imagine other
elements moving on top of the drawing. For a given problem, however, some drawings
are much more helpful than others.

When students are working on hard problems they typically write some notes about
the problem on a piece of paper and draw a few instances of the problem as well as the
corresponding answers. Then they stare at their paper for a while thinking hard about how
to solve the problem. When a student do not seem to be moving forward on a problem,
coaches look at how he drew his examples and often think “no wonder he can’t find the
solution, with such a drawing no one could”.

The students’ drawings represent examples that are too small for anything interesting
to appear and they are asked to try with larger ones. Other times the problem lies with
their choice of a graphic representation for the problem. Students tend to draw things
in a given way and often stick to that representation throughout their whole thinking
process. They sometimes make a similar drawing multiple times hoping that new ideas
will come. Their mistake is to forget that there can be several different ways to draw the
same example and the first one that comes up is seldom the one that does the best job at
bringing ideas.

To illustrate the point, consider the following task:

Teaching Algorithmics for Informatics Olympiads: The French Method 59

“Given a sequence of positive integers, find an interval of positions within
that sequence to maximize the product of the size of the interval and the
value of the smallest integer within that interval of positions.”

Faced with this task most students will naturally write a few sequences of integers on
their paper and compute the product for various possible segments.

However, there is a way to represent such sequences that is much more expressive:
draw each number of the sequence as a vertical bar whose height corresponds to the value
of that number. Segments that are potential answers for a given instance of that problem
can then be represented as rectangles whose height is the minimum height among all bars
along its length. The answer then corresponds to the rectangle with the largest area. This
new representation displays some of the properties of the problem in a much clearer way,
and makes it easier to solve the task (Fig. 1).

The most important advice that is given regarding graphical representations is the
following:

“Don’t stick to your first idea of a graphical representation and try different
ways to draw examples”.

Applying this advice in an efficient way is not as easy as it seems. Students may
quickly think about several representations, but often miss the most interesting ones. Stu-
dents are taught to apply a simple technique to enumerate the most interesting graphical
representations and select the best ones.

The main idea behind that technique is to observe the following fact: there are only
two dimensions on a piece of paper. So only two dimensions of the problem can be
presented in a very clear ordered way, where values can be compared in an instant, by
looking at their relative positions. Selecting the two dimensions of the problem that will
be mapped to the x and y axis of the sheet of paper is an essential part in selecting the
right representation. The following steps summarize this process:

1. Among all the dimensions of the task (see Subsection 4.2) identify the most im-
portant ones starting with the dimensions that correspond to values that need to
be compared easily. Consider grouping the dimensions that are compatible as one
(x1 and x2 may both be represented on the same axis). This first step is used to
optimize the chances of finding the best representation quickly.

2. For every possible pair among these dimensions consider a graphical representation
that maps each dimension of the pair to the x and y axis of the paper and find a
reasonable way to represent the others in the resulting grid.

Fig. 1. Two graphic representations for the same problem.

60 A. Charguéraud, M. Hiron

3. Among these possible representations, apply each of them on a simple example. By
comparing the results, it is usually clear which representation is the most helpful
to visualize the problem and bring ideas.

In most cases, there are only a few pairs of dimensions to enumerate so this technique
can help to quickly find the best representations. When the problem is more complex and
the number of dimensions is higher, there can be quite a few pairs to enumerate. This
may seem like a long process, but with some experience and a couple of rules of thumb
to discard the least interesting representations, drawing an example for each potentially
interesting pair can be done fairly quickly.

Of course, selecting these two dimensions is not enough to get a good representation
and much advice can be given depending on the type of problem. In most cases though,
what should be represented on the paper to get ideas is mostly the same: the components
of the example, and the answer for that example. Students often do fine naturally at se-
lecting which elements to draw, but may need some advice on what example to draw, and
how to draw it.

Once the students have a nice and carefully drawn graphic representation of a good
example in front of them it is observed that they are much more likely to get the right
idea. We often observe students spend a lot of time working on a problem only to see the
solution “appear” to them as soon as they are asked to use a graphic representation that
can be obtained by the aforementioned technique. All that was needed for them to find
the solution was to change their point of view on the problem. Forcing oneself to try out
different graphical representations is a very effective way to try new points of view.

4.5. General Structure

So far, three particular elements of the problem solving method have been presented. In
this section, we give an overview of its structure by briefly describing each of the main
steps.

The method can be divided in two parts. The purpose of the first part is to help to
bring a better understanding of the problem and to bring solution ideas. The second part
contains steps to apply on each idea that comes up during the first part. Unless the task
is really easy and the solution is obvious, students should at least go through the first
four steps of Part 1 to make sure they have a clear understanding of the problem before
working on a given idea. After that, they may jump to the second part at any time and
come back later to Part 1 if necessary.

The following steps should be attempted in the order they are listed. It might however
be necessary to come back to a previous step at some point to spend more time on it. For
example, it is often useful to come back to Step 4 and generate some new examples.

1. Restate the problem (or sub-problem) in the simplest way, discarding superficial
elements of the story, to get a clear idea of its essence. A good formulation usually
involves two sentences: the first one describes the data and the second one the
question that must be answered on this data. Someone who has not seen the full
task should be able to start looking for a solution after reading this description only.

Teaching Algorithmics for Informatics Olympiads: The French Method 61

2. Write down a list of all the dimensions involved in the task and the corresponding
constraints, as described in Subsection 4.2. This further helps to get a clear idea of
the task and is necessary both to find a good graphical representation (Step 3) and
to simplify the problem (Step 6).

3. Find the best graphical representations for the task by applying the technique de-
scribed in Subsection 4.4. This can make working on examples (Step 4) much more
effective at bringing ideas.

4. Generate different kinds of examples and solve them carefully and entirely by
hand. These examples should be large enough so that the answer is not obvious
and needs some effort to be determined. This step has many benefits. First, it helps
to get all the details of the problem clearly in mind. Also since the brain is naturally
lazy, ways to avoid doing too much work will often come automatically, which can
lead to good ideas. These examples will be used again later to test new ideas and
check the final implementation, so writing them rigorously is rarely a waste of
time.

5. Look for an algorithm that gives a correct answer to the problem, without worrying
about efficiency, and describe it clearly. The purpose is to separate the concern
of correctness from the concern of efficiency and this often helps to clarify the
recursion involved in the task. In some cases, writing it as pseudo-code may be
a good idea. Depending on the form of this “naive” solution, different specific
methods can then be applied to transform it into an efficient solution. Note that it is
sometimes useful to implement such a brute-force solution, to generate data from
some examples that one can then analyze to look for specific properties.

6. Simplify the problem and try to solve each simplified version as if it were a new,
independent problem, as explained in Subsection 4.3. Then try to combine the
different ideas into a solution for the original problem.

7. Try to see the task from different point of views by listing standard algorithms
and wondering how they could be applied. One may ask questions like “can the
problem be seen as a graph problem?”, “could it be solved with a shortest path
algorithm?”, or “how could a sweep-line technique be applied?” and so on. Even
in the case where the solution is not a standard algorithm, changing point of view
on the task in this way may help to bring new, original ideas.

For each promising idea obtained during this first part the students are asked to go
through the following steps. Note that Step 5 should be applied on any “reasonable” idea
that is found to be incorrect.

1. Describe the solution in a couple of sentences. The objective is to make it clear
enough that anyone who knows the task and is experienced with algorithmics can
understand the idea. Depending on the type of the algorithm, the method provides
standard ways to describe the solution.

2. Find a good graphical representation of the algorithm. In a similar fashion to what
we described in Subsection 4.4, there is often one or more good ways to represent
the dynamics of an algorithm graphically. This can help to understand why it works
and brings attention to special cases or possible optimizations. Again, the method
provides standard representations for certain classes of algorithms.

62 A. Charguéraud, M. Hiron

3. Using this graphical representation, try to execute the algorithm by hand on a cou-
ple of examples. This gives a better feeling of how it works and may bring up
elements to think about during the implementation.

4. Look for counter-examples to this algorithm, as if it were a competitor’s solu-
tion that you want to prove wrong (i.e., forget that you really hope it works). If
a counter-example can be found, then it often offers an excellent example to use
when looking for better ideas. It is also useful to explicitly state why the idea does
not work.

5. After spending some time looking for counter-examples without finding any, it usu-
ally becomes clear why there is no chance of finding a counter-example. In other
words, it becomes clear why the algorithm is correct. While it is too hard and too
long to carry out a formal demonstration of correctness, stating the main invari-
ants that make the algorithm work reduces the risk of implementing an incorrect
algorithm.

6. Determine the time and memory complexities as well as the corresponding running
time and actual memory needed. At this point you may decide if it is worth going
ahead with this algorithm or better to keep looking for more efficient and/or simpler
solutions.

7. Write the pseudo-code of the algorithm, try to simplify it and test it before going
ahead with the actual implementation.

On many occasions during this process, students may encounter sub-problems that
need to be solved. For example it could be a simplified version of the original problem
or something that needs to be done before starting the main algorithm. When students
encounter such sub-problems, they tend to work on them with less care and apply less
efficient strategies than when they work on the original task. It is important that faced
with such a sub-problem, they work on it as if it were the original problem and apply the
method (recursively) on it, starting with Step 1.

The structure of the curriculum aims at teaching the students how to apply all of these
steps. The hints and intermediate problems often correspond to applying steps of the first
part. The detailed solutions try and follow the method closely. Documents synthesizing
algorithms and data-structures providing domain-specific techniques are designed to help
out during this process, particularly during Step 7 of Part 1. Finally, each step of the
method is described in great detail in an independent document.

5. Conclusion

We described a complete curriculum for teaching algorithmics, organized around the aim
of teaching problem solving skills. Unlike most traditional curriculums which follow an
instructional approach, this curriculum combines the benefits of both guided discovery
learning and instructional learning, using the first to introduce new notions and relying
on the second to consolidate the knowledge acquired. Thanks to a system of hints and
intermediate problems, the discovery learning component is effective for students of dif-
ferent levels.

Teaching Algorithmics for Informatics Olympiads: The French Method 63

Throughout the structure, we teach the application of the problem solving method
that we have developed along the years. This is done by following an inductive approach:
the application of the method is illustrated through the hints, intermediate problems and
solutions to the tasks, and then generalized into synthesizing documents.

This training website has introduced algorithmics to hundreds of students over the
years, many of whom developed a strong interest in the field. Motivated students often
solve more than 200 of the problems in our series within one or two years, going from a
beginner’s level with only some experience in programming to a level that allows some
of them to get medals at the IOI, ranging from bronze to gold.

This success shows that such a curriculum can be a very effective way to teach algo-
rithmics and more specifically, problem solving skills. In the future, we aim at improving
this curriculum by adding more series of problems to cover a wider range of domains, by
optimizing the structure it is based on, and by perfecting the method that it teaches.

References

Charguéraud, A. and Hiron, M. Méthode de résolution d’un sujet.
http://www.france-ioi.org/train/algo/cours/cours.php?
cours=methode_sujet

Ginat, D. (2002). Gaining Algorithmic Insight through Simplifying. JCSE Online.
France-IOI. France-IOI Website and Training Pages.

http://www.france-ioi.org
Hiron, M. Méthode de recherche d’un algorithme.

http://www.france-ioi.org/train/algo/cours/cours.php?
cours=methode_recherche_algo

Kirschner, P.A., Sweller, J. and Clark, R.E. (2006). Why minimal guidance during instruction does not work: an
analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching.
Educational Psychologist, 41(2), 75–86.

Nummenmaa, J., Mäkinen, E. and Aho, I. (Eds.) (2001). IOI’ 01 Competition.

A. Charguéraud is the vice-president of France-IOI. After his partici-
pation at IOI’02, he got involved in training the French team to the IOI.
He has designed many tasks and tutorials for the training website, as
well as tasks for contests. He is a PhD student, working at INRIA on
formal verification of software.

M. Hiron is a co-founder and president of France-IOI. He has selected
and trained French teams for International Olympiads since 1997, and
is the co-author of many elements of the training website. As a business
owner, he works on projects ranging from web development, to image
processing and artificial intelligence.

Olympiads in Informatics, 2008, Vol. 2, 64–74 64
© 2008 Institute of Mathematics and Informatics, Vilnius

A Proposal for a Task Preparation Process

Krzysztof DIKS, Marcin KUBICA, Jakub RADOSZEWSKI,
Krzysztof STENCEL
Institute of informatics, University of Warsaw
Banacha 2, 02-097 Warszawa, Poland
e-mail: {diks,kubica,jrad,stencel}@mimuw.edu.pl

Abstract. This paper presents in details the task preparation process in the Polish Olympiad in In-
formatics. It is a result of over 15 years of experience in organization of programming contests for
high-school students. It is also a proposal of best practices that should be applied in a task prepa-
ration process for any programming contest. Although many elements of the described process are
widely known, the rigorous implementation of the whole process is the key to high task quality.

Key words: algorithmic problem solving, programming contest, informatics olympiads.

1. Introduction

In this paper we present in details the task preparation process used in the Polish
Olympiad in Informatics (POI). It represents over 15 years of experience and evolution.
Although the general schema of the task preparation process is widely known, its details
are not obvious. We believe that rigorous implementation of such a process is the key
to assure good quality of tasks. This paper is based on the POI Handbook (The Polish
Olympiad in Informatics Handbook, 2008) – an internal document describing task prepa-
ration and contest organization (in Polish). It is the result of lessons we have learned
during the last 15 years. We hope that the process described here can help avoid mistakes
we have once made. Other aspects of the contest organization in the POI are described in
(Diks et al., 2007).

Why is the task preparation so important? The answer is: time constraints. A typical
programming contest takes 2–5 days. It is a very busy period and many things have to be
prepared in advance, including tasks. However, any mistakes done during task preparation
are usually discovered during the contest itself, when it is already too late to correct them.
Therefore, quality assurance is not a question of saving work, but organizing or not a
successful contest.

The structure of the paper is as follows. In Section 2 we give an overview of a task life-
cycle. Then, in the following sections we describe consecutive phases of task preparation.
Finally, we draw conclusions. Checklists for all the phases of the task preparation can be
found in the Appendix.

A Proposal for a Task Preparation Process 65

2. Task Life-Cycle

The task preparation process consists of several phases. The life-cycle of a task is shown
in the Fig. 1. Initially, the author formulates an idea of a task together with suggestions
how it can be solved. Such ideas are then reviewed, usually by a person supervising the
whole process. If the task is suitable, it is formulated. (Task suitability is discussed in
Section 3.) The next phase is analysis of possible solutions together with their imple-
mentation and preparation of tests. During this phase, after a more thorough analysis, it
may also turn out that the task is unsuitable. However, this happens rarely. The last stage
prior to the contest is verification. The last check-up should be done shortly before the
competition.

In different phases of preparation different people modify the tasks. Storing the tasks
in a revision control system is therefore necessary. Otherwise, one can easily collide
with changes done by someone else or a wrong version of the task can be used. In the
POI a dedicated, web-based system is used to control phases of task preparation and
their assignment to people. Each task has a form of a tarball with a specified directory
structure and file naming convention. The tasks are checked in and out after every phase
or assignment. The system stores all versions of the tasks and detects any collisions in
their modifications.

Although we find such a system very useful, we do not argue that development of a
task-control system is necessary. What is necessary is to use some revision control system
to take care of different versions of the tasks.

3. Task Review

The form in which a task is provided varies a lot depending on the author. Sometimes it
has a form of a couple of paragraphs describing a problem and sometimes it is a fully for-
mulated task. In fact, what is required at this stage is a short definition of the algorithmic
problem and description of expected solutions. Everything else can be done during the
formulation phase.

Fig. 1. Task life-cycle.

66 K. Diks, M. Kubica, J. Radoszewski, K. Stencel

Task review requires expertise and algorithmic knowledge. The reviewer has to fore-
see possible solutions that are within contestants’ capabilities and their technical com-
plexity. When judging the appropriateness of the task, the following aspects should be
taken into account:

• One must be able to formulate the task statement in terms understandable for a
secondary-school pupil. Moreover, such a formulation must be clear, comprehen-
sive and not too long. If it is too complicated or requires explanation of many terms,
it is not suitable for a competition.

• Is the task a ‘handbook’ one, i.e., can it be solved by a straightforward application
of an algorithm/technique known from handbooks? If so, it would test the knowl-
edge of a particular algorithm/technique rather than creativity. In such a case it is
not appropriate.

• The task should be unique to the best knowledge of the reviewer.
• Can the task be solved in a polynomial time? If not, it is very difficult to evaluate

it in a reasonable time. However, exceptions are possible.
• The task should neither be too easy nor too difficult. Otherwise, the task will not

significantly influence the results. There are no universal guidelines. Our require-
ments are a little bit higher than those defined in (Verhoeff et al., 2006). The ex-
pected knowledge is covered by most general handbooks on algorithms, e.g., (Cor-
men et al., 1989) (skipping more advanced chapters) covers it all. But in case of
doubts, it is better to have a task that is too easy than too hard.

• There should exist many ways of solving a task at different difficulty levels; more-
over, it should be possible to distinguish these solutions by testing. Only then the
task will differentiate contestants’ results.

4. Task Formulation

During task formulation all elements missing in the task idea should be added. In partic-
ular: a short story can be added to make the task more attractive. The language should
be simple. One should avoid complex sentences. All new notions should be introduced
before they are used. Greek symbols should be avoided. If a coordinate system is needed,
then the standard one should be used. Other detailed guidelines are consistent with those
that can be found in (Verhoeff et al., 2006).

Input and output specifications must be precise – only limits on the data sizes can be
left undefined (until analysis). Preferably, the output should be short and hard to guess
(e.g., not a yes/no answer, but rather some integer) and unequivocally determined by the
input. However, this last requirement is not crucial. If the output is indefinite, a grader
program checking correctness of outputs will have to be implemented.

Task formulation should contain an example, preferably with a picture. The task
should fit on one or two pages. Three pages are the absolute limit. (However it can hap-
pen for interactive tasks, see Section 5.6.). The formulation should be also accompanied
by a short description (one or two paragraphs) of author’s solutions – it will be taken

A Proposal for a Task Preparation Process 67

into account during the analysis. It can be either the original description provided by the
author or its edited version.

5. Task Analysis

Task analysis is the most costly phase. Its goal is to provide all task elements necessary
at the competition site. These elements include an analysis document, programs and test
data. All of them are prepared by one expert from the Jury, who is called the task analyst
or simply the analyst. Even if the author of the task provides a description of the solu-
tion or even a ready-to-go model solution, the task analyst is obliged to prepare all task
artefacts from scratch. The role of the analyst is to invent and code model solutions in
all competition languages, slower solutions and expected wrong solutions. Furthermore,
he/she writes the analysis report and prepares test data as well as a program which checks
the consistency of test cases. Task description can also be altered by the analyst. At least
he/she firmly sets the limits on the size of test data, on memory and on the running time. If
answers to be produced by solution programs are indefinite for each test data, the analyst
should prepare a grader program which checks the correctness of outputs.

To sum up, the task analysis report should contain the following items:

1. An analysis document with description of model, slower and wrong algorithms,
test data, and a discussion and settlement of limits.

2. A set of source codes of solutions (model, suboptimal and wrong; in all competi-
tion languages).

3. A set of test data (some files plus possibly a generator program).

a) A program which verifies correctness of test data.

4. A grader program used when outputs for some test inputs are indefinite.
5. Updated task description.

5.1. The Analysis Document

The analysis document is an internal document of the Jury so it can be written in a pro-
fessional language. However, as it is later used as the basis for the publicized solution
presentation, it is wise to use a language that is as friendly as it is reasonable within the
time frame allotted for the task analysis. The document is to discuss the widest possi-
ble spectrum of expected algorithms presented by contestants. This includes the model
solution, other possibly slower solutions and a number of incorrect solutions that could
be produced by contestants. It should discuss all the solutions proposed by the author of
the task, but must not be limited to them. It should be possible for model solutions to
be created by contestants. We do not include algorithms which are not in the scope of
pupils. Such algorithms can be described in the final post-competition presentation of the
task, but they should not influence the grading. The analysis document also sets limits on
the size of test data, memory and the running time. These limits are later reflected in the
task description but the analysis should contain a study on their choice and the informa-
tion which discussed solutions meet each particular limit. The latest information is to be

68 K. Diks, M. Kubica, J. Radoszewski, K. Stencel

accompanied with solution-test case matrix, which for each pair of a solution and a test
case tells whether this solution is intended to pass the given test case. The analysis docu-
ment must also include a list of modifications in the task description in order to preserve
the traceability from the author’s proposal, through the task formulation to the result of
analysis.

5.2. Solutions

The model algorithm should be implemented in all competition programming languages,
i.e., C/C++, Pascal and Java (the latter was introduced in the POI in 2007). Since in many
cases the usage of STL is relevant, a separate C++ solution using STL must be presented
during the analysis. It is recommended not to use any programming tricks, especially
those which blur the readability of solutions. The readability and maintainability of the
presented solutions are crucial issues since the model solutions are used to produce and
verify correct outputs and last but not least they are presented to contestants as an exam-
ple of best programming practices. For example, this means that model solutions must
compile in the pedantic mode without even a tiny warning.

Suboptimal solutions are slower than model solutions. They represent possibly the
largest set of such solutions which are imaginable to be presented by pupils. They con-
tain some more obvious yet slower algorithms or those which are certainly simpler to
code. The same remarks concern expected incorrect solutions. These include incorrect
heuristics, solutions which do not cover all cases to be considered or greedy algorithms
(if this is a faulty approach for a given task). This category also consists of solutions
consuming too much memory. If they are run within the memory limit, they result in a
run-time error.

5.3. Test Data

The task analyst prepares a set of test data to be used during the competition. Typical test
sets consist of 10 to 20 test cases. About additional 5 simple test cases are set up to be
electronically available during the contest. The purpose of these tests is to provide real
examples so that students can check the basic correctness of their programs using data
prepared by the Jury.

The objective of tests is to distinguish correct and incorrect solutions. They should
also distinguish all efficiency classes of correct solutions. Optimally, test cases should
reflect the conceptual and programming effort needed to produce solutions. In case of
doubt, the intended distribution of points should be linear among more and more effec-
tive algorithms. Tests should put stress on the asymptotic time-cost rather than absolute
running time. In the POI we assume that solutions up to twice as slow as the model solu-
tion score the full points. Moreover, the result of testing should not depend on the choice
of programming language or usage of STL. 30%–60% of points should be allotted to
correctness tests, i.e., correct but inefficient solutions (however running in a reasonable
time) should score 30%–60% of points. The particular choice of this limit (between 30%

A Proposal for a Task Preparation Process 69

and 60%) depends on the task – on how the correctness vs. efficiency is important. In
this “correctness” part of the test data, the efficiency should count as low as possible –
even very slow but correct programs are to score all points below the “correctness” limit.
The rest of points should be granted for efficiency. If necessary, tests can be grouped – a
solution is granted points for a group of tests only if it passes all the tests from the group.
Grouping should be used when the correct result could be ‘guessed’ with high probability
or more than one test is needed to distinguish correct from incorrect solutions.

Test data must conform exactly to the specification stated in the task description.
It concerns also white spaces and the kind of new line characters (all of them must be
ASCII code 10, since we use Linux while grading). Tests can be prepared in the form of
files or a generating program can be provided. A hybrid set (test files plus a generator
of the rest) can also be used. Generating is especially useful in case of huge efficiency
tests. If such a program uses random number generator, it should also set the random
seed, so that it always generates exactly the same set of tests. The set of test cases always
comes together with a program verifying its correctness. Such a program should verify all
conditions defined in the task. It is recommended, however not required, that the verifying
program concludes its successful run printing some simple statistics like the size of the
input data in terms defined in the task description (e.g., OK n=15 k=67).

5.4. The Grader

The last element of the result of the task analysis is required only for tasks where the out-
put for a given test is not fixed, i.e., where for a given input data there can be a number of
correct outputs. For such a task, a so called grader is prepared. A grader is a program with
specific interface suited for communication with the grading system. It accepts three pa-
rameters which are names of files: input file, contestant’s output file and “hint file”. Hint
files usually contain the most important and definite part of the solution, e.g., length of
the expected output sequence. Particular sequences may vary, while all correct sequences
are of this given length. Given these three arguments, the grader checks the correctness of
contestant’s output data and produces the grading report possibly with an error message
if the encountered output is wrong.

5.5. Output-Only Tasks

If the task is an output-only one, the set of tests should be prepared in a similar way
as for batch tasks, however we cannot control the running time. Contestants can even
use separate programs to produce outputs for different test cases. We cannot measure
efficiency of contestants’ solutions. However, in this type of tasks the running time is
not so crucial or the competition time is a sufficient limit. So, the implementation of all
correct solutions in all contest programming languages is not necessary.

5.6. Interactive Tasks

The most common kind of task is the batch task, where contestants’ programs are to
read input data and produce appropriate output data. However, there are also tasks having

70 K. Diks, M. Kubica, J. Radoszewski, K. Stencel

form of games, on-line problems or optimisation problems which consist in minimizing
the number of calls issued by a solution program. Such tasks are called interactive.

In the POI interactive tasks are formulated so that a solution is supposed to interact
with the grading library it is compiled with. A contestant’s program calls grading library
functions. Such a communication mode is the most convenient from the point of view of
contestants. However, it requires caution from the task analyst.

The description of an interactive task must contain very precise specification of grad-
ing library functions and the exact guidelines how to compile a solution with the library
and a list of statements which must be included in the solution (e.g., #include direc-
tives). This information should be included for all contest programming languages. The
task description must also include example interactions for all languages.

The task analyst implements the grading library for all languages (usually for C and
C++ it suffices to produce one library). Its interface should be as simple as possible, e.g.,
it must not require an initialisation call. Grading libraries should be immune to commu-
nication patterns which do not conform to the task description. Furthermore, to avoid any
naming clashes, the grading library should not export entities other than those specified
in the task description. If there are many playing strategies, the grading library should be
able to use the smartest one as well as some less optimal. At the beginning of the interac-
tion the grading library reads the information about the test case from a file. For example,
it can be the description of the playing board and the strategy to be used by the library.
Then, the grading library interacts with the contestant’s solution and eventually prints the
report on the results of the interaction. If something goes wrong (incorrect or malicious
behaviour of the solution), the library can break the interaction during execution.

The task analyst also provides a toy version (in all languages) of the grading library for
contestants. They can download it and test their programs with it during the competition.
This will ease the construction of formally correct solutions and assist in avoiding foolish
errors. The task description must explicitly warn that these are only toy libraries.

It must be taken into account that contestants might try to reverse-engineer the toy
library to uncover its internal data structure. Therefore, the real grading library should
use different data structures. It can also hide its internals during run-time. For example, if
it is obvious from the task description that the number of moves is counted, the grading
library can start the counting from a bigger number and count the number of moves
multiplied by a constant (or some other more sophisticated encryption can be used). This
way, even a smart contestant’s memory sniffer is unable to find the location of the variable
which ticks on each move.

Solutions provided by contestants are not allowed to output anything. The standard
output is dedicated to the grader library and its final message on the result. However, the
library should be protected against illegal contestant output. All its messages are simply
surrounded by some magic code unknown to contestants (of course it is not produced by
the toy version of the library).

Above we collected a number of guidelines which make solving and grading inter-
active tasks easier. Contestants are provided with precise specifications, examples and
downloadable code. This minimizes the number of mistakes in their solutions. On the

A Proposal for a Task Preparation Process 71

other hand, the grading process is protected against most of imaginable attacks and
blameless misuses. This aids fair grading. Interactive tasks are still rare. However, our
experience proves that properly prepared (e.g., according to above mentioned best prac-
tices) interactive tasks can be successfully used in programming contests.

6. Task Verification

All actions performed during the verification process are focused on checking correctness
of artefacts which were prepared during previous phases. The inspection should cover:
task formulation, the analysis document, model solutions, programs for test generation
and verification of the test cases and the test cases themselves.

Task description should be investigated thoroughly to ensure that there are no unclear
statements, the limits for input data and the memory limit are stated (it should be checked
whether the output can be clearly determined for the border cases of the input), and that
the sample test conforms to the figure (if it is present). Additionally the description should
be spell-checked.

The main goal of the remaining checks is to verify correctness and accuracy of the
test cases, since any error in test data revealed once the competition has started is really
disastrous. Thus, another program for input verification should be implemented from
scratch. To verify the output files, an independent model (but not necessarily optimal)
solution should be prepared. All model and incorrect solutions should be evaluated on
all the test cases to ensure that classes of solutions of interest are distinguished properly.
It should be also checked whether there exists either a simple solution which performs
better than the most efficient model solution from the task analysis or a solution with
significantly worse asymptotic time which scores too well on the test cases. If necessary,
some test cases may be added or changed to correct all mistakes found.

A separate document describing the verification process should also be prepared. It
should contain: a list of all performed activities, a short description of the alternative
solution implemented during the verification, a list of all mistakes that were found in the
task analysis, and a list of all modifications performed in the task description and the
analysis document.

7. Preparation of the Task for the Competition

This phase is performed after the task is qualified for the actual competition, therefore
in some cases it can be a part of the task verification process. It includes some minor
changes in the task formulation. A more representative header is set – it includes the logo
of the contest and some information about the date, stage and day of the competition.
Also some last-moment simple checks should be performed, like verification of input
data limits and sample test data correctness.

72 K. Diks, M. Kubica, J. Radoszewski, K. Stencel

8. Conclusions

In this paper we have described in details task preparation process as it is applied in the
POI, with focus on less obvious details and quality assurance. There are so many de-
tails that should be taken into account that we found it necessary to write (The Polish
Olympiad in Informatics Handbook, 2008) for members of the POI Jury team. The issue
of quality of tasks in IOI is raised from time to time. Since the task preparation criteria
seem to be universal, the guidelines stated here should also be applicable to other pro-
gramming contests. Therefore, we hope that this paper can be of use for organizers of
various programming contests.

9. Appendix. Checklists

9.1. Task Formulation:

• Is the task description prepared according to the template style?
• Is the source file of the document formatted appropriately (indentation etc.)?
• Is the input and output format specified clearly?
• Is a sample test case prepared?
• Is a figure depicting the sample test case prepared (if applicable)?
• Is the author’s solution description present?
• Does the task description (excluding the author’s solution description) fit on at most

two pages?
• Has the document been spell-checked?

9.2. Task Analysis:

• Is the model solution implemented?
• Does the model solution use STL? (Yes/No)
• Is the model solution implemented in all required programming languages?
• Is at least one less effective solution implemented?
• Are the less effective solutions implemented in all required programming lan-

guages?
• Is at least one incorrect solution implemented?
• Is the program verifying tests created?
• Is the task output uniquely determined for every possible input? (Yes/No)
• Is the grader created (if the task output may not be unique for some input)?
• Are the tests created?
• Is the test-generating program implemented (if the total size of tests exceeds 1

MB)?
• Are the example test cases for contestants created?
• Are the limits on input data size stated in the task description?
• Are the memory (and time) limits stated in the task description?

A Proposal for a Task Preparation Process 73

• Is the analysis document prepared?
• Is the model solution described in the analysis document?
• Are the less efficient solutions described in the analysis document?
• Are the incorrect solutions described in the analysis document?
• Does the analysis document contain rationale for the chosen input data and memory

limits?
• Are the test cases described in the analysis document?
• Does the analysis document contain a table listing which solutions should pass

which test cases?
• Are the changes in the task description listed in the analysis document (if applica-

ble)?
• Have the task description and the analysis document been spell-checked?

9.3. Task Verification:

• Is the verification document prepared?
• Is an alternative model solution implemented?
• Are all conditions from the “Analysis” checklist fulfilled?
• Are the example input and output correct?
• Does the figure correspond to the example input and output (if applicable)?
• Are the limits for the input data specified correctly and clearly?

9.4. Preparation for the Competition:

• Is the task description header properly prepared (including competition stage, day
and dates)?

• Does the time limit correspond to the speed of computers actually used for evalua-
tion?

• Have all the auxiliary comments been removed from the task description?

References

Cormen, T.H., Leiserson, C.E. and Rivest, R.L. (1989). Introduction to Algorithms. The MIT Press and
McGraw-Hill Book Company.

Diks, K., Kubica, M. and Stencel, K. (2007). Polish Olympiad in informatics – 14 years of experience.
Olympiads in Informatics, 1.

POI Handbook (2008). The Polish Olympiad in Informatics Handbook, v.0.10.0. POI internal document (in
Polish).

Verhoeff, T., Horváth, G. , Diks, K. and Cormack, G. (2006). A proposal for an IOI syllabus. Teaching Mathe-
matics and Computer Science, IV(I).

74 K. Diks, M. Kubica, J. Radoszewski, K. Stencel

K. Diks (1956), professor of computer science at University of War-
saw, chairman of the Polish Olympiad in Informatics, chairman of the
IOI’2005.

M. Kubica (1971), PhD in computer science, assistant professor at In-
stitute of Informatics, Faculty of Mathematics, Informatics and Me-
chanics, Warsaw University, scientific secretary of Polish Olympiad in
Informatics, IOI-ISC member and former chairman of Scientific Com-
mittees of BOI’2008 in Gdynia, IOI’2005 in Nowy Sacz, CEOI’2004 in
Rzeszów and BOI’2001 in Sopot, Poland. His research interests focus
on combinatorial algorithms and computational biology.

J. Radoszewski (1984), 5-th year computer science student at Fac-
ulty of Mathematics, Informatics and Mechanics of Warsaw University,
member of the Main Committee of Polish Olympiad in Informatics, for-
mer member of Host Scientific Committee of IOI’2005 in Nowy Sacz.

K. Stencel (1971), PhD hab. in computer science, at the moment works
at the Faculty of Mathematics, Informatics and Mechanics of War-
saw University. His research interests are connected with non-relational
databases. From 1995 he has been the chairman of the jury of Polish
Olympiad in Informatics. He was also the chair of jury at CEOI’97,
BOI’2001, CEOI’2004, IOI’2005 and BOI’2008.

Olympiads in Informatics, 2008, Vol. 2, 75–89 75
© 2008 Institute of Mathematics and Informatics, Vilnius

Tasks and Training the Youngest Beginners for
Informatics Competitions

Emil KELEVEDJIEV
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Akad. G. Bonchev str., block 8, 1113 Sofia, Bulgaria
e-mail: keleved@math.bas.bg

Zornitsa DZHENKOVA
Mathematical High School
2 Elin Pelin str., 5300 Gabrovo, Bulgaria
e-mail: zornica.dzhenkova@gmail.com

Abstract. Training children for participation in informatics competitions and eventually in the IOI
has been moving to younger ages and now is starting in many countries at a level of about 5–6th
grades (about 11–12 years old). The main tools for teaching and preparation are tasks. We present
the experience and problems given in the Bulgarian national competitions in informatics for school
students in the mentioned age group. Some features of the Bulgarian system for the preparation of
the youngest school students are discussed. The study covers a period from 2001 up to present. In
the paper, an attempt is made to arrange and classify tasks by keywords. As examples, selected task
descriptions and comments are given.

Key words: tasks in competitive informatics, informatics for the youngest school students.

1. Introduction

In recent years, the competitions in informatics have been continually expanding and
involving more and more younger students. This process can be observed in Bulgaria,
as well in many other countries in the world. An example for this development is the
establishment in 2007 at Belgrad, Serbia, of a new kind regional Balkan Youth Olympiad
in Informatics for the students up to 15.5 years old. In Bulgaria after 2001, several age
group systems have been applied to divide school students for the national informatics
competitions (the Autumn, Winter, and Spring Tournaments, as well for the three rounds
of the National Olympiad in Informatics).

In 2001, we had an age group of 5–7th school grades (11–13 years old), which we
denoted at that time as a “youth age group”. Starting in 2002, groups were introduced
with letter names: A, B, C, and D, which comprised 11–12, 9–10, 7–8, and 4–6th school
grades, respectively (In Bulgarian schools the mentioned grades correspond to 18–19,
16–17, 14–15 and 11–13 years old students, respectively). Starting in 2004, an additional
group for the youngest students was introduced, group E, comprising the 4–5th grades.

76 E. Kelevedjiev, Z. Dzhenkova

This modified the age division among groups A, B, C, and D, as 12, 11–10, 9–8 and 6–
7th grades. Later, our observations showed that it would be better to change slightly this
division principles and starting in the autumn of 2007, we have groups A, B, C, D, and
E, that cover 11–12, 9–10, 7–8, 6, and 4–5th school grades, respectively.

A permanently open question, often asked by teachers and trainers, who are involved
in the preparation of students from the youngest age group, is the question: how to choose
suitable tasks? The goal is to cover such material that might be expected in real com-
petitions. Of course, the style of the olympiads does not always allow good prediction
about the task types even for the youngest students. Nevertheless, it is possible to outline
some set of themes and task types, which can serve as preparation tools. One important
starting point to do this selection is examining the tasks, given at the previous real com-
petitions. Classifying them, it becomes possible to make up manuals and handbooks. In
Bulgaria, recently published books (Kelevedjiev and Dzhenkova, 2004) and (Yovcheva
and Ivanova, 2006) are successfully used in the preparation process for the mentioned
age group including school students of about 4–6th, or even up to 7th grade.

2. Classification

After having accumulated enough tasks (Bulgarian web portal site for competitions in In-
formatics, 2008) previously given in competitions, it becomes possible to start an attempt
for classification using keywords.

The chosen keywords indicate some basic features from 3 different points of view:
a) basic concepts of the programming language (mainly concerning C/C++ language)

together with the simple data types: numbers, symbols, strings, text (as a set of strings
and delimiters), one- and two-dimensional arrays, arrays of strings, and some special
attention is emphasized on the sequences of input data elements;

b) basic control constructions that form a program: simple computation by a cho-
sen formula, conditional operator (“if” operator), loop with a counter (“for” cycle), loop
with a condition (“while” cycle), combination of a loop and an “if” operator, embedded
loops, recursion, and reasonable use of procedures in programming (functions in C/C++
language);

c) algorithms (with respect to the involved subject): whole numbers and divisibility,
digits of a number, long numbers, combinatory analysis, sorting, recursion, geometry
(rectangular shapes with sides which are parallel to the coordinate axis), modeling (in-
cluding date and time intervals, informative processing of texts, etc).

The choice and the amount of the keywords are not strictly determined in our next
presentations. We rather assume keywords as abbreviations to point out what is the main
essence of the task.

3. Exemplary Tasks

The following tasks are chosen to illustrate the use of keywords. They also present several
main topics and trends in the competitive informatics for the youngest age group in Bul-

Tasks and Training the Youngest Beginners for Informatics Competitions 77

garian national competitions. At some tasks, simple input and output examples are given
in order to clarify what the used keywords mean (especially for the task that require the
output of a figure or digits:

3.1. Keyword: Conditional Operator

Task “Brick” (4–6th grades, Spring Tournament, 2002). A brick has a form of a regular
parallelepiped with length x, width y, and height z. These sizes are expressed as whole
numbers, less than 1000. Write a program, that inputs x, y, and z, and outputs a number,
which is equal to the value of a minimal area that should be cut in sheet iron, so that the
brick can be moved through the hole. While moving we assume that brick’s sides remain
parallel to the edges of the hole.

3.2. Keyword: Embedded Cycles

Task “Different ways” (4–6th grades, Winter Competition, 2002). Write a program that
inputs a positive integer S, 5 � S � 50, and outputs how many ways there are for the
integer S to be presented as a sum of 3 different integers. Example input: 10, output 4.
Explanation: 10 = 1 + 2 + 7 = 1 + 3 + 6 = 1 + 4 + 5 = 2 + 3 + 5.

3.3. Keyword: Printing out a Figure of Characters

Task “Decreasing numbers” (4–6th grades, Round 1 of the National Olympiad, 2004).
Write a program that inputs number N , 1 � N � 9, and outputs the following figure:
on the first row – all whole numbers from 1 trough N ; on the second row – all whole
numbers from 2 trough N ; and in a similar way up to the N th row, where should be
placed the number N only.

Example input: 5
Output:
12345
2345
345
45
1

3.4. Keyword: Dates and Hours

Task “Airplane” (6–7th grades, Round 1 of the National Olympiad, 2007). An airplane
departs at K hours and M minutes, and arrives at L hours and N minutes. Write a pro-
gram that finds out how many hours and minutes the airplane has been flying, and which
time (that of the departure or of the arrival) is earlier in the twenty-four-hour day period.
The flight lasts less then 24 hours. Departure and arrival times are assumed to be in a same
time zone. Program‘s input consists of four integers K, M, L, N , on a line, separated by
spaces (0 � K � 23, 0 � M � 59, 0 � L � 23, 0 � N � 59). The output has to

78 E. Kelevedjiev, Z. Dzhenkova

contain two lines. On the first line, two integers for the flight duration have to be written
and they have to express hours and minutes. On the second line, one of the letters: D or
A, has to be written, depending on what is earlier: departure or arrival.

3.5. Keyword: Strings

Task “Leftmost” (5–6th grades, Spring Tournament, 2001). Given is a string of length N ,
50 � N � 255, containing small and capital Latin letters and digits. Some characters
may occur repeatedly. Write a program that inputs the string and determines which pair
of equal characters is leftmost placed. That is, the found pair should have the following
property: there are no identical characters placed before the first (rightmost) character of
the found pair. The output should contain two integers in the range from 1 trough N ,
namely the positions of both found characters in the pair.

3.6. Keyword: Texts

Task “Words” (4–6th grades, Autumn Tournament, 2003). Write a program that inputs
text of length up to 80 characters. We call a “word” a sequence of consecutive characters
which does not contain spaces, and the word has to be separated by spaces from the other
words. Your program has to output the same text as input but with the places of the longest
and the shortest words exchanged. In case there is more than one longest and/or shortest
word, the program has to exchange the last longest word with the first shortest one. If all
the words have the same length, the program has to output the same text as input.

3.7. Keyword: Modeling and Generating

Task “One or Zero” (4–5th grades, Spring Tournament, 2006). Let us consider numbers
1, 10, 100, 1000, 10000, and so on. That is, we consider numbers, each of them starting
with 1, followed by zeros. Now take number 1 and join 10 to its right-hand side, then
join 100 again to the obtained new right-hand side, then join 1000, and so on, doing this
many times. We can obtain a very long number: 110100100010000100000. . . . Write a
program that inputs integer N , 0 < N < 65000, and outputs the N th digit of the above
defined long number.

3.8. Keyword: Recursion

Task “Sticks” (6–7th grades, Spring Tournament, 2006). We have a large enough quantity
of two types of sticks – one with a length of 1 m, and the other, with a length of 2 m. The
sticks of both types cannot be distinguished, except by length. Taking several sticks, we
arrange them tightly in a line with a total length of N meters. In how many ways we may
do this? Write a program that inputs N , 0 < N < 30, and outputs the answer.

Tasks and Training the Youngest Beginners for Informatics Competitions 79

3.9. Keyword: Geometry

Task “Rectangles” (4–5th grades, Round 3 of the National Olympiad, 2006). Given are
two rectangles with sizes a by b, and c by d respectively. We have to put both rectan-
gles side by side, without overlapping, so that the obtained figure has the least possible
perimeter. Write a program that inputs the values of a, b, c, and d, as whole numbers, less
than 1000, and outputs the least perimeter. Example input: 5, 7, 6, 3. Output: 30.

3.10. Keyword: Sorting

Task “Arranging by the sum of digits” (4–6th grades, Winter Competitions, 2003). Given
is an integer N , 1 < N < 20, and a sequence of N different positive integers, whose
values are less than 1000. Write a program that inputs this data and outputs the sequence
with the given integers, arranged in an increasing order by the sum of their digits. If
there are two integers with the same sums of the digits, the smallest integer should be
placed first (to left-hand side of the biggest one). Each two subsequent integers should be
separated by a space in the output.

3.11. Keyword: Counting

Task “Sum” (6–7th grades, Round 3 of the National Olympiad, 2006). Given are N ,
1 < N < 20, different positive integers a1, a2, . . . , aN , with values less than 1000.
Consider all sums, in which each given integer occurs at most once. Write a program
that outputs how many different values of the considered sums are possible. The program
has to read by the standard input the value of N , followed by a1, a2, . . . , aN , all integers
separated by spaces. The program has to output the result as an integer on the standard
output.

3.12. Keyword: Table

Task “Table” (6–7th grades, Spring Tournament, 2007). Given is a table with m rows and
n columns (1 < m < 100, 1 < n < 100) with cells containing “0” or “1”. The cell
in the upper left corner contains 1. We call two cells neighbors, if one of them is placed
directly above, bellow, to the left, or to the right of the other. We call that a set of cells
is contiguous, if we can start at any cell of this set and go to any other cell moving only
through neighbor cells. Let us denote by S the largest contiguous set of cells containing
only “1”, which includes the upper-left cell. In how many ways we can translate the set
S within the table boundaries, so that each cell of S covers again a cell that contains
“1”? Write a program that outputs this quantity. The program has to read by the standard
input values of m and n, separated by a space and followed by m lines in the input, each
containing n characters “0” or “1” without delimiters among them.

80 E. Kelevedjiev, Z. Dzhenkova

Table 1

Data types

Keyword Number of Tasks

Numbers 62
String 27
One-dimensional array 22
Sequence 13
Characters 10
Text 9
Two-dimensional array 8
Array of strings 3
Stack 2

Table 2

Control constructions

Keyword Number of Tasks

Loop 73
Embedded loops 35
Loop and conditional operator 18
Conditional operator 17
Function 12
Input and output files 3
Computation by formula 1

4. Study of Keywords

In (Kelevedjiev and Dzhenkova, 2008) we published a table with detailed description
built on keywords for each task from the complete collection with 148 tasks, which were
given at the National competitions in informatics for the age groups of 4–7th grades in
Bulgaria during the period 2001–2007. The reader may refer to the English translated
copy of the table in the Appendix 2. We give the cumulative data (Tables 1–3).

5. Trends

We present diagrams to illustrate observed tendencies for monotonic or periodic trends in
time appearance of task types (by means of several chosen keywords) during the period
2001–2007 in the scene of the Bulgarian national competitions in informatics for the age
groups of 4–7th grades (Figs. 1–6).

Tasks and Training the Youngest Beginners for Informatics Competitions 81

Table 3

Algorithms

Keyword Number of Tasks Keyword Number of Tasks

Sequential processing 17 Combinatorial analysis 2
Digits from a number 16 Dynamic programming 2
Print out a figure of characters 12 Games and strategies 2
Counting 11 Geometry 2
Divisibility 10 Number systems 2
Text processing 10 Palindrome 2
Optimal elements 9 Rectangular figures 2
Logical 7 Recursion 2
Dates 6 Decomposing numbers 1
Long numbers 6 Exhaustive search 1
Sorting 4 Fractional numbers 1
Modeling 3 Parity 1
String of digits 3 Raising to a power 1

Fig. 1. Keyword: String.

Fig. 2. Keyword: Embedded loops.

Fig. 3. Keyword: Sequential processing.

82 E. Kelevedjiev, Z. Dzhenkova

Fig. 4. Keyword: Digits from a number.

Fig. 5. Keyword: Print out a figure of characters.

Fig. 6. Keyword: Divisibility.

6. Conclusions

Although the presented data as above graph samples are not statistically significant, they
give us some ideas about the variety of themes.

Assigning keywords to each task is influenced by personal feelings, tastes, or opin-
ions, but there are some more or less steady principles to choose these keywords. In many
cases the keywords are self-descriptive and publishing information about tasks together
with keywords is easily understandable and can help teachers in their training education
process for competitive problem solving.

The authors of tasks for the Bulgarian competitions could find useful information
about the history of tasks from the previous competitions in order not to duplicate or
sometimes intentionally repeat some kinds of problems. In more broad sense, the study of
the keywords might be applied for initializing appropriate changes and improvements in

Tasks and Training the Youngest Beginners for Informatics Competitions 83

the national curriculum which is used now as a recommendable list of themes in all the set
of local out-of-class forms for young student preparation in Bulgaria. In the Appendix 1
the reader may find parts of this curriculum ((Bulgarian web portal site for competitions
in Informatics, 2008; Bulgarian site for school competitions in Informatics, 2008)).

Appendix 1
Curriculum used about 2004–2005 school years:

Group E
Programming: Environment for C/C++, Branch and loop operators, Integers and

Characters. One-dimensional array. Standard input and output.
Algorithms: Whole numbers arithmetic. Dates.
Geometry: Straight line coordinates.

Group D
Programming: Extended study of the programming language. Inroduction to pointers.
Data structures: Arrays and Strings. Multi-dimensional arrays. Stacks and Queues.
Methods for algorithms desing: Simple exhaustive search. Recursion. Introduction to

dynamic programming. Binary search in a sorted array.
Aritmetic: Divisibility. Euclid‘s algorithm. Long integers. Number systems.
Sequences: Searching, sorting, Merging, Polynomials.
Combinatorics: Counting, Generating combinatorial configurations.
Graphs: Representations, Grid of squares.
Geometry: Coordinates in the plane. Rectangles with sides parallel to the axes.
Games: Strategies, Parity, Symmetry.

Curriculum for the National out-of-class school for preparation in informatics
competitions during the 2007–2008 school years:

6th grade

Themes Study hours

1 Functions in C language. 2
2 One-dimensional array 2
3 Sorting 4
4 Strings 4
5 Divisibility. Prime numbers 4
6 Euclid‘s algorithm. Common Fractions 4
7 Strings in C++ style. 4
8 Two-dimensional arrays 6
9 Rectangles with sides parallel to the axes 4

10 Structures in C language 4
11 Recursion. 2
12 Number systems 6
13 Long integers 6
14 Backtracking 7
15 Grid of squares 6

Total 65

84 E. Kelevedjiev, Z. Dzhenkova

7th grade

Themes Study hours

1 Parameters of the functions in C 3
2 Introduction to the standard library 2
3 Sorting – fast algorithms 2
4 Searching – binary search 2
5 Introduction to complexity of algorithms 2
6 Introduction to object-oriented programming 2
7 Combinatorial configurations 2
8 Extended Euclid‘s algorithms 3
9 Roman numerals 2

10 Polynomials 4
11 Pointers in C 2
12 Stack and Queue 3
13 Linked Lists 2
14 Searching substrings in strings 3
15 Games with numbers – using symmetry and parity 4
16 Rectangles 3
17 Bitwise operations 2
18 Long integers 3
19 Backtracking 4
20 Introduction to Dynamic Programming 5
21 Introduction to Graphs 5

Total 60

Appendix 2
Table 4 presents all tasks given at the Bulgarian competitions during the years 2001–

2007. In the column “Competition”, the names of the Autumn, Winter and Spring Com-
petitions are abbreviated, and the three rounds of the National Olympiads in Informatics
are denoted by NOI–1, NOI-2, and NOI-3, respectively.

Table 4

Tasks given at the Bulgarian competitions during the years 2001–2007

Year Competition Age
Group

Task name Keywords

1 2001 Autumn D Stars Characters, Embedded loops, Print out a figure
of characters

2 2001 Autumn D Equal Sequence, Loop and conditional operator,
Sequential processing

3 2001 Autumn D Numbers Numbers, Embedded loops, Digits from a
number

4 2001 Winter D Competition One-dimensional array, Loop, Sorting

5 2001 Winter D Study Circle One-dimensional array, Loop and conditional
operator

To be continued

Tasks and Training the Youngest Beginners for Informatics Competitions 85

Table 4

Tasks given at the Bulgarian competitions during the years 2001–2007 (continued)

Year Competition Age
Group

Task name Keywords

6 2001 Winter D Text Text, Loop, Input and output files, Text
processing

7 2001 NOI-2 D Rectangle Numbers, Input and output files, Divisibility

8 2001 NOI-2 D Numbers String, Input and output files, Long numbers

9 2001 Spring D String String, Embedded loops

10 2001 Spring D Leftmost String, Embedded loops

11 2002 Autumn D Unique String, Embedded loops, Sequential processing

12 2002 Autumn D Ruler Numbers, Loop, Divisibility

13 2002 Autumn D Triangles Characters, Embedded loops, Print out a figure
of characters

14 2002 Winter D Date Numbers, Loop, Function, Dates

15 2002 Winter D Largest Numbers, Text, Embedded loops, Function,
Long numbers, Combinatorial analysis

16 2002 Winter D Different ways Numbers, Embedded loops, Decomposing
numbers

17 2002 NOI-1 D Longest word Text, Loop, Function, Text processing

18 2002 NOI-1 D Prime factors Numbers, Embedded loops, Divisibility

19 2002 NOI-1 D Exchanges One-dimensional array, Loop, Combinatorial
analysis

20 2002 NOI-2 D Crossword String, Embedded loops

21 2002 NOI-2 D Multiplication String, Loop, Long numbers

22 2002 NOI-2 D Different Array of strings, Embedded loops, Text
processing

23 2002 Spring D Find Numbers, Loop and conditional operator

24 2002 Spring D Sum String, Loop and conditional operator, Long
numbers

25 2002 Spring D Brick Numbers, Logical

26 2003 Autumn D Words Text, Loop and conditional operator, Text
processing

27 2003 Autumn D Knight Two-dimensional array, Embedded loops,
Sequential processing, Geometry

28 2003 Autumn D Car park Numbers, Embedded loops, Digits from a
number

29 2003 Winter D Histogram String, Embedded loops, Print out a figure of
characters

30 2003 Winter D Arranged One-dimensional array, Embedded loops, Digits
from a number, Sorting

31 2003 Winter D Hotel One-dimensional array, Embedded loops,
Modeling

32 2003 NOI-1 D Odd numbers Sequence, Loop and conditional operator, Parity,
Sequential processing

33 2003 NOI-2 D Spiral Numbers, Loop

34 2003 NOI-2 D Trade Numbers, Loop and conditional operator

35 2003 NOI-2 D Cake Numbers Embedded loops

36 2003 Spring D Minimax Sequence, Loop and conditional operator,
Optimal elements

To be continued

86 E. Kelevedjiev, Z. Dzhenkova

Table 4

Tasks given at the Bulgarian competitions during the years 2001–2007 (continued)

Year Competition Age
Group

Task name Keywords

37 2003 Spring D Sum String, Loop and conditional operator, Long
numbers

38 2003 Spring D Street One-dimensional array, Loop, Sequential
processing

39 2004 Autumn D Painter Characters, Embedded loops, Print out a figure
of characters

40 2004 Autumn D Safe Numbers, Loop, Digits from a number

41 2004 Autumn E Inequality Numbers

42 2004 Autumn E Windows Numbers

43 2004 Autumn E Safe Numbers, Digits from a number

44 2004 Winter D Words Text, Embedded loops, Function, Text
processing

45 2004 Winter D Smart Numbers, Function, Recursion

46 2004 Winter D Multiplication Numbers, Loop, Divisibility

47 2004 NOI-1 D Divisibility Numbers, Loop, Digits from a number

48 2004 NOI-1 D Half String, Loop, Sequential processing

49 2004 NOI-1 D Decreasing Numbers, Embedded loops, Print out a figure of
characters

50 2004 NOI-2 D Game Numbers, Loop, Divisibility

51 2004 NOI-2 D Rooks Two-dimensional array, Embedded loops

52 2004 NOI-2 D Football Numbers, Loop

53 2004 Spring D Fractions Loop, Divisibility

54 2004 Spring D Triangles Characters, Embedded loops, Print out a figure
of characters

55 2004 Spring D King Artur One-dimensional array, Loop, Digits from a
number

56 2005 Autumn D Words Text, Loop, Text processing

57 2005 Autumn D Calendar Numbers, Embedded loops, Dates, Print out a
figure of characters

58 2005 Autumn D Millionaire Numbers, Loop, Dynamic programming

59 2005 Autumn E Bonbons Numbers, Logical

60 2005 Autumn E Guess a digit String, Loop, Function, Digits from a number

61 2005 Autumn E Numbers Numbers, One-dimensional array, Loop, Digits
from a number

62 2005 Winter D Game String, Loop

63 2005 Winter D Crossword Two-dimensional array, Embedded loops,
Function

64 2005 Winter D Travel Stack, Loop

65 2005 Winter E Windows Numbers, Logical

66 2005 Winter E Minimax Sequence, Loop and conditional operator,
Optimal elements

67 2005 Winter E Reciprocal Numbers, Loop, Digits from a number

68 2005 NOI-1 D Code Numbers, Loop, Number systems

69 2005 NOI-1 D height Numbers, Loop

70 2005 NOI-1 D Triangular One-dimensional array, Loop

To be continued

Tasks and Training the Youngest Beginners for Informatics Competitions 87

Table 4

Tasks given at the Bulgarian competitions during the years 2001–2007 (continued)

Year Competition Age
Group

Task name Keywords

71 2005 NOI-1 E Competition Numbers

72 2005 NOI-1 E Estimations Sequence, Loop, Sequential processing

73 2005 NOI-1 Clock Numbers, Divisibility

74 2005 NOI-2 D Platforms Two-dimensional array, Embedded loops

75 2005 NOI-2 D Rectangle One-dimensional array, Loop, Geometry

76 2005 NOI-2 D Lotto One-dimensional array, Loop

77 2005 NOI-2 E Coating Numbers, Divisibility

78 2005 NOI-2 E Bus lines Sequence, Loop, Digits from a number

79 2005 NOI-2 E Auto Sequence, Loop and conditional operator

80 2005 NOI-3 D Arithmetic Numbers, Characters, Loop

81 2005 NOI-3 D Intervals String, Loop

82 2005 NOI-3 D Crossword Array of strings, Embedded loops

83 2005 Spring D Game Games and strategies, Divisibility

84 2005 Spring D Calendar Numbers, Loop, Dates

85 2005 Spring D Monopoly Numbers, Loop

86 2005 Spring . . . Calendar Numbers, Dates

87 2005 Spring E Divisors One-dimensional array, Loop, Divisibility

88 2005 Spring E Trip Sequence, Loop and conditional operator

89 2006 Autumn D Library Numbers, Loop

90 2006 Autumn D Trains Numbers, Embedded loops, Print out a figure of
characters

91 2006 Autumn D Will Text, Loop, Text processing, Long numbers

92 2006 Autumn E Dates Numbers, Dates

93 2006 Autumn E Text Characters

94 2006 Autumn E Golden Rush Numbers

95 2006 Winter D Joda Text, Loop, Text processing

96 2006 Winter D Curtain Numbers, Loop, Divisibility

97 2006 Winter D MAX3 One-dimensional array, Loop

98 2006 Winter E Animal problem Numbers, Loop, Counting

99 2006 Winter E Sets One-dimensional array, Number systems

100 2006 Winter E Snowflake Characters, Embedded loops, Print out a figure
of characters

101 2006 NOI-1 D Chicken decoder String, Loop

102 2006 NOI-1 D meteorologist String, Loop, Counting

103 2006 NOI-1 D Points Numbers, Loop, Geometry

104 2006 NOI-1 E Arithmetic Numbers

105 2006 NOI-1 E Holydays Numbers, Loop and conditional operator, Dates

106 2006 NOI-1 E Maximal Sequence, Loop and conditional operator,
Geometry

107 2006 NOI-2 D Diary Numbers, Loop and conditional operator

108 2006 NOI-2 D Roads Numbers, Loop

109 2006 NOI-2 D Neighbors Two-dimensional array, Embedded loops

To be continued

88 E. Kelevedjiev, Z. Dzhenkova

Table 4

Tasks given at the Bulgarian competitions during the years 2001–2007 (continued)

Year Competition Age
Group

Task name Keywords

110 2006 NOI-2 E Square Characters, Embedded loops, Print out a figure
of characters

111 2006 NOI-2 E Martenitza Sequence, Loop and conditional operator,
Fractional numbers

112 2006 NOI-2 E Numbers Sequence, Loop and conditional operator,
Sequential processing

113 2006 NOI-3 D Zig-zag Two-dimensional array, Embedded loops

114 2006 NOI-3 D Summer School One-dimensional array, Loop, Sorting

115 2006 NOI-3 D Sum One-dimensional array, Loop, Modeling

116 2006 NOI-3 E Cycle Numbers Loop, Digits from a number

117 2006 NOI-3 E Rectangles Numbers, Geometry

118 2006 NOI-3 E Three-digit numbers Numbers, Loop, Digits from a number

119 2006 Spring D Zeros Numbers, Loop, Raising to a power

120 2006 Spring D Sold One-dimensional array, Loop

121 2006 Spring D Sticks Numbers, Loop, Function, Recursion

122 2006 Spring E One or Zero String, Loop, Modeling

123 2006 Spring E Prime factors Numbers, Loop, Function, Counting

124 2006 Spring E Lucky tickets Numbers, Loop, Digits from a number

125 2007 Winter D Bank Accounts String, Loop, Digits from a number

126 2007 Winter D Seagull Numbers, Characters, Loop

127 2007 Winter D Numbers Loop, Sorting

128 2007 Winter E Text String, Loop, Palindrome

129 2007 Winter E Accuracy Numbers, Dates

130 2007 Winter E Ruler Sequence, Loop and conditional operator,
Geometry

131 2007 NOI-1 D Picture String, Embedded loops

132 2007 NOI-1 D Teams Numbers, Loop

133 2007 NOI-1 D Airplane Numbers, Loop, Dates

134 2007 NOI-1 E Bulls String, Digits from a number

135 2007 NOI-1 E Coding String, Loop

136 2007 NOI-1 E Triangles Numbers, Logical

137 2007 NOI-2 D Sequence One-dimensional array, Loop

138 2007 NOI-2 D Group Numbers, Loop, Function

139 2007 NOI-2 D Paper Text, Loop, Text processing

140 2007 NOI-2 E Sum Sequence, Loop, Sequential processing

141 2007 NOI-2 E Numbers String, Loop, Text processing

142 2007 NOI-2 E Password Numbers, Loop, Digits from a number

143 2007 Spring D Mushroom Two-dimensional array, Embedded loops

144 2007 Spring D Melody One-dimensional array, Loop

145 2007 Spring D Table Two-dimensional array, Embedded loops

146 2007 Spring E KGB String, Loop, Divisibility

147 2007 Spring E Rating Array of strings, Embedded loops, Sorting

148 2007 Spring E Coloring One-dimensional array, Loop, Sequential
processing

Tasks and Training the Youngest Beginners for Informatics Competitions 89

References

Bulgarian web portal site for competitions in Informatics. Retrieved 21 April 2008 from
http://infoman.musala.com

Bulgarian site for school competitions in Informatics. Retrieved 21 April 2008 from
http://www.math.bas.bg/infos

Kelevedjiev, E. and Dzhenkova, Z. (2004). Algorithms, Programs, Problems. Manual for beginner’s trainning
in competitions and olympiads. Regalia, Sofia (in Bulgarian).

Kelevedjiev, E. and Dzhenkova, Z. (2008). Competition’s tasks for the youngest school students. In Mathemat-
ics, Informatics and Education in Mathematics and Informatics. Spring Conference of the UBM, Borovetz,
2008.

Yovcheva, B. and Ivanova, I. (2006). First Step in Programming with C/C++. KLMN, Sofia (in Bulgarian).

E. Kelevedjiev is a research fellow in the Institute of Mathematics and
Informatics at the Bulgarian Academy of Sciences. His field of interests
includes algorithms in computer science, operation research, digitiza-
tion techniques, etc. He is a member of the Bulgarian National Com-
mittee for Olympiads in Informatics since 1993; leader or deputy leader
of the Bulgarian teams for many IOI’s and BOI’s.

Z. Dzhenkova is a teacher in the Mathematical High School in
Gabrovo, Bulgaria. She is coauthor of a manual for beginner’s training
in competitions and olympiads in informatics. Her field of scientific in-
terests includes education in informatics and information technology;
leader of school student teams and instructor in competitive informa-
tics.

Olympiads in Informatics, 2008, Vol. 2, 90–104 90
© 2008 Institute of Mathematics and Informatics, Vilnius

Tasks on Graphs

Krassimir MANEV
Department of Mathematics and Informatics, Sofia University and
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
5, J. Bourchier blvd., 1164 Sofia, Bulgaria
e-mail: manev@fmi.uni-sofia.bg

Abstract. Despite missing of the topic in standard school curricula, tasks on graphs are among the
most used in programming contest for secondary school students. The paper starts with fixing the
used terminology. Then one possible classification of tasks on graphs is proposed. Instead of the
inner logic of Graphs Theory, which is typical for some profiled textbooks, the classification ap-
proach of the general textbooks on algorithms was used. The tasks on graphs from last ten editions
of the Bulgarian National Olympiad in Informatics were considered and classified in order to check
the usability and productivity of the proposed classification.

Key words: graph structures, directed and undirected graphs and multi-graphs, classification of
tasks on graphs, algorithmic schemes.

1. “In the beginning ...”1

It is a fact that the task proposed in the first International Olympiad in Informatics (IOI),
held in Bulgaria in 1989, was a task on a graph. The statement of the task, as given to
the students, was published in (Kenderov and Maneva, 1989) and a more simple and
contemporary form of the statement of the task was included in (Manev et al., 2007,
p. 114).

Two years before the first IOI, an open competition on programming for school stu-
dents was organized just before and in connection with the Second International Con-
ference and Exhibition “Children in the Information Age” of IFIP, which took place in
Sofia, Bulgaria, from May 19 till May 23, 1987. The contestants were divided in three age
groups (junior – under 14 years, intermediate – under 16 years, and senior – older than 16
years). It is interesting that the task proposed to students of the senior group was also a
task on a graph. The statement of the task, as given to the students, was also published in
(Kenderov and Maneva, 1989). We would like to give here a contemporary form of this
task too.

Task 1 (Programming contest “Children in the Information Age”, 1987). Let the
bus stops in a city be labeled with the numbers 1, 2, . . . , N . Let also all bus routes of
the city be given: M1 = (i1,1, i1,2, . . . , i1,m1), M2 = (i2,1, i2,2, . . . , i2,m2), . . ., Mr =

1The Bible, Genesis 1:1.

Tasks on Graphs 91

(ir,1, ir,2, . . . , ir,mr), 1 � ij,k � N , ij,k �= ij,l when k �= l. Each bus starts from one
end of its route, visits all stops of the route in the given order and, reaching the other end
of the route, goes back visiting all stops in reverse order. Write a program that (i) checks
whether one can get from any stop to any other stop by bus; (ii) for given stops i and j

prints all possible ways of getting from stop i to stop j by bus; (iii) for given stops i and j

finds fastest possible way of getting from stop i to stop j by bus, if times for travel from
stop to stop are equal and 3 times less than the time to change busses.

During the years after the first IOI tasks on graphs became a traditional topic in the
programming contests for school students – international, regional and national. Some-
thing more – the number of the tasks on graphs given in these contests is significant.

Why this subject, which was never included in school curricula, is so attractive for
programming contests? When and how do we have to start introducing of graph concepts
and algorithms on the training of young programmers? Which tasks and algorithms on
graphs are appropriate for the students of different age groups, and which concepts have
to be introduced in order that students are able to understand and solve corresponding
tasks? How should we present the abstract data type graph (and related to it abstract type
tree) in data structures? These are only few of the questions that arise in the process of
teaching the algorithmics of graphs. In this paper we will try to give answers of a part of
them, based on more than 25 years experience of teaching algorithms on graphs, as well
as preparing tasks, solutions and test cases.

In Section 2 we will introduce some basic notions, not because the reader is not fa-
miliar with them but just to escape misunderstanding, because the different authors use
different terminology. In Section 3 one possible classification of tasks on graphs is pre-
sented, based on the character of used algorithms. The effectiveness and productivity
of proposed classification was checked on a set of tasks on graphs from the Bulgarian
olympiads in informatics and the results are presented in Section 4.

2. “. . . What’s in a name? . . .”2

Speaking about the terminology, we are strongly influenced by the remarkable book
(Harary, 1969). As it was mentioned in Chapter 2 of this book, which is dedicated to
the terminology, most of the scientists that work in the domain are using their own ter-
minology. Something more, the author supposed that Graph Theory will never have uni-
form terminology. Back then, we totally accepted the terminology of Frank Harary and
believed that uniformity was possible. About 40 years later we have to confess that he
was right. Uniform terminology in Graph Theory still does not exist and those used by
us, even if strongly influenced by that of Harary, is different from the original.

2.1. Graph Structures

Each graph structure G(V, E) is defined over a finite set V of vertices as a collection
of links E (see Fig. 1) such that each link is connecting a couple of vertices. The link

2W. Shekspeare, Romeo and Julet, Act II, Scene 2.

92 K. Manev

Fig. 1. Directed multi-graph (a), directed graph (b) and undirected graph (c).

is directed when the couple is ordered and undirected when the couple is unordered (2-
elements subset of V). We will call undirected links edges and directed links – arcs.
Unfortunately, most of the authors of books on graph structures denote the edge that
links vertices v and w by the ordered couple (v, w) instead of more precise set notation
{v, w}. Such notation sometimes leads to misunderstandings. We will be happy to see
the tradition changed, but for the moment it seems impossible.

If E is a set of links (edges or arcs) we are speaking of graphs. If a multi-set E of
links is considered, i.e., a repetition of elements of E is permitted, than we are speaking of
multi-graphs. Applying ordering and repetition principles of Combinatorics, four kinds
of graph structures are obtained – directed graphs (or digraphs), undirected graphs (sim-
ply graphs), directed multi-graphs (simply multi-digraphs) and undirected multi-graphs
(simply multi-graphs). Distinguishing the four kinds of graph structures in the training
process is important because sometimes algorithms solving the same task in different
structures are different. A trivial example is the procedure of presenting graph structure
in a matrix of incidence g[][]. When the structure is given in the input file as a list of
links it is enough to assign g[v][w]=1 for the arc (v, w), but for the edge (v, w) both
assignments g[v][w]=1 and g[w][v]=1 will be necessary.

Special kind of links (v, v) are called loops. Our experience suggests that it makes
sense to allow loops in directed graph structures and do not allow them in undirected,
which will be our assumption through the paper. But this does not mean that loops should
not be included in undirected graph structures at all. It is quite possible that an interesting
task idea could presume existing of loops in a graph or multi-graph.

2.2. Traversals in Graph Structures

The idea of “moving” in a graph structure, passing from a vertex to another vertex that
is linked with the first, is one of the most fundamental in the domain. We will call such
moving in a graph a traversal. It is worth separating directed traversals from undirected.
We will call the sequence v0, v1, . . . , vl of vertices of a directed graph structure a course
of length l from v0 to vl, if there is an arc (vi, vi+1) in E for i = 0, 1, . . . , l − 1. When
v0 = vl then the course is called a circuit. We will call the sequence v0, v1, . . . , vl of
vertices of an undirected graph structure a path of length l from v0 to vl, if there is an arc
(vi, vi+1), for i = 0, 1, . . . , l − 1 and vi−1 �= vi+1 for i = 1, 2, . . . , l − 1. When v0 = vl

Tasks on Graphs 93

then the path is called a cycle. The constrain vi−1 �= vi+1 in the undirected case is crucial.
Without this constrain it will happen that the undirected graph from Fig. 1(c.) contains
the cycle 1,2,1 which is unacceptable. In the digraph from Fig. 1(b.), for example, the
same sequence 1,2,1 is a circuit and even the sequence 1,1,1,1,2,1 is a circuit.

A graph structure in which there is a course, respectively path, from each vertex to
each other vertex is called connected. Directed graph structures in which for each two
vertices there is a course in at least one of the two possible directions are called weakly
connected. When a graph is not connected, then it is composed of several connected sub-
graphs called connected components.

Some authors prefer to call courses and paths that not repeat links and/or vertices
with specific names (sometime different for both cases – lack of repeated links and lack
of repeated vertices only). Others prefer to call them simple courses and simple paths,
respectively (for the circuits and cycles v0 = vl is not considered a repetition of vertex).
We will use the short names courses and paths for the most frequent case when the repe-
tition of vertices is not allowed (which imply no repetition of links too). For rare cases of
repetitions other names, longer and even self-explaining could be used.

Traversals of graph structures that pass trough each link once are called Euler traver-
sals. Traversals of undirected graph structures that pass trough each vertex once are called
Hamilton traversals.

2.3. Graph Structures with Cost Functions

On each graph structure it is possible to define cost function on vertices cV : V → C,
cost function on links cE : E → C, or both, where C is usually some numerical set of
possible values (natural numbers, rational numbers, real numbers, etc. or subset of those
sets). Values of the cost functions, beside cost, are called also length, weight, priority, etc.
depending on the situation. If a graph structure has no cost function defined then we will
presume that the cost of each vertex and link is 1. Cost functions are usually extended in
some natural way on sub-graphs and other sub-structures defined in the graph structure.
For example the cost of a path in a graph is usually defined as a sum of costs of its
vertices, of its edges or both of vertices and edges (if applicable).

The notion path (or course) of minimal cost, called also shortest path (or course)
is fundamental for algorithmics on graphs. Both tasks mentioned in Section 1, the task
from IOI’89 and the task from the contest organized in parallel with the International
Conference and Exhibition “Children in the Information Age”, included searching of
shortest path. Let us now reformulate them in terms introduced here.

Task 2 (IOI’1989): Let V be the set of all strings of length 2N composed of N − 1
letters ‘A’, N − 1 letters ‘B’, and 2 consecutive letters ‘O’. Two strings (vertices of V)
are linked by an edge if one of the strings could be obtained from the other by swapping
letters ‘O’ and two other consecutive letters, conserving their order. The strings in which
all letters ‘A’ are leftmost of all letters ‘B’ (does not mater where the letters ‘O’ are)
are called final. Write a program that for a given string S finds and prints one path of
minimal length (trivial cost of each edge is 1) from S to some final string. If there is no
path between S and a final string, the program has to print the corresponding message.

94 K. Manev

Task 3 (Programming contest, 1987): A graph G(V = {1, 2, . . . , n}, E) is given.
The set E of edges is defined by r of its paths of length m1, m2, . . . , mr, respectively in
such a way that each edge of G is included in at least one of the given paths. The cost of
each vertex is 3 and the cost of each edge is 1. Write a program (i) to check whether the
graph is connected; (ii) for given two vertices v and w, to generate all paths between v

and w; (iii) for given two vertices v and w, to find the path between v and w with minimal
cost.

Let G(V, E) be a graph with cost function cE : E → C, where C is a numeric set
with non negative values. Then the function d: V × V → C, where d(v, w) is the cost
of the shortest path from v to w is a distance in classic mathematical sense of the word
because (i) ∀v, w ∈ V , d(v, w) � 0 and d(v, w) = 0 iff v = w; (ii) ∀v, w ∈ V ,
d(v, w) = d(w, v); (iii) ∀v, w, u ∈ V , d(v, w) � d(v, u) + d(u, w).

Introducing of distance function gives us the possibility to consider the graph G(V, E)
as a geometric object and to define the corresponding notions. For example, a center of
the graph G is each vertex v, which minimize D(v) = max{d(v, w)|w ∈ V } and the
diameter of the graph G is D(G) = max{d(v, w)|v, w ∈ V }. The analogy between the
“geometry” of a graph and the geometry of well known Euclidean space is an origin of
interesting tasks on graphs.

2.4. Graph Structures and Relations

Let A and B be arbitrary sets. Each subset R of the Cartesian product A × B is called
a relation. School and university curricula in mathematics provides a large amount of
useful relations: among numbers (“x is less then y”, “x is less then or equal to y”, “x
is equal to y”, etc.), among geometric objects (“the point p lies on the line l”, “the line
l passes trough the point p”, “lines l and m are parallel” etc.), among subsets of some
universal set (“A is a subset of B”, “A and B intersect”, etc.).

A lot of relations we could find outside mathematics, in the world around us. For
example, relations among people – “x is a son of y”, “x likes y”, “x and y are in the
same class”, etc; or the very popular relation among villages “the village x is linked with
the village y by a road” (similar relations could be established among city crossroads
linked by streets, railway stations linked by railway roads, electricity sources, distribu-
tion centers and customers linked by electricity lines, etc.). That is why many different
tasks can arise, in a natural way, in connection with a specific finite relation – abstract
(mathematical) or from the real world.

Unfortunately, school curricula (and even some university curricula) use many rela-
tions without to consider the notion itself and its properties – especially the properties of
relations over Cartesian squares A×A – reflexivity, symmetry, anti-symmetry, transitivity.
Some specific relations over Cartesian squares – equivalences (reflexive, symmetric and
transitive), partial orders (reflexive, anti-symmetric and transitive) and total orders (re-
flexive, strongly anti-symmetric and transitive) are significant both for mathematics and
algorithmics.

The notion finite relation coincides with the notion digraph. Indeed, each digraph
G(V, E) could be considered as a relation E ⊆ V × V and vice versa. A finite relation

Tasks on Graphs 95

E ⊆ V ×V that is symmetric (and optionally reflexive) is really a graph. That is why, each
task connected with some relation could be considered as a task on a digraph or graph.
Let us consider some examples. It will be helpful to fix the set V to be {1, 2, . . . , n}.

Task 4: Let E ⊆ V ×V be equivalence. Find the number of classes of equivalence of
E. Is this number equal to 1? If the number of classes is great than 1, find the classes of
equivalence of E.

This task (really set of very similar tasks) is classic for relations of equivalence. Be-
cause equivalence is reflexive and symmetric relation, G(V, E) is a graph. From the graph
point of view this task could be formulated as: “How many connected components has the
graph G(V, E)? Is the graph connected? If not, then find the vertices of each connected
component of G”.

Task 5: Let E ⊆ V × V be total order (we will denote (x, y) ∈ E with x � y)
and V ′ ⊆ V , |V ′| = M . Find a sequence a1, a2, . . . , aM of all elements of V ′ such that
a1 � a2 � . . . � aM .

Of course, this is the task for sorting a subset of elements of a given total order. It is so
popular that a specific branch of the Theory of Algorithms is dedicated to it. Anyway, the
task could be formulated as a task on digraph. It is well known that relations of ordering,
considered as digraphs, have no circuits. So the task for sorting a given subset of a totally
ordered set will look like: “Given a digraph G(V ′, E′) without circuits. Find a course
with a maximal length in G”. Relation E′ in this formulation is, obviously, the restriction
of E on V ′. Digraphs without circuits are very popular and have specific name – dag
(abbreviation of directed acyclic graphs, because some authors use the notion cycle for
digraphs too).

Task 6: Let E ⊆ V ×V be a partial order which is not total (we will denote (x, y) ∈ E

with x � y again). Find a sequence a1, a2, . . . , aM of elements of V with maximal length
such that a1 � a2 � . . . � aM .

Formulation of this task as a task in digraph will be: “Given a dag G(V, E). Find a
course with a maximal length in G”.

The examples given above concerned relations over the Cartesian square. But relations
over the Cartesian product of two different domains could also be considered in graph
formulation.

Task 7: Let R1 ⊆ A × B and R2 ⊆ B × A are such that (a, b) ∈ R1 if
and only if (b, a) ∈ R2. Find a subset {(a1, b1), (a2, b2), . . . , (aM , bM)} of R1 (or
{(b1, a1), (b2, a2), . . . , (bM , aM)} of R2, which is the same) with maximal numbers of
elements such that ai �= aj and bi �= bj , 1 � i < j � M .

Relations R1 and R2 with mentioned above property are called mutually reversed.
Examples of mutually reversed relations are the above mentioned couple “the point p

lies on the line l” and “the line l passes through the point p”. An example from real life
could be the couple “the person p could do the work w” and “the work w could be done
by the person p”. For each couple of mutually reverse relations we can build a graph
G(V = A ∪ B, R1) (or G(V = A ∪ B, R2), which is the same) considering elements
of R1 (R2, respectively) as not ordered. Such graph is called bipartite. Searched subset
M of edges such that each vertex is an end of at most one edge in M is called matching.

96 K. Manev

In graph formulation the task will be: “Given a bipartite graph G(V = A ∪ B, R1). Find
one maximal matching of G”.

2.5. Trees and Rooted Trees

Discussion of tasks on graph structures is impossible without introducing the notion tree.
By the classic definition, graph T (V, E) is a tree if it is connected and has no cycles.
For the purposes of algorithmics the notion rooted tree is more helpful. Two equivalent
inductive definitions of rooted tree are given below.

DEFINITION 1. (i) The graph T ({r}, ∅) is a rooted tree. r is a root and a leaf of T ;
(ii) Let T (V, E) be a rooted tree with root r and leaves L = {v1, v2, . . . , vk}. Let v ∈ V

and w �∈ V ; (iii) Then T ′(V ′ = V ∪ {w}, E′ = E ∪ {(v, w)}) is also a rooted tree. r is
a root of T ′ and leaves of T ′ are (L − {v}) ∪ {w}. This definition (Fig. 2(a.)) is more
appropriate for building of rooted trees.

DEFINITION 2. (i) The graph T ({r}, ∅) is a rooted tree. r is a root and a leaf of T ; (ii)
Let T1(V1, E1), T2(V2, E2), . . . , Tk(Vk, Ek), be rooted trees with roots r1, r2, . . . , rk,
and leaves L1, L2, . . . , Lk, respectively. Let r �∈ V1 ∪ V2 ∪ . . . ∪ Vk; (iii) Then T ′(V ′ =
V1 ∪ V2 ∪ . . . ∪ Vk ∪ {r}, E′ = E1 ∪ E2 ∪ . . . ∪ Ek ∪ {(r, r1), (r, r2), . . . , (r, rk)}) is
also a rooted tree. r is a root of T ′ and leaves of T ′ are L1 ∪L2 ∪ . . . ∪Lk. Rooted trees
T1, T2, . . . , Tk are called subtrees of T ′. This definition (Fig. 2(b.)) is more appropriate
for analyzing rooted trees. Introducing the notion sub-tree it is leading to natural recursive
procedures.

By definition rooted trees are undirected graphs. Anyway, Definition 1 is introducing
an implicit direction on the edges of the rooted tree. We could say that v is a parent of
w and that w is a child of v. Obviously each rooted tree is a tree and each tree could be
rebuild as rooted when we choose one of the vertices for its root.

If G(V, E) is a graph and T (V, E′) is a (rooted) tree such that E′ ⊆ E than T is called
a spanning (rooted) tree of G. Graph G is connected if and only if it has a spanning tree.
So, the most natural way to check whether the graph G is connected is to try to build a

Fig. 2. Two equivalent definitions of rooted tree.

Tasks on Graphs 97

spanning tree of G. If c: E → C is a cost function on edges of G(V, E) we could extend
it to spanning trees of G, defining c(T (V, E′)) =

∑
e �∈E′ c(e). Each spanning tree T of

G with minimal (maximal) c(T) is called minimal (maximal) spanning tree of G.

2.6. Presentation of Graph Structures and Trees

As in each other domain, presenting abstract data types graph, digraph, multi-graph,
multi-digraph and tree in data structures is crucial for creating of efficient algorithms.
Traditionally, the graph structures are given in input files, as it was mentioned above, in
form of a list of links preceded by the number n of its vertices and the number m of its
links and an instruction that links have to be interpreted as undirected (edges) or directed
(arcs).

When the essential part of the algorithm that will be implemented on a graph structure
G(V, E) is an iterative instruction of form

for e ∈ G do {. . .}
then the list of links is a perfect presentation and the implementation will have time
complexity O(m). If the same algorithm is implemented over a presentation of G with
an adjacency matrix (i.e., 2-dimentional array g such that g[v][w] is the number of the
links between v and w) than the time complexity will be O(n2) and the implementation
will be slower for graph structures with a relatively small number of links.

If the essential part of the algorithm is an iterative instruction of the form
for v ∈ V ′ ⊆ V do{for w ∈ V ′′ ⊆ V do{...if (v, w) ∈ E{. . .}}}

then the implementation with list of links will be of complexity O(|V ′||V ′′|.m) and with
an adjacency matrix – of complexity O(|V ′||V ′′|), which is much better.

If the essential part of the algorithm is an iterative instruction of the form
for v ∈ V do{for w such that (v, w) ∈ E do{. . .}}

then the implementation with adjacency matrix will be of complexity O(n2). In such case
it will be more appropriate to use another presentation of the graph structures – lists of
neighbors (in undirected case) or lists of children (in directed case) which will give us an
implementation of complexity O(m).

Especially for rooted trees, we would like to mention the presentation list of parents
– an array g[] such that g[i] is the parent of i for each vertex that is not the root r
and g[r]=0. This presentation of rooted trees is very convenient when it is necessary to
build a rooted tree (spanning, minimal spanning, etc.) or to maintain it.

It is worth also mentioning that different specific tree structures (heaps, index trees,
suffix trees, etc.) are an inevitable part of efficient implementation of many algorithms
but discussing of such specific tree structures is far beyond the scope of this paper.

3. Classification of Tasks on Graphs

Classification of tasks on graphs is important due to different reasons. Good classification
could be very helpful for preparing curricula and organizing the training process – for
deciding which classes of tasks are to be taught and in which order, just to have a smooth

98 K. Manev

passing from more easy to more difficult tasks. Classification could be very helpful for
preparing contests too – for avoiding tasks of a same class in one contest or similar tasks
in two consecutive contests. In this chapter we will consider first some classifications of
tasks on graphs and then will discuss the place of tasks on graphs among other classes of
tasks used in programming contests.

3.1. Classifications of the Profiled Textbooks

Profiled textbooks – see, for example, (Christophides, 1975) and (Gondran and Minoux,
1984) – prefer to classify tasks on graphs following the inner, graph-theoretical, logic of
the book. Our preferable way is another but it is worth discussing briefly these classifica-
tions.

In (Christophides, 1975) the classification is based totally on the theory. The following
main classes of tasks are considered:

Connectivity and accessibility; Independent and dominating sets of vertices; Col-
orings; Centers (radii, diameters); Medians; Spanning trees; Shortest paths; Euler
traversals; Hamilton traversals and traveling salesman problem; Flows; Matchings.
The approach of (Gondran and Minoux, 1984) is a bit different. The textbook first

separates the following classes of tasks, for which good (polynomial) algorithms exist:
Connectivity; Shortest paths; Spanning trees; Flows; Matchings; Euler traversals.
Then the authors consider a group of tasks, for which polynomial algorithms still do

not exist. Some algorithmic concepts which are useful for approaching algorithmically
hard tasks are also considered – greedy, backtracking (branch and bound), dynamic pro-
gramming, etc.

Classifications on the base of the inner, graph-theoretical, logic have their reasons.
But they are not convenient for the education and training of young programmers. Such
an approach can sometimes hide important common features of significantly different
(from graph-theoretical point of view) tasks. For example, both sources referred to above
consider as different topics connectivity, spanning trees and shortest paths. But the sim-
plest way of checking the connectivity of an undirected graph structure is to try to build
a spanning tree of this graph. From the other side, a spanning tree of a graph with root r,
built in breadth, is a tree of shortest paths from r to each other vertex of the graph.

Without underestimating theoretical classifications of the tasks in graphs, we prefer
the “algorithmic” classifications – such that collects in one class tasks, solvable by similar
algorithms or, more general, by same algorithmic scheme. As we will see it is possible
that some class of tasks could be a result of both classification approaches. This will
happen when tasks of some, “theoretically” identified, class are solvable with a specific
algorithmic scheme, not applicable at all or inefficient for another kind of tasks – Euler
traversals, for example.

3.2. Classifications of the Textbooks in Algorithms

Classification of tasks on the basis of the used algorithms is an approach that is typical
for the general textbooks on algorithms. These books are not aimed at considering the

Tasks on Graphs 99

tasks of a specific mathematical domain but to introduce the general principles and ap-
proaches of design (and analysis, of course) of algorithms. That is why these textbooks
are trying, usually, to identify as much as possible tasks that are solvable by the algorithm
(or algorithmic scheme) in consideration.

As a base of our attempt for classification we used the leader among the textbooks in
algorithms (Cormen et al., 1990) and compared it with some other popular textbooks –
(Reingold et al., 1977; Aho et al., 1978; Sedgewick, 1990; Brassard and Bratley, 1996),
as well as the most popular in Bulgaria (Nakov i Dobrikov, 2003). It is obvious that
the chapter on graphs of (Reingold et al., 1977) is organized in a similar way as the
profiled books on graph algorithms, so we will not consider it.

The part dedicated to graphs of (Cormen et al., 1990) starts with the chapter “Elemen-
tary Graph Algorithms”, which discusses the traversals of the vertices of graph structures
called Breadth-First search and Depth-First search (BFS and DFS). Both approaches are
applicable for solving different tasks related to connectivity of graph structures and the
accessibility of a vertex from another vertex. But these two algorithmic schemes are used
for solving some specific tasks also. BFS, for example, is building a tree of shortest paths
in graphs without cost function on the edges and DFS is a basic step for efficient topo-
logical sorting, finding of strongly connected components, articulation points and edges,
etc. All other mentioned above books consider both BFS and DFS. That is why BFS and
DFS will be different classes in our classification.

The second chapter of (Cormen et al., 1990) is dedicated to algorithms for finding
minimum spanning tree of graphs (MSP). This topic is included in all of considered
textbooks. So, Minimum spanning tree will be a class in our classification too. It is worth
to mention that (Brassard and Bratley, 1996) discuss algorithms for MST in the chapter
on greedy algorithms in a special section dedicated to applying greedy scheme on graphs
(we will discus this fact later).

The next two chapters of (Cormen et al., 1990) are “Single-Source shortest paths” and
“All-Pairs Shortest Paths”. We will suppose that the splitting of the topic Shortest paths in
two is made by the authors just to limit the size of the chapters. No other among the con-
sidered textbooks makes the distinction. And let us append two remarks. First, the word
“shortest” has to be considered in a larger sense – tasks for finding the largest path, more
reliable path, etc., are solvable with the same approach – the relaxation approach. And
second, the tasks for finding the center(s), the median(s), the radius (or diameter), etc., of
graphs (considered in depth only in (Nakov i Dobrikov, 2003) are also solvable by
the relaxation approach.

The last chapter of (Cormen et al., 1990) is “Maximum Flow”. Beside some basic
algorithms for finding Maximum flow in a network, the chapter also considers the strongly
related but specific task for finding Maximum matching in bipartite graphs. (Brassard and
Bratley, 1996) does not consider these two topics at all and the other textbooks consider
them separately.

Something that is missing in (Cormen et al., 1990) but is included in all other text-
books is the Exhaustive search – the general way for solving a huge amount on NP-
complete problems in Graph Theory. The tasks for finding Hamilton traversal of graph

100 K. Manev

and closely related Traveling salesman problem are the most used examples for this class
of tasks. Speaking of exhaustive search in graphs we usually have in mind backtracking
traversals. But in this class could be included any task, for the solving of which it will be
necessary to generate all permutation of the vertices, all subsets of vertices (or edges), etc.

Only (Nakov i Dobrikov, 2003) includes a chapter dedicated to such specific topic
as Euler traversal of multi-graphs and related problems. None of the textbooks consider
the topic Games in graphs (of type Nim and similar). From graph-theoretical point of
view these tasks could be classified in the topic Independent and Dominating Subsets.
There is a specific approach for solving these tasks (functions of Sprague-Grundy and
splitting a game in sum of more simple games). We will include such specific topics in
our classification too.

3.3. Tasks on Graphs in the General Classification of Tasks

As it was mentioned above, general textbooks on algorithms have always a chapter (or
few chapters) dedicated to tasks on graphs (and corresponding algorithms). Anyway,
some authors are inclined to put some graph tasks in other chapters of their books. One
example, which was mentioned above, was classifying MST task in (Brassard and Brat-
ley, 1996). The book is considering the algorithm of Prim and the algorithm of Kruskal
for finding MST as greedy.

Such classification has a very serious reason. In the cyclic matroid 3 of a graph the
spanning trees, and only they, are maximal independent sets. As it is well known from
the theory, greedy algorithms that search a maximal independent set of a matroid with
some optimal property always find the optimum. Following such logic, the algorithm of
Dijkstra for the task Single-source shortest path is also greedy. Its goal is also a maxi-
mal independent set of the cyclic matroid of the graph (i.e., rooted tree) with additional
optimum property – to be a tree of the shortest paths from the source.

Let us mention some other examples. In (Keleved�iev, 2001), which is a short
introduction to Dynamic Programming (DP), the algorithm of Dijkstra for finding the
shortest path was considered as an example for applying the DP approach and there is a
reason for this too. Dijkstra’s algorithm is maintaining a table of vertices for which the
shortest path from the origin is found (i.e., of sub-tasks solved to the moment). Solving
the task for the remaining vertices is reduced (by relaxation steps) to already solved sub-
tasks.

As another example let us consider the exceptional book (Kir�hin i Okulov,
2007), which collects statements and solutions of tasks from the first eighteen IOI. The
above mentioned task from the first IOI, that by our classification is a typical BFS task,
is classified in the book as a task on a sequence. With the same success authors could
classify it as Exhaustive search. In the way, as exhaustive search authors classified, for
example, both the task for first day of IOI’1991 (Hamilton path) and the task “Camelot”
from second day of IOI’1998, which we prefer to classify as Breadth-first search. Differ-
ent classifications of tasks on graphs give us different points of view to the ways the task
could be solved.

3For short introduction to Theory of Matroids see, for example, (Welsh, 1976).

Tasks on Graphs 101

3.4. Graphs in the Proposed IOI Syllabus

In (Verhoeff et al., 2006) a proposal for a Syllabus of IOI was published. It is interesting
to see the place of the specified above topics in the Syllabus. Briefly, the authors explicitly
suggest excluding from the topics of IOI matching in bipartite graphs and flows in net-
works. And more, the Syllabus does not mention at all (and so exclude implicitly) games
of type Nim (and related) in graphs. All other topics are covered in one or another form.

We would not like to guess the reasons of authors to exclude (explicitly or implicitly)
these specific topics – general reasons for excluding topics from the Syllabus are given
in the mentioned paper. We would like only to stress that tasks from excluded classes are
proposed in national olympiads and could appear in task sets of future IOIs too, because
the Syllabus of IOI has to be instructive, rather then restrictive. Discussion of this topic
and especially attempts to exclude some topics from the Syllabus of IOI is going beyond
the scope of this paper but put in front of the community very serious question: what kind
of mathematical knowledge we have to give to the new generation of mathematicians –
the computer programmers?

4. Tasks on Graphs in the Bulgarian Programming Contests

To conclude this paper we would like to consider the place of tasks on graphs in Bulga-
rian programming contests. For this purpose we checked large amount of tasks from all
Bulgarian programming contests from the last 10 years published in (Infoman, 2008). A
set of 85 tasks was identified and each task was classified in one of the classes that we
specified in previous section. Results are given in Table 1. This will help us to realize
which classes of tasks are most used in programming contests.

The tasks of each class were additionally classified by the age group for which they
were proposed. This will help us to realize when the tasks of a specific class appear for
the first time in competitions and which the preferred tasks for each age group are. The
definitions of age groups in Bulgarian programming contest changed over the years (see
(Manev et al., 2007)) so we are using the following average definition: group C – 14–15
years; group B – 16–17 years; group A – 18–19 years. When a task was given during a
contest for selection of Bulgarian national team, it was classified in group A.

From Table 1 it is obvious that the most preferable class of tasks in Bulgarian pro-
gramming contests is Shortest path for graphs with cost function on edges or on edges
and vertices. From the two cases – single-source and all-sources – the first dominates (19
versus 6 tasks). Tasks with classical formulation (solvable with algorithm of Dijkstra or
algorithm of Floyd-Warshal) are very few – the two tasks for group C and two of the tasks
for group B.

The usual way to escape classical formulation is to define the graph implicitly or to put
some additional obstacles (or optimization criteria) on vertices and/or links. Sometime the
shortest path task is combined with some task from different domain. As an example of
such combination let us mention the following task.

102 K. Manev

Table 1

Tasks on graph from the Bulgarian programming contests for last 10 years

Age group
Class of tasks Number of tasks

C B A

Breadth first search and related (including connectivity checking,
identifying connected components, shortest path in graphs without cost
function, etc.)

15 6 3 6

Depth first search and related (including topological sorting + some
optimization, strongly connected components, etc.). Remark. Tasks
solvable both by BFS and DFS are classified in the previous group.

15 2 4 9

Euler traversals 3 1 2

Minimum spanning tree 2 2

Shortest path (both single-source and all-sources) and related 25 2 7 16

Matching and flows in networks 6 2 4

Games in graph (of type Nim) 2 1 1

Exhaustive search 15 1 2 12

Difficult to classify 2 2

Task 8 (Winter tournament 2000, group A) (Infoman, 2008). Vertices V of a graph
are points of the Euclidean plane and edges are line segments linking some of the vertices.
Let C ⊆ V are the vertices of the graph from the convex hull of V . For each vertex v of
V find the closest to v vertex of C.

It is not unexpected that the second place is shared by the BFS and DFS. Because tasks
solvable both by BFS and DFS (i.e., connectivity, accessibility, etc.) are classified only
in BFS, it is possible to say that, in Bulgarian national contests, the couple BFS&DFS
is even more popular than Shortest path. Something more, exploring a graph in depth is,
or may be, the first task on graphs that young programmers have to solve. This is easy
to explain – with a recursive implementation of DFS we could escape introducing the
abstract data type stack. Objectively the BFS had to be easier to understand in age 14–15
but it will need introduction of the abstract data type queue.

Tasks for BFS and DFS in which the graphs are explicitly given are very rare. Usually
the graph is extracted from mazes of squares, spaces of situations with an operation for
transforming one situation in another (like the task from the first IOI), some relation (for
example, the interval [a, b] is included in the interval [c, d]), etc. The most frequently used
task that is solvable by DFS is longest course in a dag.

The fourth most popular category in Bulgarian national programming contests is Ex-
haustive search. It is obvious that in the process of creating of tasks it is impossible to
escape the numerous NP -complete tasks of Graph Theory. Especially because there are
many situations from the real life, which are modeled as NP -complete tasks (traveling

Tasks on Graphs 103

salesmen, splitting group of people in cliques, etc.). It seems normal that the topics rec-
ommended for excluding in the Syllabus of IOI (matching, flows and games of type Nim)
are rare. But it is strange that the tasks of the categories Euler traversals and Minimal
spanning tree are very rare. We have not reasonable explanation of this fact.

We did not succeed to classify only 2 of considered tasks. One of them – Lowest
common ancestor in a rooted tree is a popular tasks, but a specific approach for solving it
is necessary. We would like to present here the second of unclassified tasks.

Task 9 (Autumn tournament, 2005) (Infoman, 2008). A set V of vertices and the
positive integers d(v, w) for each v, w ∈ V, v �= w are given. Find a graph G(V, E) with
minimal number of edges and a positive integer length of each edge in such way that the
shortest path for each couple of vertices v, w ∈ V is equal to the given d(v, w).

5. Conclusions

Graph structures are an important origin of tasks for olympiads in informatics. They
are modeling real life situations and so the tasks become more natural and easy for un-
derstanding. Graphs are not included in classical mathematical school curriculum but
most of the notions and concepts are understandable by relatively young students. As it
was mentioned, tasks on graphs appear in Bulgarian national contests for student aged
14–15 years. So teaching of graph concepts and algorithms really starts at the age of
12–13 years.

The classification of tasks on graphs, proposed in this paper, is one of many possible.
It could be discussed and ameliorated. It is possible a classification of tasks on graphs to
be based on another principles. But some classification of tasks on graphs is necessary
for each team of teachers that is coaching contestants in programming. On the base of
the proposed classification we could conclude that in the “Bulgarian model” of teaching
graphs concepts and algorithms we are starting with BFS and DFS on age 14–15 years.
At the age of 16–17 years shortest path tasks are included in the training process. At the
age of 18–19, beside algorithmically hard tasks, solvable by different kind of exhaustive
search, some specific topics, like Matching in bipartite graphs, Flows in networks and
Games of type Nim, also appear in the sets of contests’ tasks.

Classification of tasks together with analysis of results during the contests could help
us to better organize both the training process and the contests (national and local) – to
identify kinds of tasks that are not appropriate for some age group, to identify kinds of
tasks that are included in the tasks sets more or less frequently than usual, etc.

We would like to thanks numerous authors of task on graphs for Bulgarian program-
ming contests as well as all Bulgarian contestants for their work, which made this research
possible.

References

Aho, A., Hopcroft, J. and Ulman J. (1978). Data Strucures and Algorithms. Addison-Wesley.
Brassard, G. and Bratley, P. (1996). Fundamentals of Algorithmics. Prentice Hall.

104 K. Manev

Christophides, N. (1975). Graph Theory. An Algorithmic Approach. Academic Pres.
Cormen, T.H., Leiserson, Ch.E. and Rivest R. L. (1990). Introduction to Algorithms, Second Edition. The MIT

Press.
Gondran, M. and Minoux, M. (1984) Graphs and Algorithms. John Wiley & Sons.
Harary, F. (1969). Graph Theory. Addison-Wesley Publishing Company.
Infoman (2008). Bulgarian portal for competitive programming.

http://infoman.musala.com (visited in February2008)
Kenderov, P. and Maneva, N. (Eds.) (1989). Inernatonal Olympiad in Informatics. Sofia.
Manev, K., Kelevedjiev, E. and Kapralov, S. (2007). Programming contests for school students in Bulgaria.

Olympiads in Informatics, 1, 112–123.
Keleved�iev, E. (2001). Dinamiqno programirane. Anubis, Sofi�.
Kir�hin, V.M. i Okulov, S.M. (2007). Metodika rexeni� zadaq po informatike.

Me�dunarodnye olimpiady. BINOM, Moskva.
Nakov, Pr. i Dobrikov, P. (2003). Programirane = + + Algoritmi. Top Team Co, Sofi�.
Reingold, E.M., Nivergelt, J. and Deo, N. (1977). Combinatorial Algorithms. Theory and Practice. Prentice

Hall.
Sedgewick, R. (1990). Algorithms in C. Addison-Wesley.
Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A Proposal for an IOI Syllabus. Teaching Mathe-

matics and Computer Science, VI(I), 193–216.
Welsh, D.J.A. (1976). Matroid Theory. Academic Press.

K. Manev is an associate professor in discrete mathematics and algo-
rithms at Sofa University, Bulgaria. He is a member of the Bulgarian
National Commission for Olympiads in Informatics since 1982 and was
a president of the commission (1998–2002). He was a member of the
organizing team of first (1989) and second (1990) IOI, president of the
SC of Balkan OI’1995 and 2004, leader of the Bulgarian national team
for

IOI’1998, 1999, 2000 and 2005 and BOI’1994, 1996, 1997, 1999 and 2000. In 2007
he was a leader of Bulgarian team for First Junior Balkan OI. From 2000 to 2003 he
was an elected member of IC of IOI. In 2005 he was included again in IC of IOI as
a representative person of the host country of IOI’2009. He is author of more than 30
scientific papers, 1 university textbook and 9 textbooks for secondary schools.

Olympiads in Informatics, 2008, Vol. 2, 105–114 105
© 2008 Institute of Mathematics and Informatics, Vilnius

Challenges in Running a Computer Olympiad in
South Africa

Bruce MERRY
ARM Ltd
110 Fulbourn Road, Cambridge, CB1 9NJ, England
e-mail: bmerry@gmail.com

Marco GALLOTTA, Carl HULTQUIST
Department of Computer Science, University of Cape Town
Private Bag, Rondebosch 7701, Cape Town, South Africa
e-mail: marco@gallotta.co.za, chultquist@gmail.com

Abstract. Information and Communication Technology (ICT) in South Africa lags behind that of
the developed world, which poses challenges in running the South African Computer Olympiad
(SACO). We present the three-round structure of the SACO as it is run today, focusing on the chal-
lenges it faces and the choices we have made to overcome them. We also include a few statistics and
some historical background to the Olympiad, and sample questions may be found in the appendix.

Key words: digital divide, olympiad in informatics, problem solving, South Africa, SACO.

1. Introduction

For historical reasons, the level of ICT infrastructure in South African schools spans a
wide range. At schools in affluent suburbs, computers are available to students, Internet
access is common, and most students can take optional classes in computer studies (ei-
ther at their own school or a nearby centre). On the other hand, poorer schools lack the
most basic of facilities, and students have no access to computers or the Internet. This is
sometimes referred to as the digital divide.

This makes organising a representative computer olympiad challenging. We would
like to involve as many students as possible, to foster interest in computer science and
computer programming amongst talented students. But how can one run a computer
olympiad for students with no access to computers? South Africa is larger than most Eu-
ropean countries, so gathering students in one place is neither practical nor cost-effective.
And even if this barrier can be overcome, reliable Internet access is even less common
than computers, so coordinating and marking is a further challenge.

At the same time, South Africa takes part in the International Olympiad in Informatics
(IOI), and we need a mechanism to select teams. We thus need to run a contest of com-
parable standard in order to select and train a team to represent South Africa at the IOI.

106 B. Merry, M. Gallotta, C. Hultquist

Today, the South African Computer Olympiad (SACO) features three rounds, de-
scribed in detail in the following sections. This is followed by some statistics showing
correlations of scores between rounds.

2. First Round

The first round is aimed at involving as many students as possible. It is a pen-and-paper
round, similar to a mathematics olympiad, but with more focus on logic and program-
ming. The question paper is mailed out to schools (via postal service, not e-mail) in
advance, and teachers at the schools administer and mark the submissions. Answers are
designed to be objective (often multiple choice or a number) rather than subjective (for
example, an essay), so that teachers do not require any computer knowledge.

The round is offered in two divisions, junior and senior. The senior division is aimed to
students in grades 10–12 (roughly 15–18 years old), while the junior division is restricted
to students in grade 9 and lower. In the South African education system, subject choices
are made when entering grade 10, so schools and students can use the results of the
junior division to guide subject choices, while the senior division is helpful in making
career choices.

The same paper is used for both divisions in this round and they are marked in the
same way. The divisions are only distinguished when the students are ranked against one
another. This is because having separate papers every year would add more difficulty in
setting them, and in getting the teachers to photocopy and administer them. The paper
is made to be like an aptitude test and the results are therefore valid for a range of ages
– one just expects less from the average junior. Since a single paper is used for a wide
age distribution and such a large variation in skill level within a division, the aim is to
broaden the difficulty of the questions as much as possible.

Trying to gather and collate all the results from the hundreds of schools taking part
would be an enormous task. Instead, certificates for the top three seniors and top three
juniors are sent to each school, and results are not further compared. With enormous dif-
ferences in education standards between advantaged and disadvantaged schools, a student
who obtains 50% in a rural disadvantaged school probably has more potential than one
who obtains 80% in an affluent urban school. The ranking within schools recognises this
issue.

This format was first introduced in 2003, where it attracted 11 123 participants (South
African Computer Olympiad, 2007). The junior division was added in 2006, and partici-
pation immediately increased to 31 926. In 2007, participation was 33 893.

3. Second Round

The second round of the SACO requires a computer. It is open to anyone, regardless of
participation in the first round – this removes the need to ensure correct and consistent
marking of the first round between schools.

Challenges in Running a Computer Olympiad in South Africa 107

The style of the problems is very loosely similar to the IOI, in that problems are algo-
rithmic and intended to reach a specific answer, rather than testing the ability to build a
user interface, database or other type of system. As with the first round, the objective na-
ture of the answers makes it easier for teachers who have no experience in programming
to mark solutions.

The input test data are included in the problem description, and students are required
to submit both their source code and printouts of test runs on those test cases. The ad-
vantage of known data is that minimal work is required by teachers marking the paper,
in that they do not need to compile or run submissions. An IOI-style automatic marking
system is infeasible, as it would require Internet access, and would also cause difficulties
for students not used to dealing with strict input and output formats or issues arising from
differences between their local setup and the marking server. The main disadvantage of
known data is that we usually have at least one test case that can be solved by hand, and
some students tweak their programs until the desired answer is obtained without regard
for the underlying bugs in their programs. Some students go further and simply hard-code
answers into their code.

Because the results of the second round are used to select participants for the third
round, the papers are re-marked centrally. Rather than re-mark all papers, schools are
asked to send in their best result, and only asked for their second-best result when it is
possible that the school may have two participants in the third round. Results are sent
by postal service, and include the printouts of source code and test runs. The bulk of
the points are awarded for producing correct output to the specified test cases. A small
number of points are awarded for programming style, largely as a mechanism to break
ties, but also to penalise solutions that have been written to solve only the test cases
specified in the question.

An unfortunate consequence of using the postal service to gather results is that many
students and teachers fail to follow the instructions, and by the time this is discovered it
is too late to do anything about it. It is quite common to receive solutions that are missing
either the source code or the sample run printouts, and these submissions are regrettably
discarded.

As with the first round, a junior division, called Start, is offered to students in grade 10
and below. The change of age groups from the first round is due to programming being
introduced in the second round. Schools do not teach any programming skills before
grade 10 (and very few in grade 10). Trying to have a junior division limited to grades 9
and below would result in very few entries.

These students participate for enjoyment and experience, and are not eligible for the
third round. Certificates are also sent to schools for the top three participants in each di-
vision. Unlike the first round, separate papers are set for the juniors and seniors, although
some questions are shared between the divisions to reduce the amount of work required
in problem-setting.

The second round dates back to 1987, when 1 750 students participated, with a similar
format to today (although it was the first round until 2003, when the current first-round
format was introduced). Perhaps surprisingly, participation has not grown steadily, but

108 B. Merry, M. Gallotta, C. Hultquist

Fig. 1. SACO Second Round participation.

has varied considerably over time. The peak of 4 994 registrants occurred in 1997, when
South Africa hosted the IOI, after which participation decreased. In 2003 the pen-and-
paper first round was introduced, which reduced participation in the second round from
3 056 to 2 409. The junior division, introduced in 2006, has proved popular, with partici-
pation increasing to 3 873 that year. Fig. 1 shows participation in the second round since
its inception.

4. Third Round

The best contestants from the second round are invited to participate in the third and final
round of the SACO. The exact number of participants varies from year to year, with the
aim of using a natural cut-off in the scores rather than forcing ties to be broken. Typically,
15 to 20 contestants are invited, but this number varies depending on funding.

The final round is an on-site event, hosted over the last ten years at the University
of Cape Town (UCT). Students from outside Cape Town are provided with flights and
accommodation, so cost does not prevent anyone from taking part in the final round. As
most former IOI participants in South Africa carry on to study at UCT, there is never a
shortage of on-site judging staff.

As the final round contains problems that are at a level far greater than the students en-
counter at school, they are sent training material prior to the final round to help them pre-
pare. This includes printed copies of previous final round papers and pointers to various
online resources. Due to participants being spread across the country, personal training
cannot be provided and they therefore often resort to self-training.

The competition format of the final round follows that of the IOI quite closely, and
new trends in task descriptions, types, compilers and so on are quickly adopted. As with
the IOI, the contest consists of two days, each with a five hour contest featuring three

Challenges in Running a Computer Olympiad in South Africa 109

problems, and with a similar automated online grading system. While the problems are
similar in style to the IOI, they are of slightly lower difficulty so that all the contestants
are able to at least attempt them.

The only major technical difference from the IOI is in the languages offered: the IOI-
standard languages of C, C++ and Pascal are available, but Java and more recently Python
are also provided. Java is the main language taught in South African schools; Python was
added due to the backing of a sponsor that wished to grow the language in South Africa,
and it has proven extremely popular as it is easy to learn and offers powerful features not
easily accessible in Java. In fact, although the top six Python users in the second round
are guaranteed a place in the final (so that six Python prizes can be awarded – see below),
these top six have always done well enough to earn an invitation without this provision.

We have found that although Java programs are usually somewhat slower than equiv-
alent C programs (a frequent objection whenever a proposal is made to introduce Java
to the IOI), the speed is sufficiently comparable that we can use the same time limits for
Java as the other languages. Python, on the other hand, is a scripting language and is 1–2
orders of magnitude slower than the other languages. We have thus implemented different
time limits for Python. The ratio of time limits between Python and other languages is
reviewed each year based on the performance of reference solutions. In the 2007 SACO,
the ratio used was 10.

At the IOI, the afternoons after the contests are free time for the contestants to review
their scores and make appeals. At the SACO, this time is somewhat more structured.
The judges lead a discussion of proposed solution methods (often leading out of more
informal discussion during the lunch break), and after the first day of competition there
is commonly some training on general topics.

The SACO offers prizes, and winners are often offered scholarships and bursaries, so
the judging is as strict and impartial as the IOI, with no opportunity to “just fix one bug”
or “just correct the file name”. Unfortunately, this also limits the degree to which it can
be used as a training opportunity, because we are unable to help with programming ques-
tions during the contest, and also cannot provide one-on-one help beforehand. Since the
introduction of junior divisions into the earlier rounds, we have also had a semi-official
junior division of the final round, to which a few (around six) top-performing juniors from
the second round are invited. As this is a for-fun event with no cash prizes, the judges are
free to provide hints and advice during the contest, and this forms a valuable learning ex-
perience for the contestants. We believe this approach has been successful, with several
junior contestants returning as regular final-round contestants in later years.

Table 1 provides statistics on the language usage at the final round over the past. Be-
fore Python was introduced, the majority of students used Pascal and Java, the languages
taught at schools. The gradual increase in Java usage corresponds to the increased num-
ber of schools moving from Pascal to Java as a teaching language. The small number of
C++ users are typically former IOI participants who were required to learn either C++ or
Pascal for the IOI.

The sudden shift to Python upon its introduction in 2005 is immediately evident from
the data. This is mostly due to the sponsorship of cash prizes for the top Python users,
which are significantly larger than the standard prizes.

110 B. Merry, M. Gallotta, C. Hultquist

Table 1

Language distribution in the third round, 2002–2007

C/C++ Pascal Java Python

2002 0 (0%) 8 (80%) 2 (20%)

2003 3 (25%) 6 (50%) 3 (25%)

2004 3 (25%) 3 (25%) 6 (50%)

2005 0 (0%) 5 (21%) 4 (17%) 15 (63%)

2006 0 (0%) 0 (0%) 3 (20%) 12 (80%)

2007 0 (0%) 1 (5%) 6 (29%) 14 (67%)

5. Statistics

We have collected a limited set of data from the 2007 contest, consisting of the scores for
student whose second-round papers were centrally graded. Since this is only done where
there is a chance that a paper is within the top hundred schools (for example, submissions
that only attempted one question are not graded), this is not a statistically random sample.
Nevertheless, some interesting results can be obtained from this data.

Fig. 2 shows a scatter-plot of scores in rounds 1 and 2, for seniors in round 2. It
should be noted that of the 126 students for whom data was captured, only 76 entered
the first round, and only those results are shown in the figure (the reason for this is not
known, but some students with the ability to do well in the second round may not con-
sider the first round sufficiently challenging to interest them). The triangular shape of the
figure is interesting: it suggests a high score in the first round indicates a capability with
problem-solving, but that this not does always translate into the ability to implement so-
lutions. Many students in South Africa do not have access to a programming course at
high school, and potentially talent is being wasted due to lack of education.

We also computed the correlation of the scores between these rounds. The Pearson
product-moment correlation coefficient was 0.369. Under the assumption of a normal
distribution, this would be highly statistically significant, but this is not necessarily a
valid assumption as capturing results only for top students will skew the distribution. The
Kendall tau (Kendall, 1938) value (a non-parametric measure of correlation) is 0.245, and
this is also highly statistically significant (p = 0.0024).

Fig. 3 shows the same comparison between the second and third rounds. Here the data
is complete, as we have second and third round results for all 22 participants in the third
round. The graph suggests that a very strong performance in the second round is a good
indicator of a strong performance in the third round, but that a weaker performance in the
second round is not necessarily indicative of performance in the third round.

The Pearson’s product-moment correlation coefficient in this case is 0.54, and is
highly statistically significant (p < 0.01), although again this may not be statistically
valid as the second round performances will not be normally distributed. The Kendall tau
value is 0.31 and the p-value is roughly 0.05; R (R Development Core Team, 2007) warns
that it cannot compute an exact value when there are ties.

Challenges in Running a Computer Olympiad in South Africa 111

Fig. 2. Scores in round 2 against round 1. Fig. 3. Scores in round 3 against round 2.

6. Conclusions

In spite of the limited ICT infrastructure in South Africa and South African schools, we
are able to run a large and successful computer olympiad that hopefully encourages stu-
dents to pursue careers in computing. This is achieved by limiting the use of technology
in each round to what is generally available. The first round requires no computer, and
so it is accessible to all students even though few schools have computers. Our statisti-
cal analysis also shows that the first round has provided a more accessible medium for
students with strong problem-solving abilities, who have not yet developed the skills to
master programmatic problem-solving.

Of course, a programming contest should not be run completely without computers,
and they are required for the second round. However, we use printouts rather than in-
ternet access for submission, and attempt to keep marking as simple as possible so that
participation is possible even when there is no trained computer studies teacher at the
school. We can also observe from Fig. 2 that students who perform well in the second
round, have similarly strong performances in the first round – indicating overall strong
problem-solving abilities.

By the final round, we can provide an experience similar to the IOI, as the small
number of contestants affords us the ability to bring them all to a single site and use a
web interface on the local network. Fig. 3 shows the value of this round in selecting an
IOI team: while there is some correlation between second- and third-round performances,
many of the finalists had similar scores in the second round (around 60), but could be
separated by the more challenging conditions of the final.

112 B. Merry, M. Gallotta, C. Hultquist

7. Appendix: Sample Problems

7.1. First Round

The following are samples of easy, medium and difficult problems from the 2006
Olympiad:

1. Imagine a country called SACO that uses 5c and 7c coins. Which of the following
amounts cannot be paid using only 5c and 7c coins?
1. 27
2. 26
3. 24
4. 23

2. Sally (S) wants to go home (H). She can only move up or right one square each
time. She is not allowed to go through black squares. How many paths can she pick
from to go home?

3. A finite-state machine (FSM) is a . . . (explanation of an FSM follows). What words
does the following FSM recognise?

7.2. Second Round

The following is a sample question taken from the 2007 Olympiad.
Description
Strings are just a series of characters “strung” or joined together. Substrings are strings

that are, in fact, just a part of a larger string. One might, for various reasons, wish to find

Challenges in Running a Computer Olympiad in South Africa 113

if a string is merely a substring of another string, sometimes disregarding such things as
case (UPPER and lower) or punctuation.

Task
Your task is to write a program that finds and prints all occurrences of a word (sub-

string) within a piece of text. This word may be hidden, it may contain spaces or punctua-
tion, and it might appear with different capitalization. The program must accept 2 strings,
the first being the main string, and the second the substring that is to be searched for in
the main string. If no substrings are found, “No strings found” must be printed.

Constraints
The length of each string will be < 255 characters.
Sample Run
Input
It’s behind the intercom. Put erasers to one side computer

Output
com. Put er

Test your program with
This suit is black!!

not

“You thought your secrets were safe. You were wrong.” - Hackers

gh

Donald likes Mall shops where he and his friends discuss

idealism all day long.

Small

7.3. Third Round

Third round questions are typical of the IOI and similar contests, so we do not include
any samples here.

References

South African Computer Olympiad (2007). History and Statistics – South African Computer Olympiad. Re-
trieved 9 March 2008 from http://www.olympiad.org.za/history.htm

R Development Core Team (2007). R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria. http://www.R-project.org

Kendall, M. (1938). A new measure of rank correlation. Biometrika, 30, 81–89.

114 B. Merry, M. Gallotta, C. Hultquist

B. Merry took part in the SACO from 1995 to 2000. Since then he
has been involved in running the contest, as well as South Africa’s IOI
training program. He obtained his PhD in computer science from the
University of Cape Town (UCT) and is now working as a software en-
gineer at ARM.

M. Gallotta is the deputy coach of the SA IOI team. After participating
in the IOI in 2004, Marco is currently in charge of task selection and
the technical side of running the SACO, as well as being the coach of
the ACM ICPC team at UCT. Having recently obtained a BSc (Hons)
in computer science at UCT, he is now there temporarily as a research
assistant working on RoboCup.

C. Hultquist has been involved with the SACO since 1995, when he
first started taking part as a contestant. Upon commencing his studies at
UCT, he became involved in the running of the contest and the training
of South Africa’s IOI team. He recently started working for D.E. Shaw
& Co. (U.K.), Ltd, and is also putting the finishing touches to his PhD
in computer science.

Olympiads in Informatics, 2008, Vol. 2, 115–121 115
© 2008 Institute of Mathematics and Informatics, Vilnius

Naturalness in Tasks for Olympiads in Informatics

Pavel S. PANKOV
International University of Kyrgyzstan
A. Sydykov str., 252, Apt. 10, 720001 Bishkek, Kyrgyzstan
e-mail: pps50ster@gmail.com, pps50@rambler.ru

Abstract. There are two main ways to invent tasks for olympiads of a high level: one way is to
invent or choose an effective algorithm and compose a corresponding subject, and another way
is to think out a real situation or task and try to formalize it. The second way is more difficult
because it is multi-stage: the author needs to find some effective algorithm for a task obtained;
if the best algorithm is obvious or the only algorithm seems to be exponential then we need to
rework the formulation, etc. But by our opinion the second way is preferable because it can yield
original tasks with natural, short and elegant formulations and give less advantage to experienced
participants. We shall consider the second way in detail in this paper.

Key words: olympiads in informatics, tasks, naturalness.

1. Natural Ways to Generate Tasks

Diks (2007) mentioned the following phases of the task preparation process: review of
task ideas, formulation, analysis, verification and calibration. This sequence may be ap-
plied not only to informatics but to other sciences as well. Since we have not found
publications on generating of task ideas in informatics, we shall review a way to generate
ideas, basing on actions in spaces which we call natural, and include our own experience.

1.1. Choosing a Space

Firstly, a space is to be chosen. Traditionally, there are used the following types of spaces:

S1) integer numbers (one-dimensional grid);
S2) pairs of integer numbers (plane grid) (often, it is introduced as ”grid of streets in

the host town of the olympiad”);
S3) triples of integer numbers (space grid), but tasks on such space are usually too

difficult for solving;
S4) a graph;
S5) space of solids rolling on a plane (an intermediate between S2 and S3);
S6) ring (a segment with glued ends) with finite number of elements (an intermediate

between S1 and S4).
We propose also:

S7) two connected rings (figure-of-eight);

116 P.S. Pankov

Certainly, S7 is a kind of S4 but the general graph demands a vast description since
”figure-of-eight” is self-explanatory.

S8) integer grids on non-Euclidean spaces, e.g., topological torus, Moebius band
(Weeks, 1985). They are defined not as manifolds in Euclidean space but as ar-
rays with gluing of edges as follow:
Define a rectangular grid
G = {(X, Y)|0 � X � M, 0 � Y � N ; M, N, X, Y are integers}.
A Moebius band is obtained from G when, for all Y = 0, 1, . . . , N , points (0, Y)
and (M, N − Y) are glued. A topological torus is obtained from G when, for all
Y = 0, 1, . . . , N , points (0, Y) and (M, Y) are glued and, for all X = 0, 1, . . . , M ,
points (X, 0) and (X, N) are glued.

Since the 1970s, the topological torus has appeared in computer games naturally: if an
object disappears beyond one of the edges of the screen then it appears from the opposite
edge.

1.2. Choosing Actors

Further, ”actors” (moving, changing objects) are to be chosen. Involving more than one
actor provides a game. But many interesting tasks with more than one actor could be gen-
erated without the idea of being games, for instance, by means of cooperation of actors.
Something more, the organization connected with the proposal of a game-task during an
olympiad in informatics (with preparing auxiliary libraries, describing interfaces, etc.) is
too difficult. But some games can be imitated by means of formulating the aim of a task
as minimax.

Traditionally, we have the following configurations of actors:

A1) a point is used as an actor (a point can move by 1 or ”jump” but the rules of jumping
must be very simple);

A2) some rectangles.
We propose also:

A3) two or three points (or many points with very simple conditions);
A4) moving ”train” of a length of one edge or one arc within S4;
A5) moving ”train” of a given length within S2, S6, S7.

1.3. Choosing Actions

The main action proposed is natural moving. Moving a train along a graph or a grid is a
consecutive passing of its vertices by the head of the train, by its intermediate points (if
its length is greater than 1) and by its tail. Simple cutting, gluing, deleting and adding are
also natural actions.

1.4. Choosing Conditions, Restrictions and Obstacles

Conditions may be natural, i.e., actors must/cannot

Naturalness in Tasks for Olympiads in Informatics 117

C1) coincide;
C2) pass;
C3) overlap;
C4) touch;
C5) be seen;
C6) cross;
C7) cross itself (for a train).

For A3 natural conditions are also:
C8) be near/far each from other.

Another natural kind of restrictions is the following:
C9) an actor can make only a given number of steps.

Traditional type of obstacles is a labyrinth but some points or rectangles can replace
it.

1.5. Aims and Composing of Tasks

The aims may be as following:

G1) to reach/build/compose something in a minimal number of steps;
G2) to build/compose the least/greatest object;
G3) to find the shortest/longest way;
G4) to catch another actor; to escape from another actor in a minimal time; to escape

with minimal number of steps or expenditures for all possible actions of another
actor (i.e., if its behavior is optimal).

By describing the space, the actors with their possible actions, the conditions, restric-
tions and obstacles, and declaring the aim, we obtain a task of optimizing or determining
if the goal is “impossible or possible” and optimizing if the goal is possible.

Even if the author is sure the aim is attainable in all cases of the task, the output
meaning ”impossible” must be provided in the description of all permitted outputs of the
task.

2. Grading System

Certainly, the author must try to find the best algorithm to solve the task. If s/he is sure that
the best algorithm has been found (constructed), s/he is to think about possible weaker
algorithms or even wrong algorithms such as a “greedy” ones, and compose the set of
tests (as it is described in some papers, Diks (2007)). Also, the author must keep in mind
that sometimes the best algorithm cannot be found within a restricted time. For example,
the task in the paper Pankov (2005) has a solution of time complexity O(1) operations
but it is impossible to find it during a few hours.

At the same time, if the author cannot find the best algorithm then the natural tasks
give the following ways of composing the set of tests.

118 P.S. Pankov

2.1. “Evident” Solutions

For some of natural tasks the answer (the best answer) is ”seen” by a human for all initial
data within given restrictions. If the author is certain that the answer is self-evident then
s/he may compose as many sufficiently different cases as necessary covering all aspects
of the task. A good solution (algorithm) by a competitor must solve many of them. In
other words, we propose the hypothesis: if the answers for all initial data are evident for a
human then there exists a good algorithm solving the task on the modern computer during
an appropriate time.

2.2. Open-Ended Tasks

Grading of such tasks is considered, for example (Kemkes, 2007). We will mention some
known procedures.

Compose as many as necessary sufficiently different cases covering all aspects of the
task. Consider them for a task on maximization. Let M be the maximal number of points
for any test.

One of the ways is to write a simple algorithm yielding any boundaries A−, A+ for the
(unknown) result. If A � A− , then a result A obtains 0 points else (M(A−A−)/(A+−
A−) rounded down) points.

Another way is to compare the result with the records of all other contestants. Let
Amax be the best result of all contestants in this test. If A � Amax/2 then a result A

obtains 0 points else (MA/Amax rounded down) points.

3. Examples of Tasks

Some of tasks built by means of above techniques were published in (Pankov, 2000;
2003; 2007). Tasks 1, 2, 3, 4 listed below are generalizations of ones given at olympiads
in informatics of different levels in Kyrgyzstan in 2004–2008.

Task 1. Given a graph, its vertices are ”houses” (less than 7). The Instrument has
counted mice under each of houses at different moments. During all this measuring, each
mouse could pass to another neighbor house only once. Write a program to find the least
possible number of mice.

Example. Six houses form a ring. Input: 9, 0, 1, 0, 0, 2. Output: 10. [Two mice under
the first house and two mice under the sixth one could be the same].

Generation: S4 or S5; A3; C9 (one step); G2.

Task 2. A graph is given. Firstly, the head H and the tail T of a train are in two
neighbor vertices. Write a program finding one of the shortest ways to be passed by the
train (moving forward only) in order to put its head to the primary position of T and its
tail to the primary position of H .

Example. The graph contains vertices A, B, C, D and edges AB, BC, BD, CD.
Firstly, HT = BA. One of the shortest ways for H is B − C − D − B − A.

Naturalness in Tasks for Olympiads in Informatics 119

Generation: S4; A4; G3.

Task 3. Let the streets in the city form a rectangular grid (of given size). The firm
Logic [sponsor] is situated at a given crossing (X, Y). Two friends wish to come to the
firm. Now the first is at the crossing (X1, Y 1), the second is at the crossing (X2, Y 2).
Because of plentiful snowing they wish to minimize the trampled path (the sum of paths
trampled by the first, by the second and by the both going together). Write a program
calculating the minimal length of such path.

Generation: S4; A3; G3.

Task 4. At night, a mouse is anywhere within a long ditch of ”figure-of-eight” of length
2008 meters, the first ring of the ditch is numbered from 0 till 1004 (from the cross to
the cross) and the second ring is numbered from 1004 till 2008 (the points with numbers
0, 1004 and 2008 coincide). The mouse can run quickly but cannot climb out. Two men
with sacks stand at given points X1 and X2. The men’s velocity is 1 meter/second. Write
a program calculating the minimal time to catch the mouse in any case.

Example. Input: X1 = 500, X2 = 504; output: 1006.
Generation: S7; A3; C5; G4.

Task 5. A piece of the upper half-plane is cut by broken (not self-touching) line con-
necting N points: (X[1], Y [1] = 0), (X[2], Y [2] > 0), . . . , (X[N − 1], Y [N − 1] >

0), (X[N], Y [N] = 0). Given (2N − 2) integer numbers X[1], X[2], Y [2], . . . , X[N −
1], Y [N − 1], X[N], write an algorithm detecting whether this piece can be extracted
from the half-plane by means of motion within the plane.

Generation idea: what surfaces can be punched? But “surfaces” are too difficult; after
discussion they were changed to “figures” in S2.

Comment: The author had in mind but did not write ”by means of parallel shift”
because he was sure that the motion to extract could be parallel shift only and including
these words would be a prompting.

This task was given at the III All-USSR olympiad in Informatics, held in Kharkov at
1990, and was solved by pen-and-paper. During the olympiad, all organizers and contes-
tants also thought that the only possible motion was a parallel shift and all algorithms
investigated possibility of such a motion only. But just after the closing ceremony one
of the contestants found an example of ”upper half of a (narrow) crescent” which can be
extracted by rotation!

This task demonstrates both dangers and interest arising while implementing the pro-
posed approach.

4. Proposals and Conclusion

We propose some tasks built within the proposed approach.

Task 6. Given a graph (with less than 10 vertices) and two sets B(initial positions of
wanderers) and E of its vertices, |E| �| B|. Write a program finding the least number of

120 P.S. Pankov

steps to move all wanderers from B to E under the condition that they do not meet each
other.

Generation: S4; A3; C8; G3.
Comment: This is one of the simplest examples of possibilities of A3.

Task 7. Consider a rectangular grid 0 � X � M, 0 � Y � N .

A) For all Y = 0, 1, . . . , N , points (0, Y) and (M, N − Y) are the same; or
B) For all Y = 0, 1, ..., N , points (0, Y) and (M, Y) are the same; for all X =

0, 1, . . . ,M , points (X, 0) and (X, N) are the same.
Write a program calculating

C) the shortest way between two given points (X1, Y 1) and (X2, Y 2); or
D) the shortest cycle connecting three given points (X1, Y 1), (X2, Y 2) and (X3, Y 3)

along the grid.

Generation: S8; G3.
Comment: This is an example of possibilities of S8.

Task 8. The head H of a train of length N is at the point (0, N) and its tail T

is at the point (0, 0). The train can move (forward only) along edges of the rectan-
gular grid (pairs of integer numbers) not self-touching and cannot pass given points
(X1, Y 1), (X2, Y 2), . . . , (XK, Y K). Write a program finding one of the shortest ways
to be passed by the train in order to put H at the point (XH, Y H) and at the same time
to put T at the point (XT, Y T). Main restriction: |XH − XT | + |Y H − Y T | � N .

Generation: S2; A5; C4; G3.

Task 9. Cut a given rectangle with integer sides by two segments parallel to its sides
(to three or four rectangles with integer sides) and

A) compose of these rectangles (without overlapping) a polygon (with all angles right)
of the least possible perimeter; or

B) shift and overlap them to compose a polygon of the least possible area. (Only
parallel shift is permitted).

Generation: S2; A2; C3; G2.

Let us demonstrate composing a task on a given theme. There is the Fig. 1 Regions
that hosted finals of the NOI (15 towns) in the paper Dagiene (2007). Idea: “Two friends
with bicycles decided to make photos of these towns for the illustrated history of the
NOIs”. Choose the endpoints: “Now (in the morning) they are in Vilnius (the capital;
16th town) and must return here”. Further, the array of distances (may be, in hours rather
than kilometers) between some pairs of these 16 points must be given. Also, choose the
time necessary for making photos in every town (for instance, 3 hours). To make the task
more realistic, add: “one can ride or make photos not more 12 hours a day.” Thus, we
obtain the Task 10: “Write a program calculating the minimal number of days for such
enterprise under given conditions”.

Generation: S4; A3; C2; G3.

We hope that tasks built in such a way would yield short and elegant formulation
(Dagiene, 2007), would be interesting for young people and attractive for prospective

Naturalness in Tasks for Olympiads in Informatics 121

sponsors. Also, such tasks give less advantage to experienced participants because they
would not be able to use known algorithms immediately. Analysis of programs written
by contestants within conditions of Subsection 2.1 as it was proposed by Verhoeff (2006)
and is seen from Task 5 would yield interesting and unexpected results.

References

Dagiene, V., Skupiene, J. (2007). Contests in programming: quarter century of Lithuanian experience.
Olympiads in Informatics , 1, 37–49.

Diks, K., Kubica, M., Stencel, K. (2007). Polish olympiads in informatics: 14 years of experience. Olympiads
in Informatics , 1, 50–56.

Kemkes, G., Cormack, G., Munro, I., Vasiga, T. (2007). New task types at the Canadian computing competition.
Olympiads in Informatics , 1, 79–89.

Pankov, P., Acedanski, S., Pawlewicz, J. (2005). Polish flag. In: The 17th International Olympiad in Informatics
(IOI’2005). Tasks and Solutions. Nowy Sacz, 19–23.

Pankov, P.S., Oruskulov, T.R. (2007). Tasks at Kyrgyzstani olympiads in informatics: experience and proposals.
Olympiads in Informatics , 1, 131–140.

Pankov, P.S., Oruskulov, T.R., Miroshnichenko, G.G. (2000). School Olympiads in Informatics (1985–2000
years). Bishkek (in Kyrgyz & Russian).

Pankov, P.S., Oruskulov, T.R., Miroshnichenko, G.G. (2003). Olympiad Tasks in Informatics, Devoted to Kirghiz
Statehood, History of Kyrgyzstan and Great Silk Road. Bishkek (also in Kyrgyz & Russian).

Verhoeff, T. (2006). The IOI is (not) a science olympiad. Informatics in Education, 5(1), 147–159.
Weeks, J.R. (1985). The Shape of Space. Marcel Dekker, Inc., New York.

P.S. Pankov (1950), doctor of physical-math. sciences, prof., corr.
member of Kyrgyzstani National Academy of Sciences (KR NAS), is
the chairman of Jury of Bishkek City OIs since 1985, of Republican
OIs since 1987, the leader of Kyrgyzstani teams at IOIs since 2002.
Graduated from the Kyrgyz State University in 1969, is a main research
worker of Institute of Mathematics of KR NAS, a manager of chair of
the International University of Kyrgyzstan.

Olympiads in Informatics, 2008, Vol. 2, 122–130 122
© 2008 Institute of Mathematics and Informatics, Vilnius

Manual Grading in an Informatics Contest

Wolfgang POHL
Bundeswettbewerb Informatik
Ahrstr. 45, 53175 Bonn, Germany
e-mail: pohl@bwinf.de

Abstract. Bundeswettbewerb Informatik, the central informatics contest in Germany, from which
German IOI participants are chosen, is not an olympiad in informatics (OI) in a strict sense. It has
a wider range of tasks than OIs (including tasks without programs), and it uses a manual grading
approach with grading schemes. Such a scheme is described for two example tasks, one of them an
OI-style task, the other a data modeling task without programs and programming involved. Finally,
some thoughts are added on how manual grading and tasks without programs could be applied
to IOI.
Key words: informatics contest, grading, manual grading.

1. Black-Box Testing in IOI Competitions

In the annual IOI competitions, tasks are of an algorithmic nature. They require the par-
ticipant to write a program that is to constitute a solution of the task. For each task, the
source code of the corresponding program is submitted. The quality of a submission is
determined by checking submitted programs against a defined set of test data. Each test
case is determined by input data and output data. A test case is satisfied by a submission
if the submitted program outputs the test output data when applied to the test input data.
Hence, if a submission achieves full score, it can be said to reproduce the input-output
relation given by the test data – no more, no less. The contestant, who aimed at solving
the given problem, cannot count on a full score to confirm the solution to be perfect.

There has been criticism of black-box testing in general and the IOI grading approach
in particular; see, for instance, Cormack (2006), Forisek (2006), Verhoeff (2006). It can
surely be said that quality and choice of test data influence scores dramatically. There
may be a flaw in submissions that will remain undetected because there are no suitable
test cases, and positive properties of submissions may not be rewarded. In addition, the
black-box testing approach regularly leads to severe punishment of a submission that
implements correct ideas but shows a slight implementation mistake.

Recently approaches were suggested and tried to improve that situation. For instance,
test case bundles were introduced, where each bundle should be designed to cover a spe-
cific desired property of solutions. Thus, test case design ought to become more focused
on qualitative assessment of a submission, in contrast to the more quantitative focus of
mere efficiency testing with test cases of different size.

Manual Grading in an Informatics Contest 123

2. Manual Grading in Bundeswettbewerb Informatik

In Bundeswettbewerb Informatik (short: BWINF, Engl.: Federal Contest in Computer
Science), a manual grading process is used, which focuses on qualitative assessment of
submissions. This contest was described in (Pohl, 2007); by using some of the dimensions
for characterising contests suggested by Pohl (2006), it can be summarised as a task-based
contest with homework rounds, mixed submissions of texts and programs (source code
plus executable), and manual grading.

In the first two rounds of that contest, a submission consists of the following parts:

1. A required part of any submission to a task is a written description of the solution
approach.

2. The majority of the tasks also requires the submission of a program; in this case
the written part should also explain how the solution approach was implemented,
typically by short descriptions of the most important program components.

3. Contestants are demanded to demonstrate the functionality of their submission with
examples. Often, task formulations contain a set of required examples, but contes-
tants are always asked to invent and demonstrate their own examples or test cases.

4. This is complemented by printouts of source code, which may be inspected by
judges if the other parts of the submission leave doubt about how to grade the
submission, or if they want to understand the reason for a mistake, etc.

Grading of BWINF submissions is done on a grading weekend, when all jury mem-
bers meet. The group event allows the jury members to immediately clarify possible open
issues with the jury chairman. Submissions are graded individually and sequentially by
two jury members. The grading itself is organised as follows: For each task, a set of
grading criteria (a grading scheme) is developed by the task committee. This set may
be refined after looking into selected submissions; real submissions may often contain
unexpected flaws or, rarely, unexpected solution approaches.

BWINF uses a “negative grading” scheme: Grading criteria are formulated to discover
errors and weaknesses of submissions. In the first round, for instance, judges start with
a score of 5 points for each task. For each grading criterion that is met, 1 or sometimes
2 points are subtracted. The overall score must not be negative; hence, task scores range
from 0 to 5 points. Participants will be informed about grading results with respect to
the criteria: They receive an individual score sheet that lists all grading criteria and states
which of these were met by their submission and, hence, led to score deductions. In
addition, they receive a text that explains solution approaches and the meaning of the
grading criteria.

3. Example Tasks

In this section, two example tasks will be described, each from a first round of BWINF.
The first could have been an olympiad task as well, it presents a typical algorithmic
problem. The second task is of a completely different style; it does not require a program,
but asks for information and process models.

124 W. Pohl

Fig. 1. A partial view of the constant size flow graph (102 nodes, 350 edges), with nodes for cent values only.

3.1. Example 1: Prämienjagd (Bonus Hunt)

3.1.1. Problem
This task was given in the first round of the 26th BWINF 2007/2008. It could have been
an olympiad task as well, since it presents a typical algorithmic problem. The task can be
summarised as follows:

• Imagine yourself in a supermarket, at the cashier. You have to put your goods on
the belt, one after the other. The supermarket will grant you a bonus for every
neighbouring pair of goods the prices of which sum up to an amount with a decimal
part of 11, 33, 55, 77, or 99 cent. Each good can contribute to only one pair. Given
a list of prices, write a program that computes an order of the prices so that the
number of bonuses generated by matching pairs is maximal. It should output the
pairs.

• Example: For the price list [1.99, 4.13, 6.64, 8.98, 9.91, 1.99], two matching pairs
can be found: (4.13, 8.98) and (6.64, 9.91).

• Test your program with the input data given on the BWINF home page and with
your own meaningful test data.

3.1.2. Solution Approaches
There are many solution approaches that find the best order and hence a maximum set of
pairs. But for larger inputs, only few solutions worked. The given test data contained up
to 500,000 entries. However, it was stated on the home-page that, in order to achieve full
score on this task, it was not necessary to submit a perfect solution which would work for
even the biggest cases.

Manual Grading in an Informatics Contest 125

First, it can be observed that a price with an even cent value can only be combined
with a price with an odd cent value – and vice versa. So one solution would be to compute
a maximum matching in the bipartite graph of prices with odd and even cent values, with
edges between prices that can be paired. But the crucial observation is that only cent
values need to be considered. Then, a flow graph can be constructed with nodes for all
cent values, edges between possible pairing values (like 33 and 44, since they add up
to 77), and source and target nodes, with edges between source and even values, and
between odd values and target, respectively (see Fig. 1). The number of prices with some
specific cent value determines the capacity of the edge between the price node and the
target or source node. Capacities of edges between price nodes can be infinitely high. To
such a graph, a network flow algorithm can be applied to compute the maximum number
of pairs, and this computation takes a time that is independent from the size of input data.
In the end, prices can be paired according to the computed flow.

Interestingly, the problem could be solved with a greedy algorithm, too. Also in the
case of applying a greedy algorithm, constant run time can be achieved by considering
cent values only.

3.1.3. Grading Scheme
For grading this task, judges were given a grading scheme with a list of criteria and
the corresponding score malus (or bonus, in one case). They are listed in Table 1, with
explanations given in italics if necessary. The table also states, how many percent of the
292 submissions to this task met each individual criterion. It is interesting to see that,
also in this case of manual grading, test cases play a crucial role. Both the response to
the given test cases and self-invented test cases were found to be lacking in about half
of submissions. Furthermore, a statement about performance was missing in 37 % of
submissions. It looks like many contestants did not find it necessary to investigate into
the complexity of their solution, neither by theoretical argument nor by running their
solution on given or self-invented test cases – or had the idea that such an investigation
might discover the suboptimalities or errors of their solution.

3.2. Example 2: Supermarkt (Supermarket)

3.2.1. Problem
This task was given in the first round of the 25th BWINF. Its story refers to a supermarket
setting, too – but be assured that, in general, BWINF task settings are taken from a wide
range. The task can be summarised as follows:

In a food market, at the cash-point price labels are scanned. Non-packed
goods like fruit and vegetables will be put on the scales, and the clerk will
manually input a product number. The cashier system should cover the fol-
lowing business cases:

• output a receipt;
• output a list of goods where the amount in store is lower than a given

threshold;

126 W. Pohl

Table 1

Grading Scheme for BWINF-task “Prämienjagd”

Criterion Malus Applied to

submission does not discover that pairings can be limited
not all possible combinations of prices need to be considered; odd-cent-prices
can be paired with even-cent-prices only, and better: a price can be paired with
another one only if their sum has one of the legal cent values.

−1 19%

program too inefficient for other reasons
Even if the approach does not consider too many price combinations, it may still
use to much memory, or fail to solve larger cases for other reasons.

−1 19%

submission does not make a statement about performance
Since it was obvious that performance was a crucial issue in this task, partici-
pants should make at least a rough assessment of the (time) performance of their
solution.

−1 37%

incorrect results
The submitted program is expected to produce correct results. This basic crite-
rion and its score malus should only be applied when incorrect results could not
be attributed to other criteria.

−2 31%

program does not output the pairs themselves −1 2%

submission does not contain outputs to the published test cases −1 46%

self-invented test cases are missing or are not meaningful −1 51%

problem reduced to looking at cent amounts only
A very extraordinary case in a BWINF grading: Submissions that discovered and
presented the crucial idea that led to an optimal performance were rewarded with
a score bonus.

+1 30%

• output the top-seller list of the month, with goods sorted by product
groups;

• output labels with addresses of those clients who used their bonus card
and bought a significant amount of wine recently. The labels shall be
used for a promotional letter.

What data does the system use and how should it be organised? How can (on
that basis) the output jobs be done? What do you think about the last business
case?

That is, this task did not ask for a program. A submission was required to describe
a data model as well as processes based on that data model. In addition, it is a general
BWINF requirement that each submission should present a number of examples sufficient
to illustrate and explain their ideas.

Manual Grading in an Informatics Contest 127

3.2.2. Solution Approaches
The starting point for a data model is the product number. In the task formulation, it is
only mentioned for non-packed goods, but also packed goods should have such a number.
This number is the key to all further information about the products of the supermarket.
Then, the sub-tasks can be solved as follows:

receipt For each product number, we need to know a name and a price. The price is per
pack or per kg (for non-packed goods). For non-packed goods, the price on the
receipt is computed from the price per kg and the weighing result.

shortage list For each product number, we need to know the current amount and the
minimum amount in store. To make the list informative, we would also like to
know whether the product is packed or non-packed; then the shortage list may
contain “pack” or “kg”, resp. The information needed to update the current amount
can be obtained directly from the cashier.

top-seller list This business case requires product groups, so that product numbers need
to be related to product groups. Furthermore, every day for each product number
the amount sold on that day is stored. That is sufficient to compute the sold amount
per month (and might help in cases where you would like to produce top-seller lists
per week-day etc.). From this information and the relationship between product
number and product group, the top-seller list can be generated.

promotion addresses In this case, individual client data are needed. Similar to the pro-
duct number, a client number is introduced. For clients with bonus card, address
data are known and related to the client number. Moreover, for each client and
each product, we store how much the client bought of that product, e.g. since the
last promotional letter concerning that product (there may be smarter solutions, but
this works for our case). For every product group, there is a minimum amount a
client should have bought in order to receive a promotional letter.

An assessment of the last business case should not only consider economical aspects, but
also take a critical position concerning privacy aspects. Of course, promotional letters
must only be sent upon clients’ consent.

3.2.3. Grading Criteria
The grading scheme for this task with its list of criteria is given in Table 2. Again, the
table also states, how many percent of the 218 submissions to this task met each indi-
vidual criterion. Interestingly, the more formal aspects of the task (the data model and
its description) appeared to be less problematic than the assessment of the business case
or the (very basic) difference between packed and non-packed goods. The last grading
criterion helped to detect the lacking interest or awareness of the contestants concerning
privacy issues.

128 W. Pohl

Table 2

Grading Scheme for BWINF-task “Supermarkt”

Criterion Malus Applied to

no difference between packed and non-packed goods
The data model does not make a difference between packed and non-packed
goods. That is a mistake, since non-packed goods are treated differently in many
cases.

−1 35%

lacking data model description
The model should be described using some (semi-)formal notation. The descrip-
tion must identify the key data, how other data can be accessed using key val-
ues, and how separate sets of information (products, product groups, clients)
are linked to each other. Depending on how severely a submission misses these
requirements, judges may subtract 1 or 2 points.

−1 / −2 21%

lacking data model
The data model does not allow to produce (some of the) outputs that were spec-
ified in the business cases. Depending on how severely a submission misses this
requirement, judges may subtract 1 or 2 points.

−1 / −2 28%

no description of output procedures
Not only product and client data, but also procedures operating on that data
are needed to produce the required outputs. Those procedures must be explicitly
described, too.

−1 6%

lacking assessment of last business case
The assessment of the last business is not acceptable if it does not consider pri-
vacy aspects or does not require clients’ consent.

−1 39%

4. New Ideas for IOI?

4.1. Manual Grading

BWINF experience shows that manual grading can be applied successfully in an infor-
matics contest. The requirement to create a list of grading criteria (whether negative,
positive, or both) forces task committees to make their reasoning about the problem and
about the quality of a submission explicit. Such a grading scheme also allows for feedback
to the participants. And it can be applied to a wide range of tasks, for which black-box
testing is impossible.

However, the BWINF approach cannot easily be applied at IOI, because it heavily
relies on the participants explaining their solutions in natural language, and on jury mem-
bers being able to read and understand that solution. But without a suitable mechanism
for (partial) translation of submissions (at least of source code), black-box testing remains
the only choice. Manual grading is possible in international contests, like the example of
the International Mathematics Olympiad shows. In an international contest, a grading
process involves translation work of delegation leaders or even grading work of delega-
tion leaders and is prone to be biased by their interference. For IOI, it would be important
to design a manual grading process which would avoid such bias. For instance, delegation

Manual Grading in an Informatics Contest 129

leaders could be asked to translate only, not to grade. The grading then could be done on
the basis of the translation, of-course double-blind, by leaders of other delegations.

Very interesting suggestions along this line were made by Verhoeff (2006). Verhoeff’s
central proposal is to introduce a “thoroughly prepared and motivated grading scheme,
supported by measurements”. This would follow the example of BWINF, and I fully
support Verhoeff’s argument.

4.2. Tasks without Programs

Here, we are speaking of tasks that would not involve any computer program. This is
different from tasks without programming; e.g. a task that would require contestants to
test and detect the flaws of a given program with their own test cases, would be a task
without programming, but not a task without programs.

For tasks without programs, the formats used in answers to the task’s problem(s)
strongly determines how the task can be handled and submissions can be evaluated. If the
set of possible answers is clearly defined, or the format of a correct answer can be auto-
matically detected, automatic grading is possible. In all cases where the answer set cannot
be clearly defined (like with natural language answers), manual grading is required, and
all above-mentioned problems of manual grading apply.

Furthermore, in tasks without programming, the internationally understood “linguae
francae” of Informatics, the programming languages, disappear. For tasks that involve
proofs concerning properties of more or less mathematical constructs (like graphs), the
usual mathematical notations could be used. For tasks that involve data models (like our
example above), UML or ER-diagrams might help – but should IOI require knowledge
of such notations from its contestants?

My personal opinion is that tasks without programs are possible within IOI. However,
the BWINF task above is not a perfect example. In particular, its grading criteria are fairly
vague and offer jury members too much freedom in grading.

References

Cormack, G. (2006). Random factors in IOI 2005 test case scoring. Informatics in Education, 5(1), 5–14.
Forišek, M. (2006). On the suitability of programming tasks for automated evaluation. Informatics in Education,

5(1), 63–75.
Pohl, W. (2006). Computer science contests for secondary school students: Approaches to classification. Infor-

matics in Education, 5(1), 125–132.
Pohl, W. (2007). Computer science contests in Germany. Olympiads in Informatics, 1, 141–148.
Verhoeff, T. (2006). The IOI is (not) a science olympiad. Informatics in Education, 5(1), 147–159.

130 W. Pohl

W. Pohl was educated in Computer Science, and received a PhD in
1997 from the University of Essen, Germany. For many years, he inves-
tigated the use of Artificial Intelligence techniques for the improvement
of interaction between humans and machines. In 1999, he changed po-
sition and perspective by becoming Executive Director of the German
Federal Contest in Computer Science. Among his responsibilities is to

coach the German IOI team and lead the German IOI delegation. Now, his interest lies in
improving Computer Science contests, establishing new ones, and work on diverse other
projects, everything in order to popularise Computer Science among youth. Hence, he
co-ordinates the German participation in the international contest “Bebras”. From 2003
to 2006, he was elected member of the IOI International Committee, and briefly held the
position of Executive Director of IOI in 2006.

Olympiads in Informatics, 2008, Vol. 2, 131–148 131
© 2008 Institute of Mathematics and Informatics, Vilnius

Competitive Learning in Informatics: The UVa
Online Judge Experience

Miguel A. REVILLA
Applied Mathematics Department, University of Valladolid
Prado de la Magdalena s/n, 47011-Valladolid, Spain
e-mail: revilla@mac.cie.uva.es

Shahriar MANZOOR
Computer Science and Engineering Department, Southeast University
24, Kemal Ataturk Avenue, Dhaka, Bangladesh
e-mail: shahriar_manzoor@yahoo.com

Rujia LIU
Department of Computer Science and Technology, Tsinghua University
Qinghua Yuan, Haidian District, 100084 Beijing, China
e-mail: rujia.liu@gmail.com

Abstract. The UVa Online Judge is probably the oldest and one of the most recognized program-
ming contest training sites for ICPC format contests. It is an automatic judging system where
anyone from around the world (regardless of being a contestant or not) can submit his solution to
the archived problems to check its correctness and improve his programming skill in the process.
Although the judge was initially developed to be used as a trainer site for potential competitors in
the international programming contests (mainly ACM ICPC), we have observed that it is a very
good tool for self-study. In the present paper some facts from the history of the site are given.
Then the paper focus to the nature of self-competitive learning by analyzing the more frequent re-
sponse sequences to the users from the judge along these 10 years. And by doing so we identify the
main differences between the behaviors of the users when they are just training and when they are
competing.

Key words: competitive learning, programming contests, online judge, informatics.

1. Introduction

Programming contests are probably the fastest expanding co-curricular activity related to
computer science. The main reason could be that the new Technologies of Information
and Communication (TIC) allow us to arrange all kind of interactive activities without too
much infrastructure. Of course, the educational processes are an ideal target to use these
tools as they offer multiple options to the teachers as well as to the students. It seems
evident that one of the favourite topics to focus the modern e-learning systems must be
informatics, as it is the base of most of the involved and developing tasks. The fact is
that the programming lovers, whether they are secondary, high-school, or university stu-
dents have a lot of choices to attend to programming contests. For example a university

132 M.A. Revilla, S. Manzoor, R. Liu

student can participate in ACM ICPC, the national contests of his own country, local
programming contest of his university or programming contests arranged by TopCoder
and different online judges like UVa, SPOJ, etc. Moreover, it is an activity that can pro-
vide a method for attracting interest in computer science, as it is accessible to beginning
students.

It’s clear that a programming contest is, by its own definition, a competitive activity,
where there are winners and others (not really losers, in general). Usually it’s an addi-
tional and also co-curricular activity and in that sense they can be seen as a good model
of competitive learning. Moreover, many of the programming contests are team compe-
titions and they involve a lot of collaborative work to prepare them. In fact, the training
process involves several interesting learning strategies that have nothing to do with the
real competition, but with systematic pedagogical methods, which can be very positive
for the student’s formation and maybe neutralize the negative effects that many people
impute to any kind of competitive learning activity.

There exist many online judges on the internet that can play a very important role
here. An online judge is in general a server, which contains descriptions of problems from
different contests, as well as data sets to judge whether a particular solution solves any of
these problems. A user from anywhere in the world can register himself (or herself) with
an online judge for free and solve as many problems as he likes. He can send as many
solutions as he want till receiving satisfactory information, not only about the verdict,
but also about the time that the code takes to run after improving the program and/or
the algorithm used to solve the selected challenge. One of the main distinctive trait of
the online judges is that they allow the users this self-competitive behaviour to learn
informatics, not only algorithms but also programming.

2. A Brief Story of the History of the UVa Online Judge

First of all, let’s remember here the name of the person mainly responsible for the ex-
istence of the University of Valladolid (UVa) Online Judge: Ciriaco García de Celis. He
was a student of informatics when in November of 1995 the first version of the judge
started working a few hours before the first local qualifying contest to select a team of the
UVa for going to compete in the ACM-ICPC South Western European Regional Contest
(SWERC). For more than eight years he was the wizard inside the judge. He, worked
almost alone, designed and implemented the kernel of the judge and he also maintained
the system as well as the successive migrations from one computer to another, from one
version to the other. But maybe the harder work was to fight and win against the many
hackers we have had as normal and habitual users. That initial version (written using
Unix standard sh scripts) was partially rewritten in order to add some improvements to
support a 24-hours judging system, capable of working without the presence of a system
operator. For example, an automatic system needs to be able to detect and skip e-mail
loops.

However, Unix scripts were not powerful enough to support a true reliable judging
system. For example, it was not possible (at least under Linux) to limit the memory used

Competitive Learning in Informatics: The UVa Online Judge Experience 133

by a submitted program when being executed. And the judge architecture was not de-
signed to generate events reporting its status (external utilities showed the internal judge
state by polling it periodically).

For this reason, new judge software was developed. This new judge was able to work
as a 24-hour Online Judge and a programming contest judge. However, it still missed
many components required by a general conception for Contest Judge, as then it matched
almost completely with the ICPC (the granddaddy of the programming competitions,
as far as we know) model both for the problems style and for the contests dynamics and
rules. However, Fig. 1 shows us that a lot of services were already included in the planning
in order to provide to the users a tool to use for learning, while they train for the contests.

After checking the system for a short period of time, when some students in Algorith-
mics at the University of Valladolid were the only allowed users, the UVa Online Judge
started its open period in 1997 with a hundred problems and a little promotion, on a day
of April 1997-04-15 14:31:48 (UTC) is the date of the first submission (it was made by
Ciriaco and was successful, of course). But, any person in the world can get access to it
via the internet for free. The site then began to be more and more known, as programming
contests were becoming more and more popular. For about two years the judge didn’t re-
ally change, except minor bug fixing, or adding three or four new volumes (a volume
is a set of a hundred problems) taken from different web sites, mainly corresponding to
ACM-ICPC regional and final contests.

In November 1999 the University of Valladolid hosted the official SWERC and then
we realized that we must work on the environment of the judge. It’s the first time we were
aware about a bunch of services that we still needed to develop before having a site able
to support the quickly increasing number of users and submissions and to host online
contests. A group of voluntary students collaborated to plan out and then to implement
a lot of new services: an electronic board, a friendly interface, a detailed set of statistics,

Fig. 1. Diagram of the different Online Judge modules. Each module can be located in a different computer,
and are communicated by TCP connections.

134 M.A. Revilla, S. Manzoor, R. Liu

rankings, etc. That team of people was the base of the users’ community of the UVa judge;
they started the big task to analyze every possibility we had to transform our practice and
test site in a real project with plenty of objectives. Their enthusiasm and also many of
their ideas are still present today.

Of course, the most important and urgent work to do was to implement a robust contest
system to be used by the real time contest. After the contest some of the members of that
team continued working to consolidate the tasks already done and to develop the main
goal we had talked about: to have our own regular online contests. As UVa had to arrange
the SWERC in November 2000 also, we decided to do it as fast as possible and by the
month of July, exactly on 2000-07-14 at 14:00:00 (UTC) the first test contest was open
to all the world and 5 hours later finished successfully.

There are many other important dates and facts in the life of the UVa Online Judge.
The main evolutions were due to Fernando Nájera that included in 2002 the use of a SQL
real database to keep all the information ready for the users in real time and the PHP
tools to manage the interface easily and, of course, to Carlos Casas who is quite well
known for all the users as he is still a very active member of the UVa site. A special
mention is deserved for our online contests. Under the management of Shahriar Manzoor
have increased the level of the problems on our site in quantity but especially in quality.
In fact, as of today the set of problems specifically written for our judge are probably
the main asset we have and surely our main pride. Many other people arranged some
high quality online contests from the early stages such as Professor Gordon Cormack
of University of Waterloo, Rujia Liu of Tsinghua University and Md. Kamruzzaman of
BUET (now he is at UCSD).

Fig. 2 shows the classification by languages of the 5899124 programs submitted by
63351 users from about 180 different countries till the date 2007-09-06, 17:19:45 (UTC),

Fig. 2. Robot Judge submissions by Programming Language throught September 2007.

Competitive Learning in Informatics: The UVa Online Judge Experience 135

when after 170 online contests (more or less a half of them arranged by our own team) the
old judge was definitely stopped (UVa Online Judge). Two hours later a completely new
robot restarted working at a new server at the Baylor University, the headquarters of the
ACM-ICPC contest. It has been developed and implemented by Miguel Revilla Jr. and it
incorporates the whole history of these ten years, all the amazing information about this
extraordinary experience. So the UVa Online Judge continues its new journey at the CLI
website (CLI).

3. The Analysis of Statistics

The immense amount of data from users in different parts of the world provides the
opportunity of making lots of analysis and it opens up the possibility of getting some
important results. These results may enable us to find out what aspects of online judging
or the programming contests need to be changed to make it more meaningful, how prac-
tice and experience improves the performance of a contestant and many other interesting
issues. It will also create new openings on which we can continue our study in future. For
example, it will help us to identify the geographic locations where it’s almost impossible
to compete in programming contests and then we can take initiatives for those regions,
and try to extend our internet community to those parts of the world.

Although there is no academic or social bondage between the members of this online
judge community, they are still training in our judge, testing (individually or by groups)
their programming skills, self-competing or arranging contest in our server, discussing on
our board and participating in our Online Contests just to be better programmers and to
learn more complex and new topics. Many of them may not even see each other but still
they are good friends, helping each other out in many occasions. An extreme example
may be that the three authors of this paper have been collaborating since year 2001, but
Miguel and Shahriar first met in 2005 and Shahriar and Rujia also first met in 2005.
And the occasion was the 2005 ACM ICPC World Finals that took place in Shanghai.
Miguel and Shahriar still meet only annually, while they are still waiting for their second
opportunity to meet Rujia Liu.

The main conclusion we have made is that we are managing a tool with a very large
potential not only for training but also for teaching informatics, a merge of competi-
tive and cooperative learning, let’s say a kind of collaborative competition. Moreover, it
can be successful where the conventional systems often fail: to make students curious,
to make them do non-academic works that often seems more interesting or to enhance
their creativity. As everybody can access to these online judges and start practicing with
easy and funny problems, it could be a good way to attract the newcomers (for example,
secondary school students) to the world of programming and to computer sciences in
general. It is very important in a world where many of us including some software giants
have a perception that the young generation is losing interest in computer science.

In subsequent steps, from the perspective of algorithm design, the programming con-
test is a treasure trove. There appear to be numerous ways to solve the same problem. But

136 M.A. Revilla, S. Manzoor, R. Liu

also for software reliability engineers this is the case: there are even more ways to not
solve the problem. Most authors first submission is incorrect. They take some trials to (in
most cases) finally arrive at the correct solution.

Suppose one submits a program in a contest and gets accepted, another contestant sub-
mits a program he gets wrong answer and then he submits again he gets accepted, another
contestant submits a program six times and every time he gets wrong answer. Which one
of these three events is more likely to happen in a programming contest? To find it out
we analyzed all the submissions of UVa site and found out which are the most common
response sequence for a contest. We actually took a method like digraph, trigraph anal-
ysis of a text. First we tried to analyze which submission response is most common for
a problem. And the most frequent response sequences are given in the Tables 1 and 2.
These tables are based on the analysis of the first 4 millions submissions to the UVa till
October 2005, but the amount is enough to be statistically significant.

In fact, the partial analysis we have done later show that the order of popularity is
more or less the same although the number of submissions now is near of seven millions.
Only the number of PE (Presentation Error) verdicts has decreased proportionally as we
have purged the data sets to fix some trivial mistakes.

Table 1

A table for most popular response sequence

Monograph AC WA CE TL PE

Frequency 465516 214187 104952 76806 73526

Digraph WA|WA WA|AC AC|AC CE|CE TL|TL

Frequency 164521 71018 49743 39732 30830

Trigraph WA|WA|WA WA|WA|AC CE|CE|CE TL|TL|TL AC|AC|AC

Frequency 92545 32765 20049 14436 14203

Tetragraph WA|WA|WA|WA WA|WA|WA|AC CE|CE|CE|CE RE|RE|RE|RE TL|TL|TL|TL

Frequency 55504 16518 11566 7947 7474

Table 2

A table for most popular responses ending with an AC

Monograph AC

Frequency 465516

Digraph WA|AC CE|AC TL|AC PE|AC RE|AC

Frequency 71018 18099 10612 9213 8205

Trigraph WA|WA|AC CE|CE|AC TL|TL|AC CE|WA|AC RE|RE|AC

Frequency 32765 4685 3540 3511 2620

Tetragraph WA|WA|WA|AC CE|CE|CE|AC CE|WA|WA|AC TL|TL|TL|AC RE|RE|RE|AC

Frequency 16518 1750 1636 1340 1158

Competitive Learning in Informatics: The UVa Online Judge Experience 137

Many comments can be made based on these tables. But some things are obvious:

a) When individual contestants make a particular type of mistakes for a problem they

tend to make the same mistake again, which encourage the group to try working together

for the contests. Let’s say one more time, competitive and cooperative learning in infor-

matics are not opposite but complementary.

b) We can say that if someone gets five consecutive wrong answers then in the next

submission he is four times more likely to get a wrong answer than an accepted verdict.

That means that after four or five errors, the best is to analyse carefully what happen as,

probably, the mistake is not trivial.

c) It is very important the influence of the kind of mistakes in these sequences. That

is, mainly, because some responses of the judge give us information about the error and

others tell us nothing at all. This is very important in order to improve our system judge

to become a real learning tool, by adding new features.

As of now, we can divide the judge responses into two types: Informed Response and

Uninformed Response. These divisions will help us to propose a combined system to

bring IOI and ICPC closer later on. Informed responses are the responses that allow the

contestants to know whether their program logic is correct or not correct: AC (for AC-

cepted), PE (for Presentation Error) and WA (for Wrong Answer) are such types of re-

sponses. The other three TL (for Time Limit exceeded), RE (for Run-time Error) and CE

(for Compilation Error) are uninformed responses, because it is not known what would

have happened if the program, in case it starts, was allowed to run longer or not crashed.

And, of course, unless we give one test case per file as input it would be impossible to

judge the ‘degree of correctness’ of the submissions that get TL or RE in the present

ICPC system. Including new models of judging, the grading system used at IOI is the

main project we are working on.

Similar statistics could be done about the submissions to the online contests arranged

on our server, but after 135 contests over five years, we saw that the great figures were

very similar. But there are other very interesting details to analyze in the contests. In fact,

whether it is an Online Contest or in the 24 Hour Online Judge the acceptance rate is

around 30%. But this acceptance rate is not so bad when we consider the statistics of

accepted problems only. For example suppose there are eight problems in a contest A,

B, C, D, E, F, G and H. One team solves problem A, B and G and attempts problem C

and D. In this section we will not consider the judge responses for problem C and D for

that team.

Table 3 shows the judge response statistics, but considering only the initial submis-

sions from a team for which they finally got an accepted verdict. It is found that its

probability of getting Accepted in the first submission is 44.16%. The percentage of in-

formed responses is 80.89% and uninformed responses is 18.14%. But more important is

the fact that percentage of informed errors is 36.73% and of uninformed errors is 18.14%.

So their ratio is roughly 2:1.

138 M.A. Revilla, S. Manzoor, R. Liu

Table 3

Judge response statistics for accepted problems/team only

Verdict Percentage
Informed vs uninformed

response
Informed vs uninformed

errors

AC 44.16 Not considered

PE 3.08 80.89% 36.73%

WA 33.65

TL 8.03

RE 3.72 18.14% 18.14%

CE 6.39

Others 0.97 Not considered Not considered

4. How Does Practice Change Things?

The most important part of the analysis of the millions of programs we have received at
the UVa Online Judge is to know our users and try to learn from them as many details
as we need to improve our services. And not only about the demographic distribution,
as we told above, but also about their evolution along the time. We certainly hope that
almost all of them have improved their skills in programming and algorithms, but it’s
interesting to quantify this fact. And, as far as it’s possible, try to get an idea about the
different patterns of the verdicts in function of a user is a newcomer or an expert in the
use of the judge. Of course, there are many details we can’t be sure about most of these
users, we don’t know if they are individuals, a regular team or a variable group. It would
be a tuning process, almost impossible to do, of selection of submissions in order to get
more categorical conclusions.

Table 4 shows the error rate of people with different experience. The first column on
the left actually describes the experience of the user that is being considered. Experience
means the number of problem he has solved in the judge, it does not consider anything

Table 4

Based on all problems

Solve Range AC PE WA TL RE CE

0–49 23.76 4.93 36.13 8.36 8.01 12.24

50–99 33.81 5.57 34.18 7.33 7.54 6.35

100–149 35.08 6.41 33.59 6.70 7.50 5.62

150–199 37.02 4.95 33.01 7.07 6.90 5.70

200–249 37.74 5.01 32.85 7.11 6.83 5.31

250–299 39.90 4.60 32.41 6.89 6.16 5.17

300–349 40.86 4.08 32.56 7.34 5.87 4.63

350–399 42.03 4.30 32.21 6.51 5.97 4.49

400–449 41.96 4.03 32.16 6.86 6.37 4.05

450–499 41.82 3.65 31.50 7.10 5.98 4.68

500+ 42.36 3.53 31.83 8.06 5.42 4.06

Competitive Learning in Informatics: The UVa Online Judge Experience 139

about the time he is associated with the judge. Each of the next six columns actually
shows the rates of six major judge responses in a programming contest. For example the
third row of the table says that the contestants who have solved more than 50 and less
than 100 different problems has 33.81% acceptance rate, the rate for wrong answer is
34.18 and so on.

Table 4 can have some interpretation troubles, because their can be some confusions:
as people solve more problems they have less easy problems to solve (assuming that peo-
ple tend to solve easy problems first). When someone has already solved 400 problems he
has no more easy problems to solve, so his acceptance rate can go down a little. But as he
is more experienced the acceptance rate does not go down but remains similar. In Table 5
and Table 6 we have put the same results but this time separated by the ‘experimental’
difficulty of the problems based on their low or high acceptance rate.

Table 5

Based on problems with low (less than 25%) acceptance rate

Solve Range AC PE WA TL RE CE

0–49 11.09 1.71 41.73 14.62 12.43 11.52

50–99 17.45 2.15 42.48 13.25 12.00 6.88

100–149 18.98 2.69 42.13 11.85 12.44 6.16

150–199 20.29 2.37 41.61 12.47 10.79 6.23

200–249 20.86 2.46 42.17 12.78 10.15 5.77

250–299 23.09 2.37 41.91 12.43 9.19 5.16

300–349 24.24 1.94 42.17 12.46 8.92 5.01

350–399 24.15 2.54 42.99 11.30 9.44 4.92

400–449 25.61 2.33 41.32 11.42 9.51 4.47

450–499 27.21 2.09 38.57 12.36 8.89 5.38

500+ 27.20 1.65 41.04 13.53 7.20 4.24

Table 6

Based on problems with high (more than 50%) acceptance rate

Solve Range AC PE WA TL RE CE

0–49 40.81 6.67 26.37 4.03 4.00 11.79

50–99 53.86 7.47 21.77 2.99 3.37 5.94

100–149 53.97 9.18 21.18 2.51 3.31 5.38

150–199 58.33 7.21 18.66 2.57 3.10 5.33

200–249 59.67 6.66 19.25 2.39 3.02 4.78

250–299 62.30 6.24 18.25 2.29 2.39 4.51

300–349 64.56 6.40 16.42 2.12 2.65 3.92

350–399 64.44 5.01 17.48 2.12 2.44 3.91

400–449 65.17 6.26 17.74 2.23 2.13 2.84

450–499 63.15 5.19 17.50 2.10 2.72 4.68

500+ 67.73 4.31 15.46 2.22 2.33 3.97

140 M.A. Revilla, S. Manzoor, R. Liu

Tables 5 and 6 indicate that with practice the acceptance rate increases a lot, mainly for
the problems with high acceptance rate, and also compilation errors decreases a lot and
quickly for all the three categories. But, surprisingly, wrong answer and TL percentage
does not change that much, even for the group of very expert users. So does this indicate
no matter how experienced you are you can always get wrong answer? Of course, every
person will always have a harder problem to solve, a new programming challenge to face
in order to continuously increase his skills in informatics.

Usually, by ‘programming ability’ people means coding, debugging and testing.
Though, these individual abilities greatly affect cooperative works too (it’s easy to sup-
pose that many of our users work in group, being a team or not). It’s better for the team
members to use the same language and similar coding conventions. In such way, if one
cannot find his bug then one can ask another person to read her/his code. Though pro-
gramming is the very first skill, it needs improving all the time. For example, coding
complex algorithm can only be trained after studying these algorithms.

Most people got started by solving easy problems. Here, by easy problems, we mean
the problems in which you only need to do what you’re asked to do, i.e. a direct imple-
mentation of the problem description. For example, do some statistics, string processing
or simulation. These problems mainly require some coding ability but not any sophisti-
cated algorithm, deeper mathematics or logical insights. When getting started, practice is
much more important than theory. (Practice, practice and practice).

Everyone is encouraged to program as much as he can, as long as enthusiasm is per-
fectly kept. But there is one thing you need to know first: ICPC, IOI and most of the
existing contests concentrate on problem solving and apparently the enjoy of program-
ming comes from solving easy problems in which you only need to do what you are asked
to do, i.e. a direct implementation of the problem description. But keep the limits. Trying
to solve more problems is good, but the quantity is not the most important thing. When
you’ve managed to solve 50 easier problems somewhere, it’s better to seek for more chal-
lenges. In other word it is better to solve many problems of various kinds and difficulty.
In real contests and online judges, there are a large number of problems that require a few
lines of code but more maths and algorithmic thought. So when you are challenged with
problems that are more interesting and difficult, you will find it necessary to think about
something serious: becoming a great contestant.

5. The EduJudge European Project

The users of Online-Judge are demanding a greater pedagogic character for this tool (at
least one request per week is sent to the UVA On-line Judge creator via email, also some
requests are available in the forum http://online-judge.uva.es/board/).
For example, teachers would like to use it as one more activity for their official courses.
This requires the possibility of managing courses and students and an extension of the
current functionalities of the Judge so that it can provide gradual evaluation or different
difficulty levels of problems. On the other hand, the set of problems is continuously being

Competitive Learning in Informatics: The UVa Online Judge Experience 141

incremented but it is necessary to give the problems an adequate and common structure,
adding metadata and creating a search engine so that the problems are more accessible
for the community of teachers.

It is easy to understand that these sets of achievements are only possible within the
frame of a collaborative project involving experts from several countries and different
areas of knowledge. This is the origin of the EduJudge project. EduJudge is an innovative
system based on ICT that can be incorporated into the learning processes in the mathemat-
ical and programming field and is addressed to higher education students and secondary
education students. It has been managed and coordinated by CEDETEL (Centre for the
Development of Telecommunications in Castilla y León), a non-profit Technology Centre
located in Spain. The project has been funded with support from the European Commis-
sion into the frame of the Lifelong Learning Programme of the European Union. Other
than the University of Valladolid, there are three more partners from different European
countries: the University of Porto (Portugal), the KTH Royal Institute of Technology
(Stockholm, Sweden) and the Institute of Mathematics and Informatics (Vilnius, Lithua-
nia).

The main goal of the project is to give a greater pedagogic character to the UVA On-
line Judge, and adapt it to an effective educational environment for higher and secondary
education. We want to give the Online Judge a pedagogical character by means of a re-
design, improvement of contents and its integration into an e-learning platform. All these
will contribute to the development of quality lifelong learning, and also to promote in-
novation providing new methods of teaching through contests, instead it being focused
exclusively on competition. The work packages UVa leads will make it more suitable for
its use on a learning environment. The different tasks are:

• Solution quality evaluation: the user will receive a more complete feedback from
the system, not only indicating that the problem is solved (or not) but grading the
quality of the solutions. This can range from a no significant solution (less than
50% of correctness) to a completely correct solution (100%).

• Generic Judge Engine: the system will support several problem formats, allowing
different kinds of learning approaches. By allowing different formats of problems
the system is not limited to a right/wrong evaluation method. There can be prob-
lems in which the challenge is not only solving a problem, but solving it in the
most efficient way. Also there can be cases where a student’s solution must ‘com-
pete’ against another student solution in an interactive way. Having a generic judge
engine that can easily be extended to support more problem formats will make this
possible.

• Automatic Test case Generation: the automatic generation of test cases will allow
different levels of difficulty in the solving of the problems. Having good quality
and heavily checked test cases is essential for a good evaluation of a solution. The
creation of such cases by hand is a difficult task. The automatic system should
be able to generate good test cases based on a given set of rules describing the
format of the test case. There can be another interesting situation with automatic
generation of test cases. We just give a trivial example here. Suppose a user is

142 M.A. Revilla, S. Manzoor, R. Liu

trying to solve “The closest pair Problem” – given n points find the distance of the
closest two points. Now the user finds that he is struggling to solve the problem
with n <= 10000. So using the generator he can generate test cases with smaller
values of n and check whether his program works for that. Or we can even propose a
WIKI system where users can submit their own generator, and our input tester will
check whether the submitted generator generates according to the specified rule
before passing the input to other users’ solution. In other words if the problem’s
input statement specification is editable by the user, he can even generate his own
test cases with different values of the parameters and actually solve a very different
problem that the original problem setter did not intend to solve. Of course all these
changes will be within certain limits so that the original author’s solution can solve
it. All these will help the teachers to create easier problems for their weaker and/or
younger students. Also the teacher can specify in which format he wants the test
cases to be IOI, ICPC or any other new format. But to implement all these a good
number of dedicated people are needed to be involved with it.

6. IOI vs. ICPC. Is the Convergence Possible?

Looking at the tasks mentioned above, it’s clear that one of the more important ideas
behind the work package to be developed by the University of Valladolid in the frame of
EduJudge, is trying to find a meeting point between IOI and ICPC, as far as it’s possible.
The reason is they are the two most “academic” of the programming contests existing now
and in fact there is a continuity from the first to the second, as many of the contestants of
the second had their first contact with this activity in the IOI. Probably a more interesting
statistics would be how many have actually won a medal in ICPC, without participating
in IOI.

From the point of view we are implied, the automated judging, the first problem we
have to face is to try and overcome is the issue of grading. It’s evident that this is an
additional trouble for the problem setters, because the test cases need to be more carefully
selected in most of the problems in order to produce a gradual punctuation correlated with
the correctness of the code. Even the description of the problems need to be analyzed in
detail to allow different sets of inputs that make it reasonable to claim that a program
is 50% correct and to prevent the criticisms about from the people that defend the strict
binary system of the ICPC: a program that fails in solving an only case is not correct.
Certainly any kind of conventional grading system is closer to our competitive learning
objective than the 0/1 approach of ICPC.

The IOI is more positive than ICPC because (i) It allows partial marking unlike the
0/1 approach of ICPC, and (ii) It requires the contestants to solve only three problems in
five hours which is a lot of time (even though the contest is by individuals). So anyone
with a bad start can make up, because there is no penalty on submission time. So the
speed of a contestant is not a strong factor. But the ICPC, in spite of its very strict ‘either
correct or incorrect’, still has some very good sides: it gives real time feedback to con-
testants about the correctness of their solution and also it is not bad to give some credit

Competitive Learning in Informatics: The UVa Online Judge Experience 143

Table 7

Judge response statistics based on accepted problems/team only

Subm.
Serial

Cumulative
Acceptance
Percentage

Acceptance
Percentage

Cumulative
Number of
Acceptance

Subm.
Serial

Cumulative
Acceptance
Percentage

Acceptance
Percentage

Cumulative
Number of
Acceptance

1 53.622455 53.622455 24358 11 98.908090 0.305999 44929

2 72.686846 19.064392 33018 12 99.119428 0.211337 45025

3 82.875069 10.188222 37646 13 99.317556 0.198129 45115

4 88.920198 6.045129 40392 14 99.493671 0.176114 45195

5 92.631811 3.711613 42078 15 99.583930 0.090259 45236

6 94.996147 2.364337 43152 16 99.667584 0.083654 45274

7 96.398459 1.402312 43789 17 99.749037 0.081453 45311

8 97.367089 0.968630 44229 18 99.806274 0.057237 45337

9 98.093561 0.726472 44559 19 99.856907 0.050633 45360

10 98.602091 0.508531 44790 20 99.894331 0.037424 45377

to the contestants for their speed. Moreover, the three member team structure promotes
the cooperative learning added to the competitive situation, because it requires an active
interaction between them, which results in a positive interdependence.

So to eliminate the short comings of these two major types of contests we need a
contest that (a) Gives partial marks to contestants. (b) Gives real time responses to con-
testants. (c) Possibly informs the contestant which test cases match (only the serial of
test case) and which don’t. (d) If we don’t use separate files for each set of input no in-
formation regarding correctness will be available if the submitted program does not run
within the time limit (TL) or crashes (RE) for any one of the inputs. In continuation to
this discussion a new probable approach will be proposed after we see some interesting
statistics related to the UVa Online Judge programming contest.

Every year in the prize giving ceremony the Chief Judge (aka Head Jury) often loves
to say how a team failed to solve a problem after submitting it 30 (thirty) times, or another
team got a problem accepted in their 20th attempt. These types of things are mentioned
because they are rare events in a programming contest. Before proposing a new model of
contest, we tested these kinds of events in our Hosting Contest Service. We were afraid
they would be significant more frequent as the users play for nothing really important,
but to check their competitive level. Our interests were to extrapolate the new ideas about
possible new models of contest by simulating what would be the result with our contest.
Then we needed to check our online contest with real ones.

The Table 7 shows the statistics on how many submissions are required to get a prob-
lem accepted based on the first 135 online contests of Valladolid Site. We can see that
in 10 or less submissions almost 98.6% accepted verdicts are found. It means on average
in a programming contest only 1.4% of total accepted problems require more than 10
submissions. But, even more important, almost three from each four contestants get an
AC verdict on their first or second submission.

It has already been said that an ideal contest model should have partial credits like IOI

144 M.A. Revilla, S. Manzoor, R. Liu

and also real time feedback like ICPC. But ICPC allows the contestant to submit problem
infinite times. But a proposal of a contest model giving partial credit and infinite time
submission is a bit too much because in each submission the contestant has the option
to try different kinds of tests and moreover if he is allowed to know which test cases are
getting wrong he might use one of his solution to produce output for some test cases and
another solution to produce outputs for other cases just depending on the case number.
In our study we also found that the ratio of informed and uninformed errors is roughly
2:1. So we can set a new limit that a team will be allowed to make total eight wrong
submissions per problem and another four uninformed responses will be allowed. So a
team can get 4 RE and 8 WA for a problem but he cannot get 9 WA because maximum
8 informed errors will be allowed. In other words we can say that total 8 errors will be
allowed and first four uninformed errors will not be counted in these eight errors. With
this new rule the statistics of Table 7 becomes as in Table 8.

As we are allowing 8 errors if the ninth submission is an accepted verdict, it will be
granted. However if a team fails to get the problem accepted in these submissions he will
be given the highest points that he obtained among these submissions. Now the question
comes how can we prevent poorly written solutions to get good scores? – in this model
the answer is simple. As we are allowing the contestant to fix his mistakes we don’t need
to be as lenient as the current IOI, so partial marks will only be given if someone gets
more than 60% of the marks, otherwise he will get a zero. Now the question that may
come how weak coders will get marks as there is no lenient rule like the classical 50%
rule, and the answer is just to give an easy problem to the contestants to solve so that they
can get some marks and let the hard ones remain hard. The total number of problems
can also be increased (Say five problems in five hours) to include easy and easy medium
problems.

The problem with an ideal programming contest model is that it needs to be fair but
it also needs to be simple because the same model will be followed in regional (ICPC)
and national contests (IOI). Also some of the models are extremely popular so it will take

Table 8

Judge response statistics ignoring first four uninformed responses and allowing maximum eight informed errors

Subm.
Serial

Cumulative
Acceptance
Percentage

Acceptance
Percentage

Cumulative
Number of
Acceptance

Subm.
Serial

Cumulative
Acceptance
Percentage

Acceptance
Percentage

Cumulative
Number of
Acceptance

1 63.077600 63.077600 28653 10 99.225096 0.323610 45073

2 80.061640 16.984040 36368 11 99.392405 0.167309 45149

3 88.453495 8.391855 40180 12 99.509081 0.116676 45202

4 93.021464 4.567969 42255 13 99.643368 0.134287 45263

5 95.601541 2.580077 43427 14 99.720418 0.077050 45298

6 97.076500 1.474959 44097 15 99.795267 0.074849 45332

7 97.932856 0.856357 44486 16 99.843698 0.048431 45354

8 98.507430 0.574573 44747 17 99.876720 0.033021 45369

9 98.901486 0.394056 44926 18 99.898734 0.022014 45379

Competitive Learning in Informatics: The UVa Online Judge Experience 145

some time to replace them. All online judges are written in the existing rules and it will
take some time to change them as well. Many regions and nations are still struggling to
adopt the present simple contest models so the new more complex models can be impos-
sible for them to follow. So a new full proof system can first be followed in international
level and then in course of time poured into national and regional level.

7. About the Categorization of Tasks

About classification, serious solvers are not interested in doing some classification of the
UVa archive. They think that making it public would take away the fun part. Many times
the more important task for solving the problem is to decide the type of the designing
technique to use. So, some of our previous attempts have failed. Of course, grouping
problems into specific categories is very useful, especially for beginners, teachers or for
those who want practice on a particular problem type. The users can then try to solve
all variety of problems of the same type to master the technique. And, in the frequent
case, when a problem can be assigned to several classes it’s also very useful to learn new
algorithmic concepts behind the technique itself.

However, maintaining such a kind of list is a really hard task, especially when the
number of problems is as big as 2500+, and to do it well is very troublesome. First of all
we need a prototype controlled list where to classify the problems. Even though there is
an almost standard universally accepted list, the experience shows us that the contribution
of the users must be managed if we want to prevent a real chaos. The first version of our
judge allowed to the users fill a field to write the algorithm they had used in the code, and
many of the people didn’t use or made an undesirable use of it and that made the field
useless. There are too many details to decide before to go on with these helping tools,
because it could be negative and confusing if we are not careful enough.

Talking about difficulty level, the problem is even worse as for most of the problems it
is very subjective opinion depending of the expertise of the person making the decision.
Probably most the people agree about trivial and very hard classes, but the opinions for
intermediate levels can be almost impossible to fix. And this is a very important detail
for the learning efficiency of the site. A user trying and trying an “easy” problem without
getting a positive answer probably lives a traumatic experience in his mind. Then it must
be very clear that the difficulty level is a relative concept and a good idea is that the user
completes this kind of information with additional data, mainly heuristics consequences
of the statistics. In fact, the only published classifications we have done are included in
the book that the first author wrote with the Professor Skiena. After arguing for long
and working a lot we decided that talking about popularity was better than difficulty and
success rate was better than difficulty.

In fact, there are several pages with information about our UVa Online site (and maybe
much more we don’t know about, as we can’t control every thing, of course). For exam-
ple, one of the most popular pages dedicated to algorithms and programming contest (Pi
algorithmist) contains a section specifically dedicated to the UVa Online Judge with sev-
eral links to some of those pages, as well as an open subsection about categories. The

146 M.A. Revilla, S. Manzoor, R. Liu

sites of Felix and Steven Halim are excellent, with a lot of interesting information, but
maybe the users like more the site managed by Igor Naverniouk (Igor’s UVa tools) where
the problems are classified by difficulty level (trivial, easy, medium, hard, very hard, IM-
POSSIBLE) and it allows to compare with each other user as well as to get a tip about
the following problems to try in function of the past history.

Of course, we have this information and we check it from time to time, but they are
not managed by us. Although we contact the responsible staff of these sites, and try to
help them to develop their initiatives, they are independent. But all of them have some
common characteristics. For example, there is almost general agreement about labeling
only a few problems into each of the categories. At this moment there is not an ‘official’
categorization of the site even though the data base is ready to do it, and we hope that
all these features will be included as a built-in feature in the UVa Online Judge with the
collaboration of all these persons.

8. Conclusions

Competitive learning in informatics, as we understand it in the present paper (training to
participate in programming contests by using online judges and taking part in internet
contests) can be an adequate method to learn algorithms and programming, as it is free of
the most frequent criticisms that many other methods have. It’s true that the final objective
is the competition, and probably a hard competition, but there are a lot of constructive
outcomes on the way. It is something like climbing mount Everest. One may not be able
to reach the top, but the courage, physical ability required to reach even half the height
is praise worthy and requires a lot of skill. It doesn’t the matter whether the contest is
individual or by teams, most of the work to do is self-competitive as well as cooperative.

Depending on the contest the students are preparing for and the actual stage of training
they are in, the teachers in charge may promote different kinds of activities, by group or
by individual, to prevent as far as possible negative consequences of competitive learning.
From this point of view, probably the ICPC and the team competitions in general, are a
level under the individual ones, as IOI, as the ‘learning team’ criteria require that the
common work and the individual effort must go together.

Of course, we can’t forget that at the end there is only one (person or team) winner
of the real contests. It’s clear that winning must be the main goal for all the contestants,
but the statistical analysis of the millions of submissions to our UVa online judge shows
that many times the users, whatever there is behind, try and try the same problem till they
get a successful verdict and/or CPU time, by using the informed responses of the judge
as well as the electronic board of the site for checking with the other users results. And
in the end the self improvement of individual users is the most important outcome of the
practice, not the one champion that we get. Many students qualify for the big events of
ICPC, IOI and TopCoder but many more students never qualify for a bigger event, but
behind this tangible failure, they become better programmers and thinkers, which may in
future help them to become something special.

Competitive Learning in Informatics: The UVa Online Judge Experience 147

In any case, remember that we are talking about learning informatics for free (we
mean here algorithms and programming) as the main step of the process is the train-
ing period and it can be scheduled as a really funny work. Let’s cite the starting words
of the Programming Challenges book (Skiena and Revilla, 2003): “There are many dis-
tinct pleasures associated with computer programming (. . .). The games, puzzles, and
challenges of problems from international programming competitions are a great way to
experience these pleasures while improving your algorithms and coding skills.”

Acknowledgements

The activities described in this article are part of the project “Integrating On-line Judge
into effective e-learning”. This project has been funded with support from the European
Commission. This publication reflects the views only of the authors, and the Commission
cannot be held responsible for any use which may be made of the information contained
therein.

References

CLI. Competitive Learning Institute at the Baylor University of Texas (USA).
http://icpcres.ecs.baylor.edu/onlinejudge

Igor’s UVa tools.
http://shygypsy.com/acm/

Liu, R. (2008). Training ICPC Teams: A Technical Guide. CLIS, Banff.
Manzoor, S. (2006). Analyzing Programming Contest Statistics. CLIS, San Antonio.
Pi Algorithmist. The Algorithmist is a resource dedicated to anything algorithms.

http://www.algorithmist.com/index.php/Main_Page
Skiena, S.S. and Revilla, M.A. (2003). Programming Challenges. The Programming Contest Training Manual.

Springer-Verlag, New York.
UVa Online Judge. Online Judge and Contest system developed by the University of Valladolid (Spain).

http://online-judge.uva.es/problemset

148 M.A. Revilla, S. Manzoor, R. Liu

M.A. Revilla is a professor of applied mathematics and algorithms at
the University of Valladolid, Spain. He is the official website archivist
of the ACM ICPC and creator/maintainer of the primary robot judge
and contest-hosting website. He is involved with the ICPC contest for
more than ten years, and now is member of the International Steer-
ing Committee of the ACM. He received the 2005 Joseph S. DeBlasi

Outstanding Contribution Award.

S. Manzoor was born in Chittagong, Bangladesh on 12th August, 1976.
He is probably the first person with the concept of arranging monthly
ACM ICPC format online contests. He is also first person to arrange
ACM ICPC World Finals Warmups with the help of many other per-
sons and these contest have been arranged for consecutive eight years
(2001–2008) via UVa Online Judge. He is also a ACM ICPC World

Finals Judge for six consecutive years (2003–2008). He is the chairman of Computer
Science and Engineering Department of Southeast University, Bangladesh.

R. Liu is a coach of IOI China national training team – a team
consisting of 20 students from which the final national team is se-
lected) since 2002. Being a contestant, he participated in the 2001–
2002 ACM/ICPC, winning the champion of Shanghai regional contest
in 2001, and then a silver medal (the 4th place) in the world finals,
Hawaii in 2002. Being a problem setter, he authored over 10 problems

for the national Olympiad, winter camp and IOI team selection contests in the past (2002–
2006). Currently he’s still active in creating problems for online contests in UVa Online
Judge and other programming contests.

Olympiads in Informatics, 2008, Vol. 2, 149–162 149
© 2008 Institute of Mathematics and Informatics, Vilnius

Early Introduction of Competitive Programming

Pedro RIBEIRO
Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre, 1021/1055, 4169-007 PORTO, Portugal
e-mail: pribeiro@dcc.fc.up.pt

Pedro GUERREIRO
Universidade do Algarve
Gambelas, 8005-139 FARO, Portugal
e-mail: pjguerreiro@ualg.pt

Abstract. Those who enjoy programming enjoy programming competitions, either as contestants
or as coaches. Often coaches are teachers, who, aiming at better results in the future, would like to
have more and more students participating, from earlier stages. Learning all the basic algorithms
takes some time, of course; on the other hand, competition environments can be introduced right
from the beginning as a pedagogical tool. If handled correctly, this can be very effective in helping
to reach the goals of the course and, as a side-effect, in bringing larger crowds of students into the
programming competition arena.

Key words: programming contests, computer science education, automatic evaluation systems,
competitive programming, introductory programming, IOI, International Olympiads in Informatics.

1. Introduction

The most popular programming competitions are geared to imperative languages and to
input-output problems. The automatics judges that handle submissions have been custom-
arily designed for that environment. In our own programming courses, at our universities,
we are using one such judge as a learning tool. Students submit their programming as-
signments to the judge, with the benefit of immediate feedback, more reliable than what
could be provided by a teaching assistant. Moreover, the automatic judge publishes a
ranking of the students by number of accepted submissions, and this induces a healthy
competitive attitude that many students enjoy and that makes them work harder and in a
more disciplined way than they would otherwise.

This approach has shown to be very effective in increasing student productivity, mea-
sured by the number of programs actually written by the students during the courses, but
it is not yet completely satisfactory. In fact, one cannot use the customary approach of the
judge before students have learned how to do input and output. In some languages (C and
Java, for example) this is not a trivial task, and it is never a trivial task when large sets
of data have to be handled. Furthermore, it makes little sense to spend time on the de-
tails of formatting numbers or splitting strings when problem solving using computers is

150 P. Ribeiro, P. Guerreiro

barely being introduced. In any case, it is a pity not to use the automatic judge to validate
the very first pieces of code with which the novice programmers are struggling, because
they are incomplete programs, and because they do no input-output. It is a pity because
there is a large number of small tasks that the students could try out and which could not
reasonably be checked by a human with the promptitude that we seek, and because we
have observed that students derive a special pleasure when the results of their efforts are
immediately rewarded with an “accepted” message from the judge.

On the other hand, there is a trend towards using functional languages such as Haskell
in introductory programming courses. These languages run on an interactive “calculator”,
in which functions are called with supplied arguments and results are displayed automat-
ically. The same situation occurs in logic programming, with Prolog. In these environ-
ments there is no input-output, in the conventional imperative programming sense, with
reads and writes, at least in the initial stages. This means that functional programming and
logic programming can be used with the automatic judge, from the very beginning, since
the input and output are handled automatically, so to speak. This has completely modi-
fied the first labs: the initial exercises are now online, meaning they are to be submitted
to the judge for feedback, whereas in the past students would pass to the next exercise
after “manually testing” once or twice only. In addition, the competitive attitudes that we
observed made most students want to solve all the exercises, to get more points, and be
in the top positions of the informal rankings.

Indeed, the lessons learned from approaching programming using these “unconven-
tional” languages can be brought back to the imperative style of programming. With
Pascal, C, C++ or Java, we can use the judge in an “advanced” way, similar to the one
used for Haskell or Prolog, with incomplete programs that do no input or output, even
if this requires some hacking to overcome its original design of the judge. With this, we
have been able to provide to our students, in various courses, an early introduction to
competitive programming.

This paper is organized as follows. After this introduction, we briefly describe, in
Section 2, the competition environment that we use in our programming courses, which
is based on the automatic judge Mooshak (Leal and Silva, 2003; Mooshak site). Then
we discuss how we have tweaked it into being able to use problems with no input-output
in conventional terms, first with Haskell, in Section 3, then in Prolog, in Section 4. In
Section 5, we bring those techniques to conventional programming languages, allowing
novice students, even those who are programming for the first time, to immediately have
their small, incomplete, programs automatically checked. In Section 6, we report on the
feedback we had from students who were exposed to this approach in the introductory
programming course with Haskell. A conclusion follows.

2. Competition Environment

There are several systems for automatically assessing programming assignments (Douce
et al., 2005; Ala-Mutka, 2005). Each one has strengths and weaknesses. Given our own

Early Introduction of Competitive Programming 151

background, it was only natural that we chose for our courses an automatic evaluation sys-
tem related to programming contests: Mooshak. We have been using Mooshak to manage
the programming competitions that we organize for more than five years, and we know
exactly how to take advantage of its strong points, avoid the dark corners, and even ex-
tend it to do things it wasn’t originally designed for. In all of our courses, these days, we
make extensive use of this publicly available platform.

Mooshak grew from previous experience with a late 90’s web-based learning environ-
ment for Computer Science called Ganesh (Ganesh Site). Mooshak appeared first on the
context of the ACM ICPC (ICPC Site). In this family of contests, typically you have teams
of three students solving problems in C, C++ or Java. Solving means creating a program
that will compile under some given compilation flags and that, when it runs, produces the
correct output for the secret input files associated with the problem. Mooshak was first
published in 2000 and since then it has matured into a very robust, flexible and accurate
platform. In its initial realm of ICPC, it has been used successfully in several editions
of local, national and international contests, such as the Southwestern Europe Regional
ACM Programming Contest (SWERC 2007 site).

Since the beginning, Mooshak architecture was designed having in mind different
kinds of programming competitions. For example, in ICPC a program is considered cor-
rect only if it passes all tests; otherwise it does not count. In the Olympiads, there is a
partial credit scheme and points are allocated depending on which tests passed; i.e., a
contestant will get points even if his program fails some tests. Mooshak provides a way
to give a value to each test, and ranks the contestants accordingly. Moreover, it has way
of creating customized ranked schemes. So, one could for example grade the submissions
according to the source code size, or to the memory usage. Finally, it is possible to run
in a mode that permanently displays the current ranking, useful for ICPC, or that hides it,
useful for the Olympiads.

In terms of feedback, Mooshak is more complete than other automatic judges. Instead
of just giving the result of a submission as a crude “Wrong Answer”, “Runtime Error”
or “Compile Time Error”, Mooshak allows us to define more detailed reports that really
give the students more opportunities to understand what went wrong. This is especially
important with compilation errors. In an on-site contest, all contestants are using the same
environment as the judge, but on a distributed contest, or in a classroom environment,
it is common that student use heterogeneous platforms. Even if very strict compilation
flags are used, to ensure adherence to the language standard, it is not uncommon for a
program that compiles successfully at the student’s computer to fail in the judge. In this
case, Mooshak can present the compiler error message, guiding the student in solving the
issue. This, by the way, has the nice side effect of leading students to better appreciate
the advantages of following standards. In the case of runtime errors, the system can be
set to provide the submitter with the exact kind of exception that the program rose. This
can be important from an educational point of view, because we don’t want the students
to be frustrated for committing mistakes that are common to beginners, but instead we
want them to learn from errors, helping to achieve correct solutions.

Mooshak’s user interface is completely web-based. It has four basic profiles: con-
testant, judge, administrator and guest. For contestants (or students, as in our case), the

152 P. Ribeiro, P. Guerreiro

interface shows the problem descriptions, and allows them to submit their code and ask
questions. The judges (the teachers) can go through the questions and answer them using
the platform. Thus, everyone will see all the questions and all the answers, in an orga-
nized way that also fosters interaction between students and teachers. The system also
has the capability of issuing global warnings, and this is very useful in an “emergency”.
Judges have access to a detailed report of every submission, and can check in detail what
result was obtained in each test case. If necessary, they can even manually change the
result of a submission or ask for an automatic re-evaluation (for example, in case the tests
are modified after the contest started). The administrator profile is used to set up a contest
and to upload all files concerning it. Finally, the guest profile is available to the public
and does not require authentication. With a guest login, anyone can take a look at rank-
ings and at the submissions as they are being made. Indeed, we have observed students
proudly giving the URL of their course’s Mooshak site to friends, in order to show off
their achievements. An example screenshot of the contestants’ view can be seen on Fig. 1.

Perhaps the strongest point of Mooshak is its simple yet very flexible way of eval-
uating programs. Basically after some code is submitted it passes through three phases.
The first one is compilation. Compilation is completely customizable in the sense that
the administrator can set up the command line that calls the compiler. Normally it is used
precisely for compiling the source code and obtaining an executable, but nothing forbids
us from doing whatever else we want in this phase. Mooshak considers a compilation
to be successful if the program (or programs) run in the compilation phase do not write
anything to the standard output. In case the compiler does output something and we want
to ignore it, there is a mechanism for that, based on regular expressions. Although the
compilation phase is meant for compiling, we have been using it for other purposes as
well. For example, in some occasions, we use Mooshak for accepting other types of as-

Fig. 1. Example screenshot of Mooshak in contestant mode.

Early Introduction of Competitive Programming 153

signment, and we use the compilation phase to check whether the submitted zipped file
contains all the specified deliverables, in the required format.

The second phase is execution. The program is run once for each test case, again by
way of a customizable command line. Mooshak provides a safe sandbox for execution of
programs, so we do not have to worry about the students trying to do anything nasty with
their code. We can create boundaries for the sandbox, specifying things like the maximum
CPU time allowed or the memory limit. For each test case, Mooshak feeds the command
line with the content of corresponding input file and it stores the output in a temporary
file.

The third phase is the evaluation itself. Mooshak provides a default evaluator which
compares the output that was obtained with the expected output. For flexibility, it also
allows us to define a custom command to be applied to the output file, thus evaluating it
directly.

With this simple versatile scheme, Mooshak can be tuned to a variety of programming
languages. Indeed, it has been successfully and routinely used with the standard compe-
tition languages – C, C++, Java and Pascal – but also with other imperative languages
such as Perl and Python. Moreover, it is able to cope with functional languages such as
Haskell and logical languages such as Prolog, as we will see in more detail. Colleagues
are also using it for evaluating shell programs.

Although Mooshak was initially developed for a particular kind of programming con-
tests, it was designed in such a flexible way that it can be used for a multitude of things.
Basically, we can think of it as a platform that provides a sandbox for safe execution of
user code, together with an interface for submitting that code and a user management sys-
tem. In what concerns us here, this set of facilities also makes it a very fine pedagogical
tool.

3. Using Competitive Programming with Haskell

Over the years, we have been using an imperative-programming first approach to teaching
programming, at university level (CC2001). More recently, we introduced the automatic
judge Mooshak as a pedagogical tool, and this has proven to be invaluable. With it, not
only the amount of programming done by the students increased several times, but the
courses themselves became more joyful, and also more popular, more transparent and
more spoken of. It also made students more diligent programmers, because deadlines,
being enforced automatically, are more difficult to circumvent, and more rigorous pro-
grammers, because of the greater effort required perfecting the programs so that they
pass all the secret tests held by Mooshak.

The first contact of students with Mooshak tends to be turbulent. Usually students
react angrily when Mooshak refuses to accept their solutions, which they could swear
were bulletproof. Moreover, at the beginning of the semester, good students are striving
for visibility in the class. It must be very disappointing to have your programs rejected
and not being able to hide it.

154 P. Ribeiro, P. Guerreiro

Indeed, by having Mooshak evaluate students’ programs, we are creating a new ob-
stacle to students: they must solve the programming exercise and they must do it a way
that Mooshak accepts. Take, for example, the problem of solving a second degree equa-
tion. The problem is not difficult to understand, but it has its own small programming
complications: the three coefficients must be read, the roots computed, not forgetting that
the equation may have no real roots, and then the roots must be written, if they exist, or
else some message must be produced. Since we are handling real numbers, for automatic
evaluation to be possible, we must specify precisely the number of digits after the decimal
point, which root to be written first and how to separate the two roots.

Most likely, as teachers, we would like our students to concentrate on the function
that solves the equation. However, students are eager to see the results, and if they are
still insecure about functions, they will try to do everything – reading, solving, writing –
in the main program.

Conventional input-output automatic judging does not help here: it only cares about
the input-output behavior. In a way, automatic judging somehow works against us, teach-
ers, in the elementary stages, from that point of view. On the other hand, it makes life
harder for the students, unnecessarily, by requiring them to master the details of input of
variables and output of expressions, which we might want to downplay initially.

More recently, we adopted the functional-first approach to programming, using
Haskell. Of course we wanted to continue using automatic judging, with Mooshak, but
for that we knew we would have problems on two fronts. On the one hand, Mooshak
was designed for compiled languages. We would be using Haskell with an interpreter in
the course and we would want Mooshak to rely on that interpreter, to avoid superfluous
mismatches. On the other hand, input-output in Haskell is an advanced topic, one that
typically is not addressed until the final weeks of the course. It is not necessary initially
because functions are called in the interpreter, acting as an interactive calculator, with
arguments typed in as needed, and results are written back, automatically.

In order to be able to run autonomously, Haskell programs must have a main function.
However, unlike C, for example, we can live without the main function for a long time.
Our programs are simply collections of functions and we can call any of them, from the
interpreter, providing the arguments each time. This is fine, from a pedagogical perspec-
tive, because it impels students to organize their solutions as collections of functions,
instead of long lists of intricate instructions within the sole main function. It also frees
them from the worries of input, since the values for testing are typed in as arguments of
the function, and of output, since the result of the function is written automatically, using
a default format. Again, this clear separation between computation and input-output can
have a very positive influence in the early habits of the students.

For Mooshak, a compilation is successful if there are no error messages on the stan-
dard output. The interactive interpreter is not useful for this. Instead, we used a stand-
alone version that loads the source file and runs its main function. Since the file submitted
by the students does not have a main function, Mooshak adds one, via an ad-hoc script,
just for the sake of compilation. This main function is empty. Therefore, if the submitted
file was syntactically correct, the program does run in the interpreter and produces no

Early Introduction of Competitive Programming 155

output, just like a successful compilation. If something is wrong, the stand-alone inter-
preter outputs a message, and that is enough for Mooshak to understand that there was an
error.

After the submitted program passes the compilation stage, the function to be tested
must be called. Typically, we want to call it several times, with different arguments. Recall
that normal Haskell functions, the ones we are considering in this discussion, perform
no input-output. So, instead of using an input file from where the data is read, we use
a Haskell source file with a main function calling the function to be tested, using the
desired arguments. Indeed, for flexibility and simplicity, this file replaces the input file
that is provided for each test in the standard operation of Mooshak. Our source file is
appended to the submitted program, via a script, and the result is run by the stand-alone
interpreter. The result of each function call is written on the standard output and can be
compared to the expected output.

By hacking Mooshak this way we were able to use it from the first day of our Haskell
course. At the beginning, the programming exercises dealt with simple functions, such
as counting the odd numbers in a list, checking if a given number appears in a list, etc.
Students first write the programs using a text editor and experiment on their own with
the interactive interpreter and then submit to Mooshak. For each accepted submission,
students earn one point. For these simple programs, it seemed easy to have an “accepted”
and that helped students gain confidence in the system. This contrasts with our experi-
ence in previous courses, where, on the contrary, most early submissions were erroneous,
which left students very uneasy.

We used this setup for the most part of the course, not only for exercises involving
simple functions, but also for larger assignments and for programming problems similar
to those used in competitions. Only in the final part did we introduce input-output in
Haskell, and we came back to a more conventional use of Mooshak, with input and output
handled explicitly by the program and a main function that is called by the interpreter,
by default. At this stage, students were more capable of overcoming the details of input-
output than they could have been in the beginning. However, the presence of the main
function requires a change in the compilation script, because we do not want the program
to actually run in the interpreter in the compilation phase, which is what would happen
because the provided main function was not empty, as the one we added before. Well, the
new script edits the source file, replaces the identifier main by another unlikely identifier
and then passes it on to the old script.

Overall, in this course, there were 69 problems to be submitted and evaluated by
Mooshak. This is much more than could have been handled manually by teaching as-
sistants. Not all students had all their submissions accepted, of course, but all of them
certainly got a lengthy exposure to the automatic judge. The points earned by the ac-
cepted submissions counted for 30% of the final grade.

Although we did not stress the competitive aspect of the assignments, many students
thrived in it. We observed that many of them enjoyed being on the first places on the rank-
ing and made an effort to solve the problems as soon as possible. As anecdotal evidence
on this, at one occasion, we made a mistake when setting up a new contest in Mooshak

156 P. Ribeiro, P. Guerreiro

which caused the ranking to disappear. We immediately received complaints from the
students that “without the ranking, it was no fun”.

As a side effect of their involvement with an automatic judge designed for manag-
ing programming competitions, some of these students developed a liking for this style
of competitive programming. Perhaps some will participate in competitions in the fu-
ture. However, most programming competitions still use only the usual programming
languages – C/C++, Pascal and Java – and these students are not prepared for them just
yet.

4. Using Competitive Programming with Prolog

Very much in the way described in the previous section, we were able to use Mooshak
in a course with the main focus on logical programming, using Prolog. Instead of just
testing “by hand” their Prolog programs, students use Mooshak for that. At the same
time, teachers obtained a detailed picture of the successes and failures of the students and
part of this information was used for grading.

Like in the case of functional programs, we do not usually compile logic programs;
instead, we load them on an interpreter, in our case Yap (Yap site), a fast Prolog interpreter
developed also at Universidade do Porto. Contrary to imperative languages, in Prolog we
declaratively express a program using relations, called predicates in Prolog, in a way
similar to databases. Executing a Prolog program is actually running a query over those
predicates, and typically this is done using the command line of the interpreter. We test by
making queries about the relevant predicates. The Prolog environment then uses inference
rules to produce answers.

A Prolog program therefore does not need a “main function”: it is simply a collection
of predicates. In the context of Mooshak, compiling can be seen as loading the program
in the database. Executing a program is done by running a series of queries. We use a
metapredicate that collects the list of all answers that satisfy the goal, comparing that list
with the expected list of solutions (ignoring the order). Often, the solution contains only
one possible answer (for example, the length of [a, b, c] is always 3), but this approach
effectively lets us natively test predicates that accept, and should produce, multiple solu-
tions in a very simple fashion. In programming contests there are situations where sev-
eral solutions have to be handled by ad-hoc correctors or else the burden is passed to the
contestant itself, by adding a redundant layer of complexity to the problem, asking the
solutions to be presented in a specific order, or a solution with specific properties to be
printed.

In concrete terms, we run a customized predicate in which the rule part is made of the
conjunction of all the query calls we want to test and a final query which uses Prolog’s I/O
capabilities to write some simple sentence to the standard output (it can be for example a
simple “ok”). So, this sentence is written only if all the queries are successfully satisfied,
that is, if all tests are passed. If the expected output in Mooshak is exactly the sentence
that we use, then the default evaluator gives “accepted” if and only if the program passes

Early Introduction of Competitive Programming 157

all the tests, thus mimicking what happens in a conventional evaluation. If we want to
make Mooshak aware of exactly which queries are passed, we can just create several
input tests, each of them with the desired queries.

With this scheme, we can use Mooshak from the very beginning of the logic program-
ming course. As with Haskell, students do not need to write complete programs in order
for them to be tested by Mooshak. Actually, with this in mind, we have put together a
set of more than 60 predicates and made them available through Mooshak permanently.
Different subsets of this set are viewed as different “contests”. For example, the “Lists”
contest asks the students to program predicates to compute things such as the maximum
of a list, the average of a list of numbers, the concatenation of two lists or the removal
of duplicates. This invites students to become self-sufficient in their struggle with the
language, relying on the automated feedback for validating the solutions they invent. We
published additional problems that went beyond the goals of the course, as challenges
to the most diligent students. Actually, some of these problems were taken from real
programming competitions, namely the Portuguese Logic and Functional Programming
Contest (CeNPLF, 2007). We observed that many students accepted the challenge and
made an effort to solve those problems which, at the time, were on the limits of their
programming capabilities.

Like in the case of Haskell, this competitive environment fostered a desire to solve
all the problems proposed, in order to reach a higher position in the ranking and get the
satisfaction of being up to the challenge. Indeed, having the program that you tentatively
and hesitantly wrote to solve a difficult problem finally “accepted” by Mooshak creates
a sense of fulfillment that we, as teachers, must not underestimate. In fact, students that
would otherwise just look at the exercise and put it aside as too easy or too difficult, have
now the incentive of actually programming it, gaining more experience and more wisdom
in the process, because things are not usually as easy or as difficult as they seem. While
we must contradict the pitfall of equating being accepted by Mooshak and correctness, we
should note that the validation provided by the automatic judge does help many students
to gain confidence in themselves and their emerging programming capabilities.

For the purpose of direct student assessment, in some years we have used Mooshak in
“submission labs”. Students were handed in a predicate, and they had to program it and
submit it to Mooshak within a determined amount of time. If it was accepted, they would
earn some points. This is very much like a programming competition, with an immediate,
tangible result.

Mooshak was also used to guide students through more complex programming as-
signments. Instead of building a complete program from scratch on their own and testing
it at the end, students follow directions to implement intermediate predicates, which they
can test with Mooshak, before they advance. This way, students are more confident of the
correctness of the building blocks of their programs. The intermediate predicates were
graded directly by Mooshak, and the success of the overall assignment indirectly bene-
fited from the automatic evaluation.

Typically, we leave all contests open, even after the course finishes. Students of the
course can come back to the early exercises, in preparation for the exam, for example. We

158 P. Ribeiro, P. Guerreiro

also have had cases of students from previous years who resorted to the “old” and familiar
Mooshak to refresh their Prolog, years later. This is made possible by an optional facility
of automatically accepting new registrations, thereby opening Mooshak to all interested,
when we are willing to allow that. Actually, some current students use that facility, which
allows them to experiment their code anonymously.

5. Using Competitive Programming with Imperative Languages

The more conventional imperative programming languages can also benefit from schemes
similar to those we describe for Haskell and Prolog. In fact, when we use Mooshak in
courses for teaching programming in Java, C, C++ or Pascal, we usually do it in the
ordinary form of having the submitted programs perform their own input and output.
In other words, we prepare the contests in the normal way, setting them up for doing
the automatic evaluation of the complete programs student will write. This is fine, but
we cannot follow this approach in the very first labs of the semester, because students
who are taking the first steps in programming do not have the knowledge to correctly
construct a complete meaningful working program. For that, among other things, they
would need to know how to use the input and output functions of the language, what is
always tricky and confusing for beginners. Besides, they would have to respect precisely
the specification of the output given in the problem description. We know by experience
that this is difficult at first, when one is not used to that kind of painstaking detail.

Whereas with Haskell and Prolog we did not have input and output at the onset, with
C, C++, Java and Pascal, we do, but we are willing to waive it. The beauty of this idea
is that we can easily use and adapt Mooshak to evaluate only pieces of code and not
complete programs, also for these more conventional languages. Technically it is even
simpler than with Haskell and Prolog. We ask the student to program a certain function
and we provide, inside Mooshak, a program that calls that function. For example: sup-
pose we require a function that receives three real numbers as arguments and returns the
average. The program we supply calls that function directly several times, with differ-
ent arguments, each time writing the result on the output stream, exactly as we did with
Haskell functions.

For doing this, we only have to tweak the compilation phase. Now we have not only
the source file that was submitted, containing the definition of the required function, but
also a complete program prepared beforehand with our own customized main function
and all library declarations in place, and a header file with the prototype of the required
function. Care must be taken in order to avoid such name clashes, but this approach
is certainly feasible. Therefore, we compile the submitted source file plus the supplied
program.

After this, running a program would simply be calling the executable created after
the compilation. Since we wrote the main function ourselves, we can make it work the
way we want. We can hardwire all the tests inside our own program, calling the evaluated
function for each set of arguments to be tested, or we can write a loop that reads a set the
arguments from a data file and calls the function with those arguments.

Early Introduction of Competitive Programming 159

No matter what technique we choose, the remarkable fact to observe is that it is pos-
sible to do this in a very early stage: even the most primitive concepts and technique
that we teach can be automatically evaluated, immediately. This can be done with any
programming language, imperative, functional or logic.

This early introduction of automatic evaluation for imperative languages has a num-
ber of benefits, other than enticing students into the programming competitions, and the
early exposure to the joys of having your program accepted by a robot, and earning points
by it. First, it allows us to use the first classes to stress program development using func-
tional decomposition, without the distraction of input and output. Second, it leads to more
submissions being accepted in first labs, raising the spirits, and making students trust the
teachers more that they would if what the teachers presented as an easy procedure proved
to be embarrassingly difficult and distracting. In fact, the usual approach of submitting
complete programs becomes very frustrating for beginners, precisely because very often
the error is not in the function we want to test but in the part of the program that reads and
writes. In this part, one has to worry about formatting details, about parsing the input line,
about dealing to the end of data, and this can be overwhelming and is always distracting.

As a side-effect, this approach forces those students who have some knowledge of
programming from secondary schools, and who are able to write long sequences of in-
structions, happily mixing input, computation and output, to drop that practice, and un-
derstand that the real challenges of programming are elsewhere.

6. Feedback from Students

We have used the approach described in Section 3 recently, in a first-year introductory
programming course. There were students taking the course for the first time, but there
were many repeating it who, having failed in the past editions, were taught differently.
We initially observed frenzy amongst students, as they got acquainted with the automatic
judge and began to become conscious of the way their assignments were to be submitted
and graded. After a while, the agitation increased due to the perception that there seemed
to be more assignments than usual. This was true: with the automatic judge, all the as-
signments were to be submitted and each successful submission did count, very little, in
the final grade. Eventually, things calmed down, with practice and routine.

At the end we carried out a survey, to ascertain the students’ reactions and overall
impression of out approach. We had 115 responses, from more than 90% of the students
taking the course. For most questions we used the 5-point agree-disagree scale. Table 1
summarizes the responses to the questions relevant to this paper.

In the questions, “platform” means the automatic judge, Mooshak, plus the learning
management system that we were using, Moodle (Moodle site).

We observe that the students are not very assertive, except when giving advice to
teachers, as in the forth question. For all questions, more than half of the students either
“strongly agree” or “agree”. Even for the third question, that shows a certain discom-
fort with Mooshak, only less than 20% of the students consider that Mooshak is not an
effective learning tool.

160 P. Ribeiro, P. Guerreiro

Table 1

Results of survey, abridged

Strongly
agree

Agree Neutral Disagree
Strongly
disagree

Don’t know

Programming assigments are
more interesting because they
are supported by Mooshak

26% 50% 17% 6% 1% 1%

Assessment by the platform is
generally fair

15% 62% 18% 4% 1% 1%

With Mooshak we learn more
than without Mooshak

20% 35% 25% 11% 7% 2%

Other teachers should be
encouraged to use a similar
platform

61% 25% 7% 3% 2% 2%

This survey confirms results that we have observed in similar surveys for other
courses, but is especially interesting because it was given to a class that used Mooshak
for the first time, starting immediately on the first lab, with a functional programming
language, as we explained in Section 3.

7. Conclusion

It is a cliché that computers excel at performing boring, repetitive tasks. For teachers,
one of those boring, repetitive tasks is reviewing students’ homework, especially when
there are many students and many assignments. Computer help here is most welcome. In
many disciplines, however, computers are not up to the task, at least not yet, but for pro-
gramming, we are lucky that we can take advantage of tools like those used for managing
programming competitions to take care of that chore.

Automatic judges have been designed mostly for imperative languages; they tradition-
ally work by inspecting the input-output behavior of programs. Yet, we have been using
them with Haskell and Prolog, which are not imperative, and for which input and out-
put is not a technique that is learned in the earlier stages. For making automatic judges
work with Haskell and Prolog we had to adapt them and in the process we discovered
that, avoiding the complications of input and output, we were able to start using auto-
matic evaluation much earlier in the courses. This possibility promotes a new approach
of teaching, in which all the exercises and assignments, from day one are to be submit-
ted to the judge, with immediate feedback to the students. This way, the productivity of
students, measured in programs written and submitted, increases significantly. Also, the
visibility of everybody’s successes and failures aids in creating a challenging working
environment and a healthy sense of community. This makes learning more enjoyable and
more rewarding.

Early Introduction of Competitive Programming 161

As a side-effect, students got acquainted with competitive programming, via the tools
used to evaluate their programs. Many derive a special pleasure in appearing in the top
places in the rankings kept by the automatic judge, even if that has no importance in the
context of the course. We can expect that some of them will have been bitten by the com-
petitive programming bug and will now create teams to participate in real programming
tournaments.

References

Ala-Mutka, K. (2005). A survey of automated assessment approaches for programming assignments. Computer
Science Education, 15(2), 83–102.

CC2001 (2001). Computing Curricula 2001, Computer Science Volume.
http://www.sigcse.org/cc2001/

CeNPLF (2007). Concurso/Encontro Nacional de Programação em Lógica e Funcional.
http://ceoc.mat.ua.pt/cenplf2007/

Douce, C., Livingstone, D. and Orwell, J. (2005). Automatic test-based assessment of programming: A review.
Journal on Educational Resources in Computing (JERIC), 5(3).

ICPC site. The ACM-ICPC International Collegiate Programming Contest.
http://icpc.baylor.edu/icpc/

Ganesh site. Ganesh – An Environment for Learning Computer Science.
http://www.dcc.fc.up.pt/∼zp/ganesh/

Leal, J.P. and Silva, F. (2003). Mooshak: a Web-based multi-site programming contest system. Software Prac-
tice & Experience, 33(6), 567–581.

Moodle site. Moodle – A Free, Open Source Course Management System for Online Learning.
http://moodle.org/

Mooshak site. Mooshak Contest Management System.
http://mooshak.dcc.fc.up.pt/

SWERC (2007). Southwestern Europe Regional ACM Programming Contest 2007.
http://ctp.di.fct.unl.pt/SWERC2007/

Yap site. Yap Prolog – Yet Another Prolog.
http://www.dcc.fc.up.pt/∼vsc/Yap/

162 P. Ribeiro, P. Guerreiro

P. Ribeiro is currently a PhD student at Universidade do Porto, where
he completed his computer science degree with top marks. He has
been involved in programming contests since a very young age. From
1995 to 1998 he represented Portugal at IOI-level and from 1999 to
2003 he represented his university at ACM-IPC national and inter-
national contests. During those years he also helped to create new

programming contests in Portugal. He now belongs to the Scientific Committee of sev-
eral contests, including the National Olympiad in Informatics, actively contributing new
problems. He is also co-responsible for the training campus of the Portuguese IOI con-
testants and since 2005 he has been Deputy Leader for the Portuguese team. His research
interests, besides contests, are data structures and algorithms, artificial intelligence and
distributed computing.

P. Guerreiro is a full professor of Informatics at Universidade do Al-
garve. He has been teaching programming to successive generations of
students, using various languages and paradigms for over 30 years.
He has been involved with IOI since 1993. He was director of the
Southwestern Europe Regional Contest, within ACM-ICPC, Interna-
tional Collegiate Programming Contest (2006, 2007), and chief judge

of the worldwide IEEExtreme Programming Competition 2008. He is the author of three
popular books on programming, in Portuguese. His research interests are programming,
programming languages, software engineering and e-learning.

Olympiads in Informatics, 2008, Vol. 2, 163–170 163
© 2008 Institute of Mathematics and Informatics, Vilnius

Japanese Olympiad in Informatics

Seiichi TANI
Department of Computer Science, Nihon University
Setagaya-ku Sakurajousui, Tokyo 156-8550, Japan
e-mail: sei-ichi@tani.cs.chs.nihon-u.ac.jp

Etsuro MORIYA
Department of Mathematics, School of Education, Waseda University
Shinjuku-ku Nishi-Waseda, Tokyo 169-8050, Japan
e-mail: moriya@waseda.jp

Abstract. The Japanese Committee for the IOI (JCIOI) is a nonprofit organization and one of its
purposes is promoting the interest of Japanese secondary school students in computer science as
well as computer programming through various activities including Japanese Olympiad in Infor-
matics. This article describes the process of selecting and training the Japanese IOI team and the
key issues that faces JCIOI.

Key words: olympiad in informatics, training, programming competition, IOI, International
Olympiad in Informatics.

1. Introduction

The Japanese Committee for International Olympiad in Informatics (JCIOI) started the
Japan Olympiad in Informatics (JOI) in 1994 and sent Japanese delegations to IOI 1994
(Sweden), IOI 1995 (Netherland) and IOI 1996 (Hungary). Unfortunately, due to financial
difficulties, the activities of the JCIOI were suspended from 1997 to 2004.

When the JCIOI attempted to restart its activities, the Japanese Ministry of Educa-
tion, Culture, Sports, Science and Technology (MEXT) decided to support school chil-
dren participating in international science and technology contests including the IOI. This
decision efficiently provided enough support needed to reinstate the JCIOI. The aim of
MEXT is to encourage talented school students to take more interest in and orientation
toward science and technology, through competitions and exchanges with other children
of the same generation throughout the world.

At the time of reinstatement, Japan did not participate in any international science
olympiads, except for the International Mathematical Olympiad. Consequently, the JCIOI
was reorganized as a nonprofit organization sponsored by the Japan Science and Tech-
nology Agency (JST), an independent administrative agency affiliated with MEXT. In
2006, the JCIOI sent the Japanese delegation to the IOI 2006 (Mexico) for the first time
since 1996.

164 S. Tani, E. Moriya

In the two years of participation at the IOI, the Japanese Team won three gold, one sil-
ver and two bronze medals. Based on these unexpectedly good results, the IOI contestant
selection procedure has been deemed successful. However, a certain number of issues
remain to be resolved. One such issue concerns the quality and quantity of computer
science education for younger students. Another issue is related to the fact that students
possess adequate skills in either programming or mathematical reasoning, but not both.

The goal of the JCIOI is to improve the abilities of the students gifted in computer
science as well as the overall population of secondary school students. The JCIOI also
aims to generate greater interest in informatics in secondary schools. This article will
outline some ways in which the JOI can achieve these goals. The paper is organized in
the following way. Section 2 introduces the Japan Olympiad in Informatics and the IOI
contestant selection procedure. Section 3 discusses key issues and future works. Section
4 shows the conclusions.

2. National Olympiad in Informatics and Selection of IOI Contestants

2.1. Structure

Activities of the JCIOI were restarted in 2005. That year, the JCIOI sent observers to IOI
2005 in Poland and held the first round of the Japanese Olympiad in Informatics (JOI)
2005/2006. At the present time, the JOI attendance fee is free because of the support of
JST. While the committee works to improve the domestic olympiads, JOI has maintained
a simple structure due to personnel, budget, and time constraints.

The JOI has two rounds. The first round is an open online programming contest,
with the tasks provided only in Japanese. Students who qualify are invited to the final
round which is held at a central location in Tokyo, so contestants from all over Japan
are gathered at one place. The top students of the final round are awarded gold, silver or
bronze medals according to their grades. The JCIOI invites students who perform well
in the final round of the JOI to a training camp. The IOI contestant selection takes place
at the training camp. The Japanese team for the IOI, along with other camp participants,
continues the training process through correspondence from the end of the camp until the
moment of departure for the IOI. The expense for travel to IOI is covered by JCIOI via
JST aid.

2.2. First Round of JOI

The first round is usually held on a Sunday in December. Participants have to solve six
tasks with the programming language that they wish to use for three hours. Five test data
per task are distributed in the beginning of the contest and contestants have to upload the
outputs for the test data. The grade of a participant is automatically decided based on the
number of correct outputs uploaded. One of the objectives for adoption of such a system
is to allow the highest number of contestants possible to enter the competition. Due to the

Japanese Olympiad in Informatics 165

disparity in the level of ability, four of the tasks are relatively simple, while the remaining
two require more challenging mathematical and algorithmic considerations.

The number of participants of the first round at JOI 2005/2006, 2006/2007 and
2007/2008 was approximately 80, 150 and 280 respectively.

2.3. Final Round of JOI

The final round of the JOI is an on-site programming contest. It is time constrained and
the contestants are required to design efficient algorithms and to implement them appro-
priately. The most difficult tasks of the competition are intended to be as difficult as the
least challenging IOI tasks.

The final round takes place in an examination venue in Tokyo on a holiday in Febru-
ary. Contestants from all over Japan meet at the site and the traveling expenses are cov-
ered by the JCIOI. The JCIOI invites high scorers of the first round who are under 20
years of age on the day of the final round and secondary school students, excluding high
school seniors. Note that students usually graduate form high schools at 18 years of age
in Japan. From JOI 2007/2008, top ranked students in each region are also invited to the
final round. The numbers of students who proceeded to the final round at JOI 2005/2006,
2006/2007 and 2007/2008 were approximately 30, 40 and 50 respectively.

Five tasks were proposed to contestants, to be solved for three hours in JOI 2005/2006
and 2006/2007. The duration of the contest has been extended to four hours since JOI
2007/2008. For each task, contestants have to write programs in C/C++ or Java that solve
the task and to submit them. Contestants are provided sets of sample inputs and corre-
sponding outputs in order to confirm whether their solutions satisfy the output format
and to assist in estimating the running time of their programs. After the examination, the
submitted solutions are compiled and run with test data unknown to the contestants on
an evaluation machine. The specification and the programming environment of the eval-
uation machine are the same as the machines used by contestants in the final round. The
participant’s grade is automatically calculated by the number of test data for which their
solutions output correct answers within the time limits. The test data are set as distin-
guishing efficient solutions from inefficient solutions.

2.4. Training Camp

The training camp starts March 19th and ends March 25th every year. The JCIOI invites
top ranked students from the final round of the JOI. The number of camp participants
at JOI 2005/2006, 2006/2007 and 2007/2008 was 8, 13 and 16 respectively. In addition
to IOI contestant selection, four lecturers are also invited to speak at the camp. These
speakers include university faculty members, graduate students, and IT professionals.
Table 1 sketches the schedule of the JOI 2007/2008 training camp. During the camp,
former IOI contestants and ICPC contestants work as tutors. They communicate with the
participants and support in organizing the camp.

The camp competitions are held in IOI competition format. Three tasks are set at
each competition. The twelve tasks are intended to cover as many IOI problem types as

166 S. Tani, E. Moriya

Table 1

The schedule of the JOI 2007/2008 training camp

March Morning Afternoon Evening

19th Arrival Practice Session

20th Competition 1 (3 hours) Lecture 1 Comments and Discussion 1

21st Competition 2 (4 hours) Lecture 2 Comments and Discussion 2

22nd Competition 3 (4 hours) Lecture 3 Comments and Discussion 3

23rd Lecture 4 Free Time

24th Competition 4 (5 hours) Awarding Ceremony Comments and Discussion 4
Public Lecture Farewell Party

25th Departure

possible. The difficulty of the last competition is similar to those of the IOI. Almost all
tasks are batch tasks, with a few being reactive and/or output-only. For tasks requiring
source codes as solutions, C and C++ programs are accepted. The top four students are
selected to represent Japan in the IOI.

Two of the lectures are focused on the design and implementations of efficient algo-
rithms. The other lectures deal with topics that are not directly concerned with program-
ming contests. For example, an introductory lecture for theoretical computer science is
provided. The titles of lectures at JOI2007/2008 were as follows:

• Let’s try to use STL;
• An introduction to computational complexity theory

– Get a million dollars to solve the “P = NP?” problem;
• An introduction to information retrieval

– Algorithms for Web search engine;
• Let’s solve IOI problems with a functional programming language.

At the present time, the camp schedule is completely full. The IOI participant selec-
tion, programming contest ability improvement seminars, and computer science motiva-
tional presentations account for the full schedule.

2.5. Correspondence Course

After the training camp, a correspondence course starts for the camp participants, includ-
ing the members of the Japanese IOI team. The participants solve problems from past IOIs
and regional informatics olympiads, after which they submit their solutions to the team
leader of Japan. After the deadline set for each task, the submitted solutions are posted
on the course bulletin board system. Participants exchange views on submitted solutions
for two weeks and the coordinator of each task gives them suggestions and summarizes
the discussions. If a participant submits a solution after the deadline, the coordinator will
post comments about the solution on the bulletin board system.

Japanese Olympiad in Informatics 167

2.6. Task Creation

The scientific committee (SC) of the JCIOI controls the entire process of creating JOI
tasks from the first round through the training camp. The SC attempts to maintain a bal-
ance between suitable qualifier selection and participant satisfaction. The steering com-
mittee of the JCIOI appoints the members of the SC. Initially the SC consisted only of
faculty members when the JCIOI resumed activities. However today, former IOI contes-
tants and ICPC contestants are involved in the SC.

The deliberations on task creation are held both at off-line meetings and on the bul-
letin board system for the SC. For JOI2007/2008, the off-line meetings were conducted
ten times and approximately 400 messages were posted on the bulletin board system.
Subversion, a version control system, has been used to maintain tasks, test data, solu-
tions, commentary, etc. SC members commit drafts of their tasks to SC’s Subversion. A
task set for a contest is chosen from a pool of tasks stored on the Subversion that meets
conditions relative to difficulty, area and type. If there are an insufficient number of tasks,
the SC will create new ones.

3. Key Issues and Future Works

In the previous section, the IOI contestant selection procedure was mentioned. Currently,
the procedure in place appears to be successful in choosing appropriate candidates. IOI
contestant selection is not the only goal of the JCIOI, however. The aims of the JCIOI
also include improving the abilities of the students gifted in computer science, as well
as generating greater interest in informatics in secondary schools. At JOI 2005/2006 and
2006/2007, only IOI contestant selection and IOI participation training were held due to
personnel, budget, and time constraints. Recently, the JCIOI situation has been improv-
ing. Evidence of this is as follows:

• the number of faculty members and former contestants who have joined the JCIOI
continues to increase each year;

• in 2007, the JST began to support the promotion of sciences including computer
science in secondary schools in addition to hosting domestic science competitions
and sending Japanese delegations to international science competitions;

• Fujitsu Limited has supported the activities of the JCIOI since 2005. Since April
2008, NTT Data Corporation has started to sponsor the JCIOI.

Hence, the JCIOI has initiated new activities to achieve its aims. The remainder of the
section will address two of these new activities, as well as the remaining challenges to be
faced.

3.1. Summer Camp

M. Forišek mentioned in (Forišek, 2007): “We strongly believe that the thinking process
(in other words, the problem solving process) is the most important skill we want to see in

168 S. Tani, E. Moriya

our contestants. This is what they will need in their future lives, should they pick a career
in computer science.” The JCIOI agrees with Forišek’s theory. The JCIOI considers the
most significant challenges of the IOI competition format to be the following:

• a lack of consideration for the thinking process when grading solutions;
• a lack of open-ended problems to challenge higher level students;
• excessive focus on the importance for quickness when completing tasks;
• excessive focus on the importance for coding skills.

A student who produces an excellent solution, but is unable to submit it within the
contest time frame will unfortunately not receive any points. The students who are able
to solve all IOI tasks in five hours and five minutes seem to be as outstanding as ones
who are able to solve the tasks in five hours. Every IOI task is capable of being solved in
two hours or less. At the current time, the IOI and the JOI have implemented regulations
that are biased towards students who are better able to write code and finish tasks quickly.
These regulations regrettably neglect the thinking process needed to succeed in the field
of computer science in the future. If the regulations are changed, another bias would
undoubtedly be created as a result. Therefore, in 2007 the JCIOI has started a summer
camp that does not include any competitions.

The camp is held for three or four days soon after IOI in late August. Approximately
20 students including past JOI training camp attendees participate. At the first camp last
year, a faculty member gave a lecture about computability theory. In addition to that,
the camp participants were divided into small groups and each group studied a computer
science text book for undergraduate students. Each group gave a presentation about what
they learned on the last day. The style of the summer camp may change in the near future.

3.2. Introductory Course of Computer Science

In Japan, computer science is absent from the secondary school curricula at the present
time. In order to promote it in secondary schools, elementary educational materials should
be provided to them. The first step in the realization of this goal is to develop a web site
that introduces computer science to young people. This will be done in cooperation with
Fujitsu Limited and an educational group to promote “Computer Science Unplugged”
(Bell et al., 2002; Kanemune et al., 2007). Fujitsu Limited operates a web site for chil-
dren. They plan to add an introductory course of computer science at the Fujitsu’s kids
site in the near future (Fujitsu, 2008).

3.3. Future Works

Besides JOI, a few other programming contests for secondary school students are held
in Japan. The Supercomputing Contest (SuperCon) is a programming contest for high
school students using a supercomputer system at the Tokyo Institute of Technology and/or
Osaka University. SuperCon is a team competition, in which teams create a program to
solve a given open-ended problem. Unlike the IOI and the JOI, there is no rigid time limit.
Teams compete with their ideas and originality to design algorithms to solve a problem

Japanese Olympiad in Informatics 169

for three or four days. One of the reasons why the Japanese team achieved positive re-
sults so quickly upon returning to the IOI is that Japanese students have been competing
in SuperCon since 1995. The contest is usually held at the beginning of August. It is a
great advantage to have competitions that are held in different seasons and differ in con-
test format. Therefore, the JCIOI does not intend to hold another contest for top ranked
students at the present time.

However, it is necessary to hold contests for students who have little experience and/or
are not very familiar with logical thinking. If students without adequate coding skills at-
tend the JOI, their participation will be limited. The JCIOI realize the necessity of “theo-
retical” or “logical” (by pen and paper) tasks that many national information olympiads
adopt. The theoretical or logical tasks are expected to play a key role in improving in-
terest in computer science among secondary school students and teachers. In the first
Olympiads in Informatics Conference, there were many fruitful discussions about the
running and issues facing several national Olympiads (Dagienė et al., 2007). Especially,
the procedures of Brazil (Anido and Menderico, 2007), Italy (Casadei et al., 2007) and
Slovakia (Forišek, 2007) have been helpful for the JCIOI. In response to growing needs
for logical thinking, the JCIOI has started to prepare a new contest without coding.

There are a lot of challenges facing the JCIOI. The committee intends to address
each issue one by one. Possible solutions include cooperation with secondary schools
and training secondary school teachers.

4. Conclusions

In this article, the activities for the Japanese Olympiad in Informatics and the IOI con-
testant selecting procedure have been presented. Some issues and future works have also
been described. The main challenges involve providing theoretical background and pro-
moting initiative to generate interest in computer science in secondary schools. The JCIOI
will continue to improve its activities to make computer science popular and to encourage
gifted secondary school students to be interested in it.

References

Anido, R.O. and Menderico, R.M. (2007). Brazilian olympiad in informatics. Olympiad in Informatics, 1, 5–14.
Casadei, G., Fadini, B. and Vita, M.G.D. (2007). Italian olympiad in informatics. Olympiad in Informatics, 1,

24–30.
Bell, T., Witten, I.H. and Fellows, M. (2005). Computer Science Unplugged – An Enrichment and Extension

Programme for Primary-aged Children. See also http://csunplugged.com/
Dagienė, V., Cepeda, A., Forster, R. and Manev, K. (Eds.) (2007). Olympiad in Informatics, 1.
Forišek, M. (2007). Slovak IOI 2007 team selection and preparation. Olympiad in Informatics, 1, 57–65.
Fujitsu Limited (2008). Fujitsu Kids. http://jp.fujitsu.com/about/kids/
Japan Science and Technology Agency (2004). Support for Participating in International Science and Techno-

logy Contests. http://www.ioi-jp.org/index-e.html
Japan Committee for International Olympiad in Informatics (2008).

http://www.jst.go.jp/rikai/eng/contest/index.html

170 S. Tani, E. Moriya

Kanemune, S., Shoda, R., Kurebayashi, S., Kamada, T., Idosaka, Y., Hofuku, Y. and Kuno, Y. (2007). An intro-
duction of “Computer Science Unplugged” – Translation and Experimental Lessons. In Summer Symposium
in Suzuka, IPSJ SIG-CE (in Japanese).

Supercomputing Contest (2005). http://www.gsic.titech.ac.jp/supercon/index-e.html

S. Tani is a director of the Japanese Committee for IOI, and has served
as a secretary of Information and System Society of IEICE (the Insti-
tute of Electronics, Information and Communication Engineers) since
2008. He received the BSc, MSc and PhD degrees from Waseda Uni-
versity in 1987, 1990 and 1996 respectively. He is currently a professor
at Department of Computer Science, Nihon University. His research

interests include computational complexity theory, computational topology, and knowl-
edge discovery.

E. Moriya is the president of the Japanese Committee for IOI. He re-
ceived the BS and PhD degrees from Waseda University, Tokyo, Japan,
in 1970 and 1976, respectively. He is currently a professor of math-
ematics at Department of Mathematics, School of Education, Waseda
University, Tokyo. His research area includes formal language and au-
tomata theory, and computational complexity theory.

Olympiads in Informatics, 2008, Vol. 2, 171–180 171
© 2008 Institute of Mathematics and Informatics, Vilnius

On Using Testing-Related Tasks in the IOI

Ahto TRUU, Heno IVANOV
Estonian Olympiad in Informatics
Tähe 4-143, EE-51010 Tartu, Estonia
e-mail: ahto.truu@ut.ee, heno@siil.net

Abstract. One major area of software development that is mostly neglected by current computer
science contests is software testing. The only systematic exception to this rule known to us is the
Challenge round in the TopCoder contest. In this paper, we propose some patterns for designing
tasks around testing theory and examine their suitability for being blended into the existing IOI
competition and grading framework. We also present some case studies of using testing-related
tasks on actual contestants.
Key words: programming contests, task development, software testing.

1. Introduction

Most computer science contests focus on the “programming” part of the software devel-
opment process. This means the contestants are given a computational problem and are
asked to find or invent an algorithm for solving it and to implement the algorithm in one
of the programming languages supported at the particular contest. The programs are then
graded on a predefined set of (secret) test inputs and awarded points for every input (or
set of inputs) for which they produce correct output, without exceeding some predefined
resource constraints; typically there are limits on the total CPU time and the maximum
amount of RAM used by the program in a test run.

Several members of the IOI community have pointed out that this approach is too
narrow and in particular only rewards testing as much as it has an effect on the quality of
the final program submitted for grading. Due to the limited time in which the contestants
have to develop their solutions (typically five hours for solving three problems), they are
not able to perform systematic testing of their programs in addition to the other work. It
is therefore only natural that they tend to focus on the areas where their effort is more
directly rewarded.

It has been suggested by several authors (Cormack et al., 2006; Opmanis, 2006) that
the IOI community should consider bringing testing theory and its applications more
directly into the competition material. In this paper we examine the main modes of op-
eration of software testers and consider the suitability of each one as the basis for com-
petition tasks, with the aim of making testing activities the central point of the task. We
also provide several case studies of inflicting explicitly testing-related tasks upon actual
contestants: two tasks from BOI (Baltic Olympiad in Informatics) and one from a training
camp for the finalists of our national competition

172 A. Truu, H. Ivanov

2. Taxonomy

The two main attributes for classifying testing activities are black box versus white box
methods and static versus dynamic testing (Patton, 2006, pp. 51–122).

In black box testing techniques, the testers do not know the internal implementation
details of the software they are testing and rely exclusively on external interfaces. In white
box (sometimes also called clear box or glass box) techniques, the testers have access to
the implementation details of the software and actively use this knowledge to tailor the
test cases.

In static testing, the testers examine the software without actually running it (one may
argue that “analysis” is the proper term here instead of “testing”), whereas the dynamic
approach is based on observing (and possibly influencing) the program while it executes.

2.1. Static Black Box Testing

Having no access to the implementation details of the software and no ability to run it
either is effectively equivalent to not having the software at all.

In real-life software projects, the testing team uses the requirements documents to
define the test plan to be executed when the actual software arrives. This is also the mode
in which competition task developers normally operate: they must create the test data
based on the task description alone, not having access to the solutions that the test data
will be used on.

Since it is impossible to have an exhaustive test data set for any realistic problem, the
domain of input data is usually split into a limited number of equivalence classes and
the program is tested on just one instance (or at most a few instances) of each class. The
main objective is to achieve as complete as possible coverage of the problem domain
using limited number of test cases.

To evaluate the test data created by contestants in such a setting, the grading server
could have a set of solutions, probably one of them correct and the rest somehow flawed
– either producing wrong answers, violating some resource constraints or terminating
abnormally under certain conditions. It may also be possible to merge some (or even all)
the flawed solutions together into one that exhibits all the problems.

The grading would then consist of running the solutions on the test data provided
by the contestant and checking which of the faults are triggered and which are missed.
Of course, merging several flaws into one implementation brings the risk that the flaws
will interfere with each other and care has to be taken to properly track which one was
actually triggered by any given test case. We will discuss additional scoring details in
Subsection 2.5.

2.2. Dynamic Black Box Testing

In dynamic black box testing, the tester has the possibility to run the software, but no
knowledge of its implementation details. This is the mode in which integration testing

On Using Testing-Related Tasks in the IOI 173

usually works in major software projects. Independent software verification and valida-
tion (especially in the sub-domain of security analysis) is also often done in this mode,
since the vendor of the software may not be co-operating.

In a competition, this mode could be implemented by giving the contestants access
to an implementation with known defects. To maintain the black box status, the imple-
mentation should obviously be given in binary form only. To prevent reverse engineering
(as opposed to pure black box testing), it may be even better to expose the flawed imple-
mentation as a service on the grading server such that the students can submit inputs and
receive outputs, but not interfere otherwise.

Giving out several binaries with only small differences would help the contestants
focus their reverse engineering efforts on the areas where the implementations differ.
Consequently, this should probably be avoided, unless the implementations have major
differences in the overall structure that would render them resistant to differential analy-
sis. Thus, the network service access would be the technically preferred way to provide
several slightly different versions, each one with a distinct defect.

The scoring of the test data produced could be similar to the case of static black box
testing. A grading possibility specific to this task type only is to give the contestants a
binary with known defects and ask them to implement a “bug-compatible” version. This
approach was used in BOI’98, as reported in Subsection 3.2.

2.3. Static White Box Testing

Static white box testing should involve examining the internals of the software without
running it. When trying to come up with tasks based on this approach, the first concern
is keeping the testing static. After all, the contestants have programming tools available
and know how to use them, which means they can easily turn the static testing exercise
into a dynamic one!

There are two major kinds of activities in practical software development that can be
classified under this heading: code reviews and program analysis. Code review is a team
effort and results in a human-readable document (most of time in the form of annotations
on top of existing source code). As such, it is probably the least suited as a basis for an
IOI-style task. Perhaps we could invent an annotation language for marking up existing
code in some machine-readable form, but this would probably get too heavy to fit into the
hour and a half that a contestant has per task.

On the other hand, asking the contestants to create a simple program analysis tool
can be just the approach to keep them from rewriting any human-readable presentation
of the algorithm from the task text into an executable implementation. As with the black
box testing case, the key is that the actual code is not available until grading time. This
approach was used in BOI’95, as reported in Subsection 3.1.

2.4. Dynamic White Box Testing

Dynamic white box testing means the tester is free to run the software and also has access
to the implementation details. A natural way to achieve this setting in the contest environ-
ment could be to provide the software to test in source code form. To avoid bias between

174 A. Truu, H. Ivanov

contestants using different languages, either equivalent source should be provided in all
languages, or the program could be given in some pseudo-code.

This approach was tried in a recent training camp, as reported in Subsection 3.3.

2.5. Scoring

There are some scoring considerations common to all of the task types mentioned above,
involving two main aspects of test data quality: correctness and completeness.

On the correctness level, the test cases could be rated:

• well-formed when the file format meets the conditions set in the task description
(for example, a line of 200 characters where the task description allowed for no
more than 100 characters would be malformed);

• valid when the file is well-formed and the semantic value of its contents matches the
conditions given in the task description (for example, presenting an unconnected
graph in an input file would make the file invalid if the task called for connected
graphs only);

• correct when both the input and output file are valid and agree with each other (a
test case consisting of a valid input file and a valid output file which do not agree
with each other would still be incorrect).

Obviously, no points should be awarded for any test cases other than correct ones.
However, there are still several possible ways to handle the rest:

• The grading server could validate all proposed test cases as they are submitted and
accept only the correct ones.

• The grading server could accept all test cases initially, but filter out the incorrect
ones as the first step of the grading process. If the contestant is allowed to submit
only a limited number of test cases for the task, this already is a small penalty in
that the incorrect cases take up slots that could have been used for correct ones.

• The grading server could also assign explicit penalty points for the incorrect test
cases submitted.

It is probably sensible to check for the format of the submitted files in any case, to
weed out silly mistakes like submitting an output file in lieu of an input file or vice versa,
but the decision to reject or accept invalid or incorrect cases would probably depend on
the particular task.

There are also several possible ways to assign score for the correct test cases. Since
the main goal besides correctness of every test data set is completeness, the following
approaches come forward:

• To award some points for each test case that causes failure in at least one of the
faulty programs. Of course, we need to limit the number of test cases a contestant
can submit in order to have an upper limit on the value of the task. The problem
with this approach is that it would grant full score to a test data set that makes the
same faulty program fail in every test case. Certainly, this is not good coverage.

• To overcome the problem with the previous approach, we could instead award some
points for each faulty program that fails on at least one test case submitted by the

On Using Testing-Related Tasks in the IOI 175

contestant. That would put an automatic upper bound on the value of the task,
as there would be a fixed number of faulty solutions that could fail. But still this
approach would probably result in a lot of contestants just submitting the maximal
allowed number of randomly generated large test cases in the hope that there will
be something in them to trigger all the faults. It would be very hard to avoid them
getting high scores with no actual design in any of the test cases.

• To further improve the grading accuracy, we could divide the faulty solutions into
clusters based on the passed/failed patterns. If we then award points based on the
number of clusters we get, that would encourage the students to carefully design
the test cases to isolate specific faults. It would probably depend on the task details
whether it would be better to collect into one cluster all the solutions that pass ex-
actly the same set of test cases or whether we should also consider how they fail on
the cases that they do not pass. The distinct failures could include abnormal termi-
nation, exceeding time or memory constraints, producing wrong answers. Some-
times perhaps even different wrong answers could be counted as different faults.

One issue that should be considered in the context of a large event like IOI is the
computation power needed to grade these types of tasks. It takes O(N ·K) time to eval-
uate the solutions of N contestants to a batch task that has K test cases, but it will take
O(N ·K·M) time to evaluate the solutions to a testing task where each contestant can
submit K test cases on which M different implementations have to be tested. Also the
grading reports may get excessively long if their layout is not carefully considered.

3. Case Studies

3.1. Task IFTHENELSE, BOI’95

This is a program analysis task that was proposed for the 1995 Baltic Olympiad in Infor-
matics by Rein Prank from Tartu University.

The task considered a simple programming language consisting of IF/THEN/ELSE
statements with only comparison of two integer variables for equality as the conditions
and asked the contestants to write a tool that would analyze a program written in that
language, report all possible outcomes, and for each outcome also a set of initial values
for the variables to produce that outcome. (The complete original text of the task is given
in Appendix A.)

The grading was done on 11 independent test cases valued from 2 to 5 points, for a
total of 50 points for the task. As can be seen from Fig. 1, the task resulted in quite good
distribution of scores among the 14 participants of the event.

3.2. Task RELAY, BOI’98

This is a task that was proposed for the 1998 Baltic Olympiad in Informatics, again by
Rein Prank.

176 A. Truu, H. Ivanov

Fig. 1. Distribution of scores for the task IFTHENELSE.

The task described a sufficiently intricate data filtering and sorting problem on racing
times (see Appendix B for the full text). The contestants were asked to develop a “bug-
compatible” version of a binary that contained several classic mistakes:

1) using a strict inequality when a slack one should have been used in filtering;
2) sorting by the wrong key;
3) ignoring the seconds when checking that a time value does not exceed 2 hours;
4) forgetting to carry from seconds to minutes when subtracting time values.

The grading was done using 7 “positive” and 4 “negative” test cases. For each “posi-
tive” test case (that is, where the given implementation worked correctly), the contestant
received 2 points if their solution produced the same (correct) answer as the given pro-
gram. For each “negative” test case (that is, where the given implementation worked
incorrectly), the contestant received 4 points if their solution produced the same (incor-
rect) answer as the given program, 2 points if their solution yielded an incorrect answer
different from the one produced by the given program, and no points if their solution pro-
duced a correct answer (this indicated a fault in the given program that the contestant did
not detect). Also, to prevent random output from scoring half the points for the “negative”
test cases, a contestant’s solution that failed in more than one “positive” test case would
be denied the 2 point scores for the “negative” cases. As can be seen from Fig. 2, this task
also turned out a good distribution of scores.

3.3. Task QUICKSORT, EOI’08 Training Camp

This task was devised by ourselves for a practice session held for the finalists of the
Estonian Olympiad in Informatics.

The students were given a correct implementation of the QuickSort algorithm and
several modifications where strict inequalities had been replaced by slack ones and vice
versa (see Appendix C for full text of the task). They were then asked to develop test data
that would enable them to tell these versions apart from each other by looking only at the
test failure patterns.

In Fig. 3, the line “Tests” shows for each contestant the number of test cases that
triggered at least one fault, the line “Faults” shows the number of faults triggered by at

On Using Testing-Related Tasks in the IOI 177

Fig. 2. Distibution of scores for the task RELAY.

Fig. 3. Results for the task QUICKSORT.

least one test case, and the line “Patterns” shows the number of distinct passed/failed
patterns yielded by the set of test cases.

The results of this experiment are probably not directly comparable to the two previ-
ous case studies. The average experience level of the participants was significantly below
that of the BOI contestants, the session was the last one in the evening of a rather long
day, and the students knew their work would not be graded competitively.

Additionally, for some of the participants, the session was the first time they had to
perform significant part of their work outside the IDE on Linux. In fact, the main goal of
the session from the viewpoint of preparing the future BOI/IOI team members was to get
them comfortable setting up shell scripts for quickly running their solutions on several
test cases.

4. Conclusions

As can be seen from the above case studies, it should be possible to set up good IOI-style
tasks based on any of the main modes of operation observed in real-life quality assurance

178 A. Truu, H. Ivanov

teams. We have seen successful examples derived from both black-box and white-box, as
well as from both static and dynamic techniques.

We have also seen a somewhat less successful example, which only confirms the
obvious: even though tasks can be created based on any area of software testing, care
must be taken to ensure the task matches the experience of the contestants and the time
available for solving the problem posed to them.

Appendix

A. Task IFTHENELSE

Any line of the program in the programming language IFTHENELSE begins with the
line number and contains only one command. The variables are of an integer type, the
lowercase letters are used as their identifiers.

The input file presents a subprogram (number of lines � 20) that computes one integer
value and contains only the lines of the following syntax:

<line number> IF <ident>=<ident> THEN <line number> ELSE <line number>

<line number> RETURN(<integer>)

where the command RETURN finishes the execution of the subprogram and returns the
integer as a value.

Find all the possible results of the execution of the subprogram. Write each of them
only once together with such values of all the variables of the subprogram that bring to
this result.

EXAMPLE.
The file ITE.DAT contains the subprogram

11 IF a=b THEN 12 ELSE 15

12 IF b=c THEN 13 ELSE 15

13 IF a=c THEN 14 ELSE 16

14 RETURN(14)

15 RETURN(15)

16 RETURN(77)

The answer:
14:

a=1, b=1, c=1

15:

a=1,b=2,c=3

B. Task RELAY

A young programmer has written software for orienteering competitions. The file RE-
LAY2.EXE contains his program for ranking the participants of second relay by their in-

On Using Testing-Related Tasks in the IOI 179

dividual results. As input data, the program uses the files START.IN and FINISH.IN pre-
senting some parts of Start and Finish protocols containing all the participants of second
relay and possibly some others. First line of both files contains the number of competitors
in the file. Each of the remaining lines consists of the number of the competitor and his
(her) starting/finishing time (hours, minutes, seconds), in order of starting/finishing. The
participants of first relay may have the numbers 100, 101, 102, . . ., 199; the participants
of second relay the numbers 200, 201, 202, . . ., 299 etc. Maximal possible number is 499.

EXAMPLE.

START.IN FINISH.IN
6 5
203 13 12 7 104 13 48 59
201 13 12 10 201 13 52 40
305 13 15 8 305 13 53 1
202 13 24 31 202 13 59 47
204 13 48 59 203 15 25 21
301 13 52 40

The output file RELAY2.OUT must contain the numbers of the participants of second
relay having received positive result (i.e., running time not more than 2 hours), ranked by
their individual results. If the results are equal then the participant having finished earlier
must be higher in the table. In case of our example the output must be

202

201

The program RELAY2.EXE is not completely correct. Your task is to test the program,
to diagnose the mistakes in it and to write in your programming language a program
MYRELAY that makes the same mistakes as the prototype. Your program will be tested
with some positive tests (where RELAY2 computes correct results) and some negative
tests (where the output of RELAY2 is not correct). Full points for a positive test will be
given if your program gives correct output. In case of negative test you get full points if
your program gives the same output as RELAY2 and half of the points if your output has
correct format and is wrong but different from the output of RELAY2. You get no points
for a negative test where your program computes the correct result (this indicates an error
in RELAY2 that you did not detect). The half-points will be given only in the case if your
program fails not more than one time with positive tests.

Your program must not incorporate the original RELAY2.EXE nor any part of it. It
is also forbidden to call RELAY2.EXE from your program. If such violation of the rules
will be detected by the judges, your score for the entire problem will be 0.

All the test cases contain only correct (i.e., possible in real competition) data. All
participants of second relay in FINISH.IN occur in START.IN, but some participants
having started can be not in Finish protocol. In all test cases the output of RELAY2.EXE
has right format, i.e., contains one integer on each line. In all test cases the correct output
and the output of RELAY2.EXE contain at least one and not more than 100 participants.

180 A. Truu, H. Ivanov

C. Task QUICKSORT

Consider the following implementation of the QuickSort algorithm:

1. procedure qs(var a : array of integer; l, r : integer);
2. var i, j, x, y: integer;
3. begin
4. i := l; j := r; x := a[(l + r) div 2];
5. repeat
6. while a[i] < x do i := i + 1;
7. while x < a[j] do j := j - 1;
8. if i <= j then begin
9. y := a[i]; a[i] := a[j]; a[j] := y;
10. i := i + 1; j := j - 1;
11. end;
12. until i > j;
13. if l < j then qs(a, l, j);
14. if i < r then qs(a, i, r);
15. end;

Create a set of test cases that is able to distinguish between the following variations:
1) the above (correct) implementation;
2) the ‘<’ on line 6 is replaced by a ‘<=’;
3) the ‘<’ on line 7 is replaced by a ‘<=’;
4) the ‘<=’ on line 8 is replaced by a ‘<’;
5) the ‘>’ on line 12 is replaced by a ‘>=’.

References

Cormack, G., Munro, I., Vasiga, T. and Kemkes, G. (2006). Structure, scoring and purpose of computing com-
petitions. Informatics in Education, 5(1), 15–36.

Opmanis, M. (2006). Some ways to improve olympiads in informatics. Informatics in Education, 5(1), 113–124.
Patton, R. (2006). Software Testing. Sams Publishing.

A. Truu is a software architect with GuardTime AS. He has been in-
volved in programming competitions since 1988, first as a contestant
and later as a member of the jury of the Estonian Olympiad in Infor-
matics as well as a team leader to the Baltic, Central European and
International olympiads, and the coach of Tartu University’s team to
the ACM ICPC.

H. Ivanov is a software developer with AS Logica Eesti. He has been
to several different international competitions (BOI, CEOI, IOI, ACM
ICPC) both as a contestant and as a team leader. He headed the team
that created the grading system for the BOI’03 in Tartu, and has since
maintained it for use in the Estonian Olympiad in Informatics.

Olympiads in Informatics, 2008, Vol. 2, 181–191 181
© 2008 Institute of Mathematics and Informatics, Vilnius

What Do Olympiad Tasks Measure?

Troy VASIGA, Gordon CORMACK
David R. Cheriton School of Computer Science, University of Waterloo
Waterloo, Ontario, N2L 3G1 Canada
e-mail: {tmjvasiga, gvcormack}@cs.uwaterloo.ca

Graeme KEMKES
Department of Combinatorics and Optimization, University of Waterloo
Waterloo, Ontario, N2L 3G1 Canada
e-mail: gdkemkes@math.uwaterloo.ca

Abstract. At all levels of difficulty, the principal focus of olympiad tasks should be problem solv-
ing. Implementation complexity, esoteric knowledge requirements and mystery distract from prob-
lem solving, particularly for problems deemed to be of low or intermediate difficulty. We suggest
criteria for analysing potential tasks and illustrate these criteria by examining several tasks.

Key words: computing competitions, problem solving.

1. Introduction and Motivation

1.1. Motivation

At all levels of difficulty, the principal focus of olympiad tasks should be problem solving.
Implementation complexity, esoteric knowledge requirements and mystery distract from
problem solving, particularly for problems deemed to be of low or intermediate difficulty.
We suggest criteria for analysing potential tasks and illustrate these criteria by examining
several tasks.

We believe problem solving is important and fundamental to computer science since
it satisfies several properties that tasks should aspire to. In particular, tasks should be at-
tractive, approachable, challenging and practical (which we also mean generalizable or
extendible). Moreover, when the problem solving aspect of competition tasks is reduced,
the remaining elements lessen the attractiveness, approachability, challenge or practical-
ity of the task.

Our thesis is that while it is tempting, one should avoid making problems hard by
increasing the information processing aspects of the problem. Similarly it is common
to create easy problems by removing the problem solving component, leaving informa-
tion processing or memorization of algorithms. Neither the information processing nor
memorization should overwhelm the problem solving aspects.

Before we proceed to examining these claims, we formally define our terminology.

182 T. Vasiga, G. Cormack, G. Kemkes

2. Taxonomy

We now define the terminology we will use throughout the rest of this paper. By problem
solving, we mean the use of creative, intelligent, original ideas in combination with prior
knowledge when applied to a new situation. (A full description of problem solving can be
found in (Antonietti et al., 2000).) With respect to computing competition tasks, the “new
situation” is the task itself, but the novelty is not sufficient to warrant problem solving;
the task itself must have components which would draw upon prior knowledge and also
cause creative, original and intelligent new thought processes to occur in the task solver.

In order to further clarify our definition of problem solving, we explicitly define what
we do not mean by problem solving. For lack of a better term, we will classify the follow-
ing concepts as problem solving distractors. To begin, we consider detailed information
processing a distractor to problem solving. By detailed information processing, we wish
to encompass knowing details of

• particular programming languages or libraries contained therein,
• tedious input/output formatting,
• optimizations that result in constant-factor time improvement in execution speed.

We do acknowledge that there is some information processing required to make a
problem solving task into an computer science problem. However, the information pro-
cessing requirement should be minimized to the largest extent possible in order to keep
the crux of the problem solving task as clear as possible.

Another problem solving distractor is detailed esoteric knowledge of algorithms, by
which we mean memorization of recent journal articles for leading edge algorithms (e.g.,
recent algorithms from such publications as ACM Symposium on Theory of Computing
or IEEE Symposium on Foundations of Computer Science) or memorization of imple-
mentation details of complicated algorithms (e.g., implementing red-black trees).

The final problem solving distractor we consider is the distractor of mystery, by which
we mean hidden aspects of a task or evaluation criteria that a competitor must guess at.
Granted, there are two sides to the issue of mystery. Mystery is required, in a moderate
sense, since programmers must learn to implement and test their programs with incom-
plete information. However, since olympiad tasks must be solved under very high time
pressures, the challenge of performing deep testing is overwhelming, and thus subtle or
even minor errors (typically resulting from information processing distractors) can cause
a nearly-correct solution to obtain very few points. Specifically, coding under a veil of
mystery is both frustrating and time consuming for the participant. Furthermore, if a task
is unreasonably complex, the participant is in effect required to guess at how many marks
a partial or partially debugged solution might yield.

When we state that a task should be generalizable or extendible, we mean that it is
straightforward to add dimensions to the problem, remove constraints or decontextualize
the problem to make it more abstract. If a task is extendible, it often is practical, by
which we mean that there are real-world problems that can be solved using solutions to
this particular task. As mentioned in (Cormack et al., 2005), making problems practical
is an important step to improve the view of the IOI through the eyes of spectators, public

What Do Olympiad Tasks Measure? 183

and sponsors. If the tasks we are solving are useful, or at least can be seen to be useful,
this would go a long way to improving the perception of the IOI and the discipline as a
whole.

3. One Goal, Many Distractors

What is the goal of an olympiad task? Our view is that the goal of an olympiad task is to
solve the task. By solving the task, we mean being able to communicate the underlying
algorithmic process that will consume input in the desired way to produce the correct
output. The core concept in solving a task is the application of problem solving skills.
Unfortunately, solving a task is conflated with the problem solving distractors outlined in
Section 2. Specifically, students need to pay particular attention to information processing
details, such as

• whether to return 0 at the end of their main procedures in C/C++ ;
• dealing with newline characters in their input or output;
• dealing with file input and output nuances in particular languages;
• knowing particular libraries, and more specifically, the efficiency of particular li-

braries. For example, knowing runtime differences between cin and printf
in C++.

These distractors point towards what we believe is a significant problem with IOI
tasks. At the IOI, optimal efficiency of a correct solution tends to be the overriding goal
of IOI tasks. Certainly, competitors must meet the constraints outlined in the problem
statement. However, the goal of IOI tasks seems to be finding “the best” algorithm, go-
ing so far as to distinguish between O(N log log N) and O(N) solutions. This focus on
efficiency (and how to measure it accurately) has been the main reason Java has not been
added to the set of allowed languages at IOI: specifically, see the technical reasons stated
in (Nummenmaa and Kolstad, 2006). This disproportionate focus on efficiency has led to
many concerns with IOI tasks, such as:

• competitors guessing what non-solutions get the most marks: see for example eval-
uation of IOI tasks (Forisek, 2006) that have allocated an inappropriate percentage
of marks for incorrect algorithms;

• the speed of programming being a factor in the scores of IOI competitors;
• the competitor who has memorized the “correct” set of algorithms has a clear ad-

vantage over those competitors who have broader algorithmic abilities.

In the next section, we discuss ways of mitigating these distractors which can move
the goal of IOI tasks away from ultra-efficiency and closer to pure problem-solving.

4. Minimizing Distractors

The distractors outlined in the previous two sections tend to move the particular task away
from the problem solving aspects and also artificially inflate the difficulty of the task. An

184 T. Vasiga, G. Cormack, G. Kemkes

unfortunately corollary of these distractors is that when a task is deemed difficult, there is
a tendency to eliminate the problem solving aspect to make the task easier, which results
in having a task with an even higher proportion of distractors, or, in the worst case, a
problem involving only distractors.

Further, the distractors may not be in the task itself, but some distractor external to
the task, such as the programming environment in particular.

We propose the following solutions that minimize or mitigate the distractors described
above.

1. Provide feedback during the competition. As outlined in (Cormack et al., 2005),
feedback on submissions for competitors can provide many benefits. For the pur-
poses of this paper, the key benefit feedback provides is the minimization of mys-
tery.

2. Consider using output-only tasks. Output-only tasks reduce the restrictions im-
posed by programming languages, leaving the idea of problem-solving as a rem-
nant. There are several flavours of output-only tasks that can be used. One flavour,
is to solve some small or restricted case of a problem by hand (as mentioned in
(Cormack et al., 2005)). Another variation on output-only tasks is to ask a theoret-
ical question, such as what is the minimum number of times event X can occur if
some other event Y must occur in some previous step. Yet another variation is for
the “solution” to be a test case which examines some constraint of the problem: for
example, what is the largest amount of money that cannot be formed using a set of
coins in denominations 4 and 9? To state the benefit of output-only tasks another
way, output-only tasks remove all information processing in a CPU sense and re-
cast it in a mental information processing sense, which should be the core idea of
informatics tasks.

3. Provide a syllabus. Providing a syllabus ahead of the competition will remove
mystery and focus the competitors on applying problem solving skills of synthe-
sis and creativity in their solutions, rather than rote learning and memorization of
a correct set of algorithms. An example proposed syllabus in the IOI context is
(Verhoeff et al., 2006).

4. Provide a standard IOI library of tools. If multiple languages are allowed in
a competition, and if the ability to measure efficiency of solutions matters, then
providing an STL-like library, where students call particular routines with known
runtime, mitigate the language-specific distractors. Specifically, a standard library
will make solutions much less language dependent, opening up the possibility of
additional languages being introduced at the IOI, and it will also mitigate informa-
tion processing details that arise from input and output.

5. Provide practice problems that test all input/output requirements. If there is
no library available for the students to use, and thus, they must use the input/output
of their particular language environment, they should be told precisely the format
of the input and output well before the actual competition, in order to move the
implementation problems to an off-line ahead-of-time concern, not part of the task.

6. Simplify the input format. As specific examples, we mean tasks should eliminate
file I/O, and eliminate multiple test cases from individual files. We are not advocat-

What Do Olympiad Tasks Measure? 185

ing for the removal of batch testing. Rather, batch testing can be done by grading
systems and test schemes that group test cases together. Standard input may be a
good format of input, if we wish to be open to many different tools (this is what the
ACM ICPC uses). The simplification of input will mitigate detailed information
processing.

7. Simplify the output format. It is unclear what is the relative difficulty of returning
a value, or outputting to a file, or outputting to the screen or outputting to standard
output. Thus, make the output format as simple as possible by not relying on mul-
tiple streams/types of output (i.e., do not rely on both correct return values and
correct output to files) or relying on multiple pieces of output. Simplified output
will minimize detailed information processing.

8. Ensure the problem statement is short. Information processing does not sim-
ply involve processing information via the computer: the less reading the student
needs to do, the more the student can focus on the problem solving of the task it-
self. Moreover, it is generally the case that tasks with long descriptions either have
very little problem solving in them (i.e., they are using information processing in
the task description as a distractor) or there is a significant amount of information
processing required (i.e., the task is extremely complicated but perhaps not intel-
lectually demanding).

9. Ensure that solutions are short. It should go without saying that tasks should
have solutions written for them before they are given to competitors. If the solution
for a task is longer than 50 lines of C code or if it requires use of the STL or other
library functions, the task should be met with great suspicion.

10. Attempt to make tasks practical, or show how they may be extended to prac-
tice. Most problems in the “real world” have fairly simple descriptions, simple
input, and simple output but have incredible problem solving cores. One example
of such a problem is finding a subsequence in a DNA string: here the input is de-
fined by a string consisting of four different letters, the output is a boolean value,
yet the computational and problem solving core is very rich.

11. Piloting the task. We have mentioned that tasks should have solutions written for
them before they are given to competitors. Furthermore, the solutions should be
written by people other than those that created the problem. While the existence of
a solution to a task is beneficial, we argue that the “pilot” (tester) of a task should
also ensure that the points 6–10 above are satisfied to the greatest extent possible.
Thus, we propose a checklist that includes the items shown in Fig. 1.

5. Examples

We now consider applying the ideas introduced in Section 4 to various examples in order
to highlight the beneficial analysis and framework the points from Section 4 can provide.

By way of contrast, we will present a seemingly simple task description, and high-
light how implementation details can make a task which is of poor quality. We begin by

186 T. Vasiga, G. Cormack, G. Kemkes

• Do you understand the problem statement?
• Is there extra information in the problem statement that can be deleted?
• Can some descriptions in the problem tasks be simplified or clarified?
• Do you know how to solve the task?
• What do you consider the components of the task to be?
• If you solved it, was the programming effort tedious? What were the implementation (rather than

problem solving) challenges you faced?
• Was your solution fewer than 50 lines of code?
• Describe your thought process in solving the problem. What false starts or incorrect attempts did

you encounter while solving the problem?
• Can the input format be simplified?
• Can the output format be simplified?
• Can you imagine problems/circumstances/issues where this task may be generalized to?

Fig. 1. The pilot’s checklist.

considering a simple, abstract task of “Read in a list of numbers and maintain two heaps,
one a max-heap and one a min-heap.” The implementation details involve maintaining
pointers/references between all nodes in both trees, and successively updating each tree
for each operation that is implemented. Notice that the problem solving aspect here is
quite simple, and the task description is very short, but there is a tremendous amount of
implementation detail to be worked out. Moreover, if there is an error in the implemen-
tation, even though the problem has been solved, there may be a significant amount of
difficulty in debugging such errors.

For the remainder of this section, we focus on actual tasks that were used in competi-
tions. For copyright reasons and to avoid negative implications of our analysis, we focus
on problems that have been used either at the Canadian Computing Competition or local
training contests used at the University of Waterloo for ACM ICPC team selection.

5.1. Dick and Jane

(This task was used at the University of Waterloo local competition, June 1998 (Cormack,
visited 2008).)

Dick is 12 years old. When we say this, we mean that it is at least twelve and not yet
thirteen years since Dick was born.

Dick and Jane have three pets: Spot the Dog, Puff the Cat, and Yertle the Turtle. Spot
was s years old when Puff was born; Puff was p years old when Yertle was born; Spot
was y years old when Yertle was born. The sum of Spot’s age, Puff’s age, and Yertle’s age
equals the sum of Dick’s age (d) and Jane’s age (j). How old are Spot, Puff, and Yertle?

Each input line contains four non-negative integers: s, p, y, j. For each input line,
print a line containing three integers: Spot’s age, Puff’s age, and Yertle’s age. Ages are
given in years, as described in the first paragraph.

5.2. Analysis of “Dick and Jane”

This task has a short problem statement, short solution, but could be improved by re-
ducing the multiple inputs in files. If libraries were given to the competitors, variables

What Do Olympiad Tasks Measure? 187

could be eliminated by having values in a method call to programs. As a practical ex-
tension, students could learn something about linear programming generally, or integer
linear programming in particular. It is worth noting that there may appear to be two pieces
of redundant information in the task description: in fact there is only one redundant item.
The parameter d is redundant, in that Dick’s age of 12 is given in the problem statement.
However, the parameters s, y and p are all necessary, since there are many “off-by-one”
boundary cases that are meant to be considered by this task. This task would satisfy the
majority of the Pilot’s Checklist (shown in Fig. 1) and thus, would be a very good task.

5.3. Space Turtle

(This task was used at Canadian Computing Competition, Stage 2, 2004. (Canadian Com-
puting Competition Committee, visited 2008)).

Space Turtle is a fearless space adventurer. His spaceship, the Tortoise, is a little
outdated, but still gets him where he needs to go.

The Tortoise can do only two things – move forward an integer number of light-years,
and turn in one of four directions (relative to the current orientation): right, left, up and
down. In fact, strangely enough, we can even think of the Tortoise as a ship which travels
along a 3-dimensional co-ordinate grid, measured in light-years in directions parallel to
co-ordinate axes. In today’s adventure, Space Turtle is searching for the fabled Golden
Shell, which lies on a deserted planet somewhere in uncharted space. Space Turtle plans
to fly around randomly looking for the planet, hoping that his turtle instincts will lead
him to the treasure.

You have the lonely job of being the keeper of the fabled Golden Shell. Being lonely,
your only hobby is to observe and record how close various treasure seekers come to
finding the deserted planet and its hidden treasure. Given your observations of Space
Turtle’s movements, determine the closest distance Space Turtle comes to reaching the
Golden Shell.

Input
The first line consists of three integers sx, sy, and sz, which give the coordinates of

Space Turtle’s starting point. Each of these integers is between −100 and 100. Space
Turtle is originally oriented in the positive x direction, with the top of his spaceship
pointing in the positive z direction, and with the positive y direction to his left. The
second line consists of three integers tx, ty, and tz, which give the coordinates of the
deserted planet. Each of these integers is between −10000 and 10000.

The rest of the lines describe Space Turtle’s flight plan in his search for the Golden
Shell. Each line consists of an integer d, 0 � d � 100, and a letter c, separated by a
space. The integer indicates the distance in light-years that the Tortoise moves forward,
and the letter indicates the direction the ship turns after having moved forward. ‘L’, ‘R’,
‘U’, and ‘D’ stand for left, right, up and down, respectively. There will be no more than
100 such lines. On the last line of input, instead of one of the four direction letters, the
letter ‘E’ is given instead, indicating the end of today’s adventure.

188 T. Vasiga, G. Cormack, G. Kemkes

Output
Output the closest distance that Space Turtle gets to the hidden planet, rounded to 2

decimal places. If Space Turtle’s coordinates coincide with the planet’s coordinates dur-
ing his flight indicate that with a distance of 0.00. He safely lands on the planet and finds
the Golden Shell.

5.4. Analysis of “Space Turtle”

There is a rather long-winded story in the description. While there can be circumstances
where a story enhances the situation, other times it can be distracting. For this task, the
story is a distractor. The input description is quite complicated, involving various types
of data, and the description of the last line is ambiguous: it is unclear if there is a number
before the letter ‘E’ or not. If there is no number before the letter ‘E’ then reading of
such input is sophisticated. Output was constrained to a single value to make the problem
easier to mark, but since the output did not show a derivation it was difficult to assign
partial credit for students who made small mistakes. The simplified output also, in fact,
complicated the problem statement. The solution to this problem is quite short, involving
only a few simple arithmetic transformations during each iteration of a loop. This task
can be generalized by relaxing the requirement of 90 degree motion. This task is an
introduction to the rich subject area of three-dimensional geometry.

5.5. Pinball Ranking

(This task was used at the Canadian Computing Competition, Stage 1, 2005 (Canadian
Computing Competition Committee, visited 2008)).

Pinball is an arcade game in which an individual player controls a silver ball by means
of flippers, with the objective of accumulating as many points as possible. At the end of
each game, the player’s score and rank are displayed. The score, an integer between 0
and 1 000 000 000, is that achieved by the player in the game just ended. The rank is
displayed as “r of n”. n is the total number of games ever played on the machine, and r

is the position of the score for the just-ended game within this set. More precisely, r is
one greater than the number of games whose score exceeds that of the game just ended.

You are to implement the pinball machine’s ranking algorithm. The first line of input
contains a positive integer t, the total number of games played in the lifetime of the
machine. t lines follow, given the scores of these games, in chronological order. Input is
contained in the file s5.in.

You are to output the average of the ranks (rounded to two digits after the decimal)
that would be displayed on the board.

At least one test case will have t � 100. All test cases will have t � 100000.

5.6. Analysis of “Pinball”

The problem solving essence of this task is to maintain rank statistics in a tree. How-
ever, the efficiency considerations cause the implementation details and memorization of

What Do Olympiad Tasks Measure? 189

esoteric algorithms (i.e., range trees, balanced trees) to overwhelm the problem solving
core. Also, notice that the output was forced to be a summary statistic, since the marking
was done by teacher in classrooms (not in an automatic fashion). This constraint should
be altered to give a trace of each step. This would provide both better traceable code for
students (should they encounter an error in the program) and also remove one extra layer
of obfuscation that hides the problem solving skill.

A possible alteration to provide a library would be to create an API consisting of a set
of scores (S) where we have operations

• S = addScore(S, newScore)
• medianScore(S)
• subsetGreaterThanMedian(S)
• subsetLessThanMedian(S)
• count(S)

These operations remove knowledge of pointers, and remove the advantage of prior
tailored experience.

The test suite for this problem was spoofable by using poor heuristics, and this was
found out only after reviewing student submissions.

This problem is equivalent to a hard problem at IOI, but unfortunately, this problem
has multiple flaws based in its current form.

5.7. Long Division

(This task was used at the Canadian Computing Competition, Stage 1, 1997 (Canadian
Computing Competition Committee, visited 2008)).

In days of yore (circa 1965), mechanical calculators performed division by shifting
and repeated subtraction. For example, to divide 987654321 by 3456789, the numbers
would first be aligned by their leftmost digit (see Example 1), and the divisor subtracted
from the dividend as many times as possible without yielding a negative number. The
number of successful subtractions (in this example, 2) is the first digit of the quotient.
The divisor, shifted to the right (see Example 2), is subtracted from the remainder several
times to yield the next digit, and so on until the remainder is smaller than the divisor.

EXAMPLE 1.
987654321

- 3456789 first successful subtraction
========
641975421

- 3456789 second successful subtraction
========
296296521 remainder

- 3456789 unsuccessful subtraction
========
negative

190 T. Vasiga, G. Cormack, G. Kemkes

EXAMPLE 2.
296296521

- 3456789
========
261728631
etc.

(a) Write a program to implement this method of division. See the input and output
specifications below.

(b) If the dividend is n digits long and the divisor is m digits long, derive a formula
in terms of n and m that approximates the maximum number of single-digit subtractions
performed by your program.

Input Specification:
The first line of the input file contains a positive integer n, n < 20, which represents

the number of test cases which follow. Each test case is provided on a pair of lines, with
the number on the first line being the dividend, and the number on the second line being
the divisor. Each line will contain a positive integer of up to 80 digits in length.

Output Specification:
For each pair of input lines, your output file should contain a pair of lines representing

the quotient followed by the remainder. Output for different test cases should be separated
by a single blank line. Your output should omit unnecessary leading zeros.

5.8. Analysis of “Long Division”

This task has a tedious, heavily information processing-based solution. The specific in-
formation processing issues are output with certain spaces, line breaks, multiple test cases
in each file. Additionally, the output can be spoofed by simply performing the division
and remainder using built-in operators in some programming languages. The problem
statement is short, and the sub-task involving the number of operations is a very good
problem solving question.

On balance, if the information processing issues were mitigated, there is an interest-
ing problem solving core here, which can be extended and generalized to provide a good
task. Specifically, the description of the division algorithm should be simplified and in-
corporated with more text, the input should be simplified to a single test case and the
output should be modified to output the number of subtractions necessary for the entire
process.

6. Conclusion

The goal of olympiad tasks should be to measure the problem solving abilities of com-
petitors. Unfortunately, this goal is often hard to attain, due to distractors such as detailed
information processing, mystery and esoteric prior knowledge of algorithms. In this pa-
per, we have attempted to provide suggestions for improving competition environments

What Do Olympiad Tasks Measure? 191

(such as using libraries, syllabi, feedback during competition) for mitigating distractors
outside of tasks, as well as providing a methodology for analyzing tasks that will mini-
mize distractors from within particular tasks. It is our hope that improving both the en-
vironment in which tasks are written and the tasks themselves will result in olympiads
where students are better motivated, tasks are easier to understand and evaluators capable
of more accurately measuring the problem solving abilities of competitors.

References

Antonietti, A., Ignazi, S. and Perego, P. (2000). Metacognitive knowledge about problem-solving methods.
British Journal of Educational Psychology, 70, 1–16.

Canadian Computing Competition Committee.
http://www.cemc.uwaterloo.ca/ccc/

Cormack, G. University of Waterloo Local Competitions Pages.
http://plg1.cs.uwaterloo.ca/˜acm00/

Cormack, G., Munro, I., Vasiga, T. and Kemkes, G. (2005). Structure, scoring and purpose of computing com-
petitions. Informatics in Education, 5, 15–36.

Forišek, M. (2006). On the suitability of programming tasks for automated evaluation. Informatics in Education,
5, 63–76.

Nummenmaa, J. and Kolstad, R. (2006). Java in the IOI. IOI Newsletter, 6.
http://olympiads.win.tue.nl/ioi/oed/news/newsletter-200606.pdf

Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A proposal for an IOI Syllabus. Teaching Mathe-
matics and Computer Science, 4, 193–216.

G.V. Cormack is a professor in the David R. Cheriton School of Com-
puter Science, University of Waterloo. Cormack has coached Water-
loo’s International Collegiate Programming Contest team, qualifying
ten consecutive years for the ICPC World Championship, placing eight
times in the top five, and winning once. He is a member of the Cana-
dian Computing Competition problem selection committee. He was a
member of the IOI Scientific Committee from 2004–2007. Cormack’s

research interests include information storage and retrieval, and programming language
design and implementation.

T. Vasiga is a lecturer in the David R. Cheriton School of Computer
Science at the University of Waterloo. He is also the director of the
Canadian Computing Competition, which is a competition for sec-
ondary students across Canada, and has been the delegation leader for
the Canadian Team at the International Olympiad in Informatics. He is
the chair of the IOI 2010 Committee.

G. Kemkes has participated in computing contests as a contestant,
coach, and organizer. After winning a bronze medal at the IOI and two
gold medals at the ACM ICPC, he later led and coached the Cana-
dian IOI team. He has served on the program committee for Canada’s
national informatics olympiad, the Canadian Computing Competition.
Kemkes is currently writing his PhD thesis on random graphs in the
Department of Combinatorics & Optimization, University of Waterloo.

Olympiads in Informatics, 2008, Vol. 2, 192–207 192
© 2008 Institute of Mathematics and Informatics, Vilnius

Programming Task Packages: Peach Exchange
Format

Tom VERHOEFF
Department of Mathematics and Computer Science, Technische Universiteit Eindhoven
P.O. Box 513, NL–5600 MB Eindhoven, The Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. Programming education and contests have introduced software to help evaluation by
executing submitted taskwork. We present the notion of a task package as a unit for collecting,
storing, archiving, and exchanging all information concerning a programming task. We also de-
scribe a specific format for such task packages as used in our system Peach, and illustrate it with
an example. Our goal is to stimulate the development of an international standard for packaging of
programming tasks.

Key words: programming education, programming contest, programming task, task package,
grading support software, data format.

1. Introduction

Programming education and contests have introduced software to help evaluation by ex-
ecuting submitted taskwork. Typically, a programming task is understood to be a short
text that describes the requirements on the program to be constructed. Such task descrip-
tions can be found in various problem archives, such as the (UVa Online Judge, 2008).
However, it takes more than just its task description to be able to (re)use a program-
ming task. In this article, we present the notion of a task package as a unit for collecting,
storing, archiving, and exchanging task-related information. Ideally, such task packages
can be dropped into your favorite programming education and contest hosting system to
configure it for the task.

We have used task packages for many years now in our programming education and
contest hosting system, called Peach (Peach, 2008). Using these task packages has helped
us ensure completeness and correctness of task data.

We will discuss the contents and format of task packages and also the interface and
operations for task packages. Particular concerns are the support for

• multiple languages to express human readable texts (including, but not restricted
to, the task description);

• multiple programming languages allowed for solving the task;
• multiple platforms to deploy tasks;
• diverse task styles;

Programming Task Packages: Peach Exchange Format 193

• validation of package content;
• handling of relationships between tasks, e.g., where one task is a variant of another

task;
• flexibility to allow easy incorporation of changes, such as changing the task’s name.

2. Package Contents

In this section, we discuss the various pieces of information that (could) belong in a task
package. As a running example, we use the task Toy Division. Here is its task description:

TOY DIVISION

PROBLEM

K kids together receive T toys. They wonder whether it is possible to divide
these toys equally among them, that is, with each kid obtaining the same num-
ber of toys and no toys remaining. If this is possible, they also want to know
how many toys Q each of them receives.

Write a program to answer the questions of these kids.

INPUT

A single line is offered on standard input. It contains two the numbers K and T ,
separated by a space.

OUTPUT

The answer must be written to standard output. The first line contains the string
’Yes’ if it is possible to divide the toys equally, and ’No’ otherwise. If equal
division is possible, then a second line must be written, containing the num-
ber Q of toys each kid obtains. If there are multiple answers, then it does not
matter which answer your program writes.

CONSTRAINTS

K, T , and Q are non-negative integers, less than 108. The execution time limit
is 0.1 s.

EXAMPLE

Standard Input
3 15

Standard Output
Yes
5

SCORE

There are 10 evaluation cases. Each completely solved case gets 10 points.
Incomplete outputs get 0 points; there is no partial score.

(END OF TASK DESCRIPTION)

194 T. Verhoeff

The following kinds of task-related information can be distinguished:

• textual information in natural language, such as the task description;
• data files, such as input data for evaluation runs;
• configuration parameters, such as resource limits;
• tools, such as a task-specific output checker;
• scripts, e.g., to build an executable or coordinate the evaluation process;
• submissions (good and bad), as exemplary solution and to help verify everything;
• metadata, e.g., classification of task type; some metadata could be textual.

It is good to be aware of the various stakeholders of task-related information. The termi-
nology often depends on the setting.

Supervisor makes management-level decisions, e.g., about the task name, set of tasks to
use together, presentation style, etc.; could also be called owner. In an educational
setting, this role is played by the teacher; in a contest setting, by the contest director
or chair of the scientific committee.

Author creates the task; makes technical decisions about the task; often needs to carry
out various experiments to explore alternatives and tune parameters.

Solver attempts to carry out the task, i.e., solve the stated problem, resulting in work to be
submitted for evaluation; could also be called performer. In an educational setting,
this is the student participating in a course; in a competition, it is the contestant.
Keep in mind that the solver is the primary stakeholder.

Grader is involved in evaluating the submitted work for a task. In an educational setting,
this is often a teaching assistant; in a competition, this is nowadays often supported
by an automated grading system, which is administered by a grading system ad-
ministrator, who configures the system for specific tasks. Note that also developers
of automated grading systems are to be considered as stakeholders.

Mediator helps interpret evaluation results. In an educational setting, this could be done
by an instructor, sometimes parents play this role; in a competition, this is done by
a coach or team leader.

Trainer helps in preparing the solver, e.g., through directed practicing. In an educational
setting, this is often the job of a teaching assistant; in a contest setting, there are
typically several trainers, each with their own area of expertise. It is also possible
that solvers practice by themselves. This stakeholder has a specific interest in the
ability to reuse tasks easily.

Researcher investigates tasks, submitted work, and evaluation results; this could be for
historic reasons, but also to help improve education and competition practices, or
with a purely scientific interest. This stakeholder is helped by consistent and com-
plete archiving of tasks, similar to what (Sloane’s OEIS, 2008) does for integer
sequences.

Programming Task Packages: Peach Exchange Format 195

2.1. Textual Information

The task description contains all information (or pointers to such information) that the
task author wants to offer to the students or contestants confronted with the task. In (Ver-
hoeff, 1988) some guidelines for creating programming problem sets are presented. The
task description must specify unambiguously, precisely, consistently and completely what
qualifies as an acceptable solution. Typically, each participant submits work on the task
in the form of (one or more) files. For files with program code, the task description states
the interfaces and the relevant contracts (assumptions and obligations), and provides at
least one example.

Besides a task description the following texts are useful to include in a task package.

Hints In an educational setting, we find it useful at times to include a separate text with
hints, which can be disclosed to participants under appropriate circumstances. Even
for contests, it can be useful to have separate hints.

Background information This includes, for instance, historic and technical information
(algorithms, data structures), and motivation for particular features, e.g., their rela-
tionship to a syllabus (Verhoeff et al., 2006).

Grading information That is, information that concerns the process of grading submit-
ted work for this task. In an educational setting, this could involve instructions for
assistants doing the actual grading. In a contest setting, it could cover information
useful in understanding the grading result.

Notes These are short texts about the contents of other items, for instance, summarizing
the purpose of the task, evaluation cases, and test submissions, and they can be used
to generate various overviews (also see Section 3 about operations on task pack-
ages). These notes belong to the category of metadata, which can include machine-
readable information as well (treated in Section 2.7).

The hints for our example are:
HINTS FOR TOY DIVISION

Consider the integer equation T = K ∗ Q with unknown Q.
What special cases are there?
(END OF HINTS)

Some background information for the example:
BACKGROUND INFORMATION FOR TOY DIVISION

The purpose of this task is to present a simple, nontrivial programming prob-
lem. The cases K = 0 could be eliminated to simplify it even further, by con-
straining the input to K > 0.
It has proven to be a good exercise in careful reading of specifications, and the
use of integer division, including the modulo operator.
(END OF BACKGROUND INFORMATION)

196 T. Verhoeff

Some grading information for the example:
GRADING INFORMATION FOR TOY DIVISION

The proper case distinction needs to be made. For K = 0, the equation T =
K ∗Q degenerates to T = 0. That is, equal division is not possible if T �= 0, it
is possible if T = 0, in which case any Q (in range) will do.

For K �= 0, the equation T = K ∗Q is a linear equation in Q. It is solvable
in integers if and only if K is a divisor of T , or, alternatively, if T mod K = 0.
In that case, Q is uniquely determined by Q = T/K.
Manual graders should judge the layout, comments, names, and idiom. Partic-
ular points of further attention are:

• avoiding division by zero;
• use of 32-bit arithmetic (or better);
• use of integer division, rather than floating-point division (inaccurate)

or repeated subtraction (too slow).

K T Q Remarks

1 0 0 * The only divisible case with K = 0
2 0 1 No Smallest T with K = 0 that is not divisible
3 0 99999999 No Largest T with K = 0 that is not divisible
4 1 0 0 Smallest case with K > T = 0

5 1 99999999 99999999 Largest Q that is divisible
6 2 1 No Smallest case with K > T > 0

7 2 65536 32768 T = 216, fails with 16-bit arithmetic
8 99999998 99999999 No Largest T , and K, that are not divisible
9 99999999 99999998 No Largest K, and T , that are not divisible

10 99999999 99999999 1 Largest K and T that are divisible

Legend:
Identifier of evaluation case
K Number of kids (input)
T Number of toys (input)
Q Number of toys per kid (quotient), if equally divisible, else No (output)
* indicates that any value Q satisfying 0 � Q < 108 is correct.

(END OF GRADING INFORMATION)

Each of these texts could be available in several languages. In our educational setting,
we often have material both in Dutch and in English. In contests like the International
Olympiad in Informatics (IOI, 2008), task descriptions are translated into the native lan-
guage of the contestants, resulting in dozens of versions of the same information, whereas
background and grading information is often presented in English only. Note that the tab-
ular overview of evaluation cases in the grading information would ideally be generated
from the actual evaluation data and summary texts (metadata).

A general concern with ‘plain’ text files is their encoding. For simple texts, ASCII
suffices, but especially for non-English texts, additional characters are desirable. We rec-
ommend the use of UTF-8 (RFC 3629, 2003), one of the Unicode standards.

Many texts, however, will not be written in a ‘plain’ text format, but some other for-
mat. Some relevant open format standards are:

Programming Task Packages: Peach Exchange Format 197

• LATEX, TEX, especially suited for texts involving mathematics (CTAN, 2008);
• OpenDocument, used by OpenOffice (OpenOffice, 2008);
• (X)HTML, used in web browsers (W3C, 2008);
• DocBook (DocBook, 2008);
• reStructured Text, used by Docutils (Docutils, 2008);
• various wiki formats.

Each of these open formats may have multiple variants. Note that these formats are
aimed at flexible text entry and editing. They can be converted into various (open) pre-
sentation formats, such as PDF.

One should also be aware of the need for version control on texts. This issue is
addressed further in Section 4.

2.2. Data Files

Besides human-readable texts, a task can also involve various other files, in both text or
binary format. We call them data files, even though they could well be source files with
program fragments, such as an interface definition for a library. These files could be part
of the material that the solver receives along with the task description, but they could also
be related to evaluation. Here is an overview:

• Data files accompanying the task description, possibly including source files. In our
educational setting, we sometimes have assignments where we provide a program
text ‘with holes’ to be completed by the students. Such a source file with holes
is created by a generic tool on the basis of our own solution with special ‘hole
markers’ in comments:

//# BEGIN TODO body of method TPointSet.Count
... author’s solution, to be suppressed ...

//# END TO DO

• Input data for evaluation runs; per run there could be several files;
• Expected output data for evaluation runs of deterministic1 programs, possibly mod-

ulo some simple equivalence relation. The equivalence could concern white space,
upper versus lower case characters, the order of numbers in a set, etc.;

• Auxiliary data used in evaluation runs of nondeterministic programs. This could
concern parts of the output that are deterministic, or some description of the ex-
pected output, e.g., in the form of a regular expression;

• Input data for tools that generate other files, such as large input for evaluation.

It is important that one can motivate the choice of data. A haphazard collection of
inputs does not make a good grading suite. Make it a habit to write a note for each data
file, summarizing its purpose (as opposed to its contents; for the latter, generator input or
characterizer output is more useful, see Section 2.4 on tools). Such notes can be (partially)
included in tabular overviews of data sets. This is especially useful for larger data sets.
The overview can be attached to the grading information.

There are some platform-related issues to keep in mind:

1By deterministic we mean that the input uniquely determines the output.

198 T. Verhoeff

End-of-line markers In text files, the end of a line is marked by a special character or
combination of characters, depending on the platform. Unix uses a line feed (LF),
Mac OS uses a carriage return (CR), and Windows uses the combination CRLF.
This is particularly relevant for files made available to the solver, and files directly
used in evaluation (e.g., to compare to the output of an evaluation run).

Byte order In binary files, the ordering of bytes in some multi-byte data items (such as
numbers) may vary between the platforms. The two main flavors are big-endian
and little-endian. The concerns are similar to those for end-of-line markers.

2.3. Configuration Parameters

The data files discussed in the preceding section play a specific role in grading the func-
tionality requested in the task: input(-related) data and output(-related) data.

A task can specify more than just functionality, It can, for instance, also impose perfor-
mance requirements. Such requirements are often expressed in terms of resource limits.
In particular, the following resources have been limited:

• size of submission (total size of source files);
• build time (total time allowed for compilation and linking);
• memory (RAM, hard disk space);
• execution time (total run time, or response time to specific events);
• number of times that certain resources may be used, for instance, that some function

in a library may be called.

Other things that can be treated as configuration parameter are: compiler options and
linker options.

Such configuration parameters are intrinsic to the task, and are sometimes – but not
always – communicated explicitly to the solver in the task description. They also need to
be taken into account during evaluation runs. For automatic grading and for later analysis
and comparison of tasks, it is useful to include configuration parameters in a task package
in a machine readable way. They should be easy to tune at a late stage.

Note, however, that the meaning of such parameters depends on the actual platform
used for evaluation runs. Platform information is discussed in Section 2.7 about metadata.
Also, it is imaginable that not all evaluation runs use identical parameter values.

2.4. Tools

When solving a task and when evaluating work submitted for a task, various generic soft-
ware tools are needed. Most notably these include editors, compilers, libraries, linkers,
loaders, debuggers, file comparators, etc. Generic tools are discussed in Section 2.7 along
with metadata.

There is often also a need for task-specific tools. These are to be developed by the
task author (or assistants). One can think of the following kinds of task-specific tools:

Input generator to produce specific input cases, for instance large cases with special
properties. Use of an input generator also helps ensure that valid data is created.

Programming Task Packages: Peach Exchange Format 199

Input validator to check that input files satisfy the assumptions stated in the task de-
scription. These assumptions often include format restrictions: what types of input
data appear in what order and in what layout (i.e., distribution over lines); but also
concern value restrictions: range limits on values, specific relationships between
values (e.g., a graph that needs to be connected).

Input data files need to be of high quality, and one should not simply assume that
they are valid (unless they are automatically generated maybe, but even then it is
useful to have the ability to independently check their validity). The application
of an input validator needs to be automated, because otherwise it will not be used
when it is most needed, viz. under pressure when last-minute changes are made.
Also see Section 3 about package operations.

Output format checker to check that output conforms to the format requirements of the
task. This tool can be given to the solver to help achieve the correct output format.
Note that this tool will not give information about the actual correctness of the
output. It can also be used during evaluation as a filter to ensure that a tool that
checks for correctness does not have to deal with badly formatted data.

Input/output characterizer to summarize characteristics of data files, in particular, to
generate, from actual input and output data files the tables appearing in the grading
information. Such summaries are useful in determining to what extent evaluation
runs cover various ‘corners’ of the input space. Doing this by hand is cumbersome
and error prone.

Expected-output generator to produce expected output on the basis of given input data.
This is useful when a task is (almost) deterministic. Note that in most cases a
solution to the task can act as expected-output generator. But it need not satisfy the
task’s performance requirements; it can be run in advance (or afterwards) and even
on a different platform.

Output checker to check that output2 generated in an evaluation run corresponds with
the input data in accordance with the requirements stated in the task description.
An output checker takes as inputs the input data file, the output data file produced
in the evaluation run, and sometimes also some preprocessed data (to avoid the
need for recalculating certain information, e.g., concerning deterministic parts of
the output; that way the checker can be kept smaller and more generic).

This applies especially to nondeterministic tasks. In case of a deterministic task,
output checking can be done generically by comparing actual output to expected
output, possibly modulo some simple equivalence relation.

Evaluation drivers and/or stubs to be combined with submitted program fragments to
build executables used in evaluation runs. In particular, if the task does not require
the solver to submit a main program (but, for instance, a module or library), then
the task author needs to provide a main program (or more than one) to act as an
evaluation driver of the submitted module or library. And, conversely, when the

2Occasionally, also the order of input-output interleaving needs to be checked.

200 T. Verhoeff

task requires the solver to submit a main program with one or more holes (e.g., in
the form of a pre-defined module or library), then the author may need to provide
evaluation stubs to fill these holes.

Not every task will need each of these task-specific tools.
Such tools need to incorporate task-specific knowledge. Often it is a good idea to

create a separate library with task-specific facilities (data types and related operations),
rather than duplicating such definitions in each tool. Duplication hinders future changes,
especially when a task is still under development.

Some tools can be combined, though this is not advisable. It is better to refactor com-
mon functionality into a task-specific library. For instance, an input/output characterizer
needs to read input and output files, and so could also report on the validity of their for-
mat and contents. But combined functionality complicates the interface of the tool, and
increases the risk that changing one piece of functionality will also (adversely) affect
other pieces.

There is an opportunity to use generic libraries for functionality common to multiple
tasks. For instance, RobIn (Verhoeff, 2002) was developed to assist in the construction of
input validators and output (format) checkers, by providing some simple operations for
robust input, that is, without making any assumptions about the actual input. RobIn was
used by the author at IOI 2000 in China to validate the input files.

2.5. Scripts

Besides task-specific tools, there will also be various task-specific scripts. Tools concern
task-specific technical operations, whereas scripts are more for management and for co-
ordinating the application of task-specific tools. Scripts can

• coordinate the entire grading process of a submission for the task, involving such
steps as

1) preprocessing of submitted work,
2) building various executables,
3) running executables with various inputs, capturing output and interleaving,
4) evaluation of the outputs of each run according to various criteria,
5) scoring to obtain numeric results,
6) reporting to present and summarize all results.

Such a grading script should be runnable by a daemon in an automated grading
system, but also by a task author or human grader in a stand-alone situation; a
task author may want to explore how a particular submission is handled, and a
human grader (teaching assistant) may want to re-evaluate a submission locally
under several what-if scenarios by making manual changes;

• coordinate the generation of all evaluation data;
• generate various overviews;
• generate an archive of material to be presented to solver, especially when this con-

sists of more than just the task description;
• validate the package contents, by evaluating all test submissions and checking the

results.

Programming Task Packages: Peach Exchange Format 201

2.6. Solution and Test Submissions

A task author not only needs to invent and describe the task, specify how it will be graded,
and provide data and (where applicable) task-specific tools, but also needs to write an
exemplary solution worthy of imitation. This solution is needed for pedagogical reasons,
and it also serves as a test for the grading data and tools. However, package testing should
not end there. In fact, solutions are needed in all allowed programming languages. Of
course, the grading tools and data should also be tested with imperfect solutions, to
check that these are graded in agreement with the intentions.

These test submissions (ranging from good to bad) belong in the task package, and
must be used to validate the package contents and in particular, the entire grading chain.
They also provide a means to test the installation of a package on a particular grading
system. There should be sufficient variety in submissions to ensure a broad coverage.

As with data files, it is recommended to include a separate note with each test sub-
mission, motivating its purpose. These notes can be summarized in a tabular overview,
together with actual and expected grading results.

The work submitted by solvers, when this task is actually used in a course or com-
petition, does not belong inside the task package, but should be stored separately. The
relationship between submissions and tasks does need to be recorded.

2.7. Metadata

We have come a long way in defining the package contents. What we have described so
far would already allow one to run a nice programming course or competition. When one
is involved in multiple events, year after year, the need arises to look at things from a
somewhat different perspective. For these longer term interests, it is useful to include cer-
tain metadata in a task package from the very beginning. One can think of the following
items.

Task-instrinsic metadata including

• Summary, describing the task in one sentence; this is useful when dealing with task
bundles;

• Task type, for instance, batch (through stdio, files, sockets, . . .), reactive (through
stdio, using or providing a library, sockets, . . .), output file only (for given input
files), etc.;

• Difficulty level, possibly distinguishing understanding (what to do), designing (ab-
stract solution), and implementing (concrete submission); this is, of course, a some-
what subjective judgment, relative to specific context parameters (skill of solver,
amount of time for solving, resource limits, programming language allowed, de-
velopment tools available, etc.); each of these could be expressed on a scale of
easy, medium, hard, possibly extended with easy-medium, medium-hard. This is
usually done in a review meeting;

• Topic classification, what topics are involved in the task description, what topics
are involved in a (typical) solution; this can be done in terms of a syllabus (Verhoeff
et al., 2006);

202 T. Verhoeff

• Notes for data files and test submissions, summarizing their purpose.

Author-related data such as name, contact information.

Event-related data such as name of (or even better, some standardized identifier for)
the original event (course or competition) at which it has been or will be used; date
of that event, amount of time allowed for solving, number of solvers involved, etc.

Solver-related data such as their background (educational level, experience), platform
used by solvers, characterizing the hardware architecture (processor, memory hi-
erarchy), operating system, but also compilers, linkers, standard libraries, possibly
also specific other tools allowed in solving the task at hand. This metadata helps
in interpreting such things as configuration parameters (time and memory limits),
because these are expressed relative to a certain platform.

Grading-related metadata such as grading scale (e.g., accepted–rejected, numeric 0–
100, numeric 1–5, letter A–F, . . .); amount of time it typically takes to grade a
single submission. If the grading platform differs from the solver’s platform, then
it must also be characterized.

Management-related data such as status of development (in preparation, already used;
incomplete, complete; draft, ready for review, approved); version information, re-
vision log of content and status changes, comments (by author and reviewers), and
a to-do list. A supervisor might also be interested in the amount of effort (time) it
typically takes to translate the task description (possibly relative to some standard).

What metadata to include will also depend on the style of the course or competition.
Compare, for instance, the styles of (IOI, 2008) and (ACM ICPC, 2008). Some metadata
will be the same for all tasks used together in the same event. Good tasks must be expected
to be reused later in other events, for example, on a training camp. It is advisable to copy
that common information in each task package, so that a task in isolation is still complete.

2.8. Miscellaneous Considerations

The preceding compilation of items that can be included in a task package is not claimed
to be complete and final. On some occasions, it may seem overkill; on other occasions,
one may wish to include additional information.

There is a trade-off between putting data inside the package or keeping it outside.
When data is not directly incorporated in the package, one has the option of incorporating
some form of reference (like a URL) to that information instead. Our system (Peach,
2008) can be configured with time intervals for when a task is available to solvers and
when submissions are accepted. We keep this information outside the package, because
it will differ for each reuse of the package, e.g., in next year’s course.

In an international event like the (IOI, 2008), texts presented to solvers must be trans-
lated. This is a major effort because so many languages are involved. It can be useful to
provide translation support, such as separate figures and a glossary.

Another issue to be addressed concerns task bundles, that is, sets of tasks used to-
gether in a course or competition. In a task bundle, one often strives for a certain level of

Programming Task Packages: Peach Exchange Format 203

uniformity. This can be achieved by copying common information into each task package.
However, this makes it harder to change common information easily and consistently. An
alternative is to introduce a kind of inheritance mechanism for task packages, and abstract
packages. In fact, task bundles call for bundle packages, that contain (references to) task
packages, but in particular also contain common items, such as document templates to be
used for all tasks. But his is beyond the scope of the present article.

3. Package Interface and Operations

In the preceding section, we have discussed the contents of a task package. When con-
structing a package, the author is mainly “working inside it”. Once a package is com-
pleted, there are several different ways of using it. At that stage, the package users (of-
ten not the author) wish to abstract from all internal details, and concentrate on specific
package-level operations, such as

viewing (a summary of) (parts of) the package contents;

validating the package contents (for internal consistency and completeness; this is what
the test submissions are for);

generating various items from the package, e.g., an archive to be made available to
solvers, or information for a mediator (like a team leader);

grading a submission for the task; this could be done locally on the user’s platform, or
remotely inside an automated grading system; grading can be done completely, that
is, fully performing all grading steps (preprocess, build, execute, evaluate, score,
report), or partially, that is, performing only some user-selected steps;

cleaning up a package by removing auxiliary and temporary files;

installing a package in an automated grading system, e.g., by a simple drag-and-drop.

Especially for the automated use of packages, it is necessary to have a well-defined,
clear, and uniform interface for the package operations. The implementations of these
operations are provided by the scripts and tools inside the package, involving various
external facilities (like compilers and libraries). The interface is intended to protect (the
integrity of) the package contents.

It could be useful to include in the interface some limited ways of modifying a package
as well. Renaming a task is good candidate, as is tuning (some of) the configuration
parameters.

4. Package Format

There are many ways in which the package contents can be stored and given an interface.
By using appropriate wrappers, one can convert between formats. However, an abundance
of different formats is far from convenient. We now briefly describe the format currently
used in (Peach, 2008).

204 T. Verhoeff

4.1. Peach Exchange Format for Programming Task Packages

Peach task packages are stored in a directory tree with a predefined structure, naming
scheme, and files formats. Fig. 1 shows the main features.

There are separate subdirectories for

• evaluation data subdivided in cases;
• test submissions subdivided by programming language;
• texts subdivided by natural language;
• tools.

The subdirectories for texts are named by their (RFC 4646, 2006) code; this code is based
on (ISO 639-1, 2002) alpha-2 language identifiers and (ISO 3166-1, 2006) alpha-2 coun-
try codes. Unfortunately, there is no international standard for programming language
and dialect identification codes. We use common names in lower case, and currently do
not distinguish dialects.

At present, human-readable metadata can be stored in one language only, and is dis-
tributed over the tree (e.g., in various summary.txt files). Scripts are not in a separate
subdirectory but spread out as well. A Python script in the root coordinates the grading
steps, including language-dependent builds through a generic module. This script can be
run locally or by a daemon inside our grading system (Peach, 2008). Other scripts are in
(Unix) makefiles, e.g., for building tools and cleaning up, and in (Unix) shell scripts for
viewing evaluation cases, and generating expected output through a known-correct solu-
tion. Evaluation drivers and stubs are stored with the test submissions, because in most
cases they depend on the programming language. When communication is via sockets, it
could be language independent, in which case, they are put in a generic subdirectory.

The current format does not standardize storage of additional task-specific informa-
tion (other than texts), and of scripts to generate an archive for solvers. These things are
handled in an ad hoc way.

Platform dependencies and tool dependencies (like compilers and libraries) are han-
dled implicitly by references. Submissions are graded on a Linux platform, whereas in
our educational setting, most students use Windows. There are minor issues concerning
compiler versions.

The current format does not support inheritance or sharing of common information.
Related packages are mostly created by branching.

Some temporary files are created inside the package when using it. This limits the pos-
sibilities of concurrent usage. Evaluation-related files are stored in a working directory
outside the package.

Peach3, the latest version of (Peach, 2008), still uses the format introduced for Peach2.
We are working on an improved Peach Exchange Format to overcome the limitations
mentioned above.

Our task packages are stored in a central Subversion repository for configuration man-
agement. This works quite well because most persistent data is stored in line-based text
files. Each package is treated as a composite configuration item. Tags are used to record
status changes, and branches are used for variants.

Programming Task Packages: Peach Exchange Format 205

Fig. 1. Directory structure for information in Peach task package.

206 T. Verhoeff

5. Conclusion

We have introduced the notion of a programming task package containing all task-related
information, and serving as a unit for storage and communication. We have inventoried
the stakeholders and contents of such packages, and the package interface and operations.
This helps put in perspective the issues that arise when dealing with programming tasks
on a larger scale.

Our automated programming education and contest hosting software (Peach, 2008)
uses a package exchange format, which we have briefly described. The format is currently
under revision to make it more generally usable. The Peach software is available under
an open-source license.

At the moment, an application is lacking to handle task packages. Such an applica-
tion should be supported on multiple platforms, and preferably should (also) provide a
graphical user interface, possibly via a web browser.

Having a widely used task package format helps to improve the quality of program-
ming tasks. But using task packages does not automatically lead to good quality. Task
authors must still pay attention to many details when formulating a programming task;
see for instance (Verhoeff, 2004).

We hope that this article will stimulate the development of an international standard
for programming task packages. It would be good to standardize the interfaces of var-
ious task-specific tools as well. The International Standard Task Number and an ISTN
Registration Authority (ISTN/RA) will then arise naturally.

Acknowledgments. The author is much indebted to Erik Scheffers, who co-designed
Peach and who did most of the implementation work. We also wish to give credit to the
more than 1500 users of Peach, who took part in dozens of courses and competitions,
causing Peach to grade well over 25 000 submissions to date.

References

ACM ICPC (2008). ACM International Collegiate Programming Contest.
http://icpc.baylor.edu/ (visited March 2008).

CTAN (2008). Comprehensive TEX Archive Network.
http://www.ctan.org/ (visited March 2008).

DocBook (2008). http://www.docbook.org/ (visited March 2008).
Docutils (2008). http://docutils.sourceforge.net/ (visited March 2008).
IOI (2008). International Olympiad in Informatics.

http://www.IOInformatics.org/ (visited March 2008).
ISO 639-1 (2002). Codes for the representation of names of languages – Part 1: Alpha-2 code.

http://www.iso.org/iso/language_codes/ (visited March 2008).
ISO 3166-1 (2006). Codes for the representation of names of countries and their subdivisions ÐPart 1: Country

codes.
http://www.iso.org/iso/country_codes/ (visited March 2008).

OpenOffice (2008). http://www.openoffice.org/ (visited March 2008).
Peach3 by E.T.J. Scheffers and T. Verhoeff (2008). Technische Universiteit Eindhoven, The Netherlands.

http://peach3.nl/ (visited May 2008).
RFC 3629 (2003). IETF Standard 63 concerning UTF-8, a transformation format of ISO 10646, Nov. 2003.

http://www.ietf.org/rfc/rfc3629.txt (visited March 2008).

Programming Task Packages: Peach Exchange Format 207

RFC 4646 (2006). IETF Best Current Practice concerning Tags for the Identification of Languages, Sep. 2006.
http://www.ietf.org/rfc/rfc4646.txt (visited March 2008).

Sloan, N. (2008). Online Encyclopedia of Integer Sequences.
http://www.research.att.com/ njas/sequences/ (visited March 2008).

UVa Online Judge (2008). http://icpcres.ecs.baylor.edu/onlinejudge/ (visited
March 2008).

Verhoeff, T. (1988). Guidelines for Producing a Programming-Contest Problem Set. Oct. 1988, expanded July
1990.
http://www.win.tue.nl/ wstomv/publications/guidelines.pdf (visited March 2008).

Verhoeff, T. (2002). RobIn for IOI I/O, version 0.7. July 2002.
http://www.win.tue.nl/ wstomv/software/robin/Doc07.txt (visited March 2008).

Verhoeff, T. (2004). Concepts, Terminology, and Notations for IOI Competition Tasks. Sept. 2004.
http://www.win.tue.nl/ wstomv/publications/terminology.pdf (visited
March 2008).

Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A proposal for an IOI syllabus. Teaching Mathe-
matics and Computer Science, IV(1), 193–216.
http://www.win.tue.nl/ wstomv/publications/ioi-syllabus-proposal.pdf (vis-
ited March 2008).

W3C (2008). World Wide Web Consortium. http://www.w3c.org/ (visited March 2008).

T. Verhoeff is an assistant professor in computer science at Technische
Universiteit Eindhoven, where he works in the Group Software Engi-
neering & Technology. His research interests are support tools for ver-
ified software development and model driven engineering. He received
the IOI distinguished service award at IOI 2007 in Zagreb, Croatia,
in particular for his role in setting up and maintaining a web archive of

IOI-related material and facilities for communication in the IOI community, and in es-
tablishing, developing, chairing, and contributing to the IOI Scientific Committee from
1999 until 2007.

Olympiads
in Informatics

Volume 2 2008

B.A. BURTON. Breaking the routine: events to complement informatics olympiad
training 5

B.A. BURTON, M. HIRON. Creating informatics olympiad tasks: exploring
the black art 16

E. CERCHEZ, M.I. ANDREICA. Romanian national olympiads in informatics and
training 37

A. CHARGUÉRAUD, M. HIRON. Teaching algorithmics for informatics olympiads:
the French method 48

K. DIKS, M. KUBICA, J. RADOSZEWSKI, K. STENCEL. A proposal for a task
preparation process 64

E. KELEVEDJIEV, Z. DZHENKOVA. Tasks and training the youngest beginners for
informatics competitions 75

K. MANEV. Tasks on graphs 90

B. MERRY, M. GALLOTTA, C. HULTQUIST. Challenges in running a computer
olympiad in South Africa 105

P.S. PANKOV. Naturalness in tasks for olympiads in informatics 115

W. POHL. Manual grading in an informatics contest 122

M.A. REVILLA, S. MANZOOR, R. LIU. Competitive learning in informatics:
the UVa online judge experience 131

P. RIBEIRO, P. GUERREIRO. Early introduction of competitive programming 149

S. TANI, E. MORIYA. Japanese olympiad in informatics 163

A. TRUU, H. IVANOV. On using testing-related tasks in the IOI 171

T. VASIGA, G. CORMACK, G. KEMKES. What do olympiad tasks measure? 181

T. VERHOEFF. Programming task packages: Peach exchange format 192

	INFOL2P1
	INFOL2P2
	volume2
	vol2
	Binder1
	INFOL025
	INFOL031
	INFOL027
	INFOL018
	INFOL024
	INFOL028
	INFOL029
	INFOL026
	INFOL030
	INFOL033
	INFOL034
	INFOL020
	INFOL022
	INFOL021
	INFOL032
	INFOL019
	INFOL2CO

	Binder1
	INFOL025
	INFOL031
	INFOL027
	INFOL018
	INFOL024
	INFOL028
	INFOL029
	INFOL026
	INFOL030
	INFOL033
	INFOL034
	INFOL020
	INFOL022
	INFOL021
	INFOL032
	INFOL019
	INFOL2CO

	Binder1
	INFOL025
	INFOL031
	INFOL027
	INFOL018
	INFOL024
	INFOL028
	INFOL029
	INFOL026
	INFOL030
	INFOL033
	INFOL034
	INFOL020
	INFOL022
	INFOL021
	INFOL032
	INFOL019
	INFOL2CO

	INFOL035
	vol2
	Binder1
	INFOL025
	INFOL031
	INFOL027
	INFOL018
	INFOL024
	INFOL028
	INFOL029
	INFOL026
	INFOL030
	INFOL033
	INFOL034
	INFOL020
	INFOL022
	INFOL021
	INFOL032
	INFOL019
	INFOL2CO

	Binder1
	INFOL025
	INFOL031
	INFOL027
	INFOL018
	INFOL024
	INFOL028
	INFOL029
	INFOL026
	INFOL030
	INFOL033
	INFOL034
	INFOL020
	INFOL022
	INFOL021
	INFOL032
	INFOL019
	INFOL2CO

	Binder1
	INFOL025
	INFOL031
	INFOL027
	INFOL018
	INFOL024
	INFOL028
	INFOL029
	INFOL026
	INFOL030
	INFOL033
	INFOL034
	INFOL020
	INFOL022
	INFOL021
	INFOL032
	INFOL019
	INFOL2CO

