
ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY
INSTITUTE OF MATHEMATICS AND INFORMATICS

OLYMPIADS IN INFORMATICS

Volume 9 2015

Selected papers of
the International Conference joint with

the XXVII International Olympiad in Informatics
Almaty, Kazakhstan, 26 July – 2 August, 2015

OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mii.vu.lt

Executive Editor
Richard Forster
British Informatics Olympiad, UK, forster@olympiad.org.uk

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Bruria Haberman, Holon Institute of Technology, Israel, habermanb@hit.ac.il
Mile Jovanov, Sts. Cyril and Methodius University, Macedonia,
 mile.jovanov@finki.ukim.mk
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Rein Prank, University of Tartu, Estonia, rein.prank@ut.ee
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Peter Taylor, University of Canberra, Australia, pjt013@gmail.com
Troy Vasiga, University of Waterloo, Canada, tmjvasiga@cs.uwaterloo.ca
Tom Verhoeff. Eindhoven University of Technology, The Netherlands,
 t.verhoeff@tue.nl
Peter Waker, International Qualification Alliance, Republic of South Africa,
 waker@interware.co.za
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands,
 w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open acccess journal devoted to
publishing original research of the highest quality in all aspects of learning and teaching
informatics through olympiads and other competitions.

http://ioinformatics.org/oi_index.shtml

ISSN 1822-7732 (Print)
 2335-8955 (Online)

Olympiads in Informatics, 2015, Vol. 9, 1–2 1

Foreword

The national olympiads do not exist in isolation, and the papers in the ninth time orga-
nized conference of the International Olympiad in Informatics, or the IOI as it is fre-
quently called, showed how similar problems arise in different countries, and different
environments. This conference concentrates on a variety of topics, and many of the ideas
and experiences are drawn from the national olympiads.

In this volume, we have published a few papers directly focused on the development
of the IOI. Stefano Maggiolo paper “An update on the female presence at the IOI” dis-
cusses the unbalanced gender ratio in computer science. With the help of the delegations
that answered the prepared questionnaire, the author gathered statistics about the gender
of contestants and leaders to show that the female participation at the IOI is even lower.
Increasing the participation of female students is the most natural way of continuing to
fulfil the goal of the IOI of promoting the discipline of informatics among young people,
and eventually to improve the performances of the teams by increasing the pool of can-
didates. The performances of female contestants can be improved for example through
training programs, and by removing stereotype threat. Also reintroducing the require-
ment of mixed gender for complete teams, as a way of encouraging countries to put in
place programs promoting gender balance, can be considered.

The paper “Organising National Olympiads in Informatics: a Review of Selection
Processes, Trainings and Promotion Activities” by Sébastien Combéfis and Alexis
Paques reviews common structural elements and activities organised by several coun-
tries, for the advertisement of the national contest, the steps of the selection process and
the proposed trainings. Specific activities added by countries according to cultural as-
pects or other country-specific characteristics are highlighted with the reasons motivat-
ing the integration of those activities. The paper summarises the key activities that could
be organised by any country, with explanations about what they bring to the national
contestants and motivation for their organisation. The authors draw the conclusions,
that more cooperation and collaboration should be established between countries, so
that informatics education communities may get closer at reaching the common goal of
spreading programming and improving its presence in education.

It has been an aim of the IOI conference, since it was established, to become part of,
and bring in, the wider pedagogical community. We have not had many papers authored
from those outside the IOI, but one or two have appeared in each volume. In this volume
we have detailed paper on the “Effectiveness of Robotics Competitions on Students’
Learning of Computer Science” written by researchers Fatima Kaloti-Hallak, Michal
Armoni, and Mordechai (Moti) Ben-Ari from Weizmann Institute of Science. This work

2

investigates students’ learning of computer science as part of a research project on stu-
dents’ learning of and attitudes toward STEM (Science, Technology, Engineering, and
Mathematics) subjects during their participation in robotics activities. The population
consisted of groups of middle-school students (ages 13–15 years). The methodology
used is both qualitative and quantitative using questionnaires, observations and inter-
views during the school year 2013–2014.

A few other papers in this volume deal with special software for generating tests or
creating interactive tasks, and with selection of talented students in programming com-
petitions. There are reasonings on several research methods: Jūratė Skūpienė analyses
the “Multiple Criteria Decision Methods in Informatics Olympiads”; Michal Forišek
describes a better way to teach dynamic programming, Mirzakhmet Syzdykov and Madi
Uzbekov presents an “Ant Colony Optimisation applied to non-slicing floor planning”.

In the second part of the volume Syria and Turkey present interesting and thought-
ful country reports. Technical report from the Baltic Olympiad in Informatics organised
in Lithuania this year are presented as well. Detailed report of the IOI Workshop’2015
“Creating an International Informatics Curriculum for Primary and High School Edu-
cation” deals with the role of informatics in the primary and secondary education. The
Workshop participants tried to encapsulate several activities that might give insight on
how to treat this issue with success.

At the end the VisuAlgo – visualising data structures and algorithms through anima-
tion are presented by Steven Halim.

As always, thanks are due to all those who have assisted with the current volume –
authors, reviewers and editors. A lot of work is required, not only to the write the papers,
but to an extended period of reviewing and correction. Peer reviewing all of the papers
takes a significant amount of time and work. Special thanks should be given to those
people.

Last, but by no means least, particular thanks are due to the organisational committee
for IOI’2015 in Almaty, Kazakhstan without whose assistance we would be unable to
hold the conference. Their assistance, during what is an already busy period, is gratefully
received.

Editors

Olympiads in Informatics, 2015, Vol. 9, 3–14
DOI: http://dx.doi.org/10.15388/ioi.2015.01 3

libinteractive: A Better Way to Write Interactive
Tasks

Luis Héctor CHÁVEZ
omegaUp
Hacienda de Coaxamalucan 138, Col. Hda. de Echegaray Naucalpan
Estado de México, México CP 53300
e-mail: lhchavez@omegaup.com

Abstract. Interactive tasks are currently written as a set of language-dependent shims and libraries
that are linked against the contestant’s code to produce a single executable. This implies that task
writers often need to generate three or four different libraries that need to be tested separately, for
C/C++, Pascal and Java. Furthermore, the libraries must be written with care to avoid cheating,
since it is possible for contestants to access the memory and opened files of the whole process.
libinteractive solves these problems by defining an interface description language that is used to
automatically generate shims in all IOI-approved languages in a way that is easily sandboxed; and
a fast, portable interprocess communication mechanism that allows complete separation of the
task writer and contestant code in different processes. This simplifies task creation and testing,
making all tasks compatible with any future approved languages.

Keywords: interactive tasks, performance, omegaup, sandbox, security.

1. Introduction

Since its introduction in IOI 2010 until IOI 2014, all interactive tasks are distributed as a
small package that contain a few files that the contestant can download to their machine,
modify, compile, and validate their solution against a small set of provided inputs. The
package contents are typically as follows:

A source file created and tested by the task writer that reads task information from ●
a file, interacts with the contestant’s code through a series of well-established
functions or procedures, and then either writes a text version of the contestant’s
response or a verdict of the solution.
A header file that contains the function or procedure prototypes that can be in- ●
cluded from the contestant’s code.
A template version of what the contestant is expected to implement. ●
Optionally, some scripts that can be invoked to automatically compile, link, and ●
execute the whole program and run it against some of the inputs. These scripts are
usually written for the Unix shell sh.

L.H. Chávez4

All task code is language-dependent, so all previously created tasks have one version
for each supported language, and they all need to be created manually by the task writer.
Moreover, since the task’s and contestant’s code are both executed in the same process,
there is no security guarantee whatsoever, and the programs must be coded defensively
and obfuscated to prevent contestants from obtaining direct access to the input file or in-
memory structures. The task files usually come with instructions to run and test the prog-
ram, since the way they are created changes from contest to contest and is not defined
anywhere or standardized. Some previous IOI tasks used some RPC mechanisms, like
Regions from IOI 2009, but were done in an ad-hoc fashion. Given that the Microsoft
Windows family of operating systems has between 88% (Statista, 2014) and 91% (Net-
MarketShare, 2014) of market share in desktop computers, the vast majority of students
cannot easily test their solutions on the operating system they most likely have access to
once the competition is over and they wish to train for the next one.

One solution to all the above problems, and the one implemented by libinteractive, is
to run the code provided by the task writer and the contestant in separate processes that
communicate through Remote Procedure Calls or RPC, which is a technique that makes
executing code on a different process semantically similar or equivalent to calling a
local function (Birrel, 1984). The separate processes can now be written in potentially
different programming languages, allowing task writers to only provide a program in
one language and allowing the remote procedure call machinery to perform translation
on the fly. The rest of the ancillary code and scripts described above can be generated by
a compiler by providing a formal description of the interface in an Interface Definition
Language, or IDL (OMG, 1991).

libinteractive creates a standard, multi-platform, language agnostic, secure, and
mainly transparent solution to describe, compile, run, and validate interactive tasks.
This paper is structured in the following way: The second section briefly explores the
state of the art in RPC libraries and automatic code generation through the libinteractive
IDL. The third section describes the architecture and design of libinteractive, including
a platform-specific optimization for Linux to significantly improve the performance of
task execution. The fourth section explores the performance characteristics of the libin-
teractive RPC. The fifth section concludes with the results obtained so far, and points out
further directions for future expansion.

2. RPC Mechanisms

The concept of RPC and automatic code generation has been around since the early
1980s, and since then several platforms have been created to serve different needs. They
usually fall into one of the following two categories:

Language/platform-specific RPC: most modern programming languages include ●
an easy way to perform remote calls in a way that is syntactically equivalent to
performing a regular function call. Java supports Remote Method Invocation, or
RMI. Microsoft’s C# and the rest of the languages supported by the Common
Language Runtime allows for 9 different interprocess communication technolo-

libinteractive: A Better Way to Write Interactive Tasks 5

gies, including COM. These solutions are well integrated into the language and
platform they run on, but do require some extra code to be written, exceptions to
be handled carefully by the consumer, and are not easy to consume outside of their
respective languages or platforms.
Service-oriented RPC: the main goal of these solutions is to very quickly define ●
the interface of a service that then can be consumed through a network. The way
this is done is by defining schemas in which objects are encoded into messages,
which are passed around through the network. OMG’s CORBA, Google’s Proto-
col Buffers and GRPC, Facebook’s (now Apache’s) Thrift, and Apache’s Avro are
some popular service-oriented RPC platforms. All of these solutions are platform-
neutral and have good performance on client/service architectures where the cost
of constructing and transporting messages is negligible compared to the actual
service they facilitate.

None of the solutions found had the right balance of transparency to the programmers,
performance, and security. Language-specific RPCs had the best support for transparency
and ease of use, but are not necessarily as performant as we wanted and were not easily
portable to other environments. Some of the existing solutions being able to achieve a
very low overhead for RPC calls and enabling throughputs up to several thousand mes-
sages per second, but required a multithreaded, fully asynchronous programming model,
which does not work well for interactive tasks which are inherently synchronous. More
highly performant platforms, like the LIMAX Disruptor even require a different prog-
ramming paradigm to achieve their goals. libinteractive was created as a completely
transparent, secure, and relatively performant RPC code generator and library.

3. Architecture and Design

libinteractive, much like any other RPC system, consists of three core components: an
Interface Definition Language, a compiler that can convert IDL files into code and meta-
data, and the actual RPC mechanism used to communicate between processes and signal
them. An optional component is provided to improve throughput when running on a
Linux system: a kernel module that reduces the overhead of the RPC mechanism without
compromising its security and the isolation between processes.

3.1. The Libinteractive IDL

The interface definition language chosen by libinteractive is based heavily on Web IDL
(W3C, 2012), developed by the W3C as a way to express interfaces in JavaScript/EC-
MAScript and then later used by all web browser vendors in their own documentation.
Its syntax resembles Java and allows for attributes to describe properties of various ele-
ments of the interface.

The building blocks of a libinteractive IDL file are the interface blocks, which des-
cribes what procedures or functions are implemented by which of the processes, which

L.H. Chávez6

are written just like interfaces in Java. The type system is similar to Java’s but in order
to better support multiple languages, there are a few restrictions on the types, which
closely match the C language’s semantics and limitations. There are six primitive types
that can be used as parameter or return types: bool, char, short, int, long,
and float. Procedures use the special return type void. Single- and multi-dimensional
arrays of any of the primitive types can also be used for parameter types given that all
their dimensions except possibly the first are compile-time constants. In the cases where
an array dimension is variable, it must be passed in as a parameter that comes before
in the parameter list, and it must have a Range attribute describing the lower and upper
bounds of the value of that number in order to calculate the maximum size in bytes of
the array. For instance, the task Parrots from IOI 2011 (Fakcharoenphol, 2011), can be
described with the following IDL snippet:

interface Main {
 void send([Range(0, 65535)] int n);
 void output([Range(0, 255)] int n);
};

interface encoder {
 void encode([Range(0, 64)] int N, int[N] M);
};

interface decoder {
 void decode([Range(0, 64)] int N, [Range(0, 320)]
int L, int[L] X);
};

In the above example, for the encoder.encode procedure, it is known that the
array M can have up to N elements, which in turn must be an integer between 0 and 64.
This information is used to perform runtime parameter validation, as well as simplifying
the protocol and memory management. By convention, the first interface in the IDL file
is called Main, and it represents the program that the Task writer has created. The rest of
the interfaces will be run in separate processes using the functions and procedures imple-
mented by the contestant. This means that libinteractive supports isolating an arbitrary
number of processes. Main is allowed to call the functions and procedures of the other
interfaces, and the interfaces can call the functions and procedures of Main, but not any
member of other interfaces. This is done to both simplify the design of libinteractive as
well as to avoid cheating. The full syntax and semantics of the libinteractive IDL can be
found on the project’s documentation website1.

3.2. The libinteractive Compiler

Once the task writer describes the contract between the main process and the one imple-
mented by the contestant in the libinteractive IDL, the compiler can be used to generate

1 https://omegaup.com/libinteractive/

libinteractive: A Better Way to Write Interactive Tasks 7

all the files needed for contestants to compile, run, and test their solution against a set of
predefined sample inputs. For a given platform and programming language, the compiler
generates four sets of files:

A platform-dependent script that contains all the commands needed to compile 1.
and run the task: a Makefile, used in Linux/Mac OS X/Unix environments with
the make command; or a .BAT file for Windows, that can be invoked directly as
run.bat.
Language-dependent header files that can be included in both the task writer and 2.
contestant’s programs, that expose the interface(s) that can be called.
Language-dependent utility functions that handle the serialization/deserialization 3.
of the parameters and handle all RPC invocation and signalling.
A platform-dependent run driver, written in C, which prepares the environment for 4.
the processes, executes them and prints out anything written to standard output/
standard error. In Windows, the driver also orchestrates all the RPC communica-
tion between all processes.

Once the files are generated, they are packaged into a .zip file that contestants can
download together with general instructions and examples.

One of the design goals of libinteractive is that it should be possible, if both the task
writer and the contestant’s source files are written in the same language, to compile them
both into the same executable. This means that there is no additional syntax or unfamil-
iar semantics to be learned in order to write a libinteractive task or a solution for it.

The compiler is written in Scala, and is typically invoked as a standalone Java appli-
cation, but it can also be used as a library. omegaUp (Chávez, 2014) leverages this and
invokes the library to validate uploaded tasks, as well as generating all files that are to be
consumed by contestants for all platforms and languages ahead of time.

3.3. Execution Flow

Programs compiled with libinteractive perform some initialization before handing con-
trol over to either the task writer’s or the contestant’s code. In this initialization phase,
the RPC transports are created and prepared for communication, and then control is
transferred to the normal program entrypoint (int main() in C/C++, public static void
main(String[] args) in Java) for the Main process. Non-Main processes proceed to wait
until Main interacts with them. Once execution reaches a point where a call to a func-
tion on another interface is made, all function parameters are serialized into a message
in a transport-specific way, and is sent to the other process. The caller then waits until
the callee acknowledges having finished execution of the call. The original caller then
resumes execution and the callee goes back to waiting for a message. The acknowledge-
ment itself is another message that might contain a return value, so all processes will
be sending messages and waiting for a reply until one process terminates. If the process
that terminates is Main, it is treated as a normal termination, otherwise it is an abnormal
termination and the execution is treated as a failure.

L.H. Chávez8

One important thing to mention is that when a process is waiting for a message re-
ply, a method call message can be received. This enables nested calls to be performed
between the processes, as shown in Fig. 1.

3.4. RPC Transports and Mechanisms

The compiler can abstract away all of the lower-level details so that both task writers and
contestants do not need to worry about exactly how the RPC calls are made, and in fact
it is possible to choose from two available mechanisms: a cross-platform one that uses
named pipes (Vaught, 1997) that contestants can use on their machines to test their solu-
tions, and one designed for Linux based on shared memory (Stevens, 2003) that offers
much lower roundtrip latency, but is not as portable and requires a Linux kernel module
as described in the next subsection.

3.4.1. Named Pipes
Named pipes are available for all modern platforms, and they are simply streams of
bytes that have endpoints in different processes. One process has the endpoint that can be
written to and the other one reads from its endpoint. Pipes usually have blocking reads,
which means that when one process reads from the pipe before it has any data in it, it will
wait until the other process writes to it. This makes signalling easy, since each process is
either doing computation or waiting for the other one make or return a call. The message
encoding is also very simple, since the IDL mandates that all para-meters have a fixed
size on compile time, or its size can be derived with only parameters that are already
available: the binary representation of each parameter is written to the stream in a format
compatible with C, which means that the memory of each parameter is copied directly

Fig. 1. Sequence diagram for message interaction in Parrots from IOI 2011.

libinteractive: A Better Way to Write Interactive Tasks 9

into the pipe one after the other. Arrays are serialized in row-major order. In order to
distinguish between the different functions available to each interface, each function is
assigned a unique, random 32-bit integer id during compilation, which is then prepended
to each message before the parameter list. A 4-byte random cookie is appended to each
message in the stream and then validated on the reply to avoid replay attacks. The actual
data that goes through the pipe would then be similar to the one in Fig. 2.

Each interface pair has a pair of named pipes, one for outgoing messages and the
other for incoming messages. Every time a message is received by one of the interfaces,
it locally invokes the procedure or function and then sends the result of the function or
a simple acknowledgement in case of procedures to the other pipe in the pair so that the
caller can resume execution.

Named pipes do have one downside, that is shared amongst several of the RPC
mechanisms outlined in the second section: they need to copy all the data into the pipe
in one process, into the kernel, out of the kernel, and then out of the pipe for the other
process. Typically this is done very fast for small messages shorter than 4 kb, but it
becomes slower the larger the messages are. Also, since writes to a pipe are designed to
not block unless the kernel buffer that receives the data from the pipe is full, the writing
process will regain execution until it issues a read to the other pipe in the pair in order to
wait for the response from the other process, which wastes a small amount of time.

3.4.2. Shared Memory
There is a second RPC mechanism available in all modern operating systems: shared
memory. Two or more processes can request the operating system to allocate a flat mem-
ory location that can be accessed by all processes simultaneously2. Typically, shared
memory is used together with a signalling mechanism that lets the other process know
when it is safe to read from the shared memory without reading garbage, enforcing pro-
cesses to take turns reading and writing the shared memory area. Given that the memory
is never touched by the kernel, the cost of copying data around is greatly reduced. The
overhead of the RPC call is now dominated by the cost of making a context switch
between the processes, and can change depending on the signalling mechanism used.
Semaphores and mutexes are the fastest ones available in typical Linux installs. One
downside to using these synchronization primitives is that they are not easy to sandbox,
since they require some extra system calls and access to a broader part of the filesystem

2 There are some caveats regarding cache coherence and consistency of the shared memory.

Fig. 2. Binary protocol for the named pipe backend.

L.H. Chávez10

to be allowed in order to work properly. Programmers should also code very defensively
when using them, since it is possible to deadlock if the process that currently holds the
semaphore or mutex dies unexpectedly.

In libinteractive, since all messages have either fixed sizes, or contain range attributes
to know the maximum size of any arrays passed as parameters, it is possible calculate
an upper bound on message sizes on compile time. This information is used to imple-
ment a simple slab allocator (Bonwick, 1994) that allows for individual memory areas
that are deallocated to be placed in a per-message-size linked list and quickly reused to
avoid fragmentation. Since each interface handles its own shared memory, the number of
message sizes has an upper bound on n, the number of functions and procedures in each
interface. Given that most tasks are designed in a way that there is a constant amount of
function call nesting across interfaces, at any given point in time there are at most O(n)
live messages and so the per-interface shared memory size is bounded. The generated
code automatically manages all memory allocations needed, as well as validation of the
input parameters and handling of all error conditions, so the whole process is transparent
to that task writers and contestants.

Since the contestant’s process also needs to modify the internal data structures of
the allocator, all allocator calls are validated for consistency and the process aborts if it
detects any modifications.

3.5. transact Linux Kernel Module

We must recognize that there is an unavoidable amount of overhead that is introduced by
any RPC system. Most platforms deal with that through parallel processing, but interac-
tive tasks are inherently serial and one process must wait for the other to respond before
continuing. Most of this overhead comes from the context switching that the operating
system must perform in order to stop running one thread/process and run another in a
way that all processes are isolated from each other, but even that can be optimized: libin-
teractive also includes an optional Linux kernel module called transact that can provide
significantly lower context switching cost in the scenario where there are exactly two
processes switching back and forth from each other.

transact provides a fast, simple, file-based synchronization mechanism between ex-
actly two processes that only uses the four most basic Linux system calls: open to ac-
quire the lock, write to signal which of the two processes is the one owned by the task
writer, read to make the context switch, and close to signal the other process that the
current process is done with the lock and will shut down. Since the kernel manages the
data structures that back the locks, it is possible to atomically force a context switch and
yield control to the other process, reducing the overhead up to 20%. It is also resistant
to deadlocks, since once a process is shut down, the kernel automatically closes all open
files and will signal the other process that the other endpoint has died. By using transact
and blocking thread creation at the sandbox level, it is possible to guarantee that there is
exactly one process in each pair running at any point in time, so concurrent modification
to the shared memory area is not possible.

libinteractive: A Better Way to Write Interactive Tasks 11

Using transact is not a requirement for using libinteractive, but it improves perfor-
mance significantly and allows to better measure the amount of time that the contestant’s
code is actually using to solve the task instead of being wasted in waiting for the kernel
or serializing messages.

3.6. Sandbox Compatibility

libinteractive was designed with omegaUp’s minijail sandbox in mind, which uses sec-
comp-bpf to do system call filtering, so it had to avoid using dangerous syscalls. It only
relies on open, close, read, and write with named pipes transport, and additionally uses
mmap when using transact. To also avoid having to relax filesystem sandboxing, a mode
was added where all files that are to be shared among processes are all contained in a
separate directory that can be mounted with read-write privileges (and additionally dev
permissions with transact) in all sandboxed containers. This also makes it compatible
with isolate (Mareš, 2012), the sandbox currently being used in IOI.

4. Performance Analysis

In a default, 64-bit install of Ubuntu Linux on a single-core virtual machine running on a
AMD Opteron 4171 HE (used in some Windows Azure datacenters), we have measured
that a well-written blocking RPC call has a wall-time context switch overhead of rough-
ly 4.5–5.9 microseconds, depending on the RPC mechanism used to make the call. User
time overhead (the CPU time spent executing the contestant’s program exclusively) is
much lower, on the order of around 0.5 microseconds. With the transact module, it is
possible to lower both the user-time and wall-time overhead by 25%. Fig. 3 shows both
user- and wall-time overheads for different message sizes.

Running interactive programs in multi-core machines is not recommended with lib-
interactive, since it makes the wall-time overhead significantly larger: over 10x in AMD
processors. The operating system needs to ensure memory coherence between all pro-
cessor cores and caches, so in the case where execution is transferred from one core to
another and there is a data dependency between them, an additional synchronization
step must be performed that further increases latency. Intel processors are also affected,
but not as dramatically. If multi-core machines are to be used, it is possible to force all
processes to run in the same CPU core by forcing their affinity, giving the same results
as single-core environments.

Regarding variability of measurements, for small messages (<100 bytes), the user
time overhead can vary up to ±0.4 microseconds per call in the worst case when both
contestant and problemsetter processes perform negligible amounts of processing and
the RPC costs dominate. The use of transact makes both the overhead and variability
of measurements lower. Fig.4 shows a boxplot with the distribution of user-times for a
16-byte message.

L.H. Chávez12

One example of a good task for libinteractive is IOI 2013’s Cave (Pouly, 2013),
which has a limit of 70,000 messages per case and both contestant and problemsetter
processes do non-trivial computation between each message. Both source code files were
unmodified and were compiled in both a single binary and as libinteractive programs
with the transact signalling mechanism. The single binary using the official solution
finished in 23.91 s, with a user-time of 23.29 s. The libinteractive binaries finished in
38.19 s (+59.72%), with a user-time for the contestant process only of 20.14 s (-13.53%).

Fig. 3. User- and wall-time overheads for different message sizes.

Fig. 4. User-time distribution.

libinteractive: A Better Way to Write Interactive Tasks 13

Despite the wall-time overhead, the user-time measurement was lower since all the pro-
cessing related to reading the input file and performing validation was not accounted
for. In general, tasks where the problemsetter code needs to do significant processing
tended to fare better when run under libinteractive, whereas tasks with higher number of
roundtrip calls tended to fare worse.

5. Conclusion

libinteractive is an excellent option to write interactive tasks that do not require a huge
amount of roundtrips since it only requires a single source file in one language to be
able to interact with the contestant’s code. It is also platform-independent which al-
lows contestants to practice writing solutions in the operating system they have access
to. It was also designed to be sandbox friendly, and is compatible with both minijail
and isolate. All code has been released through GitHub under the BSD license (ex-
cept the transact kernel module which has a GPL license to match the Linux kernel’s
license)3.

There are still a few things that we would like to do to improve the user friendliness
of libinteractive, like IDE integration. Finding ways to further reduce the RPC overhead,
especially on Intel processors, and supporting more data types like strings and structs/
records are also high on the list.

Acknowledgments

The rest of the omegaUp development team and volunteers, especially Ethan Jiménez
for his feedback during beta testing.

References

Birrel, A.D., Nelson, B.J. (1984). Implementing remote procedure calls. ACM Transactions on Computer
Systems, 2(1).

Bonwick, J. (1994). The slab allocator: an object-caching kernel memory allocator. In USENIX Summer, 1994,
87–98.

Chávez, L.H., González, A., Ponce, J. (2014). omegaUp: cloud-based contest management system and training
platform in the Mexican olympiad in informatics. Olympiads in Informatics, 8, 169–178.

Fakcharoenphol, J. (2011). Parrots. The 23rd International Olympiad in Informatics.
Mareš, M., Blackham, B. (2012). A new contest sandbox. Olympiads in Informatics, 6, 100–109.
NetMarketShare – Desktop Operating System Market Share (2014).

http://www.netmarketshare.com/operating-system-market-share.aspx?qprid

3 https://github.com/omegaup/

L.H. Chávez14

=10&qpcustomd=0&qpsp=2014&qpnp=2&qptimeframe=Y
Statista – Global market share held by operating systems Desktop PCs from January 2012 to December 2014

(2014). http://www.statista.com/statistics/218089/global-market-share-of-
windows-7/

Stevens, R. (2003). UNIX Network Programming, Vol. 2, Second Edition: Interprocess Communications.
Prentice Hall, 303–323.

Object Management Group (1991). The Common Object Request Broker: Architecture and Specification.
Pouly, A., Charguéraud, A. (2013). Caves. The 25th International Olympiad in Informatics.
Vaught, A. (1997). Introduction to named pipes. Linux Journal, #41.
W3C – Web IDL (2012). http://www.w3.org/TR/WebIDL/

L.H. Chávez is an ACM-ICPC world finalist (2010) and has a
bachelor’s degree in computer science (2011) from Tecnológico de
Monterrey, Campus Querétaro. He has been involved in several efforts
to improve the state of programming contests in Mexico since 2007,
and is one of the co-founders of omegaUp. He is currently employed
at Google in the Chrome team and is also studying towards a MSc in
computer science from Stanford.

Olympiads in Informatics, 2015, Vol. 9, 15–26
DOI: http://dx.doi.org/10.15388/ioi.2015.02 15

Organising National Olympiads in Informatics:
a Review of Selection Processes, Trainings and
Promotion Activities

Sébastien COMBÉFIS1,2, Alexis PAQUES2

1 Electronics and IT Unit, École Centrale des Arts et Métiers (ECAM)
 Promenade de l’Alma 50, 1200 Woluwé-Saint-Lambert, Belgium
2 Computer Science and IT in Education ASBL, Belgium
e-mail: s.combefis@ecam.be, alexis.paques@csited.be

Abstract. For a country to be allowed to send a national delegation to the International Olympiad
in Informatics (IOI), it must organise a national competition to select the national delegation. In
addition to the competition, trainings can also be proposed to the selected contestants to train them
specifically for the IOI. How to organise the national contests is at the discretion of countries, so
far as fairness is ensured among all the potential candidates. This paper reviews common struc-
tural elements and activities organised by several countries, for the advertisement of the national
contest, the steps of the selection process and the proposed trainings. Specific activities added by
countries according to cultural aspects or other country-specific characteristics are highlighted
with the reasons motivating the integration of those activities. Based on the review, this paper
summarises the key activities that could be organised by any country, with explanations about
what they bring to the national contestants and motivation for their organisation.

Keywords: national Olympiad in informatics, national IOI delegation selection process, trainings
activities and camps.

1. Introduction

When considering competitions as a tool to support and strengthen education, opinions
differ, even though most people agree that education and competitions are closely re-
lated. It is natural for children to compete and competitions are also important in adult
life; competitions should therefore be part of education (Verhoeff, 1997). In particular,
all the activities revolving around competitions, and all the material produced, if used
properly, enhance teaching and learning of concepts, such as in informatics, for example
(Combéfis and Wautelet, 2014).

The first international Olympiad in the field of informatics was organised in 1988
by the Association for Technical Culture of Slovenia (Zrimec, 1989). The International

S. Combéfis, A. Paques16

Olympiad in Informatics (IOI) is a competitive programming competition that supports
the education of informatics, recognised and supported by UNESCO, launched in Bul-
garia, in 1989 (Manev et al., 2007). In particular, this competition is a good force for
promoting programming and algorithm design fields of computer science. It is also an
opportunity for countries all over the world to promote and push informatics in the edu-
cation of young pupils, through the organisation of National Olympiad in Informatics
(NOI). Many other regular international Olympiad in informatics are organised such as
the Balkan Olympiad in Informatics (BOI) launched in 1993 at the initiative of Romania,
the Central-European Olympiad in Informatics (CEOI) first organised in 1994 and again
founded by Romania gathers nine countries, and the Baltic Olympiad in Informatics
(BOI) created in 1995, which started with only three participating countries and now
encompasses about 60 participants from nine countries.

This paper reviews how NOIs are organised in various countries, and how they are
used to foster the spread of informatics in schools. It also puts forward good practices
and highlights difficulties encountered by some countries.

Section 2 summarises the goals of NOIs, the main organisational and promotional
difficulties and the structure of institutions being in charge of organising NOIs.

Section 3 reviews the selection process and, more precisely, it examines how the
candidates are graded and selected to be part of the national IOI delegation.

Section 4 covers the trainings proposed to the contestants and the national delega-
tion, before the IOI. It also sums up additional activities organised in countries to pro-
mote informatics and attract pupils to take part in the NOI.

Finally, the last section concludes the paper with some open questions and sugges-
tions to improve the overall participation to the various existing national/regional/inter-
national Olympiads in Informatics and to better disseminate informatics in schools.

2. National Olympiad in Informatics

Each country that wants to send a national delegation to the IOI must organise a national
contest to make the selection of the national IOI delegation. This section summarises the
goals and the organisation of the National Olympiads in Informatics (NOIs) as well as
how they are promoted in the country.

2.1. Goals of the National Olympiads in Informatics

According to the institutions organising the NOI in various countries, informatics Olym-
piads play an important role in the introduction of informatics, in particular of program-
ming, in secondary schools. In some countries, the NOI is the biggest ICT related com-
petition, such as in Mongolia, for example (Choijoovanchig et al., 2007).

The main goals of the NOI are similar for most countries, that is, to encourage the
teaching of programming in schools. More specifically, the main goals can be sum-
marised as follows:

Organising National Olympiads in Informatics: a Review of Selection Processes... 17

The NOI can stimulate the interest for informatics and programming among sec- ●
ondary school pupils and teachers. In China, for example, it has been demonstrat-
ed that the NOI plays a role in the promotion and popularisation of information
technology in secondary schools (Wang et al., 2007).
Talented teachers and pupils are brought together thanks to the NOI, which fos- ●
ters the promotion of the contest in schools and collaboration between several
institutions (schools, universities, associations and ministries). It is therefore a
way to identify those talented pupils, and encourage them to pursue further op-
portunities in the profession and enrol in computer science related programs at
universities.
All the educational material produced for NOI, mainly tasks with solutions, syl- ●
labuses, training material or handbooks, can be used to motivate teachers to start
activities related to informatics in their schools.
Finally, the most obvious goal is simply to find talented pupils that will be part ●
of the national IOI delegation and will succeed in bringing back medals from
the IOI.

2.2. Promotion of National Olympiads in Informatics

Organising a nationwide contest and promoting it among teachers is not an easy task, as
highlighted in (Pohl, 2007). A direct consequence is a low participation rate to the NOI.
Several reasons have been highlighted:

The responsibility for schools is not always at the level of the nation, which makes ●
NOI difficult to promote, such as in Germany or in Belgium, for example (Com-
béfis and Leroy, 2011; Mukund, 2013; Pohl, 2007).
There can be a lack of a centralised contest organisation, which makes it difficult ●
for teachers in schools to decide which contest to recommend to their pupils. In-
deed, the market of contests is large since NOI is not the only prestigious scientific
contest with a corresponding international Olympiad, and NOI is not the only
informatics related contest in most countries.
Informatics is not a mandatory subject in schools – it is taught at most as an elec- ●
tive subject – which means that pupils do not know how to program nor have any
knowledge in algorithm design and consequently do not participate in program-
ming contests. A direct side effect is that there are only few professional informat-
ics teachers, making the level of informatics education in schools very low.
Financial issues can also arise in some countries. For example, Finland lost its ●
main sponsor, which vanished into its possibility to organise a three-step NOI
(Koivisto, 2013). The country had to consider using online competitions instead
of in school contests – this dramatically reduced the number of contestants.

A direct consequence of those issues is that some potential talented candidates may
miss the opportunity to participate in the national Olympiad and therefore be part of the
national IOI delegation, just because they was not aware of the informatics Olympiad.

S. Combéfis, A. Paques18

They may have discovered a passion for programming and may have shown good pro-
gramming skills, but are instead just pursuing a normal life, without informatics…

In addition to these difficulties related to the organisation of the NOI, it is not always
easy for some countries to participate and send a delegation to the IOI. Several reasons
have been put forward:

Pupils from some countries have insufficient English skills, which make it dif- ●
ficult for them to understand the tasks and to use online resources such as online
Olympiads.
The financial situation can also prevent a country from participating at the IOI ●
every year: the low annual budget can make it impossible to cover all annual
expenses. For example, Japan was not able to participate to all the IOIs (Tani and
Moriya, 2008).
It is not always possible for people from developing countries to get a visa to ●
enter some developed countries, preventing them to participate to some IOIs. For
example, Mongolia and Bangladesh were not able to attend several IOIs (Choijoo-
vanchig et al., 2007; Kaykobad, 2013).

It is not easy to address these issues, as they depend mainly on political decisions and
on the economic situation of countries. Nevertheless, countries have taken some actions.
Some countries are saving their money and decided to only participate to some IOIs. For
the visa issue, some countries are participating online and then compare themselves to
others thanks to the public rankings.

Promoting the NOI is also difficult. Contacts have to be found within schools, and
human resources have to be allocated to go to schools and explain to the teachers what
is the informatics Olympiad about. Some countries have developed interesting promo-
tional materials to spread the word about informatics:

Bangladesh convinced a newspaper to allocate space to publish math puzzles and ●
problems for their young readers (Kaykobad, 2013). This action was a large suc-
cess as thousands of pupils stormed into the office of the newspaper with their
solutions. Doing the same with small algorithmic problems could be a good pro-
motion vector.
Georgia started developing an online Olympiad thanks to the Olympiad alumni, ●
now working as professional programmers at various companies who gathered
money from several sponsors (Mandaria, 2013). This platform allows contes-
tants to compete more frequently and is a useful tool for identifying talented
pupils.
Development of books with materials about informatics, solved tasks with detailed ●
solutions and explanations, and theoretical concepts related to programming, time
complexity and algorithm design, for example (Mandaria, 2013).

Motivating pupils to participate at NOIs can be done in several ways. For example,
Thailand is offering scholarships for contestants selected for the national IOI delegation
(Malaivongs, 2013). Most countries offer medals and/or prizes to contestants that per-
form well on several stages of the NOI.

Organising National Olympiads in Informatics: a Review of Selection Processes... 19

2.3. Organisation of National Olympiads in Informatics

Depending on the country, the NOI is either organised by a single institution or coopera-
tively by several institutions. In most countries, a national association has been created
to promote informatics, such as the Croatian Computer Science Association, the Com-
puter Society of Macedonia, the Italian Association for Informatics, the China Computer
Federation or the Institute for the Promotion of Teaching Science and Technology in
Thailand, for example. A committee is then put in place, with collaborators from the
Ministry of Education, universities, high schools and ICT industries, to organise the
national Olympiad.

Several aspects have to be taken into account when organising and managing a NOI.
The separation of roles is more or less clear, depending on the country. For example, the
organisation of the Italian Olympiad in Informatics is split among three groups (Casadei
et al., 2007), which occurs in many countries:

The ● scientific group is responsible for the definition of the selection process and
trainings, the composition of the national team for the IOI delegation.
The ● administrative group takes care of the contacts with the schools and handles
the logistics of the selection process.
The ● technical group is in charge of the creation of tasks, the evaluation of the
programs written by the contestants and has to organise teaching and trainings for
the winners of the national Olympiad.

Another potential difficulty for some countries is related to the schedule. The IOI
usually takes place during July or August, which is not holiday in some countries, such
as Thailand, for example (Malaivongs, 2011). Many countries must adapt their sched-
ules to the national IOI delegation process.

3. Selection Process

The selection process for the national IOI delegation varies by countries, though they
share several key points. In most countries, the final of the national Olympiad is simply
a small-scale copy of the IOI, which is preceded by multiple selection steps. Some coun-
tries have added pen-and-paper rounds in addition to more traditional computer rounds,
such as in Belgium (Combéfis and Leroy, 2011).

The format of the NOI is chosen according to the skills that the country organisers
want their contestants to develop. For most countries, the NOI is focused on algorithm
design and practical programming skills; the contest is therefore centred on solving tasks
on a computer. But some countries, such as Slovakia, are focusing on the thinking pro-
cess (problem solving process), arguing that it is what they will need in their future
lives if they chose a career in computer science; the contest having therefore more paper
rounds supervised by human judges (Forišek, 2007; Forišek, 2013).

S. Combéfis, A. Paques20

One important point of interest for the selection process for many countries, such as
Latvia and China, for example, is the establishment of strict rules that define how the
national IOI delegation is selected (Opmanis, 2013; Wang et al., 2010).

3.1. Organised Contests and Levels

The selection process for the national IOI delegation expands through one or two years,
depending on the country. Limiting the duration of the selection process to one year
makes it easier to have candidates participating more than once to the IOI. Extending the
selection process for two years allows the candidates to be more trained, which increases
the chance to reach first positions in the ranking during the IOI. In most countries, the
national Olympiad is split into several stages starting with local contests, followed by
the provinces/regional contests, and finally leading to one nationwide final.

Here are the most common stages of national Olympiads:

School competitions ● are organised in schools by teachers, and are generally a
compulsory step, but without a qualifying meaning, such as in Latvia (Opmanis,
2013). Such a stage is very useful for promotional purposes, and is rather easy
to organise, as the teachers handle it locally. It allows pupils to test their willing-
ness to participate in the national Olympiad. Practically, this can either be a pen-
and-paper contest, which is easier for the teacher, or a computer-based contest,
in which case the best solution is to propose an online platform to support the
contest.
Regional competitions ● are organised by regions/provinces/districts, and have a
qualifying status. The main goal for contestants is therefore to qualify for the next
level of competitions. The qualified contestants are generally selected based on
one unique nationwide ranking. However, in some countries, at least one con-
testant by region is selected, for promotion and equity purposes. Such a stage is
generally organised into a set of schools where enthusiastic teachers supervise the
contestants that participate in the contest through an online platform.
Country competition ● , often referred to as final, is organised as an on-site compe-
tition whose location can change every year, generally hosted by a local university
or university college.
Selection competition ● is an additional level of competition that some countries
organise to select contestants that will be part of the national delegation for re-
gional contests such as the BOI or CEOI, and for the national IOI delegation. That
stage is usually very similar to the IOI, namely a two-day on-site competition
based on programming tasks to solve with a computer.

Some countries do not work in such a structure. For example, Thailand only has sev-
eral nationwide contests interleaved with training camps, which results in the selection
of about 100 contestants for the NOI (Malaivongs, 2013). Another quite spread habit is
to organise some of the selection steps as online contests as it is the case in Japan and
Germany, for example (Pohl, 2007; Tani and Moriya, 2008). Finally, some countries,

Organising National Olympiads in Informatics: a Review of Selection Processes... 21

such as India, are explicitly organising two separate contests in the first stage, one pen-
and-paper style to test algorithmic insight and one on computers to test programming
skills (Mukund, 2013).

Table 1 shows a summary of an average participation rate, in term of the number
of contestants, for the different stages of the NOI in several countries. It reveals that
some countries are trying to have widespread local competitions, to reach a lot of pupils
(mainly for promotion) and to allow the highest number of them to enter the competi-
tion, whereas other countries are more focused on the selection for the IOI, directly
starting with regional or final competition.

3.2. Grading Systems

Being able to automatically grade the programs produced by the contestants is very
important for a good NOI. In some countries, produced code is inspected and graded
manually by a jury, either with a precise grading scheme, or with a less systematic
grading consisting of the attribution of a numerical score to the proposed solutions
(Pohl, 2007).

Most countries have developed their own automatic grading systems able to safely
execute code and to run them against test sets in order to establish a scored ranking
(Chávez et al., 2014; Kostadinov et al., 2010; Maggiolo et al., 2014; Mareš and Black-
ham, 2012; Zhao et al., 2013).

Many countries adopted Contest Management System to organise their contests,
a distributed system for running and organising a programming contest (CMS, 2015;
Maggiolo et al., 2014). The main concerns of such graders are flexibility, efficiency,
safety and security, independence to the programming language, and accuracy in ex-
ecution time measurements. More general grading systems whose main goal is to be

Table 1
Participation to the different stages of the NOI for several countries

Country Rounds School/Internet Regional Final Selection

BE 3 – ~150 ~40 ~15
BR 2 ~8,000 –
CN 4 ~80,000 ~12,000 ? ?
FI 3 ~4,000 ~200 ~20 –
IN 3 – ~8,000 ~300 ~25
JP 2 ~250 – ~50 ~15
MX 3 ~15,000 ~2,000 ~100 –
RO 3 ? ? ~400 –
RS 5 ~350 ~150 ~75 ?
SK 2–3 ~150 ? ~30 ~10
TH ~100 –

S. Combéfis, A. Paques22

embedded in learning platforms that can be used to train pupils have also been pro-
duced more recently (Combéfis and le Clément de Saint-Marcq, 2012; Urbančič and
Trampuš, 2012).

3.3. Scoring and Selection of the IOI Delegation

Most countries do have a simple way to select the four pupils to form the national del-
egation for the IOI, just selecting the four candidates having obtained the largest scores
during the final round of the national Olympiad. In some countries, as in Macedonia, the
sum of all the scores obtained at each stage of the national Olympiad is used to select the
IOI delegation (Janceski and Pacovski, 2007).

In China or in Germany, candidates have the opportunity to defend themselves dur-
ing an oral defence in front of a jury, as part of the selection process (Wang et al., 2007;
Pohl, 2007). This additional interview is a great opportunity to check the English pro-
ficiency level of the candidates, for example. Other criteria such as the previous year
medallist at the national Olympiad, at regional Olympiads and at the IOI are taken into
account in the selection process, for example in Latvia (Opmanis, 2013).

Finally, in some countries, an additional contest, whose style is the same as the one of
the IOI, is organised for the contestants that got the best scores during the NOI, in order
to select the four contestants that will represent the country at the IOI. Usually, that final
contest takes place after a training camp lasting several days that allows pupils to learn
advanced algorithms and sharpen their programming skills.

4. Trainings and Additional Activities

Training contestants at various steps of the NOI is important since informatics is not
present in school curricula of most countries. The most widespread activity is training
camps, but countries are also organising other kinds of activities more specifically, to
promote informatics or to foster cooperation between countries. For example, centres of
excellence have been deployed in Romania, developing trainings for six disciplines, one
of which is informatics (Cerchez and Andreica, 2008).

4.1. Training Camps

Trainings camps are organised by many countries. These camps last from a few days
to weeks and are mainly organised at different moments in the selection process. They
are mainly organised once the national IOI delegation has been selected, to train them
for the IOI. But there are also training camps organised before the NOI final, or camps
dedicated to the best contestants from the NOI, to help in the selection of the national
IOI delegation, such as in Japan (Tani and Moriya, 2008).

Organising National Olympiads in Informatics: a Review of Selection Processes... 23

Some countries prepare their contestants for the IOI during several years, starting
with the basics of programming, and then going to more advanced concepts in algo-
rithmic methods. In addition to those more theoretical concepts, contestants are also
training their code-writing skills. Trainings camps are mainly organised by teachers, but
most countries also integrate former IOI contestants as tutors (Tani and Moriya, 2008).
Usually, training camps are especially dedicated to train the contestants participating in
NOI, or those selected for the IOI. Countries are starting to organise camps whose pur-
pose is simply to spread informatics, providing introductory courses in computer science
(Anido and Menderico, 2007).

In addition to those on-site supervised training camps, some countries encourage
their contestants to take part in online contests organised by other countries or organisa-
tions, such as USACO, Chinese ACM-ICPC Online Judge, and Google Code Jam, for
example. It is clear that using tasks from past IOIs is possible. Using those resources
available online is a cheap way to propose trainings when lacking of human resources
to supervise them (Combéfis and Wautelet, 2014). Correspondence camps, organised
in Japan and in Slovakia, are a solution to do this supervision (Forišek, 2007; Tani and
Moriya, 2008). It is clearly a good way to tackle the lack of qualified informatics teach-
ers, that are only located in a few cities in most countries.

4.2. Regional Olympiads and Cooperation

Finally, in addition to the IOI, there exist other regional Olympiads, such as the Balkan
Olympiad in Informatics (BOI), the Baltic Olympiad in Informatics (BOI), the Central-
European Olympiad in Informatics (CEOI) and the French-Australian Regional Infor-
matics Olympiad (FARIO), for example.

Allowing the best pupils of the national Olympiads to participate at those regional
Olympiads is a good training as highlighted by several countries. Of course, money
has to be found to cover the participation expenses, except for online contests such as
FARIO, for example.

Generally speaking, more cooperation between countries should be put in place, since
the goals of every country regarding informatics and education are mainly the same. As
it is the case with Slovakia, countries could be collaborating to prepare problems and
help for their NIO and to prepare training camps (Forišek, 2007).

4.3. Promotion Purpose

As previously stated, national Olympiads are often also used as a tool for promoting in-
formatics in schools. Some countries have introduced innovations in the national contest
to help this promotion purpose.

Latvia introduced a special “first subtask” for every task of the country competition
that can be solved by hand without the need of finding and implementing an algorithm to

S. Combéfis, A. Paques24

solve them (Opmanis, 2013). The main reason is to avoid the so-called “0-frustration” of
contestants who understood the idea of the task, but were not able to write the algorithm
to solve it. In Japan, four of the tasks of the first round are relatively simple, for the same
reason (Tani and Moriya, 2008).

As highlighted in (Isal et al., 2014), establishing clear roles for the stakeholders
involved in the NOIs for the promotion purpose is very important. The authors propose
four levels of stakeholders starting with the participants and alumni contestants followed
by universities and government. Each of these layers has to advertise the NOI since they
can have different impacts and reach different publics.

5. Conclusion

To conclude this paper, IOI and related activities lead by participating countries are use-
ful for promoting informatics in schools. Nevertheless, Olympiads need supplemental
activities that must be organised to reach the informatics promotion goal that is promot-
ing computer science and fostering its presence in education.

An observation that is made in several countries is that members of the national IOI
delegation can often attend only one IOI since they are too aged. Two main reasons ex-
plain that observation: informatics is not in the curriculum of primary (8–12 years old)
and secondary schools (12–18 years old), and selection processes sometimes last two
years. One possible solution is to start the competition earlier and organising mini and
junior Olympiads, such as the Junior Balkan Olympiad in Informatics, or to propose pro-
motion activities such as the junior summer camps organised in New Zealand (Phillipps,
2010). Australia also went into this direction with their Australian Informatics Com-
petition (AIC) which is an entry-level pen-and-paper competition targeted to youngers
(Clark and Clapper, 2014). Collaborating with other contests targeted to younger pupils,
such as the Bebras contest (Futschek and Dagiene, 2009), can also help to attract more
people to join NOIs and IOIs.

Another big issue raised by most countries is the lack of materials that can be used
by schools’ teachers and for the trainings of contestants (Ilić and Ilić, 2012). Some coun-
tries are doing the tasks that are used in NOIs publicly available. Solutions as well as
explanations of the solutions must also be available for such material to be useful and
exploitable.

This review highlights that most countries share common ideas in the organisation of
their NOI. Having a local competition level, that is not necessarily mandatory, is useful
for promoting informatics among pupils and teachers. The second important activities
are training camps. Two kinds of camps are organised: interleaved camps during the NOI
that teach pupils algorithms and programming and selection camps with the best con-
testants from NOI to choose the national IOI delegation. Both camps are very important
and should be organised if possible.

Finally, maintaining alumni contestants involved in the organisation of NOIs is also
a good solution to help promote. Alumni associations can be found as it has been done
in Indonesia (Isal et al, 2014).

Organising National Olympiads in Informatics: a Review of Selection Processes... 25

To conclude, five recommendations can be highlighted:

 Promotion of informatics should 1. start earlier, with initiatives and contests dedi-
cated to younger pupils.
 2. Collaboration and links with existing informatics contests, not necessarily related
to programming, should be made.
 Learning 3. materials should be produced for teachers and trainers, to be used with
their pupils and trainees.
 4. Training camps and entry-level contests should be organised.
 Relations with 5. alumni contestants should be maintained to keep them involved
in NOIs.

To work on those recommendations, more cooperation and collaboration should be
established between countries, so they may get closer at reaching the common goal of
spreading computer science and improving its presence in education.

References

Anido, R., Menderico, R. (2007). Brazilian olympiad in informatics. Olympiads in Informatics, 1, 5–14.
Casadei, G., Fadini, B., De Vita, M.G. (2007). Italian olympiads in informatics. Olympiads in Informatics, 1,

24–30.
Cepeda, A., Garcia, M. (2011). Mexican olympiad in informatics. Olympiads in Informatics, 5, 128–130.
Cerchez, E., Andreica, M. (2008). Romanian national olympiads in informatics and training. Olympiad in In-

formatics, 2, 37–47.
Chávez, L., González, A., Ponce, J. (2014). omegaUp: cloud-based contest management system and training

platform in the Mexican olympiad in informatics, Olympiads in Informatics, 8, 169–178.
Choijoovanchig, L., Uyanga, S., Dashnyam, M. (2007). The informatics olympiad in Mongolia. Olympiads in

Informatics, 1, 31–36.
Clark, D., Clapper, M. (2014). The Australian informatics competition. Olympiads in Informatics, 8, 179–189.
CMS (2015). Contest Management System. https://cms.readthedocs.org/en/v1.2/
Combéfis, S., Leroy, D. (2011). Belgian olympiads in informatics: the story of launching a national contest.

Olympiads in Informatics, 5, 131–139.
Combéfis, S., le Clément de Saint-Marcq, V. (2012). Teaching programming and algorithm design with pythia,

a web-based learning platform. Olympiads in Informatics, 6, 31–43.
Combéfis, S., Wautelet, J. (2014). Programming trainings and informatics teaching through online contest.

Olympiads in Informatics, 8, 21–34.
Forišek, M. (2007). Slovak IOI 2007 Team selection and preparation. Olympiads in Informatics, 1, 57–65.
Forišek, M. (2013). Pushing the boundary of programming contests. Olympiads in Informatics, 7, 23–35.
Futschek, G., Dagiene, V. (2009). A contest on informatics and computer fluency attracts school students to

learn basic technology concepts. In: Proceedings of the 9th World Conference on Computers in Education.
Ilić, A., Ilić, A. (2012). IOI Trainings and Serbian competitions in informatics. Olympiad in Informatics, 6,

158–169.
Isal, Y.K., Liem, M.M.I., Mulyanto, A., Marshal, B. (2014). Indonesian olympiad in informatics: significant

advancements between 2010 and 2014. Olympiads in Informatics, 8, 191–198.
Janceski, M., Pacovski, V. (2007). Olympiads in informatics: Macedonian experience, needs, challenges. Olym-

piads in Informatics, 1, 66–78.
Kaykobad, M. (2013). Bangladesh olympiads in informatics. Olympiads in Informatics, 7, 163–167.
Koivisto, J. (2011). The national computer olympiads and the IOI participation in Finland. Olympiads in Infor-

matics, 5, 147–149.
Kostadinov, B., Jovanov, M., Stankov, E. (2010). A new design of a system for contest management and grading

in informatics competitions. In: Web Proceedings of ICT Innovations 2010. 87–96.

S. Combéfis, A. Paques26

Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). CMS: a growing grading system. Olympiads in Informatics,
8, 123–131.

Mandaria, G. (2013). Olympiads in informatics: the Georgian experience. Olympiads in Informatics, 7, 168–
174.

Malaivongs, K. (2011). Preparing students for IOI: Thailand country report. Olympiads in Informatics, 5, 150–
154.

Manev, K., Kelevedjiev, E., Kapralov, S. (2007). Programming contests for school students in Bulgaria. Olym-
piads in Informatics, 1, 112–123.

Mareš, M., Blackham, B. (2012). A new contest sandbox. Olympiads in Informatics, 6, 100–109.
Mukund, M. (2013). The Indian computing olympiad. Olympiad in Informatics, 7, 175–179.
Opmanis, M. (2013). Latvian olympiad in informatics – lessons learned. Olympiads in Informatics. 7, 78–89.
Phillipps, M. (2010). The New Zealand experience of finding informatics talent. Olympiads in Informatics, 4,

104–112.
Pohl, W. (2007). Computer science contests in Germany. Olympiads in Informatics, 1, 141–148.
Tani, S., Moriya, E. (2008). Japanese olympiad in informatics. Olympiads in Informatics, 2, 163–170.
Urbančič, J, Trampuš, M. (2012). Putka – a web application in support of computer programming education.

Olympiads in Informatics, 6, 205–211.
Verhoeff, T. (1997). The role of competitions in education. In: Proceedings of the Future World Educating for

the 21st Century Conference and Exhibition.
Wang, H., Yin, B., Li, W. (2007). Development and exploration of Chinese national olympiad in informatics

(CNOI). Olympiads in Informatics, 1, 165–174.
Wang, H., Yin, B., Liu, R., Tang, W., Hu, W. (2010). Selection mechanism and task creation of Chinese national

olympiad in informatics. Olympiads in Informatics, 4, 142–150.
Zhao, Q., Wang, F., Yin, B., Sun, H. (2013). Arbitrer: the evaluation tool in the contests of the China NOI.

Olympiads in Informatics, 7, 180–185.
Zrimec, M. (1989). The report of Slovenian association of technical culture organisation. In: Proceedings of the

International Congress on Education and Informatics: Strengthening International Cooperation. ED.89/
WS/62.

Dr. S. Combéfis obtained his PhD in engineering in November 2013
from the Université catholique de Louvain in Belgium. He is currently
working as a lecturer at the École Centrale des Arts et Métiers (ECAM),
where he is mainly teaching informatics. He also got an advanced master
in pedagogy in higher education in June 2014. He founded the Belgian
Olympiad in Informatics (be-OI) with Damien Leroy in 2010. In 2012,
he introduced the Bebras contest in Belgium and at the same time he
founded the CSITEd non-profit organisation that aims at promoting
computer science in secondary schools.

A. Paques is studying electronics engineering at École Centrale des Arts
et Métiers (ECAM), in Brussels. He is now a first year master student.
In addition to his passion for engineering, he likes programming. He
has also been involved in the Bebras final in 2015, where he taught
informatics to secondary school students. Since then, he has started to
contribute to several projects related to informatics teaching for pupils.

Olympiads in Informatics, 2015, Vol. 9, 27–37
DOI: http://dx.doi.org/10.15388/ioi.2015.03

27

Methodology for Characterization of Cognitive
Activities when Solving Programming Problems
of an Algorithmic Nature

Gilberto CUBA-RICARDO, María T. SERRANO-RODRÍGUEZ,
P. Alberto LEYVA-FIGUEREDO, Laura L. MENDOZA-TAULER
José de la Luz y Caballero University of Pedagogical Science of Holguín. Cuba
e-mail: {gilberto.cuba, mariat, albertoleyva, laura}@ucp.ho.rimed.cu

Abstract. This paper shows a methodology for characterization the students’ cognitive activity
when solving programming problems of algorithmic nature. It also reveals the methodology stages
and the dimensions assumed to assess the process using several methods, techniques and tools.

The paper describes some characteristics and regularities from the behavior of three students
when they solve a programming problem.

Keywords: programming contests, problem solving, metacognition.

1. Introduction

Programming contests are constituted by problems that contestants must solve in a short
period of time in relation to its level of complexity (Verhoeff, 1997). Hence, some of the
results obtained are less than what it is expected from a student.

The informatics coach must diagnose the students’ development stage when master-
ing these algorithms. They must also diagnose their skills when solving these kinds of
problems. These elements constitute a challenge from a pedagogical point of view. As
it is important for the coach to influence and improve students’ work, identifying their
deficiencies is critical.

The source code constitutes the solution given by the students to a specific problem.
The worksheets for such contestant are the space where they write some models or
techniques related to the problem. This source code and their worksheets don’t allow for
the complete analysis of their skills and shortcomings. This is because the elements are
results of the final state of a process lasting between 60 and 90 minutes. Consequently, a
current issue is the study of the cognitive activity developed by the student when solving
programming problems (Deek et al., 1999; White and Sivitanides, 2002).

G. Cuba-Ricardo et al.28

Specifically, Hosseini et al. (2014) show a new approach for assessing the exercise
solutions. Here, they check the intermediate steps during implementation of an algo-
rithm solution. This alternative allow Hosseini et al. (2014) to conclude that the study
of these intermediate steps helps the coach to know the most common paths used by
students when solving programming problems, and thus, provide better feedback to stu-
dents. However, these authors only consider at each intermediate step, the source code
developed by the student.

Surakka and Malmi (2004) list the cognitive skills that successful computer pro-
grammers must have when solving programming problems. These cognitive skills are
the results of many experienced programmer opinions through the application of two
rounds of the Delphi method. However, programmer opinions were not contrasted with
information gathered from other practical methods.

In such case, the study of cognitive activity when students solve programming prob-
lems should not only consider the analysis of the aforementioned process results, but
also the assessment of the thinking states of the students while they solve the problem.

In this sense, considering the possibilities offered by the computer to register the
interactions given by the user in short periods of time, it is decided then to search for an
alternative to register the students’ behavior while solving programming problems. In
addition, a methodology was developed to guide the process considering some process
and outcomes indicators.

The methodology was applied to three senior high school Informatics contestants.

2. Screenshot Software

When seeking informatics applications that met the register requirements, some were
found which were oriented to monitoring and registering the traces left by the user dur-
ing their interaction with the computer. Their usage is supported by a conception involv-
ing and compromising the computer’s security for malicious purpose. It is very common
to recognize them as malware, or relate them to monitoring processes in enterprises that
monitor informatics security. However, the application explained below, has different
purposes in relation to the scientific research, mainly, to reveal behavior when solving
programming problems of algorithmic nature.

Without going further on the security matter, some of the names that identify them
are Spyware, Spybot, Keylogger, Computer Monitor, PC Audit, etc. Almost all of those
found are registered under owners’ license and with a great amount of setting options
which slow the output of the computer. Plus, it makes usage for more specific purposes
like only recording screenshots in short periods of time difficult.

Thus, a very simple informatics application was developed, which allowed the ac-
complishment of the stated objectives without reinventing those that already have their
established goals related to the malware or security. Nevertheless, the core of the re-
search wasn’t the development of a new sophisticated application that permitted the
registration of the entire user’s interaction with the computer. Up to this moment, we

Methodology for Characterization of Cognitive Activities when Solving ... 29

have only implemented the registration of snapshots of the computer desktop state over
short periods of time.

The name given to this application was Screen Shooter System Tray. It has an execut-
able that can be instantiated from any location in the computer. Installations require-
ments do not depend on frameworks or third party libraries to allow execution. It only
runs on Microsoft Windows XP or later versions.

Its visual recognition is presented as an icon in the computer’s operating system’s
tray, next to the clock. It has a context menu with the basic options to enable and disable
the recording. After the execution of the application, the image recording is saved by
default in the same folder of the executable file, with a one-second difference between
screenshots.

Since the number of images saved in one hour is greater than 3600, it is necessary to
reduce image sizes. For that, images are saved as JPEG format in grayscale with 8 bits
depth of colors.

3. Methodology for Characterizing the Cognitive Process of
Solving Programming Problems

The methodology used was not only aimed at a final assessment of such a process. There
are several manual methods to do so, allowing checking the solution of an exercise
with the data sets produced with the objective of getting a grade. There are also Internet
Websites, that devote their content to publishing exercises and evaluating the solutions
submitted by the users. (Kolstad and Piele, 2007; Revilla et al., 2008; Verhoeff, 2008;
Mares and Blackham, 2012; Maggiolo et al., 2014).

The objective of the present methodology was to determine the characteristics shown
by students during the programming problem solving process, at the time they evaluate
the quality of the final outcome, expressed in the source code of the problem’s solution
algorithm. For a better understanding and materialization of it, the methodology was
organized into five stages:

Preparation for the process.1.
Recording the process of exercise application.2.
Analysis, processing and assessing of the partial reports (observation, desktop 3.
pictures, source code of the algorithm solution).
Interview session.4.
Final assessment.5.

In this regard, deep studies on the characterizations of the student’s cognitive activ-
ity while solving problems have no recent antecedents in the area of mathematics in the
works of Shoenfeld (1985) and Cruz (2002). On this basis, common features have been
analyzed and certain procedures, which characterize the programming problem solving
process, have been imported from Mathematics.

In Informatics, specifically in the Programming area, the work of Deek et al. (1999)
has been found. These authors developed their research in the introductory courses of

G. Cuba-Ricardo et al.30

problem solving and programming taught to university students from the New Jersey In-
stitute of Technology. They used a method to assess processes developed by the students,
which allowed them to readjust the content and related teaching methods, supported by
a six-stage model.

Their arguments allowed us to clarify the variables to consider in the characteriza-
tion process, and we used some of the indicators presented in their work. However, their
instruments are not used, since they do not take advantage of the interview potential with
each student.

Specifically, for the implementation of the methodology, we recognized that training
and developing metacognitive processes in the students, has an important role in the
solving programming problems of an algorithmic nature. Hence, one of the dimensions
taken into consideration was metacognition. The other one was the use of complemen-
tary tools that help the contestant solve the problem. The third one was solving the
stated problem, which is a source code in a Programming Language (PL) reflecting an
individualized representation of the solution algorithm.

The first two dimensions have a process nature, while the third one is a result. This
demonstrates the objective of the methodology, essentially aimed at the characterization
of solving programming problems of an algorithmic nature.

3.1. Stage (I) Preparation for the Process

A careful selection of the exercise was essential to carry out the characterization process.
For that, the previous knowledge of the students was taken into consideration, along
with what it is needed from the problem itself to find a solution algorithm. It was also
guaranteed that there were several solutions of the problems and the data sets which al-
lowed us to assess the students’ answers.

The exercise was prepared to be read by the student from a document reader in each
computer. This permitted us to know through screenshots when the contestant consulted
the document for the exercise. Furthermore, the computers’ clocks were synchronized
when applying the same programming problem at the same time.

When collecting the data which enables characterizing the process, three main meth-
ods were used: registration of participant observations, the screenshot recording and the
interviews. The first two were developed while solving the problems and the last one,
once the process was completed.

The purpose of the observation in the development of the activity, was aimed at
describing in as much detail as possible, the students’ behavior when solving problems.
Hence, the registration of the observation focused on writing what the students did in
every time interval. For that reason, it was designed as a three-column table containing
the description of the action, including the start and end time.

While solving the problem the student took some notes and reflected. These reflec-
tions are show when he is not reading the exercise or not writing on the worksheet. To be
sure of the second action, the students were asked some questions.

Methodology for Characterization of Cognitive Activities when Solving ... 31

3.2. Stage (II) Recording the Process of Exercise Application

This activity began using the proposed application that captures the computer screen-
shots used by the students (Screen Shooter System Tray), at the time it gave them the start
command. From then, every observation moment was registered on worksheets. The stu-
dents’ doubts were also assisted regarding the interpretation of the problem, which were
also registered like the other actions. Doubts were essential elements to determine the
students’ comprehension levels in relation to the exercise. This obviously helped orient
the questions of the interview.

With a little difficulty some of the students’ behavior was also registered such as anx-
iety, despair, uneasiness, satisfaction, success, joy, fear, defeatism, etc, which allowed
a comprehensive assessment of the process. Some of these behaviors were identified
through questions, because it was difficult to diagnose from the observation.

Likewise, the students were told when they had 5–10 minutes left to finish the exer-
cise like in any other contest of this kind. At this point, the students’ decisions changed,
which were also registered as much as possible in order to fulfill the assessment strategy
developed by them when solving problems under pressure.

When the time dedicated to do the task finished, the application recording the screen-
shots was stopped. The images were collected along with the programs source code to
be processed. Worksheets were also gathered and added to each student’s observation
sheet.

The students were not allowed to tell each other their experiences until the interview
process was over. This decision was mainly based on the fact that they could readjust not
only their solving algorithm, but their behavior and opinions. It was considered that if
this exchange of ideas could happen, the results of the students’ answers in the interview
would have altered.

3.3. Stage (III) Analysis, Processing and Assessing of the Partial Reports

It was decided that the time for the problem solving process, and the interview ses-
sions wouldn’t exceed 24 hours. This was based on the following: the larger the time
between the two activities, the less the possibilities to really know the characteristics
and cognitive behaviors developed by the students when solving the problems. If the
time exceeded 24 hours, the students could forget why they determined certain deci-
sions that were revealed during the observation process. Therefore, once the recording
process was finished, every screenshot was further analyzed, and the interview began
right after that, with the objective of clarifying those elements that were not very clear
in the interpretation process, and to clarify some hypothesis that surfaced from the
analysis process.

When assessing the previously declared dimensions, some indicators were taken
into consideration that enriched the process in its abstraction. In the metacognitive

G. Cuba-Ricardo et al.32

dimension, the indicators were focused on: the metacomprehension of the problem
and the given solution, its planning, the conscious use of strategies and techniques to
solve the problems, the self assessment of the steps followed and the whole process
as such.

In relation to this foundation, the studies of Weinstein and Underwood (1985) were
consulted. They proposed questionnaires representing inventories dedicated to assess
the learning strategies, which, among others, metacognition can be found. The review
of such questionnaires permitted formulating a guide to questions to be asked in the
interview stage.

Most of these indicators were best suited to the interview stage. However, from the
analysis of the desktop screenshots, along with the students’ notes in the worksheet,
plus the notes from the observation, the guide of questions and topics to ask during the
interview were planned. As an example, some of the topics and questions asked of the
students in the interviews were:

Could you read and fully understand the exam exercise? How and/or when do you ●
know you had correctly understood the exercise?
Was the exercise difficult or easy to answer? Why? What elements did you take ●
into consideration to determine the difficulty of the exercise? What was more
difficult: understanding the exercise or searching for an algorithm is solution that
fulfilled the requirements of the exercise, and/or to code in a PL the algorithm
solution found?
Did you feel ready to solve this kind of exercise? Was there any kind of content ●
you had not mastered and felt you needed to solve the exercise? Which one? What
do you do in such situation, when there is an exercise you cannot completely solve
during a contest?
Did you use any particular strategy to solve the exercise? Can you tell us about ●
it? Have you yourself defined any steps to follow, or that you had already planned
beforehand to solve the exercise? What techniques, tools, steps or ways did you
use to solve the exercise successfully?
When you found an algorithm is solution for solving the problem, how did you ●
know it was correct to start to code it and that it will be successful? Or did you just
start coding it and check at the end with the data sets if it is right or wrong?
Was the exercise similar to others previously answered by you during the training ●
period or in any other contest?
What were your notes in the worksheets used for? Can you explain some of ●
them?

Most of these questions have their own purpose. The first one, deciphers the char-
acteristics of the students’ thought, along the problem solving process; the second one,
educational, evidenced when the student is introspective and consciously gains the
knowledge of how certain processes are developed in his thought. Therefore, these in-
terviews were very important because they make possible the development and training
of metacognitive skills in students.

When analyzing the dimension related to the additional tools that enabled solving the

Methodology for Characterization of Cognitive Activities when Solving ... 33

problem, it was considered that: the computer’s operating system, the Integrated Devel-
opment Environment (IDE), debugger and PL, are part of this group. When recognizing
the skill level of the students’ development while using these tools, the understanding of
their basic concepts is also taken into consideration.

Some problems detected after the observation and the analysis of the screenshots, are
presented below:

The keyboard configurations do not allow a suitable output of the symbols needed ●
to code the algorithmic solution in the selected language.
Inadequate mastery and familiarization of IDE, which makes the necessary opera- ●
tions impossible to code with the required speed.
IDE configurations do not facilitate a larger visibility of the source code and ac- ●
cess to the most used objects.
The debugger possibilities were wasted. ●
Insufficient mastery of the PL used to code the algorithm solution, mainly evi- ●
denced when the student doesn’t know about the range of the data types, when
he doesn’t recognize the syntax errors indicated by the compiler, and when he
doesn’t interpret the functionality of part of the program code.

Finally, when analyzing the final solution of the problem as a source code of such an
algorithm, the following were taken into account: the total grading obtained during the
program assessment, the source code style, the relations between the source code and the
algorithm solution, and the data structure in their relation to code portions supporting the
input, output and processing of the data.

The clarity of the source code, as a manifested characteristic of the solution program
submitted, is related to the planning done by the student during the initial process of the
solution conception. Consequently, the analysis of its links and the search of explana-
tions by the students is needed. Its effectiveness was checked through the assessment of
the program in execution with every data set.

As the final solution of the exercise was not very clear, it was necessary to investigate
some matters related to the source code and the solution algorithm found. Upon this
foundation, the following questions were planned:

Explain briefly the solution algorithm found for the exercise. First of all, express it ●
in a mathematical way according to the data and the unknown data. Then, explain
yourself, demonstrating in praxis the use of the data structures, as well as the con-
trol structures used in the programming language.
How did you determine the data structures you were going to use? Which do you ●
determine first, the structures or the algorithm?
When you started to code the program, did you do it thinking about the solution ●
algorithm of the exercise? Did it change during the time used to solve it? Can you
describe the main differences or changes produced between the algorithm as first
conceived and the one delivered? How do you know if the coded program solves
the exercise?

Once the interview guide is organized, it is added to the source code, the students’
worksheet and the observations made in order to move on to the next stage.

G. Cuba-Ricardo et al.34

3.4. Stage (IV) Interview Session

The interviews were individual and clarified the hypothesis and doubts observed from
the students’ behavior. The need to have devices that allow recording videos become
evident. It was also verified, that during the activity other questions surfaced that should
have been planned and arranged as part of the interview guide. Other matters that pre-
vailed were the students’ exhaustive explanations about the algorithm they followed, and
the way they took it to the “new” worksheets.

At the end of the interview, the student was shown the algorithm planned as the
solution to the exercise in case it did not match there, and they were asked for opinions
about it. Likewise, the relation between the presented algorithm and the source code
that solves it was explained. During this explanation, he was also shown some modeling
techniques that enable a better representation of the information of the problem and the
relations established between them.

The exemplification of this element not only shows to the student the way to solve
the stated problem, as the interview not only gives the teacher those elements he must
teach in order to improve the solution of the programming problem; but also, it allows the
student to think of his metacognitive activity, of his techniques and strategies applied to
solve the problem, and of his skills. In general, this kind of procedure influences the stu-
dent self regulation from the very moment he knows how his knowledge is developed.

3.5. Stage (V) Final Assessment

Reaching this point, an exchange cycle with the contestant is closed, where most of the
elements explained by him are corroborated with his worksheet, along with the registra-
tion of the observation.

In order to continue clarifying the problem solving process developed by the stu-
dents, and after a first screenshot review, a further and exhaustive review was under-
taken, where some elements were revealed constituting problems, wasting of time or
difficulties that obstruct the speed of the problem solving process.

In general, after the analysis of several of the represented data, we concluded that
the students demonstrated a tendency to think and solve the problem as they coded the
solution algorithm. This aspect confirms the strong union between the construction of
the problem solution algorithm and its code. (Deek et al., 1999).

This process is evidenced when the student starts to code the solution of the problem;
reinterprets the written code and compares it to his algorithm solution represented in his
mind. Then, he corrects the possible mistakes little by little, and optimizes the source
code in correspondence to the planned objectives.

This phenomenon is shown as an unfinished idea, and in the way the student imple-
ments the source code, he evaluates and controls mentally its parts. This interpretation
is carried out through internal simulations, and such portions are closely related form-
ing little algorithms that in its general structure, determine the algorithm solution of the
exercise presented.

Methodology for Characterization of Cognitive Activities when Solving ... 35

Taking into account this behavior, it was observed that students have difficulties
when interpreting the problem, as well as when planning the search for the solution.
Similarly, it was evidenced that leading the heuristic search in the construction of the so-
lution algorithm, was made unconsciously and not in a self controlled way, which would
facilitate the correct selection of the strategies to solve problem of this nature.

Throughout the process, it was also shown, that the students check the partial status
of the functioning of the source code implemented, for example: data reading and writ-
ing, small algorithm of filling data, preprocessing and simple algorithms expressed as
subroutines.

It was also concluded that the students demonstrate, in some cases, the classic use of
trial and error strategies. This strategy is exhibited when making small changes in the
source code, compile and run, data entry and retrieving the result, assessing the answer
and evaluating and comparing the new answer with the previous ones and their corre-
sponding source code changes (Cuba-Ricardo et al., 2014).

In relation to the evaluations made, the cycled is repeated as many times as the stu-
dent has patience for, new combinations have to be tested, or changes are made during
the process.

4. Conclusions

Monitoring the students’ behavior, allowed saving the construction process of the solu-
tion algorithm in its transcription or coding to a PL of the oriented objects paradigm.
This aspect was later contrasted with the interview with the students, which helped re-
veal the students’ notes in the worksheets, as well as the reasoning followed when deter-
mining the solution algorithm.

In general, the observation process of the source code construction, in its different
evolutionary status, is of greater value for its analysis rather than observing the final
program, due to:

The analysis of the process along with its explanation by the student, promotes ●
the effective valuation of the programming techniques and particularly that of
problem solving.
Along with the interview with the student, his way of thinking can be known. ●
It allows determining which data structures or algorithms are more difficult for ●
the student.
It reveals the most common skills when using the tools that make possible the ●
solving process of programming problems.

5. Future Work

The most important task remaining in our work is porting the software to an open source
operating system. This allows the application of such methodology to another context,

G. Cuba-Ricardo et al.36

and encourages us to search for other results that should improve the dimensions and
indicators in each methodology stage.

On the other hand, the intention is to capture more images in less time intervals, and
the best solution is to save screenshots as video format instead of images.

The final idea is to determine automatically some behavioral patterns manifested
by the students when solving programming problems. This should avoid the need for
extensive human review; and should be possible through new software, that receives the
video as input and after processing the information it returns the time intervals in which
these patterns appear. We must also define these patterns.

References

Cruz Ramírez, M. (2002). Estrategia Metacognitiva en la Formulación de Problemas para la Enseñanza de la
Matemática. PhD, ISPH “José de la Luz y Caballero”, Holguín.

Cuba Ricardo, G., Leyva Figueredo, P.A., Mendoza Tauler, L.L. (2014) Learning strategies of informatics
contestants. Olympiads in Informatics: International Journal, 8, 35–48.
http://www.ioinformatics.org/oi/pdf/v8_2014_35_48.pdf

Deek, F.P, Hiltz, S.R, Kimmel, H., Rotter, N. (1999). Cognitive assessment of students’ problem solving and
program development skills. Journal of Engineering Education, 88(3), 317–326.

Hosseini, R., Vihavainen, A., Brusilovsky, P. (2014) Exploring problem solving paths in a Java programming
course. Psychology of Programming Interest Group Annual Conference. 65–76.

Kolstad, R., Piele, D. (2007). USA computing olympiad (USACO). Olympiads in Informatics: International
Journal. 1, 105–111.
http://www.mii.lt/olympiads_in_informatics/htm/INFOL016.htm

Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). CMS: a growing grading system. Olympiads in Informat-
ics: International Journal, 8, 123–132.
http://www.ioinformatics.org/oi/pdf/v8_2014_123_132.pdf

Mares, M., Blackham, B. (2012). A new contest sandbox. Olympiads in Informatics: International Journal, 6,
100–109. http://www.mii.lt/olympiads_in_informatics/htm/INFOL094.htm

Revilla, M. A., Manzoor, S., Liu, R. (2008). Competitive learning in informatics: the UVa online Judge experi-
ence. Olympiads in Informatics: International Journal, 2, 131–148.
http://www.mii.lt/olympiads_in_informatics/htm/INFOL035.htm

Schoenfeld, A.H. (1985) Mathematical Problem – Solving. New York, Academic Press.
Surakka, S., Malmi, L. (2004). Cognitive skills of experienced software developer: Delphi study. In: Kor-

honen A., Malmi, L. (Eds), Kolin Kolistelut–Koli Calling 2004. Proceedings of the Fourth Finnish/Baltic
Sea Conference on Computer Science Education. Finland, Koli, 37–46

Verhoeff, T. (1997). The Role of Competitions in Education. Paper presented at the Future World: Educating
for the 21st Century. A Conference and Exhibition at IOI’ 97.
http://olympiads.win.tue.nl/ioi/ioi97/ffutwrld/competit.pdf

Verhoeff, T. (2008). Programming task packages: peach exchange format. Olympiads in Informatics: Interna-
tional Journal, 2, 192–207.
http://www.mii.lt/olympiads_in_informatics/htm/INFOL019.htm

White, G.L., Sivitanides, M.P. (2002) A theory of the relationships between cognitive requirements of com-
puter programming languages and programmers’ cognitive characteristics. Journal of Information Systems
Education, 13(1), 59–68.

Weinstein, C.E., Underwood, V.L. (1985). Learning strategies: the how of learning. In: Segal, J.W., Chipman,
S.F., Glasser, R. (Eds), Relating Instruction to Research, Volume 1 of Thinking and Learning Skills. Lon-
don, Lawrence Erlbaum Associates.

Methodology for Characterization of Cognitive Activities when Solving ... 37

G. Cuba-Ricardo is a doctoral student at the Curricular Doctorate
of the University of Pedagogical Sciences of Holguín, Cuba. He is
a researcher at the Department of Resource Development for Learn-
ing. His main research interest is the role of computer programming in
educational processes and contestant training. He is a consultant and a
coach of the informatics contests team in Holguín city.

M.T Serrano-Rodríguez is a Specialist in Pedagogy and Psychology,
and Bachelor of Education specializing in Chemistry. She presents
publications in scientific events as FIMAT, ENFIQUI and Pedagogy,
with themes related to ICT and Chemistry. She is a researcher of edu-
cational orientation for the use of ICT in the learning process.

A. Leyva-Figueredo holds a Ph.D. in Pedagogical Sciences. He is the
Director of the Center of Studies for Labor Education and Coordinator
of the Doctorate Collaborative Curricular Program at the University of
Pedagogical Sciences of Holguín. He has extensive experience in labor
education, doctoral training, research methodology, professional skills
and professional guidance. Also, he is a member of the Provincial Sci-
entific Committee of Science, Technology and Environment (CITMA)
and a Permanent Member of the Evaluation Board to get the Scientific
Degree of Doctor in Pedagogical Sciences.

L.L. Mendoza-Tauler received her Ph.D. in Pedagogical Sciences
in 2001. She is the Director of the Center of Studies in Educational
Research at the University of Pedagogical Sciences of Holguín and
Coordinator of the Ph.D. Program of UBV-2 Caracas, Venezuela. She
teaches at the Ph.D., Masters and Qualified Program Studies in Ven-
ezuela and Perú. She is a member of the Academy of Sciences of Cuba
in the Commission of Social Sciences. She is also a member of the Pro-
vincial Scientific Committee of Science, Technology and Environment
(CITMA) and of the Evaluation Board to get the Scientific Degree of
Doctor in Pedagogical Sciences.

Olympiads in Informatics, 2015, Vol. 9, 39–44
DOI: http://dx.doi.org/10.15388/ioi.2015.04

39

Efficient Range Minimum Queries
using Binary Indexed Trees

Mircea DIMA1, Rodica CETERCHI 2

1 Hickery, Martir Closca st., 600206 Bacau, Romania
2 University of Bucharest, Faculty of Mathematics and Computer Science
 14 Academiei st., 010014 Bucharest, Romania
e-mail: mircea@hickery.net, rceterchi@gmail.com

Abstract. We present new results on Binary Indexed Trees in order to efficiently solve Range
Minimum Queries. We introduce a way of using the Binary Indexed Trees so that we can answer
different types of queries, e.g. the range minimum query, in O (log N) time complexity per opera-
tion, outperforming in speed similar data structures like Segment/Range Trees or the Sparse Table
Algorithm.

Keywords: binary indexed tree (BIT), least significant non-zero bit (LSB), range minimum query
(RMQ).

1. Introduction

The Binary Indexed Tree, introduced by Peter M. Fenwick in (Fenwick, 1994), is a data
structure that maintains a sequence of elements (e.g. numbers) and is capable of com-
puting the cumulative sum of consecutive elements, between any two given indexes, in
time complexity O (log N) and also update the value at a given index.

We show how to use the structure of the Binary Indexed Tree so that it will support
other types of operations besides summation, e.g. range minimum query, maintaining the
same time complexity of O (log N) .

2. Binary Indexed Trees

2.1. Problem Presentation

Consider an array A indexed from 1 with N integers and the following types of ope-
rations:

Update – change the value at an index 1. i, (e.g. A [i] = v).
Query – find the value of min(A2. [i], A [i + 1], ... , A [j]), for 1 ≤ i ≤ j ≤ N.

M. Dima, R. Ceterchi40

The Binary Indexed Tree, as presented by Peter Fenwick, cannot efficiently an-
swer these kinds of queries, because, for determining the sum of A [i ... j], it needs to
compute the difference between the sum of the first j elements and the sum of the first
i – 1 elements.

2.2. Defining the BIT

A BIT is not a Binary Tree, the name “Binary Indexed” comes from the fact that the
nodes are indexed from 1 to N with labels written in binary, and it uses this binary
representation to define the parent node for each node.

BITs are in fact the binomial trees of (Cormen et al., 1990). We construct them in-
ductively, starting with B0, a tree with a single node. We will construct two varieties, the
left and the right binomial tree. The left binomial tree Bk + 1 is obtained from two copies
of left binomial trees Bk, by attaching the first of them as the leftmost child of the root of
the second one. The right binomial tree is obtained in a mirror-like fashion, by attaching
the second Bk as a right child of the root of the first Bk.

Starting from the array A, from its set of indexes, we build a left binomial tree BIT1
(Fig. 2.1) and a right binomial tree BIT2 (Fig. 2.2).

The binomial tree Bk (either left or right) has precisely 2k nodes and height k. If
we write the array indexes in binary, in the left binomial tree BIT1 we have parent (i) =
i + 2LSB(i), and in the right binomial tree BIT2 we have parent (i) = i – 2LSB(i). This enables
us to climb up either tree in O (log N).

Each node will keep aggregated data for all the nodes in its subtree. For instance in
the first tree (Fig. 2.1) node 12 keeps the minimum value of nodes 9, 10, 11 and 12
which is the subarray A [9 ... 12]. Similarly, in the second tree (Fig. 2.2) node 12 keeps
the minimum value the subarray A [12 ... 15].

Since the parent of a node can be computed with a formula, we can store the trees in
two arrays:

BIT11. [i] = minimum value of subarray A [i – 2LSB(i) + 1, i].
BIT22. [i] = minimum value of subarray A [i, i + 2LSB(i) – 1].

Computing these two arrays can be done in O (N) with a bottom-up algorithm.
Let us consider the following array A with 15 positive integers:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ai 1 0 2 1 1 3 0 4 2 5 2 2 3 1 0

You can see below how we computed the data stored in node 12:
BIT1 [12] = min (A [9], A [10], A [11], A [12]) = min (2, 5, 2, 2) = 2
BIT2 [12] = min (A [12], A [13], A [14], A[15]) = min (2, 3, 1, 0) = 0
In the following figures Fig. 1 and Fig. 2, the number inside a node is the index as-

sociated with that node. The number below the node is the aggregated minimum value
of its subtree.

Efficient Range Minimum Queries using Binary Indexed Trees 41

We shall exemplify the Least Significant Bit for better understanding:
LSB(216) = LSB(11011000) = 00001000 = 8 because there are 3 zeros at the end.

2.3. Query operation

For two given indexes i and j of the array 1 ≤ i ≤ j ≤ N, we want to answer the ques-
tion: What is the minimum value among A [i], A [i + 1], ... , A [j] ?

We start from node i in the first tree (Fig. 2.1) and climb the tree through its parent
as long as the node index is less than or equal to j. We do the same thing in the second
tree starting from node j and climbing the tree through the parent. In both cases we
reach the same node and it splits A [i ... j] in subarrays that are found either in BIT1,
BIT2 or the value of the common stop node.

Let us exemplify by doing the query operation for the subarray A [5 ... 13].
We start from node 5 and we climb the first tree (Fig. 2.1) while the current node’s

index is less than or equal to 13. We stop at node 8 because the next node, the parent of
8, is 16 which is greater than 13 and contains in its subtree the nodes 14, 15 and 16
which are not included in our subarray A [5 ... 13]. So far we passed by the nodes 5, 6
and 8. We take the minimum values corresponding to nodes 5 and 6 from the second
tree found in BIT2. Looking in Fig. 2.2, node 5 keeps the minimum value for A [5] and
node 6 keeps the minimum value for A [6 ... 7].

Similarly, we start from node 13 and climb the second tree (Fig. 2.2), passing by
nodes 13, 12 and 8. We take the minimum values corresponding to nodes 13 and 12
from the first tree. Looking in Fig. 2.1, node 12 keeps the minimum value for A [9 ... 12]
and node 13 keeps the minimum value for A [13].

Fig. 2.1 Binomial Tree corresponding to BIT1 (node 16 is fictive) (Fenwick, 1994).

Fig. 2.2 Binomial Tree corresponding to BIT2 (node 0 is fictive) (Fenwick, 1994).

M. Dima, R. Ceterchi42

We can observe that A [5 ... 13] is now partitioned in the following subarrays:
A [5 ... 5], A [6 ... 7], A [8], A [9 ... 12], A [13].
An important thing is that we get to the same node 8 for both traversals. We prove

this happens every time:
Consider the subarray A [i ... j] we want to make the query on. We know that i < j

and, because the order on integers is the same as the lexicographic order on their binary
representation, we can write the indexes in binary like this (we consider that the indexes
can be represented with n bits and p + 1 is the first bit on which i and j differ):

i = c1 c2 ... cp 0 ip+2 ... in

j = c1 c2 ... cp 1 jp+2 ... jn

When we iteratively add 2LSB to i we will get at some point to k = c1 c2 ... cp 10 ... 0
and if we iteratively subtract 2LSB from j we will get to the same k. This is the common
node where we stop.

Because the query climbs the two trees by following the parent link and because the
height of a binomial tree with 2K nodes is K, the time complexity of the query opera-
tion for a subarray is O (log N) where N is the size of the subarray.

2.4. Update Operation

Suppose we need to update the array at index p with the value v (A [p] = v).
We have to update all the tree nodes that have p in their subtree. We start from node

p in the first tree (Fig. 2.1) and climb the tree until we reach the root (an index greater
than N). For each node i we pass by, we consider its associated interval that defines
its subtree: [i – 2LSB(i) + 1, i] (e.g. [9,12] is the associated interval of node 12). We can
observe that the generated intervals include the index p because the parent’s subtree
expands and includes the node’s subtree.

We want to update the minimum value of the associated interval of a node, be it
[x, y], where y = x + 2LSB(x) – 1. If the minimum value of that interval is at an index q,
x ≤ q ≤ y, different from p, then we update the interval by taking the minimum value
between v and A [q]. If the minimum value is at index p, then we have to take the
minimum values of intervals [x, p – 1] and [p + 1, y].

If we compute the minimum values using two queries, the time complexity of the
update will be O (log2 N).

We make the following observation: when we generate the associated intervals of
the nodes we pass by, we can cover the whole interval [p + 1, y] by starting from node
p + 1 and climbing the first tree (Fig. 2.1). So instead of doing a query for every node we
update, we compute the results of the queries on the fly by climbing the tree once.

Analogously, we can update all the intervals of the form [x, p – 1] by starting from
node p – 1 and climbing the second tree (Fig. 2.2). The same algorithm is applied for
updating both trees.

Since we are climbing each tree three times and the height of a binomial tree with 2K
nodes is K, the amortized time complexity of the Update operation is O (log N).

Efficient Range Minimum Queries using Binary Indexed Trees 43

2.5. Experiments and Results

We wanted to find out how the Binary Indexed Tree compares to a similar data structure
called Segment Tree (also known as Range Tree), since it supports both update and
query operations in the same time complexity of O (log N).

We implemented these two data structures in C++ and ran them on a 3.5 GHz Intel
Xeon-Haswell server with 8 GB of RAM on Ubuntu 14 operating system with gcc 4.8
compiler.

The initial array had 100K random integers and we ran 10M random updates and
10M random queries. In Table 1 is what we found (times are in seconds):

While there is not a big difference on the Build step, we see a 47% reduced time for
updates and 77% reduced time on queries.

3. Conclusions

In the current paper we intended to adapt the Binary Indexed Tree so that we can solve
different types of operations, using as an example the Range Minimum Query problem,
and maintaining the original time complexity of O (log N). The RMQ can be solved us-
ing a Segment Tree or other data structures like quadtree, but the Binary Indexed Tree
proved to be 2–4 times faster in practice due to its simple iterative implementation.

Due to the structure of the Binary Indexed Tree, it can be extended in multithreading
and distributed environments obtaining O (log (log N)) time complexities per opera- time complexities per opera-time complexities per opera-
tions (Elhabashy et al., 2009). Also the data can be distributed among multiple nodes.
This data structure can be used as indexes for databases in a distributed manner.

In conclusion, the Binary Indexed Tree has the following advantages:
Is faster than other data structures that allow the same types of operations. ●
Can be adapted for a large number of distinct operations: sum, minimum, maxi- ●
mum, greatest common divisor (gcd), greatest common factor (gcf), etc.
Can be extended on multi-core and distributed platforms. ●

Acknowledgements

We thank dr. Florin Manea from the University of Bucharest and the University of Kiel
for fruitful discussions and insightful comments on the topic of this paper.

Table 1

Operation Type Segment(Range) Tree time Binary Indexed Tree time

Build 100K array 0.0009 s 0.0006 s
10M Updates 1.274 s 0.672 s
10M Queries 2.397 s 0.551 s

M. Dima, R. Ceterchi44

References

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (1990). Introduction to Algorithms. MIT Press, McGraw-
Hill, 1st edition.

Demaine, E., Sen, S., Lindy, J. Advanced Data Structures. Massachusetts Institute of Technology 6.897.
Elhabashy, A., Mohamed, A., Mohamad, A. (2009). An enhanced distributed system to improve thetime com-

plexity of binary indexed trees. World Academy of Science, Engineering and Technology, 3(6), 121–126.
http://waset.org/publications/5410/an-enhanced-distributed-system-to-
improve-thetime-complexity-of-binary-indexed-trees

van Emde Boas, P., Kaas, R., Zijlstra, E. (1977). Design and implementation of an efficient priority queue.
Mathematical Systems Theory, 10, 99–127.

Fenwick, P.M. (1994). A new data structure for cumulative frequency table, Software-Practice and Experience,
24(3), 327–336.

Fischer, J., Heunn, V. (2006). Theoretical and practical improvements on the RMQ-problem, with applications
to LCA and LCE. In: CPM’06 Proceedings of the 17th Annual conference on Combinatorial Pattern Match-
ing. Heidelberg, Springer-Verlag Berlin, 36-48.

Topcoder Inc. (2014a). Binary Indexed Trees. https://www.topcoder.com/community/data-
science/data-science-tutorials/binary-indexed-trees/

Topcoder Inc. (2014b). Range Minimum Query and Lowest Common Ancestor.
https://www.topcoder.com/community/data-science/data-science-tutorials/
range-minimum-query-and-lowest-common-ancestor/

M. Dima (1989) – Co-Founder of Hickery.net, Senior Software En-
gineer, Former Software Engineer Intern at Facebook, Invited Host
Scientific Committee Member at IOI 2013 Australia, problem setter at
Romanian Olympiads, Programming Contest Veteran

R. Ceterchi (1953) – Associate Professor at the Faculty of Mathemat-
ics and Computer Science, University of Bucharest specialized on Al-
gorithms and Data Structures, author of over 40 papers in national and
international journals.

Olympiads in Informatics, 2015, Vol. 9, 45–55
DOI: http://dx.doi.org/10.15388/ioi.2015.05

45

Towards a Better Way to Teach
Dynamic Programming

Michal FORIŠEK
Comenius University, Bratislava, Slovakia
e-mail: forisek@dcs.fmph.uniba.sk

Abstract. We give an overview of how various popular algorithm textbooks deal with the topic of
dynamic programming, and we identify various issues with their expositions. In the second part of
the paper we then give what we believe to be a better way of presenting the topic. While textbooks
only contain the actual exposition, our paper also provides the rationale behind our choices. In
particular, we managed to divide the topic into a sequence of simpler conceptual steps that are
easier to learn.

Keywords: algorithms, dynamic programming, memoization, task analysis.

1. Overview

Dynamic programming is a standard paradigm used in the design of efficient algorithms.
This approach is usable for problems that exhibit an optimal substructure: the optimal
solution to a given instance can be recursively expressed in terms of optimal solutions
for some sub-instances of the given instance.

Dynamic programming comes in two basic flavors. The top-down approach, usually
called memoization, is based on implementing the computation of the discovered recur-
sive relation as a recursive function, and then adding a cache so that each sub-instance
only gets evaluated once. The bottom-up approach, usually called dynamic program-
ming, essentially evaluates the same recurrence but in an iterative way: the algorithm
designer specifies an order in which the sub-instances are processed, and this order is
chosen in such a way that whenever we process a particular instance, all its needed sub-
instances have already been processed and their optimal solutions are already known by
the algorithm.

Below, we use the term dynamic programming (DP) to cover both flavors. When
talking specifically about the iterative approach we will use the term iterative DP or
bottom-up DP.

Despite being conceptually easy, dynamic programming is notorious for being hard
to learn. Quoting Skiena (2008): “[Until] you understand dynamic programming, it
seems like magic.”

M. Forišek46

Different textbooks use very different approaches to present dynamic programming.
The canonical way of presenting dynamic programming in algorithm textbooks is by
showing a sequence of tasks and solving them using dynamic programming techniques.
What is usually missing is:

Rationale for choosing these specific tasks and their order. ●
Notes on potential pitfalls when presenting the tasks and their solutions. ●

In this paper we aim to fill in those missing gaps. More precisely, the paper consists
of the following parts:

We present the way dynamic programming is exposed in multiple standard algo- ●
rithm textbooks.
We analyse those expositions and identify a set of possible pitfalls that often con- ●
fuse and mislead students.
We present our suggested version of a better order in which to teach the individual ●
concepts related to dynamic programming, and we argue about the benefits of our
approach.

2. Algorithm Textbooks

Throughout this paper we are going to refer to the way dynamic programming is treated
in some of the canonical algorithm textbooks. In particular, we examined the following
ones: Cormen et al. (2001), Dasgupta et al. (2006), Kleinberg and Tardos (2006), Sedge-
wick (1998), Skiena (2008). When refering to these textbooks below, for better read-
ability we will use the following shorthand instead citations: Cormen, Dasgupta,
Kleinberg, Sedgewick, and Skiena.

Below we give a brief summary how each of these textbooks introduces dynamic
programming.

Cormen prefers and almost exclusively uses a bottom-up approach. Dynamic pro-
gramming is introduced using the following sequence of tasks and texts:

Assembly-line scheduling.1.
Matrix chain multiplication.2.
A general overview of iterative dynamic programming and memoization.3.
Longest common subsequence.4.
Optimal binary search tree.5.

Dasgupta also prefers and almost exclusively uses a bottom-up approach, on a
rather large set of solved tasks:

Shortest paths in a DAG.1.
Longest increasing subsequence.2.
A warning against exponential-time recursion.3.
Edit distance.4.
Knapsack.5.
A note about memoization.6.
Matrix chain multiplication.7.

Towards a Better Way to Teach Dynamic Programming 47

Shortest paths.8.
Independent sets in trees.9.

Kleinberg first introduces dynamic programming using a top-down approach, but
then uses a bottom-up iterative approach in all following problems. The entire exposi-
tion looks as follows:

Weighted interval scheduling.1.
A general overview of iterative dynamic programming and memoization.2.
Segmented least squares.3.
Subset sums and Knapsack.4.
RNA secondary structure.5.
Sequence alignment (and optimizations to reduce memory use).6.
Shortest paths.7.

Sedgewick prefers a top-down approach. Only presents two problems:
Fibonacci numbers.1.
Knapsack.2.

Note that the new 4th edition (Sedgewick and Wayne, 2011) no longer contains a
section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition pro-
ceeds in the following order:

Fibonacci numbers: recursively, with memoization, iteratively.1.
Binomial coefficients.2.
Edit distance.3.
Longest increasing subsequence.4.
Linear partition.5.
Context-free grammar parsing.6.

3. Critical Analysis

In this section we show the results of our analysis of the expositions used in the text-
books mentioned above. We mostly focus on tasks used in multiple textbooks.

3.1. Matrix Chain Multiplication

Statement: Given is a sequence

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

 of rectangular matrices such that the
product

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

 can be computed. Clearly, it can be computed as a sequence
of

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

 standard matrix multiplications, and the result does not depend on their order.
Given the assumption that multiplying an

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

 and a

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

 matrix takes

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

 time,
what is the most efficient way of computing the entire product?

The problem is solved by dynamic programming over all intervals. I.e., the states can
be described by pairs of indices

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

 such that

Kleinberg first introduces dynamic programming using a top-down approach,
but then uses a bottom-up iterative approach in all following problems. The
entire exposition looks as follows:

1. Weighted interval scheduling
2. a general overview of iterative dynamic programming and memoization
3. Segmented least squares
4. Subset sums and Knapsack
5. RNA secondary structure
6. Sequence alignment (and optimizations to reduce memory use)
7. Shortest paths

Sedgewick prefers a top-down approach. Only presents two problems:

1. Fibonacci numbers
2. Knapsack

Note that the new 4th edition (Sedgewick, Wayne: Algorithms) no longer con-
tains a section on dynamic programming.

Skiena is also in favor of starting with the top-down approach. His exposition
proceeds in the following order:

1. Fibonacci numbers: recursively, with memoization, iteratively
2. Binomial coefficients
3. Edit distance
4. Longest increasing subsequence
5. Linear partition
6. Context-free grammar parsing

3 Critical analysis

In this section we show the results of our analysis of the expositions used in
the textbooks mentioned above. We mostly focus on tasks used in multiple text-
books.

3.1 Matrix chain multiplication

Statement: Given is a sequence M1, . . . ,Mn of rectangular matrices such that
the product M1 × · · · × Mn can be computed. Clearly, it can be computed as
a sequence of n − 1 standard matrix multiplications, and the result does not
depend on their order. Given the assumption that multiplying an a × b and a
b× c matrix takes Θ(abc) time, what is the most efficient way of computing the
entire product?

The problem is solved by dynamic programming over all intervals. I.e., the
states can be described by pairs of indices i, j such that i ≤ j. For each state we
compute the best solution for the matrices in the given range.

Issues with this problem:

. For each state we compute the best

M. Forišek48

solution for the matrices in the given range.
Issues with this problem:

Incomprehensible to students who lack background in linear algebra. The problem ●
feels unnatural and the cost function seems arbitrary.
Unnecessary clutter: the input is a sequence of ordered pairs of integers. There are ●
other similar problems on integer sequences and/or strings.
Lack of practical motivation. Finding a clear practical application for this algo- ●
rithm is probably impossible.
The existence of a much better solution. The ●

– Incomprehensible to students who lack background in linear algebra. The
problem feels unnatural and the cost function seems arbitrary.

– Unnecessary clutter: the input is a sequence of ordered pairs of integers.
There are other similar problems on integer sequences and/or strings.

– Lack of practical motivation. Finding a clear practical application for this
algorithm is probably impossible.

– The existence of a much better solution. The Θ(n3) DP algorithm shown in
textbooks is an overkill, Hu and Shing [4] gave a different O(n log n) solution
for this problem.

3.2 Shortest paths in DAGs

Statement: Given is a weighted directed acyclic graph (DAG). Find the shortest
path from vertex 1 to vertex n.

This is a very good problem to be used at some point during the instruction
on dynamic programming – mostly because it is the most general one. Essentially
all dynamic programming solutions can be viewed as computations on directed
acyclic graphs: the states of the computation (i.e., sub-instances we are solving)
are the vertices of the DAG, the recursive relation determines the edges, and the
order in which an iterative DP solution evaluates the states must correspond to
a topological order of this graph.

Issues: Dasgupta uses this problem as the first problem on which a dynamic
programming approach is presented. We strongly advise against that. While we
agree that the concepts mentioned in the previous paragraph are important, we
believe that the proper time and way to learn them is by abstraction after already
being familiar with many specific problems solved using dynamic programming.

Additionally, this problem requires students to be able to store and access a
graph, and the data structures needed to do so efficiently are more involved than
simple static arrays. A detailed analysis of the time and space complexity is also
non-trivial as there are two different parameters (the number of vertices and the
number of edges). This is especially true if one tries to solve this problem using
recursion without memoization.

3.3 Longest common subsequence

Statement: Given two sequences (or strings), find one longest sequence that
occurs as a (not necessarily contiguous) subsequence in each of them.

Related problems: Edit distance (Levenshtein distance) between two strings,
DNA sequence alignment.

This is, and certainly should be, the gold standard among introductory prob-
lems solvable using dynamic programming. The solution only requires basic ar-
rays, the subproblems and the recurrence are natural, and each of the subprob-
lems can be evaluated in constant time.

Later, this problem can be used when discussing the differences between the
top-down and the bottom-up approach.

 DP algorithm shown in text-
books is an overkill, Hu and Shing (1982, 1984) gave a different

– Incomprehensible to students who lack background in linear algebra. The
problem feels unnatural and the cost function seems arbitrary.

– Unnecessary clutter: the input is a sequence of ordered pairs of integers.
There are other similar problems on integer sequences and/or strings.

– Lack of practical motivation. Finding a clear practical application for this
algorithm is probably impossible.

– The existence of a much better solution. The Θ(n3) DP algorithm shown in
textbooks is an overkill, Hu and Shing [4] gave a different O(n log n) solution
for this problem.

3.2 Shortest paths in DAGs

Statement: Given is a weighted directed acyclic graph (DAG). Find the shortest
path from vertex 1 to vertex n.

This is a very good problem to be used at some point during the instruction
on dynamic programming – mostly because it is the most general one. Essentially
all dynamic programming solutions can be viewed as computations on directed
acyclic graphs: the states of the computation (i.e., sub-instances we are solving)
are the vertices of the DAG, the recursive relation determines the edges, and the
order in which an iterative DP solution evaluates the states must correspond to
a topological order of this graph.

Issues: Dasgupta uses this problem as the first problem on which a dynamic
programming approach is presented. We strongly advise against that. While we
agree that the concepts mentioned in the previous paragraph are important, we
believe that the proper time and way to learn them is by abstraction after already
being familiar with many specific problems solved using dynamic programming.

Additionally, this problem requires students to be able to store and access a
graph, and the data structures needed to do so efficiently are more involved than
simple static arrays. A detailed analysis of the time and space complexity is also
non-trivial as there are two different parameters (the number of vertices and the
number of edges). This is especially true if one tries to solve this problem using
recursion without memoization.

3.3 Longest common subsequence

Statement: Given two sequences (or strings), find one longest sequence that
occurs as a (not necessarily contiguous) subsequence in each of them.

Related problems: Edit distance (Levenshtein distance) between two strings,
DNA sequence alignment.

This is, and certainly should be, the gold standard among introductory prob-
lems solvable using dynamic programming. The solution only requires basic ar-
rays, the subproblems and the recurrence are natural, and each of the subprob-
lems can be evaluated in constant time.

Later, this problem can be used when discussing the differences between the
top-down and the bottom-up approach.

 solu-
tion for this problem.

3.2. Shortest Paths in DAGs

Statement: Given is a weighted directed acyclic graph (DAG). Find the shortest path
from vertex 1 to vertex

– Incomprehensible to students who lack background in linear algebra. The
problem feels unnatural and the cost function seems arbitrary.

– Unnecessary clutter: the input is a sequence of ordered pairs of integers.
There are other similar problems on integer sequences and/or strings.

– Lack of practical motivation. Finding a clear practical application for this
algorithm is probably impossible.

– The existence of a much better solution. The Θ(n3) DP algorithm shown in
textbooks is an overkill, Hu and Shing [4] gave a different O(n log n) solution
for this problem.

3.2 Shortest paths in DAGs

Statement: Given is a weighted directed acyclic graph (DAG). Find the shortest
path from vertex 1 to vertex n.

This is a very good problem to be used at some point during the instruction
on dynamic programming – mostly because it is the most general one. Essentially
all dynamic programming solutions can be viewed as computations on directed
acyclic graphs: the states of the computation (i.e., sub-instances we are solving)
are the vertices of the DAG, the recursive relation determines the edges, and the
order in which an iterative DP solution evaluates the states must correspond to
a topological order of this graph.

Issues: Dasgupta uses this problem as the first problem on which a dynamic
programming approach is presented. We strongly advise against that. While we
agree that the concepts mentioned in the previous paragraph are important, we
believe that the proper time and way to learn them is by abstraction after already
being familiar with many specific problems solved using dynamic programming.

Additionally, this problem requires students to be able to store and access a
graph, and the data structures needed to do so efficiently are more involved than
simple static arrays. A detailed analysis of the time and space complexity is also
non-trivial as there are two different parameters (the number of vertices and the
number of edges). This is especially true if one tries to solve this problem using
recursion without memoization.

3.3 Longest common subsequence

Statement: Given two sequences (or strings), find one longest sequence that
occurs as a (not necessarily contiguous) subsequence in each of them.

Related problems: Edit distance (Levenshtein distance) between two strings,
DNA sequence alignment.

This is, and certainly should be, the gold standard among introductory prob-
lems solvable using dynamic programming. The solution only requires basic ar-
rays, the subproblems and the recurrence are natural, and each of the subprob-
lems can be evaluated in constant time.

Later, this problem can be used when discussing the differences between the
top-down and the bottom-up approach.

.

This is a very good problem to be used at some point during the instruction on dy-
namic programming – mostly because it is the most general one. Essentially all dyna-
mic programming solutions can be viewed as computations on directed acyclic graphs:
the states of the computation (i.e., sub-instances we are solving) are the vertices of the
DAG, the recursive relation determines the edges, and the order in which an iterative
DP solution evaluates the states must correspond to a topological order of this graph.

Issues: Dasgupta uses this problem as the first problem on which a dynamic pro-
gramming approach is presented. We strongly advise against that. While we agree that
the concepts mentioned in the previous paragraph are important, we believe that the
proper time and way to learn them is by abstraction after already being familiar with
many specific problems solved using dynamic programming.

Additionally, this problem requires students to be able to store and access a graph,
and the data structures needed to do so efficiently are more involved than simple static
arrays. A detailed analysis of the time and space complexity is also non-trivial as there
are two different parameters (the number of vertices and the number of edges). This is
especially true if one tries to solve this problem using recursion without memoization.

3.3. Longest Common Subsequence

Statement: Given two sequences (or strings), find one longest sequence that occurs as a
(not necessarily contiguous) subsequence in each of them.

Related problems: Edit distance (Levenshtein distance) between two strings, DNA
sequence alignment.

This is, and certainly should be, the gold standard among introductory problems
solvable using dynamic programming. The solution only requires basic arrays, the sub-

Towards a Better Way to Teach Dynamic Programming 49

problems and the recurrence are natural, and each of the subproblems can be evaluated
in constant time.

Later, this problem can be used when discussing the differences between the top-
down and the bottom-up approach.

This problem also leads to an advanced topic: Hirschberg’s implementation (Hirsch-
berg, 1975) of a bottom-up DP solution that can reconstruct an optimal solution in linear
memory.

Issues: The time complexity of the brute force approach (recursive search without
memoization) is hard to analyse exactly and it is often neglected in textbooks. Cormen
only mentions it to be “exponential-time” without any details, while Dasgupta and
Kleinberg completely avoids mentioning it. Skiena is the only one to address it,
showing a (non-tight) 3 lower bound for his version of the Edit distance problem.

3.4. 0–1 Knapsack

Statement: Given is an integer weight limit  and a collection of  items, each with
an integer weight  and an arbitrary cost . Find a subset of items that has a total weight
not exceeding the given limit and the largest possible total cost.

Related problems: Knapsack where arbitrarily many copies of each item are avail-
able. Coin change problems.

This is a reasonably natural class of problems. Again, their advantage is that the
implementation only requires basic tools and that the recurrence relation is simple.

Issues: The whole notion of pseudopolynomial time. At some point, the students need
to be explained why an algorithm that runs in

This problem also leads to an advanced topic: Hirschberg’s implementation
[3] of a bottom-up DP solution that can reconstruct an optimal solution in linear
memory.

Issues: The time complexity of the brute force approach (recursive search
without memoization) is hard to analyse exactly and it is often neglected in
textbooks. Cormen only mentions it to be “exponential-time” without any de-
tails, while Dasgupta and Kleinberg completely avoid mentioning it. Skiena
is the only one to address it, showing a (non-tight) 3n lower bound for his version
of the Edit distance problem.

3.4 0-1 knapsack

Statement: Given is an integer weight limit W and a collection of n items, each
with an integer weight wi and an arbitrary cost ci. Find a subset of items that
has a total weight not exceeding the given limit and the largest possible total
cost.

Related problems: Knapsack where arbitrarily many copies of each item are
available. Coin change problems.

This is a reasonably natural class of problems. Again, their advantage is that
the implementation only requires basic tools and that the recurrence relation is
simple.

Issues: The whole notion of pseudopolynomial time. At some point, the stu-
dents need to be explained why an algorithm that runs in O(nW) is not consid-
ered a polynomial-time algorithm. While this issue is orthogonal to the concept
of dynamic programming, it is an inherent part of this task and it should come
up during its analysis. From experience, this may be the most challenging part
of the problem for the students.

Sedgewick avoids the topic of pseudopolynomial time completely. It is just
mentioned that the algorithm is only useful if the capacities are not huge.Klein-
berg also avoids this topic completely.

Dasgupta addresses the topic with a single brief note: “[...] they can both
be solved in O(nW) time, which is reasonable when W is small, but is not
polynomial since the input size is proportional to logW rather than W .”

3.5 Fibonacci numbers

Statement: Given n, compute the n-th Fibonacci number.
Fibonacci numbers are an excellent source of what is possibly the simplest

non-trivial recurrence relation. They can easily be used to demonstrate the ef-
fect of memoization, as a straightforward recursive function that computes their
values runs in exponential time.

Issues: The only issue with this very simple problem is that the numbers
themselves grow exponentially and their values quickly exceed the range of stan-
dard integer variables in most languages. And even if you use a programming
language with arbitrary precision integers (e.g., Python), the size of these num-
bers plays a role in estimating the time complexity of efficient programs.

 is not considered a polynomial-
time algorithm. While this issue is orthogonal to the concept of dynamic programming,
it is an inherent part of this task and it should come up during its analysis. From experi-
ence, this may be the most challenging part of the problem for the students.

Sedgewick avoids the topic of pseudopolynomial time completely. It is just men-
tioned that the algorithm is only useful if the capacities are not huge. Kleinberg also
avoids this topic completely.

Dasgupta addresses the topic with a single brief note: “[...] they can both be solved
in

This problem also leads to an advanced topic: Hirschberg’s implementation
[3] of a bottom-up DP solution that can reconstruct an optimal solution in linear
memory.

Issues: The time complexity of the brute force approach (recursive search
without memoization) is hard to analyse exactly and it is often neglected in
textbooks. Cormen only mentions it to be “exponential-time” without any de-
tails, while Dasgupta and Kleinberg completely avoid mentioning it. Skiena
is the only one to address it, showing a (non-tight) 3n lower bound for his version
of the Edit distance problem.

3.4 0-1 knapsack

Statement: Given is an integer weight limit W and a collection of n items, each
with an integer weight wi and an arbitrary cost ci. Find a subset of items that
has a total weight not exceeding the given limit and the largest possible total
cost.

Related problems: Knapsack where arbitrarily many copies of each item are
available. Coin change problems.

This is a reasonably natural class of problems. Again, their advantage is that
the implementation only requires basic tools and that the recurrence relation is
simple.

Issues: The whole notion of pseudopolynomial time. At some point, the stu-
dents need to be explained why an algorithm that runs in O(nW) is not consid-
ered a polynomial-time algorithm. While this issue is orthogonal to the concept
of dynamic programming, it is an inherent part of this task and it should come
up during its analysis. From experience, this may be the most challenging part
of the problem for the students.

Sedgewick avoids the topic of pseudopolynomial time completely. It is just
mentioned that the algorithm is only useful if the capacities are not huge.Klein-
berg also avoids this topic completely.

Dasgupta addresses the topic with a single brief note: “[...] they can both
be solved in O(nW) time, which is reasonable when W is small, but is not
polynomial since the input size is proportional to logW rather than W .”

3.5 Fibonacci numbers

Statement: Given n, compute the n-th Fibonacci number.
Fibonacci numbers are an excellent source of what is possibly the simplest

non-trivial recurrence relation. They can easily be used to demonstrate the ef-
fect of memoization, as a straightforward recursive function that computes their
values runs in exponential time.

Issues: The only issue with this very simple problem is that the numbers
themselves grow exponentially and their values quickly exceed the range of stan-
dard integer variables in most languages. And even if you use a programming
language with arbitrary precision integers (e.g., Python), the size of these num-
bers plays a role in estimating the time complexity of efficient programs.

 time, which is reasonable when  is small, but is not polynomial since the
input size is proportional to

This problem also leads to an advanced topic: Hirschberg’s implementation
[3] of a bottom-up DP solution that can reconstruct an optimal solution in linear
memory.

Issues: The time complexity of the brute force approach (recursive search
without memoization) is hard to analyse exactly and it is often neglected in
textbooks. Cormen only mentions it to be “exponential-time” without any de-
tails, while Dasgupta and Kleinberg completely avoid mentioning it. Skiena
is the only one to address it, showing a (non-tight) 3n lower bound for his version
of the Edit distance problem.

3.4 0-1 knapsack

Statement: Given is an integer weight limit W and a collection of n items, each
with an integer weight wi and an arbitrary cost ci. Find a subset of items that
has a total weight not exceeding the given limit and the largest possible total
cost.

Related problems: Knapsack where arbitrarily many copies of each item are
available. Coin change problems.

This is a reasonably natural class of problems. Again, their advantage is that
the implementation only requires basic tools and that the recurrence relation is
simple.

Issues: The whole notion of pseudopolynomial time. At some point, the stu-
dents need to be explained why an algorithm that runs in O(nW) is not consid-
ered a polynomial-time algorithm. While this issue is orthogonal to the concept
of dynamic programming, it is an inherent part of this task and it should come
up during its analysis. From experience, this may be the most challenging part
of the problem for the students.

Sedgewick avoids the topic of pseudopolynomial time completely. It is just
mentioned that the algorithm is only useful if the capacities are not huge.Klein-
berg also avoids this topic completely.

Dasgupta addresses the topic with a single brief note: “[...] they can both
be solved in O(nW) time, which is reasonable when W is small, but is not
polynomial since the input size is proportional to logW rather than W .”

3.5 Fibonacci numbers

Statement: Given n, compute the n-th Fibonacci number.
Fibonacci numbers are an excellent source of what is possibly the simplest

non-trivial recurrence relation. They can easily be used to demonstrate the ef-
fect of memoization, as a straightforward recursive function that computes their
values runs in exponential time.

Issues: The only issue with this very simple problem is that the numbers
themselves grow exponentially and their values quickly exceed the range of stan-
dard integer variables in most languages. And even if you use a programming
language with arbitrary precision integers (e.g., Python), the size of these num-
bers plays a role in estimating the time complexity of efficient programs.

 rather than .”

3.5. Fibonacci Numbers

Statement: Given , compute the -th Fibonacci number.

Fibonacci numbers are an excellent source of what is possibly the simplest non-
trivial recurrence relation. They can easily be used to demonstrate the effect of
memoization, as a straightforward recursive function that computes their values runs
in exponential time.

M. Forišek50

Issues: The only issue with this very simple problem is that the numbers themselves
grow exponentially and their values quickly exceed the range of standard integer vari-
ables in most languages. And even if you use a programming language with arbitrary
precision integers (e.g., Python), the size of these numbers plays a role in estimating the
time complexity of efficient programs.

A common way to address this issue is to modify the problem: instead of computing
the exact value of the -th Fibonacci number we aim to compute its value modulo some
small integer. (E.g., if the modulus is 109, we are in fact computing the last 9 decimal
digits of .) Here we would just like to remark that the Fibonacci sequence modulo
any  is necessarily periodic and this observation leads to asymptotically more ef-
ficient algorithms.

4. Our Approach to Teaching Dynamic Programming

In this final section we give a detailed presentation of how we suggest to teach dynamic
programming. For each task used we clearly state and highlight the new concepts it in-
troduces, and we argue why our way of introducing them works.

Note that we intentionally start with the top-down version of dynamic programming,
i.e., by adding memoization to recursive functions. This is intentional and very signifi-
cant. The main purpose of this choice is to show the students how to break up the design
of an efficient solution into multiple steps:

Implement a recursive algorithm that examines all possible solutions.1.
Use the algorithm to discover a recursive relation between various subproblems 2.
of the given problem.
Add memoization to improve the time complexity, often substantially.3.
Optionally, convert the solution into an iterative bottom-up solution.4.

The more traditional approach that starts with iterative DP requires students to do
steps 2 and 4 at the same time, without giving them good tools to do the analysis and
to discover the optimal substructure. In our approach, step 1 gives them such a tool:
once we have the recursive solution, the arguments of the recursive function define
the subproblems, and we can examine whether the function gets called multiple times
with the same arguments. If it does, we know that the problem does exhibit the optimal
substructure, and in step 3 we mechanically convert our inefficient solution into an
efficient one.

Lesson 1: Fibonacci numbers

Goals: Observe a recursive function with an exponential time complexity. Discover the
source of inefficiency: the function executes the same recursive call many times.

Fibonacci numbers have a well-known recurrence:

A common way to address this issue is to modify the problem: instead of
computing the exact value of the n-th Fibonacci number we aim to compute
its value modulo some small integer. (E.g., if the modulus is 109, we are in fact
computing the last 9 decimal digits of Fn.) Here we would just like to remark that
the Fibonacci sequence modulo anym is necessarily periodic and this observation
leads to asymptotically more efficient algorithms.

4 Our approach to teaching dynamic programming

In this final section we give a detailed presentation of how we suggest to teach
dynamic programming. For each task used we clearly state and highlight the new
concepts it introduces, and we argue why our way of introducing them works.

Note that we intentionally start with the top-down version of dynamic pro-
gramming, i.e., by adding memoization to recursive functions. This is intentional
and very significant. The main purpose of this choice is to show the students
how to break up the design of an efficient solution into multiple steps:

1. Implement a recursive algorithm that examines all possible solutions.
2. Use the algorithm to discover a recursive relation between various subprob-
lems of the given problem.

3. Add memoization to improve the time complexity, often substantially.
4. Optionally, convert the solution into an iterative bottom-up solution.

The more traditional approach that starts with iterative DP requires students
to do steps 2 and 4 at the same time, without giving them good tools to do
the analysis and to discover the optimal substructure. In our approach, step
1 gives them such a tool: once we have the recursive solution, the arguments
of the recursive function define the subproblems, and we can examine whether
the function gets called multiple times with the same arguments. If it does, we
know that the problem does exhibit the optimal substructure, and in step 3 we
mechanically convert our inefficient solution into an efficient one.

Lesson 1: Fibonacci numbers

Goals: Observe a recursive function with an exponential time complexity. Dis-
cover the source of inefficiency: the function executes the same recursive call
many times.

Fibonacci numbers have a well-known recurrence: F0 = 0, F1 = 1, and
∀n > 1 : Fn = Fn−1 + Fn−2. In our presentation we use the following Python
implementation:

def F(n):

if n==1 or n==2:

return 1

else:

return F(n-1) + F(n-2)

, and

A common way to address this issue is to modify the problem: instead of
computing the exact value of the n-th Fibonacci number we aim to compute
its value modulo some small integer. (E.g., if the modulus is 109, we are in fact
computing the last 9 decimal digits of Fn.) Here we would just like to remark that
the Fibonacci sequence modulo anym is necessarily periodic and this observation
leads to asymptotically more efficient algorithms.

4 Our approach to teaching dynamic programming

In this final section we give a detailed presentation of how we suggest to teach
dynamic programming. For each task used we clearly state and highlight the new
concepts it introduces, and we argue why our way of introducing them works.

Note that we intentionally start with the top-down version of dynamic pro-
gramming, i.e., by adding memoization to recursive functions. This is intentional
and very significant. The main purpose of this choice is to show the students
how to break up the design of an efficient solution into multiple steps:

1. Implement a recursive algorithm that examines all possible solutions.
2. Use the algorithm to discover a recursive relation between various subprob-
lems of the given problem.

3. Add memoization to improve the time complexity, often substantially.
4. Optionally, convert the solution into an iterative bottom-up solution.

The more traditional approach that starts with iterative DP requires students
to do steps 2 and 4 at the same time, without giving them good tools to do
the analysis and to discover the optimal substructure. In our approach, step
1 gives them such a tool: once we have the recursive solution, the arguments
of the recursive function define the subproblems, and we can examine whether
the function gets called multiple times with the same arguments. If it does, we
know that the problem does exhibit the optimal substructure, and in step 3 we
mechanically convert our inefficient solution into an efficient one.

Lesson 1: Fibonacci numbers

Goals: Observe a recursive function with an exponential time complexity. Dis-
cover the source of inefficiency: the function executes the same recursive call
many times.

Fibonacci numbers have a well-known recurrence: F0 = 0, F1 = 1, and
∀n > 1 : Fn = Fn−1 + Fn−2. In our presentation we use the following Python
implementation:

def F(n):

if n==1 or n==2:

return 1

else:

return F(n-1) + F(n-2)

. In our presentation we use the following Python imple-
mentation:

Towards a Better Way to Teach Dynamic Programming 51

def F(n):
if n==1 or n==2:

return 1
else:

return F(n-1) + F(n-2)

Note that this implementation neglects the case  = 0 and uses  = 1 and  = 2 as
the base case. This is intentional, the purpose is a more elegant analysis later.

We can now run this program and have it compute consecutive values of the Fibo-
nacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around  = 35 the pro-
gram will slow down to a crawl. We can empirically measure that each next value takes
about 16 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):
print('calling F(' + str(n) + ')')
...

Already for small values like  = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion tree
for  = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

gets called during the computation of

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

. For our version of the implementation the
answer to this question are again precisely the Fibonacci numbers.

Alternately, we can just directly estimate the whole time complexity: when comput-
ing

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

, each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use  = 1 and  = 2 as base cases.) Hence,

there are precisely

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

 leaves and thus precisely

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

 inner nodes in the recur-
sion tree. In other words, the running time of the computation of

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

 is clearly pro-
portional to the value of

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

, which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.

One of the points that is woefully neglected in traditional textbooks is the difference
between functions in the mathematical sense and in the programming sense. The out-
put of a mathematical function only depends on its inputs:

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

 today is the same
value as

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

 tomorrow. For a function in a computer program, two consecutive
calls with the same arguments may often return different values. There are lots of diffe-
rent reasons why this may happen. For instance, the output of the function may depend
on global variables, on environment variables (such as the current locale settings), on
pseudorandom numbers, on the input from a user, etc. (Listing these is actually a lovely
exercise for students!)

M. Forišek52

Given the above observation, memoization is a very straightforward concept for stu-
dents: we simply want to avoid computing the same thing twice. And it should now be
clear that any function in our program that is also a function in the mathematical sense
can be memoized. (Such functions are sometimes called pure functions.)

An interesting historical note: memoization is not only useful when it comes to im-
proving the asymptotic time complexity. For instance, many early programs that pro-
duced computer graphics used precomputed tables of sines and cosines because table
lookup was faster than the actual evaluation of a floating-point-valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.

By applying memoization (using a simple array) to the Fibonacci function, each of
the values

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

 through

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

 is only computed once, using a single addition. There-
fore, we suddenly have a program that only performs

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

 additions to compute the
value

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

: quite an improvement over the original exponential time. The above Py-
thon program can now easily compute

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

.
(Note that Python operates with arbitrarily large integers. The -th Fibonacci num-

ber is exponential in  and therefore has

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

 digits. In the RAM model, the actual
time complexity of the above algorithm is

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

, as each addition of two

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

-digit
numbers takes

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

 steps.)
Here it is important to highlight the contrast: exponential time without vs. polyno-

mial time with memoization. It is also instructional to draw a new, collapsed version of
the entire recursion tree for  = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn how to
write a brute force solution in a good way, and how to use memoization to “magically”
turn it into an efficient algorithm.

Statement: Given is a sequence of  bottles, their volumes are

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

 through

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

.
Drink as much as you can, given that you cannot drink from any two adjacent bottles.

This problem has a very short and simple statement and only requires a simple one-
dimensional array to store the input. But the main reason why we elected to use this as
the first example will become apparent once we implement and examine a brute force
solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets of bottles
and chooses the best among them. Such a recursive solution can be based on a simple
observation: either we choose the last bottle or we don’t. If we don’t, we want to find the
best solution from among the first  – 1 bottles.

If we do, we are not allowed to take the penultimate bottle and therefore we are look-
ing for the best solution among the first  – 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]
def solve(k):

Towards a Better Way to Teach Dynamic Programming 53

''' returns the best solution for the first k bottles '''
if k == 1: return v[0]
if k == 2: return max(v[0], v[1])
return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is exponential – in
fact, the number of recursive calls needed to evaluate () is precisely the same as
the number of calls needed to evaluate

Note that this implementation neglects the case n = 0 and uses n = 1 and
n = 2 as the base case. This is intentional, the purpose is a more elegant analysis
later.

We can now run this program and have it compute consecutive values of the
Fibonacci sequence:

for n in range(1,100): print(n, F(n))

The first few rows of input will appear instantly but already around n = 35
the program will slow down to a crawl. We can empirically measure that each
next value takes about 1.6 times longer to compute than the previous one.

What is going on here? The easiest way to see it is to log each recursive call:

def F(n):

print(’calling F(’ + str(n) + ’)’)

...

Already for small values like n = 6 we quickly discover that the same function
call is made multiple times. Here it is instructional to show the entire recursion
tree for n = 6, we omit the picture here to conserve space.

Here, a suitable homework is to leave the students analyse how many times
F (n − k) gets called during the computation of F (n). For our version of the
implementation the answer to this question are again precisely the Fibonacci
numbers.

Alternately, we can just directly estimate the whole time complexity: when
computing F (n), each leaf of the recursion tree contributes 1 to the final result.
(This is the rationale for our choice to use n = 1 and n = 2 as base cases.) Hence,
there are precisely F (n) leaves and thus precisely F (n) − 1 inner nodes in the
recursion tree. In other words, the running time of the computation of F (n) is
clearly proportional to the value of F (n), which is known to grow exponentially.

Lesson 2: Memoization

Goals: Learn about memoization and conditions when it can be applied.
One of the points that is woefully neglected in traditional textbooks is the

difference between functions in the mathematical sense and in the program-
ming sense. The output of a mathematical function only depends on its inputs:
cos(π/3) today is the same value as cos(π/3) tomorrow. For a function in a com-
puter program, two consecutive calls with the same arguments may often return
different values. There are lots of different reasons why this may happen. For
instance, the output of the function may depend on global variables, on environ-
ment variables (such as the current locale settings), on pseudorandom numbers,
on the input from a user, etc. (Listing these is actually a lovely exercise for
students!)

Given the above observation, memoization is a very straightforward concept
for students: we simply want to avoid computing the same thing twice. And it
should now be clear that any function in our program that is also a function in

 in our first lesson.
A key observation to make here is that solve can be considered a pure function.

Even though it does access the global variable v, its contents remain the same through-
out the execution of the program. Hence, we may apply memoization to solve in order
to reduce the time complexity from

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

 to

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

.
(Note that solve can easily be turned into a true pure function if we pass a constant

reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up approach.

The subproblems solved by the memoized recursive solution can be naturally or-
dered by size. The same recurrence can now be used to write an iterative solution.
A side-by-side comparison of both programs helps highlight parts that remained the
same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.

Statement: Given is a grid. Count all shortest paths along the grid from

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

 to

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

.

The answer is obviously the binomial coefficient

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

, but the path-based point of
view allows a natural formulation of a recurrence relation: Let

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

 be the number
of ways to reach

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

. Each path that reaches

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

 goes either through

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

 or
through

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

. Hence,

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

.

Statement: Now some grid points are blocked by some obstacles. Count all paths that
go from

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

 to

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

 in

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

 steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have

’’’ returns the best solution for the first k bottles ’’’

if k == 1: return v[0]

if k == 2: return max(v[0], v[1])

return max(solve(k-1), v[k-1] + solve(k-2))

It should now be obvious that the time complexity of this program is expo-
nential – in fact, the number of recursive calls needed to evaluate solve(n) is
precisely the same as the number of calls needed to evaluate F (n) in our first
lesson.

A key observation to make here is that solve can be considered a pure func-
tion. Even though it does access the global variable v, its contents remain the
same throughout the execution of the program. Hence, we may apply memoiza-
tion to solve in order to reduce the time complexity from Θ(φn) to Θ(n).

(Note that solve can easily be turned into a true pure function if we pass a
constant reference to v to solve as a second argument.)

Lesson 5: An iterative solution to the previous problem

Goals: Learn about the duality between the top-down and the bottom-up ap-
proach.

The subproblems solved by the memoized recursive solution can be naturally
ordered by size. The same recurrence can now be used to write an iterative
solution. A side-by-side comparison of both programs helps highlight parts that
remained the same / only changed syntactically.

Optional lesson 6: Paths in a grid

Goals: Developing a bottom-up solution directly.
Statement: Given is a grid. Count all shortest paths along the grid from (0, 0)

to (a, b).
The answer is obviously the binomial coefficient

�
a+b
a


, but the path-based

point of view allows a natural formulation of a recurrence relation: Let P (x, y)
be the number of ways to reach (x, y). Each path that reaches (a, b) goes either
through (a−1, b) or through (a, b−1). Hence, P (a, b) = P (a−1, b)+P (a, b−1).

Statement 2: Now some grid points are blocked by some obstacles. Count all
paths that go from (0, 0) to (a, b) in a+ b steps and avoid all obstacles.

The recurrence remains the same, only now the blocked grid points have
P (x, y) = 0. It is instructional to solve small instances on this problem on paper
– in fact, many of our students are familiar with this problem from earlier Math
classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up
approach.

. It
is instructional to solve small instances on this problem on paper – in fact, many of our
students are familiar with this problem from earlier Math classes.

Lesson 7: Longest common subsequence

Goals: Investigating the differences between the top-down and the bottom-up ap-
proach.

For this problem, we first show the entire process. First, we show a recursive solu-
tion that generates all common subsequences, starting by comparing the last elements
of both sequences. Then, we show that adding memoization improves this solution from

M. Forišek54

a worst-case exponential one into a solution that runs in

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

.
Finally, we convert the solution into an equivalent iterative one.
Afterwards, we focus on the following points:

Memory complexity. The iterative solution can easily be optimized to use ●

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

memory only, the recursive one cannot.
Execution time. So far, iterative solutions were better as they didn’t perform the ●
additional work related to function calls. However, in this problem we can easily
find inputs (e.g., two identical sequences) where the recursive solution outper-
forms the iterative one. The lesson here is that the top-down approach only evalu-
ates the subproblems it actually needs, while the iterative approach doesn’t know
which subproblems will be needed later and thus it must always evaluate all of
them.

Lesson 8: Longest increasing subsequence in quadratic time

Goals: Examining the first example where a subproblem isn’t evaluated in constant
time. Understanding how this is reected in the time complexity estimates. Most impor-
tantly, seeing that the subproblems don’t have to be instances of the original problem.

Statement: Given a sequence of numbers, compute the length of its longest increasing
subsequence.

In our opinion, this problem is one of the most important ones in teaching dynamic
programming properly. When compared to previous problems, this one is much harder
for beginners. Here’s the main reason: The subproblems we need to solve aren’t actually
instances of the original problem.

This problem is used by Dasgupta and Skiena. However, Dasgupta just re-
duces it to paths in a DAG without explicitly mentioning the conceptual step where we
change the problem. Skiena treats the problem properly: notably, asking the question
“what information about the first

For this problem, we first show the entire process. First, we show a recursive
solution that generates all common subsequences, starting by comparing the last
elements of both sequences. Then, we show that adding memoization improves
this solution from a worst-case exponential one into a solution that runs inO(n2).
Finally, we convert the solution into an equivalent iterative one.

Afterwards, we focus on the following points:

– Memory complexity. The iterative solution can easily be optimized to use
O(n) memory only, the recursive one cannot.

– Execution time. So far, iterative solutions were better as they didn’t perform
the additional work related to function calls. However, in this problem we
can easily find inputs (e.g., two identical sequences) where the recursive
solution outperforms the iterative one. The lesson here is that the top-down
approach only evaluates the subproblems it actually needs, while the iterative
approach doesn’t know which subproblems will be needed later and thus it
must always evaluate all of them.

Lesson 8: Longest increasing subsequence in quadratic time

Goals: Examining the first example where a subproblem isn’t evaluated in con-
stant time. Understanding how this is reflected in the time complexity estimates.
Most importantly, seeing that the subproblems don’t have to be instances of the
original problem.

Statement: Given a sequence of numbers, compute the length of its longest
increasing subsequence.

In our opinion, this problem is one of the most important ones in teaching
dynamic programming properly. When compared to previous problems, this one
is much harder for beginners. Here’s the main reason: The subproblems we need
to solve aren’t actually instances of the original problem.

This problem is used by Dasgupta and Skiena. However, Dasgupta just
reduces it to paths in a DAG without explicitly mentioning the conceptual step
where we change the problem. Skiena treats the problem properly: notably,
asking the question “what information about the first n − 1 elements of [the
sequence] would help you find the solution for the entire sequence?” (Still, note
that this question is factually incorrect: you are, in fact, supposed to look for
information about the first n − 1 elements that would help you find the same
information for all n elements.)

We suggest actually emphasizing the redefinition of the problem. First, we
illustrate on an example that knowing the length of longest increasing subse-
quence in the first n− 1 elements is useless for solving the same problem for the
first n elements. Only then we ask the question how to modify the problem in
a way that would be useful. And the question is easily answered by using our
approach: we can easily write a recursive solution that generates all increasing
subsequences by choosing where to end and then going backwards. Converting
this program into an O(n2) one requires just the mechanical step of adding
memoization.

 elements of [the sequence] would help you
find the solution for the entire sequence?” (Still, note that this question is factually
incorrect: you are, in fact, supposed to look for information about the first

For this problem, we first show the entire process. First, we show a recursive
solution that generates all common subsequences, starting by comparing the last
elements of both sequences. Then, we show that adding memoization improves
this solution from a worst-case exponential one into a solution that runs inO(n2).
Finally, we convert the solution into an equivalent iterative one.

Afterwards, we focus on the following points:

– Memory complexity. The iterative solution can easily be optimized to use
O(n) memory only, the recursive one cannot.

– Execution time. So far, iterative solutions were better as they didn’t perform
the additional work related to function calls. However, in this problem we
can easily find inputs (e.g., two identical sequences) where the recursive
solution outperforms the iterative one. The lesson here is that the top-down
approach only evaluates the subproblems it actually needs, while the iterative
approach doesn’t know which subproblems will be needed later and thus it
must always evaluate all of them.

Lesson 8: Longest increasing subsequence in quadratic time

Goals: Examining the first example where a subproblem isn’t evaluated in con-
stant time. Understanding how this is reflected in the time complexity estimates.
Most importantly, seeing that the subproblems don’t have to be instances of the
original problem.

Statement: Given a sequence of numbers, compute the length of its longest
increasing subsequence.

In our opinion, this problem is one of the most important ones in teaching
dynamic programming properly. When compared to previous problems, this one
is much harder for beginners. Here’s the main reason: The subproblems we need
to solve aren’t actually instances of the original problem.

This problem is used by Dasgupta and Skiena. However, Dasgupta just
reduces it to paths in a DAG without explicitly mentioning the conceptual step
where we change the problem. Skiena treats the problem properly: notably,
asking the question “what information about the first n − 1 elements of [the
sequence] would help you find the solution for the entire sequence?” (Still, note
that this question is factually incorrect: you are, in fact, supposed to look for
information about the first n − 1 elements that would help you find the same
information for all n elements.)

We suggest actually emphasizing the redefinition of the problem. First, we
illustrate on an example that knowing the length of longest increasing subse-
quence in the first n− 1 elements is useless for solving the same problem for the
first n elements. Only then we ask the question how to modify the problem in
a way that would be useful. And the question is easily answered by using our
approach: we can easily write a recursive solution that generates all increasing
subsequences by choosing where to end and then going backwards. Converting
this program into an O(n2) one requires just the mechanical step of adding
memoization.

 ele-
ments that would help you find the same information for all  elements.)

We suggest actually emphasizing the redefinition of the problem. First, we illustrate
on an example that knowing the length of longest increasing subsequence in the first

For this problem, we first show the entire process. First, we show a recursive
solution that generates all common subsequences, starting by comparing the last
elements of both sequences. Then, we show that adding memoization improves
this solution from a worst-case exponential one into a solution that runs inO(n2).
Finally, we convert the solution into an equivalent iterative one.

Afterwards, we focus on the following points:

– Memory complexity. The iterative solution can easily be optimized to use
O(n) memory only, the recursive one cannot.

– Execution time. So far, iterative solutions were better as they didn’t perform
the additional work related to function calls. However, in this problem we
can easily find inputs (e.g., two identical sequences) where the recursive
solution outperforms the iterative one. The lesson here is that the top-down
approach only evaluates the subproblems it actually needs, while the iterative
approach doesn’t know which subproblems will be needed later and thus it
must always evaluate all of them.

Lesson 8: Longest increasing subsequence in quadratic time

Goals: Examining the first example where a subproblem isn’t evaluated in con-
stant time. Understanding how this is reflected in the time complexity estimates.
Most importantly, seeing that the subproblems don’t have to be instances of the
original problem.

Statement: Given a sequence of numbers, compute the length of its longest
increasing subsequence.

In our opinion, this problem is one of the most important ones in teaching
dynamic programming properly. When compared to previous problems, this one
is much harder for beginners. Here’s the main reason: The subproblems we need
to solve aren’t actually instances of the original problem.

This problem is used by Dasgupta and Skiena. However, Dasgupta just
reduces it to paths in a DAG without explicitly mentioning the conceptual step
where we change the problem. Skiena treats the problem properly: notably,
asking the question “what information about the first n − 1 elements of [the
sequence] would help you find the solution for the entire sequence?” (Still, note
that this question is factually incorrect: you are, in fact, supposed to look for
information about the first n − 1 elements that would help you find the same
information for all n elements.)

We suggest actually emphasizing the redefinition of the problem. First, we
illustrate on an example that knowing the length of longest increasing subse-
quence in the first n− 1 elements is useless for solving the same problem for the
first n elements. Only then we ask the question how to modify the problem in
a way that would be useful. And the question is easily answered by using our
approach: we can easily write a recursive solution that generates all increasing
subsequences by choosing where to end and then going backwards. Converting
this program into an O(n2) one requires just the mechanical step of adding
memoization.

 elements is useless for solving the same problem for the first  elements. Only
then we ask the question how to modify the problem in a way that would be useful. And
the question is easily answered by using our approach: we can easily write a recursive
solution that generates all increasing subsequences by choosing where to end and then
going backwards. Converting this program into an

the mathematical sense can be memoized. (Such functions are sometimes called
pure functions.)

An interesting historical note: memoization is not only useful when it comes
to improving the asymptotic time complexity. For instance, many early programs
that produced computer graphics used precomputed tables of sines and cosines
because table lookup was faster than the actual evaluation of a floating-point-
valued function.

Lesson 3: Fibonacci numbers revisited

Goals: See the stunning effect memoization can have.
By applying memoization (using a simple array) to the Fibonacci function,

each of the values F (1) through F (n) is only computed once, using a single addi-
tion. Therefore, we suddenly have a program that only performs Θ(n) additions
to compute the value F (n): quite an improvement over the original exponential
time. The above Python program can now easily compute F (1000).

(Note that Python operates with arbitrarily large integers. The n-th Fi-
bonacci number is exponential in n and therefore has Θ(n) digits. In the RAM
model, the actual time complexity of the above algorithm is O(n2), as each
addition of two O(n)-digit numbers takes O(n) steps.)

Here it is important to highlight the contrast: exponential time without vs.
polynomial time with memoization. It is also instructional to draw a new, col-
lapsed version of the entire recursion tree for n = 6.

Lesson 4: Maximum weighted independent set on a line

Goals: Encounter the first problem solvable using dynamic programming. Learn
how to write a brute force solution in a good way, and how to use memoization
to “magically” turn it into an efficient algorithm.

Statement: Given is a sequence of n bottles, their volumes are v0 through
vn−1. Drink as much as you can, given that you cannot drink from any two
adjacent bottles.

This problem has a very short and simple statement and only requires a
simple one-dimensional array to store the input. But the main reason why we
elected to use this as the first example will become apparent once we implement
and examine a brute force solution for this problem.

Our goal is to implement a recursive solution that generates all valid sets
of bottles and chooses the best among them. Such a recursive solution can be
based on a simple observation: either we choose the last bottle or we don’t. If
we don’t, we want to find the best solution from among the first n − 1 bottles.
If we do, we are not allowed to take the penultimate bottle and therefore we are
looking for the best solution among the first n− 2 bottles.

v = [3, 1, 4, 1, 5, 9, 2, 6]

def solve(k):

 one requires just the mecha-
nical step of adding memoization.

Optional follow-up lessons

After the above sequence of problems and expositions the students should have a decent
grasp of the basic techniques and they should be ready to start applying them to new

Towards a Better Way to Teach Dynamic Programming 55

problems. Still, there are more faces to the area of dynamic programming. Here, we sug-
gest some possibilities for additional content of lectures:

Problems where the state is a substring of the input: Edit distance to a palindrome. ●
Optimal BST.
Problems solvable in pseudopolynomial time: Subset sum, knapsack, coin ●
change.
Optimalizations of the way how the recurrence is evaluated: Hirschberg’s trick for ●
LCS in linear memory; Knuth optimization for Optimal BST; improving Longest
increasing subsequence to ( log ) by using a balanced tree to store solutions
to subproblems.

5. Conclusion

Above, we have presented one possible way in which dynamic programming can be in-
troduced to students. Our opinion is that the main improvement we bring is the systematic
decomposition of the learning process into smaller, clearly defined conceptual steps.

References

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2001). Introduction to Algorithms. MIT Press, 2nd
edition.

Dasgupta, S., Papadimitriou, C.H., Vazirani, U.V. (2006). Algorithms. McGraw-Hill.
Hirschberg, D. (1975). A linear space algorithm for computing maximal common subsequences. Communica-

tions of the ACM, 18(6), 341–343.
Hu, T.C., Shing, M.T.(1982). Computation of Matrix Chain Products (part 1). SIAM Journal on Computing,

11(2), 362–373.
Hu, T.C., Shing, M.T. (1984). Computation of Matrix Chain Products (part 2). SIAM Journal on Computing,

13(2), 228–251.
Kleinberg, J., Tardos, É. (2006). Algorithm Design. Addison-Wesley.
Sedgewick, R. (1998). Algorithms in C++. Addison-Wesley, 3rd edition.
Sedgewick, R., Wayne, K. (2011). Algorithms. Addison-Wesley Professional, 4rd edition.
Skiena, S.S. (2008). The Algorithm Design Manual. Springer-Verlag, 2nd edition.

M. Forišek is an assistant professor at the Comenius University in
Slovakia. Since 1999 he has been involved in organizing internatio-
nal programming competitions, including the IOI, CEOI, and ACM
ICPC. He is also the head organizer of the Internet Problem Solving
Contest (IPSC). His research interests include theoretical computer
science (hard problems, computability, complexity) and computer sci-
ence education.

Olympiads in Informatics, 2015, Vol. 9, 57–73
DOI: http://dx.doi.org/10.15388/ioi.2015.06

57

Introducing tcframe: A Simple and Robust Test
Cases Generation Framework

Ashar FUADI
Indonesia Computing Olympiad
Alumni Association
e-mail: fushar@gmail.com

Abstract. Preparing test cases is a vital step in a programming contest. Creating all test cases
manually by hand is hard and error-prone, so they should be generated by programs. There have
been several attempts at creating a framework for test cases generation, that involve writing a
generator program that generates the test cases, and a validator program that validates whether
the produced test cases conform to the constraints. This paper proposes a simpler yet robust
framework, called tcframe, for generating test cases especially for programming contest pro-
blems. The proposed approach involves writing a single self-validating C++ generator program
as opposed to writing two separate programs. The framework API is designed in such a way that
the resulting generator program is easy to read and modify. Using this framework, programming
contest organizers can produce generator programs with a consistent and similar structure across
all problems.

Keywords: test case, test cases generator, test cases framework.

1. Introduction

In the past few years, competitive programming contests have been on the rise. Worl-
dwide, the number of online programming contests has been increasing. Specifically in
Indonesia, there have been more universities and high schools that have started organi-
zing programming contests. Students have many opportunities for participating in pro-
gramming contests in each school year.

In a competitive programming contest, contestants are given several problems to
solve under a predetermined time. A contestant is considered to solve a given problem if
he/she can write a program which produces correct output for each of the problem set-
ter’s secret input data (Halim and Halim, 2010). Therefore, the correctness of the secret
input data (test cases) itself is really important and the programming contest organizers
should put a lot of efforts in creating the test cases.

It is common that the people who prepare programming contest problems, including
the test cases, are the ones who have participated in some programming contests in the
past. The problem is that having experience in participating in a lot of contests usually

A. Fuadi58

does not automatically make us a good in preparing test cases. It does help a bit, as for
example, a seasoned contestant will be aware that many kinds of tricky cases should
be included in the test cases. However, we feel that it is not enough to be a good test
cases preparer.

There are at least two aspects in learning how to produce good test cases. The first
is learning how to systematically write a test cases generator program. The second
is learning how to come up with a strong set of test cases that catch as many bugs as
possible in contestants’ submissions. In this paper, we will be focusing on the former
aspect.

We realize that there are currently very few learning resources on how to systemati-
cally create test cases for programming contests. Many people simply don’t know how
or where to even start. In our experience, this lack of knowledge usually results in each
problem setter inventing their own test cases generator program.

The programs are usually not standard: some have parameters that are easy to mod-
ify; some do not; some write the test cases directly to files, some to the standard output,
and so on.

The above situation is actually dangerous: it becomes hard for a person to modify or
even understand other people’s generator programs. Imagine a possible situation where
we have to do some last-minute changes to a problem’s constraints (for example: adding
very easy subtask for beginners), but the person that wrote the generator program is not
available at the moment. Other people will have to spend a considerable amount of time
to understand and modify the program to produce the desired changes.

To eliminate the mentioned problems, we developed a test cases generator frame-
work called tcframe. We did not create tcframe at once. Instead, we begin by using an
existing library called testlib. It is a library designed for generating test cases for ICPC-
style programming contests. It has been used for many Russian programming contests
(Mirzayanov, 2008). Using testlib, we have to write a generator program that outputs
exactly one test case, and a validator program that checks whether a particular test case
conforms to the constraints.

We found that it was not quite suitable for IOI-style contests, so we created a wrap-
per around it, called tokilib (Fuadi, 2014). The wrapper essentially makes it possible to
generate multiple test cases at once, and to check the constraints based on the assigned
subtasks of each test case. We have been using it for preparing Indonesian IOI training
camps throughout 2014 and the scientific committee members have been very satisfied
with it.

Finally, we invented a quite significantly better approach that involves only writing
a single self-validating generator program. We decided to rewrite the framework from
scratch and give it a new name, tcframe. We are currently in the process of completing
the development of tcframe.

The rest of the paper is organized as follows. In Section 2 we propose a formaliza-
tion of test cases organization. Section 3 talks about the existing framework attempts
and how we incrementally refined them to finally create tcframe. Section 4 explains our
implementation of the proposed approach. In the last section, Section 5, we conclude the
paper and offer many possible future works for tcframe.

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 59

2. Test Cases Organization

In order to create a framework, we have to formalize several aspects related to the or-
ganization of test cases. In this section, we propose such formalization. This section
contains the definitions and relations between the aspects.

2.1. Test Case

We define a test case as a pair of input values and the corresponding output values. The
input must satisfy the constraints (defined later in this section). We will talk mostly
about test case inputs. Therefore, for simplicity, if not explicitly clarified, a test case will
mean a test case input.

Test cases should be hidden from contestants. However, there are some test cases that
are given in the problem statements. They are given so that the contestants will not mis-
understand the input/output formats. Such test cases are called sample test cases. In con-
trast, test cases that are not given in problem statements are called official test cases.

2.2. Input Variables

We define input variables as variables which compose test cases inputs. They are usually
declared in the input format section of a problem statement. For each value that appears
in a test case input, it must be either a constant or (part of) an input variable.

For example, consider the following problem:

Statement. Given an integer , and an array consisting of  integers, compute the prod-
uct of all integers, modulo 10007!"

Input format. The first line consists of a sentence “Dengklek has  integers", where 

is an integer. The next line contains  space-separated integers 
1
 

2
  


."

Output format. Output a single line containing a single real value: the mean, printed
with two digits after the decimal point.

In this problem, for this input:

2 Test Cases Organization
In order to create a framework, we have to formalize several aspects related to the
organization of test cases. In this section, we propose such formalization. This
section contains the definitions and relations between the aspects.

2.1 Test Case
We define a test case as a pair of input values and the corresponding output values.
The input must satisfy the constraints (defined later in this section). We will talk
mostly about test case inputs. Therefore, for simplicity, if not explicitly clarified,
a test case will mean a test case input.

Test cases should be hidden from contestants. However, there are some test
cases that are given in the problem statements. They are given so that the contes-
tants will not misunderstand the input/output formats. Such test cases are called
sample test cases. In contrast, test cases that are not given in problem statements
are called official test cases.

2.2 Input Variables
We define input variables as variables which compose test cases inputs. They are
usually declared in the input format section of a problem statement. For each
value that appears in a test case input, it must be either a constant or (part of)
an input variable.

For example, consider the following problem:
Statement. Given an integer N , and an array consisting of N integers, com-

pute the product of all integers, modulo 10007!"
Input format. The first line consists of a sentence "Dengklek has N inte-

gers", where N is an integer. The next line contains N space-separated integers
A1, A2, ..., AN ."

Output format. Output a single line containing a single real value: the mean,
printed with two digits after the decimal point.

In this problem, for this input:

Dengklek has 3 i n t e g e r s
10 20 30

• The strings "Dengklek", "has", and "integers" are constants. If we consider
whitespaces, they are constants as well.

• The integer 3 is N .

• The integer 10 is A1.

• The integer 20 is A2.

• The integer 30 is A3.

3

The strings “Dengklek”, “has”, and “integers” are constants. If we consider ●
whitespaces, they are constants as well.
The integer ● 3 is .
The integer ● 10 is 

1
.

The integer ● 20 is 
2
.

The integer ● 30 is 
3
.

A. Fuadi60

2.3. Constraints

We define a constraint as a boolean predicate which limits the possible values of the
input variables in test case inputs. The value of the predicate must be completely deter-
mined by the values of input variables only. For example, 1 ≤  ≤ 100 is a valid con-
straint for the previous problem.

2.4. Subtasks and Test Groups

We define a subtask as a set of one or more constraints. Subtasks are numbered with
consecutive integers starting from 1. A test case is said to satisfy a subtask if it satisfies
all constraints in the subtask.

One purpose of introducing subtasks in a problem is to create a nice score distribu-
tion (van der Vegt, 2009). Since 2010, all IOI problems have used subtasks in their
constraints. Besides having a good distribution, the scores are also predictable since the
points allotted to each subtask are usually fixed.

Let’s consider a typical problem, which has only  as an input variable, and has
three subtasks as follow:

 1. 1 ≤  ≤ 100

 2. 1 ≤  ≤ 1000

 3. 1 ≤  ≤ 10000

We must assign a set of test cases to each subtask. The most common way is to
consider each subtask independently. This means that the test cases generation for each
subtask is independent to the other subtasks. In this way, it is quite unlikely that two
subtasks have a test case with exactly the same content.

However, this has a serious problem. If each subtask is considered independently, then
theoretically it is possible that a submission solves subtask 2, but not subtask 1. This can
happen if subtask 1 has a tricky case that is not present in subtask 2. However, this situa-
tion does not make sense: if a solution fails a test case having 1 ≤  ≤ 100, then logically
we should not let it pass subtask 2, since that test case satisfy 1 ≤  ≤ 1000 as well.

Our proposed solution to the above problem is as follows. Instead of each subtask
having a set of independent test cases, we assign each test case to a set of subtasks. A
submission is then considered to solve a subtask if it solves all test cases assigned to it.
For convenience, we define a test group as a set of test cases, numbered with consecutive
integers starting from 1. If two test cases are assigned to the same set of subtasks, then
they are in the same test group.

Formally, we propose the following assignment rules:
Each test case is assigned to a set of subtasks. ●
For each test group, all official test cases in it have the same set of subtasks. ●
If a test case is assigned to a set of subtasks ● , then:

The test case must satisfy all subtasks ●  ∈ .
The test case must not satisfy any of the subtasks ●  ∉ .

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 61

In the proposed rules, instead of generating independent set of test cases for each
subtask, we organize the test cases generation as follows.

Test group 1: generate test cases that satisfy ● 1 ≤  ≤ 100. Assign them to subtasks
f1 2 3g.
Test group 2: generate test cases that satisfy ● 101 ≤  ≤ 1000. Assign them to sub-
tasks f2 3g.
Test group 3: generate test cases that satisfy ● 1001 ≤  ≤ 10000. Assign them to
subtasks f3g.

Let’s consider another problem, this time with two input variables  and .
 1.  = 1; 1 ≤  ≤ 100

 2. 1 ≤  ≤ 100;  = 1
 3. 1 ≤ K,  ≤ 100

Generate the test cases as follow:
Test group 1: consists of only one test case ●  =  = 1. Assign it to subtasks f1

2 3g.
Test group 2: generate test cases that satisfy ●  = 1; 2 ≤  ≤ 100. Assign them to
subtasks f1 3g.
Test group 3: generate test cases that satisfy ● 2 ≤  ≤ 100;  = 1. Assign them to
subtasks f2 3g.
Test group 4: generate test cases that satisfy ● 2 ≤  ≤ 100. Assign them to sub-
tasks f3g.

Perhaps it will be understood better by drawing the Venn diagrams of the subtasks,
as depicted in Fig. 1. Our advice is to have a test group for each closed region in the
resulting Venn diagram.

Note that the above solution still depends on the grader system used for the contest.
If the grader system only support independent set of test cases for each subtask, then a
possible workaround is to have multiple copies of a test case for each of the assigned
subtasks. This will, however, result in a test case being evaluated multiple times. In the

Fig. 1. Example test groups Venn diagram.

A. Fuadi62

current implementation of grader mentioned in (Fernando and Liem, 2014), the above
idea has been enforced. Each test case will never be evaluated more than once. Each
subtask result is then deduced from the test case evaluation results.

Having formalized the test cases generation, we are now ready to discuss how to
design a framework that supports it.

3. Test Cases Generation Framework Designs

There have been several previous efforts related to test cases generation that we are
aware of. For each of them, we will explain the key designs, the problems that arise, and
proposed solutions. Eventually, the proposed solutions are then used as foundations for
writing the tcframe framework.

For each problem, there should be a set of test cases, a generator program that gener-
ates the test cases (if any), and a validator program that validates the correctness of the
test cases, as proposed in (Diks et al., 2008). All previous works require us to write a
generator and a validator program. tcframe takes a little step further and only requires us
to write a self-validating generator program.

When explaining a framework, we will assume that an official solution to the prob-
lem we are currently considering is already available. This means that our job is only
generating test cases (not writing the solution).

3.1. testlib

testlib is a library created by Mike Mirzayanov et al. To generate test cases using the
testlib library, we need to write two programs: a generator program, which outputs a test
case input, and a validator program, which validates the produced input.
Generator program. This program, when run, will produce a single test case input file.
To have some variations in the values of the input, the generator program usually contains
some randomizations. The randomization parameters and seed can be passed as the pro-
gram’s command line arguments.

testlib provides a bunch of functions related to randomization that we can use.
For example, generating weighted random values, generating random strings based

on a regex pattern, etc.
For example, here is a sample pseudocode of a generator program using testlib.

i n t maxN = the program ’ s 1 s t argument

i n t N = randomize between 1 and maxN
p r i n t l n N
f o r 0 <= i < N:

i n t a = randomize between 0 and 1000
p r i n t l n a

Validator program. After a test case input file has been produced by the
generator, we need to validate whether the values in the input file conform to
the constraints. This is done by the validator program. It takes the input file as
standard input and validates the values using the provided functions.

For example, here is a sample pseudocode of a validator program using testlib.

read an i n t e g e r N and v e r i f y that 1 <= N <= 100000
f o r 0 <= i < N:

read an i n t e g e r a , and v e r i f y that 0 <= a <= 1000
i f i + 1 < N:

read a space
e l s e :

read a newl ine
v e r i f y that i t i s EOF

We found that testlib is missing several features. First, the generator program
only produces a single input file in a single execution. So, to produce test data
that has many test cases, we have to write a script and call the generator program
several times using different arguments. Second, the validator program does not
support subtasks: it is not possible to validate a test case on a specific subtask.
These features are missing because testlib was designed for ICPC-style problems.

Fig. 2 shows the diagram of steps for generating test cases using testlib.

Figure 2: testlib generation diagram

3.2 tokilib
Recall that in summary, testlib does not support generating multiple test cases at
once for problems with subtasks. To fill this missing feature, we wrote a wrap-

7

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 63

Validator program. After a test case input file has been produced by the generator, we
need to validate whether the values in the input file conform to the constraints. This is
done by the validator program. It takes the input file as standard input and validates the
values using the provided functions.

For example, here is a sample pseudocode of a validator program using testlib.

i n t maxN = the program ’ s 1 s t argument

i n t N = randomize between 1 and maxN
p r i n t l n N
f o r 0 <= i < N:

i n t a = randomize between 0 and 1000
p r i n t l n a

Validator program. After a test case input file has been produced by the
generator, we need to validate whether the values in the input file conform to
the constraints. This is done by the validator program. It takes the input file as
standard input and validates the values using the provided functions.

For example, here is a sample pseudocode of a validator program using testlib.

read an i n t e g e r N and v e r i f y that 1 <= N <= 100000
f o r 0 <= i < N:

read an i n t e g e r a , and v e r i f y that 0 <= a <= 1000
i f i + 1 < N:

read a space
e l s e :

read a newl ine
v e r i f y that i t i s EOF

We found that testlib is missing several features. First, the generator program
only produces a single input file in a single execution. So, to produce test data
that has many test cases, we have to write a script and call the generator program
several times using different arguments. Second, the validator program does not
support subtasks: it is not possible to validate a test case on a specific subtask.
These features are missing because testlib was designed for ICPC-style problems.

Fig. 2 shows the diagram of steps for generating test cases using testlib.

Figure 2: testlib generation diagram

3.2 tokilib
Recall that in summary, testlib does not support generating multiple test cases at
once for problems with subtasks. To fill this missing feature, we wrote a wrap-

7

We found that testlib is missing several features. First, the generator program only
produces a single input file in a single execution. So, to produce test data that has many
test cases, we have to write a script and call the generator program several times using
different arguments. Second, the validator program does not support subtasks: it is not
possible to validate a test case on a specific subtask.

These features are missing because testlib was designed for ICPC-style problems.
Fig. 2 shows the diagram of steps for generating test cases using testlib.

3.2. tokilib

Recall that in summary, testlib does not support generating multiple test cases at once for
problems with subtasks. To fill this missing feature, we wrote a wrapper around testlib,
called tokilib. We call it wrapper because it is using testlib’s generation and validation
functions.

Fig. 2. testlib generation diagram.

A. Fuadi64

Improved generator program. A generator program now consists of several functions,
each of which defines a test group (called batch in tokilib). Each test group can be as-
signed a set of subtasks. Then, test case definitions follow, in the format as described in
the next section below.

Component-based test cases. We introduce the concept of components in a test case as
follows. Suppose we have a labeled tree data structure of  nodes as the test case. We
can break down the structure into two independent components: a tree consisting of 

nodes, and a list of  labels for the nodes. This way, we can generate each component
independently, and then mix them to produce strong test cases.

For example, for the first component, we can have the following two variations: a bi-
nary tree and a random tree. For the second component, we can also have two variations:
a list consisting of equal labels, and a list consisting of random labels.

For each component, we choose a suitable representation, which might be different
from the input format section. For example, the tree can be represented as follows. Con-
sider the tree as a rooted tree, with node 1 as the root. The representation is a vector of
 elements. The i-th (one-based) element is the number of the parent of node i, or 0 (no
parent) if i = 1 (Manev et al., 2010).

Each component is declared as a global variable in the desired representation.
Then, a test case definition can be defined as a sequence of statements that assign the

correct values to the components. Finally, we must implement a print() function, which
prints the components according to the input format. Here is a pseudocode of a sample
generator program in tokilib:

per around testlib, called tokilib. We call it wrapper because it is using testlib’s
generation and validation functions.

Improved generator program. A generator program now consists of several
functions, each of which defines a test group (called batch in tokilib). Each test
group can be assigned a set of subtasks. Then, test case definitions follow, in the
format as described in the next section below.

Component-based test cases. We introduce the concept of components in
a test case as follows. Suppose we have a labeled tree data structure of N nodes as
the test case. We can break down the structure into two independent components:
a tree consisting of N nodes, and a list of N labels for the nodes. This way, we can
generate each component independently, and then mix them to produce strong
test cases.

For example, for the first component, we can have the following two variations:
a binary tree and a random tree. For the second component, we can also have two
variations: a list consisting of equal labels, and a list consisting of random labels.

For each component, we choose a suitable representation, which might be dif-
ferent from the input format section. For example, the tree can be represented as
follows. Consider the tree as a rooted tree, with node 1 as the root. The repre-
sentation is a vector of N elements. The i-th (one-based) element is the number
of the parent of node i, or 0 (no parent) if i=1 (Manev et al., 2010).

Each component is declared as a global variable in the desired representation.
Then, a test case definition can be defined as a sequence of statements that as-
sign the correct values to the components. Finally, we must implement a print()
function, which prints the components according to the input format. Here is a
pseudocode of a sample generator program in tokilib:
va r i a b l e s :

i n t N
in t [] parents

p r i n t () :
p r i n t l n (N)
f o r 0 <= i < N:

i f parents [i] != 0 :
p r i n t l n (i + " " + parents [i])

batch1 () :
ass ignToSubtasks ({1 , 2})
beginTC () ; N = 7 ; binaryTree () ; equa lLabe l s () ; endTC()
beginTC () ; N = 10 ; randomTree () ; equa lLabe l s () ; endTC()
beginTC () ; N = 100 ; binaryTree () ; randomLabels () ; endTC()
beginTC () ; N = 100 ; randomTree () ; randomLabels () ; endTC()

batch2 () :
ass ignToSubtasks ({2})
beginTC () ; N = 500 ; randomTree () ; randomLabels () ; endTC()
beginTC () ; N = 1000 ; randomTree () ; randomLabels () ; endTC()

Improved validator program. A validator program in tokilib combines the
schemes used in testlib’s validator and tokilib’s generator. It consists of a list of
subtask definitions. A subtask definition consists of a list of constraint definitions,
each of which is an assignment to a constraint boundary variable. A constraint
boundary variable is just a variable that holds the varying values of a constraint
across subtasks, for example, min/max possible value of N . It is declared as a

8

Improved validator program. A validator program in tokilib combines the schemes
used in testlib’s validator and tokilib’s generator. It consists of a list of subtask defini-
tions. A subtask definition consists of a list of constraint definitions, each of which is an
assignment to a constraint boundary variable. A constraint boundary variable is just a

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 65

variable that holds the varying values of a constraint across subtasks, for example, min/
max possible value of . It is declared as a global variable. Finally, we must implement
a validate() function, which validates a test case according to the assigned subtasks. Here
is a pseudocode of a sample validator program in tokilib:
global variable. Finally, we must implement a validate() function, which validates
a test case according to the assigned subtasks. Here is a pseudocode of a sample
validator program in tokilib:

va r i a b l e s :
i n t maxN

va l i d a t e () :
read N and v e r i f y that 1 <= N <= maxN
read t r e e edges
v e r i f y that the edges form a t r e e

main () :
beginSubtask () ; maxN = 100 ; endSubtask ()
beginSubtask () ; maxN = 1000 ; endSubtask ()

Improved usage. testlib requires us to manually call the validator program
on the generated input file, and then run the solution to produce an output file.
This is not the case in tokilib: after the generator program produces an input
file, the validator program will be automatically run against it. If it passes, the
solution will be automatically run against it to produce an output file.

Fig. 3 shows the diagram of steps for generating test cases using tokilib.

Figure 3: tokilib generation diagram

3.3 tcframe
After using tokilib for generating test cases for many problems, we noticed that the
part of validator that parses and checks whether the values are printed according
to the input format looks similar and repetitive across all problems. We then
wondered whether checking the input format in the validator can be eliminated.

Let’s begin with the reason why input format validation has been necessary
in the first place. It has been because it is us humans who type the actual code
for printing the values, and humans are error-prone. In addition, there are many
ways to print the input variable values, because we may be manipulating the
test case components using a different representation that defined in the input

9

Improved usage. testlib requires us to manually call the validator program on the gener-
ated input file, and then run the solution to produce an output file.
This is not the case in tokilib: after the generator program produces an input file, the
validator program will be automatically run against it. If it passes, the solution will be
automatically run against it to produce an output file.

Fig. 3 shows the diagram of steps for generating test cases using tokilib.

3.3. tcframe

After using tokilib for generating test cases for many problems, we noticed that the part
of validator that parses and checks whether the values are printed according to the in-
put format looks similar and repetitive across all problems. We then wondered whether
checking the input format in the validator can be eliminated.

Fig. 3. tokilib generation diagram.

A. Fuadi66

Let’s begin with the reason why input format validation has been necessary in the
first place. It has been because it is us humans who type the actual code for printing the
values, and humans are error-prone. In addition, there are many ways to print the input
variable values, because we may be manipulating the test case components using a dif-
ferent representation that defined in the input format section. For example, suppose the
test case consists of an undirected graph.

The input format section might state that the graph is given as a list of edges, but we
might be manipulating the graph using an adjacency list instead. One implementation
for printing the edges is to print them while traversing the graph using, for example,
breadth-first search. Then, if we make mistakes in the traversal code, we might print
duplicate edges, or we might miss some edges.

So, we had an idea. If we hand over the input variables printing part to the frame-
work, then the input variables parsing and input format validation should not be neces-
sary anymore. To make this possible, we need to formalize how to declare the input vari-
ables and specify the input format. Remember that this has not been formalized before:
we are free to decompose the structure into any components we want.

We propose the following formalization:
The framework only works on “primitive” input variables. For example: scalars, ●
vectors, and matrices of basic types (integers, floating-points, strings). Note that
these are the most commonly used structures in input format sections.
The framework provides an API to arrange the input variables in certain formats. ●
For example, space-separated scalars in a single line, space-separated elements of a
vector in a single line, multiple lines each containing an element of a vector, etc.

In this way, we only need to specify the input variables arrangement, and to assign
values to the input variables for each test case. Then, the framework will take care of
printing the values according to the specified input format. Assuming the framework is
always correct, we now don’t need to parse the variables and validate the input format in
the validator program anymore.

Here is the pseudocode of the desired scheme:

format section. For example, suppose the test case consists of an undirected graph.
The input format section might state that the graph is given as a list of edges,
but we might be manipulating the graph using an adjacency list instead. One
implementation for printing the edges is to print them while traversing the graph
using, for example, breadth-first search. Then, if we make mistakes in the traversal
code, we might print duplicate edges, or we might miss some edges.

So, we had an idea. If we hand over the input variables printing part to the
framework, then the input variables parsing and input format validation should
not be necessary anymore. To make this possible, we need to formalize how to
declare the input variables and specify the input format. Remember that this
has not been formalized before: we are free to decompose the structure into any
components we want.

We propose the following formalization:

• The framework only works on "primitive" input variables. For example:
scalars, vectors, and matrices of basic types (integers, floating-points, strings).
Note that these are the most commonly used structures in input format sec-
tions.

• The framework provides an API to arrange the input variables in certain for-
mats. For example, space-separated scalars in a single line, space-separated
elements of a vector in a single line, multiple lines each containing an element
of a vector, etc.

In this way, we only need to specify the input variables arrangement, and to
assign values to the input variables for each test case. Then, the framework will
take care of printing the values according to the specified input format. Assuming
the framework is always correct, we now don’t need to parse the variables and
validate the input format in the validator program anymore.

Here is the pseudocode of the desired scheme:

i nputVar i ab l e s :
i n t N
in t [] u , v

inputFormat () :
s i n g l eL i n e (N)
mu l t i p l eL ine s (N−1, {u [i] , v [i] })

The interesting thing about this scheme is that the pseudocode is really similar
to the input format section in the problem statement, which is nice because it will
be easy to verify.

Now, the only thing left in validator program is constraints checking. Previ-
ously, this is done after we parse the input variables from the input file produced
by the generator. Since the parsing part is now eliminated, we can do the check
directly on the input variables declared in the generator, as a list of subtask def-
initions, each of which consists of a list of constraint definitions. As the input
format validation is already similar to the corresponding section in the problem
statement, it would be nice if this part can also be made similar to constraints/-
subtasks section in the problem statement.

Here is the pseudocode of the proposed scheme of this part:

10

The interesting thing about this scheme is that the pseudocode is really similar to the in-
put format section in the problem statement, which is nice because it will be easy to verify.

Now, the only thing left in validator program is constraints checking. Previously, this
is done after we parse the input variables from the input file produced by the genera-
tor. Since the parsing part is now eliminated, we can do the check directly on the input
variables declared in the generator, as a list of subtask definitions, each of which consists
of a list of constraint definitions. As the input format validation is already similar to the

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 67

corresponding section in the problem statement, it would be nice if this part can also be
made similar to constraints/subtasks section in the problem statement.

Here is the pseudocode of the proposed scheme of this part:

subtask1 () :
d e c l a r eCons t r a in t ({1 <= N and N <= 100})
dec l a r eCons t r a in t ({ graph i s va l i d t r e e })

subtask2 () :
d e c l a r eCons t r a in t ({1 <= N and N <= 1000})
dec l a r eCons t r a in t ({ graph i s va l i d t r e e })

Therefore, the validator program is now eliminated completely. As the gener-
ator program now contains both test cases generation and validations, we call it
with another name: runner program.

Finally, the test groups/test cases definitions are similar to those in tokilib,
except that we also make the syntax more declarative.

testGroup1 () :
ass ignToSubtasks ({1 , 2})
dec lareTestCase ({N = 7 ; binaryTree () ; equa lLabe l s () })
dec lareTestCase ({N = 100 ; randomTree () ; randomLabels () })

testGroup2 () :
ass ignToSubtasks ({2})
dec lareTestCase ({N = 200 ; binaryTree () ; equa lLabe l s () })
dec lareTestCase ({N = 1000 ; randomTree () ; randomLabels () })

In summary, Fig. 4 depicts the flow of test cases generation using the mentioned
idea so far.

Figure 4: tcframe generation diagram

We felt that this change is very significant compared to tokilib, so we decided
to consider this as a brand new framework and give it another name, tcframe.

4 Implementation Details
In the previous section, we described motivations and ideas behind tcframe. This
section will explain how tcframe is implemented in more detail.

11

Therefore, the validator program is now eliminated completely. As the generator
program now contains both test cases generation and validations, we call it with another
name: runner program.

Finally, the test groups/test cases definitions are similar to those in tokilib, except
that we also make the syntax more declarative.

subtask1 () :
d e c l a r eCons t r a in t ({1 <= N and N <= 100})
dec l a r eCons t r a in t ({ graph i s va l i d t r e e })

subtask2 () :
d e c l a r eCons t r a in t ({1 <= N and N <= 1000})
dec l a r eCons t r a in t ({ graph i s va l i d t r e e })

Therefore, the validator program is now eliminated completely. As the gener-
ator program now contains both test cases generation and validations, we call it
with another name: runner program.

Finally, the test groups/test cases definitions are similar to those in tokilib,
except that we also make the syntax more declarative.

testGroup1 () :
ass ignToSubtasks ({1 , 2})
dec lareTestCase ({N = 7 ; binaryTree () ; equa lLabe l s () })
dec lareTestCase ({N = 100 ; randomTree () ; randomLabels () })

testGroup2 () :
ass ignToSubtasks ({2})
dec lareTestCase ({N = 200 ; binaryTree () ; equa lLabe l s () })
dec lareTestCase ({N = 1000 ; randomTree () ; randomLabels () })

In summary, Fig. 4 depicts the flow of test cases generation using the mentioned
idea so far.

Figure 4: tcframe generation diagram

We felt that this change is very significant compared to tokilib, so we decided
to consider this as a brand new framework and give it another name, tcframe.

4 Implementation Details
In the previous section, we described motivations and ideas behind tcframe. This
section will explain how tcframe is implemented in more detail.

11

In summary, Fig. 4 depicts the flow of test cases generation using the mentioned idea
so far.

We felt that this change is very significant compared to tokilib, so we decided to
consider this as a brand new framework and give it another name, tcframe.

Fig. 4. tcframe generation diagram.

A. Fuadi68

4. Implementation Details

In the previous section, we described motivations and ideas behind tcframe. This section
will explain how tcframe is implemented in more detail.

The code is hosted on GitHub (https://github.com/ia-toki/tcframe/).
At the time of writing, it is on version 0.3.0 and it is not ready for public use.

We chose to write tcframe in C++. One of the main reasons is because it is a popular
language used by competitive programmers. In addition, C++ has preprocessor macros,
which will be used extensively for producing concise but powerful code.

Let’s begin with some philosophies that we want to achieve in the implementation
of tcframe.

It should be possible to write only a single runner program as opposed to writing ●
two programs: generator and validator programs.
The resulting runner program code should be concise, declarative, and should re- ●
semble the problem statement.
The overall syntax should be well structured so that it is easy to extend in the fu- ●
ture.

Fig. 5 depicts a proposed high-level class diagram to meet the above requirements.
Let’s discuss each part of the class diagram in more details. Note that tcframe is not

final yet so some part definitions may change in the future.

4.1. Specification Classes: BaseProblem and BaseGenerator

Recall that testlib and tokilib both require writing two separate programs: generator and
validator. This scheme has an advantage that the validator cannot access any user-defined
functions in the generator. This is important because to test a system (the generator), we

Fig. 5. tcframe class diagram.

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 69

should only use things outside the system. However, to implement tcframe, this cannot
be the case: both the generation and validation steps need to access the input variables.
However, we also want to prevent the validation step from using any user-defined func-
tions used in the generation step.

To satisfy both seemingly contradicting requirements, we restructure parts of the
generator and validator programs into two classes: input variables, input formats, and
subtask definitions go into problem specification class, while test cases definitions go
into generator specification class. Both classes then go to just a single program. The
definitions are implemented as virtual (abstract) methods in these classes, which must be
overridden in concrete classes. By convention, let’s name them Problem and Generator.
Any user-defined functions then should be declared private in Generator.

As mentioned above, the input variables go into the Problem class, as member vari-
ables. The Generator class then must be given access to the member variables.

We notice that there are two ways to implement this requirement: by composition
and by inheritance.

By composition. The Generator will hold an object of type Problem, whose member vari-
ables are declared public. This is nice, but now whenever we want to assign values to input
variables in the Generator class, we must type the object name (e.g., problem.N = 100).
We feel that this way is not concise and pleasant.

By inheritance. To avoid writing an object name before each input variable, we chose to
use inheritance. The input variables are to be declared as protected member variables in
Problem. Then, we make BaseGenerator inherit Problem. BaseGenerator now can access
the input variables. Generator is also able to access them as well, since it inherits Base-
Generator.

Finally, to make the above scheme work for any Problem class, we use templates in
the following way. Here is the declaration of BaseGenerator:

4.1 Specification classes: BaseProblem and BaseGenera-
tor

Recall that testlib and tokilib both require writing two separate programs:
generator and validator. This scheme has an advantage that the validator
cannot access any user-defined functions in the generator. This is important
because to test a system (the generator), we should only use things outside
the system. However, to implement tcframe, this cannot be the case: both the
generation and validation steps need to access the input variables. However, we
also want to prevent the validation step from using any user-defined functions
used in the generation step.

To satisfy both seemingly contradicting requirements, we restructure parts
of the generator and validator programs into two classes: input variables, input
formats, and subtask definitions go into problem specification class, while test
cases definitions go into generator specification class. Both classes then go to
just a single program. The definitions are implemented as virtual (abstract)
methods in these classes, which must be overridden in concrete classes. By con-
vention, let’s name them Problem and Generator. Any user-defined functions
then should be declared private in Generator.

As mentioned above, the input variables go into the Problem class, as mem-
ber variables. The Generator class then must be given access to the member
variables. We notice that there are two ways to implement this requirement:
by composition and by inheritance.

By composition. The Generator will hold an object of type Problem,
whose member variables are declared public. This is nice, but now whenever
we want to assign values to input variables in the Generator class, we must
type the object name (e.g., problem.N = 100). We feel that this way is not
concise and pleasant.

By inheritance. To avoid writing an object name before each input vari-
able, we chose to use inheritance. The input variables are to be declared as
protected member variables in Problem. Then, we make BaseGenerator inherit
Problem. BaseGenerator now can access the input variables. Generator is also
able to access them as well, since it inherits BaseGenerator.

Finally, to make the above scheme work for any Problem class, we use
templates in the following way. Here is the declaration of BaseGenerator:

template<typename TProblem>
class BaseGenerator : public TProblem ;

And here is the declaration of Problem and Generator:

class Problem : public BaseProblem ;
class Generator : public BaseGenerator<Problem>;

4.2 Definitions: input format, constraints/subtasks, test
cases/test groups

The definitions are realized as virtual member functions in the base specifica-
tion classes. We must implement those functions in the concrete specification
classes, and put the definition items inside them by making API calls. They

13

And here is the declaration of Problem and Generator:

system (the generator), we should only use things outside the system. However,
to implement tcframe, this cannot be the case: both the generation and validation
steps need to access the input variables. However, we also want to prevent the
validation step from using any user-defined functions used in the generation step.

To satisfy both seemingly contradicting requirements, we restructure parts
of the generator and validator programs into two classes: input variables, input
formats, and subtask definitions go into problem specification class, while test
cases definitions go into generator specification class. Both classes then go to just
a single program. The definitions are implemented as virtual (abstract) methods
in these classes, which must be overridden in concrete classes. By convention, let’s
name them Problem and Generator. Any user-defined functions then should be
declared private in Generator.

As mentioned above, the input variables go into the Problem class, as member
variables. The Generator class then must be given access to the member variables.
We notice that there are two ways to implement this requirement: by composition
and by inheritance.

By composition. The Generator will hold an object of type Problem, whose
member variables are declared public. This is nice, but now whenever we want to
assign values to input variables in the Generator class, we must type the object
name (e.g., problem.N = 100). We feel that this way is not concise and pleasant.

By inheritance. To avoid writing an object name before each input variable,
we chose to use inheritance. The input variables are to be declared as protected
member variables in Problem. Then, we make BaseGenerator inherit Problem.
BaseGenerator now can access the input variables. Generator is also able to access
them as well, since it inherits BaseGenerator.

Finally, to make the above scheme work for any Problem class, we use templates
in the following way. Here is the declaration of BaseGenerator:
template<typename TProblem>
class BaseGenerator : protected TProblem ;

And here is the declaration of Problem and Generator:
class Problem : public BaseProblem ;
class Generator : public BaseGenerator<Problem>;

4.2 Definitions: input format, constraints/subtasks, test cas-
es/test groups

The definitions are realized as virtual member functions in the base specification
classes. We must implement those functions in the concrete specification classes,
and put the definition items inside them by making API calls. They should have
something in common: if any step in the whole generation process fails, then the
definition item that causes the failure should be presented to the users so that
the users can fix it. For example, if an input variable value does not satisfy a
constraint, something like "Error: constraint 1 ≤ N ≤ 100 not satisfied" should be
output.

To support the above requirement, the definition items will be implemented
using C++ macros, which supports the stringization trick of the input parameters.
The next section will show the planned syntax for the macros.

13

4.2. Definitions: Input Format, Constraints/Subtasks, Test Cases/Test Groups

The definitions are realized as virtual member functions in the base specification classes.
We must implement those functions in the concrete specification classes, and put the def-
inition items inside them by making API calls. They should have something in common:
if any step in the whole generation process fails, then the definition item that causes
the failure should be presented to the users so that the users can fix it. For example, if

A. Fuadi70

an input variable value does not satisfy a constraint, something like “Error: constraint
1 ≤  ≤ 100 not satisfied" should be output.

To support the above requirement, the definition items will be implemented using
C++ macros, which supports the stringization trick of the input parameters.
The next section will show the planned syntax for the macros.

Input format. It consists of one or more input segments, which will be printed one
after another. Currently, the following input segment types are supported: space-sepa-
rated scalars/vectors in a single line, lines each containing an element of vectors, and
grid. For example, the definition of a line segment (the first type) is made by calling
this macro:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

which then expands to something like:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

The above call defines a line that consists of input variable , followed by a space,
followed by input variable .
Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ... SubtaskX()
for a finite number  (currently it is set to 10). To define a subtask, implement any of the
mentioned methods in the Problem class. Inside the method, we can define one or more
constraints, by calling this macro:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

which then expands to something like:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

In tokilib, we implement a constraint definition as an ordinary C++ statement.
In tcframe, we will use a new feature in C++11: lambda closure, for each constraint.

This has several advantages. For example, each constraint is now independent from any
other and they can be called in any order. It also makes the framework more extensible;
for example, it becomes possible to write a plugin based on tcframe that only prints all
constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1() ... Tes-
tGroupX() for a finite number  (similar to subtasks, currently it is just set to 10). To de-
fine a test group, implement any of the mentioned methods in the Generator class. Inside
the method, we can define one or more test cases, by calling this macro:

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 71

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

which then expands to something like:

Input format. It consists of one or more input segments, which will be printed
one after another. Currently, the following input segment types are supported:
space-separated scalars/vectors in a single line, lines each containing an element
of vectors, and grid. For example, the definition of a line segment (the first type)
is made by calling this macro:

LINE(A, B) ;

which then expands to something like:

inputFormat . addLineSegment ("A, B" , A, B) ;

The above call defines a line that consists of input variable A, followed by a
space, followed by input variable B.

Constraints/subtasks. BaseProblem declares virtual methods Subtask1() ...
SubtaskX() for a finite number X (currently it is set to 10). To define a subtask,
implement any of the mentioned methods in the Problem class. Inside the method,
we can define one or more constraints, by calling this macro:

CONS(1 <= N && N <= 100) ;

which then expands to something like:

c on s t r a i n t s . add ("1 <= N && N <= 100" ,
[t h i s] { re turn 1 <= N && N <= 100 ; }) ;

In tokilib, we implement a constraint definition as an ordinary C++ state-
ment. In tcframe, we will use a new feature in C++11: lambda closure, for each
constraint. This has several advantages. For example, each constraint is now
independent from any other and they can be called in any order. It also makes
the framework more extensible; for example, it becomes possible to write a plugin
based on tcframe that only prints all constraint descriptions.

Test cases/test groups. BaseGenerator declares virtual methods TestGroup1()
... TestGroupX() for a finite number X (similar to subtasks, currently it is just
set to 10). To define a test group, implement any of the mentioned methods in
the Generator class. Inside the method, we can define one or more test cases, by
calling this macro:

CASE(N = 100 , randomArrayElements ()) ;

which then expands to something like:

t e s tCase s . add ("N = 100 , randomArrayElements () " ,
[t h i s] { N = 100 , randomArrayElements () ; }) ;

Similar to constraint definitions, test case definitions also make use of lambda
closures. Note that we choose comma operators rather than semicolons for sepa-
rating input variable assignments. This way, the test case definition looks more
"declarative": it consists a list of assignments to the input variables, rather than
statements.

Finally, we also want to be able to use component-based in tcframe. This can
be achieved by declaring the component variables in the Generator class, use them
in test case definitions, and then convert them to the actual input variables in the
Problem class before the end of each test case definition.

14

Similar to constraint definitions, test case definitions also make use of lambda clo-
sures. Note that we choose comma operators rather than semicolons for separating input
variable assignments. This way, the test case definition looks more “declarative”: it con-
sists a list of assignments to the input variables, rather than statements.

Finally, we also want to be able to use component-based in tcframe. This can be
achieved by declaring the component variables in the Generator class, use them in test
case definitions, and then convert them to the actual input variables in the Problem class
before the end of each test case definition.

5. Conclusion

We have presented the ideas behind creating tcframe, and how we are currently imple-
menting it. We also suggested a formalization on test cases organization.

We hope that tcframe will allow more people to be able to create good test cases
systematically. For programming contests with multiple authors, we hope that tcframe
allows the authors to be able to work together creating test cases more collabora-
tively.

6. Future Works

We are aware of several possible other improvements and new features that can be im-
plemented in tcframe.

6.1. Output Validation

testlib, tokilib, and tcframe all share a problem: the produced test case outputs, obtained
by running the solution against the generated test case inputs, are not validated. This is
actually very dangerous because the solution might have some mistakes and print the
output not according the output format, or have some invalid values.

We can validate the outputs in a similar way as we do to the inputs:
Declare ● output variables. For example, in a single-integer answer, we can call it
.

A. Fuadi72

Declare ● output format. The framework can then use this format for parsing the pro-
duced outputs, validating the format, and storing the values to output variables.
Declare ● output constraints. For example, if a problem requires the answer modulo
10007, we have an output constraint 0 ≤  ≤ 10006. The framework can then
use it for validating the output variables.

6.2. Answer Checker

For problems with several possible solutions, we need a checker that compares the
judge’s and contestant’s answers. Our class structures make it easy to add this function-
ality. We can build a BaseChecker class on top of Problem class, similar to BaseGenera-
tor. The check can be then somehow implemented as follows.

5 Conclusion
We have presented the ideas behind creating tcframe, and how we are currently
implementing it. We also suggested a formalization on test cases organization.
We hope that tcframe will allow more people to be able to create good test cases
systematically. For programming contests with multiple authors, we hope that
tcframe allows the authors to be able to work together creating test cases more
collaboratively.

6 Future Works
We are aware of several possible other improvements and new features that can
be implemented in tcframe.

6.1 Output validation
testlib, tokilib, and tcframe all share a problem: the produced test case outputs,
obtained by running the solution against the generated test case inputs, are not
validated. This is actually very dangerous because the solution might have some
mistakes and print the output not according the output format, or have some
invalid values.

We can validate the outputs in a similar way as we do to the inputs:

• Declare output variables. For example, in a single-integer answer, we can
call it answer.

• Declare output format. The framework can then use this format for parsing
the produced outputs, validating the format, and storing the values to output
variables.

• Declare output constraints. For example, if a problem requires the answer
modulo 10007, we have an output constraint 0 ≤ answer ≤ 10006. The
framework can then use it for validating the output variables.

6.2 Answer checker
For problems with several possible solutions, we need a checker that compares the
judge’s and contestant’s answers. Our class structures make it easy to add this
functionality. We can build a BaseChecker class on top of Problem class, similar
to BaseGenerator. The check can be then somehow implemented as follows.

class Checker : public BaseChecker<Problem> {
public :

bool check (const Problem& contestant , const Problem& judge) {
return f abs (conte s tant . answer − judge . answer) < 1e−9;

}
} ;

156.3. Offline Solution Checker

Instead of just producing test cases, we can let tcframe take another solution as input,
then report whether the outputs produced by that other solution match the outputs pro-
duced by the official solution. This way we can effectively “submit” a solution without
using the online judge. We can limit memory and time limit using, for example, ulimit
UNIX command.

6.4. Public Library for Commonly Used Structures

We want to provide a public place where people can contribute by writing generators
that generate common test cases structures. For example, polygons for convex hull prob-
lems, coin values for coin change problems, etc. The submitted generators should gen-
erate strong test cases. For example, there should be convex polygons, the coin values
should be in such a way that greedy solutions will fail, etc.

This will make it even easier for beginners to generate test cases. They can browse
the library for the structures they need and modify the generator for their problems.

Introducing tcframe: A Simple and Robust Test Cases Generation Framework 73

References

Diks, K., Kubica, M., Radoszewski, J., and Stencel, K. (2008). A proposal for a task preparation process. Olym-
piads in Informatics, 2, 64–73.

Fernando, J. and Liem, I. (2014). Components and architectural design of an autograder system family. Olym-
piads in Informatics, 8, 69–79.

Fuadi, A. (2014). tokilib. https://github.com/fushar/tokilib/
Halim, S., Halim, F. (2010). Competitive Programming. Lulu.com
Manev, K., Yovcheva, B., Yankov, M., Petrov, P. (2010). Testing of programs with random generated test cases.

Olympiads in Informatics, 4, 76–86.
Mirzayanov, M. (2008). testlib. https://github.com/MikeMirzayanov/testlib/
van der Vegt, W. (2009). Using subtasks. Olympiads in Informatics, 3, 144–148.

A. Fuadi is a fellow in Indonesian Computing Olympiad Alumni As-
sociation. He participated and obtained a silver medal in IOI 2010. He
has been a scientific committee member for IOI training camps for
Indonesian teams 2011–2014. Graduated from Faculty of Computer
Science, Universitas Indonesia in 2014.

Olympiads in Informatics, 2015, Vol. 9, 75–88
2015 Vilnius University, IOI
DOI: http://dx.doi.org/10.15388/ioi.2015.07

75

Metamorphic Testing and DSL for Test Cases
& Checker Generators

Ryan Ignatius HADIWIJAYA, M. M. Inggriani LIEM
Data and Software Engineering Research, School of Electrical Engineering and Informatics
Institut Teknologi Bandung
e-mail: ryan.ign54@gmail.com, inge@informatika.org

Abstract. In programming competition, a problem setter must prepare a task description, pro-
gram solution, test cases and sometimes a checker. Test cases should be able to capture all pos-
sible cases; therefore, its preparation is time-consuming. Metamorphic Testing (MT) is a proper-
ty-based testing method where relationships are defined between input and output to alleviate a
test oracle problem. The success of MT relies on the existence of a Metamorphic Relation which
is comprised of two interrelated relations: the test-case relation and the test-result relation. MR
can be used for automated test-case generation and verification of results. In this research, we
defined a Domain Specific Language (DSL) to describe metamorphic relations that will be used
for test case and checker generation of programming tasks. Our method has been tested for tasks
with Knapsack, Greedy, and Dynamic Programming solutions, and it has been proven, reliable,
reusable and more systematic.

Keywords: test case generation, programming task checker, programming competition, Knapsack
problem, Greedy problem, metamorphic testing.

1. Background

In Indonesia, autograder systems are used for national training programs and for the
selection of IOI participants. To prepare a contest or training session, we have to define
a problem set, which includes a description of the task, program solutions, and test cases
(input as well as output). Some tasks also need checker. Up until now, the preparation
has been carried out manually by a problem setter, including preparation of input and
output test cases. Manual test case preparation is time-consuming and nearly impossible
for a complex problem with a large amount of data. Therefore, test cases are generated
by programs written one by one in a manner, specific to each problem set.

In IOI, there are two types of tasks, namely batch tasks and interactive tasks. In this
paper, we focus on the batch task, which is judged by a grader and based on black-box
testing. However, grading is more than testing because the grader must judge and give a
score for each subtask that refers to a contestant’s solution. A batch task has one or more
subtasks, which in turn have constraints and scores. A good black-box testing method

R.I. Hadiwijaya, M.M.I. Liem76

uses all of the values in the input domain as input test cases. This would be impossible if
the input data domain had very large (or even infinite) values. The problem setter must
select reasonable values to be used in grading. This problem is known as the test-case
selection strategy. If test cases are selected manually, either intuitively, or randomly, then
their coverage is not guaranteed. The programming of a task also has time constraints
that require appropriate test cases. An incorrect solution can be judged as an acceptable
answer when the test cases do not precisely reflect the conditions. On the other hand,
a redundant test cases will consume unnecessary time of execution and consume CPU
resources. Good test cases must have sufficient test coverage and reasonable quantity
and properties. Therefore, a test-case specification is needed. We aim to write a test-case
generator based on specifications so that it is self-documented, and the scientific com-
mittee can verify its coverage and quality.

Some tasks may have many possible solutions. In order to optimize the autograd-
ing process, the team writes a checker instead of generating all possible solutions. The
checker is used to compare contestant output to output test cases. Usually, the checker is
also made ad-hoc and by writing a specific program for a specific task. It is difficult to
verify its correctness. A faulty checker can make an incorrect answer become acceptable.
In our research, we aim to provide the problem setter with a checker specification.

Before using the system explained in this paper, test cases for Indonesian training
programs are actually being generated by the program as much as possible and not com-
pletely manual. However, test-case generation source code depends on problem setter
and not driven by specific method. Checkers are programmed one by one specifically
for each task and are not generated. Metamorphic Testing has the potential to be imple-
mented as a method for improving test case and checker generation which implies an
improvement in the automatic grading process.

2. Related Works

Our work is inspired by Metamorphic Testing (MT) (Chen et al., 1998; Chen et al.
2004; Zhou et al., 2004; Mahmuda et al., 2011; Barus et al., 2011) and Domain Specific
Language (DSL) (Im et al., 2008; Ghosh, 2011). Chen et al. (1998) which suggest using
Metamorphic Testing for test case generation. Test case generation based on Metamor-
phic Relation (MR) could be automated (Gotlieb and Botella, 2003), with the MR coded
directly in a general programming language. In our approach, we generate test cases
(input, output) and a checker for a programming task by defining a Domain Specific
Language for representing MR and input/output.

2.1. Metamorphic Testing and Metamorphic Relation

Metamorphic Testing (MT) is a technique to generate follow-up test cases based on ex-
isting test cases that have not revealed any failure. MT generates follow-up test cases by
making reference to the metamorphic relation (MR).

Metamorphic Testing and DSL for Test Cases & Checker Generators 77

An MR refers to two types of relations. First, by referring to the MR of the target
function, follow-up test cases can be automatically constructed, executed, and checked
to further verify the program. Metamorphic testing is to be used in conjunction with a
test-case selection strategy S. Test set T generated from S must also exist in the first
place.

Second, MR refers to the verification of testing the output (test result). Suppose we
have a metamorphic relation R of function f, of which p is an implementation. The sec-
ond relation refers to necessary properties of the target function f where if any of these
properties does not hold, then program p is faulty. Metamorphic testing makes use of the
relationship between the inputs and outputs, and involves multiple executions of p.

For example, if f (a) = ea, then the property ea × e–a = 1 is a typical MR. For a test
case a = 0.3, metamorphic testing generates its follow up test case a’ = –0.3 and then
runs the program again on a’. The relation of the two outputs is checked against the
expected relation p (0.3) × p (– 0.3) = 1. If this identity does not hold, then a failure
is immediately detected (Zhou et al., 2004). Another example of trivial MR is sin x =
sin (π − x) for a program that computes sin (x).

In testing, successful test cases are test cases which do not reveal any failure of the
program. In a contest, successful test cases are test cases that reveal a correct answer
and give a full score. Therefore, successful test cases have been considered useless in
conventional testing because they do not reveal any failures. In other words, in a con-
ventional testing, the successful test cases are discarded or retained. In contrast, meta-
morphic testing can be employed to make use of the successful test cases. In the context
of the programming task, this idea will be used for validating the result of the generator
(test input), and to accept or reject a generated test case.

Another example of follow-up test cases is illustrated in Fig. 1 (Murphy, 2010).
Fig. 1 illustrates an example of a metamorphic relation to sum all elements of an un-
sorted numerical array. Permute, add, multiply, include and exclude are five examples
of metamorphic relation. Five sets of new test cases can be generated based on an initial

Fig. 1. Example of Metamorphic Relation for Sum Function (Murphy, 2010).

R.I. Hadiwijaya, M.M.I. Liem78

successful test case in order to reveal faults in the program. The output of these new test
cases can be determined easily by its metamorphic relation, and this can save time and
reduce the cost of making test cases.

2.2. Domain Specific Language

A DSL is a programming language that is targeted for a specific domain. It contains syn-
tax and semantics that models concepts at the same level as abstraction of the problem
domain.

Compared to GPL (General Purpose Language), DSL is shorter and simpler (Ghosh,
2011). DSL is easier to understand by domain experts. By using DSL, users can focus
on the problem and deliberate from detail implementation. DSL is designed to be used
intuitively.

A domain-specific language is created specifically to solve problems in a particular
domain and is not intended to be able to solve problems outside that domain (although
it may technically be possible). DSL for the business domain is defined to externalize
business rules and computations, such as tax calculations, salary calculations, or finan-
cial engineering.

Examples of domain-specific languages include HTML and SQL for relational data-
base queries, YACC grammars for creating parsers, regular expressions for specifying
lexers, Csound for sound and music synthesis, and the input languages of GraphViz and
GrGen, software packages used for graph layout and graph rewriting.

DSL is also used in automated test case generation (Im et al., 2008). We intend to
define a specific DSL to solve the generation of test cases of a programming task, based
on MR.

3. Problem Statement and Objectives

When test cases are generated randomly, the coverage is not guaranteed and the genera-
tor is not reusable. More than that, its documentation is not preserved. Test case genera-
tion that contains initial specification can solve this problem. DSL offers precise and
simple expressions well known by experts of the domain. Specifications written in a
DSL will preserve the documentation of test cases and the checker. MT is property-based
testing and provides a method for automated generation of test cases by defining MR.
MT will improve the quality of test cases so that the autograding process will be more
robust. During the grading process, the checker must not only check the properties of the
output, but also checks the relations of many executions.

In this research, we combine the idea of Metamorphic Testing by defining the Meta-
morphic Relation with a Domain Specific Language. We aim to deliver a solution to a
problem setter, so that the problem setter as the domain expert can express test cases and
a checker by a specification written in a DSL.

Metamorphic Testing and DSL for Test Cases & Checker Generators 79

The advantages of our approach are :
The problem setter focuses on specifications rather than on a program.1.
The system provides a reusable library of common test cases and checkers, since 2.
algorithmic solutions can be grouped by a variety of techniques such as Knap-
sack, Greedy, Dynamic Programming, Geometry, etc. It uses standard data struc-
tures (arrays, trees, graphs, etc.) since each techniques and data structure has a
common MR.

4. Proposed Solution

First of all, we define a DSL grammar to represent MR, input/output variable names,
constraints and their values, input/output format, and checker expression. A part of the
DSL grammar represents the name of the class, and its features and six main declarations
are presented in Code 1. The complete grammar is accessible in https://github.
com/ryanignatius/CheckerDSL/tree/master/Grammar. Our system will
read the specification, and generate test cases and checkers. The problem setter is not
required to write a program, compared to the usage of a framework or an existing library
(Mirzayanov, 2008).

Class:
 'class' name=ValidID '{' features+=Feature* '}';
Feature:
 ChkVariableDeclaration | Method | Format | Check | MR | Score;
ChkVariableDeclaration:
 type=ChkTypeReference ('[' sz+=CHK_NUMBER ']')* name=ValidID
 ('(' limit1=Limit (';' limit+=Limit)* ')')?
 ('value' '{' spValue=SpValue '}')?;
Method:
 'op' type=JvmTypeReference name=ValidID
 '('(params+=FullJvmFormalParameter
 (',' params+=FullJvmFormalParameter)*)?')'
 body=XBlockExpression;
Format:
 InputFormat | OutputFormat;
Check:
 check='check' '{' (chk+=(ChkExpression | ChkLoopExpression))* '}';
MR:
 mr='MR' num=INT '{'
 (mrExp+=(ChkExpression | ChkLoopExpression))*
 followup=FollowUp
 property=Property
 '}';
Score:
 'score' '{' (scores+=ChkScoreExpression)+ '}';

Code 1. A Part of DSL Grammar.

In the auto-grading process, a grader executes a contestant’s program with a cor-
responding input test case, and then compares the execution result with the output test
cases. If the output of the contestant’s program is equal to output test cases, then the

R.I. Hadiwijaya, M.M.I. Liem80

grader judges it as a correct answer. For some tasks, contestant outputs are checked by
provided checker(s). The contestant obtains a score for each correct input-output set and
the final score for a task is visualized on a scoreboard. In our case, the checker does not
only check a single-run output. The checker checks MR and other properties defined in
the specification.

By using MR, the relation between the output of one run to another run (related by
MR) can be checked. This will increase test robustness. When a relation between two
outputs does not conform to the defined MR, then the grader will judge it as a wrong
answer. We define each MR as a checker. A checker is a predicate that can check whether
a set of output corresponds to a predefined MR, simply checks the property of the output,
or checks the coverage of the input.

The problem setter must write a problem solution, a base-test case (a set of minimum
test cases), and a specification file. The specifications are written in the DSL and consist
of six declarations:

 1. Variable declaration. The problem setter declares variable names, variable con-
straints, and test-case domain partitions that will be used in other sections. A vari-
able can be declared as a JAVA primitive type, an array or a specific data structure
such as a graph, tree or list. Each variable is generated as a private attribute in the
generated JAVA file. For each attribute, functions are also generated to read, write,
and validate.
 2. Input/output format declaration. The problem setter declares the input and out-
put formats, where values of variables will be read or written. The system will
generate functions to read and write all variables that have been declared in the
previous section. The read/write function will validate the input or check the output
based on the constraints that have been defined in the variable declaration section.
 3. Predicate declaration. A predicate is a function returning a boolean. This predi-
cate will be used to generate a checker. If the input or output to be checked passes
all tests by invoking the predicates, then the output will be judged as a correct
answer.
 4. MR declaration consists of follow-up and properties. Follow-up will be generated
based on the MR, and properties are used to ensure that MR is satisfied.
 5. Other function declarations. The problem setter can define specific functions.
The system provides predefined functions such as sort, swap, min, max, check if a
number is a prime number, etc. If a function is not defined in the library, the prob-
lem setter must implement it. The problem setter can enrich his environment by
registering his function in the library.
 6. Score declaration. The problem setter defines the score distribution for each sub-
task. In IOI, the score is given when a contestant’s program passes all test cases
in the subtask.

Test case and checker generation are described by the work flow depicted in Fig. 2.
The first phase of the process consists of two parts that can be carried out in any order.
The first part is processing the DSL specification file within the XText framework (Xtext,
2014) and produce a file named GeneratedClass.java. This file is then compiled
with the given MainGenerator.java and LibraryFunction.java. Main-

Metamorphic Testing and DSL for Test Cases & Checker Generators 81

Generator.java is a main program that receives parameters from the problem setter
(output checker, input-output test cases, minimum number of test cases, mapping of test
cases to subtasks). LibraryFunction.java contains predefined functions, that can
grow as we may find other generic functions in the future. The result of this compilation
is a jar file that will be used in the second phase. The second part is the generation of base
test cases by running the problem solution with the given input.

The second phase is the generation of input files, output files, score files and chec-
kers. The generation process is repeated and for each generation the program will vali-
date input and output (defined in the specification). The system will reject test cases that
do not comply with the specification, and repeat the process until the problem setter
obtains sufficient test cases described in the specification. For each MR and given test
case, the system will generate a follow-up test case. A corresponding checker will also
be generated for checking the MR of the given test case output with generated follow-up
test-case outputs.

5. System Architecture

The user of our system is the problem setter. The architecture of the system consists of
four layers as can be seen in Fig. 3. The first layer is Java, containing JVM as the runtime
environment. The second layer is IDE, whose framework contains Eclipse and XText,
running on JVM. The DSL grammar, JVM Model Inferrer, Library Function, and Main
Generator are put in the Developer layer. This layer is provided by us. On top of the third
layer is the user layer, where a problem setter defines the specification and obtains gen-
erated classes. The problem setter interacts with the system through components in this
layer. For each task, the problem setter writes a module. Checker specification is defined
by a user using the XText component. Checker specifications are parsed by the XText
parser using DSL grammar. If parsing is successful, then a checker will be generated by
XText based on the existing JVM Model Inferrer. This generated file will be compiled

(1.a) (1.b) (2)

Fig. 2. Workflow of Test Case and Checker Generation.

R.I. Hadiwijaya, M.M.I. Liem82

by the Library Function and Main Generator. The execution of these files will produce
files (test-case input, test-case output, score, and checker).

DSL grammar is implemented using the XText framework, a plugin for the Eclipse
IDE. Eclipse’s features such as autocomplete and automatic error checking are also
available while the problem setter defines the specifications. These specifications will
be translated into a .java file. XText is used because of its availability as part of the
Eclipse. Eclipse is a cross platform IDE, independent of a specific Operating System.
Xtext is also integrated with JAVA so that our DSL can take advantage of the existing
JAVA data type.

Some metamorphic relations are common in mathematical functions (Murphy, 2010),
such as Additive (increases or decreases numerical values by a constant), Multiplicative
(multiplies numerical values by a constant), Permutative (permutes the order of elements
in a set), Invertive (takes the inverse of each element in a set), Inclusive (adds a new ele-
ment to a set), Exclusive (removes an element from a set), and Compositional (creates a
set from a number of smaller sets). These relations are generally applicable to tasks that
deal with numerical inputs and outputs. Since many tasks in IOI involve numerical input
and output, these relations are frequently applied. Therefore, we also have implemented
these relations in our Library Function as reusable MR.

6. Case Studies

We applied the methods and tools to generate test cases for tasks with Knapsack, Greedy
and DP solutions. More than that, we also demonstrate that the generic knapsack MRs
can be used as a reusable specification for a more specific knapsack problem.

6.1. Knapsack

The Knapsack program accepts three sets of integers. Two n-tuple sets, P = {p1, p2,
…, pn} and W = {w1, w2, …, wn} represent the profits and the weights of n items,

Fig. 3. System Architecture.

Metamorphic Testing and DSL for Test Cases & Checker Generators 83

respectively; while another m-tuple set C = {c1, c2, …, cm} contains the capacities of
m knapsacks. The outputs of Knapsack are one n-tuple set Y = {y1, y2, …, yn} and one
positive integer TP. yi = j (where i = 1, 2, …, n and j = 0, 1, …, m) states that the
ith item should be put into the jth knapsack. If yi = 0, it means that the ith item will
not be selected into any knapsack. TP represents the total profit of the picked items. The
Knapsack program attempts to calculate the optimal solution and thus to maximize the
total profit. (Mahmuda et al., 2011).

For generic knapsack problem, we adopted 10 Metamorphic Relations defined by
Mahmuda (Mahmuda et al., 2011) and translated into 10 MR declarations, MR1 to
MR10. These MRs will be used to generate input test cases and checkers to check the
relation between outputs. Examples of MR1 and MR5 are translated into DSL expres-
sions :

 1. MR1: Swap the kth and the lth items, where 1 ≤ k < l ≤ n, and pk ≠ pl or wk
≠ wl. We can get the follow-up test case T’ = {P’, W’, C}, where P’ = {pl, p2,
…, pl, …, pk, …, pn} and W’ = {w1, w2, …, wl, …, wk, …, wn}. The output cor-
responding to T’ is O’ = {Y’, TP’}. We should have Y’ = {y1, y2, …, yl, …, yk,
…, yn} and TP’ = TP.

MR1 expressed in DSL :

MR 1 {
 (select(k,l) where 1<=k and k<l and l<=n and p[k]!=p[l]
 or w[k]!=w[l])
 followup {
 (p' = swap(p,k,l))
 (w' = swap(w,k,l))
 }
 check {
 (y' = swap(y,k,l))
 }
}

 2. MR5: Change the capacity of the 1st knapsack to a new value c1’, where c1’ is
equal to the sum of the weights of all items put into the 1st knapsack. We can get
the follow-up test case T’ = {P, W, C’} where C’ = {c1’, c2, …, cm}. The output
corresponding to T’ is O’ = {Y’, TP’}. We should have Y’ = Y and TP’ = TP.

MR5 expressed in DSL :
MR 5 {

 (def c1 = sum(w) where y[i]==1)
 followup {
 (c'[1] = c1)
 }
 check {
 }
}

R.I. Hadiwijaya, M.M.I. Liem84

This problem has multiple values that can produce an optimal total profit. Therefore,
we have to define a checker to verify the correctness of a solution. A checker (source
code) will be generated from the specification to check the following properties :

The total profit of the output produced must be equal to the total profit generated 1.
in the answer.
The sum of all profits of the item must be equal to the total profit.2.
The sum of weight of all items in each knapsack must be less than or equal to the 3.
capacity of the corresponding knapsack.

MR1 to MR10 will be used in follow-up test-case generation. We give an illustration
of test-case generation for MR1 and MR5 in Table 1.

Complete implementation of the DSL specification of the Knapsack problem, all
generated input, output, and checkers are accessible in:
https://github.com/ryanignatius/CheckerDSL/tree/master/Ex-
amples/Knapsack/Knapsack1.

6.2. Specific Knapsack

From a knapsack case study, we can see that MR1 to MR10 can be used for other tasks
with a knapsack solution, for example “Polo the Penguin and The Test” (http://
www.codechef.com/problems/PPTEST). Here is an example of how test cases
and checkers from the knapsack case study can be reused for another task that has the
nature of a knapsack problem. In this task, there is one knapsack. The amount of time
represents the capacity of the knapsack. Tests represent the items that must be put in the

Table 1
Test-case generation example for MR1 and MR5 of a Knapsack problem

Test Case File Input File Output Explanation

Original Test
Case

3 2
5 4 8
2 3 5
6 1

1 1 0
9

Input and Output are defined by a problem setter.
Input:
1st line: 3 items to be put in 2 knapsacks
2nd line: profit of each item
3rd line: weight of each item
4th line: capacity of each knapsack
Output :
1st line: knapsack number for each item
Total Profit = 9

MR1 3 2
5 8 4
2 5 3
6 1

1 0 1
9

File input and output are generated based on the
original test case and MR1 (by swapping the 2nd
and 3rd item)
Output: Total profit = 9

MR5 3 2
5 4 8
2 3 5
5 1

1 1 0
9

File input and output are generated based on
the original test case and MR5 (by changing the
capacity of the 1st knapsack to the sum of the
weights of all items put into the 1st knapsack)

Metamorphic Testing and DSL for Test Cases & Checker Generators 85

knapsack. Profit is analogous to the number of tests contain this question (C[i]) multi-
plied by the number of points of this question (P[i]). However, MR10 is not applicable
since the number of knapsacks is one. We replace MR2 (to add profit to an item) by
MR11 and MR12. MR 11 is to add the number of tests (C[i]) to an item. MR12 is to add
the number of points to an item (P[i]). We also remove the variable y, since the task asks
for the total profit only.

We generate test cases and checker for another example (“farmer”), is taken from
IOI 2004 task (http://www.ioinformatics.org/locations/ioi04/con-
test/day2.shtml#p2). This task can be modeled as a knapsack problem, so we can
use the same MRs of the knapsack problem to generate test cases and checkers for this
task. In this task, there is one knapsack. The number of cypress trees to be selected rep-
resents the capacity of the knapsack. Fields and strips represent the items. The number
of trees in each field represents a profit and weight of the item. The number of trees in
each strip represents weight for the item and the profit for this item equals to the weight
of this item minus one. MR10 is not applicable since the number of the knapsack is one.
We replaced MR1 (to swap two items) by MR11 and MR12. MR11 is to swap two fields
and MR12 is to swap two strips. We replaced MR6 (to add a new item) by MR13 and
MR14. MR13 is to add a new field and MR14 is to add a new strip. We replaced MR7 (to
delete an item) by MR15 and MR16. MR15 is to delete a field and MR16 is to delete a
strip. MR3 and MR4 are not applicable to this task since the weight and profit of an item
can’t be manipulated individually.

In this case study, we have demonstrated the reusability of our system and how to
modify an existing metamorphic relation for a variant of a Knapsack problem.

Detailed implementation of DSL specification for this Knapsack problem, the gener-
ated input, output and checker are accessible here:
https://github.com/ryanignatius/CheckerDSL/tree/master/Ex-
amples/Knapsack/Knapsack2

and
https://github.com/ryanignatius/CheckerDSL/tree/master/Ex-
amples/IOI%20Task/farmer.

6.3. Greedy

The Greedy program (key-lock problem) receives input that is a set of keys K = {k1, k2,
…, kx} and a set of locks L = {l1, l2, …, ly}, where x, y > 0. For every pair (km, ln), we
define r (m, n) as a relationship between key km and lock ln such that r (m, n) = 1 if
km opens lock ln and r (m, n) = 0, otherwise. (Barus et al., 2011)

We adopted nine Metamorphic Relations defined for this problem from Barus (Ba-
rus et al., 2011). This problem does not need a checker, therefore the checker session
is “NONE”. Examples of MR and DSL expressions for Greedy problems are given as
follows.

 1. MR3: Adds an insecure lock column

R.I. Hadiwijaya, M.M.I. Liem86

MR3 expression in DSL :
MR 3 {
 followup {
 (y' = y+1)
 (m' = addColumn(m))
 for (i,x){
 (m'[i][y] = 0)
 }
 }
 check {
 }
}

 2. MR8: Adds an exclusive lock to an unselected key
MR8 expression in DSL :

MR 8 {
 (select(k) where not contain(o,k))
 followup {
 (y' = y+1)
 (m' = addColumn(m))
 for (i,x){
 (m'[i][y] = 1 where i==k)
 (m'[i][y] = 0 where i!=k)
 }
 }
 check {
 (numKey' = numKey+1)
 (o' = add(o,k))
 }
}

An illustration of test-case generation for MR3 and MR8 are given in Table 2.
Detailed implementation of DSL specification for the Greedy problem, the generated

input, output and checker are accessible here:
https://github.com/ryanignatius/CheckerDSL/tree/master/Ex-
amples/Greedy/Greedy1

6.4. Other Case Studies from the Indonesian National Informatics Olympiad

The same method has been used for test cases and checkers generator for some tasks in
the Indonesian National Informatics Olympiad with MR corresponding to a DP (Dynam-
ic Programming) solution. Complete definition of the tasks, MRs, test-case specification
and the generated input, output, and checkers are accessible from:
https://github.com/ryanignatius/CheckerDSL

Metamorphic Testing and DSL for Test Cases & Checker Generators 87

7. Conclusion

A specifications-based test-case generator has been built for improving test-case genera-
tion and checkers. The generator has been used for Indonesian training-program task
definition. The relation between input and output is checked by running the contestant’s
program. Whereas in the classical way checker is written to check one output run, in
our system the checker is capable of checking the relation between two or more output
executions, based on the Metamorphic Relation. Instead of writing a program, a prob-
lem setter writes a specification based on a DSL grammar. The specifications contain
variables and their values, input-output format, input-output values, input-output con-
straints, score, MR and predicates representing a checker. The specifications will then
be used to generate test cases and checkers. However, the usage of this system is not
intuitive unless the problem setter has a minimum knowledge and understanding of MR
and our DSL.

For a problem class, MR represents a property that can be reused in other similar
problems in the same domain. We have proven the reusability of metamorphic relation
for Knapsack, Greedy, DP, and numerical problems for generating test cases and check-
ers for an Indonesian national training task and IOI task. By using our method and tools,
a problem setter can take advantage of previous experience and enrich the system.

The system also provides a library of predefined functions that will grow along with
the experience of the problem setter. This generator will be useful for simple problems
in which the input-output relationship can be expressed easily, even without writing so-
lutions. This is the case in preliminary selection, such as national preparation where we
have to conduct training programs with many simple tasks.

In this version, the code is generated in JAVA. In the future version, the generated
code can also be applied to other languages, such as C, C++, or Pascal, by changing the
DSL grammar.

Table 2
Test-case generation example for MR3 and MR8 of a Greedy problem

Test Case File Input File Output Explanation

Original 3 4
1 0 1 0
1 0 1 1
0 1 0 0

2
2 3

Original test case defined by problem setter.
1st line: the number of keys and the number of locks.
2nd line until the last line contains the definition of
each key. Each number in each line defines the relation
between a key and a lock.

MR3 3 5
1 0 1 0 1
1 0 1 1 1
0 1 0 0 1

2
2 3

File input and output are generated based on the
original test case and MR3 (adding an insecure lock
column)

MR8 3 5
1 0 1 0 1
1 0 1 1 0
0 1 0 0 0

3
1 2 3

File input and output are generated based on the
original test case and MR8 (adding an exclusive lock
to an unselected key)

R.I. Hadiwijaya, M.M.I. Liem88

References

Barus, A.C., Chen, T.Y., Grant, D., Kuo, F.C., Lau, M.F. (2011). Testing of heuristic methods: a case study of
greedy algorithm. In: Zbigniew H. et al. (Eds.), 3rd IFIP TC 2 Central and East European Conference on
Software Engineering Techniques (CEE-SET 2008), Brno, Czech Republic, 13–15 October 2008. (Lecture
Notes in Computer Science, 4980). 246–260

Chen T.Y., Cheung, S.C., Yiu, S.M. (1998), Metamorphic Testing: A New Approach for Generating Next Test
Cases. Technical Report HKUST-CS98-01. Hong Kong, Department of Computer Science, Hong Kong Uni-
versity of Science and Technology.

Chen, T.Y., Huang, D.H., Tse, T.H., Zhou, Z.Q. (2004). Case studies on the selection of useful relations in
metamorphic testing. In: Proceedings of the 4th Ibero-American Symposium on Software Engineering and
Knowledge Engineering (JIISIC 2004). Madrid, Spain, 569–583

Ghosh, D. (2011). DSLs in Action. Manning Publication, 2011
Gotlieb, A., Botella, B. (2003). Automated metamorphic testing. In: Computer Software and Applications Con-

ference, 2003. COMPSAC 2003. Proceedings. 27th Annual International
Im, K., Im, T., McGregor, J. D. (2008). Automating test case definition using a domain specific language. In:

ACM-SE 46 Proceedings of the 46th Annual Southeast Regional Conference on XX. 180–185.
Mahmuda, A., Liu, H., Kuo, F.-C. (2011). On testing effectiveness of metamorphic relation: a case study. In:

Fifth International Conference on Secure Software Integration and Reliability Improvement, Jeju Island
Korea, 2011.

Mirzayanov, M. (2008). Testlib. https://code.google.com/p/testlib
Murphy, C. (2010). Metamorphic Testing Techniques to Detect Defects in Applications without Test Oracles.

Columbia University Dept of Computer Science tech report cucs-010-10.
XText. (2014). https://eclipse.org/Xtext
Zhou, Z.Q., Huang, D.H., Tse, T.H., Yang, Z., Huang, H., Chen, T.Y. (2004). Metamorphic testing and its appli-

cations. In: Proceedings of the 8th International Symposium on Future Software Technology (ISFST 2004).
Japan, Software Engineers Association.

R.I. Hadiwijaya is a student in Informatics Engineering, Institut
Teknologi Bandung, and an assistant in Programming Laboratory, Data
& Software Engineering Research Group. He is doing his research in
development of a systematic checker and test case generation for the
automated grading system as a part of his final project, under supervi-
sion of Inggriani Liem.

M.M.I. Liem is a member of Data and Software Engineeing Research
Group, School of Electrical and Engineering, Institut Teknologi Band-
ung (ITB). She has been teaching programming in ITB since 1977. She
obtained her doctoral degree in Universite Joseph Fourier Grenoble
France in 1989, with teaching programming as major topics of her
dissertation. From 2004, she is involved as a team member in national
recruitment, training and IOI preparation for Indonesian team. She is
also ITB ACM ICPC coach and advisor.

Olympiads in Informatics, 2015, Vol. 9, 89–112
DOI: http://dx.doi.org/10.15388/ioi.2015.08

89

The Effectiveness of Robotics Competitions on
Students’ Learning of Computer Science

Fatima KALOTI-HALLAK, Michal ARMONI,
Mordechai (Moti) BEN-ARI
Weizmann Institute of Science, Israel
e-mail: fatima.kaloti.hallak@gmail.com, michal.armoni@weizmann.ac.il,
moti.ben-ari@weizmann.ac.il

Abstract. This work investigates students’ learning of computer science (CS) as part of a research
project on students’ learning of and attitudes toward STEM (Science, Technology, Engineering,
and Mathematics) subjects during their participation in robotics activities. The population con-
sisted of groups of middle-school students (ages 13–15 years) who participated in the FIRST®
LEGO® League competition. The methodology used is both qualitative and quantitative using
questionnaires, observations and interviews during the school year 2012–2013, and mainly group
interviews during the school year 2013–2014. A representational model was used during the in-
terviews to facilitate externalizing the students’ understanding of STEM concepts. The analysis
used the revised Bloom Taxonomy (BT) to study the students’ meaningful learning. Two CS con-
cepts were investigated: input-output and interfacing with sensors. The results showed that during
their preparation for the competition, almost all the students demonstrated meaningful learning,
although some students reached higher levels of the BT than others.

Keywords: computer science, middle-school, extra curriculum, robotics, competitions, FLL.

1. Introduction

Recently, the number of schools that participate in robotics activities has increased
and a few of them have tried to integrate such activities into their school curriculum.
In order to improve learning of STEM subjects and to increase enrollment, educators
have suggested that robotics be integrated into schools at many levels from middle
school through college (Anderson et al., 2011). In particular, competitions like the
FIRST® LEGO® League (FLL) competition are the primarily type of robotics activities
in schools. Most of the existing literature shows that students can be motivated and en-
thusiastic about participation in robotics activities. However, there are very few empiri-
cal studies that demonstrate improvement in students’ learning of STEM. This research
project focuses on investigating students’ learning of and attitudes toward each of the
STEM subjects during their participation in robotics activities (Kaloti-Hallak, 2014).
This paper presents results on the learning of CS; subsequent publications will present

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari90

the results on learning of other STEM subjects, and the results of the investigation of
students’ attitudes.

Our research concerned the achievement of learning by middle-school students par-
ticipating in the FLL competition. The data was collected by using a variety of instru-
ments: pre- and post-questionnaires, observations and interviews. The analysis was pri-
marily qualitative based on the cognitive process dimension of the (Revised) Bloom
Taxonomy (BT) (L. Anderson et al., 2001). Quantitative analyzing of the questionnaires
was also conducted.
The research question (limited to the scope of this article) is:

What scientific content knowledge do students learn during their participation in the
FLL competition?

To what extent is CS content knowledge is learned?a.
To what extent is the students’ learning meaningful?b.

The background is given in Section 2, followed by the presentation of the methodol-
ogy in Section 3. The data analysis is in Section 4, the findings are presented Section 5,
and they are discussed in Section 6 and concluded in Section 7.

2. Background

2.1. Robotics in education

Robots have been used in both community outreach programs and academic institutions
at all educational levels (M. Anderson et al., 2011), even in special needs education
(Virnes et al., 2008). Robots, as physically manifested computing devices, inherently
show students how the programs that they write can impact the real world. Robots are
generally used to motivate students’ interest in further study of science and technology
(Lauwers et al., 2009). It facilitates hands-on programming, increasing the quality of
interaction between the child and the robot (a command to the robot is followed by the
feedback of the robot’s behavior), and improves the quality of instruction and interven-
tion (Virnes et al., 2008).

Fagin and Merkle (2003) examined the effectiveness of robotics in encouraging first-
year university students to select computer science or computer engineering. In general,
results were negative: test scores were lower in the robotics sections than in the non-
robotics ones, and the use of robots did not have any measurable effect on students’
choice of discipline. Summet et al. (2009) assigned a robot to each student, defined a
curriculum and developed an interactive environment. They claimed that the approach
was successful, and that it encouraged more students’ to enroll in a higher level CS
classes. However, the authors were somewhat equivocal about the results, noting that the
“robots approach does not appear to be doing harm.”

Lauwers, Nourbakhsh and Hamner (2009) worked with CS educators to investigate
the features of robots that are well-suited to the learning goals of CS in an introductory
university-level CS course. The results were compared with courses taught previously

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 91

without robots. They found a significant increase in students’ positive attitudes and mo-
tivation to learning with robotics activities; the students also completed all the assign-
ments and tests scores were significantly higher than in prior years. However, retention
did not improve.

Martin (2006) claimed that the physical imperfections in robots and the environment
can help students deal with unexpected problems better than computer-only activities.
Studies have shown that students’ response to a problem can be inadequate, because they
engage in trial-and-error until they succeed or give up. For example, Sullivan (2008)
showed that even academically advanced middle-school students who were motivated
to join a robotics research group and eventually succeeded in solving problems did so
through trial-and-error.

2.2. Robots and Robotics Competitions

Several kinds of robots have been used in education. For example, the Scribbler robot
(Summet et al., 2009), the iRobot Create (Anderson et al., 2011), the Topobo robot
(Virnes et al., 2008), or the Thymio (Riedo et al., 2013). One of the most widely used
educational robots is the LEGO® MINDSTORMS® kit. Robots consist of the mechanical
robot platform, motor(s), an onboard computer and a system for communicating with
a desktop computer used for programming, sensors and software for programming the
robot. The software can be a visual programming environment, or it can be an adaptation
of an ordinary programming language.

Most schools engage in the robotics activities through competitions, including: the
Trinity College Fire-Fighting Home Robot Contests (TCFFHRC) (http://www.
trincoll.edu/events/robot/) (Verner and Hershko, 2003), the Botball con-
test (http://www.botball.org/) (Miller and Stein, 2000), Robo Fest (http://
robofest.net), and the FLL (http://firstlegoleague.org) or the FIRST
Robotics Competition (http://www.usfirst.org/roboticsprograms/frc)
(Melchior et al., 2005).

The FLL is a yearly competition for children in grades 4 to 8 using the LEGO®
MINDSTORMS® kit. The kit contains LEGO® bricks as well as motors, gears and sen-
sors. Programs are written on a personal computer using a visual programming environ-
ment called LabView and downloaded to the NXT controller, so that the robot can run
the program without being tethered to the computer. Students can download instructions
for constructing several robots; normally, one or more of these robots are built to obtain
experience before trying to design a new robot.

The FLL competition consists of three parts:
The students are required to design and build a robot that fulfils missions in a 1)
scenario that changes every year; robots that fulfil the largest number of missions
in the shortest time win the competition.
A scientific project that challenges students to create an innovative solution for a 2)
specific problem.
Developing core values that emphasize teamwork. 3)

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari92

My research focuses on the first part of the competition that requires students to
design and build robots.

The FLL competition’s missions are designed according to an authentic theme; in
year 2012–2013, the first year of the research was conducted, the FLL theme was “Se-
nior Solution” and contained missions that simulate assisting senior citizens in areas
that they may find difficult. A score is associated with each mission and can be accu-
mulated. In year 2013–2014, the FLL theme “Nature’s Fury” and contained missions
that simulate helping people prepare, stay safe or rebuild in case of natural disaster.
Yearly competitions have different themes, but they have common goals: promoting
robotics in education and encouraging systems-thinking, problem solving, and team-
work skills.

We choose to work within the context of the FLL competition for several reasons: (i)
it offers a different theme each year that is related to STEM and real world problems; (ii)
requires that the students make a presentation on the subject; (iii) it targets students as
young as 9 years old; (iv) it is the one that is available to us.

2.3. The Bloom Taxonomy and Meaningful Learning

The Bloom Taxonomy was first described in 1956 as a hierarchical model for the cogni-
tive domain that organizes the cognitive aspects of learning into six hierarchical levels:
knowledge, comprehension, application, analysis, synthesis, and evaluation (Bloom et
al., 1956). Given its popularity through the years, the taxonomy has been condensed,
expanded and reinterpreted in a variety of ways (Forehand, 2012; Johnson and Fuller,
2006). The model was revised by Anderson et al. (2001) with a number of significant
changes to the terminology, structure and emphasis. The revised structure has two di-
mensions: a cognitive process dimension with the original categories of Remembering,
Understanding, Applying, Analyzing, Evaluating, and Creating, and a knowledge di-
mension with the categories Factual, Conceptual, Procedural and Meta-Cognitive. The
new version is referred to as the revised Bloom Taxonomy (Thompson et al. 2008). We
chose to work with the revised BT because it appears to offer appropriate categories for
evaluating students’ meaningful learning.

Ausubel (1963, 2000) defined meaningful learning as the subsumption or incorpora-
tion of new learned material into the student’s cognitive structures. The goal of mean-
ingful learning is to teach students concepts that will be recalled and used; there-
fore, meaningful learning strategies must build complex knowledge structures in the
learner’s mind (Ausubel, 2000). It is commonly accepted today that generalizations
cannot be presented or given to the learner, but can only be acquired as a product
of problem-solving activities. Meaningful learning occurs when students build the
knowledge and cognitive processes needed for successful problem solving. The five
categories of the taxonomy (understanding, applying, analyzing, evaluating and creat-
ing) are increasingly related to transfer, while the remembering category is related to
retention (Mayer, 2002).

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 93

Technology can make learning more meaningful. Howland, Jonassen and Marra
(2011) present five characteristics that are necessary to achieve meaningful learning
using technology: active, constructive, intentional, authentic, and cooperative. In con-
structionist learning (Turkle and Papert, 1991), students engage in active cognitive pro-
cessing. The revised BT cognitive processes describe the range of students’ cognitive
activities in meaningful learning that it is the way students can actively engage in the
process of constructing meaning (Mayer, 2002).

LEGO® MINDSTORMS® are conjectured to facilitate meaningful learning (Mill-
er, Nourbakhsh and Siegwart, 2008). Robotics competitions with LEGO® MIND-
STORMS® require that students collaborate in order to accomplish the tasks required,
such as the missions of an FLL competition. The students start with an assigned au-
thentic project, and as they become more familiar with the technology, they achieve
more control over constructing and programming the robot and can implement their
own creative ideas.

2.4. Computer Science Concepts

Performing robotics activities requires mastery of CS concepts. Computer science en-
compasses far more than programming (Denning and McGettrik, 2005). Denning et al.
(1989) coined the phrase discipline of computing to combine the analysis and abstraction
of computer science with the abstraction and design of engineering. The discipline of
computing is the systematic study of algorithmic processes that describe and transform
information: their theory, analysis, design, efficiency, implementation and application. It
includes nine subareas: algorithms and data structures, programming languages, archi-
tecture, numerical and symbolic computation, operating systems, software methodology
and engineering, database and information retrieval systems, artificial intelligence and
robotics, and human-computer communication. See Denning et al., (1989) for details of
each subarea.

Among all the CS concepts that the students demonstrated, we chose to focus on
two:

input-output (not just from the screen and keyboard) which appears in the pro-(a)
gramming languages subarea;
interfacing with sensors from artificial intelligence and robotics subarea. (b)

These concepts were chosen because: (a) students displayed a range of engagement
with the concepts during the robotics activities; (b) the concepts were not previously
known by most of the students; and (c) the concepts touch on more than just program-
ming, since students must identify the different sensors and their capabilities, understand
how they can be used for input and output, as well as the algorithmic transformation of
the input data to the output data.

The definitions of the concepts that we use here are based on robotics books such as
Trobaugh (2010), Kumar (2009) and Martin (2001). In more detail:

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari94

Input-output: Computer programs receive input data, perform computations and a.
then produce output data. In robotics, the input comes from sensors that measure
the dynamic environment of the robot (light, color, proximity, touch) and output
(motors). This concept will be introduced when the students connect an input such
as light sensor and output such as the motors to the NXT controller. The control-
ler has four input connectors for sensors and three output connectors for motors.
The expected learning outcomes can range from just identifying the input-output
ports (limited learning) to explaining the difference between the input and output
devices and how they work (more extensive learning), up to the highest level of
devising new solutions based on these concepts.
Interfacing with sensors: Sensors in robotics can be used for detecting an object b.
or for following a line on the mission table using a light or color sensor. The ultra-
sonic proximity sensor can detect this distance to an object and the touch sensor
detects when the sensor touches something in the environment. The interface with
these sensors is by programming the controller. The expected learning outcomes
can range from identifying the techniques and algorithms used in interfacing with
sensors (limited learning) to modifying the techniques or creating new ones (more
extensive learning).

3. Methodology

3.1. Population

The research population consisted of middle-school students in Israel and the Palestinian
Territories, aged 13–15 years, who participated in FLL robotics competition. The robot-
ics activities were extracurricular, after school, on weekends and during vacations. Most
of the teachers have no background in robotics; they are trained for a few months before
they teach robotics and supervise the activities.

During the year 2012–2013, eight groups participated in the FLL competition. Six
groups (Group 1, Group 2, Group 5, Group 6, Group 7 and Group 8), a total of 47 stu-
dents (34 females and 13 males) participated in the competition for the first time, while
Group 3 and Group 4, a total of 15 students (all female), had previous experience with
the robotics. Ten of them had participated in the previous competition in 2011–2012.

The students who were interviewed by the researcher are referenced by S associated
with a number. A summary of groups is presented in Table 1.

Five groups (Group 1, Group 2, Group 5, Group 6 and Group 7), a total of around 37
students (29 females and 8 males), who had participated in the 2012–2013 competition
continued on to participate in the 2013–2014 competition. Some of the teachers were
the same in both years, as were many of the students. Each group included students who
participated in the previous year’s competition, as well as new students who had never
participated before in robotics activities. The school of Group 7 initiated a regular ro-
botics class in 2013–2014 and added it to their curriculum. Six of the students who had

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 95

never participated before in robotics activities participated in both the robotics class and
the robotics competition. The interviews were conducted with two students (S16 and
S17) who did not have experience in competitions, but who participated in the regular
school robotics class. For two of the groups (Group 4 and Group 8) we were not able to
collect data of their activities, and Group 3 did not participate in the competition for the
year 2013–2014. A summary of the groups is presented in Table 2.

The robotics activities started around the first months of the school year and ended on
the competition day, usually during the last two months of the school year.

The resources available to the students were the LEGO® kit, together with its man-
ual, online tutorials and books, and handouts provided by the organizers. In the ab-
sence of a fixed curriculum and textbook, the students searched for information from
all these resources.

Table 1
Research participants in the school year 2012–2013

Group
Number

Students
and Gender

Students with
experience in robotics

Students
Interviewed

1 9 F - S1, S2, S3
2 6 F - S8, S9
3 8 F 4 S12, S13
4 7 F 6 -
5 7 M - S4, S5
6 10 F - S6, S7
7 7 F - S10, S11
8 6 M, 2 F - S14, S15

Total 62 (49 F, 13 M) 10 F 15 (11 F, 4 M)

Table 2
Research participants in the school year 2013–2014

Group
number

Students
and gender

Students with
experience in robotics

Students
interviewed

Teachers

1 7 F 3 - Different
2 5 F, 2 M 2 - Same
3 Didn’t participate in competition year 2013–2014
4 Not able to collect data from this group
5 6 M - Same
6 7 F - - Same
7 10 F

(6 of whom
participated in
robotics class)

4 S16, S17 Different

8 Not able to collect data from this group

Total 37 (29 F, 8 M) 9 F 2 F

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari96

3.2. Research Instruments

The data collection instruments included (a) pre- and post-questionnaires consisting of
Likert-scale items to investigate the students’ attitudes toward learning STEM and ro-
botics activities; (b) observations during the school year; (c) semi-structured interviews
conducted by the researcher with 2–3 students from each group; and (d) group inter-
views conducted by the judges during the competition day1. The observations and the
interview were recorded on video.

The interview used a Representational Model (RM), defined as an inscription, image,
analogy, physical construction or computer simulation that facilitates the externalization
of students’ knowledge and understanding. Students were asked to express the design
of their robots (including aspect of mechanics, electronics and software) graphically or
in writing, and to instruct the robot to accomplish one of the FLL missions using flow-
charts, pseudo-code, or any other notation of their choice. Before the interview, a table
with materials that students might use to express their thoughts was prepared: paper,
pencils, crayons, rulers, a protractor, and LEGO® pieces.

The students were asked to relate to three types of activities (tasks) in their represen-
tational models: a) the engineering of the robot; b) the mathematics required to instruct
the robot to perform the missions; and c) the programming and CS concepts required. In
this paper we focus on the programming and CS concepts. In each case, an alternative
task was prepared to be used if the student did not cooperate in the initial task.

For example, the students had drawn a path that the robot should take to reach the
mission’s location, determined the distance and angles the robot should take, and de-
cided on the functions the robot needs to perform, such as lowering a handle or picking
something up. The students were now asked to write or draw the programming instruc-
tions and to explain these instructions. If the student couldn’t write or draw the program
instructions, a written program prepared in the NXT environment is presented as an
alternative task and the students were asked to explain it.

3.3. The Operationalization of Meaningful Learning of the CS Concepts2

The categories or levels3 of the cognitive process dimension of the revised BT were
used to analyze the meaningful learning of CS concepts during the robotics activities.
The first level of the BT, remembering, promotes retention, while the five levels above
remembering, promote transfer (Mayer, 2002). Mayer claims that in some subjects,
you need to start with remembering in order to get to a meaningful learning goal, and
we believe that this is true in robotics. However, in robotics, meaningful learning re-
quires more of the students than simply recalling or recognizing factual knowledge.

1 The first author was asked by the judges to participate in some of these interviews.
2 Words in bold in this section and below refer to the categories of the revised BT and italic is used for the

operational definition of each category.
3 We use levels in preference to categories.

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 97

Therefore, we required that students achieve higher levels than remembering in order
to demonstrate meaningful learning. The higher the level the more meaningful learning
the students gain.

For the concept of input-output, we merged the understanding and the applying
levels, because if the students realize the concept they also need to implement the related
techniques. We merged the analyzing and the evaluating levels, because if the students
integrate knowledge related to the whole design, they are also differentiating, compar-
ing and criticizing the different performances of their design.

As for the concept of interfacing with sensors, we merged the applying with the ana-
lyzing level, because when the students implement a solution to a task, they go directly
to integrating knowledge related to the whole design and testing the solution.

The BT levels for the CS concepts were operationalized as follows:

Remembering:1. The students demonstrate the remembering level if they are:
(Input-output) a. naming, listing or memorizing facts and terms as they had been
taught or mentioned before without demonstrating any meaningful grasp of
the input-output functionality. For example, the students are mentioning the
port sides of the NXT to attach the sensors and the sides for motors as they
have been told without realizing the difference between them.
(Interfacing with sensors) b. naming, listing, memorizing or identifying the avail-
able sensors and the command(s) responsible for interfacing with those sen-
sors. For example, the students are listing the available sensors as have been
told without knowing or trying to use them.

Understanding:2. The students demonstrate the understanding level if they are:
(Input-output) a. realizing, recognizing and implementing the main ideas or
knowledge of the input-output concept in a new problem.4 For example, the
students are recognizing that the sensors are input devices and connect them
through the input ports, same with motors connecting them through the output
ports of the NXT.
(Interfacing with sensors) b. recognizing the facts (properties), techniques or al-
gorithm related to the use of sensors’ command(s). For example, the students
are recognizing the NXT blocks responsible for operating the sensors. How-
ever, they are not trying to use any sensor.

Applying3. the students demonstrate the applying level if they are:
(For input-output this level was merged with a. understanding).
(Interfacing with sensors) b. using the relevant knowledge, techniques or algo-
rithm to interface with the sensors in solving a problem.5 For example, the
students use the light sensor to follow a black line on the mission table ground.
They are using a specific technique.

Analyzing4. the students demonstrate the analyzing level if they are:

4 For this concept, the definition refers to the merged understanding / applying level.
5 For this concept, the definition refers to the merged applying / analyzing level.

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari98

(Input-output) a. explaining the related knowledge of the input-output and differ-
entiating between their functionality in relation to the overall structure of the
robot.6 For example, the students are explaining the robot’s sudden stopping
position (away from the mission table edges) as the reason is related to the ap-
proximate sensor measurements.
(For interfacing with sensors this level was merged with b. applying).

Evaluating5. the students demonstrate the evaluating level if they are:
(For input-output this level was merged with a. analyzing).
(Interfacing with sensors) b. criticizing, explaining and modifying the algorithm
used for interfacing with sensors according to the robot’s test results. For ex-
ample, if the students used PID controller technique, they modify the algorithm
to improve the robot’s movements.

Creating6. the students demonstrate the creating level if they are:
(Input-output) a. coming up with a new, alternative or unexpected solution, or
devising a new strategy for using the input-output concept.
(Interfacing with sensors) b. coming up with a new, alternative or unexpected
algorithm.

4. Data Analysis

The students of each of the eight groups worked as a team on the activities for the FLL
competition. Some students worked more on the scientific project part, but during the
observations, the interviews and the competition day group interview, students used the
plural pronoun ‘we’ (rather than ‘I’), thus expressing the group’s involvement and mu-
tual responsibility. Therefore, we take the interviewed students as representative of the
group as a whole, and not just to assess the learning of individual students.

The analysis of the data from the school year 2012–2013 focused on the observa-
tions of the students during the activities, and on the interviews of 15 students after the
activities, while the analysis for year 2013–2014 focused on the group interviews during
the competition day, except for Group 7, whose data was collected during the year and
focused on the observations and the interviews of two students. The students who were
interviewed by the researcher are referred to by S associated with a number as presented
in Table 1 and Table 2 in section 3.1 above.

The research data collected were analyzed quantitatively and qualitatively. The quan-
titative analysis was relevant only to the investigation of students’ attitudes and will be
reported separately. The qualitative analysis examined the transcriptions of the observa-
tions and interviews that were videotaped. The transcriptions were analyzed according
to the BT, as operationalized above. The analysis of the students’ verbalization during
the observations and their interaction with the representational models were inspired by
Chi’s (1997) verbal analysis for quantifying qualitative data.

6 For this concept, the definition refers to the merged analyzing / evaluating level.

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 99

The qualitative analysis regarding the CS discipline was performed as follows:
Segmenting each group’s data according to the activity: the beginning, the middle 1.
and the end of the year (the competition).
Presenting the segments in tables; the rows of each table demonstrated a specific 2.
concept accompanied with detailed information and explanation.
An analysis for all the groups was conducted according to the segments presented 3.
in step (1) and further analyzed according to the concepts.
Another analysis was carried out for each of the concepts related to all groups. 4.
The findings were summarized. The learning level of each group for each concept 5.
was presented in a table.

To ensure validity of the qualitative analysis, the researcher was not involved in
the teaching and learning process, but only in preparing the research instruments and
performing the data analysis. Triangulation among instruments was used to ensure the
accuracy of the results. In addition, an independent analysis of the results was performed
by a colleague to ensure theoretical validity. The few disagreements that occurred were
negotiated until a consensus was reached.

5. Findings

This section presents the findings of learning CS during the preparation for the FLL
local competitions. For each concept, the findings are summarized in a table for each
group and then explained according to the BT. For groups that were investigated in both
2012–2013 and 2013–2014, there are two rows for the group in the table, one (white)
for the first year and one (gray) for the second year. The results regarding learning are
depicted by an arrow that starts at the initial BT level and ends at the BT level the stu-
dents achieved at the end of the activities. The results of all groups in year 2013–2014
refer to the final period of the robotics activities (the competition day), except for Group
7 where the results refer to the whole period from the beginning of the activities until the
competition day in 2013–2014.

5.1. Input-Output

5.1.1. Summary of the Learning Levels that Were Achieved
Table 3 summarizes the results of the input-output concepts.

Regarding the groups who had participated in the robotics activities for the first
time in year 2012–2013, three out of the six groups (Group 5, Group 6, and Group
8) demonstrated learning at the analyzing / evaluating level of the BT. The groups
started the activities at the remembering level. Three groups (Group 1, Group 2 and
Group 7) started at the remembering level and at the end demonstrated a learning
level of no more than the understanding / applying. The same results were demon-
strated for the two groups (Group 3 and Group 4) who had previous experience in the
robotics activities.

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari100

In year 2013–2014, one group (Group 7) demonstrated learning at the analyzing
/ evaluating level, and three groups (Group 1, Group 5 and Group 6) demonstrated
learning at the understanding / applying level, while the data that was collected for
Group 2 were not sufficient to demonstrate the learning level for this concept. The
groups’ starting level could not be determined because the data were gathered only
during the group interview on the competition day. The results showed that for the year
2013–2014 Group 5 and Group 6 demonstrated a lower level of what they demonstrated
the year before.

The data of Group 7 were collected throughout the school year and showed that the
new students demonstrated the remembering level at the beginning of the activities
(presented in the table above as dashed arrows) and joined the understanding / applying
level with the experienced students when they participated in the school robotics class.
Later in the activities, all students demonstrated the analyzing / evaluating level.

5.1.2. Examples for the Learning Levels and Expanded Observations
The following points were observed and can be illuminate and broaden these results:

Limited learning ● : All the groups / students memorized the connection between
the input-output devices with the NXT controller as they had been told, such as
assigning the port ‘A’ always for the motor that is responsible for moving the
manipulators. For example, the student S2 of Group 1 named the ports during the
interview:

S1: [writing on one side of the NXT (see Fig. 1)] ‘A’ [port] is for the [motor
connected to the] robot handle [a manipulator, a LEGO® construction for
dragging and lifting] always. And ‘C’ [port] is for the left wheel and ‘B’ for
the right one [wheel]. Here is the USB for the computer. Now here [writing
on the other side of the NXT] we have ‘1’, ‘2’, ‘3’, and ‘4’.

Table 3
Results for the computer science concepts – input-output

Groups Remembering Understanding / Applying Analyzing / Evaluating Creating

1

2

3

4

5

6

7

8

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 101

When the students were asked if it is necessary to use that order, S12 of Group
3 responded during the interview:

S12: Well, ‘B’ and ‘C’ [ports] … we can switch them, but ‘A’ [port], it has
to be for [connected with] the handle [manipulator].

Students invariably used the same three outputs in this order. They memorized
the location of input ports and the output port, but they did not know the difference
since they only followed what they had been told.
The difference between input and output: ● The location of the input ports on
the NXT controller is on the side opposite of the location of the output ports. All
students realized the locations and their connected devices, but treated them as all
input or output. For example, Student S2 of Group 1 described the connections
during the interview:

S2: The NXT is the brain of the robot. I mean without it the robot would not
move. When we connected and downloaded [the program] from the com-
puter to the NXT, the robot moved … of course, by using the wires that are
connected to the motors. The motors caused the handle [manipulator] and
the wheels to operate. Here are the outputs ‘A’, ‘B’, and ‘C’ … ‘1’, ‘2’, ‘3’,
and ‘4’, each of these are outputs for the sensors [use].

S2 realized the places and the connections of the ports with the NXT control-
ler, described the download of the program that caused the manipulators to oper-
ate by the motors, and mentioned that the wires connect the sensors, motors and
the USB with the NXT controller. However, she referred to them as output, then
and during the interview:

S2: No, these are inputs [thinking] these are inputs [pointing to the ‘1’,
‘2’, ’3’and ‘4’], all of them. [Explaining by showing confidence] these four

Fig. 1. Students’ drawing of their robot.

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari102

[pointing to ‘1’, ‘2’, ‘3’ and ‘4’] are inputs for the sensors, and these [point-
ing to the ‘A’, ‘B’ and ‘C’] are inputs for the motors’ movements. … Actu-
ally in the NXT there are not only 7 outputs, we have 8 outputs. The 8th is
the speaker …. No … these are outputs not inputs ... ah ... yes outputs ...
the speaker is … it gives sound. For example, when the robot reaches the
destination, it gave a sound of ‘Good bye’ … the sound is an output.

Some of the students, similar to S2, were confused when they were asked to
explain the difference between input and output. Eventually, after reflection, S2
was able to understand the distinction between inputs and outputs, when she re-
called the knowledge concerning the speaker as an output component and applied
it to another situation (the sensors and motors). These students demonstrated the
understanding / applying level but not higher.
Developing a non-viable mental model ● : A few students confused downloading
a program into NXT controller with inputting sensor’s data. Although they knew
that speakers are an output, they found this inconsistent with the mental model
that the insertion of all wires is input. For example, Student S3 of Group 1 said
during the interview:

S3: One output for the USB. The USB is an input ... we write a program
and input it [download] from the computer to the NXT. The outputs are the
sensors … the same as the motors. Outputs are from the motors to the NXT.
The input, which is the only USB, which we used to download the program
… these [pointing to the ports] are the input, from the motor to the NXT.

S3 referred to the connection of the USB as input and showed using their
hands the downloading the program from the computer to the NXT. Student S1
mistakenly thought that the activity of connecting wires to the ports means input
and that there is no difference between input and output:

S1: I know there are inputs and outputs but I do not know what the differ-
ence is or where are they. According to what I know we connect the wires,
these [the components that are connected by the wires with the NXT] are
inputs. … Both [input and output] have the same meaning.

The mental model they created when they inserted the wires to the NXT
caused them to call it input. S1 did not specify what are the inputs or the outputs
but realized where each should be connected with the NXT controller.

Explaining the input-output devices’ functionality but not the concepts ● : Some
students realized the functionality of the input-output devices. For example, Stu-
dent S12 of Group 3 during the interview said:

S12: The motors need different programming orders than the sensors. The
sensors sense something [surroundings], I mean if the robot needs to do a
mission, the robot will do it even if the place is different. And if something
got different [in the environment] the sensor reflection rate would change. It

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 103

is like a local plan, we do not know the values before the sensor operates …
we have wires, these wires transfer the data by electronic charges, and the
motor which is a device that transfers these data or order to movement.

S12 explained how the sensors read the surroundings and accordingly the ro-
bot moves or operates. S12 described how the data transferred and caused the
robot to move. However, when S12 was asked about the concepts’ terms:

S12: I heard that the inputs are the programs that we download from the
computer to the NXT controller. While that outputs are the missions that
the robot accomplish, or may be the orders that we download from the NXT
to the computer.

S12 thought that the process of downloading from and to the computer repre-
sent the terms input and output. She did not connect what she just explained about
the sensors and the motors with the concept’s terms. Therefore, S12 and other
students reacting similarly demonstrated the understanding / applying level.
Implementing and explaining the data flow ● : After connecting the motors to the
NXT, the students were asked to explain the data flow from the sensors through
the NXT and then to the motors. Most of the students exemplified the data flow by
talking about the medicine mission. For example, Student S5 of Group 5 exempli-
fied during the interview:

S5: The robot gets the information from the sensor, analyzes it … For ex-
ample, [if the sensor reflects a color of] black or white, then the “reversed
feeding” [as the student called it] which is when the program evaluates and
orders the motor to move accordingly.

Some of the groups listed all the inputs and outputs peripherals in the robot,
described the data flow from the input to generate output, applied the information
about the concepts by using different sensors and controlling the robot’s move-
ments. They were able to differentiate between the concepts and relate the knowl-
edge to the overall structure and behavior of the robot.

Moreover, the students were able to use the information about input and output
for the purpose of moving from one programmed mission to another in a single
touch sensor press, or using the NXT buttons (as if they were sensors) to select the
specific program for each mission and thus gain more time for accomplishing the
missions within the limited competition time. For example, Student S4 of Group
5 said during the interview:

S4: We used the buttons on the NXT as sensors; as it [the robot] waits until
we press on one of the NXT button, then it will do the next mission [instead
of clicking several buttons on the NXT fetching for the right program for a
specific mission].

S4 explained, manipulated and evaluated the inputs and outputs to serve their
needs. They expressed the manipulation to the overall structure either by using the

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari104

NXT buttons or the touch sensor. S4 and other students reacting similarly demon-
strated the analyzing / evaluating level, although it could also be considered to
be creating because it was so unexpected.
Connecting the information gained in a regular technology class with the ro- ●
botics activities: Some of the students recalled their knowledge of the previous
years’ regular technology classes within the context of the robotics activities. For
example, Student S10 of Group 7 said during the interview:

S10: I did not recognize the connection [of what she learned in the technol-
ogy class and what she learned during the robotics activities] before [the in-
terview]; this is awesome! … Now I understood the concept [input-output]
more [than her understanding from the technology class].

S10, during the interview, recalled that the concepts input-output were men-
tioned in her regular technology class last year and explained the relevant of these
concepts to the activities. However, this was only during the interview, when she
was asked if they learned the concept input-output before the activities.

5.2. Interfacing with Sensors

5.2.1. Summary of the Learning Levels that Were Achieved
The students needed to program the sensors for two missions: 1) using a color sensor to
detect the green medicine; and 2) using a light or color sensor to enable the robot follow
the black or colored line on the competition table. Table 4 summarizes the results regard-
ing the concept of interfacing with the sensors.

Regarding the groups who had participated in the robotics activities for the first time
in year 2012–2013, one group (Group 5) out of the six groups, demonstrated learning at

Table 4
Results for the computer science concepts – interfacing with sensors

Groups Remembering Understanding Applying / Analyzing Evaluating Creating

1

2

3

4

5

6

7

8

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 105

the evaluating level of the BT, and one (Group 7) demonstrated learning at the applying
/ analyzing. Both groups started the activities at the remembering level.

Three groups (Group 1, Group 6 and Group 8) demonstrated learning at the under-
standing level. The groups started the activities at the remembering level. Only one
group (Group 2) demonstrated no more than the remembering level. As for the two
groups (Group 3 and Group 4) who had previous experience in the robotics activities,
they started learning at the remembering level and achieved learning at the applying /
analyzing level.

In year 2013–2014, one group (Group 7) out of five demonstrated the level following
the one they demonstrated the year before. They started at the applying / analyzing and
achieved learning at the evaluating level. Two groups (Group 2 and Group 5) demon-
strated learning at the applying / analyzing level. The students of Group 2 started at the
understanding, which was the level following the one they had demonstrated the year
before, while Group 5 demonstrated a level less than the one they had demonstrated the
year before. Two groups (Group 1 and Group 6) demonstrated no more than under-
standing. These two groups’ starting level was not clear because the data were gathered
only during the group interview on the competition day.

The data of Group 7 were collected throughout the school year and showed that the
new students demonstrated the remembering level at the beginning of the activities
(presented in the table above as dashed arrows) and joined the applying / analyzing
level with the experienced students when they participated in the school robotics class.
Later in the activities, all students demonstrated the evaluating level.

5.2.2. Examples for the Learning Levels and Expanded Observations
The following points were observed and can be illuminate and broaden these results:

Limited learning ● : All students followed the instructions presented in the LEGO®
kit booklet to connect the light sensor. They recognized that the sensor block in
the NXT software is used for the programming to interface with the sensors.
They named the different kinds of sensors and briefly listed the purpose of using
each one. For example, Student S15 of Group 8 listed the available sensors dur-
ing the interview:

S15: The light sensor and color sensor for detecting the colors, the Gyro
sensor, for detecting and measuring the angles, and the ultrasonic to let
the robot avoid hitting the wall [competition table edges]. At the end we
decided not to use any of the sensors...

S15 listed the kinds of sensors and their uses but the students of Group 8, at
the end of the activities, caused the robot to move according to the measurements
instead of using any sensors. Therefore, the students of Group 8 and other students
reacting similarly demonstrated the remembering level.
Implementing using sensors for specific reason ● : Most of the students described
the overall process of the sensors’ functionality. For example, Student S12 of
Group 3 used the touch sensor for the purpose of moving after getting hit into the
competition table edges. she said:

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari106

S12: We used the touch sensor to avoid hitting [the robot] into the wall
[competition table edges]. We used to have hard time when the robot hits
into the wall and stop [not doing the next order]. The touch sensor made the
robot stop and then move forward.

The robot switches to the next order / command (or in this case block) in
the program when it finishes the current one. When the robot are forced to stop
because of hitting an edge, it is actually operating to finish the order of moving
until the time or distance assigned ended. The students of Group 3 used the touch
sensor to cause the next command to operate and thus keep the robot moving.
These students and other students reacting similarly demonstrated the applying /
analyzing level.
Using the dual- or multi-state technique / algorithm ● : One of the NXT blocks
is a block for interfacing with sensors. By filling out the needed parameters, the
sensor operates accordingly. For example, Student S3 of Group 1 explained the
method used for interfacing with the color sensor:

S9: we programmed the robot so the sensor detects a color. The sensor’s
light turned on, and when it [the light attached with the color sensor] is on,
the sensor detects the colors around it. There are colors that either reflect
or absorb the light. The colors that reflect the light have rates of more than
50. While the colors that absorbs the light, usually have rates of less than
50. For example, we want the robot to move on [following] the black line
[drawn on the competition table ground], the black color absorbs the light,
so it is less than 50. So when the sensor detects a color that has a rate of less
than 50, we assign an order [command or added a block] to do some action
such as stop, turn or move.

S3 explained the relevant knowledge of light reflection, described the method
of reading the rate of reflection and manipulate accordingly. This method called
dual-state method. Most of the groups’ students referred to this method when de-
scribing the interface of sensors.

A few of the groups’ students descried the multi-state method. For example,
Student S6 of Group 6 mentioned during the interview:

S6: We determined the range of the colors; black, white, green and orange.
Then we assigned the value in a loop. I remember using the switch [con-
ditional statement block], if yes [the option within the range of a specific
color], the robot should keep checking, otherwise stop … and things like
that [for the rest of the colors]. But we did not have time to do it; we left the
medicine mission to the end.

S6 described the algorithm by using the visual blocks related to sensors for de-
tecting several colors. S6 also interpreted the process related to the repetition and
conditional statements. However, the students of Group 6 did not actually imple-
ment the program; instead, they decided to discard and skip the accomplishment

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 107

of the medicine mission. Therefore, the students of Group 6 and the other students
reacted similarly demonstrated the understanding level.
Using the PID technique / algorithm and comparing the results ● : A PID con-
troller modifies the output proportional (P) to the input value, its integral (I) and
its derivative (D). This concept was mentioned by one of the mentors, but the
students used only the simplest P (proportional) controller. The algorithm was
used for the purpose of following the black line on the competition table ground.
Student S4 explained the algorithm during the interview:

S4: First we dragged the light sensor [the software block] … we had sev-
eral laws that we wrote on a separate paper … We started applying these
laws one after another: First thing we subtracted the ‘perfect point’ -50, in
order to cause the robot move on the edge that had 50% white and 50%
black, then we looked at the ‘proportional constant’, which was the mul-
tiplication by 0.9, because we did not want to cause the robot to move in
a [noticeable] zigzag way. Then the program had to decide one of the two
directions – subtract or add. … [With an appropriate speed] … we added
the motor ‘B’ [added a condition block and then a move block for ‘B’]
and on the other [side of the condition block] motor ‘C’ [move block]. It
depends on the robot’s location; if it is on the right or the left side of the
black line. All these are inside a big loop … So the robot moved right,
smoothly and straight.

In addition, Student S5 of the same group gave an example:

S5: If the sensor saw 60% [the reflection light rate] that means the robot was
going to the white color a little, so we had an order to decrease that motor
power and increase the other motor [each responsible for moving the front
wheels], and the robot turned.

Both S4 and S5 of Group 5 described, exemplified, checked and critiqued the
proportional method and modified the solution that caused the robot to move on
the colored line with hardly any zigzag. Student S4 compared the experience of
using sensors with the experience when the group started the activities without
using any sensors. S4 reached to the conclusion that the group was wasting their
time when they did not use any sensors. The Group 5 started the activities without
using sensors, because they thought that using sensors might ruin the behavior of
the robot, especially on the competition day that may have different environment
(an issue mentioned by all groups). Subsequently, the students of Group 5 decided
to use three sensors, which they programmed without assistance; they were highly
motivated to extract information from sources such as online resources.

Although the students of Group 5 were confident of their work, the robot did
not behave as expected on the competition day. Therefore, the students of Group
7, in year 2013–2014, realized the problem and developed an alternative plan.
Student S16 explained the use of the gyro sensor during the interview:

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari108

S16: I agree that the use of sensor was beneficial. But for the competition we
were afraid of using sensors. We had two programs one interface with sen-
sors and one without sensors. We used the one [program] without sensors.

The groups who used the sensors and explained the algorithms demonstrated
the applying / analyzing, while the one who criticized the algorithms and tried to
modify it to get better results demonstrated the evaluating level.

5.3. Two Items in the Attitude Questionnaires that Dealt with CS

Although the investigation of attitudes is beyond the scope of this paper, we bring two
items of the questionnaires that are relevant to CS learning. (1) “I think computer science
knowledge is necessary for robotics.” (2) “My future career will not be in computer sci-
ence.” The results showed that around 85% of the students agreed on the importance of
having computer science knowledge for the robotics activities. The percentage was high
when they started the activities and slightly increased by the end. For the second item,
most of the students responded ‘not sure’ in both the pre- and the post-questionnaires.

6. Discussion

6.1. Meaningful Learning According to the Bloom Taxonomy

Almost all the students demonstrated meaningful learning as a result of participation in
the robotics competitions. Most of the groups demonstrated learning up to the level of
understanding / applying, except for one group that demonstrated learning at the low
level of remembering for the concept of interfacing with sensors. Some of the students
reached higher levels of the BT like analyzing or evaluating. A closer examination of
the findings yields the following results.

Most of the students achieved the level of understanding or applying for both con-
cepts, that is, they connected the input-output devices with the NXT controller correctly
and tried to interface with sensors, as required for completing one of the missions. How-
ever, the scope of their learning was narrow: they did not distinguish between inputs
and outputs, and eventually decided to discard the missions that required the use of the
sensors. Indeed, both concepts necessitate exploring and searching for information, in
order to reach higher levels of learning.

Fewer students reached the level of analyzing or evaluating level. These students
explained the concepts, differentiated between inputs and outputs, and used the relevant
knowledge in modifying the structure or the algorithms. The common characteristics
of these groups were the exploration of the resources and discovering new solutions,
with or without help from the teacher or mentor. For example, Group 7 which reached
the evaluating level for both concepts had a teacher who employed a guided discovery
learning pedagogy, while there was limited involvement by the teacher in Group 5 which

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 109

also reached the evaluating level for both concepts. This was compatible with Sullivan
and Moriarty (2009); they examined the teacher’s reflection on teaching and learning
robotics through the discovery learning method, and found that the experience of finding
information and solving unexpected problems was effective. We conclude that students
and teachers need to be encouraged to work together in exploring and acquiring knowl-
edge and in discovering new solutions.

Only one group (Group2) did not exceed the remembering level for the concept
of interfacing with sensors. The students only listed the kinds of sensors available and
their purposes. They could not describe their algorithm for interfacing with the light
sensor even though it was part of the design. We believe that this poor performance
was related to the teacher-centered instructional pedagogy that they experienced. The
context—accomplishing the competition missions—certainly facilitates the use of these
two CS concepts; however, the teacher’s detailed instruction on how to use the sensors
did not foster high levels of exploration. This is in contrast with the achievements of the
other groups who reached higher levels of learning with teachers who were not using a
fully teacher-centered pedagogy.

6.2. Factors that Affect Learning in Robotics Competitions

We found that certain factors characteristic of the robotics competitions seemed to play
a role in determining the learning levels that the students achieved: (a) the competitive
nature of the activities; (b) the teaching pedagogy; (c) the unstable nature of the design
of the robots; (d) the curricular position of the activities.
The competitive nature of the activities. Two aspects of the competition influenced the
students’ learning: the mission requirements and the limited time available. The competi-
tion had a positive impact on students’ learning, because they were challenged to solve
problems in order to accomplish the missions. This is consistent with Melchior et al.
(2005) who found that the FRC competition promoted a positive academic trajectory for
its students. However, the competitive environment also had some negative impact. For
example, some students did not attempt certain missions, because of the limited time they
had thought that they would not be able to succeed in interfacing with the sensors. A few
groups were able to manage their time and accomplish most of the missions—including
the harder ones—so we cannot conclude that time limitations were the only negative fac-
tor for those students.
Teaching pedagogy. The results showed a high variability in the learning that the stu-
dents achieved. As discussed above, discovery learning was explained variability be-
tween groups. Students experienced a teacher-centered pedagogy at the beginning of the
activities, enabling to achieve the remembering level. Since most of the teachers had
limited knowledge of robotics and the robotics competition, a shift to a learner-centered
pedagogy occurred in most groups when the students and teachers realized that the shift
was necessary in order to accomplish the missions. Both the students and the teachers
(or in some cases the students alone) searched the available resources to construct more
knowledge and to solve the unexpected problems. This supports the claim by Virnes, Su-

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari110

tinen, and Kärnä-Lin (2008) that the advantage of robotics activities is that they offer op-
portunities for exploration due to the frequent occurrence of unexpected problems. This
raises the possibility that teacher-centered pedagogy may not be effective in the context
of robotics competitions.
The unstable nature of the design of the robot. Martin (2006) noted that the physical
variability in real-world robots and the environment can help students deal with unex-
pected problems. Our findings showed that the teachers did not hide the fact that “robots
do not drive straight” and pointed out that sensors are unreliable. Some students became
discouraged and tried to eliminate sensors in their design, while other students took it
as a challenge. Indeed, the solutions that the students presented as a challenge, did not
work very well in the competition, but the students acknowledged the benefit of using
sensors and felt proud of their accomplishments. This may have been due to the students’
determination to succeed, which was observed during their design sessions and reported
in the interviews.
The curricular position of the activities. Most of the students from Group 7 who had
participated in 2012–2013 competition also participated in a robotics course that the
school introduced the following year. The new students who joined the group demon-
strated the remembering level at the beginning of the activities and were able to catch up
with the students who had participated in the competition the previous year. All students
eventually demonstrated learning up to the evaluating level, exploring information out-
side the scope of the available resources and producing impressive robot designs. This
supports the findings of Melchior, et al. (2005) that the FRC helped participating schools
in introducing robotics courses in fostering a positive school spirit. An alternative ex-
planation might be that the new students were helped by their more experienced team-
mates, and they could have reached a similar level of learning if the activities had been
extracurricular. However, the observations and interviews showed that the experienced
teammates did not mentor the new students; furthermore, additional material was taught
in class that had not been part of the competition. In other groups who participated for a
second year in extra-curricular activities, we could not observe similar results. Although
no direct help by the experienced students was observed, nevertheless, the new students
seemed to learn faster in this context.

7. Conclusions

The research showed that robotics competitions are effective in achieving meaningful
learning of computer science concepts. Most students reached the middle levels of the
Bloom Taxonomy and some reached higher levels. The most successful learners were
those who engaged in exploration of resources in order to learn new concepts and to
solve problems they encountered.

The competitions had both positive and negative effects. On the positive side, many
students displayed a determination to accomplish the missions that led to effective learn-
ing behaviors. On the negative side, learning opportunities were sometimes pushed aside

The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science 111

in favor of constructing robots that tried to accomplish the missions. Further research is
needed to determine the relative advantages and disadvantages of robotics competitions
when compared with curricular robotics activities.

References

Anderson, L., Krathwohl, D., Airasian, P., Cruikshank, K., Mayer, R., Pintrich, P., Rath, J. and Wittrock, M.
(eds.) (2001). A Taxonomy for Learning and Teaching and Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives. Addison Wesley Longman.

Anderson, M., McKenzie, A., Wellman, B., Brown, M., Vrbsky, S. (2011). Affecting attitudes in first-year
computer science using syntax-free robotics programming. ACM Inroads, 2(3), 51–57.

Ausubel, D. (1963). The Psychology of Meaningful Verbal Learning. New York, NY, Grune & Stratton.
Ausubel, D. (2000). The Acquisition and Retention of Knowledge: A cognitive View. Dordrecht, the Nether-

lands, Kluwer Academic Publishers.
Bloom, B., Krathwohl, D. (1956). Taxonomy of Educational Objectives: The Classification of Educational

Goals, by a Committee of College and University Examiners. Handbook 1: Cognitive Domain. New York,
Longmans.

Botball website retrieved on April 2015 from http://www.botball.org
Chi, M., (1997). Quantifying qualitative analyses of verbal data: a practical guide. The Journal of the Learning

Sciences, 6(3), 271–315.
Denning, P. (2010). The great principle of computing. The Scientific Research Society, 98, 369–372.
Denning, P., McGettrick, A. (2005). Recentering computer science. Communications of the ACM, 48(11),

15–19.
Denning, P., Comer, D., Gries, D., Mulder, M., Tucker, A., Turner, A., Young, P. (1989). Computing as a dis-

cipline. ACM, 32(1), 9–23.
Fagin, B., Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science. ACM

SIGCSE Bulletin, 35(1), 307–311.
FIRST Robotics Competition website retrieved on April 2015 from
http://www.usfirst.org/roboticsprograms/frc
FLL site Retrieved on April 2014 from http://firstlegoleague.org
Forehand, M. (2012). Bloom’s Taxonomy, Georgia.
http://projects.coe.uga.edu/epltt/index.php?title=Bloom%27s_Taxonomy
Howland, J.L., Jonassen, D., Marra, R.M. (2011). Meaningful Learning with Technology. (4th Ed.) Pearson

Education, Inc.
Johnson, C., Fuller, U. (2006). Is bloom’s taxonomy appropriate for computer science? In: Berglund, A. (Ed.).

6th Baltic Sea Conference on Computing Education Research (Koli Calling 2006). Finland, Koli National
Park, 115–118.

Kaloti-Hallak, F. (2014). The effect of Robotics Activities on Studetns’ Learning and Attitudes. ICER’14.
Kumar, D. (2011). Learning computing with robots. Institute for Personal Robots in Education.
Lauwers, T., Nourbakhsh, I., Hamner, I. (2009). CSbots: design and deployment of a robot designed for the

CS1 Classroom. ACM SIGCSE Bulletin, 41(1), 428–432.
Martin, F. (2001). Robotic Explorations: A hands-on Introduction to Engineering. Upper Saddle River, N.J.:

Prentice Hall.
Martin, F. (2006). Real Robots Don’t Drive Straight. American Association for Artificial Intelligence.
Mayer, R. (2002). Rote versus meaningful learning. Theory into Practice, 41(4), 226–232.
Melchior, A., Cohen, F., Cutter, T., Leavitt, T. (2005). More than Robots: An Evaluation of the FIRST Ro-

botics Competition Participant and Institutional Impacts: Center for Youth and Communities, Brandeis
University

Miller, D., Nourbakhsh, I., Siegwart, R. (2008). Robots for Education. Springer. 1283–1301.
Miller, D.P., Stein, C. (2000). “So that’s what pi is for!” and other educational epiphanies from hands-on

robotics. In: Druin, A., Hendler, J. Robots for Kids, Exploring New Technologies for Learning. Morgan
Kaufmann Publishers, 219–244.

Riedo, F., Chevalier, M., Magnenat, S., Mondada, F. (2013). Thymio II, a robot that grows wiser with children.
In: IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO), 187–193.

F. Kaloti-Hallak, M. Armoni, M. Ben-Ari112

Robofest website retrieved on April 2015, from http://robofest.net
Sullivan, F. R. (2008). Robotics and science literacy: thinking skills, science process skills and systems under-

standing. The Journal of Research in Science Teaching, 45(3), 373–394.
Sullivan, F.R., Moriarty, M.A. (2009). Robotics and discovery learning: pedagogical beliefs, teacher practice,

and technology integration. The Journal of Technology and Teacher Education, 17(1), 109–142.
Summet, J., Kumar, D., O’Hara, K., Walker, D., Ni, L., Blank, D., Balch, T. (2009). Personalizing CS1 with

robots. ACM SIGCSE Bulletin, 41(1), 433–437.
TCFFHRC website retrieved on April 2015, from http://www.trincoll.edu/events/robot
Thompson, E., Luxton-Reilly, A., Whalley, J., Hu, M., Robbins, P. (2008). Bloom’s taxonomy for CS assess-

ment. Tenth Australian Computing Education Conference (ACE 2008) 79.
Trobaugh, J. (2010). Winning Design! LEGO Mindstorms NXT. Apress
Turkle, S., Papert, S. (1991). Epistemological pluralism. In: Harel, I., Papert, S. (Eds), Constructionism. Nor-

wood, NJ, Ablex, 116–126.
Verner, I.M., Hershko, E. (2003). School graduation project in robot design: a case study of team learning

experiences and outcomes. Journal of Teaching Education, 14(2). 40–55.
Virnes, M., Sutinen, E., Kärnä-Lin, E. (2008). How Children’s Individual Needs Challenge the Design of Edu-

cational Robotics. Paper presented at the 7th international conference on Interaction design and children.

F. Kaloti-Hallak is a PhD student in the Department of Science Teaching
of the Weizmann Institute of Science. She holds master degrees in
Computer Information Systems from Eastern Michigan University in
2000 and Science Teaching from the Weizmann Institute of Science in
2011. Her research interests include middle-school computer science
education and human-computer interaction. She has been a lecturer at
the Department of Computer Science and Information Technology of
Al-Quds University.

M. Armoni is a senior scientist at the Department of Science Teaching,
Weizmann Institute of Science. She received her PhD from the School of
Education in Tel-Aviv University, and her B.A. and M.Sc. in computer
science from the Technion, Israel Institute of Technology. She has been
engaged in computer science education for more than 20 years as a
lecturer and a teacher, as a curricular developer, and as a researcher.
She has co-authored several textbooks for high schools and for junior
high schools. Her research interests are in the teaching and learning
processes of computer science, specifically of various computer science
fundamental ideas.

M. Ben-Ari is a professor in the Department of Science Teaching of the
Weizmann Institute of Science. He holds a PhD degree in mathematics
and computer science from the Tel Aviv University. He is the author of
several textbooks on elementary computer science, mathematical logic
and concurrent programming. In 2004, he received the ACM/SIGCSE
Award for Outstanding Contributions to Computer Science Education,
and in 2009 he was designated an ACM Distinguished Educator.

Olympiads in Informatics, 2015, Vol. 9, 113–125
DOI: http://dx.doi.org/10.15388/ioi.2015.09 113

Different Approaches for Making the Initial
Selection of Talented Students in Programming
Competitions

Bojan KOSTADINOV, Mile JOVANOV, Emil STANKOV,
Marija MIHOVA, Biljana RISTESKA STOJKOSKA
Faculty of Computer Science and Engineering, University Ss. Cyril and Methodius
st. Rugjer Boshkovikj 16 Skopje, Macedonia
e-mail: bojan.kostadinov@gmail.com, {mile.jovanov, emil.stankov,
marija.mihova, biljana.stojkoska}@finki.ukim.mk

Abstract. Competitions in informatics are one of the most useful ways of engaging pupils to the
field of computer science. Many national and international competitions are carried out each year,
with the organizers of each of them attempting to reach out to as many potential students as pos-
sible. In this paper, we analyse several different contest types, how each of them aids to promote
computer science by engaging students in competitions, and how they can help provide the initial
selection of talented students for the later stages of the competitions. Based on that, we propose
seven criteria for the classification of the contests. Further we present our rich experience in the
organization of Macedonian contests. Finally, we propose different approaches for making the
initial selection of talented students in programming competitions and discuss ways for alleviat-
ing some of the issues with standard contests, for example enabling feedback and introducing
difficulty divisions.

Keywords. programming contests, types of contests, promoting informatics, identifying talented
students.

1. Introduction

In this paper, we will show several approaches for attracting talented students interested
in participating in informatics workshops or contests, and conducting an initial selec-
tion between them. Although the focus of this paper is mostly targeted at the organiza-
tion of competitions in informatics, the presented ideas can also be used by educational
organizations and governmental entities to identify talented students in the STEM (Sci-
ence, Technology, Engineering and Math) fields. As the demand for skilled workers
in science, technology and mathematics increases, linking the rise of these fields with
global competitiveness, it’s increasingly vital that governments and institutions find

B. Kostadinov et al.114

ways to detect talented students early on in their primary and secondary education.
Because identifying potentially gifted and talented students has never been an exact
science (Goodhew, 2009), making it difficult to measure and analyse, we will present
several different kinds of approaches to this problem, as well as the advantages and
disadvantages of every one of them.

The paper is organized as follows. In Section 2 we will present several popular com-
petitions that are currently organized throughout the world, and attempt to provide a
general overview of possible contest types and the advantages and disadvantages of
each of them. We present this through seven criteria that we identified, and which we
propose for the purpose of classification of contests. In Section 3 we focus on the types
of informatics competitions organized by the Computer Society of Macedonia, compare
them with the international contests, and describe the biggest challenges that we are fac-
ing at the moment. We will also briefly describe several other contests that take place in
our country. Section 4 builds up on the details presented in the previous sections, and
compares how suited each contest type is to the problem of attracting pupils, and making
an initial selection between them. In Section 5 we provide directions for future work and
summarize our findings.

2. Overview of Contests

Competitions are a major factor in education (Verhoeff, 1997). A lot of countries use dif-
ferent forms of competitions in order to encourage students to perform better in school
(for example, in order to earn scholarships or grants), to bring the best out of them (by
enrolling students into special programs based on their interests), or to promote coop-
eration by grouping students into teams and teaching them (through competitions) the
importance of collaboration between people with different talents and preferences.

Whatever the goal is, competitions must be fair in order to make them engaging to
students (or people, in general). That is, students should have (pretty much) the same
chances of winning – compared to other students/teams. In this paper we describe sev-
eral competition types that satisfy these criteria – including competitions that are graded
manually (by people), or automatically (by machines).

Besides fairness, a very important attribute of competitions is how well they accom-
modate to the different skills possessed by students. With regards to informatics com-
petitions, they should be designed in such a way that the difficulty of (at least some of
the) problems is approachable to most of the students. This can be achieved by dividing
students into age divisions, knowledge groups, or by organizing a series of contests with
increasing difficulty.

Before we attempt to define the criteria by which competitions can be reviewed, we
will first provide an overview of several active informatics competitions. We will use
this overview, as well as our knowledge about other contests, to describe strategies for
dividing, analysing and improving competitions.

In the following list, we present some of the most popular, and some of the most in-
teresting competitions organized in the world today. Although they have different grad-

Different Approaches for Making the Initial Selection of Talented Students... 115

ing criteria, deliverables or durations, each one of them motivates and attracts a large
number of participants every year.

The International Olympiad in Informatics (IOI) ● is an annual programming
competition, reserved for secondary school students. Students compete by solv-
ing problems (of algorithmic nature) in one of several available programming
languages (C, C++, Pascal and, starting from 2015 – Java). In the last few years,
participants receive full feedback for their submissions, which wasn’t the case
during earlier Olympiads. The contest is usually organized on two competition
days, and countries are limited to 4 competitors each.
ACM International Collegiate Programming Contest (ACM-ICPC) ● is an an-
nual programming competition involving university teams. The competition is
initially organized in several regions, with regional winners attending the World
Finals. During a contest, the teams are given several hours (usually 5) to solve
multiple programming tasks using one of the available programming languages
(C, C++, or Java). Teams receive feedback when they submit a wrong solution for
a task, allowing them to make changes to their solution and submit a new one.
Google Code Jam ● is an international programming competition, initially created
as a means to identify top engineering talent for potential employment at Google.
Participants are given several tasks that they need to solve, using any program-
ming language and development environment. Currently, competitors receive an
input file, for which they must generate a correct output in a limited amount of
time. For most of the tasks, there are actually two input files – an easy input (for
which feedback is provided), and a hard input (which is judged after the contest
has finished).
Bebras ● is a very popular international competition, whose goal is to promote
informatics and computer science to students of various ages. The contests are
made up of a set of short questions, which can be answered – according to the
organizers – without prior knowledge about informatics, even though the tasks
are clearly related to informatics concepts, and are designed to motivate students
in computational thinking.
Infomatrix ● is an International Informatics Project Competition organized to en-
courage young people to apply their creativity, imagination and passion to make
a difference in the world through technology. The competition reached more than
60 countries and 460 schools in 2014. Students can compete in 5 categories: Pro-
gramming, Computer Art, Hardware Control, Short movie and Robotics (Mini
Sumo, Line Follower, Lego Sumo and Lego Line Follower). Some of the criteria
by which projects are judged in the Programming, Computer Art, Hardware Con-
trol and Short movie area are: Originality, Quality of the project documentation
and the content, Usability, as well as whether or not the project reflects the current
interests in the specific area.
The Australian Informatics Competition (AIC) ● is a pen-and-paper style com-
petition, organized as an entry-level competition in informatics in Australia.
Questions are designed to test algorithmic ability, logic and the students’ ability
to analyse algorithms. Since its introduction in 2005, the number of students that

B. Kostadinov et al.116

take part in the competition has increased from 2000 students, to more than 7000
students in the last year (Clark and Clapper, 2014).

When defining the scope and rules for a competition, organizers can decide to give
students either a predefined set of tasks (or questions) to complete, or they can give
broad definitions of topics, and require students to showcase their own projects or work.
For competitions where students work on a predefined set of programming tasks or
questions, the grading is usually much easier and faster – in some cases, even automated
using specialized grading systems. Participants either upload their solutions to an online
system, or they write them down (or mark answers) using pen and paper. For competi-
tions based on projects, a judging committee formed by the organizer usually does the
grading manually.

Contests can be classified according to multiple criteria. There is no substantial pre-
vious work on this matter. After a careful review of the work in (Pohl, 2006), and a look
at the rules of multiple competitions around the world, we propose a classification that
we believe is useful with regards to currently popular competitions in informatics (both
in our country and internationally).

Competitions in informatics can be roughly classified by these seven criteria:
What participants need to work on (types of ● problems/tasks given to the con-
testants)?
What do participants need to ● deliver?
How will participants provide their output/product ● (submission method)?
What is the ● duration of the competition?
What is the ● scoring system?
How is the ● grading done?
What sort of ● feedback do participants get during the competition?

Some of the more popular options for each criterion are presented in Table 1.
Compared to previous research work on the overview of competitions in informa-

tics, we chose to give feedback a lot more emphasis. Feedback is one of the most
important parts of a competition. For most programming competitions, the increasing
trend is to provide participants with some sort of feedback regarding the correctness of
their solutions. One of the bigger issues of the International Olympiad in Informatics

Table 1
Criteria for classifying competitions in informatics

Criterion Possibilities

Problems Project, Set of tasks, Set of questions, Mixed
Deliverables Answers, Source Code, Executable, Working Robot
Submission method Pen and paper, files on an USB drive, online grading system
Duration Short competition, Long/marathon competition
Scoring Equal points for each task (question), different points, scoring based on

how quickly the task is solved
Grading Manual, Semi-automatic, Automatic
Feedback No feedback, Partial feedback, Full feedback, Pointing out mistakes, etc.

Different Approaches for Making the Initial Selection of Talented Students... 117

(and the organization of national competitions for selecting the top students for the IOI)
has been that the automatic grading process may be unfair – since small mistakes may
lead to solutions which score very few points (especially for tasks which are hard to test/
debug during the limited competition time), and good competitors can end up with bad
results. Providing feedback during the competition is one good solution to this problem,
although one has to consider that the feedback may influence the goals and form of the
contest.

Programming competitions can be easily classified using the criteria provided above.
Thinking about the possible criteria and how they can be amended for a given competi-
tion can lead to better communication between organizers and participants, to fairer
grading, and ultimately to the organization of better competitions.

There are hundreds of different informatics competitions organized each year (by a
wide range of organizers), and each of them needs to properly inform participants about
the terms of the competition, and what exactly is expected from them. As an example,
the International Olympiad in Informatics is a competition where: (1.) students work
on a predefined set of tasks created by the organizers, and are asked to (2.) deliver their
source code, by means of (3.) uploading it to an online contest system, (4.) during a
limited competition round of 5 hours, where (5.) each task is worth the same amount of
points, and the provided solutions are (6.) graded automatically using a contest manage-
ment system. Although results are published after the competition is done, (7.) students
receive feedback for their own solutions while the competition is running. It is worth
pointing out that before deciding on a competition type on the basis of the criteria pre-
sented above, organizers must first take into account the available resources, the compe-
tition’s goal, and the expected number of participants.

3. Macedonian National Competitions in Informatics

Competitions in informatics are held in Macedonia since 1990, and, by the end of 2014,
there were 25 national contest cycles – which include multiple competitions each year,
selection contests for international competitions, as well as training camps. Every year
the contestants go through many levels of competition so that the best could be selected.
The selected pupils represent themselves and Macedonia at the (Junior) Balkan Olym-
piad in Informatics (BOI/JBOI), the International Olympiad in Informatics (IOI), and at
other smaller regional competitions. The main organizer of the competitions in informat-
ics for primary and secondary school pupils is the Computer Society of Macedonia.

The format of the competitions evolves each year, depending on many factors, such
as the number of interested pupils, available resources, inclusion of programming in
the school’s curricula, etc. The interest for the competitions in informatics, presented
by the number of participants at each competition level, is presented in Table 2. Pre-
sently, the competitions are organized for primary and secondary school pupils, and in-
clude: School Qualification Competition, Regional/Municipality Competition, National
Competition, National Olympiad, and (potentially) Selection Contests for International
Competitions.

B. Kostadinov et al.118

In order to support several competition types, enable a large number of students to
participate in the competitions, and introduce as many pupils as possible to the art of
programming, all of the competitions in informatics that are part of the national contest
cycle (accredited by the Ministry of Education), are organized using the MENDO com-
petition management system (Kostadinov et al., 2010).

The usage of a grading system has a lot of advantages with regards to the organiza-
tion of programming competitions, but it also has several disadvantages. Specifically,
MENDO is an interactive e-learning system that was developed following the goal of
integration of all previously used modules for organization of programming contests, in
a single compact environment: supporting the uploading of the competition tasks (orga-
nizers) and the solutions (contestants), evaluation and automatic grading of the uploaded
solutions, publishing results, communication, training, lectures intended for learning
programming languages and student improvement, collaboration, and feedback. In or-
der to provide automatic grading, students solve the tasks by writing a solution (usually
a console program) in one of several available programming languages, which is later
compiled, added to a grading queue, and eventually executed on several test cases by
sending various input data, whilst time, memory, output and security limits are being en-
forced on top of it. The system’s support for multiple contest types allows us to organize
different competitions each year (Jovanov et al., 2013).

Tasks are a powerful way to test the user’s knowledge, but they can also influence
users in a negative way – for example, a student can be stuck on a certain task due to in-– for example, a student can be stuck on a certain task due to in- for example, a student can be stuck on a certain task due to in-
experience (printing data in a wrong format, etc.). In order to help users, MENDO offers
several means of providing feedback (during training or competitions): solution-specific
analysis to match problems with a predefined set of mistakes, the ability to download or
examine test cases, and the option to view the author’s solution to a task. This helps us to
attract new participants without much involvement from their principals and tea-chers,
and to keep them interested in practicing without worrying that they can get stuck on
specific tasks. The number of sent and graded submissions by students, on the MENDO
system, increases each year, as can be seen on Fig. 1.

The usage of a grading system and competitions based on solving programming tasks
helps the Computer Society of Macedonia organize competitions in a similar environ-
ment to the one available at the International Olympiad in Informatics. In reality, as
long as the international competitions in informatics are organized as they are, in order
to select the best students for the international competitions, the national contests need
to accept similar grading and organizational practices. However, organizing competi-

Table 2
Number of students participating in the official competitions in informatics in Macedonia

Year
2009 2010 2011 2012 2013 2014

Regional competition 51 55 118 209 290 341
National competition 44 45 68 95 118 101
National Olympiad 22 23 19 21 21 21

Different Approaches for Making the Initial Selection of Talented Students... 119

tions which utilize an automated grading system is not always the perfect option, as
it can have several downsides: it requires resources (ie. a computer for each student,
servers, etc.), low insurance that students solve the tasks by themselves (for online com-
petitions), difficulties with making sure students have the same environment on their
computers as is used on the competition grading system and persuading students to
participate in a competition that requires having a specific prior knowledge and abilities,
to list the most common. The work presented in (Stankov et al., 2013) addresses some
of the above mentioned issues, and there we explore one alternative way of assessment
of the contestants’ solutions.

In the case of the national contest cycle organized by the Computer Society of Mace-
donia (and we believe similar problems exist at other countries as well), the biggest
issues we face are attracting young students, and providing an initial selection between
them. Currently, the problem of attracting students is confronted by visits to schools and
organization of promotional events there. Additionally, the promotion is done through
teachers which have been involved in earlier contest cycles. Most importantly, we try to
keep the pupils online community active during the year using the MENDO platform,
and we inform them about the upcoming events.

The first competition that students participate in is the School Contest, which is used
by schools to select the best pupils, which they can later send to the Regional Contest.
However, organizing a competition like this has the downside of requiring schools to
make internal preparations for organizing such a competition (so some schools simply
decide not to do it), as well as that each school has an assigned quota (number) of par-
ticipants they can send to the Regional Contest (which may not be an accurate estimate
of skills compared to other schools). Therefore, it is important for us to analyse other
possible contest types (presented in the next section), the advantages and disadvantages
of each of them, and to try and improve the current process that we use for selecting
students early on in the competition cycle.

Besides the official contests for primary and secondary school organized by the
Computer Society of Macedonia, there are other contests organized in our country. Some
of the more popular competitions, which are based on solving algorithmic tasks, are

Fig. 1. Submitted solutions on the MENDO grading system.

B. Kostadinov et al.120

the CodeFu competitions (multiple contests each year), and the ACM-ICPC national
competition. The CodeFu competitions are organized using specific rules (5 tasks, each
worth different number of points), and the ACM-ICPC national competition is organized
according to the ACM-ICPC rules. A large number of students who have programming
abilities (both on high school and university level) also participate at other competitions
– like Startup Weekend Skopje, where they work in teams with other students.

4. Approaches for Conducting an Initial Selection of Students

National competitions in informatics are important – both in terms of selecting the best
students that will later represent the country at international competitions in informa-
tics, as well as in terms of promoting informatics locally. Agreeing on a system for the
national competitions in informatics is one of the first things to consider when starting
a new competition cycle. In our experience, the most important thing that should be
considered is how the initial selection of students should be done (which is the first
real contact that participants have with the competitions). Different approaches have
their own advantages and disadvantages. For example, allowing more students in the
initial stages of the competitions poses a significant logistical problem – tasks, access to
computers, greater number of people involved in the organization of the competitions,
travel expenses, etc. These problems are more pronounced in diverse countries such
as Macedonia – having multiple ethnic cultures, with students who want to participate
using their own mother tongue. On the other hand, limiting the number of students (per
school, or per municipality) means that lower number of students will benefit from the
organization of the competitions.

In the following list, we present several options for conducting the initial selection
of students. Later, we discuss possible strategies for alleviating some of the potential is-
sues, and several approaches for making the competitions more fair and interesting.

Solving programming tasks (online) ● – this approach is currently used by a
significant number of countries in the IOI community. The biggest advantage
of having an online competition organized in such a way is that there is (practi-
cally) no limit to the number of participants that can take part in the competition.
Also, since one of the main goals of the organizations that are part of the IOI
community is to select the best students for international competitions, having
a competition in which students solve IOI-style programming problems is an
optimal way to select the students which are good in solving such tasks. One
example of this approach is USACO (USA Computing Olympiad), which invites
students to an on-site camp (where the IOI team is selected) based on the results
of web-based contests organized throughout the year, and the performance of
students on their on-line training pages (Kolstad and Piele, 2007). The two big-
gest disadvantages in organizing these types of competitions are that students
must have previous experience with solving these types of tasks, as well as the
difficulty involved in making sure that students are graded solely on their perfor-
mance (that they aren’t cheating).

Different Approaches for Making the Initial Selection of Talented Students... 121

Solving programming tasks (onsite) ● – this approach is currently used by many
countries. Similarly to the previous option, students solve programming tasks on
a computer, but this time – all of them are gathered at one (or multiple) onsite
locations – in contrast with solving the tasks online (from home or school). Due to
the serious logistical problems in organizing such competitions (organizing staff
at every location, a computer for every participant, etc.), only a limited number of
students can be accepted to participate at such competitions. On the other hand,
the results at such competitions can be taken as official (and a very good estimate
of the actual students’ abilities). If regulations for issuing certificates imply that
competitions must be organized onsite (and are imposed by governing institu-
tions in the country), this approach may be the best alternative to the online com-
petitions mentioned above. The problem of pre-selection of the students can be
delegated to the teachers in Informatics in every school. The Macedonian model
features a fixed number of places for competitors per school (between 2 and 5,
determined every year at the beginning of the cycle), and additional number of
places (determined by the number of high achieving students from that school in
the previous year’s cycle).
Solving tasks using pen and paper ● – in many countries that organize diffe-
rent types of contests, these are by far the competitions that attract the highest
number (and the most diverse group) of students – a good example is given in
(Clark and Clapper, 2014). Although these competitions are very different from
the IOI (thus, they cannot be used to select students for international competi-
tions), the biggest advantages they have is that there is no need for hardware
resources, but the competitions can include tasks and/or questions of diverse
difficulty and types (from solving multiple-choice questions to writing and
analysing programs). One of the biggest issues with the previous two options
(solving programming tasks on a computer) is that less-experienced students can
hardly solve any of the problems – because their solutions are checked using a
computer, they usually receive a very low number of points. On the other hand,
pen and paper rounds are usually checked by people (teachers), which end up
posing logistical problems of their own. We believe that organizing a pen and
paper competition is a very good choice if organizations would like to attract
more students to computer science.

If organizations have enough resources to support multiple competition types, we be-
lieve that it is a very good idea to organize both onsite programming competitions where
students work on IOI-style tasks, and contests (or events) that are specifically designed
to promote informatics. Besides organizing a custom-made pen and paper round, there
are other very good choices that are currently expanding to multiple countries. One such
example is the Bebras competition – an initiative that promotes Computational Thinking
among pupils. The contests can be organized during normal school hours - thus allowing
a very large percentage of students to take part.

On the other hand, there are multiple approaches that can be taken to mitigate the
issues with online and onsite programming contests. Clearly, with regards to making
sure that students are ranked solely based on their knowledge and abilities during

B. Kostadinov et al.122

online competitions, there are multiple software systems that can detect plagiarism,
analyze students using a web camera, or identify suspicious activities (multiple par-
ticipants using the same IP address, or one participant using multiple addresses), which
can later be investigated manually.

Without sufficient hardware and human resources, onsite competitions are very hard
to organize correctly. Even if the number of participants is limited, there are several
approaches that can be used to enable organizers to make fair decisions. For example,
hard limitations to the number of students that a school can enter into a competition,
can be mitigated using results from other online contests (like TopCoder or Codeforces)
– inviting students which have done good in other contests, or allowing schools to
register more participants based on the results of last-years competitions, for example
inviting students who have earned certificates at the national competitions, out of the
normal quota.

In Table 3, we summarize approaches organizations may take on to improve the pro-
cess of organizing a competition by which the initial selection of students is made.

Finally, it’s worth mentioning that feedback during competitions can be used as
mitigation to the problem of having users who score a low number of points due to lack
of experience. Feedback is also very useful for making sure that students who make
small mistakes do not end up with a too low number of points. However, having feed-However, having feed-
back requires additional resources. It needs better hardware, so the submissions can be

Table 3
Summary of the approaches organizations may take to improve the process of organizing a

competition by which an initial selection of students can be made

Approach Advantages Disadvantages

Organizing com-
petitions onsite

Fair results, can issue certificates. Requires additional hardware and human re-
sources.

Organizing pen
and paper rounds

Attracts a large number of partici-
pants, promotes informatics.

Less programming involved, can’t be solely
used to select best competitors for international
competitions.

Organizing paral-
lel competitions
(Bebras, etc)

Attracts a large number of partici-
pants, promotes informatics.

Can’t be used to select competitors for inter-
national competitions, usually requires hard-
ware and more involvement from teachers.

Tasks of varying
difficulty

Tasks are approachable by more stu-
dents.

More tasks need to be created and they must be
ordered correctly in the final set of tasks because
less experienced students have problems in
determining their difficulty. This can be hard to
do, as students can be good at different things.

Age categories,
Difficulty divi-
sions

More students can get involved; they
can solve tasks that are designed for
their level of knowledge and ability
(i.e. beginner groups)

Requires additional human resources, due to
the need for additional tasks and questions to be
prepared and (potentially) judged.

Feedback during
competitions

Results are more fair, as small mis-
takes don’t lead to drastic changes in
results (unless the student is not able
to debug – identify or fix mistakes).

It must be ensured that test cases and solutions
(i.e. the feedback) are correct and they adhere to
the task description.

Different Approaches for Making the Initial Selection of Talented Students... 123

graded in real time. Also, it requires significant preparations before the contests, which
demands a greater team of people who will work on tasks. Having an incorrect official
solution, test cases, or grading system during such competitions that allow feedback,
can lead into doubt of the fairness of the entire competition, due to the incorrect notifi-
cations given to students.

5. Conclusion

Competitions are a very important part of education. Given the rise of informatics and
computer science in the world, multiple organizations are using competitions to pro-
mote informatics to a diverse group of young students. Today, there are many national
and international competitions in informatics being organized each year – some of them
having different rules and regulations. Some of the most popular international competi-
tions in informatics are the International Olympiad in Informatics, ACM-ICPC, Google
Code Jam and Bebras.

In this paper we identified several criteria for reviewing different competitions in
informatics, depending on what participants need to work on, the duration of the compe-
tition and the type of grading done, the scoring system, what participants need to deliver,
how they will provide their output or product, and the type of feedback given during the
actual competition.

The most critical part of creating a national contest cycle is defining the parameters
to which the initial selection of students will comply. Popular mechanisms used as an in-
itial contact with students are online (or onsite) programming competitions and pen and
paper rounds. In the paper, we have explored different approaches with their advantages
and disadvantages, and we tried to give a summary that can be useful to organizations
that will organize contests in the future, or to organizations that are planning to introduce
changes in their current competition cycles.

Also, we have tackled the issue of increasing the number of participants in the
competitions. Using strategies like: making stronger connections with teachers, orga-orga-
nizing Bebras-style competitions, tracking (sustaining of an online community using
apps or social media) and appropriately awarding users who introduce other people to
the competitions in informatics, can be very helpful. Age divisions, feedback, valuing
results at other competitions and organizing parallel events to promote informatics are
just some of the things that organizations can use to further engage students to the art
of computer science.

Acknowledgement

The research presented in this paper is partly supported by the Faculty of Computer Sci-
ence and Engineering in Skopje.

B. Kostadinov et al.124

References

ACM International Collegiate Programming Contest (ACM-ICPC) (2015).
http://icpc.baylor.edu/

Bebras – International Contest on Informatics and Computer Fluency (2007–2015).
http://bebras.org

Clark, D., Clapper, M. (2014). The Australian Informatics Competition (AIC). Olympiads in Informatics, 8,
179–189.

CodeFu Coding Competition (2015). http://codefu.mk
Computer Society of Macedonia. http://zim.mk
Goodhew, G. (2009). Meeting the Needs of Gifted and Talented Students. London, Continuum International

Publishing Group.
Google Code Jam (2008–2015). https://code.google.com/codejam
Infomatrix (2015). http://www.infomatrix.ro/
International Olympiads in Informatics (IOI) (1989–2015). http://www.ioinformatics.org
Jovanov, M., Kostadinov, B., Stankov, E., Mihova, M., Gusev, M. (2013). State competitions in informatics

and the supporting online learning and contest management system with collaboration and personalization
features MENDO. Olympiads in Informatics, 7, 42–54.

Kolstad, R., Piele, D. (2007). USA computing olympiad (USACO). Olympiads in Informatics, 1, 105–111.
Kostadinov, B., Jovanov, M., Stankov, E. (2010). A new design of a system for contest management and grad-

ing in informatics competitions. In: ICT Innovations Conference 2010, Web Proceedings. 87–96.
Pohl, W. (2006). Computer science contests for secondary school students: approaches to classification. Infor-

matics in Education, 5(1), 125–132.
Stankov E., Jovanov M., Madevska Bogdanova A., Gusev M. (2013), A new model for semiautomatic student

source code assessment. CIT. Journal of Computing and Information Technology, 21(3), 185–194.
Verhoeff, T. (1997). The role of competitions in education. In: Future World: Educating for the 21st Century:

a conference and exhibition at IOI 1997.

B. Kostadinov is currently working as a software engineer. In
2014, he defended his MSc thesis in Intelligent information systems
at the Faculty of Computer Science and Engineering, University “Ss.
Cyril and Methodius”, in Skopje. He is one of the organizers of the
Macedonian national competitions in informatics. He has participated
at IOI as a contestant and also as a team leader for the Macedonian
team.

M. Jovanov is an assistant professor at the Faculty of Computer
Science and Engineering, University “Ss. Cyril and Methodius”, in
Skopje. As the President of the Computer Society of Macedonia, he
has actively participated in the organization and realization of the
Macedonian national competitions and Olympiads in informatics since
2001. He has been a team leader for the Macedonian team at International
Olympiads in Informatics since 2006. His research interests include
development of new algorithms, future web, and e-education, and he
has authored more than 40 research peer reviewed papers.

Different Approaches for Making the Initial Selection of Talented Students... 125

E. Stankov is a teaching and research assistant at the Faculty of Computer
Science and Engineering, University “Ss. Cyril and Methodius”, in
Skopje. He is a member of the Executive Board of the Computer Society
of Macedonia, and has actively participated in the organization and
realization of the Macedonian national competitions and Olympiads in
informatics since 2009. Currently he is a Ph.D. student at the Faculty of
Computer Science and Engineering. His research includes analysis of
program code correctness using different techniques, and its application
to e-learning.

M. Mihova is an associate professor at the Faculty of Computer Science
and Engineering, University “Ss. Cyril and Methodius”, in Skopje. She
is a member of the board of the Computer Society of Macedonia. Her
research interest is in the field of applied mathematics, more specifically
applied probability and statistics, with focus on mathematical models in
reliability, especially reliability of multi-state systems.

B. Risteska Stojkoska obtained her Ph.D. degree in 2013 with
the thesis “Data fusion in wireless sensor networks.” Currently she
works as an Assistant Professor at the Faculty of Computer Science and
Engineering (FCSE), University “Ss. Cyril and Methodius”, Skopje,
Macedonia. She is an author of more than 30 peer reviewed papers.
Her research interests include positioning in wireless sensor networks;
smart home; smart grid; wireless power transmission; and intelligent
and embedded systems. She serves as TCP member of more than 10
international conferences.

Olympiads in Informatics, 2015, Vol. 9, 127–137
DOI: http://dx.doi.org/10.15388/ioi.2015.10 127

An Update on the Female Presence at the IOI

Stefano MAGGIOLO
London, U.K.
e-mail: s.maggiolo@gmail.com

Abstract. The gender ratio in computer science is already very unbalanced; we gathered statistics
about the gender of contestants and leaders to show that the female participation at the IOI is even
lower. We look at existing programs trying to increase gender balance at a national level and offer
some suggestions, including (re)-introducing mixed gender requirements for complete teams.

Keywords: gender imbalance.

1. Introduction

There is no need for statistics to realize how much the IOI are unbalanced in terms of
gender distribution: it is far too easy to notice the gender skew just by walking around
during the IOI week, or by looking at the audience of the opening ceremony.

But we need statistics when we want to compare the IOI with the general trend in
computer science and in math-intensive fields, and if we want to track progress. For
example, the organization of the IMO is now recording the gender distribution of the
contestants for recent editions, and many past editions have also been back-filled (Inter-
national Mathematical Olympiad).

We asked the national delegations to provide this piece of historical data, and to share
the programs they have in place to improve gender balance. This article is mainly about
presenting the results of this survey (section 2), and comparing the IOI’s gender ratio
with those of other relevant institutions and companies (section 3).

At the international level there have not been many initiatives in this direction. The
main one happened in 1995, when the Netherlands, as the organizing country of the IOI,
allowed delegations of five contestants (instead of the usual four) when the team was
gender mixed. Despite having a reasonable success, with four times as many female
as the average edition, the program was not reproposed by other hosting countries, nor
picked up by the International Committee.

In section 4 we present arguments for the IOI to adopt more actions to reach female
contestants, in accordance with its goal of promoting computer science among young

S. Maggiolo128

people. Finally, in section 5, we offer suggestions for possible initiatives, both at the
national and international level.

2. Data

We prepared a questionnaire to collect historical data regarding female participation at
IOI, and we sent it to the contact person of each member country, as listed in the IOI’s
website. Given the low number of replies, the questionnaire was also extended to the two
mailing lists ioi-announce and ioi-discuss.

2.1. Format

The questionnaire was composed of three parts, asking:

To describe the national programs having effects on the female participation at 1.
the IOI.
To estimate the total and female participation at three stages of the team selection: 2.
the “base” (all the participants), the “national olympiad”, and the “training”.
To mark the gender of each member of the official team (contestants and leaders) 3.
participating in the past IOI editions.

Names and pictures (where present) of the team members were obtained from the IOI
statistics website (Kalinicenko). The same source was used to get all the participation
numbers we present in the rest of the section.

2.2. Participation

Overall, 36 delegations responded (44% of the 81 countries participating in IOI 2014).
We completed the gender assignment for the remaining 61 countries, for what we
could infer from several, not necessarily correct, sources: gender-defining names, pic-
tures in IOI-related websites, notes in the IOI newsletters, and generic web search.
These approaches still left about 5% to 10% of the contestants marked as “not sure”
for years up to 2001, and 0% to 5% since 2002, especially for countries that lack
gender-defining names.

Given the generally low female participation, false negatives could change signifi-
cantly the numerical results, even if a big change is not very likely. In any case, we
believe that our conclusions are not impacted, especially given that the number of con-
testants of the last few editions for which we lack the assignment is very low. We encour-
age the IOI to collect the gender of the participants and make it available on the statistics
website (Kalinicenko), to ease future investigations.

An Update on the Female Presence at the IOI 129

2.3. Results

Per year results. Table 1 contains the gender data aggregated by year, and Fig. 1 shows
the percentage1 of female participants, as contestants and leaders separately.

It is clear from the figure that there is not an obvious trend in the female participation.
For leaders, if any, there is a slightly decreasing trend, but the data for years before 2000
is far from complete. For contestants, the period between years 1998 and 2006 is quite
striking, having 2% or less female contestants for 9 consecutive years.

1 All percentages are over the number of participants for which we were able to determine gender; in other
words, we ignore participants with no gender assignment.

Table 1
Per-year participation at IOI, broke down by gender and role (leader or contestant). The col-
umns ``F’’ and ``M’’ indicate the number of female and male participants, respectively; the col-
umn ``?’’ the number of participants for which we were unable to assign a gender; the column
``F %’’ the percentage of female participants among those we were able to assign a gender to.

Year Leaders Contestants
Tot F M ? F % Tot F M ? F %

1989 14 0 6 8 0.0 37 1 21 15 4.5
1990 2 1 1 0 50.0 38 2 32 4 5.9
1991 17 2 15 0 11.8 68 1 63 4 1.6
1992 79 10 65 4 13.3 171 7 151 13 4.4
1993 29 2 27 0 6.9 107 5 94 8 5.1
1994 88 7 78 3 8.2 189 8 165 16 4.6
1995 30 2 28 0 6.7 210 19 172 19 9.9
1996 106 8 95 3 7.8 218 3 200 15 1.5
1997 95 10 81 4 11.0 221 7 199 15 3.4
1998 51 5 46 0 9.8 241 2 224 15 0.9
1999 54 6 48 0 11.1 172 2 158 12 1.3
2000 137 18 116 3 13.4 268 4 251 13 1.6
2001 75 8 67 0 10.7 261 5 241 15 2.0
2002 55 5 50 0 9.1 272 4 256 12 1.5
2003 50 5 45 0 10.0 261 3 247 11 1.2
2004 148 12 134 2 8.2 298 4 286 8 1.4
2005 138 10 127 1 7.3 281 5 274 2 1.8
2006 142 10 130 2 7.1 289 5 273 11 1.8
2007 140 10 128 2 7.2 280 11 269 0 3.9
2008 143 14 126 3 10.0 284 9 267 8 3.3
2009 156 18 138 0 11.5 302 14 288 0 4.6
2010 156 11 144 1 7.1 306 10 291 5 3.3
2011 150 12 138 0 8.0 303 4 299 0 1.3
2012 162 11 150 1 6.8 316 3 313 0 0.9
2013 150 12 138 0 8.0 299 6 293 0 2.0
2014 161 10 150 1 6.3 315 10 305 0 3.2

Overall 2528 219 2271 38 8.8 6007 154 5632 221 2.6

S. Maggiolo130

On the other hand, it is very visible the peak in 1995 for female contestants, caused
by the rule allowing delegations with 5 contestants if the team was gender mixed. It is
interesting to notice that this rule was in reaction to the low female participation in the
previous years, but the situation before 1995 was much better than after (the average
female participation was 4.4% in 1989–1994 and 2.2% in 1996–2014).

Per country results. Fig. 2 is a histogram of the number of countries by percentage
of female contestants2, after filtering for countries with at least 40 contestants. Among
the 69 remaining countries, 22 have never had a female contestant, and only 6 coun-
tries have had more than 5% of female contestants. The country clearly differentiating,
bringing to the IOI three times as many female contestants as the second ranked, are the
Netherlands, those delegations are composed of females for the 22%.

Performances. One of the reason that the experiment in 1995 was not repeated was
that countries had difficulties in recruiting female contestants able to compete with their

2 Here we ignore the fact that contestants and leaders can participate in multiple years, and we treat these ca-Here we ignore the fact that contestants and leaders can participate in multiple years, and we treat these ca-
ses as if they were different participants. Therefore, to simplify the language, we may write “a contestant”
instead of “a participation of a contestant in a certain year”.

Fig. 1. Percentages of female participation by year, for contestants (solid line) and leaders
(dashed line).

Table 2
Percentages of contestants obtaining a medal, by gender

Gender No medal (%) Bronze (%) Silver (%) Gold (%)

Female 77.9 9.1 11.0 1.9
Male 49.2 25.1 17.0 8.6

An Update on the Female Presence at the IOI 131

male counterparts. We cannot offer statistics on the distribution of scores, because for
most editions the ranking is available only for contestants with a medal. Table 2 instead
shows the percentage of female and male contestants that obtained a medal. Indeed, we
can see that the percentages of female contestants not receiving an award is much higher
than for males. An interesting phenomenon, for which we do not have an explanation
apart from the small sample, is that female contestants received more silver medals than
bronze medals.

At the national level. We asked in the questionnaire about the female presence at three
stages of the national selection in the last year: the “base” (at the first selection), the
“national olympiad” (at the main national competition), and the “training” (when pupils
receive lectures to improve their chances at the IOI).

Due to the wildly varying ways in which national selections works, it is difficult to
unify the 30 responses received to this question in a single outlook. Nonetheless, some
observations can still be made.

Female participation declines as the selection progresses. ● This is quite expected,
as the competition’s base is in high school, where the gender ratio is more homo-
geneous than at universities and in IT companies. The last selection stage, train-
ing, shows an average female participation only slightly higher than at the IOI. At
the first stage instead, many countries have double-digit female participation, and
some reach parity.
Female participation at the training level is highly correlated with programs try- ●
ing to increase it. We also asked delegations to describe their actions to equalize
the gender ratio, and the presence of such programs was correlated with a double-
digit presence of females at the training level. Again, this is expected, but it is nice
to see that these programs have results.

Fig. 2. Histogram of number of countries by percentages of female contestants. Only countries
with at least 40 contestants are shown, which reduces the total number of countries to 69.

S. Maggiolo132

Programs to improve the gender ratio. Ten countries described programs geared to-
wards, or having the effect of improving the ratio of female contestants. The following
are the main ideas in these programs.

 1. Extra training and competitions. Three countries have or had training camps and
competitions aimed specifically at attracting females. This can be very helpful
for promising students that might not have the occasion to try programming and
computer science at all.
 2. Increase of the selection pool. Two countries collaborated with math competi-
tions for high school students to attract more talent. The gender ratio in these
competitions is usually more balanced, and many of these students (regardless of
gender) have potential and discover being interested in computer science despite
not having any background in programming.
 3. Use of non-conventional task types. The selection process can emphasize expe-
rience (that male participants are more likely to have). This can be avoided by
using different type of tasks, for example mathematical, geometric, or graphical,
especially at the initial levels.

3. Comparison

We showed that female participation at the IOI is low in absolute number: on average,
2.6% of the contestants and 8.8% of the leaders are female. Still, this could be common
in the field and not specific to the IOI. The situation of women in IT and computer science,
both in education and in the workforce, is indeed far from perfect, but the reality is that
it is difficult to find environments as unbalanced as the IOI.

Education. In 1980, Bachelor Degrees3 in Computer Science awarded to women were
about 35% of the total (Camp, 2001). This number steadily declined in the following
years; in 2011, they were about 12% of the total (The Computing Research Associa-
tion). Masters Degrees and Ph.D. in Computer Science have higher percentages: again
in 2011, respectively 25% and 18% were awarded to women (same source). If we in-
clude Information Sciences, percentages increase to 18% for Bachelor Degrees, 27% for
Master Degrees, and 19% for Ph.D. (National Center for Education Statistics, 2014).
For a comparison, Bachelor Degrees in Mathematics awarded to women have been quite
stable in the past 30 years oscillating between 40% and 47%.

One might object that the IOI are an elite competition, and that might explain the
difference with the percentages of Degrees awarded, but similar numbers hold for elite
universities, like Stanford (Smythe, 2012).

The female presence at the International Mathematical Olympiad is steadily in-
creasing since the 1970s, and is now just below 10% (International Mathematical
Olympiad).

3 For availability reasons, the numbers mentioned in this section will refer to the United States. Without
implying that the United States are representative for the whole world, we can agree they are a leading and
influential country for both computer science education and IT companies.

An Update on the Female Presence at the IOI 133

Workforce. In academia, in 2012, women comprised 25% of all computer science assis-
tant professors, 18% of associate professors, and 13% of full professors, and these num-
bers are increasing (National Center for Women and Information Technology, 2014).

Even looking at the recipients of the most prestigious awards, the female presence is
higher than at the IOI: as of 2014, 3 out of 62 winners of the Turing Award were women,
for a percentage of 4.8%.

In the private sector, percentages are slightly higher, at around 30% for “computer
and mathematics” professions. Some top IT companies (Double Union) recently divulged
diversity data for their tech employees: the figures are lower, ranging between 15% and
20%, but again much higher than the IOI’s.

4. Why Should We Care?

Female participation at the IOI is much lower than in post-secondary education and in
the workforce, even in top institutions and companies. This comparison should already
give a warning sign, but there are also other, more significant, reasons to improve gender
balance.

Promoting computer science. One of the goal of the IOI is to promote computer science
among young people. Since the first editions, the number of students involved in the IOI
increased exceptionally, thanks to many countries joining the competition, and to coun-
tries already participating that managed to reach more and more students.

We would claim that many countries are now hitting a wall, already reaching most
students that would like to participate in the IOI. The obvious next step is to encourage
students that do not know that they would like to participate; and given its current low
participation rate, the group that has the most headroom for growth is that of female
students.

Increasing the performance of the team. A common argument is that regardless of the
effort, eventually one will need to face that girls show less interest in computer science
and programming than boys.

This might be true, but not a reason not to do anything about it. For a start, the
situation has not always been like this, it is enough to look at the numbers of Bachelor
Degrees awarded to women in the 1980s, or at the fact that many women have been
pioneers in the field of computer science (The Ada project).

Also, the correlation between national level programs and female presence at the
training camps shows that it is possible to attract female contestants with the necessary
skills to be part of the national team at the IOI. Indeed, one good selfish reason for es-
tablishing these programs is that increasing the pool of candidates can also increase the
average level of the team, and therefore of the IOI.

Numerous researches show that gender mixed teams work better (Simard, 2007).
This is admittedly a stretch for the IOI, as the competition is individual; nonetheless,
training camps are social events and, in our experience, the learning approach is very

S. Maggiolo134

collaborative, with a lot of horizontal knowledge distribution. Incidentally, increasing
horizontal collaboration is among the steps taken by universities that have been suc-
cessful in recruiting more women, like for example by implementing pair programming
(National Center for Women and Information Technology, 2014).

Fairness. It is established that most people have implicit stereotypes that influence their
decisions even if these prejudgments do not arise at a conscious level. For women in
computing, a research showed that 70% to 80% of the subjects, regardless of gender,
have implicit stereotypes associating science and tech with males more than females
(Nelson, 2014).

Having unconscious biases is difficult to avoid, therefore it is important to be aware
of having them and to limit their influence on our conscious decisions.

Another factor limiting fairness is stereotype threat, that is, situations that make peo-
ple feel to be at risk of confirming the negative stereotypes about their group. A very rel-
evant example is when a group is a strong minority and does not reach a critical mass.

Experiments show that performance is lower when stereotype threat is present, and
higher when it is counterbalanced by a credible narrative of the path to success, by re-
minding of positive stereotypes, and the possibility of self-improvement, by highlighting
positive examples, and role models (The Ada project).

5. What Can We Do?

5.1. Principles

Based on the previous section, we can define some guiding principles for actions that
can have a positive impact on gender balance. From these we will derive the suggestions
proposed for the IOI organization at national and international levels.

Fight bias (unconscious and not). ● The IOI are driven by automatic scoring, that is
not biased by definition. At the early stages though, there are many occasions in
which bias might play a role: contests with subjective judging, decisions on which
students to focus on, or which students have the most potential, etc.
Nurture potential not already expressed. ● It is true that female students, like other
socioeconomic groups, are in general less involved in programming courses, and
are less likely to try programming on their own. Nonetheless, with the adequate
motivation and training, hidden potential can develop, creating contestants able to
compete for a place in the team.
Provide a welcoming environment for everybody. ● Especially at the training level,
teachers should take an active role in creating a welcoming environment. This
does not only mean being inclusive, but also opposing stereotypes, providing pos-
itive examples, and creating a critical mass to fight isolation.

An Update on the Female Presence at the IOI 135

5.2. National Level

Here we suggest some concrete steps that can be applied to IOI selection and training at
a national level.

Take an unconscious bias test. ● It is important to be aware of unconscious biases
one might have, and take the necessary countermeasures. An implicit bias test
is a good starting point; for example Project Implicit (Greenwald et al.) helps
highlighting conscious or unconscious biases on, for example, gender and science
inclination.
Attract talented students without programming knowledge. ● Unconventional pro-
gramming tasks, or mathheavy problems, might help identifying talented students
that did not have the opportunity or motivation to practice programming.
Collaborate with math competitions and other similar activities. ● Many students
passionate and talented in mathematics simply have never had the opportunity or
the motivation, to start practicing programming and studying computer science.
This is true regardless of the gender, but math competitions tend to have a more
balanced gender ratio.
Offer entry level training for younger students. ● This goes hand in hand with the
previous points: when the goal is to attract students without an explicit knowledge
in programming, it is a necessity to give them the opportunity to learn.
Showcase gender diversity. ● If not already present, invite female teachers to train-
ing camps, and create opportunities to talk about important women in the history
of computer science.

5.3. International Level

The most significant initiative the IOI has taken was the temporary rule allowing delega-
tions of five contestants if gender mixed4. A rule in this spirit (either by forcing gender
mixed teams, or by “gifting” them with one additional contestant) was promoted by the
delegation of the Netherlands since 1992; despite having support from most members
of the International Committee, a consensus was not reached, and the proposal did not
pass.

In 1995 the Netherlands hosted IOI and obtained funding for a fifth contestant, there-
fore the rule was implemented “for free” in that year. The participation to this program
was positive: among the 44 delegations with at least 4 contestants, 20 (45%) had a team
of 5.

On the other hand, some delegations were concerned by the difficulty in recruiting
competitive female contestants. Moreover, there were loud concerns about the conse-
quences of such a rule. In particular, that it could lead to the perception that females are

4 All the information regarding this program are extracted from reports and regulations available at the IOI
website, and from personal communications with Ries Kock.

S. Maggiolo136

less qualified than males, and to more segregation at a national level (like having sepa-
rate selections for males and females). Because of this, and most probably also due to a
lack of funding, the rule was not replicated in any of the following editions, remaining a
single episode in the history of the IOI.

We believe that it is time to reintroduce the requirement for complete teams to be
gender mixed.

On a practical level, the IOI in 1995 was very young, and it is safe to assume that
the pool of students reached by the national selections was much smaller, and that high
schools were much less likely to provide programming (or even computer literacy)
classes. This, together with the fact that the rule was announced just one year earlier,
probably made difficult for national delegations to find competitive female students.

We believe that now, with larger bases for the national selections, established train-
ing programs, and more widespread opportunities to learn to program, it would not be as
hard as it was in 1995 to find suitable female students, especially if given two or three
years to prepare.

The fundamental idea behind this proposal is not that we want the IOI to have a
stronger female presence, and therefore we impose it with artificial rules. On the con-
trary, we want a higher, self-sustained, female presence because it is fair, and it is the
easiest way to expand the reach of the IOI. But we feel that the process towards this goal
requires a bootstrapping phase, in which countries needs to be encouraged to devise
programs like those outlined before. Our hope is that this rule will lose its reason to
exist in just a few years.

6. Conclusions

With the help of the delegations that answered our questionnaire, we showed that the
female participation at the IOI is very low, even comparing it with relevant academic in-
stitutions and workplaces; but we also found evidence that programs to improve female
participation actually make a difference in the number of female contestants reaching the
training phase of the national selections.

We argued that increasing the participation of female students is the most natural way
of continuing to fulfill the goal of the IOI of promote the discipline of informatics among
young people, and eventually to improve the performances of the teams by increasing
the pool of candidates. We also presented evidences that the performances of female
contestants can be improved through training programs, and by removing stereotype
threat (for example, creating a critical mass).

Finally, we suggested to reintroduce the requirement of mixed gender for complete
teams, as a way of encouraging countries to put in place programs promoting gender
balance, arguing that most countries have now a more mature selection process, able to
cope with this requirement, especially if given enough time to prepare.

An Update on the Female Presence at the IOI 137

Acknowledgments.

We would like to thank Ries Kock for kindly providing some background on the 1995
edition hosted by the Netherlands; Nandana Dutt and Selen Basol for useful discussions
and for suggesting bibliography sources; Flavia Poma for reading the draft and suggest-
ing several improvements; and all the people answering to the questionnaire, many of
whom also communicated their support to this initiative.

References

Camp, T. (2001). Women in computer science: reversing the trend. Colorado School of Mines.
http://www-2.cs.cmu.edu/~women/resources/aroundTheWeb/hostedPapers/
Syllabus-Camp.pdf

Double Union . Open diversity data. http://opendiversitydata.org/
Greenwald, T., Banaji, M. and Nosek, B. Project implicit.

https://implicit.harvard.edu/implicit/takeatest.html
International Mathematical Olympiad. Timeline.

https://www.imo-official.org/organizers.asp
Kalinicenko, E. International Olympiad in Informatics - Statistics.

http://stats.ioinformatics.org
National Center for Education Statistics. (2014). Digest of Education Statistics.

http://nces.ed.gov/programs/digest/2014menu_tables.asp
National Center for Women and Information Technology. (2014). NCWIT scorecard.

http://www.ncwit.org/sites/default/files/resources/ncwitscorecard_081220
14_lowres.pdf

Nelson, B. (2014). The data on diversity. Communications of the ACM.
http://cacm.acm.org/magazines/2014/11/179827-the-data-on-diversity/
fulltext#R5

Simard, C. (2007).Barriers to the advancement of technical women. Anita Borg Institute for Women and
Technology.

Smythe, S. (2012). Stanford CS Department strives for gender parity. The Stanford Daily.
http://www.stanforddaily.com/2012/10/19/stanford-cs-department-
strives-for-gender-parity/

The Ada project. Pioneering women in computing technology.
http://www.women.cs.cmu.edu/ada/Resources/Women/

The Computing Research Association. Computing degree and enrollment trends.
http://www.cra.org/uploads/documents/resources/taulbee/CS_Degree_and_
Enrollment_Trends_2010-11.pdf

S. Maggiolo is a software engineer at Google and holds a Ph.D. in Ge-
ometry from SISSA/ISAS, Trieste. He participated in IOI 2002, winning
a bronze medal and in IOI 2003. From 2006 to 2013 he collaborated
with the training and selection process for the Italian team at IOI, and
has been Observer in IOI 2009, Deputy Leader of the Italian team in IOI
2011 and a HSC member for IOI 2012 and IOI 2014.

Olympiads in Informatics, 2015, Vol. 9, 139–145
DOI: http://dx.doi.org/10.15388/ioi.2015.11 139

The Estimation of Winners’ Number of the
Olympiads’ Final Stage

Aleksandr MAIATIN, Pavel MAVRIN, Vladimir PARFENOV,
Oksana PAVLOVA, Dmitrii ZUBOK
ITMO University, Saint-Petersburg, Russia
e-mails: mayatin@mail.ifmo.ru; pavel.mavrin@gmail.com; parfenov@mail.ifmo.ru;
pavlova.ifmo@gmail.com; zubok@mail.ifmo.ru.

Abstract. It is a complex and actual task to determine promising candidates for Olympiad’s
final stage from the participants’ number of remote qualifying stage on the basis of their points
scored during the qualifying stage. In this paper estimations of winners and awardees’ number
of the Olympiad final stage are made depending on the value of the passing score of the Olym-
piad’s final stage. As part of the mathematical approach of mass Olympiad participants’ results
evaluation, data on indices of problems’ solvability and participants’ distribution in the qualify-
ing stage according to the type of solved problems and scored points are used. The proposed
approach can be applied by methodical committee and the jury of massive Olympiad in the
process of the contest problems’ development and determination of the passing score into the
Olympiads’ final stage.

Keywords: mathematical statistics, Olympiads, the criteria for results’ evaluation.

1. Introduction.

The popular form of organizing Olympiads in Informatics and programming around the
world consists of two stages – remote qualifying stage and the final intramural. The fea-
tures of the remote stage are a great number of participants and a similar set of problems.
The originality and novelty of problems are mostly inherent to the final stage. After the
qualifying stage the Organizing Committee of the Olympiad decides whom to admit to
the final. This decision is often based on a simple ranking of participants’ scores and me-
thodically founded principle of identifying promising or prospective participants. One
can consider the time for solution of the problem or the number of attempts to solve the
problem in the case of Olympiads in programming.

Methodists have a few problems. Firstly they have to decide what types of problems
to devise, the number of problems and how to determine the estimation of their difficulty
using points. The crucial rule here is the tradition of Olympiads. The second problem
– how to determine the number of points рth for qualifying participants into the final

A. Maiatin et al.140

stage. And the third one – how to determine the winners of the finals. The last two issues
are resolved with a help of expert estimation.

Let’s proceed from the fact that the aim of the Olympiad or one of the stages of the
competition is to identify as many talented teenagers as possible. But the more the final-
ists are, the more resources are involved into the Olympiad conducting process. It is nec-
essary to find a compromise. So we must be able to build more or less reliable forecast
of the winners’ number depending on the participants’ number.

One can apply optimization techniques or methods of game theory, but we use the
method of extrapolation and linear regression.

One of the important steps that must be carried out is to determine the estimation
of the complexity of the problem using points. One can consider a few approaches to
the determination of the numerical weights of typical problems of qualifying stage:
expert estimation (Option “A”), which is a priori and estimation by solvability index
of respective problems of the qualifying stage (Option “B”), which is a posteriori
estimation.

Nowadays it is an actual issue to determine the passing score “p” in the final stage
of the Olympiad, as among those who are not admitted to the final stage could be the
ones who would be able to cope with the proposed problems and could become win-
ners and awardees. To solve this problem it is required to estimate the probability of
problems solving by the participants of the final stage, and, accordingly, it is required
to estimate the number of winners and awardees of the final stage depending on their
results in the qualifying stage and the expected set and level of problems complexity
of the final stage.

2. Method of Estimating the Passing Score

First of all each problem of the final stage should match the group of the problems of
qualifying stage according to theme and difficulty level. For these groups of problems
of qualifying stage one can calculate average index of solvability according to the com-
plete data. Then let us make a table of correspondence between the indices solvability of
problems of the final stage and the average solvability indices corresponding groups of
qualifying stage problems.

To estimate the number of winners and awardees of the final stage of the Olympiads
depending on the passing score at p < рth , method of extrapolation is used (Krug et al.,
1977).

Let K be the maximum number of qualifying stage points, N is the maximum num-
ber of the final stage points. Let’s consider the random variables Х and Y (n), 0 ≤ n ≤ N.
The value хk of random variable X is the number of participants with k points after
the qualifying stage and n points in the final stage. Thus, the value of (yk

(n)
 , xk) of two-

dimensional random variable (Y (n), Х) is considered. To estimate the number of winners
and awardees of the final stage, depending on the passing score when р < рth let us con-
sider a linear regression of the random variable Y (n) to Х (Krug et al., 1977; Elfving,
1952). Let us use a linear regression equation in the form (Cramer, 1975)

The Estimation of Winners’ Number of the Olympiads’ Final Stage 141

(), nХ Y
 

 ()

()

()
() ρ σ

σ

n
nn Y

nk k ХY
Х

ХYy m х m  

()ρ n
ХY

ρХY

,Х Y 

 ρ σ
σ
ХY Y

Y Х
Х

y m х m   ,

(1)

where mX, mY – sample average values of random variables Х и Y,

(), nХ Y
 

 ()

()

()
() ρ σ

σ

n
nn Y

nk k ХY
Х

ХYy m х m  

()ρ n
ХY

,Х Y 

 ()

()

()
() ρ σ

σ

n
nn Y

nk k ХY
Х

ХYy m х m  

 –
sample standard deviations of random variables Х and Y,

(), nХ Y
 

 ()

()

()
() ρ σ

σ

n
nn Y

nk k ХY
Х

ХYy m х m  

()ρ n
ХY

ρХY

,Х Y 

 ()

()

()
() ρ σ

σ

n
nn Y

nk k ХY
Х

ХYy m х m  

 – sample correlation
coefficient of the random variables X and Y. Equation (1) gives an estimate of the val-
ues of a random variable, determined best by the theoretical regression equation in terms
of the principle of the least square (Cramer, 1975; Ayvazian et al., 1983).

Like the formula (1), the expressions for the partial empirical equations of linear
regression for estimation of the values Y (n) have the form:

 ()

()

()
() ρ σ

σ

n
nХYn Y

nk k ХY
Х

y m х m   ,

(2)

where mX, mY(n) – sample average values of random variables Х and Y, (), nХ Y
 

 ()

()

()
() ρ σ

σ

n
nn Y

nk k ХY
Х

ХYy m х m  

()ρ n
ХY (), nХ Y

 

 ()

()

()
() ρ σ

σ

n
nn Y

nk k ХY
Х

ХYy m х m  

 –
sample standard deviations of random variables Х and Y, where ()ρ n

ХY

 ()

()

()
() ρ σ

σ

n
nХYn Y

nk k ХY
Х

y m х m  

 – sample partial
correlation coefficient of the random variables X and Y (n) with fixed n.

Further, based on the calculated value of the random variables Y (n), let us construct
a family {Ψр} of distributions of the participants’ number according to scored points in
the final stage, depending on the passing score p. For each of the distributions Ψр ran-
dom variable Y (n) values are calculated λр, μр. Here p is the passing score into the fi-
nal stage, λр is the number of stage winners, μр is the number of stage winners and
awardees.

3. Applying of Passing Score Estimation for Determining the Number of the
 Olympiads’ Final Stage Winners

Every year in the series of Olympiads in Informatics, held by ITMO University, about
4,000 students from 11th form of all federal regions of the Russian Federation participate
in them. Olympiads are divided into two stages: the qualifying (remote) and final (intra-
mural). Qualifying stage is divided into three rounds and lasts about four months. During
the qualifying stage the participants are offered problems of all relevant school curricu-
lum of computer science. To take part in the final stage those participants are admitted
who received the passing score, which is established by Olympiad’s jury.

Methodical Olympiad committee develop problems for qualifying and final stages,
according to the criteria of determining the winners and awardees approved by the or-
ganizing committee. Thus, in accordance with the criteria, winner is the participant who
decides both creative problems of programming technologies with proper solutions for
at least 9 out of 10 problems on general issues of computer science & ICT at reproduc-
tion and usage levels. Awardee is the participant who solves 9 out of 10 problems on
general issues of computer science & ICT, and neither managed nor solved creative
problems. Thus, it can be stated that Olympiad’s awardee knows perfectly well Com-

A. Maiatin et al.142

puter Science & ICT at the levels of reproduction and use, but has not yet reached the
level of creative mastery of the subject. Methodical committee and Olympiad’s jury
determine points for the final stage’ problems, taking into account the above mentioned
criteria. In determining the winners and awardees of the Olympiad’s stage it is necessary
to consider the following additional requirements: the winners’ and awardees’ number
should not exceed 45% and the winners’ number should not exceed 10% of the partici-
pants’ number of that stage.

In a series of 2009–2010 academic year Olympiads, participants admitted to the final
stage were those who scored 23 or more points out of 90 possible. Thus, the passing
score is рth = 23. The participants’ number of the final stage is 931 students of 11th form.
Virtually, less than a third of participants were admitted to participate in the final stage.
Fig. 1 shows the distribution of participants according to scored points following the
results of the qualifying stage among 11th form students in the series of 2009–2010 aca-
demic year Olympiads in Informatics.

Each problem of the final stage corresponds to a set of qualifying stage problems
according to the theme and level of complexity. The average solvability index is esti-
mated for this set of qualifying stage problems. The solvability indices of the final stage
problems are compared with the average solvability indices of the corresponding sets of
qualifying stage problems. The results are shown in Table 1.

The analysis shows that there is no direct correlation between the solvability index
of the qualifying stage problems and solvability index of the corresponding types of the
final stage problems. To estimate the number of final stage winners and prize-winners,
depending on the value of the passing score when p < 23, it is necessary to determine
the principles of assigning points for the final stage problems. Several approaches are

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 1618 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 84 87

Количество баллов

Ко
ли

че
ст

во
уч

ас
тн

ик
ов

Количество балловThe number of scored points

Th
e

nu
m

be
r o

f p
ar

tic
ip

an
ts

Fig. 1. Histogram of qualifying stage participants’ distribution according to scored points.

Table 1
Problems’ solvability indices according to Olympiad’s stages

Problem № 1 2 3 4 5 6 7 8 9 10 11 12

Final stage 45,86 43,39 35,23 44,68 44,36 68,85 29,43 41,03 40,28 53,38 26,42 27,71
Qualifying stage 29,43 39,42 33,30 33,51 8,92 40,49 29,32 34,59 32,01 46,62 15,79 17,08

The Estimation of Winners’ Number of the Olympiads’ Final Stage 143

considered: expert evaluation (option “A”), evaluation according to solvability index of
corresponding problems of the qualifying stage (Option “B”).

Using the data of Table 2 and the actual results of the participants, participants’
distribution of the final stage is made according to scored points for options “A” and
“B” points’ distribution according to problems (Fig. 2 and Fig. 3).

Besides, the error estimation of the options «A» and «B» in terms of principle rank-
ing participants according to scored points, rather than types of solved problems. The

Table 2
Scores distribution according to problems

Problem № 1 2 3 4 5 6 7 8 9 10 11 12

Number of points

Option “А” 1 2 1 1 2 2 2 1 2 1 3 3
Option “В” 5 3 4 4 10 2 5 4 4 1 8 8
Option “С” 5 6 7 6 7 1 9 6 7 4 10 10

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 1618 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 84 87

Количество баллов

Ко
ли

че
ст

во
уч

ас
тн

ик
ов

Количество балловThe number of scored points

Th
e

nu
m

be
r o

f p
ar

tic
ip

an
ts

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ко
ли

че
ст

во
 уч

ас
тн

ик
ов

Количество балловThe number of scored points

Th
e

nu
m

be
r o

f p
ar

tic
ip

an
ts

Fig. 2. Histogram of the final stage participants’ distribution according to the number of scored points. The
participants’ number – 931. Option “A” of distribution points according to the problems (see: Table 2).

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 1618 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 84 87

Количество баллов

Ко
ли

че
ст

во
уч

ас
тн

ик
ов

Количество балловThe number of scored points

Th
e

nu
m

be
r o

f p
ar

tic
ip

an
ts

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58

Ко
ли

че
ст

во
 у

ча
ст

ни
ко

в

Количество балловThe number of scored points

Th
e

nu
m

be
r o

f p
ar

tic
ip

an
ts

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Ко
ли

че
ст

во
 уч

ас
тн

ик
ов

Количество балловThe number of scored points

Th
e

nu
m

be
r o

f p
ar

tic
ip

an
ts

Fig. 3. Histogram of the final stage participants’ distribution according to the number of scored points. The
participants’ number – 931. Option “B” of distribution points according to the problems (see: Table 2).

A. Maiatin et al.144

error/ inaccuracy occurs when the winner or the awardee is determined by the number of
scored points, rather than composition of solved problems and means that the participant
actually decided the set of problems meeting the winner criteria, but because of scored
points attributed to the awardees, and vice versa.

“B” is preferred option of the two options «A» and «B», because it gives a smaller
amount of error in comparison with the option «A» (see: Table 3).

The calculations of the values of the random variable allow with regard for the results
of the qualifying stage – problems’ solvability index and participants’ distribution accord-
ing to scored points – to estimate when p < 23 the number of the final stage winners

Data in Fig. 4 show the steady increase in the number of the final stage winners with
a decrease in the values of a passing score.

The histogram in Fig. 5 shows the calculated values of the final stage winners’ per-
centage depending on the passing score value obtained with the help of the distribution of

Table 3
The error/inaccuracy of the method of identifying winners and awardees’ groups composition

Error: winner-awardee Overall error

Option “А” 89 participants 144 participants
Option “В” 35 participants 52 participants

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 1618 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 84 87

Количество баллов

Ко
ли

че
ст

во
уч

ас
тн

ик
ов

Количество балловThe number of scored points

Th
e

nu
m

be
r o

f p
ar

tic
ip

an
ts

0

20

40

60

80

100

120

5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79

Ко
ли

че
ст

во
 п

об
ед

ит
ел

ей

эт
ап

а

Проходной балл

Th
e

nu
m

be
r o

f s
ta

ge
 w

in
ne

rs

The passing score

Fig. 4. The calculated number of winners depending on the value of the passing score.

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 1618 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 84 87

Количество баллов

Ко
ли

че
ст

во
уч

ас
тн

ик
ов

Количество балловThe number of scored points

Th
e

nu
m

be
r o

f p
ar

tic
ip

an
ts

0

5

10

15

20

25

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

П
ро

це
нт

 п
об

ед
ит

ел
ей

Проходной баллThe passing score

Th
e

pe
rc

en
ta

ge
 o

f w
in

ne
rs

Fig. 5. Percentage of stage winners.

The Estimation of Winners’ Number of the Olympiads’ Final Stage 145

qualifying round participants according to points (see: Fig. 1), problems ‘solvability indi-
ces (see: Table 1) and option “B” points distribution according to problems (see: Table 3).

4. Conclusion

In this paper a method of estimating the amount of the final stage winners of the Olym-
piad is proposed, depending on the value of passing score p in the final stage of the
Olympiad.

It is obvious that there is a correlation between distribution of final stage participants
according to scored points and distribution of qualifying stage participants according to
scored points and an additional parameter – passing score in the final stage.

The results can be used to create methods for the development and estimation of
problems’ complexity of mass competition and Olympiad’s finals.

References

Ayvazian S.A., Enyukov I.S., Meshalkin L.D. (1983). Applied Statistics. Fundamentals of Modeling and Pri-
mary Data Processing. Moscow, Finance and Statistics.

Bespalko V.P. (2002). Education and Training with Computers (Pedagogy of the Third Millennium). Moscow,
Publishing House of the Moscow Psychological and Social Institute.

Cramer G. (1975). Mathematical Methods of Statistics. Moscow, Mir.
Elfving G. (1952). Optimum allocation in linear regression theory. Ann. Math. Statist, 23, 255–262.

http://projecteuclid.org/euclid.aoms/1177729442
Krug G.K., Sosulin Y.A., Fatuev V.A. (1977). The Planning of Experiments in Problems Identification and

Extrapolation. Moscow, Science.

A. Maiatin holds a Ph.D. in Pedagogical Sciences. He has been a
deputy chairman of the methodical committee of open Olympiad in
Informatics since 2008. His research interests other than education in
computer science include an IT-infrastructure management based on
technologies.

A. Maiatin et al.146

P. Mavrin is ACM ICPC World Champion in 2004, Silver medalist
in Informatics of IOI in 2002, a member of the Technical Committee
of IOI and ACM ICPC, an academic of Computer Technology chair
of ITMO University where he teaches gifted school and university
students.

V. Parfenov is a professor and dean of the faculty of information tech-
nologies and software engineering of ITMO University, a member of
international organizing committee of the world programming champi-
onship, director of semifinal competitions in North-Eastern European
region. He is one of the main organizers and creators of national and
international Olympiads in computer science and programming for
students and pupils in Russia. He has contributed a lot to the formation
of educational system of search and training gifted in mathematics,
physics, computer science and programming students since the year
2000.

O. Pavlova is an academic of Computer Technology chair of ITMO
University. She has been teaching students having talent for mathemat-
ics, physics, computer science and programming since the year 2000.
Nowadays her main research interest is the development of adoles-
cents by investing in their education, in particular, by participating in
Olympiads which considered one of the greatest contributions to chil-
dren and adolescents’ development.

D. Zubok holds a Ph.D. in physics and mathematics. He has been the
deputy dean of information technology and software engineering de-
partment since 2006. Since 2008, the Executive secretary of the orga-
nizing committee of open Olympiad in Informatics and mathematics
for school students. His current interests include computer science and
data analysis.

Olympiads in Informatics, 2015, Vol. 9, 147–161
DOI: http://dx.doi.org/10.15388/ioi.2015.12 147

Math Contests: Solutions without Solving

Mārtiņš OPMANIS
Institute of Mathematics and Computer Science, University of Latvia
29 Raina Boulevard, Riga, LV-1459, Latvia
e-mail: martins.opmanis@lumii.lv

Abstract. The paper gives an insight in the possibility to use tools and methods usually not al-
lowed at mathematical olympiads and contests for finding correct answers for original problems.
Lot of problem examples from the various math contests are given. Possible effects and risks
of competition format change are discussed, caused by usage of additional tools and Internet
resources.

Keywords. Olympiads in Informatics, Math contests, competition tasks, grading, online tools.

1. Introduction

There are lot of popular math contests or their rounds where just a short answer like
some number (listed together with few other possible options or without them) must be
provided instead of a full “classic” solution with an adequate level of reasoning. Among
such contests are, for example, Kangaroo [Kangaroo], MAA American Mathemat-
ics Competitions – American Junior High School Mathematics Examination, AMC 8
[AJHSME], AMC 10, AMC 12 and AIME [AMC], Sri Lankan Mathematics Compe-
tition [SLMC], Schools Maths Olympics held by University of Melbourne [MUMS
SMO] and others. The famous resource “Project Euler” which “is a series of challeng-
ing mathematical/computer programming problems that will require ... programming
skills ... to solve most problems” [Project Euler] also requires single numbers as an-
swers to problems.

In this sense “finding a correct answer” usually is used as a synonym to “properly
solve the task in the usual way as consecutive steps of correct reasoning and conclu-
sions”. And most probably, the intention of problem setters is that there is practically
impossible to guess the correct answer or find it in any other way, and the solving pro-
cess must be completed anyway. And the only difference is that it is not required to de-
scribe this process in a “polished” form, but only the final result must be provided. Such
“lightweight” competition format is appealing due to the fast and simple answer grading

M. Opmanis148

process. If additional tools are not used, then this assumption is almost correct, and the
only way is to complete whole way from the given in a task statement till the correct
answer, usually described in written form and named as “solution” and corresponding
process as “solving”. So we get “solution with solving”.

Nowadays at the competitions in mathematics from the very basic level till the top
– International Mathematics Olympiad (IMO) [IMO] only a limited number of tools are
allowed in the process of problem solving. These tools are discussed in Section 2.

However, outside of competitions there are plenty of tools available which can help
to find problem solutions. Some of them are described in Section 3.

With additional tools it is possible to obtain correct answers without the usual reason-
ing process sometimes essentially faster than in the “classical” way. Therefore “solution
phase” (in its old meaning) may be omitted or, more correctly, a completely different
way how to obtain the correct answer may be found. Further in this paper we will draw
clear distinction between “solving” in its classical meaning and “finding correct answer”
by using tools, methods, information sources, completely different from the solving pro-
cess. In general, by “solution without solving” we denote the process of finding a correct
answer by using an approach essentially different from the intended one. More precise
description of this “alternative process” is given in Section 4.

By rise of computers programming in general became a powerful tool for rapid cal-
culations and even for proving of propositions. As Petar S.Kenderov pointed out: “The
nature of the mathematical research has changed significantly since considerable com-
puting power came to the desk of almost every researcher and student. Mathematicians
today can conduct complicated numerical experiments, use software for complex alge-
braic and analytic transformations, find patterns in huge data sets.” [Kenderov]

By wide dissemination of computers and by the appearance of appropriate software
(like as spreadsheets – MS Excel, Google Spreadsheets), appearing of Internet with
enormously powerful information search capabilities (Google) and web-based tools
(like as WolframAlpha [WA]), the possibility to find answers to particular mathematical
problems increased dramatically. The main threat here is the possibility to obtain a cor-
rect answer having no clue about the solving process or even without understanding of
the task statement.

Retaining of the old fashioned style of mathematical competitions makes bigger and
bigger the breach between everyday life and math contests. Similarly, we could ask to
perform communication tasks without usage of mobile phones and social networks, or
to perform routine calculations without using electronic devices. At some point, such
limitations becomes too orthodox and this may decrease the interest to participate in
such competitions. This represents a serious problem also for problem setters – should
avoid offering problems for which one can find straightforward solution in the “world
of computer aided tools”. For example, routine tasks like as multiplication of two long
integers is not interesting as a contest problem.

At the same time Math olympiads are not alone in testing traditional mental skills.
For example, at the Latvian national and Baltic regional level quite popular is a version
of the Estonian mental calculation competition Miksike MentalMath[Miksike] where
students are asked to perform fast calculations without additional tools.

Math Contests: Solutions without Solving 149

Further in Section 5, problems from various mathematics competitions will be ana-
lyzed. Problems described in the present paper may be considered as outcomes of the
experiment “What could happen if at real math contests additional tools would be al-
lowed?”. Although most of the examples below come from various math competitions,
similar problems are observed also in informatics(programming) competitions [IOI,
BOI] where solutions are mainly programs written in a programming language. The so-
called “open input” tasks where problem solving strategy is not clearly defined are for-
mally allowed but are rarely used. For solving problems in “Project Euler”, it is intended
that some programming must be involved. If correct answer will be found without pro-
gramming, this also can serve as illustration of “solution without solving”.

2. Tools Allowed at Mathematical Contests

Till now, in the classical mathematics competitions up to IMO only Euclidean tools –
straightedge and compass [MathWorld] allowed. These tools allow creating of the basic
geometric constructions known since Euclid’s “Elements”. Without irony it can be noted
that the same tools are used in math competitions for centuries (even if we start counting
from the first typeset of these books in 1482). These two simple tools can illustrate the
difference between tools used in classrooms and mathematics competition.

In the classroom, rulers (with centimeter or inches marks) of finite length are used
– in opposite to math contests where straightedge has no marks and is assumed to
possess infinite length. The story with compass is even more interesting. According to
Euclid’s third postulate “Given any straight line segment, a circle can be drawn having
the segment as radius and one endpoint as center”, compass still is quite a limited tool.
More precisely – this tool is “collapsing compass” or “compass without memory” – i.
e. after drawing a circle, it loses any reference to the provided circle and the user must
find a new segment and choose its endpoint to draw new circle. Quite a natural con-
struction – drawing of two circles with the same radius with the centers at two given
different points may not be performed by simple movement to another destination
without changing the compass aperture. Luckily, Euclid himself (second proposition
in Book I of “Elements”) showed that also such compass can be used for transfer of
distance to a given point and therefore its capacity is the same as the one of a “real”
compass, and people must not worry about such limitations. Strictly speaking, when
using a “real” compass, its equivalence to the abstract one must always be mentioned.
Moreover, this is not case with straightedge and ruler (it is impossible to model ruler
marks by simple straightedge).

3. Tools Available

One obvious tool which could be included in math contests is calculator, which be-
came widely accessible for the general public since 1970-s. By the end of this decade

M. Opmanis150

calculators became common in schools. However, till now in a lot of competitions the
usage of calculators is prohibited without excuses – IMO, AMC, FERMAT and Math
Bowl [UT contests], Kettering Mathematics Olympiad [KMO], Schools Maths Olym-Schools Maths Olym-
pics [MUMS SMO].

At the same time other competitions are not so strict – a limited use of calculators
is allowed in contests organized by University of Waterloo: “Calculators are allowed,
with the following restriction: you may not use a device that has internet access, that
can communicate with other devices, or that contains previously stored information.
For example, you may not use a smartphone or a tablet.” and (for Contests with Full
Solution Questions): „While calculators may be used for numerical calculations, other
mathematical steps must be shown and justified in your written solutions and specific
marks may be allocated for these steps. For example, while your calculator might be
able to find the x-intercepts of the graph of an equation like y = x3 – x, you should show
the algebraic steps that you used to find these numbers, rather than simply writing these
numbers down.” [Waterloo]

In Australian Mathematical Competition, calculators are banned starting from the
year 7 and are allowed for younger participants as one of “aids normally available to
them in the classroom” [Australian MC]. In the Math competition for students who
are deaf or hard of hearing organized by Rochester Institute of Technology, only cal-
culators with four basic arithmetic operations and square, square root and percent
calculations are allowed. Scientific and graphing calculators are not permitted [RIT
competition].

However, there are competition focused on usage of calculators – Calculator Appli-
cations Contest [CAC] or particular rounds of MATHCOUNTS Competition [MATH-
COUNTS] and PA Math League and Atlantic Pacific Math League Contests [PAML].

Completely different “tool” which could be mentioned are sheets of limited number
of formulas distributed for secondary school students at final exams in mathematics in
Latvia. Similar supporting material are books together with printed materials of limited
volume which teams are allowed to prepare in advance in secondary school students
team competition in programming VKOSHP[VKOSHP].

Today, Internet together with personal computers, tablets, smartphones and other
electronic devices may be qualified as a “tool available for secondary school students”.

There are several competitions designed especially by assuming the free usage of
Internet resources and making sometimes impossible to solve tasks without additional
resources. Characteristic representatives of such competitions are The Internet Problem
Solving Contest[IPSC] and MIT Mystery Hunt[MIT], there are a lot of competitions
aimed at finding facts in the Internet.

There are only a few contests and competitions where the usage of tools and Internet
resources is allowed but not always required for finding correct answer. Project Euler
[Euler] and Latvian team competition in Mathematics and Informatics “Ugāle” [Op-
manis] are among the few which can be named.

An interesting topic would be the classification of problem statements, solving
strategies, etc. at the various existing competitions, but this is out of the scope of the
present paper.

Math Contests: Solutions without Solving 151

4. Description of “Finding Correct Answer”

It is very easy to argue against usage of Internet or sophisticated electronic devices:
“You always may ask for help from aside by using Skype or e-mail and nobody can be
sure that these answers are obtained you at all.”

If we look from the perspective of a problem setter, several simple “fair play” rules
must be stated:

No help from outside is allowed – no other people may be involved in the process 1.
of finding the answer directly or indirectly (like direct conversation or asking for
advice in a forum or a newsgroup).
Only free, accessible for all, resources and tools may be used.2.
The goal is to speed up process of finding correct answer – i. e. the total time of 3.
finding answer must be less if compared with the classical approach where no
additional tools are involved.
It shouldn’t be possible to find a correct answer simply by using the task attribu-4.
tion. For example, by searching for an answer or solution of a particular competi-
tion in some published source because the title of competition or book is known.
As an example here may serve IMO and its satellite resource – special section in
website “Art of Problem Solving” [AoPS]. Solutions of “Project Euler” [Project
Euler] tasks are also widely discussed on the Internet, so knowing that some par- tasks are also widely discussed on the Internet, so knowing that some par-
ticular task comes from the project, you will find a lot of hints, program examples
or even correct answer.
Tasks must be non-trivial and non-routine, different from the well known tasks 5.
like “find the least possible Pythagorean triangle” or “calculate the fifth Fibonac-
ci number”. There must be no specialized tools (websites) for solving of general
tasks of this class. For example, for tasks where a particular member of series
must be found, an excellent resource is The On-Line Encyclopedia of Integer Se-
quences® founded by N.J.A.Sloane [OEIS®] – if few first members of sequence
are provided, all the possible candidates together with vivid supporting informa-
tion and references are reported back.
Clairvoyance like “I just saw the answer in my mind and can’t explain why it 6.
is correct.” or lucky guessing is not counted. Process must be repeatable and
determined.
And the last but not least – there MUST exist verifiable correct answer of 7.
the task. For example, tasks like “What is the next integer in the sequence
2,0,2,1,2,2,2,2,2,2,3,2,4,...?” doesn’t belong to this class, because without addi-
tional comments it is impossible to prove that the answer is correct (even if there
exists a simple deterministic algorithm as in the above example).

Some remarks may be added:
As in the classical problem solving, impossibility to find an appropriate answer

doesn’t guarantee that answer cannot be found in a different way, by different tool or by
different people.

M. Opmanis152

There must be gained some experience to get maximum profit from the available
tools and to see that some resource may be helpful. Even when final answer can’t be
found directly, usage of tools may help in finding new ideas or ways how the problem
may be solved.

English (in general – any “big” language) speakers have advantage due to a larger
number of useful resources.

From the problem setter’s perspective, if almost unlimited usage of tools is allowed
as described above, the invention of new tasks becomes a real challenge. Even if the task
inventor is confident that the task is created by himself, “stress test” must be provided
to be sure that there are no obvious workarounds or alternative approaches that could
making the finding of the correct answer too easy. From the other side – if usage of some
tools is assumed, the task may become too hard for solvers not familiar with particular
tool and therefore the task becomes too narrow-focused.

Alternative way how to use old tasks is to “obfuscate” the original formulation so
that keywords cannot be used in search engines to get on right track. Or “wrap” simple
equations in the form of text problems and force contestants to correctly “unwrap” the
task before solving.

5. Finding Answers for Tasks from the Previous Math Contests

To justify the approach with almost unrestricted usage of additional tools allowed, a lot
of problems (tasks) from the previous math contests of various levels were investigated.
This class of tasks is chosen because: 1) they are short in form, 2) they are clear and self-
contained (no additional knowledge like foreign language is necessary to comprehend
the task statement), 3) there is a unique answer. Of course, these tasks are not designed
as tool usage exercises and some of them were created even before computers became
widely used. These examples represent just a brief sketch of what are the options today if
we want to obtain correct answers without solving. Original task formulations are given
below together with competition title and problem number, brief description of tool(s)
used, and how the usage of these tools helped in finding correct answer. Examples are
denoted by “E” followed by the consecutive example number.

E1. USA AMC 8 1999, Problem 24

When 19992000 is divided by 5, the remainder is
(A) 4 (B) 3 (C) 2 (D) 1 (E) 0

Tool: WA. Input expression “1999^2000 mod 5” and obtain the answer 1 immedi-
ately. Therefore the correct answer is answer D. Only basic knowledge about expression
syntax in WA is necessary. Almost the same approach works for USA AJHSME 1996,
task 15.

E2. USA AMC 8 2000, Problem 14

What is the unit digit of 1919+9999?
(A) 0 (B) 1 (C) 2 (D) 8 (E) 9

Math Contests: Solutions without Solving 153

Tool: WA. Input expression “19^19+99^99” and obtain a 198 digit integer with the last
digit 8. Therefore the correct answer is answer D. Only basic knowledge about expres-
sion syntax in WA is necessary.

E3. USA AMC 8 2010, Problem 24

What is the correct ordering of the three numbers, 108,
512 , and 224?
(A) 224<108<512 (B) 224<512<108 (C) 512<224<108 (D) 108<512<224
(E) 108<224<512

Tool: WA. Step 1: Input expression “10^8–5^12” and obtain the answer –144140625.
Therefore 108<512 and possible valid candidates are just (A), (D) and (E).

Step 2: Input expression “10^8-2^24” and obtain the answer 83222784. There-
fore 108 > 224 and the correct answer is answer (A). It was just coincidence that the
correct answer was obtained by two queries. However, even if more queries would be
used, it is still possible to obtain the correct answer without any clue about comparison
of powers in general. Only basic knowledge about expression syntax in WA and simple
logical reasoning is necessary.

E4. USA AMC 8 2011, Problem 24

In how many ways can 10001 be written as the sum of two
primes?
(A) 0 (B) 1 (C) 2 (D) 3 (E) 4

Tool: WA. Input query EXACTLY as it is formulated “In how many ways can
10001 be written as the sum of two primes?”. Despite the fact that
WA responds “WA doesn’t understand your query”, it gives valuable information about
the number 10001 itself and theoretically from “10001 is an odd number.” you
can derive a correct answer. If this doesn’t help, the initial textual query may be modi-
fied: “10001 as the sum of two primes”. Now, WA is processing this query
and gives the result “no such prime numbers exists”. Therefore, the answer
(A) is the correct one. It must be emphasized that the only skill necessary was a correct
rephrasing of query. Even the knowledge of what does “prime number” means was not
necessary at all.

E5. USA AJHSME 1995, Problem 3

Which of the following operations has the same effect on
a number as multiplying by 3/4 and then dividing by 3/5?
(A) dividing by 4/3 (B) dividing by 9/20 (C) multiplying by 9/20
(D) dividing by 5/4 (E) multiplying by 5/4

Tool: WA. Input the expression “a*(3/4)/(3/5)” and obtain the result “5a/4”, from
which you can decide that (E) is the correct answer. In this query a general variable “a”
is used. However, even without it you can obtain the answer 5/4 and by using some basic
knowledge can transform it to a correct test answer.

M. Opmanis154

E6. USA AJHSME 1995, Problem 15

What is the 100th digit to the right of the decimal point
in the decimal form of 4/37?
(A) 0 (B) 1 (C) 2 (D) 7 (E) 8

Tool: WA. Input the expression “(floor((4/37)*10^100)) mod 10” and obtain
the result 1, from which you can decide that (B) is the correct answer. Skills necessary
to formulate a correct query are above the basic level and you must know how to use
arithmetical functions. However, if you know that, you need not to know anything about
the character of infinite decimal fractions like 4 / 37 – just translate the query and obtain
the answer.

E7. International Mathematical Talent Search [IMTS] – Round 9 – Problem 4

A triangle is called Heronian if its sides and area
are integers. Determine all five Heronian triangles whose
perimeter is numerically the same as its area.

Tool: Google search for “Heronian triangle”. One of the first resources is Wikipedia
topic [http://en.wikipedia.org/wiki/Heronian_triangle] having
special paragraph „Equable triangles”, where it is said: „A shape is called
equable if its area equals its perimeter. There are exactly
five equable Heronian triangles: the ones with side lengths
(5,12,13), (6,8,10), (6,25,29), (7,15,20), and (9,10,17).”
So you can obtain the correct answer without any calculations, reasoning, etc. Key to
the success was a mathematically correct naming of terms in the problem statement
and careful reading of source found. If „Heronian” would be replaced by other word,
the described approach would not work. Of course, from the description of „Equable
triangles” you must be wise enough to understand that these are the triangles you are
searching for.

E8. Project Euler – Problem 21 „Amicable numbers”

Let d(n) be defined as the sum of proper divisors of n
(numbers less than n which divide evenly into n). If d(a)
= b and d(b) = a, where a ≠ b, then a and b are an amicable
pair and each of a and b are called amicable numbers.For
example, the proper divisors of 220 are 1, 2, 4, 5, 10, 11,
20, 22, 44, 55 and 110; therefore d(220) = 284. The proper
divisors of 284 are 1, 2, 4, 71 and 142; so d(284) = 220.
Evaluate the sum of all the amicable numbers under 10000.

Tool: Google search for “Amicable numbers”. One of the top resources is a reference to
sequence A063990 [OEIS]. In this resource, the first members of the sequence of amica-
ble numbers are listed: 220, 284, 1184, 1210, 2620, 2924, 5020, 5564,
6232, 6368, 10744, 10856,...

Math Contests: Solutions without Solving 155

You can observe that only the first ten of them are under 10000 and you can simply
sum them up obtain the correct answer. Essential again was a consequent usage of the
term „amicable numbers”. Otherwise, it would be impossible to obtain the answer so
quickly, or (in case if this term would be used for denoting different concept) the answer
would be incorrect.

E9. Project Euler – Problem 19 „Counting Sundays”

You are given the following information, but you may
prefer to do some research for yourself.

1 Jan 1900 was a Monday. ●
Thirty days has September, ●
April, June and November.
All the rest have thirty-one,
Saving February alone,
Which has twenty-eight, rain or shine.
And on leap years, twenty-nine.
A leap year occurs on any year evenly divisible by 4, ●
but not on a century unless it is divisible by 400.

How many Sundays fell on the first of the month during the
twentieth century (1 Jan 1901 to 31 Dec 2000)?

Tool: An old notebook was received as a gift during the 9th Baltic Olympiad in Informat-
ics 2003 in Estonia (in Estonian!) containing the so-called calendar of the century (frag-
ment is shown in the Fig. 1).

Even without any knowledge of Estonian language it is possible to guess that 0 in
the table denotes that the first day in the chosen month of a particular year is Sunday.
For example, 1st of October of 1961 was Sunday. To get correct answer it is enough to
process necessary rows and calculate total number of zeroes.

Fig. 1. Calendar of Centuries – Estonian version.

M. Opmanis156

E10.

Prove that from the five different tetrominoes it is not
possible to create solid rectangle (without holes and
overlapping).

Tool. This may be called „proof found by accident”, because when searching for „Tet-
romino”, as one of top results you obtain Wikipedia page with a brief proof of the stated
problem (second picture at the right hand side).

E11. British Mathematical Olympiad 2007 – Problem 2.

Find all solutions in positive integers x, y, z to the
simultaneous equations
x + y − z = 12
x² + y² − z² = 12.

Tool. WA. Input “x+y-z=12, x^2+y^2-z^2=12, x>0, y>0, z>0” and ob-
tain eight possible answers (x,y,z): (13,78,79), (14,45,47), (15,34,37),
(18,23,29), (23,18,29), (34,15,37), (45,14,47), (78,13,79).
The only necessary skill was correct reformulation of initial problem in WA syntax. On
this particular example, two side effects could be observed: a) one can easy write incor-
rect equations just by omitting comma separating both equations. This leads to misin-
terpretation of equations and wrong answers, b) WA is evolving and the interpretation
of an incorrect set of equation in different tool versions may change over the time.

For this particular problem, the input “x + y − z = 12 x² + y² − z² = 12” in different WA
versions was interpreted as “x + y − z = 12, 12 x² + y² − z² = 12” (lot of „valid” integer
answers having nothing in common with the solutions of the original equations) or „x +
y − z = 12 x² + y² − z²” (no solutions in integers).

E12. International Mathematical Talent Search Round 10 – Problem 1.

Find x² + y² + z² if x, y and z are positive integers such
that 7x² – 3y² + 4z² = 8 and 16x² – 7y² + 9z² = -3.

Tool. WA. Input “p=x^2+y^2+z^2,x>0,y>0,z>0,7x^2-3y^2+4z^2=8,
16x^2-7y^2+9z^2=-3” and obtain the answer p=165, x=4, y=10, z=7 im-
mediately. It must be pointed out that in the input set of directives integers are not re-
quired.

E13. British Mathematical Olympiad 2007 – Problem 1

Find the value of (14 + 20074 + 20084)/(1² + 2007² +
2008²).

Tool. WA. Expression in almost original form may be given as input:
„(1^4+2007^4+2008^4)/(1^2+2007^2+2008^2)” and answer 4030057 is
obtained straightforwardly

Math Contests: Solutions without Solving 157

E14. Pan African Mathematical Competition 2004 – Problem 2

Is 4 sqrt(4 – 2 sqrt(3)) + sqrt(97 – 56 sqrt(3)) an integer?

Tool. WA. Simple “Copy-Paste” from the original problem formulation into WA and as a
result the value 3 is obtained. So, answer to the original question is “yes”.

E15. British Mathematical Olympiad 2001 – Problem 1

Find all positive integers m, n, where n is odd, that
satisfy 1/m + 4/n = 1/12.

Tool. WA. Query must be slightly modified to fulfill the “n is odd” requirement:
“solve{1/m+4/n=1/12,n=2k+1,m>0,n>0} over the integers”. Execu-
tion gives three pairs of answers (n, m): (49, 588), (51, 204) and (57, 76).

E16. 1960 IMO – Problem 1

Determine all three-digit numbers N having the property
that N is divisible by 11, and N/11 is equal to the sum
of the squares of the digits of N.

Tool. WA. Nontrivial translation of the original statement in terms of WA is necessary.
The corresponding query is “solve (100a+10b+c-11(a^2+b^2+c^2)=0;
a>0, b>=0, c>=0) over the integers”. Two answers (a, b, c): (5,5,0)
and (8,0,3) , which must be interpreted as three-digit numbers 550 and 803. You
may consult the resource [AoPS] to see that these answers are the same as in the official
solution.

E17. 1962 IMO – Problem 4

Solve the equation cos2x+cos22x+cos23x=1.

Tool. WA. Input query “solve (cos(x)^2+cos(2x)^2+cos(3x)^2=1)” and
get answer: x = (8 π n + π) / 4, x = π (8 n – 1) / 4, x = π (8 n – 3) / 4, x = π (8 n + 3) / 4, x =
π (4 n – 1) / 2, where n ∈ Ζ.

E18. 1962 IMO – Problem 2

Determine all real numbers x which satisfy the inequality:
√(√(3-x)-√(x+1))>1/2

Tool. WA. The query “solve (sqrt(sqrt(3-x)-sqrt(x+1))>1/2)” gives
straight answer -1≤x<(32-√127)/32.

E19. 1965 IMO – Problem 4

Find all sets of four real numbers x1, x2, x3, x4 such that
the sum of any one and the product of the other three is
equal to 2.

M. Opmanis158

Tool. WA. Input the query “solve(x+y*z*q=2;y+x*z*q=2;z+x*y*q=2;q+x*y
*z=2) over the real numbers” and obtain the answers shown in Fig. 2.

Surprisingly, a simplified query “solve(x+y*z*q=2;y+x*z*q=2;z+x*y*q=
2;q+x*y*z=2)” gives more appealing values of (x,y,z,q) (however, they are tailed
with complex values and you must be able to distinguish them): (-1,-1,3,-1),
(-1,3,-1,-1), (3,-1,-1,-1), (1,1,1,1) and (-1,-1,-1,3).

The same answers could be obtained by substitution in the expressions for z in Fig.2.

E20. International Mathematical Talent Search [IMTS]– Round 44– Problem 2

Let f(x)=x x x x for all positive real numbers x, where
y denotes the greatest integer less than or equal to y.
1. Determine x so that f(x)=2001.
2. Prove that f(x)=2002 has no solutions.

Let’s split this problem into two sub-problems – (1) and (2) and as the first step let’s
try to find an answer for the sub-problem 1.

Tool: WA. Execution of the query “x*floor(x*floor(x*floor(x)))=2001” gives
the answer x=2001/286.

To solve E20 spreadsheets may be used as well. Let’s denote p=floor(x floor(x
floor(x))). Then the solution of equation x = 2001 / p must be found. We can use the
exhaustive search by filling six columns of spreadsheet with values of p (by definition,
p is integer), x, floor(x), floor(x floor(x)), floor(x floor(x floor(x))) and floor(x floor(x
floor(x)))-p. It is easy to go through all the values from 1 to 2001 looking for a value of
p leading to 0 in the sixth column. Excerpt of the spreadsheet is given in the Fig. 3.

Let’s consider solving of the second sub-problem of E20 by using the same approach
as in the first sub-problem.
Tool: WA. Execution of the query “x*floor(x*floor(x*floor(x)))=2002” gives
the answer x = 7 (with the remark that standard computation time exceeded). This answer
is incorrect, because 74 = 2401 ≠ 2002.

Spreadsheet approach is better. Excerpt is given in the Fig. 4.

Fig. 2. Results of query for E19.

Math Contests: Solutions without Solving 159

From the spreadsheet you can conclude that there is no solution – a value of p for
which difference in the sixth column is 0.

Are the above examples “good examples” (in almost all cases we succeed in finding
a correct answer) or “bad examples” (in some cases it was too easy to obtain the right
answer without proper evidence of adequate thinking process)? It depends whether you
are a problem setter and are worried about the possibility of cheating by using modern
gadgets with Internet access, or just want to check your solution of the task, or represent
different group of people.

Will the future be so simple? Just input your equation and obtain a correct answer
without any clue and without the need to understand how it works? We already observed
problems with WA when tried to find answer to the sub-problem 2 of E20. Is this just an
accident? Unfortunately, NO.

E21.

Find all solutions in integers of equation (x+y)2=x3-y5.

In the original problem statement it was necessary to find all solutions in prime num-
bers. Obviously this would be a subset of the problem stated there.

Tool: WA. Input the equation “(x+y)^2=x^3-y^5” and you will obtain two solutions
in integers (x, y): (0,-1) and (0,0). However, there exists at least one more obvious
solution: (1,0) not reported there. Even worse, there is a nontrivial answer (7,3) not

Fig. 3 Excerpt from the Google spreadsheet for finding answer of the first sub-problem of E20
(formulas are shown as column headers).

Fig. 4 Excerpt from the Google spreadsheet for finding answer of the second sub-problem of E20
(formulas are shown as column headers).

M. Opmanis160

given without any sign that the answers found are not all possible or warning that it was
not possible to calculate all solutions due to lack of resources or any other reason.

The general observation is as follows: “Tools may be not perfect and their produced
answers may be incomplete or wrong even if you use them properly”. For complicated
tools like WA it is hardly possible to justify that tool is working properly for ALL correct
inputs. If tools are used, you always must to justify the answers found. However, this
justification task may as complicated as solving of the initial problem.

6. Conclusions

Computer and Internet based tools are very powerful and may be successfully used for
finding answers for different math problems. However, their unlimited usage may be
dangerous in a sense that young people may use them without necessary criticism like
today calculators are used for routine calculations ignoring the possibility of computa-
tional errors. Tasks from the previous contests can’t be given in such contests without
careful examination as well. In the case when tools and resources are allowed a shift in
trained skills is necessary – more attention must be paid to proper selection of the most
appropriate tool, its usage and validation of the received answers. If we observe tradi-
tional topics in math contests – Algebra, Number theory, Combinatory and Geometry, it
seems that problems from algebra and number theory are more suitable for tool usage in
comparison with problems from geometry.

More tools, their usage for different problem classes and competitions, possible side
effects and drawbacks must be further investigated.

Acknowledgements

I would like to thank Prof. Kārlis Podnieks for valuable comments.

References

AMC. Mathematical Association of America (MAA) American Mathematics Competitions.
http://www.maa.org/math-competitions/amc-contests

AJHSME. American Junior High School Mathematics Examination.
http://artofproblemsolving.com/wiki/index.php/AMC_8_Problems_and_Solutions

AoPS. Art of Problem Solving. Community-Contest collections-IMO.
http://artofproblemsolving.com/community/c3222_imo

Australian MC. Australiam Mathematics Competition. http://www.amt.edu.au/amcfact.html
CAC. Calculator Applications Contest.

http://www.uiltexas.org/academics/calculator-applications
IMO. International Mathematics Olympiad. http://www.imo-official.org/
IMTS. International Mathematical Talent Search.

https://cms.math.ca/Competitions/IMTS, https://cms.math.ca/Concours/IMTS/
IPSC. The Internet Problem Solving Contest. http://ipsc.ksp.sk/

Math Contests: Solutions without Solving 161

Kangaroo. International Mathematical Kangaroo, Kangourou sans frontières.
http://en.wikipedia.org/wiki/Mathematical_Kangaroo

Kenderov, P.S. (2006) Competitions and mathematics education. In: Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006. 1583–1598.

KMO. Kettering Mathematics Olympiad. http://paws.kettering.edu//~acheng/Olympiad/
MATHCOUNTS. Competition.

http://www.artofproblemsolving.com/Wiki/index.php/MATHCOUNTS
MathWorld. http://mathworld.wolfram.com/EuclideanTools.html
Miksike. MentalMath. http://en.wikipedia.org/wiki/Miksike_MentalMath
MIT. Mystery Hunt. http://www.mit.edu/~puzzle/
MUMS SMO. Schools Maths Olympics, Melbourne University Mathematics and Statistics Society.

http://www.ms.unimelb.edu.au/~mums/olympics/smo.html
OEIS®. The On-Line Encyclopedia of Integer Sequences®. https://oeis.org/
PAML. PA Math League and Atlantic Pacific Math League Contests.

http://www.npenn.org/page/1437
Project Euler. https://projecteuler.net/
SLMC. Sri Lankan Mathematics Competition.

http://www.slmathsolympiad.org/slmcPast.jsp
Opmanis, M. (2009). Team competition in mathematics and informatics “Ugāle” – finding new task types.

Olympiads in Informatics. 3, 80–100.
RIT competition.

http://www.rit.edu/ntid/mathcompetition/what-kind-calculator-allowed
UT contests – FERMAT (Fundamental Exams of Remarkable Mathematical Ability and Talent) and Math Bowl.

http://www.math.utk.edu/MathContest/ContestInfo.html
VKOSHP. http://neerc.ifmo.ru/school/russia-team/rules.html
Waterloo. University of Waterloo, Mathematics and Computing Contests.

http://www.cemc.uwaterloo.ca/contests/calculators.html
WA. WolframAlpha. http://www.wolframalpha.com/

M. Opmanis is researcher at the Institute of Mathematics and Com-
puter Science of University of Latvia. He is one of the main organizers
of Latvian Olympiad in Informatics, was deputy or team leader of Lat-
vian IOI and Baltic OI teams. M.Opmanis was head of jury of Baltic
Olympiad in Informatics at BOI 1996, 1999, 2004 and 2012. Since
2012 he is member of IOI International Committee.

Olympiads in Informatics, 2015, Vol. 9, 163–172
DOI: http://dx.doi.org/10.15388/ioi.2015.13 163

Conducting Complex Competitions in Informatics
with Individual Tasks

Pavel S. PANKOV, Jyldyz R. JANALIEVA
International University of Kyrgyzstan
e-mail: pps50@rambler.ru, noledi@yandex.ru

Abstract. Most olympiads in informatics are actually programming contests, sometimes it is
stressed by the rules „tasks must be of algorithmical nature“. Meanwhile, now informatics cov-
ers almost all branches of human activity and participation in competitions with wide spectrum
would be of interest to young people. To prevent participants from copying answers from others,
we propose to generate individual tasks from personal data to achieve uniqueness (all contestants
would receive different versions of tasks). Also, we draw attention to tasks of “output-only” and
“open-ended” types (which can be also called “semi-algorithmical” because the contestant com-
bines intuition with using algorithms, which may be known in advance or devised while solving)
and optimization tasks with unknown exact answers. The main problem is automated assessment
of solutions of various tasks, some techniques are proposed.

Keywords: complex competition, informatics, individual tasks.

1. Introduction

Let us retell general items of Calls for tasks, 2011–2015: “IOI tasks are typically focused
on the design of efficient, correct algorithms, etc. … the submission of novel task types
not yet seen in IOIs, tasks whose basic rules (if not optimal strategy) are accessible to a
wide audience … tasks that illustrate algorithms and computational problems that arise
in a variety of human endeavours … open-ended tasks, ones that do not necessarily
have a known efficient or optimal solution … tasks that go beyond the typical format in
which a program collects input, performs some computation, and returns output … tasks
with some measure of solution effectiveness other than CPU time consumption … are
encouraged” (emphasis by us).

But “Examples include “reactive” and “output only” tasks which have been used oc-
casionally in previous IOIs…”, that is, most IOI tasks were of the only type: to write an
effective (discrete) algorithm.

We may add that informatics now covers all directions of human activity. The aim
of this paper is an attempt to evolve a variety of tasks meeting more its branches and its
applications.

P.S. Pankov, J.R. Janalieva164

One of such scopes was proclaimed in well-known and widely conducted Bebras
under V. Dagiene‘s leadership:

Information: conception of information, its representation (symbolic, numerical, ●
graphical), encoding, encrypting.
Algorithms: action formalization, action description according to certain rules. ●
Computer systems and their application: interaction of computer components, de- ●
velopment, common principles of program functionality, search engines…
Structures and patterns … of discrete mathematics … combinatorics and actions ●
with them;
Social effect … cognitive, legal, ethical, cultural, integral aspects… ●
… puzzles: logical games, mind maps, used to develop technology-based skills. ●

Also, another of such attempts is our conducting competitions on “applied math-
ematics” (new genre, as we hope) in Kyrgyzstan, examples of tasks proposed to them
are marked (*) below.

To avoid cribbing and make such competitions more interesting we propose to use
individually generated tasks.

Section 2 contains definitions of extended tasks and individually generated tasks.
Section 3 contains examples of tasks with simple discrete response.
Section 4 describes various types of tasks with objects outside of the examination

program.
Some non-standard tasks on programming to be solved without translators are pro-

posed in Section 5.
Tasks on interactive search of a “hidden object” are considered in Section 6.
Sections 7 and 8 apply the ideas of output-only and open-ended tasks on approximate

calculations and optimization to proposed competitions.

2. Definitions of Extended and Individually Generated Tasks

In our observation, almost all young persons who could master programming begin to
write test programs with standard “multiple choice” of some preliminary written an-
swers. Diversification is almost always reduced to a random choice of data base with
ready tasks and to a random permutation of answers. It does not give opportunity to
evince programming skills and knowledge of subjects previously studied. Meanwhile,
since the eighties, we as well as others proposed more flexible methods to develop soft-
ware involving various peculiarities of the subjects studied, and examining various abili-
ties of persons tested.

Besides of common requirements (Validity, Objectivity and Reliability), to improve
efficiency of evaluation of knowledge and skills, we offered the following ones:

Generativity: the complete text (content) of a task must not exist before examination
(competition) and must be generated randomly just before it.

Uniqueness: all examinees (contestants) must receive different versions of tasks.
Concreteness: the examinee’s (contestant’s) response must be in the form of number,

word, action.

Conducting Complex Competitions in Informatics with Individual Tasks 165

Definition 1. (Pankov and Janalieva, 1995). An extended task is an algorithm generating
different logically correct and methodically proper tasks (of the same level of difficulty)
and corresponding right answers from the initial data (randomly) chosen from finite
but sufficiently large sets (ranges). Another term for such algorithms is “parameterized
questions”.

Definition 2. The number of ranges being used for generating the task in sufficient dif-
ferent ways is said to be dimension of the extended task.

Definition 3. (Janalieva, 2009). An algorithm permitting one (a teacher) to choose sub-
sets of sets of initial data and generating different logically correct and methodically
proper tasks by initial data, (randomly) chosen from these subsets is said to be an adjust-
able extended task.

Definition 4. (Janalieva, 2012). An individually generated extended task consists of two
algorithms. The first algorithm composes different, logically and methodically correct
tasks using personal information about a contestant. The second algorithm generates
corresponding right answers using the same information.

Correspondingly, at distant competitions the contestant is to enter his/her personal
data and his/her answers and the second algorithm generates right answers for checking
using the same data. And same data are printed into the certificate.

We give examples of both easy and difficult tasks to present the scope of possibili-
ties. Also, weaker participants will spend more time to solve easy tasks and obtain non-
zero points; stronger participants will spend less time to solve easy tasks and have more
time to solve difficult tasks.

Simple tasks in different sciences (see, for example, Pankov, 2010) are constituents
of such examination too, because “…algorithms and computational problems that arise
in a variety of human endeavours.”

All the tasks in the following sections are extended ones. Randomly generated ele-
ments are denoted by italics (some of them are “primary”; others are calculated from
them).

3. Tasks with Discrete Response

These tasks are intended for “Objective evaluation of understanding by means of dis-
crete response” instead of traditional “Evaluation of understanding by means of multiple
choices”. They are relatively easy because their aim is not checking of skills, but check-
ing of knowledge of notions.

3.1. Tasks with Simple Calculations on Digits

Task 1. (Notion of symmetry). What is the minimal total amount to be added to the
digit(s) to obtain a symmetric pattern:

P.S. Pankov, J.R. Janalieva166

1.1. [Axial symmetry] 65299756
 14388342 [answer: 6]

Remark. Traditional multiple-choice version of this task is: choose the symmetrical:

 A) 65299756 B) 65299256 C) 65299756 D) 65299256
 14388342 14388341 14388341 65299252

1.2. [Transitional symmetry] 65296526
 14381436 [answer: 5]

1.3. [Rotational symmetry] 65298381
 14389256 [answer: 4]

Task 2. (Notion of numeration). How many asterisks are here in binary/hexadecimal
system?

 ******* **** ****
 ******** **** *

Remark. Random initial data are presented in such a way that it would be easier to write
out the answer immediately than to count in decimal and convert.

Task 3. (Notion of graphical information). How many bits/bytes/kilobytes (rounded) are
necessary to encode a 400 × 560 pixels image with the colours: white; light grey; dark
grey; black / 16 colours / 256 colours?

Task 4. (Notion of error correction). 25 digits, 5 checksums (mod 10) by rows and 5
checksums (mod 10) by columns were transmitted, but one of the 35 digits was changed.
Which one?

 652980
 143895
 256014
 558273
 087623
 47617
Write the answer in the form: <changed digit>#<restored digit> [answer: 2#8]

Task 5. (Notion of directed rounding). Given: 7 ≤ X ≤ 20; 50 ≤ Y ≤ 70. Find the width
of the narrowest closed interval with integer boundaries containing all quotients Y/X:
[answer: 8]

Task 6. (Notion of chemistry). How many whole molecules of A4B3C2 can be made of
45 atoms of A, 40 atoms of B and 30 atoms of C? [answer: 11]

3.2. Tasks with Simple Calculations on “Big Pixels”

Tasks like Task 1 also can be presented as follows:

Task 7. (Notion of symmetry). How many black squares, at least, are to be added/

Conducting Complex Competitions in Informatics with Individual Tasks 167

erased/shifted to obtain a symmetric pattern (in real task, the table should be about
5 × 10 pixels):

Task 8. (Notion of connectedness). (Also, given pattern of white and black squares).
How many, at least, black squares are to be A) added/shifted to obtain a connected
set [from non-connected one]?
… to be erased to make the set non-connected [from connecting one]?B)

3.3. Interactive Tasks with a Simple Discrete Response

Tasks of the above types can be also presented as follows:
“Change as few digits as possible to (obtain the result)”;
“Add/Erase/Shift as few black squares as possible to (obtain the result)”
(An interactive interface is to be programmed for such actions).

4. Tasks with Objects Outside of the Examination Program

4.1. Tasks with Real Objects Outside of the Examination Program

General task 9. (Measuring a real object). The real object contains many marks
(numbered points); their coordinates are in the examination program; it is prepared
and copied by the jury in advance.

Each contestant is given a copy of the object and a ruler.
“What is the (quantitative characteristic) of the object formed by … (random) marks

(points)?”
The examination program calculates the result by means of coordinates of these

marks and compares it with the contestant’s answer; some error is permitted.

Examples:

Task 10. (Area of a real triangle). Given a sheet with some dozens of numbered points
and a ruler.

“What is the area (in square cm) of the triangle formed by point 32, point 14 and
point 56?”

Remark. If the area is too small then the examination program picks another triple.

P.S. Pankov, J.R. Janalieva168

Task 11. (Geodesy). The same sheet.

“Denote the imaginary intersection of straight lines point 32 – point 14 and point
12 – point 65 as point 100. What is the length (in cm) of the segment point 32 – point
100?”

4.2. Tasks with Extracting Information of Files Outside of the
Examination Program

These tasks are intended to evaluate skills in applying various existing software.

Task 12. (Geography). Given a file with geographical maps and there is a vast list of
names of geographical points (with their coordinates) in the examination program.

“Find (very approximately) the distance (km) between point1 and point2 along the
earth’s surface.”

The examination program calculates the distance by means of formulas of spherical
trigonometry.

For the following tasks, files are formed in advance such that there is a functional re-
lation between a file’s name and its content but this relation is too complex to be guessed
by the contestant by two-three examples. For instance, let the file fileN.txt, N = 10 .. 90
contain the number 3980 − N * (N − 44).

General task 13. (Searching for and extracting information outside). (Find and) open
the file(s) with name(s) and extract information (a number or a word).

Examples:

Task 14. (Search in text). Find the distinguished record (the least number, the longest
word, etc.) in the announced (short) files, for instance d:\dir12\file5*.txt .

Task 15. (Search in text). Open the (vast) file Task15.doc and input the least one among
all the numbers written immediately before numbers 16.

Task 16. (Excel). Open the file Task16.xls and find the sum of all positive numbers in
the rectangular area B4–F29.

4.3. Tasks with Treating Files Outside of the Examination Program

General task 17. (Transforming files). Open the file …, make the following transforma-
tion, extract information and input it.

The idea is the following. Any transformation can be made by several means (by
mouse, by keyboard, by hotkeys, etc.) and the examination program, certainly, cannot
check correctness of all of them. But the file is composed in such a way that the result of
transformation defines information.
A simple example:

Conducting Complex Competitions in Informatics with Individual Tasks 169

Extended task 18. (Deleting symbols). The file Task18.txt contains

E214F5F325H43H54345G5G56H7G8G9
“Open the file Task18.txt, delete all N = 1 .. 5 and input the position of M = 6 .. 9.”
The answer is 24 – N + 2 (M − 6).

For example: “Open the file Task18.txt, delete all “3” and input the position of “7”.
The answer is 23.

4.4. Tasks with Creating Files

General task 19. (Creating images). Given (verbal) description of an (random)
object. “Find its (continuous quantitative characteristic rounded to integer) or (dis-
crete quantitative characteristic).”

[Calculation of such characteristic is absent in standard software.]
The contestant is to guess that the only possible way to solve the task in given time is

creating an image of the object by means of standard software and looking at it.

Examples:

Task 20. How many zeros has the function F(X) = sin X + 0.2 X − 0.01 X 2, 0.8 ≤ X ≤ 5.7?

Task 21. What is the value of the least local maximum of (such function) rounded to
integer?

The examination program itself solves such tasks by means of (written in advance)
procedure where random values are input.

5. Non-Standard Tasks in Programming

In contrast to subsections 4.2, 4.3 and 4.4, tasks below are intended to be solved without
existing software. One of the techniques is involving too large numbers.

Tasks are given in a conventional Pascal-like language, the contestant is to guess the
(very simple) syntax of this language.

General task 22. (Analyzing a program). Given a program. “What Input will yield given
Output?”

A simple example:

Task 23. Given the program
 M := 1000^1000; Input X; X := 2 * X + M;
 If X < 102 + M then X := X + 50 − M else X := X + 80 − M;
 Output X.
What Input will yield Output 146? [answer: 48]

P.S. Pankov, J.R. Janalieva170

General task 24. (Graphical operations). Given some graphical operations involving
objects that do not fit on the screen. How many pixels will be coloured?

A simple example:

Task 25. Given a piece of program:

 Line (20, 2000)−(20, 5000), red.
 Line (15, 2100)−(15, 2200), green.
 Line (15, 2100)−(15, 2150), red.
How many pixels will be red? How many pixels will be green?
The following types are well-known. We mention them for completeness.

General task 26. (Manual execution). Given a program without input and with large
intermediate results. What will the Output be?

General task 27. (Acceleration of program). Given a program without input working
too slowly (with some embedded cycles which can be eliminated). What will the Out-
put be?

6. Interactive Tasks with “Black Box”

For reactive tasks, the contestant is to write a program which will call given procedure(s)
and find the answer by their responses. We propose the contestant to make queries him/
herself.

The simplest example is:

Task 28. You are to detect an unknown integer between 120 and 1100. For this purpose
you may guess numbers and obtain responses “Guess higher”, “Guess lower”, “Exact-
ly!” If you solve the task in less than 11 queries you will get the full score.

Of interest for students waere:

General task 29*. You are to reach the goal in a (may be unusual, see Borubaev et al.,
2003) space. For this purpose you may choose the directions of your steps and obtain
distances to the goal as responses.

7. Output-Only Tasks – Approximate Calculations

General task 30*. A random geometrical object is described. To get full score calculate
its (quantitative characteristic) with the accuracy …

Remark 1. Such tasks are more interesting than logically equivalent “calculate the defi-
nite integral”.
Remark 2. A task about the length of an arc of parabola gave the paradoxical, although
predictable result. All students who knew the formula for arc length got into a tangle, but
most of students, who did not know this formula, have solved the task correctly.

Conducting Complex Competitions in Informatics with Individual Tasks 171

8. Output-Only and Open-Ended Tasks – Optimization

A random function to be optimized may be constructed in such a way that the exact an-
swer is known but it is practically impossible to find it. Then the task is “Find the maxi-
mum/minimum of the function … with the accuracy…” or “as precisely as possible”.

For example, the function F(X) = A(X − C)4 + B(X − C)2 + D after opening the brack-
ets by the examination program where random (individual) real numbers

A ∈ [5.1, 5.2]; B ∈ [2.1, 2.2]; C ∈ [5, 10]; D ∈ [10, 30] (argmin F(X) = C;
min F(X) = D).

Tasks with an unknown exact answer should be used in the final competition only.
Difficulty of obtaining results for different random functions must be equal, as in the

example.
If the contestant submits an approximate answer M < D then it is incorrect; else the

smaller the difference (M − D), the better is the answer.
(We recall the traditional procedure.) During the competition the examination pro-

gram checks correctness of submitted answers only. After the competition the submitter
of the best result earns the full score and other contestants who submitted correct an-
swers earn corresponding parts of the full score.

8. Conclusion

We hope that implementation of tasks of types listed above will enrich competitions
like Bebras, will distinguish young persons who have good command in informatics as
whole, but are not experts in programming, and will attract more young people to infor-
matics. Developing software for such competitions will be of interest for programmers.

References

Pankov, P.S., Janalieva, J.R. (1995). Experience and perspectives of using UNIQTEST complex of unique tests
in the learning process. Theses of Reports of Scientific-Practical Conference Education and Science in New
Geopolitical Space. Bishkek, International University of Kyrgyzstan. (In Russian).

Borubaev, A.A., Pankov, P.S., Chekeev, A.A. (2003). Chapter 4. Constructive and computer presentations of
uniform spaces. In: Borubaev, A.A. et al., Spaces Uniformed by Coverings. Budapest. Hungarian-Kyrgyz
Friendship Society.

Janalieva, J.R. (2009). Development of software for the examination on the basis of extended tasks. In: Pro-
ceedings of the VI International Scientific-Practical Conference Intellectual Technologies in Education,
Economics, Management. Voronezh, Russia, 330–335. (In Russian).

Pankov, P.S. (2010). Real processes as sources for tasks in informatics. Olympiads in Informatics, 4, 95–103.
Janalieva, J.R. (2012). Conducting offline informatics olympiads with individual tasks. Olympiads in Informa-

tics, 6, 170–177.

P.S. Pankov, J.R. Janalieva172

General task 30*. A random geometrical object is described. To get full score calculate its
(quantitative characteristic) with the accuracy …

Remark 1. Such tasks are more interesting than logically equivalent “calculate the definite integral”.
Remark 2. A task about the length of an arc of parabola gave the paradoxical, although predictable

result. All students who knew the formula for arc length got into a tangle, but most of students, who did
not know this formula, have solved the task correctly.

8. Output-Only and Open-Ended Tasks - Optimization

A random function to be optimized may be constructed in such a way that the exact answer is
known but it is practically impossible to find it. Then the task is “Find the maximum/minimum of the
function … with the accuracy…” or “as precisely as possible”

For example, the function F(X)=A(XC)4+B(XC)2+D after opening the brackets by the
examination program where random (individual) real numbers

A  [5.1, 5.2]; B  [2.1, 2.2]; C  [5, 10]; D  [10, 30] (argmin F(X) = C; min F(X) = D).
Tasks with an unknown exact answer should be used in the final competition only.
Difficulty of obtaining results for different random functions must be equal, as in the example.
If the contestant submits an approximate answer M<D then it is incorrect; else the smaller the

difference (MD), the better is the answer.
(We recall the traditional procedure.) During the competition the examination program checks

correctness of submitted answers only. After the competition the submitter of the best result earns the
full score and other contestants who submitted correct answers earn corresponding parts of the full
score.

9. Conclusion

We hope that implementation of tasks of types listed above will enrich competitions like Bebras,
will distinguish young persons who have good command in informatics as whole, but are not experts in
programming, and will attract more young people to informatics. Developing software for such
competitions will be of interest for programmers.

References

Pankov, P.S., Janalieva, J.R. (1995). Experience and perspectives of using UNIQTEST complex of unique tests in the
learning process. Theses of Reports of Scientific-Practical Conference Education and Science in New Geopolitical Space.
Bishkek, International University of Kyrgyzstan. (In Russian).

Borubaev, A.A., Pankov, P.S., Chekeev, A.A. (2003). Chapter 4. Constructive and computer presentations of uniform
spaces. In: Borubaev, A.A. et al., Spaces Uniformed by Coverings. Budapest. Hungarian-Kyrgyz Friendship Soci-ety,.

Janalieva, J.R. (2009). Development of software for the examination on the basis of extended tasks. In: Proceedings of the
VI International Scientific-Practical Conference Intellectual Technologies in Education, Economics, Management. Voro-
nezh, Russia, 330–335. (In Russian).

Pankov, P.S. (2010). Real processes as sources for tasks in informatics. Olympiads in Informatics, 4, 95–103.

Janalieva, J.R. (2012). Conducting off-line informatics olympiads with individual tasks. Olympiads in Informatics, 6, 170–
177.

P.S. Pankov (1950), doctor of physical-math. sciences, prof., corr. member of
Kyrgyzstan National Academy of Sciences (KR NAS), was the chairman of the
jury of Bishkek City OIs (1985-2013), of Republican OIs (1987-2012), the leader
of Kyrgyzstan teams at IOIs (2002-2013). Graduated from the Kyrgyz State
University in 1969, is a main research worker of Institute of theoretical and
applied mathematics of KR NAS, a professor of the International University of

P.S. Pankov (1950), doctor of physical-math. sciences, prof., corr.
member of Kyrgyzstan National Academy of Sciences (KR NAS), was
the chairman of the jury of Bishkek City OIs (1985–2013), of Repub-
lican OIs (1987–2012), the leader of Kyrgyzstan teams at IOIs (2002–
2013). Graduated from the Kyrgyz State University in 1969, is a main
research worker of Institute of theoretical and applied mathematics of
KR NAS, a professor of the International University of Kyrgyzstan.

Kyrgyzstan.

J.R. Janalieva (1969), candidate of pedagogical sciences, conducts various
competitions on mathematics, informatics and languages, including collective
ones for students of Bishkek and Internet ones for students of Kyrgyzstan.
Graduated from the Kyrgyz State University in 1991, she works as a docent of the
International University of Kyrgyzstan.

J.R. Janalieva (1969), candidate of pedagogical sciences, conducts
various competitions on mathematics, informatics and languages, in-
cluding collective ones for students of Bishkek and Internet ones for
students of Kyrgyzstan. Graduated from the Kyrgyz State University
in 1991, she works as a docent of the International University of Kyr-
gyzstan.

Olympiads in Informatics, 2015, Vol. 9, 173–191
DOI: http://dx.doi.org/10.15388/ioi.2015.14 173

Multiple Criteria Decision Methods in
Informatics Olympiads

Jūratė SKŪPIENĖ
Vilnius University Institute of Mathematics and Informatics
Akademijos 4, LT-08663, Vilnius, Lithuania
e-mail: jurate.skupiene@mii.vu.lt

Abstract. Multiple Criteria Decision Making (MCDM) is applied in a variety of areas, including
education. Informatics Olympiads, problem solving contests for high school students, is the area
where MCDM methods can also be applied. The case of the Lithuanian Informatics Olympiad
is analysed in this paper. There are several aspects occuring while maintaining the contest that
requires decision making. The work of each contestant is evaluated in terms of several criteria,
where each criterion is measured according to its own scale (but the same scale for each contes-
tant). Several jury members are involved in the evaluation. Thus we get a problem: how to calcu-
late the aggregated score for whole submission in the above mentioned situation. Another similar
problem is making decision on national team selection for other international contests where each
candidate is evaluated in terms of several criteria. The chosen methodology for solving this prob-
lem is multiple criteria decision analysis (MCDA). The outcome of this paper is the score aggrega-
tion method proposed to be applied in LitIO developed using MCDA approaches.

Keywords: Informatics Olympiads, programming contests, evaluation, grading, multiple criteria
decision analysis.

1. Introduction

The field of multiple criteria decision analysis (MCDA) is also termed as a multiple
criteria decision aid or multiple criteria decision making (MCDM). Its target is to help
reach a consensus and compromises between conflicting goals (i.e., multiple criteria) in
complex problems.

In real life it is unusual that the problem is presented to the analyst in a form of a
clearly defined set of alternatives and criteria (Belton and Stewart, 2003). Problems
might be complex and confusing and they typically involve a wide range of criteria that
need to be considered. They might involve conflicting criteria, the conflicts between
different stakeholders about the importance of criteria in making a decision. It might
even be required to define criteria as they are not clear at the initial stage of the prob-
lem. The general goal of MCDA is to assist individual or groups of decision makers to
choose the best alternative.

J. Skūpienė174

MCDA is defined as a collection of formal approaches which seek to take into ac-
count multiple criteria in order to help decision makers to explore different decision
alternatives (Belton and Stewart, 2003).

Potential problems that MCDA can be applied to solve come from a variety of ar-
eas like business, medicine, banking, marine industry, bioinformatics, public policies or
education (Aruldoss et al., 2013).

Education is one of the areas where MCDA can be widely applied. These are learning
content and learning software evaluation problems (Kurilovas and Serikoviene, 2010),
higher education decision making problems, (resource allocation, performance manage-
ment, budgeting and scheduling) (Ho et al., 2006), using MCDA for accreditation in
order to evaluate IT skills and qualifications (Siskosa et al., 2007), evaluating factors
that determine the quality of higher education (Tsinidou et al., 2010), evaluation of the
quality of e-learning systems (Tzenga et al., 2007) and educational websites (Shee and
Wang, 2008), pedagogical evaluation of teachers (Filipe et al., 2015), evaluating quality
of learning objects (Kurilovas et al., 2011).

The majority of research of application of MCDA in education that we discovered
was related to the evaluation of quality of various educational factors or tools. However,
we noticed that the choice of MCDA approaches highly depends upon the category of
the problem under consideration.

Four broad categories of MCDA problems have been proposed (Roy, 1996):
The choice problematique. ● Problems fall into this category if there is a need to
make a choice from a set of alternatives. However the set of alternatives might be
either finite or infinite.
The sorting problematique. ● In this case the given alternatives have to be sorted
into several categories, such as “definitely acceptable”, “possibly acceptable”,
“definitely unacceptable”.
The ranking problematique. ● The alternatives have to be ranked in some order of
preference.
The description problematique. ● Possible alternatives and their consequences
have to be described formally in a systematic way so that the decision makers
could evaluate the alternatives.

Variations or amendments to this classification are also possible (Belton and Stew-
art, 2003).

Another classification of MCDA problems is one-off versus repeated problems.
In some cases, a decision has to be made only once as the problem is unique. This is
a one-off problem and the process is oriented towards arriving at a specific decision.
In the case of repeated problems the same problem is recurring a few times or peri-
odically. Then MCDA is oriented towards creating a procedure to be used in decision
making.

An MCDA problem can also be classified either as a single decision making or group
decision making problem. In the case of a group decision making problem, several deci-
sion makers are involved and they can have different values and opinions how to address
the problem. In order to approve the decision, the consensus and compromise among
different decision makers has to be reached.

Multiple Criteria Decision Methods in Informatics Olympiads 175

Different authors suggest different stages of the MCDA process. (Val, 2002) propos-
es a scheme consisting of four stages in particular, problem structuring (decomposed
into five sub-stages), preference elicitation, recommended decision, and sensitivity
analysis. (Oberti, 2004) suggests four stages of the MCDA process, i.e., beginning of
the study, evaluation of actions, multiple criteria modelling, multiple criteria process-
ing, and recommendations.

Each stage consists of two or three sub-stages. (Belton and Stewart, 2003) offer
three stages: problem identification and structuring, model building, and using a model
to inform and challenge thinking. The scheme based on (Belton and Stewart, 2003) is
presented in Fig. 1.

These stages reflect a variety of approaches to MCDA, however, they confirm that
an extensive problem analysis and structuring are vital before mathematical algorithms
can be applied. In all those approaches the stages are iterative and interactive, i.e., they
foresee a return to previous stage, review and update its outcome.

Even though mathematical MCDA algorithms help to arrive at some acceptable al-
ternative, many authors emphasize that MCDA cannot be used to arrive at the “right”
answer and it cannot provide a fully objective analysis and totally eliminate subjectivity
(Belton and Stewart, 2003). The process of MCDA is emphasised more than the decision
it helps to arrive at (Keeney and Raiffa, 1976; Roy, 1996; Zeleny, 1982). The process
involves not only the application of mathematical algorithms to come up to the final
decision, but also learning about the problem, identifying the key concerns, priorities,
uncertainties, values, exploring and generating different alternatives. This should lead to
better explainable and justifiable decisions.

2. Submission (Contestant) Ranking in LitIO as an MCDA Problem

The Lithuanian Informatics Olympiad (LitIO) is a state supported algorithmic prob-
lem solving competition for students in secondary education. The contestants are given
algorithmic tasks and have to solve them in four or five hour contest sessions. They
have to design and implement the algorithm in order to solve the task. The task may
also require to submit reasoning for algorithm design or a set of test cases. The material

Fig. 1. Basic stages of the MCDA process.

J. Skūpienė176

submitted for evaluation by a contestant is called a submission. After the submission has
been evaluated in terms of separate criteria where each criterion is measured according
to its own scale (but the same scale for each contestant), the aggregated score has to be
calculated so that the submissions can be ranked with respect to other submissions for
the same task. Measuring the distance between contestants is also important.

If the contest also serves as team selection event, then the decision has to be made
which contest participants will be invited to represent country in a regional or interna-
tional contest. In the long term practice several criteria for this selection were used and
the decision is made by the Scientific Commitee of LitIO.

Evaluation in LitIO as such can be treated as an MCDA problem, and the work
presented in (Skūpienė, 2010) corresponds to the first stage of the MCDA process, i.e.,
problem structuring. The outcome of problem structuring is an explicit list of criteria and
alternatives. The task that has to be explored in this paper is ranking of submissions once
the submisions have been evaluated in terms of separate criteria. Note, that in practice,
the overall ranking has to be based on the scores of several tasks. However, in this paper,
we limit our research to determining a score for one task only.

Team selection in LitIO can also be treated as an MCDA problem. The list of selec-
tion criteria, as well as the procedure how to evaluate a contestant aginst each criterion
has been decided many years ago. The criterion are: score of the final round of LitIO in
the current year; score of the regional contest in the current year (if applicable); awards
received in regional and international competitions (there’s been approved a concrete list
of such competitions); competitor’s grade in the current year. There is a consensus over
that among the decision makers.

However the criterion are not directly comparable and the understading of the goals
of the team selection varies. Therefore the discussions and the search for the algorithm
for the team selection continues. The overall problem - determining the ranking based
on the criteria can also be treated as as MCDA problem.

Three major roles can be identified in MCDA. They are decision maker, decision
analyst and stakeholder (Val, 2002).

The scientific part of LitIO is managed by the scientific committee. The scientific
committee is responsible for all the scientific decisions, i.e., approving the syllabus of
the contest, designing tasks and tests, approving the evaluation procedure, performing
the evaluation, approving ranking and declaring winners and selecting teams to represent
Lithuanian in regional and international contests. In 2015 the scientific committee of
LitIO consisted of 22 members (Sci, 2015). The scientific committee is the only decision
maker in this context. The role of decision analyst is played by the author of this paper.

The most important stakeholders are interested programming and algorithmics stu-
dents in secondary education from all over Lithuania, as well as the community of infor-
matics teachers. This community of stakeholders is affected directly by each decision or
change in the evaluation scheme. The scientific committee of LitIO is also a stakeholder,
because possible changes in the evaluation scheme might change their working proce-
dures, time spend on task design and evaluation.

The model of relationship between the different roles in the decision analysis process
in the problem under consideration is presented in Fig. 2.

Multiple Criteria Decision Methods in Informatics Olympiads 177

There were suggested several ways how to classify MCDA problems (Belton and
Stewart, 2003; Roy, 1996). Submission (contestant) ranking problem is the ranking
problematique as the final outcome of the evaluation is a ranked list of contestants based
on which the awards will be distributed or team selected.

Based on another type of classification, the submission ranking problem is a repeated
problem, therefore the focus of this research is on constructing the ranking procedure
which could be applied annually in LitIO.

It is a group decision making problem, because the role of decision maker is played
by the members of the LitIO scientific committee and the opinions of all of those mem-
bers who are involved in the evaluation of submissions of a particular task has to be
taken into account.

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the fol-
lowing step is to construct a decision matrix. In this section we present the decision
matrix constructed both previously described situation, i.e. for the submission ranking
problem and for the contestant ranking problem.

Let

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 be a finite set of alternatives (i.e., submissions or con-
testants),

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 be a finite set of criteria (i.e., evaluation criteria or
team selection criteria), and

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 be a finite set of decision makers
(i.e., scientific commitee members).

Assume that all the decision makers are involved into defining relative weights and
determining performance of each alternative in terms of each criterion.

Let

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 be a relative weight of criteria

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 given by decision maker

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

Let

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 be the performance of alternative

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 in terms of criteria

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 assigned by decision maker

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

.
Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 in terms of criterion

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 manually, then the value of

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 is
linguistic. Otherwise the value of

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 is numeric and

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

.
In the case of team selection problem the value of

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 is always numeric.
Then the submission ranking problem can be expressed by the following decision

matrix:






 



Fig. 2. Model of relationship between different roles in decision analysis in the analysed problem.

J. Skūpienė178

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

(1)

where

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

.
Note, that the classical MCDA algorithms, assume the single decision maker prob-

lem, i.e. they assume that

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

.

4. Application of Fuzzy Numbers for Quantifying Linguistic Variables

Some of the proposed evaluation in LitIO criteria are measured manually using linguis-
tic variables. Linguistic variables are variables whose values are linguistic terms and not
numbers. They are used to express results of subjective qualitative evaluation. Linguistic
variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoi-
dal fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005;
Triantaphyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of
membership (membership function) in the interval

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

, i.e. for any subset

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 of a uni-
verse

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 it is possible to define a membership function of a fuzzy set:

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

.
A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 notation for fuzzy sets.
Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

Negation: ●

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =





0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

.
Union: ●

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

.
Intersection: ●

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =





0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, nor-
malised, its membership function is defined in

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 and is piecewise continuous.
Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number repre-

sented with four points as follows:

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =





0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 and this representation is inter-
preted in the following way:

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =





0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

(2)

Multiple Criteria Decision Methods in Informatics Olympiads 179

When

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =





0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

, the trapezoidal number coincides with a triangular fuzzy number.
Many conversion scales have been created for transforming linguistic terms into

fuzzy numbers. (Chen et al., 1992) proposed eight conversion scales with different num-
bers of linguistic terms which are commonly used. An example pretty standard fuzzy
set theory nine-item scale is presented in Table 1 and Fig. 3 (Sule, 2001). The choice
of a concrete scale from the available ones is intuitive and left to the responsibility of
the decision maker. Note that the same linguistic term in different conversion scales can
have different crisp values.

Thus, all the linguistic terms, are converted to fuzzy numbers using the chosen scales,
and after this the decision matrix will contain only numeric (crisp or fuzzy) values. In
this paper we will not suggest the concrete scales, because the scales are chosen intui-
tively and we believe that the jury members also have to be involved in the decision.
Only after the piloting of the evaluation scheme it might be possible to make a final deci-
sion about the scales.

Table 1
Weights of a trapezoidal distribution of a linguistic scale (Sule, 2001)

Item of linguistic scale Numerical weights

Very poor (VP) (0, 0, 0, 0.2)
Between poor and very poor (BPV) (0, 0.2, 0.2, 0.4)
Poor (P) (0, 0.2, 0.2, 0.4)
Between poor and fair (BPF) (0, 0.2, 0.5, 0.7)
Fair (F) (0.3, 0.5, 0.5, 0.7)
Between fair and good (BFG) (0.3, 0.5, 0.8, 1)
Good (G) (0.6, 0.8, 0.8, 1)
Between good and very good (BGV) (0.6, 0.8, 0.8, 1)
Very good (VG) (0.8, 1, 1, 1)

Fig. 3. Trapezoidal fuzzy numbers are used to quantify nine-item
linguistic scale (Sule, 2001).

J. Skūpienė180

5. Submission Ranking Problem Constraints

The decision context of our problem is rather specific. The problem belongs to the rank-
ing problematique category and is a group decision making problem. Moreover, the
chosen method will have to be applied in an educational informatics contest situation.
Therefore it is highly important that the approach would be accepted by the community
of informatics contests. (Belton and Stewart, 2003) emphasize that the ability to explain
the chosen to approach to a variety of backgrounds is an important factor in the choice
of MCDA approach.

The score aggregation and team selection procedures contains parts which are re-
vealed to the contestants, but it also contains the hidden parts. For example, the scores
assigned by individual jury members during manual evaluation are not revealed to the
contestants, only the aggregated score is. We emphasise that the parts of the scoring
function which are revealed to the contestants must be easily understandable and trans-
parent. More complicated techniques could be applied to the hidden parts.

It must be noted that our problem is a repeated problem. This means that the pro-
cess of ranking submissions and contestants will have to be repeated each time a LitIO
contest session takes place, though on different submissions possibly of different con-
testants. Therefore it is very important to achieve that the stakeholders would accept and
understand the method.

Even though the problem is described as ranking problematique, it is not enough to
present ranking to the contestants. The jury (during medal allocation procedure) and the
contestants are interested not only in the position in the ranking table, but also in the
score differences among a group of contestants.

It is commonly accepted in LitIO that a score aggregation function mapping the
performances for separate attributes (groups of criteria) into real numbers is defined and
announced to the contestants in advance.

Therefore we will focus on MCDA approaches which foresee defining score ag-
gregation function and partial score functions, inducing a ratio scale, and the ranking is
made after the aggregated scores for each alternative have been calculated.

6. Choice of MCDA Approach

Many different MCDA approaches are presented and categorised in (Belton and Stewart,
2003; Carlsson and Fullér, 1996; Chen et al., 1992; Kahraman, 2008; Triantaphyllou,
2000). Instead of focusing of separate MCDA methods, we will first look at the major
families of MCDA methods. (Belton and Stewart, 2003) distinguish three major families
of MCDA approaches:

Value measurement theory ● (Keeney and Raiffa, 1976). The main idea of this ap-
proach is to construct a value function which would associate each alternative with
a real number in order to produce ranking of alternatives. The main idea of this

Multiple Criteria Decision Methods in Informatics Olympiads 181

theory correspond the intentions and reasoning for our problem. Therefore we will
include it for further consideration.
Satisficing (or Goal programming) ● (Simon, 1976). This approach instead of cre-
ating one value function operates on partial value functions. By partial value func-
tion we mean a value function which maps performance of alternatives in terms
of a certain criteria to real number. The main idea of the approach is that the most
important criterion is identified and the acceptable level of it is determined. Then
the alternatives are eliminated until all the remaining alternatives achieve the ac-
ceptable level. At this point the second most important alternative together with
its satisfactory level is identified. The alternatives which do not reach satisfactory
level of the second criteria are eliminated again.

This approach is not suitable for our problem as it does not assume score
aggregation at all.
Outranking ● (Roy, 1996). Outranking methods also operate with partial value func-
tions and involve pair-wise comparisons of alternatives. An alternative is domi-
nated by another alternative if the other alternative performs better in terms of one
or more criteria and equals in the remaining criteria. The concept of outranking is
introduced.

The outranking relationship of two alternatives describes that even though the
two alternatives do not dominate each other mathematically, the decision maker
accepts the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again
deals with preferences in terms of separate criteria and does not foresee score ag-
gregation using single value function. The concept of outranking, i.e. allowing the
decision maker to take the risk of considering one alternative better than the other
is not acceptable in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,
which is required in ranking submissions problem as well. Therefore further we focus on
algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to
be applied for MCDA problems. Fuzzy logic is used in group decision making which is
our case. However, fuzzy logic is not a separate methodology, but a tool that can be ap-
plied within other MCDA approaches including the ones described above. Therefore we
assume that fuzzy logic might be applicable in case of this problem and we will look at
the concepts of fuzzy logic as well.

7. Choice of Value Measurement Theory Method

Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raif-
fa, 1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each
alternative in order to produce ranking of alternatives. The value function is defined as a

J. Skūpienė182

function assigning a non-negative number to each alternative indicating the desirability
(or preference) of the alternative.

The value function has to satisfy the following requirements: an alternative

alternatives do not dominate each other mathematically, the decision maker accepts

the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again deals

with preferences in terms of separate criteria and does not foresee score aggregation

using single value function. The concept of outranking, i.e. allowing the decision maker

to take the risk of considering one alternative better than the other is not acceptable

in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,

which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.

12

 is
preferred to alternative

alternatives do not dominate each other mathematically, the decision maker accepts

the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again deals

with preferences in terms of separate criteria and does not foresee score aggregation

using single value function. The concept of outranking, i.e. allowing the decision maker

to take the risk of considering one alternative better than the other is not acceptable

in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,

which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.

12

 if and only if

alternatives do not dominate each other mathematically, the decision maker accepts

the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again deals

with preferences in terms of separate criteria and does not foresee score aggregation

using single value function. The concept of outranking, i.e. allowing the decision maker

to take the risk of considering one alternative better than the other is not acceptable

in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,

which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.

12

; the alterna-
tives are indifferent

alternatives do not dominate each other mathematically, the decision maker accepts

the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again deals

with preferences in terms of separate criteria and does not foresee score aggregation

using single value function. The concept of outranking, i.e. allowing the decision maker

to take the risk of considering one alternative better than the other is not acceptable

in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,

which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.

12

 if and only if

alternatives do not dominate each other mathematically, the decision maker accepts

the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again deals

with preferences in terms of separate criteria and does not foresee score aggregation

using single value function. The concept of outranking, i.e. allowing the decision maker

to take the risk of considering one alternative better than the other is not acceptable

in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,

which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.

12

. Note, that the value
function must induce complete order.

Value measurement approach introduces partial value functions

alternatives do not dominate each other mathematically, the decision maker accepts

the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again deals

with preferences in terms of separate criteria and does not foresee score aggregation

using single value function. The concept of outranking, i.e. allowing the decision maker

to take the risk of considering one alternative better than the other is not acceptable

in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,

which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.

12

. They are
constructed for separate criteria and partial value functions hold the essential features
(i.e. induces complete order) of value functions in terms of separate criteria.

There were developed several value measurement theory algorithms and the most
popular ones are Weighted Sum Model and Weighted Product Model. We would also as-
sign Topsis algorithm (we will present it later) to the same category of algorithms. Note
that those algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single deci-
sion maker problems (Triantaphyllou, 2000). It can be described using the following
formula:

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

(3)

where

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

 and

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

.
One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be

easily explained by the decision makers to a variety of backgrounds (Belton and Ste-
wart, 2003).

Note that the requirement preferential independence has to be satisfied so that the
WSM model could be applied (Belton and Stewart, 2003). Suppose that two alternatives

alternatives do not dominate each other mathematically, the decision maker accepts

the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again deals

with preferences in terms of separate criteria and does not foresee score aggregation

using single value function. The concept of outranking, i.e. allowing the decision maker

to take the risk of considering one alternative better than the other is not acceptable

in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,

which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.

12

 and

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

 differ only on a set of criteria

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

 (

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

 is a proper subset of

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

) and va-
lues of partial functions are equal on all other criteria. Then it is possible to decide the
relationship of

alternatives do not dominate each other mathematically, the decision maker accepts

the risk of regarding one alternative almost surely better than the other.

We consider this approach also unacceptable in our situation because it again deals

with preferences in terms of separate criteria and does not foresee score aggregation

using single value function. The concept of outranking, i.e. allowing the decision maker

to take the risk of considering one alternative better than the other is not acceptable

in a contest community where scoring is a sensitive issue.

Out of three major MCDA families, only one foresees a construction value function,

which is required in ranking submissions problem as well. Therefore further we focus on

algorithms of value measurement theory.

Besides the main families of MCDA approaches, fuzzy logic is often considered to be

applied for MCDA problems. Fuzzy logic is used in group decision making which is our

case. However, fuzzy logic is not a separate methodology, but a tool that can be applied

within other MCDA approaches including the ones described above. Therefore we assume

that fuzzy logic might be applicable in case of this problem and we will look at the concepts

of fuzzy logic as well.

7. Choice of Value Measurement Theory Method
Value measurement theory was mainly started by Keeney and Raiffa (Keeney and Raiffa,

1976). More on it can be found in (French, 1988; Roberts, 1979).

The main idea of this theory is that a real number (“value”) is associated with each

alternative in order to produce ranking of alternatives. The value function is defined as a

function assigning a non-negative number to each alternative indicating the desirability (or

preference) of the alternative.

The value function has to satisfy the following requirements: an alternative Ai1 is pre-

ferred to alternative Ai2 (Ai1  Ai2) if and only if V (Ai1) > V (Ai2); the alternatives are

indifferent (Ai1 ∼ Ai2) if and only if V (Ai1) = V (Ai2). Note, that the value function must

induce complete order.

Value measurement approach introduces partial value functions vj(Ai). They are con-

structed for separate criteria and partial value functions hold the essential features (i.e.

induces complete order) of value functions in terms of separate criteria.

12

 and

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

 (i.e.

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

 or

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

 or

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

) knowing their
performances on criteria from

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 only, i.e. irrespective of values of their performances
on all the other criteria.

However among the submission evaluation criteria there are several dependent cri-
teria, e.g. quality of programming style is related either to the performance of an algo-
rithm-code complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial
independence of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation
in LitIO. WSM still can be applied for aggregating those criteria that are preferentially
independent. Special functions have to be introduced for aggregating scores of depen-
dent criteria.

In the team selection problem the partial independence requirement is fully satisfied.
Another requirement is to use the same scale of measurement for all the criteria.

Performance of submissions as well as performance of contestants are measured using

Multiple Criteria Decision Methods in Informatics Olympiads 183

different scales. However we intend to unify the scales by constructing the correspond-
ing partial value functions.

WSM can be potentially applied for score aggregation in LitIO, though the above
mentioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following
formula:

WSM can be potentially applied for score aggregation in LitIO, though the above men-

tioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following formula:

V (Ai) =
m

j=1
[vj(Ai)]wj (4)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There have been suggested arguments that preferences are often perceived in ratio scale

terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyllou, 2000).

The consequence of trade an additive approach into multiplicative approach is that partial

value functions have to satisfy ratio scale properties instead of interval scale properties

Simplicity of the approach is a high priority in the choice of score aggregation algorithm.

We conclude that the WSM algorithm would be more suitable than WPM for the submission

ranking problem as it is simpler and better understandable to the wide audience. Otherwise

they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the overall

number of stakeholder is much smaller. Usually there are not more than 10 candidates

among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian and

Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis belongs

to Value measurement theory approaches, nor to other specific family of MCDA approaches.

However, as it involves calculating value of closeness coefficient and ranking based on the

values of the coefficient, we suggest that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution and

negative ideal solution. The positive ideal solution is calculated as a function from the

best performance values of the concrete decision matrix in terms of each criteria: A∗ =

{v1∗, v2∗, · · · , vm∗}, where vj∗ = max
i

(vj(Ai)), i = 1, · · · , n.

The negative ideal solution is calculated as a function from the worst performance values

in terms of each criteria: A− = {v1−, v2−, · · · , vm−}, where vj− = min
i

(vj(Ai)), i = 1, · · · , n.

For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated: Si∗ =
m

j=1(vj(Ai) − vj∗), and

14

(4)

where

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

 and

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

.
There have been suggested arguments that preferences are often perceived in ratio

scale terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyl-
lou, 2000). The consequence of trade an additive approach into multiplicative ap-
proach is that partial value functions have to satisfy ratio scale properties instead of
interval scale properties.

Simplicity of the approach is a high priority in the choice of score aggregation algo-
rithm. We conclude that the WSM algorithm would be more suitable than WPM for the
submission ranking problem as it is simpler and better understandable to the wide audi-
ence. Otherwise they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the
overall number of stakeholder is much smaller. Usually there are not more than 10 can-
didates among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian
and Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis
belongs to Value measurement theory approaches, nor to other specific family of MCDA
approaches. However, as it involves calculating value of closeness coefficient and rank-
ing based on the values of the coefficient, we suggest that it is appropriate to consider
it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution
and negative ideal solution. The positive ideal solution is calculated as a function from
the best performance values of the concrete decision matrix in terms of each criteria:

WSM can be potentially applied for score aggregation in LitIO, though the above men-

tioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following formula:

V (Ai) =
m

j=1
[vj(Ai)]wj (4)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There have been suggested arguments that preferences are often perceived in ratio scale

terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyllou, 2000).

The consequence of trade an additive approach into multiplicative approach is that partial

value functions have to satisfy ratio scale properties instead of interval scale properties

Simplicity of the approach is a high priority in the choice of score aggregation algorithm.

We conclude that the WSM algorithm would be more suitable than WPM for the submission

ranking problem as it is simpler and better understandable to the wide audience. Otherwise

they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the overall

number of stakeholder is much smaller. Usually there are not more than 10 candidates

among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian and

Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis belongs

to Value measurement theory approaches, nor to other specific family of MCDA approaches.

However, as it involves calculating value of closeness coefficient and ranking based on the

values of the coefficient, we suggest that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution and

negative ideal solution. The positive ideal solution is calculated as a function from the

best performance values of the concrete decision matrix in terms of each criteria: A∗ =

{v1∗, v2∗, · · · , vm∗}, where vj∗ = max
i

(vj(Ai)), i = 1, · · · , n.

The negative ideal solution is calculated as a function from the worst performance values

in terms of each criteria: A− = {v1−, v2−, · · · , vm−}, where vj− = min
i

(vj(Ai)), i = 1, · · · , n.

For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated: Si∗ =
m

j=1(vj(Ai) − vj∗), and

14

WSM can be potentially applied for score aggregation in LitIO, though the above men-

tioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following formula:

V (Ai) =
m

j=1
[vj(Ai)]wj (4)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There have been suggested arguments that preferences are often perceived in ratio scale

terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyllou, 2000).

The consequence of trade an additive approach into multiplicative approach is that partial

value functions have to satisfy ratio scale properties instead of interval scale properties

Simplicity of the approach is a high priority in the choice of score aggregation algorithm.

We conclude that the WSM algorithm would be more suitable than WPM for the submission

ranking problem as it is simpler and better understandable to the wide audience. Otherwise

they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the overall

number of stakeholder is much smaller. Usually there are not more than 10 candidates

among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian and

Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis belongs

to Value measurement theory approaches, nor to other specific family of MCDA approaches.

However, as it involves calculating value of closeness coefficient and ranking based on the

values of the coefficient, we suggest that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution and

negative ideal solution. The positive ideal solution is calculated as a function from the

best performance values of the concrete decision matrix in terms of each criteria: A∗ =

{v1∗, v2∗, · · · , vm∗}, where vj∗ = max
i

(vj(Ai)), i = 1, · · · , n.

The negative ideal solution is calculated as a function from the worst performance values

in terms of each criteria: A− = {v1−, v2−, · · · , vm−}, where vj− = min
i

(vj(Ai)), i = 1, · · · , n.

For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated: Si∗ =
m

j=1(vj(Ai) − vj∗), and

14

, where

WSM can be potentially applied for score aggregation in LitIO, though the above men-

tioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following formula:

V (Ai) =
m

j=1
[vj(Ai)]wj (4)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There have been suggested arguments that preferences are often perceived in ratio scale

terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyllou, 2000).

The consequence of trade an additive approach into multiplicative approach is that partial

value functions have to satisfy ratio scale properties instead of interval scale properties

Simplicity of the approach is a high priority in the choice of score aggregation algorithm.

We conclude that the WSM algorithm would be more suitable than WPM for the submission

ranking problem as it is simpler and better understandable to the wide audience. Otherwise

they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the overall

number of stakeholder is much smaller. Usually there are not more than 10 candidates

among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian and

Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis belongs

to Value measurement theory approaches, nor to other specific family of MCDA approaches.

However, as it involves calculating value of closeness coefficient and ranking based on the

values of the coefficient, we suggest that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution and

negative ideal solution. The positive ideal solution is calculated as a function from the

best performance values of the concrete decision matrix in terms of each criteria: A∗ =

{v1∗, v2∗, · · · , vm∗}, where vj∗ = max
i

(vj(Ai)), i = 1, · · · , n.

The negative ideal solution is calculated as a function from the worst performance values

in terms of each criteria: A− = {v1−, v2−, · · · , vm−}, where vj− = min
i

(vj(Ai)), i = 1, · · · , n.

For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated: Si∗ =
m

j=1(vj(Ai) − vj∗), and

14

,

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

.
The negative ideal solution is calculated as a function from the worst performance va-

lues in terms of each criteria:

WSM can be potentially applied for score aggregation in LitIO, though the above men-

tioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following formula:

V (Ai) =
m

j=1
[vj(Ai)]wj (4)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There have been suggested arguments that preferences are often perceived in ratio scale

terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyllou, 2000).

The consequence of trade an additive approach into multiplicative approach is that partial

value functions have to satisfy ratio scale properties instead of interval scale properties

Simplicity of the approach is a high priority in the choice of score aggregation algorithm.

We conclude that the WSM algorithm would be more suitable than WPM for the submission

ranking problem as it is simpler and better understandable to the wide audience. Otherwise

they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the overall

number of stakeholder is much smaller. Usually there are not more than 10 candidates

among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian and

Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis belongs

to Value measurement theory approaches, nor to other specific family of MCDA approaches.

However, as it involves calculating value of closeness coefficient and ranking based on the

values of the coefficient, we suggest that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution and

negative ideal solution. The positive ideal solution is calculated as a function from the

best performance values of the concrete decision matrix in terms of each criteria: A∗ =

{v1∗, v2∗, · · · , vm∗}, where vj∗ = max
i

(vj(Ai)), i = 1, · · · , n.

The negative ideal solution is calculated as a function from the worst performance values

in terms of each criteria: A− = {v1−, v2−, · · · , vm−}, where vj− = min
i

(vj(Ai)), i = 1, · · · , n.

For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated: Si∗ =
m

j=1(vj(Ai) − vj∗), and

14

, where

WSM can be potentially applied for score aggregation in LitIO, though the above men-

tioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following formula:

V (Ai) =
m

j=1
[vj(Ai)]wj (4)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There have been suggested arguments that preferences are often perceived in ratio scale

terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyllou, 2000).

The consequence of trade an additive approach into multiplicative approach is that partial

value functions have to satisfy ratio scale properties instead of interval scale properties

Simplicity of the approach is a high priority in the choice of score aggregation algorithm.

We conclude that the WSM algorithm would be more suitable than WPM for the submission

ranking problem as it is simpler and better understandable to the wide audience. Otherwise

they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the overall

number of stakeholder is much smaller. Usually there are not more than 10 candidates

among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian and

Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis belongs

to Value measurement theory approaches, nor to other specific family of MCDA approaches.

However, as it involves calculating value of closeness coefficient and ranking based on the

values of the coefficient, we suggest that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution and

negative ideal solution. The positive ideal solution is calculated as a function from the

best performance values of the concrete decision matrix in terms of each criteria: A∗ =

{v1∗, v2∗, · · · , vm∗}, where vj∗ = max
i

(vj(Ai)), i = 1, · · · , n.

The negative ideal solution is calculated as a function from the worst performance values

in terms of each criteria: A− = {v1−, v2−, · · · , vm−}, where vj− = min
i

(vj(Ai)), i = 1, · · · , n.

For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated: Si∗ =
m

j=1(vj(Ai) − vj∗), and

14

,

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

.
For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated:

WSM can be potentially applied for score aggregation in LitIO, though the above men-

tioned condition has to be observed.

Weighted Product Model (WPM). WPM can be described using the following formula:

V (Ai) =
m

j=1
[vj(Ai)]wj (4)

where i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

There have been suggested arguments that preferences are often perceived in ratio scale

terms therefore product is more natural than sum (Lootsma, 1997; Triantaphyllou, 2000).

The consequence of trade an additive approach into multiplicative approach is that partial

value functions have to satisfy ratio scale properties instead of interval scale properties

Simplicity of the approach is a high priority in the choice of score aggregation algorithm.

We conclude that the WSM algorithm would be more suitable than WPM for the submission

ranking problem as it is simpler and better understandable to the wide audience. Otherwise

they seem to be identical in terms of the problem under consideration.

For the team selection process WPM can be considered as an option, because the overall

number of stakeholder is much smaller. Usually there are not more than 10 candidates

among which the selection is performed.

Topsis (Technique for Order Preference by Similarity to Ideal Solution) (Saghafian and

Hejazi, 2005; Triantaphyllou, 2000). We did not find it explicitly stated that Topsis belongs

to Value measurement theory approaches, nor to other specific family of MCDA approaches.

However, as it involves calculating value of closeness coefficient and ranking based on the

values of the coefficient, we suggest that it is appropriate to consider it here.

Topsis introduces concepts of hypothetical solutions, i.e. positive ideal solution and

negative ideal solution. The positive ideal solution is calculated as a function from the

best performance values of the concrete decision matrix in terms of each criteria: A∗ =

{v1∗, v2∗, · · · , vm∗}, where vj∗ = max
i

(vj(Ai)), i = 1, · · · , n.

The negative ideal solution is calculated as a function from the worst performance values

in terms of each criteria: A− = {v1−, v2−, · · · , vm−}, where vj− = min
i

(vj(Ai)), i = 1, · · · , n.

For each alternative the Euclidean distance from ideal positive solution and ideal negative

solution is calculated: Si∗ =
m

j=1(vj(Ai) − vj∗), and

14

, and Si− =
m

j=1(vj(Ai) − vj−). Finally, the relative closeness coefficient to the ideal positive

solution is calculated: Fi∗ = Si∗
Si∗+Si−

.

The alternatives are ranked based on the value of the relative closeness coefficient to

the ideal solution of each alternative. This method from mathematical point of view is

interesting and appealing however, it gives in to WSM due to the simplicity of the latter.

Moreover, the score of one submission is dependant upon the quality of the submissions.

There were cases where such approach was applied in large informatics contests. However,

LitIO contestants also compete in small groups and there are cases where just few (i.e. fewer

than 10) submissions per task are presented. If the score is dependant upon the submissions

in such case, then it might become too biased.

In case of team selection, the number of alternatives is allways low (i.e. 5 to 12), however

we might consider this method, because the contestant evaluation scores play different role

in team selection than in submission evaluation. In submission evaluation the contestants

are interested in the absolute score, i.e. how good the contestant is performing in terms of

a concrete task. However in the team selection process the main question that matters is

how good the contestant is in comparison to other contestants.

After looking at several value measurement theory associated methods, we came to the

conclusion, that as simplicity and the ability of wide audience to accept the evaluation

scheme plays significant role in the choice of approaches, the WSM approach suits best to

solving evaluation in LitIO problem. Though certain requirements have to be observed. We

did not find any evidence that other methods would be more suitable than WSM.

The situation is different with team selection problem. The overall number of stake-

holders is much lower (not more than 12 contestants, their teachers and parents), relative

ranking is more important than performance in terms of a separate criterion, hidden and

revealed parts of the selection process differ form that of submission evaluation. Therefore at

this stage all the three methods, i.e. WSM, WPM and Topsis, can be presented for further

consideration.

We decided on the score aggregation methods, however they assume a single decision

maker and therefore we have to look for the extension to be applicable for group decision

problems.

15

.
Finally, the relative closeness coefficient to the ideal positive solution is calculated: Si− =

m
j=1(vj(Ai) − vj−). Finally, the relative closeness coefficient to the ideal positive

solution is calculated: Fi∗ = Si∗
Si∗+Si−

.

The alternatives are ranked based on the value of the relative closeness coefficient to

the ideal solution of each alternative. This method from mathematical point of view is

interesting and appealing however, it gives in to WSM due to the simplicity of the latter.

Moreover, the score of one submission is dependant upon the quality of the submissions.

There were cases where such approach was applied in large informatics contests. However,

LitIO contestants also compete in small groups and there are cases where just few (i.e. fewer

than 10) submissions per task are presented. If the score is dependant upon the submissions

in such case, then it might become too biased.

In case of team selection, the number of alternatives is allways low (i.e. 5 to 12), however

we might consider this method, because the contestant evaluation scores play different role

in team selection than in submission evaluation. In submission evaluation the contestants

are interested in the absolute score, i.e. how good the contestant is performing in terms of

a concrete task. However in the team selection process the main question that matters is

how good the contestant is in comparison to other contestants.

After looking at several value measurement theory associated methods, we came to the

conclusion, that as simplicity and the ability of wide audience to accept the evaluation

scheme plays significant role in the choice of approaches, the WSM approach suits best to

solving evaluation in LitIO problem. Though certain requirements have to be observed. We

did not find any evidence that other methods would be more suitable than WSM.

The situation is different with team selection problem. The overall number of stake-

holders is much lower (not more than 12 contestants, their teachers and parents), relative

ranking is more important than performance in terms of a separate criterion, hidden and

revealed parts of the selection process differ form that of submission evaluation. Therefore at

this stage all the three methods, i.e. WSM, WPM and Topsis, can be presented for further

consideration.

We decided on the score aggregation methods, however they assume a single decision

maker and therefore we have to look for the extension to be applicable for group decision

problems.

15

.

J. Skūpienė184

The alternatives are ranked based on the value of the relative closeness coefficient to
the ideal solution of each alternative. This method from mathematical point of view is
interesting and appealing however, it gives in to WSM due to the simplicity of the latter.

Moreover, the score of one submission is dependant upon the quality of the submis-
sions. There were cases where such approach was applied in large informatics contests.
However, LitIO contestants also compete in small groups and there are cases where just
few (i.e. fewer than 10) submissions per task are presented. If the score is dependant
upon the submissions in such case, then it might become too biased.

In case of team selection, the number of alternatives is allways low (i.e. 5 to 12),
however we might consider this method, because the contestant evaluation scores play
different role in team selection than in submission evaluation. In submission evalua-
tion the contestants are interested in the absolute score, i.e. how good the contestant is
performing in terms of a concrete task. However in the team selection process the main
question that matters is how good the contestant is in comparison to other contestants.

After looking at several value measurement theory associated methods, we came to
the conclusion, that as simplicity and the ability of wide audience to accept the evalu-
ation scheme plays significant role in the choice of approaches, the WSM approach
suits best to solving evaluation in LitIO problem. Though certain requirements have to
be observed. We did not find any evidence that other methods would be more suitable
than WSM.

The situation is different with team selection problem. The overall number of stake-
holders is much lower (not more than 12 contestants, their teachers and parents), relative
ranking is more important than performance in terms of a separate criterion, hidden and
revealed parts of the selection process differ form that of submission evaluation. There-
fore at this stage all the three methods, i.e. WSM, WPM and Topsis, can be presented for
further consideration.

We decided on the score aggregation methods, however they assume a single deci-
sion maker and therefore we have to look for the extension to be applicable for group
decision problems.

8. Group Decision Making

Group decision making (GDM) can be defined as decision making process based on
the opinions of several individuals. The goal of GDM is to arrive at a satisfactory group
solution, rather than to the best solution which almost does not exist (Lu et al., 2007).
There are available various methods for group decision making from mathematical to
psychological and social.

Among MCDA approaches explicitly meant for solving group decision making
problems there are techniques which foresee negotiation theory, working with group
dynamics, etc. References to that can be found in (Carlsson and Fullér, 1996; Lu et al.,
2007). Those approaches have been experienced in LitIO many times. Investigation
of their suitability in the LitIO evaluation problem would require much investigations
from other sciences, in particular management and psychology. For example, most

Multiple Criteria Decision Methods in Informatics Olympiads 185

meetings are conducted online (as members of the scientific committee are associated
with different universities in different cities and even countries), some members are
reluctant to discuss issues on-line, less experienced tend to vote as more experienced
members, etc. These aspects should have been investigated if the above mentioned
direction was taken.

Our choice is to focus on mathematical group decision making methods which as-
sume eliciting concrete information from decision makers and using it in a mathematical
algorithm, but do not require interaction and negotiation between decision makers.

There are different ways to implement group decision making. Many references can
be found at (Lu et al., 2007; Rao, 2007). Many common GDM methods (e.g. authority
rule, majority rule, negative minority rule) are not suitable because they are intended for
the choice problematique (i.e. determining the best alternative), but not for the ranking
problematique problems.

(Lu et al., 2007) distinguishes three factors which influence GDM:
The weights of the decision makers. Among the decision makers there might be

those who play more important roles in the decision making. In this case, the decision
makers should be assigned different weights and that should be reflected in the group
decision making process.

Weights of criteria. The decision makers may have different views, attitudes, expe-
rience and therefore propose different weights to the criteria.

Preferences of decision makers for alternatives. If the performance of an alterna-
tive is evaluated subjectively, then different decision makers can have different under-
standing, different experiences and can evaluate performance of the same alternative in
a different way.

It is common in GDM that the weight of a decision maker, the suggested weights
for evaluation criteria, and the performances of alternatives suggested by the decision
makers are expressed by linguistic terms, since linguistic terms reflect uncertainty, inac-
curacy, and fuzziness of the decision makers (Lu et al., 2007). We also assume that the
information, provided by each decision maker is consistent and non-conflicting.

The linguistic scale presented in presented in Table 1 and Fig. 3 is not suitable for
assigning weights to the decision makers or to the criteria. For that purpose we will use
the importance scale presented in Table 2 (Lu et al., 2007).

Table 2
Weights of a triangular distribution of a linguistic importance scale (Lu et al., 2007)

Item of the Importance degrees scale Numerical weights

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

Absolutely unimportant (0, 0, 1/6)
Unimportant (0, 1/6, 1/3)
Less important (1/6, 1/3, 1/2)
Important (1/3, 1/2, 2/3)
More important (1/2, 2/3, 5/6)
Strongly important (2/3, 5/6, 1)
Absolutely important (5/6, 1, 1)

J. Skūpienė186

9. Score Aggregation Method for Submission Ranking and Team Selection

We already concluded that the WSM approach best suits the submission ranking prob-
lem. All three analysed methods (WSM, WPM and Topsis) can be considered for team
selection. However in this paper we focus on WSM, leaving application of the other two
methods for a separate research.

We were looking for an extension of WSM to GDM, such that it would allow fuzzy
numbers in the decision marix, but would use crisp number for partial scores for the
attributes and for the final ranking, i.e. its public parts would be acceptable by the com-
munity of LitIO.

Many fuzzy GDM algorithms (e.g. an intelligent FMCGDM method (Lu et al., 2007)
or the one described in (Sule, 2001)) assume aggregating fuzzy numbers and only then
deriving the final ranking. There was performed a systematic and critical study of the
existing fuzzy MCDA methods. It arrived at the conclusion, that the majority of cur-
rently existing fuzzy MCDA approaches involve complicated calculations, require all
the elements of decision matrix to be presented in a fuzzy format (though some of them
might be crisp), and are not suitable for solving problems with more than ten alternatives
associated with more than ten criteria (Chen et al., 1992; Rao, 2007).

The method presented by Chen et al., 1992 is considered to be the one which avoids the
above mentioned problems (Rao, 2007; Zhang, 2004). It consists of the following phases:

Linguistic terms (if such are used) are converted to fuzzy numbers. ●
Fuzzy numbers are converted into crisp scores. ●
Classical MCDA approaches, which assume crisp values, are applied. ●

Now we have to find a classical GDM method which assumes crisp matrix. Such
method is The group decision support algorithm suggested by Csáki et al., 1995.

Therefore we have to combining the group decision support algorithm with the ap-
proach of (Chen et al., 1992). Thus we obtain a GDM algorithm suitable to apply in Li-
tIO evaluation and the team selection problem. Further we use the notations introduced
in the third section.

The linguistic terms are converted to fuzzy numbers as it was previously described.
The crisp score of a fuzzy number

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =





0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 is calculated in the following way. First there are
defined two functions

We were looking for an extension of WSM to GDM, such that it would allow fuzzy num-

bers in the decision marix, but would use crisp number for partial scores for the attributes

and for the final ranking, i.e. its public parts would be acceptable by the community of

LitIO.

Many fuzzy GDM algorithms (e.g. an intelligent FMCGDM method (Lu et al., 2007) or

the one described in (Sule, 2001)) assume aggregating fuzzy numbers and only then deriving

the final ranking. There was performed a systematic and critical study of the existing fuzzy

MCDA methods. It arrived at the conclusion, that the majority of currently existing fuzzy

MCDA approaches involve complicated calculations, require all the elements of decision

matrix to be presented in a fuzzy format (though some of them might be crisp), and are not

suitable for solving problems with more than ten alternatives associated with more than ten

criteria (Chen et al., 1992; Rao, 2007).

The method presented by (Chen et al., 1992) is considered to be the one which avoids

the above mentioned problems (Rao, 2007; Zhang, 2004). It consists of the following phases:

• Linguistic terms (if such are used) are converted to fuzzy numbers.

• Fuzzy numbers are converted into crisp scores.

• Classical MCDA approaches, which assume crisp values, are applied.

Now we have to find a classical GDM method which assumes crisp matrix. Such method

is The group decision support algorithm suggested by (Csáki et al., 1995).

Therefore we have to combining the group decision support algorithm with the approach

of (Chen et al., 1992). Thus we obtain a GDM algorithm suitable to apply in LitIO evaluation

and the team selection problem. Further we use the notations introduced in the third section.

The linguistic terms are converted to fuzzy numbers as it was previously described. The

crisp score of a fuzzy number A is calculated in the following way. First there are defined

two functions µmax(x) and µmin(x):

µmax(x) =

x, 0 ≤ x ≤ 1
0, otherwise

(5)

µmin(x) =


1 − x, 0 ≤ x ≤ 1
0, otherwise

(6)

18

 and

We were looking for an extension of WSM to GDM, such that it would allow fuzzy num-

bers in the decision marix, but would use crisp number for partial scores for the attributes

and for the final ranking, i.e. its public parts would be acceptable by the community of

LitIO.

Many fuzzy GDM algorithms (e.g. an intelligent FMCGDM method (Lu et al., 2007) or

the one described in (Sule, 2001)) assume aggregating fuzzy numbers and only then deriving

the final ranking. There was performed a systematic and critical study of the existing fuzzy

MCDA methods. It arrived at the conclusion, that the majority of currently existing fuzzy

MCDA approaches involve complicated calculations, require all the elements of decision

matrix to be presented in a fuzzy format (though some of them might be crisp), and are not

suitable for solving problems with more than ten alternatives associated with more than ten

criteria (Chen et al., 1992; Rao, 2007).

The method presented by (Chen et al., 1992) is considered to be the one which avoids

the above mentioned problems (Rao, 2007; Zhang, 2004). It consists of the following phases:

• Linguistic terms (if such are used) are converted to fuzzy numbers.

• Fuzzy numbers are converted into crisp scores.

• Classical MCDA approaches, which assume crisp values, are applied.

Now we have to find a classical GDM method which assumes crisp matrix. Such method

is The group decision support algorithm suggested by (Csáki et al., 1995).

Therefore we have to combining the group decision support algorithm with the approach

of (Chen et al., 1992). Thus we obtain a GDM algorithm suitable to apply in LitIO evaluation

and the team selection problem. Further we use the notations introduced in the third section.

The linguistic terms are converted to fuzzy numbers as it was previously described. The

crisp score of a fuzzy number A is calculated in the following way. First there are defined

two functions µmax(x) and µmin(x):

µmax(x) =

x, 0 ≤ x ≤ 1
0, otherwise

(5)

µmin(x) =


1 − x, 0 ≤ x ≤ 1
0, otherwise

(6)

18

:

We were looking for an extension of WSM to GDM, such that it would allow fuzzy num-

bers in the decision marix, but would use crisp number for partial scores for the attributes

and for the final ranking, i.e. its public parts would be acceptable by the community of

LitIO.

Many fuzzy GDM algorithms (e.g. an intelligent FMCGDM method (Lu et al., 2007) or

the one described in (Sule, 2001)) assume aggregating fuzzy numbers and only then deriving

the final ranking. There was performed a systematic and critical study of the existing fuzzy

MCDA methods. It arrived at the conclusion, that the majority of currently existing fuzzy

MCDA approaches involve complicated calculations, require all the elements of decision

matrix to be presented in a fuzzy format (though some of them might be crisp), and are not

suitable for solving problems with more than ten alternatives associated with more than ten

criteria (Chen et al., 1992; Rao, 2007).

The method presented by (Chen et al., 1992) is considered to be the one which avoids

the above mentioned problems (Rao, 2007; Zhang, 2004). It consists of the following phases:

• Linguistic terms (if such are used) are converted to fuzzy numbers.

• Fuzzy numbers are converted into crisp scores.

• Classical MCDA approaches, which assume crisp values, are applied.

Now we have to find a classical GDM method which assumes crisp matrix. Such method

is The group decision support algorithm suggested by (Csáki et al., 1995).

Therefore we have to combining the group decision support algorithm with the approach

of (Chen et al., 1992). Thus we obtain a GDM algorithm suitable to apply in LitIO evaluation

and the team selection problem. Further we use the notations introduced in the third section.

The linguistic terms are converted to fuzzy numbers as it was previously described. The

crisp score of a fuzzy number A is calculated in the following way. First there are defined

two functions µmax(x) and µmin(x):

µmax(x) =

x, 0 ≤ x ≤ 1
0, otherwise

(5)

µmin(x) =


1 − x, 0 ≤ x ≤ 1
0, otherwise

(6)

18

(5)

We were looking for an extension of WSM to GDM, such that it would allow fuzzy num-

bers in the decision marix, but would use crisp number for partial scores for the attributes

and for the final ranking, i.e. its public parts would be acceptable by the community of

LitIO.

Many fuzzy GDM algorithms (e.g. an intelligent FMCGDM method (Lu et al., 2007) or

the one described in (Sule, 2001)) assume aggregating fuzzy numbers and only then deriving

the final ranking. There was performed a systematic and critical study of the existing fuzzy

MCDA methods. It arrived at the conclusion, that the majority of currently existing fuzzy

MCDA approaches involve complicated calculations, require all the elements of decision

matrix to be presented in a fuzzy format (though some of them might be crisp), and are not

suitable for solving problems with more than ten alternatives associated with more than ten

criteria (Chen et al., 1992; Rao, 2007).

The method presented by (Chen et al., 1992) is considered to be the one which avoids

the above mentioned problems (Rao, 2007; Zhang, 2004). It consists of the following phases:

• Linguistic terms (if such are used) are converted to fuzzy numbers.

• Fuzzy numbers are converted into crisp scores.

• Classical MCDA approaches, which assume crisp values, are applied.

Now we have to find a classical GDM method which assumes crisp matrix. Such method

is The group decision support algorithm suggested by (Csáki et al., 1995).

Therefore we have to combining the group decision support algorithm with the approach

of (Chen et al., 1992). Thus we obtain a GDM algorithm suitable to apply in LitIO evaluation

and the team selection problem. Further we use the notations introduced in the third section.

The linguistic terms are converted to fuzzy numbers as it was previously described. The

crisp score of a fuzzy number A is calculated in the following way. First there are defined

two functions µmax(x) and µmin(x):

µmax(x) =

x, 0 ≤ x ≤ 1
0, otherwise

(5)

µmin(x) =


1 − x, 0 ≤ x ≤ 1
0, otherwise

(6)

18

(6)

Then the left and the right scores of

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 and the two functions are defined as:
Then the left and the right scores of A and the two functions are defined as:

µR(A) = Sup
x

[µA(x) ∩ µmin(x)] (7)

µL(A) = Sup
x

[µA(x) ∩ µmax(x)] (8)

Here Sup stands for the least upper bound. The total score crisp score of the fuzzy

number A is defined as:

µT (A) = (µL(A) + 1 − µR(A))/2 (9)

Conversion of a fuzzy number to crisp value is illustrated in Fig. 4.


 










 



 







Figure 4: Conversion of triangular fuzzy number to crisp value

The values of the nine-item linguistic scale presented in Table 1 converted to crisp values

are presented in Table 3. The values of the seven-item linguistic importance scale presented

in Table 2 converted to crisp values are presented in Table 4. Note that the same linguistic

term in different conversion scales can have different crisp values.

The algorithm for converting fuzzy numbers to crisp values might be hardly understand-

able to the wide audience, however its application will remain invisible for the contestants.

It will only be applied for dealing with group decisions and linguistic evaluation. If a cri-

terion requires manual evaluation, the linguistic scores and the scores of individual jury

19

(7)

Multiple Criteria Decision Methods in Informatics Olympiads 187

Then the left and the right scores of A and the two functions are defined as:

µR(A) = Sup
x

[µA(x) ∩ µmin(x)] (7)

µL(A) = Sup
x

[µA(x) ∩ µmax(x)] (8)

Here Sup stands for the least upper bound. The total score crisp score of the fuzzy

number A is defined as:

µT (A) = (µL(A) + 1 − µR(A))/2 (9)

Conversion of a fuzzy number to crisp value is illustrated in Fig. 4.


 










 



 







Figure 4: Conversion of triangular fuzzy number to crisp value

The values of the nine-item linguistic scale presented in Table 1 converted to crisp values

are presented in Table 3. The values of the seven-item linguistic importance scale presented

in Table 2 converted to crisp values are presented in Table 4. Note that the same linguistic

term in different conversion scales can have different crisp values.

The algorithm for converting fuzzy numbers to crisp values might be hardly understand-

able to the wide audience, however its application will remain invisible for the contestants.

It will only be applied for dealing with group decisions and linguistic evaluation. If a cri-

terion requires manual evaluation, the linguistic scores and the scores of individual jury

19

 (8)

Here Sup stands for the least upper bound. The total score crisp score of the fuzzy
number

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

 is defined as:

Then the left and the right scores of A and the two functions are defined as:

µR(A) = Sup
x

[µA(x) ∩ µmin(x)] (7)

µL(A) = Sup
x

[µA(x) ∩ µmax(x)] (8)

Here Sup stands for the least upper bound. The total score crisp score of the fuzzy

number A is defined as:

µT (A) = (µL(A) + 1 − µR(A))/2 (9)

Conversion of a fuzzy number to crisp value is illustrated in Fig. 4.


 










 



 







Figure 4: Conversion of triangular fuzzy number to crisp value

The values of the nine-item linguistic scale presented in Table 1 converted to crisp values

are presented in Table 3. The values of the seven-item linguistic importance scale presented

in Table 2 converted to crisp values are presented in Table 4. Note that the same linguistic

term in different conversion scales can have different crisp values.

The algorithm for converting fuzzy numbers to crisp values might be hardly understand-

able to the wide audience, however its application will remain invisible for the contestants.

It will only be applied for dealing with group decisions and linguistic evaluation. If a cri-

terion requires manual evaluation, the linguistic scores and the scores of individual jury

19

 (9)

Conversion of a fuzzy number to crisp value is illustrated in Fig. 4.
The values of the nine-item linguistic scale presented in Table 1 converted to crisp

values are presented in Table 3. The values of the seven-item linguistic importance scale
presented in Table 2 converted to crisp values are presented in Table 4. Note that the
same linguistic term in different conversion scales can have different crisp values.

The algorithm for converting fuzzy numbers to crisp values might be hardly un-
derstandable to the wide audience, however its application will remain invisible for the
contestants. It will only be applied for dealing with group decisions and linguistic eva-
luation. If a criterion requires manual evaluation, the linguistic scores and the scores of
individual jury members are never revealed to the contestants, just the aggregated score


 










 



 







Fig. 4. Conversion of triangular fuzzy number to crisp value.

Table 3
Calculating crisp values of the nine-item linguistic scale given in Table 1

Item of linguistic scale Fuzzy number

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

Item of linguistic scale Fuzzy number A µR(A) µL(A) µT (A)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

Table 3: Calculating crisp values of the nine-item linguistic scale given in Table 1

The Importance Degrees Fuzzy number A µR(A) µL(A) µT (A)

Absolutely unimportant (0, 0, 1
6) 1 0.14 0.07

Unimportant (0, 1
6 ,

1
3) 0.86 0.29 0.21

Less important (1
6 ,

1
3 ,

1
2) 0.71 0.43 0.36

Important (1
3 ,

1
2 ,

2
3) 0.57 0.57 0.50

More important (1
2 ,

2
3 ,

5
6) 0.43 0.71 0.64

Strongly important (2
3 ,

5
6 , 1) 0.29 0.86 0.79

Absolutely important (5
6 , 1, 1) 0.14 1 0.93

Table 4: Calculating crisp values of the seven-item linguistic importance scale

20

Item of linguistic scale Fuzzy number A µR(A) µL(A) µT (A)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

Table 3: Calculating crisp values of the nine-item linguistic scale given in Table 1

The Importance Degrees Fuzzy number A µR(A) µL(A) µT (A)

Absolutely unimportant (0, 0, 1
6) 1 0.14 0.07

Unimportant (0, 1
6 ,

1
3) 0.86 0.29 0.21

Less important (1
6 ,

1
3 ,

1
2) 0.71 0.43 0.36

Important (1
3 ,

1
2 ,

2
3) 0.57 0.57 0.50

More important (1
2 ,

2
3 ,

5
6) 0.43 0.71 0.64

Strongly important (2
3 ,

5
6 , 1) 0.29 0.86 0.79

Absolutely important (5
6 , 1, 1) 0.14 1 0.93

Table 4: Calculating crisp values of the seven-item linguistic importance scale

20

Item of linguistic scale Fuzzy number A µR(A) µL(A) µT (A)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

Table 3: Calculating crisp values of the nine-item linguistic scale given in Table 1

The Importance Degrees Fuzzy number A µR(A) µL(A) µT (A)

Absolutely unimportant (0, 0, 1
6) 1 0.14 0.07

Unimportant (0, 1
6 ,

1
3) 0.86 0.29 0.21

Less important (1
6 ,

1
3 ,

1
2) 0.71 0.43 0.36

Important (1
3 ,

1
2 ,

2
3) 0.57 0.57 0.50

More important (1
2 ,

2
3 ,

5
6) 0.43 0.71 0.64

Strongly important (2
3 ,

5
6 , 1) 0.29 0.86 0.79

Absolutely important (5
6 , 1, 1) 0.14 1 0.93

Table 4: Calculating crisp values of the seven-item linguistic importance scale

20

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

J. Skūpienė188

for the criterion is announced. Thus, if fuzzy techniques are used to aggregate scores of
several jury members, they remain behind the curtains and do not become the source of
discussions and doubts for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to
the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection pro-
blems. We will start from the evaluation problem.

Let

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 be a finite set of alternatives,

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

 be
a finite set of criteria. Let

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

 be a finite set of decision
makers.

Each decision maker is assigned a linguistic weight of his/her importance and
the linguistic value has been tranformed to a fuzzy number and to its crisp value:

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

.
Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value:

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

,

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

.
Let

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

 be the values of partial value functions of the performance of alterna-
tive

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

 in terms of each criterion

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

 by the decision maker

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

, where

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

,

There were developed several value measurement theory algorithms and the most popular

ones are Weighted Sum Model and Weighted Product Model. We would also assign Topsis

algorithm (we will present it later) to the same category of algorithms. Note that those

algorithms are constructed for single decision maker problems.

Weighted Sum Model (WSM) is the most commonly used method for single decision

maker problems (Triantaphyllou, 2000). It can be described using the following formula:

V (Ai) =
m

j=1
wjvj(Ai) (3)

where i = 1, 2, · · ·n and j = 1, 2, · · ·m.

One of the reasons of wide acceptance of this model is its simplicity, i.e. it can be easily

explained by the decision makers to a variety of backgrounds (Belton and Stewart, 2003).

Note that the requirement preferential independence has to be satisfied so that the WSM

model could be applied (Belton and Stewart, 2003). Suppose that two alternatives Ai1 and

Ai2 differ only on a set of criteria R ⊂ C (R is a proper subset of C) and values of partial

functions are equal on all other criteria. Then it is possible to decide the relationship of Ai1

and Ai2 (i.e. Ai2  Ai1 or Ai1  Ai2 or Ai1 ∼ Ai2) knowing their performances on criteria

from R only, i.e. irrespective of values of their performances on all the other criteria.

However among the submission evaluation criteria there are several dependent criteria,

e.g. quality of programming style is related either to the performance of an algorithm-code

complex or to its efforts to solve the task (Skūpienė, 2010). Thus the partial independence

of criteria is violated.

We suggest that this does not eliminate WSM from applying it for score aggregation

in LitIO. WSM still can be applied for aggregating those criteria that are preferentially

independent. Special functions have to be introduced for aggregating scores of dependent

criteria.

In the team selection problem the partial independence requirement is fully satisfied.

Another requirement is to use the same scale of measurement for all the criteria. Per-

formance of submissions as well as performance of contestants are measured using different

scales. However we intend to unify the scales by constructing the corresponding partial

value functions.

13

, and

3. Decision Matrix

Once the list of alternatives and criteria for an MCDA problem is determined, the following

step is to construct a decision matrix. In this section we present the decision matrix con-

structed both previously described situation, i.e. for the submission ranking problem and

for the contestant ranking problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives (i.e., submissions or contestants),

C = {C1, C2, · · ·Cm} be a finite set of criteria (i.e., evaluation criteria or team selection

criteria), and P = {P1, P2, · · · , Pq) be a finite set of decision makers (i.e., scientific commitee

members).

Assume that all the decision makers are involved into defining relative weights and de-

termining performance of each alternative in terms of each criterion.

Let wk
j be a relative weight of criteria j (j = 1, 2, . . .m) given by decision maker Pk

(k = 1, 2, . . . q).

Let xk
ij be the performance of alternative Ai (i = 1, 2, · · · , n) in terms of criteria Cj

(j = 1, 2, · · · ,m) assigned by decision maker Pk (k = 1, 2, . . . q).

Note that if the criterion is measured subjectively, i.e. the decision makers assess the

performance of an alternative i in terms of criterion j manually, then the value of xk
ij is

linguistic. Otherwise the value of xk
ij is numeric and x1

ij = x2
ij = · · · = xq

ij .

In the case of team selection problem the value of xk
ij is always numeric.

Then the submission ranking problem can be expressed by the following decision matrix:

Dk = (xk
ij)n×m×q =

C1 C2 · · · Cm

wk
1 wk

2 · · · wk
m

A1 xk
11 xk

12 · · · xk
1m

A2 xk
21 xk

22 · · · xk
2m

· · · · · · · · · · · · · · ·
An xk

n1 xk
n2 · · · xk

nm

(1)

where k = 1, 2, . . . q.

Note, that the classical MCDA algorithms, assume the single decision maker problem,

i.e. they assume that q = 1.

7

.
First the aggregated group weights for each criterion are calculated:

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

 (10)

The values of partial value functions of performance of each alternative in terms of
each criterion are calculated in a similar way:

(11)

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

Table 4
Calculating crisp values of the seven-item linguistic importance scale

The Importance Degrees Fuzzy number

4. Application of Fuzzy Numbers for Quantifying Lin-
guistic Variables
Some of the proposed evaluation in LitIO criteria are measured manually using linguis-

tic variables. Linguistic variables are variables whose values are linguistic terms and not

numbers. They are used to express results of subjective qualitative evaluation. Linguistic

variables were introduced and described by (Zadeh, 1975a,b,c). Triangular and trapezoidal

fuzzy numbers are used for quantifying linguistic variables.

Next we shortly present the related concepts of fuzzy logic based on (Lee, 2005; Trianta-

phyllou, 2000).

Fuzzy set. A Fuzzy set is any set that allows its members to have different grades of

membership (membership function) in the interval [0, 1], i.e. for any subset A of a universe

X it is possible to define a membership function of a fuzzy set: µA : X → [0, 1].

A crisp set is a separate case of fuzzy set and to make distinctions between crisp and

fuzzy sets we will use A notation for fuzzy sets.

Operations on Fuzzy sets (Lee, 2005; Triantaphyllou, 2000; Zadeh, 1965):

• Negation: µ ̄A(x) = 1 − µA(x),∀x ∈ X,

• Union: µA∪B(x) = Max [µA(x), µB(x)],∀x ∈ X,

• Intersection: µA∩B(x) = Min [µA(x), µB(x)],∀x ∈ X.

Fuzzy number. A fuzzy set is called a fuzzy number if the fuzzy set is convex, normalised,

its membership function is defined in R and is piecewise continuous.

Trapezoidal fuzzy number. A trapezoidal fuzzy number is a fuzzy number represented

with four points as follows: A = (a1, a2, a3, a4) and this representation is interpreted in the

following way:

µA(x) =




0, x < a1
x−a1
a2−a1

, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3
a4−x
a4−a3

, a3 ≤ x ≤ a4

0, x > a4

(2)

When a2 = a3, the trapezoidal number coincides with a triangular fuzzy number.

Many conversion scales have been created for transforming linguistic terms into fuzzy

numbers. (Chen et al., 1992) proposed eight conversion scales with different numbers of

8

Item of linguistic scale Fuzzy number A µR(A) µL(A) µT (A)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

Table 3: Calculating crisp values of the nine-item linguistic scale given in Table 1

The Importance Degrees Fuzzy number A µR(A) µL(A) µT (A)

Absolutely unimportant (0, 0, 1
6) 1 0.14 0.07

Unimportant (0, 1
6 ,

1
3) 0.86 0.29 0.21

Less important (1
6 ,

1
3 ,

1
2) 0.71 0.43 0.36

Important (1
3 ,

1
2 ,

2
3) 0.57 0.57 0.50

More important (1
2 ,

2
3 ,

5
6) 0.43 0.71 0.64

Strongly important (2
3 ,

5
6 , 1) 0.29 0.86 0.79

Absolutely important (5
6 , 1, 1) 0.14 1 0.93

Table 4: Calculating crisp values of the seven-item linguistic importance scale

20

Item of linguistic scale Fuzzy number A µR(A) µL(A) µT (A)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

Table 3: Calculating crisp values of the nine-item linguistic scale given in Table 1

The Importance Degrees Fuzzy number A µR(A) µL(A) µT (A)

Absolutely unimportant (0, 0, 1
6) 1 0.14 0.07

Unimportant (0, 1
6 ,

1
3) 0.86 0.29 0.21

Less important (1
6 ,

1
3 ,

1
2) 0.71 0.43 0.36

Important (1
3 ,

1
2 ,

2
3) 0.57 0.57 0.50

More important (1
2 ,

2
3 ,

5
6) 0.43 0.71 0.64

Strongly important (2
3 ,

5
6 , 1) 0.29 0.86 0.79

Absolutely important (5
6 , 1, 1) 0.14 1 0.93

Table 4: Calculating crisp values of the seven-item linguistic importance scale

20

Item of linguistic scale Fuzzy number A µR(A) µL(A) µT (A)

Very poor (0, 0, 0, 0.2) 1 0.17 0.08
Between poor and very poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Poor (0, 0.2, 0.2, 0.4) 0.83 0.33 0.25
Between poor and fair (0, 0.2, 0.5, 0.7) 0.83 0.58 0.38
Fair (0.3, 0.5, 0.5, 0.7) 0.58 0.58 0.50
Between fair and good (0.3, 0.5, 0.8, 1) 0.58 0.83 0.63
Good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Between good and very good (0.6, 0.8, 0.8, 1) 0.33 0.83 0.75
Very good (0.8, 1, 1, 1) 0.17 1 0.92

Table 3: Calculating crisp values of the nine-item linguistic scale given in Table 1

The Importance Degrees Fuzzy number A µR(A) µL(A) µT (A)

Absolutely unimportant (0, 0, 1
6) 1 0.14 0.07

Unimportant (0, 1
6 ,

1
3) 0.86 0.29 0.21

Less important (1
6 ,

1
3 ,

1
2) 0.71 0.43 0.36

Important (1
3 ,

1
2 ,

2
3) 0.57 0.57 0.50

More important (1
2 ,

2
3 ,

5
6) 0.43 0.71 0.64

Strongly important (2
3 ,

5
6 , 1) 0.29 0.86 0.79

Absolutely important (5
6 , 1, 1) 0.14 1 0.93

Table 4: Calculating crisp values of the seven-item linguistic importance scale

20

Absolutely unimportant (0, 0, 1/6) 1 0.14 0.07
Unimportant (0, 1/6, 1/3) 0.86 0.29 0.21
Less important (1/6, 1/3, 1/2) 0.71 0.43 0.36
Important (1/3, 1/2, 2/3) 0.57 0.57 0.50
More important (1/2, 2/3, 5/6) 0.43 0.71 0.64
Strongly important (2/3, 5/6, 1) 0.29 0.86 0.79
Absolutely important (5/6, 1, 1) 0.14 1 0.93

Multiple Criteria Decision Methods in Informatics Olympiads 189

The total aggregated values for each alternative are calculated in the following way:

members are never revealed to the contestants, just the aggregated score for the criterion is

announced. Thus, if fuzzy techniques are used to aggregate scores of several jury members,

they remain behind the curtains and do not become the source of discussions and doubts

for the contestants.

The final step is to apply the group decision support algorithm (Csáki et al., 1995) to

the crisp decision matrix.

The application slightly differs for the evaluation and for the team selection problems.

We will start from the evaluation problem.

Let A = {A1, A2, · · ·An} be a finite set of alternatives and C = {C1, C2, · · ·Cm} be a

finite set of criteria. Let D = {D1, D2, · · · , Dq}, q ≥ 2 be a finite set of decision makers.

Each decision maker is assigned a linguistic weight of his/her importance and the linguis-

tic value has been tranformed to a fuzzy number and to its crisp value: p = {p1, p2, · · · , pq}.

Each criterion is assigned a linguistic weight of its importance by each decision maker

and transformed to a fuzzy number and then to its crisp value: wj = {w1
j , w

2
j , · · · , wq

j },

j = 1, 2, · · · ,m.

Let vk
j (Ai) be the values of partial value functions of the performance of alternative Ai in

terms of each criterion Cj by the decision maker Dk, where i = 1, 2, · · · , n, j = 1, 2, · · · ,m,

and k = 1, 2, · · · , q.

First the aggregated group weights for each criterion are calculated:

wj =
t

k=1 w
k
j pkt

k=1 pk

, j = 1, 2, · · · ,m (10)

The values of partial value functions of performance of each alternative in terms of each

criterion are calculated in a similar way:

vj(Ai) =
t

k=1 v
k
j (Ai)pkt

k=1 pk

(11)

The total aggregated values for each alternative are calculated in the following way:

v(Ai) =
m

j=1 vj(Ai)wjm
j=1 wj

(12)

Based on the calculated values, the ranking of the alternatives is performed. The above

holds for submission evaluation problem.

21

(12)

Based on the calculated values, the ranking of the alternatives is performed. The
above holds for submission evaluation problem.

For the team selection problem the values of the alternatives against each criterion
are numeric, pre-calculated and given to the decision makers, i.e.

For the team selection problem the values of the alternatives against each criterion are

numeric, pre-calculated and given to the decision makers, i.e. vj(Ai) = xij . xij was defined

when defining the decision matrix 1). The total aggregated values for the team selection

problem are calculated using this formula:

v(Ai) =
m

j=1 xijwjm
j=1 wj

(13)

Conclusions
In this paper we proposed to combine the group decision support algorithm combined with

score aggregation method to be applied during evaluation and team selection process in the

Lithuanian Informatics Olympiad. The method takes into account linguistic values (outcome

of manual evaluation) and multiple decision makers (members of the scientific committee).

Even though MCDA theory is acceptable from the scientific point of view, there arise

many difficulties with its application in practice because the stakeholders feel reluctant and

sensitive about the application of complicated formula to sensitive issues (in this case score

aggregation).

The most important requirements to the score aggregation method were the understand-

ability and acceptability of parts of it (i.e. those disclosed to the contestants) to the wider

audience. Another important requirement was use of a value function. As a result of these

requirements, we spent time on looking for a suitable method that would fulfill all the

problem specific requirements, rather than analysing several equally possible options. The

paper reveals how we arrived to the suggested score aggregation method for the evaluation

problem.

There is much more potential for the MCDA application for team selection problem. One

reason is that the number of stakeholder is very small (from 5 to 12 contestants involved)

and they are top students with good mathematical and algorithmical skills, which makes

it easier to explain for them to accept mathematical decision making methods. Therefore

several methods were chosen as possible for consideration for this problem. Before proposing

to apply any of those methods in practice, the intermediate step would to model the problem

with data from previous years and to analyse differences between the models for the team

selection problem.

22

 was
defined when defining the decision matrix 1). The total aggregated values for the team
selection problem are calculated using this formula:

For the team selection problem the values of the alternatives against each criterion are

numeric, pre-calculated and given to the decision makers, i.e. vj(Ai) = xij . xij was defined

when defining the decision matrix 1). The total aggregated values for the team selection

problem are calculated using this formula:

v(Ai) =
m

j=1 xijwjm
j=1 wj

(13)

Conclusions
In this paper we proposed to combine the group decision support algorithm combined with

score aggregation method to be applied during evaluation and team selection process in the

Lithuanian Informatics Olympiad. The method takes into account linguistic values (outcome

of manual evaluation) and multiple decision makers (members of the scientific committee).

Even though MCDA theory is acceptable from the scientific point of view, there arise

many difficulties with its application in practice because the stakeholders feel reluctant and

sensitive about the application of complicated formula to sensitive issues (in this case score

aggregation).

The most important requirements to the score aggregation method were the understand-

ability and acceptability of parts of it (i.e. those disclosed to the contestants) to the wider

audience. Another important requirement was use of a value function. As a result of these

requirements, we spent time on looking for a suitable method that would fulfill all the

problem specific requirements, rather than analysing several equally possible options. The

paper reveals how we arrived to the suggested score aggregation method for the evaluation

problem.

There is much more potential for the MCDA application for team selection problem. One

reason is that the number of stakeholder is very small (from 5 to 12 contestants involved)

and they are top students with good mathematical and algorithmical skills, which makes

it easier to explain for them to accept mathematical decision making methods. Therefore

several methods were chosen as possible for consideration for this problem. Before proposing

to apply any of those methods in practice, the intermediate step would to model the problem

with data from previous years and to analyse differences between the models for the team

selection problem.

22

(13)

Conclusions

In this paper we proposed to combine the group decision support algorithm combined
with score aggregation method to be applied during evaluation and team selection pro-
cess in the Lithuanian Informatics Olympiad. The method takes into account linguistic
values (outcome of manual evaluation) and multiple decision makers (members of the
scientific committee).

Even though MCDA theory is acceptable from the scientific point of view, there arise
many difficulties with its application in practice because the stakeholders feel reluctant
and sensitive about the application of complicated formula to sensitive issues (in this
case score aggregation).

The most important requirements to the score aggregation method were the under-
standability and acceptability of parts of it (i.e. those disclosed to the contestants) to the
wider audience. Another important requirement was use of a value function. As a result
of these requirements, we spent time on looking for a suitable method that would fulfill
all the problem specific requirements, rather than analysing several equally possible op-
tions. The paper reveals how we arrived to the suggested score aggregation method for
the evaluation problem.

There is much more potential for the MCDA application for team selection problem.
One reason is that the number of stakeholder is very small (from 5 to 12 contestants
involved) and they are top students with good mathematical and algorithmical skills,
which makes it easier to explain for them to accept mathematical decision making meth-
ods. Therefore several methods were chosen as possible for consideration for this prob-
lem. Before proposing to apply any of those methods in practice, the intermediate step
would to model the problem with data from previous years and to analyse differences
between the models for the team selection problem.

J. Skūpienė190

Even though this paper presented the case of the Lithuanian Informatics Olympiad,
the proposed solutions can be considered in other educational contexts as long as similar
constraints are valid. The constrains include that the problem under consideration is a
ranking, repeated, group decision making problem involving decision makers with a
different level of their expertise skills as well as the need to present the decision making
process to the stakeholders.

References

Aruldoss, M., Lakshmi, T.M., Venkatesan, V.P. (2013). A survey on multi criteria decision making methods and
its applications. American Journal of Information Systems, 1(1), 31–43.

Belton, V. Stewart, T.J. (2003). Multiple Criteria Decision Analysis: An Integrated Approach. Boston, Kluwer
Academic Publishing.

Carlsson, C. Fullér, R. (1996). Fuzzy multiple criteria decision making: recent developments. Fuzzy Sets and
Systems, 78(2), 139–153.

Chen, S.J., Hwang, C.L., Hwang, F.P. (1992). Fuzzy multiple attribute decision making: methods and applica-
tions. In: Lecture Notes in Economics and Mathematical Systems, vol. 375. Berlin, Germany, Springer-
Verlag.

Csáki, P., Rapcsák, T., Turchányi, P., Vermes, M. (1995). Research and development for group decision aid
in Hungary by WINGDSS, a Microsoft Windows based group decision support system. Decision Support
Systems, 14, 205–221.

Filipe, M., Ferreira, F., Santos, S. (2015). A multiple criteria information system for pedagogical evaluation and
professional development of teachers. Journal of the Operational Research Society.

French, S. (1988). Decision Theory: an Introduction to the Mathematics of Rationality. Chichester, Ellis Hor-
wood.

Ho, W., Dey, P.K., Higson, H.E. (2006). Multiple criteria decision making techniques in higher education. Inter-
national Journal of Educational Management, 20(5), 319–337.

Kahraman, C. (2008). Fuzzy Multi Criteria Decision Making. Theory and Applications with Recent Develop-
ments (vol. 16 of Optimization and its Applications). Springer.

Keeney, R.L. Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John
Wiley & Sons.

Kurilovas, E. Serikovienė, S. (2010). Learning content and software evaluation and personalisation problems.
Informatics in Education, 9(1), 91–114.

Kurilovas, E., Vinogradova, I., Serikovienė, S. (2011). Application of multiple criteria decision analysis and
optimisation methods in evaluation of quality of learning objects. International Journal of Online Pedagogy
and Course Design, 1(4), 62–76.

Lee, K.H. (2005). First Course on Fuzzy Theory and Applications. Springer.
Lootsma, F.A. (1997). Fuzzy logic for planning and decision making. Kluwer.
Lu, J., Zhang, G., Ruan, D. (2007). Multi-Objective Group Decision Making: Methods, Software and Applica-

tion with Fuzzy Set Techniques (Series in Electrical and Computer Engineering).
Oberti, P. (2004). Décision publique et recherche procédurale : illustration d’une démarche multicritère à la

localisation participative d’un parc éolien en région corse. In: Actes des Journées de l’Association Française
de Science Economique, Economie : aide à la décision publique. Université de Rennes.
http://crereg.eco.univ-rennes1.fr/afse/TEXTES-PAR-SESS/A2/OBERTI.P.75.pdf

Rao, R.V. (2007). Decision making in the manufactoring environment. Springer.
Roberts, F.S. (1979). Measurement Theory with Applications to Decision Making, Utility and the Social Sci-

ences. London, Addison-Wesley.
Roy, B. (1996). Multicriteria methodology for decision aiding. Dordrecht, Kluwer Academic Publishers.
Saghafian, S., Hejazi, S.R. (2005). Multi-criteria group decision making using a modified fuzzy topsis proce-

dure. In: Computational Intelligence for Modeling, Control and Automation (IEEE Proceedings, vol. 15).
Scientific Committee of Lithuanian Informatics Olympiads. (2015).
Shee, D., Wang, Y. (2008). Multi-criteria evaluation of the web-based e-learning system: a methodology based

on learner satisfaction and its applications. Computers and Education, 50(3), 894–905.
Simon, H.A. (1976). Administrative Behavior. New York, The Free Press.

Multiple Criteria Decision Methods in Informatics Olympiads 191

Siskosa, Y., Grigoroudisb, E., Krassadakib, E., Matsatsinisb, N. (2007). A multicriteria accreditation system
for information technology skills and qualifications. European Journal of Operational Research, 182(2),
867–885.

Skūpienė, J. (2010). Improving the evaluation model for the lithuanian informatics olympiads. Informatics in
Education, 9(1), 141–158.

Sule, D.R. (2001). Logistics of Facility Location and Allocation. New York, Basel, Marcel Dekker.
Triantaphyllou, E. (2000). Multi-Criteria Decision Making Methods: a Comparative Study. Kluwer Academic

Publishers.
Tsinidou, M., Gerogiannis, V., Fitsilis, P. (2010). Evaluation of the factors that determine quality in higher edu-

cation: an empirical study. Quality Assurance in Education, 18(3), 227–244.
Tzenga, G., Chiangb, C., Lia, C. (2007). Evaluating intertwined effects in e-learning programs: a novel hybrid

mcdm model based on factor analysis and dematel. Expert Systems with Applications, 32(4), 1028–1044.
Value Tree Analysis. (2002). Multiple Criteria Decision Analysis E-learning site created in the EU project OR-

World by System Analysis Laboratory of Helsinki University of Technology.
http://www.mcda.hut.fi/value_tree/theory

Zadeh, L.A. (1965). Fuzzy sets. Information and Control.
Zadeh, L.A. (1975a). The concept of a linguistic variable and its application to approximate reasoning – I.

Information Sciences, 8(3), 199–249.
Zadeh, L.A. (1975b). The concept of a linguistic variable and its application to approximate reasoning – II.

Information Sciences, 8(43), 301–357.
Zadeh, L.A. (1975c). The concept of a linguistic variable and its application to approximate reasoning – III.

Information Sciences, 9(1), 43–80.
Zeleny, M. (1982). Multiple Criteria Decision Making. New York, McGraw-Hill Book Company.
Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. In: Wireless Communi-

cations and Networking Conference, WCNC, IEEE (vol. 2). 653–658.

dr. J. Skūpienė works at Informatics Methodology Department in
Vilnius University Institute of Mathematics & Informatics. She has
published about 20 scientific papers. She is a member of the Scientific
Committee of National Olympiads in Informatics. Sha ehas been in-
volved in many projects related to identifying, attracting and working
with secondary and high school students gifted in IT. For a few years
she was director of studies of Young Programmers School, since 2004
she has been a coordinator of Informatics division in the Lithuanian
National Academy of Students. She is author/co-author of four books
on algorithms and algorithmic problems.

Olympiads in Informatics, 2015, Vol. 9, 193–203
DOI: http://dx.doi.org/10.15388/ioi.2015.15

193

Ant Colony Optimisation Applied to
Non-Slicing Floorplanning

Mirzakhmet SYZDYKOV1, Madi UZBEKOV2

1 Kazakh National Technical University named after K.I. Satpayev
 Satpayev Str. 22a, Almaty, Kazakhstan 050013
2 Kazakh Economical University named after T.Ryskulov
 Zhandosov Str. 55, Almaty, Kazakhstan 050035
e-mail: rbtinf@gmail.com, uzbekm7@gmail.com

Abstract. In this article experimental results are provided for a very-large-scale integration
(VLSI) floorplan design problem. Given is a set of modules to be placed non-overlapping on a
2-dimensional rectangular plane. We use ant system simulation as a heuristics to produce feasible
layouts in order to minimize the total unused area. The algorithm differs from many others in that
fact that it produces non-slicing floorplan. Our experimental results show comparable results of
previous methods using ant colony optimization (ACO) in VLSI design. For this purpose we de-
fine the “interior” structure for a geometrical computation of module positions.

Keywords: algorithm, ant system, interior, optimization, VLSI, floorplanning.

1. Introduction

At the present time there are several known methods to solve the floor planning problem
in VLSI circuit design using ACO heuristics (the main algorithm’s described in Dorigo
et al., 1996):

With a temperature-aware constraint (Luo and Sun, 2007).1)
With a clustering constraint (Chiang, 2009). 2)
With a non-overlapping constraint (Alupoaei and Katkoori, 2004). 3)

The last method also provides a solution that removes overlaps of placed modules
and reduces the total area and wire length. Our method uses a similarly incremental ap-
proach to build constraint graphs and place modules in vertical (to the bottom) or hori-
zontal direction (to the right). This method utilizes the interior structure in order to find a
relative placement of the module. In our problem the placement has a single constraint:
modules do not overlap each other. We will use a mathematical notation to represent a
target function in order to minimize the total unoccupied empty space, which is further
defined as a dead space.

The optimization methods using ACO heuristics are widely discussed in recent
publications:

For circuit partitioning in VLSI design (Arora and Lall, 2013).

M. Syzdykov, M. Uzbekov194

For routing optimization with tabu search(Yoshikawa and Otani, 2010).
Our method mainly differs in the definition of visibility and distance functions used

in original algorithm (it is better described in Section 3) from the algorithms above
which in fact are driven models with modified core functions.

1.1. Problem Definition

The floor planning problem consists of a set of modules on an integral circuit to be ar-
ranged on a planar area in such a way that they will not overlap each other while the oc-
cupied areas’ measurements, which are given by their formulas, are to be optimized. We
solve the problem where the total space unoccupied by the modules is minimized with a
non-overlapping constraint by an experimental algorithm. The minimization function is
given as a ratio. This can be better defined with an equation:

()
()

m M Area m
A

m
ea

n
r R

i∈ →∑ (1)

where M is a set of placed modules and R is a rectangle bounding the placement. The
function Area (m) is the total area occupied by the module m, whereas the Area (R) is
the total area of the rectangular board. In our problem the module is given by its bound-
ing box, here it does not actually matter what is the physical shape of the element. We
also consider the total area to be the area of the bounding box containing all the placed
modules. The minimization of the function (1) is achieved by minimizing the total dead
space, which in experimental purposes is measured as a percentage ratio of the part of
the bounding box containing all the modules. In can be better represented as:

Area (R) : R = Bounding Box (Union {each m in M})), (2)

Target function (1) → min, iff “Dead space” (%) → min, (3)

1.2. Known Solutions

There are number of methods to generate a feasible placement for the given set of mod-
ules. Most of the methods use specific structures like a B-Tree (Sivaranjani and Kawya,
2013), polish notation or Corner Intersection Sequence (CIS) (Hoo et al., 2013) to in-
ternally represent a valid placement. These structures can represent a slicing floorplan
where the rectangular area of placement can be recursively divided into two parts by a
horizontal or vertical line, while each of the modules is within the bounds of the final
rectangles produced by an algorithm (Fig. 1).

Our method differs from listed above in fact that it produces non-slicing floorplan.
The main difference is also in type of structures used in algorithm. They will be dis-
cussed in the next section.

Ant Colony Optimisation Applied to Non-Slicing Floorplanning 195

2. Data Structures Used in Algorithm

The algorithm uses two types of data structures in order to solve the optimization task
– interior and constraint graph. These structures are of planar geometric (interior) and
abstract (constraint graph) type. We present simple algorithms to construct them. This
generally does not limit the variety of type of data structures which could replace interior
and constraint graph for their main purpose to place the module and minimize the value
of function (1).

The purpose of interior structure is to store the modules’ placement. The non-over-
lapping condition is to hold true. Using this structure we have to answer queries to find
the coordinates of the side projections on vertical or horizontal axis.

The constraint graph structure is to represent the abstract order of module placement
relative to the horizontal or vertical axis. The graph is to be acyclic. Using this structure
we put all the modules in the placement in abstract topological order. This is necessary to
pack the modules after the new module is placed. This structure is to answer the queries
to find the placement coordinates of the leftmost bottom corner (x- and y-coordinate for
side projections) of the module as if they would be packed without overlapping each
other by a physical power vector coming from outermost space on a plane (i.e. the most
upper right area).

On the Fig. 2, the packing scheme is presented, the vectors are denoted as P(X) and
P(Y), for vertical and horizontal direction respectively.

A

B

C

Fig. 1. An example of a slicing floorplan.

A B

C D

Y

X
0

P(X)

P(Y)

Fig. 2. The packing scheme.

M. Syzdykov, M. Uzbekov196

2.1. Constraint Graph

A constraint graph is the structure we use to represent the floorplan as an acyclic directed
graph. The constraint graph represent the order of modules’ placement relatively to the
horizontal or vertical axis. Thus the constraint graph can be either horizontal or vertical.
This can be better illustrated if we would draw these graphs for a module placement on
Fig. 1 (Fig. 3).

Here the “0”-mark stands for the artificial starting element which in fact is a parental
node having no incoming edges. Physically on a plane this means that the leftmost or the
most bottom modules are to be connected to this parental node as it can be seen on the
example diagrams (Fig. 3).

2.2. Interior Structure

The interior of the current feasible placement may be described as a set of vertical or
horizontal ranges representing the projections of modules taking into account their rela-
tive order. To better understand the structure of interior study the example in Fig. 4.

This structure can be effectively used to build constraint graphs or to detect the rela-
tive position of the placing module.

A

B

C

0

0

A

B

C

G (V) G (H)

 G(V) G(H)
Fig. 3. An example horizontal and vertical constraint graphs.

B

A

X

Y

A

B

B A

R(V)

R(H)

Fig. 4. Example of placement modules and their vertical R(V) and horizontal R(H) interiors.

Ant Colony Optimisation Applied to Non-Slicing Floorplanning 197

The interior structure is an ordered list of ranges which may also be used in con-
straint graph detection. This is mainly because of that fact that each element of this list is
a segment on the X- or Y-plane with Z-axis as the other (minor) coordinate. This can best
be seen in Fig. 4 in the red line. To build the graph we have to detect if the interior’s “red
line” intersects the next item which is to the left or at the top according to parameter Z.
If yes, then there would be a relation between the modules represented by segments in
a constraint graph. This relation has direction according to the Z-axis. The axis may be
either vertical or horizontal according to the constraint graph type. These types split the
process of extracting the x- and y-coordinate for the module.

Mathematical Description of Interior Structure
The interior structure was designed to find a position of a module mi ∈ M / MFinal to

be added to the right or bottom without overlapping an arbitrary element which is al-
ready included in the final placement MFinal. More precisely, the interior can be viewed
as an outermost horizontal or vertical line lying on the edges of modules in placement,
viewed from right or bottom side on a plane. Because the algorithm iteratively produces
the feasible placement, the interior structure needs to be updated. The interior I can be
represented as a set of segments given by a vector of four values:

I = {(Li, Ri, Zi, mi) : I = 1..n, mi ∈ M}, (4)

where Li, Ri are left and right coordinates of the segment on a linear vertical or
horizontal axis (this depends on the type of interior which can be either horizontal or
vertical),

Zi is a distance between the segment and parallel axis,
mi is a module which covers the segment by its right or bottom edge.
Fig. 5, as is, gives an example of this structure on a geometric plane.
Below is an algorithm to update the interior structure according to the new module

to be placed.
Please note, Zi is a pre-determined value which does not change. For the X-interior

it is obviously a Y-value of the bottom corner of the module and vice versa for the
Y-interior.

A B

C D

I (H)

I (V)

Y

X0

Fig. 5. View of an interior on a geometric plane.

M. Syzdykov, M. Uzbekov198

3. Ant System

In (Dorigo et al., 1996) there is a proposed solution for a Traveller-Salesman Problem
(TSP) problem using ant agents’ simulation. This algorithm uses the measurement
functions in order to get the probabilities of transitions between towns given on a
planar area:

taui,j(t) is an intensity of trail on edge (i, j) at time t.

The trail intensity is to be updated according to the following formula:

taui,j(t+n) = rho * taui,j(t) + ∆taui,j, (5)

where rho is a coefficient such that (1 - rho) represents the evaporation of trail be-
tween time t and t + n.

∆taui,j = SUM {∆tau ki,j | k = 1..[Ants]}, (6)

where ∆tau ki,j is the quantity per unit of length of trail substance (pheromone in real
ants) laid on edge (i, j) by the k-th ant between time t and t + n; these values is non-zero
if ant uses edge (i, j) on his tour and equals value:

∆tau ki,j = Q / Lk, (7)

where Q is a constant and Lk is the tour length of the k-th ant.
The visibility etai,j is defined as a quantity 1 / di,j, where di,j is a distance between

towns i and j.
The transition probability from town i to town j for the k-th ant is defined as:

p ki,j(t) = (taui,j (t)*etai,j) / SUM { taui,k (t)*etai,k | k is allowed to be used in a tour}, (8)

Algorithm 1. Update interior structure.

The interior structure is an ordered list of ranges which may also be used in constraint graph detection. This is
mainly because of that fact that each element of this list is a segment on the X- or Y-plane with Z-axis as the other
(minor) coordinate. This can best be seen in Fig. 4 in the red line. To build the graph we have to detect if the
interior’s "red line" intersects the next item which is to the left or at the top according to parameter Z. If yes, then
there would be a relation between the modules represented by segments in a constraint graph. This relation has
direction according to the Z-axis. The axis may be either vertical or horizontal according to the constraint graph
type. These types split the process of extracting the x- and y-coordinate for the module.

2.2.1 Mathematical Description of Interior Structure

The interior structure was designed to find a position of a module 𝑚 ∈ 𝑀/𝑀�𝑖𝑛𝑎� to be added to the right or bottom
without overlapping an arbitrary element which is already included in the final placement MFinal. More precisely, the
interior can be viewed as an outermost horizontal or vertical line lying on the edges of modules in placement,
viewed from right or bottom side on a plane. Because the algorithm iteratively produces the feasible placement, the
interior structure needs to be updated. The interior I can be represented as a set of segments given by a vector of four
values:

𝐼 = {(𝐿𝑖 ,𝑅𝑖,𝑍𝑖 ,𝑚𝑖): 𝑖 = 1. .𝑛,𝑚𝑖 ∈ 𝑀}, (4)
where Li, Ri are left and right coordinates of the segment on a linear vertical or horizontal axis (this depends on

the type of interior which can be either horizontal or vertical),
Zi is a distance between the segment and parallel axis,
mi is a module which covers the segment by its right or bottom edge.

Fig. 5, as is, gives an example of this structure on a geometric plane.

A B

C D

I (H)

I (V)

Y

X0
Fig. 5. View of an interior on a geometric plane

Below is an algorithm to update the interior structure according to the new module to be placed.
Algorithm 1. Update interior

structure

Please note, Zi is a pre-determined
value which does not change. For the
X-interior it is obviously a Y-value of
the bottom corner of the module and
vice versa for the Y-interior.

3. Ant System

In [1] there is a proposed solution for
a Traveller-Salesman Problem (TSP)

problem using ant agents’ simulation. This algorithm uses the measurement functions in order to get the
probabilities of transitions between towns given on a planar area:

taui,j(t) is an intensity of trail on edge (i, j) at time t.
The trail intensity is to be updated according to the following formula:

taui,j(t+n)= rho * taui,j(t) + ∆taui,j, (5)

Initial values: I = {}.
Input: The new module 𝑚���.
Output: Interior I.
for each segment 𝑎 ∈ 𝐼:
 if projection of 𝑎 intersects edge of 𝑚���:
 𝑏 = intersection result of 𝑎 and 𝑚���;
 if 𝑎. 𝐿 < 𝑏. 𝐿 then 𝐼 = 𝐼 ∪ {(𝑎. 𝐿, 𝑏. 𝐿, 𝑎.𝑍, 𝑎.𝑚)};
 if 𝑏.𝑅 < 𝑎.𝑅 then 𝐼 = 𝐼 ∪ {(𝑏.𝑅, 𝑎.𝑅, 𝑎.𝑍, 𝑎.𝑚)};
 𝐼 = 𝐼/{𝑎};
 end if
end for

Ant Colony Optimisation Applied to Non-Slicing Floorplanning 199

Please note: the functions (5)–(8) are core functions required to create a base for
simulation model which uses results of computation to make a decision.

Our method differs only in the definition of visibility and distance functions:

Viz (a, b) = “Total Module Area” / “Total Area”; (9)

Distance (a, b) = Beta / Viz (a, b), (10)

where the total module area is a cumulative sum of corresponding modules and
total area represents the rectangular placement bounding box. The visibility function
Viz (a, b) between modules a and b is a “visibility” used in the TSP algorithm. The
distance function Distance (a, b) is a measure of divergence between modules a and
b. This function is also used in this algorithm. Beta is defined as “Q” in Dorigo et al.,
1996 (equation (3)), in this paper it is equation (7). It is used as a constant of any posi-
tive value. In our algorithm it always equals one.

4. Basic Algorithm

The matrix of trained ants’ probability values to search the best placement is repre-
sented as a product of dimensions 2N × 2N × P, where P is a set of values – {BOT-
TOM, RIGHT}. We use this notation in order to include the possible flipped (sides of
a module rotated 90 degrees) orientation of the corresponding module. In this case the
module index is multiplied by two. The set P represents the possible relative place-
ment of modules. Thus, the pheromone matrix (Dorigo et al., 1996) in our algorithm is
a multi-dimensional array. In order to take into account that fact that the new module
can be placed to the right or to the bottom, the dimension degree is increased by using
a set P accordingly. The dimension of the rectangular matrix is also increased (in fact
it is multiplied by two) with respect to that fact that the modules can be rotated. For the
indexes 1..2N the following is assumed:

Indexes in form of 2(1) k + 1 (2k + 1 <= 2N) are original modules.
Example: 1, 3, 5, ...
Indexes in form of 2(2) k (2k <= 2N) are rotated modules.
Example: 2, 4, 6, ...

The algorithm is similar to the ant colony best path search simulation described in
(Dorigo et al., 1996). On every step the new module can be placed either to the right or
bottom relatively to any module from the set built using ant simulation. The new module
is to be placed according to the minimal value of the distance function. I.e., from all the
distance values we choose the module corresponding to the minimal value. To solve the
problem of placement on the plane the interior structure is used which on every step
determines the position of the new module. This can be done in log (N) number of opera-
tions using a binary search.

M. Syzdykov, M. Uzbekov200

When the placement is created, an additional operation is applied. We call it packing
and it uses the constraint graphs of the placement to rebuild it according to the topo-
logical structure of the graph. More precisely, the constraint graph is used to rebuild
the placement in order to pack it. This is achieved by computing the values of X- and Y-
coordinates of the modules according to the graph structure (horizontal or vertical). This
can be done using a Breadth-first search (BFS). Thus the possible residual dead space is
excluded from area occupied by the newly placed modules.

The complexity of the solution is O (NC NAnt N3 log (N)), where NC is the number of
outer iterations, NAnt – number of artificial ants and N – the number of modules in final
placement.

5. Experimental Results

In this section we give the graphical plot of the obtained results using the described
method of ant colony optimization of modules to be arranged with no overlaps. The
benchmark tests included test cases from CompaSS software package (CompaSS, 2004–
2005). Below are graphical plots of the algorithm results for the cases AMI33 and AMI49
presented on Fig. 6 and Fig. 7 respectively.

The practical observations show that algorithm gives better results if the number of
artificial ants and number of outer iterations is increased. This can be better analysed
from the results presented in Table 1.

On the diagram below (Fig. 8) the results are visualized for each iteration (one line
for each value). The ants count values are on horizontal axis by 5 ants per unit and dead
space percentage values are on vertical axis.

Fig. 6. Physical placement of AMI33, Unused area = 6.888%.

Fig. 7. Physical placement of AMI49, Unused area = 10.621%.

Ant Colony Optimisation Applied to Non-Slicing Floorplanning 201

Table 1
Experimental results for AMI33 with varying parameters

Module Number of
iterations

Number of ants Dead Space (%) Running time

AMI33 5 5 32,24% 890 ms
10 12,20% 1 sec. 389 ms
15 6,89% 1 sec. 988 ms
20 17,25% 2 sec. 645 ms
25 6,89% 3 sec. 145 ms

10 5 28,72% 1 sec. 795 ms
10 12,20% 2 sec. 948 ms
15 6,89% 4 sec. 260 ms
20 6,89% 5 sec. 184 ms
25 6,89% 6 sec. 392 ms

15 5 21,00% 2 sec. 473 ms
10 17,25% 4 sec. 643 ms
15 6,89% 6 sec. 303 ms
20 7 sec.
25 6,89% 9 sec. 811 ms

20 5 12,20% 3 sec. 567 ms
10 6,89% 6 sec. 21 ms
15 12,20% 8 sec. 177 ms
20 6,89% 10 sec. 831 ms
25 6,89% 12 sec. 513 ms

25 5 19,86% 4 sec. 407 ms
10 13,66% 7 sec. 447 ms
15 12,20% 9 sec. 682 ms
20 6,89% 13 sec. 118 ms
25 6,89% 16 sec. 321 ms

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

1 2 3 4 5

Fig. 8. The visualization of results in Table 1

M. Syzdykov, M. Uzbekov202

5.1. Generalizing Algorithm

By the generalization of the described algorithm we mean the application of heuristics
plan for a large data set (estimated as more than 10K nodes). These data sets were pro-
posed for the contest held at the International Symposium on Physical Design (ISPD,
2005). Practically, the algorithm can be maintained effectively even for large data sets
if we apply the clustering paradigm. This paradigm includes the following steps to be
applied:

Select a set of clusters to divide the entire list of modules independently:1.

 C: Union {each c in C} = C & Intersection (each a in C, each b in C | a ! = b)
 = {}; (11)

Apply locally the ACO algorithm for each cluster using the set of modules in 2.
cluster as an input data:

 Local Placement = Union {ACO (each c in C)}; (12)

For the list of placements obtained from step 2 create a list of bounding boxes:3.

 Global List = Union {“Bounding Box” (each p in “Local Placement”)}; (13)

Apply the ACO algorithm globally:4.

 Global Placement = Union {ACO (each p in “Global List”)}; (14)

These steps can be applied recursively to large data sets, if we would use the algo-
rithm for the clusters as the input data, which in turn may be a result of ACO algorithm
for the other clusters. These clusters at their finite hierarchy are modules representing the
input data for the global algorithm.

5.2. Conclusion and Further Work

The working algorithm produces better results when the number of ants is increased.
The further work includes the study of the application of clustering method to handle
large amounts of data. This is not limited to the experiments when the list of constraints
is extended as well as the list of semantic rules, for which the placement satisfies (for
example, the final placement rectangle’s size and shape constraint).

Acknowledgements

We are glad to mention the editor of this article – prof. V. Dagienė (Vilnius University
Institute of Mathematics and Informatics, Lithuania). We are grateful for the review due
to which the article describing a novel algorithm became more readable and understand-
able including all the necessary and important information.

Ant Colony Optimisation Applied to Non-Slicing Floorplanning 203

References

Alupoaei, S., Katkoori, S. (2004). Ant colony system application to macrocell overlap removal. IEEE Transac-
tions on VLSI Systems, 12.

Arora, M., Lall, G.C. (2013). Circuit partitioning in VLSI design: an ant colony optimization approach. Inter-
national Journal of Advances in Engineering & Technology, 6(1), 536–541.

Chiang C.-W. (2009). Ant colony optimization for VLSI floorplanning with clustering constraints. Journal of
the Chinese Institute of Industrial Engineers, 26(6), 440–448.

CompaSS: Compacting Soft and Slicing Packings (2004–2005).
http://vlsicad.eecs.umich.edu/BK/CompaSS/

Dorigo, M., Maniezzo, V., Colorni, A. (1996). The ant system: optimization by a colony of cooperating an-
gents. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 7–8.

Hoo, C.-S., Jeevan, K., Ganapathy, V., Ramiah, H. (2013). Ant system-corner insertion sequence: an efficient
VLSI hard module placer. Advances in Electrical and Computer Engineering, 13(1).

ISPD: The International Symposium on Physical Design (2005).
http://archive.sigda.org/ispd2005/contest.htm

Luo, R., Sun, P. (2007). A novel ant colony optimization based temperature-aware floorplanning algorithm. In:
Proceedings. Third International Conference on Natural Computation, ICNC 2007. IEEE, 4, 751–755.

Sivaranjani, P., Kawya, K.K. (2013). Performance analysis of VLSI floor planning using evolutionary algo-
rithm. International Journal of Computer Applications, International Conference on Innovations in Intel-
ligent Instrumentation, Optimization and Signal Processing “ICIIIOSP-2013”, 9, 42–46.
http://research.ijcaonline.org/iciiioes/number9/iciiioes1662.pdf

Yoshikawa, M., Otani, K. (2010). Ant colony optimization routing algorithm with tabu search. In: Proceedings
of the International MultiConference of Engineers and Computer Scientists, IMECS 2010, March 17–19,
2010, Hong Kong. III. 2104–2107.

 M. Syzdykov currently works as a consultant in a small firm, gradu-
ated from Kazakh National Technical University named after K.I. Sat-
payev receiving a degree of engineer in systemotechnics. He’s a par-
ticipant of ACM ICPC 2004–2006 (NEERC subregion) and a CBOSS
programming contest. He’s also a certified specialist in such technolo-
gies like Oracle and Informatica Power Center. He has a working ex-
perience with data staging process optimization.

M. Uzbekov – currently works as a specialist in IT industry, Kazakh-
stan. Graduated from Kazakh Economical University named after T.
Ryskulov. He’s a certified specialist in such technologies like SAP and
Informatica Power Center. He has a working experience with enter-
prise database and ETL systems like TeraData. He’s also interested in
programming challenges

Olympiads in Informatics, 2015, Vol. 9, 205–212
DOI: http://dx.doi.org/10.15388/ioi.2015.16 205

REPORTS

Report of the IOI Workshop “Creating an
International Informatics Curriculum for
Primary and High School Education”

Nevena ACKOVSKA1, Ágnes ERDőSNé NéMETH 2,
Emil STANKOV 1, Mile JOVANOV 1

1 Faculty of Computer Science and Engineering, University Ss. Cyril and Methodius
 st. Rugjer Boshkovikj 16 Skopje, Macedonia
2 ELTE IK, Budapest
 Batthyány Lajos Gimnázium, Nagykanizsa
e-mail: nevena.ackovska@finki.ukim.mk, agi@microprof.hu
emil.stankov@gmail.com, mile.jovanov@gmail.com

Abstract. This report entangles the endeavors undertaken during the IOI Workshop “Creating
an International Informatics Curriculum for Primary and High School Education”. Considering
the need to discuss the role of informatics in the primary and secondary education, the Workshop
participants tried to encapsulate several activities that might give insight on how to treat this is-
sue with success. An overview of the current situation with the informatics education in thirteen
countries was presented. Further, a group work took place considering relevant topics in creating
informatics curricula and computational thinking. A fruitful discussion that considered establish-
ing guidelines and further steps in creating informatics curricula and some ways to promote infor-
matics concluded the Workshop.

Keywords. informatics curriculum, promoting informatics.

1. Introduction

The IOI Workshop “Creating an International Informatics Curriculum for Primary and
High School Education” took place from 19–24.04.2015 in Bitola, Macedonia. It gath-

N. Ackovska et al.206

ered 16 people coming from the following countries: Belgium, Brazil, Bulgaria, Croatia,
Estonia, Hungary, Lithuania, Macedonia, Serbia and Slovenia. It also included 2 Skype
presentations coming from New Zealand and Bolivia, and a submission coming from
India. There were three different sets of activities that took place on this Workshop:

Country presentations, including tutorials on Tools used in some of the countries.1)
Workgroup activities. 2)
Conclusions, results, recommendations and further steps that should be taken. 3)

In the sequel of this document an elaboration on all of the activities is presented.
The next chapter gives an overview of the details of the primary and the secondary
school curricula in the countries whose representatives presented on this IOI Work-
shop. The effort done in four different workgroups considering relevant topics in cre-
ating informatics curricula and computational thinking is presented in chapter three.
The recommendations, conclusions and the possible further steps are given at the end
of this report.

2. Participating Countries’ Specifics

During the IOI Workshop each country representative presented the specifics of the pri-
mary and the secondary school curricula in his own country. Some of the characteristics
and best practices that each country presented from their specific experience in informat-
ics education are given in the sequel:

Belgium ● : Neither Informatics nor ICT is in the official curriculum in Belgium.
Some efforts are made through informal teaching: 1) Encourage participation to
first stages of contests (IOI, Bebras...) for everyone, making them easier. 2) Orga-
nise workshops and fairs to promote informatics at large.
Bolivia ● : There is not enough staff for teaching Competitive Programming; how-
ever there is a community of ICPC contestants that helps the school students in
order to prepare for national and international contests. There isn’t any standard
about CS in schools, but the schools start to use as a standard the Syllabus of IOI
Bolivia which is used for the local contests.

The most known and used path is the syllabus that starts from 10 years old
children (or 5th of primary) and is divided in 4 level of contests (Level 0: Operat-
ing Systems (Windows and Linux), Level 1: Introduction to Programming with
videogames (Scratch, Kodu or other), Level 2: Basic Programming (until Arrays),
Level 3: Advanced Programming (Data Structures including Graphs)).
Brazil ● : In Brazil there is no ICT or Programming in the official curriculum, ex-
cept at Professional Education Courses. A new program started, but only in a few
schools, to include Informatics as “complementary activities” at Primary and Sec-
ondary levels, involving only Digital Literacy and ICT.
Bulgaria ● : There are two curricula in parallel: IT curriculum (Computer system,
Organization of data and information carriers, Image processing...) and Informat-
ics curriculum (Math foundation – binary system, propositional logic, formal lan-

Report of the IOI Workshop “Creating an International Informatics Curriculum ...” 207

guages, computer architecture, operating system, introduction to algorithms and
data structures, programming). Most of the regular schools have no teachers in
Informatics and do not really teach Informatics.
Croatia ● : Informatics in primary schools is an elective subject, attended only by a
small number of pupils. The teaching plan consists of basics of using the computer,
using Office applications and principles of programming. Because of the enthu-
siasm of the teachers, there are groups where something more on programming
can be learned. In secondary schools, informatics is mandatory but in most of the
schools only for one year. Only in math-science gymnasiums, the programming
and teaching of logical thinking are present through all four years. Preparing for
programming competitions is part of additional elective informatics. In the creation
of the new curriculum that has started recently, there is a plan to have informatics
as mandatory subject in primary schools.
Estonia ● : Some of the recommendations are: 1) Teachers should have some free-
dom in the curriculum to have the option to choose what and how they want to
teach; 2) Various learning and teaching materials should be created systematically
and made publicly available online for free; 3) Constant teacher trainings should be
provided to keep teachers aware of the currently most suitable software for these
activities and able to search for suitable tools; 4) Informatics should be viewed as
an independent scientific subject including elements of programming; 5) Society
(pupils, teachers, parents, municipality, stakeholders, researchers, etc.) should be
included in raising the awareness of the importance of informatics; 6) Extra cur-
riculum activities and competitions should be supported to increase the motivation
of pupils learning IT.
Hungary ● : 1) It is very late to teach the fundamentals of informatics as a science in
secondary school, it is a must to begin it in an early primaries; 2) Informatics means
Information and Communication Technology (ICT), Computer Science (CS) and
Digital Literacy (DL), altogether.
India ● : Due to the lack of infrastructural facilities like electricity (43%), broadband
connectivity, computers (76%), and qualified teachers, the teaching of computer
programming is currently restricted to urban cities and towns of India.
Lithuania ● : 1) Learning by contests (introducing Bebras tasks); 2) Involving vari-
ous players in informatics education: pupils, teachers, parents, municipality, stake-
holders, researchers…) creating resources for teaching and learning informatics
available to everybody (description of methods, exercises, learning objects…).
Macedonia ● : 1) Introducing programming in primary school as an elective subject
in one of the last two years of study; 2) Most of the topics covered in the informat-
ics courses are related to programming; 3) Intention to introduce programming and
algorithmic thinking starting from the first grade, and also in the lower grades as
a part of the other subjects; 4) Most of the pupils interested in programming are
attracted through the competitions.
New ● Zealand: There is no compulsory Computational Thinking or Computer
Science in years 1 to 10. In years 11 to 13 there have been elective standards in
Programming and Computer Science, phased in since 2011. So far numbers are

N. Ackovska et al.208

small. Teachers have lacked Ministry funded professional development to learn
Programming although there has been support for “the big ideas” of Computer
Science through CS4HS workshops and a student and teacher website. School and
parental awareness of the need for CT in the curriculum at all year levels is slowly
gathering strength.
Serbia ● : In the elementary school there are elective IT courses in grades 5 and 6
(36hrs), oriented to computer use (including modeling with Scratch), and also in
grades 7 and 8 (34hrs). Plus additional hours of ICT are “integrated into other dis-
ciplines”. In Gymnasiums, informatics is taught with one or two classes per week,
which is really low compared to other important courses. The aim of the course is
the acquisition of basic computing literacy and training students to use computers
in their further education and work. Unfortunately, the emphasis is far from the
algorithmic nature.
Slovenia ● : The informatics curriculum in Slovenia is on a satisfactory level in the
first few years (primary school), where students have the option to learn the basics
of algorithmic thinking and programming, but it declines rapidly from then on.
Currently, informatics is mandatory only in the secondary schools, where only 70
hours are assigned. A big problem is the lack of qualified teachers, which is (pro-
bably) due to low salaries and the lack of interest for the profession. “Best” prac-
tices: Competitions are excellent for attracting young pupils into the field and they
motivate them to refine their skills. Due to the currently minuscule curriculum, the
best competitors think they already learned everything and very often decide to
continue their university studies in some other field.

3. Work Group Reports

Additional work has been done in 4 work groups. The specifics of the analyses done by
every workgroup are given below.

3.1. Methodology of Creating an International School Curriculum
for Informatics and Information Technologies (ISCIIT)

This group’s first objective was to study the available curricula for computer science
and informatics technologies for undergraduate students. The recommendations from
IEEE and ACM were overviewed, as well as the learning standards recommended by the
Computer Science Teachers Association, Computing at School Working Group and the
Australian Curriculum. The main goal was to provide a set of recommendations for the
creation of programs for informatics in primary and secondary schools.

The Curriculum Guidelines should identify a body of knowledge, set of learning
outcomes, core and curriculum models. The body of knowledge needs to be organized
by knowledge areas that are broken down into units. Each unit is further subdivided into
a set of topics. The age when a set of topics should be introduced must be specified.

Report of the IOI Workshop “Creating an International Informatics Curriculum ...” 209

3.2. Analysis of the Joint Report from Informatics Europe and ACM Europe

The report analyzed by this group was developed by a group of experts from academia
and industry representing the two principal scientific societies in the field, Informatics
Europe and ACM Europe. More resources: (Barr and Stephenson, 2011), (Delors, 1996),
(Kingfield, 2012), (Snyder, 1999), (Snyder, 2005).

Based on the analysis of the current situation and of experiences in many countries
across Europe, this report makes four key recommendations:

All students should benefit from education in ● digital literacy, starting from an
early age and mastering the basic concepts by the age of 12. Digital literacy educa-
tion should emphasize not only skills, but also the principles and practices of using
them effectively and ethically.
All students should benefit from education in ● informatics as an independent sci-
entific subject, studied both for its intrinsic intellectual and educational value and
for its applications to other disciplines.
A ● large-scale teacher training program should urgently be started. To bootstrap
the process in the short term, creative solutions should be developed involving
school teachers paired with experts from academia and industry.
The definition of ● informatics curricula should rely on the considerable body
of existing work on the topic and the specific recommendations of the present
report.

3.3. Computational Thinking

One of the main goals for computer science should be to teach computational thin-
king, just as the mathematics’ main goal is to teach logical thinking and to increase
problem solving skills. This should be achieved by incorporating the concepts of com-
putational thinking into most/all courses as the implementation of these concepts is
interdisciplinary. The process can benefit from computer scientists, who can promote
understanding of how to bring computational processes to bear on problems in other
fields. Also this can help students understand processes as algorithmic. In addition to
incorporating these skills formally in the classroom, research regarding the implemen-
tation of computational thinking skills in informal education also provides valuable
insights.

However, embedding computational thinking in primary and secondary education
requires a practical approach, for example:

What would computational thinking look like in the classroom? ●
What are the skills that students would demonstrate? ●
What would a teacher need in order to put computational thinking into practice? ●
What are teachers already doing that could be modified and extended? ●

More resources: (Barr and Stephenson, 2011), (Brennan and Resnick, 2012), (Lee
et al., 2011), (Mannila et al., 2014), (Wing, 2006), (Wing, 2011).

N. Ackovska et al.210

3.4. Preparing a Template for Gathering Data for a Catalogue of Experiences

The purpose of this sub-group was to provide a process and a framework for producing
a “Catalogue of Existing Experiences” in Informatics and Computer Science at Schools,
in different countries.

Some documents have been reviewed, such as (Guerra et al., 2012).
After some discussion it was decided that the best way to produce such a catalogue

was to use the IOI community as an input, preparing a questionnaire to be sent to IOI
leaders and deputy leaders. It was decided that the questionnaire should be divided into
two sections: one with more general information (for example, about the organization of
education and of schools), and one with more specific information (for example, which
topics are taught at each grade).

The agreement has been made to prepare a questionnaire which should be dissemi-
nated to 5–10 valuable teachers in IOI participating countries. It is expected that this
questionnaire will gather valuable data that will be used as a basis for building future
informatics curricula.

4. Conclusions and Recommendations

The activities that took place in the IOI Workshop “Creating an International Informa-
tics Curriculum for Primary and High School Education” lead to several conclusions and
recommendations. They are sublimated below:

Primary and secondary levels of education (ages 6 through 19) need to incorporate 1.
informatics. As the experience in many European countries has shown, pupils by
the age of 12 can be educated, and the education must cover the technical usage of
IT tools as well as the rules on how to use them safely, effectively and ethically.
Informatics should become a mandatory subject in schools.2.
Combining formal and informal education should be supported.3.
Various methods of teaching and learning informatics fundamentals should be used 4.
at primary school: tools that use visual block based programming, learning through
games, game creation, robotics, CS unplugged etc.
For advanced informatics curricula, modular design is highly recommended. 5.
Informatics ought to be thought by teachers trained in informatics. 6.
Constant teacher training should be carried out due to the constant changes in the 7.
field of informatics.
Country specifics should be considered when developing informatics curriculum.8.

Acknowledgement

The authors would like to express their sincere gratitude to all the participants of the
IOI Workshop 2015, for the hard work done and the efforts made in order to define

Report of the IOI Workshop “Creating an International Informatics Curriculum ...” 211

sound directions and construct a proposal that the IOI community could use for the
purpose of establishment of an international informatics curriculum for primary and
secondary school education. Here the full list of participants is presented: Sébastien
Combéfis – Belgium, Willmar Pimentel – Bolivia, Ricardo Anido – Brazil, Krassimir
Manev – Bulgaria, Krešimir Malnar – Croatia, Maria Gaiduk and Tauno Palts – Es-
tonia, Ágnes Erdősné Németh – Hungary, Narayen Ugar – India, Valentina Dagienė
– Lithuania, Mile Jovanov, Emil Stankov, Marija Mihova, Nevena Ackovska and Bojan
Kostadinov – Macedonia, Margot Phillipps – New Zeland, Jelena Hadzi-Puric – Serbia,
and Darko Pevec – Slovenia.

References

Barr, V., Stephenson, C. (2011). Bringing computational thinking to K-12: what is involved and what is the role
of the computer science education community? ACM Inroads, 2(1), 48–54.
http://dl.acm.org/citation.cfm?id=1929905

Bebras – International Contest on Informatics and Computer Fluency (2007–2015). http://bebras.org
Brennan, K., Resnick, M. (2012). New frameworks for studying and assessing the development of computatio-

nal thinking. In: Proceedings of the 2012 annual meeting of the American Educational Research Associa-
tion. Vancouver, Canada.
http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf

CECE – Committee on European Computing Education (2013–2015).
http://www.uni-muenster.de/CECE/

Delors, J. (1996). Learning: the Treasure Within, Report to UNESCO of the International Commission on Edu-
cation for the Twenty-first Century. UNESCO publishing. http://www.unesco.org/delors/

Exploring Computational Thinking. https://www.google.com/edu/resources/programs/ex-
ploring-computational-thinking/

Guerra, V., Kuhnt, B., Blöchliger, I. (2012). Informatics at School – Worldwide: An International Exploratory
Study about Informatics as a Subject at Different School Levels. http://fit-in-it.ch/sites/de-
fault/files/small_box/study_informatics_at_school_-_worldwide.pdf

Informatics Education: Europe Cannot Afford to Miss the Boat (2013). Report of the joint Informatics Europe
& ACM Europe Working Group on Informatics Education.
http://europe.acm.org/iereport/ACMandIEreport.pdf

ISTE Computational Thinking for All. http://www.iste.org/learn/computational-thinking
Kingfield, N. (2012). Fostering tech talent in schools. New York Times, 30 September 2012.

http://nyti.ms/Sudld4
Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., Malyn-Smith, J., Werner, L. (2011). Compu-

tational thinking for youth in practice. ACM Inroads, 2(1), 32–37.
http://dl.acm.org/citation.cfm?id=1929902

Mannila, L., Dagienė, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., Settle, A. (2014). Computational
thinking in K-9 education. In: Proceedings of the Working Group Reports of the 2014 on Innovation &
Technology in Computer Science Education Conference (ITiCSE-WGR ‘14). 1–29.
http://dl.acm.org/citation.cfm?id=2713610

Snyder, L. (1999). Being Fluent with Information Technology. Washington, D.C., The National Academies
Press (NAP) http://www.nap.edu/openbook.php?record_id=6482&page=1

Snyder, L. (2005). Bringing fluency with information technology to high schools. CSTA Voice, 1(3).
http://bit.ly/cCPUFR

Royal Society (2012). Shut Down or Restart? The Way Forward for Computing in UK Schools. January 2012.
http://bit.ly/zDqu7F

Wing, J.M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
https://www.cs.cmu.edu/~15110-s13/Wing06-ct.pdf

Wing, J.M. (2011). Computational Thinking: What and Why. http://www.cs.cmu.edu/link/re-
searchnotebook-computational-thinking-what-and-why

N. Ackovska et al.212

N. Ackovska holds B.Sc. in Computer Engineering, Informatics and
Automation (2000), M.Sc. in Intelligent Systems (2003), and Ph.D. in
the field of Intelligent Systems (2008) from “Sts. Cyril and Methodius
University” in Skopje, Macedonia. She is Associate Professor at the
Faculty of Computer Science and Engineering at UKIM. She is author
of five books (in Macedonian) and more than 60 research articles in the
field of Intelligent Systems and hardware education. Her research in-
terest are Beings, both living and artificial. Dr. Ackovska is a member
of the Computer Society of Macedonia. She has actively participated
in the organization and realization of the Macedonian national compe-
titions and Olympiads in informatics since 2001.

Á. Erdősné Németh teaches mathematics and informatics at Bat-
thyány Lajos High School in Nagykanizsa. A lot of her students are
in the final rounds of the national informatics tournaments. She is a
Ph.D. student in the Doctoral School of Faculty of Informatics at the
University of Eötvös Loránd in Budapest. Her current research interest
is teaching computer science for talented pupils.

E. Stankov is a teaching and research assistant at the Faculty of Com-
puter Science and Engineering, University “Ss. Cyril and Methodius”,
in Skopje. He is a member of the Executive Board of the Computer
Society of Macedonia, and has actively participated in the organization
and realization of the Macedonian national competitions and Olympi-
ads in informatics since 2009. Currently he is a Ph.D. student at the
Faculty of Computer Science and Engineering. His research includes
analysis of program code correctness using different techniques, and
its application to e-learning.

M. Jovanov is an assistant professor at the Faculty of Computer Sci-
ence and Engineering, University “Ss. Cyril and Methodius”, in Sko-
pje. As the President of the Computer Society of Macedonia, he has
actively participated in the organization and realization of the Macedo-
nian national competitions and Olympiads in informatics since 2001.
He has been a team leader for the Macedonian team at International
Olympiads in Informatics since 2006. His research interests include
development of new algorithms, future web, and e-education, and he
has authored more than 40 research peer reviewed papers.

Olympiads in Informatics, 2015, Vol. 9, 213–224
DOI: http://dx.doi.org/10.15388/ioi.2015.17 213

Selecting and Training Students with No Suitable
Informatics Background for Informatics Olympiads
– The Case of Syrian Olympiad in Informatics

Ammar ALNAHHAS1, Emad ALAZAB2

1 Damascus University, Syria
2 National Commission for the Syrian Science Olympiad, Syria
e-mail: eng.a.alnahhas@gmail.com, emadalazab@gmail.com

Abstract. Many countries suffer from a bad informatics syllabus in their educational systems,
which leaves the students with no skills in computer programming or algorithms. This fact impo-
ses a big challenge to the process of selecting the best secondary school students for the informat-
ics Olympiad; it also makes training them a harder process.

In this paper, we present our vision to tackle this issue in Syria, where the educational system
lacks the principles of computer algorithms; moreover, the educational system tends to target stu-
dent skills that do not include creativity nor innovation. We show the process of gradual selection
of students along with the scientific materials of contests in each step, we present the training pro-
cess in all stages as well. As the process evolved in the last ten years, the statistics of the enrolled
students as well as the practical results were provided at last.

Keywords: informatics olympiad, Syria, Syrian olympiad in informatics, programming contest.

1. Introduction

It is now 11 years since the first Syrian Olympiad in Informatics was held. Syria started
participating in the International Olympiad in informatics in 2004, it has not been easy
for us in Syria to organize a local competition. It was still very difficult for us to train
students that are going to participate in IOI; this is mainly because of many reasons,
which vary from social, educational and logistical ones.

Syrian universities had no computer science major before 2001, moreover the school
syllabus had no real informatics content before 2005; hence the informatics education
was almost absent from the society. However, the informatics education has been im-
proved significantly in the last decade; we have been suffering from many problems:

School informatics syllabus focuses on computer usage principles, such as using ●
the operating system, the internet and some famous applications; it has no serious
content related to computer programming and algorithms. The informatics subject

A. Alnahhas, E. Alazab214

does not exist in the curriculum of general secondary education certificate, which
dissuades students from learning informatics.
Informatics schoolteachers are not qualified, professional teachers tend to not to ●
teach at schools because of bad syllabus content, therefore anyone with an ICDL
certificate is allowed to teach informatics in schools.
General school educational concepts tend to make students memorize rather than ●
think about problem solving, this makes students much more far from learning
computer algorithms and programming and deepens the gap between students and
informatics.

Because of the problems mentioned earlier selecting and training students for infor-
matics Olympiad is a very tough mission, as it is hard to find suitable students, it is hard
to convince them to participate, and it is hard to train them in a manner that they can
challenge international students.

In the last ten years, we have tried to find solutions to these problems, by inventing
selection and training models. At first we tried a model based on the concept of “Training
first”, while starting from 2012 we started a new model based on “selection first”. In this
paper we discuss the details of these two models, the first model is viewed in section 2,
the second model is presented in section 3, section 4 shows the comparison between the
two models, we conclude the paper in section 5.

2. “Training First” Model

When the first Syrian national Olympiad in informatics was held in 2004, it was very
tough to find students that can be trained and selected for the IOI. So two strategies were
introduced at that time: the first strategy was a “long term training” which is based on
training young children so that they can be qualified to learn computer programming and
algorithms after years of training, the second strategy is to select students that should be
trained and prepared to participate in IOI in the same year.

To achieve the two mentioned strategies, students are classified into divisions ac-
cording to their ages; the final distribution of divisions was to position students whose
age is below 12 in the first division, students with age below 15 in the second division
and students of the secondary school who were younger than 20 are considered in the
third group. The training materials of the first and second groups were chosen to improve
the mental capabilities of students, the content was about logic games, mathematics and
simple algorithms, later “Scratch” programming language was used to train students in
these two groups, details of using Scratch was published earlier (IDLBI, 2009).

The students of the third division were chosen and trained to participate in IOI, it
is obvious that students of the second division were being moved automatically when
they became older to be members of the third division so they can participate in IOI.
But here we faced a problem that the number of students in the second division who are
eligible to move to the third division was very low, which makes it hard to create a chal-
lenging environment for students, and the candidates of Syrian national team was very
limited. Therefore, we had to start a new selection and training process with three stages:

Selecting and Training Students with No Suitable Informatics Background ... 215

selection, training and qualification, whereas another process of preparing students for
national competition was held, the winners of the national competitions are prepared to
participate in the next year’s IOI.

2.1. Selecting Students

The first stage of selecting students is held in each Syrian province separately, each prov-
ince has a separate team who is responsible for selecting and training their students.

The selection process is based on IQ tests, because at that point it is impossible to
test students’ abilities in computer programming and algorithms, since they lack the
minimum amount of knowledge to test their abilities. The aim of these IQ tests is to find
the best students that are suitable to be taught IOI materials, we believed that we should
look for students that had talent, creativity, intelligence and a quick-wit.

The first problem we faced here is the general society view of the informatics Olym-
piad, the school teachers have no background nor are interested to know, that is because
of the large gap between the school informatics definition and the one intended in IOI.
The solution was to hold the selective IQ tests centrally by the organizers of the national
informatics Olympiad.

The first problem causes another problem of organizing a selection test that should
accept a huge number of students, we insisted on making this selection on site test so that
we can ensure the up most integrity.

This selection process was just elementary we wanted to choose about approximately
1000 students that would be trained and then the last teams would be selected from this
student group.

2.2. Training Stage

This is the toughest part; we had to teach students the principles of computer program-
ming and algorithms in about eight months.

As we had selected students with high IQ we expected that they were able to learn
algorithms and programming easier and faster than usual people.

The selected students had to attend two concurrent courses: one for computer pro-
gramming and one for computer algorithms. The programming course was based on
learning “Scratch” programming language which was a good starting point into pro-
gramming, the rest of the course focuses on real programming languages concepts. We
noticed that there was a general acceptance of learning programming; the students who
were not able to adapt to the materials left the course, so it was a process of natural selec-
tion along with the students’ education. The algorithm course focuses on the principles
of simple computer algorithms, we could not present advanced algorithms concepts as
the experience in computer algorithms can be gained by practicing and solving problems
rather than just getting theoretical knowledge, which will not be useful until it is applied
in a real experience.

A. Alnahhas, E. Alazab216

The training process of this stage was not that useful because of the following
reasons:

The training was held in 14 provinces of Syria where each province training team is ●
responsible for training their own students, the training teams were not fully quali-
fied, and differ in experience.
The number of students was very large for the trainer to follow up with all of them, ●
so that the theoretical knowledge was not backed by any practical training, this
caused a loss of the efforts of trainers.

We tried to solve the first problem by conducting a training camp for trainers, the
goal of these camps was to try to improve the trainers’ experience and direct their ef-
forts in the correct direction, these camps proved their effectiveness for first and second
division group. However, the third group trainers were not benefiting through them, as
gaining the experience to train computer algorithms needs a long time practicing which
cannot be gained in short term camps.

The second problem was not solvable in this training model and was one of the rea-
sons to move to a new model, which is going to be presented later in this paper.

At the end of the training two groups of students were chosen for each province, the
first group is chosen to proceed to the IOI team selection, where the other group is cho-
sen to participate in the national Olympiad as the team of this province.

2.3. Selection

The IOI team selection was based on series of contests, the selection is based on the
average of these contests, the students allowed to participate in these contests are the
groups of students selected by each province training team, along with the winners of
the past national Olympiad, the team members of the last years are also allowed to par-
ticipate.

A special training program was prepared for the selected team, training camps were
also held to support students in the team.

2.4. This Model in Brief

The model we had used for five year (from 2006 to 2011) was based on selecting an
initial group of possible suitable students, training all of them for the whole year then
choosing the teams. The team members still participated in the selection competitions
for the next years if they still meet the age of IOI. The winners of the national competi-
tion were also allowed to participate in the next year’s selection competitions. Fig. 1
visualize this process.

This model has many drawbacks; the selection process does not guarantee attract-
ing suitable students. The training process does not cover the most important practical
part, and the most important is that the whole system does not create the motive for the

Selecting and Training Students with No Suitable Informatics Background ... 217

students to start training by themselves, trying to improve their own problem solving
skills, which needs a long time of practice, and is important for any novice programmer
(Lahtinen et al., 2005).

3. “Selection First” Model

This new model was adopted in 2012, the main goal of this model is to select students
first then concentrate on training the selected small group of students, we thought that
enhancing the selection process and making it more effective would help us increase the
ratio of suitable students as a result of the selection.

We had to build the selection process to avoid selecting students according to their
school marks, which is not suitable for evaluation in this case. The student’s experience
in computer programming is useless for the evaluation as well, as they have no previous
knowledge because of syllabus issues as mentioned in the introduction. Moreover, the
only way to reach the maximum number of students is to reach their schools, unfortu-
nately, we cannot rely on schoolteachers to help us choose students as teachers are not
qualified.

We decided to start from schools, we had to reach the maximum number of students
and we cannot conduct an online contest, because the students will have no motive to
participate and we wanted to build a general society acceptance of the Olympiad as a
good activity for students. Besides, the integrity of online contests is not guaranteed and
proctoring about 5000 students is not possible at all.

Each school selects its team, then teams from the same area participate in a com-
petition to select the area team, the area teams participate in a competition to select the
province team and the teams of provinces participate in the final national competition.

Student to
be trained

School
students

Students from
2nd division

Student for
selection

IOI team

National competition
participants

National competition
winners

Fig. 1. the “training first” model.

A. Alnahhas, E. Alazab218

3.1. Teachers’ Olympiad

As mentioned earlier the starting point is the schools, and as the teachers of school are in
charge of selecting students in this important stage, we had to qualify and train teachers
so they can help us choose the most suitable students.

The teachers’ Olympiad is a competition that informatics schoolteachers can partici-
pate in. The completion tasks are similar to those presented to students during selection
process. The goal of this completion is to achieve the following:

Spread the informatics Olympiad among teachers, school administrators and the ●
whole society.
Let the teachers be introduced to what informatics Olympiad is about. ●
Get good statistics about teachers’ qualifications and find the good teachers who ●
can be trained and prepared to be a trainer.

Teachers of informatics in Syrian schools are not specialists; they have a good
knowledge in computer general information, computer usage such as using the operating
system and applications, some teachers know the principles of computer programming
but they constitute no more than 5% of total number of teachers. Hence, we faced a new
challenge, which is inventing tasks that can be solvable by teachers as well as targeting
the goal that the competition is all about.

The tasks used in the teachers’ competition are based on computer algorithms with-
out programming, that is, the solution of the questions is based on finding the correct
algorithm without the need to program it, these types of tasks are used later in the student
selection process, but using them here has some advantages:

The type of tasks is algorithmic, that reflects the correct image of informatics ●
Olympiad.
These tasks can help discover teachers with good ability to be prepared to train ●
students later as it reflects their creativity, innovation and intelligence.

The competition had a good impact on participants, the type of tasks had a general
acceptance among teachers, and as we observed it almost achieved the goal it was
made for.

3.2. Student Selection – School Phase

To reach almost all secondary school students in the country, the selection process starts
from the school itself. As there is still no general overview of informatics Olympiad in
the society, starting from schools creates a good challenging atmosphere that help moti-
vating students to participate.

Each school chooses its selection criteria, which depends usually on a quick IQ and
math tests, the team of each school consists of five students that should participate in the
next selection phase.

Selecting and Training Students with No Suitable Informatics Background ... 219

3.3. Student Selection – Area Phase

The students of schools at the same area competes in the same site, at this moment we
have students with no programming or algorithmic background, but they are chosen as
the best of their colleagues. The target of this selection phase is to choose students that
are eligible to go on, we believe that students with creativity, innovation and high ability
to understand simple tasks and find a solution to sophisticated riddles are best suitable
for being trained on computer programming and algorithms. IQ tests are a good mea-
sure for intelligence scores are closely associated with creativity scores for secondary
school students (Kim, 2005) . So the competition in this phase consists of a number of
IQ questions, some of which are shaped like a real life problem that the student should
investigate, analyze and find a good method to reach the solution.

Both students and teachers generally accepted this type of questions, it seemed famil-
iar to the students, as it is not related to any school syllabus content, it also encouraged
the qualified students to practice preparing for the next selection phase. Five students are
chosen from each area to participate in the next phase.

3.4. Student Selection – Province Phase

In this selection phase, students still have no programming skills, but they are talented. We
have to prepare tasks that are both solvable by students and are related to IOI content.

The solution was to prepare tasks that have an algorithmic nature, but students
should solve them by hand, this can attract students that know nothing about pro-
gramming (Marcin KUBICA, 2010) especially innovative students with good thinking
abilities.

The tasks of this phase are chosen to meet the following requirements:
It has the same programming problem structure (input, output). ●
It requires some algorithm to be invented for the given test case be solvable by ●
feasible time when solved by hand.
It is not multiple-choice task; students should find the output. ●

The task statement is similar to programming tasks, the student is given one or two
inputs, and he/she should find a good algorithm to get to the correct output, Table 1
shows some task samples

The tasks achieved many benefits to the students such as:
Make the students familiar with programming problems. ●
Teach students that finding the correct result as well as the algorithm is important. ●
Select students that have talent and have a good algorithmic thinking and good ●
problem solving abilities.

In addition to the mentioned type of tasks, another type is used to introduce students
to algorithm analysis, this type of tasks presents an algorithm to students then asks some
questions that encourages them to understand and analyze the algorithm. This type of

A. Alnahhas, E. Alazab220

tasks helps selecting students with good abilities in self-learning and problem solving;
Table 2 shows a sample of this task.

Although the competition is held in all province centers at the same time; where each
student compete in the province center he lives in, the result of all students is merged,
then the best sixty students are chosen to move on to the national competition.

3.5. National Competition

The qualified students to the finals are trained for programming for the first time after
the province selection phase. The students showed good and fast training skills, most of
them accepted programming concepts easily, and they learned C++ programming lan-
guage principles and simple algorithm concepts in a small period.

Table 1
Sample tasks for province selection phase

Given a sequence of letters (ABACBCDBCD):
Find the number of increasing subsequences.•
Find the longest increasing subsequence.•

We have towers of coins where the number of coins in each tower is given:
6 10 4 2 3

Find the minimum number of coins that should be moved to make the
number of coins equal in all towers.

We want to buy 1000 liter of milk, there are 10 salesmen, and each has a
quantity of milk and has a specific price, find the minimum money to be
paid to buy the desired amount of milk.

Table 2
Sample of second type province selection tasks

Given the following grid of number where all rows and columns are sorted:

0

0 2 3

2 4 5 6

1 3 6 7 0

To search for a number in this grid we start from the square in the lower-left
corner, if the number we are searching for is greater than the number in this
square, we remove the first column of the grid, otherwise we remove the last
row of grid, and we do the same method with the remaining grid.

How many comparison operations are needed to find number 10?•
How many comparison operations are needed to make sure the number •
does not exists in the worst case?
Answer the last question with another grid with n rows and m columns.•

Selecting and Training Students with No Suitable Informatics Background ... 221

The students attend an intensive training program in the period between province se-
lection competition and national finals; training includes conducting lectures in training
centers, online lectures, recorded sessions. Students are encouraged to learn by them-
selves, they are provided by books, introduced to online resources and online training
websites. The usage of social networks to establish communication between students
and trainers proved a good efficiency in improving student skills as they are motivated
by teamwork and challenging other students, feeling in direct and continuous contact
with trainer pushes them to train more and get help when needed. In usual people are
interested in learning using social networking (Acharya et al., 2013).

The national competition is an IOI-like competition with algorithms and computer
programming tasks, the system used in Syrian national Olympiad since 2012 is the well-
known CMS system (Maggiolo and Mascellani, 2012).

The best ten students wins the competition and join the so-called national team;
which is the group of the winners of national competitions in last few years.

3.6. IOI Team Selection

The new students in the national team start training after the national competition, where
old students have been training since they had joined the national team. All the national
team students participate in a selection competition. The competition tasks are tough
and are selected to be similar to IOI tasks level, the four winners of this competition are
chosen to be the IOI team of Syria.

The IOI team selection is the last phase of the selection process of this model, Fig. 2
visualize the whole process.

Student to
be trained

School
students

Students from
2nd division

Student for
selection

IOI team

National competition
participants

National competition
winners

School
students

School
teams

Area teams

Province teams.
National completion

participants

Winners of national
competition

Current national
team

New national
team

IOI team

Fig. 2. The “Selection first” model.

A. Alnahhas, E. Alazab222

3.7. Training

Training is the most important part of the whole process, to achieve good results selected
students should be trained properly.

The training is important in three periods:
Between province selection competition and national competition: in this phase the

training starts by presenting basic programming and algorithms as described earlier in
this paper.

Between the national competition and the IOI selection competition: In this period
the training is based mainly on online lectures and online competitions, students are en-
couraged to solve as many problems as possible, they are followed up daily and directed
to any resources and materials needed.

After the IOI team selection: The training continues for all students in the national
team, the training is continuous and is based on the following:

Online lectures that are provided via a special e-learning server. ●
Training camps are conducted two times in the summer, where students meets for ●
a month to training.
Online competitions: Online competition has proved a high efficiency in train- ●
ing students, an online contest is prepared almost every week, which has a good
acceptance among students, where they find it a good place to show their evolu-
tion and improvements. It provided a good challenging environment that motivate
students to make advantages to beat each other; it also provides a good tool to
introduce new ideas to students by presenting it inside problems. Moreover, when
using problems from old competitions student can estimate their levels interna-
tionally and make more improvements. Our observations conforms to researches
shows that online programming contests can be used to build programming train-
ings (Combéfis and Wautelet, 2014)

4. Comparing “Training First” Model to “Selection First Model”

The first model is based on training a large number of students, then selecting best stu-
dents after training, this strategy did not suites the case of Syrian Olympiad in informat-
ics because of many reasons including:

Failing to attract many talented students, thus losing them in Olympiad. ●
Large number of students makes training need a lot of stuff, resources and time, ●
lacking professional people and needed resources makes this model not suitable.
Training students with different abilities with the same training material is not ●
suitable, good students may not benefit at all, where bad students fail in the
selection.

This model was used for six years, the average participating students count at the
first initial selection is 500, which is relatively a small number, the average students
participating in the final selection count is about 20, the average non-zero marks rate in

Selecting and Training Students with No Suitable Informatics Background ... 223

the last selection is 75%, and the average non-zero marks rate in the national competi-
tion is 70%.

The second model is used since 2012; it is based on choosing best students gradually
using suitable selection criteria, the selected students are then trained and prepared for
IOI participation.

The process of this model has proved good advantages, start selecting students from
schools makes it possible to target almost all secondary school students, spreading out
the culture of Olympiad among society. Providing students with algorithmic and pro-
gramming content gradually has proved good results as well, focusing efforts to train
small group of good students and improving the training process has a good impact on
students in general.

Table 3 shows statistics of participating students since 2012, we consider non-zero
mark in the final competition as a criterion to measure the success of student selection
and training in the small period between province selection contest and final competi-
tion, the average non-zero marks count is 80%.

The national team students prove good abilities in learning new concepts, training
and competing. In the last four years, they started to have good ranks in famous online
contests and training platforms, like Codeforces.

5. Conclusion

In this paper, we viewed the Syrian Olympiad in informatics experience in the last 11
years, we talked about the difficulties we faced, including poor informatics teaching
and lack of professional trainers, and we presented two different models that were
used in Syria. The first model depends on training a large number of students in order
to select teams from them; this model proved that it is not that suitable. The second
model is based on choosing good students according to a special criteria, then training
them.

The feedback of the whole process is analyzed each year, and many improvements
are planned to be added, merging the bright side of the first model with the second model
is going to help improving our strategy in the next years, which will improve the student
training process and make national informatics Olympiad a more successful story that
will help improving the society.

Table 3
Student participation statistics

2012 2013 2014

Schools 7550 7020 7980
Areas 2334 2940 3250
Provinces 356 542 620
Finals 62 51 72

A. Alnahhas, E. Alazab224

References

Acharya, V., Patel, A., Jethava, S. (2013). A survey on social networking to enhance the teaching and learn-
ing process. International Journal of Advanced Research in Computer Science and Software Engineering,
3(6).

Combéfis, S., Wautelet, J. (2014). Programming trainings and informatics teaching through online contests.
Olympiads in Informatics, 8, 21–34.

Idlbi, A. (2009). Taking kids into programming (contests) with. Olympiads in Informatics, 3, 17–25.
Kim, K. H. (2005). Can only intelligent piople be creative? The Jouranl Of Secondary Gifted Education, XVI,

57–66.
Lahtinen, E., Ala-Mutka, K., Järvinen, H.-M. (2005). A study of the difficulties of novice programmers. In:

Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education. New York, ACM SIGCSE Bulletin. 14–18

Maggiolo, S., Mascellani, G. (2012). Introducing CMS: a contest management system. Olympiads in Informat-
ics, 6, 86–99.

Marcin KUBICA, J. R. (2010). Algorithms without programming. Olympiads in Informatics, 4, 52–66.

A. Alnahhas – Holds M.Sc. in Computer science from Damascus
University and is preparing for PhD, he was a former IOI contestant
and has been involved in coordinating Syrian Olympiad in Informat-
ics and training students since 2005, he has many contribution for the
national Olympiad including preparing tasks and development grading
systems.

E. Alazab – The head of the National commission for the Syrian Sci-
ence Olympiad.

Olympiads in Informatics, 2015, Vol. 9, 225–232
DOI: http://dx.doi.org/10.15388/ioi.2015.18 225

Informatics Olympiads in Turkey:
Team Selection and Training

Tolga CAN1, İ. Onur SI ĞIRCI2, Osman ABUL3, M. Fatih DEMİRCİ 3

1 Department of Computer Engineering, Middle East Technical University, Ankara, Turkey
2 Department of Computer Engineering, Yıldız Technical University, Istanbul, Turkey
3 Department of Computer Engineering, TOBB University of Economics and Technology,
 Ankara, Turkey
e-mail: tcan@metu.edu.tr, ionur@yildiz.edu.tr, {osmanabul,mfdemirci}@etu.edu.tr

Abstract. In this country report, we present the yearly activities related to Turkish team selection
and training for national and international olympiads in informatics. First, we outline the organi-
zational structure and describe the scientific and administrative components. We, then, describe
the several stages of team selection, which start with a nation-wide written test administered in
selected cities in Turkey. Each stage is followed by two week long training camps. In these camps,
students are taught the IOI curriculum and they engage in programming competition practices. In
this report, we give the details of curriculum organization and test preparation. We conclude with
medal statistics covering the last 22 years of the Turkish IOI team.

Keywords: IOI Country Report, Turkey.

1. Introduction

Turkey has been actively participating in the International Olympiads in Informatics
(IOI) since the IOI’93 in Argentina. The continued support of the government funding
agency TÜBİTAK, the Scientific and Technological Research Council of Turkey1, the
universities, and the IOI alumni help ensure that IOI remains a tradition among algo-
rithms and programming enthusiasts in high schools. The first curriculum, training ma-
terials, and team selection tasks were developed by a team of faculty members lead by
professors Göktürk Üçoluk, İsmail Hakkı Toroslu and Faruk Polat from the Department
of Computer Engineering, Middle East Technical Univerity (METU).2 Today, the prepa-
ration, team selection, and organization for IOI participation of Turkey are conducted via
a well-established work-flow (Fig. 1).

1 http://www.tubitak.gov.tr/en
2 http://www.ceng.metu.edu.tr

T. Can et al.226

TÜBİTAK is a critical stakeholder, which provides the finances and maintains the
organizational structure of the olympiads in Turkey, not only in Informatics, but also in
other fields, such as Mathematics, Chemistry, Physics, and Biology. An official scien-
tific executive committee, consisting of three academics from universities, is formed by
TÜBİTAK each year. This committee is reponsible for all the scientific matters from task
preparation and training to team selection. The scientific committee works in collabora-
tion with TÜBİTAK for administration of a nation-wide first-stage selection exam, for
organization of training camps, and for all administrative tasks regarding participation
in that year’s IOI. The scientific executive committee also recruits faculty members,
interested graduate students, and alumni from previous years to teach the IOI curricu-
lum (IOIS, 2013) effectively and help students practice for the competition during the
training camps.

Being organized by an offical body, the participants of the National Olympiads in
Turkey and the member of the Turkish IOI Team are also recognized officially by the
Ministry of Education and the Higher Education Council of Turkey. Successful students
are awarded additional points at the nation-wide university entrance exam and medal
winners are granted acceptance to any Computer Science/Engineering Department of
their choice at a state university in Turkey.

In the following sections of this national report, we give details of the entire work-
flow of Informatics Olympiads organization and preparation in Turkey. We also give the
medal statistics covering the last 22 years of the Turkish IOI team. Finally, we conclude
with a brief summary and an outlook for the future IOIs.

2. Team Selection and Training Camps

The national paper-based exam is held to select students that will participate in the sum-
mer school. Once the programming contest is done after the summer school, students
with high scores are invited to the winter school, after which the final team selection is
done. The IOI camp is held one week before the actual IOI to get the team prepared for
IOI . TÜBİTAK organizes each stage (Fig. 1).

The team is selected after 3 contests and 2 training camps. After the final training
camp, the students attend the final team selection contest. In this section, information
will be given about contests and training camps.

2 T. Can, O. Sığırcı, O. Abul, F. Demirci

TÜBİTAK is a critical stakeholder, which provides the finances and maintains the or-
ganizational structure of the olympiads in Turkey, not only in Informatics, but also in other
fields, such as Mathematics, Chemistry, Physics, and Biology. An official scientific exec-
utive committee, consisting of three academics from universities, is formed by TÜBİTAK
each year. This committee is reponsible for all the scientific matters from task prepara-
tion and training to team selection. The scientific committee works in collaboration with
TÜBİTAK for administration of a nation-wide first-stage selection exam, for organization
of training camps, and for all administrative tasks regarding participation in that year’s
IOI. The scientific executive committee also recruits faculty members, interested gradu-
ate students, and alumni from previous years to teach the IOI curriculum [2] effectively
and help students practice for the competition during the training camps.

Being organized by an offical body, the participants of the National Olympiads in
Turkey and the member of the Turkish IOI Team are also recognized officially by the Min-
istry of Education and the Higher Education Council of Turkey. Successful students are
awarded additional points at the nation-wide university entrance exam and medal winners
are granted acceptance to any Computer Science/Engineering Department of their choice
at a state university in Turkey.

In the following sections of this national report, we give details of the entire work-
flow of Informatics Olympiads organization and preparation in Turkey. We also give the
medal statistics covering the last 22 years of the Turkish IOI team. Finally, we conclude
with a brief summary and an outlook for the future IOIs.

2. Team Selection and Training Camps

First National
Paper-Based

Exam

Summer
School

Programming
Contest

Winter
School

Team
Selection
Contest

IOI
CampIOI

Fig. 1: Overview of the team selection and IOI organization in Turkey.

The national paper-based exam is held to select students that will participate in the
summer school. Once the programming contest is done after the summer school, students
with high scores are invited to the winter school, after which the final team selection is
done. The IOI camp is held one week before the actual IOI to get the team prepared for
IOI . TÜBİTAK organizes each stage (Figure 1).

The team is selected after 3 contests and 2 training camps. After the final training
camp, the students attend the final team selection contest. In this section, information will
be given about contests and training camps.

Fig. 1. Overview of the team selection and IOI organization in Turkey.

Informatics Olympiads in Turkey: Team Selection and Training 227

2.1. The First Stage Exam

The first stage exam is a written exam in which nearly 1300 students from all over Tur-
key participate. It is paper-based, takes 2.5 hours, and consists of 50 multiple choice
questions (QFSE). The exam is generally held in May.

The point distribution of the questions in the exam is as follows: 15% intelligence
skills, 30% basic algorithm knowledge, 25% maths and 30% C programming language.

A sample programming question and its solution is given below:

IO in Turkey 3

2.1. The First Stage Exam

The first stage exam is a written exam in which nearly 1300 students from all over Turkey
participate. It is paper-based, takes 2.5 hours, and consists of 50 multiple choice questions
[3]. The exam is generally held in May.

The point distribution of the questions in the exam is as follows: 15% intelligence
skills, 30% basic algorithm knowledge, 25% maths and 30% C programming language.
A sample programming question and its solution is given below:

Code

1 int ffffff(int x, int y) {
2 int z;
3 while (y!=0) {
4 z=y;
5 y=x%y;
6 x=z;
7 }
8 return x;
9 }

10

11 void main() {
12 int a=360, b=75, c=15;
13 b = a*b/ffffff(a, b);
14 c = b*c/ffffff(b, c);
15 printf("%d", c);
16 }

Question

What would be the output of the code?

A) 25
B) 225
C) 1125
D) 1800
E) None

Answer

ffffff function is to calculate the greatest
common divisor of x and y. LCM(a, b) =

a×b
GCD(a,b) , so the 13th line indicates that
LCM(360, 75) = 1800 and the 14th line
indicates that LCM(1800, 15) = 1800. In
conclusion, the correct answer is D.

After the first stage exam, the top 55 students qualify for the second stage. In genereal,
higher participation from the more populated cities such as İstanbul, Ankara, and İzmir
is observed. In Figure 2, the location of these cities on the geographical map of Turkey
is shown. In addition to high level participation, these cities are also the most successful
ones. Since 1993, 88 students from Turkey have participated in IOIs. 85 of these students
have been from these three cities.

2.2. The Summer Training Camp

Approximately, 55 top students from the first stage exam attend the scientific camp that
lasts for two weeks, beginning in late August and ending in early September. The students
and lecturers are accomodated at a five-star hotel in Afyon (as shown in Figure 2).

The lecturers in this scientific camp are usually academics from the most respected
universities in Turkey. Additionally, graduates who have participated in the past IOIs in
recent years also help the new students in the training camps.

The curriculum of the camp is in parallel with the training curriculum adopted in other
countries such as Russia [4] and Serbia [5] and includes all the content of the second
exam, which is listed below. Note that, due to the relatively heavier schedule of the first

After the first stage exam, the top 55 students qualify for the second stage. In ge-
nereal, higher participation from the more populated cities such as İstanbul, Ankara,
and İzmir is observed. In Fig. 2, the location of these cities on the geographical map of
Turkey is shown. In addition to high level participation, these cities are also the most
successful ones. Since 1993, 88 students from Turkey have participated in IOIs. 85 of
these students have been from these three cities.

2.2. The Summer Training Camp

Approximately, 55 top students from the first stage exam attend the scientific camp that
lasts for two weeks, beginning in late August and ending in early September. The stu-
dents and lecturers are accomodated at a five-star hotel in Afyon (as shown in Fig. 2).

The lecturers in this scientific camp are usually academics from the most respected
universities in Turkey. Additionally, graduates who have participated in the past IOIs in
recent years also help the new students in the training camps.

The curriculum of the camp is in parallel with the training curriculum adopted in other
countries such as Russia (Kiryukhin, 2007) and Serbia (Ilic and Ilic, 2012) and includes
all the content of the second exam, which is listed below. Note that, due to the relatively
heavier schedule of the first training camp, the subject of Graph Theory is divided among

T. Can et al.228

the two training camps and some basic graph algorithms such as “finding the connected
components in graphs” are left for the second training camp (see Section 2.4).

Basic Data Structures ● : Linked lists, stacks, queues, trees, binary trees, heaps.
Sorting and Searching ● : Bubble sort, insertion sort, selection sort, quick sort,
merge sort, heap sort, counting sort, radix sort, sequential search, binary search,
basic space search, hashing.
Standard Template Library ● (STL).
Dynamic Programming ● : Longest common substring, knapsack problem, ma-
trix chain product, longest increasing subsequence, Kadane’s algorithm, greedy
algorithms.
Graphs and Basic Graph Algorithms ● : Graph traversal, Dijkstra’s shortest path,
Floyd-Warshall algorithm, Prim’s and Kruskal’s algorithms for minimum span-
ning tree, topological sort.
Maths and Number Theory ● : Modular arithmetic, GCD-LCM, Euler-Fermat-
Euclid.

Theorems, primarity test, integer factorization, Chinese remainder theorem, fast ex-
ponential, matrix exponential, Fibonacci numbers.

2.3. The Second Stage Exam

The second stage exam is prepared according to IOI standards and taken by the 55
students who participated in the summer training camp. The exam is performed in two
days of November and its questions are developed according to the contents of the
summer school.

In each of the exam days, five hours are given to solve three tasks. The top 18 suc-
cessful students are awarded national medals. The distribution of the medals is 3 gold,
6 silver and 9 bronze.

4 T. Can, O. Sığırcı, O. Abul, F. Demirci

Antalya

Afyon

İstanbul

Ankara

İzmir

Fig. 2: Although the first stage exam is nation wide, a higher participation in this exam
is observed from more populated cities such as Ankara, İstanbul, and İzmir. The summer
and winter camps are held in Afyon and Antalya, respectively. These cities are colored in
the map.

training camp, the subject of Graph Theory is divided among the two training camps and
some basic graph algorithms such as "finding the connected components in graphs" are
left for the second training camp (see Section 2.4).

– Basic Data Structures: Linked lists, stacks, queues, trees, binary trees, heaps
– Sorting and Searching: Bubble sort, insertion sort, selection sort, quick sort, merge

sort, heap sort, counting sort, radix sort, sequential search, binary search, basic space
search, hashing

– Standard Template Library (STL)
– Dynamic Programming: Longest common substring, knapsack problem, matrix chain

product, longest increasing subsequence, Kadane’s algorithm, greedy algorithms
– Graphs and Basic Graph Algorithms: Graph traversal, Dijkstra’s shortest path, Floyd-

Warshall algorithm, Prim’s and Kruskal’s algorithms for minimum spanning tree,
topological sort

– Maths and Number Theory: Modular arithmetic, GCD-LCM, Euler-Fermat-Euclid
Theorems, primarity test, integer factorization, Chinese remainder theorem, fast ex-
ponential, matrix exponential, Fibonacci numbers

2.3. The Second Stage Exam

The second stage exam is prepared according to IOI standards and taken by the 55 students
who participated in the summer training camp. The exam is performed in two days of
November and its questions are developed according to the contents of the summer school.
In each of the exam days, five hours are given to solve three tasks. The top 18 successful
students are awarded national medals. The distribution of the medals is 3 gold, 6 silver
and 9 bronze.

Fig. 2. Although the first stage exam is nation wide, a higher participation in this exam is observed
from more populated cities such as Ankara, ̇Istanbul, and ̇Izmir. The summer and winter camps
are held in Afyon and Antalya, respectively. These cities are colored in the map.

Informatics Olympiads in Turkey: Team Selection and Training 229

In addition to these medals, TÜBİTAK awards students with monetary values of
approximately $1500, $1300 and $1100 for each gold, silver and bronze medal respec-
tively.

More than this one-time monetary award, each medal winner is offered monthly
scholarship, enough to cover basic living costs, extending to the end of PhD study for
the recepient.

Besides monetary/scholarhip supports, students are entitled to additional points at
the national university entrance examination.

2.4. The Winter Training Camp

Approximately 18 students who have passed the second stage exam attend the winter
training camp that lasts two weeks in February. This time, the students and lecturers stay
at a five-star hotel in Antalya (as shown in Fig. 2).

In contrast to the summer training camp, the remaining subjects of the IOI curricu-
lum are taught in the winter training camp. Due to the fewer number of students attend-
ing the camp, the lecturers have a chance to spend more time with the students. The
curriculum of the camp covers:

Advanced Data Structures ● : Range minimum query, segment tree, binary indexed
tree, lowest common ancestor.
Analytic and Computational Geometry ● : Vectors, line, segment, circle, poly-
gons, convex hull, plane sweep, Voronoi diagrams.
String search ● : Trie, suffix array, suffix tree, Aho-Corasick algorithm, Knuth-
Morris- Pratt algorithm.
Graph Algorithms ● : Bellman-Ford shortest path, longest path, connected compo-
nents, articulation points, bridge edges, Eulerian path, Hamilton cycle.
Game Theory ● : Nim game, Grundy numbers, game on graphs.

2.5. The Team Selection Exam

Students who have attended the winter camp take another two day long exam, which
includes the content of all of the IOI curriculum, in April. Similar to the second stage
exam, five hours are given to solve three tasks in each of the exam days. The best four
successful students form the final team that represents Turkey in both IOI and BOI (Bal-
kan Olympiad in Informatics).

2.6. IOI Camp

The national IOI team prepares for the IOI for two weeks just before the actual IOI.
This preperation is usually held in Ankara, the capital of Turkey (see Fig. 2). Since

T. Can et al.230

2011, the Computer Engineering Department of TOBB University of Economics and
Technology3, located in Ankara, has hosted IOI camps as well as second stage and team
selection examinations. Students take exams in each day of the camp and the solutions
of the questions are discussed in detail with the students in a post-exam problem solving
session.

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer
considerable scholarships for medal-winner students. TÜBİTAK offers one-time mon-
etary awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and
$4000 for bronze.

Starting in 2011, we have developed www.ubilo.org (TOITS), written from
scratch by a few Turkish IOI alumni, to serve as the national online judge during the
three camps. Like Codeforces (www.codeforces.com), it has two main interfaces: the
training interface and the contest interface.With the former, the students are assigned
online tasks and their submissions are graded. The latter is more like the CMS system
employed in IOI exams.

The system’s language, from user interfaces to task descriptions, is in Turkish since
many high-schools in the country offer only Turkish curriculum.

3. Results and Statistics for the Last Ten Years

Table 1 shows the medal distribution of the Turkish IOI team since the first participation
in 1993 in Argentina. The first gold medal was achieved by Barı¸s Kaya in 2011 in Thai-
land and the second gold medal was achieved two years ago in IOI Australia by Yusuf
Hakan Kalaycı. The Turkish IOI team was able to get at least one medal in all of the 22
years of attendance since 1993.

4. Conclusions and Outlook

Turkey has been actively participating in IOI since 1993 and a total of 55 medals have
been won by the Turkish IOI teams so far.With the help of the government funding agen-
cy TÜBİTAK, the universities, and the IOI alumni, being selected as a national IOI team
member attracts many high school students. Earning additional points for the national
university entrance examination and even obtaining a chance to the exam-free entrance to
the computer engineering department at any state university along with financial aids are
the top motivations for the high school students for participating in the IOI activities in
Turkey. While the medal distribution in each year varies, the gold medals were achieved
within the last 4 years, showing a growing interest in IOI among Turkish students.

3 http://www.etu.edu.tr

Informatics Olympiads in Turkey: Team Selection and Training 231

References

IOI. International Olympiad in Informatics. http://www.ioinformatics.org
IOIS (2013). The International Olympiad in Informatics Syllabus.

http://people.ksp.sk/~misof/ioi-syllabus/ioi-syllabus.pdf
QFSE. Questions of First Stage Exam (in Turkish).

http://www.tubitak.gov.tr/tr/olimpiyatlar/ulusal-bilim-olimpiyatlari/
icerik-bilgisayar

Kiryukhin, V. M. (2007). The modern contents of the Russian national olympiads in informatics. Olympiads
in Informatics, 1, 90–104.

Ilic, A., Ilic, A (2012). IOI training and Serbian competitions in informatics. Olympiads in Informatics, 6,
158–169.

TOITS. Turkish Olympiads in Informatics Training System. http://kamp.ubilo.org

Table 1

Medal distribution of the Turkish IOI team since 1993

Year IOI Host Medals
Gold Silver Bronze Total

1993

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

 Argentina 3 3

1994

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Sweden 2 2

1995

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Netherlands 1 1

1996

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Hungary 2 2

1997

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

South Africa 1 2 3

1998

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Portugal 2 1 3

1999

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Turkey 1 1 2

2000

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

China 1 1 2

2001

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Finland 3 3

2002

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

South Korea 2 2 4

2003

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

USA 1 1 2

2004

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Greece 1 1 2

2005

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Poland 1 1

2006

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

 Mexico 1 1

2007

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

 Croatia 1 1 2

2008

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2

2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Egypt 2 2

2009

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Bulgaria 1 3 4

2010

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Canada 1 3 4

2011

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4

2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Thailand 1 1 2 4

2012

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4

2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Italy 1 1

2013

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Australia 1 1 1 3

2014

6 T. Can, O. Sığırcı, O. Abul, F. Demirci

A student who wins a medal in the IOI is given an opportunity to enter a computer
engineering department of any state university, regardles of his/her achievement in the
national university entrance examination. In additon, some private universities offer con-
siderable scholarships for medal-winner students. TÜBİTAK offers one-time monetary
awards to IOI medal winners: approximately $8000 for gold, $6000 for silver and $4000
for bronze.

Year IOI Host Medals
Gold Silver Bronze Total

1993 3 3
1994 2 2
1995 1 1
1996 2 2
1997 1 2 3
1998 2 1 3
1999 1 1 2
2000 1 1 2
2001 3 3

2002 2 2 4
2003 1 1 2
2004 1 1 2
2005 1 1
2006 1 1
2007 1 1 2
2008 2 2
2009 1 3 4
2010 1 3 4
2011 1 1 2 4
2012 1 1
2013 1 1 1 3

2014 2 2 4
Total 2 17 36 55

Table 1: Medal distribution of the Turkish IOI team since 1993.

Starting in 2011, we have developed www.ubilo.org [6], written from scratch by
a few Turkish IOI alumni, to serve as the national online judge during the three camps.
Like Codeforces (www.codeforces.com), it has two main interfaces: the training interface
and the contest interface. With the former, the students are assigned online tasks and their
submissions are graded. The latter is more like the CMS system employed in IOI exams.

Taiwan 2 2 4

Total 2 17 36 55

T. Can et al.232

T. Can received his BSc degree in computer engineering from Middle
East Technical University, Turkey, in 1998, and his PhD degree in
computer science from the University of California at Santa Barbara
in 2004. He is currently an associate professor in the Computer En-
gineering Department, Middle East Technical University, Turkey. His
main research interests are bioinformatics, graph theory, and algo-
rithms. He has worked on protein structure visualization and align-
ment and on construction and analysis of large-scale protein protein
interaction networks. He has been teaching computational geometry
in the training camps for Informatics Olympiads since 2007 and he
has served on the scientific executive committee of the Informatics
Olympiads in Turkey since 2011.

İ.O. Sı ğırcı is a PhD student at the Computer Engineering at the Yıldız
Technical University in Turkey. He is a teaching and research assistant
at the Department of Computer Engineering. His main research inter-
ests are computer vision, machine learning and algorithms. He was the
technical committee member at the Balkan Olympiad in Informatics
2014 in Turkey.

O. Abul received his PhD in computer science from Middle East Tech-
nical University, Turkey, in 2005. He is currently an associate professor
of computer science at TOBB University of Economics and Technol-
ogy, Turkey. His research interests include artificial intelligence, data-
bases, data mining and privacy. He has been the chair of the scientific
executive committee of the Informatics Olympiads in Turkey and has
lead the Turkish IOI team since 2011.

M.F. Demirci received his PhD in computer science from Drexel Uni-
versity in 2005. After working as a postdoctoral research scientist at
Utrecht University, The Netherlands, he joined TOBB University of
Economics and Technology, Turkey as a faculy member at comput-
er engineering department. His research interests include structural
pattern recognition in computer vision, shape indexing, and applied
graph theory. He was the recipient of the best PhD dissertation award
in engineering and physical sciences, Drexel University in 2006 and
TUBITAK Career project award in 2010. He has been a member on
the scientific executive committee of the Informatics Olympiads in
Turkey since 2011.

Olympiads in Informatics, 2015, Vol. 9, 233–242
DOI: http://dx.doi.org/10.15388/ioi.2015.19 233

Technical Report of Baltic Olympiad Informatics
2014

Motiejus JAKŠTYS
Technical Committee, National Olympiad Informatics, Lithuania
e-mail: motiejus@jakstys.lt

Abstract. In this article we present the technical and organizational details of Baltic Olympiad
Informatics (BOI1) 2014 held in Palanga, Lithuania.
BOI has been held since 1995. During that years, we have accumulated a lot of experience and
polished the process. The article presents some of the organizational and technical issues and
how we dealt with them. In conclusions, we highlight some recommendations for preparation
for the next years. Other countries organizing national or international Olympiads might benefit
from the recommendations and experiences.

Keywords: informatics olympiads, linux, desktop preparation.

1. Introduction

Baltic Olympiad Informatics (BOI) is an annual informatics competition by high
school students started in 1995 by Lithuania, Latvia and Estonia. Later, more countries
joined BOI: Finland, Sweden, Norway, Denmark, Germany and Poland. The goal of
the Olympiad is to bring gifted students to international environment as a preparation
for IOI.

The key part of the Olympiad is preparing high-quality tasks, tests and checkers.
The evaluation system must be robust, the evaluation criteria must be clear. These
responsibilities are called ”Scientific part”, and have a Scientific Committee dedicated
to them.

Besides Scientific committee, there are two supporting committees: Organizational
and Technical. Organizational part is something that is generic for every Olympiad, be it
for informatics, physics, mathematics or of the Old Prussian Literature. Responsibilities

1 BOI is also used as abbreviation for the Balkan Olympiad in Informatics. Within this article, BOI refers
only to the Baltic Olympiad.

M. Jakštys234

include finding the acommodation venue, organizing arrivals and departures, meals and
leisure activities.

Technical committee is responsible for evaluation servers, student workstations,
public internet, private network, student workstation network configuration, and techni-
cal support of the Organizational Committee.

In this article we will briefly remind the history of Baltic Olympiad Informatics (sec-
tion 2). After historical introduction, we will present work of Organizational Commitee
(section 3) and of Technical Committee (section 4) which was carried out in BOI2014.
The article describes some challenges we faced in BOI2014, and how each of the chal-
lenge was handled. The cases will be followed by related work, concluded by sugges-
tions and recommendations for the following events.

2. Short History

Baltic Olympiad Informatics increased from three countries in 1995 to nine countries
in 2014.

Since 1996, each participating country arrives with 6 students and 2 deputy leaders.
On rare occasions, a country might be permitted to arrive with more than 6 students; a
situation where 7 students are needed might happen when the performance between 6’th
and 7’th in the national contest is very similar.

Up to this day, the style of BOI is kept similar to IOI. We will further elaborate on the
similarities and differences in organization between the two. Detailed history of Baltic
Olympiad Informatics are covered in (Bulotaitė et al., 1997, Poranen et al., 2009).

3. Organizing BOI2014

The very first work organizing the Olympiad is carried out by Organizational Commit-
tee. The dates have to be agreed, venues picked, countries invited any many other things.
We will cover them in this section.

3.1. Schedule

Compared to IOI, BOI schedule is more compressed and fully fits to four-five days.

First day: arrivals, opening ceremony. At night, first set of tasks is selected and trans-
lated.

Second day: competition day 1. At night, second set of tasks is selected and translated.
Third day: competition day 2.
Fourth day: closing ceremony, party.
Fifth day: departures.

Technical Report of Baltic Olympiad Informatics 2014 235

Short duration brings in many advantages. First, the organizers, which are usu-
ally university students or full-time employees, need to take less days off from their
primary activities. Secondly, it is cheaper for the organizers: less nights to pay for ac-
commodation means more money can be spent on other things like prizes and leisure
activities.

Why can BOI allow short duration, but not IOI? That is mainly possible because of
close distance: all delegations are able to arrive in a short time (usually, all delegations
arrive in the allocated half-day period). What is more, there are no major time zone dif-
ferences which would require long adaptations.

3.2. The Venue

In BOI2014, participating countries take turns when hosting the Olympiad. BOI2013
was hosted in Rostock, Germany. BOI2014 was Lithuania’s turn.

During National finals, Lithuania is hosting each Olympiad in a different location
every year. Olympiads are usually hosted at schools in different towns through out the
country. Given a similar number of participants and team leaders to the national contest
(50 contestants and 20 organizers in National Olympiad compared to 60 contestants 40
team leaders and organizers in BOI), it was decided to use the same style for BOI2014:
host the Olympiad in an interesting venue (e.g. health resort, school in an interesting
town), rather than a technically convenient one (e.g. University campus).

After evaluating possible venue options, a health resort in a sea resort Palanga was
chosen. The health resort could comfortably accommodate the staff, students and guests.
For leisure activities, besides being close to the sea, surroundings of Palanga are rich
with notable natural points of interest and historical landmarks.

Organizing the Olympiad in a health resort gave advantages for organizational mat-
ters (accommodation, meal, activities), but raised technical challenges. Computer and
power networks had to be created from scratch. Computers needed to be rented before
the Olympiad and fully set-up with tables, chairs and cabling.

In the following section, we will discuss the technical setup in the health resort.

4. Technical Infrastructure

Like mentioned in section 3.2, the technical infrastructure needed to be created from
scratch. At the venue, the following were readily available:

Uplink internet connection (DSL). ●
Power sockets. ●
Large hall. ●

Technical and Organizational Committees needed to rent tables, chairs and comput-
ers, set them all up, create and connect to a power grid.

M. Jakštys236

4.1. Physical Infrastructure

All student workstations were in a large hall. See Fig. 1 for schematics of the layout. Red
lines and circles show power grids. Black crossed circles are WiFi access points. White
squares are desks with computers.

Since all the infrastructure needed to be created from scratch, we tried to make it as
simple as possible. For example, to avoid cutting and pulling many Ethernet cables to
set up wired networking, we opted for wireless. This could have been done because the
workstations were laptop computers, and thus all had ability for wireless networking.

During planning stages, there were concerns about interference of many devices us-
ing wireless network in such a small area. To avoid that, we created 3 non-overlapping
channels (1, 6, 11) and configured two access points per channel. The workstations were

Fig. 1. Hall schematics.

Technical Report of Baltic Olympiad Informatics 2014 237

configured to pick all access points at random (the same priority in wpa_supplicant
configuration file). Networking was used only for accessing the Contest Management
System’s web interface, thus low traffic, and worked perfectly.

According to Power Supply Unit specifications, a laptop can draw up to 200 W of
power. 60 laptops can draw up to 12 kW. Including network equipment, contest manage-
ment system and evaluation servers, this figure goes up to 15 kW. A single commodity
power socket can provide up to 8 kW. To accommodate our needs, we were provided
with a three-phase commodity power network, each phase capable delivering 8 kW each,
giving 24 kW of total capacity.

4.2. Student Workstations

Student workstations are providing students a comfortable environment to develop the
contest tasks. Workstation software has to be recent and comfortable. It also should re-
strict contestants from cheating, e.g. sharing solutions with each other.

4.2.1. Software
Until 2001, DOS programming environment was used in the IOI contest. That changed in
2005 when it was replaced to Linux (Jyrki Nummenmaa, 2005). Like in IOI, in BOI we
permit and support only Linux operating system. As a task to Technical Committee, an
Operating System image with necessary configuration and software needs to be created.

When thinking what to base the Linux distribution for BOI2014 on, we had the fol-
lowing requirements in mind:

Should have all the necessary packages included (compilers, IDEs, documenta- ●
tion, ...).
Contestants should be able to test the environment easily, so it needs to be easy ●
to run it outside of the Olympiad. Ideally, a downloadable ISO file which can be
booted from a CD or USB memory stick.
The distribution might be reused for other contest (or) in the following years. Since ●
the requirements in the following contests might change, we want to make the dis-
tribution configuration and creation as automatic as possible.

Because of the following requirements, we chose Debian-Live. Debian-Live is a
framework for creating Debian-based bootable system images. It works as follows: giv-
en some configuration (e.g. list of packages to be installed, users, passwords and other
settings), the Debian-Live machinery creates a bootable ISO image. The bootable ISO
image is a live image which can be booted and is perfectly suitable for playing around.

However, the system on the live image does not have a permanent file system. This is
a problem during the contest, because, in case of accidental reboot, the contents of user’s
home directory will be lost, including all the produced solution files. To avoid that, the
live ISO image is installed to a hard drive, which permits permanent storage, and the
hard-drive image is created for usage during the contest. Hard-drive based installation
from the generated ISO file is very similar to the live ISO image, just a few extra hard-
drive specific tweaks are necessary.

M. Jakštys238

After some preparation by Technical Committee, now ISO generation process is
single-click2. Normally, installing the ISO to a (virtual) hard drive automatically is a bit
more involved because, by default, the Debian Installer asks questions. Luckily, these
questions can be pre-answered in a preseed file, and the installation to the (virtual) hard-
drive can be one-click too3.

Like mentioned before, a few tweaks are still needed to bring use the installed hard-
drive image in the Olympiad. First, security: there are many things we want to restrict
users to do:

Connect to unauthorized networks. ●
Change network configuration. ●
Start and stop services. ●
Use external media. ●

To support the restrictions above, we created scripts which modify the resulting hard-
drive image to accommodate these requirements.

4.2.2. Booting the Machines
We had two major challenges for imaging and booting the machines: we had no wired
connectivity to transfer the images, and we were not permitted to alter the on-disk Win-
dows installation. After the contest, the laptops must be sent back in the condition they
were received.

Since we cannot alter Windows (and change the Master Boot Record, MBR), it brings
up a challenge of booting the Linux image. Booting from WiFi network is not an option,
because it will overload the wireless network, and even to bootstrap PXE is not an op-
tion (since motherboards do not support netboot over wireless). Therefore we devised a
way to store the operating system and user files on the hard drive without modifying the
existing Windows installation. Here’s how: the full disk image was placed on C:\ drive
of the Windows partition. The MBR stays untouched. That way the partition table could
stay intact, and it is easy to clean up a single file afterwards.

Placing a hard-drive image on NTFS drive still requires some work to boot it. Moth-
erboard must find stage0 boot loader in the MBR, which should eventually start booting
the hard-drive image on the NTFS partition.

Here is the sequence we devised to reach the partition on disk:
Computer boots kernel and initrd from the USB stick. ●
Initrd has a script which finds ● C:\.
C: ● \ is mounted on /mnt/looproot. /mnt/looproot/liox.raw is the full
Linux system image.
Root partition on ● /mnt/looproot/liox.raw is bound to /dev/loop0.
initrd binds ● /dev/mapper/loop0p1 as a root partition and passes the com-
mand to /init of the root partition. The booting continues as normal as if root
filesystem were on /dev/mapper/loop0p1 with the kernal command-line ar-
gument root=/dev/mapper/loop0p1.

2 or rather, a make iso invocation
3 make vm

Technical Report of Baltic Olympiad Informatics 2014 239

Here is the snippet of the script from initrd which executes the actions above:

mkdir -p /mnt/looproot
mount -t ntfs-3g ${LOOPROOT} /mnt/looproot
losetup /dev/loop0 /mnt/looproot/${LOOPSRC}
kpartx -a /dev/loop0

$fLOOPROOTg and $fLOOPSRCg can be passed via cmdline. For example:

initrd initrd.img
kernel vmlinuz looproot=/dev/sda2 \
loopsrc=liox.raw \
root=/dev/mapper/loop0p1

It is still necessary to bootstrap the kernel and initrd so they can do the work de-
scribed here. Small USB sticks were chosen for this: when a (re)boot is necessary, the
operators plug in a USB stick. After kernel and initrd are loaded, the stick can be taken
out and the operator can proceed to the next machine. For 60 laptops on-site, with this
approach, it takes around five minutes to boot all machines for three trained operators.

4.2.3. Uploading the Image
Copying the disk image to the machines is different every year. In other words, we did not
find the best solution yet which would prove its value for the long-term.

In BOI2014 we were walking around with external hard drives and USB sticks hav-
ing the copying of the image scripted. It is laborious and it takes time, but is very sim-
ple. Because its simplicity and reliability, this copying solution has been used for many
years. Over the years organizing the National Olympiad, the Technical committee tried
different network-based approaches, but, if the approaches work in the labs, they usually
fail in real-life due to misbehaving overloaded networks.

4.2.4. Networking
Main server was running the following services:

Contest Management System – all services except Workers. ●
HTTP proxy – nginx. ●
DHCP and DNS services – dnsmasq. ●

DHCP was serving the IP addresses to student workstations, which were querying for
IP addresses over WiFi.

Since the workstations were laptops and physical network infrastructure did not ex-
ist, we opted for using WiFi for networking. We used 6 access points in the room. Each
AP had a different ESSID, but were connected to the same bridged L2 network.

Students’ network access to other public networks (which can also be WiFi Access
Points from the cell phones in their pockets) was restricted by pre-configuring the net-
work and not granting the permissions to change network settings. This is done in wpa_
supplicant.conf.

This network setup is simple: there was only one DHCP server running in the net-
work, and all the IP addresses were dynamically configured. Dynamic configuration

M. Jakštys240

(DHCP) brings a nice side-effect that all the network configuration is in a single place
(in our case, dnsmasq.conf). What is more, having the same L2 network does not
require any switch configuration.

Having everything in the same L2 network has security drawbacks: students are
blocked from accessing each other only in their workstations. If a student manages to get
superuser privileges on the machine, it would be only a small step away to communicate
with other machines on the network, and, for example, to share and discuss the problems
and solutions.

Another disadvantage is contest server reliability. If the server goes down due to
hardware failure, it will take non-trivial amount of time to recover. Taking the hard
drives out, plugging them to another machine, reconnecting the network would all take
time and students’ ability to interact with the contest management system would be
impaired. This risk could be mitigated by having a standby server ready to take over in
case the first one goes down.

4.3. Internet Access

Providing internet access for Scientific Committee and Public proved to be quite a chal-
lenge on the facilities. In the next sections, we describe our experiences in setting it up.

4.3.1. First Attempt
About one month before the contest, we arrived at the planned contest location to inspect
the facilities. Among other things, we tested internet connectivity. The uplink was a DSL
line with the following properties: small latency (up to 20ms to known servers) with
10Mb/2Mb of bandwidth. Since internet should have been primarily used for accessing
public internet by staff and students, we agreed these will be sufficient.

After arrival to the contest location to do the preparation and preliminary network
setup, internet connection quality significantly degraded. Degradation manifested by IP
packet loss of up to 80%. Internet connection is critical for the Scientific Commitee,
since the tasks and tests are shared via a third-party internet-accessible service GitHub.
The packet loss was so significant that initial cloning of the task repositories was failing.
This needed to be fixed.

While investigating, we could not relate the problem with anything from our side.
After testing various options to reduce the packet loss, all in vain (like putting all our in-
frastructure under a single a NAT host), we decided to look for the cause of the problem
in the facilities. Late in the afternoon, we discovered an Ethernet hub which we could
not identify the purpose of. Disconnecting the hub fixed the packet losses and removed
jitter, and did not seem to break anything: we received no complaints from the staff, nor
internet access was broken any on-premise machines we had access to.

Later at night, a staff member contacted us with a complaint that credit card reader
does not work. The night before the Olympiad, the facilities were hosting a wedding
party, and they were unable to service the customers’ credit cards for the extra drinks. We
turned the hub back on, and the staff reported the card problem fixed. Further throughout

Technical Report of Baltic Olympiad Informatics 2014 241

the Olympiad, we did not dare to disconnect the hub any more and had to resort to alter-
native means of internet connectivity.

4.3.2. Second Attempt
We connected a 3G USB dongle to a netbook, and connected that netbook to the main
server. With this setup, all ”internal” network access (contestants’ machines and WiFi of
the Scientific Committee) went through that dongle. As long as nobody were download-
ing large files, latency and throughput were acceptable.

The 3G dongle remained in use throughout the duration of the Olympiad.

5. Related Work

(Poranen et al., 2009) is an accurate article describing the history and scientific part of
Baltic Olympiad Informatics. The article was a joint effort of a number of hosting and
participating BOI countries. Besides details about BOI tasks, history and organization,
each country gives a brief overview of their national Olympiad.

(Dagienė and Skūpienė, 2007) describes experiences of National Olympiad of Lithu-
ania. Like mentioned in section 3.2, challenges in organizing Baltic Olympiad Infor
matics and National Olympiad Informatics are very similar. This article highlights the
reasons for creating the Olympiad, its history, challenges and organization.

(Imajo, 2011) describes a case study running 60 laptop computers under a single
wireless station. The article describes Japanese National Olympiad Experience using
a single Apple AirPort Extreme wireless. According to the article, it was a success. At
BOI2014 we used six commodity routers instead of one: ”This time we relied on AirPort
Extreme wireless routers because they can officially manage 50 wireless connections at
the same time according to Apple Inc., although ordinary wireless routers can manage
about 20 at the most.”

(Blackham, 2013) describes the technical experiences of running IOI. Due to the
number of participant workstations, setup and characteristics in IOI are quite different.
Interestingly, (Blackham, 2013) pushes the images using UDP multicast. BOI and IOI
are quite different in scale and requirements for safety:

Even though the Olympiad was hosted on ”on an extremely reliable power grid”, ●
the there was backup power supply prepared nevertheless. At BOI, we were also
on an extremely reliable power grid, however, did not invest in renting and setting
up the generators.
From the contest system side, all of the critical pieces of infrastructure had replicas ●
or hot backups: the database for Contest Management System had a was replicated
and in hot-standby mode. Core servers and network equipment were backed up by
UPSes to help survive the power outage. At BOI, the main server had a software
RAID-1 array with a prepared machine to put the disks to in case of breakage.
Each participant’s workstation was connected to their own L2 network. Since this ●
requires support from the networking gear, we went for a simpler approach – each
participant got their own L3 network instead of L2. Being simpler, the approach

M. Jakštys242

is less safe: if two participants are able to gain superuser privileges on the work-
station, they would be able to configure the network so they could see each other.
However, exploiting this fact requires both gaining the elevated rights and coordi-
nation, which we deem an acceptable risk.

6. Further Recommendations

Hosting the event in a sea resort proved to be a very good choice. Contestants lived only
a few hundred meters away from the sea, which provided very good opportunities for
relaxation close by. Good location had the price of running the contest in a health resort
without technical infrastructure (only electricity granted), which, in the end, was fully
sorted out. The laptops and desks were rented, and, thanks to sufficient manpower and
time, assembled on time. As long electricity and basic internet facilities are granted, it is
sensible to prioritize accommodation, leisure and attraction facilities rather than techni-
cal infrastructure.

For the next BOI, we would recommend to keep researching for an efficient way to
distribute the distribution images over the network. It might be worth looking at udpcast
proposed by (Blackham, 2013).

It should go without saying that upon arrival to the contest location, the systems
should be preconfigured as much as possible. However, it is important to leave flexibility
for ad-hoc changes on every stage. Things that are prepared one day or the night before
the contest should be simple rather than perfect. It is acceptable for things to be dirty, as
long as they are documented, can be properly revised after the contest.

References

Blackham, B. (2013). A behind the scenes look at IOI 2013. Technical Report, University of Queensland.
http://tiny.cc/ioi2013

Bulotaitė, J., Diks, K., Opmanis, M., Prank, R. (1997). Baltic Olympiads in Informatics.
Dagienė, V., Skūpienė, J. (2007). Contests in programming: quarter century of Lithuanian experience. Olympi-

ads in Informatics, 1, 37–49.
Imajo, K. (2011). Contest environment using wireless networks: a case study from Japan Olympiads in Infor-

matics, 5, 26–31.
Jyrki Nummenmaa, C.I. (2005). Linux Programming Environment on CD.

http://www.ioinformatics.org/newsletters/html/ioinews5.htm.
Poranen, T., Dagienė, V., Eldhuset, A., Hyyro, H., Kubica, M., Laaksonen, A., Opmanis, M., Pohl,W., Skupienė,

J., Soderhjelm, P., Truu, A. (2009). Baltic olympiads in informatics: challenges for training together. Olym-
piads in Informatics, 3, 112–131.

M. Jakštys is a software engineer at Amazon.com, Inc. He is a chair-
man of the Technical Committee in National Olympiad Informatics
(Lithuania) since 2014 and was a chairman of Technical Committee in
Baltic Olympiad Informatics 2014 in Palanga. Motiejus was a Deputy
Leader of the Lithuanian team in IOI 2014.

Olympiads in Informatics, 2015, Vol. 9, 243–245
DOI: http://dx.doi.org/10.15388/ioi.2015.20 243

VisuAlgo – Visualising Data Structures
and Algorithms Through Animation

Steven HALIM
School of Computing, National University of Singapore
Computing 1, 13 Computing Drive, 117417, Singapore
e-mail: dcssh@nus.edu.sg

VisuAlgo (Fig. 1, http://visualgo.net) is the continuation of the work that was
presented in IOI conference 3 years ago1 (Halim et al. 2012). VisuAlgo retains all the
strong points of its predecessor:

A web-based algorithm visualization tool without the need to install any additional ●
software.
It uses the latest web technology: HTML5, CSS3, JavaScript. ●
It allows users to specify their own algorithm inputs and the visualization will work ●
with that inputs.
It is a collection of algorithm visualizations with unified interface. ●

VisuAlgo is a major improvement over its predecessor with ~2000 sessions daily
from worldwide visitors:

It has significantly many more algorithm visualizations in the collection – all with ●
the same unified look and feel. Almost all visualize-able data structures and algo-
rithms covered in the author’s Competitive Programming book 3rd ed (Halim and
Halim, 2013) have been included in VisuAlgo.
It has an improved User Interface and more detailed algorithm animation steps. ●
More importantly, we have added an important learning component: An ● Online
Quiz tool (Fig. 2). It currently has hundreds of questions (and growing) with ran-
domized inputs and/or question parameters that can be graded instantly. A Com-
puter Science instructor can assess the basic data structure and algorithm knowl-
edge of his/her students with much less effort. Computer Science students can also
self-assess their proficiency of the basic material and they can always go back to
corresponding visualization tool to restudy the concepts if they need to do so.

1 The old URL: http://www.comp.nus.edu.sg/~stevenha/visualization/ is now no
longer used.

Reviews, Comments244

References

Halim, S., Koh, Z.C., Loh, B.H.V., Halim, F. (2012). Learning algorithms with unified and interactive web-
based visualization. Olympiads in Informatics, 6, 53–68.

Halim, S., Halim, F. (2013). Competitive Programming 3: The New Lower Bound of Programming Contests.
http://cpbook.net

Fig. 1. VisuAlgo landing page.

Reviews, Comments 245

Fig. 2. The newest Online Quiz feature of VisuAlgo.

About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides
an international forum for presenting research and developments in the specific scope
of teaching and learning informatics through olympiads and other competitions. The
journal is focused on the research and practice of professionals who are working in the
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is
published annually (in the summer).

The journal consists of two sections: the main part is devoted to research papers
and only original high-quality scientific papers are accepted; the second section is for
countries reports on national olympiads or contests, book reviews, comments on tasks
solutions and other initiatives in connection with teaching informatics in schools.

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing ●
Central and Eastern European Online Library (CEEOL) ●
EBSCO ●
Educational Research Abstracts (ERA) ●
Elsevier Bibliographic Databases (SCOPUS) ●
ERIC ●
INSPEC ●

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper,
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following
structure:

concise and informative title ●
full names and affiliations of all authors, including e-mail addresses ●
informative abstract of 70–150 words ●

list of relevant keywords ●
full text of the paper ●
list of references ●
biographic information about the author(s) including photography ●

All illustrations should be numbered consecutively and supplied with captions. They
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author – (Johnson, 1999) ●
for two authors – (Johnson and Peterson, 2002) ●
for three or more authors – (Johnson ● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25) ●

The list of references should be presented at the end of the paper in alphabetic order.
Papers by the same author(s) in the same year should be distinguished by the letters a, b,
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub.,
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London,
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49.
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
International Olympiads in Informatics (2008).

http://www.IOInformatics.org/
Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks

Tool – Nenet (Version 1.1).
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html

Authors must submit electronic versions of manuscripts in PDF to the editors. The
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables,
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University Institute of Mathematics and Informatics
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732
Fax: +370 52 729 209
E-mail: valentina.dagiene@mii.vu.lt

Internet Address

All the information about the journal can be found at:

http://ioinformatics.org/oi_index.shtml

Vilnius University
Institute of Mathematics and Informatics
Akademijos str. 4, LT-08663 Vilnius, Lithuania

Olympiads
in Informatics
Volume 9, 2015

L.H. CHÁVEZ. libinteractive: A Better Way to Write Interactive Tasks 3
S. COMBÉFIS, A. PAQUES.

Informatics: A Review of Selection Processes, Trainings and Promotion Activities

15
G. CUBA-RICARDO, M.T. SERRANO-RODRÍGUEZ, P.A. LEYVA-FIGUEREDO,

L.L. MENDOZA-TAULER. Methodology for Characterization of Cognitive Activities when
Solving Programming Problems of an Algorithmic Nature

27
M. DIMA, R. CETERCHI. Efficient Range Minimum Queries using Binary Indexed Trees 39
M. FORIŠEK. Towards a Better Way to Teach Dynamic Programming 45
A. FUADI. Introducing tcframe: A Simple and Robust Test Cases Generation Framework 57
R.I. HADIWIJAYA, M.M.I. LIEM.

Metamorphic Testing and DSL for Test Cases & Checker Generators
75

F. KALOTI-HALLAK, M. ARMONI, M. BEN-ARI.
The Effectiveness of Robotics Competitions on Students’ Learning of Computer Science

89

B. KOSTADINOV, M. JOVANOV, E. STANKOV, M. MIHOVA, B. RISTESKA STOJKOSKA.
Different Approaches for Making the Initial Selection of Talented Students in Programming
Competitions

113
S. MAGGIOLO. An Update on the Female Presence at the IOI 127
A. MAIATIN, P. MAVRIN, V. PARFENOV, O. PAVLOVA, D. ZUBOK.

The Estimation of Winners’ Number of the Olympiads’ Final Stage

139
M. OPMANIS. Math Contests: Solutions without Solving 147
P.S. PANKOV, J.R. JANALIEVA.

Conducting Complex Competitions in Informatics with Individual Tasks

163
J. SKŪPIENĖ. Multiple Criteria Decision Methods in Informatics Olympiads 173
M. SYZDYKOV, M. UZBEKOV.

Ant Colony Optimisation Applied to Non-Slicing Floorplanning

193

REPORTS
N. ACKOVSKA, Á. ERDőSNé NéMETH, E. STANKOV, M. JOVANOV.

Report of the IOI Workshop “Creating an international informatics curriculum for primary
and high school education”

205
A. ALNAHHAS, E. ALAZAB. Selecting and Training Students with No Suitable Informatics

Background for Informatics Olympiads – The Case of Syrian Olympiad in Informatics

213
T. CAN, İ.O. SI ĞIRCI, O. ABUL, M.F. DEMİRCİ.

Informatics Olympiads in Turkey: Team Selection and Training

225
M. JAKŠTYS. Technical Report of Baltic Olympiad Informatics 2014 233
S. HALIM. VisuAlgo – Visualising Data Structures and Algorithms Through Animation 243

ISSN 1822-7732

