
ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

INSTITUTE OF MATHEMATICS AND INFORMATICS

INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING

OLYMPIADS IN INFORMATICS

Volume 3 2009

Selected papers of

the International Conference joint with

the XXI International Olympiad in Informatics

Plovdiv, Bulgaria, August 8–15, 2009

OLYMPIADS IN INFORMATICS

ISSN 1822-7732

Editor-in-Chief

Valentina Dagienė

Institute of Mathematics and Informatics, Lithuania, dagiene@ktl.mii.lt

Executive Editor

Richard Forster

British Informatics Olympiad, UK, forster@olympiad.org.uk

International Editorial Board

Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at

Bruria Haberman, Holon Institute of Technology, Israel, Bruria.Haberman@weizmann.ac.il

Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl

Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi

Krassimir Manev, Sofia University, Bulgaria, manev@fmi.uni-sofia.bg

Fredrik Niemelä, KTH University, Sweden, niemela@csc.kth.se

Rein Prank, University of Tartu, Estonia, rein.prank@ut.ee

Miguel A. Revila Ramos, University of Valladolid, Spain, revilla@mac.cie.uva.es

Peter Taylor, University of Canberra, Australia, pjt@olympiad.org

Troy Vasiga, University of Waterloo, Canada, tmjvasiga@cs.uwaterloo.ca

Peter Waker, International Qualification Alliance, Republic of South Africa, waker@interware.co.za

http://www.mii.lt/olympiads_in_informatics

c© Institute of Mathematics and Informatics, 2009

Olympiads in Informatics, Volume 3, 2009

2009.06.30. 13 leidyb. apsk. l.
Tiražas 200 egz. Užsakymas Nr. 1748

Printed by Printing house “Mokslo aidai”, Goštauto 12, 01108 Vilnius, Lithuania

Olympiads in Informatics, 2009, Vol. 3
 2009Institute of Mathematics and Informatics, Vilnius

Foreword

OLYMPIADS IN INFORMATICS is an annual refereed journal that provides an inter-
national forum for presenting research in teaching and learning informatics through
competition. The journal is substantially connected with the conference held during
the International Olympiad in Informatics (IOI). The papers in this volume are being
presented during IOI’2009 in Plovdiv, Bulgaria.

What a difference 20 years makes

In May 1989, when the teams were gathering for the first IOI (also in Bulgaria), the
80486 microprocessor had just been released on the world and Tim Berners-Lee’s
“Information Management: A Proposal” was being distributed to CERN’s management.
That processor was available at 25 Mhz; the one this introduction is being written on
is running at 2.5 Ghz. That proposal was the seed of the World Wide Web, which has
become so ubiquitous that access has become a basic utility, along with water and power,
in many countries.

And what of the IOI?

The foundation of the IOI, thanks to the efforts of Professor Blagovest Sendov and the
support of UNESCO, saw the emergence of a second phase of international science
olympiads. The 50s and 60s saw Mathematics, Physics and Chemisty flourish. It was
to be another 20 years before another olympiad, the IOI, came into existence. Since then
there has been an explosion of interest, from Astronomy to Earth Sciences, from Biology
to Linguistics.

The 13 countries who participated in 1989 have grown to around 80. The contest has
run every year since its inauguration, has been held in 19 different countries across 5 dif-
ferent continents. Contestants from earlier years are now lead delegations. Leaders who
come for ‘just one year’ find themselves coming back year after year. The IOI commu-
nity – the IOI family – continues to grow, and long may it continue.

The contest itself has been polished over the years, but is still fundamentally faithful
to the original vision. The number of questions may have changed and their difficulty
tuned, but contestants today require the same skills as those 20 years ago. Machines may
have hundreds or thousands of times the speed or memory, but it is a testimony to the
types of problems set that, with perhaps a little tweak here and there, the challenges from
the contest’s history remain a challenge. In a world that demands ‘bigger’ and ‘faster’,
the IOI demands ‘smarter’.

And what of the wider community?

National olympiads have become an established part of the educational system in many
countries. You need only read the papers in these proceedings to see how many students
we reach and have reached. Some contests are run with governmental support and guid-
ance, some independently. In all cases opportunities, which might not otherwise exist, are
given to students. Not just to those who know they are interested in informatics, but often
at a junior level where such an interest can be inspired.

In this year, when the IOI returns to its birthplace, we should think back over the
last 20 years. Think of the thousands of students who have been given the wonderful
opportunity of attending an IOI, and of the hundreds of thousands (if not more) who have
been touched across the world by national endeavours. Think of the teams of volunteers
who have given their time and resources to making the contests the success that they are.
Organisers who work tirelessly, often for no reward or even recognition, time and time
again.

Thanks are due to everyone who has contributed to this volume and the IOI con-
ference. In particular, we would like to thank Prof. Krassimir Manev and the Bulgarian
organisation of this year’s IOI for giving us the opportunity to host the conference.

Editors

Olympiads in Informatics, 2009, Vol. 3, 3–16 3
© 2009 Institute of Mathematics and Informatics, Vilnius

Using Item Response Theory to Rate (not only)
Programmers

Michal FORIŠEK
Department of Informatics, Faculty of Mathematics, Physics and Informatics
Comenius University
Mlynská dolina, 842 48 Bratislava, Slovakia
e-mail: forisek@dcs.fmph.uniba.sk

Abstract. We show how Item Response Theory (IRT) can be used to define a new type of rating
system, one that is especially suitable for programming competitions (and other types of compe-
titions where difficulty of competitions varies between rounds). We show some useful theoretical
properties of this rating system, including the ability to argue about hardness of past competition
tasks, and about the precision of contestants’ skill estimates. We also define an objective method of
comparing different rating systems. In the final section of the paper we apply our methods on real
competition data.

Key words: item response theory, ranking, rating, programming competitions.

1. Overview

In this section we provide an overview of topics relevant to this article:
– research of scoring and ranking in programming competitions,
– research in the area of rating systems,
– Item Response Theory.

1.1. Programming Competitions

For a few years the International Olympiad in Informatics (IOI) community is con-
cerned about the accuracy of the testing, scoring and ranking process. Several publica-
tions that research various aspects of this problem include (Cormack, 2006; Cormack et
al., 2006; Forišek, 2004; Forišek, 2006; Opmanis, 2006; Van Leeuwen, 2005; Verhoeff,
2006; Yakovenko, 2006).

A publication particularly relevant to the topic of this paper is (Kemkes et al., 2006)
where Kemkes et al. use Item Response Theory to analyze scoring used at IOI 2005, and
in particular the impact of the proportion of “easy” and “hard” test cases on the relevancy
of the competition results. Based on the results of the analysis, new scoring methods with
better discrimination are suggested.

(We would like to note that similar research has recently been conducted for other
competitions as well, for example see (Gleason, 2008) for an analysis of two mathemati-
cal competitions.)

4 M. Forišek

However, we would like to note that while these publications use IRT only passively,
as a tool for analysis of tasks only. In parts of this paper, we will use IRT as an active tool
– not only to rate tasks and participants, but also to make estimates and predictions.

1.2. Rating Systems

The idea of a rating system has been studied for several decades. Competitiveness is a part
of our human nature, and when there is competition, there is the need to rate and/or rank
the competitors. Also, the need for rating is often encountered in educational systems,
and many other areas.

In this context, rating means assigning a vector of properties to each subject (i.e.,
contestant), and ranking means arranging the subjects into a linear order according to
some set of criteria. Usually, ranking is the goal, and rating represents possible means to
achieve this goal.

The first rating systems were reward-based: A good performance was rewarded by
granting the subject rating points. The main advantage of these rating systems was their
simplicity. Due to this reason, such rating systems are still used in many popular sports,
such as tennis and Formula 1.

These systems are usually designed so that their discrimination ability is highest
among the top subjects, and rapidly decreases as the skill of the subjects decreases. More-
over, the reward values are usually designed ad-hoc, and the rating systems usually have
little to no scientific validity.

One of the first areas to adopt a more scientific-based rating (and thus ranking) system
was chess. The United States Chess Federation (USCF) was founded in 1939. Initially,
USCF used the Harkness rating system (Harkness, 1967). This was a reward-based sys-
tem determined by a table that listed the reward size as a simple function of the difference
between the players’ current ratings.

After discovering many inaccuracies caused by this system, a new system with a more
solid statistical basis was designed by Arpád Elő, and first implemented in 1960. For
details of this rating system see (Elo, 1978).

The Elo rating system was based on the following set of assumptions:

• The performance of a player in a game is a normally distributed random variable.
• For a fixed player, the mean value of his performance remains constant (or varies

negligibly slowly).
• All players’ performances have the same standard deviation.

The importance of the Elo model lies in bringing in the statistical approach. Even
though subsequent research showed that each of these assumptions was flawed, and ac-
cordingly changes to the rating system were made, the currently used rating system in
chess is still called the Elo rating system in Arpád Elő’s honor.

An excellent overview of various rating systems in chess can be found in (Glick-
man, 1995). For a discussion of some problems of the currently used rating system, see
(Sonas, 2002).

The next important step in the history of rating systems was the Glicko system (Glick-
man, 1999) that, in addition to calculating ratings, calculated also the rating deviation for

Using Item Response Theory to Rate (not only) Programmers 5

each of the players – a value that measures the accuracy of the given player’s rating. This
system was later amended into the Glicko-2 system (Example of the Glicko-2 system)
that also computed the rating volatility – a value that measures how consistent a player’s
performances are. Glickman’s rating systems were designed to handle situations where
each event is a comparison of a pair of subjects.

In recent years, Glickman’s models were generalized to handle situations when events
involve more than two subjects. Notable advances in this direction include Microsoft’s
recently published TrueSkillTM ranking system (Herbrich and Graepel, 2006; Herbrich
et al., 2007; Dangauthier et al., 2008a), and TopCoder’s rating algorithm (TopCoder
Inc., 2008).

All these rating systems are incremental: given the previous estimates and new results,
they compute a new set of estimates using Bayesian inference. Hence they are usually
called Bayesian rating systems.

1.3. Item Response Theory

In practice we often encounter a situation when a variable we might be interested in
can not be measured directly. For example, this situation is often encountered in psy-
chometrics, when trying to measure aspects such as knowledge, abilities, attitudes, and
personality traits.

The key approach to these situations is to model the measured attribute as a hidden,
latent variable. In contrast to visible attributes, such as height and weight, these latent
variables can not be observed or determined by direct measurement. However, these vari-
ables can be estimated from the results of appropriate tests.

The first and to date most common approach is currently known as the Classical test
theory (CTT). As a gross oversimplification, we may state that in the CTT the test is
scored, and the subject’s score is used to estimate the latent ability. The main goal of
CTT is to construct the tests in such a way that the reliability and validity of the test are
maximized.

In recent years, CTT has been superseded by a more sophisticated approach, the Item
Response Theory (IRT). The main difference is that IRT models include not only the la-
tent variables we try to measure, but also item parameters (such as difficulty of a question
in an IQ test). In general, IRT brings a greater flexibility and provides more sophisticated
information than CTT did.

IRT is ideally suited for our setting, as in programming competitions the tasks indeed
have various difficulty. We are interested both in determining the item parameters (i.e.,
discuss task difficulty) and in using this additional information to make better estimates
of the contestants’ abilities.

In this section we give an overview of the areas of IRT that are relevant to our ar-
ticle. For a more general overview of the areas related to IRT, we strongly recommend
(Partchev, 2004). A reader interested in a deeper background in IRT is advised to pursue
this topic further in the excellent monography (Baker and Kim, 2004).

6 M. Forišek

The 2-Parameter Logistic Model
First of all, we will assume that the latent ability we are interested in (e.g., the ability to
solve programming competition tasks) is a scalar, i.e., that it can be described by a single
real number. For each contestant c, we will denote their ability score as θ(c), or just θ if
c is fixed.

As stated above, in IRT we take into consideration the individual test items. More
precisely, we assume that each item comes with an inherent item characteristic function.
This is a function that maps the subject’s ability score θ to the probability that the subject
answers the given item correctly.

We model programming tasks using the 2-parameter logistic model (2PL model). In
this model, each item is described by two parameters: its difficulty b and its discrimina-
tion a. The item characteristic function in this model is given in (1).

Pr(θ, a, b) =
1

1 + e−a(θ−b)
. (1)

Estimating Parameters
One of the most common methods how to estimate the unknown parameters (be it task
parameters, subjects’ abilities or both) is the maximum likelihood method.

Let X be a random variable X with a parametrized probability distribution func-
tion fy . We measured the random variable X and got the result x. The likelihood L(y, x)
of a given parameter value y is defined as the conditional probability Pr[X = x|y]. (Note
that this is not the probability of y being the true parameter.) Our estimate of the unknown
parameters will be the estimate for which the likelihood function is maximized.

For example, consider the case where a subject was given n tasks. For each of these
tasks we know its 2PL parameters ai and bi. We also know whether the subject solved
each of the tasks. Formally, let si = 1 if the ith task was solved correctly, si = 0
otherwise. The values si are usually called the response pattern. Then the likelihood
function of an ability estimate θ is the function:

L(θ) =
n∏

i=1

Pr(θ, ai, bi)si ·
(
1 − Pr(θ, ai, bi)

)1−si
. (2)

Fisher Information and Error of Measurement
Whenever we observe a random variable, this observation gives us information that we
can use to make a better estimate of the hidden parameters. This statistical version of
information was first formalized by Sir Robert Fisher.

Intuitively, we can define information as the reciprocal of the precision with which
the parameter could be estimated. Formally, let X be a random variable such that its
probability distribution depends on a parameter θ. Let L(θ, x) be the likelihood function.
Then the score V is the partial derivative with respect to θ of the natural logarithm of the
likelihood function, and then the Fisher information is the expected variance of the score
– or equivalently (as the expectation of the score is always zero) Fisher information is
the expectation of the square of the score. Informally, this definiton corresponds to the
steepness of the log-likelihood function in the vicinity of its maximum.

Using Item Response Theory to Rate (not only) Programmers 7

In the 2PL model, it can be computed that the Fisher information function of a single
item with parameters a, b can be simplified to:

I(θ) = a2Pr(θ, a, b)
(
1 − Pr(θ, a, b)

)
. (3)

Given an ability estimate θ̂, the variance of this estimate can be estimated as the
reciprocal of the test information function at that point:

V ar(θ̂) =
1

I(θ̂)
. (4)

The standard error of measurement (SEM) is defined as the square root of the variance

SEM(θ̂) =

√
1

I(θ̂)
. (5)

In the case of the 2PL logistic model, we get

SEM(θ̂) =

√
1∑n

i=1 a2
i Pr(θ, ai, bi)(1 − Pr(θ, ai, bi))

. (6)

2. Towards an IRT-Based Rating System

In this section we present our work directed towards designing a IRT-based rating sys-
tem. First, we describe the setting for which we want to construct the system – in other
words, the assumptions we make. These assumptions do hold for common programming
competitions. We then discuss some properties any IRT-based rating system must have,
and finally provide a brief description of our proof-of-concept implementation.

2.1. Assumptions

Our rating system is designed for competitions that consist of multiple rounds, each round
consists of multiple items, and various items can have various degrees of difficulty.

We assume that the ability that determines the success in solving the items is a scalar.
Additionally, we assume that the setting is not antagonistic (contestants do not directly

influence the performance of other contestants), and that there is no guessing – in other
words, as ability decreases, the probability of solving a task converges to zero.

For the part of our research that is presented in this paper, we also assume that the
abilities of subjects are invariant in time.

2.2. Necessary Properties of IRT-Based Rating Systems

The basic idea behind using IRT in a rating system is simple – the ability estimates and the
task parameter estimates will be computed at the same time, as the maximum likelihood
estimate given the observed response patterns.

8 M. Forišek

However, the situation is not so easy in practice. We will now show that we need to
enforce at least two additional restrictions.

The first issue is the symmetry of the item characteristic function. If we multiply all
estimates (both for the abilities and for the task parameters) by −1, the likelihood of the
estimate will not change. We need to break this symmetry somehow, and enforce that the
positive direction represents higher ability level / task difficulty.

The second issue that needs to be addressed is the actual existence of the maximum
likelihood estimate.

Consider the following simple example: Let C = {c1, . . . , cn+1} be the set of contes-
tants in a round, and let T = {t1, . . . , tn} be a set of tasks in the round. Sey si,j = [i > j],
i.e., contestant i solved all tasks j for which i > j.

There is a clearly defined linear order on this set of contestants – for any pair of
contestants, the set of tasks one of them solved is a strict superset of the set of tasks
the other one solved. However, it can easily be proved that the maxima of the likelihood
function are of the following form: For any integer x we can set θ(cy) = −∞ for y � x

and θ(cy) = ∞ otherwise, set all a(ty) = 1, set b(ty) = −∞ for y < x, b(ty) = ∞ for
y > x and set b(tx) arbitrarily. This completely fails to reflect the linear order.

There is only one solution to both of these issues – we need to restrict the estimates
to bounded intervals. Note that we are free to pick the exact bounds, as we are not influ-
encing the results in any way by doing so, we are just defining the scale.

In our case with the 2PL model, we opted to restrict θ and b to the same inter-
val [−β, β], and to restrict a to the asymmetric interval [−α/10, α]. The rationale behind
the restriction to a is to enforce that most tasks have positive a, i.e., the probability of
solving the task increases with increasing ability.

(Note that in practice we can occassionally have tasks where the probability of solving
the task actually slightly decreases with increasing ability. This is why we allow slightly
negative values of α. On the other hand, if we are getting many tasks with a < 0, this is
usually a sign that the ability we are measuring has nothing to do with the results.)

For the example presented above, after we enforce the restrictions, there is just one
global maximum of the likelihood function – the abilities are uniformly distributed
along [−β, β], task difficulty parameters b are uniformly distributed between these, and
all task discrimination parameters are α. This precisely corresponds to the linear order
we described above.

2.3. Implementation Details

Our proof-of-concept implementation used the values α = β = 10. We compute the
maximum likelihood estimate of all the parameters numerically. In order to reduce the
running time, we used the observation that the parameters for each task can be estimated
only from the (current estimate of the) subjects’ abilities, i.e., independently from the
other tasks. Hence we implemented a bootstrapping algorithm that alternately computes
a new estimate for all the subjects’ abilities and a new estimate for all the task parameters
until sufficient convergence is reached.

Using Item Response Theory to Rate (not only) Programmers 9

3. Comparing Rating Systems

In situations where we have multiple rating systems, it is only natural to ask which of
them is better. The word better can have multiple meanings, the most natural one (but
by far not the only one) being “which of them estimates the true latent ability more
precisely”. In this section we give our answer to the question: Is there an objective method
how to compare rating systems?

It is obviously impossible to compare rating systems directly, as we are not able to
measure the latent ability.

However, there is a natural way out. Having a model and a set of rating estimates
should enable us to predict the outcome of a future rated event. The more accurate predic-
tions we can make, the more trustworthy the pair (rating system, prediction algorithm) is.

In other words, while we can not directly compare rating systems, we can compare
rating systems accompanied by prediction algorithms.

Still, the previous paragraphs leave one open question: what exactly makes a predic-
tion more accurate? The answer is not unique. Moreover, the answer to this question is
actually what we should start with in practice. In the simplest setting with two-player
antagonistic matches, the focus is usually on predicting the winner. (Or, more precisely,
each player’s probability of winning.)

The setting with multiple subjects allows for a much richer spectrum of possible goals.
To name some: predicting a subject’s score, a subject’s placement, estimating their prob-
ability of placing among top K subjects, etc.

As one possible example, we will now focus on the last goal mentioned above: given
a round with N known participants and an integer K, we want to predict the probabilities
that each of them will place among the top K in the round.

3.1. Predicting Success in a Bayesian Rating System

In this section we will show an algorithm to predict the probabilities of placing in the
top K using a Bayesian rating system. The presented algorithm is not our original work –
however, it is only informally known in the public domain, we we were not able to assign
authorship to a particular author.

In the models used in the Bayesian rating systems the performance of each subject is
modeled as a normally distributed random variable.

In this section we will assume that for each contestant i the rating system computed
the estimate of the mean μi and the variance σ2

i of this random variable. (This is for
example the case with the TopCoder ratings, where the subject’s volatility computed by
the rating system is an estimate of the standard deviation σ of this normal variable.)

This model is great when it comes to computing the expected placement of a subject –
this is simply one plus the sum of probabilities that the other subject performs better.

However, the situation is much worse when we actually need to predict the probabili-
ties. The only known algorithm in this case is a Monte Carlo randomized simulation: We

10 M. Forišek

simulate a sufficient number of rounds. For each round, we generate the actual values of
all the performances, and sort them to find the top K subjects.

We would like to stress several major disadvantages of this prediction algorithm:

• Its convergence is slow – obviously the number of simulation steps necessary to
achieve precision ε (with high probability) is at least linear in 1/ε.

• It does not easily generalize for multiple round tournaments. It is easily seen that
the time complexity necessary to predict the outcome of d consecutive rounds
within some fixed ε precision grows exponentially with d.

• It can only predict relative order of the performances, not their actual values.

3.2. Predicting Success in the IRT-Based Rating System

In this section we present the algorithm we designed to predict the probabilities of placing
in the top K in our IRT-based rating system.

The main idea of our algorithm is that, similarly as in the previous case, we will
simulate multiple rounds and take the average of the results.

First, we will start by generating the task parameters for the round. (In practice, the
best way to do this is by randomly sampling a pool of known past tasks.) Given the set
of tasks, we will use binary search to find the correct estimate for the threshold, i.e., the
expected number of solved tasks needed to be in the top K.

Given some threshold, we can, for each of the subjects, compute the probability of
solving at least that many tasks. The sum of these probabilities gives us the expected
number of people that will cross this threshold. If this number is less than K, we need to
lower the threshold, otherwise we need to raise it.

The needed subproblem (given a subject, a set of tasks and a threshold, compute the
probability of reaching it) can be solved using dynamic programming – for each x and y,
we compute the probability of solving exactly y out of the first x tasks.

Some of the advantages of this approach.

• Much faster convergence in practice – if we know the approximate task parameters
beforehand, already the first round will give us a reasonable approximation of the
answer.

• The approach generalizes to multiple round tournaments nicely.
• We can predict absolute performances. This can be useful e.g. to predict the number

of contestants that will not be able to solve any tasks.

3.3. Using the Standard Error of Measurement

At this point we would like to make one technical note.
For Bayesian rating systems handling newcomers poses a significant challenge. The

existing rating systems usually use some kind of a provisional ad-hoc approach. For ex-
ample, the TopCoder rating system assigns newcomers a slightly above-average rating
of 1200, and the rating change formulas are set so that they enable large rating changes
for the first few rounds.

Using Item Response Theory to Rate (not only) Programmers 11

The prediction algorithm as described above uses the ability estimates as the exact
truth in order to make the predictions. A much better way is to also use the standard error
of measurement that is provided by our chosen model. In this way, we can, for example,
solve the newcomer problem in a clean and systematic way – for any newcomer, the
number of attempted tasks is small, hence the information function returns a small value,
hence the standard error of measurement will be high.

The prediction algorithm presented in 3.2 can be modified to include this information.
Given a contestant c and a task t, we will compute the probability that c solves t using
the assumption that c’s actual ability is a normally distributed random variable with mean
equal to our rating estimate, and standard deviation equal to the computed standard error
of measurement. In this case, the predicted number of tasks c solves out of a set T of
tasks can be expressed as

PNT (c, T)=
1

SEM(c)
√

2π

∑
t∈T

∫ ∞

− ∞
exp

(
− (x − θ(c))2

2SEM(c)2

)
1

1 + e−a(x−b)
dx. (7)

Evaluating the Predictions

Suppose that we predicted the vector of probabilities (p1, . . . , pN), and the actual out-
come is (s1, . . . , sN), where si = 1 if contestant i placed Kth or better, and si = 0
otherwise. How to measure how good the prediction was?

Our definition will be based on the following experiment: Imagine that we, in a se-
quence, throw N biased coins, where coin i will fall heads with probability pi. In this
experiment, we can easily compute the probability of getting the outcome (s1, . . . , sN):
it is

∏N
i=1 psi

i (1 − pi)1−si .
Equivalently, this formula can be seen as the likelihood that the actual probabilities

before the round were (p1, . . . , pN), given that the outcome was (s1, . . . , sN). And this
is almost exactly how we’ll define the quality of the prediction.

For computational reasons, we prefer to use the log-likelihood function in our
definition instead. Given the results (s1, . . . , sN), we define the quality of a predic-
tion (p1, . . . , pN) as

Q(p1, . . . , pN) =
N∑

i=1

si log pi +
n∑

i=1

(1 − si) log(1 − pi). (8)

4. Evaluation on Real Life Data

Data Sets Used for Analysis

We tested our ideas on two separate data sets. One data set we used included 88 tasks used
in two years of Slovak national programming competitions, and the scores of over 300
contestants solving them. All of these tasks used partial scoring on the scale 0 to 10, with
any correct solution scoring at least 4, and any efficient solution scoring at least 7 points.

12 M. Forišek

Our basic model was adapted to this setting as follows: For each task, we have three
items. For each contestant, the first of these is set as solved iff she scored at least 3 points,
the second iff she scored at least 6 points, and the third item is considered solved iff she
scored at least 9 points.

The second data set included 560 tasks used in TopCoder competitions between
2006-05-09 and 2008-02-16, inclusive, and the performances of over 12 000 contestants
on these tasks.

Sanity Check

We used our proof-of-concept implementation of the rating system described in Section
2.3 to estimate the ratings of the contestants and the task parameters for the tasks in the
first data set. A natural sanity check at this point is to examine whether the computed
estimates give us a sufficient approximation of the real data. This check was performed
as follows:

We divided the ability range into 30 equally large buckets. For each task, we divided
the contestants that attempted to solve it into these buckets, based on their ability estimate
θ. For each bucket i we now computed two values: The actual total score xi its contestants
achieved, and their expected total score yi. The value xi is simply computed by summing
the corresponding input data, while yi is computed based on the estimated parameters of
the given task and on their individual ability estimates. Note that under ideal conditions
the values xi and yi would be identical for all i, meaning that our model matches the
original data perfectly.

Once we computed all xi and yi, we proceeded to compute the weighted correlation
coefficient of the vectors (xi) and (yi), where the weight of each element was the number
of contestants ci in the corresponding bucket i.

A summary of the resulting correlation coefficients is tabulated in Table 1. We see
that for 64 out of 88 tasks (∼73%) the correlation coefficient exceeds 0.9, and for half of
these even exceeds 0.98, which is excellent. The three most significant outliers occurred
in 2007/08, and all three were difficult tasks that only 10 contestants attempted to solve,
and almost nobody did.

Table 1

Distribution of correlation coefficients between predicted and actual scores

ρ range year 2006/07 year 2007/08

[0.99, 1.00] 9 12

[0.98, 0.99) 6 5

[0.95, 0.98) 9 9

[0.90, 0.95) 7 7

[0.75, 0.90) 12 8

[0.00, 0.75) 1 2

[−1.00, 0.00) 0 1

Using Item Response Theory to Rate (not only) Programmers 13

Fig. 1. Solving times for PalindromeDecoding match the lognormal distribution at 99% confidency level. Sam-
ple size N = 772.

Fig. 2. Solving times for Caketown match the lognormal distribution at 98% confidency level. Smaller sample
size N = 100.

Solving Time

After we processed the data from the TopCoder competition using our IRT-based rating
system, we managed to discover that the random variable giving the solving time for a
particular task usually has a log-normal distribution.

To verify this, we used the Jarque-Bera normality test (Bera and Jarque, 1980), on
natural logarithms of solving times. Out of the 560 tasks in our data set, for 71 the sample
size was obviously too small (at most 5 contestants succesfully solved the task).

Out of the remaining 489 tasks, for 221 the null hypotesis can be accepted at 99%
confidency level, and for another 163 it can be accepted at 98% confidency level.

We verified the remaining 105 tasks by hand, and discovered that the main reasons for
rejecting the lognormality hypotesis were mostly either small sample sizes, or it were too
easy tasks where most of the solving times come from a narrow interval. Even for these
cases the most probable lognormal distribution provides a reasonable approximation.

Furthermore, we note that for many (but sadly, by far not for all) tasks there is a
significant correlation between the logarithm of the solving time and the ability estimate
made by our rating system. Plots of the dependency for four random tasks are shown
in Fig. 4.

14 M. Forišek

Fig. 3. Solving times for RussianSpeedLimits do not match the lognormal distribution at 98% confidency level.
Sample size N = 577. Lognormal distribution still offers a reasonable approximation.

Fig. 4. Correlation between abilities and log solving times – and least squares linear approximation thereof –
for four tasks.

Predicting Advancement in the TopCoder Open 2008

We adapted our prediction algorithm to the TopCoder setting – by estimating the solving
time using the observations presented above, we were able to compute the probability of
exceeding a given score threshold. (We did ignore the challenge phase, and only com-
puted the expected score of solving the three given tasks.)

Using this algorithm, we predicted the advancement probabilities for the first two
online rounds of the TopCoder Open 2008. For the first round, the prediction given by
our algorithm was slightly better as the one given by the TopCoder’s own ratings and
the Monte Carlo prediction algorithm (−812.26 vs. −818.85). For the second round the

Using Item Response Theory to Rate (not only) Programmers 15

Monte Carlo method gave a slightly better prediction (−372.04 vs. −394.68).1 Hence
already our simplest IRT-based rating system was able to produce results comparable to
the ones given by the existing rating system.

Additionally, our superior model allowed us to compute predictions that were not
possible in the previously used model. Specifically, the tournament has a rule that one
has to have a positive score in order to advance. Our prediction algorithm computed that
in the first round the expected number of contestants with a positive score is 872.994,
which is less than the 900 advancer spots. This is almost exactly what actually happened
– the actual number of advancers was 864. For the second round the algorithm correctly
predicted that all 300 advancer spots will be taken.

5. Conclusion

In this paper we presented an overview of our research in the area of rating algorithms.
We describe a new type of a rating system we developed using Item Response Theory,
define a formal way how to compare rating systems, and use it to compare our rating
system (adapted to a slighty different setting) to an existing Bayesian rating system.

Our rating system is more general than the existing models, in that it allows us to make
predictions that were not possible in the existing models. Additionally, we believe that in
settings with different tasks (such as programming competitions) an advanced version of
the rating system will be able to use this additional information to give significantly better
predictions than the existing Bayesian rating systems.

This is a new and promising area of research with many possible practical applica-
tions. Some points that surely deserve more attention include:

– a detailed analysis of the numerical aspects of the rating system (discussing con-
vergence and its rate);

– evaluation of this approach on data from other areas, such as sports;
– modifying our approach to address settings in which abilities change over time;
– using the computed data to argue about hardness of past competitions.

References

Baker, F.B., Kim, S.-H. (2004). Item Response Theory: Parameter Estimation Techniques. CRC.
http://edres.org/irt/baker/

Bera, A.K., Jarque, C.M. (1980). Efficient tests for normality, homoscedasticity and serial independence of
regression residuals. Economics Letters, 6(3), 255–259.

Cormack, G. (2006). Random factors in IOI 2005 test case scoring. Informatics in Education, 5, 5–14.
Cormack, G., Munro, I., Vasiga, T. and Kemkes, G. (2006). Structure, scoring and purpose of computing com-

petitions. Informatics in Education, 5, 15–36.
Dangauthier, P., Herbrich, R., Minka, T. and Graepel, T. (2008a). TrueSkill through time: revisiting the history

of chess. In Advances in Neural Information Processing Systems, Vol. 20, pp. 931–938.

1The presented numbers are values returned by the log-likelihood function (8).

16 M. Forišek

Dangauthier, P., Herbrich, R., Minka, T. and Graepel, T. (2008b). TrueSkill through time: revisiting the history
of chess. In J.C. Platt, D. Koller, Y. Singer and S. Roweis (Eds.), Advances in Neural Information Processing
Systems, Vol. 20. MIT Press, Cambridge, MA, pp. 337–344.

Elo, A. (1978). The Rating of Chessplayers, Past and Present. Arco Publishing.
Forišek, M. (2004). On suitability of tasks for the IOI competition. Personal communication to the IOI General

Assembly.
Forišek, M. (2006). On the suitability of programming tasks for automated evaluation. Informatics in Education,

5, 63–76.
Forišek, M. (2009). Vyhodnotenie reliability hodnotenia Olympiády v Informatike. In Proceedings of Confer-

ence DidInfo 2009 (to be published).
Gleason, J. (2008). An evaluation of mathematics competitions using item response theory. Notices of the

ACM, 55(1).
Glickman, M.E. Example of the Glicko-2 System.

http://math.bu.edu/people/mg/glicko/glicko2.doc/example.html
Glickman, M.E. (1995). A comprehensive guide to chess ratings. American Chess Journal, 3, 59–102.
Glickman, M.E. (1999). Parameter estimation in large dynamic paired comparison experiments. Applied Statis-

tics, 48, 377–394.
Harkness, K. (1967). Official Chess Handbook, David McKay Company.
Herbrich, R., Graepel, T. (2006). TrueSkillTM: A Bayesian Skill Rating System. Technical report. MSR-TR-

2006-80.
Herbrich, R., Minka, T. and Graepel, T. (2007). TrueSkill(TM): A Bayesian skill rating system. In Advances in

Neural Information Processing Systems, Vol. 20, pp. 569–576.
Kemkes, G., Vasiga, T. and Cormack, G.V. (2006). Objective scoring for computing competition tasks. In

V. Dagiene and R. Mittermeir (Eds.), Information Technologies at School.
Opmanis, M. (2006). Some ways to improve olympiads in informatics. Informatics in Education, 5, 113–124.
Partchev, I. (2004). A Visual Guide to Item Response Theory.

http://www.metheval.uni-jena.de/irt/VisualIRT.pdf
Sonas, J. (2002). The Sonas Rating Formula – Better than Elo?

http://www.chessbase.com/newsdetail.asp?newsid=562
TopCoder Inc. (2008). Algorithm Competition Rating System. Technical report.

http://www.topcoder.com/wiki/display/tc/Algorithm+Competition+Rating
+System

Van Leeuwen, W.T. (2005). A Critical Analysis of the IOI Grading Process with an Application of Algorithm
Taxonomies. Master’s thesis. TU Eindhoven.
http://www.win.tue.nl/ wstomv/misc/ioi-analysis/thesis-final.pdf

Verhoeff, T. (1990). Guidelines for producing a programming-contest problem set. An unpublished personal
note. http://www.win.tue.nl/ wstomv/publications/guidelines.pdf

Verhoeff, T. (2006). The IOI is (not) a science olympiad. Informatics in Education, 5, 147–159.
Yakovenko, B. (2006). 50% rule should be changed. Presented at Perspectives on Computer Science Competi-

tions for (High School) Students.
http://bwinf.de/competition-workshop/RevisedPapers/6_Yakovenko2_rev.pdf

M. Forišek is currently finishing his PhD study at the Comenius Uni-
versity in Slovakia. He received a master’s degree in computer science
from this university in 2004. He was the head of the problem com-
mittee for several international programming contests, including CEOI
2002 and most years of the Internet Problem Solving Contest (IPSC). In
years 2006 to 2009 he serves as an elected member of the International

Scientific Committee (ISC) of the International Olympiad in Informatics (IOI). His re-
search interests range from theoretical computer science to education of mathematics,
informatics, and algorithms.

Olympiads in Informatics, 2009, Vol. 3, 17–25 17
© 2009 Institute of Mathematics and Informatics, Vilnius

Taking Kids into Programming (Contests) with
Scratch

Abdulrahman IDLBI
Syrian Olympiad in Informatics, Syrian Computer Society
e-mail: adlogi@gmail.com

Abstract. Since launching the Syrian Olympiad in Informatics (SOI) five years ago, encouraging
children to participate in the contest has been a challenging task, a common problem in many places
around the world. Students, and many educators as well, see programming as a tough subject to
learn. In addition, the style of IOI tasks is generally considered unattractive.

We started overcoming those obstacles through using Scratch, a graphical programming lan-
guage developed at the MIT Media Lab. Scratch allows kids to start learning programming concen-
trating on the concepts rather than the syntax, while providing them with the ability to construct
diverse projects that are attractive and meaningful to them. Scratch also allows examining chil-
dren’s programming skills against interesting tasks, and gives them the opportunity to move more
smoothly into learning a traditional language like C++ and other computer science topics.

Key words:introducing programming to children,Scratch contests,Syrian Olympiad in informatics.

1. Introduction

Through the past few years, studies have warned about the decreasing interest among
students to study computing-related fields, as they consider them tough and somehow un-
interesting. Similarly, people organizing activities related to computer science contests,
with challenges in programming and algorithms, constantly complain about the weak mo-
tive among youth to participate in them, especially when compared to the willingness to
participate in robotics or IT contests for example. This problem becomes more obvious as
the targeted audience gets younger. Taking the previous two examples of more acceptable
contests among youth may give us a clue to the potential reasons of the problem: (1) sole
programming is not as fantastic as building robots, (2) and children are not exposed to it
early in their daily life (nor most of the adults surrounding them) as they are to other IT
topics. Having these two points in mind would lead us to a solution.

When the Syrian Olympiad in Informatics started five years ago, the contest was di-
vided into several divisions depending on age. The oldest division had preparation re-
quirements similar to those of the IOI, and the national team for the IOI was chosen from
its participants; but as a division got younger it contained less algorithms and program-
ming in favor of more IT tasks (tasks related to knowledge of OS and desktop applica-
tions). While children were more familiar with IT skills than programming skills, testing
IT skills or promoting them did not lead to a better preparation for the IOI in the older

18 A. Idlbi

division, nor did it help in discovering and preparing potential young computer scientists.
In addition, the SOI organizers sought only students who were already considered dis-
tinguished in school mathematics or IT. Not approaching a wider audience of children
meant two things: first, there was no way to discover hidden talents in computer science;
second, without more children practicing programming the general public was not be able
to recognize its importance.

To overcome the popularity problem facing our contest we changed our strategy. We
decided to aim at all children and spread a culture of programming among them, which
would provide a better opportunity of selecting future computer scientists. This change
needed a powerful tool to be placed in the hands of children, and it was Scratch, a graph-
ical programming language developed at the MIT Media Lab. Scratch allows kids to start
learning programming concentrating on the concepts rather than the syntax, while en-
abling them to work on diverse projects that are attractive and meaningful to them. While
recently some researchers used Scratch to introduce programming to university students
and as a gateway to an advanced language like Java (Malan and Leitner, 2007), we argue
that Scratch can be used in a similar way with younger children, both to prepare them
to learn a language like C++ and to be used in contests with tasks similar to IOI tasks.
Children in the context of this paper are mainly those between 7 and 15 years old.

2. What is Wrong with Programming?

The awareness and understanding of parents and educators have a major role in making
any extracurricular activity for children succeed, but they are not the most important
factors. The most important one is how fun and attractive children find the topic of the
activity, and how closely it relates to them.

When it comes to programming, the languages used in the IOI (and many other typical
languages) look like Greek at a first glance, and for many students they remain like that for
a long time. Even the common simple start with a “Hello World” program raises several
questions that cannot be answered in the first few sessions of a programming course. After
that not-so-interesting start, children have to concentrate on remembering syntax details,
such as semicolons and parentheses, so the compiler does not get angry at them, instead
of concentrating on learning the programming concepts (e.g., variables, conditions, loops,
etc.) in addition to logic. It turns out that “students must become masters of syntax before
solvers of problems” (Malan and Leitner, 2007).

Even more, when children come to a programming course, they come with broad ex-
pectations and questions like “When are we going to make our first game (or virus)?”, and
those who are patient enough to learn the basics of the language would soon get frustrated
when they discover that they cannot do more than simple operations on meaningless data
sets using a text-based interface.

To set it in a single sentence: “Computer programming has been introduced using
programming languages that are difficult to use, with proposed activities that do not con-
nect with young people’s interests and in contexts where no one has enough expertise

Taking Kids into Programming (Contests) with Scratch 19

to provide guidance” (Resnick et al., 2003). These reasons make programming with the
commonly-used text-based languages inappropriate for introduction to a wide audience
of children, making it hard to discover potential young programmers early.

To solve this problem while preparing for SOI, we used Scratch to introduce pro-
gramming through the training of different divisions, and as a part of the contests for the
children under 15 years old.

3. Different Programming Experience with Scratch

Scratch is a new graphical programming language that makes it easy for children to create
their own interactive stories, animations, games, and arts. Coding in Scratch is much
easier than in traditional programming languages: to create a script, you simply snap
together graphical blocks, much like LEGO bricks or puzzle pieces. Scratch is designed
to help young people (ages 8 and up) to develop essential skills such as creative thinking,
clear communication, systematic analysis, effective collaboration, iterative design, and
continuous learning (Lifelong Kindergarten, MIT Media Lab, n.d.).

Scratch follows the principles of making a successful software tool for kids (Maloney
et al., 2004). Those principles include:

• making the value and possibilities of the tool clear from the beginning;
• respecting children interests;
• the ability to create complete meaningful projects that can be shown to others;
• supporting a wide range of different types of activities, giving the ability to aim

kids with different backgrounds and interests;
• the ability to get started quickly and without external help;
• the ability to learn additional features over time, and use the tool in more complex

ways.

For that, Scratch is described as offering a low floor (easy to get started), high ceil-
ing (ability to create complex projects), and wide walls (support for a wide diversity of
projects) (Lifelong Kindergarten, MIT Media Lab, n.d.).

With these principles in mind, Scratch was designed with core features that include
(Resnick et al., 2003):

• Building-block programming: Programming by snapping together graphical blocks
that fit in only syntactically-correct ways. This approach eliminates syntax errors
(which have proven to be a major obstacle for learning text-based programming
languages), allowing youth to focus on the problems they want to solve, not the
mechanics of programming.

• Programmable manipulation of rich media: Scratch programs manipulate images,
animations, movies, and sound; which offers programming activities resonant with
youth interests, providing them with an opportunity to start from their own comfort
zone, but then reach out to learn new things.

• Support for multiple languages: The possibility of translating Scratch interface to
many languages (Scratch is now available in more than 40 languages) and switch-
ing dynamically among them allows children to work and think with the language

20 A. Idlbi

most comfortable to them, and then to talk about the knowledge they are build-
ing more creatively, which develops a sense of mastership of the recently-gained
knowledge. Through our work in SOI, we could decrease the minimum grade for
accepting students in Scratch courses from the 4th grade to the 2nd grade after
translating Scratch into Arabic. We could also find effective 3rd-grade Scratch pro-
grammers after the translation, compared to not having any below the 6th grade
before the translation.

After getting it for free, students can start programming at once by dragging blocks
from eight categories on the blocks palette and snapping them together (only if they are
syntactically correct) on the scripts area. The result of running programs is shown im-
mediately on the stage where sprites (programmable objects) interact with each other
(Fig. 1). The available blocks support various programming concepts such as loops, con-
ditions, Boolean expressions, variables and lists (arrays) in addition to parallel execution
and events (Fig. 2).

Scratch is not the first programming language intended to be used for introducing
programming, and is much inspired by the ideas behind Logo. It is also not the only one
today with languages like NetLogo, StarLogo and Alice. However, Scratch seems to have
several advantages over others which have for example a too restricted virtual world or a
high learning curve (Malan and Leitner, 2007).

Fig. 1. Scratch interface (version 1.3.1) with the blocks palette (a), the scripts area (b), the stage (c), the sprites
list – the objects to be programmed (d), and the current sprite’s information (e). The shown project was one of
the 1st division’s tasks in SOI 2008.

Taking Kids into Programming (Contests) with Scratch 21

Fig. 2. Some of Scratch blocks showing supported programming concepts.

4. SOI Structure and the Utilization of Scratch

SOI consists today of three divisions depending on age: the 1st division for students under
12, the 2nd for students under 15, and the 3rd for students under 20. Scratch is used in
SOI in two ways: to introduce programming before moving to C++ in all divisions, and
as a part of the contest itself for the two younger divisions.

Students in the two younger divisions start their training by following a 10-session
course which is open to all interested children under 15. In the first session, children
learn how to move an object on the screen, to draw while moving, and to create simple
loops. They do that while learning the concepts of what Seymour Papert calls “turtle
geometry”, making use of children’s knowledge about their body and how they move,
to draw basic figures and combine them together (e.g., drawing a square and a triangle
to create a house). Through this exercise they obtain their first debugging experience
(Papert, 1980). Children end this session with experiments on drawing more sophisticated
geometric shapes, with some of them using nested loops (Fig. 3).

Next, children are exposed every one or two sessions to a new project. Each project
has certain programming and thinking skills to be learned, and the instructor’s duty is to
point out these skills when they are needed. The sessions are titled “Hunting the Parrot”
or “Racing Game” instead of “Dealing with Events” or “Creating Variables”, allowing the
children to learn serious issues through “hard fun”. That is providing learners with chal-
lenging activities which are deeply connected with their interests and passions (Papert,
1993). This method relieves students of feeling strangers to programming or its related
science topics.

22 A. Idlbi

Fig. 3. Some of children creations by the end of their first session with Scratch.

Using Scratch at this stage gives children the potential to show their talents regard-
ing computing. While instructors observe that some students are more interested in using
Scratch as a design tool to create interactive media for example, others show interest in
the programming process itself by using complicated and advanced programming struc-
tures and controls (e.g., using nested loops and conditions, familiarity with variables and
using them in unexpected ways, etc.). By the end of the course, almost everyone has
enjoyed working with Scratch, and the instructor can identify who enjoyed Scratch as a
programming tool and nominate them to the next advanced course.

At the advanced course, children learn using more sophisticated techniques in Scratch,
as searching and sorting lists, and make more extensive use of Boolean expressions. Af-
ter that things get more formal with learning simplifying Boolean functions, expressing
them as logical gates, and using truth tables. Then, programming with C++ is introduced
depending on the child’s previous knowledge of programming concepts using Scratch.
While 1st division contestants are only required to comprehend simple programs and
guess the outputs resulting from various inputs (with 15% of the total points of the con-
test), 2nd division contestants have additionally to complete IOI-style tasks (with all C++
tasks having 40% of the total points). Besides learning programming in C++, students
learn more computer science skills and concepts such as estimating complexity and re-
cursion, and are introduced to several basic data structures. In addition to testing those
aspects of computer science implicitly through Scratch and C++ tasks, they are also the-
oretically tested through tasks similar to those used in the ACSL competitions (American
Computer Science League, n.d.). The theoretical section takes 20% of the total points in
each of the two younger divisions.

Scratch Tasks: In the contest, Scratch tasks have a considerable weight (65% of the
total points for the 1st division, and 40% for the 2nd division). Contestants in both divi-
sions face several Scratch tasks with various difficulties, and each is usually a game to be
programmed. Contestants are provided with the stage and the sprites (the objects to be
programmed) ready to be used so they do not waste time on painting the characters and
objects of the game, and they are asked to add the behaviors (i.e., constructing the scripts)
to accomplish specific missions. While a task description presents every detail about the
required mission, students have also access to a working model of the mission as a Java
applet, and by comparing it to their implementations they can make sure that they are on
the right path.

Taking Kids into Programming (Contests) with Scratch 23

Having a racing game for example as a task, kids are provided with the images of the
car, the race route, and the obstacles; and with an explanation of the race rules: how the
car behaves when driving on/outside the specified route or when it goes through obstacles,
how it accelerates, how the score is calculated, and when the game ends. Contestants have
to implement the scripts for doing that, with each part of the mission having a specific
amount of points.

Submitted solutions are graded manually. Two graders check together each project
and compare each partial behavior with the matching one from the working model. When
the apparent behaviors are similar the corresponding amount of points is granted, other-
wise, graders have to look for the scripts controlling the investigated behavior and esti-
mate how far it was from attaining the desired results, and assign points according to their
judgment.

Contestants in the 3rd division are prepared with IOI-requirements, and the national
team is chosen from them. While they do not have Scratch tasks in their contest, they use
Scratch through the preparation process which goes as follows: after selecting prospec-
tive students depending on their school records (especially in math) they are introduced
to programming using Scratch for three or four sessions. At the beginning they learn fun-
damental control blocks (representing loops and conditions), and start then implementing
a couple of projects. After being exposed to programming concepts in Scratch, they start
learning C++ and other IOI-requirements. Here too, Scratch plays an important role in
attracting teenagers to programming and helping instructors to distinguish prospective
programmers through the way they use Scratch in.

5. Results: SOI, Scratch and the Community

As mentioned earlier, we decided to change to strategy in the SOI to aim at all children
and give them the opportunity to get to know about programming in an interesting con-
text, and Scratch was the right tool for that. Surveying students’ opinions from various
introductory courses showed that more than 90% enjoyed working with Scratch, though
some said they felt board at some point when complicated concepts had to be explained
by the instructor.

An interesting point was that about 60% of the surveyed students from both courses
in the two younger divisions said they enjoyed more working with others, and they would
prefer a contest where they solve tasks as a team rather than individuals. Most of the
remaining 40% of the students were reported as male students.

As regards the general public, with the introduction of Scratch the national contest
received more interest, with many schools asking us to train their students or to organize
workshops for their instructors on preparing to the contest. Many university students
were also attracted to the idea of teaching young children stuff they had not known about
themselves before their university-level education.

The most important result was the change of SOI’s contribution to the society. SOI
is no longer a mere contest to recognize young students who are the most talented in

24 A. Idlbi

computer science. We think now about programming from a different perspective, an
educational creative one: to help children develop themselves as creative thinkers.

When we talk to educators or parents we tell them that most students who come to
SOI would not grow up to become professional programmers, but programming would
still be important for everyone: it would allow them to express themselves more creatively
and perfectly, help them to develop their logical thinking, and facilitate understanding the
new technologies they are facing everywhere in their daily life. In other words, “the con-
tinual use of abstract thinking in programming can guide and discipline one’s approach to
problems in a way that has value well beyond the information technology-programming
setting. In essence, programming becomes a laboratory for discussing and developing
valuable life skills, as well as one element of the foundation for learning about other
subjects” (National Research Council, 1999). This enhancement in role of the national
contest would not have taken place without having a new tool that represents this philos-
ophy, and this tool is Scratch.

Acknowledgements

I extend my thanks to Scratch team at the MIT Media Lab for their wonderful work. I am
so grateful to my colleagues from the Computer & Automation Engineering Department
at Damascus University who supported the adoption of Scratch in SOI. In particular, I
would like to thank Beshr Al Nahas, Boushra Jbr, Waed Khwiess, Maya Taki and Kusay
Tomeh for inspiring discussions and sharing results from their extensive experience with
children and Scratch. I also thank my dear friend, Ahmad Baghdadi, for supporting me
during this work and reviewing this paper.

References

American Computer Science League (n.d.). Sample Problems.
http://www.acsl.org/samples.htm

Lifelong Kindergarten, MIT Media Lab. (n.d.). About Scratch.
http://info.scratch.mit.edu/About_Scratch

Malan, D.J. and Leitner, H.H. (2007). Scratch for budding computer scientists. In Proceedings of the 38th
SIGCSE Technical Symposium on Computer Science Education. ACM, 223–227.

Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman, B. and Resnick, M. (2004). Scratch: A sneak preview.
In Proceedings of the Second International Conference on Creating, Connecting and Collaborating through
Computing. IEEE Computer Society, 104–109.

National Research Council (1999). Being Fluent with Information Technology. National Academies Press,
Washington, DC.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc. New York, NY.
Papert, S. (1993). The Children’s Machine: Rethinking School in the Age of the Computer. Basic Books, Inc.

New York, NY.
Resnick, M., Kafai, Y. and Maeda, J. (2003). A Networked, Media-Rich Programming Environment to Enhance

Technological Fluency at After-School Centers in Economically-Disadvantaged Communities. Proposal to
National Science Foundation.

Taking Kids into Programming (Contests) with Scratch 25

A. Idlbi is a fresh graduate from the Computer & Automation Engi-
neering Department at Damascus University, and has been a scientific
coordinator of Syrian Olympiad in Informatics since 2006. He was also
the deputy leader of the Syrian team in IOI 2007. After participating
in IOI 2004 and 2005, he has worked on introducing programming to
the youth. His interests include promoting usage of new technologies
to provide children with better learning opportunities.

Olympiads in Informatics, 2009, Vol. 3, 26–37 26
© 2009 Institute of Mathematics and Informatics, Vilnius

Tasks and Training the Intermediate Age Students
for Informatics Competitions

Emil KELEVEDJIEV
Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
Akad. G. Bonchev str., block 8, 1113 Sofia, Bulgaria
e-mail: keleved@math.bas.bg

Zornitsa DZHENKOVA
Mathematical High School
2 Elin Pelin str., 5300 Gabrovo, Bulgaria
e-mail: zornica.dzhenkova@gmail.com

Abstract. The preparation of informatics competitions for an intermediate age group of school
students that includes 14 and 15 years old children has become more important because of the
possible introduction of new kinds of international competitions, like the recent establishment of
the regional Balkan Youth Olympiad for students aged up to 15.5 years. Our paper presents the
Bulgarian experience of training, where the main tools for teaching are tasks. The paper continues
the previous work of the authors (Kelevedjiev and Dzhenkova, 2008a), where beginners group’s
tasks were arranged and classified according to some chosen set of keywords. The present study
examines the tasks given at the Bulgarian national competitions for the intermediate age group
during the last eight years. Some features of these tasks are discussed and compared to the tasks of
the youngest age group.

Key words: tasks in competitive informatics, informatics for the intermediate age school students.

1. Introduction

In recent years (2001–2008), the Bulgarian national competitions in informatics for
school students have developed as a system that includes three National Competitions
(autumn, winter, and spring tournaments) and the National Olympiad with three rounds
(Manev et al., 2007). The students are divided into 5 age groups A, B, C, D, and E, which
comprised 11–12, 9–10, 7–8, 6, and 4–5th school grades, respectively. In the Bulgarian
schools, the mentioned grades correspond to 18–19, 16–17, 14–15, 13, and 11–12 years
old children, respectively.

The classifications of tasks given at Bulgarian competitions for the age group E and D
(youngest beginners) is presented in (Kelevedjiev and Dzhenkova, 2008a; Kelevedjiev
and Dzhenkova, 2008b), where an attempt is made introducing key-words to indicate
basic task features from 3 different points of view: (1) programming language elements;
(2) control constructions; and (3) algorithms.

Tasks and Training the Intermediate Age Students for Informatics Competitions 27

For the intermediate age group (group C) we chose as a classification principle one
point of view only – which algorithmic approach is necessary to apply in order to solve
the task.

2. Classification

Our research into the contents and solution methods for the tasks of the intermediate
group given at the Bulgarian national competitions during the period 2001–2008 outlines
that the following main algorithmic topics have been used:

a) Counting and Combinatorics including enumeration.
b) Searching and Exhaustive search. These topics include some improved searching

methods as well as backtracking approaches.
c) Geometry with the predomination of problem on rectangular grids as well as tasks

about sets of segments and rectangles with their sides parallel to coordinate’s axes. Also
presented are tasks involving plane and elementary geometry, and there are even tasks
about solid geometry and tiling problems.

d) Dynamic programming with a typical example being the task about finding the
longest common substring of two given strings.

e) Graphs with examples for tasks including finding connected components, shortest
paths, matching problems, Euler cycles, cliques, etc.

f) Digits from a number, arithmetic and number theory including factorization, prime
numbers, fractions, etc.

g) Data structures like stacks and queues.
h) Others, which refers to the tasks that are harder to classify. The reader may get

some concepts of what such kinds of tasks look like by browsing the example tasks 3.8,
3.9 and 3.10, given below.

For some tasks, it is naturally to use two or more of the topics listed above for adequate
classification. See also the table in the Appendix, where some topics are given together
with subtopics.

3. Example Tasks

The following tasks are chosen to present several main topics and trends in the competi-
tive informatics for the intermediate age group in the Bulgarian national competitions.

3.1. Topic “Counting” (Task 2003, NOI-2, 2. Symmetric numbers)

A given positive integer is call symmetric, if it is read in the same way from left to right
and from right to left. For example: 474 and 2002. Write a program Count that on a
given integers a, and b, computes how many symmetric integers exist in the interval [a, b],
1 � a � b � 999999999.

Example input: 9 23. Output: 3.

28 E. Kelevedjiev, Z. Dzhenkova

3.2. Topic “Enumeration” (Task 2001, NOI-2, 1. Sequence)

Consider the sequence: 1, 2, 3, . . . , 9, 12, 13, . . . , 19, 21, 23, . . . , 98, 123, 124, . . . ,
987654321, where in an ascending order are arranged all positive integers that have no
’0’-s in their decimal representation, and for which, all digits are distinct. Write a program
Num that on given element x in the above sequence finds its position number k in the
sequence, and vice versa, on given position number k, outputs the corresponding element
in the sequence. The input file contains values of x and k. The output should contain the
corresponding answers.

Example input: 21 11. Output: 18 13.

3.3. Topic “Searching” (Task 2007, AT, 1. Numeric table)

In each cell of a rectangular table of m rows and n columns, a positive integer is written.
The largest value of these integers is less than 100. Three cells in the table are called
neighbors, if every one of them has a common side with at least one of the others. Write a
program Maxi that computes the largest sums which can be obtained by adding integers
in three neighboring cells. On the first line in the standard input, values of m and n

(1 < m < 10, 1 < n < 10) are written. Each of the next m lines contains n integers to
describe the corresponding table row.

Example input:
2 2
1 3
2 4

Output:
9

3.4. Topic “Searching” (Task 2001, AT, 1. The best)

Given are N (5 � N � 20000) positive integers, each less than 20 000, and a positive
integer K (3 � K � 100, K < N). Write a program Maxk that finds the largest K

integers among the given ones. The first two values in the input are N and K, followed
by the given integers. The output should contain the largest found K integers in increasing
order.

Example input: 8 4 133 74 12 38 29 56 19 31. Output: 38 56 74 133.

3.5. Topic “Searching” (Task 2002, ST, 3. Interval)

Given is a sequence of N integers A1, A2, . . . , AN (5 � N � 10000, −20000 � AK �
20000). We call an interval any subsequence of contiguous elements AL, AL+1, . . . , AM

(1 � L � M � N), such that for any AK , L � K � M it holds that the value of
AK is between the values of AL and AM . Write a program Interval that finds the
longest interval in the given sequence. The input contains the value of N , followed by

Tasks and Training the Intermediate Age Students for Informatics Competitions 29

the integers of the given sequence. The output should contain two integers L and M that
determine the longest interval.

Example input: 7 2 –3 –1 2 6 4 0. Output: 2 5.

3.6. Topic “Geometry on grid” (Task 2001, AT, 3. Ice piece)

A piece of ice is depicted as a set of cells in a table of N rows and N columns (8 � N �
200). In the table, all cells in the first and the last rows and columns are empty. The piece
of ice is starting to melt. In an hour, the ice melts in the cells that have at lest two empty
neighbors (above, below, left, or right). The ice in the other cells remains unchanged.
On the right-hand part of Fig. 1 it is shown what occurs after an hour, starting from the
configuration depicted on the left-hand part. Write a program Ice that computes how
many hours are needed for all pieces of ice to melt. The input contains the value of N ,
followed by N rows, each contained N characters ’0’ or ’*’, where ’0’ denotes an empty
cell, and ’*’ denotes a cell with ice. The output should contain the number of hours
needed for the total melting of the ice.

Fig. 1.

Example input:
8
00000000
00**0000
00**0**0
0******0
0*****00
0**0**00
00000000
00000000

Output:
4

3.7. Topic “Dynamic programming” (Task 2001, AT, 2. Common substring)

Given two strings A and B, each containing at least 3 and at most 250 decimal digits, we
call the maximal common substring of A and B the longest string that is a substring in A

and B.

30 E. Kelevedjiev, Z. Dzhenkova

Examples: For strings 112135349 and 66353, the maximal common substring is 353;
the strings 112135349 and 67887 have no common substring. Write a program Subs that
outputs the maximal common substring of two given strings.

3.8. Topic “Others” (Task 2004, NOI-2, 2. Curious sequence)

Consider the following integer sequence: 1, 11, 21, 1211, . . . , that starts with 1 and every
element describes the previous one: as an example the third element is 21, because the
forth element tells us one ’2’ and one ’1’ . Write a program Selfdes that on given input
integers n and k (0 < n < 109, 0 < k < 20) outputs the k-th element of the above
sequence, where the first element of the sequence is n.

Example input: 2 4. Output: 3112.

3.9. Topic “Others” (Task 2006, ST, 2. Matrix)

Given is a matrix containing integers (between 1 and 10 000) with N rows and M

columns (2 � N � 1000, 2 � M � 1000). Two rows are called similar, if the first
of them can be obtained by rearranging the elements of the second row. Write a program
Matrix that outputs the maximal size of a set of matrix’s rows such that no any two of
them are similar. The input contains the values of N and M , followed by N lines, each
containing M integers separated by spaces to describe the N th row of the given matrix.

Example input:
5 4
10 1000 5 200
70 110 70 30
5 200 10 1000
4 6 11 45
70 70 30 110

Output:
3

3.10. Topic “Others” (Task 2005, NOI-2, 2. Derivatives)

For a given positive integer p, we denote by p′ another positive integer, which is called
first order derivative of p, so that the following rules hold:

1) 1′ = 0;
2) p′ = 1, if p is prime;
3) p′ = (ab)′ = a′b + ab′, where a and b are divisors of p.
Applying the same rule to a derivative of the first order, we obtain the corresponding

derivative of the second order, and analogously, we are able to compute a derivative of
kth order using the k − 1 order. Write a program Derive that on given positive integers
p and k (p � 1000, k � 10) computes the kth order derivative of p.

Example input: 16 3. Output: 176.

Tasks and Training the Intermediate Age Students for Informatics Competitions 31

4. Trends

In Table 1, we present cumulative data about the number of tasks with assigned main
algorithmic topics. The study is based on the text descriptions of the tasks (taken from
(Bulgarian web portal site for competitions, 2009; Bulgarian web site for school competi-
tions, 2009)) for the intermediate age group given at the Bulgarian national competitions
in informatics during the period 2001–2008. The reader may refer to the Table 5 in the
Appendix for the list of tasks.

We display diagrams to illustrate observed tendencies for monotonic or periodic
trends in time appearance for the number of tasks from specific types (by means of algo-
rithm topic involved) during the period 2001–2008 in the scene of the Bulgarian national
competitions in informatics for the intermediate age group (Figs. 2–4).

As a measure of difficulty for a particular task we adopt the following 3 values:
a) the percentage of students who solve the task by gaining the maximal score;
b) the percentage of students who do not solve the task at all;
c) the ratio of the above two values.

Table 1

Number of tasks with assigned main algorithmic topics

32 E. Kelevedjiev, Z. Dzhenkova

Fig. 2. Number of tasks belonging to the groups “Geometry” and “Graphs” during the years.

Fig. 3. Number of tasks belonging to the groups “Exhaustive search” and “Searching” during the years.

Fig. 4. Number of tasks belonging to the groups “Combinatorics” and “Dynamic programming” during the
years.

Tasks and Training the Intermediate Age Students for Informatics Competitions 33

Computing these values for the results of the tasks groups using the disposable data,
we present Tables 2, 3 and 4.

5. Conclusions

Although the data presented in the above tables and graph samples are not statistically
significant, they give us some ideas about the variety of themes. Assigning topics to each
task is influenced by personal opinions, but there are some more or less steady principles
for choosing them. In many cases the topic names are self-descriptive and publishing
information about tasks together with these keywords is easily understandable and can
help teachers in their training process with students, as well as help the authors of tasks
for future competitions.

Comparing with the similar study of task classification for the beginner’s group
(Kelevedjiev and Dzhenkova, 2008a; Kelevedjiev and Dzhenkova, 2008b) we can ob-
serve here the underlying role of algorithms which is influenced by an increase of tasks
difficulty for the intermediate group.

The value called “ratio” in the Tables 2, 3, and 4, gives a good estimation in our
opinion for both measures: the difficulty of the tasks for students and the appropriateness
of choosing the tasks by the organizers of the competition. As an example, the tasks from
the “special” group, called “others”, have the minimal value for “ratio”.

Table 2

Geometry tasks: excellence and poor results

Task name Year % excellence % poor ratio

ice piece 2001 12.50 62.50 0.20

tiles 2002 0.00 32.56 0.00

dominoes 2003 2.17 60.87 0.04

movement 2003 39.29 32.14 1.22

kingdoms 2004 3.85 76.92 0.05

rectangles 2004 0.00 50.00 0.00

abc 2004 2.38 69.05 0.03

ruler 2005 40.54 40.54 1.00

rectangles 2006 12.35 33.33 0.37

darts 2006 0.00 87.50 0.00

jumps 2007 21.43 17.86 1.20

crossing 2007 3.51 91.23 0.04

segments 2008 29.03 41.94 0.69

move 2008 15.00 45.00 0.33

angles 2008 13.89 41.67 0.33

Average 13.06 52.21 0.37

34 E. Kelevedjiev, Z. Dzhenkova

Table 3

Graphs tasks: excellence and poor results

Task name Year % excellence % poor ratio

path 2002 4.35 52.17 0.08

teleporting 2003 4.00 84.00 0.05

expedition 2003 0.00 84.00 0.00

islands 2003 28.57 42.86 0.67

tree 2005 26.98 47.62 0.57

gnomes 2005 6.25 34.38 0.18

tour 2005 0.00 80.77 0.00

school 2005 23.33 53.33 0.44

marriage 2006 1.79 73.21 0.02

phones 2006 10.00 66.67 0.15

trade 2006 53.33 36.67 1.45

plate 2006 0.00 51.28 0.00

mate 2006 20.00 43.33 0.46

man 2007 7.14 51.79 0.14

pebbles 2008 10.53 47.37 0.22

friends 2008 11.11 44.44 0.25

triangles 2008 36.36 18.18 2.00

Average 14.34 53.65 0.39

Table 4

Excellence and poor results for groups of tasks

Tasks’ type % excellence % poor ratio

Searching 18.89 44.45 1.35

Dynamic programming 12.84 59.83 0.43

Graph 14.34 53.65 0.39

Geometry 13.06 52.21 0.37

Counting 5.51 42.06 0.25

Others 6.27 50.15 0.20

Total Average 11.77 52.59 0.39

Appendix

Table 5 presents all tasks given at the Bulgarian competitions for the intermediate age
group during the years 2001–2008. In the column “Competition”, the names of the au-
tumn, winter and spring tournaments are abbreviated as AT, WT and ST, respectively,
and the second and third rounds of the Bulgarian National Olympiads in Informatics are
denoted by NOI-2, and NOI-3, respectively.

Tasks and Training the Intermediate Age Students for Informatics Competitions 35

Table 5

Tasks given at the Bulgarian competitions for the intermediate age group during the years 2001–2008

No Year Competition Problem No Problem Name Method

1 2001 AT 1 best Searching, Sorting
2 2001 AT 2 common substring Dynamic Programming
3 2001 AT 3 ice piece Geometry, Grid
4 2001 NOI-2 1 num Combinatorics, Enumerating
5 2001 NOI-2 2 line Geometry, Plane
6 2001 NOI-2 3 maze Graphs, Cycles
7 2001 ST 1 three Geometry, Plane
8 2001 ST 2 war Games
9 2001 WT 1 table Combinatorics

10 2001 WT 2 ab Digits
11 2001 WT 3 line Geometry, Plane
12 2001 WT 4 sum Combinatorics
13 2002 AT 1 path Graphs
14 2002 AT 2 frequencies Counting, Text
15 2002 AT 3 digit Searching, Sequence
16 2002 NOI-2 1 table Counting, Tables
17 2002 NOI-2 2 tiles Geometry, Plane
18 2002 NOI-2 3 concert Dynamic Programming
19 2002 ST 1 molecules Combinatorics
20 2002 ST 2 bed Dynamic Programming
21 2002 ST 3 Interval Exhaustive search
22 2002 WT 1 primes Number theory
23 2002 WT 2 para Geometry, Solid
24 2002 WT 3 path Geometry, Grids
25 2003 AT 1 lighting Combinatorics
26 2003 AT 2 movement Geometry, Grids
27 2003 AT 3 islands Graphs, Grids
28 2003 NOI-2 1 Egypt fractions Number theory
29 2003 NOI-2 2 count Counting, Enumeration
30 2003 NOI-2 3 dominoes Geometry, Tiling
31 2003 ST 1 expedition Graphs, Matching
32 2003 ST 2 expressions Expressions
33 2003 ST 3 teleporting Graphs, Shortest path
34 2003 WT 1 shuffle Combinatorics
35 2003 WT 2 tail Data structures, queue
36 2003 WT 3 young Sorting
37 2004 AT 1 supermarket Data structures, queue
38 2004 AT 2 code Searching, Text
39 2004 AT 3 temperature Searching, Sequence
40 2004 NOI-2 1 enemy Arithmetic, Fractions
41 2004 NOI-2 2 self-description Others, Recursion
42 2004 NOI-2 3 abc Geometry, Plane
43 2004 ST 1 grades Others
44 2004 ST 2 squares Exhaustive search
45 2004 ST 3 primes Number theory
46 2004 WT 1 barcode Others, strings
47 2004 WT 2 rectangles Geometry, Plane

48 2004 WT 3 kingdoms Geometry, Grid
49 2005 AT 1 hyperlinks Text processing

To be continued

36 E. Kelevedjiev, Z. Dzhenkova

Table 5 (continued)

No Year Competition Problem No Problem Name Method

50 2005 AT 2 school Graphs, Connected components
51 2005 AT 3 numbers Counting
52 2005 NOI-2 1 tree Graphs
53 2005 NOI-2 2 derivative Others, Computations
54 2005 NOI-2 3 simple Counting
55 2005 ST 1 gnomes Graphs, Paths
56 2005 ST 2 two Games
57 2005 ST 3 row Others, Sequences
58 2005 WT 1 ruler Geometry, Line
59 2005 WT 2 run Dynamic Programming
60 2005 WT 3 tour Graphs, Cycles
61 2006 AT 1 right primes Number theory
62 2006 AT 2 plate Graphs, Euler cycles
63 2006 AT 3 darts Geometry, Plane
64 2006 NOI-2 1 rectangles Geometry, Plane
65 2006 NOI-2 2 bmax Digits
66 2006 NOI-2 3 delmin Number theory
67 2006 NOI-3 1 mate Graphs
68 2006 NOI-3 2 trade Graphs, Paths
69 2006 NOI-3 3 min Others, Tables
70 2006 ST 1 socks Others, Tables
71 2006 ST 2 matrix Exhaustive search
72 2006 ST 3 marriage Graphs, Matching
73 2006 WT 1 Morse code Others, Strings
74 2006 WT 2 Puzzle Exhaustive search
75 2006 WT 3 Phones Graphs, Paths
76 2007 AT 1 numerical table Searching, Table
77 2007 AT 2 puzzle Exhaustive search
78 2007 AT 3 names Counting
79 2007 NOI-2 1 similar Others, Tables
80 2007 NOI-2 2 minimal Exhaustive search
81 2007 NOI-2 3 inequality Exhaustive search, Arithmetic
82 2007 ST 1 man Graphs, Connected components
83 2007 ST 2 segments Dynamic Programming
84 2007 ST 3 jumps Geometry, Line
85 2007 WT 1 sequence Searching, Sequence
86 2007 WT 2 crossing Geometry, Plane
87 2007 WT 3 necklace Digits
88 2008 AT 1 mirror Searching, Sequence
89 2008 AT 2 pebbles Graphs, Games
90 2008 AT 3 bank Combinatorics, Coding
91 2008 NOI-2 1 friends Graphs, Connected components
92 2008 NOI-2 2 angles Geometry, Plane
93 2008 NOI-2 3 justify Others, Text processing
94 2008 NOI-3 1 move Geometry, Grid
95 2008 NOI-3 2 trans Digits
96 2008 NOI-3 3 sword Exhaustive search, Strings
97 2008 ST 1 disk Others, Recursion
98 2008 ST 2 segments Geometry, Tiling
99 2008 ST 3 subsequences Searching, Sequence

100 2008 WT 1 future Others, Long integers
101 2008 WT 2 triangles Graphs, Clique
102 2008 WT 3 context Searching, Text

Tasks and Training the Intermediate Age Students for Informatics Competitions 37

References

Manev, K., Kelevedjiev, E. and Kapralov, S. (2007). Programming contests for school students in Bulgaria.
Olympiads in Informatics International Journal, 1, 112–123.

Kelevedjiev, E. and Dzhenkova, Z. (2008a). Tasks and training the youngest beginners for informatics compe-
titions. Olympiads in Informatics International Journal, 2, 75–89.

Kelevedjiev, E. and Dzhenkova, Z. (2008b). Competition’s tasks for the youngest school students. In Mathemat-
ics, Informatics and Education in Mathematics and Informatics, Spring Conference of the UBM, Borovetz.

Bulgarian Web Portal Site for Competitions in Informatics. Retrieved 1 March 2009 from
http://infoman.musala.com

Bulgarian Web Site for School Competitions in Informatics. Retrieved 1 March 2009 from
http://www.math.bas.bg/infos

E. Kelevedjiev is a research fellow in the Institute of Mathematics and
Informatics at the Bulgarian Academy of Sciences. His field of inter-
ests includes algorithms in computer science, operation research, dig-
itization techniques, etc. He is a chairman of the Bulgarian National
Committee for Olympiads in Informatics; leader or deputy leader of
the Bulgarian teams for many IOI’s and BOI’s.

Z. Dzhenkova is a teacher in the Mathematical High School in
Gabrovo, Bulgaria. She is coauthor of a manual for beginner’s training
in competitions and olympiads in informatics. Her field of scientific in-
terests includes education in informatics and information technology;
leader of school student teams and instructor in competitive informat-
ics.

Olympiads in Informatics, 2009, Vol. 3, 38–59 38
© 2009 Institute of Mathematics and Informatics, Vilnius

Infrastructure for Contest Task Development

Rob KOLSTAD
USA Computing Olympiad
15235 Roller Coaster Road, Colorado Springs, CO 80921, USA
e-mail: kolstad@usaco.org

Abstract. The USA Computing Olympiad annually conducts six internet-based computer program-
ming competitions, each including three to four algorithmic tasks in each of three divisions. Cou-
pled with the training camp competitions, a typical annual USACO ‘problem budget’ approaches
75 new tasks at three distinct levels of difficulty.

In order to exploit a distributed coaching staff, USACO developers created and evolved the web-
based ‘probgate’ problem-development system to speed production of acceptable quality program-
ming contest tasks that are machine-gradable, well-accepted, and yield no or few complaints, re-
grades, or requests for clarification.

This paper describes each of the major modules and shows how they are used to simplify, speed
up, and automate administration of contests regularly accessed by more than 1,000 students.

Key words: programming contests, automation, contest test data, contest data validation, contest
preparation, contest automation, automatic grading.

1. Demographic Background

The USA Computing Olympiad is the USA’s designated organization for training and
selecting students to compete in the International Olympiad in Informatics.

In July, 2009, the United States had a population of just over 307 million people.
The USA includes 9.8 million square kilometers (about half the size of Russia or South
America; about twice the area of the European Union). The 3,500 mile (5,600 km) width
of the contiguous 48 states complicates gathering students for training camps or on-site
contests.

The USA has just over 29,500 high schools with a total of about 15M students; about
3.2M will graduate in 2009. Additionally, 0.3M high school students are ‘home schooled’
outside the traditional public and private school system.

Until recently, USA high schools included all levels of students and declined to uti-
lize ‘tracking’ to segregate them by performance. The past decade has seen increased
availability of ‘magnet,’ ‘gifted and talented,’ and ‘charter’ schools that offer focused
or deeper programs for academically inclined students. Additionally, many high schools
offer ‘Advanced Placement,’ ‘Honors,’ or International Baccalaureate coursework that
enables students to self-select into more challenging curricula (thus segregating academ-
ically focused students from their potentially less-diligent peers).

Infrastructure for Contest Task Development 39

All public secondary schools in the USA are governed by local (usually city-wide)
school boards that are generally overseen by state-level school boards. The federal gov-
ernment uses the new No Child Left Behind legislation and a few other techniques to
encourage a small number of national standards.

Of the USA’s 15+ million eligible students for the IOI, about 150–175 (0.001%)
participate in USACO contests (47% in bronze division, 36% in silver division, 16% in
gold division).

2. Task Development Background

The manageable number of students coupled with the natural fit of computer program-
ming contests to the internet enables the USACO to offer six annual online programming
contests (plus a qualification round) to USA students. Each contest has three divisions;
each division contains 3–4 tasks, usually 9–10 tasks total. Annually, these contests con-
sume 55–60 tasks.

The selection process thus garners a large amount of data for each student, so much
that the student’s worst performance can be dropped from statistics (most folks have a
bad day once in a while) while still yielding meaningful means, trends, and so on. The
monthly contests also enable tracking of students’ improvement over time (and correla-
tion with their participation in the USACO training site).

The USACO invites 16 (or so) of the best students to participate in the USA Invita-
tional Computing Olympiad, an on-site selection contest and training week for the IOI.
This camp has evolved to include six contests (four shorter, two longer) of 3–4 tasks each,
an additional ∼20 tasks.

In addition, the USACO administers bonus contests (e.g., over the New Year holiday
break) and special training events that also consume programming contest tasks.

All in all, the USACO creates and then consumes 75 or more fairly high-quality tasks
per year, all developed by a volunteer coaching staff of about a dozen coaches located
around the world.

The original implementation of the USACO grader enabled automated administra-
tion and grading of tasks in a contest environment. Task development and deployment
proceeded manually, including manual setup and installation of tasks into the contest
system.

Manual setup is well-known to be error-prone, and the USACO was no exception.
Bugs and other issues were exacerbated by the just-in-time development effort, which
often resulted in tasks (including text, solutions, and test data) being created the night
before a contest (especially at camp with its very high rate of task consumption).

This development methodology not only created tremendous pressure and stress on
the coaches but resulted in errors in the task statements, occasional tasks that were not as
solvable as believed, test data that failed to meet the task specifications, and contest en-
vironment integration errors. Coupled with the stress and schedule pressure, the coaches
felt the overhead of task development and contest integration was high.

40 R. Kolstad

3. Task Development Paradigms and Related Work

The existence of online, web-available, automated grading systems coupled with the ad-
vent of ever-cheaper hardware and widely-available reliable free software for develop-
ment has fostered development of many grading systems around the world. Evolution of
such systems usually proceeds from a web page that enables compilation and execution
to a ‘sandbox’ to contain the behavior of submitted programs (imagine the security im-
plementations of letting anyone send source code to run on your site). The compile/run
system acquires a database of users in order to differentiate whose tasks are getting which
results. The major issue of scaling comes into play as the abilities of a single CPU are
exceeded.

Then the real challenge emerges: continuous development of new tasks and adminis-
tration of contests on a schedule. Once scaling solutions and dedicated staff (volunteers,
usually) are identified, the second-order issues can be attacked. Some country’s organi-
zations (e.g., those of Poland’s Diks et al. (2008), Canada’s Gordon Cormack, and The
Netherlands’ Tom Verhoeff (2008)) have devoted tremendous attention to the challenge
of using black-box testing to ascertain the quality of submitted solutions to contest tasks.

The USACO’s focus has been on providing a large, growing, and widely-available
set of contests to the largest possible audience. While judging the quality of task ideas
and text is difficult and extremely subjective, the works by the previously-named authors
provide some guidance for creation and judging of test data. By the criteria of high-
quality black-box testing, USACO’s test data does not measure up to the standards of the
IOI (and probably those of Diks, Cormack, and others). However, problem setter Richard
Peng’s efforts through the 2007–8 and 2008–9 seasons have increased test data quality
dramatically. The data still meet the simple objective criterion: Do the test data enable
fair and defensible differentiation among the contest competitors, preferably throughout
the range of skills in a given division? For USACO, mostly because of the task-weighted
scoring technique (also seen in use at IOI2008 in Egypt), both the top-, mid-, and low-
level participants (in the Silver and Gold divisions) are differentiated quite well across
a 1,000 point scale.

Diks et al. (2008) shared their Task Preparation Process at 2008’s Olympiads in In-
formatics conference. Using their methodology and manpower, their tasks end up with
superior ‘model’ solutions, better test development (black-box testing), and dramatically
more complete and in-depth analyses when compared to USACO’s ongoing efforts. Their
series of training booklets is further evidence of their development of insightful and thor-
ough solution analyses.

Verhoeff (2008), also at 2008’s Olympiads in Informatics conference, shared his pro-
posal for the Peach Exchange Format. Compared to this paper’s work, it has a much more
formal set of roles (and their descriptions) for developers, potentially much better ‘back-
ground’ (often mathematical) information for task development, ‘notes’ for developers
(see Verhoeff, 2008; p. 202), and a formal specification for a file structure layout for task
exchange.

USACO’s paradigms more strongly emphasize throughput in the task development
area at the expense of detailed analyses and extremely thorough black-box testing.

Infrastructure for Contest Task Development 41

4. Requirements

One advantage of conducting a dozen IOI-level and IOI-size (for half of them) program-
ming competitions per year is the rapid accrual of realistic statistics on the kinds of mis-
takes that creep into contest tasks. After one particularly stressful camp during which
Senior USACO Coach Greg Galperin created a huge task matrix on a whiteboard to chart
task development throughout the week, it became clear that automated scripts could not
only aid in task development and debugging but also in contest administration system de-
bugging. The decision was made to create a web-based task development system (which
would not only integrate the scripts but also provide a distributed user interface). In hind-
sight, this is the next logical step in developing a contest administration framework once
a grading system with a secure ‘sandbox’ is stable.

Experience made clear the requirements for tasks, which include rules like these:

• Text must be clear and complete.
• Text must be easily editable for repairs.
• Text must be easy to export to both web and to paper – since online contests use

one method and on-site contests use the other.
• It is desirable for text to have multiple coaches’ ratings and comments – this helps

determine which tasks belong on contests (vs. training or discard).
• Test data must be valid (i.e., conform to task’s data explanation).
• It must be easy to add, remove, reorder test data.
• The system must ease creation of data validators (Verhoeff, 2000) – the data valida-

tor was one of the most effective schemes for eliminating complaints and regrades.
• It is desirable to create data validator mechanically – the ability to have a program

read a task and deduce the input data format ensures a uniform, proper presentation
of input requirements in addition to saving time.

• The system must support all styles of IOI tasks (simple answer, multiple answer,
reactive, output-only, programmatic grader, etc.).

• The system must enable configuration of submission feedback (categories like:
case is required to be correct for submission to proceed, report right/wrong for one
or a set of tasks, or no feedback at all).

• The system must enable configuration of multiple-tests per case.
• Task must be solvable within the contest constraints.
• The system must provide automated evaluation of proposed solutions in contest

environment (running in any other environment does not “prove” solvability).
• The system must provide comparison of answers from various solutions/solvers –

this must be mechanical since answer sets can be large and similar.
• It must be easy to enter answer-graders and format-checkers.

Requirements for task development include:

– easy navigation,
– ability to create pool of tasks to use in various contests,
– ability to see status (including coach ratings) of each task,
– ability to see status of each contest,

42 R. Kolstad

– fast navigation for rating many tasks – fast, easy navigation encourages coaches to
rate more tasks,

– convenient contest setup and parameter management,
– archiving scheme so tasks can smoothly move to training or other places – one-

click archiving makes for easy reuse of tasks,
– collection of task analysis text,
– ease of set up and take down for contests, including automatic start/stop.

5. Chosen Task Development Paradigms

The task development paradigm centers on the task as a ‘unit’ with this (expandable) list
of components:

– numerical problem ID,
– task author,
– task analysis status,
– task editing status,
– count and list of task solutions (and solvers) with solution-agreement status,
– data validator and its status,
– test data and its feedback type,
– task ratings,
– task algorithm,
– estimated time for ‘ideal student’ to solve,
– task abbreviation/short name,
– task title,
– task text.

The task’s text includes these items (which are stored and manipulated as separate
entities):

– full task name,
– short task name/abbreviation,
– assigned owner for task,
– presentation order,
– division,
– author,
– date,
– text body,
– input format (including broken-out start/stop line numbers),
– sample input,
– input explanation,
– output format (including broken-out line numbers),
– sample output,
– output explanation,
– the task’s test data representation includes:

Infrastructure for Contest Task Development 43

– each of the test cases,
– memory limit,
– default time limit,
– grader program for task output (optional),
– format checker for task output (optional),
– auxiliary filename and contents (e.g., for external dictionary),
– data validator program,
– scoring tables for aggregates (when score depends on more than one test case),
– per-test case time limit.

Notes for test data are consolidated with notes in the task discussion.
Additionally, the development system’s paradigm includes the ability to set new task-

development instances (for training tasks, university training/homework tasks, personal
task development gateways, etc.).

6. Current Implementation

The system supplies several web pages to manipulate the task’s components:

– the login page,
– the main status and navigation page,
– the text presentation, ratings, algorithm, solution time, ratings, and comments page,
– the problem solution page,
– the test data management page,
– the contest management page.

Subsections below detail each of these.
The task development infrastructure is part of an integrated training/contest adminis-

tration system written almost entirely in the perl programming language (the ‘sandbox’
being the only exceptional program; C felt like a better tool for its implementation).
About two dozen scripts (including administrative programs) total about 10,000 lines of
perl for the contest development infrastructure. At the time of implementation, perl was
one of only a few implementation tools mature enough to implement the system effec-
tively. Today, one could probably use any of several languages and/or tools. The author
is an expert perl programmer, so it was a natural choice at the time. The system runs on
FreeBSD and Linux (with a migration to a pure Linux environment planned for the near
future).

7. Login/Authentication

The current implementation of the task development system is accessed via a login page
on the web; see Fig. 1. A database keeps track of both coaches and competitors’ user-
names and passwords (over 105K as of 1 May 2009).

44 R. Kolstad

Fig. 1. Authentication page for problem editing gateway.

8. Status and Navigation

The main status and navigation page shows all the managed tasks in groups that have been
assigned by the coaches. Typical groupings are for upcoming contests, unassigned tasks
of a similar type, and unassigned tasks of a given division (e.g., gold, silver, or bronze).

Fig. 2 shows a small fraction of the top of the main status navigation page. The very
top includes some submit buttons used for group naming and other functions:

• Submit new problem: plots a task input page that collects each of the sections
mentioned above for a given task.

• Make new group: creates a new group with the name supplied in the input box.
• Rename group: Changes the name of the group whose checkbox has been clicked

to the name supplied in the input box.
• Help: plots a page of explanatory text.
• Manage Contests: brings up the contest setup page.
• Replot this page: redisplays the page with all updates.
• Submit selector: activates a filter that displays only those groups whose name

matches the regular expression entered in the Selector box (dramatically reduces
traffic when working on a single contest).

• Enlarge and Shrink: Increases or decreases the typeface size.

The headings show up next followed by the first (of many) group headers. The group
header rows include the header (and its checkbox) with the group name and some com-
mands in addition to a single line status message previously entered by a contest director.

Infrastructure for Contest Task Development 45

Fig. 2. Status and navigation page.

The per-group commands include:

• EXPORT – Copy this group’s tasks to the contest whose name matches the group
name.

• ARCHIVE – Copy this group’s tasks to the training task development system and
remove them from this page.

• REMOVE_GRP – Move the tasks in this group to the section below for unallo-
cated tasks and delete the group name and its status message.

• ADD_PROBS – Move the tasks whose checkbox has been marked into this group.
• PUBLISH_ANALYSIS – Retrieve the analyses entered for this group’s tasks and

copy them to the web for display with task data.
• ADD_NOTE – Shown only for special users when the contest ‘note’ is empty;

bring up note-text editing page.

The rest of the page shows the name and status for each of the tasks managed by this
particular task management system (in this case, 188 tasks are summarized below). Each
line contains a set of color-coded information about this task:

• Task Number: The numerical ID of the task. Clicking the number displays the
text-editing page.

• Task Number/Order: The presentation order number of the task, if it exists, is
displayed after the task.

• Owner: The next column shows the task’s owner.
• Status: A: The color of the letter A indicates the existence of the analysis (red for

missing, blue for present). Clicking the A brings up the analysis entry page.
• Status: E: The color of the letter E indicates whether the task has been final-edited

(bold-blue for not-edited, black for edited).
• Status: Xs/Ya: X is the number of solutions submitted; Y is the number

of solutions in agreement with the master solution. Bold-blue indicates insuffi-
cient solutions or agreements. Clicking this item brings up the solution submission
and status page.

46 R. Kolstad

• Status: VX: Bold-blue V means the validator is not submitted; presence of the
bold-blue X indicates the existence of test data that does not pass the validator’s
tests.

• Status: Xt[A.B.C]: X is the number of test cases that have been submitted. A is the
number of tests required to be passed for submission to succeed; B is the number of
tests whose results will be shown when a submission is made; C is the number of
tests that will be run normally. Clicking this item brings up the test data submission
page.

• N: Diff Orig Fun Opin: These five items represent respectively the number of
ratings entered by coaches as their evaluation of the task: the average difficulty
rating, the average originality rating, the average fun rating, and the average overall
opinion. The integer averages are the product of ten and the mean of all the 1–5
rating entries.

• Alg/Time: These two items show the algorithm abbreviation (as entered on the
problem display page by a knowledgeable coach) and the ideal student’s solution
time in minutes (also entered on the problem display page).

• Solns: The number represents the number of solution programs submitted; the sub-
sequent login IDs are the names of the solutions submitted (or, sometimes, names
assigned by the submitter).

• Abbr: The short problem name, its abbreviation.
• E: Clicking the E exports the single task to the contest administration system.
• R: Clicking the R removes the task from its group and moves it to the unassigned

task list at the bottom of the page.
• Name: The long name (title) of the task.

Problem creation and contest configuration proceed in parallel. To set up a contest,
a coach enters a canonical name (e.g., NOV09, DEC09, JAN10, etc.) and clicks Make
new group. He then ticks the checkboxes of tasks to move to that group and clicks the
ADD_PROGS tag on the group’s header.

Coaches can read the task’s text, enter ratings, enter solutions, enter test data, add a
validator, and submit output format checkers and graders. Any replot of the status change
shows all updates that have been entered.

When a problem is almost “ready” (i.e., it is final-edited, has at least two solutions
that agree with the master solution, has a validator that passes all the input data, and has
at least eight test cases), the background color around the “Status” fields changes to light
green. When the analysis is entered (generally not required until the contest is almost
over), the background shade changes to dark green.

A contest is fully ready when a dark green stripe runs completely through the “Status”
column’s fields.

9. Text, Comments, and Ratings

Fig. 3a shows the top part of a typical problem presentation page. It leads off with na-
vigation links and then prominently displays the problem’s name and owner (and also

Infrastructure for Contest Task Development 47

Fig. 3a. Top of text presentation page.

algorithm and solution time, if available). The editing status appears in italics just below
the task name. The problem text itself then appears.

The problem text includes many components. The largest component is usually the
problem statement itself which, by USACO convention, includes the limits on all the
various input parameters.

Following the problem text, the problem’s short name (abbreviation) appears with an
easy-to-find capitalized heading.

Fig. 3b shows the input/output section of this task’s display. The input format still
uses the old-fashioned “Line 1, Line 2, ...” notation instead of the more modern “Next 3
lines...” notation. The starting line and optional ending line are entered for each “section”
of input as part of the input process. These fields are used by the mechanical validator
creation routine to create loops that check the input.

The “Input details” section is optional, as is “Output Details.”
Fig. 3c shows the next set of information from the text page. It includes navigation

buttons to:

– edit the problem’s text, name, division, or input/output parameters,
– show recent changes to the text,
– navigate to the test data or solution pages,

48 R. Kolstad

Fig. 3b. End of text presentation on text presentation page.

– remove the task altogether,
– remove all entered data except the task’s text,
– mark the task’s editing as approved (only available to special directors),
– a shortcut to submit a solution (presumably created while reading the text above).

Finally, Fig. 3d shows the rating and comment box along with the coaches’ ratings.
Some coaches are empowered to enter an estimated “Solution Time” and “Solution Algo-
rithm” which then appear on the summary page. When a large pool of tasks is available,
a coach can scan solution times and algorithms to create a contest very quickly.

10. Text Editing

The text editing page is mostly self-explanatory (see Fig. 4a) with fields to enter:

– the full task name,

Infrastructure for Contest Task Development 49

Fig. 3c. Text page navigation and comments.

– the short task name (abbreviation),
– the task’s owner,
– the optional task presentation order,
– the task’s division,
– the task’s author,
– the task’s date,
– when the task was used,
– the task’s text.

The page’s display then continues with the self-explanatory input and output specifi-
cations; see Fig. 4b. This figure has been edited to remove blank fields and white space.
Terminology has evolved over time; the “Input Explanation” is displayed to competitors
as “Input Details.”

11. Solution Page

Coaches spend most of their time on the “Solutions Page” honing their solutions and
ensuring the answers are correct. The page enables saving of multiple solutions for each
coach so they can compare various algorithms and techniques.

50 R. Kolstad

Fig. 3d. Ratings, comment box, and rating navigation.

Fig. 5 shows a typical solution page. The top line provides navigation. The table shows
the status of all submitted solutions:

• Solver is the solution’s name, most often that of the submitter.
• Size shows the length of the solution (or the number of cases in the official solu-

tion).
• Available displays which cases have been run (and, in the case of disagreeing an-

swers, red denotes those that don’t agree).
• Actions include deleting the solution, (re-)running it, copying it to the official solu-

tion (along with its answers), or ‘X’ to mark the available case solutions as invalid
(in order to re-run them).

Auxiliary comparison buttons enable selected runs to be displayed either in full or as
‘diff’s. One can run or re-run all solutions.

The Solution Agreement Table displays smiling (or not-so-smiling) faces to display
which programs are in agreement. The faces are clickable to show the differences in the
output files. New, unrun test cases display as gray numbers in the ‘Available’ column; the
Solution Agreement Table displays question marks until the solutions are run on the new
data (generally with a single click to “Run all Solutions”).

Infrastructure for Contest Task Development 51

Fig. 4a. Text editing: parameters and body.

The Best CPU Time per Case table is self-explanatory and is used to ensure that
tasks have plenty of “head room” for slightly inferior algorithms or implementations – or
the effect of other programming languages (most notably, Java).

Finally, submission boxes enable sending in of new solutions and renaming existing
solutions.

12. Test Data

The test data submission page handles not only the submission and display of test data
but also (see Fig. 6a):

52 R. Kolstad

Fig. 4b. Input and output specifications.

• memory limit,
• default time limit (optionally overridden on a case-by-case basis),
• output grader program uploading,
• format checker program uploading,
• auxiliary filename and actual file contents uploading,

Infrastructure for Contest Task Development 53

Fig. 5. Solution submission and display page.

• validator uploading.

The test data display includes:

• Test#: The case number of this test (not always sequential in early stages of test
data development).

• Grade Type: Whether this test case is run upon submission (with or without a
requirement that the test be passed for successful submission) or later for results.

• #Lines in and Lines out: size of the test case.
• CPU Lim: The override value for the maximum CPU time.
• Input and Output: summaries of the first lines of input and output for the test case.

54 R. Kolstad

Fig. 6a. Test data programs and display.

• Action: A button to delete the test case.

The bottom half of the test data submission page (see Fig. 6b) includes:

• Delete ALL Test Files: The big gun.
• Re-Pack the case numbers: To make the case numbers be sequential (often used

after test case deletion).
• Re-Run Validators: Does the obvious thing. This is handy when someone is edit-

ing the validator in the filesystem instead of via the web page.
• Set IOI dispositions: Obsolete functionality that marked every other case as

“show result during submission.”
• Create aggregates: Invokes functionality that enables combining of individual

test cases into super-cases.
• Download all test cases: Creates any of four portable formats for moving all the

test cases around (or editing) in a single file (which is reloadable below).
• Move case ...: Self-explanatory.

The bottom of the page is where the actual uploading or entry of test cases occurs.
The fields are self-explanatory.

Infrastructure for Contest Task Development 55

Fig. 6b. Test data submission.

13. Contest Management

The contest management page (see Fig. 7a) has a relatively boring presentation but is,
of course, the center of administrative power. It uses the paradigm of cloning old con-
tests to create new ones (modifying the ioiconfig.perl file from one contest to update it
with the new contest’s information). Each contest is stored in a contest directory with its
configuration, problem texts, submissions, and so on. Functionality includes:

• Edit: displays the configuration editing page (see below).
• Clone: Creates a new contest with the name entered in the box near the top by

cloning a previous contest.
• Enable logins/DISable Logins: Toggles the configuration to allow non-contest-

directors to login or not.
• Activate/DEACTIVATE: Manipulates a table that shows which contests are avail-

able for logging in. Without available login, participants cannot even see informa-
tion about the contest and cannot login.

• Enable Analysis Mode/Disable Analysis Mode: Toggle the configuration file
variable that specifies whether the contest is analysis mode (vs. regular competition
mode).

14. Contest Configuration

The contest configuration page enables input for the all the standard contest configuration
parameters:

– contest name,

56 R. Kolstad

Fig. 7a. Contest management.

– brief description,
– contest duration (for each division),
– contest start and stop times,
– team, proctor, division, file submission, and analysis mode parameters,
– age break for legal participants,
– contest type and time zone.

15. Current Status

The system has been in production for half a decade with complete functionality as de-
scribed in this paper. The system currently manages 998 tasks (most from the past; a few
hundred for the future) and has 96 users who can edit ‘probgate’ (the contest problems).
Another half dozen instances support other organizations. An additional 61 users (some
of them the same as the previous users) are working in ‘traingate’ to create more train-
ing materials for USACO. During March of 2009, 21 different coaches performed 3,343
different actions (task reading, task submission, etc.) in the system.

Contests are ready on-time, with requests for translation sent out 3–4 days before the
competition begins. A typical season of six contests now yields – for the entire year –
perhaps half a dozen queries for clarification (usually from new competitors) and, in
general, no more than a single grading protest.

Infrastructure for Contest Task Development 57

Fig. 7b. Contest configuration options.

16. Current Deficiencies

As systems do, the problem management system requires a facelift and internal update to
bring it into the 21st century:

• Task timing (a function of the Linux kernel) is not reliable enough.
• The web display for contest tasks is too large; only filtering saves it from being too

unwieldy to be used.
• Database navigation has efficiency, paradigm, and speed issues.

58 R. Kolstad

• The web displays are not as stylish or as functional as they need to be to be truly
professional.

• The navigation among pages is inconsistent and poorly formatted.
• It is not yet possible to create one-off custom contests for trainees.
• It is not yet possible to create ‘programming bees.’
• The older training pages are not integrated into this system and need to be.
• Logging is not always performed properly.
• The interface for ‘confirmers’ is not complete.
• The system should perform automatic tracking of ‘solution times’ for coaches who

develop tasks.
• Processing the end of a contest still contains several manual steps; these should be

integrated into the contest management subsystem.

17. Conclusion

While an IOI consumes six tasks (or perhaps 8–12, depending on one’s point of view) in
a year, the USACO consumes more than six dozen. The continuous development cycle
has exposed many of the important factors in creating quality contests:

– data validation,
– multiple solvers,
– contest implementation without schedule pressure,
– automated contest configuration,
– running the USACO contest schedule would not be possible without this level of

automation.

Our most important item for near-term future development is custom contests for
training using old contest tasks.

The USACO system has proven successful for half a decade and complements the
growing set of other systems available on the internet and contributes to the diversity of
contests and environments that enable the field of competitive informatics to continue to
grow and mature.

References

Diks, K., Kubica, M., Radoszewski, J., Stencel, K. (2008). A proposal for a task preparation process. Olympiads
in Informatics, 2, 64–74.

Verhoeff, T. (2000). RobIn for IOI I/O, unreleased draft, August.
http://olympiads.win.tue.nl/ioi/twg/robin/Doc.txt

Verhoeff, T. (2008). Programming task packages: peach exchange format. Olympiads in Informatics, 2,
192–207.

Infrastructure for Contest Task Development 59

R. Kolstad consults for the TAEUS corporation on intellectual proper-
ty issues surrounding software and hardware. Rob is the head coach
of the USA Computing Olympiad, and is also the head judge at the
Pikes Peak Regional Science Fair. Rob earned his PhD in software
from the University of Illinois at Urbana-Champaign after complet-
ing an MSEE at Notre Dame and undergraduate BASc degree from

Southern Methodist University. Rob earned his Ph.D. in software from the University
of Illinois at Urbana-Champaign after completing an MSEE at Notre Dame. His under-
graduate BASc degree from Southern Methodist University was among the first computer
science bachelor’s degrees offered in the United States.

Olympiads in Informatics, 2009, Vol. 3, 60–66 60
© 2009 Institute of Mathematics and Informatics, Vilnius

Moe – Design of a Modular Grading System

Martin MAREŠ
Department of Applied Mathematics, Faculty of Mathematics and Physics, Charles University
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
e-mail: mares@kam.mff.cuni.cz

Abstract. Programming contests often employ automatic grading of submitted solutions, but fre-
quently in an ad-hoc way. This article describes our attempt at creating a modular and flexible
grading system called Moe, which is not tied to the specifics of a single contest.

Key words: automatic grading, Moe, mo-eval.

1. Introduction

Many programming contests in the world, including the IOI, employ automatic grading
of the contestants’ solutions. This is accomplished by running them on batches of input
data and testing correctness of the output. Time and memory limits are usually enforced
during the process, which allows to take the efficiency of the algorithm into account.

During the last two decades, a multitude of such evaluation systems have been de-
veloped, but most of them are tied to the specifics of a single contest and they are usu-
ally neither publicly available nor well documented. This leads to waste of effort by
re-implementing the same things over and over, and also to repeating mistakes somebody
else has already made and understood.

This variability can be observed even within a single contest. Most of the IOI host
countries have used grading systems developed for their national contests, often exten-
sively modified to handle the different conditions of the IOI. Similarly, the regionals of
the ACM ICPC differ in their contest environment between regions.

It was repeatedly suggested that a single unified contest system should be built and
used at all the major contests. However, it has been argued that the differences between
contests would make the system too complicated and cumbersome to maintain. Also,
diversity and the ease of experimentation with new ideas are too valuable to lose.

In our previous paper (Mareš, 2007), we have proposed a modular grading system
instead, that is a set of simple, yet flexible modules with well defined roles and interfaces.
A contest organizer would then pick a subset of the modules and use them as building
blocks of his contest environment together with other locally developed parts. This allows
us to minimize the effort without sacrificing flexibility.

This paper is a report on the state of development of our modular system called Moe.

Moe – Design of a Modular Grading System 61

2. The Design of Moe

Moe is a successor of our previous system (MO-Eval), originally developed for the con-
tests we organize, and subsequently generalized. Its primary target is Linux, but most
modules should run on any POSIX-compliant operating system. The sole notable excep-
tion is the sandbox, which is intimately tied to the details of the OS and of the CPU
architecture.

The source code of Moe and the (so far incomplete) documentation are available
under the terms of the GNU General Public License from the website mentioned in the
references.

2.1. Available Modules

Moe currently contains the following modules:

• sandbox – runs the contestant’s solution in a controlled and secure environment,
limiting its execution time, memory consumption and system calls. It is the most
mature part of Moe, already in use at several contests (see below for the list of
applications). The current version of the sandbox requires a recent Linux kernel on
the i386 architecture. A port to the amd64 architecture is near completion, but it
requires fixing several security issues in the kernel ptrace interface first, as noted
by Evans (2009).

• judges – a set of utilities for comparing the solution’s output with the correct an-
swer at the given level of strictness, which can range from ignoring white-space
characters to ignoring the order of lines or all tokens. The judges are built upon
a library of functions for strict and fast parsing of text files, which can be easily
used as a basis for custom judge programs. This part is also mature.

• evaluator (also known as grader) – this module controls the whole grading process.
It calls the compilers, the sandbox and the judges as described by configuration
files. It handles multiple types of tasks: e.g., batch, interactive, open-data. We have
a reliable implementation in Bourne shell, but it is unnecessarily hard to maintain,
so we plan to rewrite it in a higher-level language (most likely Perl or Python) in
near future.

• queue manager – since the evaluation of tasks at a big contest must be performed
in parallel, the queue manager can be used to maintain a queue of solutions and
distribute them among graders running on multiple machines. Finished, but needs
lots of polish to make it usable by a wider audience.

• submitter – handles submitting of solutions by contestants and passing them to the
evaluation system. While the submitter has been designed for competitions which
do not use a web-based interface, it can be also used as a clean interface between
the web modules and the rest of the system. Working, but needs revision.

62 M. Mareš

Fig. 1. Typical interconnection of modules.

• test suite – the correctness and security of most modules is critical to the success of
the contest. We are building a test suite which tries to cover all known edge cases
and attacks on system security. The test cases contain unit tests for various func-
tions, regression tests for historic bugs, and security tests inspired by the analysis
of possible attacks by Forišek (2006).

In near future, we plan to add several new modules:

• feedback – processing of evaluation results and generation of various reports (e.g.,
score tables, sheets with detailed feedback for contestants).

• scoring – multiple small modules for advanced scoring strategies, like gradual time
limits (programs near the time limit get partial score) and approximation tasks
(points are awarded depending on the precision of the result).

• supervisor – controlling several hundred computers at a big contest is no easy task.
This module will maintain a queue of jobs (usually snippets of shell scripts or
request to distribute files) and schedule their parallel execution at given machines,
possibly using a tree-like topology to spread the load.

2.2. Programming Languages

Most parts of the system are free of assumptions on the programming languages used
in the competition. The only dependencies are in the evaluator and in the sandbox. The
evaluator needs to know how to compile and run the programs, which can be of course
easily configured. The sandbox has to be set up to permit the system calls issued by the
language’s runtime libraries.

Pascal (compiled by either GPC or FPC), C and C++ (compiled by GCC) are sup-
ported since the first release of Moe and there are no known problems with them, except
for the occasional slowness of Pascal I/O libraries.

C# compiled by Mono turned out to be more problematic, because its runtime libraries
use various unusual system calls, which are forbidden in the default settings of the sand-
box. Also, Mono spawns multiple threads even for trivial programs. We have patched the
runtime environment to avoid threading and the most problematic system calls, while the
rest is handled by a language-specific configuration of the sandbox.

Moe – Design of a Modular Grading System 63

We have added experimental support for Haskell recently, compiled by GHC.
Adding further compiled languages should be easy, as long as their runtime environ-

ment behaves in a sane way. Interpreted languages are also supported, but except for
interpreting the C# byte code, they did not receive much testing yet.

2.3. Interfaces

To facilitate interconnection of the modules, each of them is written as a stand-alone
program with basic parameters passed as its command-line arguments. In addition to
this, we accompany every solution by a status file, which collects all information related
to grading of the solution. All modules can contribute their bits: the submitter records
which programming language has been used, the sandbox reports the execution profile
(time, memory, number of system calls), the evaluator informs about the results of each
test case, while the queue manager annotates on which grading machine has served the
task and how long did the task wait in the queue.

We have resisted the industry-standard temptation of using XML as a one-size-fits-all
format. Instead, the status file has the form of a simple structured text file, inspired by the
Lisp S-expressions, but strictly divided to lines and typeless. This is very easy to generate
and parse, especially in shell scripts which form the glue joining the evaluator modules.
Moreover, it has the same expressive power as XML, so the files can be converted back
and forth if an application wishes.

A typical example looks as in Fig. 2.
As the status files are a relatively recent addition to the Moe infrastructure, they are

not yet fully supported by all modules, but they probably will be at the time of publication
of this article.

task:pyramid The name of the task [2pt]

lang:c Language of the solution

test(A section for a single test

id:1 Name of the test

time:0.375 Run time in seconds

mem:1355776 Memory consumption in bytes

points:0 Points awarded

status:RE Status code

message:Runtime error Explanatory message

exitcode:1 Program exit code

)

test(A section for another test

id:2

...

)

...

Fig. 2. An example status file.

64 M. Mareš

2.4. Configuration

We pay much attention to the configurability of the whole grader. Most aspects of the
evaluation process are controlled by many configuration variables, whose values are gath-
ered from several sources and these are stacked one onto another in a manner similar to
the Cascading Style Sheets.

First of all, there is a top-level configuration file with global defaults. These can be
overridden by per-task configuration files. The per-task configuration usually involves
things like setting of time and memory limits, but it can modify any variable if needed.
This way, we can extend the compiler options if the task requires a special library to
be linked, or change the sandbox options to permit otherwise disallowed system calls.
Finally, the settings can be modified for individual test cases.

A fragment of configuration can be also restricted to a specific programming lan-
guage. This allows compilation commands, settings of the sandbox, or rules for interpre-
tation of runtime errors to be defined differently for each language.

Moreover, the values of the settings are expanded before each use, which includes
interpolation of references to other configuration variables. For example, this feature is
commonly used to make the compilation command for each language refer to a variable
with user-defined compiler switches, or to substitute time and memory limits to the list
of sandbox options.

The configuration mechanism also serves as a core of our format of task packages.
Essentially, the role of a task package can be played by an arbitrary directory, as long
as it contains an appropriately named configuration file. Its variables then point to other
files within the same directory, which contain the test cases, judges, model solutions,
and other components of the task. As this file naming convention is usually fixed within
a single competition, it is customary to use the configuration stacking to inherit most
variables from a top-level configuration file and let each task care of its differences from
the defaults only (see Fig. 3 for an example).

We are following the discussion on standardization of task packages initiated by Ver-
hoeff (2008), but the Peach format proposed there is too restrictive for our use. We want to

IO_TYPE=file this is a standard batch task with file I/O

TESTS=”1 2 3 4 5” names of test cases (files n.in, n.out)

POINTS_PER_TEST=1 points awarded per test case

TIME_LIMIT=5 time limit per test case in seconds

MEM_LIMIT=4096 memory limit per test case in KB

TEST_4_TIME_LIMIT=10 override for a specific test case

EXT_pas_MEM_LIMIT=8192 Pascal solutions get twice as much memory

OUTPUT_CHECK=’$PDIR/judge
$TDIR/$TEST.in
$TDIR/$TEST.out
$TDIR/$TEST.ok’

this task does not have unique output, so use
a problem-specific judge

Fig. 3. An example task configuration file.

Moe – Design of a Modular Grading System 65

keep the assumptions about task formats in Moe at minimum. It is quite possible, though,
that a single format will be recommended as a default in the future, when some consensus
is reached. Also, Moe’s flexibility makes it quite easy to import tasks from other systems.

3. Applications

Our system is still under construction and many parts need lots of improvements. It is
however lacking mostly in features and documentation, rarely in reliability. Its design
and implementation have already proven itself at multiple occasions.

First of all, it serves as a basis of the competition environment at the Czech national
olympiad in last six years. We also regularly use the same environment at the Czech–
Polish–Slovak preparation camps whenever they are held in Czech republic. As the orga-
nizers of these camps enjoy experimentation with new types of tasks, we have used Moe
modules in many previously unexpected ways. A nice example was awarding points by
playing a tournament between all pairs of submitted solutions. (More such “hacks” are
described in our previous paper.)

A new version of Moe, which pioneered the submitter, has been developed for the
Central-European Olympiad in Informatics 2007.

Since 2007, Moe is used as the evaluation back-end of CodEx, which is an automated
system for checking students’ programming assignments at the Faculty of Mathematics
and Physics of Charles University in Prague. To handle this load, we have created queue
manager module. As Moe contributes only a small piece to a big puzzle here, we have
introduced the status files to make data interchange easier. The CodEx version was also
the first to support C# and Haskell.

Recently, the organizers of IOI 2009 have decided to use Moe’s sandbox as a part of
their contest environment.

4. Future Plans

We plan to continue the development of Moe in the forthcoming years. First of all, we
wish to fill all the gaps, especially in the documentation, and make the use of status files
systematic. We also want to rewrite the evaluator module and add the feedback, scoring,
and supervisor modules as described in Section 2.1.

Further plans include extension of the submitter module to provide on-line feedback,
which will make it directly usable in contests like the ACM ICPC. Also, we would like
to support more operating systems, architectures and programming languages.

As most free-software projects, Moe is developed by volunteers. Any bug reports,
suggestions for new features, patches to the code or any other contributions are heartily
welcome. Also, if you use parts of Moe in your contest, please let us know, we are inter-
ested in your experience.

66 M. Mareš

References

Evans, Ch. (2009). Linux syscall interception technologies partial bypass. Security advisory CESA-2009-001.
Retrieved 27 February 2009 from:
http://scary.beasts.org/security/CESA-2009-001.html

Forišek, M. (2006). Security of programming contest systems. In Informatics in Secondary Schools, Evolution
and Perspectives. Vilnius, Lithuania.

Mareš, M. (2007). Perspectives on grading systems. Olympiads in Informatics, 1, 124–130.
Mareš, M. et al. (2009). The Moe web site.

http://www.ucw.cz/moe/
Verhoeff, T. (2008). Programming task packages: peach exchange format. Olympiads in Informatics, 2, 192–

207.

Martin Mareš is as an assistant professor at the Department of Applied
Mathematics of Faculty of Mathematics and Physics of the Charles
University in Prague, a researcher at the Institute for Theoretical Com-
puter Science of the same faculty, organizer of several Czech program-
ming contests, member of the IOI Scientific Committee and a Linux
hacker.

Olympiads in Informatics, 2009, Vol. 3, 67–73 67
© 2009 Institute of Mathematics and Informatics, Vilnius

Using a Linux Security Module for Contest
Security

Bruce MERRY
ARM Ltd
110 Fulbourn Road, Cambridge, CB1 9NJ, United Kingdom
e-mail: bmerry@gmail.com

Abstract. The goal of a programming contest grading system is to take unknown code and execute
it on test data. Since the code is frequently buggy and potentially malicious, it is necessary to run
the code in a restricted environment to prevent it from damaging the grading system, bypassing
resource constraints, or stealing information in order to obtain a better score.

We present some background on methods to construct such a restricted environment. We then de-
scribe how the South African Computer Olympiad has used a Linux Security Module to implement
a restricted environment, as well as the limitations of our solution.

Key words: linux security module, programming contest, sandboxing.

1. Introduction

The South African Computer Olympiad (SACO) is an annual programming contest,
whose final round is modelled on the International Olympiad in Informatics (IOI). In
particular, contestants submit solutions in source form, in a variety of languages, to an
online submission system. The online submission system provides a variable amount of
feedback immediately to the contestant (typically, the results of some sample case). Final
scores are only made available after the contest, by running each solution on a variety of
test cases.

While we are not aware of any contestants having attempted to cheat by submitting
malicious solutions, we must nevertheless protect the integrity of the grading system by
running them in a sandbox, or locked-down environment. In some ways, this is easier
than sandboxing a general application, since solutions are only intended to have a limited
interaction with the execution environment (read a file, do some computation and write
a file), and so it is possible to use a more tightly locked environment than would be pos-
sible for running applications that had legitimate needs to access the display, keyboard,
network and so on. However, we must also enforce the rules of the competition (such as
execution time limits), so some additional work is required.

The following section lays out our requirements in more detail. Section 3 discusses a
number of approaches to sandboxing. In Section 4 we describe which approach we chose
and how we implemented it. Conclusions are presented in Section 5.

68 B. Merry

2. Requirements

2.1. Security Requirements

Usually, sandboxing is used to prevent applications from either damaging the host envi-
ronment or leaking information about it (for example, by stealing passwords or credit-
card numbers from a browser). For a programming contest, there are some other limita-
tions that must be taken into account. Below is a list of some of the goals we aimed to
meet:

1. Resources (particularly, CPU time and memory) must be restricted, to prevent a
malicious (or more likely, incorrect) solution from blocking the whole system.

2. Resource constraints must be accurate. For example, if a program has a one-second
time limit, it is acceptable for it to run for 1.5 seconds and terminate normally, as
long as it is possible to determine that the time limit was in fact breached. It is
also important that programs are not able to make it appear that they used fewer
resources than they actually did.

3. Programs must be limited to a single thread. This prevents programs from taking
advantage of multi-core systems to get more computation done in the time avail-
able, as well as simplifying a number of other implementation details.

4. Programs must not be permitted to spawn other processes. This prevents, for ex-
ample, a problem involving mathematical computation from launching an external
program like bc or Octave to do the computation.

5. Programs must not be able to communicate with the outside world (for example,
through TCP/IP sockets). This prevents the solution from offloading processing
onto a separate, possibly faster system, as well as ensuring secrecy of test data.

6. A single run of a program must not be able to communicate with any other run
(for example, by leaving a file with precomputed primes in the filesystem, or using
inter-process communication).

2.2. Other Requirements

While security is obviously the primary goal, some potential solutions may be deemed
unusable for other reasons. Other requirements include

1. The setup time must be minimal. We do not have a large cluster of machines for
evaluation, so throughput is a concern.

2. It must not significantly impact performance. This is so that CPU time limits are
not affected by the security mechanism.

3. It must allow common operations by the standard libraries of the compilers used
(GCC for C and C++, FreePascal, Python and Java). Some of these libraries do I/O
using system calls that can also be used in ways that violate the security policies
above, so it is unacceptable to block these system calls unconditionally.

Using a Linux Security Module for Contest Security 69

3. Background

3.1. System Call Interception

In Linux and indeed most desktop/server operating systems, applications do not have
direct access to devices such as ethernet ports or disk drives, and can only access memory
that is allocated to them. In order to interact with devices or other applications, it is
necessary to use system calls. A system call is similar to a function call, but transfers
control to the operating system kernel which undertakes these actions on behalf of the
user.

One approach to restricting the actions that an untrusted application can take is to
intercept these system calls. Linux provides the ptrace system call, which allows one
process to be notified about any system calls made by another. The controlling process
can then override or suppress system calls that the untrusted application should not be
allowed to make according to the security policy.

This interception process adds a small amount of overhead, because for each system
call there is an additional context switch from the kernel to the process that makes the
decisions and back again.

System call interception is also prone to security holes if not implemented correctly,
mostly due to race conditions (Watson, 2008). This is because the values passed to the
kernel can be modified by another thread between the time they are checked by the inter-
ceptor and the time the kernel sees them. However, this is less of a concern for us, since
we do not need to support multi-threaded processes.

Another limitation of system calls is the sheer number of them: over 300 in current
versions of Linux. Arguably, the system call interface is the wrong level of abstraction,
because the same semantic operation (for example, extracting data from a file handle) can
be achieved with many different system calls.

Examples of general-purpose, configurable system call interceptors include Systrace
(Provos, 2003) and GSWTK (Fraser et al., 1999).

3.2. Linux Security Modules

Linux provides an interface by which alternative security policies may be plugged into
the kernel. Whenever the kernel is about to undertake some privileged action on behalf
of the user, a hook in the current security module is used to determine whether it should
be permitted. This is also used to implement the default security policy (for example, to
allow the root user to access any file).

The interface for a security module is at a more appropriate level for our task: it deals
with abstract actions, such as read from a file, rather than the specific system call used
to achieve that action. It is also less vulnerable to the same race conditions as system
call interceptors, because the security module accesses data within the kernel rather than
userspace data that will later be copied into the kernel.

Unfortunately, the interface is frequently changed between kernel releases, and the
documentation of the interface is often not updated to reflect the changes. This means

70 B. Merry

that a system based on the module cannot freely upgrade the kernel to take advantage of
new features or security fixes to the kernel itself.

3.3. Virtualisation

Virtualisation allows one instance of an operating system (the guest) to run inside another
(the host). When the untrusted program is run inside a guest operating system, it will be
unable to access the resources of the host as it has no way to even address them (for
normal uses of virtualisation, special configuration must be done to make host resources
accessible from the guest).

This provides a high level of security, since rather than having to catch bad system
calls, there is no way for a malicious application to even form a bad system call. And
because any side effects of the program (such as leaving files in a temporary directory)
are limited to the guest operating system, they can be wiped and a pristine guest operating
system used for the next run.

The primary disadvantage of this approach is that the guest operating system would
need to be booted for each run, adding significant overhead to the evaluation process.

4. Implementation

In the previous section, we listed three general approaches: system call interception, se-
curity module, and virtualisation. At the time we made the decision, we were not aware
of the general-purpose system call interceptors, and writing one from scratch seemed a
daunting task. Virtualisation was rejected because we wanted a light-weight setup that
would not require us to maintain an operating system image separate from the primary
operating system on the evaluation server. At the time, we were also only using a single
machine for both the web front-end, compilation and evaluation, and we felt that booting
a virtual operating system for each evaluation would be too expensive. We thus chose to
use a Linux Security Module.

The Linux Security Module (LSM) framework provides a communication channel
(/proc/self/attr/exec) for user processes to communicate with the security mod-
ule. A wrapper program uses this channel to configure a restricted environment, then
calls exec to launch the untrusted program. There are a number of commands that can
be sent using this stream. There are some commands that are specific to Java (see 4.5);
the remaining ones are listed in Table 1).

Once the process calls exec, the security restrictions come into place, and cannot be
changed further. The allow exec command exists to allow further layers of wrappers
around the actual program to execute (some interpreters, for example, are actually shell
scripts which exec the “real” interpreter.

The majority of security module hooks are for more exotic functionality that a contest
solution should have no need for, such as setting or querying scheduling policy, changing
user, inter-process communication and so on. For each of these, we simply check whether
we’ve flagged the task as restricted (which is quite easy, since the kernel task structure

Using a Linux Security Module for Contest Security 71

Table 1

Commands that can be issued to the security module

Syntax Meaning

version major.minor Mark this process as restricted, and check for version mismatches

allow threads n Set the number of threads the process may have at any time

allow exec n Allow n calls to exec

allow write Remove any extra restrictions on filesystem access

allow write file Allow creation and write access to file

has a field available for the security module to store information), and if so, reject the call
with the appropriate error code.

For calls related to creating or writing to files, we check both the global write enable,
and the list of files marked as writable (for a contest problem, this would typically be
just the output file). Note that there are multiple system calls to modify the data in a file
(write, fwritev, pwrite, truncate, ftruncate, sendfile, . . .), but they are
all handled with the same security module hook – a distinct advantage over system call
interception. In addition, the parameters to the hook use the kernel’s internal representa-
tion of the filesystem, so there is no need to compare pathnames to determine whether are
simply different ways to refer to the same file (due to symlinks, for example).

Initially we attempted to block all operations for which we did not explicitly see a
need in a contest environment. However, we were surprised to discover the extent to
which standard libraries depended on these calls for internal use. For example, we found
that glibc preferred to use mmap for file I/O, and various files in /etc are consulted
during library startup. In the end, we decided that it was easiest to rely on just the standard
kernel security model for most read-only operations, and block or restrict only operations
that had side-effects.

4.1. Separate User Account

Before the introduction of the kernel module, we used to have a weaker security system
that merely executed programs under a different user ID, using sudo (Miller and Jepe-
way) to allow the user ID that runs the submission system to launch processes under this
user ID. We decided to keep this model when adding the kernel module. While partly
for defence-in-depth, this made it possible to allow the normal UNIX file access controls
to govern read access without exposing the full set of test data, results etc. to submitted
programs.

4.2. Resource Limits

The security module prevents multithreading and process execution, but CPU time and
memory limits are enforced via the standard setrlimit system call. We use a wrapper
program that forks, sets the limits and the security module settings, and finally launches

72 B. Merry

the program. It then waits for it to terminate and records the results (such as the exit
code and execution time). setrlimit can only set a CPU time limit with one-second
precision, so we round up the time limit for the purposes of setrlimit and check the
actual time consumed after termination.

4.3. Side Channels

When the kernel module was initially introduced, jobs were run in parallel, starting as
soon as they were submitted. We did not find a good way to prevent side channels between
processes running concurrently. Although we are able to block the obvious routes such
as sockets or files in a common area, there is a wealth of information available in /proc

and our attempts to block access here led to instabilities in the kernel module itself. It
is also known that shared caches between processors can be used to extract information
by timing memory accesses, even if one of the processes does not intend to leak this
information (Osvik et al., 2006).

In our current system, jobs are queued and executed serially on each grading server,
so side channels between running processes are not a concern. The most obvious side
channel between processes that do not execute concurrently would be to leave a file in
the filesystem. This is prevented by restricting the processes to write to only a specified
list of files, all of which are purged after execution. There may still be side channels
available (particularly related to uninitialised memory), but we believe that exploiting
them reliably would be at least as much work as solving problems correctly in the first
place.

4.4. Alternate Root Directories

In Linux (and other UNIX-like operating systems), it is possible to run a process in an
environment where the root directory is actually only a subdirectory of the “real” root
directory. This prevents the process from accessing any files other than those specifically
placed in that subdirectory.

At present, we have not implemented this, largely due to the unwillingness to maintain
separate copies of files in the alternative root filesystem. While we’re not aware of any
additional security we would gain from this, it would provide better defense-in-depth
should any of the other security provisions fail (for example, should any of the contest
test data become world-readable by accident).

4.5. Java

The Sun JVM (Java Virtual Machine) performs a lot of operations that would normally
be blocked by the kernel module. While we initially tried to use the security module
unchanged for Java, we found it impractical to let through the system calls that the JVM
needed while simultaneously keeping the system secure for C and C++ programs. We
have instead used the Java security manager to limit solutions to legal operations, and the
command line option -Xmx to limit the maximum Java heap size.

Using a Linux Security Module for Contest Security 73

The Java security manager uses a policy file which describes which privileged actions
may be undertaken by which classes. The default configuration is quite permissive, al-
lowing various operations not suitable for an olympiad (such as write access to any files,
subject only to OS-level checks). We use the -Djava.security.policy command-
line option to specify our own policy file. This custom policy limits all classes to just a
list of explicitly allowed permissions – mostly querying of Java system properties, but
also general read access, and write access to the output file. The file format permits a
variable expansion syntax, so we are able to use a single file and provide the name of the
output file on the command line for each evaluation.

5. Conclusions

When we started this project, we were under the impression that the Linux Security Mod-
ule interface was a reasonably stable interface, suitable for third-party development of
custom security modules. However, the interface changes with almost every kernel re-
lease, and maintainence has been more difficult than expected. Posts to the Linux Kernel
Mailing List (Edge, 2007) suggest that in fact the interface is only intended for security
modules maintained within the kernel tree, and as of Linux 2.6.24, it is no longer possible
to build modules outside of the kernel tree. While it is a simple, low-overhead interface
at a good abstraction level, we will have to consider whether other options will require
less maintainence in the long term.

References

Edge, J. (2007). LSM: loadable or static? Linux Weekly News, 25 October.
http://lwn.net/Articles/254982/

Fraser, T., Badger, L. and Feldman, M. (1999). Hardening COTS software with generic software wrappers. In
Proceedings of the 1999 IEEE Symposium on Security and Privacy, May, 1999.
http://www.isso.sparta.com/opensource/wrappers/

Miller, T.C., and Jepeway, C. Sudo Manual.
http://www.sudo.ws/sudo/man/sudo.html

Provos, N. (2003). Improving host security with system call policies. In 12th USENIX Security Symposium.
http://www.citi.umich.edu/u/provos/systrace/

Osvik, D.A., Shamir, A. and Tromer, E. (2006). Cache attacks and countermeasures: the case of AES. In Proc.
RSA Conference Cryptographers Track (CT-RSA) 2006. Springer, 1–20.

Watson, R.N.M. (2008). Exploiting concurrency vulnerabilities in system call wrappers. In WOOT’07 First
USENIX Workshop on Offensive Technologies.

B. Merry took part in the IOI from 1996 to 2001, winning two gold
medals. Since then he has been involved in numerous programming
contests, as well as South Africa’s IOI training program. He obtained
his PhD in computer science from the University of Cape Town and is
now a senior software engineer at ARM.

Olympiads in Informatics, 2009, Vol. 3, 74–79 74
© 2009 Institute of Mathematics and Informatics, Vilnius

The Role of Reactive and Game Tasks in
Competitions

Ilia NINKA
Department of Computer Science, Tirana University
Zog i Parë blvd., Tirana, Albania
e-mail: ilia.ninka@yahoo.com

Abstract. The need for more attractive tasks in teaching algorithms and in informatics competitions
attracts many authors to reactive tasks as a powerful tool that created in student a desire for coping
with hard tasks. In comparison with batch tasks, reactive tasks and especially the programming of
games are very challenging, very comprehensive and fit perfectly with the story. In this paper an
attempt to point out some attributes and priorities of reactive tasks in general, and game tasks in
particular, versus batch ones is made.

Key words: batch task, reactive task, game programming, story, input data.

Teaching programming and algorithms in higher education is related with many diffi-
culties both for the teacher and the students. The students hardly understand the need for
complicated constructions and data structures related to the programming language, see-
ing that most of the problems presented by the teacher are elementary or may be solved
by easier tools; spreadsheets, for example. The teacher is also faced with the difficulty for
providing the students real world data for convincing them that it is necessary to write a
program to develop the data and find the solution.

“Programming games will encourage students to learn more, and to apply what they
learn to create new things, reaching the ultimate goal of education. Through the establish-
ment of programming games as a core curriculum of Computer Science classes, students
will learn algorithms faster and with a deeper understanding, and will want to do this be-
cause of the fun and accomplishment associated with the creation of a computer game”
(Baibak and Agrawal, 2007).

During the process of creating algorithmic nature tasks informatics competitions there
are some restrictions to be respected. We will consider them one by one from the view
point of the topic of this paper.

According to the IOI 2008 competition rules, the tasks could be of the following types:

• Batch tasks: Solutions comprise a single source file of a computer program which
reads data from the standard input (stdin) and writes its answer to the standard
output (stdout).

• Reactive tasks: Solutions comprise a single source file of a computer program that
is compiled together with an “opponent” library provided by the organizers, and

The Role of Reactive and Game Tasks in Competitions 75

interacts with it according to the specification given in the task description. Such
solutions are not allowed to read anything from the standard input, or write any-
thing to the standard output.

• Output-only tasks: Solutions comprise a set of “output” data files. The contestants
submit a zip or tgz archive file containing some or all the output data files.

In this paper game tasks and reactive tasks are considered from a common point of
view. Output-only tasks are not considered.

1. The Story

Each task in the IOI, traditionally, is described as a real life situation and in some cases
with characters endowed with real names and real habits. Sometimes, due to the diversity
of participants, these create undesired ethic or moral situations.

Due to this tradition it happens that after having developed a task the author invents
a story to fit it as much as possible. Sometimes the invented story is successful but there
are cases that the story does not fit the problem as expected.

The students at first have to throw off the story and to discover the real problem to be
solved and programmed. Sometimes this is quite natural, when the story and the problem
are in harmony, but it happens that this may not be so easy especially when the story does
not fit well with the problem.

When the task is a game one there is no need for a story. The story and the problem are
the same. For the student this is a quite clear situation; he loses no time in discovering the
problem behind the story, but only has to think how to solve the situation. In such case
the student feels motivated because this situation is similar with other game situations
which they had to surpass since childhood and they have some prior experience in such
situations even without to the necessity of using computers or programming.

2. The Size of Input Data

In almost all competitions the input data is a real problem in itself when very large files
are to be constructed. The concern for such large files is related to the aim to estimate the
efficiency of algorithm used by the student. Sometimes the enormous quantity of input
data is far from being a natural description of a real world situation as the story pretends
to give. In reactive tasks, especially in game tasks, the input data is not such a concern
for the author.

Let see some of game tasks given in the IOI. In these tasks the input data are quite
natural and fit perfectly with the story.

a) Task 4 (Long-list of tasks, IOI’1990, Minsk, Belarus). Given integer number K.
A strip of paper is divided into N cells (K � N � 40). Two players choose and cross out
K empty adjacent cells one by one. The winner is the one who has made the last move.

In this task the input is only two integers K, N , where K � N � 40.

76 I. Ninka

b) Task RUBIK’S TOOLKIT (IOI’1992, Bonn, Germany). Write a program that al-
lows the user to repeatedly solve any of the given three sub-problems ... in any order. You
may assume that the length of each input string is at most 35.

We escaped formulation of the three sub-problems which is long enough, but in this
task the input data are quite reasonable, only 35 characters!

c) Task LETTER GAME (IOI’1995, Eindhoven, the Netherlands) . . . Input Data.
The input file INPUT.TXT contains one line with a string of lowercase letters (from ’a’ to
’z’): the letters collected. The string consists of at least 3 and at most 7 letters in arbitrary
order. The “dictionary” file WORDS.TXT consists of at most 40,000 lines. At the end of
this file is a line with a single period (’.’). Each of the other lines contains a string of at
least 3 and at most 7 lowercase letters. The file WORDS.TXT is sorted alphabetically and
contains no duplicates.

In this task the input data to be faced, while relatively large, is a common dictionary
that the students use in their daily work in school.

d) Task A GAME (IOI’1996, Veszprém, Hungary) ... Input Data. The first line of file
INPUT.TXT contains the size N of the initial board. N is even and 2 � N � 100. The
remaining N lines contain one number in each line, the contents of the initial board in
left to right order. Each number is at most 200.

In this task a common game board is supposed to have no more than 200 numbers.
e) Task MAGIC SQUARES (IOI’1996, Veszprém, Hungary) ... Input Data. The file

INPUT.TXT contains 8 positive integers in the first line, the description of the target
configuration.

f) Task THE GAME OF HEX (IOI’1997, Cape Town, South Africa) Your program
must not read from or write to any files. Your program must not receive keyboard input,
and must not produce output on the screen. It will receive all its input from the functions
in the hex library.

As it is seen from these tasks the input data are a complement of the task itself. This
may not be the case in some batch tasks. For the story’s sake the authors sometimes go
so far that reality is forgotten making the story sound very strange! Let us consider only
one batch task:

g) Task SEEING THE BOUNDARY (IOI’2003, Kenosha, USA).
Now let us examine farmer’s Don field. It is 500 km × 500 km = 250 000 km square!

This is almost the surface of Italy! But what about the rocks! This looks not as a farm
but as a stone depository with as many as 30 000 huge rocks! No machine could do any
agricultural work in this field! But what about the farmer Don himself: he is frightened
by the fact that he must be cautious not to touch the rock, not to stand within a rock, and
not to stand on a rock!

3. Inventing Strategy

Being quite natural and endowed with a rich flavor of challenge, the reactive tasks and
game tasks arouse the interest of the student for not only trying to win a game but to

The Role of Reactive and Game Tasks in Competitions 77

discover the best algorithm that ensures the victory when they have to move first. Even
when the contest is finished, students are more biased to discuss game tasks with the aim
to discover what they missed doing during the contest. This was for example a case when
in the transit area in the airport; while waiting for the flight the students continued the
game and discovered a quite simple algorithm.

Nearly all games require seeing patterns, making plans, searching combinations, judg-
ing alternative moves, and learning from experience – all being skills which are also in-
volved in many daily tasks. So, Ginsberg (1998) was right when declared: “More than just
competing with people, game-playing machines complement human thinking by offering
alternative methods to solving problems”.

4. Not Only Competition

“Games are thus the most ancient and time-honored vehicle for education. They are the
original educational technology, the natural one, having received the seal of approval of
natural selection”. Written by Chris Crawford, in his book The Art of Computer Game
Design, this statement proves the importance of games in any aspect of education. Games
have been used throughout time as an instrument of instruction for all different aspects
of life. Puzzles to learn logic, mathematical games to enhance basic math skills, and even
reading games to increase reading ability have all been used successfully to teach children
the basic skills that they will need in life. “It logically follows, then, that using computer
games is an effective way to teach computing skills, and utilizing course curriculums that
teach how to program computer games would invariably teach the basic skills required to
program anything” (Baibak and Agrawal, 2007).

Nowadays we are dealing with a reduction in students which are fond of algorithmic
and programming. This reduction is reflected not only in the number of students interested
learning algorithmics and programming, but also in the quality of the participants in these
events. A quite different view is presented when the students have to program a game.
They have some inner motivations to consider this game as a challenge making the efforts
to find the best winning strategy.

Programming games will endow the students with some skills which will be very
useful for their future activities. Nowadays the computer game market is in expansion and
the students will be the future programmers and more. As Gordon Novak Jr. (see web-
site) noticed: “Games are good vehicles for research because they are well formalized,
small, and self-contained. They are therefore easily programmed. Games can be good
models of competitive situations, so principles discovered in game-playing programs may
be applicable to practical problems”.

In the first IOI there was a game task, and the game tasks continue to be presented in
the IOI tasks sets in a sporadic way. From the first IOI till now there have been 23 reactive
and game tasks versus 97 batch ones. There are only two IOIs where two game tasks were
presented – IOI’2001, Tampere, Finland and IOI’2006, Merida, Mexico. Perhaps there
are two HSC leaders fond of game tasks – Jyrki Nummenmaa, and Cesar Cepeda – who
must be followed by others.

78 I. Ninka

Fig. 1. Batch and reactive tasks in IOI.

According to the IOI 2008 Competition Rules for the reactive tasks the task statements
should define among others:

• the interface specification of the “opponent” library,
• explanation of how to interact with the “opponent” library,
• instructions on how to compile their programs with provided “opponent” library.

These are the same characteristics as the game tasks where the player 1 (the contes-
tant) plays against the player 2 (the opponent library).

Programming game tasks are very closely related with research activity. According
Susane Epstein (1999): “There are two principal reasons to continue to do research on
games ... First, human fascination with game playing is long-standing and pervasive.
Anthropologists have catalogued popular games in almost every culture ... Games intrigue
us because they address important cognitive functions ... The second reason ... is that
some difficult games remain to be won, games that people play very well but computers
do not. These games clarify what our current approach lacks. They set challenges for us
to meet, and they promise ample rewards.”

Considering the importance of programming games a Games Group has been formed
in the University of Alberta which produces high-performance, real-time programs for
strategic game-playing (University of Alberta GAMES Group, 2006). The group em-
ploys a variety of techniques from many areas of computer science, including artificial
intelligence, parallel processing, and algorithm analysis.

At the Stanford University there is a research project by the Stanford Logic Group,
part of the Stanford University Computer Science Department. Their AI Magazine arti-
cle describes the General Game Playing concept and the AAAI GGP competition (AAAI
General Game Playing Competition, 2008); a brief GGP Overview is also available. The
GGP website contains information about the Logic Group’s research in general game
playing, and forms the central resource for General Game Playing Competitions, the first
of which was held at AAAI ’05 in Pittsburgh. The website also hosts a GGP Game Man-
ager, allowing General Game Players to connect and play single or multi-player games
online, in order to help them to prepare for future competitions.

The Role of Reactive and Game Tasks in Competitions 79

5. Conclusions

The reactive tasks and especially game tasks at the IOI must be considered as very use-
ful tool for making this event more attractive to the students. These kinds of tasks are
very challenging, and students are very motivated to undertake their programming. These
kinds of tasks are very close to real life situations, and the students do not spend too
many efforts understanding or remembering them. The game tasks are in harmony with
the story describing them and do not need too much input data. More attention must be
paid to this kind of tasks at the IOI.

References

AAAI General Game Playing Competition (2008).
http://games.stanford.edu/competition/competition.html

Baibak, T. and Agrawal, R. (2007). Programming Games to Learn Algorithms. American Society for Engineer-
ing Education.

Ginsberg, M.L. (1998). Computers, games and the real world. Scientific American: Exploring Intelligence (spe-
cial issue – Winter 1998). http://www.psych.utoronto.ca/users/reingold/courses/
ai/cache/1198ginsberg.html

Gordon Novak Jr. Web-site. (n.d.)
http://www.cs.utexas.edu/∼novak/cs34312.html

Epstein, S.L. (1999). Game playing: The next moves. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence. Orlando, FL.

University of Alberta GAMES Group (2006).
http://www.cs.ualberta.ca/∼games/

I. Ninka is full professor in data structures and algorithms, artificial
intelligence at Tirana University, Albania. He is head of Computer Sci-
ence Department, a member of the Albanian National Commission for
Olympiads in Informatics. Since 1993 and was head of the Commission
(1999–2001). He was member of the organizing team of BOI (2001),
president of the SC of Balkan OI’2001, leader of Albanian national

team for IOI’1999–2008. He is author of more than 20 scientific papers, 6 university
textbooks and 12 textbooks for secondary schools.

Olympiads in Informatics, 2009, Vol. 3, 80–100 80
© 2009 Institute of Mathematics and Informatics, Vilnius

Team Competition in Mathematics and Informatics
“Ugāle” – Finding New Task Types

Mārtiņš OPMANIS
Institute of Mathematics and Computer Science, University of Latvia
29 Raina Boulevard, Riga, LV-1459, Latvia
e-mail: martins.opmanis@lumii.lv

Abstract. Existing olympiads in mathematics and informatics are fixed form competitions for in-
dividuals with quite stable lists of task types. Outside the scope of these competitions falls a lot of
interesting and challenging tasks like puzzles, games, logic tasks, and practical tasks outside the
classroom. Team competitions offer a new dimension in a task solving process where successful
collaboration between team members is one of basic requirements for achieving high results. This
paper describes an annual (since 1996) Latvian team competition in mathematics and informatics
for high-school students called “Ugāle”. Classification of the main task types is given and repre-
sentatives of these task groups are given. Suitability of different task types in different contests is
discussed. The evolution of the form and content of the competition is described.

Key words: olympiads in informatics, team competition, classification of competition tasks,
grading.

1. Introduction

Most of scientific olympiads are organized on an individual basis. The most popular of
them in the field under investigation are the International Olympiad in Informatics (IOI,
2009) and the International Mathematical Olympiad (IMO, 2009). Both olympiads have
supporting infrastructure at regional (i.e., Baltic) and national (i.e., Latvian) level (NMS,
2009; LIO, 2009). Individual competitions (different contests and olympiads) have a long
lasting history in Latvia. Annual state and open olympiads in mathematics with more
than 3000 participants are organized by prof. Agnis Andžāns (Ramāna and Andžāns,
2002). Latvian olympiads in informatics have been organized since 1987, and since 1992
Latvian team participates on IOI. Latvia was one of the three founders of the annual
Baltic Olympiad in Informatics at 1995 (BOI, 2004; BOI, 2008).

There are several well-known team competitions for high-school students in informa-
tics. The most popular are the IPSC in Slovakia (IPSC, 2009) and the Open Team Cup in
Russia (Open Team Cup, 2009). In mathematics the most important team event in Latvia
is the “Baltic Way” competition for secondary school students in mathematics (Baltic
Way, 2008).

At the IOI and IMO tasks are quite frozen in their form. Despite the theoretical pos-
sibility to use interactive and open input tasks, for the last two years (at IOI’2007 and

Team Competition in Mathematics and Informatics “Ugāle” 81

IOI’2008) only the so-called batch tasks were offered. At the IMO the use of computers,
calculators or other electronic devices is prohibited, therefore it is practically impossible
to discuss “changes to the competition format”. At the same time at the IOI there are no
tasks which can be solved without computer.

It is quite clear that the mathematical and informatics competitions cover separate ar-
eas, leaving relatively big part of tasks uncovered. Some kinds of tasks do not fit into the
IOI curricula (Verhoeff et al., 2006), other tasks are deemed unsuitable for competition
by general audience, for example, such kinds as data processing, numerical puzzles, log-
ical games and cryptarithms. At usual informatics olympiads the so called “open ended
problems” (Kemkes et al., 2007) are not used. Different task types and their suitability for
competitions as well as sources of inspiration are discussed by Burton and Hiron (2008),
and Pankov and Orusulov (2007).

The idea of team events at competitions in informatics is discussed by Burton (2008).

2. Task types – Human Brain Versus Computer

If we look at tasks from the viewpoint of usability of a computer in their solving process,
we can group these tasks in three main groups:

Gr1) Tasks which can be solved without usage of computer and where computer
cannot give reasonable help to speed up the solution process. In the solution
process pure mathematical skills are necessary and it is nearly impossible (at
least for contestants) to use computer for essential help in the solution process.
For example, the tasks “Prove that there is no largest prime number” or “Prove
that among any five integers you can find three with sum divisible by 3” lie in
this group.

Gr2) Tasks which can be solved only by use of computer. Besides native “write a
program which solves a task for any input data” also a lot of “find all numbers
with particular properties” tasks lie in this category (if exhaustive search is
necessary and a relatively simple computer program can give the necessary
results in reasonable amount of time).

Gr3) Tasks which may be solved either by help of a computer or without it.

The presence of a particular task at some competition assumes it belongs to one of
these groups. It is obvious that tasks with completely unknown solution cannot be placed
in any of these categories.

The so called “batch” tasks used at the IOI always belongs to Gr2. Moreover, the IOI
rules prescribe usage of tasks with strictly specified programming languages and tools.
Some years ago the so called “open input” tasks were included in the list of possible
task kinds. As a rule, these tasks allow solving of some subtasks without computer or
using different tools beyond the IOI toolset and therefore can be classified as Gr3 tasks.
One of such tasks “Table” was suggested by the author and included in the programme of
BOI’2003 (BOI, 2003), but the achieved results were lower than at the usual “batch” tasks
– there were no contestants either at the on-site or offline competition who got full score.

82 M. Opmanis

The best result for several subtasks was achieved by different contestants. The last open
input task included in the official programme of IOI was the task “Forbidden subgraph”
at IOI’2006 (IOI, 2006). Output-only tasks are discussed by Vasiga et al. (2008).

At the IMO as well as at the World Sudoku Championships (WSC) and other competi-
tions where human skills to solve particular tasks are examined, use of electronic devices
is prohibited (IMO Regulations, 2009; Sudoku, 2009) and it may seem that here all tasks
“by definition” lie in Gr1. This is not true at least for SUDOKU – a computer program
able to solve classic SUDOKU puzzles is relatively simple (Brouwer, 2006). Thereby,
allowing usage of computer will kill competition and make it completely uninteresting –
hence banning electronic devices is the only possible solution. In other cases it is not al-
ways obvious which way of solution is more preferable. Many tasks in the World Puzzle
Championships (WPC, 2009) are quite interesting to solve by computer programming or
may be reformulated to become such.

There is also another pitfall – if usage of computers is allowed then there may be
a tendency to look at all tasks as Gr2 tasks – not trying to think about problem more
deeply without touching the keyboard. “When all you have is hammer, everything looks
like nail”. Several nice examples of such tasks are given by Ginat (2008). If you have
calculator at hand it is quite hard to press yourself to make mental calculations. On the
other hand, if there is no calculator and you are asked to provide some simple calcula-
tions, you may try to find some electronic device which helps you to make these simple
calculations instead of using your own brain. You somehow get obsessed with the idea
“give me calculator and I will show you how to get the result”. All these thoughts can be
transformed to a higher level if we replace calculator by computer.

3. History of “Ugāle” Competitions

Ugāle is town with 2677 inhabitants (2003) in the Western part of Latvia. In 1996 a
teacher of Ugāle secondary school, Aivars Žogla, came up with idea of a joint competition
in mathematics and informatics where together with classical mathematical problems a
computer program for strategic game must also be written. The other main difference
from classic olympiads was the idea of making this a team competition where up to three
contestants solve tasks as one team.

Every team consists of three contestants and one (at the final round) or two (at the
semi-finals) computers. During 5.5 hours teams must solve tasks (usually 8 to 10) given
by a jury.

Competition format has changed during these years. The first two competitions (1996
and 1997) were organized as one-round competitions. Since 1998 a preliminary semi-
final round is organized and the best teams together with a host team participate in the
final round which usually takes place in May in the premises of Ugāle secondary school.
The number of participating teams in the final round is fixed (12), but a number of teams
in semi-finals vary year by year and in recent years was between 55 and 75 teams (see
Fig. 1).

Team Competition in Mathematics and Informatics “Ugāle” 83

Fig. 1. Number of participants in semi-finals of Ugāle competition.

In the final round each team works in a separate classroom and there are no barriers
for free communication between team members. However, they can also work as three
individuals and during these years only some tasks forced cooperation of team members.
During all the problem solving time, the captain of the team can come to the jury and
ask questions concerning task descriptions and clarify technical details (like what must
be submitted as solution, is it allowed to use some complementary thing not mentioned
in task description, etc.).

4. Tasks and Grading

As in every scientific olympiad the main idea of “Ugāle” competitions is to give the
opportunity to work on unusual tasks, still using basic knowledge obtained at school.
However, the chosen competition format also influences the allowed kinds of tasks. Cor-
rectness of solutions at the final round must be checked by jury members during a limited
amount of time (approx. two hours). Therefore, to lower the pressure on the jury, answers
and solutions must be short in their form. It is quite hard to grade “classical” mathemati-
cal solutions like proofs in such a short amount of time and such tasks are not included in
a competition’s task set. Also traditional IOI batch tasks are not included since there are
a lot of pure programming competitions where such tasks are used.

However, the mathematical and informatics part of the competition is not lost. Simply,
during the task selection process, tasks are chosen so that the answer to every of them is
simple and short in form. The basic principle from math task solving: “Find all solutions
and prove that there are no other” is kept alive, clearly stating tasks where it is enough
to find any one particular solution and assuming finding all possible answers if such
statement is omitted.

Mathematical tasks are formulated so that the answer is simple number, some se-
quence of numbers or set of possible answers. Finding the correct answer involves all

84 M. Opmanis

steps necessary for a full solution and from that viewpoint are of the same level of diffi-
culty (there is no “shortcut” to the correct answer like guessing).

The real challenge is to prepare a task which could be solved either by using pure
mathematic skills (without computer) as well as by writing a correct computer program
which gives the answer in few competition hours.

In contrast to informatics olympiads, there is no constraint that written program must
run in particular time (usually seconds or even its parts) and space limits during program
execution. There are also no limitations on the software used during competition. Contes-
tants may use the usual IOI programming languages as well as packages like Mathemat-
ica, MS Office, etc. A list of software, suitable for solving mathematical tasks is given by
Turskiene (2002).

All teams are in the same conditions and therefore open-ended tasks of kind “find as
good as possible a solution” are also acceptable. Such tasks are graded in manner that
the team with highest achieved result are awarded maximum points, and other teams are
awarded points proportionally to their score.

As a rule the full solution of any task can get maximum 100 points. If there are sub-
tasks, then it is clearly stated how many points are given for the solution of a particular
subtask. In early competitions there were attempts to differentiate points given per task,
but such praxis (as well as at the IOI) was not continued. Therefore, the determination of
difficulty level of a particular task is one of the essential competition components.

All answers and results must be written by teams on a special form (“answers sheet”)
and as a rule this is the only source for grading (another source may be computer program
or some result file in electronic form on some media).

5. Task Categories

The first competitions in 1996 and 1997 now can be considered as warm-up competitions.
The first competition task set contained nine pure mathematics tasks offered by prof.
A. Andžāns and one programmable game task. The second competition contained too
large a number (19) of tasks and lot of effort was wasted, because it was impossible to
solve a reasonable amount of tasks in the given time. In recent years at the final round 10
tasks are offered and the obtained results show that such a number is reasonable.

In total 244 tasks were used during years from 1996 till 2009 (at the moment of
writing of this paper only the semi-finals of 2009 have finished). Classification of tasks
was done by including every task in one or more categories.

It can be seen that some groups of tasks are quite stable, because every year (or even
more – in every competition) at least one task from a particular group is included in the
task set. Other groups are disappearing or appearing. For example, the currently existing
format excludes tasks with mathematical proofs or argumentation, which was regular part
of earlier competitions.

In the following chapters main task groups are described. The total number of tasks is
given in brackets.

Team Competition in Mathematics and Informatics “Ugāle” 85

5.1. Data Processing/Mining Tasks (24)

One task of this kind has been included in every task set starting from 1997. The main idea
of such tasks is to get some numerical results from given data (usually as one or two text
files). These tasks assume the usage of spreadsheet processing systems (like Microsoft
“Excel”) or DBMS (like Microsoft “Access”), however solutions may be found with other
tools (like programming in the languages from the IOI list). An example of such a task is
“Football” from semi-final of Ugāle’2004:

In the text file futbols.txt there is information about all games of a football
championship. During the championship two rounds of matches are played
– each team plays two games with each other – one at home and second as
visitor. For a win a team is awarded 3, and for loss – 0 points. If game ends in
draw, each team gets 1 point. Each file row contains information about one
game in the following format:

Host team name – Visitor’s team name; Goals scored by host team;
Goals scored by visitor’s team; (further names of scoring players as well
as minute of match when goal was scored are given. At the beginning all
the host team and then all the visitor team players are listed).

For example, one row can look like:
Badgers - Monkeys; 1; 3; Apse; 88; Lipenbergs; 37;

Priede; 8; Millersons; 55

Your task is to find answers to the following questions:

1. How many teams participated in championship?
2. How many goals were scored by visitor teams?
3. How many goals were scored in total?
4. How many matches ended in draw?
5. How many goals were scored by Smits?
6. In which game was the maximum number of goals was scored?
7. How much goals were scored in the first halves of matches (till the 45th

minute, inclusive)?
8. Who scored the maximum number of goals? How many? In which team

he plays?
9. How many players scored just once?

10. How many different draw results were in all championship matches?
11. Which team won the championship and how many points did it ob-

tained?
12. Which team got last place and how many points did it obtained?

5.2. Cryptarithms (15)

A usual cryptarithm is a well-known type of puzzles. The solution is a correct arithmeti-
cal expression. In the task digits are substituted by letters or different symbols and it is
known that equivalent digits are substituted by the same letter and different letters covers
different digits. Several modifications of the classical format also are used.

86 M. Opmanis

Fig. 2. Cryptarithm.

An example cryptarithm from final of Ugāle’2004 is given:

In the given cryptarithm (see Fig. 2) substitute letters and asterisks by
digits so that:

• equal letters will be substituted by equal digits;
• non-equal letters will be substituted by non-equal digits;
• there will be no number (even as the result of particular multiplication)

with 0 as the first digit.

Asterisks may be substituted by different digits.
Take into account that in the first multiplicator there are two digits “0”,

but in the final result – letter “O”. It is enough to find one of the possible
solutions.

5.3. Word Problems (6)

From historical viewpoint a small but quite interesting group is word problems. Famous
mathematician Andrei Toom wrote: “Word problems are very valuable in teaching math-
ematics not only to master mathematics, but also for general development” (Toom, 2005).
The author completely shares this viewpoint and as a representative formulation of task
“Let’s meets in jungle!” (Semi-final of Ugāle’2000) was given:

In the jungle there is a small lake which is permanently filled by springs
under it. The full lake can be drained in one day by 3 tigers and 10 elephants,
against 10 tigers and 3 elephants that can drain lake in two days or 8 tigers
and one elephant that can drain lake in four days.

Calculate in how in many days the lake can be drained by:
a) One elephant;
b) One tiger;
c) One elephant and one tiger drinking together?
Remark: “Drained” means that there is a moment when lake is completely

empty. Of course, continually, water is coming from the springs.

Team Competition in Mathematics and Informatics “Ugāle” 87

5.4. Geometry (36)

The next four sections describe task types that have become classic at mathematical
olympiads. Algebra, Geometry, Combinatorics and Number theory are four “whales” of
mathematical competitions (Andžāns and Ramāna, 2002). For example, the task set of
the mathematical team competition “Baltic Way” contains exactly five tasks from each of
these four groups. Despite their apparent solidness, A. Toom characterizes classical ge-
ometry (together as word problems) as the “Cinderella of American education” (Toom,
2005).

Geometrical tasks are especially suitable for development of abstract thinking and
demand different knowledge from other branches of mathematics. Geometry has a lot
of faces and every task set must offer at least one geometrical task. To give a bit wider
insight, instead of one representative task, several task examples will be given.

In the first competitions, classic olympiad tasks were used, but in recent years they
have slightly changed to an expected form of result which usually is some numerical
value. Task “Two triangles” (semi-final of Ugāle’2008) is one of the representatives:

The intersection of two triangles is hexagon with inner angles (in this
order): 87◦, 141◦, 105◦, 137◦, 104◦ and 146◦. Calculate the angles of these
triangles!

If you remember the general remark concerning multiple solutions, this is exactly the
case, because this task has more than one solution and in the task description there is
nothing allowing taking for granted that it is enough to present just one of them. Looking
for suitable tasks, the content of tasks from olympiads in mathematics are also is taken
in account. Obviously, the task types at olympiads are not a solid matter – they changes
over time (see Fig. 3).

Construction tasks have not been presented at the Latvian Olympiad in Mathematics
for the last three decades. So it was good reason to use such tasks at Ugāle competition.
Task “Elegant pentagon” (final of Ugāle’2004) is one of them:

Let’s say that a convex pentagon is “elegant” if the following conditions
are satisfied:

1) it can be inscribed in circle,
2) the length of all sides and radius of the circumscribed circle can be

expressed in whole centimetres,
3) all sides and radius of the circumscribed circle are of different length.

Let’s say that a convex pentagon is “partly elegant” if only the first
two conditions are satisfied. Your task is to construct either an elegant (100
points) or partly elegant (30 points) pentagon.

In the middle of the 20th century in the schools of Latvia there were quite popular
tasks concerning measuring distances in nature. At that time such tasks were included
in secondary school curricula. Tasks of this type may be mention the measurement of
height of a particular tree, width of a river, distance to a far object, etc. In the author’s

88 M. Opmanis

Fig. 3. Task types at Latvian Mathematical Olympiads (Bonka, 2004).

opinion tasks of this kind are very close to the nature of geometry (the word itself means
measuring the earth) and are undeservedly forgotten. An attempt to check these skills in
the contemporary youth was done by including the task “Distance in nature” in the final
round of 2005:

You are given a rope with length equivalent to the width of the Ugāle
secondary school front door).

At both sides of school building there is one marked lamppost (see Fig. 4).
Calculate the straight distance in ropes between these two lampposts without
the destruction of the school building!

Only those solutions where the difference between jury’s and submitted
solution will be less than doubled length of rope will be graded. If you wish
to suggest the use of other tools beside rope, consult the jury in advance!

This task became quite popular at this competition and teams showed good results –
all teams got points and 4 out of 12 teams got a full score. A similar task was included in
the task set two years later.

One more (and again completely different) geometrical task is the task “Pencil” at the
final of Ugāle’2003:

“A pencil, the cross-section of which is a regular hexagon with side length equal to
0.5cm, was sharpened by a cone-shaped sharpener with the angle between the generatrix
and the altitude equal to π/8 in a way that the length of the pencil didn’t change. How
much of the pencil (in cubic centimetres) was removed? Provide as an answer a deci-
mal fractional number, the more precise the better. Maximum points will be awarded for
correct 9 digits after the decimal point.”

Team Competition in Mathematics and Informatics “Ugāle” 89

Fig. 4. Configuration of school building and lampposts.

Fig. 5. Sharpened hexagon pencil.

The small waves at the end of the sharpened part (see Fig. 5) make calculations non-
trivial and the task – interesting. The number of decimal digits necessary for full points
does not allow neglecting this area.

5.5. Number Theory (31)

These tasks are appropriate for Ugāle competitions due to their natural relationship be-
tween mathematics and programming – tasks can be solved in various ways, but the best
results takes some combination of skills from both disciplines.

Two examples from this task group will be given.
The task “Twenty-digit number” (final of Ugāle’2001, idea from (Puzzles, 2000)):

Arrange two of each of the digits 0 to 9 to form a 20-digit number. Your
number may not begin with a zero.

You are then scored on your number as follows:
For every n (n > 1) consecutive digits where the first digit is not 0 that

form a square number, you score n points.
For example, if your number was 98543676011023475928, you will score

two points for 36 and three points for 676 – for a total of 5 points. You may
not count 01 as a two-digit square.

What is the maximum number of points you can score?

This task can be easily turned into an open input task by specifying different sets of
usable digits. However, the essence of the task remains the same – contestants are in the

90 M. Opmanis

same starting positions and still must compete for a better result where the possibility of
getting the perfect result during the limited competition time is unclear.

The task “Ugāle Primes” (semi-final of 2005):

Let’s name an n-digit prime p1p2...pn as a Ugāle’s prime if and only if
all prefixes of this number p1, p1p2, p1p2p3, . . . , p1p2...pn−1 also are primes.
For example, 71 and 311 are Ugāle primes (because 71, 7, 311, 31 and 3 are
primes), but 27, 43 and 307 – are not (27, 4 and 30 are not primes). Find one,
as big as possible Ugāle’s prime!

5.6. Combinatorics (40)

As well as the task from the previous section, combinatorial tasks are solvable in various
ways. As an example task “APRICOT” (final of Ugāle’1998) is given:

A word consisting of n different letters is given. This word is written on a
sheet of paper with squares so that every letter is written in its own square
without empty squares in-between. The same word is written in the row below
in the same manner just starting writing one square to the left. So this word
is written on the next lines until it is written n + 1 time.

In the Fig. 6 there is given an example for n = 7.
Your task is to calculate the number of different ways the given word can

be read on the sheet if you can start from the first square of any row and go
to a neighbour square to the right or down and direction of reading may be
changed no more than twice. One of the ways to read the word is denoted in
the figure by darker squares (direction of reading is changed once).

Solve this task for a) n = 7, b) n = 36, c) n = 711, d) n = 1492.

Fig. 6. Example for n = 7.

Team Competition in Mathematics and Informatics “Ugāle” 91

5.7. Algebra (14)

Classic tasks for contestants of mathematical olympiads. Task “System” (semi-final of
Ugāle’2001):

Find a solution in integers: ⎧⎨
⎩

zx = y2x,

2z = 4x,

x + y + z = 20.

5.8. Logic (37)

There are a lot of classic reasoning puzzles, where some clues are given and you must find
out hidden consequences. One of the famous representatives of this kind is puzzle “Who
Owns the Zebra?” (Zebra, 2009). But such tasks are not represented at usual olympiads.
However, in some countries such tasks are used in theoretical or preliminary rounds of
olympiads in informatics (Anido and Menderico, 2007).

At the end of the 90s a very interesting task “Self-referential aptitude test” by Propp
(2009) was published and became a source of inspiration for several tasks.

Interestingly, solutions to such tasks can also be found by quite simple computer pro-
grams (however, these programs are quite unusual) and, therefore, such tasks also lie on
the edge between mathematics and informatics.

Task “Concrete logic” (final of Ugāle’2002):

Answer the 20 questions below by “yes” or “no” so that all the answers do
not contradict each other.

1. Are the answers to Questions 6 and 7 equivalent?
2. Is “no” the answer to Question 1?
3. Are the answers to Questions 4 and 20 different?
4. Are the answers to Questions 3 and 20 different?
5. Are this and the answer to Question 19 different?
6. Is “yes” the answer to Question 2?
7. Is “yes” the answer to Question 15?
8. Are the answers to Questions 11 and 19 equivalent?
9. Is “yes” the answer to Question 10?

10. Is “no” the answer to Question 13?
11. Is it true that Mr.Bērziņš doesn’t like strawberries?
12. Is “yes” the answer to Question 16?
13. Is “yes” the answer to Question 12?
14. Are this and the answer to Question 11 equivalents?
15. Is it true that “no” is the answer to at least half of all the questions?
16. Is it true that “yes” is the answer to at least half of all the questions?
17. Are the answers to Questions 9 and 4 equivalent?
18. Is “yes” the answer to Question 7?

92 M. Opmanis

19. Is it true that the name of Mr.Bērziņš is Jānis?
20. Are the answers to Questions 3 and 4 different?

5.9. Analysis of Algorithms (10)

Understanding programs written by other authors also is part of programmer’s everyday
job, but such tasks are not presented at competitions in “pure” form when fragment of
code or pseudo code is given. Task is in finding something in or related to the given
code: finding error, constructing the worst case counterexample, estimation of overall
complexity, implementing the same algorithm in a more effective way. In some countries
analysis of algorithms is part of the preparation work for the IOI (Forišek, 2007). An
example of task where analysis of a given program must be provided is task “Sorting”
(final of Ugāle’2003, author Aivars Žogla):

In the file SORT.PAS an algorithm is given that sorts the elements of number
array A[0..n-1] from position low till position high in non- decreasing
order. By taking low = 0 and high = n − 1, the entire array will be sorted.

Your task is to find an array containing each of the numbers from 1 to 20

exactly once, for which sorting by calling procedure sort(A,0,19), uses
the maximum number of array element comparison operations (these rows
are marked by {*}). For example, sorting the array A={3,4,1,2,5}, uses 7
comparison operations.

{ =========== Start of SORT.PAS ===============}
const MAXN = 100;

type TArray = array[0..MAXN] of integer;

procedure swap(var A:TArray; i, j:integer);
var temp:integer;
begin

temp := A[i]; A[i] := A[j]; A[j] := temp;
end;

procedure sort(var A:TArray; low, high: integer);
var i,j,middle:integer;
begin

if high - low < 5 then
for i := low + 1 to high do
begin

j := i;
while j > low do

{*} if A[j - 1] > A[j] then
begin

swap(A, j - 1, j);
j := j - 1;
end

else j := low;
end

Team Competition in Mathematics and Informatics “Ugāle” 93

else
begin

middle := (low + high) div 2;
{*} if A[middle] < A[low] then swap(A, low, middle);
{*} if A[high] < A[low] then swap(A, low, high);
{*} if A[high] < A[middle] then swap(A, middle, high);

swap(A, middle, high - 1);
i := low;
j := high - 1;
repeat

repeat
i := i + 1;

{*} until A[i] >= A[high - 1];
repeat

j := j - 1;
{*} until A[j] <= A[high - 1];

if i < j then swap(A, i, j);
until i >= j;
swap(A, i, high - 1);

sort(A, low, i - 1);
sort(A, i + 1, high);

end;
end;

begin
end.
{ =========== End of SORT.PAS ===============}

Another task of this kind is “Function of functions” (final of Ugāle’2005):

Function f(x) is defined for all integers from 1 to 2000000000 and func-
tion values are positive integers. Function values are known for one hundred
argument values (Table 1).

Your task is to write as short as possible program in one of the program-
ming languages Pascal, C or C++, which implements this function for all x

values given in the table above. Do not worry about the values other than
given, because your program will be tested only with the argument values
given in the table.

Function source code must be presented in one separate file and usage of
other data files is prohibited. Program must read one x value from the stan-
dard input and the corresponding f(x) value must be written to the screen
and program must exit without waiting for additional user input (such as
pressing a key). Program may use only the modules and libraries included in
compiler’s standard configuration.

If for any of the hundred given argument values the answer will be differ-
ent from the value given in the table, the score for the task will be 0 points.
Execution time for one particular test case must not exceed one second.

Programs with lower amount of source code in bytes will get higher
scores.

94 M. Opmanis

Table 1

x f(x) x f(x) x f(x)

1 2 3071 83 987654329 4312901

2 1 3073 439 987654331 9588877

3 2 3381 1127 987654791 31397

5 2 3383 199 987654793 31397

7 2 3385 677 987654803 31397

9 3 3403 83 987654809 83227

10 5 3419 263 987654821 31397

11 3 3493 499 987654857 141093551

13 3 173005 34601 987654861 329218287

15 5 173007 57669 987654865 197530973

16 8 173009 10177 987654881 57559

17 3 173021 409 987654883 31397

21 7 173027 2437 987654901 31397

22 11 173029 7523 987654971 48341

23 3 173049 57683 987688883 6059441

33 11 173051 1321 987688885 197537777

67 7 173419 4687 1999999001 285714143

77 11 173973 57991 1999999003 44711

105 35 173975 34795 1999999005 666666335

107 7 173983 9157 1999999009 32786869

109 7 173989 677 1999999015 399999803

111 37 9173003 1310429 1999999019 155171

115 23 9173005 1834601 1999999027 153846079

117 39 9173009 23581 1999999037 42553171

119 17 9173011 3023 1999999039 4640369

123 41 9174653 5639 1999999957 7782101

125 25 9174661 20899 1999999961 54054053

126 63 9174667 295957 1999999967 285714281

131 11 9174671 834061 1999999969 181818179

137 11 9174673 6323 1999999975 399999995

499 19 987654321 329218107 1999999981 285714283

3055 611 987654325 197530865 1999999997 37735849

3059 437 987654327 329218109 1999999999 64516129

3061 53

Contestants were also supplied by table values in a separate text file.
The simplest approach would be trying to code the given values without any investi-

gation. However, much better result could be obtained, by discovering some regularity.
Besides that, for choosing the right approach, a contestant’s deep understanding of

the possibilities of different languages and compilers was a great advantage. It is quite
easy to understand the usability of such tasks in industry – in a world of microprocessors
a requirement to fit in a given amount of memory is usual.

Team Competition in Mathematics and Informatics “Ugāle” 95

5.10. Programming (25)

One of the programming tasks different from the usual IOI tasks is task “Smart program”
(final of Ugāle’1998):

Write a program in Pascal, C or BASIC, which

• outputs on the monitor the number 1998 only once;
• if the program code is modified by replacing one symbol by another in

such a way that program still compiles and executes, it still only once
outputs the number 1998.

This task is quite tricky and needs an extremely deep knowledge of the chosen pro-
gramming language. In some sense this task is designed for hackers not algorithmists.
The essence of the task is different from the usual programming tasks (who care about
your source code and tries to break it by changing it in any other competition?) and every
single space character in code can be used against you.

Despite the short codes submitted, grading was done in a special way by the best pos-
sible jury members – three IOI medallists (Krists Boitmanis (silver on IOI’97, bronze
on IOI’96), Renārs Gailis (silver on IOI’97) and Juris Kriķis (bronze on IOI’96)). Every
submitted program was investigated by looking through carefully and trying to break the
code. Because there were only 12 teams, this evaluation was successfully completed and
only those programs where experts did not find any faults got full score. Technically pos-
sible, but hard to imagine would be the testing of this task without such a group of experts,
because “grading” includes the possibility or impossibility of finding a counterexample
(a symbol which can be changed to show that the second condition is not satisfied).

One of programs in PASCAL which twelve years after the actual competition seems
to be a correct solution:

var sk1,sk2:string;
Begin
sk1:=’1998’;
sk2:=’1998’;
if sk1<>sk2 then writeln(’1998’) else writeln(sk1);
End.

5.11. Dominoes (12)

The author has noticed that there is quite a big gap between the contestants’ generation
and the author’s one in the sense of basic knowledge in the field of logical or board
games. It is nearly impossible to say which rules of logical games are known to the
general audience and which must be explained in task formulations. It is not easy to say
whether all contestants are familiar with the rules of chess or checkers or not. In this
situation classical dominoes are widely used in the competition every year and a set of
dominoes is necessary attribute for every team.

Dominoes are quite simple and at the same time they possess a quite high combina-
torial power. The following task “Area of dominoes” is the only one which was included

96 M. Opmanis

in a task set twice – at the final of Ugāle’2005 it was not solved and was included in the
task set of the next year’s semi-finals where it was solved by only one team out of 61:

All 28 pieces of the usual dominoes set must be placed in the area shown in
Fig. 7 so, that:

• every piece covers exactly two squares,
• if two pieces share common edge, then in both halves the number of points

must be the same,
• in all four horizontal rows (indicated by arrows)the total number of points

must be the same.

It is enough to show one such distribution.

Task “Who can find more?” (final of Ugāle’1997):

Fill a rectangle consisting of 8 × 7 squares with the numbers from 0 to 6 (in
each square there must be one number) so that this rectangle can be covered
by pieces of one set of dominoes (every square is covered by half of one
dominoe, all squares are covered) in as many ways as possible.

After the competition this task was published on the website of the Latvian Olympiad
in Informatics (More, 2009) and eight years after competition the solution (see Fig. 8)
with 793648 different coverage was found by former IOI medallist Jānis Sermuliņš (gold
on IOI’97 and IOI’99, bronze on IOI’98):

Fig. 7. Area of dominoes.

1 3 1 2 2 2 3 4
4 1 1 1 2 3 4 2
4 4 0 1 0 2 6 4
4 0 0 0 6 0 2 6
5 4 0 5 0 3 6 1
1 5 5 5 3 6 5 6
5 2 5 3 3 3 6 6

Fig. 8. Best known solution of the task “Who can find more?”

Team Competition in Mathematics and Informatics “Ugāle” 97

This task allows a lot of possible modifications.

• The same task but coverage must be unique.
• The same task but coverage must be not unique.
• Reverse task: Some distribution of numbers can be given and the task is to count

the number of different coverages by the domino set.

It is quite clear that the original formulation and the reverse task needs to be solved
by a computer program.

The two simple modifications can also be solved without computer. However, a com-
puter program, if available, can give great help in checking generated solution candidates.

Dominoes can also be used in other ways. Let’s say that some positive integer n is
representable by dominoes if it is possible to make a row of dominoes from one set and
the sequence of points in the dominoe halves in this row corresponds to digits in the
number n (one leading empty halve is allowed if number of digits in n is odd). A row of
such domino pieces will be named a “representation of n”.

So, a representation of 1205 is , and a representation of 105 – .
It is clear that it is not possible to represent numbers with digits greater than 6 as well

as numbers 453354 and 606, because the corresponding row of pieces cannot be built
from one set of dominoes.

Using the above definition one can also define the simultaneous representation of
several numbers – if all numbers can be represented by pieces of one set (there are no
pieces necessary for representation of several numbers). For example, simultaneously
representable are the numbers 122461, 33440001 and 224611.

Contrary, the numbers 134 and 3310 are not representable simultaneously, because

both representations need the piece .
These definitions were necessary to formulate the task “Number and its power” (final

of Ugāle’1997):

Find an integer n which is simultaneously representable together with some
of its powers (n2, n3, . . .) and the number of domino pieces used in these two
representations is as big as possible.

After the competition this task also was published on the website and six years after
competition four solutions with 26 used domino pieces (Domino, 2009) were found by
the former participant of IOI’98 and IOI’99 Dmitrijs Rutko. One of these solutions is as
follows: 51531210022106635 and its square 2655465606342463301645403311023225.
However, it is not proved that 26 pieces is the absolute maximum.

5.12. Other Types of Tasks

Tasks come into fashion and go out of it. For example, SUDOKU tasks were quite popular
for several years. As it is mentioned above, the simple SUDOKU task is not a hard task
for a good programmer. However, the SUDOKU theme can be used in tasks, exploiting
popularity of these tasks which allows us to expect that the rules are well-known and
teams will be encouraged to solve such tasks.

98 M. Opmanis

Task “Reverse SUDOKU” (final of Ugāle’2006):

There is given solution of the classic 9 × 9 SUDOKU (at competition one
particular SUDOKU solution was given – M.O.). Clear as many squares as
you can so that remaining digits (which looks like classic SUDOKU problem)
still give this unique solution.

Grading: Only solutions with fewer than 51 digit in the table will be
graded. Solutions with fewer digits in the table will score more points. If
the SUDOKU solution will be not unique, points will not be given.

There is no well-known algorithm for this task solving. At the same time it is known
that theoretical limit is about 17 remaining digits (Sudoku, 2009).

Of course, the categories described in previous sections do not cover all tasks used
in Ugāle competitions. Some of them are very specific and there is not an obvious cat-
egory where to include such tasks. Several tasks with special software provided are not
included due to the length of description and many technical details. A similar task type
is described by Ribeiro and Guerreiro (2007). Among tasks not presented in this paper
are black box testing tasks, tasks where some erroneous proof is given and the error must
be found, tasks tightly coupled with physics and where cryptography must be mentioned.

Till now “Ugāle” competitions are competitions for Latvian students, so the main
website and all available materials are in Latvian only (Ugāle, 2009). However, English
speaking students can try to solve task set of the final of Ugāle’2003 (unofficial translation
of tasks is done by I. Stepanovs) (Ugāle, 2003).

6. Conclusions

During its 14 years the idea of the Ugāle competition has shown its vitality. Definitely
there is space for competitions with tasks different from the well-known olympiads. A lot
of creative tasks was tested in such an experimental environment as Ugāle competition
is. Unusual tasks with unusual grading schemas are challenging for contestants as well
as for authors of tasks. The work of jury is not simple, because every new task type
needs careful investigation and different solutions with or without a computer, as well as
grading schemas, must be checked carefully.

Acknowledgements. I would like to thank prof. Kārlis Podnieks for his valuable com-
ments.

References

Andžāns, A. and Ramāna, L. (2002). Latvian–Icelandic project LAIMA. In A. Andžāns and H. Meissner (Eds.),
Creativity in Mathematics Education and the Education of the Gifted Students: Proceedings of the Interna-
tional Conference. Riga, University of Latvia, pp. 13–14.

Anido, R.O. and Menderico, R.M. (2007). Brazilian olympiad in informatics. Olympiads in Informatics, 1, 12.
Baltic Way (2008). Baltic Way Mathematical Team Competition 2008. Gdansk, Poland.

http://www.balticway08.math.univ.gda.pl/?p=history

Team Competition in Mathematics and Informatics “Ugāle” 99

BOI (2003). Task “Table”. 9th Baltic Olympiad in Informatics, Tartu, 2003.
http://www.ut.ee/boi/xxx/TABLE.eng.pdf

BOI (2004). The 10th Baltic Olympiad in Informatics, Ventspils, 2004. http://www.boi2004.lv/
BOI (2008). The 14th Baltic Olympiad in Informatics, Gdyna, 2008. http://b08.oi.edu.pl/
Bonka, D. (2004). IKT ietekme uz matemātikas padziI̧inātas izglı̄tı̄bas sistēmu Latvijā (Influence of ICT on

Advanced Math Education System in Latvia). In Starptautiskās konferences LatSTE’2004 rakstu krājums,
Rı̄ga, LU, p. 89.

Brouwer, A.E. (2006). Sudoku puzzles and how to solve them. Nieuw Archief voor Wiskunde, 5/7(4), 258–259.
http://www.math.leidenuniv.nl/∼ naw/serie5/deel07/dec2006/brouwer.pdf

Burton, B.A. (2008). Breaking the routine: events to complement informatics olympiad training. Olympiads in
Informatics, 2, 11–12.

Burton, B.A. and Hiron, M. (2008). Creating informatics olympiad tasks: exploring the black art. Olympiads in
Informatics, 2, 26–33.

Domino (2009). The best known known solution of task “Domino numbers”.
http://vip.latnet.lv/lio/Neatdz/dom2lab.htm

Forišek, M. (2007). Slovak IOI 2007 team selection and preparation. Olympiads in Informatics, 1, 59.
Ginat, D. (2008). The unfortunate novice theme of direct transformation. Informatics in Education, 7(2), 173–

180.
IMO (2009). International Mathematical Olympiad.

http://www.imo-official.org/
IMO Regulations (2009). Regulations for an International Mathematical Olympiad, Item D4.

http://olympiads.win.tue.nl/imo/imoregul.html
IOI (2006). IOI’2006 Task “Forbidden subgraph”. http://www.ioinformatics.org/locations/

ioi06/contest/day1/forbidden/forbidden.pdf
IOI (2009). International Olympiad in Informatics.

http://www.ioinformatics.org
IPSC (2009). Internet Problem Solving Contest. http://ipsc.ksp.sk/
Kemkes, G., Cormack, G., Munro, I. and Vasiga, T. (2007). New task types at the Canadian computing compe-

tition. Olympiads in Informatics, 1, 81.
LIO (2009). Latvian Olympiads in Informatics (in Latvian). http://www.lio.lv
More (2009). The best known solution of task “Who can find more?”.

http://vip.latnet.lv/lio/Neatdz/domlab.htm
NMS (2009). A. Liepas Neklātienes matemātikas skola (A. Liepas Correspondence mathematical school, in

Latvian).
http://nms.lu.lv/

Open Team Cup (2009). Komandny�i Otkryty�i Kubok po programmirovani� (Open Team Cup in
programming). http://shade.msu.ru/∼ejudge/

Propp, J. (2009). Self-Referential Aptitude Test.
http://www.cs.berkeley.edu/∼lorch/personal/self-ref.html

Pankov, P.S. and Orusulov, T.R. (2007). Tasks at Kyrgyzstani olympiads in informatics: Experience and pro-
posals. Olympiads in Informatics, 1, 132.

Puzzles (2000). “20-Digit Challenge”, newsgroup “rec.puzzles”.
Posted April 13, 2000 at http://groups.google.com

Ramāna, L. and Andžāns, A. (2002). Advanced mathematical education in Latvia. In A. Andžāns and H. Meiss-
ner (Eds.), Creativity in Mathematics Education and the Education of the Gifted Students: Proceedings of
the International Conference. University of Latvia, Riga, p. 6.

Ribeiro, P. and Guerreiro, P. (2007). Increasing the appeal of programming contests with tasks involving graph-
ical user interfaces and computer graphics. Olympiads in Informatics, 1, 149.

Sudoku (2009). Rules 4th World SUDOKU Championship.
http://www.szhk.sk/images/stories/dokumenty/pravidla_sutaze.doc

Toom, A. (2005). Word Problems in Russia and America, pp. 4–9.
http://www.de.ufpe.br/∼toom/travel/sweden05/WP.PDF

100 M. Opmanis

Turskiene, S. (2002). Computer technology and teaching mathematics in secondary schools. Informatics in
Education, 1, 150.

Ugāle (2003). Tasks and Complementary Files of “Ugāle’2003” final.
http://vip.latnet.lv/lio/lietas/u03_final_english.zip

Ugāle (2009). Team Competition in Mathematics and Informatics “Ugāle” (in Latvian).
http://www.uvsk.lv/p113.htm

Vasiga, T., Cormack, G. and Kemkes, G. (2008). What Do Olympiad Tasks Measure? Olympiads in Informatics,
2, 184.

Verhoeff, T., Horvath, G., Diks, K. and Cormack, G. (2006). A proposal for an IOI Syllabus. Teaching Mathe-
matics and Computer Science, 4(1), 193–216.
http://ioinformatics.org/admin/isc/iscdocuments/tmcs-2006-i-verhoeff-
horvath-diks-cormack.pdf

WPC (2009). World Puzzle Championship.
http://www.worldpuzzle.org/championships/index.html

Zebra (2009). Task “Who Owns the Zebra?”
http://orion.math.iastate.edu/burkardt/puzzles/zebra_puzzle.html

M. Opmanis is researcher at the Institute of Mathematics and Com-
puter Science of University of Latvia. He is deputy team leader of Lat-
vian IOI team since 1996 and was team leader of Latvian team at Baltic
Olympiads in Informatics since 1995 till 2007. M. Opmanis was head
of jury of Baltic Olympiad in Informatics at BOI’1996, 1999 and 2004.

Olympiads in Informatics, 2009, Vol. 3, 101–111 101
© 2009 Institute of Mathematics and Informatics, Vilnius

Representational Means for Tasks in Informatics

Pavel S. PANKOV
International University of Kyrgyzstan
A. Sydykov st., 252, Apt. 10, Bishkek, 720001 Kyrgyzstan
e-mail: pps50ster@gmail.com; pps50@rambler.ru

Kirill A. BARYSHNIKOV
Avalon World Group Inc.
United Arab Emirates, Sharjah, SAIF Zone, office A3-067
e-mail: kiryakg@gmail.com

Abstract. Either a task in informatics reflects any image in mind or not; references (hints) to any
reality can take place in the task. This reality can relate to local circumstances, the host town, the
host state or to sponsors of the informatics olympiad (at the same time, the task should be “culturally
neutral”). By our experience of conducting informatics olympiads in Kyrgyzstan since 1985 and
submitting tasks to preceding IOIs we classify such references, survey such tasks and propose some
techniques to make tasks more interesting and original and to attract different sponsors. Alternative
types of tasks are also discussed.

Key words: olympiads in informatics, tasks, reality, local circumstances.

1. Survey of Ways to Generate Tasks and the Aim of Paper

Some authors including Diks et al. (2007, 2008) have thoroughly examined the phases
of the task preparation process in such a way that it may be applied not only to infor-
matics but to other sciences as well. Regarding informatics itself, among other ideas
and classifications, Burton and Hiron (2008) offered two opposite ways to create a good
task: “To wrap an abstract task inside a good story” and “To look around and to take
inspiration from real things”. Let us denote these ways as A → R, from_algorithm_(or
from_abstract)_to_reality and R → A, from_reality_to_algorithm. In (Pankov, 2008) we
reviewed ways to generate task ideas based on actions in real and imaginary spaces and
called such tasks natural. In other words, we suppose that the good task should create an
image in the mind of the contestant and that is why we prefer the way R → A. In our
experience, even problems from abstract mathematical spaces (Weeks, 1985) can be pre-
sented in a natural way in programming tasks. What is more interesting – such natural
presentations are accepted relatively easy by children, giving them the opportunity to get
knowledge about complex objects from early childhood.

The aim of this paper is to illustrate the process of taking any real object and creating
a task for an informatics olympiad involving this object.

102 P.S. Pankov, K.A. Baryshnikov

The second section offers classifications of objects, their presentations and ways to
involve them in tasks, with some examples.

The third section proposes various types of tasks within these classifications includ-
ing both generalizations of our tasks (Pankov et al., 2000; Pankov et al., 2003; Pankov
and Oruskulov, 2007; Pankov, 2008), reminders of some known tasks (from our point of
view) and some new types – “slow algorithms”, graphical tasks and tasks of the “black
box” type.

We shall not consider the full procedure of creating a task with all restrictions, tests
etc. because it is not an aim of this paper and it was considered in details in (Diks et al.,
2007; Dicks et al., 2008), Burton and Hiron, 2008) and other publications. We shall give
either a brief description of “environment” (under the denotation “Task fragment”) or a
brief text of a task with a hope that it can be brought up to full-grown.

2. Classifications

2.1. Classification of the References to Objects in the Text of Task

In this section we propose to classify “representing” tasks by the explicitness of the defi-
nition of the real object:

– RE) explicit definition with the corresponding description of the task; we shall not
mention such definitions;

– RI) implicit definition (in such a way that the contestant can guess about it; in
national olympiads such guessing can also be involved into the task);

– RM) mixed definition: the name and some features of the object are defined explic-
itly and the other features are to be guessed from the description.

The second classification in this subsection is by the adequacy of the real object and
its image. We shall estimate it by levels of adequacy from A1 (the lowest) to A5 (the
highest). In the A → R case, the adequacy is usually lower.

2.2. Classification of Objects

This subsection shows various types of natural objects that can be used in informatics
olympiad tasks.

O1) Host country of the olympiad.
O2) Host city of the olympiad.
O3) Host University of the olympiad.
O4) Sponsor of the olympiad.
O5) Local Sights.
O6) Local History, Customs, Events (but tasks at international olympiads should be

“culturally neutral”, so most tasks will be given at national olympiads).
O7) Location, Local Geography.
O8) National language.

Representational Means for Tasks in Informatics 103

O9) Animals including the current year’s animal in the Oriental 12-year-cycle cal-
endar: Mouse, Cow (2009), Tiger, Hare or Cat, Dragon, Snake, Horse, Sheep, Monkey,
Hen, Dog, Pig. By tradition, each NOI in Kyrgyzstan has one task of this type.

O10) Numbers. By the tradition of some olympiads in informatics and mathematics,
one set of tasks contains the number of the current year. Also, other numbers relating to
jubilees or sponsors of the olympiad can be involved.

2.3. Classification of Images of Objects

This subsection classifies the images of the tasks objects:
I1) String constant (name, e-mail, URL-address etc.). This is the simplest way.
I2) Graphical presentation of string constant, mentioned in I1.
I3) Graphical image (flag, insignia, logo).

REMARK. If the graphical image is complex and consists of curved lines etc. then it is
possible to simplify if for the purpose of a task.

Task fragment 1 (O1). The description of the Kyrgyzstan national flag (see Pankov and
Oruskulov, 2007, Task 4): A solar disk with forty beams is placed in the center of the red
rectangular background . . . (A4)

In graphical tasks with a small image of the flag we use the simplified version: a
yellow circle on a red background (A1).

I4) Location (Address) of the object.
I5) Structure of the object. Classical but not so interesting

Task fragment 2 (O2, A1). A rectangular grid as a map of the streets of the host city (see
Task fragment 23 below).

I6) Activity of the object (the most interesting but the most difficult case). The sim-
plest example could be:

Task fragment 3 (including O9). Rules of the possible motion of “actors” (see (Pankov,
2008)).

3. Examples of Tasks

In addition to common types of tasks we offer the following types of tasks, mentioned
briefly in (Pankov and Oruskulov, 2007):

T1) Acceleration of an algorithm. An algorithm is given explicitly, but works too
slowly. Write a program yielding same results in acceptable time (traditionally, CPU time
less than 1 second). At a national olympiad, if this algorithm is classified O1, O2, O6 or
O8 then an additional question may be: What does such algorithm mean and where it can
be used?

T2) Graphical tasks (with non-formal scoring, convenient for national olympiads). In
our opinion, such tasks meet the Statute S1.7 of the IOI regulations “to bring the discipline

104 P.S. Pankov, K.A. Baryshnikov

of Informatics to the attention of young people”. In our experience, such tasks make
olympiads more attractive for sponsors and reflect state and national features. Sponsors
(usually from the IT industry) see their logos and attributes made more recognizable
among young people.

T3) “Black Box” tasks. We refer to black box as a procedure with unknown content.
Additional information is given as “genotype” (“inner”) or “phenotype” (“external”). The
task of the contestant is to write a procedure giving the same results; Its text can differ
but results must coincide.

In the following examples we shall not describe restrictions. The final version of the
task, with corresponding restrictions, can be derived from the advice in (Burton and Hi-
ron, 2008), section 5 “Improving the task”.

REMARK. In our opinion, tasks themselves ought to contain text only; graphical images
should be in examples only. We shall write most tasks briefly: “find . . .” besides of “write
a program finding . . .” etc. Some tasks built by the means of the above techniques were
published in (Pankov et al., 2000; Pankov et al., 2003; Pankov and Oruskulov, 2007;
Pankov, 2008).

3.1. Text Processing with String Constants

3.1.1. Tasks about “reading”
Task 4 (O2, classical). A (long) word W of capital Latin letters is given. How many times
can the word PLOVDIV be read from left to right in W (ignoring the other letters)?

Task 5 (O2, classical). Given a two-dimensional array of capital Latin letters P, L, O, V,
D, I. How many times can the word PLOVDIV be read in the array, moving only right
and down (without ignoring letters)?

Task 6 (O2, Generalization of Tasks 1 and 2). Given a graph (or a directed graph) with
some capital Latin letter assigned to each of its vertices. How many paths (directed paths)
in the graph carry the word PLOVDIV:

Task 6A: as a sub-word; Task 6B: as a sub-sequence; if a vertex can be passed several
times by the path.

Task 7 (O2). Given a graph (or a directed graph) with some capital Latin letter assigned to
each of its vertices. Find the minimal number of paths in the graph such that the concate-
nation of the carried paths words is the word PLOVDIV? A vertex can be passed several
times.

Task 8 (O1 or O2). Given a graph (or a directed graph) with some capital Latin letter
assigned to each of its vertices. Find the length of the shortest path that carries the word
(Task 8A: PLOVDIV or Task 8B: BURGAS)?

REMARK. The principal difference between these words is that all letters in the word
“BURGAS” are different, so any “standard” algorithm can be “wrapped” into this word,
meanwhile the word “PLOVDIV” demands the modification of such an algorithm.

Representational Means for Tasks in Informatics 105

3.1.2. Tasks about “transforming”
Task 9 (O2). Given a (long) word W of capital Latin letters. How many sub-words at least
should be deleted from W to get the word PLOVDIV?

EXAMPLE. Input: PLDODVDPLOVXDIV. Output: 2 [“PLDODVD” and “X” to be
deleted].

Task 10 (O2). Given a graph (or a directed graph), with capital Latin letters assigned to
some or all of its vertices. How many letters at least must be changed to obtain a path that
carries the word PLOVDIV?

It is seen that there are many transformation possibilities (deleting, inserting, chang-
ing, gluing and their combinations).

There is no inherent difference between the two types of tasks mentioned above. A
task on complex “reading” can be presented as a task on simple “transforming” but the
range of input data must be different; thousands and even millions of characters are ac-
ceptable for “reading” tasks but dozens or hundreds for “transforming”.

Task 11 (O8). Words in the Kyrgyz language, containing vowels A, E, I, O, U, and Y, can
only have either consecutive same vowels or the following pairs of consecutive different
vowels: AY, YA, EI, IE, OU, and UA. Given is a “word“ W containing more than one
vowel. At least how many vowels must be erased from W to obtain a new word, the
sub-sequence of vowels of which contain only permited pairs of consecutive vowels?

EXAMPLE 1. Input: KYRGYZSTAN. Output: 0.

EXAMPLE 2. Input: TOOFEIGUZAEEWYQ. Output: 4 [OOEIUAEEY → OOUAY, and
the correct “word” is TOOFGUZAWYQ].

REMARK. 1) Actually, there are eight vowels in Kyrgyz language (including OE and
UE). 2) Other Turkic languages have similar rules.

3.2. Graphical Images of String Constants

Giving formal descriptions of letters as geometric objects is very difficult. For example,
the letters L, O, V, I in their simplest geometrical forms (two segments, a circle, a vertical
segment) are easy for description but letters P and D are not so easy. The abbreviation
“IOI” itself is very convenient for geometrical presentations and transformations.

Task 12 (O3). Given are some points with integer coordinates. How many (at least) points
must be added to them to obtain a configuration with symmetry (in their simplest form) of
the type of the letter K (horizontal mirror symmetry); of the letter N (central symmetry);
of the letter U (vertical mirror symmetry? (KNU is an abbreviation of Kyrgyz National
University).

106 P.S. Pankov, K.A. Baryshnikov

3.3. Geometrical Images

3.3.1. Uncertainty of Restoring by Non-complete Information
The main difficulty in such tasks is treating the boundaries of the domains.

Preface to the following Tasks 13, 14, 15: “The Bulgarian flag consists of white, green
and red (from up to down) horizontal strips of equal size. The ratio of the horizontal size
to the vertical one is 5:3”.

Task 13 (O1, O9). In the night, a fire-fly can detect its exact position by means of the GPS
navigation system and it knows that it is near a big Bulgarian flag. The fire-fly can switch
on its lamp only a restricted number of times. Let all corners of the colored strips of the
Flag have even integer coordinates and the fire-fly switches on its lamp at points with odd
integer coordinates.

Given is a list of colored points as triples of two odd integer numbers and one of the
four letters: W (white), G (green), R (red) and D (darkness, i.e., on / off of the Flag). At
least two of W, G, R are presented. Find

Task 13A: the greatest possible size of the Flag; Task 13B: the boundaries of the center
of the Flag.

3.3.2. Composing
Let a “block” be a rectangle of size 1 × 2 (vertical).

Task 14 (O1). A child has blocks of different colors: W – white, WG – half white and half
green (one square of the block is white and the other is green), G – green, GR – half green
and half red and R – red. Given are five non-negative integer numbers W, WG, G, GR

and R.

Task 14A. Find the greatest possible size of a Bulgarian flag which the child can make
using these blocks. [The given numbers are large].

Task 14B. At least how many additional blocks must the child make and paint in order to
compose a Bulgarian flag? [Some of the given numbers are too small].

Task 15 (O1). Given ten non-negative integer numbers W1, WG1, G1, GR1, R1, W2,
WG2, G2, GR2, R2 denoting the numbers of colored blocks kept by two children – the
first and second child respectively. At least how many blocks of any color must be moved
between children to give each of them the opportunity to compose their own Bulgarian
flag (two flags could be of different sizes)?

Another version of Task 15:

Task 16 (O1). Given N triples of non-negative integer numbers (W [k], G[k], R[k]), denot-
ing the numbers of colored squares of equal size kept by the kth child, k = 1, 2, . . . , N .
At least how many squares must be moved between children to give each of them the
opportunity to compose their own Bulgarian flag? (Different flags could be of different
sizes)?

Example of an implicit presentation of the Bulgarian flag.

Representational Means for Tasks in Informatics 107

Task 17 (O1, T3, RI). Given is a function C(X, Y) that transforms the couples of integers
(X, Y), 1 � X � 1000, 1 � Y � 1000 to letters. Its text is invisible to the contestant:

{ C=’’D’’;
if X > 20 then
{ if 100 > X then
{ if Y > 500 then {if 520 > Y then C=’’R’’};

if Y > 519 then {if 539 > Y then C=’’G’’};
if Y > 539 then {if 560 > Y then C=’’W’’};

};
};

}.

Task 17A. “Inner” information: Variables C, X and Y are integer constants within the
interval [1..1000], “>” signs are always between a letter and a number (or vice versa),
fewer than 10 statements “if . . . then . . .” are used and arithmetical operations are not
used in the text.

Task 17B. “External” information:
If X1 < X2 < X3, X3 − X1 < 10 and C(X1, Y) = C(X3, Y) then C(X2, Y) =

C(X1, Y).
If Y 1 < Y 2 < Y 3, Y 3 − Y 1 < 10 and C(X, Y 1) = C(X, Y 3) then C(X, Y 2) =

C(X, Y 1).
(Continuation of both tasks) By means of calling and analyzing the function C(X ,Y)
1) Write a function named FC(X, Y) that gives the same results in a CPU time

less than 0.001 second. Its size must be less than 500 bytes. (To prevent including a
1000×1000 array into the function).

2) What does the function C(X, Y) mean?

REMARK. Such a task can be solved by calling the function several times and analyzing
the results or by writing a corresponding program (or sequence of programs).

Example of implicit presentation of another object.

Task 18. DISTANCES (O1, O6, RI). Given a natural number N (13 � N � 50), and two
natural numbers L, M (1 � L < M � 100, M � 5 ∗ L). Your task is to choose N points
with integer coordinates on a plane in such a way that the number of different distances
between them, being not less than L and not greater than M, is as large as possible.

Input: A file with one line containing the integer numbers N, L, and M.
Output: A file with:
1) one line with the numbers N, L, M ;
2) N lines with the list of chosen N points. Each line has to contain a label of the

point (integer from 1 to N), its x-coordinate, and its y-coordinate (integers between 1
and 10000). All points must be different.

3) One line with the number of pairs of points being in distances within the inter-
val [L, M].

108 P.S. Pankov, K.A. Baryshnikov

Scoring: if your output data is correct (the criteria of correctness must be here) then
your score for one test case is

(1+ 9*(NumPairsInYourAnswer/NumPairsInBestAnswer) 2) rounded down.

REMARK. Despite of square root in the formula for the distance, this task operates on
integer numbers, without rounding.

Task 19 (O1, T2, RI, for Kyrgyzstan). Given is the following algorithm which builds some
image:

{ K is integer; U, V, X, Y are real; X: = 20; Y: = 0;
{ for K from (−3) to 4
{ U: = 0.7 * (X−Y); V: = 0.7 * (X+Y);

if K = 4 then { U: = 20; V: = 0}
else {draw line(3.4*K−1.7, 5−|K|)−(3.4*K, 8−|K|)−(3.4*K+1.7, 5−|K|)}
draw segment (X, Y)−(U, V); X: = U; Y: = V}
draw circle with center (0, 8) and radius 2;

}.
A) Choose a scale and show the image on the screen (save this file).
B) Correct the image according to its kind (save the second file).
C) Complete the image with one or two elements at your will according to its kind

(save the third file).
Tests:
A) There should be a regular octagon, seven (mountain) peaks within it and a little

circle on the middle of the highest peak.
B) The contestants were to guess, that the item A) contains elements of Kyrgyzstan

State insignia. The circumscribed octagon must be replaced by a circle. The little circle
denotes the sun (behind the mountains). Hence the bottom arch of this circle (within the
middle peak) must be erased.

C) Possible elements of the insignia: beams of the sun; the inscription “KYRGYZ
REPUBLIC” (in Cyrillic); hints on a surface of the lake (Issyk-Kul); a closer and lower
mountain ridge; White Falcon; ears or cotton.

3.4. Behavior of Animals

Task fragment 20 (O9, I6). In Korea (host of IOI’2002) the naughtiness of the cheong-
gaeguri, a small frog, is legendary. A frog always jumps through the paddy in a straight
line, with every hop the same length. Different frogs can jump with different hop lengths
and in different directions on the intersection points of a grid . . .

We hope that the following task yields new characteristic of a graph.

Task 21 (O9, I6). Given a connected graph of (narrow, sufficiently long) holes under-
ground. One of its vertices is the entrance. A family of given number of mice (with the
plan of the graph) is going to install themselves. But firstly they want to examine all the
graph (beginning from and returning to the entrance) to discuss results. Find the minimal

Representational Means for Tasks in Informatics 109

time necessary for this purpose. The velocity of a mouse is one edge per minute. A mouse
cannot turn back within an edge.

REMARK. The answer is not obvious even for a dendrite graph.

Task 22 (O9, O7, I6). Let a lake looks like an isosceles triangle; the basis of the triangle
(northern coast) is 190 km and height (width of the lake) is 60 km. A village is located
on northern coast of the lake, 20 km from the western corner. A horse runs with speed of
20 km/h and swims with speed of 10 km/h. Given a point on the coast of the lake, find
the minimal time to reach the village from this point with an accuracy of 0.01 hour.

Using real numbers for tasks at informatics olympiads was considered in details in
(Opmanis, 2006).

REMARK. This task, motion from south-western coast to a village across Issyk-Kul lake,
reflects a historic fact. In commemoration of this feat, the village was named Toru-Aigyr
(Bay Stallion).

3.5. Structure

We propose the following improvement of Task fragment 2.

Task fragment 23 (O2, A2). Let the streets in the virtual city of Plovdiv form a rectangular
grid: X and Y are integers, 0 � X � N , −N � Y � N , Y �= 0. The line Y = 0 is
the Maritsa river. It can be crossed by the seven bridges only, their x-coordinates are
B = trunk(N/8), 2 ∗ B, 3 ∗ B, . . . , 7 ∗ B. Given the integer N , 8 � N � 1000 . . .

3.6. Customs, History, Activity

A brilliant example of the history with activity is the task “Fish” given at the practice
session of IOI’2007.

Task 24. PILLAGERS (O6, I6, A5). Towns with some amounts of fish are situated on
a long (straight) coastline. If a town ships F tons of fish to another town which is D

km away then hungry pillagers descending from the mountains take min(F, D) tons.
Each tourist needs 1 ton of fish. Given the positions of all towns and amounts of fish
in all towns, find the largest integer Y such that each town can accommodate at least Y

tourists.
In (Pankov, 2008) it was proposed the following task:

Task fragment 25 (O7, I6). See Fig. 1. Regions that hosted finals of the NOI (15 towns)
in the paper (Dagiene and Skupiene, 2007).

Two friends with bicycles decided to make photos of these towns for the illustrated
history of NOIs. The array of distances (in hours!) between some pairs of these 16 points
is given. Write a program calculating the minimal number of days for such enterprise.

110 P.S. Pankov, K.A. Baryshnikov

3.7. Graphs

The following technique transforms a string constant into an abstract graph.

Task 26 (O1, O2, O3, . . .). Given is the constant word W , for example “PLOV-
DIV_IN_BULGARIA” (19 characters; the number and scope of the characters may be
increased arbitrarily). Given two integers 1 � X < Y � 19, find the necessary number
of steps to reach W [X] from W [Y]. At each step one may pass either to an adjacent
character or to an identical character at other place in the word.

EXAMPLE. Input: X = 4; Y = 13. Output: 4 [W [X] =”V”; W [Y]=”U”; way: V-O-L-
L-U].

3.8. Numbers as an Aim

The following two tasks are very simple but demonstrate “accelerating of a given algo-
rithm” and the fitting of an object.

Task 27 (O10, A5). Given the following
Algorithm Year_Mult;
Integer I, J, K, N; Boolean Mult = true;
{ output (“Enter a natural number N, 1 <= N <= 2009”); input (N);

for I = N to 2009 { for J = N to 2009 { for K = N to 2009
{if I*J*K = 2009 then {Mult = false; output(“Mult”; I, J, K)} } } };
if Mult then output(“Mult_Nothing”);

}.

Task 28 (O10, A2). Given the following
Algorithm Year_Add;
Integer I, J, K, N, Add = 0;
{ output (“Enter a natural number N, 1 <= N <= 2009”); input (N);

for I = N to 2009 { for J = N to 2009 { for K = N to 2009
{if I+J+K = 2009 then Add = Add+1} } };
output(“Add = ”; Add)

}.
(Both tasks:) Write programs implementing fast algorithms that calculate the same

results in a CPU time of 1 second.

REMARK. Task 27 is an “apt” use of the number (A5) because its successful solution
demands finding prime factors of 2009 itself. Task 28 is a “common” use of the number
(A2) because 2009 can be changed to another large number.

4. Conclusion

This paper gives an overview and examples of the ideas that can be used to create com-
petitive tasks for national and international olympiads in informatics.

Representational Means for Tasks in Informatics 111

The tasks built in such a way that would be interesting for young people and attrac-
tive for prospective sponsors. Also, such tasks with high level of adequacy (A4, A5) give
less advantage to experienced participants because they would not be able to use known
algorithms immediately. On the other hand, tasks of (O6) and (T1, T2, T3) are not used
at IOIs. So, after conducting the Kygyzstani NOI (usually in March) we select candi-
dates from schoolchildren who have demonstrated good results on set of tasks containing
traditional types used at previous IOIs.

We also advise, before visiting any country, to learn more about its language, state
symbols, history, geography, and customs.

References

Burton, B.A. and Hiron, M. (2008). Creating informatics olympiad tasks: exploring the black art. Olympiads in
Informatics: Tasks and Training, 2, 16–36.

Dagiene, V. and Skupiene, J. (2007). Contests in programming: quarter century of Lithuanian experience.
Olympiads in Informatics: Country Experiences and Developments, 1, 37–49.

Diks, K., Kubica, M. and Stencel, K. (2007). Polish Olympiads in Informatics: 14 years of experience.
Olympiads in Informatics: Country Experiences and Developments, 1, 50–56.

Diks, K., Kubica, M., Radoszewski, J. and Stencel, K. (2008). A proposal for a task preparation process.
Olympiads in Informatics: Tasks and Training, 2, 64–74.

Kemkes, G., Cormack, G., Munro, I. and Vasiga, T. (2007). New task types at the Canadian computing compe-
tition. Olympiads in Informatics: Country Experiences and Developments, 1, 79–89.

Opmanis, M. (2006). Some ways to improve olympiads in iinformatics. Informatics in Education, 5(1), 113–
124.

Pankov, P.S., Oruskulov, T.R. and Miroshnichenko, G.G. (2000). School Olympiads in Informatics (1985–2000
years). Bishkek (in Kyrgyz & Russian).

Pankov, P.S., Oruskulov, T.R. and Miroshnichenko, G.G. (2003). Olympiad Tasks In informatics, Devoted to
Kirghiz Statehood, History of Kyrgyzstan and Great Silk Road. Bishkek (in Kyrgyz & Russian).

Pankov, P., Acedanski, S. and Pawlewicz, J. (2005). Polish Flag. In The 17th International Olympiad in Infor-
matics (IOI’2005). Tasks and Solutions. Nowy Sacz, 19–23.

Pankov, P.S. and Oruskulov, T.R. (2007). Tasks at Kyrgyzstani olympiads in informatics: experience and pro-
posals. Olympiads in Informatics: Country Experiences and Developments, 1, 131–140.

Pankov, P.S. (2008). Naturalness in tasks for olympiads in iinformatics. Olympiads in Informatics: Tasks and
Training, 2, 115–121.

Weeks, J.R. (1985). The Shape of Space. Marcel Dekker, Inc., New York.

P.S. Pankov (1950), doctor of physical-math. sciences, prof., corr.
member of Kyrgyzstani National Academy of Sciences (KR NAS),
is the chairman of jury of Bishkek City OIs since 1985, of Repub-
lican OIs since 1987, the leader of Kyrgyzstani teams at IOIs since
2002. Graduated from the Kyrgyz State University in 1969, is a main
research worker of Institute of Theoretical and Applied Mathematics of

KR NAS, a manager of chair of the International University of Kyrgyzstan.

K.A. Baryshnikov (1985), manager of the Avalon Worldgroup Inc
(Sharjah, UAE). Participated in IOI’2002, in training the Kyrgyzstani
teams for IOI’2003 and IOI’2004. Graduated from the Kyrgyz-Russian
Slavic University in 2007.

Olympiads in Informatics, 2009, Vol. 3, 112–131 112
© 2009 Institute of Mathematics and Informatics, Vilnius

Baltic Olympiads in Informatics: Challenges for
Training Together

Timo PORANENa ∗, Valentina DAGIENĖb, Åsmund ELDHUSETc,
Heikki HYYRÖa, Marcin KUBICAd, Antti LAAKSONENe,
Mārtiņš OPMANISf , Wolfgang POHLg, Jūratė SKŪPIENĖb,
Pär SÖDERHJELMh, Ahto TRUUi

a Department of Computer Sciences, University of Tampere
Kanslerinrinne 1 FIN-33014 Tampere, Finland
e-mail: {tp, helmu}@cs.uta.fi
b Informatics Methodology Department, Institute of Mathematics and Informatics
Akademijos str. 4, Vilnius, LT-08663 Lithuania
e-mail: {dagiene,jurate}@ktl.mii.lt
c Department of Computer and Information Science
Norwegian University of Science and Technology
e-mail: asmunde@stud.ntnu.no
d Institute of Informatics, Warsaw University, Poland
e-mail: kubica@mimuw.edu.pl
e Department of Computer Science, University of Helsinki, PL 68, 00014
e-mail: antti.laaksonen@mbnet.fi
f Institute of Mathematics and Informatics of University of Latvia
e-mail: martins.opmanis@lumii.lv
g Bundeswettbewerb Informatik
Ahrstr. 45 53175 Bonn, Germany
e-mail: pohl@bwinf.de
h Department of Theoretical Chemistry Lund University
P.O.B. 124, SE-22100 Lund, Sweden
e-mail: par.soderhjelm@teokem.lu.se
i TÜ Teaduskool
Tähe 4-143, 51010 Tartu, Estonia
e-mail: ahto.truu@ut.ee

Abstract. Baltic Olympiad in Informatics (BOI1) is an annual informatics competition established
by the three Baltic countries Estonia, Latvia and Lithuania in 1995 for upper secondary school
students. BOI was later expanded to include all countries located around the Baltic Sea. One of
the main goals of the BOI is to bring gifted students together and let them gain experience from
an international event before participating in the International Olympiad in Informatics. Another
important goal is to bring together the team leaders from different countries and to share their
experience by creating common tasks. All tasks are developed and discussed as well as translated

*Corresponding author
1BOI is also used as abbreviation for the Balkan Olympiad in Informatics. Within this article, BOI refers

only to the Baltic Olympiad.

Baltic Olympiads in Informatics: Challenges for Training Together 113

before the BOI event using online facilities. The paper reviews some parts of the history of the BOI
and gives a short glance at the current state of informatics education in the BOI countries. The main
attention is focused on the task preparation process as well as presentation and analysis of statistical
data from the previous BOI. Finally some development ideas and discussion on the future of the
BOI competition are presented.

Keywords: olympiads in informatics, programming competitions, training, task categories.

1. Introduction

One of the most important parts of teaching cognitive skills is the teaching of problem
solving (Dagienė and Skūpienė, 2004). Computer programming is one of the modern
ways to develop problem solving skills. It may be argued that competitions make teaching
of programming more attractive (Verhoeff, 1997). Students that learn basics of program-
ming, soon start to look for opportunities to demonstrate their skills, use distance learning
tools like UVA Online Judge2, share their interests and compare themselves with others.
For such students, one of the most effective means to endorse their motivation are the
competitions. Competitions allow the students to meet their like-minded peers from all
over their home-country as well as from other countries and to build friendships. They
may eagerly wait for the next competition, ready to show how their abilities have im-
proved since the previous competitions.

In order to ensure better preparation for the International Olympiad in Informatics
(IOI) and to strengthen regional relations, various regional olympiads are organised (e.g.,
African, Central European, Baltic and Balkan Olympiads). While national olympiads
represent informatics teaching traditions of each country, regional olympiads are usually
a mini-model of the IOI, allowing participants to experience what they will face in the
IOI (Blonskis and Dagienė, 2006).

The main goals of the Baltic Olympiad in Informatics (BOI) are to bring together
gifted students, help them to share their scientific and cultural experiences and to provide
participating students with the experience of an international competition. Further impor-
tant goals are to bring together the team leaders from different countries, allowing them
to share their experience, e.g., by creating common tasks. Moreover, the BOI is integrated
into the IOI team selection process of some of the participating countries, allowing them
to take into account the students’ results in a competition similar to the IOI. The compe-
tition gives the contestants an experience of an international event before they participate
in the International Olympiad in Informatics. The participants of the BOI are upper sec-
ondary school students interested in the field of informatics and computer science from
a maximum of nine countries (Denmark, Estonia, Finland, Germany, Latvia, Lithuania,
Norway, Poland, and Sweden) around the Baltic Sea.

2Project “Integrating On-line Judge into effective e-learning” (UVa Online Judge) which has been funded
with support from the European Commission under the grant number 135221-LLP-1-2007-1-ES-KA3-KA3MP
helped in preparing this article.

114 T. Poranen et al.

In Section 2, we give a historical overview of the BOI. In Section 3, we explain how
informatics is taught in the BOI countries. In Section 4, we describe how a BOI is organ-
ised, and in Section 5 we analyse tasks and solutions of the BOI 2007. The last section
discusses our findings and gives ideas to improve organisation of regional contests in
future.

2. History of the Baltic Olympiad in Informatics

The International Olympiad in Informatics (IOI) started in 1989. Soon first ideas about
creating a regional contest for the Baltic countries emerged. In IOI 1991 in Greece, Håkan
Strömberg (Nurmi, 2008) from Sweden proposed to organise a practice contest where all
Scandinavian countries or at least Finland and Sweden could participate. However this
plan was given up.

With the re-establishment of Estonia’s, Latvia’s and Lithuania’s independence and
their official recognition by the international community, teams from Estonia, Latvia and
Lithuania were invited to participate in the Fourth International Olympiad in Informatics,
which took place in Bonn (Germany) in 1992. At a glass of German beer, the delega-
tion leaders of the three countries (Rein Prank and Indrek Jentson from Estonia, Māris
Vı̄tinš and Viesturs Vēzis from Latvia, Gintautas Grigas and Viktoras Dagys from Lithua-
nia) had a discussion on how to help their students to prepare better for the International
Olympiad. It was suggested that a common contest of the three countries could help in
selecting the four strongest students from each country to participate in the IOI. The dis-
cussion about the Baltic Olympiads was continued at the two following IOIs in Mendoza
(1993) and in Stockholm (1994).

The First Baltic Olympiad in Informatics took place in Tartu (Estonia), 21–23 April
1995. Following the standards of the IOI, it was agreed that the competitors of the Baltic
Olympiad in Informatics would have to solve six problems during two competition days.
The delegation of each country would consist of eight participants and two team leaders.
Why eight competitors? With a team of eight competitors, team leaders were left with
both sufficient choice in selecting their IOI team and the option to include younger stu-
dents, who would probably join the national team in a year or two, for training purposes.
The delegation leaders from each country had to propose three problems in advance,
discuss them through electronic mail and select the six competition tasks from all the
offered problems; translate them into the local languages after final approval and bring
the translated tasks to the olympiad in printed form.

The integrity of the goals of the olympiad and mutual trust of the delegation leaders
made it possible to organise a relatively short (3–4 days) and inexpensive event. Natu-
rally, a week-long IOI is a real festivity for the contestants and their delegation leaders,
which remains in their memory for challenging problems, new friends and interesting ex-
cursions. The Baltic Olympiad in Informatics (BOI), however, can be distinguished from
the IOI by cosy and neighbourly atmosphere.

The second BOI was organised in Riga (Latvia) in 1996. Due to financial problems,
the number of competitors in each team was decreased to six. The third BOI took place

Baltic Olympiads in Informatics: Challenges for Training Together 115

in Vilnius (Lithuania). While the first two olympiads were a good start for BOI, the first
guest, Poland, was invited to the third olympiad in 1997. In 1998 the host country (Es-
tonia) continued the new tradition of inviting neighbouring countries as guests and asked
Finland and Sweden to join the BOI in Tartu. In 1999 Latvia invited Finland, Sweden,
Poland and USA as guests. However, this was the time to reconsider the concept of mem-
ber and guest countries. Sweden proposed to host BOI in 2000 and at this time the par-
ticipating countries from around the Baltic Sea became member countries. Germany was
the last Baltic see country to join the Baltic Olympiad in 2001 in Poland. Friendly rela-
tionships with Norway made her a permanent participant of BOI. The host countries still
maintain the tradition of inviting guests to BOI (e.g., Israel was invited to BOI in 2005
and Switzerland participated in BOI in 2008). The current BOI member countries are
Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Norway, Poland, and Sweden.

The organisation of BOI has changed over the years. To keep the event manageable,
the number of contestants per team was decreased to 6. The team leaders propose and
discuss the tasks in advance, but now each country is asked to submit at least one task
proposal (with 9 participating countries there is no more need for each country to come up
with three proposals). Even though the tasks are decided in advance, the final formulation
is approved during BOI. Modern contest and grading systems are used to manage the
contest. The neighbourly help of countries with more experience of managing contests to
host countries with less or no experience makes it possible to host well organised contests
in all countries.

3. Informatics Education in the Baltic Sea Countries

In all the Baltic Sea countries, topics of informatics (software usage, programming, etc.)
are taught in different ways and using various approaches. In Estonia, Finland, Norway,
and Sweden software tool usage is integrated to other school subjects, but in Latvia,
Lithuania, and Poland secondary schools have some elements of informatics education
as separate subjects or modules. Table 1 summarises the current state of informatics edu-
cation in the Baltic Sea countries’ school systems. The first and second columns show the
name of the country and its population, respectively. The last column gives an overview
of the informatics education in the corresponding country.

In the following eight subsections we give a brief overview of informatics education
and the BOI team selection in some of the participating countries

3.1. Estonia

In Estonia, three years of primary and six years of elementary school are mandatory for
everyone. After that, pupils normally elect to attend either a gymnasium or a vocational
school. A gymnasium means another three years of general education, with the prospect
to go on to an institution of higher education upon graduation. A vocational school typi-
cally takes four years to give a profession in addition to a secondary education. In theory,

116 T. Poranen et al.

Table 1

Informatics education in primary and secondary schools in the Baltic Sea countries

Country Pop. (mill.) Informatics education

Denmark 5.4 Included in the subjects in high schools.

Estonia 1.3 Nominally integrated to other subjects. Many schools still choose to teach IT as
a separate subject.

Finland 5.4 Integrated to other school subjects. Optional subject in some schools.

Germany 82.5 The situation of education in informatics varies widely between 16 states. In a
few states, informatics is a mandatory subject in grades 6 or 8. More often, infor-
matics is an optional subject in grades 9–10 and in most states it is an optional
subject in grades 11–13.

Latvia 2.3 In grades 5–7 in primary schools, in secondary schools and gymnasiums infor-
matics is a mandatory subject.

Lithuania 3.4 Information Technology is a mandatory subject in lower secondary levels starting
from 5th grade to 10th. Informatics is one of the optional modules in grade 10 as
well as in upper secondary levels, grades 11 and 12.

Norway 4.8 Integrated to other subjects. A mandatory technology course including some in-
formatics is coming to the upper level. In some high schools, informatics is an
optional subject.

Poland 38.1 Mandatory in all levels, starting from 4th grade.

Sweden 8.9 Integrated to other subjects. In secondary schools, informatics is a separate sub-
ject.

it is possible to enter a university after graduating from a vocational school, but in prac-
tice it is perhaps a bit more common to go to a vocational school for one and a half to two
years to acquire a profession after graduating from a gymnasium and failing to get into a
university.

Mastery of information technologies is recognised as an important skill in the national
curriculum, but nonetheless informatics (or computer science) is not a separate subject.
Instead, pupils are supposed to acquire the necessary skills in the process of using com-
puters to learn other subjects. Schools are allowed, but not required, to offer informatics
as a separate course and many schools do so. The curriculum only defines in general terms
the ICT skills graduates of comprehensive schools should possess. These requirements
describe the usage of computers as tools to create presentations, search for information
and perform minimal statistical analysis (compute averages and create diagrams), but no
topics usually associated with computer science. Also, no centrally approved text books,
lecture plans, or other teaching materials are provided, and schools are expected to make
their own decisions. Only a few schools offer computer science or programming classes
either as part of a specialisation or in the form of an extracurricular activity.

A national olympiad in informatics has been organised (and supported by the Ministry
of Education) since 1988 (with the exception of the year 1991). The participation in the
preliminary rounds has ranged from 50 to 150 pupils, with the 30–40 best invited to the
national finals. Out of those, 15–20 are further invited to training camps to select the
teams for the international competitions. The camps take place on weekends.

Estonia has participated in the IOI since 1992, in the BOI since 1995, and a few times

Baltic Olympiads in Informatics: Challenges for Training Together 117

in the Central European Olympiad in Informatics (CEOI) as a guest country. Since the
beginning, the main goal of participating in the BOI has been to give an international ex-
perience to the members of the future IOI team. Also, the BOI serves as the last selection
round to pick the four IOI team members out of the six or eight BOI team members and
usually the IOI team is announced immediately after the BOI.

3.2. Finland

In Finland, pupils usually start a voluntary one-year long pre-school when they are six
years old, and after that, they attend the compulsory primary schools. Comprehensive
school takes a total of nine years and is divided into a lower level (grades 1–6) and an
upper level (grades 7–9). After comprehensive school, the two main options to study
further are vocational and upper secondary schools.

In the lower level, informatics education is integrated to other school subjects, like
Finnish language and literature (information searching, writing with technical tools) and
mathematics (logical thinking, combinatorics, etc.). Only in the upper level and in the
upper secondary school it is possible in some schools to study information technology as
an optional subject. A drawback of the Finnish informatics education system is that the
quality and content of teaching depends highly on the particular school’s resources and
the teacher’s own activity, skills and knowledge. There is no general syllabus.

The Finnish national informatics competition for school students (called “Datatähti”
which literally means “Data Star“) consists of two stages. The first is an open on-line
stage, where the students have 2 weeks time and send their solutions by email. Roughly
15 best students are invited to the second and final stage, which is organised on-site. As
an incentive to participate, the top 10 competitors are granted a free entry (i.e., without
having to take an entry exam) to most universities in Finland. Based on the results, about
8–15 best students are selected to the IOI training. These students receive learning ma-
terial and monthly programming tasks by email, and they also participate in a training
camp, usually organised in late March or early April. Finland’s BOI team is selected
based on the results of the national competition as well as the level of achievements dur-
ing training (both email tasks and the training camp). In 2008, 33 students participated in
the first round of the national competition. This may seem low, but it is in fact the second
highest number since the year 2002. The main reason for joining the BOI was to provide
a good practice opportunity for Finland’s IOI team.

3.3. Germany

In Germany, school education is supervised by the 16 federal states. Each state has its
own rules and administration for the school system, so that, in fact, there are 16 differ-
ent school systems in Germany. In the following, the more or less typical case will be
described, if not stated otherwise.

Children enter school at the age of six. After four years of primary school, there are
mainly three options for secondary school (that is the official term in Germany; in other

118 T. Poranen et al.

countries, “elementary” is used instead). One of them is the “Gymnasium” that takes eight
years to prepare children for academic education. The other school types take six years
to prepare for a vocational education. Vocational education is then done in a so-called
“dual” way: practical aspects are learned within one company, more theoretical aspects
in vocational schools.

For informatics education, the situation varies widely among the 16 states. In 2007,
a bachelor thesis investigated the situation in detail (Weeger, 2007). In almost all states,
a basic “IT education” of using IT systems is integrated into other subjects within sec-
ondary education. In most states, informatics is an optional subject, but in only two states,
informatics is compulsory for all students (in three other states, individual schools may
decide to make informatics compulsory for their students). The amount of teaching is
about 1 hour per week.

“Bundeswettbewerb Informatik” (Federal Contest in Informatics; BWINF) was
founded in 1980; since 1985, it is organised annually. According to the dimensions pre-
sented by Pohl (2006, 2007), BWINF is a long-time (homework) task contest, with mixed
submission of executable programs (all programming languages are allowed, except as-
sembler and machine language) and solution descriptions, and with manual grading of
submissions. Tasks cover many aspects of informatics; there are no age or other divisions.
Hence, BWINF differs a lot from olympiad-style short-time task contests, with automatic
grading of source code submissions.

BWINF takes a year, its finals take place in autumn (September or October). In the
following year, about 12 BWINF finalists enter the process of preparing and selecting the
German IOI team, together with a few participants from another competition. After two
training camps (each 2–3 days long), the number of IOI candidates is reduced to about
half. Traditionally, the IOI team is then selected based on performance in a third training
camp (5 days). Recently, performance at the BOI has more and more often determined
the IOI team selection.

Germany has participated in the IOI since the beginning in 1989. Since 1997, a Ger-
man delegation has taken part in the Central European Olympiad in Informatics (CEOI;
in 2000 Germany became full CEOI member). Since 2001, Germany also sends a dele-
gation to the BOI. Since the CEOI takes place in early summer, usually about a month
or two before the IOI, Germany sends its IOI team to the CEOI in order to bridge the
training gap between the BOI and the IOI.

3.4. Latvia

Basic education is almost the same as in Estonia. In the grades 5–7 there is a mandatory
course of informatics. In grades 8–9 there is no separate subject but informatics is inte-
grated in other subjects. Topics like text and image processing, spreadsheets, preparation
of presentations, work with files and Internet are discussed.

In secondary schools and gymnasiums informatics is a mandatory subject. In addition
to deeper investigation of already taught themes also databases and preparation of web
pages are added. In last years there is also the possibility to teach separate subject “pro-
gramming” which is chosen by specialised schools and gymnasiums. Secondary school

Baltic Olympiads in Informatics: Challenges for Training Together 119

standard is closely integrated with the European Computer Dricing License (ECDL) and
successful passing of school course gives possibility to obtain also the ECDL certificate.

Olympiads in informatics in Latvia are organised since 1986 and since 1988 they are
supported and conducted by the Ministry of Education and Science. During the last few
years, the national olympiad is organised in two groups (grades 8–10 and 11–12). There
are three rounds: optional school round, regional round (approx. 100 contestants in each
group) and final round (40–45 contestants in each group). After the final round there is a
special selection round for participation in the BOI where the best 20 from both groups
compete for a place in the BOI team – the best of the selection round are included in the
team. The best four according to the BOI results are included in the IOI team. Latvia has
participated in the IOI since 1992. It is one of the three co-founders of the BOI.

3.5. Lithuania

The Lithuanian school education mainly consists of three stages: elementary (grades
1–4), basic or lower secondary (grades 5–10) and upper secondary (grades 11–12). Full-
time education is compulsory for all children from the age 6 or 7 to 16.

The teaching of informatics has a long tradition (Dagienė and Skūpienė, 2007) in
Lithuanian schools; a rich experience in the field has been accumulated. The education
programme of lower secondary schools, starting with the fifth grade, includes a separate
course on IT, a part of which will be integrated with other subjects in future. A total of
68 hours in grades 5–6 are devoted to a course on IT. Thirty-four compulsory hours and
68 integrated hours for IT are suggested in the course designated for grades 7–8.

A course on IT in grades 9–10 is aimed at summarising and systematising students’
knowledge as well as at purposeful usage of their skills, drawing attention to the right
application of the technologies and their legitimacy. For those who wish to grasp the
principles of computer work and its management, an optional module on algorithms shall
be proposed (at the moment it is included in a compulsory IT course). For the course on
IT in grades 9–10, 34 obligatory hours, 17 optional hours and 17 integrated hours are
recommended.

An IT course for upper secondary grades 10–12 is being essentially revised. Several
optional modules mostly oriented to the requirements for study courses in higher educa-
tional institutions are being developed. The content of IT is directed towards the trends
of information technology usage and training in this field in other European countries.
Developing algorithms and programming is one of the optional modules.

Lithuania was among the three Baltic countries to initiate the first BOI. The BOI
team is selected among the 30 senior division finalists of the national competition. The
main criteria are the scores of the finals, former achievements (BOI, IOI medals) and the
age. As students of the three last grades (10 to 12) participate in the senior division, the
students from younger grades have priority against older students if their scores in the
finals are almost equal.

Only the participants of the BOI compete for the right to join the IOI team. In rare
cases it happens that there is no fair way to choose exactly six contestants to the BOI. In

120 T. Poranen et al.

that case the extra contestants solve the BOI tasks in Lithuania at the same time as the
BOI contestants thus taking part in competition to join the IOI team. IOI team is selected
on the basis of the BOI results and (as they might also be approximately equal) taking
into account former achievements, scores of national finals and the age.

The time gap between the national finals and the BOI typically is very small (some-
times less than a week) so the competitors have no training camps for the BOI. There is
only one week-long training camp in summer before the IOI. Taking part in the BOI is
highly important for the IOI contestants. The students know how to compete at home or
in the training camp, but when they come to an international event, they have to adjust
themselves mentally, sometimes failing to do so because of psychological reasons rather
than because of difficult tasks, especially if the IOI is in a distant country. Adjustment
process is not always easy, and the BOI with small and cosy community, but at the same
time international atmosphere serves great for that purpose.

3.6. Norway

In Norway, pupils enter school the year they turn 6 (after a voluntary one-year preschool).
Comprehensive school is divided into a lower level (grades 1 to 7) and an upper level
(grades 8 to 10). Afterwards, pupils may choose to enter either a four-year vocational
school or a three-year theoretical high school (for preparing for university studies in sci-
ence, economics or humanities). While high school is voluntary, almost everyone en-
ters one of the two types. Unfortunately, informatics is an underrepresented subject. In
comprehensive school, one gets superficial introduction to the basic usage of computers
through other courses; there is no course dedicated to computers. However, a new course
entitled “Technology and design” has recently been introduced to upper-level compre-
hensive school, and this may offer new opportunities for exposing pupils to informatics.
The theoretical high school has a mandatory course in “information management” which
mostly consists of learning how to use Microsoft Office. Some high schools offer more
advanced courses that include lightweight database usage with Microsoft Access and pos-
sibly macros/scripting with Visual Basic for Applications. However, this does not touch
upon any theoretical aspects of computing.

The Norwegian Olympiad in Informatics (NIO) started in 2000/2001. It is formally
hosted by the Norwegian University of Science and Technology (NTNU), but is run by a
practically independent group of volunteers consisting mostly of students who are former
IOI contestants. Due to the small number of people organising the NIO, difficulties with
acquiring funding, and the lack of informatics education, there are problems reaching out
to the high school pupils. Therefore, the number of participants has always been very low
– typically between five and fifteen. Recently, the university has become more willing to
sponsor NIO, so that the attendance is expected to increase.

There is only one qualification round. Four tasks of varying difficulty (one of them is
very simple and one is at least at the BOI/IOI level) are published on web page, and are
available there for a period of around three months, during which anyone who is interested
may solve the tasks. They then submit solutions consisting of source code as well as code

Baltic Olympiads in Informatics: Challenges for Training Together 121

documentation, algorithm descriptions and proofs of correctness. Points are awarded for
each of these categories. Up to the 30 best participants are invited to the onsite finals at
NTNU. Due to the low number of contestants, there is no need to use the BOI as a second
elimination round. So, the four best contestants from the finals are invited to both the
BOI and the IOI. The team that is sent to the BOI is normally a subset of the IOI team –
regrettably, the BOI often collides with the high school spring exams, causing some of the
pupils to decline to participate. There is no formal training programme (again due to the
limited capacity of the organisers), but the participants are urged to solve selected tasks
from earlier BOIs and IOIs, and to participate in a week-long national computer science
camp called CyberCamp (there is significant overlap between the NIO and CyberCamp,
both on the participating and the organising side).

3.7. Poland

Children in Poland start their education at the age of 6 with a one-year pre-school course,
which is followed by six years of primary school, three years of a gymnasium and 3 or
4 years of a secondary school. Education of, so called, informatics starts in the 4th grade
and continues in the gymnasium and the secondary school. However, children rather learn
how to use information technology and software tools. Real informatics, including pro-
gramming, is taught in some secondary schools. As a result, most of the contestants of
the Polish Olympiad in Informatics (POI) are autodidacts. On the other hand, a few lead-
ing secondary schools have very strong representation in the POI every year – all thanks
to active and competent teachers of informatics. Many efforts to improve education of
informatics in Poland focus on training of teachers.

The POI (Diks et al., 2007) also tries to influence and improve the education of in-
formatics in Poland. Obviously, the human resources to work directly with all the pupils
or teachers are not sufficient. The educational activities are twofold. Firstly, to provide
various educational materials: handbooks, task sets, open contest servers, etc. Secondly,
to train as many top contestants and their teachers as possible. The biggest such event is
a summer training camp for teachers of informatics and POI finalists (excluding last-year
pupils, but including the Polish IOI team). Training of the IOI team includes also two re-
gional international contests: the BOI and the Central European Olympiad in Informatics
(CEOI).

Qualification of the POI contestants for all the international contests (IOI, BOI and
CEOI) is based on the results of the final stage of the POI. When choosing the BOI team,
two goals are combined: training of the IOI team and training of promising future top
contestants. Therefore, the Polish BOI team consists of top six contestants, excluding
the last-year pupils. The BOI results are not used to qualify to the IOI team. Hence, the
atmosphere during the contest is less stressful and more friendly and joyful. It seems that
the BOI is the most amicable and least formal among all the international competitions
in which Poland participates.

122 T. Poranen et al.

3.8. Sweden

Sweden has nine years of compulsory school, followed by three years of secondary school
(gymnasium). In the compulsory school, informatics is integrated in other subjects, but in
secondary school it is taught as a separate subject (30 minutes/week; not mandatory but
always offered), with the focus being on using typical office software and the Internet.
Many secondary schools offer programming as an optional subject. These courses exist
on three levels (up to 2 hours/week) and typically include the fundamentals of a program-
ming language, basic algorithms and special directions such as web programming.

The national programming olympiad has been organised since 1990, with the number
of participants increasing to around 300 in the end of the 90s but decreasing to around
120 in the mid-00s. Also the top layer was significantly narrowed, probably reflecting the
end of the generation growing up with computers that one had to program to do anything
interesting. In the last years, the number of participants has increased again to around 200.

The qualification round is organised at those secondary schools that have interested
teachers (currently around 60 schools). During the last three years, students from other
schools have had the possibility to qualify through an online contest with a separate set
of tasks. However, a major problem is to reach interested students that are not enrolled
in programming courses at school. The national final with 30–40 participants is also held
at the schools. The tasks are significantly easier than at the international level, and only
one or two usually require knowledge of non-trivial algorithms. Although the dominating
languages are C++ and Java, any language is allowed and there have been finalists writing
in, e.g., Visual Basic, Python, Perl, Ruby and Haskell.

Sweden has never organised any training camp, and therefore the BOI serves an im-
portant purpose: it is usually the first time the students meet other persons with similar
capabilities, and it is also the spark that ignites their interest for algorithms and motivates
them to practice for the IOI. Nevertheless, the team for the IOI is selected already at the
national competition; the two extra students in the BOI are selected among the finalists
that are not at their last year.

4. Organisation of a BOI Contest

4.1. Contest Organisation, Schedule and Other Activities

The typical schedule of the BOI is a bit compressed compared to the IOI. The arrival of
teams, opening ceremony and practice session are all scheduled to the first day. Thanks
to the regional nature of the event, the travel distances are relatively short and most teams
manage to arrive within the planned half-day slot. The combined arrival and opening day
is immediately followed by two competition days with some leisure activities (sports,
picnic, zoo, etc.) scheduled to fit between the competition rounds and jury meetings. The
fourth day is a relaxing one (for the guests, at least) with an excursion, closing ceremony
and a party. The last day is scheduled for departure.

Baltic Olympiads in Informatics: Challenges for Training Together 123

Hosts may choose to extend the BOI with an additional excursion day. On the other
hand, sometimes even the half-day excursion is skipped and then the awarding and clos-
ing ceremony is scheduled already before lunchtime. This way the teams can catch an
overnight trip. Having a party in the evening of the closing day is more common, though.

BOI does not have any official regulations or syllabus for the tasks: all related reg-
ulations are agreed together with the leaders. In the IOI, a discussion to get an official
syllabus has been started (Verhoeff et al., 2006).

Grading systems are mainly developed and maintained by the host country, although
there have been some exceptions. During BOI 2000 in Sweden, Polish grading system
was used, and in BOI 2005 in Finland, Germany’s grading system was used. Also, Lithua-
nia has used Korea’s (host of IOI 2002) grading system.

4.2. Task Selection Process

Task selection process used in the BOI is quite informal when compared to more formal
selection process used in the IOI (Burton and Hiron, 2008; Diks et al., 2008). Tasks are
discussed in advance using e-mail. Typically, the call for tasks is sent out in February.
About one month is given to prepare the task proposals. It is expected that each country
comes up with one proposal; however, it happens that not every country prepares its
proposal, while the organising country sometimes has several proposals. This is natural as
the organisers usually have a strong scientific team to manage the contest and to work on
the tasks. The proposals come in draft version (i.e., the wording may need improvement,
constraints need to be fixed) together with some kind of solution suggestion.

The tasks are discussed on-line for two or three weeks. Team leaders ask and discuss
various task related questions, point out if they had similar tasks in their national contests
or training. In case of similar tasks the discussion goes on to what degree the tasks and
solution are similar, can the task still be used in the contest or may be just as warm-up
task. Moreover, the assignment of tasks to the two competition days needs to be deter-
mined. Typically, team leaders take into account the following principles: (1) the second
day should be slightly harder than the first day, and solutions might be slightly longer; (2)
similar tasks should not appear on the same day. After some discussion, votes are cast and
the task sets are chosen. Then the host scientific committee works on the final versions.

The situation is different with test data. Some organisers prefer to prepare the tests
by themselves; some expect the task authors to work on the tests. After task descriptions
are finalised, the team leaders translate them in advance before BOI. Just as in the IOI,
there are six tasks to solve during two competition days in the BOI. The tasks in the BOI
also resemble the tasks in the IOI, although tasks other than traditional input-output tasks
have rarely been seen in the BOI.

During BOI the team leaders discuss the tasks once again before presenting final
versions of translations. Often the discussions are very short and last less than half an
hour. Sometimes ambiguities are discovered, the wording needs to be changed and it
takes longer till the final English versions and final translations are prepared.

124 T. Poranen et al.

4.3. Task Analysis of BOI Contests

We have analysed all the BOI tasks in the years 1995–2008 and classified them into five
categories:

• Combinatorial search tasks where it is possible to go through all reasonable solu-
tions (possibly with some optimisations) and choose the optimal solution.

• Dynamic programming tasks where the problem can be divided into independent
sub-problems.

• Graph theory tasks where the problem can be transformed into a graph and solved
by a graph algorithm.

• Mathematical tasks which include the tasks concerning arithmetic, geometry, num-
ber theory and probability.

• Ad hoc (creative, inventive) tasks which require an original nontraditional solution
method or algorithm, and cannot be classified into the above categories.

Of course, it is not always clear which of these categories is the most suitable for a
given task. For instance, some tasks can be seen both as combinatorial search tasks and
as graph theory tasks. Similarly, almost all tasks include some ad hoc elements. However,
this classification, though unavoidably incomplete, sheds some light on the distribution
of the problem types in the history of the BOI.

Table 2 shows the number of tasks in different categories in the years 1995–2008.
We have divided the years into three groups (1995–1999, 2000–2004 and 2005–2008) to
examine long-range changes in the problem types.

In the years 1995–1999, many tasks falling into combinatorial search and ad hoc cat-
egories demanded careful implementation of straightforward algorithms. For example,
one had to simulate an algorithm given in the task definition, evaluate an arithmetic ex-
pression or sort a table according to specific criteria.

In the years 2000–2008, graph theory and dynamic programming tasks dominated and
most of the tasks required special knowledge of algorithms. This is an important change
in the history of the BOI: in the first years, one could achieve full points from some tasks
with basic programming skills, which is nowadays seldom the case.

Table 2

Task classification of the BOI tasks 1995–2008

1995–1999 2000–2004 2005–2008 Total

Combinatorial search 9 3 2 14

Dynamic programming 3 6 9 18

Graph theory 5 9 5 19

Mathematics 3 5 2 10

Ad hoc 10 7 6 23

Baltic Olympiads in Informatics: Challenges for Training Together 125

4.4. Competition Results at BOIs and of BOI Countries

Over the years, the BOI competition has developed. The very first Baltic Olympiads had
the goal to help the teams of the three Baltic countries to prepare for the IOI as well as to
aid in selecting IOI teams. Therefore the organisers of the first BOIs wanted to keep the
high value of the medals and the medals were awarded based on the contestants’ scores,
not taking into account the number of the participants. The contestants strived to beat at
least two members of their team (which would be a ticket to IOI) rather than get a medal.
Since the BOI 2000, the IOI conventions for distributing medals (half of the contestants
are awarded) were adopted. Since BOI 2001 in Poland, also the maximum score (100
per task, 600 overall) is in accordance with IOI. In all BOI contests, there have been six
tasks (three tasks in both days). In the competitions from 1995 to 1999, the maximum
score was 200. Maximum score per day was 100, and the maximum score for a single
task varied between 20 and 50 according to team leaders’ estimations on how hard it is
to solve the task. In the BOI 2000, the maximum score was 300.

Table 3 lists the BOI competitions from 1995 to 2008, giving the number of partic-
ipating countries and contestants, and showing how many and at what score boundaries
medals were awarded. When considering contests starting from 2001, the gold medal
limit has varied between 315 and 495, and the bronze medal limit has varied between 132
and 255.

As complementary information, Table 4 shows the performance of the BOI countries
at the BOIs and, in comparison, at the IOIs. The most successful BOI countries so far
have been Poland with 20, Lithuania with 6 and Estonia and Finland with 4 gold medals.
Notice also that the USA team got two silver medals in 1999 and the Israel team got one

Table 3

The BOI contests 1995–2008

Year Location Countries Contestants Medals (G/S/B) Medal Boundaries (G/S/B)

2008 Gdynia, Poland 10 59 4/9/13 364/205/134

2007 Güstrow, Germany 9 55 4/10/14 315/228/134

2006 Heinola, Finland 9 53 4/8/14 440/365/255

2005 Pasvalys, Lithuania 8 46 4/7/12 495/400/215

2004 Ventspils, Latvia 8 48 5/8/11 362/267/132

2003 Tartu, Estonia 7 48 5/9/15 435/247/145

2002 Vilnius, Lithuania 8 52 4/8/14 400/241/140

2001 Sopot, Poland 8 49 4/8/12 420/250/190

2000 Haninge, Sweden 7 38 2/6/8 264/222/132

1999 Riga, Latvia 7 44 1/3/4 199/157/144

1998 Tartu, Estonia 5 40 2/2/5 152/129/101

1997 Vilnius, Lithuania 4 36 1/2/3 152/127/104

1996 Riga, Latvia 3 20 1/1/1 171/144/114

1995 Tartu, Estonia 3 28 1/3/8 184/154/119

126 T. Poranen et al.

Table 4

Statistics on the BOI countries and medal distributions

Country Joined BOI Joined IOI
Students in 1st
national round

2008

BOI medals
(G/S/B)

IOI medals
(G/S/B)

Denmark 2000 1992 Unknown 0/0/5 3/5/13

Estonia 1995 1992 53 4/6/21 5/15/21

Finland 1998 1992 33 4/8/17 5/17/21

Germany 2001 1989 1106 3/13/10 10/22/26

Latvia 1995 1992 200 2/13/26 4/16/28

Lithuania 1995 1992 3307 6/10/21 2/18/29

Norway 2003 20013 0 0/1/1 0/1/3

Poland 1997 1989 949 20/24/13 26/22/21

Sweden 1998 1990 160 2/4/13 11/17/17

3 Norway also attended in 1990 on a private initiative by a professor.

silver and one bronze medal in 2005. When considering IOI competitions, Poland has
received 26, Germany 10 and Estonia and Finland 5 gold medals.

5. Analysis of Tasks and the Solutions of BOI 2007

In order to recognise what kind of basic algorithms and problem solving techniques are
required in BOI contests, we analysed tasks and solution submissions of BOI 2007.

5.1. Tasks

In the BOI 2007 the following tasks (Battré, 2007) were used: Escape, Sorting and Sound
on Day1, and Fence, Points and Sequence on Day 2. The maximum score for one task
was 100.

In the task Escape, a group of prisoners is trying to escape from a prison. The only
way out goes through a canyon. In the canyon there are soldiers standing on fixed posi-
tions. The range of view of soldiers is also fixed. The contestant should write a program
that determines whether prisoners can pass the canyon unnoticed. If this is not possible,
then the contestant should determine the minimum number of soldiers that have to be
eliminated to pass the canyon safely. Partial scores can be achieved with a standard tree
traversal algorithm (depth-first-search or breadth-first-search) and to get full points, the
contestant should apply a maximum flow algorithm to find a minimum cut of the corre-
sponding graph.

Task Sorting required the contestant to sort a list of players and their scores in de-
creasing order, using only an operation which moves a player from position i to position j

without changing the relative order of the other players. The cost of such an operation is
i+j. The contestant should find a sequence of sorting moves that minimise the total cost.

Baltic Olympiads in Informatics: Challenges for Training Together 127

The optimal solution requires a dynamic programming algorithm; partial scores can be
achieved with a brute force algorithm.

In Sound the contestant should analyse a number sequence representing air pressure
to find the maximum length of a subsequence where the difference between the lowest
and the highest value is less than or equal to a given parameter. Algorithms based on
scanning the sequence more than once will give only partial points; the optimal solution
requires scanning the input sequence only once and maintaining suffixes and prefixes of
some subsequences. The method can be classified as a dynamic programming approach
since the contestant should store values of certain partial solutions and use them to get an
overall solution.

The name of the fourth task was Fence. The input is a list of rectangular areas (build-
ings of an estate) on a plane. One of the buildings is the main mansion of the estate. The
goal of the task is to design an algorithm that finds minimum length of a fence for the
main mansion such that the fence does not overlap any other rectangles. The problem can
be modelled as a graph and can be solved using Dijkstra’s algorithm for shortest paths.

The fifth task, Points, was a combinatorial problem where the contestant should find
out how many possible ways there are to connect the given 3 ∗ N points on a grid
to form a polygon. The number of possible configurations should be counted modulo
1,000,000,000. To solve the problem the contestant should invent a correct recurrence
equation.

In the last task, Sequence, input is a number sequence which should be manipulated
using only the operation reduce (i) which replaces two consecutive elements i and i + 1
of the sequence with a single element which is maximum of these two elements. The cost
of the operation is the maximum of these elements. The goal is to reduce the length of
the sequence to 1 with the minimal total cost. Basic dynamic programming and greedy
algorithms yield only partial score; to get full score, a greedy algorithm with an auxiliary
stack implementation is needed.

5.2. Solutions

55 contestants participated in the BOI 2007. 39 of them used C++, 10 used C and 5 used
Pascal in their solutions. One contestant used both C and C++. On the first day 464 and
on the second day 335 submissions to the grading system were counted.

Table 5 lists, for each task, its type and solution method, statistical data on the num-
ber of submissions, scoring and length of the solutions. Second row lists the number of
contestants who submitted a solution for the task. Task Sorting got solutions from only
28 contestants and the other tasks received 35–51 solutions, so Sorting can be seen as the
hardest task of the contest. Tasks Sound and Sequence got 51 solutions each. The average
score for Sorting was only 4.73 points, and for tasks Sound and Sequence contestants got
on average 51.8 and 50.91 points, respectively. Average total score was 153.47 (bronze
medal limit was 134).

The fourth row of Table 5 contains the average number of submissions for each task
of those contestants who submitted at least one solution for the task. In the parenthesis is

128 T. Poranen et al.

Table 5

Solution statistics of the BOI 07 contest

Task Escape Sorting Sound Fence Points Sequence

Task and
solution

keywords

Graph,
dfs-search
maximum

flow

Number
sequence,
dynamic

programming

Number
sequence,
dynamic

programming

Graph,
shortest
paths

Mathematical,
combinatorics

Mathematical,
dynamic pro-
gramming,

greedy

Solutions 44 28 51 40 35 51

Ave. score 22.58 4.73 51.8 4.09 19.36 50.91

Ave. submission 2.05(6) 1.09(5) 2.35(7) 1.87(9) 1.62(7) 2.36(15)

Ave. lines 138.75 99.5 75.29 150.78 195.37 60.86

Ave. words 346.7 267.39 208.59 478.05 1460.31 149.61

the maximal number of submissions from one contestant for the task. We noted that seven
submissions were done for the wrong task, and six times a correct file was submitted after
the wrong submission, but in one case the last submission remained incorrect.

Rows five and six contain average number of code lines and average number of words
(counted using Unix wc-command). We took into account only the last submitted file.
Contestants scored on average most points from tasks Sound and Sequence and also the
length of the solutions for these two tasks were the shortest, on average 75.29 and 60.86
lines and 267.39 and 149.61 words, respectively. Longest solutions were submitted for
the task Points (average length 195.37 lines and 1460 words), although there was one
extreme case included: one contestant submitted a solution with 1074 lines and 32217
words and the other solutions were roughly ten times shorter. The contestant tried to
enumerate in code a high number of distinct solution cases for this task.

There were also very short solutions for some tasks. If the length of the solution was
less than ten lines, we noted that the algorithm usually gave only constant solutions (0 or
−1) to all test cases.

6. Discussion

This article provides insights into the history of the BOI and into the inner workings of
its competition. Although the event aims to be similar to the IOI, it is different in many
important aspects. The main difference, probably, is the co-operative task development
and selection process. This process ensures that the leaders of all participating delega-
tions are well acquainted with the tasks, so that they will be able to precisely understand
the results their contestants achieve in the competition. Thus, the BOI results provide a
sound foundation for selecting the IOI teams as well as for improving or adapting further
training activities.

It is subject to discussion whether the IOI task development and selection process
could be influenced by the BOI spirit. Success at the IOI is very important to many dele-
gations, so that it is necessary to keep tasks secret. Keeping tasks secret to contestants but

Baltic Olympiads in Informatics: Challenges for Training Together 129

opening them to team leaders would require a completely different organisation scheme
for the IOI – similar to that used for the IMO (International Mathematical Olympiad).
For a smaller number of countries whose delegation leaders trust each other not to com-
municate tasks to contestants in advance, the BOI model proves to be very successful in
organising a shared-load competition every year and integrating countries with different
levels of experience in contest organisation.

Our positive experiences in organising regional contests encourage us to recommend
similar practices for other countries in the IOI community.

References

Battré, D. (Ed.) (2007). BOI 2007 tasks and Solutions.
Available at http://www.boi2007.de/tasks/book.pdf

Blonskis, J. and Dagienė, V. (2006). Evolution of informatics exams and challenge for learning programming. In
Lecture Notes in Computer Science: Informatics Education – The Bridge Between Using and Understanding
computers: International Conference in Informatics in Secondary Schools – Evolution and Perspectives,
Vol. 4226, pp. 220–229.

Bulotaitė, J., Diks, K., Opmanis, M. and Prank, R. (1997). Baltic Olympiads in Informatics. Institute of Mathe-
matics and Informatics, Vilnius.

Burton, B.A. and Hiron, M. (2008). Creating informatics Olympiad tasks: Exploring the black art. Olympiads
in Informatics, 2, 16–36.

Dagiene, V. and Skūpienė, J. (2004). Learning by competitions: Olympiads in informatics as a tool for train-
ing high grade skills in programming. In T. Boyle, P. Oriogun and A. Pakstas (Eds.), Proceedings of 2nd
International Conference Information Technology: Research and Education, London, pp. 79–83.

Dagiene, V. and Skūpienė, J. (2007). Contests in programming: quarter century of Lithuanian experience.
Olympiads in Informatics, 1, 37–49.

Diks, K., Kubica, M. and Stencel, K. (2007). Polish olympiads in informatics – 14 years of experience.
Olympiads in Informatics, 1, 50–56.

Diks, K., Kubica, M., Radoszewski, J. and Stencel, K. (2008). A proposal for a task preparation process.
Olympiads in Informatics, 2, 64–74.

IMO. International Mathematical Olympiad (2009). http://www.imo-official.org/
Nurmi, O. (2008). Personal communication.
Pohl, W. (2006). Computer science competitions for secondary school students: approaches to classification.

Informatics in Education, 5(1), 125–132.
Pohl, W. (2007). Computer science contests in Germany. Olympiad in Informatics, 1, 141–148.
Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A proposal for an IOI Syllabus. Teaching Mathe-

matics and Computation, 4(1), 193–216.
Verhoeff, T., (1997). The role of competitions in education, future world: educating for the 21st century. In A

Conference and Exhibition at IOI’97.
Weeger, M. (2007). Synopse zum Informatikunterricht in Deutschland. Bachelor Thesis, TU Dres-

den. Available at http://dil.inf.tu dresden.de/schule/Weeger/output.inf.tu-
dresden.de/homepages/index9c3a.html

T. Poranen is a university lecturer working at the University of Tam-
pere, Department of Computer Sciences. He received his PhD degree
in 2004 and since then he has been teaching software project related
courses. His research interests vary from topological graph theory to
software development. He was a deputy team leader of Finland’s BOI
2007, IOI 2007 and IOI 2008 delegations.

130 T. Poranen et al.

V. Dagienė is professor working at the Institute of Mathematics and In-
formatics and Vilnius University. She has published over 100 scientific
papers and many methodical works, written more than 60 textbooks
in informatics and IT for secondary education. She has been chair of
Lithuanian Olympiads in Informatics for many years, established the
International Contests on Informatics and Computer Fluency “Beaver”.

She is vice-chair of the Technical Committee of IFIP for Education (TC3), member of the
European Logo Scientific Committee, an elected member of the IOI International Com-
mittee (2006-2009). She is the Editor-in-Chief of the international journal “Informatics
in Education”.

Å. Eldhuset is about to complete his master’s degree in computer sci-
ence at the Norwegian University of Science and Technology, where
he also is employed as a teaching assistant. He gives lectures in al-
gorithms, programming and discrete mathematics. He won a bronze
medal in IOI 2003 and joined the Norwegian Olympiad in Informat-
ics as a co-organiser upon entering the university; he was deputy team

leader and team leader for Norway’s IOI delegations in 2005 and 2006, respectively.

H. Hyyrö received PhD in computer science in 2003 and is currently
an assistant professor at the Department of Computer Sciences, Uni-
versity of Tampere, Finland. He has been responsible for organizing the
algorithmic (i.e., programming) part of the Finnish national informatics
competition for high-school students in the years 2007 - 2009. During
this time he has also been the leader of Finland’s IOI delegations.

M. Kubica, PhD in computer science, assistant professor at Institute
of Informatics, Faculty of Mathematics, Informatics and Mechanics,
Warsaw University, scientific secretary of Polish Olympiad in Infor-
matics, IOI-ISC member and former chairman of Scientific Commit-
tees of BOI 2008 in Gdynia, IOI 2005 in Nowy Sacz, CEOI 2004 in
Rzeszow and BOI 2001 in Sopot, Poland. His research interests focus

on combinatorial and text algorithms.

A. Laaksonen studies computer science at the University of Helsinki.
He has been a contestant in BOI and IOI several times: now he takes
part in training Finnish teams for these competitions.

M. Opmanis is researcher at the Institute of Mathematics and Com-
puter Science of University of Latvia. He is deputy team leader of Lat-
vian IOI team since 1996 and was team leader of Latvian team at Baltic
olympiads in informatics since 1995 till 2007 and on 2009. M.Opmanis
was head of jury of Baltic Olympiad in Informatics at BOI 1996, 1999
and 2004.

Baltic Olympiads in Informatics: Challenges for Training Together 131

W. Pohl was educated in Computer Science, and received a PhD in
1997 from the University of Essen, Germany. For many years, he inves-
tigated the use of artificial intelligence techniques for the improvement
of interaction between humans and machines. In 1999, he changed po-
sition and perspective by becoming executive director of the German
Federal Contest in Computer Science. Among his responsibilities is to

coach the German IOI team and lead the German IOI delegation. Now, his interest lies in
improving computer science contests, establishing new ones, and work on diverse other
projects, everything in order to popularise computer science among youth. Hence, he co-
ordinates the German participation in the international contest “Bebras”. From 2003 to
2006, he was elected member of the IOI International Committee, and briefly held the
position of executive director of IOI in 2006.

J. Skūpienė is a younger research fellow in the Informatics Methodol-
ogy Department in the Institute of Mathematics and Informatics. She
has published about 10 scientific papers. She is a member of the Sci-
entific Committee of National Olympiads in Informatics since 1994
and a team leader in IOI since 1996. For a few years she was director
of studies of Young Programmers’ School, since 2004 she has been a

coordinator of informatics section in the National Academy of Students. She is author/co-
author of four books on algorithms and algorithmic problems.

P. Söderhjelm holds a PhD in theoretical chemistry concerning how to
calculate accurate interaction energies in biological systems. He has a
strong interest in problem solving, algorithms, and school issues, and
has been involved in the Swedish national programming olympiad since
1999 after having participated twice in IOI. He was the coordinator of
BOI 2009.

A. Truu is a software architect with GuardTime AS. He has been in-
volved in programming competitions since 1988, first as a contestant
and later as a member of the jury of the Estonian Olympiad in Infor-
matics as well as a team leader to the Baltic, Central European and
International olympiads and the coach of Tartu University’s team to the
ACM ICPC.

Olympiads in Informatics, 2009, Vol. 3, 132–143 132
© 2009 Institute of Mathematics and Informatics, Vilnius

Improving the Automatic Evaluation of Problem
Solutions in Programming Contests

Pedro RIBEIRO
Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre, 1021/1055, 4169-007 Porto, Portugal
e-mail: pribeiro@dcc.fc.up.pt

Pedro GUERREIRO
Universidade do Algarve
8005-139 Faro, Portugal
e-mail: pjguerreiro@ualg.pt

Abstract. Automatically evaluating source program files is a crucial part of programming contests.
The evaluation aims at discriminating programs according to their correctness and efficiency. Given
the performance of today’s computers, in order to be able to distinguish the complexity of solutions,
it is often necessary to use very large data sets. This is awkward, because it is against the nature
of the stated problem and puts an unintended burden on the input operations. Besides, by adver-
tizing a limit for the size of the input, the problem description gives away information with which
the contestants may guess the algorithmic complexity that their solutions must attain. It would be
more realistic to omit that information and let the contestants discover the limits by analyzing the
problem, using a scientific approach. The complexity of the solution can then be estimated auto-
matically by measuring the execution time of the function that solves the problem in incremental
test cases, and plotting it against the size of the input. By calling the function multiple times and
taking the overall time, we may use only data files the size of which is related to the nature of the
problem being solved.

Key words: programming contests, computer science education, automatic evaluation, asymptotic
complexity, IOI, International Olympiads in Informatics.

1. Introduction

Serious programming contests, such as the International Olympiads in Informatics, share
the need for an efficient and fair way of evaluating and distinguishing the solutions pro-
posed by the contestants. Nowadays, this is typically done using an automatic method by
which the submitted code is compiled and run against a set of pre-defined test cases. This
black-box approach is very practical but has several drawbacks, some of which have been
identified in previous work (Cormack, 2006; Forisek, 2006; Verhoeff, 2006), and others
that are discussed in this paper. In any case, for the participants, the main challenge of
programming contests is to develop correct and efficient algorithms for the problems that

Improving the Automatic Evaluation of Problem Solutions in Programming Contests 133

are presented, and, therefore, the evaluation procedure must be capable of reliably ascer-

taining correctness and gauging efficiency.

Using the black-box approach, a program will be deemed correct, or, more appropri-

ately, a program will be accepted, if it passes all the tests. If these tests are also set up to

be sensitive to efficiency, it may happen that a correct program, i.e., a program that given

unlimited time would computed correct outputs for the given inputs, will not be accepted.

The ACM ICPC contest takes the crude, yet practical, all or nothing approach: a pro-

gram is accepted if and only if it passes all the tests and the tests are designed to exclude

solutions with a complexity beyond a certain degree. The IOI, on the other hand, sets up

its tests so that correct solutions on high complexity (and low efficiency) may get some

points, but necessarily less points than more efficient solutions.

In the former case, a certain level of complexity is required; in the latter, complexity

has to be discriminated. In both cases, some tweaking with the tests is necessary, using

official solutions provided by the judges. Typically, all test cases must run within a certain

amount of time, and that amount of time is known to contestants. Thus, the toughest

inputs must be designed so that the judge’s solution runs in, say, half the allotted time.

The setup gets more elaborate if different languages are allowed in the competition, in

order to accommodate the intrinsic computational overhead of each of them. For example,

a perfectly fine solution written in Prolog might not measure up in efficiency with an

algorithmically equivalent one written in C. Sadly, this extra setup often deters organizers

from adding new languages to the set of accepted languages in a contest.

Therefore, we should look for more flexible ways of distinguishing the complexity

of solutions. Additionally, we should consider the possibility of omitting from the prob-

lem description the information about the maximum size of the input data, in those cases

where this limit is not inherent to the problem. Indeed, in most cases, the limit is rather

arbitrarily chosen, only so that the available judge solution passes within a margin of

safety. Besides, given the speed of modern computers, those limits sometimes are unrea-

sonably large. This disfigures the problem statement, discloses the complexity required

for the solution and overemphasizes the runtime importance of reading the input data.

In this paper, we report on a technique we are experimenting, which consists of hav-

ing the automatic judge run the submitted program on a set of test cases with linearly

increasing size and plot the execution time versus the size of the input. The test cases

are of a moderate size, and are run many times, to overcome the lack of accuracy of the

system clock.

This paper is organized as follows. In Section 2, we give a detailed description of

the current kind automatic evaluation used in programming contest, pointing what we

consider to be the main drawbacks. In Section 3, we propose several ideas that could

lead to an improved evaluation of submitted code, along the lines discussed above. In

Section 4, we present some preliminary experimental results that seem to confirm that

the ideas have some merit. A conclusion follows, in Section 5.

134 P. Ribeiro, P. Guerreiro

2. Current Automatic Evaluation

At present almost all programming contests share a very strict model of automatic evalu-
ation. We will focus on the IOI, but the other major programming contests follow a very
similar line of thought and our considerations are valid for them.

Current IOI contest regulations (IOI’2008 Contest Rules) allow three kinds of tasks:

• Batch tasks: the most traditional, where the program must read data from standard
input, process it and then produce a result on the standard output within some
time and memory constraints – contestants must submit the source code of the
standalone program;

• Reactive Tasks: the program must interact with a provided library and all input
output is made within the context of the library, in a way that the next input depends
on the previous output – contestants must submit the source code of the program,
to be linked with the library;

• Output Only Tasks: contestants are given a set of input files for the problem and
must only deliver the set of corresponding output files – no program code is sub-
mitted. In theory, contestants could compute the output files by hand, but typically
they must write programs to compute them. These programs, however, need only
to handle the given files, may adjust to them, and have no time limits other than the
duration of the contest, and no memory limits, other than the memory available in
the contest computer.

Looking at Table 1, we can observe that in the past five editions of the International
Olympiads of Informatics, batch tasks prevail largely, allotting for more than 80% of the
tasks. The extreme case was IOI 2008, where all tasks were of this type. There are many
reasons for this, the main one being that it appears to be difficult to design good problems
of other types, but what remains is that batch tasks do constitute the core of IOI. In other
programming contests, such as the ACM ICPC, batch tasks are the only used form.

Having acknowledged this state of affairs, we will now focus our attention on batch
tasks. With these, in order to score automatically the programs submitted by the con-
testants, a set of pre-determined input files is prepared beforehand. These input files are
aggregated in several test groups (some of which may contain a single file) and a pre-
determined number of points are allocated to each test group. The submitted code is then

Table 1

Types of tasks in the last five IOIs

IOI Edition Batch Tasks Reactive Tasks Output Only Tasks

2008 6 0 0

2007 5 1 0

2006 4 0 2

2005 5 1 0

2004 5 0 1

Improving the Automatic Evaluation of Problem Solutions in Programming Contests 135

compiled and run against each of those test groups, receiving for each one the allocated
number of points when it solves it correctly, that is, when it produces a correct output
within the specified time and memory constraints for all its constituent input files. The
final score is just the sum of points obtained in each test group.

Therefore, the input files, their grouping and the assigned number of points are crucial
to the results of the contest. They must be designed and then created very carefully. When
doing so, we must take into consideration two main aspects:

• Correctness: the program should provide a correct answer in the sense that it
should solve all instances of the problem;

• Efficiency: the program should be evaluated having in account its asymptotic time
and memory complexity.

Evaluating the correction is tricky and impossible to do with perfection in this kind of
black-box testing. As Dijkstra famously said “Program testing can be a very effective way
to show the presence of bugs, but it is hopelessly inadequate for showing their absence”
(Dijkstra, 1972). Indeed, we cannot check all possible ways of making an error, and even
when we do find that the program is not able to solve a specific test case, the same score
(zero) is awarded whether it is a mere implementation bug or a fundamental reasoning
error in the algorithm itself. And how can we really compare two different incorrect im-
plementations? How should we distinguish them in terms of score? These shortcomings
regarding program correctness have already been analyzed by other authors (Cormack,
2006; Forisek, 2006; Verhoeff, 2006).

Regarding efficiency, typically the judges create a set of correct model solutions of
different complexities and the tests are designed in such a way that the model solutions
achieve the preplanned number of points. A considerable degree of manual tuning regard-
ing the actual system used is normally needed and there is no guarantee that the submitted
programs will score as expected, even if the algorithm matches the required complexity.
In general, one cannot predict every possible approach and students always find surpris-
ing ways of solving the problem at hand. And when the submitted program goes in a
different direction than the ones that modeled the input, the number of points may not be
what the problem setter had in mind for that type of solution. For example, how can we
compare the efficiency of two programs that solve the exact same set of test groups if the
test groups of this set do not cover all the expected complexity range?

Another important factor is input-output. Besides constituting a distracting aspect by
itself (Vasiga et al., 2008), it may represent a considerable part of the execution time.
This fact complicates the evaluation of the complexity of algorithm used by looking at
the overall runtime only. In addition, the language and the type of input-output that is used
matters. For example, cin and cout in C++ are considerably slower than printf and scanf.

One other important issue is the constant increase in computer performance. When
this kind of automatic evaluation started, we were able to use relatively small and self-
contained limits for the inputs. These small limits would allow testing even linear time
complexities. This is however not true for today’s computers. In order to force small
asymptotic complexities one must use huge limits that detach the problems from reality.
Although realistic statements are nice, we are forced to have things like a sailing ship

136 P. Ribeiro, P. Guerreiro

with 100,000 masts (Problem Sails, IOI 2007), just so naïve solutions can be rejected.
More than that, the poor CPU clock resolution may make it unfeasible to distinguish
between small complexities like O(N) or O(NlogN). The minimum time limit ever
used was 0.3 seconds (Problem Training, IOI 2007). Constructing an input that would
pass with an O(N) algorithm, but not with O(NlogN) would need a really large N. To
separate between O(log N) and O(N) we would need an even larger N. But this would
mean that the program would probably spend even more time reading the input (linearly)
than on the actual solving phase. Besides, the value N would probably be too big to fit in
memory.

A final important point is that by advertizing in the problem description the maximum
size of the data used in the evaluation, we really give a big hint to the contestants. We
do avoid the need for dynamic memory allocation, and that is a good thing. However,
experienced contestants can more or less easily infer the expected time complexity of
the best algorithm for the problem from those limits. And they will immediately try to
just create a solution that matches that, without any other concerns. This is in a sense a
very different situation from the scientific way of approaching a problem in the spirit of
making our best possible effort, without knowing beforehand what that best is (at least
without thinking about the problem).

3. Proposed Improvements

As we have observed above, a great deal of effort is put on devising the test cases. Test
cases are typically divided in two families: one formed by small test cases (most of them
handcrafted) devised to test correction, and the other made up of increasingly larger test
cases, usually generated by other programs, that try to evaluate performance. We will
focus on ways to improve this second family of tests. Our proposal is to include one or
more of the following ideas, which we will then describe in more detail:

1. Developing a specific function (together with other auxiliary functions, if conve-
nient) as opposed to developing a full program.

2. Abstraction of input-output.
3. Repeat the same function call several times to increase the clock precision.
4. Do not give hints to contestant about the best expected asymptotic complexity.
5. Estimate asymptotic complexity by looking at time-spent behavior on several

tests.

For supporting the discussion of these ideas, we will use a toy problem: finding the
smallest difference between two numbers of a set of integers. Let’s call this problem
SmallDiff.

Our first proposal is that the task of the contestant in solving the problem might
be to develop a specific function rather than a complete program. Actually, this is al-
ready done in the TopCoder contests and also in introductory programming courses
(Ribeiro and Guerreiro, 2008). This allows the judges to have greater control on how
to manage the submitted code and creates the opportunity for new ways of testing which

Improving the Automatic Evaluation of Problem Solutions in Programming Contests 137

would be infeasible for full programs. In the context of the problem SmallDiff, in-
stead of presenting the traditional detailed input and output specifications, the problem
description would specify the signature of the function to be developed, for example
int FindSmallDiff(n,s) which would receive a set s of n integers and would
return the smallest difference found. This would not in any way make it more difficult
for the student to program the solution. In fact, it would do the opposite, by allowing
the contestants to concentrate on the core algorithm that solves the task and by minimiz-
ing the impact of some of the distractors described in (Vasiga et al., 2008). Indeed, in
pedagogical environments, students seem to be caught by these distractors, wasting their
effort on subsidiary issues, and then only addressing the true problem when there is not
enough time.

In particular, submitting functions instead of full programs would allow minimizing
the information processing details of input-output, thus accomplishing the input-output
abstraction that we propose. All languages would have a much more balanced and equal
performance in this field. Besides, we could now measure the time that the program spent
computing the solution, and not the time spent doing input and output. One could argue
that by giving the data already in memory to the program, the contestant does not have
to think about how to store it and what data structure to use, but we can always give
it on the most simplest of forms (a simple chunk of values), unprepared for efficient
processing, which would require the contestant to migrate the data to the desired data
structure. And we could even provide access to the data in a way to the similar traditional
one by providing functions that get the next integer, the next string or whatever other kind
of data, from the basic data structure that was used for the function argument. Thus, by
abstracting the data we minimize implementation details and language differences, and at
the same time we are able assess the core of the solution, without almost any input-output
overhead.

Another concept we advocate is that instead of having really large input sizes to test
efficiency, we could use smaller ones, whose size is compatible with the nature of the
problem. In reality, what deters one from doing that in the present situation is that the
clock resolution is too poor and small input sizes will lead to “instant” responses, all with
zero time spent and no way of distinguishing among them. If an arbitrary precision clock
was available, we could concentrate more in the quality of the test cases and not have
to resort to randomization techniques in order to produce huge tests that are virtually
impossible to verify manually. This can be done by calling several times the function that
solves the problem, with the same arguments or with different arguments of the same
size. It is true that an O(Nˆ4) algorithm will probably be instantaneous when we run
it twice with N = 10. But if we run it a few hundred times, what will it happen? We
gain the accuracy that we need precisely by running it multiple times! This is the same
technique that we might use to measure the thickness of a sheet of paper: if a stack of
100 sheets measures 5 cm, we conclude that the thickness of each sheet is 0.1 mm, even
if we do not have an instrument that reaches that accuracy. The main point is that since
we have the solution isolated in a function, we can call the function as many times as
we want and then just compute the average time spent inside each call. It is true that

138 P. Ribeiro, P. Guerreiro

one must be careful not to let memory persistence between successive function calls be
exploited by dishonest contestants in order to give quicker responses. This may be dealt
with, for example, by always using different equal-sized instances of the problem. In
the context of problem SmallDiff, we could call FindSmallDiff in the evaluation
script the required number of times, providing arguments that are hardwired in the script
or generated randomly, if the overhead of the randomizer is acceptable. Notwithstanding,
in other problems, there may be other opportunities for persistence, such as storing pre-
calculated values in static memory, and serious consideration has to be given to this issue.

Another idea that we propose is not to give hints to the contestants about the intended
program complexity on the problem description. Indeed, just by looking at the maximum
input size and allowed runtime, contestants may perceive whether there is a polynomial
solution to the problem. This must be one of the first techniques in which IOI competi-
tors are coached, in preparation for the competition. One can get very precise in these
matters, and really identify the specific complexity needed, for the problem at hand, for
example O(Nˆ2). This has a great impact on the problem solving aspect and the student
approaches the problem with a mindset different from the one he would bring, should he
have no idea of the targeted complexity. For example: what strategy should a contestant
adopt when he is given an optimization problem and he has no clues as to the size of
the input? If he did not know in advance whether there is a polynomial solution, would
he try to find one or settle with an exponential approach? In the real world, this is what
happens. We have open problems that we do now know how to solve optimally. In some
cases, the problem has polynomial solutions, in other case, it does not. Sometimes we
create efficient solutions only to verify afterwards that they fail on some particular test
cases. We never know if we are achieving the optimal solution, unless we prove it our-
selves. This contrasts sharply with knowing in advance not only the needed complexity
but also being satisfied with our solution, not because it is the best possible, but because
it solves the particular instances that will be tested within the given constraints. In our
opinion, we should favor the more open ended approach, making students think how to
really solve the problem and not on how to write a program that passes the test cases of
a given size. Note that in what concerns implementations, limits can still be given (thus
avoiding the need for dynamic memory allocation), while making clear that those limits
are not related to the unknown efficiency that is sought.

In the example problem, SmallDiff, consider that it is said that the maximum size
of the set is 10. Since the number of problems instances that will be tested remains secret,
the contestant cannot know beforehand if the brute-force O(Nˆ2) approach would suffice
even if it run instantaneously. Neither will he know if simply ordering the numbers in
O(NlogN)would suffice. He would have to think if an O(N) is possible. As a side note,
one of the authors of this paper, himself a participant in several programming contests,
was once exposed to an ACM IPCP type contest where no limits were given. While in
some cases this complicated the implementation by requiring dynamic memory allocation
(what we avoid, as discussed), the fact was that the contest was very interesting and
refreshing and also more challenging, because it was impossible to discover beforehand
whether the problem was NP-hard or if it had a greedy or dynamic programming solution.

Improving the Automatic Evaluation of Problem Solutions in Programming Contests 139

With no hints on the expected best running time, we needed to analyze the problem more
thoroughly and try to figure out whether there were more effective approaches than the
ones we were taking so far.

Our final idea regards measuring the time efficiency of the submitted programs. Typ-
ically one creates the test cases in such a way that our model solutions of different com-
plexities will have the intended number of points. However, we cannot predict all the
different solutions contestants will create and sometimes programs with better complex-
ities than others will score fewer points because of other factors (Forisek, 2006). Passing
a specific test case does not also really advertise that a specific time complexity was
achieved. Or rather, not passing does not imply that the solution is wrong or that the
required complexity was not achieved. In reality, it just shows that that particular test
case is solved within the constraints. Pen-and-paper evaluation could be a solution to re-
ally scoring the programs with regard to their actual complexity, but that is unfeasible in
practice for a competition of the size of an IOI and also moves away from the required
objectivity in the evaluation. What one could do is to try to automatically estimate the
complexity of the submitted solution by augmenting the data and plotting the time spent
computing the result from those data. A curve fitting analysis could then be done in order
to estimate the complexity and possibly even extrapolate other time data points. We are
aware that this is impossible to do for all possible problems but the fact remains that many
contest problems (or program assignments) have solutions with simple complexities than
can be approximated automatically. In any case, even a trivial (although imperfect) curve
can provide more information than just checking which test cases the program passes,
because it give us a real feel for the asymptotic behavior of the function being evaluated.
The main point is that by globally analyzing the runtime behavior of the solution, we get
more information than by just timing it on each separate test case. We may not be able to
infer the exact worst case asymptotic complexity of a program, but we may discover that
in practice it spends half the time on a test case with half the data, while another solution
for the same problem spends only a quarter of the time and still another one solves the
problem in constant time. This is meaningful information that can be used for grading the
program.

4. Experimental Results

In order to perform a first evaluation of the practical application of the proposed improve-
ments, we implemented a preliminary, experimental version. As a proof of concept we
will be using a simple problem which was presented as one of the easy tasks in a Por-
tuguese IOI training campus. Stripping the problem to its core, we are given an array
of integers (positive or negative), and we want to compute the sequence of consecutive
elements which has a maximum sum.

We did this example in C but it can easily be ported to other languages. Instead of
a complete program, we require a function intcalculate(intn, intv[]) that
returns the maximal sequence as defined before, given an array v of n integers. The

140 P. Ribeiro, P. Guerreiro

contestant may concentrate only on solving the algorithmic task. We will now focus on
how to test programs efficiency, particularly in estimating asymptotic time complexity.
We experimented by repeating the exact same function call several times until the elapsed
runtime was measurable, at a human scale, say more than one second. Then, the expected
time for a single run of the function call is equal to the total time spent divided by the
number of times the function was called. With this in mind we went further ahead and
calculated the time it takes for a linearly increasing size n. We can then look at the data
and do statistical analysis in order to discover a good curve fitting that can explain the
data obtained.

Putting this into practice, we experimented with random test data and we programmed
three model solutions of different complexities:

• Solution A is a brute force approach with two nested cycles choosing all possible
upper and lower limits of the intervals and then running another cycle for each of
these pairs in order to calculate its corresponding sum – this approach is O(Nˆ3).

• Solution B is a more refined approach, again with two nested cycles for the se-
quence followed then by a O(1) calculation of the corresponding sum using pre-
calculated partially sums, which in turn was made in O(N) – the global complexity
of this approach is O(Nˆ2).

• Solution C is even more optimized and simply maintains the current candidate
sum on an auxiliary variable, linearly going trough all the numbers and summing
while the candidate sum is positive and therefore contributes to a possible best –
this approach is O(N).

We then run these solutions within our improved evaluation framework for a series of
increasingly bigger N (we used {1,4,8,12,16, . . ., 64}) and measured the time the solution
takes for that N compared to the time the same solution takes for N = 1. Fig. 1 is a
plot of the results obtained. Note the very nice curves that already visually suggest the
corresponding complexities.

We can now use several statistical approaches to discover which class of complexity
the observed behavior of the solution best matches. For the sake of simplicity we will just
use one simple measure to show how much information this data provides. We calculated
the correlation coefficient between the obtained times and the typical and classical com-
plexity functions. The results are illustrated in Table 2. In gray we can see the maximum

Fig. 1. Comparative time spent for running the three implement solutoins as N linearly grows.

Improving the Automatic Evaluation of Problem Solutions in Programming Contests 141

Table 2

Correlation coefficient of the time spent by the solutions

Solution Log N N NlogN Nˆ2 Nˆ3 Nˆ4 2ˆN N!

A 0.6848 0.9264 0.9515 0.9912 0.9993 0.9869 0.6033 0.5722

B 0.7524 0.9666 0.9835 0.9998 0.9848 0.9564 0.5469 0.5183

C 0.8624 0.9952 0.9927 0.9586 0.8985 0.8417 0.4136 0.3906

coefficient obtained for each solution. This coefficient corresponds precisely to the class
of time complexity to which the solutions belong.

Note than we can not only identify the most probable complexity, but we can also
“approximate” the strength of our conviction in the result. Thus, we can use the iden-
tified complexity to automatically give more or less points. We did experiments with
this method on the solutions submitted by our students and the results that we obtained
confirmed our manual analysis of the code and were always strongly correlated to the
respective program complexity.

It is out of the scope of this paper to give a more detailed mathematical analysis of the
statistical significance or which kind of statistical measure should be used to better fit the
data. What stands is that this preliminary yet elegant approach shows that this is indeed
a path that can lead to meaningful results. The same approach could also be used when
more variables are involved by extending the calculation to higher dimensions.

We are aware that the statistics do not prove that the programs have the corresponding
asymptotical complexities. They only mean that, in practice, for the group of selected
test cases, the runtime is somehow consistent and correlated with a certain function and
therefore appears to grow following a pattern that we were able to identify. For example,
when we detect a correlation to a linear function, we recognize explicitly that the program
appears to take twice the runtime when the test case doubles the amount of data.

5. Conclusion

The IOI has been running for 20 years but the problems of the early 1990’s are similar
to those of the late 2000’s. The structure of the event has not changed much either. Even
the languages used have remained essentially the same. There has been the continuous
increase in the speed of computers and on the memory available but, from the point of
view of the competition, this is both a blessing and a curse, as we have discussed. In
our opinion, the single most significant change occurred when manual evaluation was re-
placed by automatic evaluation. Automatic evaluation has been made ever more efficient,
and lately the results come out minutes after the competition ends. It has also been made
more accurate, when the system of points per test was replaced by the system of points by
sets of tests targeted at certain complexity. Setting up such sets of tests is a delicate task
that may be done in “serious” contests with a scientific committee devoted to it, but may
be too time-consuming for the purpose of more informal contests, such as those carried
out within programming courses, for pedagogical purposes.

142 P. Ribeiro, P. Guerreiro

The evaluation system that we envision simplifies the task of setting up a contest in
several ways: first, it is not necessary to handle large data sets; second, the problem state-
ments can be more natural, by avoiding the distraction of displaying huge limits for the
size of data; third, the problems themselves become more interesting, since there is no
clue on the intended complexity, giving contestants the illusion that they may target at
something better that what the problem setters may already have achieved, when design-
ing the problem; forth, the human judge does not have to program a solution for each
level of complexity, in order to be able to design the test cases for that level of com-
plexity; fifth, different languages can be added at will (provided the automatic judge and
the operating system is capable of handling them, but these are other issues), and still be
comparable, thus enriching the contest itself and opening it up to larger audiences. And,
as a side-effect, by releasing the contestants from the drudgery of input-output, it allows
them to concentrate on problem-solving proper. A further benefit is that the system can
be used for pedagogical purposes from the early stages, even before students learn how
to read and write data files (Ribeiro and Guerreiro, 2008).

More work is needed in order to obtain a robust system, but the preliminary results
are promising and seem to indicate that this line of approach has some merit and de-
serves further consideration. If successful, it would significantly improve the methods of
automatic evaluation used in programming contests.

References

Cormack, G. (2006). Random factors in IOI 2005 test case scoring. Informatics in Education, 5, 5–14.
Dijkstra, E.W. (1972). The humble programmer, 1972 Turing award lecture. Communications of the ACM,

15(10), 859–866.
Forisek, M. (2006). On the suitability of programming tasks for automated evaluation. Informatics in Education,

5, 63–76.
IOI’2008 Competition Rules. http://www.ioi2008.org
Ribeiro, P. and Guerreiro, P. (2008). Early introduction of competitive programming. Olympiads in Informatics,

2, 149–162.
Vasiga, T., Cormack, G. and Kemkes, G. (2008). What do olympiad tasks measure? Olympiads in Informatics,

2, 181–191.
Verhoeff, T. (2006). The IOI is (not) a science olympiad. 2006. Informatics in Education, 5, 147–159.

Improving the Automatic Evaluation of Problem Solutions in Programming Contests 143

P. Ribeiro is currently a PhD student at Universidade do Porto, where
he completed his computer science degree with top marks. He has been
involved in programming contests since a very young age. From 1995
to 1998 he represented Portugal at IOI-level and from 1999 to 2003
he represented his university at ACM-IPC national and international
contests. During those years he also helped to create new programing

contests in Portugal. He now belongs to the Scientific Committee of several contests,
including the National Olympiad in Informatics, actively contributing new problems. He
is also co-responsible for the training campus of the Portuguese IOI contestants and since
2005 he has been deputy leader for the Portuguese team. His research interests, besides
contests, are now focused on parallel algorithms for pattern mining in complex networks.

P. Guerreiro is a full professor of informatics at Universidade do Al-
garve, in Faro. He has been teaching programming to successive gener-
ations of students, using various languages and paradigms for over 30
years. He has been involved with IOI since 1993. He was director of
the Southwestern Europe Regional Contest, within ACM-ICPC, Inter-
national Collegiate Programming Contest (2006, 2007), and chief judge

of the worldwide IEEExtreme Programming Competition in 2008 and again in 2009.
He is the author of three popular books on programming, in Portuguese. His research
interests are programming, programming languages, software engineering and e-learning.
He currently spends too much time in tasks related to university administration.

Olympiads in Informatics, 2009, Vol. 3, 144–148 144
© 2009 Institute of Mathematics and Informatics, Vilnius

Using Subtasks

Willem van der VEGT
Dutch Olympiad in Informatics
Windesheim University for Applied Sciences
PO Box 10090, 8000 GB Zwolle, The Netherlands
e-mail: w.van.der.vegt@windesheim.nl

Abstract. In the Dutch Olympiad in Informatics subtasks are used to create a nice score distribution
and to reward contestants for what they were able to solve. Using subtasks can provide a mechanism
to distinguish between contestants at the International Olympiad in Informatics.

Key words: informatics olympiad, programming competition, task design.

1. Introduction

The Dutch Olympiad in Informatics (Dutch, 2009) takes three rounds. The first round
tasks are published on our website; contestants can work on these tasks for several
months, they are allowed to cooperate and use a language of their choice. The annual
CodeCup (CodeCup, 2009) task is one of the tasks of this first round. Contestants with a
result that is somewhat better then solving just one task are invited for a one day contest at
a university. This second round is very selective; we want to identify the top ten students,
but we also intend to offer a fair competition in which contestants can show what they
are able to do in a few hours.

The top ten students get a trainings course for three days and usually they enter the
USACO (USACO, 2009) to get more practice experience. The selection phase ends with
a one day competition with three or four IOI-style tasks.

This paper addresses the way we organize our second round tasks. We make intensive
use of subtasks, to get a nice score distribution and to allow all contestants to score at
least some of the points. This has a lot of advantages, but of course there are also some
flaws. We will discuss as examples the tasks “Bowling with numbers” and “Maximum
height”.

In the past IOI-competitions subtasks have been an item. In Athens (Athens, 1991)
and Bonn (IOI’92 Problems, 1992) only one task was presented on each competition
day. These tasks were manually graded and grades were given for different parts of the
solution. In Eindhoven (The problems, 1995) and Vesprem (The IOI’96 Competition,
1996) grading was already automated; some of the three tasks of a competition day were
split up in two subtasks. The subtasks have since disappeared; the introduction of the
50% rule was another way to distinguish between contestants. We think it is possible to
use subtasks to realize the goals that are now served using different limits on test cases.

Using Subtasks 145

2. Task “Bowling with Numbers”

This was originally a task from the Canadian Computing Competition in 2007 (Canadian,
2007).

In short: A number of pins are placed in a row
with equal distances. On each pin there is a number
indicating the value of this pin. You get a bowling
ball with a certain width and you are able to throw a
few rounds. Maximize the total value of the pins you
can drop. In the task description two players are men-
tioned: Alice plays perfect, Bob plays using a speci-
fied greedy strategy.

In Canada this task was used in two different sessions. In stage 1 of the competition
it was a task with only positive numbers. But in stage 2 the problem was complicated
by adding also negative values for the pins. In the Canadian classification system for
olympiad tasks this second task was rated at the highest level.

In 2008 we used this task at the Dutch Olympiad in Informatics. We divided it into
the following subtasks:

Subtask A: Most valuable pin. Determine the maximum value available on
all of the pins.

Subtask B: Theoretical maximum. Find the maximum score you can earn if
you were able to throw an infinitive number of times with a ball
of width one.

Subtask C: Implement the specified greedy solution
Subtask D: Find the optimal solution.

None of the 19 contestants was able to find a program that produced an optimal solu-
tion for all test cases.

The score distribution was:

Table 1

Results for task “Bowling with numbers”

Subtask Maximum score Average score #contestants with
maximum score

#contestants with
partial score

A 12 10.4 16 1

B 18 12.0 11 3

C 28 8.7 5 3

D 42 4.4 0 7

Total 100 35.5 0 17

146 W. van der Vegt

3. Task “Maximum height”

In short: You get a graph with numbered places and connec-
tions. Every connection has a maximum heigth. You run a
car service on this graph and you need to determine the max-
imum heigth of the vehicles that you can use, given certain
constraints.

This task was submitted for IOI 2004. The task proposal had two subtasks. Since it
was not used at IOI 2004, we used it in our national olympiad in 2005. This time it was
split up in three different subtasks.

Subtask A: Cab service. What is the maximum height if you want to be able
to use every road in the graph, i.e. find the minimal maximum
height of all roads.

Subtask B: City service. For every city this service will bring you to all ad-
jacent cities. If there is more then one immediate connection be-
tween two cities, you can ignore all but the one with the maxi-
mum height.

Subtask C: Overall service. All cities can be reached, but not necessarily
by a short path. Now you will be looking for a spanning tree in
which the minimal height of all connections is maximal.

Four contestants out of 42 were able to solve all subtasks.
The score distribution was:

Table 2

Results for task “Maximum height”

Subtask Maximum score Average score #contestants with
maximum score

#contestants with
partial score

A 15 12.2 32 6

B 25 16.0 13 22

C 60 13.6 4 11

Total 100 41.8 2 37

4. Results and Other Experiences

In these two cases the use of subtasks worked rather well. We have got a nice score
distribution, almost all contestants scored at least some points on these specific tasks.
There is a large gap between the algorithmic complexity of finding a maximum number
(subtasks A in both cases) and the optimal solution of an IOI-like task (as in the final
subtasks).

Using Subtasks 147

There is a strong correlation between the order of the subtasks and the results of
the participants. In these examples this has to do with the increasing difficulty of the
subtasks. In an earlier olympiad however we used another task where four or five different
algorithms were introduced to find a path in a given graph. On this occasion, one of the
first subtasks was much more difficult then the other subtasks. Alas, almost no one tried
to solve the easy subtasks, because the difficult one frightened them too much.

The system of subtasks also makes it easier to slip in a more theoretical subtask. Once
we asked contestants to create a sample input file that could produce a specified output
for a given algorithm. We only asked for this file, not for a program or a description how
to find it. At the IOI we call this an output only task; we had just an output only subtask.

In this year’s second round a game is played in which you can get stuck.
One of the subtasks is to output the minimal number of moves that is at least possible,

whatever the initial position of the game, and however badly the game might be played.
We even predicted the output for a specific case and asked the contestants to explain this
strange output in a few words. In this case, they had to deliver a plain text file. Of course
this file was examined and graded manually.

Sometimes subtasks are dependant. It is for instance not possible to solve subtask C
without solving subtask B. In these cases it is fair to give some of the credits to those
participants that are able to solve subtask B; they already found a part of the overall
solution, but failed in the next step.

5. Subtasks at IOI

On several occasions we have spoken on new task types and competition ideas regarding
the IOI. The idea of subtasks was not mentioned in the IOI-workshop 2006 (Report, 2006)
though spreading the difficulty level was one of the topics discussed.

Using subtasks is one of the ways we can try to spread the difficulty level. The same
was aimed by the former 50%-rule. This was intended to distinguish between correct
programs and correct and efficient programs. The use of subtasks gives credit to those
participants that solved a part of the problem. It also gives the possibility of incorporating
small theoretical questions, like specific border cases, sample input or output. It will
spread out the results, give more credit to the weak contestants but will still allow us to
identify the very best and brightest.

References

Canadian Computing Competition (2007).
http://cemc.math.uwaterloo.ca/contests/computing/2007/index.html

CodeCup (2009). http://www.codecup.nl
Dutch Olympiade in Informatics (2009). http://www.informaticaolympiade.nl
Athens 3rd International Olympiad in Informatics (1991). Athens, Greece, May 19–25.

http://ioinformatics.org/locations/ioi91/tasks91.txt
IOI’92 Problems (1992). Bonn, Germany, July. IOI 1992 Bonn.

http://ioinformatics.org/locations/ioi92/tasks92.txt

148 W. van der Vegt

The problems (1995). IOI 1995 Eindhoven.
http://ioinformatics.org/locations/ioi95/contest/index.shtml

The IOI’96 Competition (1996). Vesprem.
http://ioinformatics.org/locations/ioi96/contest/index.shtml

Report of the Competition Workshop (2006). Dagstuhl.
https://phreax.net/bwinf-competition-workshop/wiki/index.php/Main_Page

USACO (2009).
http://contest.usaco.org/ioigate

W. van der Vegt is teacher’s trainer in mathematics and computer sci-
ence at Windesheim University for Applied Sciences in Zwolle, the
Netherlands. He is one of the organizers of the Dutch Olympiad in
Informatics and he joined the International Olympiad in Informatics
since 1992. He was involved in the IOI-workshops on tasks in Dagstuhl
(2006) and Enschede (2008). Currently he is deputy team leader of the
Netherlands.

Olympiads in Informatics, 2009, Vol. 3, 149–166 149
© 2009 Institute of Mathematics and Informatics, Vilnius

20 Years of IOI Competition Tasks

Tom VERHOEFF
Department of Mathematics and Computing Science, Eindhoven University of Technology
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. The competition tasks at the International Olympiad in Informatics have evolved over
its 20-year history. We distinguish three periods in this evolution and highlight it from various
viewpoints. The 101 competition tasks are presented in a table that summarizes their task type
and difficulty level, and that classifies them according to concepts involved in their problem and
solution domains.
Key words: computer science competition, International Olympiad in Informatics, competition
tasks, algorithmics, history.

1. Introduction

The first International Olympiad in Informatics (IOI website, 2009) was held in 1989 in
Pravetz, Bulgaria, now 20 years ago. The format of the event has evolved over the years,
but its main principles have not changed. The high-level goal of the IOI is still that of
promoting computer science (CS) among the youth, and of discovering and stimulating
young talent in CS. The IOI is still offering a competition in algorithmic problem solving,
where solutions must be implemented in one of a few programming languages (Verhoeff
et al., 2006).

Let me remind you of two reasons for restricting the competition to algorithmic pro-
gramming problems, which nowadays are considered as belonging to a narrow subfield
of CS. Back in 1989, CS was not a regular topic in the high school curriculum in most
countries. Some school pupils did learn some CS – either by themselves, or through rela-
tives or devoted teachers – mostly in the form of computer programming. This limited the
options for a CS competition. Secondly, there were no widely accepted standards for the
communication of algorithms. In a competition for high school pupils, who had no for-
mal training in expressing algorithms, it was an obvious choice to require that they write
their algorithms as computer programs, which are machine executable. That way, a lot of
discussion about the intention and validity of an algorithm can be avoided. It also nicely
circumvents the language barrier1 in one direction, because programming languages are
quite universal.

1An international contest for high school students cannot rely on a single language for presenting the
contest tasks. It must also find a way for the contestants to communicate their work to the jury for evaluation.

150 T.Verhoeff

It may be comforting to some and sobering to others (myself included) that not much
has changed with respect to the educational context. CS is still not equally accepted
among other topics in the high school curriculum across the globe, and the means for
the communication of algorithms has not much improved. Compare this to the ‘maturity’
of mathematics. It would be unimaginable to drop math from the high school curriculum
(though, no doubt, there would be supporters for that), and it has a universally accepted
abstract notation for expressing mathematical objects, questions, and arguments.

What has changed substantially in the IOI since its inception is the difficulty level of
the contest problems, usually called ‘tasks’, and the evaluation mechanism to determine
a score for submitted work. The nature of the tasks has seen an increase, albeit small, in
diversity.

This article will walk you through the 20-year history of IOI tasks, all of which can be
found via (IOI website, 2009). It is not intended as a judgment of the past, though I will
take the opportunity to raise some critical notes. I will highlight various aspects, which
you can view from different viewpoints, such as

Task author who invents and formulates a task;
Contest director who integrates the whole task set;
Team leader who votes about the tasks and translates them;
Contestant who is challenged to solve the tasks;
Judge who prepares the evaluation of the submitted work;
Coach who trains contestants to obtain their best result;
Educator who may later use tasks for pedagogical purposes;
Academia and industry who are potential employers of contestants.

The 20-year history will be broken down into three periods, whose characteristics are
summarized in Table 1.

Table 1

The major periods in the evolution of IOI tasks

1st Lustrum2 2nd Lustrum2 2nd Decennium
1989 – 1993 1994 – 1998 1999 – 2008

Hours per day 43 5

Tasks per day 14 3

Scoring principle Partly subjective Based on test runs only

Grading method Manual Automatic

Present at grading Evaluator, leader, and contestant No-one

Grading platform Contestant computers Central Linux server5

Task types added Batch Interactive Output-only

Preparation Host SC only ISC supervision6

2 A lustrum is a five-year period; a decennium a ten-year period.
3 Except 5 on IOI’92 and IOI’93
4 Except 3 on Day One of IOI’93
5 Except IOI’99 and IOI’00
6 Except IOI’99

20 Years of IOI Competition Tasks 151

This period of 20 years involved 101 competition tasks. Appendix A provides a tabular
overview, which is explained in Section 5. It is impossible to cover all of the tasks here
in any detail. Having talked to many IOI stakeholders in the past, it became clear that
putting together a top-10 of “best” IOI tasks is not a reasonable endeavor. I have picked
one ‘representative’ task from each period, and I apologize for the necessarily subjective
nature of my choices.

2. First Lustrum: 1989–1993

The first IOI featured a single task on a single competition day. The next three IOIs
each had two competition days with a single task, while at IOI’93 there were three tasks
on Day One and only one on Day Two. The input-output requirements were specified
rather loosely. The first three years, I/O was through a console interface (keyboard and
screen), and thereafter through disk files. Grading was done manually by an evaluator
who operated the program on the contestant’s computer.

The first IOI task ever, the problem selected from six candidates for competition at
IOI 1989, was described as follows, quoted from the on-line version and (Kenderov and
Maneva, 1989; p. 21). It had no title.

Problem 1. Given 2 ∗ N boxes in line side by side (N � 5). Two adjacent boxes are
empty, and the other boxes contain N − 1 symbols "A" and N − 1 symbols "B".

Example for N = 5:

| A | B | B | A | | | A | B | A | B |

Exchanging rule: The content of any two adjacent non-empty boxes can be moved
into the two empty ones, preserving their order.

Aim: Obtain a configuration where all A’s are placed to the left of all B’s, no matter
where the empty boxes are.

Problem: Write a program that:

1. Models the exchanging of boxes, where the number of boxes and the initial
state are to be input from the keyboard. Each exchange is input by the num-
ber (from 1 to N − 1) of the first of the two neighboring boxes which are to
be exchanged with the empty ones. The program must find the state of the
boxes after the exchange and display it.

2. Given an initial state finds at least one exchanging plan, which reaches the
aim (if there is such a plan). A plan includes the initial state and the inter-
mediate states for each step.

3. Finds the minimal exchanging plan which reaches the aim.

Results: Present at least one solution for the example mentioned above.

Note that the task is composed of several related subtasks, allowing contestants to earn
partial credit for partial accomplishments. In the first lustrum, the subtasks are usually
based on the processing phases for the ‘full’ task, such as reading the input data into
a suitably defined data structure, carrying out a single state transformation, writing the
resulting state in a suitable format, etc.

152 T.Verhoeff

An IOI task is not complete without a plan for grading the work submitted by the con-
testants. Kenderov and Maneva (1989, pp. 40-41) present the following grading scheme
for the first IOI problem.

Four test examples were prepared by the Jury so that to check the program behavior in
various cases. Each test example determined the value of N and the initial state as a
sequence of A’s, B’s and zeroes for the empty boxes.

TEST EXAMPLE 1. N = 5, 0 0 A B A B A B A B

The solution had to be obtained in 4 steps.

TEST EXAMPLE 2. N = 5, A B B A 0 0 A B A B

The minimal number of steps had to be 3.

TEST EXAMPLE 3. N = 3, 0 0 A B A B

A message for no existence of a solution was expected.

TEST EXAMPLE 4. N = 4, 0 A B A 0 B A B

A message for incorrect input data was expected.

The Jury decided the maximum number of points to be 100, which should be distributed
as follows:

Subproblem 1. Up to 10 points.

Subproblem 2. Up to 40 points:

• up to 15 points for finding at least one plan or up to 20 points for all the plans
found out;

• up to 20 points for reporting the lack of solution;

Subproblem 3.

• up to 15 points for an attempt made for optimization;
• up to 40 points for complete optimization.

Other 10 points were planned to be given in addition – 5 points if some results had
been obtained after executing the program and 5 points for good programming style,
and original solution, etc. (at decision of the Jury).

To assess the difficulty level of the tasks, one should keep in mind that in the first
lustrum we were still dealing with Apple II and MS-DOS computers (CPU clock rates up
to approx. 25 MHz7), limiting programs to 640 KB RAM (without resorting to trickery for
accessing extended memory). The allowed programming languages were: Pascal, Basic,
Logo, and later also C and (non-standardized) C++; at IOI’91, FORTRAN was available
as well.

The first IOI problem would still make a nice IOI task, but not for an entire (5 hour)
competition day. In a high-school programming course, it can provide material for several
lessons, even nowadays. It has a concise formulation and its solution involves some im-
portant CS concepts, in particular, graphs. Note that Edsger Dijkstra (1959) published his,
now famous, shortest path algorithm for graphs, which can be used in this task, precisely
50 years ago.

7Unfortunately, it has proved impossible to trace hardware details for the first lustrum.

20 Years of IOI Competition Tasks 153

3. Second Lustrum: 1994–1998

IOI’94 offered three tasks of diverse difficulty on both competition days, thereby estab-
lishing a tradition for the years to come (but that may be overturned at IOI’09).

At IOI’95, a new kind of task was introduced, referred to as reactive or interactive
tasks, as opposed to the ‘classical’ (single-)batch-style tasks. In a batch task, all input
data is available at the beginning of the run and it does not depend on the program’s
behavior. In a reactive task, some output must be produced before new input becomes
available. That input may depend on the preceding output. The program has a dialogue
with a (programmed) environment, which may behave as an adversary. When all input is
predetermined but not completely available at the start, we speak of an online program-
ming problem (the opposite situation is called offline).

The first reactive IOI task was named Wires and Switches (IOI’95, Day Two) and
described as follows.

Wires and Switches. In Fig. 1, a cable with three wires connects side A to side B.
On side A, the three wires are labeled 1, 2, and 3. On side B, wires 1 and 3 are
connected to switch 3, and wire 2 is connected to switch 1.

In general, the cable contains m wires (1 � m � 90), labeled 1 through m
on side A, and there are m switches on side B, labeled 1 through m. Each wire is
connected to exactly one of the switches. Each switch can be connected to zero or
more wires.

Fig. 1. Cable with three wires and three switches.

Measurements. Your program has to determine how the wires are connected to the
switches by doing some measurements. Each switch can be made either conducting
or non-conducting. Initially all switches are non-conducting. A wire can be tested on
side A with probe P : Lamp L will light up if and only if the sensed wire is connected
to a conducting switch.

Your program begins by reading one line with the number m from standard in-
put. It then can give three kinds of commands by writing a line to standard output.
Each command starts with a single uppercase letter: T (Test a wire), C (Change a
switch), and D (Done). Command T is followed by a wire label, C by a switch la-
bel, and D by a list whose i-th element is the label of the switch to which wire i is
connected.

154 T.Verhoeff

After commands T and C, your program should read one line from standard
input. Command T returns Y (Yes) when the wire’s switch is conducting (the lamp
lights up), otherwise it returns N (No). Command C returns Y if the new switch state
is conducting, and N otherwise. The effect of command C is to change the state of the
switch (if it was conducting then it will be non-conducting afterwards and vice versa);
the result is returned just for feedback.

Your program may give commands T and C mixed in any order. Finally, it gives
command D and terminates. Your program should give no more than nine hundred
(900) commands in total.

Example. Fig. 2 presents an example conversation involving 8 commands relating
to Fig. 1.

Standard Output Standard Input
3

C 3 Y
T 1 Y
T 2 N
T 3 Y
C 3 N
C 2 Y
T 2 N
D 3 1 3

Fig. 2. Example conversation.

This task was devised by the author when moving into a new home, where the previous
owners had lost the chart describing how light fixtures and wall outlets were connected to
the switched fuse groups. A key idea for the solution is the binary search, another famous
algorithm, which is often not fully appreciated (Feijen and van Gasteren, 1996; §12.3.3).
The adversary used in evaluation attempted to minimize the amount of information con-
veyed at each query. For solutions and further details see (Verhoeff, 1995).

Starting with IOI’94, the grading process was automated so as to ensure that all sub-
mitted programs are given the same objective treatment. In preceding years, it had hap-
pened that a contestant program was allowed to continue running overnight in the hope
that it would produce an answer. Setting an explicit limit on the run time also served to
communicate the required efficiency level.

On the programming language front, Logo was dropped as of IOI’95, and Basic dis-
appeared at IOI’98, leaving only Pascal and C/C++.

Another break with the past was the decision to base the score of submitted programs
solely on a set of automatic test runs8 with carefully constructed secret input data. This
was mainly motivated by practical considerations, but is still a controversial issue (Ver-
hoeff, 2006). Although this minimizes the role of human evaluators at the IOI, it does

8The organizers use these systematically designed test runs to quantitatively measure program quality. They
should not be confused with the – often ad hoc – test runs executed by contestants.

20 Years of IOI Competition Tasks 155

increase the burden of thoroughly preparing the test runs in advance, a job that is often
underestimated, and it limits what aspects can be taken into account.

As a consequence of evaluating by automatic test runs only, subtasks had to be defined
in a compatible way. Just reading and storing the input or determining some configuration
without outputting it cannot be evaluated by test runs. In the second lustrum, subtasks
were typically defined by requiring additional output for related but simpler computa-
tions, and crediting these separately. Another way to obtain a partial score was to solve a
subset of the (secret) input cases.

4. Second Decennium: 1999–2008

The team leaders vote about acceptability of proposed tasks shortly before the actual
competition, and then the selected tasks have to be translated. IOI tasks involve a lot
of work to prepare. In particular, the choice of bounds and other constraints, and the
ingredients for a fair evaluation require ample consideration. The gradual increase in the
ability of the contestants and accompanying increase in the diversity and difficulty level
of the tasks has only complicated this further. Hence, it is not easy to assess proposed
tasks quickly, and thus the team leaders came to face an impossible duty.

At IOI’99 the International Scientific Committee (ISC) was established to supervise
the preparations for and development of future IOI competitions. The ISC has more time
to assess proposed tasks and help ensure their quality. It reports its findings to the General
Assembly of all team leaders, who can then take this into account when deciding on tasks.

In the second decennium, another new type of task was introduced. They became
known as output-only tasks, where the contestants do not submit their programs but only
the output files for several given (i.e., non-secret) input files. Of course, creation of the
output files requires algorithmic thinking, and in most cases also considerable amounts
of programming. In fact, each input file could potentially be tackled by one or more ded-
icated programs (for instance, a program to analyze and classify the input and a program
to handle a particular class of inputs, using the analysis results).

Evaluation of submissions for output-only tasks does not involve programming lan-
guages and program compilation and execution. On the other hand, since programs are
not collected, there is also no trace of what algorithms the contestants have developed.

The first output-only task was Double Crypt at IOI’01. Here is the description of the
more interesting output-only task XOR (IOI’02, Day One).

XOR. You are implementing an application for a mobile phone, which has a black-
and-white screen. The x-coordinates of the screen start from the left and the y-
coordinates from the top, as shown in the figures. For the application, you need various
images, which are not all of the same size. Instead of storing the images, you want to
create the images using the phone’s graphics library. You may assume that at the start
of drawing an image, all pixels of the screen are white. The only graphics operation
in the phone’s library is XOR(L,R,T,B), which will reverse the pixel values in the
rectangle with top left coordinate (L,T) and bottom right coordinate (R,B), where L
stands for the left, T for the top, R for the right and B for the bottom coordinate. Note
that in some other graphics libraries the order of the arguments is different.

156 T.Verhoeff

As an example, consider the image in Fig. 3 (right). Applying XOR(2,4,2,6)
to an all white image gives the image on the left. Applying XOR(3,6,4,7) to the
left image gives the image in the middle, and applying XOR(1,3,3,5) to the middle
image finally gives the image on the right.

Fig. 3. Screen after each of three successive XOR operations.

Given a set of black-and-white pictures, your task is to generate each picture
from an initially white screen using as few XOR calls as you can. You are given ten
input files describing the images, and you are to submit files including the required
XOR call parameters, not a program to create these files.

Output-only tasks were introduced to make certain classes of ‘hard’ problems accept-
able at the IOI. Evaluation based on a limited set of test runs with secret inputs has the
danger of biased results when the input space is ‘convoluted’. In that situation, the test
runs can explore only a – often very limited – subspace of allowed inputs, thereby pos-
sibly not covering corners where the contestant made mistakes or did exceptionally well
(Forisek, 2006). An output-only task involves some specific non-secret inputs, so that the
contestants know exactly which cases need to be handled.

XOR is such a ‘hard’ problem. In fact, the organizers did not know an efficient optimal
algorithm. It is an open-ended task according to (Kemkes et al., 2002). It does, however,
have a nice approximation algorithm that is guaranteed to be no more than a factor 2 off
the optimum. That is why this task used relative scoring, where contestant scores were
based on how well they did compared to other contestants. Relative scoring was first
featured in the memorable task Toxic iShongololo (IOI’97, Day One).

Subtasks as a means of offering an opportunity for partial credit came into disuse in
the second decennium. Instead, partial credit could be obtained depending on program
efficiency, by defining two or more subclasses of inputs, all of them requiring the same
‘full’ output. A typical way of classifying inputs is by their ‘size’. ‘Smaller’ or ‘sim-
pler’ inputs could be handled by less efficient, easier programs, whereas ‘larger’ or more
‘complex’ inputs required more sophisticated programs.

Test run clustering was introduced at IOI 2005 to reduce the opportunity for harvest-
ing undeserved points by guessing and other forms of opportunistic programming that is
not aimed at solving the actual computational task. The points for a cluster of test runs
are awarded only if all test runs in the cluster are successful. More generally, the score
for a cluster is defined as the minimum of the scores for the constituent test runs.

Another major change in this period (as of IOI’01) concerns the use of centralized
Linux servers for grading. This allows better control over resources (time, memory, files,

20 Years of IOI Competition Tasks 157

network) used by submitted programs during the evaluation test runs. The contestants
submit their work through a web interface to the contest support system, where evaluation
takes place. Previously, test runs were executed on the contestant computers after the
contest. Note that contestants would not necessarily be required to develop their programs
under Linux. Since the central contest server and the contestants’ development computers
can differ (if only in configuration details), the contestants need a facility to do their own
‘test runs’ on the server, that is, have their program executed on the server with their own
test input.

5. The 101 IOI Tasks

Appendix A presents an overview of the 101 competition tasks that appeared in the past
20 IOIs. There are many aspects one could want to summarize in such an overview,
depending on one’s background.

Task author: how much effort was needed for task creation; what alterna-
tives, bounds, and other parameters were considered;

Contest director: how balanced was the task set as a whole;
Team leader: how much effort was needed for understanding, assessing the

quality, and doing the translation;
Contestant: how much time was spent on understanding the task, on design-

ing an abstract solution, on implementing it as an executable program;
Judge: how much effort was needed to prepare test data, checkers, and a

summary of the design decisions behind the grading approach;
Coach: how easy were the results to understand and explain; what topics

need attention in training;
Educator: how useful were the analysis and solutions; which parts could be

used in school, covering what topics;
Academia and industry: to what extent did the tasks contribute to a better

image of computer science.

Most of that information is hard to obtain or no longer available. Concerning the
translation and comprehension effort, for example, one could measure the word, line, or
page count of the task description. There is some variation in this length, ranging from
half a page to three pages or more. But I find this metric too superficial. I have chosen to
restrict myself to presenting information on

• task type,
• difficulty level (if data was available), and
• classification of technical features.

5.1. Difficulty Levels

Difficulty levels are distinguished on the basis of what percentage of contestants were
able to ‘fully’ solve the task. We consider a submission scoring 90% or more as ‘fully’

158 T.Verhoeff

solving the task, i.e., modulo a ‘small’ mistake. The three main difficulty levels are: easy
(> 40% ‘fully’ solved), medium (between 40% and 10%), and hard (< 10%). The
medium level is subdivided into three sublevels: medium-easy, medium-medium, and
medium-hard; see Table 3.

This is admittedly a somewhat arbitrary definition of difficulty level and it is not an
absolute measure, but relative to the actual population of contestants for a particular IOI.
It is, however, objective and these same criteria have been used in various IOI question-
naires.

Unfortunately, scores per contestant per task are not available for all IOIs. The diffi-
culty level of tasks for a particular IOI can be assessed together as a set, by considering
the cut-off scores for the medals. Table 9 shows these scores relativized to the maximum
score. Keep in mind that according to the IOI Regulations (no more than) half of contes-
tants receive a medal, where the ratio of the number of bronze, silver, and gold medals is
3 : 2 : 1. That is, approximately one half of all contestants receive no medal, one quarter
a bronze medal, one sixth a silver, and one twelfth a gold medal. The lower the relative
medal cut-off scores, the fewer points were needed to obtain medals, the harder the task
set was for that population of contestants.

5.2. Task Classification

The classification concerns these three aspects:

1) the given context and input,
2) the computational task and output,
3) the (algorithmic) ingredients of a full-scoring solution.

The first two items together characterize the problem domain, and the third item the
solution domain. In the overview tables, these three items are separated by semicolons.
The terminology follows common practice; for instance, see (Skiena, 2008). It is worth-
while to consider integration into (Verhoeff, 2004) and (Verhoeff et al., 2006). The clas-
sification is not entirely satisfactory; some tasks are hard to classify concisely.

Note that Kyryukhin and Okulov (2007) provides technical information (in Russian)
on all competition tasks of the first 18 IOIs, including the task descriptions, analyses,
solution guidance, classifications, and code snippets (both pseudo code and Pascal imple-
mentations). I have occasionally consulted this useful reference when making the classi-
fication in Appendix A, but my classification is not the same.

6. Conclusion

The past 20 IOIs involved 101 competition tasks, covering a wide range of CS topics, task
types, and difficulty levels. I have summarized them in Tables 5 through 8. I recommend
that these tables are verified, refined, and extended with further information, and are kept
up to date. In particular, it would be interesting to refine the difficulty assessment, by
separately measuring the difficulty of

20 Years of IOI Competition Tasks 159

• comprehension, for instance, in terms of number of concepts and definitions in-
volved;

• mathematical analysis, for instance, by number and nature of key properties (lem-
mata) to be discovered;

• algorithm design (the focus of this article);
• implementation (mostly ignored in this article).

It would also be useful to have a cross-reference of the classification, which lists for each
class all related tasks. An on-line data base comes to mind.

Many of the tasks are too hard to use ‘as is’ in regular CS courses for secondary
education. The kind of algorithmics that nowadays plays a role at the IOI is too advanced
for incorporation in the high-school curriculum. When looking at the difficulty level of
the individual tasks and at the cut-off scores for medals, there is an obvious trend towards
relatively harder problems, that is, towards problems and problem sets that are solved by
a decreasing percentage of contestants. I do not think this is a good development.

Table 2 lists the five tasks that I have contributed to the IOI competitions.
While analyzing the past, it became painfully clear that the IOI community needs to

do a better job at preserving its historic record. All task descriptions are available on-
line10, but other information is often lacking. In particular, it is desirable to know

• computing platforms and other constraints;
• results per task for all contestants (possibly anonymized);
• test data (preferably in digital form), checkers, and motivation;
• problem analyses, design options and decisions, exemplary11 pseudo code and doc-

umented program texts12.

In most cases it is not easy or plainly impossible to (re)evaluate your own attempt at a so-
lution according to the rules of that IOI. Consult (Verhoeff, 2008) for further suggestions
on this topic.

The next decennium will certainly see new developments. Computer hardware and
programming languages evolve: object-oriented and component-based software on multi-

Table 2

IOI tasks contributed by the author

Task Year Remarks

Wires and Switches IOI’95 Interactive, see (Verhoeff, 1995)

Median Strength IOI’00 Interactive, see (Horváth and Verhoeff, 2002)

Double Crypt IOI’01 Output only, uses AES9

Reverse IOI’03 Output only, output is a ‘program’

Mean Sequence IOI’05 Easy, non-trivial

9Advanced Encryption Standard (established as a NIST standard in 2002).
10For IOI’90 it unclear on the (IOI website, 2009) which were the actual competition tasks.
11worthy of imitation
12Kyryukhin and Okulov (2007) come a long way in providing this information for the first 18 IOIs.

160 T.Verhoeff

core networked processors with interactive multimedia user interfaces require multi-
threading, distributed algorithms, and network protocols. The IOI does not have to follow
these trends, but if the aim is to stimulate youthful talent, then it is advisable to investigate
the possibility of attractive tasks involving newer technologies.

The programming languages that may be used in the IOI competition are now re-
stricted to Pascal and C/C++. Java and Python have been around for more than ten years
and are quite popular and accessible. It will be interesting to see how the IOI evolves
on the language front, striking a balance between expressing algorithms elegantly and
implementing them efficiently for actual execution.

Acknowledgments

The anonymous reviewers provided critical and helpful feedback on the first version of
this paper. I would like to thank Gyula Horváth for assisting in the task classification and
for collecting the score data for Table 9.

A Tabular Overview of Tasks and Task Sets

Tables 5 through 8 list all 101 IOI competition tasks of the past 20 years together with task
type, difficulty level (where objectively assessable), and a classification. Table 3 explains
the codes for task types and difficulty levels. Abbreviations for the classification are listed
in Table 4. Table 9 shows the relative cut-off scores for medals, which can be used to
assess the difficulty level of the task sets as a whole. For more detailed explanations, see
Section 5.

Table 3

Type and difficulty codes used in Tables 5 through 8

Code Task Type

B Batch
I Interactive
O Output only
T Theoretical

Code Difficulty ‘Fully’ solved by13

E Easy 40% – 100%
M Medium-Easy 30% – 40%
M Medium-Medium 20% – 30%
M Medium-Hard 10% – 20%
H Hard 0% – 10%

13Percentage of contestants scoring � 90% on the task.

20 Years of IOI Competition Tasks 161

Table 4

Classification abbreviations used in Tables 5 through 8

Code Problem Features

Ari Arithmetic
CG Computational Geometry
Cnt Counting
Comb Combinatorial
Dist Distance
DS Data Structure
Enum Enumerating
FSM Finite State Machine
Gm (Combinatorial) Game
Gr Graph
Ham Hamilton
i implicit/implied
Mh Manhattan
Mtch Matching
Num Number (integer)
Opt Optimization
(un)Rank (Un)Ranking
Rect Rectangle
Sch Scheduling
Srch Searching
Seq Sequence
Srt Sorting

Code Solution Features

Approx Approximation
BB Branch & Bound
BFS Breadth First Search
BS Binary Search
BT Backtracking
DC Divide & Conquer
DFS Depth First Search
DP Dynamic Programming
ES Exhaustive Search
Exp Exponential
Grdy Greedy
MI Mathematical Insight
MM Meet in the Middle
MST Min/Max Spanning Tree
(N)P (Nondet.) Polynomial
Heu Heuristics
Hash Hashing
L(A) Linear (Algebra)
Pc Precomputation
Rec Recursive
SP Shortest Path
SL Sweep/Scan Line

Table 5

Overview of competition tasks in first lustrum

1. IOI 1989, Pravetz, Bulgaria

[Exchanging Boxes] B M Seq; Srt, Opt; iGr, BFS

2. IOI 1990, Minsk, Belorussian Republic, SU

[Sliding Puzzle] B H 2d Num Grid; Comb Opt; iGr, BT

[Watchmen] B H Num Seq; Sch, Opt; ES

3. IOI 1991, Athens, Greece

Square Problem B E 2d Grid; Ham cycle, Cnt; iGr, BT

S-Terms Problem B H Grammar; DS, Enum, String rewriting; _

4. IOI 1992, Bonn, Germany

Islands in the Sea B Nonogram (logic puzzle); Solve; BT

Climbing a Mountain B Constraints; Sch, Opt; BT

5. IOI 1993, Mendoza, Argentina

[Necklace] B Color cycle; Cut Opt; L
[Company Shares] B Weighted Gr; Enum; all-pair SP
[Rectangles] B 2d CG, Rect; Areas; z-Buffer, DFS

[Itinerary] B Gr; Cycle Opt; DP

162 T.Verhoeff

Table 6

Overview of competition tasks in second lustrum

6. IOI 1994, Haninge, Sweden

The Triangle B Num triangle; Opt; iGr, DP
The Castle B 2d Grid; Cnt, Opt; iGr, DFS
The Primes B Magic digit square; Primes, Enum; Pc, BT

The Clocks B FSM, Sch, Opt; MI, LA
The Buses B Num Seq; Sch, Opt; BB
The Circle B Num cycle, Opt, Enum; BT

7. IOI 1995, Eindhoven, The Netherlands

Packing Rectangles B M 2d CG, Rect; Area, Opt, Enum; ES
Shopping Offers B M Constraints; Comb Opt; DP
Printing T M Program analysis & modification

Letter Game B E String list; Opt, Enum; ES
Street Race B M Gr; Vertex Cnt, Enum; P
Wires and Switches I M Find mapping; BS

8. IOI 1996, Veszprém, Hungary

A Game I E 2p Gm; Sum Opt; MI+L or DP
Job Processing B H Constraints; Sch, Opt; Grdy, MM
Network of Schools B M Gr; Opt; DFS

Sorting a 3-valued Sequence B E Num Seq; Srt, Opt; Srt, P
Longest Prefix B M String list; Opt; Pc, P
Magic Squares B M FSM; Event Seq; iGr, BFS

9. IOI 1997, Cape Town, South Africa

Mars Explorer B 2d Grid; Opt; iGr
Game of Hex I 2p Gm; Moves; Heu
Toxic iShongololo B 3d Grid; Opt; Heu

Map Labeling B 2d CG; Rect placement; Heu
Character Recognition B 2d Image; Approx Mtch; Heu
Stacking Containers I 3d CG, unit cubes; Heu

10. IOI 1998, Setúbal, Portugal

Contact B String; Cnt, Enum; Histogram, Srt
Starry Night B 2d Image; Subshape Mtch; ES
Party Lamps B FSM; Enum; Linear Algebra, Brute Force

Picture B 2d CG, Rect; Perimeter; SL
Camelot B 2d Grid, 1p Gm; Opt; iGr, ES
Polygon B Number cycle, Ari; Opt, Enum; DP

20 Years of IOI Competition Tasks 163

Table 7

Overview of competition tasks in third lustrum

11. IOI 1999, Antalya-Belek, Turkey

Little Shop of Flowers B Constraints; Comb Opt; DP
Hidden Codes B String list; Mtch, Opt; P
Underground City I 2d Grid, implicit maze; Find loc; ES

Traffic Lights B Weighted Gr; Path Opt; iGr, SP
Flatten B 1p Gm, Num Seq; Move Seq, Opt; iGr, LA, NP?
A Strip of Land B 2d Num Grid; Rect, Area Opt; P

12. IOI 2000, Beijing, China

Palindrome B M String; Opt; DP
Car Parking B M Num Seq; Srt, Opt; Srt, Grdy
Median Strength I M Implicit Num Seq; Find median; Heap

Walls B M Planar iGr; Opt; Dual Gr, all-pair SP
Post Office B M 1D CG; Comb Opt; DP
Building with Blocks B H 3d Grid; Set Packing Opt, Rot/Refl; BB

13. IOI 2001, Tampere, Finland

Mobile Phones I H 2d Grid; Rect Cnt; Binary Tree
Ioiwari Game I M 2p Gm; Win; iGr, minimax
Twofive B H String, Num, iSeq; (un)Rank; MI, Pc, DP

Score I M 2p Gm, Labeled Gr; Win; DFS, minimax
Double Crypt O M Crypto func; Find keys; Hash, MM
Depot B H 2d Grid, Num Seq; Inverse, Enum; BT

14. IOI 2002, Yong-In, Korean Republic

The Troublesome Frog B M 2d CG; Line, Opt; DP, Hash
Utopia Divided B H 2d CG, Num Seq; Sch; MI, DC, Srt
XOR O H 2d Grid; Rect, Opt; NP?, Approx

Batch Scheduling B H Constraints; Sch; DP
Bus Terminals B H 2d CG, Mh Dist; Opt; P
Two Rods I H 2d CG; Rect, Find 2 segments; BS

15. IOI 2003, University of Wisconsin Parkside, U.S.A.

Trail Maintenance I M Gr; Subgraph Opt; MST
Comparing Code B H String list; Mtch, Opt; P
Reverse O H FSM; program; NP

Guess Which Cow I H 2d Grid; Query Opt; BFS, bit level
Amazing Robots B H 2d Grid, Sch; Solve maze; iGr, BFS
Seeing the Boundary B H 2d CG, Polygons; Visibility; polar SL

164 T.Verhoeff

Table 8

Overview of competition tasks in fourth lustrum

16. IOI 2004, Athens, Greece

Artemis B H 2d Bit Grid; Rect, Opt; Pc, DC, Srt
Hermes B M 2d CG; Dist Opt; DP
Polygon O H 2d CG; inverse Minkowski sum; NP

Empodia B M Num Seq; Subsequence Enum; MI, L
Farmer B M Num Seq; Comb Opt; DP
Phidias B M 2d CG, Rect; Cut Opt; DP

17. IOI 2005, Nowy S ↪acz, Poland

Garden B M 2d Grid; Rect, Opt; Pc, SL
Mean Sequence B E Num Seq; Cnt Num Seq; L
Mountain B H Num Seq; Answer queries; Binary Tree

Birthday B M Num Cycle; Comb Opt; L
Rectangle Game I M Gm, Rect, Cut; Win; MI
Rivers B M Num Tree; Comb Opt; DP

18. IOI 2006, Mérida, Yucatán, Mexico

Forbidden Subgraph O H Gr; Subgraph Opt; NP
Pyramid B M 2d Num Grid; Rect, Opt; Pc, Binary Tree
Mayan Writing B E String; Cnt; L

A Black Box Game IO H 2d Grid; Find configuration; Rec, Exp
The Valley of Mexico B M Gr; Planar Ham path; DP
Joining Points B H 2d CG, 2 Point sets; 1p Gm; Rec, DC

19. IOI 2007, Zagreb, Croatia

Aliens I M 2d Grid; Find center; BS
Flood B H 2d Mh CG; Segment Enum; dual iGr, BFS
Sails B H Num Seq; Comb Opt; Grdy, Diff Tree

Miners B E String; Sch, Opt; DP
Pairs B H 1d/2d/3d Mh CG; Pair Cnt; Srt, SL
Trainings B H Gr, Tree; Even Cycle, Opt; DP

20. IOI 2008, Cairo, Egypt

Type Printer B E String list; Sch, Opt; Trie, DFS
Islands B H Weighted Gr; Path Opt; MI, Tree diameter
Fish B H iGr; Comb, Cnt; MI, Srt, Binary Tree

Linear B M String, iSeq; Comb, Rank; MI, Pc, DP
Teleporters B H 1d CG; Motion Opt; iGr, DFS/BFS, Grdy
Pyramid Base B H 2d CG; Rect, Area Opt; MI, BS, SL, DS

20 Years of IOI Competition Tasks 165

Table 9

Relative cut-off scores for medals (no data available for 1993, 1997)

References

Dijkstra, E.W.D. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–
271.

Feijen, W.H.J. and van Gasteren, A.J.M. (1996). Programming, proving, and calculation. In C.N. Dean and
M.G. Hinchey (Eds.), Teaching and Learning Formal Methods, Academic Press, pp. 197–243.
§12.3.3: http://www.mathmeth.com/wf/files/wf2xx/wf214t.ps (accessed May 2009)

Forisek, M. (2006) On the suitability of programming tasks for automated evaluation. Informatics in Education,
5(1), 63–76.

Horváth, G. and Verhoeff, T. (2002). Finding the median under IOI conditions. Informatics in Education, 1(1),
73–92.

International Olympiad in Informatics Website. http://www.IOInformatics.org/ (accessed
May 2009)

Kemkes, G., Cormack, G., Munro, I. and Vasiga, T. (2007). New task types at the Canadian computing compe-
tition. Olympiads in Informatics, 1, 79–89.

Kenderov, P.S. and Maneva, M.N. (Eds.) (1989). In Proceedings of the International Olympiad in Informatics,

166 T.Verhoeff

Pravetz, Bulgaria, May 16–19. Union of the Mathematicians in Bulgaria, Sofia.
Kiryukhin, V. and Okulov, S. (2007). Methods of Problem Solving in Informatics: International Olympiads.

LBZ (BINOM. Knowledge Lab), Moscow (in Russian). http://www.lbz.ru/ (accessed May 2009)
Skiena, S.S. (2008). The Algorithm Design Manual (2nd ed.). Springer-Verlag.

http://www.algorist.com/ (accessed May 2009)
Verhoeff, T. (1995). The lost group chart and related problems. In Simplex Sigillum Veri, A Liber Amicorum for

Prof. Dr. F.E.J. Kruseman Aretz. Faculty of Mathematics and Computing Science, Eindhoven University of
Technology. December 1995, pp. 308-313.
http://www.win.tue.nl/ wstomv/publications/kruseman.pdf (accessed May 2009).

Verhoeff, T. (2004). Concepts, Terminology, and Notations for IOI Competition Tasks.
http://www.win.tue.nl/wstomv/publications/terminology.pdf (accessed May 2009)

Verhoeff, T. (2006). The IOI is (not) a science olympiad. Informatics in Education, 5(1), 147–159.
Verhoeff, T., Horváth, G., Diks, K. and Cormack, G. (2006). A proposal for an IOI Syllabus. Teaching Mathe-

matics and Computer Science, IV(1), 193–216.
http://www.win.tue.nl/ wstomv/publications/ioi-syllabus-proposal.pdf (ac-
cessed May 2009)

Verhoeff, T. (2008). Programming task packages: peach exchange format. Olympiads in Informatics, 2,
192–207.

T. Verhoeff is assistant professor in computer science at Eindhoven
University of Technology, where he works in the group Software Engi-
neering & Technology. His research interests are support tools for ver-
ified software development and model driven engineering. He received
the IOI Distinguished Service Award at IOI 2007 in Zagreb, Croatia,
in particular for his role in setting up and maintaining a web archive of

IOI-related material and facilities for communication in the IOI community, and in es-
tablishing, developing, chairing, and contributing to the IOI Scientific Committee from
1999 until 2007.

Olympiads in Informatics, 2009, Vol. 3, 167–173 167
© 2009 Institute of Mathematics and Informatics, Vilnius

jBOI – One More Possibility for Increasing
the Number of Competitors in Informatics

Biserka YOVCHEVA
Konstantin Preslavsky University of Shumen
115 Universitetska str., 9700 Shumen, Bulgaria
e-mail: bissy_y@yahoo.com

Galina MOMCHEVA
Varna Free University ‘Chernorizets Hrabar’
Chaika resort, 9007 Varna, Bulgaria
e-mail: gmomcheva@gmail.com

Petar PETROV
A&B Private School
13 Hristo Botev str., 9700 Shumen, Bulgaria
e-mail: peshoto_bg@yahoo.com

Abstract. This article aims to demonstrates a trend in raising the general number of competitors
in informatics by creating and supporting competitions like the jBOI. It argues that participation in
international competitions from an early age contributes to the participants’ achieving sustainable
high results in the future.

It discusses a number of organizational measures as well as sharing experiences in training stu-
dents for similar competitions in Bulgaria. It also develops a general framework for competitions
in informatics for pupils aged under 15.5 years of age.

Key words: competitions in informatics, programming, talents, IOI.

1. Introduction

The role of competitions in the process of learning computer sciences is quite obvious
for the people involved in it. That’s why companies like Microsoft and IBM annually ini-
tiate a lot of challenging competitions. Learning in competitive environments guarantees
success in career.

A number of good ideas for promoting programming contests are suggested by Pohl
and Polly who propose using programming contest problems with graded difficulty (Pohl
and Polly, 2006).

Creating the jBOI is not a new idea because of the existence of such competitions
like the Junior Balkan Olympiad in Mathematics (for students under 15.5 years old) or
the International Mathematical Kangaroo. But as far as concerns to informatics it is quite

168 B. Yovcheva, G. Momcheva, P. Petrov

new. In our opinion after 3–4 years of preparation, students who begin their preparation at
age of 11 or 12 years need a stimulus and a measuring ground to compare their progress.
Moreover, a lot of students, who are new to this movement, can be attracted to participate;
if they are selected and coached adequately they will succeed too.

2. Preparation and Organization of jBOI

So far the Balkan Olympiads in Informatics for Juniors (students under the age of 15.5)
has taken place twice. Both times the competition was carried out due to the initiative
of specialists from both sides. As of today, there is no organizational body managing the
event, neither is there a set of fixed rules, nor a curriculum plan which the participants
could use as a guide for their preparation.

Nevertheless both times the competition was carried out with an enormous degree
of enthusiasm on the sides of the participants, as well as the organizers. There is also
a notable increase in the interest towards the competition: 6 countries took part in the
first jBOI 2007 in Serbia (http://www.math.bas.bg/infos/), 8 in the second
jBOI 2008 in Bulgaria (http://www.jboi2007.org). The organizing of the third
competition jBOI 2009 is left to the good will of the Greek organizers.

3. Preparation of the Participants in Bulgaria

3.1. Preparation on General Basis

The general preparation of young students in Bulgaria is performed on several levels:

• Local study groups

Local study groups are organized at schools and other centres, where regular classes
are taught throughout the whole year and with conformity to an approved curriculum.
This type of preparation is coordinated by the National commission for extracurricular
work with the Union of Mathematicians in Bulgaria. Such study groups are active in a
comparatively small number of towns in the country (see Table 1), as programming is
not included as an obligatory subject for students of that age. To an extent, this offers
a relative freedom to each centre in the selection of topics for its curriculum and in the
selection of methods and approaches.

All the interviewed competitors highly rated the local private school as source of their
preparation, and in dependence of the organization in the cities that private school is
scholastic or non scholastic.

At the same time, all interviewed participants rely on study books, but only one of
them rated them as the most important factor. What calls for attention is that students
of the same study groups rate their sources of preparation in the same way, which is
indicative of the importance of the organization of study groups and the methods of the
teachers.

jBOI – One More Possibility for Increasing the Number of Competitors in Informatics 169

Table 1

Students (up to 15.5 years old) by grades that took part in competitions

Grade
2001
/2002

2002/
2003

2003/
2004

2004/
2005

2005/
2006

2006/
2007

2007/
2008

2008/
2009

IV 2 12 16 12 6

V 26 35 31 31 19 42 33 42

VI 13 32 21 39 24

VII 17 21 20 14 23
43 46 42

VIII 15 34 33 24 18

Total 69 81 73 78 118 132 122 113

Towns 10 13 11 10 12 9 15 14

• National competitions in informatics

The role of national competitions is undeniable as coordinating agents and as power-
ful stimulus for better preparation. The practice of analyzing the tasks and their solutions
after each competition, which was introduced in 2001, is an important medium for pre-
senting the solution ideas of the authors of the tasks and for discussing different ideas for
the level of preparedness of the participants. Even more so is the brochure with the tasks
and the solutions, given by their authors, whose publication started in 2005.

• National training camps in competitive informatics

This form of training was introduced on 2006 and aims at intensive (one-week) prepa-
ration of the competitors with the best results throughout the year. A detailed description
of these camps is provided in Manev et al. (2007). All interviewed students consider the
preparation in these camps as very useful. Again, depending on their local study groups,
they rate the camps as second or third in importance. Only one interviewees rated it lower
than third place, and one as the most important.

• Online competitions

Participation in a number of online competitions and in various preparation websites
is encouraged. Table 2 shows some of the most popular sources of this type.

A survey made among the students of 15.5 years of age shows that those with the
highest ranking in online competitions are also the ones with the highest results in the
national rank lists (http://www.akla.org) for their respective age. Furthermore,
several national online competitions have been carried out. However, they are not yet
a regular form for preparation. To the greatest majority of participant’s registration in
training websites is not done for the sake of registration. It is usually guided by the teacher
working on their preparation locally or with the recommendation of the leaders of the
national team. They help competitors in choosing the most suitable website and monitor
their progress in their self-preparation. Such participations allow the respective mentor

170 B. Yovcheva, G. Momcheva, P. Petrov

Table 2

Online training competitions

Training system
N of part

N of probl. hours url lectures

TIMUS 10 5 http://acm.timus.ru/ no 7

TOPCODER 3 01:15 http://www.topcoder.com/tc yes 5

USACO 3 3 http://train.usaco.org/usacogate yes 7

COCI 6 3 http://evaluator.hsin.hr no 1

UVA 10 5 http://acm.uva.es/contest no 1

Z-TRENING dif dif http://www.z-trening.com no 1

ACM 10 5 http://acm.hit.edu.cn/index.php no 1

of the student or of the entire team to monitor, control and encourage the individual
preparation of each competitor. There are several major criteria for selecting the most
suitable website:

1. The form of the online competitions. Ideally these should imitate the form of inter-
national student competitions. Regretfully, almost none do. Most online competi-
tions imitate the student competitions organized by ACM. On the bright side, this
form requires complete and accurate solutions to the given problems, which trains
students to think about even the smallest details.

2. Maintaining an archive of competition problems, so competitors can work on a
problem selected by them or by their teachers, and check their solution by com-
paring it to the original author solution with an ‘online submit’ option. An online
testing system is a great advantage for any training website.

3. Providing lectures on basic topics and solution analyses of basic problems. It is
especially useful if competitors working without a trainer can read an analysis of
the author solution of a task they have worked on. Analyzing the solutions of other
competitors is also useful (TopCoder).

4. Providing up-to-date rank lists of the registered participants. Comparing personal
results with those of other participants’ is an extremely important stimulus.

Three of the interviewees found online competitions the most important thing in their
preparation. Only two students placed them at the bottom of their ranking lists. The ma-
jority of competitors cite the internet as one of the main sources for their preparation.
Again their opinion is connected to the traditions in their local study groups, which is a
further indication that organization at local level is a crucial factor for the future devel-
opment of competitors. The analysis of the results of Bulgarian participants in internet
competitions shows that those with high ranking in online competitions achieve high re-
sults in national competitions as well.

jBOI – One More Possibility for Increasing the Number of Competitors in Informatics 171

3.2. Preparing the National Team after its Formation

Selection rules for the national team for students of up to 15.5 years of age are the same
as those for the national team for up to 20.5 year-olds. They are set by the National Com-
mission with the Ministry of Education and Science and regulate selecting an extended
national team, which – after a series of controls – is shortened to the final national team.
The details of the procedure can be found in Manev et al. (2007). The preparation for the
jBOI starts after the selection of the national team of up to 15.5 year-olds. Practice shows
that this preparation is much more effective with the extended national team. Training the
extended team achieves several important results:

– the general level of all noted competitors is maintained;
– younger students are greatly motivated if they work in a larger group of peers with

similar abilities and preparation;
– strategically such training reduces the risk of losing shape on the evening of the

competition;
– if necessity arises, a competitor from the final team can be replaced with another

from the extended team, without the risk of lesser training.

Training the extended national team is carried out in several different forms:

• Control competitions

There are two types of control competitions – mock and official ones (carried out for
the national team selection). Mock competitions are organized by the trainers of the team,
while official ones are organized by the National Commission for the National Olympiads
in Informatics with the Ministry of Education and Science. The leaders of the team aim
to make both types of competitions as effective as possible. For this purpose after each
competition they organize a discussion among the participants and the authors of the
competition tasks (if possible). The goal of the discussion is to pinpoint the mistakes
of each participant and work towards eliminating them. This is why the preparation of
competition tasks, especially those for mock competitions, is extremely important. They
are ranked as crucial and one of the most effective forms of training, by the greater part
of the interviewees.

• Lectures at national training camps

At this stage lectures are not common and are only used if there are notable gaps in
the knowledge of some of the participants. Such gaps may be due to incomplete train-
ing, differences in the curriculum, or differences in the organization and methodology of
teaching in the different cities. Generally, a well-structured short revision of the school
material is considered useful even for students without obvious gaps in knowledge. The
gaps in question are discovered mainly by analyzing the results of control competitions.
50% of the interviewed competitors rank lectures (a combination of theory and practice)
as the most efficient training method. On the other hand, 40% rank them as the least ef-
ficient method. The division here seems once again to be determined by the traditions of
the local study group.

172 B. Yovcheva, G. Momcheva, P. Petrov

• Online training

This is realized through the various communication methods provided by the inter-
net – chats, forums, e-mail. The goal here is to maintain the shape of competitors even
when they are not in a period of intense training. Internet communication is also used
for control competitions as well as for topic discussions. It is organized and led by the
coaches of the team.

4. A Possible Framework for International Competitors for Juniors

We take the framework as a basic conceptual structure used to solve the complex problem
of creating competitors in programming.

As a generalization of the situation and the obstacles in Bulgaria we could suggest the
following framework for such an international competition in informatics for juniors.

Firstly, some documents or regulations have to be signed between participant coun-
tries in order to guarantee the existence of such new competitions. Otherwise some prob-
lems may occur during their organization.

There must be clear rules defined about the age of contestants participating in the
contest.

Human resources play significant role in such a structure and could be divided into
committees as follows: organizing committee, technical committee, scientific committee.
It should not be considered a drawback if a person from a country takes part in several
committees, if such participation is appropriate. It is helpful if coaches or even contestants
have the possibility to communicate with committee members and make suggestions or
express their opinions.

Some technical resources like installed compilers, environments, grading system
(with rules) and computers are necessary too and the information connected to those
issues could be updated and made available regularly.

Probably the two paragraphs above are familiar to contestants, team leaders and orga-
nizing committees in informatics competitions.

The next element from this framework is very important – the publicity. This includes
not only publishing competition problems and their solutions (as usual), but developing a
curriculum, preparing or selecting books, and recommending articles appropriate for the
students or teachers involved. We know of an enormous number of books appropriate for
the competitors but the different age of contestants leads to some problems concerning
the mathematical concepts they are familiar with or the level of language (e.g., English)
that they have.

As for the mentioned problems in preparation at a national level, we can summarize
the necessity of on-line training system, training camps for students, seminars and work-
shops for teachers, [e]books and coaching system. The observations in our country show
that coaching has different faces because it varies from teacher to team leader, through
guardian and psychologist. Some basic issues that coaches have to face are: What to do?,
How to do it?, Why do it? The forms of coaching also vary from Face-to-face to online

jBOI – One More Possibility for Increasing the Number of Competitors in Informatics 173

meeting. And the people engaged in coaching vary: from teachers, university lecturers to
parents and classmates, present or ex-competitors. This is the person (coach) who helps
contestants to develop their personal plan for individual action or development.And last
but not least in this framework is the financial support: sponsorships (companies, founda-
tions), fees, some forms of support by national or local authorities, government or min-
istry of education of the host country and international (e.g., European Union) funding
programs (like Comenius – LLP for students from schools).

5. Conclusions

In conclusion the jBOI is one more possibility for increasing the number of competitors
in informatics. jIOI could be one better possibility.

References

Manev, K., Kelevedjiev, E. and Kapralov, S. (2007). Programming contests for school students in Bulgaria.
Olympiads in Informatics, 1, 112–123.

Pohl, W. and Polly, T. (2006). Experience with graduated difficuty in programming contest problems. In ISEEP
2006, Vilnius.

http://www.akla.org/akas1/lib/studentstandarts.html
http://www.math.bas.bg/infos/. Portal for National Competitions in Informatics for Students.
http://www.jboi2007.org
http://www.jboi2008.com/

B. Yovcheva is a senior lecturer in informatics in The Konstantin
Preslavski Universiti of Shumen and a director of A&B School of Shu-
men. She is team leader of the national team of informatics for 15.5
years of Bulgaria, 2009. She published over 20 scientific papers and
many methodical works, wrote 8 textbooks in informatics and IT for
secondary and high education. She is a member of Bulgarian National
Committee for Olympiads in Informatics.

G. Momcheva is assistant professor in CS at Varna Free University,
Bulgaria. She is a deputy team leader of the national team of informat-
ics for 15.5 years of Bulgaria, 2009. She has 12 years experience as
a teacher in informatics and ICT. She published over 15 papers and 6
textbooks for high school students. She is a member of Bulgarian Na-
tional Committee for Olympiads in Informatics.

P. Petrov is young teacher in informatics in A&B School of Shumen.
He is team leader of the regional team of informatics for 15.5 years of
Shumen. He is an author/co-author of a book on algorithms and algo-
rithmic problems.

Olympiads
in Informatics

Volume 3 2009

M. FORIŠEK. Using item response theory to rate (not only) programmers 3

A. IDLBI. Taking kids into programming (contests) with Scratch 17

E. KELEVEDJIEV, Z. DZHENKOVA. Tasks and training the intermediate age students
for informatics competitions 26

R. KOLSTAD. Infrastructure for contest task development 38

M. MAREŠ. Moe – design of a modular grading system 60

B. MERRY. Using a Linux security module for contest security 67

I. NINKA. The role of reactive and game tasks in competitions 74

M. OPMANIS. Team competition in mathematics and informatics “Ugāle” – finding
new task types 80

P.S. PANKOV, K.A. BARYSHNIKOV. Representational means for tasks in informatics 101

T. PORANEN, V. DAGIENĖ, Å. ELDHUSET, H. HYYRÖ, M. KUBICA,
A. LAAKSONEN, M. OPMANIS, W. POHL, J. SKŪPIENĖ, P. SÖDERHJELM,
A. TRUU. Baltic olympiads in informatics: challenges for training together 112

P. RIBEIRO, P. GUERREIRO. Improving the automatic evaluation of problem solutions
in programming contests 132

W. van der VEGT. Using subtasks 144

T. VERHOEFF. 20 years of IOI competition tasks 149

B. YOVCHEVA, G. MOMCHEVA, P. PETROV. jBOI – one more possibility for
increasing the number of competitors in informatics 167

1822-7732(2009)3;1-C

	Binder2
	Binder1
	INFOL3p1
	INFOL3p2
	INFOL050
	INFOL049
	INFOL040

	INFOL041
	INFOL044
	INFOL037
	INFOL036
	INFOL042
	INFOL039
	INFOL043

	INFOL046
	INFOL048
	INFOL038
	INFOL047
	INFOL045
	INFOL3CO

