
ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY

OLYMPIADS IN INFORMATICS

Volume 16 2022

Selected papers of
the International Conference joint with

the XXXIV International Olympiad in Informatics
Yogyakarta, Indonesia, 7–15 August, 2022

OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mif.vu.lt

Executive Editor
Mile Jovanov
Sts. Cyril and Methodius University, North Macedonia, mile.jovanov@finki.ukim.mk

Technical Editor
Tatjana Golubovskaja
Vilnius University, Lithuania, tatjana.golubovskaja@mif.vu.lt

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Peter Waker, International Qualification Alliance, South Africa,
 waker@interware.co.za
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands,
 w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open access journal devoted to publishing
original research of the highest quality in all aspects of learning and teaching informatics through
olympiads and other competitions.

https://ioinformatics.org/page/ioi-journal

ISSN 1822-7732 (Print)
 2335-8955 (Online)

© International Olympiad in Informatics, 2022
 Vilnius University, 2022
 All rights reserved

Olympiads in Informatics, 2022, Vol. 16, 1–2
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.00

Foreword

The publication of this issue marks a milestone in the International Olympiad in In-
formatics (IOI): for the first time in three years, the IOI is returning on-site. Alongside
it, we will have the first face-to-face IOI conference since 2019.

The COVID-19 pandemic is still with us, but – like many international events – we
are beginning to explore how we can manage the health risks yet still bring the com-
munity back together again. After all, the IOI is a prestigious international competi-
tion, but it is also more than that. It is an exchange of cultures and ideas; an opportu-
nity for young students to travel and experience new places and meet new people; an
opportunity for team coaches and educators to share the different ways in which they
identify and nurture talent in their own countries.

We must acknowledge that the world is not an equitable place. Different coun-
tries are moving through the pandemic in different ways, due to a mix of geography,
policy, economics, access to vaccinations, public opinion, and of course sheer luck.
Not every country will be able to attend IOI in person, and not every speaker will be
able to speak live at the IOI conference. For this reason we are enormously grateful
to our hosts in Indonesia for committing to a hybrid IOI, where countries who can-
not attend on-site are still able to compete online. Unlike some other international
events, this ensures that the IOI can start to move out of the pandemic without leaving
anybody behind.

The pandemic is of course not the only challenge that we are facing as an interna-
tional community. The invasion of Ukraine by the Russian Federation has impacted
many international events, and the IOI is no exception.

The IOI’s response to Russia and Belarus has been to accept online contestants
from these countries, but only under a neutral IOI flag, with no national names or
symbols. By doing this we aim to take a clear stand against what Russia and Belarus
are doing in Ukraine, yet remain engaged with the young teenagers who are the future
of these countries, and for whom a genuine engagement with the international com-
munity can only help.

We do appreciate that the IOI is a scientific event, not a political one, and that
there have been many conflicts in the past where we have remained silent. However,
it is also difficult to ignore the scale of the destruction, the widespread attacks upon
civilian, medical and educational targets, and the potential for this to spark a greater
conflict that is unspeakably worse. While it is impossible to draw a precise line as to
when IOI should or should not take a stand on international matters, we have neverthe-
less decided that this time a line has been crossed.

I am very excited for the Olympiad this year, and for the chance to discuss in per-
son some of the other challenges that our community faces. One of our longest and still
most significant challenges is diversity – in particular, gender diversity. To this end it
was wonderful to see the first ever European Girls’ Olympiad in Informatics hosted
by Switzerland last year. I encourage you to keep an eye out for the second edition in
Türkiye in late 2022 (https://ubilo.tubitak.gov.tr/egoi2022/).

Finally, my thanks to the editors and organisers of this journal, as well as all of
the authors who have submitted papers. I look forward to seeing the talks in August
in Yogyakarta!

Benjamin BURTON
President of IOI

Olympiads in Informatics, 2022, Vol. 16, 3–11
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.01

3

Posing Creative Reduction Tasks

David GINAT1, Shlomit ARIAN1, Oren BECKER2

1Tel-Aviv University, Science Education Department, Ramat Aviv, Tel-Aviv, Israel 69978
2Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK
e-mail: ginat@post.tau.ac.il, shlomit.arian@gmail.com, oren.becker@gmail.com

Abstract. Reduction is a fundamental computer science (CS) notion (Schwill, 1994). In solving
reduction tasks one must think at the problem level, in order to recognize suitable correlations
between problems. Thinking at the problem level involves recognition of declarative features
of problems. This requires a high level of abstraction. Reduction is well apparent in the more
advanced stages of CS studies, but it is also relevant at earlier stages. It may serve as an impor-
tant means for practice and awareness of abstraction. We designed reduction tasks for the earlier
tutoring and training of algorithms students. Our designs are illustrated with three creative tasks of
different characteristics. Student solutions for each task are presented and discussed. The students
demonstrated different levels of abstraction, insight and flexibility in solving the tasks.

Keywords: reduction, abstraction, task design.

1. Introduction

Algorithmic problem solving involves various techniques, among them divide-&-
conquer, backtracking, greedy computation, dynamic programming, and means end
analysis. One additional approach is that of transformation, sometimes in the form of
reduction. Reduction involves mapping from one problem to another based on strong
correspondence between the problems. While it is primarily known as a technique for
proving intractability of problems (e.g., NP-complete), it is also relevant in algorithmic
problem solving. For example, the problem of Maximum bipartite matching is solved by
reducing it to the Maximum flow problem, with constructing a network in which flows
correspond to bipartite matchings (Cormen et al., 1990).

Reduction is based on concise and efficient mapping from the entities of a source
problem S to corresponding entities in a target problem T, so that the solution of Prob-
lem-T yields the solution to Problem-S. The example above demonstrates the relevance
of reduction with an advanced algorithmic problem, yet it may be as relevant in solving
simpler problems. Since the principal theme of reduction is exploitation of problem cor-
respondence, it requires the problem solver to think at the highest, problem level of Per-
renet et al.’s abstraction levels of algorithm perception (2005). Thinking at the problem

D. Ginat, S. Arian, O. Becker4

level may deepen one’s algorithmic conceptions, which may sometimes tend to focus on
the operational “how” of a computation rather than on the declarative “that” of problem
features (see (Ryle, 1946) for “how” and “that”). Awareness and practice of the latter are
important for competent algorithmic problem solving.

Problem solvers naturally seek problems that are analogous, or similar to their posed
problem. Often, they borrow notions, or schemes from other similar problems. When
strong analogy in the form of equivalence is recognized, one may borrow another prob-
lem’s complete solution. The solution may be modified, in adaptation to a given prob-
lem, or may be used as a black box, whose inner components are hidden. Reduction
encapsulates the latter.

The challenge in reduction involves two phases – Phase-I, of finding a suitable Prob-
lem-T to which the posed Problem-S will be reduced; and Phase-II, of providing a con-
cise and efficient transformation of the input of Problem-S to the input of Problem-T.
There may also be a need to adjust the output of Problem-T to the output of Problem-S.
In Phase-I, the search for a suitable Problem-T requires familiarity with potentially can-
didate problems, and flexibility upon the examination of correspondence (e.g., noticing
that the minimum in a list of negative numbers is the maximum of their absolute-values
list). In Phase-II, one should capitalize of Problem-T’s features, and develop an elegant
and efficient transformation of Problem-S’s input to Problem-T’s input (and later, pos-
sibly adjust Problem-T’s output). The processing of the input transformation should not
intervene with T’s black box computation.

The mapping between problems S and T requires abstraction, in perceiving prob-
lems as objects. So is the conception of T’s computation as a black box (Perrenet et al.,
2005). The focus is on matching structural features of the two problems. Structural
matching requires competent pattern recognition (Mayer & Wittrock, 1996; Muller &
Haberman, 2008). Armoni et al. (2006) illuminated CS student difficulties with these
abstraction elements in reductive thinking, among them reduction to the solution, rather
than to the problem, and the need to look inside the black box. Ginat and Armoni (2006)
showed an example of student difficulties in turning to the notion of complement, when
solving the problem of finding a minimum-weight set of edges in a weighted graph,
such that each graph cycle has a representative in that set. Students examined graph
cycles, rather than turning to a simple reduction.

IOI competitions and training involve problems whose solutions require analogy as-
sociations, various transformations, and possibly reductions to other problems. Prob-
lem solvers should develop and demonstrate abstraction competencies of thinking at
the problem level (in addition to the algorithm level) and matching between structural
features. In addition, they should develop creativity in applying mapping between prob-
lems, and demonstrate awareness of the importance of sound as well as efficient utiliza-
tion of black boxes.

We designed throughout the years learning and practice materials for developing and
enhancing the above competencies among students, already at early stages of our IOI
training. In what follows, we display tasks developed and posed to trainees following
our national competition. We also posed some of the tasks to CS students in the second
and third years of their undergraduate studies.

Posing Creative Reduction Tasks 5

The paper illustrates our design and experience with three creative reduction tasks. In
the illustrations we describe the design steps and considerations. One design started from
a chosen Problem-T, another started from a selected transformation, and a third – from
an invented Problem-S. The solution of each task required different flexibility elements.
When Problem-S was posed to the students, Problem-T was sometimes provided and
sometimes not. We display our experience with students. The student solutions reflect
different levels of abstraction and insight into the tasks. The reader may be interested to
try solving a task before reading its design description.

2. Task Designs and Solutions

The three tasks presented in this section do not require knowledge beyond searching &
sorting and the time complexities of their common algorithms. Each task presentation
starts with its design description, continues with the task specification, and ends with
our experience with students. In the cases where Problem-T was not provided when
Problem-S was posed, students had to demonstrate both phases I and II of the solution
process mentioned in the Introduction. When Problem-T was provided, only phase II
was relevant. This was still challenging for quite a few.

Arithmetic Shuffle

First, Problem-T was chosen. The problem input is a list of N integers, and the output
is the number of pairs of identical integers; e.g., for the input 5 3 3 2 3 3 the output
will be 6. This problem can be solved in O(NlogN) time by first sorting the list, and then
counting the number of identical pairs in the ordered outcome.

Next, a transformation was chosen. Its output had to be in a format adequate to
Problem-T. We chose an N-integer sequence. The transformation was chosen to be:
<x1… xN> → <x1–1…xN–N>. That is, for each element in the original sequence, the
transformation subtracts its location from its value.

Then, candidates for Problem-S were explored. We sought a natural meaning of
identical elements in the transformed sequence. To do so, we wrote the expression for
identity of elements explicitly: xi – i = xj – j. This equation is equivalent to xi – xj = i – j.
The new formulation suggested a natural meaning.

An identical pair of elements in the transformed sequence (Problem-
T’s input) corresponds to a pair of elements in the original sequence
(Problem-S’s input), for which the difference between the values
equals the difference between the locations.

Notice that the above new formulation, of xi – xj = i – j may be regarded as an arith-
metic shuffle of the original relation xi – i = xj – j.

A first attempt of Problem-S was formulated.

D. Ginat, S. Arian, O. Becker6

Given a list of N integers x1 … xN how many pairs are there such that
xi – xj = i – j?

Then, an analysis of the first attempt was conducted. The naïve, brute-force solu-
tion of the formulated problem is to examine each pair of numbers in the sequence.
The time complexity of that is O(N2), which is far worse than the O(NlogN) – the time
complexity of applying the transformation and then solving Problem-T efficiently with
the transformed list.

Lastly, a refined Problem-S was designed, to make it more appealing. We replaced
the condition xi – xj = i – j with the more natural condition |xi – xj| = |i – j|. The solution
of this formulation of Problem-S is slightly more challenging, as one has to properly
handle absolute values. Yet, it is based on the same observations, and its time complexity
remains O(NlogN). We let the reader complete the analysis of this formulation.

Problem-S. Values and Locations Distances. Given a list of N integers, output the
number of pairs of elements in the list, for which the distance between their values
equals the distance between their locations.
Example: For the input 6 5 4 1 2 the output will be 7, – due to the pairs 6 and
5, 5 and 4, 6 and 4, 1 and 2, 6 and 2, 5 and 2, and 4 and 2.
Problem-T. The number of pairs of identical elements in a list of N integers.
Problem-T was not provided to the students.
A non-negligible amount of students struggled with this task. Quite a few offered the

brute-force solution, sometimes with erroneous attempts to avoid some comparisons.
Other students simplified the condition of “distance” between the values to “difference”,
which may be negative. This did help them realize the original arithmetic shuffle speci-
fied earlier, where no absolute values are involved. They recognized the relevance of
Problem-T and invoked it. Their output was correct in the cases where the results of the
subtractions in both sides of the equation xi – xj = i – j have the same sign. The better
students showed further insight and provided the full answer.

The main challenge here was to represent Problem-S’s specification mathemati-
cally, and possibly attempt various manipulations in stages – first manipulations when
the absolute values requirement is removed, and then when it is returned. One had to
demonstrate creative flexibility of the train of thought. Competence in employing the
heuristic of simplification, together with flexible manipulations, expressed abstraction
in the sense that one did not immediately seek the “how” of the computation, but rather
carefully examined the “that” of Problem-S, sought insight into its hidden patterns, and
only then looked for a relevant Problem-T and a suitable transformation.

Padding Transformation

First, a transformation was characterized. In the previous task the sizes of the input and
output of the transformation were equal. However, the sizes of the inputs of problems S
and T may not necessarily be equal. One should also be acquainted with cases in which

Posing Creative Reduction Tasks 7

the sizes are different. The idea here was to focus on this notion, without embedding
additional challenges.

Next, a common transformation feature was sought and chosen. Decidability proofs
employ the feature of padding when the sizes of the inputs of problems S and T differ.
Padding is occasionally applied when the input of Problem-S should be augmented. The
augmentation may be conducted in different ways. One of them is that of repeatedly
adding to the input the same value in a quantity needed, in order to “bring it” to the size
of the input of Problem-T.

Then, the relation between the inputs was defined. The problems S and T may be
similar, but differ from one another in a relative value, or position that should be pro-
cessed. One such case, in which padding may be useful is the following.

If Problem-S will compute the i-th largest element in a sequence and
Problem-T will compute the j-th largest, and j < i; then Problem-S
may be solved by transforming its input to Problem-T, and padding
its input in a corresponding augmentation.

At this stage, Problem-S and Problem-T were formulated. The described augmenta-
tion depends on the values of i and j above. We chose these values to be simple, as the
focus is on invoking the notion of padding. The values of i and j were chosen to be N/2
and N/3 respectively.

 Problem-S will compute the median in an unordered array Arr of N
different values, and Problem-T will compute the “thirdian” – the el-
ement that is larger than one third of the elements of Arr and smaller
than two thirds of the elements.

Finally, the details of Problem-S’s input augmentation were written and evaluated.
An O(N) reduction computation was formulated, as presented below.

Find the Max element of Arr, and add to Arr the N/2 values:
Max+1, … , Max+N/2; i.e. pad Arr with large values to be 3/2 of its
original size.

The resulting task was the following.
Problem-S. Median. Given an array of N distinct values, output its median.
Problem-T. “Thirdian”. Given an array of N distinct values, output its “thirdian”,
which is the element that is larger than one third of the elements and smaller than two
thirds of the elements.
Problem-T was provided to the students.
We posed the task to a limited group of students. Unfortunately, padding solutions

were not offered. The students turned to reduce the size of Arr. The main theme that was
demonstrated was the removal of elements smaller than the median of Arr, one by one.
One removal version involved a utilization of Problem-T as an operator, with repeated
calls for the removal of single “thirdians”, one at a time. This reflects a degenerated
transformation and exploitation of Problem-T.

D. Ginat, S. Arian, O. Becker8

Another version involved sorting of Arr, and the removal of an amount of the small-
est elements of Arr that will “shift” the median to the “thirdian” position. Students
erred with the correct number of removed elements. And, obviously, the computation
complexity exceeded O(N).

It seems that students demonstrated different kinds of impasse. Perhaps their lack
of experience with the heuristic of auxiliary construction hindered them from choos-
ing the direction of padding the original input. They followed a direction of “in place”
computation, with reduction of Arr’s size. In addition, Problem-S involved the notion
of median, and this may have led some in the direction of ordering calculations, even
at the cost of a very inefficient solution. Thinking at the problem level of Perrenet et al.
(2005) was very limited, and there was no capitalization on the similarity between the
two problems for providing a transformation that yields a single, elegant reduction to
Problem-T.

Location-Value Relation

First, Problem-S was designed. A special case of a previously invented problem – the
Widest inversion (Ginat, 2008) – may be solved in a simpler way than the original, gen-
eral problem. The input of the Widest inversion problem is a list of N positive integers,
and the output is the largest distance between two unordered integers in the list; e.g., for
the input 2 5 4 6 3 the output will be 3. The solution is not that simple.

In the special case where the list is a permutation of the integers 1 to N, an elegant
solution may capitalize on the particular property of a permutation, which is:

When the input is a permutation of 1..N, the range of values is exactly
the range of locations.

Next, we sought a transformation. We examined a simple example, and looked at
the possibility of transforming a given permutation, such as 2 5 4 1 3 to a list of the
locations of the permutation values: 4 1 5 3 2 (e.g., the 1-st value in the new list is
4 since 1 appears in the 4-th place in the original permutation). Upon looking at these
two lists one may notice the following:

The “Largest drop” – the largest difference between two unordered
integers – in the new list is the widest inversion in the original list.

Thus, if the Largest drop is a simple problem it may become Problem-T. In an analy-
sis of this problem, one may notice that the computation is simple – an O(N) time, of
one “pass” over the input, where the difference between every newly read value and the
current Max is examined. We obtained the following task.

Problem-S. Permutation Inversion. Given a permutation of the integers 1..N, in an
arbitrary order, output the largest distance between two unordered integers.
Example: For the input 1 6 2 4 7 5 3 the output will be 5, which is the distance
between 6 and 3.

Posing Creative Reduction Tasks 9

Problem-T. Largest Drop. Given a permutation of the integers 1..N, in an arbitrary
order, output the largest difference between two unordered integers. The output in
the above example will be 4. This difference occurs twice – between 6 and 2, and
between 7 and 3.
Problem-T was sometimes provided to the students.
When Problem-T was not provided to the students, they offered two kinds of solu-

tions to Problem-S – a brute-force O(N²)-time solution, in which the distance between
every pair of integers is checked; and an insightful O(N) solution which capitalizes on
the observations italicized in the above design.

When we provided Problem-T with Problem-S, and requested a reductive solution,
some students indeed offered the above elegant reduction. However, others still did
not see the correspondence between the problems, and turned to a brute-force solution.
Since they were obliged to solve by reduction, some of them used Problem-T as an
operator which receives only a pair of values. Their solution called Problem-T’s (black
box) algorithm O(N²) times, a separate call for each pair examined by their brute-force
solution.

Some created a list of pairs <i,j>, such that i is greater than j, and is the furthest loca-
tion of an integer smaller than the integer whose location is j, in the original input. For
example, for the input in Problem-S’s specification, the list of pairs will be the follow-
ing: <7,2>, <7,4>, <7,5>, <7,6>. (The 7 in all the pairs is due to the location of 3; the 2
in the first pair is due to the location of 6; the 4 in the second pair is due to the location
of 4; the 5 in the third pair is due to the location of 7; etc.) Each pair was computed
separately, thus the time complexity is O(N²).

Both of these inefficient solutions express a “reduction by obligation”. The first,
“operator based” solution utilizes a degenerated variant of Problem-T’s solution, and
demonstrates limited abstraction at the problem level. The second solution expresses a
slightly higher abstraction by invoking Problem-T’s solution only once, but lacks suf-
ficient insight of the correlation between the problems.

3. Discussion

Reduction is a fundamental CS notion. Although it is mostly apparent in advanced
courses, it may be a relevant tool also in the Introduction to Algorithms level. It requires
recognition of patterns, creativity, and thinking in the problem level. As such, it may be
introduced and practiced by IOI students rather early in their training.

The practice of seeking problem correspondence in reduction, as well as applying
it properly and efficiently, develops one’s analogical thinking and enhances awareness
of essential algorithmic problem solving elements, including moving between different
levels of abstraction (the problem level and the algorithm level), revealing underlying
patterns, and employing flexibility is developing suitable algorithmic schemes.

The first task required the recognition of a mathematical underlying pattern. Al-
though the pattern was simple, one needed flexible manipulations to reveal it. This was

D. Ginat, S. Arian, O. Becker10

also relevant in the third task, where the underlying pattern was a simple location-value
pattern. In the second task one had to demonstrate flexibility in turning to a concise,
elegant construction. All the tasks involved the application of problem solving heuris-
tics – problem simplification in the first task, auxiliary construction in the second, and
a change of representation in the third task. In addition, all the tasks required thinking
at the more abstract problem level, both upon seeking problem characteristics and upon
mapping from Problem-S to Problem-T.

Students demonstrated various levels of the above. Many did not recognize under-
lying patterns, expressed limited flexibility, and did not properly relate to efficiency
considerations. In addition, some students did not fully capitalize on Problem-T’s char-
acteristics. Some invoked its solution repeatedly as an operator, thus demonstrating a
degenerated transformation that “misses the point” of reduction. We believe that prac-
tice and awareness play a key role in developing suitable, desired competencies. Such
a development will help assimilating abstraction, which is one of the most essential
elements in computer science and computational thinking.

References

Armoni, M., Gal-Ezer, J., Hazzan, O. (2006). Reductive thinking in computer science. Computer Science Edu-
cation, 16(4), 281–301.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. (1990). Introduction to Algorithms. MIT Press.
Ginat, D., Armoni, M. (2006). Reversing: an essential heuristic in program and proof design. In: Proc of the 38th

ACM Computer Science Education Symposium - SIGCSE. ACM Press, 469–473.
Ginat, D. (2008). Learning from wrong and creative algorithm design. In: Proc of the 40th ACM Computer Sci-

ence Education Symposium – SIGCSE. ACM Press, 26–30.
Mayer, R.E., Wittrock, M.C. (1990). Problem-solving transfer. Handbook of Educational Psychology, 47–62.
Muller, O., Haberman, B. (2008). Supporting abstraction processes in problem solving through pattern-oriented

instruction. Computer Science Education, 18(3), 187–212.
Perrenet, J., Groot, J.F., Kaasebrood, E. (2005). Exploring students’ understanding of the concept of algorithm:

levels of abstraction. ACM SIGCSE Bulletin, 37(3), 64–68.
Ryle, G. (1946). Knowing how and knowing that. In: Proc of the Aristotelian Society, 46, 1–16.
Schwill, A. (1994). Fundamental ideas of computer science. Bulletin of European Association for Theoretical

Computer Science, 53, 274–295.

D. Ginat – served as the head coach of Israel’s IOI project in the years
1997–2019 (team leader in 1997–2007). He is the head of the Com-
puter Science Group in the Science Education Department at Tel-Aviv
University. His PhD is in the Computer Science domains of distributed
algorithms and amortized analysis. His current research is in Computer
Science and Mathematics Education, with particular focus on various
aspects of problem solving and learning from mistakes.

Posing Creative Reduction Tasks 11

S. Arian – received her M.Sc. in Computer Science from The Aca-
demic College of Tel Aviv-Yaffo. For the last 15 years she is teaching
various computer science courses, including Algorithms, Data Struc-
tures and Computability Theory. Her current research is in computer
science education, particularly about abstraction facets.

O. Becker – served as Israel’s Team Leader for the IOI in the years
2009-2014. He is a postdoctoral researcher at the Department of Pure
Mathematics and Mathematical Statistics at the University of Cam-
bridge. His PhD connected geometric and measurable group theory to
the computer science domain of property testing. His current research
is, in addition, on expander graphs, word maps and random groups.

Olympiads in Informatics, 2022, Vol. 16, 13–22
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.02

13

How Competitions Can Motivate Children
to Learn Programming

Aliya KATYETOVA
Doctoral School, Faculty of Informatics, Eötvös Loránd University
Budapest, Hungary
e-mail: akatyetova@inf.elte.hu, katyetova@mail.ru

Abstract. In the present time, more and more children easily play with LEGOs, labyrinths, and
puzzles, which help to master basic logical skills and algorithm creation. Playing the games
they compete with peers at home and in a primary school to be faster and assemble a construc-
tion correctly, to set up and be able to manage a drone or a toy robot. Children are enthusiastic
about competing and getting ahead of each other and with pleasure want to know how a drone
works, how a robot is programmed, how a joystick is configured for a game. This article aims to
provide teachers and parents with the evidence how competitions can motivate children to learn
programming.

Keywords: competitions, motivation, children, programming.

1. Introduction

Motivation of students to learn is important for both teachers and parents. Competitions
offer a convenient way to bring informatics concepts to students in a more different
fashion than traditional teaching in schools. It could be said that the tasks are the heart
of the competition. Therefore, designing tasks that support the goals of the competition
is an important and demanding undertaking.

Nowadays, there are many different informatics competitions from small to
worldwide events (Scratch Olympiad, IOI, Bebras, etc.). Moreover, the types of tasks
vary from easy ones solved with a pen and some paper to complex problems dealing
with large datasets and sophisticated algorithms. Many different types of events offer a
wide range of possibilities for pupils to get involved in informatics.

Competitions can encourage students who want to learn informatics in depth. They
can also be a source of motivation for students interested in programming (Dagienė,
2010).

A.D. Katyetova14

2. The Importance of the Competitions

According to Manev et al. (2009), it is necessary to teach students to start to compete
as early as possible. In many countries, there is a large gap between the knowledge and
skills acquired through the regular curriculum and those required for informatics and
algorithmic contests and competitions. Thus, teaching programming as well as prepar-
ing for informatics contests is basically an activity outside a school. There is a need for
more independent work on the part of students and a more specific attitude from teach-
ers and parents (Nemeth and Zsako, 2018).

Children at school and home became more interested in learning how to create new
information communication technologies. They are easy to play LEGO, independently
assemble mazes and puzzles that help them master the basic logical skills of creating
algorithms. ��Competing with each other, children curiously examine robots, drones, joy-
sticks, and other automated toys. They with burning eyes and interest ask their peers,
parents, and teachers how they are arranged and how they work. Therefore, when
schools announce the call of competitions and Olympiads in informatics for children,
they willingly participate in them.

In the article “Kids Programming Marathon: A Step toward Better Engagement
with Computer Science Education” (Taki and Alnahhas, 2019) authors state that com-
puter science education is an extensive subject. It combines all the “STEM” subjects:
science, technology, engineering, and math, and also includes design. It is important
for students to master these skills because computer science is everywhere in our life.
By expanding access to computer science for all young people as early as possible, it
is necessary to help them prepare for current and future work. This education provides
them the opportunity to become the next world innovators and programmers (Taki and
Alnahhas, 2019).

Competitions are one of the essential ways to encourage pupils to discover new
fields. They introduce children to various fields of science, including informatics,
where the emphasis is on testing problem-solving and logical analysis skills through
an exciting experience in which the participant learns programming, thereby satisfying
their interests. Therefore, many countries are working on organizing informatics and
also programming competitions for children, in order to develop not only the skills of
creative thinking for pupils but algorithmic thinking as well. Furthermore, it is impor-
tant for improving motivation to learn computer programming.

In addition, while writing this article the author wondered why many countries have
informatics competitions for children, while some do not have such contests, particular-
ly in programming for primary schoolchildren. At the same time some nations (Syria,
etc.) are working on organizing a programming marathon for children and adolescents
to increase the general scientific level and enhance the skills of analysis and creative
thinking among pupils (Taki and Alnahhas, 2019). In Kazakhstan, competitions for
children are held only from grades 7–8. It is a challenge to think and start organizing
informatics contests by engaging primary schoolchildren. Such contests will make it
possible to interest them, even more, to study computer science outside school, to learn
programming with the help of educational games.

How Competitions Can Motivate Children To Learn Programming 15

3. The Power of Motivation

The primary school years are important in children’s lives. In this formative period, boys
and girls profoundly affect their mental and emotional growth. Today's schools are chal-
lenged to provide meaningful experiences that will help these children realize their full
potential. And in this case, motivation plays a huge role.

What does motivation give to children? First of all, it is a good tool for education
and development. Then there is the importance of computer science education. These are
also new academic achievements and increased interest in the subject.

When children have a motivation they can come up to a number of things, includ-
ing:

Self-confidence.●●
Lack of fear.●●
Focusing.●●
Comprehension.●●
Good organization skills.●●

While some students are natural self-motivators, many children struggle to find the
motivation needed to do their best. Therefore, competitions can help in this situation. At
the same time teachers also help them in informatics classes.

3.1. How can Competitions Motivate Children to Learn Programming?

The goal of all teachers is to help pupils become self-motivated students. And competi-
tions provided in the computer classes and/or online via Zoom, Microsoft Teams or
Skype help them it this deal. To do this, it is important to involve parents in playing the
games together with their sons and daughters which builds motivation. It can be done at
a time convenient for parents, in the evenings or on weekends. All of these things help
children to improve confidence and motivation to learn.

For example, competitions in Informatics organized by schools include different In-
formatics and ICT themes starting from easy tasks to difficult ones. It depends on wheth-
er the junior or senior pupil is participating and what the purpose of this event will be.

The following tasks features should be taken into account (Hakulinen, 2011):
The problem should be clearly formulated.●●
The tasks should be easy to understand.●●
The algorithms solving the problem may be a modified version of the classical ●●
algorithm.
There should be several different acceptable solutions of varying complexity and ●●
efficiency.
The result should be clear and concise (depending on the complexity of the task).●●
Tasks might be interactive and using questions.●●
Short non-programming tasks can be used to attract new students. ●●
Other criteria. ●●

A.D. Katyetova16

These tasks provide pupils with logical and algorithmic thinking development. Algo-
rithmic thinking is influenced by many human cognitive factors. This means not only ab-
stract and logical thinking but also creative abilities and problem-solving competences,
as well as the ability to think in structures. This complexity creates difficulties in learn-
ing and developing the algorithmic thinking of pupils. We need to reduce the complexity
to the level, where the concepts of algorithmic thinking can be learned in a natural and
playful way. The following is recommended: use of basic actions, natural description
language for writing the algorithms, and an interactive environment with possibilities
for experimentations also flexible for a run variety of the algorithms. The problems to be
solved must be adequate to the pre-knowledge of the children-beginners.

And competition here is a good motivation tool for learning, particularly in pro-
gramming.

In this part of the article, we can cite the following example from an article by Kubi-
ca and Radoszewski (2010), who proposed using tasks that require algorithmic thinking,
but not programming, in order to attract novice students who know nothing about pro-
gramming or algorithms. They claim that offering tasks or puzzles that require different
levels of algorithmic thinking is a good way to popularize programming learning among
younger schoolchildren. They also proposed a couple of tasks that require algorithmic
thinking but are formulated in a purely mathematical way. The problems are designed in
such a way that the desired solution minimizes the total time for its manual execution.

4. Learning Computer Programming

Being primary school students, children develop an interest in academic subjects, iden-
tify inclinations to various fields of knowledge, types of work, develop moral and cog-
nitive aspirations. However, this process does not occur automatically, it is associated
with the activation of cognitive activity of students in the learning process. One of the
effective means of developing cognitive interest in computer science lessons in primary
school is a game.

For a child of primary school age, playing is of the utmost importance: for them it is
study, work, a serious form of education.

The inclusion of games and game moments in the lesson makes the learning process
interesting and entertaining, creates a cheerful working mood for children, facilitates
overcoming difficulties in mastering the educational material. Another positive side of a
game is that it promotes the use of knowledge in a new situation, thus, the material as-
similated by younger schoolchildren goes through a kind of practice, brings variety and
interest to the educational process.

Playing is a natural and humane form of learning for a child. By teaching through
games, we teach children not how it is convenient for us, adults, to give educational
material, but how it is convenient and natural for children to receive it.

There are various types of games that contribute to the development of cognitive
interest of younger schoolchildren. These are exercise games, competition games, story-
role-playing games, educational travel games, etc.

How Competitions Can Motivate Children To Learn Programming 17

The majority of students show an interest only when the lesson's topic is interesting
to them or the teacher uses unusual teaching techniques, particularly, a game. A teacher
should stimulate and develop the cognitive interest of younger students in each computer
science lesson. It is necessary to strive to ensure that most of the class has a high level
of cognitive interest, that is, that primary school students are active in every lesson. To
do this, a teacher needs to include game elements or game situations in the structure of
each computer science lesson and in informatics competitions.

4.1. Teacher Engagement

One-to-one programming is probably the best form of teaching programming because
the teacher can focus on one student and promptly give feedback and correct the stu-
dent’s misunderstandings. However, in real conditions, one teacher often teaches ten,
twenty, or even more students at the same time. In this case, quizzes and tests with
appropriate feedback can help to identify misunderstandings of the students about pro-
gramming concepts and to correct them (Brown and Wilson, 2018).

Using live coding can also help students. If the teacher creates a program in front
of their students instead of using and showing presentation slides, the teacher can react
more sensitively to students’ “what if?” questions. Also, learners can see that making
mistakes during programming is normal and they can learn to find and correct these er-
rors. In addition, a teacher may ask their students several times during a live coding les-
son to predict the results before the application is executed (Brown and Wilson, 2018).
Despite the fact that live coding might be slower than using prepared slides, Stoffova,
V., and Vegh, L. believe that it is worth taking the time to try at least a few times during
a programming lesson (Stoffova and Vegh, 2019).

Pair programming, when two students share one computer, is also a good practice
in teaching computer programming. One of the students types the code, while the other
comments, prompts a classmate and makes suggestions. It is important to change the
role several times per lesson. During pair programming, students can help each other,
they can explain each other’s misconceptions (Brown and Wilson, 2018).

It is also important that teachers give students motivational tasks that interest them.
Since almost all students like computer games, it can be a good choice to assign learn-
ers to create some simple games. A computer game as a project adds an element of fun
to programming, captivates children, and they stay interested from the beginning to the
end (Doherty and Kumar, 2009). However, because children in primary school are not
proficient in programming, it would be difficult for them to write a complex computer
game from Scratch. Framework-assisted computer programming, where children use a
prepared application framework for creating games, might be an effective solution to
this problem. Using interactive online e-learning platforms that merge the possibility
of learning programming skills while building digital games (Ivanova, 2016) can be a
good solution, as well.

In this case, the Scratch programming environment can help.

A.D. Katyetova18

4.2. Scratch as a Motivation Tool

Scratch as a visual environment for programming and creating games is being used suc-
cessfully to teach programming skills to novices. It is used in primary and secondary
schools in Kazakhstan and other countries as well. Scratch is freely available and easy
to install and use for teachers and students. Scratch teaches computational concepts to
students in a fun and engaging way. The student engagement with Scratch is superior
to the level of engagement while studying ICT literacy skills and motivation levels are
also high.

For instance, in Scratch, you program largely visually: Programs are put together
from colored building blocks, which allow children at any performance level a very easy
entry into programming. At the same time, Scratch can also introduce advanced pro-
gramming concepts such as object orientation, concurrent processes, or event handling
in a very natural way. Scratch is, therefore above all, a tool for conveying important and
cross-programming concepts. Verifiable learning objectives are important to us. The ac-
quired knowledge can be applied or expanded in (partly further) tasks directly following
the material. The successful completion of the assessment tasks (in the form of a game)
at the end of each learning unit guarantees that the essential concepts have been under-
stood. In this case, the children are happy, perform tasks with interest, compete with
each other to see who is more beautiful and performed the algorithm better or made an
easy game according to the template by themselves.

Teachers can include tasks that have some initial code, which have to be improved.
Here Scratch can be used to motivate younger students to participate in a competition
and include tasks with some initial game elements that needed to be improved.

Often the games chosen for the competition may not have a known ideal solution.
This is how they encourage competitors to think and develop their own original ideas,
rather than implement well-known algorithms.

4.3. Working in Tynker Platform

Tynker is a creative computing platform that helps kids develop computational think-
ing and programming skills in a fun, intuitive, and imaginative way. As they are guided
through interactive game-based courses, kids quickly learn fundamental programming
concepts. With Tynker every child can apply their coding skills as they build games,
tell stories, create apps, control drones and robots, and more. The platform even offers
a parent dashboard where mothers and fathers can follow their child’s success and share
their creations.

This opportunity is especially interesting for those children who already like to play
with LEGO. They will be more genuinely excited about the opportunity to integrate
Tynker with these interests, expanding their potential for games as they learn.

The significant advantage of this platform is the possibility of working in it for pri-
mary school students aged 5–10 (Fig.1).

How Competitions Can Motivate Children To Learn Programming 19

Children begin programming using Tynker's block-based visual language, which
helps them recognize patterns and master programming concepts such as sequence,
loops, conditional logic, and algorithmic thinking. They can show their creativity by
animating their games and telling stories using code.

4.4. Involving into Playing Algorithms

There are several ways to engage children to playing algorithms not only using Scratch
and Tynker platform but also other computer applications.

Understanding algorithms is one of the difficulties that students met when starting
to learn programming. For beginners in programming, it is important to understand the
principles of algorithms along with the ability to find or create their own algorithms for
new problems and tasks. An algorithm prescribes exactly what to do in the given pos-
sible situations. This is one of the main educational goals that beginners should know.
So, the algorithm manages all possible situations, it is a sequence of steps that leads to
the result. It is a possibility to experience in a game that exactly follows such steps of a
self-developed algorithm (Czakoova, 2020).

Children understand the principles of algorithms by solving different tasks in compe-
titions organized by schools. Animations of algorithms are used. According to Vegh and
Stoffova (2016) in these approaches, the students play algorithms. In this way they get a
better understanding of given algorithms.

Fig.1. Age range of participants.

A.D. Katyetova20

In the article “Developing algorithmic thinking by educational computer games”
Czakoova (2020) suggests an idea of involving students into playing algorithms. The
task of the teachers is to motivate the students to improve their algorithms whilst finding
more efficient solutions. An example of a computer game in which there are three levels
of difficulty to find an effective solution is given. The students take on the roles of a
figure and a navigator. They can determine the progress of the game using algorithms. In
this way, students will learn more about basic algorithmic thinking. While the students
find good solutions, they can learn a lot about sequential algorithms. It is a form of ex-
plorative learning, where the students can test algorithms by playing. The goal is to bring
fun, pleasure, and motivation to the programming learning process by using games. All
this can be used at computer science Olympiads as assignments.

A much greater motivation arises when students get the opportunity to invent their
own algorithms to solve a specific problem. A necessary condition is the correct choice
of tasks that need to be solved. The best option is to gamify the problem. Gamification
opens the way to the introduction of game elements in a non-game situation. Such an
educational approach at competitions motivates students to learn using game design and
game elements in learning environments. The competitive spirit during the competition
and games should inspire children to continue learning new and interesting things. Games
in any form increase motivation through engagement. All this is observed as more and
more important in education. The goal is to maximize fun as well as engagement by
attracting student interest.

Problem methodology is effectively used in a playful way in competitions for the
development of algorithmic thinking of primary school students. Students should be
directed to become creative problem solvers, experimenters, and creators of alternative
solutions. By playing games, the student receives immediate feedback so that he/she can
correct his/her actions to get the right solution (Czakoova, 2020).

For novices in programming, educational computer games with the help of program-
mable toys are suitable tools for teaching the basics of programming. They will be high-
ly motivated by the educational computer game to learn programming (Stoffova and
Czakoova, 2019).

The situation is quite different when students have to program a game. This motiva-
tion towards games could be used to promote informatics competitions for children and
also to get students interested in algorithms. As they learn, children create mini-games,
solve puzzles, create programming projects, earn exciting badges (prizes) and discover
new characters. That’s why kids love to learn by playing – even though they are learning
important programming concepts, they feel like they are just playing a game.

5. Conclusion

In this paper from all the mentioned above, it is obvious how important the role of the
competitions is for the student's motivation to learn computer programming. They do
not only involve children in an interesting and exciting environment but also develop a
competitive and team spirit in children to complete tasks. It also helps to instil interest

How Competitions Can Motivate Children To Learn Programming 21

in studying further topics in computer science and programming, because children are
already familiar and know that it will not be boring, but fun and useful.

In competitions, the use of games and game situations using a computer and in the
process of teaching computer science is also appropriate and relevant at the stages of
programming training.

For many countries, it will be meaningful and useful to think about organizing com-
petitions for younger schoolchildren, especially to engage kids from grades 2–4. Chil-
dren's computer science competitions will be promising competitions that should be
organized where they are not held and supported in order to promote computer science
education, as well as for the future development of children's digital literacy.

References

Brown, N.C., Wilson, G. (2018). Ten quick tips for teaching programming. PLoS Computational Biol-
ogy, 14(4), e1006023.

Czakoova, K. (2020). Developing algorithmic thinking by educational computer games. eLearning & Soft-
ware for Education, 1.

Dagienė, V. (2010). Sustaining informatics education by contests. In: International Conference on Informat-
ics in Secondary Schools-Evolution and Perspectives. Springer, Berlin, Heidelberg, pp. 1–12.

Doherty, L., Kumar, V. (2009). Teaching programming through games. In: 2009 International Workshop on
Technology for Education. IEEE, pp. 111–113.

Hakulinen, L. (2011). Survey on informatics competitions: Developing tasks. Olympiads in Informatics, 5,
12–25.

Ivanova, S. (2016). Learning computer programming through games development. In: The 12th International
Scientific Conference “eLearning and Software for Education”. “Carol I” National Defence University
Publishing House, Bucharest, Romania, pp. 492–497.

Kubica, M., Radoszewski, J. (2010). Algorithms without programming. Olympiads in Informatics, 4, 52–
66.

Manev, K., Sredkov, M., Bogdanov, T. (2009). Grading systems for competitions in programming. In: Pro-
ceedings of the XXXVIII. Spring Conference of the Union of Bulgarian Mathematicians.

Németh, Á.E., Zsako, L. (2018). Grading systems for algorithmic contests. Olympiads in Informatics, 12,
159–166.

Stoffová, V., Végh, L. (2019). Learning object-oriented programming by creating games. In: The 15th In-
ternational Scientific Conference eLearning and Software for Education (Vol. 1, pp. 20–29). “Carol I”
National Defence University.

Stoffová, V., Czakóová, K. (2019). A Playful form of Teaching and Learning using Micro-World Applica-
tions. In: The International Scientific Conference eLearning and Software for Education (Vol. 1, pp.
110–115). “Carol I” National Defence University.

Taki, M., Alnahhas, A. (2019). Kids programming marathon: A step toward better engagement with com-
puter science education. Olympiads in Informatics, 13, 225–235).

Végh, L., Stoffová, V. (2016). An interactive animation for learning sorting algorithms: How students
reduced the number of comparisons in a sorting algorithm by playing a didactic game. Teaching Math-
ematics and Computer Science, 14(1), 45–62.

Websites

Daryn.kz – РҒПО «ДАРЫН»
https://www.tynker.com

iBobor

A.D. Katyetova22

A.D. Katyetova, doctoral student of the Faculty of Informatics of
Eötvös Loránd University, Budapest, Hungary, Master of Informatics.
She is the author of scientific and methodological papers and articles
in Kazakhstan on the informatization of education, distance learning,
and children’s development. She is the author of the educational and
methodical manual for the course “Fundamentals of algorithmization
and programming”.

She was doing a research internship on the program “Improving
University Leadership, Management and Teaching and Learning” in
the Reading University, UK, under the “Bolashak” International Pro-
gram of Kazakhstan (2013). She has been awarded a Stipendium Hun-
garicum Scholarship (2021).

She worked in the Strategic department in a Kazakhstan education-
al company, which is a National operator of WorldSkills Kazakhstan
competition.

Her research interest includes didactics and methodology of teach-
ing informatics (digital literacy) in primary school, teaching program-
ming languages and databases.

Her current research interest is the digital literacy development of
primary schoolchildren.

Olympiads in Informatics, 2022, Vol. 16, 23–34
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.03

23

Common Approaches to Developing
Extensible E-learning Systems

Bojan KOSTADINOV1, Irena STOJMENOVSKA2

1Cloud Solutions LLC
 st. Jurij Gagarin 33/27 Skopje, Macedonia
2University American College Skopje
 Treta Makedonska Brigada 60, Skopje, Macedonia
e-mail: bojankostadinov@gmail.com, irena.stojmenovska@uacs.edu.mk

Abstract. Education plays an important role in all of our lives, as it allows people to reach their
potential, develop problem-solving skills, and create more opportunities for employment and
self-dependency. Many countries around the world are investing heavily in schools and univer-
sities, as an educated population is linked to stronger economic growth, happiness, stability,
and a reduction in poverty and crime. One of the best ways to provide equal opportunities for
good education is through the use of technology and multimedia. In this paper, we will provide
a broad overview of e-learning systems and their most common features, and discuss common
patterns and approaches for maintaining and extending them, as well as how to improve their
performance and stability using the latest available strategies and technologies. Additionally,
this paper features several use cases of such systems, and examples of how they were main-
tained, extended and improved over time, while making sure privacy concerns and usability are
not negatively affected.

Keywords: e-learning, extensibility, web-based systems, STEM education.

1. Introduction

The knowledge, skills and motivation of workers is one of the key factors for both
business, regional and country growth. Jobs that have a higher barrier to entry for new
employees tend to pay higher salaries, offer more worker benefits and other incen-
tives – while, on the other hand, jobs with a lower barrier to entry (such as those that
don’t require education or training degrees) tend to offer much less benefits and lower
salaries, as companies are able to fill those positions much more easily (Janjua et al.,
2011). Offering better primary and secondary education tends to allow poor and under-
developed countries to bring people out of poverty, and leads to stronger and more sus-
tainable economic growth (Appiah, 2017). Similarly, companies are investing heavily

B. Kostadinov, I. Stojmenovska24

in specialized education for workers, in order to stay in front of the competition. With
automation and AI, it is expected that education will play an even bigger role in the
future, as the skills demanded by the labor market will undoubtably change. To sum-
marize, education is one of the most powerful and proven instruments for increasing
economic growth, reducing poverty, and lowering inequality.

E-learning systems allow governments, companies and educational institutions
to share knowledge with the help of modern devices and technology – which might
include sharing textual learning materials, animations, multimedia, and other content
forms. Because e-learning systems might be accessed remotely, and are usually web-
based, they are one of the main methods for allowing students of all backgrounds to
have similar opportunities to access quality education. Most of the time, e-learning
systems are used in addition to traditional on-site learning, but some organizations of-
fer students the ability to complete an entire curriculum online, which might include
earning a degree or getting a certificate for completing a course or specialization. Some
additional advantages of e-learning are consistency, up-to-date content, quick delivery,
personalization, analytics, cost effectiveness and better time management.

One example of a popular e-learning system is Moodle, which is an open-source
learning platform that is available in several different languages, and which can be
used in both primary schools, secondary schools, universities and other companies
and establishments. It can be easily installed and hosted on a web server, and enables
different ways of sharing content, as well as offering students various features such as
a personalized dashboard, calendars, forums, wikis, quizzes, notifications, file shar-
ing, and much more. One of the main benefits of using Moodle is the rich plugin
ecosystem (i.e., its extensibility), which allows anyone to add additional features to
Moodle, such as new integrations with other systems, gamification, activities, new
types of quiz questions or certificates. Other popular and accessible software, such as
the content management system WordPress, which can be used for educational pur-
poses as well, also offers administrators the ability to extend the system with plugins
and themes.

In this paper, starting with section 2, we will outline several common approaches
to developing extensible e-learning systems such as Moodle, how to maintain and im-
prove them over time, and how to keep libraries and tools up to date in order to make
sure the systems are performant and secure. Extensibility is a key feature of any soft-
ware system, and there are several common theoretical strategies and approaches which
apply to all systems (including e-learning systems), as well as several differences which
must be taken into account.

Next, in section 3, we will provide three use-cases and examples of existing e-
learning systems, and how they have been maintained and extended over a period of
several years – while making sure they remain performant, stable and usable in differ-
ent usage scenarios (for example, students using modern web browsers from home,
and connecting from outdated browsers in schools). All of the examples are e-learning
systems which are used in Macedonia, and all of them have a large userbase of students
and teachers. At the end of the paper, we will summarize our findings.

Common Approaches to Developing Extensible E-learning Systems 25

2. Developing Extensible E-learning Systems

Extensibility is one of the key software engineering principles, which corresponds to
enabling and planning for future growth and updates. It can be thought of as a metric
of the difficulty involved with changing existing features or implementing new ones.
Extensibility is also an important consideration when discussing system security and
reusability – as we would like to be able to easily implement fixes for newly discovered
vulnerabilities and requirements.

A software system will go through different phases in its lifetime, including the
initial development, evolution, maintenance, phasing out and termination. Different
strategies might be employed to extend the life of a software system (Lavelle, 2005),
including waiting (requires no changes), wrapping with middleware, renovating into a
more modern form (for example, updating the UI), replacing with a new system which
is more up-to-date or offers more features, and finally outsourcing the maintenance or
development of such a system outside the organization (so resources can be focused
elsewhere).

Such approaches are applicable to e-learning systems as well. Because of privacy
concerns (which are stricter when it applies to pupils and students), rules around track-
ing and data collection, or security and network limitations, specific care must be taken
when integrating an e-learning system with new software or outsourcing features else-
where. There are various rules with regards to storing student data, and some organiza-
tions or schools might have Internet limitations that only allow certain domains or IP
addresses to be available in classrooms. For example, in e-learning systems we often
need to store content such as pdf or video files, but deciding to move the storage of such
files to a cloud offering such as S3 in Amazon Web Services might lead to a different set
of problems. Similarly, some schools might have specific licensing agreements for oper-
ating systems or use outdated browsers, so proper planning and testing is required when
deciding to switch to a completely different software system. What might work for one
organization or school, might be prohibited at another, so it’s best to make sure that the
system can be used independently (or, alternatively, that it depends on as little outside
services as possible), or that all restrictions are known beforehand.

The first major consideration when discussing extensibility is understanding the dif-
ferent forms that exist, and naturally these will also apply to e-learning systems: black-
box extensibility, white-box extensibility, and gray-box extensibility. Black-box exten-
sibility refers to systems where knowledge about the internal system implementation
is not important when implementing new features or extensions (only a specification
regarding interfaces is used). In contrast, white-box extensibility refers to extensibility
where we are modifying the source code of the system. Gray-box extensibility is a com-
promise between the two.

The second major consideration is related to the source code, where we need to make
sure that we follow appropriate principles and patterns to make the code understandable,
testable, and easily editable. SOLID is a set of five design principles associated with

B. Kostadinov, I. Stojmenovska26

the quality of object-oriented programming, which is not only related to writing under-
standable software, but also one which is flexible, extensible, and maintainable. These
principles include:

The single-responsibility principle.●●
The open–closed principle.●●
The Liskov substitution principle.●●
The interface segregation principle.●●
The dependency inversion principle.●●

In short, the principles indicate that there shouldn’t be multiple reasons for a single
class to change – i.e. a class should have only one responsibility; that software entities
should be open for extension but not modification; that derived classes should be usable
in place of base classes; that multiple client-specific interfaces are a better alternative
than one general-purpose interface (to decrease coupling between systems); and finally,
that we should depend on abstractions vs concretions – i.e. objects should not create
their dependencies (i.e. we should pass them).

One common approach to extensibility is using plugins. For example, in WordPress,
this is accomplished through hooks (actions or filters), which are a way for a function
in one piece of code to interact or trigger actions elsewhere – at pre-defined spots. Ac-
tions execute code and return without passing anything back, while filters modify and
pass values back to be used later in the code. A good extensible system is one where the
internal structure or architecture doesn’t change (or is minimally affected) by the addi-
tion of new functionality.

The third major consideration is related to following a proper project management
structure (Yagel, 2017), which includes using version control, documentation, issue da-
tabases and API guidelines.

Finally, the fourth major consideration is connected to testing. Automation testing
is a process that involves an execution of test suites that ensure the quality, security, and
performance of a software system. This can be accomplished through different forms of
tests, including graphical user interface tests and API tests. Correct use of tests can lead
to the development of software which contains less bugs, is more performant, and (of
interest to us in this paper) software which is more extensible. Tests enable us to detect
issues early in the development cycle (of the software itself, or the development of a new
feature), supports easier debugging and enables catching regressions early on – allowing
for quicker development and faster releases of new versions. There are different types
of tests, including unit tests, integration tests, smoke tests, regression tests, performance
tests, etc. End-to-end testing solutions, such as (for example) Cypress – a powerful au-
tomation tool for testing any application that runs in a browser, guarantee that changes
don’t break existing features for users by testing the system in a similar way that a user
would. Popular software solutions used in automation testing allow us to execute paral-
lel tests using different platforms, operating systems, and browsers – thus simulating
various environments and restrictions that might exist at different organizations (such
as, for example, in schools).

Common Approaches to Developing Extensible E-learning Systems 27

3. Examples

In the previous section, we have discussed some important topics that relate to the de-
velopment of extensible systems – which include proper planning, testing, modulariza-
tion, architecture, and code structure – all of which are crucial when we are planning
to make modifications to any software system, as it might affect its usage, quality, or
performance. In this section, we will describe several examples of existing e-learning
systems. For all of the outlined systems, the authors of the research paper have been
involved either with building or maintaining them. For each system, we will provide
a brief overview, describe where it is being used, and discuss the challenges related to
maintaining and extending it.

3.1. MENDO

MENDO is an online e-learning system that enables anyone to learn programming,
study algorithms, and to solve algorithmic tasks. The system is primarily intended
for primary and secondary school students, but it has also been actively used by both
coaches and universities for conducting online courses and exercises. It offers automat-
ed grading – where solutions, which are submitted as source code, are first compiled,
and are then fed batches of input data. At the end, their output is tested for correctness
and the solutions are awarded an appropriate number of points. MENDO can work with
solutions written in several programming languages (and can easily be extended to sup-
port more), can work with various types of tasks (including interactive ones), and the
system can restrict programs to arbitrary time and memory limitations. MENDO also
supports several different ways of comparing the output and grading the solutions – for
example, checking for exact equality, comparing number values, ignoring whitespace,
writing custom comparators which can (even) award a custom percentage of the points,
etc. Aside from learning from interactive tutorials and solving tasks at any time in the
day, MENDO acts as a form of gateway for algorithmic programming, offering a news
page, forum, wiki and links to books and guides.

The system itself is also used by the Computer Society of Macedonia for conducting
both school, regional and national competitions in informatics, as well as organizing
the Macedonian Olympiad in Informatics. Through the years, these competitions were
organized in different formats (both online and on-site), with different methods of scor-
ing contestants and offering feedback – requiring constant updates and modifications.
The organization of all of these events by CSM has resulted in the creation of most of
the tasks that are currently available on the system.

Since the organization of the first event in 2010, the system has had more than
16000+ registered users, 1000+ tasks related to algorithmic programming, 530000+
submitted and graded solutions, and more than 40 tutorials for both starting with pro-
gramming (specifically, learning C++) and getting familiar with algorithms and data
structures. The system supports two languages (Macedonian and English).

B. Kostadinov, I. Stojmenovska28

The first version of MENDO is described in (Kostadinov et al., 2010), and features
several modules: sandbox, grader, controller and auxiliary. Most of the modules were
written in Java, and the web application was running on the Apache Tomcat server. It
was one of the rare e-learning systems which automatically graded programming solu-
tions on Microsoft Windows. This was done through the sandbox module, which used
P/Invoke (Platform Invoke) signatures and Win32 functions to create processes (like the
program that a student submits) and group them in jobs. Jobs have the ability of limiting
the privileges and resources available to the processes.

In addition, MENDO also controlled other software on the operating system on
which it ran, and provided automatic backups for itself and other applications. MySQL
was used as an open-source relational database management system to store (most of)
the data – like users, task details, submissions, news, etc. The key details that allowed
MENDO to support so many features was its modular design which allowed new actions
and features to be added by simply implementing appropriate interfaces, as well as the
number of quality tests and superb test coverage.

After the release of the system, several updates were made throughout the years,
including making design modifications, adding additional features (such as interactive
lessons, automated help and hints, or competition statistics – as shown in Fig. 2 below –
among others). Some examples of the automated hints include the ability of the system
to quickly analyze the source code and, based on the grading results and the source code,
to provide feedback to the user regarding simple mistakes such as printing extra data (for
example, “The result is: …”), submitting to a wrong task, writing to files, having unini-
tialized variables, using forbidden imports or functions, etc. Due to the modular nature
of the system, and the various test suites created with the first version, most of these

Fig. 1. Screenshot of the MENDO training system – list of tutorials.

Common Approaches to Developing Extensible E-learning Systems 29

updates were done smoothly and without any major issues. Because several schools in
Macedonia are using browsers which are significantly outdated and don’t support many
recent features and technologies, we have kept the user interface dependencies fairly
consistent. Using virtual machines, we are testing new releases before pushing them to
production. Release plans take into consideration firewalls and privacy concerns, and the
system itself is visible through a single IP address and doesn’t use CDNs.

One of the most significant changes to MENDO, was in regards to where the system
is hosted. The first version of the system was running on Microsoft Windows, and all
submissions were executed and graded there. In contrast, the latest version of the system
is running on Linux, which required a different sandbox implementation and various
changes to the connections between MENDO and the other systems that it interfaces
with (specifically, the forums and the wiki – as their database connectors had certain is-
sues when we moved them to Linux).

Because the sandbox is just another module in the MENDO system, replacing it was
a matter of writing another module that can interact with MENDO and that implements
the correct API. We selected around 1000+ submissions from the old system, which had
various different verdicts, and tested them with the new sandbox to make sure that the
results would be the same – indicating everything works as expected. Only minor issues
were detected, like some submissions passing a handful of extra test cases because of
the speed difference between the original machine where MENDO was running and the
new machine where tests were being executed.

Due to automation tests, all of the requirements were tested, and all discovered issues
were solved within days – after which we moved all traffic to the new system when it
was confirmed that everything was running smoothly.

Fig. 2. Screenshot of the MENDO training system – competition statistics.

B. Kostadinov, I. Stojmenovska30

3.2. Bebras

Bebras is an international challenge organized once per year, which aims to promote
informatics and computational thinking among primary and secondary school students.
In Macedonia, as in most other countries where the challenge takes place, students par-
ticipate in the annual Bebras challenge from their school, supervised by their teachers
(note: in 2021, because of COVID-19, the challenge took place online).

Countries use different systems to organize the challenge – which could be Moodle,
a custom contest management system created specifically for the challenge, pen & pa-
per, or something else. In Macedonia, we use a locally developed system which sup-
ports various types of tasks (fill-in-the-blank, multiple-choice questions, and interactive
challenges), requires minimum resources, works with different types of browsers and
operating systems, and one which supports multiple languages. The system also enables
organizers to schedule practice and e-learning sessions, without organizing a specific
competition. Because of all the specific requirements around organization, communica-
tion, task types, scalability, and performance, the Macedonian Bebras system was de-
veloped as a separate system that can function independently and which offers different
views for teachers, students and organizers. An example screenshot from the system
(student view) is shown on Fig. 3.

The three main concerns we had with running an event with tens of thousands of par-
ticipants were related to 1) communication, 2) the required performance of the system,
and 3) the sizeable number of outdated browsers. To successfully tackle these concerns,
the system must be simple to use (so that teachers or students can easily participate with-

Fig. 3. Screenshot of the Macedonian Bebras system.

Common Approaches to Developing Extensible E-learning Systems 31

out much issues and direct communication with organizers), should be performant so it
can support many concurrent users, and the system must support (and be tested) on vari-
ous browsers. In Macedonia, for example, some computers are limited to using the now
(extremely) outdated Firefox 3 (first released in 2008), because of a project organized
around that time by the government, aimed at purchasing and delivering new computers
to schools. To organize a successful event, plans include testing the system with virtual
machines which can run outdated operating systems and browsers, creating benchmarks
for stress testing the system, and creating an architecture and content which can be easily
extended, tested, and maintained (this is because Bebras usually contains a lot of interac-
tive tasks, which must be properly coded and tested on several browser environments).
Cypress was used for testing the final version of the system, before starting the event
each year, by automating the flows that students would take on the system and randomly
entering the possible answers.

The created system uses an ORM for storing data in two databases – the data is writ-
ten immediately in one database, while the second one (asynchronously) gets and writes
the same data to a ledger in order to make sure all teacher and student information is
safely stored – this is used, for example, after the event in order to distribute results and
certificates to participants.

Besides structuring the source code properly so it can be extended and modified
easily during multiple iterations of the event (for which we followed guidelines such
as those outlined in Section 2); having automated backups, proper planning, extensive
testing and strong cooperation with teachers was crucial in creating a useful competition
management system, and organizing an event with such a large number of participating
schools, teachers and students.

3.3. New E-learning System Based on Item Response Theory

In (Kostadinov & Stojmenovska, 2022), we describe a distributed e-learning system
based on item response theory, that adapts to students, and offers them test questions and
learning materials which correspond to their level of knowledge. The system is com-
posed of a main server component where the main data is located, and several separate
web agents which should be run at schools (optimally) or other accessible web servers –
these agents are the web locations where students connect to. Agents synchronize data
with the main server component at configurable regular intervals.

The system has a collection of tasks and explanations, and functions in such a way
that it adapts to students based on their determined level of knowledge and skills. It is
originally designed to be used by primary and secondary school students, but it might
be extended with more content in the future to support more groups and use cases.
After a student answers a certain question, the system will show them the correct solu-
tion and will also include a brief tutorial regarding the idea and theory behind it. Af-
terwards, if the student solved the task correctly, the system would generally proceed
with a harder task – and vice versa, if the student answers incorrectly, the system will
continue with a simpler task. This process is repeated continuously multiple times,

B. Kostadinov, I. Stojmenovska32

with different tasks, while a student is studying. A more detailed description of the
system, and how it uses item response theory to choose the appropriate tasks, can be
found in (Kostadinov & Stojmenovska, 2022).

We tested the system with many students (in mathematics), who were split in two
categories – one category was using the system as intended, while the other one received
questions at random and had access to learning materials in pdf format (commonly
shared that way by some schools in our country) instead of the prepared explanations.
The gathered results were extremely positive, indicating strong support by students for
wanting to continue to use the system.

Because this is a distributed e-learning system, and there are various privacy rules
related to storing student data, the web agents that are run at schools are the only ones
that store student information. The data synchronized with the main server component is
anonymized and is mostly related to task data, answers and content, as defined in the ref-
erenced research paper. To guarantee that schools with different machines and operating
systems can run the e-learning system on their infrastructure, we use Docker containers
and an SQLite relational database for each agent. A well-defined, versioned API is used
for communication between the components, which guarantees that future updates will
not break existing systems. This is very important when designing distributed systems
that are expected to be modified in the future, and especially ones which need to be in-
stalled in different locations and environments. (Note that, for the gathered data present-
ed above, the web agents were running on our infrastructure, instead of in schools – this
was done in order to simulate a real working environment where we can test the newly
created e-learning system, without asking teachers to setup web servers and networks
themselves, as they might not have the necessary time, privileges or skills.)

4. Conclusion

Education is a powerful agent of change, and there is a very strong link between educa-
tion and quality of life. A good education enables people to prepare for the job market,
empowers them to understand essential facts about the world around them, and drives

Fig. 4. Students’ willingness to use the web applications.

Common Approaches to Developing Extensible E-learning Systems 33

both short- and long-term economic growth. Research has indicated that countries with
higher education and literacy rates, also tend to have a stronger GDP and lower unem-
ployment rate (Appiah, 2017). Establishments and governments throughout the world
have recognized education as an important tool to transform their organization (on a
smaller scale) or society (on a larger scale) to be more productive, stable, independent,
and to promote equality among different groups.

The use of educational technology and e-learning is one of the best methods that
allows pupils to have similar access to learning opportunities in life. There are differ-
ent types of e-learning systems, but some of the advantages that are common between
them include the ability to learn at one’s own pace, to cover material at a time that suits
people, and to digest up-to-date content.

Extensibility is one of the main software engineering principles, and it corresponds
to enabling, designing, and planning for future growth and updates. There are various
strategies that might be employed to extend the life of a software system, which might
include wrapping with middleware, renovating/updating, outsourcing, or replacing with
another system.

Designing and writing quality source code that follows design principles is also very
important, and the same applies to testing, project management and documentation. E-
learning systems are sometimes installed on schools’ hardware, and these systems might
need to follow certain strict privacy guidelines, or to be updated less frequently due to
licensing restrictions. Similarly, the school or organization using the system might have
network firewalls and/or outdated operating systems and browsers. All of this must be
taken into consideration when creating such systems, as it influences the number of op-
tions that can be utilized, the required support of multiple API versions, the use of tech,
and the ability to outsource services like hosting static files or using Content Delivery
Networks (CDNs).

References

Appiah, E.N. (2017). The effect of education expenditure on per capita GDP in developing countries. Interna-
tional Journal of Economics and Finance, 9(10), 136–144.

AWS S3 – Amazon Web Services – Cloud Object Storage. (accessed 13/5/2022):
https://aws.amazon.com/s3/

Janjua, P.Z., Kamal, U.A. (2011). The role of education and income in poverty alleviation: A cross-country
analysis. The Lahore Journal of Economics, 16(1), 143–172.

Kostadinov, B., Jovanov, M., Stankov, E. (2010). A new design of a system for contest management and grad-
ing in informatics competitions. In: ICT Innovations Conference 2010, Web Proceedings, 87–96.

Kostadinov, B., Stojmenovska I. (2022). Creating a distributed, privacy-aware e-learning system based on
item response theory. In: 19th International Conference on Informatics and Information Technologies
(CIIT 2022).

Lavelle, G. (2005). Practical strategies for dealing with legacy systems. Risk Management, 52(2), 45–46.
MENDO – The Macedonian contest management system. (accessed 12/5/2022):

https://mendo.mk/

Moodle – Open-source learning platform. (accessed 11/5/2022).
https://moodle.org/

Yagel, R. (2017). Extending Software Systems While Keeping Conceptual Integrity. In: SEKE (pp. 432–
435).

B. Kostadinov, I. Stojmenovska34

B. Kostadinov is the founder of Cloud Solutions, an author, and a
former competitive programmer. In 2014, he defended his MSc thesis
in Intelligent information systems at the Faculty of Computer Science
and Engineering, Ss. Cyril and Methodius University, in Skopje. He is
currently a PhD student at UACS, and is one of the organizers of the
national competitions in informatics in Macedonia.

I. Stojmenovska is a Dean of the School of Computer Science and
Information Technology at the University American College – Skopje.
She is a PhD holder in Theoretical Mathematics. Her main research
interests are in abstract algebra, in particular including vector valued
algebraic structures and combinatorial theory within. She also has
research interests related to mathematical education and information
systems and management. Prof. Stojmenovska is a member of the Eu-
ropean Mathematical Society and appears as an author/coauthor of 40
peer-reviewed research papers published so far.

Olympiads in Informatics, 2022, Vol. 16, 35–42
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.04

35

What is the Competitive Programming Curriculum?

Antti LAAKSONEN
Department of Computer Science, University of Helsinki
e-mail: ahslaaks@cs.helsinki.fi

Abstract. Competitive programmers learn algorithms and data structures that belong to univer-
sity computer science curricula. In this paper we go through the “Algorithms and Complexity”
knowledge area in the ACM/IEEE curriculum guidelines and determine which of the topics can
be learned through competitive programming. After that, we discuss in detail some topics that are
different in competitive programming and university courses.

Keywords: data structures, algorithms, curricula, programming contests.

1. Introduction

Solving competitive programming problems can teach many important algorithms and
data structures discussed in university algorithms courses. However, there are also dif-
ferences: some topics are usually only covered either in competitive programming or
university courses, but not in both of them. For example, segment trees are used pri-
marily in competitive programming, while Fibonacci heaps are typically only seen in
university courses.

There are no clear lists of topics that appear in competitive programming or univer-
sity courses. The IOI Syllabus (2020) roughly specifies the topics that can be expected
in the International Olympiad in Informatics, but there are many topics that are not
included in the IOI Syllabus but still appear in other contests, such as the Internation-
al Collegiate Programming Contest or Google Code Jam. The ACM/IEEE curriculum
guidelines (2013) suggest topics that should be included in computer science curricula
in universities.

This paper consists of two parts. In the first part, we go through the topics of the
“Algorithms and Complexity” knowledge area in the ACM/IEEE curriculum guidelines
and determine which topics can be learned through competitive programming. In the
second part, we discuss in detail some differences between competitive programming
and university textbook topics.

A. Laaksonen36

2. Comparison to ACM/IEEE Curriculum Guidelines

The purpose of the ACM/IEEE curriculum guidelines is to recommend topics that should
be included in university computer science curricula. The topics have been divided into
three categories as follows:

Core-Tier1 topics are the most fundamental topics and a computer science cur-●●
riculum should cover them all.
Core-Tier2 topics are also important and a computer science curriculum should ●●
cover all or almost all of them.
Elective topics are more advanced topics, and a computer science curriculum ●●
should also cover many of them.

In this section we go through the topics of the “Algorithms and Complexity” knowl-
edge area in the guidelines. For each topic, we determine if it can be typically learned
through competitive programming, i.e., by learning techniques that are needed in pro-
gramming contests.

2.1. Basic Analysis

The challenge in most competitive programming problems is to create efficient algo-
rithms. While competitive programmers routinely work with time complexities and use
the Big O notation, not all topics in this group are covered in typical competitive pro-
gramming training.

Interestingly, the formal definition of the Big O notation has been included in the
Core-Tier1 category in the guidelines, while its use belongs to Core-Tier2. However,
in competitive programming, it is essential to be able to use the Big O notation when
designing algorithms, but it is not necessary to know its formal definition.

Category Topic In Contests?

Core-Tier1 Differences among best, expected, and worst case behaviors of an algorithm Yes
Core-Tier1 Asymptotic analysis of upper and expected complexity bounds Yes
Core-Tier1 Big O notation: formal definition No
Core-Tier1 Complexity classes, such as constant, logarithmic, linear, quadratic, and exponential Yes
Core-Tier1 Empirical measurements of performance Yes
Core-Tier1 Time and space trade-offs in algorithms Yes
Core-Tier2 Big O notation: use Yes
Core-Tier2 Little o, big omega and big theta notation No
Core-Tier2 Recurrence relations Yes
Core-Tier2 Analysis of iterative and recursive algorithms Yes
Core-Tier2 Some version of a Master Theorem No

What is the Competitive Programming Curriculum? 37

2.2. Algorithmic Strategies

Most of the topics in this group belong to fundamental competitive programming skills.
The only exception is the branch-and-bound technique which can be regarded as an
advanced technique rarely seen in programming contests. The branch-and-bound tech-
nique is used to optimize exhaustive search algorithms, while most competitive pro-
gramming problems deal with polynomial algorithms. In programming contests, it is
often possible to get partial points by implementing a brute force algorithm, but it is not
needed to optimize the algorithm.

2.3. Fundamental Data Structures and Algorithms

In competitive programming it is important to know how to use efficient algorithms
and data structures available in the standard library of the used programming language.

Category Topic In Contests?

Core-Tier1 Brute-force algorithms Yes
Core-Tier1 Greedy algorithms Yes
Core-Tier1 Divide-and-conquer Yes
Core-Tier1 Recursive backtracking Yes
Core-Tier1 Dynamic programming Yes
Core-Tier2 Branch-and-bound No
Core-Tier2 Heuristics Yes
Core-Tier2 Reduction: transform-and-conquer Yes

Category Topic In Contests?

Core-Tier1 Simple numerical algorithms, such as computing the average of a list of numbers,
finding the min, max, and mode in a list, approximating the square root of a number,
or finding the greatest common divisor

Yes

Core-Tier1 Sequential and binary search algorithms Yes
Core-Tier1 Worst case quadratic sorting algorithms (selection, insertion) Yes
Core-Tier1 Worst or average case O(N log N) sorting algorithms (quicksort, heapsort, mergesort) Partially
Core-Tier1 Hash tables, including strategies for avoiding and resolving collisions Partially
Core-Tier1 Binary search trees

Common operations on binary search trees such as select min, max, insert, •	
delete, iterate over tree

Partially

Core-Tier1 Graphs and graph algorithms
Representations of graphs (e.g., adjacency list, adjacency matrix)•	
Depth- and breadth-first traversals•	

Yes

Core-Tier2 Heaps Partially
Core-Tier2 Graphs and graph algorithms

Shortest-path algorithms (Dijkstra’s and Floyd’s algorithms)•	
Minimum spanning tree (Prim’s and Kruskal’s algorithms)•	

Yes

Core-Tier2 Pattern matching and string/text algorithms (e.g., substring matching, regular
expression matching, longest common subsequence algorithms)

Yes

A. Laaksonen38

For example, in C++, the function sort can be used to efficiently sort an array, the
class unordered_map implements a hash table, and the class priority_queue
implements a heap. However, it is not necessary to know how these algorithms and data
structures actually work.

This is a fundamental difference between competitive programming and university
courses: you can be a successful competitive programmer without knowing, for exam-
ple, the quicksort algorithm, which is a basic algorithm taught in almost any introductory
university course. Such knowledge is not needed in competitive programming because
you can use the standard library which provides efficient sorting algorithms. However,
you should know how to implement algorithms and data structures that are not in the
standard library, such as the union-find data structure needed for Kruskal’s algorithm.

Note that Prim’s and Kruskal’s algorithms accomplish the same task, and most com-
petitive programmers seem to prefer Kruskal’s algorithm which can be extended to some
more advanced problems. While it is interesting to know two different algorithms for
determining minimum spanning trees, there is not much use for Prim’s algorithm in
programming contests.

2.4. Basic Automata Computability and Complexity

The topics of this group are outside the scope of competitive programming.

2.5. Advanced Computational Complexity

The topics of this group are outside the scope of competitive programming.

2.6. Advanced Automata Theory and Computability

The topics of this group are outside the scope of competitive programming.

2.7. Advanced Data Structures Algorithms and Analysis

This group has both topics that are regarded as basic topics in competitive programming,
such as topological sorting, and advanced topics that are only needed in some difficult
problems, such as linear programming.

Many balanced trees, such as AVL trees and red-black trees, are difficult to imple-
ment, and in many cases one can just use standard library implementations, such as
the classes map and set in C++. However, balanced trees may be needed in some
advanced competitive programming problems where it is required to, for example, split
and merge arrays. One popular way to solve such problems is to use the treap data
structure whose implementation is relatively easy (if you know a good way to imple-
ment it).

What is the Competitive Programming Curriculum? 39

It is not clear which data structures exactly belong to “advanced data structures”. At
least the two mentioned data structures, B-trees and Fibonacci heaps, are not necessary
in competitive programming because you can use other data structures instead of them.

3. Competitive Programming vs. University Courses

This section discusses in detail some topics that are different in competitive program-
ming and university courses. In general, competitive programmers prefer techniques that
are easy to implement, and try to use algorithms and data structures provided in standard
libraries of programming languages.

3.1. Range Queries

Range query structures play an important role in competitive programming. For exam-
ple, using a segment tree (see e.g. Laaksonen, 2020, Section 9.2.2) it is possible to main-
tain an array of  elements and process two types of queries in O(log ) time: (1) modify
an array value, (2) find the maximum value in a given range (subarray).

For some reason, simple range query structures, such as segment trees, are rarely
discussed outside competitive programming. Instead, other methods are used to solve
problems. For example, Cormen et al. (2009, Chapter 14) shows how modified red-
black trees can be used to create dynamic tree structures. This approach yields O(log )
operations like segment trees, but it would be very difficult to implement red-black
trees during a contest.

Category Topic In Contests?

Elective Balanced trees (e.g., AVL trees, red-black trees, splay trees, treaps) Yes
Elective Graphs (e.g., topological sort, finding strongly connected components, matching) Yes
Elective Advanced data structures (e.g., B-trees, Fibonacci heaps) No
Elective String-based data structures and algorithms (e.g., suffix arrays, suffix trees, tries) Yes
Elective Network flows (e.g., max flow [Ford-Fulkerson algorithm], max flow – min cut,

maximum bipartite matching)
Yes

Elective Linear Programming (e.g., duality, simplex method, interior point algorithms) Partially
Elective Number-theoretic algorithms (e.g., modular arithmetic, primality testing, integer

factorization)
Partially

Elective Geometric algorithms (e.g., points, line segments, polygons. [properties,
intersections], finding convex hull, spatial decomposition, collision detection,
geometric search/proximity)

Yes

Elective Randomized algorithms Yes
Elective Stochastic algorithms Yes
Elective Approximation algorithms Yes
Elective Amortized analysis Yes
Elective Probabilistic analysis Yes
Elective Online algorithms and competitive analysis No

A. Laaksonen40

There are some popular problems that can be solved using range queries, but are
usually solved using another method outside competitive programming. For example,
a typical way to count the number of inversions in a permutation in O( log ) time is
to use a modified mergesort algorithm (see e.g. Cormen et al., 2009, p. 42). However,
the problem can also be solved using a segment tree that allows us to go through the
permutation from left to right and efficiently count the number of previous elements
that are larger than the current element.

3.2. Hashing

Hash tables are often used in competitive programming as standard library data struc-
tures. For example, the C++ classes unordered_map and unordered_set are
based on hash tables. While it is not necessary to implement hash tables and resolve
collisions, it is important to understand that hash table data structures may be slow on
some inputs.

Some contest systems, such as Codeforces, allow users to send additional inputs
(called “hacks”) to contest problems. If a solution is based on hashing, it may be pos-
sible to hack it by constructing an input where a large number of elements is assigned
the same hash value. While hash table operations usually take O(1) time, in this case
they can take O() time. For example, it is possible to construct inputs where the C++
classes unordered_map and unordered_set are too slow if they are used in a
typical way. We have observed that many students assume that hash tables are always
efficient in practice, and it is instructive to see that there are indeed inputs where they
are not efficient.

Another topic where hashing is used in competitive programming are string algo-
rithms. Like in the Karp-Rabin pattern matching algorithm (1989), we can compare
substrings of strings in O(1) time after preprocessing the strings using the hash values
of the substrings (see e.g. Laaksonen, 2020, Section 14.2). A speciality in competitive
programming is that it is often assumed that there are no collisions, i.e., if two sub-
strings have the same hash value, they also have the same content. When hashing is
properly implemented (Pachocki and Radoszewski, 2013), many string problems can
be solved using the technique.

3.3. Binary Search

A traditional way to use binary search is to efficiently search for values in a sorted array
in O(log ) time. In competitive programming binary search is not often used in that
way, because we can either use a standard library implementation of binary search (such
as the lower_bound and upper_bound functions in C++) or we can use an efficient
data structure that is available in the standard library.

Instead, binary search is often used as an algorithm design technique: when we know
that a function () has value 0 when  <  and value 1 when  ≥ , we can efficiently

What is the Competitive Programming Curriculum? 41

find the smallest  value such that () = 1 using binary search (see e.g. Laaksonen,
2020, Section 4.3.2). Surprisingly, this way to use binary search is not often discussed in
algorithms textbooks. In some cases the reason may be that there is another way to solve
the problem without using binary search.

3.4. Dijkstra’s Algorithm

The usual way to implement Dijkstra’s algorithm in textbooks (see e.g. Cormen et al.,
2009, Section 24.3) is to build a heap that contains a distance to each node of the graph.
Initially each distance is infinite, and the distances are updated during the algorithm
using the decrease-key heap operation. This implementation works in O( log ) time
where  and  represent the number of nodes and edges, assuming each element is
reachable from the starting node.

The problem in such an implementation is that heap implementations in standard
libraries (such as the priority_queue class in C++) typically don’t support the
decrease-key operation. For this reason, it would be necessary to implement a custom
heap instead of using the standard library data structure. However, in competitive pro-
gramming, another version of Dijkstra’s algorithm is used (see e.g. Laaksonen, 2020,
Section 7.3.2) which doesn’t update the distances in the heap but instead adds a new
distance to the heap when a distance changes. This allows us to use a standard library
heap implementation in the algorithm. It can be shown that this version of Dijkstra’s
algorithm also works in O( log ) time even if the number of elements in the heap
may be larger than in the textbook implementation.

This is an example of a tendency that can be seen in competitive programming: new
ways are invented to use standard library algorithms and data structures whenever pos-
sible, which makes implementations shorter and saves time during contests.

3.5. Divide-and-conquer

The divide-and-conquer technique is often regarded as a basic algorithm design tech-
nique. For example, Kleinberg and Tardos (2006) devote an entire chapter to the tech-
nique, and discuss algorithms such as mergesort, finding the closest pair of points and
the FFT algorithm. However, using the divide-and-conquer technique is rarely required
in competitive programming problems.

It seems that the divide-and-conquer technique is often used indirectly in competitive
programming problems. While mergesort is an important algorithm, it is not necessary
to implement it because we can use the standard library implementation, such as the
sort function in C++, which may use mergesort. The FFT algorithm is required in
some advanced competitive programming problems, but it is often used as a prewritten
black box algorithm.

There is another way to solve the closest pair of points problem that differs from
the traditional divide-and-conquer algorithm which divides the points into two sets and

A. Laaksonen42

recursively solves the problem for each group and then combines the results. Instead, we
can process the points from left to right and use a balanced binary tree to maintain a set
of relevant points (see e.g. Laaksonen, 2020, Section 13.2.2). In this implementation, we
can think that the divide-and-conquer idea is hidden in the balanced binary tree and it
can’t be seen in the main algorithm.

4. Conclusion

Competitive programming covers many, but not all, of the algorithm design and data
structures topics in the “Algorithms and Complexity” knowledge area in the ACM/IEEE
curriculum guidelines. There are also topics that are different in competitive program-
ming and university courses, and there are competitive programming approaches that
rarely appear in textbooks.

Some theoretical topics are only rarely needed in competitive programming. How-
ever, an interesting question for future work is what competitive programmers really
know besides the topics relevant in programming contests. For example, do they usually
know how the heap data structure works, even if it is not necessary to implement a heap
during a contest?

References

ACM/IEEE (2013). Curriculum Guidelines for Undergraduate Programs in Computer Science. Available online
at: https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C. (2009). Introduction to Algorithms (Third Edition). MIT
Press.

IOI Syllabus (2020). Available online at: https://ioinformatics.org/files/ioi-syllabus-2020.pdf
Karp, R.M., Rabin, M.O. (1989). Efficient randomized pattern-matching algorithms. IBM Journal of Research

and Development, 31(2), 249–260.
Kleinberg, J., Tardos, E. (2006). Algorithm Design. Addison–Wesley.
Laaksonen, A. (2017). A Competitive programming approach to a University introductory algorithms course.

Olympiads in Informatics, 11, 87–92.
Laaksonen, A. (2020). Guide to Competitive Programming: Learning and Improving Algorithms Through Con-

tests (Second Edition). Springer.
Pachocki, J., Radoszewski, J. (2013). Where to use and how not to use polynomial string hashing. Olympiads

in Informatics, 7, 90–100.

A. Laaksonen works as a university lecturer at the Department of
Computer Science of the University of Helsinki. He is one of the orga-
nizers of the Finnish Olympiad in Informatics and has written a book
on competitive programming. He is also a developer of the CSES on-
line judge.

Olympiads in Informatics, 2022, Vol. 16, 43–53
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.05

43

Initial Learning of Textual Programming at School:
Evolution of Outreach Activities

Martina LANDMAN, Gerald FUTSCHEK,
Svetlana UNKOVIC, Florentina VOBORIL
TU Wien, Institute of Information Systems Engineering
Favoritenstraße 9-11, 1040 Vienna, Austria
e-mail: martina.landman@tuwien.ac.at, gerald.futschek@tuwien.ac.at,
svetlana.unkovic@tuwien.ac.at, florentina.voboril@tuwien.ac.at

Abstract. Learning programming is at least to some extent part of school curricula in nearly
all countries. But in practice there is still a shortage of teachers that got a relevant education in
computer science and, in particular, computer programming in almost all countries. Another chal-
lenge of teaching programming in schools is the heterogeneity in prior education and program-
ming knowledge of students. This ranges from no prior knowledge to deep experience. We show
in this paper how we outreach from our university to teachers and school classes using learning
materials and personal support. We also show three stages in the development of our outreach
activities and argue why we needed to evolve to the next stages.

Keywords: learning programming, outreach to school, MOOC, processing, workshops.

1. Introduction

Computer programming is not new at school and is part of school curricula in most
countries at least to some extent (Bocconi et al., 2022). The use of text-based program-
ming languages is part of the curriculum, especially at the upper secondary level. There
exists already a wide variety of online materials and programming courses that are
suitable for use at school.

But in practice there are several reasons why in many school classes a satisfiable
programming education cannot be given:

Engagement of teachers without informatics education due to lack of informat-1.	
ics teachers.
Further education of in-service teachers of other subjects is often hard to 2.	
achieve.
The programming environments for textual programming are often overly 3.	
complex.

M. Landman et al.44

Teaching programming needs a lot of effort: posing of appropriate tasks, as-4.	
sessing of student programs, reacting to students’ problems in writing com-
puter programs.
Need of tasks for students of different programming skills levels.5.	

Lack of educated informatics teachers is a major problem in informatics education
at school. A major challenge is to educate enough informatics teachers, see (Webb et al.,
2017). Most of the countries allow non-informatics teachers to teach programming and
other computer science topics. These teachers are usually not experienced in computer
programming. They need additional support.

Therefore, our requirements for teaching support in the field of textual computer
programming are:

Use of a programming language that is easy to learn.1.	
Provision of teaching and learning materials: videos, tasks, explanations, tests.2.	
Personal support for teachers.3.	

So, our approach is to support teachers in teaching initial programming by personal
support and by adaptable teaching material. We describe in this paper three stages of
concepts to convey our concept and materials to school classes. We started with use of
a MOOC, moved on to a flexible adaptable online programming course and finally pro-
vided introductory workshops at school classes.

2. A Programming MOOC for First Year University Students as Basis

When we decided in 2020 to outreach to schools with a textual programming activity, we
had already developed in 2018 a MOOC that was based on the programming language
Processing, a variant of Java with high potential of learning textual programming. The
primary target group of this MOOC was beginners at university level. This MOOC was
successfully used in pre-university courses to prepare potential students for MINT stud-
ies. A detailed description of concept and structure of this MOOC can be found in Wetz-
inger et al. (2018). Although we implemented some cooperative tasks, the typical use of
this MOOC was in self-study during summertime by the already enrolled students.

During construction of this MOOC, we had already a potential use at school level
in mind and therefore expected from the users only such pre-knowledge, which is stan-
dard pre-knowledge in upper secondary schools. The MOOC consists of two parts and
is still available at the public MOOC platform iMooX (iMooX Processing course). All
the ten chapters contain several programming tasks, for all of them are also solution
programs available.

We advertised this course from the very beginning also for use in school classes, but
the use was limited to very experienced teachers that were able to integrate this educa-
tional resource into their teaching praxis.

We observed the following barriers for a wider use:
The teachers cannot observe the learning activities of their students on the iMooX ●●
platform, they therefore used an additional platform or asked for copies of the
course.

Initial Learning of Textual Programming at School: Evolution of Outreach Activities 45

All provided tasks had already solutions, there was a need for additional tasks for ●●
homework and tests.

To demonstrate the transition of our activities we show how a selected task changed
from phase to phase.

We give an example of an exercise of the MOOC involving graphics and simple
animation, where students must adapt a given code:

The goal of this assignment is to introduce first year university students to the use of
control variables and the possibility to bound their value with the modulo operator. This
kind of task is intended for interested pre-university students and does not involve hints
for a possible solution.

Fig. 1. MOOC-Task including graphics and animations.

M. Landman et al.46

3. Online Programming Course for School Classes

We went one step further and wanted to reach a larger and younger target audience
with our online materials from the MOOC. As already mentioned, the preparation of the
content and supervision in the classroom represents an enormous amount of work for
teachers in schools. That is why the idea came up to adapt the existing MOOC contents
to students and support teachers with and without programming experience in their com-
puter science lessons. A student-friendly Moodle course for school classes from the 9th
grade was created, which is divided into the following fourteen teaching units:

Introduction & Basic Figures.1)	
Variables.2)	
Animations.3)	
Characters and strings.4)	
Truth values and colors.5)	
Logical operators.6)	
Branches.7)	
While-loops.8)	
For-loops.9)	
Subprograms.10)	
Troubleshooting.11)	
One-dimensional arrays.12)	
Two-dimensional arrays.13)	
Recursion.14)	

Many in-service teachers are not well trained in teaching programming to their stu-
dents because that was not part of their education in the past. Due to the massive lack of
computer science teachers, schools employ either people who are working in companies
outside school and have great programming experience but therefore less pedagogical
and didactical knowledge or no-specialist teachers. These non-specialist teachers stud-
ied different subjects and additionally took a short course regarding informatics in the
past so that they are allowed and able to teach the basics. Unfortunately, many of them
show problems in programming because of the missing programming experience. The
adaption of this course was intended to help and support those teachers. Another reason
why we chose the target group from 9th grade upwards to pre-university school is the
mandatory programming part in the school curricula in Austria.

Like the MOOC course, each lesson is dedicated to a programming concept. In con-
trast to the MOOC for first-year students, the students do not work on a project, but
rather work on shorter and simpler exercises with the aim of motivating the learners with
small moments of success and developing joy in programming. The content is consoli-
dated with the help of explanatory videos, scripts, cheat sheets, self-examinations and
(further) exercises. One of those exercises is stated below.

This exercise is based on the exercise, presented at the previous section, but it was
adjusted to the new target group. It uses simpler language and it is divided into two sub

Initial Learning of Textual Programming at School: Evolution of Outreach Activities 47

steps. In contrast to the version before, the description of the exercise is embedded in
Moodle and the resulting program is shown as animation.

Students also have the opportunity to ask questions in the forum if needed. It must
be said that the teachers have access to all tasks and their solutions. Depending on the
teaching style, the teacher can make the solutions available to the students or discuss
specific programs with them.

Since different motives play a role in taking part in the course, the teachers can ba-
sically freely design the teaching units and contents. Some classes, for example, have
already gained programming experience and only want to learn a new programming
language, and others not at all. This then of course rubs off on the course of the lesson
and is crucial to how well you can let the students work independently. Nevertheless,
we offer a possible process for teachers, as well as a possible assessment scheme. Our
idea of the teaching units corresponds to a flipped classroom concept (Sobral 2021). The
learners work on the content via videos, scripts and self-examinations from home and
can then work on the programming examples in computer science lessons. The com-
puter science class, we could say, acts as a kind of test laboratory. Additionally, teachers
have insight into the processing progress of each learner via the Moodle course. In this

Fig. 2. Online-Course task, which includes animations and hints.

M. Landman et al.48

way, the teachers can see the difficulties that the students encounter and this can help
to develop a better understanding to their problems. It is also possible to involve em-
ployees of the TU Vienna in the school classes. The further the school classes progress
with the topics, the more difficult the exercises can become. It may make sense to ask
for additional help.

As already mentioned, there are no restrictions on who uses the course. Both teach-
ers with and without programming experience can access the course. From experi-
ence, however, most teachers without previous programming experience usually do not
trust themselves in teaching the contents of the Moodle course. That is why we offer a
slimmed-down version in form of a workshop.

4. From an Online Course to a Workshop in School

After developing and redesigning the MOOC to an Online Course format for School
classes, both courses are still available.

The MOOC, which can be used by private individuals and is accessible via the ●●
iMooX platform (registration required). It is split up in two parts.
The school course with fourteen units, which can be redesigned by the teacher and ●●
offers the possibility of student assessment.

The second version, which is more attractive to teachers, is not available through a
self-subscription and must be requested through a request form on the same website.
Students can also be inserted into this course. However, for this the teacher must send
us the students’ data so that we can insert them. We chose this format in Moodle to get
in touch with every teacher and have the possibility to give them a separate “room” for
their teaching with chances for assessment.

In the process, we encountered several difficulties and uncertainties on the part of the
teachers. Teachers were unsure about data protection. As the student data is entered into
our platform, the parents of the children must agree. There are schools that already cover
this case by having the parents sign when the students are admitted to the school. Thus,
for some teachers this is not a problem, but for others it is. Therefore, it was decided that
the course would be unlocked for teachers to copy. This means that teachers can copy the
course and paste it into the school’s own Moodle instance.

This leads us to another problem: the transparency of the use of the course. As soon
as teachers copy the course into their own platform, we naturally lose the number of
students who use the course and who have been reached.

From a survey in autumn 2021, we were able to find out that 93 students were reached.
We assume that considerably more students were reached than the survey recorded, as
only seven teachers completed the survey, but a total of 17 courses were created. Ex-
trapolating this would give a notional number of 225 students reached. Although 17
new courses were created for teachers in 2021, only one course was created in the first
quarter of 2022.

Initial Learning of Textual Programming at School: Evolution of Outreach Activities 49

This leads us to the third problem: few interested parties. The decreasing number
of interested parties is probably related to the structure of the course, which is difficult
to integrate into face-to-face teaching. In the school year 2021/22, no official Distance
Learning has been done so far, so it takes a lot of effort for teachers to integrate the con-
tent into the classroom. Of course, they are free to use and adapt the content, but many
do not have the time.

For these reasons, we have gone one step further and redesigned the course again,
consisting of fourteen units, so that you can book a short “Programming with Process-
ing” workshop, taught in 2–4 units, which means 1–2 double lessons in School – 100
Minutes each. For that purpose, we go with our team into schools and do a “Program-
ming with Processing” workshop there in the class. The teacher is assisting our trainers.
Afterwards it is up to the teacher if he or she wants to continue with the topic and uses
the material from the online course.

From our survey in autumn 2021 we learned, most of the teachers use the course in the
9th to 10th grade. This was the reason, why we designed the workshop for this grade.

5. Programming Workshop in Schools

The following adaptations to the previous version were made:
From our survey in autumn 2021 we know that the last four units where never done ●●
by the teachers in school. Only two teachers did it further than the first two units.
So, we decided to make a course with the most essential parts of programming for
the first time. The programme was taken (partly) from the first three units of the
course. It deals with the most essential contents that are necessary when program-
ming for the first time. The students learn about branching and loops. They learn
the structure of a programme.
The parts that were available as explanatory videos in the original course are now ●●
taken over by one of our trainers. This change was made because of the presence
workshop format.
It is taught in a team-teaching format, with students taking turns working together ●●
and then doing free exercises.

Fig. 3. School Grades in which the online course was used in 2021.

M. Landman et al.50

The exercises were designed in such a way that there is always one compulsory ●●
task and several additional voluntary exercises. In the pilot test, the weakest stu-
dents only completed the compulsory task and the most talented completed one or
two of the additional tasks.

After a task that allows a circle to follow the mouse pointer on the screen the follow-
ing task may be given: Fig. 4.

Compared to the exercises before, we included more interactive tasks, which e.g.,
depend on the position of the mouse pointer. This was especially done to increase the
motivation of the students. Also, it fits better to the target group of school students who
expect game-like interactions.

The time schedule of the workshop looks as follows:

Part 1
Content
Welcome, introduction and overview
Processing: The programming environment

Processing surface●●
Coordinate system●●
Comments●●
Difference between setup() and draw()●●

The first program
typing of commands together●●

Explanation of terms: commands, parameters and functions
Colors (with color selection)●●
Importance of the command sequence●●

Fig. 4. Task in school workshop, including animations.

Initial Learning of Textual Programming at School: Evolution of Outreach Activities 51

Exercises about basic figures
Predefined variables

height, width●●
mouseX, mouseY●●

Exercises about predefined variables

Block 2
Content
Repetition of contents from block 1
Use of predefined variables in branches
new predefined variables: mousePressed, keyPressed, key
Exercises about simple comparisons
Composite comparisons
Exercises about composite comparisons

We piloted the adapted material in two different 9th grade classes with each one
week between workshop part 1 and 2. We had one trainer, one teacher assisting and an
additional team member for observing and assisting. The conclusion was:

After the piloted version we had to adapt the schedule to fit better.●●
The exercises that were chosen where on a proficient level: The weakest students ●●
were able to fulfil all the mandatory tasks in time. This was a good resume for
us. The best students did not all of the voluntary tasks, so we have a bit room
upwards, if we have an extremely talented group next time.
Regarding to the teacher, the class gave more attention to the external trainer and ●●
where more quiet than usual. This is another opportunity to teach effectively pro-
gramming in schools when there are external people and not the usual teacher.
A problem which we faced in the second part of the workshop, one week after the ●●
first part, where students that missed the first part. We installed a buddy-system,
where one student helped the other to catch up with the whole group.
One student was extremely interested in programming. Afterwards the class ●●
teacher told us, that this student is not interested at all in the “normal informatics
lessons stuff,” like using office software.

6. Summary

We showed in this short report how we changed our offer to schoolteachers to support
them in teaching initial computer programming. We started with a MOOC for learning
Processing consisting of ten chapters, addressing potential novices at University MINT
studies. To address students at schools and to support their teachers we adopted this
course in a way that we added many tasks and the tasks were made easier understand-
able. The result was a course with fourteen chapters that fit into usual school lectures.

M. Landman et al.52

The last step of adaption was made to support teachers with less experience in teach-
ing programming. We created and offered a workshop of two parts à 100 Minutes that
conveys all necessary programming skills to start programming animations. We learned
that it is absolutely necessary to understand and fulfill the needs of the target group.
Then it is possible to teach programming at various levels of the target group. We are
still observing and collecting experiences to improve the course in the future, it is an
ongoing process.

References

Bocconi, S., Chioccariello, A., Kampylis, P., Dagienė, V., Wastiau, P., Engelhardt, K., Earp, J., Horvath, M.A.,
Jasutė, E., Malagoli, C., Masiulionytė-Dagienė, V. and Stupurienė, G. (2022). Reviewing Computational
Thinking in Compulsory Education, Inamorato Dos Santos, A., Cachia, R., Giannoutsou, N. and Punie,
Y. editor(s), Publications Office of the European Union, Luxembourg, ISBN 978-92-76-47208-7 (online),
doi:10.2760/126955 (online), JRC128347.

eduLAB online course for school classes:
https://edulab.ifs.tuwien.ac.at/programme/onlinekurs-fuer-schulen/

iMooX Processing course: https://imoox.at/course/processing1
Sobral R.S. (2021). Flipped classrooms for introductory computer programming courses. International Journal

of Information and Education Technology, 11(4), 178–183.
http://www.ijiet.org/vol11/1508-AE002.pdf

Webb, M. et al. (2017). computer science in the school curriculum: Issues and challenges. In: Tatnall, A., Webb,
M. (eds) Tomorrow’s Learning: Involving Everyone. Learning with and about Technologies and Comput-
ing. WCCE 2017. IFIP Advances in Information and Communication Technology, vol 515. Springer, Cham.
https://doi.org/10.1007/978-3-319-74310-3_43

Wetzinger, E., Standl, B., Futschek, G. (2018). Developing a MOOC on introductory programming as addition-
al preparation course for CS Freshmen. In: EdMedia+ Innovate Learning. Association for the Advancement
of Computing in Education (AACE), pp. 1663–1672.

M. Landman – Researcher at TU Wien and member of the Informatics
eduLAB group in the research unit of Information & Software Engi-
neering since 2021. She is also a teacher and ������������������������has experience in teach-
ing computer science from 5th to 12th grade. She organizes the com-
puter science faculty’s school outreach activities, where she develops,
organizes and conducts weekly workshops for school classes.

G. Futschek – is Professor at Institute of Information Systems En-
gineering and head of TU Wien Informatics eduLAB. His research
area in informatics didactics is founded on his computer science back-
ground. His mission is to convey computational thinking and concepts
of informatics in a way that makes fun and motivates to learn more. He
does this in his lectures and with his group by outreaching to schools.

Initial Learning of Textual Programming at School: Evolution of Outreach Activities 53

S. Unkovic – is a student assistant at TU Wien Informatics eduLAB
since 2020. Currently she is completing her studies in mathematics and
computer science. Her main work focuses on the creation and further
development of creative materials for students and teachers. These ma-
terials are supposed to support them building a better understanding of
computer science concepts.

F. Voboril – studies Software and Information Engineering at TU
Wien, where she also works as student assistant. During her school
years she attended courses in Robotics and participated in some com-
petitions at this field. To share her knowledge, she teaches children in
Robotics and Informatics. Since 2019 she is voluntary member in the
Austrian team for the Bebras International Challenge on Informatics
and Computational Thinking.

Olympiads in Informatics, 2022, Vol. 16, 55–73
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.06

55

Error Handling in XLogoOnline

Jacqueline STAUB
Department of Computer Science Trier University
email: staub@uni-trier.de

Abstract. This article presents an approach to error handling with Logo novices from first to
sixth grade. While structural programming errors can be mostly prevented using visual program-
ming interfaces, logical errors must be dealt with from the very beginning. We have developed
a turtle graphic task collection with an integrated solution verification to determine logical cor-
rectness of student solutions. Once learners transition from block- to text-based programming,
a sizeable field of possible structural errors opens up. Thanks to static program analysis most
structural programming errors can be detected while the programmer is still typing. Using a de-
bugger, finally, programmers of all ages have the possibility to observe their program’s behavior
while stepping through the code. We summarize the error handling tools provided as part of the
XLogoOnline programming environment and explain how students can use such aids to attain
a constructive attitude towards errors.

Keywords: educational programming, K--6, turtle graphics, Logo, error diagnosis.

1. Introduction

More and more countries have recently started to include computer science (and thus
also programming) in their public curricula. With this, even elementary school stu-
dents now have a chance to learn how to program in various countries around the
world. This political change opens up many opportunities, but also raises unresolved
questions: What should programming instruction look like in kindergarten when chil-
dren are not yet literate? How can a teacher provide individualized support to students
when programming is known to be an error-prone activity and every child in a class
is most likely struggling with errors? We want to clarify these questions by presenting
a spiral curriculum for programming in K-6 as well as an approach to error handling.
This article summarizes the core ideas presented in XLogoOnline (Staub, 2021; Menta
et al., 2019; Forster et al., 2018; Staub et al., 2021).

The recent introduction of computer science in public schools provides children
with the opportunity to explore the exciting world of algorithms by learning to pro-
gram. In order to teach basic programming concepts in an age-appropriate way, both
teaching materials (Komm et al., 2020; Hromkovič and Kohn, 2018; Hromkovic, 2010)

J. Staub56

and learning environments (Trachsler, 2018; Maloney et al., 2010; Cooper et al., 2000;
Hromkovič et al., 2017b; Kohn and Manaris, 2020; Repenning and Ioannidou, 2006)
must be readily available. Around the world, there are millions of students that are ex-
pected to develop the ability to solve problems algorithmically by the time they enter
lower secondary school. Researchers proposed generic frameworks for fostering algo-
rithmic thinking (Dagienė et al., 2021) in computer science as well as concepts with
a focus on programming (Hromkovič et al., 2017a; Hromkovič et al., 2016).

Programming is a creative but error prone (Fitzgerald et al., 2008; Gugerty and
Olson, 1986) form of learning that enables teachers and students to explore and de-
velop algorithms for a wide range of different problem classes. In essence, program-
ming is a form of communication with a computer; for this a language is required that
the computer “understands”. Programming languages, much like natural languages,
have a vocabulary and a grammar. In contrast to natural languages, however, program-
ming languages are more precise and computers lack the ability to interpret ambiguous
statements. As a result, programmers must take special care to express their thoughts
accurately. Errors are inevitable and learning to resolve them is a core competence any
programmer needs to establish.

The spectrum of programming errors ranges from simple structural errors (e.g.,
incorrect punctuation, missing or incorrect arguments, and unbalanced parentheses)
to more complex logical errors (e.g., reversed loop conditions, forgotten invariants).
While both of these error classes are the bread and butter of any programmer regard-
less of age and experience, there are some error classes that are specific to children.
Programming is possible from as young as six or seven years; at that age novices are
able to understand basic programming concepts and anticipate program logic (Ettinger,
2012), but they have difficulty expressing themselves in a written language (Solomon,
1993). In order to prevent structural issues due to typing, block-based programming
interfaces have been developed and are used in various environments nowadays (Wein-
trop, 2019).

It is our firm belief that error handling is one of the most essential skills a young
programmer needs to acquire by the end of their programming education. Programming
environments therefore need to be equipped with error diagnosis tools that are dedicated
to the use in programming classes to handle logical errors from the very beginning and
later on structural errors in addition. In this work, we summarize the tools we employed
in our programming environment XLogoOnline. The environment allows students to be-
gin programming without literacy skills, and provides useful tools for finding, analyzing,
and fixing programming errors throughout programming instruction from kindergarten
to sixth grade.

Section 2 provides a overview on the linguistic features of the famous programming
language Logo and its decade-old traditions yet without diving into the application do-
main turtle graphics. More detail on our curriculum, the turtle philosophy, and the con-
crete implementation of these ideas in XLogoOnline follow in Section 3. Finally, Sec-
tion 4 and Section 5 discuss the concrete details of how error handling is managed in
XLogoOnline before concluding.

Error Handling in XLogoOnline 57

2. The Logo Programming Language

More than 50 years ago, there first emerged the idea of creating dedicated programming
languages that could be used in an educational context with children and adolescents.
Although computers were anything but a commodity at that time and the few available
models were mostly reserved for universities, thanks to the initiative of Seymour Papert
and his team (Papert, 1980; Solomon et al., 2020), school kids as young as secondary
or even primary school were able to enjoy the pleasure of programming. Papert and
colleagues built the foundation and revolutionized the field of programming education
by designing a programming language that specifically targeted to the needs of novices.
The resulting language, Logo, is distinguished by its exceptionally minimal and elegant
syntax, which (despite its age) still stands out today due to three unique attributes:

Whitespace as statement delimiter:●● Instead of classical statement delimiters like
semicolons or line breaks (as known from Java or Python respectively), Logo
allows any number of statements to be placed side by side without an additional
delimiter other than a bare space. Three procedure calls foo, bar and baz can
thus be simply concatenated without requiring any additional characters in be-
tween: foo bar baz
Whitespace as argument delimiter and no brackets:●● Like many other program-
ming languages, Logo supports parameters for procedures. How many parameters
a procedure can take depends on its specification; from the linguistic point of
view any number of arguments are possible. Moreover, while arguments in other
programming languages usually are surrounded by parentheses and require to be
separated by a dedicated syntactic character, say a comma, Logo allows a simple
and elegant alternative – no parentheses required and arguments are separated by
a single white space: mod 4 2
Deliberate reduction to the minimum:●● Cognitive load in programming is
reflected (among others) by the number and complexity of the programming con-
cepts used (Hromkovič et al., 2017b). Instead of overburdening students with
a multitude of different programming constructs in one go, the Logo philosophy
proposes to construct their own more complex language elements. In a truly con-
structivist manner, the programming language “grows” together with the pro-
grammer’s proficiency level.

In addition to these purely linguistic aspects, Logo is also famous for its world-re-
nowned application domain Turtle Graphics. The concept of the Turtle as well as a cor-
responding curriculum for K–6 are presented in the following section.

3. A Spiracl Curriculum for Programming Classes in K-6

Turtle Graphics has stood the test of time and proved a valuable way of introducing
beginners to programming. The principle is based on the visualization of the program

J. Staub58

execution by means of a virtual or physical computing agent, i.e., the “turtle”. This
turtle is, in essence, an object whose position and orientation in space can be changed
programmatically. Students understand the turtle as a tangible representation of the
abstract executions mechanism used in a computer. In order to control its behavior,
students need to learn the turtle’s “mother tongue” Logo which initially consists of four
simple commands:

Forward●● : The turtle moves straight ahead [by a given number of pixels].
Back●● : The turtle moves backwards [by a given number of pixels].
Right●● : The turtle turns to the right [a given angle].
Left●● : The turtle turns to the left [a given angle].

With these four basic commands it is possible to solve simple navigation tasks of the
form “guide the turtle from A to B without visiting C along the way” (as illustrated in
Fig. 1) to more complex geometric tasks (as shown in Fig. 2). All of these tasks could
be posed both in a block-based and text-based interface. One aspect that distinguishes
navigation tasks from simple geometry tasks is that for pure navigation in a grid no
parameters are required (i.e., unit distances and angles can be used) whereas geometry
tasks profit from parameterized basic commands.

Our approach proposes a spiral approach for programming instruction from kinder-
garten to grade six. Notable milestones in the intended learning progress can be sum-
marized in three stages:

 1.	 Stage 1 (kindergarten to 2nd grade): In the youngest age group, children
work in a block-based interface with basic commands that do not include pa-
rameters (i.e., the forward and back movement commands cause mo-
tion at unit distances while the right and left rotation commands only
perform 90 degree turns). In this framework, learners immerse themselves in
the following task types: (i) building sequences of basic commands, (ii) creat-

Fig. 1. Navigation task. Fig. 2. Geometry task.

Error Handling in XLogoOnline 59

ing programs under constraints, (iii) working with colors, (iv) covering longer
distances with repeat, (v) shortening repetitive program sequences with re-
peat.
 2.	 Stage 2 (3rd and 4th grade): After the first stage, students transition from the
previous navigation-based tasks to the more traditional geometry tasks. For
this purpose, the basic commands forward, back, right and left are
extended with parameters (i.e. the two movement commands allow to draw
lines of arbitrary length and the rotation commands can cause rotations of ar-
bitrary angles), while the interface stays block-based. In terms of content, this
second stage focuses on the following concepts: (i) building sequences of basic
commands, (ii) creating programs under restrictions, (iii) working with colors,
(iv) shortening repetitive program sequences using repeat, (v) sequences of
repeat, (vi) nested repeat.
 3.	 Stage 3 (5th and 6th grade): Finally, the transition from block-based to text-
based programming takes place. While the Turtle Graphics application area
remains the same, this step mainly changes the input form and the depth of
the concepts covered in the curriculum. Students engage in the following types
of tasks: (i) they form longer sequences of basic instructions, (ii) they shorten
repetitive program sequences using repeat, (iii) they define their own proce-
dures, (iv) and use these procedures as subroutines, (v) they parameterize their
own procedures, (vi) they define and use their own parameterized subroutines.

More information about the currciulum and its specific contents are provided in REF
(Hromkovic, 2010).

The following section presents the programming environment XLogoOnline and its
approach to error handling dedicated to the above curriculum.

4. Error Handling in XLogoOnline

The XLogoOnline programming environment aims at students’ autonomous error re-
covery by providing assistance in three domains: (i) the environment proactively diag-
noses structural errors in text-based Logo programs, (ii) it automatically detects logical
errors thanks to a task specification system with integrated solution verification, and
(iii) it provides a debugger for students to investigate logical errors on their own.

4.1. Reporting Structural Errors

We refer to structural errors as any error that causes the execution pipeline to terminate
unexpectedly; be it syntactic errors (which are already apparent during the construction
of the parse tree), semantic errors (such as naming errors, missing or redundant argu-
ments. Note that these programs parse legitimately but then fail during interpretation),
or more general runtime errors (e.g., type errors, index errors, or other problems that are
detected at runtime).

J. Staub60

XLogoOnline follows the philosophy of reporting structural errors proactively, that
is as early on as possible. For this purpose, the program text is continuously parsed
on every keystroke in order to immediately detect syntactical errors in the parse tree.
Moreover, the environment tries to turn as many runtime errors as possible into static
errors that can be detected before the program is executed. This can be achieved using
static program analysis and combined with the check for syntactic errors.

All detected errors are localized in the source code (i.e., the respective token stream)
in order to find the exact position in the program text, see Fig. 3. Afterwards, the cor-
responding text is visually highlighted in the editor and a corresponding error mes-
sage is added. In the formulation of error messages we make sure that the language is
understandable (that is, we use few words that are written in the language learners are
acquainted with from the curriculum) but we also take care of formulating error mes-
sages consistent throughout all cases.

4.2. Detecting Logical Errors in Turtle Graphics

Logical errors, unlike structural errors, do not cause the execution pipeline to fail, but
rather produce unexpected results. Such errors can arise in any contexts and must be
handled differently than structural programming errors. In fact, what may look like
an error in one context may be intentional in another. That is, without insight into the
specific objectives of a given program, it is not possible to discern correct from incor-
rect solutions.

In order to still automatically detect logical errors, XLogoOnline provides
predefined tasks with exact specifications of permissible solutions (Staub et al., 2021)
(user manual provided in the Appendix). Several grid cells can be connected in a navi-
gation task in which one or more target cells are to be visited in any or a predefined
order. Additionally, certain cells can be forbidden and also the commands available
in a solution can be restricted. Moreover, even the available command set can be
restricted by a task. A formal specification allows to discern correct solutions from
incorrect ones (see Fig. 4).

Fig. 3. An example of how XLogoOnline visualizes errors in the environment.
All of these cases can be detected statically.

Error Handling in XLogoOnline 61

4.3. Resolving Logical Errors in Logo

Although it is possible to detect logical errors automatically if the objective and the
specification of an admissible solution are known, automatically locating logical errors
is neither easy nor didactically desired. The problems used in our curriculum deliberate-
ly allow more than one solution. For example, Fig. 5 shows a problem in which a given
picture is to be drawn without making right turns. In our experience, this task elicits
multiple different solution strategies (e.g., Fig. 6), that all adhere to the given condition
and solve the problem. This flexibility should be maintained in order to encourage the
exchange of ideas within the class and the comparison of different strategies.

Due to the numerous possible correct solutions and individual ways of thinking,
we do not intend to solve the localization of logical errors automatically. By making

Fig. 4. Two examples illustrating how XLogoOnline automatically detects
correct and incorrect solutions in grid-based navigation tasks.

Fig. 5. Sample task.

J. Staub62

students solve logical errors independently, they can gain insights that would otherwise
be denied to them. In this sense the last tool presented here pursues a different objective
than the previous two we present a debugger that enables programmers to fix logical
errors on their own.

XLogoOnline provides a reverse debugger, which allows to manually analyze er-
roneous programs one step after another. At the push of a button, an instruction is
executed, allowing the user to compare his or her mental image of program execution
with reality. Based on this experience, novices can draw conclusions about the location
and the nature of an underlying logical error. Using a simple stack, the program state
can be stored in each step allowing previous stages to be reached easily and enabling
the course of an error to be replayed as often as desired.

5. Conclusion

For several decades, our community has been using block-based learning environments
to provide beginners with a smooth start into programming. There are various reasons
why block-based environments are useful: some (like ourselves) see a potential to reach
young children who would otherwise struggle with writing. Others, meanwhile, consider
structural programming errors a threat for all programmers, independent of their age
and experience. Consequentially, opinions also diverge on the question when to switch
from block- to text-based programming. Some suggest that blocks should be used well
into tertiary education, while we argue that there is no need to stick with block-based
environments for so long. We showed an approach of error handling that is employed
in the XLogoOnline programming environment and which encourages the autonomous
handling of programming errors; both logical and structural ones.

Various text-based learning environments for novices have a reactive approach to
handle errors. That is, they report errors only during runtime. This decision causes
a long and oftentimes frustrating process to start once execution begins: for each fixed
structural error, programmers need to re-execute their code, possibly receiving yet an-
other red flag which needs to be fixed before starting all over again. We argue that a pro-
active approach to error handling can help students skip over this tedious phase more
quickly. Our approach allows structural errors to be located and reported at compile
time which may lead to a majority of all structural programming errors to be detected
and potentially resolved before execution even starts.

Fig. 6. Two solutions that are equivalently valid.

Error Handling in XLogoOnline 63

References

Cooper, S., Dann, W., and Pausch, R. (2000). Alice: a 3-d tool for introductory programming concepts. Jour-
nal of computing sciences in colleges, 15(5), 107–116.

Dagienė, V., Hromkovic, J., and Lacher, R. (2021). Designing informatics curriculum for k-12 education:
From concepts to implementations. Informatics in Education, 20(3), 333–360.

Ettinger, A.B. (2012). Programming robots in kindergarten to express identity. Industrial Engineering,
2012.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., and Zander, C. (2008).
Debugging: finding, fixing and flailing, a multi-institutional study of novice debuggers. Computer Science
Education, 18(2), 93–116.

Forster, M., Hauser, U., Serafini, G., and Staub, J. (2018). Autonomous recovery from programming errors
made by primary school children. In: Sergei N. Pozdniakov and Valentina Dagienė, editors, Informatics in
Schools. Fundamentals of Computer Science and Software Engineering, volume 11169, pages 17–29, S.l.
Springer. 11th International Conference on Informatics in Schools: Situation, Evolution, and Perspectives,
ISSEP 2018; Conference Location: St. Petersburg, Russia; Conference Date: October 10–12, 2018.

Gugerty, L. and Olson G. (apr 1986). Debugging by skilled and novice programmers. SIGCHI Bull., 17(4),
171–174.

Hromkovic, J. (2010). Einführung in die Programmierung mit LOGO, volume 206. Springer.
Hromkovič, J. and Kohn, T. (2018). Einfach informatik 7–9: Programmieren. sekundarstufe i. begleitband.

Einfach Informatik.
Hromkovič, J., Kohn, T., Komm, D., and Serafini, G. (2016). Examples of algorithmic thinking in program-

ming education. Olympiads in Informatics, 10(1–2), 111–124.
Hromkovič, J., Kohn, T., Komm, D., Serafini, G., et al. (2017a). Algorithmic thinking from the start. Bulletin

of EATCS, 1(121).
Hromkovič, J., Serafini, G., and Staub, J. (2017b). Xlogoonline: a single-page, browser-based programming

environment for schools aiming at reducing cognitive load on pupils. In International Conference on
Informatics in Schools: Situation, Evolution, and Perspectives, pages 219–231. Springer.

Kohn, T. and Manaris, B. (2020). Tell me what’s wrong: a python ide with error messages. In Proceedings of
the 51st ACM Technical Symposium on Computer Science Education, pages 1054–1060.

Komm, D., Hauser, U., Matter, B., Staub, J., and Trachsler, N. (2020). Computational thinking in small
packages. In International Conference on Informatics in Schools: Situation, Evolution, and Perspectives,
pages 170–181. Springer.

Maloney, J., Resnick, M., Rusk, N., Silverman, B., and Eastmond, E. (2010). The scratch programming lan-
guage and environment. ACM Transactions on Computing Education (TOCE), 10(4), 1–15.

Menta, R., Pedrocchi, S., Staub, J., and Dominic Weibel, D. (2019). Implementing a reverse debugger for
logo. In: Sergei N. Pozdniakov and Valentina Dagiene,˙editors, Informatics in Schools. New Ideas in
School Informatics, volume 11913, pages 107–119, Cham, 2019. Springer. 12th International Conference
on Informatics in Schools: Situation, Evolution and Perspectives (ISSEP 2019); Conference Location:
Larnaca, Cyprus; Conference Date: November 18–20.

Papert, S. (1980). Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., USA.
Repenning, A. and Ioannidou, A. (2006). Agentcubes: Raising the ceiling of end-user development in educa-

tion through incremental 3d. In: Visual Languages and Human-Centric Computing (VL/HCC’06). IEEE,
p.p. 27–34.

Solomon, C., Harvey, B., Kahn, K., Lieberman, H., Miller, M.L., Minsky, M., Papert, A., and Silverman, B.
(2020). History of logo. Proceedings of the ACM on Programming Languages, 4(HOPL), 1–66.

Solomon, P. (1993). Children’s information retrieval behavior: A case analysis of an opac. J. Am. Soc. Inf.
Sci., 44, 245–264.

Staub, J. (2021). Programming in K–6: Understanding Errors and Supporting Autonomous Learning. PhD
thesis, ETH Zurich, Zurich.

Staub, J., Chothia, Z., Schrempp, L., and Wacker, P. (2021). Encouraging task creation among programming
teachers in primary schools. In: International Conference on Informatics in Schools: Situation, Evolution,
and Perspectives, pages 135–146. Springer.

Trachsler, N. (2018). Webtigerjython-a browser-based programming ide for education. Master’s thesis, ETH
Zurich.

Weintrop, D. (2019). Block-based programming in computer science education. Communications of the
ACM, 62(8), 22–25.

J. Staub64

J. Staub holds the chair of Computer Science and its Didactics at the
University of Trier. She studied computer science at ETH Zurich and
completed the teaching degree for high school level at the same uni-
versity. Starting in 2016, she conceived the programming environment
XLogoOnline as part of her doctoral studies, which is designed as a
tool to explore errors in programming education with novices and to
enable the teaching of computer science concepts in a spiral curriculum
from kindergarten to high school. XLogoOnline is a learning platform
that is currently offered in seven different languages and is now used
in schools around the world. Prior to her appointment at the University
of Trier, she was a postdoctoral researcher at the Ausbildungs- und Be-
ratungszentrum für Informatikunterricht at ETH Zurich and worked as
a lecturer at the University of Teacher Education Graubünden (PHGR).
As part of her work at the University of Trier, she promotes teacher ed-
ucation in computer science in the Rhineland-Palatinate area, contin-
ues the development of the programming environment XLogoOnline,
and uses it to study error handling among programming novices.

Error Handling in XLogoOnline 65

Appendix

User Manual

This Document serves as a reference guid for educators using

XLogoOnline Mini or the built-in competition mode LogoOlympia

J. Staub66

Version 1.0 / August 2021 Page 1/8

Contents
1. Create Exercises .. 2

2. Validate Exercises ... 3

2.1. Solution ... 4

2.2. Constraints ... 5

3. Store and Load Exercises .. 6

4. Competition .. 8

4.1. Score Board and End Competition .. 8

Error Handling in XLogoOnline 67

Version 1.0 / August 2021 Page 2/8

1. Create Exercises

To create a new exercise (or edit a

previously loaded one) you first need to

open the Menu and then click the

Create exercises button

This brings up the -Tool Dialog .

 The -area holds the exercise title and description.

 The -area represents the grid, on which exercises can be solved.

 The -area allows to add and remove exercises as well as to switch between

different exercises.

 The -area presents the options on how to access or share an exercise. A detailed

explanation can be found in chapter 3.

 The -area holds the turtle as well as other objects that can be placed on the grid.

Furthermore, validations can be configured here, we will explain them in more detail

in chapter 2.

J. Staub68

Version 1.0 / August 2021 Page 3/8

2. Validate Exercises

 The tiles in the -area from left to right are:

1. new tile [+].

2. default tile [white].

3. forbidden tile (visible to the student) [grey].

4. target tile [green].

5. forbidden tile (not visible to the student) [red].

Stepping on a forbidden tile, results in a failure state, while stepping on a target tile,

results in a success state.

By clicking on a tile, you can cycle through the five states a tile can be in.

 In the -area two top and left of the bottom right tile. If the

turtle walks through a wall (in any direction).

 The -area holds 3 times the blue color object. From left to right, they were placed

on a default tile (2), the second one on a target tile (4) and the last on a forbidden tile

(5).

 The object in the -area has a value assigned to it. By default, every object has a

value of 1, by clicking on a tile, you can assign a specific value to it. As soon as any

object has a value assigned (that is not a number) all other objects will have the

default value (empty string).

 The -area holds multiple instances of the strawberry object. The strawberry object

is special, as it has a default value equal to the number of strawberries depicted on

Error Handling in XLogoOnline 69

Version 1.0 / August 2021 Page 4/8

the object. The strawberries range from one to four strawberries and thus a default

value between one and four.

 The -area holds a moveable box (the filled-out object on the left) and a target box

(the right box with the dashed outline). The moveable box can be pushed by the

turtle and the goal is to push a moveable box on every target box. Once this is

achieved, a success state is reached and the constraint get checked.

2.1. Solution

In the Solution tab, in the Text Solution input field, a number can be entered, which then

will work as a sum. The values of all the collected objects, will be summed up and compared

to the target number. If the sum of all collected objects matches the solution, a success state

is reached and the constraints are checked.

If instead of a number, a string is entered into the text solution field, the values of the

collected objects will be concatenated and compared to the given solution. If they match a

success state is reached and the constraints are checked. In this mode, multiple possible

solutions can be separated by || . In the given example above, both BAC as well as ABC

would be accepted as solutions. Another option would be to make the solution AAC and

give both the red cross and the red triangle the value A .

J. Staub70

Version 1.0 / August 2021 Page 5/8

2.2. Constraints

The [X] button can be used to remove a constraint set.

With the [+] button a new constraint set can be added. If a given

program passes any constraint set, it will be considered valid by the

system.

Constraints can be used to limit or ban the use of certain command or all

of them. The options for a single constraint are less than , less or equal

than , equal , not equal , more or equal than or more than . To ban

the use of a command, you can set the constraint type to equal and the

amount to zero, as in the example has been done to the Forward

command. To limit the use of commands altogether, a constraint can be

put on Total Commands . In the example in total up to 4 commands can be used, but none

of them can be the forward command.

Error Handling in XLogoOnline 71

Version 1.0 / August 2021 Page 6/8

3. Store and Load Exercises
Storing exercises can be done from the teacher tool, with the buttons in the bottom left.

 The -button loads the current exercises in the exercise mode to be solved in the

browser. By opening the teacher tool again, the exercises can be modified further

and/or saved.

 The -button creates a competition of all exercises and presents you with a

competition- and storage-key. The storage key is needed to load the exercises in the

future for further modification, while the competition key is needed by participants to

enter a competition.

 The -button will save the exercises to our server and present you with a storage

key, you can use in the future to retrieve the exercises again.

 The -button can be used to download the current exercises to your computer. They

can be uploaded to XLogoOnline on a later date.

 The -button lets you reset the current exercise if you have created multiple

exercises the others will not be affected.

J. Staub72

Version 1.0 / August 2021 Page 7/8

To load an exercise you have to open

the Solve exercises dialog from the

menu

You can either upload one or saved files or load them from the server by specifying one or

more storage keys separated by commas.

Error Handling in XLogoOnline 73

Version 1.0 / August 2021 Page 8/8

4. Competition

To participate in a competition you need

to open the menu and select

Start Competition .

Next you need to enter the competition

key.

4.1. Score Board and End Competition

When you are entered in a

competition the menu contains an

Open Scoreboard as well as

End Competition option.

The End Competition button will

end the competition for the

participant.

The Open Scoreboard button will

pull up the current competitions score

board

Olympiads in Informatics, 2022, Vol. 16, 75–87
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.07

75

Methods of Tracks for Training Juniors
in Olympiad Informatics: The ISIJ Experience

Marina S. TSVETKOVA1, Vladimir M. KIRYUKHIN1,
Nikolai A. BORISOV2, Mikhail I. KINDER3

1Russian Academy of Natural History, Russian Federation
 Moscow, 105037, box 47
2Lobachevsky University, Russian Federation
 Nizhny Novgorod, 603022, Gagarina av., 23, 2 bld., 320
3Kazan Federal University, Russian Federation
 Kazan, 420008, 35 Kremlyovskaya str., 2 bld., 806
e-mail: {ms-tsv, vkiryukh, n.a.borisov, detkinm}@mail.ru

Abstract. The article describes methodological approaches to the formation of olympiad compe-
tencies for juniors, children 12–15 years old, based on five training tracks in olympiad informat-
ics in accordance with the IOI Syllabus. An integrated approach to the preparation of rounds for
children in the framework of the experience of the International School in Informatics for Juniors
(ISIJ) is also described.

Keywords: talented children, olympiad informatics, competencies of olympiad informatics, digi-
tal skills, computational thinking, algorithmic thinking.

1. Introduction

In the modern world, the computer has absorbed the complex of human knowledge –
mathematics, formal logic, combinatorics, physics and circuitry, the theory of algo-
rithms and programming languages, modeling and design tools, and continues to ab-
sorb all the new modern scientific knowledge of natural sciences, philology, art ... The
computer also gave rise to a new view of man on the world, things and processes, made
it possible to create artificial virtual worlds and artificial intelligence for the world of
people, things and processes ... Such a broad view of a new kind of human thinking, like
computer thinking, is based on algorithmic, formal and logical thinking, research and
design thinking, which together created the phenomenon of a new civilization: com-
puter and programs as a new computer style of thinking based on algorithmic thinking
(Tsvetkova M., Kiryukhin V., 2021).

M.S. Tsvetkova et al.76

Such an artificial digital world is created by humanity on a gigantic scale and pace
and is controlled by programs that are also created by people based on artificial intel-
ligence algorithms and significantly change the picture of the world. As a result, life in
the digital world has included digital literacy in the educational context, complementing
traditional literacy, and requires the formation of computer thinking as a complex of dif-
ferent types of thinking, especially in children.

Children who are passionate about computer science and programming essentially
become pioneers of computer thinking at each new stage of its development. But it is
necessary to form such a level of a new style of thinking in an integrated manner. At an
early level of the formation of computer thinking, it is necessary to promote learning
along several training tracks: in mathematical informatics as a formal tool for describ-
ing algorithms, in algorithmic thinking as an intellectual tool for the creative creation of
algorithms, in programming technique as a computer tool for implementing algorithms,
and in the speed of thinking in integration with technological computer skills, that is,
to combine the high-speed qualities of human creative work and the high speed of a
computer. All this is the basis for the development of integrated approaches in the meth-
odology for the development of talented schoolchildren in olympiad informatics and the
development of new types of competitions that will activate various aspects of computer
thinking in key competencies included in IOI Syllabus (IOI Syllabus, 2019).

2. Training Tracks of Olympiad Informatics

The experience of holding the International School of Informatics for Juniors, chil-
dren from 12 to 16 years old (Tsvetkova M., Kiryukhin V., 2018), revealed certain
deficiencies in the preparation of children and showed us new directions of training
in olympiad informatics, taking into account the international experience of holding
Olympiads in Informatics. Juniors generally do not yet have the experience of high
olympiad achievements, but they have high motivation in development. It is impor-
tant to build training tracks for children so that they evenly master the entire range of
competencies.

To determine the preparation tracks, consider the IOI Syllabus, which includes the
main sections of preparation for olympiad informatics (Kiryukhin V., 2007):

Mathematical informatics.●●
Algorithms.●●
Programming technology.●●
ICT tools.●●
Modeling.●●

Traditionally, when preparing for Olympiads in Informatics, the emphasis is main-
ly on algorithms and methods of their implementation in programs, that is, on the de-
velopment of algorithmic thinking. You can call this approach specialized, but for the
preparation of children, it greatly narrows their development horizon. We consider the
development of talents more broadly and requires the formation of computer thinking
based on algorithms. Juniors do not yet have complex competencies like students. At the

Methods of Tracks for Training Juniors in Olympiad Informatics: ... 77

same time, the mathematical foundations of informatics and programming technology
are mainly included in the school informatics course in general, which is not enough for
the olympiad preparation.

The success of the preparation is expressed in the results of the participation of juniors
in the Olympiads in Informatics. This success requires instrumental readiness, which is
determined by the level of proficiency in programming tools and technical proficiency,
which is determined by the digital literacy of a junior (Tsvetkova M., Kiryukhin V.,
2020). But schoolchildren do not have the opportunity to gain experience in competi-
tions in these sections of the olympiad preparation.

In this regard, it is important to supplement the olympiad preparation with new com-
petitive rounds, which will be able to focus on certain important competencies of juniors.
Taking this into account, the complex of competencies of olympiad informatics can be
represented by five main training tracks. Chief among them is intellectual (algorithms,
traditional rounds of olympiad informatics). Additional tracks by competency categories
are formal (mathematical informatics), instrumental (programming language), technical
(computer literacy) and applied (modeling various processes and objects by means of
algorithms and programs). Additional tracks determine an important aspect of the devel-
opment of juniors, since this type of training shows them digital samples in various pro-
fessional fields (technology, science, art, culture, economics, etc.), but using algorithms
and programming.

3. Types of Training Rounds for Juniors Based on ISIJ Experience

Mathematical Informatics and programming language are the main creative tools, char-
acteristic of algorithmic thinking. The development of algorithmic thinking is imple-
mented within the framework of training programs on relevant topics from the IOI Syl-
labus, in particular from the sections Computing Science, Algorithms and Complexity
(IOI Syllabus, 2019).

All international Olympiads for schoolchildren and most national Olympiads in In-
formatics reflect this olympiad track. At ISIJ, this corresponds to a traditional round,
called Marathon. The duration of this round is 4–5 hours, and it offers 3 problems for
solving (experience of IOI, EJOI, IATI, APIO and other Olympiads).

The basis or foundation of knowledge at the start of preparing juniors for Olym-
piad in Informatics is formal thinking and instrumental skills. Formal thinking develops
from elementary school based on mathematics, and further should be improved in math-
ematical informatics in the course of school informatics. It is important to form a deep
knowledge of the mathematical foundations of informatics, an understanding of optimal
solutions, the formation of a fast algorithmic search for ideas through mathematical
problems in informatics to enter the olympiad achievements.

Formal thinking based on mathematical informatics can be developed using math-
ematical rounds as part of the olympiad preparation. Tasks that can be used in the
design of Math- round must comply with the Mathematics section in IOI Syllabus (IOI
Syllabus, 2019).

M.S. Tsvetkova et al.78

Instrumental competence of proficiency in a programming language based on de-
veloped formal thinking and an intellectual knowledge stock of algorithms are the keys
to the olympiad readiness of juniors. Training in instrumental programming compe-
tencies requires separate training for children, taking into account the specifics of the
programming environment and the requirements of a particular Olympiad. Therefore,
trainings on programming techniques, as basic programming skills, taking into account
the specifics of a particular programming language, are very important for children.
It is important to choose a language as a basis, where you can show different aspects,
approaches for developing code and optimizing it based on the software tool of a par-
ticular Olympiad.

It is impossible to involve children in the Olympiads without deep training in pro-
gramming techniques. The participant of the Olympiad in Informatics should not experi-
ence barriers in technical competence in the competition. For this purpose, during the
ISIJ, a Coder round is introduced, which reflects this training track. Sections of prepara-
tion on which instrumental rounds on programming techniques can be formed are in-
cluded in the IOI Syllabus, in the sections 6.1 Programming Fundamentals and Software
Engineering (IOI Syllabus, 2019).

It is also believed that the participants of the Olympiad must have excellent knowl-
edge of the general competencies of digital literacy (information, computer, communica-
tion), that is, masterly master keyboard input, control the interface on a computer, use a
computer network and file system ... Sections of training corresponding to the formation
of computer literacy are included in IOI Syllabus, in the sections Software Engineering
and Computer Literacy (IOI Syllabus, 2019).

For juniors, the requirement to have excellent general competencies in digital lit-
eracy can be a barrier to successful performance at the Olympiad. Therefore, trainers
need to pay special attention to digital literacy of children, since it removes technical
and psychological barriers in the speed of children’s work on a computer and in making
decisions based on the limitations of a computer or operating system when working with
digital information.

All children acquire important digital skills of elementary computer literacy in
school. These skills are technically competent high-speed input, fluency in the inter-
face, knowledge of the technical limitations of computer devices and experience in
customizing programs for the user, using network services and settings. Skills of work-
ing with digital information are the basis for decision-making for data processing, the
choice of data structures, taking into account the parameters of the problem, which al-
lows a junior to freely navigate in terms such as memory capacity, computation speed.
All this should be included in trainings on mastering the tools of olympiad informatics.
In ISIJ, such rounds are called speed work technique rounds based on typical IOI olym-
piad problems or IOI relay race as the Estafette round. The most useful for olympiad
preparation here is the C++ programming environment. As tasks for these rounds, it is
advisable to use the set of tasks of the IOI archive. A rich collection with an accessible
debugging environment, which is successfully used in the ISIJ, is presented on the Yan-
dexContest 2022 website (YandexContest, 2022).

Methods of Tracks for Training Juniors in Olympiad Informatics: ... 79

The ISIJ experience has allowed us to expand the range of junior competition rounds
that make up the set of all-around ISIJ Summer Cup. This helps schoolchildren at an early
age evaluate different aspects of training in olympiad informatics across all competency
tracks, as well as try to apply their skills in algorithm development and programming in
an applied environment. Such an environment can be an environment for simulating the
work of a virtual (screen) or real robot. For the ISIJ, this is the Robot round.

4. ISIJ Cup Structure

The ISIJ Cup started in 2018 following the EJOI. The order of this Сup is significantly
different from the traditional Olympiads in Informatics.

Firstly, it introduces an element of competition in the conduct of the ISIJ, which is
very important for the involvement of juniors in the olympiad movement in informatics
and for them to get competitive practice.

Secondly, it is held in a hybrid form, that is, both offline and online, which allows
junior children who do not have the means for mobility to take part in this competition.
As a result, not only European participants take part in the Cup, but also juniors from
China, New Zealand, Mongolia, Sri Lanka, the Russian Far East and Siberia. It is also
important that when it is carried out in the online form, the large difference in the time
zones of residence of the juniors is taken into account.

Thirdly, the variety of rounds within the cup allows to reveal different abilities of all
participants and to reward many of them for different manifestations of talent.

Fourthly, all participants in the competition are divided into two groups for summing
up: beginners and advanced. This allows children, even with little experience in olym-
piad preparation, to get the opportunity to participate in an international competition and
gain valuable experience of participation in Olympiads in Informatics.

And the last one, the teams of the participating countries work at the school together
with their coaches, who also take part in all rounds of the Cup, and their results are
evaluated in the same way as for children. This allows coaches to deeply analyze the
specifics, complexity and algorithms for solving problems, see the difficulties of their
juniors and properly organize training for them to move forward.

By tradition, the ISIJ Cup has the following 5 rounds:
Marathon●● .
Math●● .
Coder●● .
Estafette●● .
Project●● .

Let’s consider each of these rounds in more detail.

Marathon round is a round for the development of algorithms and programming with
individual credit. The round is conducted using 3 problems for groups A (advanced) and
B (base) and is designed for 4 hours. Compared to traditional IOI round, the duration
of this round is 1 hour less, which gives the participant the opportunity to try to solve

M.S. Tsvetkova et al.80

the problems of the round in less time, so that at the IOI there is 1 hour of time for the
participant’s “internal clock”.

Math round is a blitz round on the speed of solving problems in mathematical informat-
ics and logic, which is very important for participants in Olympiads in Informatics.
This round offers 12–15 blitz ideas for 2 hours. The round includes 12 blitz problems
(for group B) and 15 blitz problems (for group A). All tasks are related to mathematical
informatics and computational algorithms. Each problem has one correct solution, and
the round is held in the Yandex-Contest system.

Coder round is a round of correcting the program-solution in C++, proposed by the
jury for each of the 3 problems. The participant must identify possible problems in each
program-solution and correct any mistakes. Problems may reflect upgrades, fixes, addi-
tions of part of the algorithm in the proposed programs of the jury. The round is designed
for 3 hours and is conducted in the Yandex-Contest system.

Estafette round is a round in which two approaches are implemented: the traditional
one for the speed and completeness of solving the problem, the second is the team one.
The round involves teams from each country, consisting of no more than 6 juniors. Each
team is given as many tasks as there are participants to solve within one hour, but each
participant solves only one task. All tasks are IOI tasks or similar. At the end of the
round, each team is awarded an average score of the team (the total score of the team
divided by the number of participants of this team). This round can also be conducted on
problems that are new to the participants, but it is better to use a deep study approach,
when the participants have already solved the problems, analyzed the solution and the
Estafette round is needed to check how the children cope with the known problem for
the speed and completeness of the solution. It is important that the child’s internal clock
and memory are included during the round.

Project round (Robot round) is devoted to the topic of programming in C++ for un-
manned devices for various purposes. The round is conducted for teams of 2–3 partici-
pants online using virtual or real robots or in person using robotic equipment. The Robot
round is focused on the STEM approach, and its goal is to show how you can apply your
algorithms and programming skills to applied information technology. A Robot round
can deal with various applied topics, for example, cybernetics and artificial intelligence,
and in the process of carrying out it can be used devices with feedback and sensors,
learning devices, groups of interconnected devices (a swarm of drones), moving models
in different environmental conditions, models manipulators and others.

Such a structure of the ISIJ Cup implements all five tracks of the olympiad prepara-
tion of children, and can become traditional in the work of coaches, both in the forma-
tion of deep complex olympiad competencies of children, necessary to participate in
Olympiads in Informatics, and in the improvement of the technique of speed thinking
and complex digital skills, which help in the development of computer thinking in a
broad sense.

Next, we will consider in more detail several features of some of the elements of the
ISIJ Cup structure described above.

Methods of Tracks for Training Juniors in Olympiad Informatics: ... 81

5. Features of the Math Round

The purpose of the math blitz round is to motivate the participants of the ISIJ to study
sections of mathematics as part of the preparation for olympiad informatics, as well as
check the preparation of participants for the main topics of mathematical informatics.

Each math blitz round task is a small mathematical olympiad problem on one of
the topics of the school curriculum of the course “Mathematical Foundations of Infor-
matics”: logic, combinatorics, set theory, graphs, elements of probability theory, chess,
numerical laws and sequences, number systems, computational, geometric algorithms
and strategies, etc.

The set of tasks includes such a number of tasks on various topics, which, according
to the developers, should take an average of 2 hours for their complete solution. Accord-
ing to the complexity of the problem, the jury takes into account the approximate time
for the blitz. Blitz solution orients the student towards a creative approach and solving
the problem “in the mind”.

The examples of tasks on specific topics below show how a task is presented to a
participant and how he should submit a response for review.

The participant receives the text of the problem and a description of the format of
the response. An automatic check system records his correct answer. After the end of
the round, the participants of the competition are given access to solutions of problems.
Below are examples of some of the math blitz round tasks.

Task “Cake”

The cake has the form of a parallelogram with vertex coordinates (0; 0), (4; 0), (6; 6),
(2; 6). Rabbit and Fox share the cake as follows. Rabbit points to a point on the surface
of the cake, and the Fox cuts the cake into two pieces in a straight line passing through
this point and takes one for himself. Everyone wants a bigger piece. Where should the
Rabbit put the dot?

Output the answer – the coordinate of this point as two numbers separated by spaces.
Answer: 3 3.
Solution. This is the center of the parallelogram, i.e., intersection point of diagonals.

Rabbit can’t get more than half of the cake. Any straight line passing through the center
of a parallelogram divides it into two equal parts.

Note. This is a simple geometric problem on the properties of a parallelogram and
on the topic “Game strategies”. The approximate time for solving the problem is 3–5
minutes.

Task “Sum of permutations”

Find the sum of all five-digit numbers that are obtained by permuting the numbers from
12345.

Print one integer that is the answer to the problem.
Answer: 3 999 960.

M.S. Tsvetkova et al.82

Solution. There are only 5! = 120 ways to rearrange numbers in the number 12345.
Among these methods, in exactly one fifth among these (i.e., in 24 cases), the number 1
is in the first place. The same is true for any number and for any place. Therefore, the
required sum is equal to:

24(10 000 + 1 000 + 100 + 10 + 1 + 20 000 + 2 000 + 200 + 20 + 2 + 30 000 + 3 000 +
300 + 30 + 3 + 40 000 + 4 000 + 400 + 40 + 4 + 50 000 + 5 000 + 500 + 50 + 5) =
24(11 111 + 22 222 + 33 333 + 44 444 + 55 555) = 24 · 11 111 · (1 + 2 + 3 + 4 +
5) = 3 999 960.
Note. This is a combinatorial problem on the topic “Permutations”, “Number sys-

tems”. The approximate time for solving the problem is 10–15 minutes.

Task “Chess”

In position on the chessboard, White has only one move
that does not checkmate for Black.

The coordinate of a cell on a chessboard is given by
a capital Latin letter and a number without a space be-
tween them. In the response line enter the required move
in the format of cell coordinates: cell coordinate “from”
and cell coordinate “to” separated by a space between
them.

Answer: G6 C6.
Solution. After the move Rg6–c6! the rook blocks the

diagonal of the white bishop on a8, and now black has
protection from checkmate Rb7:h7.

Note. The approximate time for solving a chess problem is 8–12 minutes.

6. Features of the Estafette Round

This round aims to identify the basic qualifications of school participants in preparation
for the IOI. The peculiarity of this round is that the basic qualifications of the partici-
pants are determined in the process of teamwork when solving olympiad problems that
were offered from the IOI archive of previous years. The basic qualification includes
the skill of technically competent and high-speed work with the specifics of IOI tasks,
the speed of solving problems on the round (the target is one hour per one task), the
strategy for solving the problem on the round (the ability to navigate the parameters
of subtasks and skillfully regulate the time for sending solutions to simple restrictions,
gaining points). Collections of IOI tasks available for constructing the Estafette round
are presented on the Yandex Contest website in the IOI archive in the public domain
(YandexContest, 2022).

Teams for participation in the round are formed from participants from one coun-
try. No more than 6 juniors can be on one team. For each team, one set of tasks of past
IOIs, common for all teams, is randomly allocated, and the tasks included in it can be

Methods of Tracks for Training Juniors in Olympiad Informatics: ... 83

of varying complexity. Team members, together with the coach, distribute tasks among
themselves so that each team member gets one task, which he can solve in the best way
within 1 hour, which corresponds to the duration of the round.

The solution to each task is evaluated similarly to the corresponding IOI task, but
the results are summed up on a team-by-team basis. If a participant has completed the
task for a full point in less than 1 hour, then his score is increased taking into account
the time to solve (the speed coefficient is taken into account). The team score is calcu-
lated as the average score of all team members for their tasks. Team round medals are
ranked by the teams’ average scores at 25, 25 and 50 percent for gold, silver and bronze
medals.

Experience has shown that it was the Estafette round that caused the greatest difficul-
ties for ISIJ participants in solving tasks of all rounds of the Cup. Out of 200 participants
in 2021, only 2 juniors managed 75–100 points in the relay. Thus, juniors do not have
a trained sense of timing, a strategy for solving tasks, as well as high-speed work tech-
niques. Also, the Estafette round showed that the participants are practically not focused
on the IOI tasks, do not own the IOI archive, which is an important criterion for the for-
mation of the basic olympiad qualification for participation in the IOI. All this must be
taken into account in the further preparation of juniors to participate in the IOI.

7. Features of the Coder Round

The Coder round is designed to identify deficiencies in programming techniques among
juniors. To participate in the IOI, it is important to motivate participants to develop their
programming skills in C++, to show participants the features of the C++ language, to
check their level of proficiency in C++ capabilities for implementing olympiad algo-
rithms, to develop critical thinking for analyzing algorithms in C++, to be able to trans-
form code taking into account the advantages of C++.

The round consists of three tasks (based on three types) for 4 hours. For group A
(advanced group), two tasks of type 1 and one task of type 2 are offered. For level B
(beginners level), three tasks are proposed, one of each type. The tasks are solved in the
Yandex contest system. For a problem of type 1, the solution is the participant’s code
after correcting the jury’s error in the source text (no more than three operators to cor-
rect). For a problem of type 2, the solution is the modified by the participant code, which
will allow for a given incomplete jury solution to get a solution that can get a full score
when tested on all jury tests for this task. As a solution to a problem of type 3, a test is
provided that reveals an error in the code for solving the problem assigned by the jury.
The test either catches an error or it doesn’t.

A problem of type 1 is evaluated as 100 points if the participant’s solution is correct
and 0 points if it is incorrect. The problem of type 2 is evaluated out of 100 points on the
tests of the jury to check the solution provided by the participant. In a problem of type 3,
the jury code contains two algorithmic errors. If the participant’s test finds one error in
the jury’s code, then he gets 50 points, if both errors, then 100 points. The maximum
score for a Coder round is 300 points.

M.S. Tsvetkova et al.84

8. Features of the Project (Robot) Round

The developer of the Project (Robot) round sets the methodology for its implementa-
tion in agreement with the International Scientific and Technical Committee1. He has
the right to determine the type of robot for the round, develop a set of tasks and provide
robots for the round venues for the participating teams on the ISIJ Cup site. It is also
possible to conduct a round in an online format, while the tasks of the round are focused
on managing a virtual (on-screen) command executor. It can be a controlled device, a
training robot, a software environment with robot control, a software environment with
decision-making to control the device. The online round is open to all registered ISIJ
participants.

Teams of 2–3 juniors participate in the round, the teams are divided into groups A
(advanced) and B (basic). The round offers 2–3 tasks. Each task may contain simpler
subtasks or a set of steps for executing control commands. The duration of the round is
4 hours, and it is carried out on robots that are the same for all teams. The solutions of
the problems of the round are programs in the C++ programming language. During the
round, each participating team gets access to the robot and computer and downloads the
solutions created by the team into it, either in the presence of a coach at training rounds,
or in the presence of a jury, or under video recording on a real round. The round is held
in the competition hall with working points for the participating teams indicating the
number, group A or B and the country.

Tasks can include valid task types with subtasks in groups A and B.
Task types can be:

The task of simple control of the movement of robot elements on the test site, ●●
indicating all possible obstacles or conditions for performing actions by the robot,
taking into account the parameters of the objects with which the robot performs an
action.
The task of selecting/search for types of movement on a given track from target ●●
1 to target 2 with possible conditions, a set of valid commands and feedback with
checking the valid actions of the robot.
The task of controlling a robot under conditions of uncertainty, taking into account ●●
the restrictions imposed in the task.
A task of increased complexity (for group A) to adjust the control of the robot with ●●
feedback – a response to an action in real time with a given clock delay.

The solutions of each task of the Robot round are evaluated out of 100 points, but
complex tasks for additional subtasks for group A can be evaluated at 200 points. The
maximum score for solving the tasks of the round is 300 points. To obtain a rating dis-
tribution, it is necessary to differentiate solutions by steps or subtasks. The awarding of
teams following the results of the round fully complies with the awarding rules defined
in the Regulations on Online rounds of the ISIJ Cup.

1	www.isi-junior.com

Methods of Tracks for Training Juniors in Olympiad Informatics: ... 85

9. Conclusion

Monitoring of the performance indicators of the ISIJ 2018–2022 participants in the
Olympiads in Informatics showed that optimally two years of immersion of children
in the training tracks described above is enough to create conditions for a jump to
the level of high olympiad results. However, this requires strengthening in children a
stable motivation for independent work in the tracks of the olympiad informatics, the
olympiad culture of training. ISIJ participants from different countries become lead-
ers in national Olympiads in Informatics, and also win medals at various international
Olympiads. This is the main value of such an integrated approach in the preparation of
juniors, and what is very important, it allows you to unlock the potential of the child
through participation in ISI.

However, all children who have completed such training tracks, even without re-
maining in the Olympiad movement, demonstrate stable skills of computational think-
ing in the future. This helps them in their individual choice of profession to realize their
potential and expands their horizons for the application of programming in different
professions, which is extremely valuable.

A unique feature of the ISIJ is the participation of all coaches of the ISIJ teams along
with juniors in all tracks. This allows them to pedagogically evaluate the complexity,
specificity, content and methodology of each track and then apply the gained experience
in their future work. Informatics teachers, coaches of teams from different schools of the
world actually go through a seasonal international internship at the ISIJ, get acquainted
with the specifics of International Olympiads in Informatics, exchange their work expe-
rience with each other and can bring these innovations to work with juniors methodically
competently (ISIJ, 2022).

Reference

IOI (2022). International Olympiad in Informatics. https://ioinformatics.org/
IOI Syllabus (2019). IOI Syllabus. https://ioinformatics.org/files/ioi-syllabus-2019.pdf
ISIJ (2022). International School in Informatics for juniors. http://isi-junior.com/
Tsvetkova, M., Kiryukhin, V. (2021). Algorithmic Thinking and New Digital Literacy. Olympiads in Informat-

ics, 2021, 15, 105–118. https://ioinformatics.org/journal/v15_2021_105_118.pdf
Tsvetkova, M., Kiryukhin, V. (2020). Top 10 Key Skills in Olympiad in Informatics. Olympiads in Informatics,

2020, 14, 151–167. https://ioinformatics.org/journal/v14_2020_151_167.pdf
Tsvetkova, M., Kiryukhin, V. (2018). International School in Informatics “Junior” for IOI Training. Olympiads

in Informatics, 2018, 12, 187–193. https://ioinformatics.org/journal/v12_2018_187_193.pdf
Kiryukhin, V. (2007). The Modern Contents of the Russian National Olympiads in Informatics. Olympiads in

Informatics, 2007. 1, 90–104. https://ioinformatics.org/journal/INFOL017.pdf
YandexContest (2022). Yandex Contest website, the IOI archive. https://contest.yandex.ru/ioi/

M.S. Tsvetkova et al.86

M.S. Tsvetkova, professor of the Russian Academy of Natural Sci-
ences, PhD in pedagogic science, prize-winner of competition “The
Teacher of Year of Moscow” (1998). From 2002 to 2018 she is a
member of the Central methodical commission of the Russian Olym-
piad in informatics and the pedagogic coach of the Russian team on
the IOI. She is the author of many papers and books in Russia on the
informatization of education and methods of development of talented
students. She is the author of official textbooks and copybooks in Rus-
sia for primary school in Informatics. She is author and director of
the International school in Informatic ISIJ (since 2017). She is the
Russian team leader (2013–2017). She was awarded the President of
Russia Gratitude for the success organizing the training of IOI medal-
ists (2016). She is now the Expert of Committee on Education and
Science State Duma of the Russian Federation (since 2017), and she
has the Committee on Education and Science State Duma Gratitude
(2021).

V.M. Kiryukhin is professor of the Russian Academy of Natural Sci-
ences, PhD. He is the author of many papers and books in Russia
on development of Olympiad movements in informatics and prepara-
tions for the Olympiads in informatics. He is the exclusive represen-
tative who took part at all IOI from 1989 to 2017 as a member of the
IOI International Committee (1989–1992, 1999–2002, 2013–2017)
and as the Russian team leader (1989, 1993–1998, 2003–2012). He
received the IOI Distinguished Service Award at IOI 2003, the IOI
Distinguished Service Award at IOI 2008 as one of the founders of
the IOI making his long term distinguished service to the IOI from
1989 to 2008 and the medal “20 Years since the First International
Olympiad in Informatics” at the IOI 2009. He was the chairman of
the IOI 2016 in Russia and has the award medal of the President of
Russia (2016) for organizing the Olympiad in Informatics in Russia
and training IOI medalists since 1989. He is now the President of the
International Organizing Committee of the ISIJ.

N.A. Borisov is associate professor at the Nizhny Novgorod State
University (Lobachevsky University), PhD. He is now the Chairman
of the Scientific-Technical Committee of ISIJ / member of ISIJ-Cup
Jury. He was the leader of Russian Team in EJOI-2017 in Sofia. He
is also an active participant of ICPC movement, and the leader of Ni-
zhny Novgorod University student team that won the last ICPC World
Championship in Moscow in October 2021.

Methods of Tracks for Training Juniors in Olympiad Informatics: ... 87

M.I. Kinder is associate professor of the Institute of Mathematics and
Mechanics (Lobachevsky Institute) of Kazan Federal State Univer-
sity, Ph.D. in physics and mathematics. More than 30 years of experi-
ence in Olympiad mathematics and computer science, member of the
jury of the International ICL-Tournament (Kazan) in programming
among students and schoolchildren. Among his students are winners
and prize-winners of the All-Russian Olympiads in mathematics and
informatics. He is the author of many articles and books in Russia on
Olympiad mathematics and computer science. He is also an active
member of the ICPC movement. Deputy Chairman of the ISIJ Scien-
tific and Technical Committee / member ISIJ-Cup Jury.

Olympiads in Informatics, 2022, Vol. 16, 89–106
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.08

89

Detecting Plagiarism as Out-of-distribution
Samples for Large-scale Programming Contests

Runfan WU, Aohui LV, Qiyang ZHAO

SKLSDE and SCSE, Beihang University
e-mail: {alralr, luaohui, zhaoqy}@buaa.edu.cn

Abstract. In competitive programming, standard solutions for easy tasks are usually simple and
shorter, making submissions more convergent both in idea and texts. The huge difference in
submission diversity between easy and hard tasks, brings inescapable challenges to plagiarism
judging by means of similarity thresholding. In this paper, by drawing the strong data support
from the China National Olympiads in Informatics (NOI), we study the statistical characteristics
of submission similarities for tasks of wide range of difficulty degrees. Finally, we propose a new
adaptive method to detect submission plagiarism as out-of-distribution samples, together with a
large-scale challenge dataset of competitive programming submission plagiarism detection. Our
method is shown to be of higher accuracy and robustness, thus feasible and reliable for large-
scale competitive programming contests.

Keywords: competitive programming, plagiarism detection, out-of-distribution.

1. Introduction

Programming contests are competitive programming design events, where contestants
need to finish source codes fulfilling various resource consumption restrictions, and are
expected to make submissions correct with their best effort (Halim et al., 2013). Be
cause of the advantages of objectivity, straightforwardness and relative unbiasedness,
programming contests are widely adopted for qualifications and assessments related to
computer algorithms.

Cheating is a troublesome issue in competitive contests, including directly pla-
giarizing the source codes or copying ideas from other contestants. Usually, cheaters
are lack of thorough understanding of the plagiarized codes or ideas, making their
submissions full of segments which are almost identical to original ones. Therefore,
plagiarism detection is a reliable approach to revealing source code cheating. Auto-
matic tools, mainly specifically-designed softwares, are usually adopted in plagiarism
detection.

R. Wu, A. Lv, Q. Zhao90

The present situation regarding plagiarism calls for a more accurate, robust, and
adaptive plagiarism detection system. Many teachers against source code plagiarism
find themselves overwhelmed by the recent surge of the admission counts of computer-
related majors, which they barely manage with overreliance on automated plagiarism
detection tools (Roberts et al., 2018). For easier tasks with short and less diverse stan-
dard solutions, contestants are more inclined to finish similar submissions of identical al-
gorithms and data structures. Most submissions would be highly similar to each other for
these tasks, whereas the situations for hard tasks are totally different. This brings a great
challenge to traditional plagiarism detection methods based on similarity thresholding
(Freire et al., 2007). Furthermore, the open-sourcing of common plagiarism detection
tools1 enables cheaters to crack and evade plagiarism detection.

Cheating codes are usually like stitched monsters -swallowed ideas, code segments
migrated from others, exhibiting exceptionally high similarity with original submissions
which are plagiarized. Therefore, source code plagiarism detection can be regarded as
recognizing out-of-distribution samples, which aligns with the objective of outlier detec
tion (Ruff et al., 2021). We propose to answer current setbacks in plagiarism detection
by taking similarity distributions of submissions into account. The main contributions
of our research are:

We propose a robust, accurate, and adaptive source code plagiarism detection ●●
method with sufficient accuracy.
We build a highly automatic plagiarism detection platform for porting related al-●●
gorithms, supporting batch manual inspection of suspicious code pairs under a
predetermined plagiarism filtering ratio.
We employ a plagiarism detection dataset based on real-world, large-scale data ●●
from the Certified Software Professional (CSP) programming contest2 and includ
ing a variety of problem designs and contestant code styles.
We verify the performance of our method with the OI dataset and discover that our ●●
method outperforms conventional plagiarism detection methods.

The structure of this paper is as follows. Section 1 provides an introduction. Sec-
tion 2 describes the background of this paper and the related works. Section 3 discusses
the details and implementation of our method. Section 4 presents the experimental find-
ings. Section 5 concludes this paper and offers outlooks.

2. Backgrounds

In a programming contest, tasks are usually designed to be of various difficulty degrees
and distinct skill coverages, thus to examine contestants comprehensively. On the other
hand, contestants might be much different in problem-solving ways and capabilities,

1	 Refer to Table 2.1 for details.
2	 The CSP programming contest, part of the qualification process for the NOI, is regarded as part of the

Olympiad in Informatics (OI)in China. An overview of the CSP submission dataset is in Table 4.1.

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 91

and have distinct coding styles. It makes the distributions of similarities between pairs
of submissions varying dramatically across tasks and contestant groups. It is extremely
hard to designate a global threshold for all situations in conventional plagiarism detec
tion methods. Implementing an adaptive plagiarism detection method could potentially
alleviate the issue of varying distribution, thus significantly increase the reliability and
efficiency of plagiarism detection.

With the trends of open-sourcing, most existing plagiarism detection tools have ei-
ther released the original source, or been re-implemented by third parties. Table 2.1
summarizes the situation. Since those plagiarism detection tools are easy to access,
cheaters are able to develop cheating skills in a trial-and-error mode to evade plagiarism
detection. On the contra try, when detecting plagiarism as out-of-distribution samples, it
is dependent on all submissions which are untouchable for cheaters during contests, thus
cheaters cannot crack the detection scheme easily as before.

There are mainly two streams of plagiarism detection methods: intrinsic detection
and extrinsic detection (Foltỳnek et al., 2019).

2.1. Intrinsic Plagiarism Detection

Intrinsic detection links source codes with their authorships, capturing the lack of
stylistic distinction stemming from plagiarism. There are two approaches to intrin
sic detection with an identical final step (Bandara and Wijayarathna, 2011). One is to
straightforwardly decide the author of every source code by the maximum likelihood
principle. The other is to partition the approximated distribution of source code fea
tures. The common final step is to search for the unmatchedness of the predicted and
claimed authorships.

Intrinsic detection has a solid foundation on probability theory and decent inter
pretability. However, it is not practical in programming contests, where an extreme num-
ber of contestants each submit few source codes. The first is prone to the confusion of
authors, while the second requires an impractical granularity of partition.

Table 2.1
Source code availability of common plagiarism detection systems

System Implementation Source code URL

MOSS (Schleimer et al., 2003) Third-Party https://github.com/agranya99/MOSS-
winnowing-seqMatcher

SIM (Gitchell and Tran, 1999) Official https://dickgrune.com/Programs/
similarity tester/

YAP (Wise, 1996) Third-Party https://github.com/zymk9/YAPDS

JPlag (Prechelt et al., 2000) Official https://github.com/jplag/jplag

R. Wu, A. Lv, Q. Zhao92

2.2. Extrinsic Plagiarism Detection

Extrinsic detection mainly focuses the relation between one source code or source code
pair to the others, instead of the relation between source codes and their authorships. It
is more frequently used in programming contests. Different types of extrinsic detection
can be characterized by the feature extraction method.
Text comparison-based methods. The main aim is to detect repeating character se-
quences or any of the derived features, which is complexified text comparison. A rela-
tively representative method is local finger printing algorithms (LFA), which are em-
ployed by MOSS and JPlag (Schleimer et al., 2003; Prechelt et al., 2000). Typically
an LFA extracts the positionally independent features of every window in the original
strings, which partly provides robustness against code fragment repositioning. These
methods make a hasty assumption that all edits do not change local features radically,
but it is not always true across all scenarios.
Classification-Based methods. Given a source code pair, the state of plagiarism could
be codified as two classes. Adding intermediate classes tends to ease the classification
of borderline samples. Viewing source codes as character sequences, Arwin and Tahag-
hoghi (2006) propose using general classifiers for the problem after extracting source
code features with a recurrent neural network (RNN). These methods oversimplify
group wise relations into pairwise labels, thus are unable to deal with group plagiarisms
without modifications.
Outlier detection-based methods. Outlier detection is the process of determining
samples distant from its distribution. Such methods assume in-distribution source code
pairs as innocent and out-of-distribution ones as suspicious and necessary for further
investigation. There are five general steps of source code plagiarism detection based
on outlier detection (Foltỳnek et al., 2019). Fig. 2.1 illustrates the definition of out-of
distribution samples3. This type of methods are outlined as follows.

2.2.1. Outline of Outlier Detection-Based Methods
Data preprocessing. Preprocessing is likely needed before the main steps to remove
the portions of source codes that is relatively irrelevant to plagiarism detection. Ka
malim and Chivers (2020) acknowledge the need of tokenization for reducing factors
not determinative of semantics. Wise (1996) proposes lowercasing all tokens relatively
early. Ðurić and Gašević (2013) regards high frequency tokens removable, for they
barely contribute to source code distinguishability despite providing syntactic confor-
mance.
Feature extraction. There are two major basic ideas for feature extraction. One is to
calculate the distance of the feature vectors for every source code. Yasaswi et al. (2017)
uses RNN, viewing source codes as character sequences. Freire et al. (2007) consider

3	 The blue and red points indicates respectively the ordinary samples and outliers, and the circles denote
group boundaries.

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 93

source codes as token streams, extracting the frequencies of each token type as the
features. The intermediate representation (IR) (Rabbani and Karnalim, 2017) or the
generated machine code (Arwin and Tahaghoghi, 2006) of the source codes could also
be treated as regular ones.

The other is to calculate a similarity metric for each source code pair after extracting
pairwise features. Freire et al. suggest to measure the growth rate of the informational
entropy when the two source codes in question are concatenated (Freire et al., 2007). In
the perspective of string editing, local repetitive substrings (Karp and Rabin, 1987) and
local positional independent features (Prechelt et al., 2000; Schleimer et al., 2003) can
also derive the pairwise similarity metric.
Distribution approximation. A similarity matrix could be constructed by the sim
ilarity values of each source code pair. Considering each column of the similarity ma-
trix as feature vectors, we can detect the outliers by the approximation of the feature
distribution, using support vector machines (SVM) (Suthaharan, 2016) or sparse auto
encoders (Ng et al., 2011).

The similarity matrix can also be regarded as an adjacency matrix of a graph, on
which an implicit distribution approximation might be performed using graph algo-
rithms to find abnormal nodes or edges. For example, graph embedding is able to trans-
form graph nodes into their vector representations. Frequently used graph embedding
algorithms include multidimensional scaling (MDS) (Cox and Cox, 2008), Node2Vec
(Grover and Leskovec, 2016), structural deep network embedding (SDNE) (Wang
et al., 2016), etc. Fig. 2.2 depicts feature extraction and distribution approximation in
conjunction.
Suspicious code pair filtering. For the convenient and easily interpretable quan
tification of the possibility of plagiarism, many existing methods employ a single suspi
ciousness index for each source code pair (Devore-McDonald and Berger, 2020; Freire
et al., 2007; Ajmal et al., 2013; Yasaswi et al., 2017; Sulistiani and Karnalim, 2019;

Fig. 2.1. Illustration of out-of-distribution samples and sample groups.

R. Wu, A. Lv, Q. Zhao94

Jiffriya et al., 2014). With the aid of the suspicious index, human operators are able
to filter the most relevant pairs for manual inspection (Devore-McDonald and Berger,
2020; Freire et al., 2007). The suspiciousness indices are typically computed from the
feature vectors of the individual source codes using vector similarity functions, such as
the Euclidean distance (Ajmal et al., 2013; Yasaswi et al., 2017) and cosine similarity
(Rahutomo et al., 2012; Sulistiani and Karnalim, 2019; Jiffriya et al., 2014).
Checking and evaluation. Manual inspection results are generally regarded as the
reference for determining the status of plagiarism. The commonly used method is to
inspect the source code pairs whose ranks of the suspiciousness index are within a pre
viously chosen ratio, then calculate the precision, recall, and F1 score using both the
predictions and the manual inspection results (Yasaswi et al., 2017; Flores et al., 2014;
Lee et al., 2012).

3. Our Method

3.1. Data Cleaning

Data cleaning is the removal of the factors with little relevancy to plagiarism from the
submissions. In our method, there are four data cleaning steps executed in succession.
Deletion of irregular submissions. Irregular submissions are those with excessive line
count or line width, which typically contains a nonsensical paragraph repeated verba-
tim innumerably. Fig. 3.1 exhibits an example. The efficiency of plagiarism detection
system will be critically impared unless those submissions are removed.
Deletion of submissions with insufficient line counts. Typically those submissions
is either a framework or a program that could handle only the cases dispensed with

Similarity matrix

Adjacency matrix

Feature vectors

Similarity distribution

Outlying code pairs

Viewing as

Graph algorithms

Similarity calculation

Distribution approximation

Outlier detection

Figure 2.2: Feature extraction and distribution approximation

graph nodes into their vector representations. Frequently used graph embedding algo-
rithms include multidimensional scaling (MDS) (Cox & Cox, 2008), Node2Vec (Grover
& Leskovec, 2016), structural deep network embedding (SDNE) (Wang et al., 2016), etc.
Figure 2.2 depicts feature extraction and distribution approximation in conjunction.

Suspicious code pair filtering. For the convenient and easily interpretable quan-
tification of the possibility of plagiarism, many existing methods employ a single suspi-
ciousness index for each source code pair (Devore-McDonald & Berger, 2020; Freire et
al., 2007; Ajmal et al., 2013; Yasaswi et al., 2017; Sulistiani & Karnalim, 2019; Jiffriya
et al., 2014). With the aid of the suspicious index, human operators are able to filter
the most relevant pairs for manual inspection (Devore-McDonald & Berger, 2020; Freire
et al., 2007). The suspiciousness indices are typically computed from the feature vectors
of the individual source codes using vector similarity functions, such as the Euclidean
distance (Ajmal et al., 2013; Yasaswi et al., 2017) and cosine similarity (Rahutomo et
al., 2012; Sulistiani & Karnalim, 2019; Jiffriya et al., 2014).

Checking and evaluation. Manual inspection results are generally regarded as the
reference for determining the status of plagiarism. The commonly used method is to
inspect the source code pairs whose ranks of the suspiciousness index are within a pre-
viously chosen ratio, then calculate the precision, recall, and F1 score using both the
predictions and the manual inspection results (Yasaswi et al., 2017; Flores et al., 2014;
Lee et al., 2012).

6

 Fig. 2.2. Feature extraction and distribution approximation.

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 95

the original program description, indicating that the contestant was unable to dis
cover a valid idea. The submissions of both types are extremely inadequate, render-
ing plagiarism detection on them unnecessary. We also include empty submissions
in this step.
Tokenization. Tokenization is to transform the source code from its string form to the
token stream form according to the programming language syntax, removing the influ-
ences of the factors less relevant to plagiarism. The token stream is the input of the next
step, with additional properties preserved, such as the type and function names. Fig. 3.2
illustrates the current tokenization process.

3.2. Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Fig. 3.3.
An optimization of this algorithm is to precalculate the rolling hashes (Karp and Rabin,
1987) of every window of length  on both strings.

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input of the
next step, with additional properties preserved, such as the type and function names.
Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality
reduction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrixD, which is derived from the unknown feature matrix
X. If we regard D as a weighted adjacency matrix, X can be viewed as the embedding
of the corresponding graph, effectively converting it to a graph embedding algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vectors

are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def=
�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

Fig. 3.2. Illustration of tokenization.

1
2
3

. . .
49
50
51
. . .

10000
10001
10002
10003

#include <stdio.h>

int main(int argc, char **argv) {
 /* parts related to problem solving */

 printf(“hello␣world\n”);
 printf(“hello␣world\n”);
 /* repetitive content */
 printf(“hello␣world\n”);

 return 0;
}

 Fig. 3.1. An example of irregular submissions.

R. Wu, A. Lv, Q. Zhao96

Algorithm 1: The GST algorithm

Input: Strings a = a1a2 · · · am, b = b1b2 · · · bn, minimal length of valid common
substrings M

Output: Similarity s
tiles, a, b ← {}, 00 · · · 0  

×m

, 00 · · · 0  
×n

;

do
maxmatch,matches ← M, {};
for 1 ≤ i ≤ m do

if ai = 0 then
continue;

end
for 1 ≤ j ≤ n do

if aj = 0 then

continue;
end
k ← 0;
while ai+k = bj+k and ai+k = bj+k = 0 do

k ← k + 1;
end
if k = maxmatch then

matches ← matches ∪ {(i, j, k)};
end
else if k > maxmatch then

maxmatch,matches ← k,matches ∪ {(i, j, k)};
end

end

end
for (i, j, k) ∈ matches do

for 0 ≤ k ≤ maxmatch− 1 do
ai+k, b


j+k ← 1, 1;

end

end
tiles ← tiles ∪matches;

while maxmatch > M ;
s ← 0;
for tile ∈ tiles do

s ← s+ |tile|;
end
s ← 2s

m+n ;

return s;

Figure 3.3: Algorithmic steps for the GST algorithm

9

Fig. 3.3. Algorithmic steps for the GST algorithm.

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 97

3.3. Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.
Multidimensional scaling (MDS). MDS (Cox and Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 from the
symmetric pairwise distance matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

, which is derived from the unknown feature
matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

. If we regard

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 as a weighted adjacency matrix,

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 can be viewed as the em-
bedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.

Suppose the dimensionalities of the original and dimensionally reduced feature vec-
tors are  and  (1 ≤  < ) respectively. We denote

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 and

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 as:

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 (3.1)

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

The exact steps of metric MDS are below.
We define

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 . Consider the  ×  centering matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 (3.2)

For any  ×  matrix For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

, it is easy to prove that being left or right multiplied by
For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:




argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is
equivalent to subtracting from each row or column of For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 its average respectively. We
define the  ×  matrix

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 (3.3)

Where

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:




argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

:

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:




argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 (3.4)

According to (3.3), (3.4) and the centering property and symmetry of
For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:




argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

, we define

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

(3.5)

It is apparent that

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is an inner product matrix. Note that

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is thus positive semidef
inite. Therefore, we could obtain another form of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 by singular value decomposition
(SVD) and then the closed form of

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

:

R. Wu, A. Lv, Q. Zhao98

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 (3.6)

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

Where

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is a  ×  orthogonal matrix,

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is a diagonal matrix containing all singular
values of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

, and

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is the elementwise square root of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

. The ultimate goal of MDS is
to reduce the dimensionality of the feature vectors from  to  while maximally pre-
serving the pairwise distances, which could be represented as the following optimization
problem:

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

(3.7)

Where

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 is

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 (3.8)

Where

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is the first  rows of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 and

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is a  ×  diagonal matrix formed by the
largest  diagonal elements of

For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.

Generally the distance calculation on the solution is Euclidean and the distance matrix

int space main (

Type int Identifier main Left parenthesis

Figure 3.2: Illustration of tokenization

influences of the factors less relevant to plagiarism. The token stream is the input
of the next step, with additional properties preserved, such as the type and function
names. Figure 3.2 illustrates the current tokenization process.

3.2 Feature Extraction

We use greedy string tiling (GST) algorithm, which is a widely used algorithm for
string similarity (Prechelt et al., 2000). The steps of the GST algorithm are in Figure
3.3. An optimization of this algorithm is to precalculate the rolling hashes (Karp &
Rabin, 1987) of every window of length M on both strings.

3.3 Approximation of Distribution

We choose graph embedding as the approach for this step, extracting a feature vector
for every valid source code. There are two graph embedding algorithms to be used.

Multidimensional scaling (MDS). MDS (Cox & Cox, 2008) is a dimensionality re-
duction method. It calculates the dimensionally reduced feature matrix X from the
symmetric pairwise distance matrix D, which is derived from the unknown feature
matrix X. If we regard D as a weighted adjacency matrix, X can be viewed as the
embedding of the corresponding graph, effectively converting it to a graph embedding
algorithm.
Suppose the dimensionalities of the original and dimensionally reduced feature vec-

tors are m and k (1 ≤ k < m) respectively. We denote X and X as:

X
def
=

�
x1 x2 · · · xn



X def
=

�
x
1 x

2 · · · x
n

 (3.1)

The exact steps of metric MDS are below.

We define e
def
=

�
1 1 · · · 1


. Consider the n× n centering matrix

H
def
= I− 1

n
eTe (3.2)

8

 is still nonnegative, symmetric, and has zeroes as its diagonal elements.
AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.

Given a simple graph of  nodes whose adjacency matrix is For any n × n matrix A, it is easy to prove that being left or right multiplied by
H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

. The node are num-
bered from 1 to . The edge weights are in the interval [0,1]. The maximal step count
is . We intend to embed the nodes into an -dimensional vector space and  is even.
The embedding is denoted as


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 where


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 and


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 are  ×


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 and


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 × 
matrices respectively. We define the reconstructed adjacency matrix


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

.
An initial configuration S is provided as an  ×  diagonal matrix, where each di-

agonal value is the number of random walks starting from the correspondingly num-

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 99

bered node. As an algorithm based on random walks, we attempt to discover the expecta-
tion matrix E where  equals to the expected count of the random walks from node 
to node . Considering a single step from node ,


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row nor
malization For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 is converted to a transition matrix T covering one random walk step. Using
the Markov property, we know

�
Tk

�
 (1 ≤  ≤ ) is the probability of a certain walk

being a -step one from node  to node .
We define the probability vector


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

, where  represents the
probability of a certain walk to have  steps. According to Bayes theorem, the closed
form of the probability matrix P where  is the probability of a certain walk being
from node  to node  is:


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

(3.11)

Then it is easy to deduce the closed form of E with (3.11):


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

(3.12)

The loss function is similar to cross-entropy loss, respectively treating E and I
[For any n × n matrix A, it is easy to prove that being left or right multiplied by

H is equivalent to subtracting from each row or column of A its average respectively.
We define the n× n matrix

Z
def
=

�
x12 x22 · · · xn2

T
e (3.3)

Where ·2 is the length of a vector. From (3.3) we can deduce the matrix algebraic
definition of D:

D
def
= Z− 2XTX+ ZT (3.4)

According to (3.3), (3.4) and the centering property and symmetry of H, we define

B
def
= −1

2
HDH = (XH)

T
(XH) (3.5)

It is apparent that B is an inner product matrix. Note that B is thus positive
semidefinite. Therefore, we could obtain another form of B by singular value decom-
position (SVD) and then the closed form of X:

B = UΣUT

X = UΣ
1
2

(3.6)

Where U is a n × n orthogonal matrix, Σ is a diagonal matrix containing all sin-
gular values of B, and Σ

1
2 is the elementwise square root of Σ. The ultimate goal of

MDS is to reduce the dimensionality of the feature vectors from m to k while maxi-
mally preserving the pairwise distances, which could be represented as the following
optimization problem:



argminrankX≤k

B− (X)
T
X


2

Fn
i=1 xi = 0

(3.7)

Where ·F is the Frobenius norm. According to the low-rank approximation prop-
erty of SVD, a closed solution of X is

X = VkΣ
1
2

k
(3.8)

Where Vk is the first k rows of V and Σ
1
2

k is a k× k diagonal matrix formed by the
largest k diagonal elements of Σ.
Nonmetric MDS does not employ an Euclidean distance matrix, necessitating a so-

lution based on optimization algorithms. The ultimate goal is fundamentally identical
to metric MDS, and the problem can be generally framed as the following optimization
problem:

10

 = 0] similarly to the positive and negative labels ina binary classification problem.
The final optimization problem is

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 (3.13)

Where the probability vector

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 in (3.12) needed for the closed form of E is calcu-
lated by the parameter

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 using the softmax function.

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and ◦ represent the sigmoid
activation function and the elementwise product respectively. I [·] is the Iverson nota-
tion applied elementwise, yielding 1 when the condition in the given position holds
and 0 otherwise.

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 denotes the 1-norm of a matrix, i.e. the mean of the absolute
values of all elements.

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 control the regularization strengths of

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

 respec-
tively.

According to (3.12) and (3.13), the closed and differentiable form of the loss func-
tion exists. Asa result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

R. Wu, A. Lv, Q. Zhao100

3.4. Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise simi-
larity values of the feature vectors obtained in the previous step. Given two feature
vectors

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

, their Euclidean
distance is

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

(3.14)

While their cosine similarity is

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

(3.15)

Where

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 denotes the angle ≤

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 between

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

 and

argmin
L,R,q


−
E ◦ log σ


Â

+ I [A = 0] ◦ log


1− σ


Â


1
+ β q2 + γ

Â

2

F



(3.13)
Where the probability vector q in (3.12) needed for the closed form of E is calculated

by the parameter q using the softmax function. σ(·) and ◦ represent the sigmoid acti-
vation function and the elementwise product respectively. I [·] is the Iverson notation
applied elementwise, yielding 1 when the condition in the given position holds and 0
otherwise. ·1 denotes the 1-norm of a matrix, i.e. the mean of the absolute values

of all elements. β and γ control the regularization strengths of q and Â respectively.
According to (3.12) and (3.13), the closed and differentiable form of the loss function

exists. As a result, the embeddings can be obtained by solving the optimization
problem described in (3.13), typically using gradient descent-based methods.

3.4 Suspicious Pair Filtering

The suspicious indices for each source code pair can be calculated by the pairwise
similarity values of the feature vectors obtained in the previous step. Given two feature
vectors x1 =

�
x11 x12 · · · x1k


and x2 =

�
x21 x22 · · · x2k


, their Euclidean

distance is

x1 − x22 =


n

i=1

(x1i − x2i)
2

(3.14)

While their cosine similarity is

cos x1,x2 =
x1 · x2

x1x2
(3.15)

Where x1,x2 denotes the angle ≤ π
2 between x1 and x2. Then we filter the

source code pairs for the suspicious ones within a certain rank of similarity for manual
inspection.
In practical settings, among the suspicious ones, the pairwise string similarity values

obtained in the feature extraction step could be another metric to further filter out
the source code pairs unnecessary for manual inspection. We can consider within the
suspicious ones that also have a string similarity value above a certain low threshold,
because actual plagiarizing source code pairs are hardly free of textual similarity.

3.5 Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing
source code pairs are generally very rare in a submission group if they do exist, and the
groups with plagiarizing pairs also tends to be uncommon. The suspiciousness indices
are not portable across different methods, rendering the plagiarism state of a pair

12

. Then we filter the source
code pairs for the suspicious ones within a certain rank of similarity for manual inspec-
tion.

In practical settings, among the suspicious ones, the pairwise string similarity values
obtained in the feature extraction step could be another metric to further filter out the
source code pairs unnecessary for manual inspection. We can consider within the suspi-
cious ones that also have a string similarity value above a certain low threshold, because
actual plagiarizing source code pairs are hardly free of textual similarity.

3.5. Evaluation

There are several challenges of evaluating the results of our method. Plagiarizing source
code pairs are generally very rare in a submission group if they do exist, and the groups
with plagiarizing pairs also tends to be uncommon. The suspiciousness indices are not
portable across different methods, rendering the plagiarism state of a pair binary. De-
termining plagiarism needs manual inspection besides automatic filtering, while it is
difficult to ingrain domain knowledge into computers.

The evaluation metric intends to compare the consistency between manual inspec-
tion results and the current ones. Therefore, it should consider the plagiarizing pairs
alone as they have far more significance and treat them as equal. It is also supposed to be
based on the normalized ranks of the suspiciousness indices for a general performance
comparison across groups. Ideally it might favor greatly the smaller ranks and penalizes
the larger ranks less severely, because smaller ranks indicate larger consistency with
manual results and generally larger ranks could greatly fluctuate.

Based on the above criteria, we propose an evaluation metric named geometric mean
of normalized ranks (GMNR), which satisfies the above mentioned properties:

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 101

binary. Determining plagiarism needs manual inspection besides automatic filtering,
while it is difficult to ingrain domain knowledge into computers.
The evaluation metric intends to compare the consistency between manual inspec-

tion results and the current ones. Therefore, it should consider the plagiarizing pairs
alone as they have far more significance and treat them as equal. It is also supposed
to be based on the normalized ranks of the suspiciousness indices for a general perfor-
mance comparison across groups. Ideally it might favor greatly the smaller ranks and
penalizes the larger ranks less severely, because smaller ranks indicate larger consis-
tency with manual results and generally larger ranks could greatly fluctuate.
Based on the above criteria, we propose an evaluation metric named geometric mean

of normalized ranks (GMNR), which satisfies the abovementioned properties:

GMNR
def
= n


n

i=1

ri
N

(3.16)

Where N and n are the total and suspicious pair count in a particular group re-
spectively. We consider only the pairs formed by two different source codes that are
not removed after data cleaning, and treat the elements of the pairs as exchangeable.
ri (1 ≤ i ≤ n) are the 1-based ranks of the suspiciousness indices of each plagiarizing
pair. It is apparent that a value of GMNR is on (0, 1] and a smaller GMNR indicates
greater overall consistency with manual results.

4 Experiments

4.1 Environment

All experiments are conducted on a computer with 32 GB of RAM. The Python
version is 3.9.9. We employ a GTX 2080 Ti for the training and evaluation of the
models.

4.2 Dataset

Property Junior group Senior group

Problems included
candy, fruit, airport, bracket,
network, sort palin, traffic

Number of contestants 15073 10644
Number of submissions 52147 35582

Programming language allowed C, C++
Total file size 39.2 MB 44.2 MB

Table 4.1: Overview of the CSP submission dataset

13

(3.16)

Where  and  are the total and suspicious pair count in a particular group re
spectively. We consider only the pairs formed by two different source codes that are
not removed after data cleaning, and treat the elements of the pairs as exchangeable.
 (1 ≤  ≤ ) are the 1-based ranks of the suspiciousness indices of each plagiarizing
pair. It is apparent that a value of GMNR is on (0, 1] and a smaller GMNR indicates
greater overall consistency with manual results.

4. Experiments

4.1. Environment

All experiments are conducted on a computer with 32 GB of RAM. The Python version
is 3.9.9. We employ a GTX 2080 Ti for the training and evaluation of the models.

4.2. Dataset

We test our method on submissions for the second round of the Certified Software
Professional programming contest in 2021. The contest is organized by the China Com
puter Federation (CCF) and has junior and senior groups that assess programming skills
of middle and high school students respectively. It is a onsite contest hold distributedly
in provinces. There are two rounds typically in early Octobers and early Novembers,
and only contestants passing the first round can participate in the second.

The CSP submission dataset consists of submissions from 25 participating provinces
in the second round of CSP 2021. Table 4.1 provides an overview of the dataset. Every
participant may submit multiple times for each problem, and only the last submission is

Table 4.1
Overview of the CSP submission dataset

Property Junior group Senior group

Problems included candy, fruit,
network, sort

airport, bracket,
palin, traffic

Number of contestants 15073 10644
Number of submissions 52147 35582
Programming language allowed C, C++ C, C++
Total file size 39.2 MB 44.2 MB

R. Wu, A. Lv, Q. Zhao102

rated afterwards and given scores. All types of sensitive information involving personal
privacy, such as contestant names and schools, are removed.

We use the method described in Section 3, and conduct experiments with both MDS
and AttentionWalk as the graph embedding algorithm. We view all submissions from
each province and each task as a submission group, for plagiarism across provinces is
practically impossible. For every group, we calculate the minimal GMNR during train-
ing only if manual inspection had found any plagiarizing source code pairs, as we intend
to compare the results of our method with manual inspection results.

The training parameters for the graph embedding algorithms are in Table 4.2. For
AttentionWalk, we use the Adam optimizer. We also apply L2 regularization on the ad-
jacency matrix reconstruction


argminX

n
i=1

n
j=i+1


xi − xj2 − dij


n

i=1 xi = 0
(3.9)

An analytical solution typically does not exist, thus requiring numeric calculation.
Generally the distance calculation on the solution is Euclidean and the distance matrix
D is still nonnegative, symmetric, and has zeroes as its diagonal elements.

AttentionWalk. AttentionWalk (Abu-El-Haija et al., 2018) is a fast graph embedding
algorithm based on random walks, introducing adaptability on the parameters such as
random walk step count.
Given a simple graph of n nodes whose adjacency matrix is A. The node are

numbered from 1 to n. The edge weights are in the interval [0, 1]. The maximal step
count is C. We intend to embed the nodes into an m-dimensional vector space and m

is even. The embedding is denoted as Y
def
=

�
L RT


where L and R are n× m

2 and
m
2 × n matrices respectively. We define the reconstructed adjacency matrix Â

def
= LR.

An initial configuration S is provided as an n×n diagonal matrix, where each diag-
onal value is the number of random walks starting from the correspondingly numbered
node. As an algorithm based on random walks, we attempt to discover the expectation
matrix E where Eij equals to the expected count of the random walks from node i to
node j. Considering a single step from node u,

P (choose node v | currently at node u) = Auvn
w=1 Auw

(3.10)

Random walks are Markov processes. Therefore, according to (3.10), after row
normalization A is converted to a transition matrix T covering one random walk step.
Using the Markov property, we know

�
Tk


ij
(1 ≤ k ≤ C) is the probability of a

certain walk being a k-step one from node i to node j.

We define the probability vector q
def
=

�
q1 q2 · · · qC


, where qk represents the

probability of a certain walk to have k steps. According to Bayes theorem, the closed
form of the probability matrix P where Pij is the probability of a certain walk being
from node i to node j is:

P =
C

k=1

qkT
k (3.11)

Then it is easy to deduce the closed form of E with (3.11):

E = SP = S
C

k=1

qkT
k (3.12)

The loss function is similar to cross-entropy loss, respectively treatingE and I [A = 0]
similarly to the positive and negative labels in a binary classification problem. The
final optimization problem is

11

. The GMNR is calculated every 1000 epochs to find the
minimal one. For MDS, as the dimension of the embedding vectors cannot exceed that
of the original features, adopting an embedding dimension of the largest possible power
of 2 provides an adequate trade-off between accuracy and practicality.

4.3. Results on the CSP Submission Dataset

All results are even rounded and have four significant digits, unless otherwise noted.

4.3.1. Junior Group
Table 4.3 and Table 4.4 show the results on the junior group of the CSP submission
dataset using MDS and AttentionWalk respectively. Only provinces of plagiarizing
code pairs are shown in tables, and empty cells denote submission groups without
known plagiarizing code pairs.

From the tables, our method is robust against different difficulty and skill cover
age combinations, and accurately identifies plagiarizing code pairs. On the submission
groups of fruit our method has an overall lower performance, possibly due to the
ability of several ready-made approaches to this problem to obtain a nearly full score,
which rarely happens to other problems.

Table 4.2
Parameters of the graph embedding algorithms

Algorithm Parameter Value

AttentionWalk Embedding dimension
Training epochs
Attention vector length
Walk count
L2 regularization strength
Learning rate
GMNR calculation interval

 512
50000
 20
 80
 0.01
 5e-5
 1000

MDS Dimension of new vector space Largest power of 2
≤ group count

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 103

4.3.2. Senior Group
The results of our algorithm are in Table 4.5 and Table 4.6, with MDS and Attention-
Walk respectively. Only provinces of plagiarizing code pairs are shown in tables. Emp-
ty cells mean no plagiarism detected in these groups, the same as in Section 4.3.1.

Our method also performs accurately with robustness across all submission groups.

Table 4.3
GMNRs using MDS on the junior group, CSP 2021

Province candy fruit network sort

Anhui 5.581e-2 3.822e-1 2.378e-1 3.334e-1
Beijing 1.162e-1 2.537e-2 2.978e-2
Guangdong 3.070e-1
Guangxi 2.167e-1 3.453e-1 2.345e-2
Hunan 3.496e-1
Jiangsu 2.366e-1
Sichuan 1.515e-1
Shandong 3.265e-3 3.190e-1 2.737e-1
Shanghai 1.624e-1
Shannxi 4.081e-2
Shanxi 1.589e-1 1.046e-2
Tianjin 3.676e-1 1.975e-1 2.412e-1
Xinjiang 3.928e-1
Yunnan 4.452e-1
Zhejiang 3.128e-1

Table 4.4
GMNRs using AttentionWalk on the junior group, CSP 2021

Province candy fruit network sort

Anhui 4.733e-7 5.960e-4 2.394e-4 1.571e-5
Beijing 3.145e-5 7.556e-4 2.011e-5
Guangdong 6.687e-5
Guangxi 6.656e-6 1.308e-5 1.253e-4
Hunan 1.629e-6
Jiangsu 3.040e-6
Sichuan 8.215e-5
Shandong 6.488e-7 1.387e-4 1.355e-5
Shanghai 5.348e-5
Shannxi 3.564e-5
Shanxi 1.919e-5 1.702e-4
Tianjin 7.652e-5 6.724e-4 8.290e-4
Xinjiang 1.057e-3
Yunnan 8.340e-5
Zhejiang 6.567e-6

R. Wu, A. Lv, Q. Zhao104

4.4. Results against Mossad

We test our method against the Mossad approach4 to plagiarism detection evasion (Dev-
ore-McDonald and Berger, 2020). After applying our method, the rank of the pair of the
original and the mutation are consistently below 10 in the 5 groups tested. To the best of
our knowledge, our method is the first practical countermeasure against Mossad.

5. Conclusions

We propose an adaptive source code detection method offering robustness and accuracy
comparable to conventional methods. We eliminate thresholds in the core parts of our
method, easing manual inspection while enhancing adaptability. Real-World tests on
the OI dataset indicate the its practicality when faced with the challenges of the varied
submission groups and similarity distributions. Almost all known plagiarizing code pairs

4	 Mossad mutates the original submission by inserting repetitive statements and uses gcc -O3 to deter
mine the semantic equivalence. We insert pre-existing lines instead, as C++ parsing is complex, and
choose the first generated mutation with a similarity value by the GST algorithm below 0.4.

Table 4.5
GMNRs using MDS on the senior group, CSP 2021

Province airport bracket palin traffic

Chongqing 4.794e-1
Hubei 1.132e-1
Jiangsu 5.286e-1
Jiangxi 1.521e-1
Sichuan 2.934e-1
Tianjin 6.330e-2
Zhejiang 4.120e-1 3.298e-1 4.333e-1

Table 4.6
GMNRs using AttentionWalk on the senior group, CSP 2021

Province airport bracket palin traffic

Chongqing 5.018e-5
Hubei 4.808e-4
Jiangsu 8.037e-4
Jiangxi 1.277e-4
Sichuan 1.508e-5
Tianjin 4.267e-4
Zhejiang 4.349e-6 2.858e-6 3.993e-3

Detecting Plagiarism as Out-of-distribution Samples for Large-scale ... 105

have low ranks of suspiciousness index regardless of whether they are syntactically or
semantically similar.

Plagiarism detection based on graph embedding can serve as an overlay upon tradi
tional methods, facilitating the transition to adaptive, grey-box algorithms. However,
graph embedding lacks sufficient capture of the high-level semantics of the source codes
as well as other nuances. More advanced graph algorithms, such as graph neural net
works (GNN) might be researched and employed to alleviate this problem.

6. Acknowledgement

This work is supported by State Key Laboratory of Software Development Environ
ment, Beihang University under Grant No. SKLSDE-2022ZX-09.

References

Abu-El-Haija, S., Perozzi, B., Al-Rfou, R.,Alemi, A.A. (2018). Watch your step: Learning node embeddings via
graph attention. Advances in Neural Information Processing Systems, 31.

Ajmal, O., Missen, M.S., Hashmat, T., Moosa, M., Ali, T. (2013). Eplag: A two layer source code plagiarism
detection system. In: Eighth International Conference on Digital Information Management (ICDIM 2013)
(pp. 256–261).

Arwin, C., Tahaghoghi, S.M. (2006). Plagiarism detection across programming languages. In: Proceedings of
the 29th Australasian Computer Science Conference-Volume 48 (pp. 277–286).

Bandara, U., Wijayarathna, G. (2011).A machine learning based tool for source code plagiarism detection.
International Journal of Machine Learning and Computing , 1(4), 337.

Cox, M.A., Cox, T.F. (2008). Multidimensional scaling. In: Handbook of Data Visualization. Springer, pp.
315–347.

Devore-McDonald, B., Berger, E.D. (2020). Mossad: Defeating software plagiarism detection. Proceedings of
the ACM on Programming Languages, 4(OOPSLA), 1–28.

Flores, E., Rosso,P., Moreno, L., Villatoro-Tello, E. (2014). On the detection of source code re-use. In: Proceed-
ings of the Forum for Information Retrieval Evaluation (pp. 21–30).

Foltỳnek, T., Meuschke, N., Gipp, B. (2019). Academic plagiarism detection: a systematic literature review.
ACM Computing Surveys (CSUR), 52(6), 1–42.

Freire, M., Cebrían, M., Del Rosal, E. (2007). Ac: An integrated source code plagiarism detection environment.
arXiv preprint cs.IT/0703136 .

Gitchell, D., Tran, N. (1999). Sim: a utility for detecting similarity in computer programs. ACM Sigcse Bulletin,
31(1), 266–270.

Grover, A., Leskovec, J. (2016). node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 855–864).

Halim, S., Halim, F., Skiena, S.S., Revilla, M.A. (2013). Competitive Programming 3. Citeseer.
Jiffriya, M., Jahan, M.A., Ragel, R.G. (2014). Plagiarism detection on electronic text based assignments using

vector space model. In: 7th International Conference on Information and Automation for Sustainability (pp.
1–5).

Karnalim, O., Chivers, W. (2020). Preprocessing for source code similarity detection in introductory program-
ming. In: Koli Calling’20: Proceedings of the 20th Koli Calling International Conference on Computing
Education Research (pp. 1–10).

Karp, R. M., Rabin, M.O. (1987). Efficient randomized pattern-matching algorithms. IBM Journal of Research
and Development , 31(2), 249–260.

Lee, Y.-J., Lim, J.-S., Ji, J.-H., Cho, H.-G., Woo, G. (2012). Plagiarism detection among source codes using
adaptive methods. KSII Transactions on Internet and Information Systems (TIIS), 6(6), 1627–1648.

Ng, A., et al. (2011). Sparse autoencoder. CS294A Lecture notes , 72(2011), 1–19.

R. Wu, A. Lv, Q. Zhao106

Prechelt, L., Malpohl, G., Philippsen, M. (2000). Jplag: Finding Plagiarisms among a Set of Programs. Cite-
seer.

Rabbani, F.S., Karnalim, O. (2017). Detecting source code plagiarism on. net programming languages using
low-level representation and adaptive local alignment. Journal of Information and Organizational Sciences,
(1), 105–123.

Rahutomo, F., Kitasuka, T., Aritsugi, M. (2012). Semantic cosine similarity. In: The 7th International Student
Conference on Advanced Science and Technology Icast (Vol. 4, p. 1).

Roberts, E., Camp, T., Culler, D., Isbell, C., Tims, J. (2018). Rising cs enrollments: Meeting the challenges. In:
Proceedings of the 49th ACM Technical Symposium on Computer Science Education (pp. 539–540).

Ruff, L., Kauffmann, J.R., Vandermeulen, R.A., Montavon, G., Samek, W., Kloft, M., . . . Müller, K.-R. (2021).
A unifying review of deep and shallow anomaly detection. Proceedings of the IEEE.

Schleimer, S., Wilkerson, D. S., Aiken, A. (2003). Winnowing: local algorithms for document fingerprinting. In:
Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data (pp. 76–85).

Sulistiani, L., Karnalim, O. (2019). Es-plag: Efficient and sensitive source code plagiarism detection tool for
academic environment. Computer Applications in Engineering Education , 27(1), 166–182.

Suthaharan, S. (2016). Support vector machine. In: Machine learning models and algorithms for big data clas-
sification (pp. 207–235). Springer.

Ðurić, Z., Gašević, D. (2013). A source code similarity system for plagiarism detection. The Computer Journal,
56(1), 70–86.

Wang, D., Cui, P., Zhu, W. (2016). Structural deep network embedding. In: Proceedings of the 22nd ACM SIG-
KDD International Conference on Knowledge Discovery and Data Mining (pp. 1225–1234).

Wise, M.J. (1996). Yap3: Improved detection of similarities in computer program and other texts. In: Proceed-
ings of the Twenty-Seventh SIGCSE Technical Symposium on Computer Science Education (pp. 130–134).

Yasaswi, J., Kailash, S., Chilupuri, A., Purini, S., Jawahar, C. (2017). Unsupervised learning based approach
for plagiarism detection in programming assignments. In: Proceedings of the 10th Innovations in Software
Engineering Conference (pp. 117–121).

R. Wu has graduated from Beihang University with a bachelor degree
in Computer Science and Engineering, and is currently pursuing his
Master degree in Beihang. He is involved in the plagiarism detection
and technical supporting of the China National Olympiads in Informat-
ics (NOI). His current research interests include computer vision and
discrete mathematics.

A. Lv is involved in software development and technical supporting
of the China National Olympiads in Informatics (NOI). He graduated
from Taiyuan University of Technology with a Bachelor degree in
Mathematics, and is currently pursuing his Master degree in Beihang.

Q. Zhao is currently the vice chairman of the scientific committee of
the China National Olympiads in Informatics (NOI). He is a lecturer of
computer science in Beihang University, working on computer vision
and deep learning.

Olympiads in Informatics, 2022, Vol. 16, 107–123
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.09

107

REPORTS

Primary School Programming Olympiads
in Gomel Region (Belarus)

Michael DOLINSKY
Faculty of Mathematics and Technologies of Programming, F. Skorina Gomel State University
Sovetskaya str., 104, Gomel. 246019. Republic of Belarus
e-mail: dolinsky@gsu.by

Abstract. The content of programming contests for students in grades 1–4 of the Gomel region
(Belarus) is described in this article. A general idea of the thematic content of the tasks and ex-
amples of the tasks of the city Olympiad, which took place on April 8, 2016, is provided. The
methodology of teaching and preparing junior schoolchildren for such Olympiads is also briefly
described. A serious technical basis is the instrumental system of distance learning developed
under the control of the author (DL.GSU.BY).

Keywords: programming olympiads, primary school, distance learning instrumental system.

1. Introduction

The popular and difficult task of computer science education is introduction of infor-
matics education in primary school (Dagienė et al.,2019). One can see many directions
of this work: unplugged education (Plugar, 2021; van der Vegt, 2016), gamification pro-
cess focused on increase in motivation and engagement of the learners (Combéfis et al.,
2016), using Scratch (Fagerlund et al., 2020), performing of certain problem solving
tasks of controlling an agent or planning its future behavior – in a digital environment:
programmable toy, microworld, programming environment (Kabátová et al., 2016), ro-
bot programming (Kanemune et al., 2017), learning visual programming, programming
and robotics, and programming and electronics (Panskyi et al.,2021), using special
software (Tsvetkova et al., 2021 and Alemany et al., 2016).

M. Dolinsky108

Since September 1996, on the basis of secondary school 27 in Gomel, and in Sep-
tember 1999, additionally and on the basis of the distance learning site DL.GSU.BY
(hereinafter referred to as DL), work is being carried out on the optional study of
computer science and programming for schoolchildren of different ages (Dolinsky,
2016). The key feature of this training is the early start of education – actually from the
1st grade, and in some cases from kindergarten (Dolinsky, 2018). For such students,
special programming olympiads are held in order to increase motivation for classes, as
well as for the early acquisition of competitive experience. This article offers materials
for such Olympiads and a brief description of teaching programming and preparing
for such Olympiads for students in grades 1–4. Training includes the sequential study
of the necessary information and their consolidation by solving the proposed tasks.
Verification of solutions is carried out automatically on the DL.GSU.BY website (Do-
linsky, 2017).

2. Contents of the Olympiads

Problems for grades 1–4 include three groups of tasks in ascending order of difficulty
(each student is invited to solve all these tasks):

Group 1 of tasks (10 tasks): includes tasks from the “Introduction to programming”
section: three tasks with numbers (Dolinsky, 2019), one each with symbols, strings,
line lengths, position of a character in a line and three tasks for using the built-in
programming language Pascal of line processing functions: DELETE, COPY, POS,
respectively, delete part of a line, copy part of a line and find the position of the first
occurrence of one line into another. In tasks 1–10 (each with 5 points), one needs
to write a program that works in accordance with the given examples of input and
output:

№1

Output example:

2
0
1 6

№2

Input example: Input example:

18 24

Output example: Output example:

t=18 C t=24 C

Primary School Programming Olympiads in Gomel Region (Belarus) 109

№3

Input example: Input example:

17
8 1

21
11 3

Output example: Output example:

17=8+9
17=1+16

21=11+10
21=3+18

№4

Input example: Input example:

+ k

Output example: Output example:

not + not k

№5

Input example: Input example:

Dog
bird
mouse

mountain
sea
tree

Output example: Output example:

s2+s1+s3
bird+dog+mouse

s2+s1+s3
sea+mountain+tree

№6

Input example: Input example:

mango
snow
fabiele

honesty
forest
sophisticated

Output example: Output example:

(snow)=4
(fabiele)=7
(mango)=5
7-5+4=6

(forest)=6
(sophisticated)=13
(honesty)=7
13-7+6=12

№7

Input example: Input example:

Zewitched Kird

Output example: Output example:

Bewitched
bewitches

Bird
Birk

M. Dolinsky110

№8

Input example: Input example:

mouRnttain
4
pinMeapSple

giprafafe
3
vakriabkle

Output example: Output example:

mountain
pineapple

giraffe
variable

№9

Input example: Input example:

Horse
1 2

mango
3 1

Output example: Output example:

h se horse man o mango

№10

Input example: Input example:

S
sunset
mouse
comicas

O
mango
susurrous
honesty

Output example: Output example:

*unset=1
mou*e=4
omica*=7

mang*=5
susurr*us=7
h*nesty=2

Group 2 of tasks (5 tasks): includes tasks from the “One-dimensional array” section:
summing elements, counting elements with a certain property, finding the maximum
and minimum elements, and finding the number of an element with a given property.
The following are examples of such tasks.
Problem 11 (5 points)
For several weeks Denis saved money that was given to him for pocket expenses. Dur-
ing the autumn holidays, he and his mother decided to go to the park and take a ride on
the merry-go-rounds. Calculate the cost of riding on all the carousels and print “+” if
Denis has enough money for all the rides, otherwise print the amount of money that you
need to ask your mother to have enough to ride on all the carousels.

Primary School Programming Olympiads in Gomel Region (Belarus) 111

Input format: Input
example:

Input
example:

S – the amount of money Denis has
K – number of carousels (K<=12)
a[1] – the cost of riding the 1st carousel
а[2] – the cost of riding the 2nd carousel
…
а��[K] – the cost of riding the K-th carou-
sel

1500000
5
20000
15000
12000
17000
25000

50000
4
15000
12000
25000
17000

Output format: Output
example:

Output
example:

s – the cost of riding all carousels
+ / n – the amount that mom should give

89000
+

69000
19000

Problem 12 (5 points)
Timofey’s dad decided to make a basketball ring for his son. The boy has a basket ball
with a diameter of 19 cm. To comply with all the rules of basketball, it is necessary that
the diameter of the ring is 26 cm larger than the diameter of the ball. Count the number
of rings made correctly.

Input format: Input example:

m – number of rings (m<=15)
a[1] а[2] … a[m]
diameters of rings made by dad

4
45 38 45 41

Output format: Output example:

K – number of rings suitable for Timofey 2

Problem 13 (5 points)
People have always appreciated any kind of thrill-related entertainment. Roller coast-
ers remain the most popular extreme attractions at all times. Calculate the speed of the
fastest of the five slides.

Input format: Input example:

a[1] – speed Kingda Ka, km/h
а[2] – speed Top Thrill Playster
а[3] – speed Formula Rossa
а[4] – speed Dodonpa
а[5] – speed Steel Dragon

206
190
240
172
120

Output format: Output example:

sp – max speed 240

M. Dolinsky112

Problem 14 (5 points)
Spring has come in the land of the Moomins. Baby Sniff picked the first spring flowers
for N days. Of the flowers he collected, he gave five to his family members, and from
the rest he made bouquets. Calculate the number of flowers in the smallest bouquet that
baby Sniff can get.

Input format: Input example:

N - number of days (N<=15)
a[1] – number of flowers in the 1st bouquet
a[2] – number of flowers in the 2nd bouquet
…
a[N] – number of flowers in the N-th bouquet

5
7
10
14
9
6

Output format: Output example:

M – number of flowers in the smallest bouquet 1

Problem 15 (5 points)
The Babochkin family is about to go on vacation to the sea. In order to choose the right
tour, it is necessary that the day of departure to the sea was the day after the father went
on vacation. Determine if there are tour start days that are suitable for the rest of the
Babochkin family.

Input format: Input example: Input example:

m – number of tours (m<=10)
s – father’s day of vacation
a[1] – 1st tour day
а[2] – 2nd tour day
…
а[m] – day of the m-th tour

10
11
12
14
15
16
17
13
11
12
14
23

7
29
12
1
6
27
5
18
19

Output format: Output example: Output example:

+ / – + -

Group 3 of tasks (5 tasks): designed to differentiate the knowledge of skills and abili-
ties of the most prepared children and includes one simple task on the following topics:
two-dimensional array, geometry, strings, research (based on Kangaroo tasks of 2–3
grades), word problem.

Primary School Programming Olympiads in Gomel Region (Belarus) 113

Problem 16 (5 points)
In one of the hottest countries in the world, they decided to measure the air temperature
for M hours for a week. Determine on which day the maximum temperature was reached
and at what time.

Input format: Input example:

M – number of hours to measure temperature (M<=24)
а1 а2 … аM – temperature on Monday
b1 b2 … bM – temperature on Tuesday
c1 c2 … cM – temperature on Wednesday
d1 d2 … dM – temperature on Thursday
e1 e2 … eM – temperature on Friday
f1 f2 … fM – temperature on Saturday
g1 g2 … gM – temperature on Monday

5
28 28 29 29 30
30 31 31 31 31
32 32 32 32 32
30 30 30 31 31
32 33 33 33 34
31 31 32 33 33
29 29 30 31 31

Output format: Output example:

max – highest temperature
n – the hour when the maximum temperature was
reached

34
5

Problem 17 (5 points)
Pavel is going to visit all excursions during L days of rest at sea. Determine the farthest
excursion from the place of residence, and how far he will travel in all days if he visits
one excursion every day and returns to the hotel.

Input format: Input example:

L – number of rest days (L<=14)
x1 y1 – coordinates of the 1st excursion
x2 y2 – coordinates of the 2nd excursion
…
xL yL – coordinates of the L-th excursion
xe ye – coordinates of the place of residence

7
1 1
4 2
7 1
1 5
8 10
12 6
6 6
6 5

Output format: Output example:

m – distance to the furthest excursion
nom – the number of the furthest excursion
rast – total distance

Display real numbers with 1 decimal place.

6.4
1
63.2

Problem 18 (5 points)
N lines are given containing characters '.' and '#'. Print the number of the first line con-
taining the least number of '#' characters.

M. Dolinsky114

Input format: Input example:

N (N<=5)
s1
s2
..
sN

4
.##..
....
######
##.####

Output format: Output example:

k - line number 2

Problem 19 (5 points)
The difference between the two numbers is X less than the number to be subtracted and
by Y more than the subtracted one. What is it equal to?

Input format: Input example:

X Y 3 4

Output format: Output example:

Z - difference of two numbers 7

Problem 20 (5 points)

Input file: input.txt	 Output file: output.txt
While e-books are gaining popularity around the world, in Byte-
land, everyone loves to read books in the library.

The National Library of Byteland has a variety of shelves,
each containing books on a specific topic. The most popular
shelving unit is a selection of fiction. The rack has N shelves,
each of which holds N books.

Sometimes readers return a book to the shelf and put it on
the wrong shelf. Therefore, every evening the librarian Eleonora
Romualdovna puts things in order in the rack. In total, the Na-
tional Library of Bytelandia contains works of art by N differ-
ent authors, and the library contains ai books of the i-th author.
Eleonora Romualdovna defines the disorder on the shelf by the
number P, which is equal to the maximum of pi values, where
pi is the disorder on the i-th shelf. The clutter on the i-th shelf is
calculated as the number of different authors whose works are
located on it. Eleonora Romualdovna believes that the rack is in
perfect order if the number P is minimal.

Arranging books every day, deciding where to put each book,
is a very difficult task, so Eleonora Romualdovna asks you to
help. To begin with: count how many books she has in the li-
brary.

Primary School Programming Olympiads in Gomel Region (Belarus) 115

Input data:
The first line of the input file contains a single natural number N (1 ≤ N ≤ 100) – the
number of shelves.

The second line contains N integers ai (1 ≤ ai ≤ 105) – the number of books by the
i-th author.

The numbers in the lines of the input file are separated by single spaces.
Output data:
The output file should contain one number – the total number of books in the library.

input.txt output.txt

3
1 2 6

9

Systematic and purposeful preparation of regional Olympiads is an important means
of developing the Olympiad movement in the region. Regional Olympiads are held in
the Gomel region five times a school year: in October-November for school and city at
three divisions: grades 1–4, 5–8, 9–11 and in March–April for school, city and regional
at three divisions: grades 1–4, 5–7, 8–9. When conducting these Olympiads, Internet
technologies and the DL.GSU.BY website are used, which allows not only schoolchil-
dren of the Gomel region to participate in all the Olympiads, but also everyone who
wishes. And, it should be noted, there are dozens of such applicants from all regions of
Belarus and the city of Minsk.

3. Training System

It is important to note that, despite the focus on programming, training is essentially
developing in nature and therefore it is very useful both for those who subsequently
choose information technology as their professional field, and for everyone who will
be engaged in at least some time. Practice also shows that the training is structured in
a rather interesting form. All classes are conducted only on a voluntary basis outside the
classroom. Another equally important aspect is the differentiated approach. The use of
Internet technologies makes it possible to provide individual training along a personal
educational trajectory.

The work with first-graders begins with the course “Learning to think”(Dolinsky,
2014). A side effect of the lessons in this course is the growing interest in teaching
a wide range of younger students. The main goal is to acquire stable skills in performing
basic mental operations. At the moment, the course offers the following basic mental
operations (in the amount of 21 pieces):

Operations on pairs: comparison, ordering, association.●●
Operations on sets: union, intersection, subtraction.●●
Operations on a set: classification, structuring, generalization.●●
Logical operations: ne●● gation, conjunction, disjunction, equivalence, implication.

M. Dolinsky116

Complex operations: synthesis, memorization, analysis, imagination, analogy, ab-
straction, positioning.

Further training is consistently conducted within the following sets of tasks “In-
troduction to programming”, “Debugger”, “One-dimensional array”, “Two-dimensional
array”, “Geometry”, “Strings” (Dolinsky, 2013). Learning in all these sets of tasks is
built on the principles of differentiated learning (Dolinsky, 2020). Stem tasks are listed
in ascending order of difficulty. For each stem problem, there is a branching tree of lead-
ing problems of less complexity. In the end, for each task, training is provided with the
presented source code in approximately the following order.

Each studied task after a certain number of tasks is met as a control one. In this case,
there is no “Don’t know” button. If a student cannot solve such a problem (previously
studied) even with the help of his notebook, he is automatically transferred back to learn-
ing to this problem. To stimulate more intense thinking activity, as opposed to thought-
lessly pressing the “Don’t Know” buttons, most of the lead-in folders are provided with
some of the test assignments described above, BEFORE and AFTER learning to solve
the problem for which the student pressed the “Don’t Know” button.

Folders with tasks for the development of basic mental operations are continuously
interwoven into the learning process, both on the basis of graphic images and on the
basis of using the studied material as graphic images in the form of tests, algorithms
and programs.

For a more complete control of the assimilation of topics, at the end of each of them
there are folders with analogy problems. If a student finds it difficult to solve them, then
it is necessary to improve learning in general and work with this student, in particular.

Next, there are tasks, for the solution of which the ability to combine the studied
methods of solving problems is required.

Finally, each topic ends with a complete set of available Olympiad problems. Since
April 2007, programming contests have been held in the Gomel region for students in
grades 1–4. First, there are olympiads problems on a given topic, and then sets of olym-
piads problems on all topics studied up to this topic, inclusive.

4. Conclusion

The materials of programming contests for primary school students and briefly presents
the methodology for teaching and preparing junior schoolchildren for such Olympiads
are considered in this article. The Olympiad for pupils of grades 1–4 of Gomel and
the Gomel region, held on April 8, 2016, was attended by 50 students from 10 settle-
ments: Gomel, Rechitsa, Zhlobin, Kalinkovichi, Mozyr, Svetlogorsk, Chechersk (all-
Gomel region), Grodno, Lida (Grodno region), Polotsk (Vitebsk region). The winner
(4th grade student Kopichenko S.) solved all the proposed problems. Diplomas were
awarded to three 1st grade students, two 2nd grade students, five 3rd grade students
and eight 4th grade students from Gomel, Zhlobin, Svetlogorsk and Kalinkovichi. The
wide geography and high results confirm both the correct choice of a set of tasks and
the effectiveness of the proposed distance learning system. The author’s solutions to the
problems of this Olympiad are attached to the article.

Primary School Programming Olympiads in Gomel Region (Belarus) 117

References

Alemany F.J., Vilahur V.J. (2016). eSeeCode: Creating a Computer Language from Teaching Experiences.
Olympiads in Informatics, 10, 3–18.

Combéfis S., Beresnevičius G., Dagienė V. (2016). Learning Programming through Games and Contests:
Overview, Characterisation and Discussion. Olympiads in Informatics, 10, 39–60.

Dagienė V., Jevsikova T., Stupurienė G. (2019) Introducing Informatics in Primary Education: Curriculum
and Teachers’ Perspectives. In:

Dolinsky M. (2013). An approach to teach introductory-level computer programming. Olympiads in Infor-
matics, 7, 14–22.

Dolinsky M. (2014). Technology for the development of thinking of preschool children and primary school
children. Olympiads in Informatics, 8, 63–68.

Dolinsky M. (2016). Gomel training school for Olympiads in Informatic. Olympiads in Informatics, 10,
237– 247.

Dolinsky M. (2017). A New Generation Distance Learning System for Programming and Olympiads in
Informatics. Olympiads in Informatics, 11, 29–39.

Dolinsky M., Dolinskaya M. (2018). How to Start Teaching Programming at Primary School. Olympiads in
Informatics, 12, 13–24.

Dolinsky M., Dolinskaya M. (2019). Training in Writing the Simplest Programs From Early Ages, 13,
21–30.

Dolinsky M., Dolinskaya M. (2020). The Technology of Differentiated Instruction in Text Programming in
Elementary School Based on the Website dl.gsu.by, 14, 37–46.

Fagerlund J., Hakkinen P., Vesisenano M, Viiri, J. (2020). Assessing 4th Grade Students’ Computation-
al Thinking through Scratch Programming Projects. Informatics in Education, 19(4), 611–640. DOI:
10.15388/infedu.2020.27

Kabátová M., Kalaš I., Tomcsányiová M. (2016). Programming in Slovak Primary Schools. Olympiads in
Informatics, 10, 125–159.

Kanemune S., Shirai S., Tani S. (2017). Informatics and Programming Education at Primary and Secondary
Schools in Japan. Olympiads in Informatics, 11, 143–150.

Panskyi T., Rowinska Z. (2021). A Holistic Digital Game-Based Learning Approach to Out-of-School Prima-
ry Programming Education. Informatics in Education, 20(2), 255–276. DOI: 10.15388/infedu.2021.12

Performance Statistics of Gomel pupils at international and national olympiads in informatics since 1997 up
to 2020 (In Russian): http://dl.gsu.by/olymp/result.asp

Plugar Z. (2021). Extending Computational Thinking Activities. Olympiads in Informatics, 15, 83–89.
Pozdniakov S., Dagienė V. (eds) Informatics in Schools. New Ideas in School Informatics. ISSEP 2019.

Lecture Notes in Computer Science, vol 11913. Springer, Cham.
https://doi.org/10.1007/978-3-030-33759-9_7

Tsvetkova M.S., Kiryukhin V.M. (2021). Algorithmic Thinking and New Digital Literacy. Olympiads in
Informatics, 15, 105–118.

van der Vegt W. (2016). Bridging the Gap Between Bebras and Olympiad; Experiences from the Nether-
lands. Olympiads in Informatics, 10, 223–230.

M. Dolinsky is a lecturer in Gomel State University “Fr. Skoryna”
from 1993. Since 1999 he is leading developer of the educational site
of the University (dl.gsu.by). Since 1997 he is heading preparation
of the scholars in Gomel to participate in programming contests and
Olympiad in informatics. He was a deputy leader of the team of Be-
larus for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is de-
voted to the tools for digital system design. His current research is in
teaching Computer Science and Mathematics from early age.

M. Dolinsky118

Appendix.

The following are the source codes for solving presented problems in Pascal:

Problem 1

begin
 writeln(2);
 writeln(0);
 writeln(1,' ',6);
end.

Problem 2

var
 a : longint;
begin
 readln(a);
 writeln('t=',a,' C');
end.

Problem 3

var
 s1,s2,s3,s4,s5 : longint;
begin
 readln(s1);
 readln(s2,s3);
 s4:=s1-s2;
 s5:=s1-s3;
 writeln(s1,'=',s2,'+',s4);
 writeln(s1,'=',s3,'+',s5);
end.

Problem 4

var
 a : char;
begin
 readln(a);
 writeln('not ',a);

end.

Problem 5

var
 a,b,c : string;
begin
 readln(a);
 readln(b);
 readln(c);
 writeln('s2+s1+s3');
 writeln(b,'+',a,'+',c);

end.

Problem 6

var
 s1,s2,s3 : string;
 d1,d2,d3 : longint;
begin
 readln(s1);
 readln(s2);
 readln(s3);
 d1:=length(s1);
 d2:=length(s2);
 d3:=length(s3);
 writeln('(',s2,')=',d2);
 writeln('(',s3,')=',d3);
 writeln('(',s1,')=',d1);
 writeln(d3,'-',d1,
 '+',d2,'=',d3-
d1+d2);

end.

Primary School Programming Olympiads in Gomel Region (Belarus) 119

Problem 7

var
 s : string;
 c : char;
begin
 readln(s);
 c:=s[1];
 s[1]:='b';
 writeln(s);
 s[length(s)]:=c;
 writeln(s);

end.

Problem 8

var
 s,p : string;
 k,d : longint;
begin
 readln(s);
 readln(k);
 readln(p);
 d:=length(s);
 delete(s,d-k+1,1);
 delete(s,k,1);
 d:=length(p);
 delete(p,d-k+1,1);
 delete(p,k,1);
 writeln(s);
 writeln(p);

end.

Problem 9

var
 s,p,q : string;
 d,k1,k2 : longint;
begin
 readln(s);
 readln(k1,k2);
 d:=length(s);
 p:=copy(s,1,k1);
 q:=copy(s,d-k2+1,k2);
 writeln(p,' ',q,' ',s);

end.

Problem 10

var
 s1,s2,s3 : string;
 c : char;
 p1,p2,p3 : longint;
begin
 readln(c);
 readln(s1);
 readln(s2);
 readln(s3);
 p1:=pos(c,s1);
 p2:=pos(c,s2);
 p3:=pos(c,s3);
 s1[p1]:='*';
 s2[p2]:='*';
 s3[p3]:='*';
 writeln(s1,'=',p1);
 writeln(s2,'=',p2);
 writeln(s3,'=',p3);

end.

M. Dolinsky120

Problem 11

var
 a : array [1..12] of longint;
 s,i,n,p : longint;
begin
 readln(p);
 readln(n);
 for i:=1 to n do readln(a[i]);
 s:=0;
 for i:=1 to n do s:=s+a[i];
 writeln(s);
 if s<=p
 then writeln('+')
 else writeln(s-p);
end.

Problem 12

var
 a : array [1..15] of longint;
 k,i,n : longint;
begin
 readln(n);
 for i:=1 to n do read(a[i]);
 k:=0;
 for i:=1 to n do
 if a[i]=45 then k:=k+1;
 writeln(k);
end.

Problem 13

var
 a : array [1..5] of longint;
 k,i : longint;
begin
 for i:=1 to 5 do readln(a[i]);
 k:=a[1];
 for i:=2 to 5 do
 if a[i]>k then k:=a[i];
 writeln(k);
end.

Primary School Programming Olympiads in Gomel Region (Belarus) 121

Problem 14

var
 a : array [1..15] of longint;
 i,k,n : longint;
begin
 readln(n);
 for i:=1 to n do readln(a[i]);
 k:=a[1];
 for i:=2 to n do
 if a[i]<k then k:=a[i];
 writeln(k-5);
end.

Problem 15

var
 a : array [1..10] of longint;
 k,i,s : longint;
begin
 readln(k);
 readln(s);
 for i:=1 to k do readln(a[i]);
 i:=1;
 while (i<=k) and (a[i]<>s+1) do i:=i+1;
 if i>k
 then writeln('-')
 else writeln('+');
end.

Problem 16

var
 i,j,n,m,a,max : longint;
begin
 readln(m);
 max:=-maxlongint;
 for i:=1 to 7 do
 for j:=1 to M do
 begin
 read(a);
 if a>max
 then begin max:=a; n:=j; end;
 end;
 writeln(max);
 writeln(n);
end.

M. Dolinsky122

Problem 17

var
 x,y : array [1..14] of real;
 xe,ye,m,rast,d : real;
 i,L,nom : longint;
begin
 readln(L);
 for i:=1 to L do readln(x[i],y[i]);
 readln(xe,ye);
 rast:=0; m:=0;
 for i:=1 to L do
 begin
 d:=sqrt(sqr(xe-x[i])+
 sqr(ye-y[i]));
 rast:=rast+d;
 if d>m
 then begin m:=d; nom:=i; end;
 end;
 writeln(m:0:1);
 writeln(nom);
 writeln(2*rast:0:1);
end.

Problem 18

var
 i,j,k,min,n,nom : longint;
 s : string;
begin
 min:=maxlongint;
 readln(n);
 for i:=1 to n do
 begin
 readln(s);
 k:=0;
 for j:=1 to length(s) do
 if s[j]='#' then inc(k);
 if k<min
 then begin min:=k; nom:=i; end;
 end;
 writeln(nom);
end.

Primary School Programming Olympiads in Gomel Region (Belarus) 123

Problem 19

var
 x,y : longint;
begin
 readln(x,y);
 writeln(x+y);
end.

Problem 20

var
 a : array [1..100] of longint;
 i,N,K : longint;
begin
 assign(input,'input.txt'); reset(input);
 assign(output,'output.txt'); rewrite(output);
 readln(N);
 for i:=1 to N do read(a[i]);
 k:=0;
 for i:=1 to N do inc(k,a[i]);
 writeln(k);
 close(input); close(output);
end.

Olympiads in Informatics, 2022, Vol. 16, 125–133
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.10

125

Olympiads in Informatics in Kyrgyzstan

Pavel S. PANKOV1, Kylychbek A. URAIYMOV2,
Artem A. BELYAEV3

1Institute of Mathematics, Kyrgyzstan
2International Educational Institution “Sapat”, Kyrgyzstan
3Kyrgyz-Russian Slavic University, Kyrgyzstan
e-mail: pps5050@mail.ru, kylychbek.uraimov@sapat.edu.kg, artem_belyaev@mail.ru

Abstract. This report provides description of the Multi-stage National Olympiad along with
other inner competitions in informatics, the online platform to conduct competitions in infor-
matics in Kyrgyzstan, the participation in IOI and in other international olympiads in informat-
ics.

This report also presents the principles and ways to create tasks (naturalness; presentation
of real processes; reference to known objects; non-Euclidean spaces; “brute force method is
either inapplicable or gives too overestimate of complexity”) and examples of tasks of various
levels with classification.

Keywords: Kyrgyzstan, National Olympiad, informatics, task, site.

1. Introduction

The conduct of Olympiads in informatics in Kyrgyzstan since 1985 was described
(Pankov et al., 2007; Pankov et al., 2011).

Section 2 ●● contains the description of the multi-stage National Olympiad, other
competitions in informatics in Kyrgyzstan, participation in IOI and other interna-
tional olympiads in informatics.
Section 3 ●● describes the online platform to conduct competitions in informatics
in Kyrgyzstan.
Section 4 ●● presents a survey of principles and ways to create tasks (naturalness;
presentation of real processes; reference to known objects; non-Euclidean spac-
es; “brute force method is either inapplicable or gives too overestimate of com-
plexity”).
Section 5 ●● contains examples of tasks of various levels created with methods of
Section 4.

P.S. Pankov, K.A. Uraiymov, A.A. Belyaev126

2. Competitions

Teaching informatics (under the traditional name “Foundations of Informatics and Com-
puter Facilities”) in secondary schools of Kyrgyzstan started in 1985.

The Olympiads in Bishkek city, the capital of Kyrgyzstan, are conducted since 1985
(annually in January).

Republican Olympiads in informatics, as a constituent of Republican Olympiads in
various subjects of secondary schools are conducted since 1987.

Stage I is schools’ (November); stage II is rayons’ (December); stage III is: 7 regions,
Bishkek city and Osh city (February or March); stage IV is final (March).

(Now Republican Olympiad in informatics is a constituent of National Olympiad).
Selection competitions to IOI for prize-winners of IV stage (April) were conducted

in English since 2000 until 2019.
National Olympiads in informatics, as a constituent of selection to International

Olympiads (IOI, IMO, IPhO, IChO, IBO) are conducted since 2020.
Stage I is for all comers, online (January); stage II is online (February); stage III is

on-site (March); stage IV (selection to IOI) is for prize-winners of stage III and of the
final stage of Republican Olympiad, on-site (April).

Kyrgyzstan participates in IOI since 2000. Our achievements are bronze medals at
IOI’2000, IOI’2004, IOI’2005, IOI’2016, IOI’2017, three bronze medals at IOI’2019,
four bronze medals at IOI’2021.

Every year we conduct ICPC Kyrgyzstan Championship for students as a quarter-
final of International Collegiate Programming Contest (November). Schoolchildren’s
teams participate in it out of competition.

Since 2015 our teams participate in International Zhautykov Olympiads (IZhO),
our achievements in “Computer science” nomination are: 2015: 3 bronze; 2016: silver;
2017: gold, silver, bronze; 2018: silver, 2 bronze; 2019: 3 bronze; 2020: 2 bronze; 2021:
5 bronze; 2022: 2 gold, 4 bronze.

Since 2015 our teams participate in Asia-Pacific Informatics Olympiads (APIO), our
achievements are: 2017: bronze; 2018: 3 bronze; 2019: silver; 2020: bronze; 2021: 2
bronze.

European Junior Olympiad in Informatics (EJOI), 2021: gold.
XIII Eurasian Olympiad in Informatics, Central Asia, 2021: first place.

3. The Online Platform

All competitions in informatics are conducted on the base of the site:
olymp.krsu.edu.kg

The site supports providing competitions of various types: according to the ICPC
rules or student competitions; when a complete solution of the task is required or a par-
tial solution is possible.

The system provides the following features:

Olympiads in Informatics in Kyrgyzstan 127

Possibility to judge the solutions on different physical computers; automatic reg-
istration of the competitors; separation of access privilege to the contests; support of
any programming languages ​​(C++, C#, Java, Python, Pascal etc.) and the ability to add
new languages ​​easy setup without changing the application code; automatic verification
solutions for malicious code; automatic re-checking solutions by the administrator’s sig-
nal; limited allocation of computing resources (CPU time, random-access store, external
memory) for solutions; statistical analysis of the problems solving process; virtual com-
petitions support.

Architecture Components: Dispatcher (distribution of solutions between judge ser-
vices), Judges (checking solution; compilers management); Web application and data-
base.

Hence, the system has two components:
The site or web application itself, through which the user interacts with the sys-1.	
tem.
Dispatcher and judges who check and evaluate solutions. 2.	

Since these components are independent, they can be scaled. Solution verification
can be run on completely different machines, which provides flexibly manage of the
load during various competitions. The task format is compatible with the polygon.co-
deforces.com system. It provides preparing problems and using ready-made problems
without additional modifications.

4. Principles and Ways to Develop Tasks

We try to prepare tasks to be well-understood, to have “short and elegant formulations”
(Dagienė et al., 2007).

The following items are not defined exactly; they are overlapping somewhere. Cer-
tainly, we do not pretend to originality. We use such papers as (Burton et al., 2008),
(Diks et al., 2008), (Kemkes et al., 2007) and

Naturalness (Pankov, 2008) includes: presentation of real processes (Pankov, 4.1.	
2010) with gravitation, repelling and attracting; a human can „see“ the answer
for corresponding task image with initial data of small volume without calcula-
tions; tasks are difficult to be solved even with initial data of small volume; a
„brute force“ method is either inapplicable or gives too overestimation of com-
plexity. Sometimes it is not necessary to write a program for generation of tests
for a task. A human can compose sufficiently complex tests where the answer
is “seen” but it is difficult to find it by means of any program.
Reference to known objects (Pankov 4.2.	 et al., 2009) including local circumstanc-
es, the host town, the host state, sponsors (at the same time, the task should be
“culturally neutral”).
For solving an Olympiad task by the contestant, in addition to the common 4.3.	
limits in the CPU time (traditionally 1 second) and in memory (traditionally
256 megabyte) there exists an actual limit (*) on average time to write and

P.S. Pankov, K.A. Uraiymov, A.A. Belyaev128

debug a program even if the contestant has necessary skills and vision of the
algorithm (about 1–1.5 hours). Sometimes such limit is achieved by means of
a long-winded and complicated text of the task, with many “permissions” and
“bans”. In the proposed tasks this limit is achieved naturally, because of their
geometrical content.
Unusual spaces in tasks are built sometimes by null-transportation etc. We pro-4.4.	
pose to use “natural” non-Euclidean spaces: Moebius band, Riemann surfaces,
topological torus, projective plane.
Using “regular” graphs instead of “general” graphs involves very vast graphs 4.5.	
with short and well-understood description, for instance (combination with
4.4): Take a 2022 × 2022 square grid and add arcs: (1,1)-(2022,2022), (1,2)-
(2022,2021), … (1,2022)-(2022,1) (Moebius band).
More than one actor or non-point actor within a graph.4.6.	
Pseudo-game. How many moves are necessary to defeat an actor operating by 4.7.	
a known (declared in the text of the task) algorithm? Attempts to write such a
program are more effective than a “logical” way to solve the task.
Tasks of a priori unbounded complexity including search in infinite spaces 4.8.	
(Pankov et al., 2012; Pankov et al., 2018). The contestant is to reduce the task
to search in finite space logically.
Guessing theorems by the contestant (particularly, for reducing in 4.8). While 4.9.	
creation of the task the jury is to prove such theorems strictly but the contestant
uses them swiftly. Catching sight of regularities in beginnings of sequences
also is effective.
Discrete tasks of continuous content (Pankov, 2013). They are difficult to solve 4.10.	
because the optimal way is mixed: to grope the optimal solution by means of
Analysis and to find it by “brute force in small domain”.
Pattern recognition (with strict formulation) (Pankov 4.11.	 et al., 2020).
Real processes executed by 2D- and 3D-printers (with nouns of pixels, voxels, 4.12.	
spexels, timexels: space primitives existing during one temporal step) and hy-
pothetical 4D = (3D + time)-printers (Pankov et al., 2021).
Geometrical tasks for pixels. They have the following preference: numbers of 4.13.	
pixels (”area” of any figure or “length” of a “segment”) are defined and calcu-
lated directly.
Turkic languages are agglutinating and have strict rules to add affixes. For 4.14.	
example, consequence of vowels can be AYAY… or EIEI… or OUA… only;
KITEP(book) + DA(locative) + BY(?) = KITEPTEBI(in the book?).
It gives capacities to create tasks on lexicographical order, on numbers of
“words” meeting some rules.
Non-substantiated but practically effective methods (can be used by the contes-4.15.	
tant if results are seen during the content or the contestant risks). If all or many
tests are passed then the jury will not check the text of program. For instance,
greedy search with some improvements.
We do not mean and propose any general algorithms to solve some tasks. 4.16.	
On the contrary, we suppose that such algorithms with traditional estimation
O(N…) in some cases (4.1, 4.3, 4.8, 4.10, 4.11) do not exist and preferences of

Olympiads in Informatics in Kyrgyzstan 129

such tasks are that each task demands its own algorithm, with little discoveries,
to smooth out the effect of training contestants.
To avoid any cribbing, we use parameterized tasks sometimes (Pankov 4.17.	 et al.,
2015).

5. Examples of Tasks

We cite tasks of various levels, since 2002. Some of tasks are cited non-formally, not
completely. We omit the ranges of input and scoring. Also, we use “general tasks”
which can be specified according to the level of competition.

We write “input” in examples in abbreviated form: lines are separated with the
sign \ .

Task 1 (Horse). Let Lake looks like an isosceles triangle, the basis of the triangle (north-
ern coast) is 190 km and height (width of Lake) is 60 km. Village is located on northern
coast of Lake at 20 km from the western corner. Horse runs with speed of 20 km/hour and
swims with speed of 10 km/hour. Write a program: A) to show Lake and Village; B) to
enable User to show any point on the coast of Lake; C) to draw the fastest way for Horse
or D) to show the motion (in scale of 1 hour = 1 sec.) of Horse from this point up to Vil-
lage along such way.

Comments. 2002 was the year of Horse. The task reflects a historic fact. This village
was named after Horse which had crossed the Issyk-Kul lake in XVIII century.

Task 2 (Mice). Given a graph, its vertices are “houses”. The Instrument has counted
mice under each of houses at different moments. During all this measuring, each mouse
could pass to another neighbor house only once. Write a program to find the least possible
number of all mice.

Example. Six houses form a ring. Input: 9, 0, 1, 0, 0, 2. Output: 10. [Two mice under
the first house and two mice under the sixth one could be the same].

Task 3 (Train). A graph is given. Firstly, the head H and the tail T of a train are in two
neighbor vertices. Write a program finding one of the shortest ways to be passed by the
train (moving forward only) in order to put its head to the primary position of T and its
tail to one of H.

Task 4 (Snow). Let the streets in the city form a rectangular grid. The firm Lоgic [spon-
sor] is situated at a given crossing (X,Y). Two friends wish to come to Lоgic. Now the
first is at the crossing (X1, Y1), the second is at the crossing (X2, Y2). Because of plentiful
snowing they wish to minimize the trampled path (the sum of paths trampled by the first,
by the second and by the both going together). Write a program calculating the minimal
length of path.

Task 5 (Mouse). At night, a mouse is anywhere within a long ditch of “figure-of-eight”
of length 2008 meters, the first ring of the ditch is numbered from 0 till 1004 (from the
cross to the cross) and the second ring is numbered from 1004 till 2008 (the points with

P.S. Pankov, K.A. Uraiymov, A.A. Belyaev130

numbers 0, 1004 and 2008 coincide). The mouse can run quickly but cannot climb out.
Two men with sacks stand at X1 and X2 meters. The men’s velocity is 1 meter/second.
Write a program calculating the minimal time to catch the mouse in any case.

The following three tasks are specifications of the general task on grammar of Turkic
languages.

Task 6 (Vowels). “Words” contain vowels A, E, I, O, U, Y. There must be either consecu-
tive same vowels or the following pairs of consecutive different vowels: AY, YA, EI, IE,
OU, UA. Given is a “word” W containing more than one vowel. At least how many vow-
els must be erased from W to obtain a new word, the sub-sequence of vowels of which
contains only permitted pairs of consecutive vowels?

Example. Input: TOOFEIGUZAEEWYQ Output: 4

Task 7 (Vowels-2). How many words of given length L, made of letters C, A, E, I, O, U,
Y having at last one vowel and meeting conditions of Task 6 exist? Output (this number
mod 1000).

Task 8 (Vowels-3). Given a word meeting conditions of Task 7. What is its number in
lexicographical sequence of all such words with same length? Output (this number mod
1000).

Example. Input: AY Output: 2

Task 9 (3D-printer). The X- and Y-axes are horizontal, the Z-axis is down. Sides of all
cubes are equal 1 and parallel to the axes, coordinates of their centers are integer numbers.
The lower semi-space “Z ≤ 1” is filled with cubes. The initial coordinates of Cube-printer
are (0, 0, 0). Given one, two or three cubes with coordinates in [−N, N] × [−N, N] × [1, N].
At each step Cube-printer moves by one along one of axes and erases a met cube. How
many steps of Cube-printer are necessary to erase the given cube(s) (with cube(s) over
them only)?

Example for two cubes: Input: 2 \ 8 7 1 \ 9 7 5 Output: 21
It is seen that the complexity of this task does not depend on N > 10.

Task 10 (Robot). Cubic Robot of volume 1 moves in continuous media (for instance, the
warm iron cube moves in dense snow). Its edges are parallel to X-, Y-, Z-axes. A “shift” of
Robot is its motion along or against one of the axes by an integer number J (|J | ≤ 1012).
Given a sequence of 2..6 shifts, find the volume of Robot’s “trace” (empty space in media
made by Robot’s motions including Robot itself).

Example for three shifts. Input: 3 \ Z 5 \ X −6 \ X 4 Output: 12

Task 11 (Triangle). All numbers are integer; square grid is considered.
Given two points A and B different from the origin of coordinates O (four numbers

XA, YA, XB, YB in -1000000..1000000). At each step point B can move along a side or
along the diagonal of a cell. To obtain a rectangular triangle OAB how many steps are
necessary?

Example: Input: 900000 0 900500 0 Output: 500

Olympiads in Informatics in Kyrgyzstan 131

Task 12 (Virus). Given the initial position of Virus (integer numbers XV, YV) on an
N×N-square grid. At each step you can put an obstacle on a point of grid. In response, Vi-
rus tries to step to the neighbor point consequently East; North; West; South. How many
steps are necessary to catch Virus?

Example: Input: 1 1 Output: 4
It is seen that the complexity of this task does not depend on N > 10.

Task 13 (Sulaiman-mount) [with Museum, in the middle of city of Osh]. Mice are going
to celebrate New Year – Spring Equinox on Top of Mount. Now there are М mice and
J nuts at Museum and T nuts at Foot of Mount. Time of Foot-Museum movement and
Museum-Top one is 10 minutes. One mouse can carry one nut. Find the minimum time
(minutes) to deliver all nuts to Top.

Example: Input: М = 3, J = 2, T = 2 Output: 50

General Task 14 (Cell connection). Given some distinct points on a square grid. What
is the minimal total length of broken line(s) drawn along sides of cells and connecting all
given points?

[Using geometrical proximity yields more effective algorithm than ones for gen-
eral graph].

By our experience, some who have good command over programming do not know
mathematics. Every year we give

General Task 15 (Geometry). Given two figures (rectangles, triangles, segments …)
with integer coordinates of vertices (of endpoints …). Find the area of the intersection (of
a figure generated by these figures …). Output: P/Q

where P and Q are natural numbers and GCF(P,Q) = 1 (Q may be 1).
There “naturally” arise many special cases in such tasks and contestants spend

much time.

Task 16 (Pixels). At first, in an N×N-display boundary pixels are yellow and other pixels
are red. If the pixel (X Y) is red then by this command itself and pixels “up, down, left,
right” consequently are painted yellow. By the command “W” painting is run until the
boundary along each of four directions; by the command “F” painting is run until the first
met yellow pixel along each of for directions. After executing of 2..10 such commands
how many red domains will turn out?

Example for three commands: Input: 3 \ W 2 4 \ F 3 5 \ W 4 3 Output: 3
It is seen that the complexity of this task does not depend on N > 100000.

Task 17 (Roads). Denote points Bishkek(B), Suusamyr Fork(A), Jalal-Abad(J), Talas(T),
Osh(O), Karakol(K), Balykchy(L), Naryn(N), Batken(E). Highway distances are: AT =
102; AJ = 377; AB = 193; JO = 106; OE = 240; LB = 179; LK = 216; LN = 180 (km).
The speed limit is 60 km/hour. Competition is announced for far apart pairs of drivers.
Because of Covid-19, distance (along highway) between them must not be less than 5 km.
Now the first driver with car is at X1 point and the second driver with car is at X2 point.
The first driver is to reach Y1 point and the second driver is to reach Y2 point (X1 ≠ X2,
Y1 ≠ Y2), (X1, X2) ≠ (Y1, Y2)). Find the minimal time (minutes) for it.

Example: Input: J O O J Output: 971

P.S. Pankov, K.A. Uraiymov, A.A. Belyaev132

Task 18 (Rectangles). An image is presented at an (white) N × N-display by black pixels.
Split the image into the minimal number of (non-overlapping) rectangles. Output this
number.

Example (N = 4): Input: 0001 \ 0110 \ 1111 \ 0110 Output: 4

Task 19 (Rectangles-2). … Present the image as the union of minimal number of rect-
angles. Output this number.

Example (N = 4): Input: (the same) Output: 3

Task 20 (Embeddings). A natural number N and two words of lengths more than 2 are
given. Output a word of length N containing these words as many times as possible, and
number of these “embeddings”.

If there are some such words then output the first of them in lexicographical order. If
there are not such word then output NO 0

Example 1: Input: 8 NZG ZNZ Output: ZNZGZNZG 4 [NZG does 2 times, ZNZ
does 2 times]

Example 2: Input: 9 LLL BKTL Output: LLLLLLLLL 7 [LLL does 7 times, BKTL
does 0 times]

6. Conclusion

We hope that this paper would diversify the scope of tasks for informatics olympiads,
making them more engaging for young people, and attracting contestants’ attention to
vast applications of informatics, inspire a greater interest of young people in learning
sciences and perhaps even in helping to make an appropriate career choice in future.
Also, we invite to make acquaintance with tasks of our preceding Olympiads at

https://olymp.krsu.edu.kg/GeneralProblemset.aspx

References

Dagienė, V., Skupienė, J. (2007). Contests in programming: quarter century of Lithuanian experience. Olympi-
ads in Informatics: Country Experiences and Developments, 1, 37–49.

Pankov, P.S., Oruskulov, T.R. (2007). Tasks at Kyrgyzstani Olympiads in Informatics: Experience and Propos-
als. Olympiads in Informatics: Country Experiences and Developments, 1, 131–140.

Pankov, P.S. (2008). Naturalness in Tasks for Olympiads in Informatics. Olympiads in Informatics: Country
Experiences and Developments, 2, 16–23.

Pankov, P.S., Baryshnikov, K.A. (2009). Representational Means for Tasks in Informatics. Olympiads in Infor-
matics, 3, 101–111.

Pankov, P.S. (2010). Real Processes as Sources for Tasks in Informatics. Olympiads in Informatics, 4, 95–103.
Pankov, P.S., Oruskulov, T.R. (2011) Kyrgyzstan National Report on Olympiads in Informatics. Olympiads in

Informatics, 5, 155–160.
Pankov, P.S., Baryshnikov, K.A. (2011). Tasks of “Mission impossible” and “Mission impeded” types. Olympi-

ads in Informatics, 5, 113–119.
Pankov, P.S., Baryshnikov, K.A. (2012). Tasks of a Priori Unbounded Complexity. Olympiads in Informatics,

6, 110–114.
Pankov, P.S. (2013). Tasks in Informatics of Continuous Content. Olympiads in Informatics, 7, 101–112.

Olympiads in Informatics in Kyrgyzstan 133

Pankov, P.S., Baryshnikov, K.A. (2014). Tasks in Informatics with Pre-Existing Algorithms. Olympiads in In-
formatics, 8, 145–155.

Pankov, P.S., Janalieva, J.R. (2015). Conducting complex competitions in informatics with individual tasks.
Olympiads in Informatics, 9, 163–172.

Pankov, P.S., Kenzhaliev, A.A. (2018). Combinatorial property of sets of boxes in Euclidean spaces and theo-
rems in Olympiad tasks. Olympiads in Informatics, 12, 111–117.

Pankov, P.S., Kenzhaliev, A.A. (2020).. Pattern Recognition and Related Topics of Olympiad tasks. Olympiads
in Informatics, 14, 143–150.

Pankov, P.S., Imanaliev, T.M., Kenzhaliev, A.A. (2021). Automatic Makers as a Source for Olympiad Tasks.
Olympiads in Informatics, 2021, 15, 75–82.

Burton, B. A. Heron, M. (2008). Creating Informatics Olympiad Tasks: Exploring the Black Art. Olympiads in
Informatics: Tasks and Training, 2, 16–36.

Diks, K., Kubica, M., Radoszewski, J., Stencel, K. (2008). A proposal for a task preparation process. Olympiads
in Informatics: Tasks and Training, 2, 64–74.

Kemkes, G., Cormack, G., Munro, I., Vasiga, T. (2007). New task types at the Canadian computing competition.
Olympiads in Informatics: Country Experiences and Developments, 1, 79–89.

P.S. Pankov (1950), doctor of physics-mathematics sciences, prof.,
corr. member of Kyrgyzstani National Academy of Sciences (KR
NAS), was the chairman of jury of Bishkek City OIs, 1985–2013, of
Republican OIs, 1987–2012, participates in National Olympiads since
2020, was the leader of Kyrgyzstani teams at IOIs, 2002–2013, 2018–
2021. Graduated from the Kyrgyz State University in 1969, is a head
of laboratory of Institute of mathematics of KR NAS.

K.A. Uraiymov (1989), International Educational Institution “Sapat”.
Deputy leader at IOIs, 2019–2021. Coach of 9 medalists at IOI, coach
of over the 100 medalists of any informatics Olympiads and coach of
all winners of National Olympiads in informatics since 2014 until pres-
ent. Graduated from the Kyrgyz Tukish “Manas” University in 2010.

A.A. Belyaev (1978), Kyrgyz-Russian Slavic University. Deputy
leader at IOI’2018. Regional Director of NERC ICPC Kyrgyzstan
Regionals.

Olympiads in Informatics, 2022, Vol. 16, 135–143
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.11

135

Informatics Olympiads in Kazakhstan:
Team Selection and National Olympiads
in Informatics

Yerkebulan SAGYNTAY
Doctoral School, Faculty of Informatics, Eötvös Loránd University
Budapest, Hungary
e-mail: sagyntay@inf.elte.hu

Abstract. Improving education is one of the main reasons for modern society. Therefore, subject
Olympiads make it possible to identify talented schoolchildren and students to improve the qual-
ity of education. The National Olympiads of schoolchildren in informatics, which are held annu-
ally, allowing gifted students to demonstrate a high level of training in subjects and contribute to
the development of mental and creative abilities. The main goals and objectives of the Olympiad
in Kazakhstan are the promotion of scientific knowledge and the development of students’ inter-
est in scientific activity, the creation of the necessary conditions for identifying gifted children,
their further intellectual development, the selection and preparation of students to participate in
international Olympiads, support with the choice of specialty when entering universities, increas-
ing the prestige of education in the Republic of Kazakhstan. This article describes the current
model of organizing Informatics Olympiads in Kazakhstan: steps, team selection (national and
international olympiads), ���and ���evaluation���. This paper also�������������������������������������� �������������������������������������includes the comparison with��������� Informa-
tics Olympiad organization procedure of Slovakia and Hungary.

Keywords: IOI, olympiad in informatics, teaching programming.

Introduction

Kazakhstan began active participation in the IOI in Portugal in 1998 with 4 partici-
pants. The Republican Scientific and Practical Center «Daryn» (Republican Scientific
and Practical Center ”Daryn”) of the Ministry of Education and Science (Ministry of
Education and Science of the Republic of Kazakhstan) is responsible for organizing
and selecting National Computer Science Olympiads for secondary school students.
The Republican Scientific and Practical Center “Daryn” (RNPC “Daryn”) supports the
organizational structure of the Olympiads in Kazakhstan not only in computer science,
but also in other areas, such as biology, physics, chemistry, mathematics. The annual
27th International Olympiad in Informatics (IOI-2015) was held in Almaty on the basis

Y. Sagyntay136

of Al Farabi Kazakh National University from July 26 to August 2, 2015. 324 people
from 83 countries took part in the competition.

Kazakhstan is the second state among the CIS countries after Belarus, which has
received the right to host the International Olympiad of Schoolchildren in Informat-
ics.

In the following sections of this report, we will describe in detail the entire work-
flow of organizing for the Informatics Olympiads in Kazakhstan. We also provide sta-
tistics of medals for the last 23 years of the Kazakh IOI team.

1. Work Related

Nikhazy and Zsako (2020), in their paper, presented information about team selec-
tion, national informatics competitions, and training in Hungary. They also provided an
overview of competitions in application development and usage, computational think-
ing and robotics.

Makieva et al. (2017) analyzed different problems and ways of improvement for
Informatics activities in Kyrgyzstan. Researchers described The Contest Management
System and suggested that it will improve the performance of students.

Forisek (2007) described olympiad preparation, team selection of Slovakian stu-
dents and other important activities such as international cooperation.

In Gomel, students who prepared for the olympiad in Informatics practiced in
courses such as “Programming-professionals (individual and collegiate),” “Preparing
for IOI,” “Methods of algorithmization,” “Basic programming,” “Informatics” and
learned different tasks based on various programming languages (Dolinsky, 2016,
p. 241).

According to Iglikov et al. (2013) the important factor of Kazakhstani students’
success is the participation in various International competitions and camps, among
them researchers emphasized the Summer school of computing for secondary school
students (Summer School of Computing), Petrozavodsk training camps for high school
students (Petrozavodsk Training Camps), and E. Pankratiev Open Team Programming
Collegiate Cup (E. Pankratiev Open Team Programming Collegiate Cup), all these
events in Russia.

Kiryukin and Tsvetkova (2011, p. 45) claim that participation in programming com-
petitions is significant because it has many positive aspects such as persistence and the
ability to sustain pressure. Olympiad preparation is an extracurricular activity, and this
involvement of students relates positively to school engagement (Frederick and Eccles,
2005, p. 516). This activity is generally organized in groups and relates to the coop-
erative learning method, which positively influences students’ social skills (Lavasani
et al., 2011, p.1803). Amaroli et al. (2018, p.133) suggest fostering Computer science
education through teams olympiads.

Informatics Olympiads in Kazakhstan: Team Selection and National Olympiads ... 137

2. Educational Olympiads in Kazakhstan

Every year, the Olympiad is held throughout the academic year in four stages by the
relevant educational authorities for each general education subject among students of
grades 9–11 (Fig. 1):

The first (school) stage is held no later than November 30 of the current academic 1)	
year in secondary education organizations according to the tasks prepared by the
education authorities of the district (city).
The second (district/city) stage is carried out by the educational authorities of the 2)	
district (city) at the district or city level.
The third (regional) stage is carried out by the education departments of the re-3)	
gions, the cities of Astana, Almaty and Shymkent, republican educational orga-
nizations, the autonomous educational organization “Nazarbayev Intellectual
Schools” (hereinafter – AOO NIS) and the Non-profit joint-stock Company
“Physics-Mathematics State School” (hereinafter – NAO “PMSS”).
The fourth (republican) stage is held with the division of subjects of natural-math-4)	
ematical and social-humanitarian directions in different regions of the republic.

The works of the participants at all stages of the Olympiad are provided to the jury in
advance in encrypted and scanned form. The evaluation of the works by the jury mem-
bers is provided in accordance with the evaluation criteria developed by the organizing
committees. The results of the evaluation of works at the end of each stage are transmit-
ted by the organizing committee.

Fig. 1. Stages of Republican Olympiad in Informatics.

Y. Sagyntay138

2.1. International Zhautykov Olympiad

The International Zhautyk Olympiad in Mathematics, Physics and Computer Science for
students of specialized schools (hereinafter referred to as the Olympiad) is held annu-
ally in the second decade of January on the basis of the Non-profit Joint Stock Company
“Physics-Mathematics State School” (hereinafter referred to as “PMSS”) in Almaty, Re-
public of Kazakhstan. The goals and objectives of the Olympiad are: creation of optimal
conditions for identifying gifted schoolchildren, their further intellectual development
and professional orientation, dissemination and popularization of physical, mathemati-
cal and IT knowledge among schoolchildren, development of international cooperation
with physical and mathematical schools of various countries.

Participants of the Olympiad
Teams of schools of Kazakhstan and foreign countries from specialized physics and math-
ematics lyceums and gymnasiums and other schools are invited to the Olympiad. Several
schools from the same country can participate in the Olympiad.

Each team should consist of 7 participants: 3 participants in mathematics, 2 in phys-
ics and 2 participants in computer science and 1 or 2 supervisors (physicist, mathemati-
cian, computer scientist) who speak one of the three official languages of the Olympiad:
Kazakh, Russian or English. The participation of school teams in incomplete composi-
tion is allowed.

According to the results of the Republican Olympiad of schoolchildren in the sub-
jects of the natural and mathematical direction, twenty-one teams of the Republic of
Kazakhstan are determined to participate in the Olympiad. The list of teams is approved
by the organizing committee of the Olympiad in coordination with the The Republican
Scientific and Practical Center «Daryn».

3. International Olympiads

International Olympiads of schoolchildren in Informatics are intellectual competitions
for high school students (9th–11th grade) from different regions of the world. Each
country is represented by a team of 4–6 people – winners of national Olympiads. When
drawing up assignments, the diversity of world educational standards is taken into ac-
count. For a successful performance, in addition to knowledge, non-standard thinking
and a creative approach to solving problems are required. Each Olympiad is a separate
competition, with its own organizers, rules of conduct and an award system. Interna-
tional Olympiads in which Kazakhstan participates:

International Olympiad in Informatics (IOI). ●●
International O. Zhautykov Olympiad in Mathematics, Physics and Informatics for ●●
students of specialized schools.
International Junior Science Olympiad (IJSO). ●●

Informatics Olympiads in Kazakhstan: Team Selection and National Olympiads ... 139

International Olympiad for schoolchildren “Tuymaada” in mathematics, physics, ●●
chemistry, informatics.
Central European Olympiad in Informatics (CEOI).●●
European Junior Olympiad in Informatics (EJOI).●●
Eurasian Olympiad in Informatics (for the SCO countries).●●

4. Team Selection for IOI Participation

Criteria for the selection of applicants for participation in training camps for participa-
tion in the international Olympiad in the subject of informatics.

Formation of the composition of the participants in the training camps of the Olym-
pic reserve: Based on the results of the participation of schoolchildren in the final stage
of the Republican Olympiad for schoolchildren, the composition of the training camps
is formed. The training camp includes 12 winners and prize-winners of the Republican
Olympiad (awarded with diplomas of the first, second and third degrees) students of
grades 9–10–11 (12) (Olympiad tasks are the same), who scored the most points. Appli-
cants are selected by the sum of points for the Republican Olympiad and the Internation-
al Zhautykov Olympiad (Table 1). The number can be increased if several participants
scored the same number of points.

Selection to the national team for participation in the IOI: for the qualitative selection
of the national team for the IOI, 4–5 intermediate olympiads will be held at the qualify-
ing training camps (Table 2). The level of complexity of the Olympiads at the training
camps is identical to the level of the IOI tasks, and the quality of the tasks is superior to
the International Zhautykov Olympiad and the Republican Olympiad. Each olympiad
will consist of 3 tasks.

Table 2
Selection to the national team for participation in the IOI

№ Full name of
the participant

Grade Results Total
1 round 2 round 3 round 4 round
25% 25% 25% 25% 100%

Table 1
Formation of the composition of the participants in the training camps

of the Olympic reserve

№ Full name of
the participant

Grade Results Total
The Republican Olympiad of
schoolchildren

The International Zhautykov
Olympiad

50% 50% 100%

Y. Sagyntay140

5. Review of Informatics Olympiad Organization Procedure
in Slovakia and Hungary

Olympiad organization procedure and team selection of Kazakhstan and Slovakia is
slightly similar, but different from Hungary.

Slovakia.
According to The Ministry of Education of the Slovak Republic, the Olympiad in In-
formatics at the national level is provided by a national commission called the Slovak
Olympiad in Informatics (SK OI). The Slovak national Olympiad in Informatics (OI) has
two categories: A and B. Only those students who do not graduate from high school this
or the next school year may join Category B. All students (primary and secondary) can
take part in category A. Category B has two rounds: domestic and regional. Category A
consists of three rounds:

 (1)	 Home round – organized by local teachers in schools. For each task of the home
round, you can get from 0 to 10 points.
 (2)	 Regional round – Slovakia has 8 regions for this round. Each region has chair-
men of regional commissions. After the solution is corrected, the coordination of
scoring scales will take place, the result sheets will be merged into one nationwide,
and according to her, approximately the top 30 solvers are invited to the national
round.
 (3)	 National round – the final round which consists of two days. Participants solve
theoretical problems on the first day and practical problems on the second day.

Top 10 winners will be invited to the weekly qualifying camps. And based on their
results, SK OI will select teams to participate in the International Olympiad in Infor-
matics (IOI) and the Central European Olympiad in Informatics (CEOI).

From 1993 till now, in IOI, the Slovak team has 102 medals: 25 gold, 43 silver,
34 bronze.

Hungary.
Hungary is one of the first countries to participate in the IOI since 1989. According to
John von Neumann Computer Society (NJSZT), the Hungarian national team for IOI-
CEOI is selected after the conduction of 6 stages. The following competitions can par-
ticipate in the qualifying competition of the International Student Olympiad in Computer
Science (IOI):

National High School Education Competition in Informatics (OKTV) – first (1)	
15–20 places.
International programming competition Noble Tihamér – first 3–7 places in (2)	
10th grade.
Olympic qualifying competition (previous academic year) – 4–6 participants.(3)	
Izsák Imre Gyula Competition – winner, winner in the field of information tech-(4)	
nology.
Dusza Árpád Memorial Programming Contest – members of the winning team.(5)	

Informatics Olympiads in Kazakhstan: Team Selection and National Olympiads ... 141

A member of the IOI Olympic team automatically becomes a participant who
won a gold medal at the Olympic Games last year (CEOI, IOI). A member of the CEOI
Olympic team automatically becomes a participant who won a gold medal at the pre-
vious year’s Olympic Games (CEOI) if he or she is a student up to the 11th grade.
Qualification Competition for selecting Hungarian team for the International Informatics
Olympiad is intensive and consists of 6 rounds where students have to solve 18 problems
in 3 days (Nikhazy and Zsako, 2020).

Stages of the qualifying competition for IOI-CEOI:
Stage 1 of the competition – with the participation of 30–40 competitors.
Stage 2 of the competition – with the participation of 30–40 competitors.
Stage 3 of the competition – with the participation of 20–25 competitors.
Stage 4 of the competition – with 15–20 competitors.
Selection of 6–6 Olympic team candidate candidates.
Stage 5 of the competition – with 6–12 competitors.
Stage 6 of the competition – with 6–12 competitors.
Selection of 4–4 Olympic team members.

Before the third day of the competition, participants will take part in online training.
The official result is determined by the Competition Commission before the start of the
current round.

As a result, for all the years of participation since 1989, participants from Hungary
have won 13 gold, 36 silver, 46 bronze medals.

Conclusion

Kazakhstan has been participating in the IOI since 1998 and has good achievements. At
the moment, Kazakh IOI teams have won a total of 61 medals (gold 3, silver 21, and
bronze 37). The stages of team selection (republican and international Olympiads) are
described and compared with Hungary and Slovakia. However, some issues with the
Informatics Olympiads promotion exist and actions should be taken to spread essential
knowledge of Informatics by involving more students and schools.

Table 3
Performance in IOI

Year IOI Host Medals
Gold Silver Bronze Total

1998 Portugal
1999 Turkey 1 1
2000 China
2001 Finland 2 2
2002 South Korea

Continued on next page

Y. Sagyntay142

Table 3 – continued from previous page

Year IOI Host Medals
Gold Silver Bronze Total

2003 USA 1 1
2004 Greece 1 2 3
2005 Poland 3 3
2006 Mexico 1 3 4
2007 Croatia 2 1 1 4
2008 Egypt 2 2
2009 Bulgaria 2 2
2010 Canada 3 3
2011 Thailand 1 3 4
2012 Italy 3 3
2013 Australia 1 1
2014 Taiwan 2 1 3
2015 Kazakhstan 3 1 4
2016 Russia 3 1 4
2017 Iran 1 3 4
2018 Japan 1 3 4
2019 Azerbaijan 1 1 2 4
2020 Singapore 1 1
2021 Singapore 4 4

Total 3 21 37 61

References

Amaroli, N., Audrito, G., Laura, L. (2018). Fostering informatics education through teams olympiad. In: 30th
International Olympiad in Informatics, IOI 2018 (Vol. 12, pp. 133–146).

Dolinsky, M. (2016). Gomel training school for Olympiads in Informatics. Olympiads in Informatics, 10,
237–247.

Iglikov, A., Gamezardashvili, Z., Matkarimov, B. (2013). International olympiads in informatics in Kazakh-
stan. Olympiads in Informatics, 7, 153–162.

Forišek, M. (2007). Slovak IOI 2007 team selection and preparation. Olympiads in Informatics, 1, 57–65.
Kiryukhin, V., Tsvetkova, M. (2011). Preparing for the IOI through Developmental Teaching. Olympiads in

Informatics, 5, 44–57.
Lavasani, M. G., Afzali, L., Afzali, F. (2011). Cooperative learning and social skills. Cypriot Journal of Edu-

cational Sciences, 6(4), 186–193.
Makieva, Z., Khalikov, F., Alimbaev, R. (2017). Kyrgyzstan Olympiad in Informatics: Training Students, Con-

ducting the Olympiad and Using Contest Management System. Olympiads in Informatics, l, 159–166.
Nikházy, L., Zsakó, L. (2020). National Programming Competitions, Team Selection and Training in Hungary.
Order of the Minister of Education and Science of the Republic of Kazakhstan dated December 7, 2011 No.

514. Registered with the Ministry of Justice of the Republic of Kazakhstan on December 27, 2011 No.
7355.

Criteria for the selection of applicants for participation in training camps for participation in the international
Olympiad in the subject of informatics. https://daryn.kz/docs/информатика.pdf

IOI. International Olympiad in Informatics. https://ioinformatics.org/
The Republican Scientific and Practical Center «Daryn». https://daryn.kz/
John von Neumann Computer Society (NJSZT). https://njszt.hu/
Olympiáda v informatike. http://oi.sk/

Informatics Olympiads in Kazakhstan: Team Selection and National Olympiads ... 143

Y. Sagyntay received his MSc degree in computer science engineering
from Obuda University, Hungary, and is currently studying his Ph.D.
at the computer science at the Eötvös Loránd University in Hungary.
His main research interests are education in computer science and al-
gorithms.

Olympiads in Informatics, 2022, Vol. 16, 145–158
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.12

145

Organization and Results of Mongolian National
Online Olympiads in Informatics

Danzan TSEDEVSUREN1, Jantsansambuu DASHDEMBEREL1,
Tsiyen-Oidov BATTOGTOKH1, Turtogtokh ULAMBAYAR1,
Altangerel KHUDER2

1Mongolian State University of Education, School of Mathematics and Natural Science,
 Department of Informatics
2Mongolian University of Science and Technology, School of Information and
 Communication Technology, Department of Computer Science
e-mail: tsedevsuren@msue.edu.mn, dashdemberel@msue.edu.mn, battogtokh@msue.edu.mn,
ulambayar@msue.edu.mn, khuder@must.edu.mn

Abstract. Incorporating coding skills into the basic literacy skills of 21st century citizens is com-
mon in many parts of the world. This is because the development of artificial intelligence and
smart devices and their social use have become real, and in the near future, the ability to use ro-
bots and artificial intelligence devices for their own purposes has become a skill that every citizen
should have. Algorithms and programming are included in the Mongolian general education infor-
mation technology course curriculum. The coding ability plays an important role in the develop-
ment of a new century citizen’s thinking, creating and evaluating skills. One of the activities that
promotes the development of this skill is the International Olympiad in Informatics. Our country
has been participating in this Olympiad since 1991 and has won three bronze, one silver and one
gold medal. You can participate in the online Olympiad regardless of where you live in Mongolia.
This type of Olympiad is very important to support the continuous development of students who
are gifted in programming and coding, as well as to enable them to successfully participate in
national and international Olympiads.

Mongolian Informatics Olympiad Committee (MIOC) organized 24 online contests using
Contest Management System (CMS1) which is official IOI judging system. In this paper we con-
sidered 22 online contests organized in 2019, 2020, 2021 years and classified 115 problems chosen
in those contests by topics and complexity. We also report here results of a small research about
scores got by participants, development of problem-solving skills. A new registration web system
developed while implementing IOI judging system is explained.

Keywords: informatics, programming, grading system, olympiad, online judge system.

1	 Open-source contest management system. https://cms-dev.github.io/

D. Tsedevsuren et al.146

Introduction

Contest Management System (CMS) is a system developed by Italian software engineers
and there was a successful localization for Mongolian language in 2015. Now it is being
used in following olympiads.

Among high school teachers and students:●●
District level olympiads for 9 districts in Ulaanbaatar city. ◦◦
21 provinces and capital city informatics olympiads.◦◦
National Olympiads in Informatics.◦◦
Contests for selecting IOI participants. ◦◦
Online olympiads.◦◦

Among university students:●●
Algor-ithm and programming related courses.◦◦
Programming olympiads inside a university. ◦◦
State level Programming Olympiad for University students.◦◦

In order for the competition to be successful, it is important to support participation
of people by connecting people with similar interests such as informatics and problem-

Fig. 1. Cooperation of CMS and Informatics olympiad registration website.

Organization and Results of Mongolian National Online Olympiads in Informatics 147

solving. We must pay attention to provide a good networking environment among peo-
ple interested in programming from different areas of study therefore to improve their
chances to develop together. (Amaroli, Audrito & Laura, 2018).

Development of a web registration system used for olympiad participants, alumni’s,
statistical processing, exporting information for СМS started in December 2017 and
finished in January 2018.

The website www.informatics.edu.mn/burtgel consists of participant registra-
tion page and admin page. It is currently being developed continuously (Dashdemberel
& Ulambayar, 2017).

These systems were designed to work with CMS and official MIOC website. Our
next step is developing a continuous online contest system and it is being tested in local
environment. These two websites have shared database and both exchange information
with CMS while working.

These are the two systems we have developed.

About CMS v1.4

Since 2015 we are using CMS (http://cms-dev.github.io/) (Maggiolo and Ma-
scellani, 2012; Maggiolo et al., 2014) for each level of programming and informatics
olympiads in Mongolia.

We use CMS 1.4 for online and offline contests. Fig. 2 shows basic CMS operations
(Maggiolo and Mascellani, 2012).

Contestant
s

Load balancer

ContestWebServe

EvaluationService

ScoringService

RankingWebServer Internet

ResourceService

AdminWebServer

Worker

Checker

Data

Files

Fig. 2. Basic CMS operations.
(Source: Maggiolo and Mascellani, 2012)

D. Tsedevsuren et al.148

AdminWebServer is a admin web service to provide contest organizers with operations
such as insert, edit participants’ information, view participants’ solutions, contest ranking
and download them.
ContestWebServer has mainly participant operations such as get contest information,
download problem statements, ask questions about a problem, send solutions, view own
scores. This server program is duplicated and loaded on several servers using load bal-
ancer when the contest size is big.
EvaluationService distributes contestants’ solutions to Worker threads to check them.
Then it takes results of each test and sends it to ScoringService service. Each Worker
thread gets participant code, recognizes programming language used, compiles the code
using corresponding compiler to get an executable, runs it to get results of each test and
writes it to the database.
ScoringService combines evaluated scores for each test from EvaluationService and
sends total score to RankingWebServer web page. RankingWebServer lists all partici-
pant scores and publishes the list on website.

There were following additional requirements in process of localization.
Automatically register, create passwords, insert into CMS system, create cer-1.	
tificate for each contest. This leaded us to develop our website.
Create problem archive after classifying problems by type and level. Register 2.	
users on the web, change rank list view, organize open contests.
Create beginner, middle, advanced level training website to increase partici-3.	
pant count. Students will be able to send request for training material and
improve their skills. This kind of training website can be replaced by Moodle
LMS.

Focusing above requirements we have developed a registration website which coop-
erates with CMS system.

One can read about organization of programming and informatics contests among
high school students, improvement of students’ participation in this kind of contests,
online learning platforms for computer science courses in many papers by international
researchers (William, Gabriele, Luigi, Umberto, Marco & Luca, 2016).

Our web system consists of administration and user registration sections.

а. Administrator website v2.0.

Actions allowed for admin user
Manage registered users (Add into active contest as a contestant, enable or disable log ●●
in permission, remove participant).
Check registered participants’ information of an announced contest and confirm or ●●
cancel contest participation requests.
Automatically create username and password for CMS system and email them to ●●
confirmed participants. Publish usernames on the website.
Send e-mail to users.●●

Organization and Results of Mongolian National Online Olympiads in Informatics 149

Prepare data for a CMS contest and export. Upload teachers’ and students’ informa-●●
tion into CMS.
Manage contests (add, activate, open, close).●●
Add, manage additional materials for contestants. ●●

Fig. 3. Control panel of admin website.

Fig. 4. User list.

Fig. 5. Contest list.

D. Tsedevsuren et al.150

b. Registration website v2.0

Actions allowed for users
Register, log in, restore password, change password. ●●
Send request to active contest. In case of confirmation get username and password. ●●
View contest rank list, problem statements, solutions and problem statistics. Down-●●
load tests for a problem.
Download problem statements, solutions and tests from problem set.●●
View additional materials.●●
Go to additional olympiad problem sets. ●●
Download certificate of participation.●●
The registration website also has some extra pages for regulations, training materials,

problem set, certificates. The problem set consists of 450 problems. Users can download
problem statements, solutions, tests. Problems are classified into 4 complexity groups

Fig. 6. Additional materials page.

Fig. 7. Problems list.

Organization and Results of Mongolian National Online Olympiads in Informatics 151

and 25 topics. These problems can be used by beginners, olympiad participants. Also,
they will be useful in programming and algorithm courses of Information technology,
Computer Science, Software Engineering undergraduate programs.

Fig. 8. Problem statement, solution and tests list.

Fig. 9. Additional materials page.

D. Tsedevsuren et al.152

Influences of the Online Olympiads

Highschool students are facing several difficulties due to their English language bar-
rier. The most widely spread difficulties are being not able to participate in online
programming contests in English, using online resources in English, difficulties with
understanding problems in English etc. Regular participation in online contests helps
them make programming and algorithmic skills better. Also, online contest rankings
of our students show us their readiness for international level competitions (Khuder &
Tsedevsuren, 2016).

The top informatics olympiad skills are algorithmic skills, self-study, using pro-
gramming tools, digital8 technological and technical skills, communication skills and
creativity (Tsvetkova, Kiryukhin, 2020). It is very important to organize regular online
contests which are considered as exercise environment for developing these skills.

The most important information source about above topics is the proceeding of IOI
conference – “Olympiads in Informatics” (international forum for presenting research
and development in the specific area of teaching and learning informatics through com-
petition) first publication of which was in 2007. Books such as (Skiena and Revilla,
2003) and (Halim and Halim, 2013) includes important materials about programming
contests, algorithms, data structures and computer science (William, Gabriele, Luigi,
Umberto, Marco & Luca, 2016).

Dagienė (Dagienė, 2010), Garcia-Mateos and Fernandez-Aleman (Garcia-Mateos
and Fernandez-Aleman, 2009) noted about importance and influence of programming,
computer science olympiads in studying computer science.

The core element and skill of programming education is basic coding skills which
includes programming according to programming language syntax and problem solv-
ing. Students should learn both basic algorithms and their implementations. There are
two basic types of errors in code: syntax and static sematic errors, dynamic semantic
errors. While errors of first type are discovered by compiler, for the second type errors
require testing. Students should improve their skills of making tests.

First online open contest was organized in 15th of March, 2018 and then we tested
these webpages. Here we showed only main statistics. Each user registers with his
email and email defines unique user. We send confirmation email and after user con-
firms it he or she will be able to use the system. Now we have 721 users in our contest
registration website (51 of them did not confirm their email). Hence, we have around
670 active users.

There were 495 participants from Ulaanbaatar city, 175 participants from prov-
inces. Top 4 provinces by participant count were Uvs (43), Uvurkhangai (26), Dark-
han city (20) and Bayankhongor (11). Average participant count among 20 provinces
was 8,75. Recent years’ top provinces by participant scores in National Olympiads in
Informatics are Uvs, Darkhan city, Bayankhongor, Khubsugul, and Khobdo. Partici-
pants visiting statistic was between 1 and 192. Average visit count was 11,4. Since the
website was created there were made 7692 visits. There were 735, 1378, 1168, 4411
visits in years 2018, 2019, 2020 and 2021. Visiting count of the webpage for the first
week of January, 2022 is 532.

Organization and Results of Mongolian National Online Olympiads in Informatics 153

As of today, we have organized 24 online contests in total. There were 2 contests
in 2018, 4 in 2019, 8 in 2020 10 in 2021. This paper covers results and analysis of
22 online contests from 2019, 2020, 2021 years. A total of 904 teachers and students
participated in the 22 Olympiads, 115 problems were proposed and a database of results
was formed.

Statistical information shows there are 79 teachers and 210 students among partici-
pants. Recent years amount of teachers increased and it also make amount of students
interested in programming. Reason of this may be scholarships in foreign universities
and former olympiad participants who works now in world level IT companies such as
Google, Facebook, Amazon, Microsoft. Total amount of participants in 22 online con-
tests was 316. Table 1 shows number of participants by classification.

Participant count of our online olympiad was between 11 and 77. There were 22 on-
line olympiads organized and in average there were 18 teachers, 22 students in each
contest (average contestant count was 41). Each contest has 3–4 problems. There were
10 online contests in 2021 and each has two categories: teachers and students. After
adding category “Teachers” number of teacher-participants is steadily increasing.

 Above performance statistics show us the Senior students get the best scores. Also,
we can see the average performance of teachers and senior students are higher than the
general average by 1.7 and 7.5 percent correspondingly.

115 problems used in contests were classified into 4 levels and there were 4 easy lev-
el problems, 30 middle level, 51 hard level and 30 advanced level problems. We can see
the average score of performance was decreasing with the increasing level of problem.

Performance per complexity of the problems is shown in Table 3.

Table 1
Classification of contestants

Classification Count

Teacher 79
Senior 132
Secondary 78
Other 27

Total 316

Table 2
Participants and problem statistics

Year Olympiads
organized

Contestant count Problems
Teacher Senior Secondary Other Total Teacher Student

2019 4 46 50 25 25 146 4 4
2020 8 8 13 1 7 29 5 5
2021 10 13 9 10 32 4 4

Total 22 317 386 172 29 904 82 84

D. Tsedevsuren et al.154

Time and memory limits are main settings for a informatics problem. We used mostly
time limits for problems and memory limits are not widely used. Running times of par-
ticipant solutions are shown in Table 4.

23,84

29,63

16,98

18,16

22,15

0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00

Багш

Ахлах

Дунд

Бусад

Нийт

Participants performance

Дундаж оно

Graphic 1. Participants performance.

Table 3
Performance by problem complexity

Problem complexity Full solution 50–99 scores Less than 50 scores 0 scores Average score

Easy 38 38 13 29 60.28
Middle 191 118 147 435 34.97
Hard 208 98 248 807 23.85
Advanced 56 38 110 654 11.55

493 292 518 1925 32.6625

Table 4
Time and performance

Time (c) Problem count Full solutions 50–99 scores Less than 50 scores 0 scores Average score

0.1 3 10 2 16 63 14.76
0.5 41 125 57 134 393 26.99
1 55 258 116 221 850 26.95
1.5 2 1 12 2 51 11.29
2 10 10 5 23 136 10.22
2.5 1 0 2 2 23 7.96
3 3 14 28 19 41 36.17

Total 115 493 292 518 1925 19.85

Organization and Results of Mongolian National Online Olympiads in Informatics 155

We can see from the above table that from all solutions there are full solutions –
16.0%, solutions which got between 50–99 points – 8.5%, solutions with less than 50
points – 16.0%.

All 115 problems used in online contests can be classified into 12 classes. Table 5
shows performance in 4 levels for each class of problems.

Our problem classification matches with important topics in IOI syllabus. We should
develop training materials according to IOI syllabus. Insufficient knowledge and skills
from IOI syllabus leads to poor planned training and unsuccessful IOI participation
(Khuder, Tsedevsuren, 2016). Therefore we should pay attention to improve those skills
of students which gives us bad average score.

Table 5
Problem classification and performance

Classification Full solutions 50–99 scores Less than 50
scores

0 scores Average
score

Problem
count

Linear algorithm 14 1 0 5 72.5 1
Number theory 158 125 113 282 39.79 27
Strings 27 16 57 94 28.39 8
Dynamic programming 47 36 106 253 21.27 14
Geometry 85 40 97 413 20.97 24
Sequence and sorting 80 41 57 409 20.39 20
Other 15 2 8 61 20.02 3
BFS 12 2 21 55 17.00 2
2D array 10 3 13 44 18.93 4
DFS 18 7 19 112 17.74 5
Graph theory 27 19 27 197 17.07 7

Total 493 292 518 1925 25.92 115

Fig. 10. CMS view of a participant solution.

D. Tsedevsuren et al.156

Conclusion

After regular online olympiads participants’ problem solving and technical skills are
improving. There were no “Teacher” category in 2018–2020 and not many teachers
participated but after adding the category teacher count has increased. We can also
set up categories “beginner”, “middle” and “advanced” in registration and CMS web-
page.

Organizing regular online olympiads increases interest in “Competitive program-
ming, participant number and also student numbers studying algorithms. Now we are
going to define hard topics for students and create online learning content about them.
This will help us improve general programming skill level of participants. There are
additional online learning materials for dynamic programming, graph algorithms, com-
putational geometry created by teachers and published for students. Another important
result of regular online contests is practicing and improvement in time management,
learning to choose which problem to try first in IOI.

Mongolian IOI team got IOI medals for past 4 years. We conclude that our online
contests have some influence in those successful participations. Specifically, Tenuun
got bronze medal in 2018, Nyamdavaa got two silver medals in 2019 and 2021. He also
got his gold medal in 2020. In total Mongolian team got 6 medals from IOI.

We strongly believe that organizing regular online contests can be strong education-
al support for improving coding and algorithmic thinking skills for informatics teachers
and students.

References

Amaroli, N, Audrito, G, Laura, L. (2018). Fostering informatics education through teams Olympiad. Olympiads
in Informatics, 12, 133–146.

Dagienė, V. (2010). Sustaining informatics education by contests. In: Teaching Fundamentals Concepts of In-
formatics. Springer, 1–12.

Fig. 11. Certificate list.

Organization and Results of Mongolian National Online Olympiads in Informatics 157

Dashdemberel, J., Ulambayar, T. (2017). Using assessment CMS of informatics problems. Journal of Math-
ematics & Natural Science, MNUE, Vol. 3.

Garcia-Mateos, G., Fernandez-Aleman, J.L. (2009). Make learning fun with programming contests. In: Trans-
actions on Edutainment II. Springer, 246–257.

Halim, S., Halim, F. (2013). Competitive Programming. Third Edition. Lulu.com.
Khuder A., Tsedevsuren, D. (2016). The Informatics Olympiad in Mongolia: Training resources for non-English

Speaking Students. Olympiad in Informatics, 10, 279–284.
Maggiolo, S., Mascellani, G., Wehrstedt, L. (2014). Cms: a growing grading system. Olympiads in Informatics,

Vol 8, pp: 123–131.
Maggiolo, S., Mascellani, G. (2012). Introducing cms: a contest management system. Olympiads in Informat-

ics, 6, 86–99.
Skiena, S.S., Revilla, M.A. (2003). Programming Challenges: The Programming Contest Training Manual.

Springer Science & Business Media.
Tsvetkova, S., Kiryukhin, M. (2020). Top 10 key skills in Olympiad in Informatics. Olympiads in Informatics,

14, 151–167.
William, D., Gabriele, F., Luigi, L., Umberto, N., Marco, T., Luca, V. (2016). oii-web: An interactive online

programming contest training system. Olympiads in Informatics, 10, 207–222.

Online resources

Dashboard with System’s metrics for Mongolian Online Olympiad. URL:
https://informatics.edu.mn/burtgel ​

Dashboard with System’s metrics for Russian Programming Olympiad. URL:
https://olympiads.ru ​

Contest of codefoeces.com online judge. URL:
https://codeforces.com/contests ​

Contest of e-olymp online judge. URL:
https://www.e-olymp.com/en/contests​

Achievements in Mongolia's IOI. URL:
http://stats.ioinformatics.org/results/MNG

D. Tsedevsuren is Professor at School of Mathematics and Natural
Sciences, Mongolian National University of Education. He is PhD in
ICT and Educational Studies, and he is currently working as a Presi-
dent of this Mongolian Informatics Association. His research interests
include Informatics education, ICT in eduaction, theory and methodol-
ogy of eLarning and electronic learning content development.

J. Dashdemberel is Lecturer at School of Mathematics and Natural
Sciences, Mongolian National University of Education. He is M.S in
ICT and Educational Studies, and he is currently working as a Member
of Mongolian Informatics Association. His research interests include
Informatics education, ICT in eduaction, theory and methodology of
algorithm and programming learning online content development.

D. Tsedevsuren et al.158

T. Battogtokh is Head of Informatics Department at School of Math-
ematics and Natural Sciences, Mongolian National University of Edu-
cation. He is M.S in ICT and Educational Studies, and he is currently
working as a Member of Mongolian Informatics Association. His re-
search interests include theory and methodology of Network technol-
ogy and database.

T. Ulambayar is Lecturer at School of Mathematics and Natural Sci-
ences, Mongolian National University of Education. He is M.S in ICT
and Educational Studies, and he is currently working as a Member of
Mongolian Informatics Association. His research interests include and
computer graphic and web design.

A. Khuder is involved in the training of the Mongolian team for the
IOI since 2006, and since 2008 is the deputy team leader of the Mon-
golian team. He got a master degree in ITMO University and a PhD
degree in Computer Science at Mongolian University of Science and
Technology. He is Head of Computer Science Department in Mongo-
lian University of Science and Technology.

Olympiads in Informatics, 2022, Vol. 16, 159–172
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.13

159

Digital Literacy in Primary School

Marina S. TSVETKOVA1, Elena A. BONDARENKO2,
Irina Yu. KHLOBYSTOVA3, Ekaterina V. YAKUSHINA4
1Russian Academy of Natural History, Russian Federation, Moscow, 105037, box 47
2All-Russian State Institute of Cinematography named after S. Gerasimov
 Russian Federation, Moscow
3Glazovsky state pedagogical Institute named after V.G. Korolenko
 Russian Federation, Glazov, 427620
4Moscow City University, Russian Federation
 Moscow, 129226, 4 Vtoroy Selskohoziajstvenny proezd
e-mail: ms-tsv@mail.ru, letty3@yandex.ru, hloirina@mail.ru, yakushinaev@mgpu.ru

Abstract. The program reveals the goals of mastering primary digital literacy by students in pri-
mary school, characterizes digital skills and determines the place of the digital literacy course in
the curriculum, reveals the main approaches to the selection of course content and thematic plan-
ning, taking into account the hours chosen by the educational organization.

Keywords: educational program, primary general education, digital literacy, digital transforma-
tion of education.

1. Introduction

The sample curriculum for the subject “Digital Literacy” was developed on the basis
of the Federal State Standard of Primary General Education (MERF, 2021, 2022), as
well as taking into account the Federal Law on Education (FLERF , 2012) and the
Strategic Direction of the Transformation of General Education in the Russian Federa-
tion (GRF, 2021).

The program sets the planned results of mastering the initial digital literacy. The
program determines the content of the training course by years of study, indicating ap-
proximate hours on each topic for grades 3–4 and types of educational activities using
tools of information and communication technologies.

M.S. Tsvetkova et al.160

2. Objectives of the Course “Digital Literacy” in Primary School

The program of the training course “Digital Literacy” reflects the formation of children’s
ideas about the high level of development of modern information technologies and their
implementation in everyday life, the formation of the initial culture of the user of mod-
ern information and communication technologies, the expansion of opportunities for
individual development of children through the implementation of individual curricula
in an electronic learning environment using digital skills.

The content of the course reflects the skills of working with information and on the
formation of information and communication technology competence as the initial digi-
tal literacy of children.

The program is focused on supporting the interdisciplinary work of students with the
means of information and communication technologies in the development of programs
of all academic subjects. As part of the formation of digital information skills for all sub-
jects, it is important to develop the skills of entering, analyzing, processing, presenting,
searching, transmitting digital information by computer means, and the practical use of
computers, digital educational equipment, electronic information and educational en-
vironment resources and e-learning, applied means of information and communication
technologies by students in the conditions of digital transformation education and the
emergence of new means of information and communication technologies, that is, the
need to prepare primary school graduates for competent information activities in their
studies, creativity and life.

In accordance with this purposes, the course «Digital Literacy» is aimed at achieving
the following goals:

The use of digital tools and resources, tools for solving a variety of cognitive and ●●
practical tasks covering the content of all subjects studied – information retrieval;
fixation (recording) information using various technical means; structuring of in-
formation, its organization and presentation in the form of simple presentations,
digital information objects.
Development of initial digital computer skills, the use of various digital learning ●●
devices, the inclusion of a computer to work with digital information of various
types.
Use of e-learning resources and digital educational environment for digital adap-●●
tation of primary school children in compliance with sanitary and hygienic stan-
dards and requirements when working with electronic learning tools.
Formation of communicative universal educational actions: exchange of media ●●
messages; performance with audiovisual support; recording the progress of col-
lective/personal communication; communication in a digital environment (e-mail,
chat, videoconference, forum, blog, personal account, electronic diary, online
contests and Olympiads) with the participation of a teacher and compliance with
information security standards in a digital environment.
Using the results of children's work posted in the information environment to ●●
evaluate and correct the work done digitally; creating a digital portfolio of per-
sonal educational achievements of the child.

Digital Literacy in Primary School 161

2.1. The Place of the Course “Initial Digital Literacy” in the Curriculum

The course program is designed for a study load of 70 hours in grades 3 and 4 (based on
the experience of mastering the primary skills of writing and reading texts, working with
mathematical information in grades 1–2 by students).

The training course supports the practical work of children with information and
communication technologies in all subjects of primary general education, including in
interdisciplinary project work based on information and communication technologies.

2.2. General Characteristics of the Course “Digital Literacy”

Primary digital literacy is the ability to solve educational tasks using tools that are gen-
erally available in primary school, information and communication technologies on a
computer, the competent inclusion of digital information and digital communication
tools in the context of educational and cognitive activity in accordance with the age
needs and capabilities of a younger student.

The training course should not infringe on the rights of those students who study the
course in educational organizations with different levels of equipment of the informa-
tion educational environment, therefore, the training course program is implemented by
an educational organization taking into account the level of equipment of the informa-
tion and educational environment of the educational organization and based on standard
equipment, such as a student’s computer and/or a teacher’s computer workplace with
presentation equipment, a printer and a webcam, as well as other devices connected to a
computer, including digital laboratories for children.

Additionally, it is possible to use personal digital devices for photo, audio and video
recording and data transmission.

3. The Main Digital Competencies of Primary School Students

The structure of digital literacy of primary school students includes three groups of
digital competencies:

 1.	 Information literacy. (Section of the course Working with digital information):
basic skills of working with text, graphics and presentations, design, input, out-
put, fixing and editing information on a computer and using publicly available
digital devices, working with hypertext, design of creative works using a com-
puter, presentation, algorithms and control of the screen performer. 
 2.	 Computer literacy. (Section of the course Computer Practice and digital tech-
nology): a set of simple skills to put into practice a computer, conventional digi-
tal devices and control interfaces for these devices (as well as for children with
disabilities – special digital devices and software services), the ability to turn on
the computer and select a program, recognize the menu in the program and pro-

M.S. Tsvetkova et al.162

gram tools, apply experience with devices connected to a computer, the ability
to use the on-screen user interface, keyboard interface, keyboard input, remote
control interface, voice interface, touch interface for special devices, work with
external media for storing information (in files folders), hygienic noms of the
organization of work with a digital device (preventive physical exercises, cul-
ture of norms of time, breaks, workplace organization).
 3.	 Communication Literacy. (Digital Communications course section): the abil-
ity to work in computer networks to search and exchange information, to work
in online educational services, with e-mail, personal account and electronic di-
ary, class forum, school website, video services for educational activities, elec-
tronic educational resources on the computer and on the Internet, to understand
the purpose of registration, password and login.

Safe behavior in the digital environment is presented in primary school by a sepa-
rate training course “Information Security” as the most important component of digital
culture.

Thus, digital culture includes digital literacy of children (Fgosteestr, 2022) for teach-
ing children modern digital skills and media culture (Information Security course at
school) for the socialization of children in the new digital world (Fgosteestr, 2022).

3.1. Planned Personal and meta- Subject Competencies
for the Course “Digital Literacy”

Personal competencies (initial life experience of digital activity):
To be aware of the need to master digital literacy in order to adapt to life situa-●●
tions, to develop a common human information culture; to develop information
activities.
Apply the rules of collective information activity with peers, show the ability to ●●
negotiate, lead, follow instructions, be aware of personal responsibility and objec-
tively assess their contribution to the overall result.
To master the skills of information activity on the basis of safe behavior in the ●●
information environment, to observe the norms of culture, respect for work and
collective activity.
Apply digital competencies to solve practical problems in everyday life, including ●●
when helping classmates, young children, adults and the elderly.
Work in situations that expand the experience of applying digital skills in real life, ●●
increase interest in learning new things and creativity by means of modern infor-
mation and communication technologies.
Evaluate practical and educational situations from the point of view of the possi-●●
bility of applying digital literacy competencies for rational and effective solutions
to educational and life problems.
Evaluate their success in information activities, outline ways to eliminate dif-●●
ficulties; strive to deepen their digital competencies, taking into account the legal
norms of behavior.

Digital Literacy in Primary School 163

It is reasonable and safe to use a variety of information tools to solve the proposed ●●
and independently selected educational problems and tasks.

Meta-subject competencies (initial practical experience of digital educational work as
a set of cognitive, communicative and regulatory universal educational actions) – the
ability of students to use in practice the digital skills that make up:

Universal educational cognitive actions – substitution, modeling, encoding and ●●
decoding of information, logical operations, including general methods of solving
problems by means of information and communication technologies.
Universal educational communicative actions – to organize and carry out coop-●●
eration by means of digital communications, to adequately transmit information
and display the subject content and conditions of activity and speech, to argue and
justify their position, to ask questions necessary for the organization of their own
activities and cooperation with a partner using means of communication.
Universal regulatory actions – in information activities, to accept and preserve the ●●
educational goal and task, plan its implementation, monitor and evaluate their ac-
tions, make appropriate adjustments to their implementation, carry out ascertain-
ing and anticipating control over the result and method of action, actual control at
the level of arbitrary attention.

These meta-subject results determine the elements of the educational experience of
problem solving and creative activity of different directions.

3.2. Key Functional Skills of Students: Children’s Digital Skills
in Three Types of Competencies

Information literacy. The section “Working with digital information” will teach the
student:

To distinguish between different types of information (text, numeric, graphic, au-●●
dio), to understand the peculiarity of digital information.
To navigate in the ways of presenting and storing information on a computer and ●●
digital environment.
Use methods of searching for information on the table of contents in the electronic ●●
catalog of the digital resource and in the Internet search engine.
Understand and fill in simple ready-made tables; read simple ready-made bar ●●
charts in electronic text.
Use additional sources of information on electronic media, including the con-●●
trolled Internet, to find the necessary information, analyze it.
Work with digital information: type small texts (letters, greetings, and other small ●●
texts for specific communication situations), create graphic and small multimedia
objects (audio, video, presentation slides) to present, design and transmit informa-
tion.
Enter information into a computer using various technical means (keyboard, ●●
graphics tools, photo and video cameras, microphone, etc.).

M.S. Tsvetkova et al.164

Save the information received.●●
Type small texts in your native / foreign language in the simplest text editor. ●●
Use the basic functions of a standard text editor, follow the basic rules of text ●●
formatting.
Draw (create simple images) in a graphic editor.●●
Create simple images using the graphical capabilities of a computer; design an ●●
image from ready-made fragments (application, collage).
Edit texts, images, slides, video and audio recordings, photo images in accordance ●●
with a communicative or educational task.
Prepare and conduct a presentation in front of a small audience: create a presenta-●●
tion plan, choose audio-visual support, write explanations and abstracts for the
presentation, use simple diagrams, diagrams, plans, etc.

Computer literacy. Section “Digital technology and computer practice”. The student
will learn:

To perform basic actions with computers and other means of information and ●●
communication technologies based on familiarity with a personal computer (per-
sonal computer device) as a technical means.
Use ergonomic methods of working with a computer and other means of informa-●●
tion and communication technologies that are safe for the organs of vision, ner-
vous system, musculoskeletal system; perform compensating physical exercises
(mini-charging).
Understand the composition of the computer and the purpose of its main devices ●●
for input, output, transmission and processing of information, know about dif-
ferent types of computers and digital devices for different types of work with
information.
Know about the software and its purpose, perform basic actions with the program ●●
menu, commands of the digital object management interface on the computer.
Organize the storage of your own information in folders and files on your com-●●
puter and external digital media.
Understand the need to apply health-safe methods of working with computer de-●●
vices in life, in e-learning, digital educational environment.
To apply in life the ways of storing your own information when organizing a per-●●
sonal information space, a personal account, an electronic diary.
Build a plan for the implementation of specified actions to solve a learning task ●●
using a computer and tools of simple programs.
Understand and execute a simple algorithm for controlling the executor of com-●●
mands using digital devices.
Use a computer to solve accessible learning tasks with simple information objects ●●
(text, drawings, available electronic resources).
To select the result of video recording and photographing suitable in terms of ●●
content and technical quality, use removable media (flash cards).
Describe an object or process of observation according to a certain algorithm, re-●●
cord audio-visual and numerical information about it using information and com-
munication technology tools.

Digital Literacy in Primary School 165

Collect numerical data in natural science observations and experiments using ●●
digital devices, a camera, a microphone and other means of information and com-
munication technologies, as well as during a survey of people.

Communication literacy. Section “Digital Communications”. The student will learn:
Use a computer to search and reproduce the necessary information.●●
Search for information in age-appropriate digital dictionaries and reference books, ●●
electronic educational resources, controlled Internet, a search system inside a
computer; compile a list of information sources used (including using links).
Use means of communication on the example of a resource of an educational ●●
organization (e-mail, school website, means of interaction in a group on a school
website).
Understand the importance of anti-virus protection of a computer, assigning a ●●
password, rules of speech etiquette when working with means of communication
on the Internet.
Create text messages using information and communication technology tools, ●●
edit, format and send them by e-mail.
Create simple messages in the form of audio and video clips or slide sequences us-●●
ing illustrations, video, sound, text; post a message in the information educational
environment of an educational organization.

3.3. Additional Digital Competencies in An Interdisciplinary Technologies

Individual tracks of children in creativity with information and communication tech-
nologies are:

Competently use a computer keyboard, use computer translation of individual ●●
words, use available techniques for working with ready-made text, visual, audio
information on the Internet, available ways of obtaining, storing, processing it.;
use basic means of digital communications; record the progress and results of
communication on the screen and in files; competently formulate queries when
searching on the Internet, evaluate, interpret and save the information found; be
critical of information and the choice of the source of information, participate in
collective communicative activities in the information educational environment;
observe the norms of speech interaction in interactive communication: e-mail,
Internet, video services and other types and methods of communication; (philo-
logical cycle).
Present data by various means of information and communication technologies, ●●
use information and communication technology tools (photo and video camera,
microphone, etc.) to record and process information, prepare small presentations
based on the results of observations and experiments; (mathematical and natural
science cycle).
Perform simple drawings and ornamental compositions using a computer graph-●●
ics environment; get acquainted with a graphic tablet, touch screen, voice input;

M.S. Tsvetkova et al.166

print, scan drawings and texts, use a scanned text recognition program in Russian,
design sound and music fragments using a computer and a musical keyboard,
collect music collections, music library, video library; (cycle of art objects).

4. The Content of the Course “Digital Literacy” in Primary School

Section 1. “Working with digital information” (30 hours).
 1.1.	 Information.
Man and the digital environment. Digital information and a computer.
Representation of digital information, the concept of digital data. Information,
its collection, analysis and systematization. Types of information: text, graph-
ics, numbers, multimedia, sound and video.
The concept of information processes of processing, searching, transmitting,
collecting, storing information.
The description of the simplest information model is a table and a diagram.

Project. Interpretation of table data. Reading and filling in the table. Graphical
representation of numerical data in a table. Reading a bar chart or pie chart.

 1.2.	Processing of information on a computer.
Information and computer. Working with simple information objects (text, table,
drawing) on a computer in text and graphic editors: transformation, creation,
saving, deletion.
Computer presentation. Preparing text, working with tables, inserting graphics
and videos, recording audio.

Project. E-book (text, illustrations, audiobook, hypertext).
Project. Presentation on the topic of the project. A media book based on a
presentation.

 1.3.	 Action planning and management.
Using a computer for calculations. The order of actions. Calculation algorithm
on a software calculator.
Team. The executor of the commands. The algorithm for managing the per-
former. An algorithm with a choice of action. The algorithm with the repetition
of commands.

Project. Computer environment for managing the performer. Implementation
of the algorithm on a computer in a learning programming environment.
Project. Software-controlled devices (control programs for household appli-
ances, timer/alarm clock in a digital device).

Section 2. “Computer practice. Digital technology” (20 hours).
 2.1.	 Familiarity with the means of information and communication technolo-
gies, hygiene of working with a computer.
Man and computer. Compliance with safe methods of working on a computer;
careful attitude to electronic technical devices.

Digital Literacy in Primary School 167

The diversity of computers and the world of professions using information and
communication technologies.
The purpose of the main computer devices for input, output, and information
processing. Turning on and off the computer and the devices connected to it.
Computer programs.
Graphical computer management interface. Programs. Menu
Files and folders, their storage system on the computer and external devices.

Project. Ergonomic methods of working with a computer and other means
information and communication technologies and physical exercises (mini-
charging).
Project. Digital sensors, digital laboratories and devices for research and re-
cording observations.

 2.2.	 Input and output of information: text, sound, image, digital data.
Keyboard, a general idea of the rules of keyboard writing, using a mouse to
work on a computer screen, using the simplest tools of software editors. Data
output to the printer. Information in the form of photos, audio and video frag-
ments. Microphone and headphones. Photo and video camera.

Project. Graphic tablet, touch screen, sound synthesizer, document camera,
video camera in educational creative activity.

Project. Digital devices for people with disabilities.

Section 3. “Digital communications” (20 hours).
 3.1.	 Computer network Internet.
Man and society. The Internet. Global computer networks. Website. Rules for a
secure Internet connection, password and personal data.
 3.2.	 Transmission and retrieval of information.
Means of communication: mobile telephony, e-mail, audio and video services.
Antivirus protection of the computer.
Mass media: radio, television, press on the Internet. Selectivity in the use of
mass media in order to preserve spiritual and moral health.
 3.3.	 Working with digital communications.
Digital communication in education. Digital educational environment resources,
registration, personal account, electronic diary, electronic portfolio, educational
organization website, class forum, electronic reception.
Digital communications in life. Personal and collective network services:
messengers, blogs, email, social network page. Network etiquette in the pub-
lic space.

Project. Work with the means of communication – e-mail, educational sites
on the Internet. Search for information. “Smart” devices connected to the
Internet (Internet of Things).
Project. Settings tools for viewing websites for people with disabilities.

M.S. Tsvetkova et al.168

Topics of digital projects for the organization of creative interdisciplinary work in
groups of students’ choice.
Work with digital educational resources, ready-made materials on electronic media. Au-
diobooks. E-books and textbooks. Electronic music collections. Video materials. Creat-
ing a directory of links of additional cognitive information resources to the topic of the
lesson.

Observations, recording and processing of the results of observations (nature, weath-
er) and surveys by means of information and communication technologies. Presentation.
Report. Reportage.

The use of various artistic techniques in individual and collective activities by means
of information and communication technologies, computer animation, video and photo
shooting, computer graphics. Media book. Animation. Exhibition.

Search and listen to music from electronic collections. Creation of information sup-
port for a music project (poster, presentation, invitation cards, etc.).

5. Educational Activities of Children Based on Digital Competencies

For the formation of initial digital literacy, the content of the training course is imple-
mented using practical tasks with information and communication technologies in a
group and individually, in partnership with a teacher. Practical work using a computer,
presentation equipment, devices connected to a computer, as well as digital educational
resources on the topics of the course (media studies) in the sections of the course con-
tent include the following types of practical information activities of children.
Working with digital information. Working with digital information objects that
combine text, drawings, diagrams, tables, visual and graphic images (diagrams) and
numerical data, fixed and moving images, sound, links and multimedia objects, digital
objects for programming their management, which can be created stored on a com-
puter and external media or posted on the Internet, transmitted via digital communica-
tions.
Practice working on a computer. Digital technology. Work with diagrams, descrip-
tions and instructions, participation in explaining the purpose of various computer
devices, digital environment devices, functions of household appliances with software
control. Working with a computer and digital devices connected to it. The use of gen-
erally accepted programs in educational tasks for simple processing, storing informa-
tion using information communication technologies: interface with the device, files
and folders, selection of tools for working on a computer, input, editing of various
types of information on a computer: text, sound, image, digital data; presentations.
General safe and ergonomic principles of working with computers, digital devices and
programs.
Digital Communications. Use e-mail, computer network, educational and cognitive
sites in information and educational activities. To search for and transmit information,
to assess the need for additional information for solving educational tasks and inde-

Digital Literacy in Primary School 169

pendent cognitive activity; to identify possible sources of its receipt; to be critical of
information and the choice of the source of information, to comply with the norms of
safe behavior in the digital environment and the protection of personal data in personal
network services.

6. Conclusion

The application of digital skills in practice in the subject education of younger school-
children includes regular practical work of children based on the use of information and
communication technologies in all academic subjects and in the form of interdisciplin-
ary educational projects using digital tools and devices.

Types of interdisciplinary projects:
Subjects “Mathematics and Computer science”.

Projects related to the presentation, analysis and interpretation of data; the ability ●●
to extract the necessary data from tables and diagrams, fill out ready-made forms,
explain, compare and summarize information, draw conclusions and forecasts.
Projects for managing the work of the team executor, programming algorithmic ●●
tasks and designing information objects.

Subjects “Language. Literary reading. Native language and literature. A foreign lan-
guage”.

Projects in oral and written communication using information and communication ●●
technologies in order to present, formalize the results of the project in creative
groups and search for the necessary information in various sources to complete
educational tasks.

The subject “The surrounding world”.
Projects for working with information and communication technologies-means, ●●
searching for information in electronic sources and the controlled Internet to cre-
ate messages in the form of texts, audio and video fragments, presentations based
on the results of observations and research.
Projects for the development of digital laboratories.●●

The subject “Technology”.
Practical work with a personal computer as a technical means, with its main de-●●
vices for their intended purpose; experience of group and individual work with
simple information objects: text, drawing, audio and video fragments; techniques
for searching and using available electronic resources.
Robotics projects.●●

Subjects “Art”.
Projects for the use of various information and communication technology tools in ●●
creativity (graphic editors, multimedia, augmented reality, virtual reality).

M.S. Tsvetkova et al.170

The subject “Physical culture and sport”.
Projects in support of health-saving technologies of information activities, inde-●●
pendent planning and performing physical exercises while working on a com-
puter.
Projects for the development of the simplest digital health sensors.●●

The course is implemented using the author’s textbooks (Tsvetkova et al., 2022) and
books to them.

Methodological materials, work program and electronic educational resources for
the training course are available on the website of the author’s workshop for textbooks
(BINOM, 2022).

Additional materials on project activities can be found in publications on media edu-
cation (Bondarenko et al., 2018, 2020).

Reference

FLERF (2012). Federal Law of Education in Russian Federation, No. 273-FZ of December 29, 2012. On Edu-
cation in the Russian Federation. https://zakon-ob-obrazovanii.ru/

MERF (2021). Ministry of Education of the Russian Federation. Order No. 286 dated May 31, 2021. Federal
State Educational Standard of Primary general Education.
https://fgosreestr.ru/educational_standard/federalnyi-gosudarstvennyi-obrazo-

vatelnyi-standart-nachalnogo-obshchego-obrazovaniia

Fgosteestr (2022). Program of primary education of the Ministry of Education of the Russian Federation.
https://fgosreestr.ru/poop/primernaia-osnovnaia-obrazovatelnaia-programma-nachal-

nogo-obshchego-obrazovaniia-1
GRF (2021). Strategic directions in the field of digital transformation of education related to the sphere of

activity of the Ministry of Education of the Russian Federation. Decree of the Government of the Russian
Federation No. 3427-r of December 2, 2021.

Fgosteestr (2020). The approximate educational program of the course “Information security” for primary gen-
eral education. https://fgosreestr.ru/oop/informacionnaya-bezopasnost-1-4

Tsvetkova M. et al. (2022). Informatics (in 2 parts). 3rd grade. 4rd grade. Prosveshenie Publishing House,
Moscow. (In Russian: Могилев А.В., Могилева В.Н., Цветкова М.С.. Учебник: Информатика в 2 час-
тях. 3 класс. 4 класс. Издательство БИНОМ, Издательство Просвещение. Москва).
https://lbz.ru/books/750/

BINOM (2022). Methodical website of BINOM publishing house. Author’s workshop.
https://lbz.ru/metodist/authors/informatika/5/

Bondarenko E.A. et al. (2018). The introduction of media education into the practice of general education.
Revista Espacios, 39(38), 7.

Bondarenko E.A. et al. (2020). Development of Meta-Subject Skills of Schoolchildren in the Aspect of Media
Education: Monograph. Moscow, CJSC Parusa, 2020, 240 p.

Digital Literacy in Primary School 171

M.S. Tsvetkova, professor of the Russian Academy of Natural Sci-
ences, PhD in pedagogic science, prize-winner of competition “The
Teacher of Year of Moscow” (1998). from 2002 to 2018 she is a
member of the Central methodical commission of the Russian Olym-
piad in informatics and the pedagogic coach of the Russian team
on the IOI. She is the author of many papers and books in Russia
on the informatization of education and methods of development of
talented students. She is the author of official textbooks and copy-
books in Russia for primary school in Informatics. She is author and
director of the International school in Informatic ISIJ (since 2017).
She is the Russian team leader (2013–2017). She was awarded the
President of Russia Gratitude for the success organizing the train-
ing of IOI medalists (2016). She is now the Expert of Committee on
Education and Science State Duma of the Russian Federation (since
2017), and she has the Committee on Education and Science State
Duma Gratitude (2021).

E.A. Bondarenko, Associate Professor of the All-Russian State In-
stitute of Cinematography named after S. Gerasimov, PhD in peda-
gogic science. From 2001 to 2013 – Head of the Media Education
Laboratory of the Institute of Content and Teaching Methods of the
Russian Academy of Education, since 2014 – President of the As-
sociation of Film Education and Media Pedagogy of Russia. She
is the author of many books and papers in Russia on the problems
of film education, media education, information literacy, education
standards, and information security. Expert of the Book Chamber
(examination of textbooks), member of the jury of more than 20 con-
tests of school media creation and film festivals.

I.Yu. Khlobystova is an Assistant Professor, PhD in pedagogic sci-
ence at Glazovsky State Pedagogical Institute named after V. G. Ko-
rolenko, Glazov, Russian Federation. Her research interests include
programming and computer science education. She is the author of
many articles in Russia on teaching computer science at school and
university. She has many years of experience in online publishing
and working in editorial boards, including in publications related
to the formation of digital media literacy. She is the author of of-
ficial textbooks and copybooks in Russia for schools and colleges in
Informatics. Expert of the Expert Council on a Secure Information
Environment.

M.S. Tsvetkova et al.172

E.V. Yakushina, Moscow City University, Russian Federation, se-
nior researcher of activity education laboratory PhD in pedagogic
science. From 1996 to February 2015, she worked as a senior re-
searcher at the Laboratory of Media Education at the Institute of
Content and Teaching Methods of the RAO. Since 2014 he has been
working as a publishing editor of the magazine «Media. Informa-
tion. Communication». He has many years of experience in online
publishing and working in editorial boards, including in publications
related to the formation of digital media literacy. She has experience
of participating in various research and expert projects conducted
by the Ministry of Education and Science of the Russian Federa-
tion from 2000 to 2021, including work as a researcher in the Re-
search Group on the Inclusion of Humanities Scientists in a new
communication Environment (Institute of Psychology of the Russian
Academy of Sciences). Member of the Expert Council on a Secure
Information Environment.

Olympiads in Informatics, 2022, Vol. 16, 173–195
© 2022 IOI, Vilnius University
DOI: 10.15388/ioi.2022.14

173

Hosting IOI 2019 Azerbaijan: Back to the Future

Araz YUSUBOV1, Farid AHMADLI2, Jamaladdin HASANOV1

1School of IT and Engineering, ADA University, Baku, Azerbaijan
2Amazon, Vancouver, Canada
e-mail: ayusubov@ada.edu.az, faridra@amazon.com, jhasanov@ada.edu.az

Abstract. Who would guess that the 31st International Olympiad in Informatics (IOI) in Baku,
Azerbaijan will be referred to as “the last normal” one for so long? While the IOI community looks
forward to the upcoming onsite events, the readers may be interested in a retrospective report on
the IOI 2019 from the host organizing, scientific and technical committees. This report covers the
whole process throughout bidding, preparations, event days and closeout, shares some pain points
and provides a number of practical recommendations. The authors hope that by looking back at
the IOI 2019 Azerbaijan they will also help potential hosts of future IOIs.

Keywords: IOI, Azerbaijan, organizing committee, scientific committee, technical committee,
CMS, project management.

Introduction

Usually all IOI host countries publish reports on the organizational aspects of the Olym-
piads in informatics, including the international ones (Iglikov et al., 2013; Abam et al.,
2017). The goal of this report is to highlight some critical points of organizing an IOI
specifically, while focusing on three aspects from organizational, scientific and tech-
nical perspectives. This report may also be useful for the future IOI hosts as it walks
through the whole process starting from bidding and ending with the event itself.

1. The Way to IOI 2019

Before starting any enterprise there is that ‘why?’ question, the rationale for starting this
endeavor. IOI is a massive endeavor, indeed, a week-long event that apart from the sci-
entific component of preparing world-class original and challenging programming prob-
lems, as well as technical component of running a distributed computing environment
with hundreds of workstations, also includes a heavy logistical component of accommo-
dating hundreds of majority non-adult people, who travel from virtually all around the
world. Plus, practically all of it is at the host’s expense.

A. Yusubov, F. Ahmadli, J. Hasanov174

Unlike many other international events, such as popular sportive competitions, it
would be naive to consider IOI as a means of promoting the host country as a tourist
destination. In many countries IOI is virtually unknown (unfortunately) outside of the
professional community of interest. However, as one of the internationally recognized
science olympiads and the second largest one, initiated by UNESCO back in 1989, it is
considered as “one of the most prestigious computer science competitions in the world”
(Wikipedia, 2022).

1.1. Initiation of Bidding

A famous Chinese proverb ascribed to Laozi (Wikiquote, 2022b) says “a journey of a
thousand miles begins with a single step.” As per the official Regulations (IOI, 2022)
(statute S4.1), process starts with a Letter of Intent sent by an official representative
of an interested IOI member Country to the IOI Secretary. Becoming an IOI member
assumes, among other requirements, a demonstrated capability of selecting a National
Delegation through running national level selection of Contestants, and ability to sus-
tainably participate in the last three IOI’s after visiting as an Invited Observer for one
year.

Azerbaijan joined IOI in 1994 and has been participating uninterruptedly in every
IOI since then. For many countries the participation becomes possible thanks to enthu-
siastic professionals and volunteers, who apart from running the local selection of con-
testants, over the years put a lot of effort into resolving logistical issues such as secur-
ing sponsorship for the travel of delegations. In Azerbaijan, Dr. Ramin Mahmudzade
(IOI, 2020) has been leading these efforts as also a Delegation Leader at 21 olympiads
between 1996–2019. A decorated educator and well respected informatics professor, he
was the main initiator and promoter of Azerbaijan hosting an IOI.

In Project Management terms, some differentiate the project initiator, as an individ-
ual, who promotes the project and champions its initiation, and the project sponsor(s),
as one or more individuals or organizations that provide resources and support for the
project and are accountable for enabling success (PMI, 2022). The Letter of Intent for
hosting IOI in a specific year usually is sent to the Secretary of the IOI by the primary
sponsor organization and provides reference to previous experience of hosting similar
events as well as commitment to host the IOI up to the required standards. Upon receiv-
ing acknowledgement and rules from the Secretary the Country receives a Potential
Host status.

The next step for the Potential Host is to present its bid to the International Com-
mittee (IC) of the IOI in the form of a report, which would include some details e.g.
draft program and proposed venues, consolidated technical and human resources, draft
budget and sponsorship plan, etc. Based on these reports from Potential Hosts the IC
nominates a single candidate for hosting the IOI for a specific year, to be ratified by the
General Assembly (GA) voting. Upon ratification, the Country receives Candidate Host

Hosting IOI 2019 Azerbaijan: Back to the Future 175

status with an official Invitation for hosting the IOI in that year. Azerbaijan presented
its report for hosting IOI 2017 during the IOI 2013 in Brisbane, Australia, and later for
hosting IOI 2019 during the IOI 2015 in Almaty, Kazakhstan. A positive constructive
feedback received from the IC members after the first presentation helped with Azer-
baijan’s second successful bidding.

In Azerbaijan, the Ministry of Education was the championing government agency
for both bids, while ADA University was the championing educational institution for the
IOI 2019. Both organizations responded to the Invitation with an official confirmation
upon which Azerbaijan became the Future Host for IOI 2019.

1.2. IOI is the Way

“There is no way to IOI, IOI is the way.” This quote (homage to A.J. Muste (Wikiquote,
2022a)), which comes from the IOI 2019 General Assembly (GA) closing remarks,
reflects the transformational role of IOI in the countries that join it and host it, hence
may serve as a reply to our initial ‘why?’ question. In Azerbaijan, years ahead of the
IOI 2019, starting from 2015 when the country became Future Host, were marked by
increased attention and national level support to the competition and informatics in
general, which eventually resulted in medals (IOI, 2021) after almost a decade-long gap
and long-awaited announcement of including informatics questions in the centralized
university entrance exams.

1.3. You Won the Bid: Now What?

The journey just starts with an IOI Country winning the bid and receiving the Future
Host status. By that time usually there is already an official local Organizing Commit-
tee, which is to consolidate resources for arranging the IOI they won the bid for.

Three representatives of the Future Host automatically become members of each
of the three long-term standing IOI committees, that is IC, the International Scientific
Committee (ISC) and the International Technical Committee (ITC). This regulation
ensures that the Future Host develops a better understanding of the corresponding as-
pects of organizing another IOI. In addition, IOI Regulations make it mandatory to
invite a limited number of observers representing the Future Host to each IOI, which
also facilitates further knowledge transfer. For this reason also, usually, the Future Host
delegation includes many additional guest members, especially the year before the IOI
they will host.

The authors discuss three aspects of running an IOI from organizational, scientific
and technical perspectives, as they resided in the abovementioned committees and led
the local efforts in corresponding three directions within the host Organizing Commit-
tee for IOI 2019.

A. Yusubov, F. Ahmadli, J. Hasanov176

2. General Organizational Matters

Every IOI is a unique event with a specific technical content and international nature,
which often requires state-level efforts. Hence, having government agencies as part of
the Organizing Committee is not merely a matter of prestige, their direct support is cru-
cial for many activities, such as securing visa arrangements, safety and security, public
media promotion, and access to some resources.

It is critical to build effective organizational structure and internal communications,
way before any event activities commence. Project sponsors form the core of the host
Organizing Committee and usually senior representatives of these organizations become
members of the Steering Committee, which monitors the progress of preparations and
provides support in consolidating necessary resources.

In Azerbaijan, the Steering Committee members included then head of the champi-
oning government agency, Ministry of Education, Mr. Jeyhun Bayramov, acting as the
official Chair of IOI 2019, as well as the Minister of Transport, Communications and
High Technologies as the Co-Chair. Finally, the true champion of the project and driving
force of the committee was the Honorary Co-Chair of IOI 2019, Ambassador Prof. Hafiz
Pashayev, Rector of ADA University.

The first semi-formal meeting of the Steering Committee was held as early as in
March 2018 with a total of two working meetings in 2018 and four meetings held in
2019 with their participation. Having high-level decision-makers on board and effec-
tive government support helps to quickly resolve many administrative or logistical
issues. In Azerbaijan, ultimately an official government-level organizing committee
for IOI 2019 was formed by an order signed by the Prime Minister (ICT, 2019) in May
2019.

Host Organizing Committee
Steering Committee

Host Organizing Committee

Organization
Committee

Venue Operation
and Ceremonies

Accommodation
and Food

Transportation
and Logistics

Marketing and
Communications

Team Guides and
Volunteers

Host Scientific
Committee

Host Technical
Committee

Coordination
Committee

Government
Agencies Ministry of Education

Ministry of Transport, Communications
and High Technologies

Ministry of Culture
Ministry of Youth and Sport
Ministry of Internal Affairs

Special State Protection Service
State Border Service

National Academy of Sciences
State Tourism Agency

ASAN Service State Agency
Ministry of Healthcare

Fig. 1. Final organizational structure for IOI 2019 in May 2019.

Hosting IOI 2019 Azerbaijan: Back to the Future 177

Since the scope of an IOI includes a considerable element of event logistics, usu-
ally an effective organizational structure also includes a major event management ven-
dor. In Azerbaijan, this role was filled by Caspian Event Organisers (CEO) company,
which earned its reputation over more than two decades as an organizer of major
international exhibitions or events, such as annual BakuTel Azerbaijan International
Telecommunications, Innovations and High Technologies Exhibition (Bakutel, 2022)
or Asian Development Bank Annual Meeting (ADB, 2015) in Azerbaijan. It is a good
idea to include representatives of this vendor as part of the National Delegation to the
previous IOIs.

To ensure effective internal communication and coordination, five working groups
for Venue Operation and Ceremonies, Accommodation and Food, Transportation and
Logistics, Marketing and Communications, Team Guides and Volunteers were estab-
lished under the Organizing Committee (see Fig. 1) with relevant members both from
ADA University and CEO.

It is also critical to build effective public communications months and even years
ahead of the event. Involvement of the IOI committee members in local promotion
helps emphasize the international importance of the event and gain further local sup-
port. We would like to thank the IC members, Mr Eljakim Schrijvers and then IOI
President Prof Krassimir Manev for accepting the invitation to visit Baku in Decem-
ber 2016 and for participating in public discussions, interviews, as well as official
meetings with government representatives. Prof. Manev’s participation as one of the
original organizers of the first ever IOI added a distinctive weight and energy to the
local promotion.

A major milestone ahead of the IOI is a special meeting of local and international
committees to be organized about six months before the olympiad by the Present Host.
The primary goal of this usually three-day event, also known as Winter Meeting, is to
jointly examine ‘on the spot’ the organization of the upcoming IOI. It is also a good op-
portunity for further public promotion. In Azerbaijan, the meeting dates from 18–20 Feb-
ruary were used to organize a press conference and interviews (IOI Azerbaijan, 2019).

2.1. Going Forward with the Project

As in any project, for hosting IOI it is important to clearly define the scope, firmly secure
the budget and get final agreement on the schedule. There are efforts to institutionalize
the knowledge transfer within the IOI committees. For example, IOI Secretariat archives
a number of ‘checklist’ documents that list critical activities pertaining to hosting an IOI.
These would help with better understanding of the scope of the work.

We would also like to acknowledge with gratitude the IOI 2018 Japan team for pro-
ducing an internal Final Report document that includes many useful details i.e. organiza-
tional structure, design and color coding of official badges, detailed programs including
opening and closing ceremonies, venue maps and seating charts, schedules for daily
operations and volunteer shits, emergency procedures and more. It was used as a model,
while IOI 2019 produced a similar document for internal use by Future Hosts.

A. Yusubov, F. Ahmadli, J. Hasanov178

In Project Management terms (PMI, 2022), Work Breakdown Structure (WBS) is “a
hierarchical decomposition of the total scope of work”. It is later translated into sched-
ules with project activities, and budgets with projected costs and assigned resources.

As per an agreed model, the major services were procured by ADA University, while
the CEO company was contracted to control the total budget for procurement of numer-
ous other, relatively smaller services (Fig. 2).

In Azerbaijan, the Ministry of Education ensured allocation of the budget for IOI
2019. Such a model with a single source of funding is very helpful if there are sol-
id guarantees of support. In an alternative model where there are several sources of
funding at different levels (e.g. diamond, gold, silver, bronze), a separate organizing
committee unit would manage “relationships with co-organizers and sponsors”. For
example, the final list of sponsors for IOI 2018 Japan (IOI, 2018) included around 50
organizations.

On a global level, from 2017 to 2021, IOI also had Acer as Official Sponsor (Acer,
2019), who committed to “supply notebooks for contestants and staff, and servers to run
contest management systems and language translations”. This arrangement helped the
organizing committees both from the budget and scope perspective. Special thanks go

Venue renting (ADA)1.	
National Gymnastics Arena1.1.	
Boulevard Hotel1.2.	
Opening and closing venues1.3.	

Accommodation (ADA)2.	
Boulevard Hotel (leaders, guests, organizers, volunteers)2.1.	
Athletes Village (contestants, volunteers)2.2.	

Furniture and equipment (CEO)3.	
Catering4.	

Leaders and organizers (ADA)4.1.	
Guests (ADA)4.2.	
Contestants (ADA)4.3.	
Volunteers (CEO)4.4.	

Transportation (ADA)5.	
Outdoor promotion (CEO)6.	
Swag, souvenirs and awards (CEO)7.	
Registration (CEO)8.	
Printed materials (CEO)9.	
Excursions (CEO)10.	
Consultancy (ADA)11.	
Video and photo shooting (CEO)12.	
Musical program (CEO)13.	
Website and social media development and maintenance (CEO)14.	
Contingency costs15.	

Contingency costs (ADA)15.1.	
Contingency costs (CEO)15.2.	

Fig. 2. Top level budget elements for IOI 2019.

Hosting IOI 2019 Azerbaijan: Back to the Future 179

to Prof Greg Lee as the chair of the Acer sponsorship working group, who also served
as IOI President from 2018 to 2021. In Azerbaijan, Acer also agreed to donate the note-
books used for competition as a legacy of IOI 2019 to be used for development of in-
formatics education in the country (Acer, 2019). We would like to acknowledge the
professionalism and responsiveness of Acer colleagues on local, regional and global
headquarters level.

For many national level events, the schedules are also to be coordinated with gov-
ernment agencies to consider other important public activities. The IOI 2019 final dates
of 4–11 August were agreed to fit between the 2019 Summer European Youth Olympic
Festival (EYOF, 2019) and a public holiday. Knowing these dates earlier is important
for National Delegations for planning ahead and coordinating, for example, with par-
ticipation in other scientific olympiads.

Overall timeline can be divided to pre-IOI, IOI and post-IOI periods with the former
further divided to pre-Winter Meeting and post-Winter Meeting periods. The latter is
marked by increased intensity of activities that culminates with the launch of the event
itself.

Table 1
Major milestones in the IOI 2019 timeline

Internal coordination IOI operations External communication

7 March 2018: Kick off meeting •	
with Steering Committee

7 September 2018: •	
Azerbaijan received the IOI
flag at IOI 2018 in Japan

9 September 2018: •	
Official Facebook page launched at
https://www.fb.com/ioi2019/

9 September 2018: •	
Official website with call for tasks
launched at www.ioi2019.az

18 October 2018: Official meeting •	
with the Steering Committee

20 February 2019: joint meeting •	
of the Host Organizing Committee
and International Committee

18–20 February 2019: •	
IOI 2019 Winter Meeting

31 March 2019: National Oly-•	
mpiad in Informatics running
on IOI infrastructure – Semi-
finals

17 March 2019 – Official IOI 2019 •	
logo design approved

16 April 2019: Contract signed •	
with the approved vendor for event
management

15 April 2019: Memorandum •	
signed with ACER as part of
the 5-year global partnership
24 April 2019: •	
Official IOI Registration Sys-
tem launched for IOI2019 at
www.ioiregistration.org
30 April 2019: Soft copies of •	
official invitation letters to IOI
Country delegations sent by
emails

26 April 2019: Official website re-•	
launched at www.ioi2019.az
26 April 2019: Three official contact •	
emails @ioi2019.az and inquiry
handling procedures established

Continued on next page

A. Yusubov, F. Ahmadli, J. Hasanov180

Table 1 – continued from previous page

Internal coordination IOI operations External communication

15 May 2019: Order signed on •	
establishing the government level
Host Organizing Committee
22 May 2019: Meeting of the •	
Working Group of the Coordination
Committee
30 May 2019: Meeting of the •	
Coordination Committee

5 May 2019: National Olym-•	
piad in Informatics – Finals

5 May 2019: Official YouTube chan-•	
nel launched with the first video

11 July 2019: Meeting of the •	
Working Group of the Coordination
Committee

4–11 August 2019: IOI 2019 •	
held in Baku, Azerbaijan

2.2. Looking Back at IOI 2019

According to a post-event survey, IOI 2019 can be considered as another successful
IOI thanks to the professionalism and dedication of many people across a number of
organizations, including 148 team guides, lead guides and volunteers, who worked hard
throughout the event week. There were 498 participants from 88 countries and regions,
including 331 Contestants and 87 Delegation Leaders. In addition, 78 guests were host-
ed, including 7 juniors.

While internal communication with the event management vendor was critical, it
took some ‘warm up’ time on the first day for it to settle. Establishing early on more de-
tailed communication protocols and using Winter Meeting activities, as well as national
olympiad semi-final and final rounds for testing them in practice and revising as needed
could be helpful.

Another common pain point was that there were too many dependencies on a few
people, for example the Organization Committee manager. Perhaps, further delegation
of some roles would help in this situation.

Communication channels included also 3 official email addresses used for corre-
spondence mainly with participants and occasionally with the general public. While the
travel-related email was handled by the event management vendor, and the others by the
ADA University, establishment of clear protocols and response templates was helpful
during the peak times.

Every IOI is remembered by some local touch or novelty brought by the host. For
example, as part of the registration, a reduced guest fee was introduced for an accom-
panying second guest, who agreed to share a standard room. As a result, sharing rooms
among guests was not mandatory, rather encouraged in Baku.

The IOI 2019 brought all the contestants, team leaders and guests together for a Cul-
tural Night organized along with an open-air dinner on day 6, also known as Excursion
Day 2, where the teams were invited to demonstrate their talents and present their culture

Hosting IOI 2019 Azerbaijan: Back to the Future 181

through music, dance or some other performance on the stage. This tradition should
continue as it very much speaks to one of the IOI goals (IOI, 2022) (statute S1.7), which
is about “foster[ing] friendly international relationships among computer scientists and
informatics educators.”

A Book of Tasty Algorithms, with forward by Prof Donald E. Knuth, a special edi-
tion of a book about Azerbaijani cuisine as a homage to the famous prologue to Knuth’s
Art of Computer Programming was presented as a gift to all IOI 2019 participants. A
revered computer scientist, Prof Knuth was very kind to support this project and wrote
an exquisite introduction. In addition, the participants had a chance to add a personal
note to a special big folded card to be sent to the professor along with copies of the
book. We were overwhelmed by a positive response from Prof Knuth himself: “The
books arrived today, and I’m overjoyed to see that they were very attractively printed
indeed. I was also quite touched (and “flabbergasted”!) by the one-of-a-kind thank-you
sheet that was inscribed by so many participants of IOI2019. Wow! My wife – who is
a designer – was also appreciative of the outstanding cover design, and the IOI logo.”
(IOI, 2019a)

An official postage stamp of the Republic of Azerbaijan featuring all logos of all IOIs
starting from the very first IOI 1989 in Bulgaria was released on the stage during the
Closing Ceremony and presented as a souvenir to all participants.

Finally, at the IOI 2019 Closing Ceremony, the official IOI flag has got a designated
bag for transporting it from country to country.

3. Scientific Committee

The IOI 2019 Host Scientific Committee (HSC) was composed of members located in
different countries. Team was managed and worked completely remotely, and except
for the Winter Meeting and actual contest period, the team was regularly meeting online
to discuss the state of preparations, to work on tasks, etc. The committee consisted of
15 members from Iran, Russia, Poland, Ukraine and Singapore.

HSC was divided into smaller groups, coordinated locally per country of residence.
These groups were working independently on sets of tasks assigned. An experienced

Table 2

Statistics for IOI 2019 communication channels

Facebook page YouTube channel Info email Travel email Registration email

by 11 July
2019

Posts: 77
Likes: 903

Videos: 16
Subscribers: 120
Views: 2,606

 163 102 108

by 11 August
2019

Posts: 133 / 36*
Likes: 2,382

Videos: 27
Subscribers: 506
Views: 38,343

1,190 / 84* 636 / 62* 449 / 28*

*during the event

A. Yusubov, F. Ahmadli, J. Hasanov182

team member was assigned as a coordinator to each group, which made the overall
communication process much more manageable. Some members departed from the
team after some period of inactivity, some joined the team as authors of the submitted
tasks.

Establishing secure communication channels and uniform infrastructure for task
preparations was challenging. It would help future IOI hosts a lot to have a standard
cloud platform provided by IOI for the contest website, “call for tasks” submissions,
task preparation/management, secure communication, worker/grader hosts for testing
and contest simulations. It would especially help those countries, who would like to host
the event, but lack any technical/scientific expertise to do so. Always relying just on
community proves to be risky, hence, IOI budget could be put to a better use by provid-
ing at least some of these tools.

Overall task preparation process of the IOI 2019 can be evaluated as successful. Ac-
cording to the IOI survey, contestants were mostly satisfied with the difficulty and origi-
nality levels of the selected tasks and the quality of problem statements and test data.

However, the preparation process itself was not as smooth as it might seem. Due to
lack of communication (it is hard to demand absolute commitment from remotely locat-
ed volunteers) before the on site meetings, a lot of work had to be done on the spot. For
instance, some test data for some contest tasks was under prepared, i.e., lacked deeper
analysis on possible exploitation of test cases. Or another case, when some better solu-
tion for a task existed, found during the meeting, ruining initial sub task distribution. All
such cases were resolved during the joint ISC-HSC meetings thanks to individual efforts
and contributions of all committee members.

Initial task selection after the “call for tasks” was lacking. After short listing we
were left with just several tasks, barely enough to cover the contest without any back-
ups. Therefore, we had to rely on individual authors/committee members contributing
to the set of tasks. Eventually, those authors were recruited to work in the HSC. Team
had also to improvise on modifying existing task statements to maintain a balance
between hard, medium and easy tasks for both contest days in the case some tasks are
rejected during a GA meeting.

Call for tasks could be improved by introducing various rewards or benefits for se-
lected task authors. Making those mandatory for host countries to compensate could be
very helpful. Our decision to invite task authors, since they were also HSC/ISC mem-
bers, was natural and seemed to be reasonable at the time. But initially, we had a hard
time deciding on appropriate compensation for the authors who will not be able to attend
the contest. Luckily everyone attended.

Last, but not least, after the last GA meeting/translation session, relocating to the
contest area, preparing tasks statements for contestants, loading them into the system
and proof checking everything needed a lot more time than initially anticipated. Transla-
tion session ending just a few hours before the start of the contest and having the actual
contest area isolated and far away from the meeting venues had almost delayed the start
time of the contest. Had it been the case, it would have negatively affected the overall
contest experience. Thanks to overall team efforts we still managed to get everything
done in a timely manner.

Hosting IOI 2019 Azerbaijan: Back to the Future 183

4. Technical Committee

The organization of such a wide-scale programming competition was quite a challenging
task for the HTC as unlike previous hosts, Azerbaijan has never hosted regional or in-
ternational programming contests before. The number of contestants in each stage of the
national olympiad in informatics never exceeded 100, which would be hosted by several
high school or university facilities, without extra complexity on the computational and
network infrastructure.

Considering the high uncertainty of the project, HTC chose the systematic and for-
mal management approach, which in turn delivered the results accepted by committee
members. This report covers the management part of HTC. The analysis and recom-
mendations based on contestant data analysis have been provided in a separate report
published in 2021 (Hasanov et al., 2021).

As mentioned in the introduction part of the paper, the number of visiting countries
and contestants was not much different from the previous years. There were no signifi-
cant changes on the regulations part either (one of the mentionable changes would be
removal of the Pascal language from the contest, which actually simplified things a bit).
Considering the similar initial conditions and requirements, using best practices from the
previous years and considering the lessons learned, was the right way to keep the direc-
tion (which wouldn’t probably work both for the onsite and online contests).

Project Management Institute (PMI) defines a project as “a temporary endeavor un-
dertaken to create a unique product, service, or result” (PMI, 2018). There is no doubt
that this defines IOI as a project, as the “product, service or result” part of it is a of IOI
activities that are planned during the project time. This part makes IOI different from
the majority of the projects – the project team’s job does not finish after the delivery
of the final product (service or result part will be skipped hereafter), it just transforms
from one stage to another. This second, short period process is not a project at all – it’s
called Operation (also used in conjunction with Delivery and Maintenance), which is
run and regulated differently from the projects.

Considering these two stages, the corresponding formal approaches has been used:
For Project Management – PMI’s Project Management guideline and standards.1)	
For Operation Management – best practices, standards and guidelines of ITIL’s 2)	
Service Operation, Lean management and ISO9001 (Service Delivery).

This report briefly describes the implementation details of the mentioned standards,
categorizing the experience as positive and unexpected.

4.1. Positive Experience and Outcomes

4.1.1. Usage of Formal Project Management
Those who follow the formal project management are steps ahead of those who try to run
projects based on their experience or even worse, intuition – the PMI standard defines
the knowledge areas, phases, processes and documents that are required in each phase

A. Yusubov, F. Ahmadli, J. Hasanov184

for the given knowledge area. Below is the list of knowledge areas and their correspon-
dence with the IOI project:

Knowledge Area Why it was important

Integration management Definition of the project constraints (time, budget and scope). Formal Acceptance of
the Project. Change Control Process.

Scope management Requirement analysis, collection of the facts, previous experience. Building Work
Breakdown Structure that depicts the scope of the work and also helps estimate
the budget based on the listed items. The scope baseline also helps understand the
number of resources required for the project.

Time management Estimating the activity durations and their execution sequence. Since the event had a
strict deadline, time was the main constraint. Time management techniques allowed
us to properly order the execution of tasks.

Cost management Estimating the cost for each activity and creating the budget forecast for the technical
and organizational activities. The budget shall be carefully allocated in the right
directions (OPEX and CAPEX) and distributed throughout the implementation
period as planned.

Quality management Building strategies on Quality Assurance and Quality Control. The scenarios for the
inspection of the software, hardware and network solutions and prevention of the
real-time problems have been prepared.

Human Resource
management

The HTC team contained more than 60 people of different ages, skills and
expectations. Knowledge of team acquisition and management helps acquire the
required talents in a short period of time and move them smoothly through all the
stages of team formation and performance. Understanding motivational theories
helps putting the right person to the right job, using proper reward and recognition
methods and keeping team spirit always high.
The responsibilities of team members was built as a RACI (responsible, accountable,
consulted, informed) matrix and shared with the corresponding teams.

Communications The communication of the HTC chair starts long before the event and keeps going
even long after the closing ceremony. Preparation and delivery or presentations,
writing letters, e-mails, organizing phone/video calls, writing specifications,
requirement analysis, meetings with vendors, suppliers, stakeholders and external
and internal IOI team members requires good knowledge of formal/informal and
verbal/written communication.
Project Management standards state that communication is 90% of a project
manager’s job, which should be considered as a serious message: if you as the next
host are deciding between two options for the HTC – a geek without communications
skills and non-IT guy with good communication skills, you should definitely go for
the second option.

Risk management Unexpected things (good and bad, or positive and negative risks as we call them in
Project Management) will definitely happen. The uncertain nature of projects may
surprise with small or dramatic surprises (don’t think that in 2019 Singapore team
knew about the pandemic that totally changed the format).

Procurement
management

Not all deliverables are going to be done internally. The majority of them, like venues,
networking, power management, printers, transport, event management, catering,
security will be rented or purchased. The Project Manager shall get familiarized with
the procurement procedures (wish lists, PR/PO management, single sourced orders,
tender rules and so on) of the leading organization and make necessary preparations.

Stakeholder
management

IOI project involves almost 30 stakeholders (if not more) of different breeds, power
and interest (probably should be published in a separate paper). Having this list
helps in elicitation of requirements and not forgetting anyone or anything during the
decisions and changes.

Hosting IOI 2019 Azerbaijan: Back to the Future 185

4.1.2. Investigation of Previous Experience and Guidelines
The IOI events hosted in previous three years were not the same in terms of technical
setup and organizational details:

In IOI 2016 (Kazan, Russia), as a contestant environment laptops were used. The ●●
scoring system was an in-house developed software called PCMS, a Windows-
based system that is widely being used in Russia. The event was held on the cam-
pus of the Kazan Federal University.
In IOI 2017 (Tehran, Iran), they used mini PCs with external monitors and key-●●
boards and organized the contest on two floors of the same venue, located very
close to the hotels where contestants, team and committee members have been
staying. As a scoring system, the version 1.4 of CMS with local modifications
has been used. By the way, with their new tools and automation systems, Iranian
HTC made a tremendous contribution to IOI software and processes, which is still
being used by the IOI community. Ansible has been used for the development of
the automation scripts.
In IOI 2018 (Tsukuba, Japan), the contestant machines changed back to laptops ●●
(provided by Acer as a part of sponsorship). The contest management system was
CMS version 1.4 but with adapted modifications and improvements. Some of the
tools developed in IOI 2017 have been adapted for the new procedures. Japanese
HTC was the first who decided to run services in the cloud. There was a thorough-
ly designed model tailored for AWS, which was reviewed and accepted by ITC.
The automation tools used in IOI 2018 were developed on Ruby based scripts.

Having such a variety of options actually was good for the analysis. It would help
retrospectively evaluate each option and choose the best one. The collection of the in-
formation started in 2017, during Azerbaijani delegation’s visit to Tehran for IOI 2017,
where the discussions with Russian and Iranian HTC started. Both HTC chairs were kind
enough to provide all the documents that they had about the preparation i.e. checklists,
lessons learned, preparation plans and technical details.

Key takeaways from the previous IOIs were:
Having all the contestants in the same contest hall simplifies the administrative 1)	
and technical tasks. Finding a venue with a given area, number of meeting rooms
(for the committees), required lighting, entrance and WC for ~400 people and
flexible infrastructure for the stage design is a challenging task. After evaluation
of the previous options, it was decided to use an indoor sport hall. The best match
was National Gymnastics Arena (NGA) in Baku, which:

Was equipped technically (power and IT).a)	
Had enough meeting rooms. b)	
Had an Athlete’s Village (AVL), where we decided to accommodate the con-c)	
testants, on the other side of the road (there also was an underground cross-
ing from the village to the NGA).
Was in the perfect location – on the crossroads of the city entrance, right d)	
next to the metro and bus station and in a straight, 6–7 km way to the hotel
(leaders’ accommodation).

A. Yusubov, F. Ahmadli, J. Hasanov186

Accommodation of all the visitors is another challenging task – where to 2)	
place ~700 people? Hotels usually do not have that many rooms. Even if they
had, it would be quite expensive. Splitting people into two hotels would add extra
administration and transportation costs. Considering this, we decided to split visi-
tors into 2 groups:

Team leaders, committee members and guests in a hotel.a)	
Contestants and their guides in AVL. b)	

By this solution we solved several problems at once:
Isolated contestants from the others not by the venue but by the dis-●●
tance too.
Managed to accommodate contestants from the same teams in the same ●●
apartments (with 3 or 4 bedrooms).
Accommodate contestants as close as possible to the contest hall.●●
Save on accommodation and transportation costs.●●

The last item is very important – accommodation cost is the biggest piece in a
cost distribution pie chart report.
Transportation is a bottleneck in all the processes. Arrival of the buses, their 3)	
parking space, distribution of people and their gathering, driving time is always
a waste that does not add a value to the process. We tried to eliminate this Muda
(means “waste” in Japanese, from Lean Management) whenever possible. Our
bigger achievement, again, was finding a contest hall and contestants’ venue very
close to each other. The local authority’s recommendation on using transportation
for the safety of contestants was successfully replaced with using a nice and even
safer underground pass that connects AVL and NGA.

4.1.3. Visiting Japan for the Observation and Participation in Technical Works
After observing the process of IOI 2017 in Tehran and participating in the discussion
as ITC members, it was decided to attend IOI 2018 before the contest and participate
in the technical preparation works. IOI 2018 committee heads were very kind to accept
this request and organized this process, such that our HTC chair arrived almost a week
before the contest. The observation of the process was priceless. This is usually never
shared with the committees that are mainly interested in the ‘what (is done or remains)’
question, rather than the ‘how (have you done this)’ question.

There were some modifications in Japanese implementation that made this process
even more exciting (well, risky too):

Using AWS infrastructure.●●
The preparation of the contest hall started 3 days before the event date! Some of ●●
the previous HTCs would repeat that 2 weeks might not be enough for the contest
hall works (network, furniture, setup, testing, etc.). Here we had only 3 days for
it! Well, actually, they managed to finish it in 2 days, which convinced me of the
power of organization and planning (“Flow” in Lean Production).

Hosting IOI 2019 Azerbaijan: Back to the Future 187

These are the takeaways that we got from our observation:
From the floor planning, networking and troubleshooting point of view, indoor 1.	
sports hall is the ideal venue for the contest. Division of the contest hall into
8 sectors (A–H) with 46 seats in each (a dedicated 48-port network switch per
sector) was also adopted from the IOI 2018 design.
It is possible to set up a contest hall in 3 days. It requires good selection of 2.	
reliable suppliers, good planning and coordination. In this case, the power engi-
neers, network guys, furniture company and HTC team will work in an aligned
way. It can be imagined as shifted signals i.e. when one line of desks are put, the
network and power engineers would put cables, and HTC team guys put laptops
on the desks and plug them to power cords and network cables. And meanwhile,
the next row of the desks was placed next to each other.

With this strategy we managed to finalize our setup in 3 days! It wasn’t to
beat the Japanese record, but having the same constraint. We had another event
that finished a week earlier. Dismantling their stuff took exactly 3–4 days (In
Tsukuba, they had a badminton contest that finished 4 days before the event).
In IOI 2018 the HTC was split into two parts and each of them had a coordina-3.	
tor: organization and technical. This isolation is a great idea, since problems
during the real contest usually appear on both sides at the same time.
Japanese HTC used Slack for general messaging (different channels for differ-4.	
ent purposes) and push-to-talk for the organizational team. We adopted both

Fig. 3. The floors plan of the IOI 2019 contest hall in the National Gymnastics Arena.

A. Yusubov, F. Ahmadli, J. Hasanov188

strategies but also added Telegram as an alternative. Telegram bot was used to
locate the contestant by the IP, country, seat number or name (screenshot in Fig. 4
source code is shared in GitHub repository (IOI, 2019d)).

4.1.4. Rehearsal
Plan is a theoretical flow of the actions that considers the usual course of actions. It is
always a good idea to run the action items in reality or at least simulate them. All the ac-
tivities, from the hypothetical to routine works have been run in all the venues. Based on
those experiments we adjusted our estimates on what is the actual time to set all the con-
testants at their desks, deliver a printed paper to a contestant, move from a server room
to an IT meeting room, print translation copies for several countries and so on. Some of
those experiments led to some changes in organizational setup. For example, it was real-
ized that the food and beverage and the printing corners are not set optimally. Speaking
of Lean principles, this is what is mentioned as “Form” (or “Kata” in Japanese).

Fig. 4. The interface of the IOI 2019 Host Technical Committee
telegram bot.

Hosting IOI 2019 Azerbaijan: Back to the Future 189

4.1.5. Utilization of University Resources
The organization of an international event of such scale requires a decent workforce and
other resources. When hosting organization is university, the majority of the required
resources can be delivered by university, such as:

Core HTC team. In IOI2019, the core HTC team had more than 60 people and ●●
almost all of them were from ADA University (3 faculty members, 3 people from
IT department and others were undergrad students). We outsourced only the net-
working part. The structure of the HTC can be seen in Fig. 5.
Procurement and Finance tasks had been done by the corresponding departments ●●
of the university.
University’s classroom and labs have been used for the meetings and contest ●●
environments.

4.1.6. Formal Processes and Procedures
With more than five functional teams (see Fig. 5) and numerous activities under each,
asking everybody to memorize all the steps and conditionals wouldn’t be the right
choice. Additionally, acquiring new members and transferring members from one team
to another is common throughout the process. Considering this, we decided to follow
the ISO recommendations for the service quality: document what you do and do what
is in the document. The majority of the technical processes are described in the “HTC
Procedures” document located under the “Project docs” folder in (IOI, 2022). It helped
us to speed up the onboarding process of new team members by just referring to the
corresponding procedure.

Fig. 5. Organizational structure of the IOI 2019 Host Technical Committee
(NGA – National Gymnastics Arena, BLVRD – Boulevard Hotel).

A. Yusubov, F. Ahmadli, J. Hasanov190

4.1.7. Acer Sponsorship
Acer sponsorship is mentioned in the organization part. By having this opportunity we
gained multiple benefits, putting cost savings aside:

Had almost exactly the same contestant environment as in the previous IOI. We ●●
were familiar with user experience and common questions.
Had a great technical support by the local Acer team. This sponsorship was not ●●
limited only to contestant laptops as all the grading machines and server equip-
ment were from Acer, too. There was a case, when we needed to replace a network
card – thanks to local Acer support we had it in NGA in less than half a day.

4.2. Things that did not go as Expected

There were some problems that affected the overall quality of the event, too. When ana-
lyzed, we can see that these are the tasks or processes that have been overlooked during
the planning phase.

4.2.1. The Network Structure wasn’t Built in an Optimal Way
The whole contest network has been designed as a ring i.e. from the system room switch
to switch A (connecting contestant machines in section A), from switch A to switch B
and so on. This creates serious problems during the mass updates and imaging. Ideally,
it would be correct to run imaging for each section separately, which would be 8 times
faster than we had. The main problem here was that the technical solution provided by
the network supplier was not reviewed by the responsible member of the HTC team.
Solution to this could be adding a checklist like “make sure the network design does not
conflict with the HTC processes”.

4.2.2. Lack of Synchronization with the HSC
Unlike HTC, our colleagues from HSC did not use formal communication or project
management approaches. The outcomes of their discussions were usually documented as
meeting notes or discussion logs. As HTC we have been constantly asking them to share
the details on the given process.

As a result of such de-synchronization, two surprises arose: one during the day 2,
when it was unexpectedly announced that the contestants needed some software for the
visualization and another when the translation results ended much later than expected.

4.2.3. Communication Problem with Vendors
It’s impossible for HTC to do all the work using its own organizational resources, as
network equipment, furniture, printers and many other things are feasible to rent rather
than to buy. For that very reason you need to work with suppliers. In our case, we had a

Hosting IOI 2019 Azerbaijan: Back to the Future 191

hard time convincing them all to use the standards applied by HTC or use formal proj-
ect management. Each of them had their own understanding on projects, planning and
standards. It would periodically bring surprises during the preparation phase. One of the
critical cases was when the event organizer, responsible for printing the team/contestant
labels used the old version of the file and as a result we received complaints during the
practice day.

As a preventive action (of course for the future organizers) we recommend adding
one more requirement to your RFPs: the project manager from their side needs to be
formally certified in Project Management. Well, it might be disputed with a counter-
argument that not all the certificated Project Managers are good ones, but you as an HTC
chair will know that this person is going to speak the same language with you.

4.3. New Translation Procedures

The Translation Process is the most challenging one for HTC, with the following com-
plexity factors:

All the other committees are involved too – the process mainly led by HSC, regu-●●
lated by ISC and IC and supported by HTC.
Is the hardest process to plan and hence to automate – the flow of the process ●●
highly depends on participants and their discussions.
Not limited in time from the organizational point but has to finish until the next ●●
contest – very short call for HSC and HTC.

Despite the mentioned challenges, there is a space for the automation of some part of
the process. In 2017, Iranian HTC has put great efforts on optimizing and automation of
the possible Translation processes (IOI, 2017):

Task Preparation System●● has a nice web interface with the functionality of pre-
paring the contest tasks and task statements.
Translation System is a user-friendly markdown editing environment for trans-●●
lating the IOI tasks, with parallel view, PDF generation, notification system, and
revision history.

In IOI 2018, Japanese HTC used the same tools but made modifications based on the
previous comments and new requirements.

In IOI 2019, the Iranian version of the Translation system was used as a base for
many core functionalities. Additionally some new features were added, such as:

Monitoring of live translation and printing status of each team (can be projected ●●
on a big screen).
Automatically mapping each student’s preferred language (if provided early) to ●●
the printing system, so that it prints specifically in that language.
Optionally, being able to print all the team tasks at once (merged printing), so that ●●
teams do not have to wait in lines for every student’s copy.

A. Yusubov, F. Ahmadli, J. Hasanov192

4.4. Summary

Using previous experience will optimize and increase the quality of processes. The proj-
ect documents, processes and all the other supplementary data used and generated by
HTC can be found here (IOI, 2019d). Additionally, we would like to list some problems
that would be good to fix for the next onsite events:

Minimization of the translation time. Long discussions and late contribution 1.	
to the translation delays the printing and packaging process. Azerbaijani HTC
raised a question of using the resources of IC, ITC and ISC to translate the
tasks before the translation session. Back then there were committee members
that spoke languages used by more than one country: Spanish, French, Russian,
Arabic and Persian.
All our negative e2.	 xperiences are documented in the “Lessons Learned” docu-
ment located in “Project docs” in (IOI, 2019d).
Printing of task descriptions seems redundant – it seems the contestants do 3.	
not use them much. After the contests, we saw many unopened envelopes or
opened envelopes with task descriptions inside. It could be surveyed and if
70% of the contestants do not need printed task descriptions, the printing pro-
cess can be removed from the translation process. This would simplify and
shorten the translation process. The students who need printed papers can print
them on demand during the contest.
Some tools are required to be developed to improve the efficiency. Based on 4.	
the previous experience, we decided to develop a custom application for the
registration and fulfillment of the contestant requests. It helped to categorize,
filter and measure the requests related data: each request had an assigned per-
son (in a pull mode) which helped us to estimate the average resolution time for
each type of request after 40 minutes of usage. A screenshot of this application
is shown in Fig. 6.

Fig. 6. The interface of the IOI 2019 request fulfillment tool.

Hosting IOI 2019 Azerbaijan: Back to the Future 193

Conclusion

The previous sections mention a number of recommendations based on the organiza-
tional, scientific and technical aspects of our IOI 2019 experience. Additional notes
would be:

Adapting the formal project management approach to organizing future IOIs with ●●
a regularly updated centralized repository of document templates will ensure both
standardized knowledge transfer and increased quality.
There is an educational component to be explored. For example, the experience ●●
of IOI 2019 was used as a case in IT Project Management (INFT 3609), as well as
Systems Analysis and Design (INFT 2303) courses taught at ADA University.
While the world is going through dramatic changes, we should be reminded that ●●
one of the IOI objectives (IOI, 2019b) is “to foster friendly international relation-
ships among computer scientists and informatics educators.” While putting the
main emphasis on the competition component of the IOI, we should not lose the
focus on all objectives. IOI Conference and Cultural Night initiative will gain
additional meaning and importance.
A centralized content management system for building official IOI websites ●●
would save host team’s efforts for setting up this important communication chan-
nel, resolve the issue of archiving the historical content, and ensure a consistent
look and feel.

Acknowledgements

The authors thank Emil Abbasov, member of the HTC team1, for contributing to the
paper with section 4.3 about new translation procedures.

Throughout the paper many colleagues have been acknowledged for their support in
hosting IOI 2019. The authors thank all the people of IOI and feel privileged and hum-
bled to be part of this amazing community. Special thanks go to Ramin Mahmudzade,
Fuad Hajiyev, Krassimir Manev, Eljakim Schreivers, Bakhyt Matkarimov and all others
who believed in and supported the vision for IOI 2019 in Baku, Azerbaijan. We thank all
the IC, ISC, ITC members for their valuable inputs and recommendations.

HSC thanks all ISC members for the contribution into polishing the problem set; all
invited HSC members, especially Bartosz Kostka, Danylo Mysak and Gleb Evstropov
for their enthusiasm and cooperation; special thanks go to all Iranian colleagues, Kian
Mirjalali and Ali Sharifi Zarchi (IC member) for volunteering to help and giving great
support.

HTC team would like to thank: Acer’s global and Azerbaijani team for their orga-
nizational and technical support; Sergei Masyagin (IOI 2016 HTC chair) and Hamid

1	 Doctoral student, School of Engineering and Applied Sciences, George Washington University, USA,
eabbasov@gwu.edu

A. Yusubov, F. Ahmadli, J. Hasanov194

Zarrabi-Zadeh (IOI 2017 HTC chair) for sharing their experience and providing nec-
essary documents; IOI 2018 IC chair Seiichi Tani and HTC chair Rie Yamaguchi for
hosting and involving the HTC 2019 chair in their technical activities; William Di Luigi
and Wael Eweda for their early arrival at IOI 2019 and exceptional support during the
preparations and live sessions; The members of IOI 2020 Singapore HTC team, Ranald
Lam, Lai Zit Seng and Lin Si Jie, for their involvement, acting as local HTC members,
testing the infrastructure and providing support during the event.

References

Abam, M.A., Asadi, A., Ameli, A.J., Seddighin, S.R., Shahmohammadi, F. (2017). Iranian National Olympiad
in Informatics. Olympiads in Informatics, 11(Special Issue), 25–33.
https://ioinformatics.org/journal/v11si_2017_25_33.pdf

Acer (2019). Acer Joins the 2019 International Olympiad in Informatics (IOI) in Azerbaijan as Official Sponsor.
https://news.acer.com/acer-joins-the-2019-international-olympiad-in-informatics-

ioi-in-azerbaijan-as-official-sponsor

ADB (2015). ADB Annual Meeting Sees Concrete Progress on ‘Fostering Partnerships’. Baku 2015. The Asian
Development Bank (ADB). https://www.adb.org/annual-meeting/2015/main

Bakutel (2022). Azerbaijan International Telecommunications, Innovations and High Technologies Exhibition.
https://bakutel.az/

EYOF (2019). The European Youth Olympic Festival – 2019 Summer Baku.
https://www.eyof.org/information/

Hasanov, J., Gadirli, H. and Baghyev, A. (2021). On Using Real-Time and Post-Contest Data to Improve the
Contest Organization, Technical/Scientific Procedures and Build an Efficient Contestant Preparation Strat-
egy. Olympiads in Informatics, 15, 23–36. DOI: 10.15388/ioi.2021.03

ICT (2019). The Order on Establishing the Organizing Committee for Arranging the International Olympiad in
Informatics in 2019 in Baku. Cabinet of Ministers of the Republic of Azerbaijan.
https://ict.az/az/content/367/

Iglikov, A., Gamezardashvili, Z., Matkarimov, B. (2013). International Olympiads in Informatics in Kazakhstan.
Olympiads in Informatics, Vol. 7, 153–162. https://ioinformatics.org/journal/INFOL124.pdf

IOI (2003). IOI Regulations. Approved by GA, August 2003:
https://ioinformatics.org/files/regulations02.pdf

IOI (2017). Tools developed by Iraninan HTC. https://ioi2017.org/contest/technical/
IOI (2018). IOI 2018: Japan. Tsukuba, Ibaraki. https://ioi2018.jp/
IOI (2019a). A Message from Prof. Knuth. 31st International Olympiad in Informatics, 4–11 August, 2019,

Baku, Azerbaijan. https://ioi2019.az/en-content-29.html
IOI (2019b). About IOI. 31st International Olympiad in Informatics, 4–11 August, 2019, Baku, Azerbaijan.

https://ioi2019.az/en-content-3.html

IOI (2019c). IOI 2019 project documents.
https://drive.google.com/drive/folders/1GvPj4zCqDtRaiQ6aTj6DMiKveocFbAwk?usp=sharing

IOI (2019d). Popular repositories. GitHub repository of IOI2019 Host Technical Committee.
https://github.com/ioi-2019

IOI (2020). IOI Statistics. Azerbaijan – People – Ramin Alinazim Mahmudzade.
http://stats.ioinformatics.org/people/3240

IOI (2021). IOI Statistics. Azerbaijan – Results. http://stats.ioinformatics.org/results/AZE
IOI (2022). IOI Regulations. https://ioinformatics.org/page/regulations/
IOI Azerbaijan (2019). IOI 2019: Winter Meeting – Greg Lee. Playlist

https://www.youtube.com/watch?v=He2kF2UuSzA&list=PL8pL5Gws-n0zZEIIpxiAtl-BZdxLjUQi6

IOI Tools (n.d.). Checklist. “Technical guidelines for future hosts” by IOI International Technical Committee.
https://ioi.github.io/checklist/

PMI (2018). A Guide to the Project Management Body of Knowledge (PMBOK® Guide). 6th ed. Project Man-
agement Institute. https://book.akij.net/eBooks/2018/March/5abcc35b666f7/a%20guide%20
to%20the%20project%20management%20body%20of%20knowledge%206e.pdf

Hosting IOI 2019 Azerbaijan: Back to the Future 195

PMI (2022). PMI Lexicon of Project Management Terms : Version 3.2.
https://www.pmi.org/pmbok-guide-standards/lexicon

Wikipedia (2022). International Olympiad in Informatics – Wikipedia. Last edited on 11 May 2022:
https://en.wikipedia.org/wiki/International_Olympiad_in_Informatics

Wikiquote (2022a). Abraham Johannes Muste (1885–1967). Last edited on 10 March 2022:
https://en.wikiquote.org/wiki/A._J._Muste

Wikiquote (2022b). 老子 Lǎozi (circa 6th–5th century BC). Last edited on 28 April 2022:
https://en.wikiquote.org/wiki/Laozi

A. Yusubov is an Assistant Professor of Computer and Information
Sciences in the School of IT and Engineering at ADA University. Dr.
Yusubov worked in academia, industry and international organizations,
led and contributed to various educational projects, including the na-
tional FIRST LEGO League robotics tournaments for school children.
He is ACM Senior Member and the founding member of the Azerbai-
jan ACM/ACM-W Chapter. Dr. Yusubov has been an IC member for
the period of 2017–2020, elected again for 2021-2023, was local Host
Coordination Committee Manager during IOI 2019.
http://stats.ioinformatics.org/people/6418

F. Ahmadli is a Software Development Engineer at Amazon office in
Vancouver, Canada. Previously he was a Senior Instructor of Com-
puter and Information Sciences in the School of IT and Engineering
at ADA University. Mr. Ahmadli is an IOI veteran and competitive
programming enthusiast. He has been an ISC member for the period of
2017–2020 and led HSC during IOI 2019.
http://stats.ioinformatics.org/people/750

J. Hasanov is an Assistant Professor of Computer and Information
Sciences in the School of IT and Engineering at ADA University. Dr.
Hasanov is mainly focused on image processing and machine learn-
ing problems covering text and digital object recognition domains.
Additional to the research field, he teaches the management aspects
of the IT in production and operation environments. Dr. Hasanov has
been an ITC member for the period of 2017–2020 and led HTC dur-
ing IOI 2019.
http://stats.ioinformatics.org/people/6162

About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides
an international forum for presenting research and developments in the specific scope
of teaching and learning informatics through olympiads and other competitions. The
journal is focused on the research and practice of professionals who are working in the
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is
published annually (in the summer).

The format for the journal follows the tracks:
the primary section of the journal focuses on research●●
the second report section is devoted to sharing experiences of countries in infor-●●
matics olympiads
the last smallest section presents books reviews or other information●●

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing●●
Central and Eastern European Online Library (CEEOL)●●
EBSCO●●
Educational Research Abstracts (ERA)●●
ERIC●●
InfoBase Index●●
INSPEC●●
SCOPUS ●● – Elsevier Bibliographic Databases

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper,
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following
structure:

concise and informative title●●
full names and affiliations of all authors, including e-mail addresses●●

informative abstract of 70–150 words●●
list of relevant keywords●●
full text of the paper●●
list of references●●
biographic information about the author(s) including photography●●

All illustrations should be numbered consecutively and supplied with captions. They
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author – (Johnson, 1999)●●
for two authors – (Johnson and Peterson, 2002)●●
for three or more authors – (Johnson ●● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25)●●

The list of references should be presented at the end of the paper in alphabetic order.
Papers by the same author(s) in the same year should be distinguished by the letters a, b,
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub.,
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London,
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49.
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
IOI (2008). International Olympiads in Informatics

http://www.IOInformatics.org/

Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks
Tool – Nenet (Version 1.1).
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html

Authors must submit electronic versions of manuscripts in PDF to the editors. The
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables,
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732
Fax: +370 52 729 209
E-mail: valentina.dagiene@mif.vu.lt

Internet Address

All the information about the journal can be found at:

https://ioinformatics.org/page/ioi-journal

Olympiads
in Informatics
Volume 16, 2022

Foreword 1
D. GINAT, S. ARIAN, O. BECKER

Posing Creative Reduction Tasks

3

A. KATYETOVA
How Competitions Can Motivate Children to Learn Programming

13

B. KOSTADINOV, I. STOJMENOVSKA
Common Approaches to Developing Extensible E-learning Systems

23

A. LAAKSONEN
What is the Competitive Programming Curriculum?

35

M. LANDMAN, G. FUTSCHEK, S. UNKOVIC, F. VOBORIL
Initial Learning of Textual Programming at School: Evolution of Outreach Activities

43

J. STAUB
Error Handling in XLogoOnline

55

M. S. TSVETKOVA, V.M. KIRYUKHIN, N. A. BORISOV, M.I. KINDER
Methods of Tracks for Training Juniors in Olympiad Informatics: The ISIJ Experience

75

R. WU, A. LV, Q. ZHAO
Detecting Plagiarism as Out-of-distribution Samples for Large-scale Programming
Contests

89

REPORTS
M. DOLINSKY

Primary School Programming Olympiads in Gomel Region (Belarus)

107
P.S. PANKOV, K.A. URAIYMOV, A.A. BELYAEV

Olympiads in Informatics in Kyrgyzstan

125
Y. SAGYNTAY

Informatics Olympiads in Kazakhstan: Team Selection and National Olympiads in
Informatics

135
D. TSEDEVSUREN, J. DASHDEMBEREL, T.-O. BATTOGTOKH, T. ULAMBAYAR,
A. KHUDER

Organization and Results of Mongolian National Online Olympiads in Informatics

145
M.S. TSVETKOVA, E.A. BONDARENKO, I.Yu. KHLOBYSTOVA, E.V. YAKUSHINA

Digital Literacy in Primary School

159
A. YUSUBOV, F. AHMADLI, J. HASANOV

Hosting IOI 2019 Azerbaijan: Back to the Future

173

Publisher office: Vilnius University
 Akademijos str. 4, LT-08663 Vilnius, Lithuania
 August, 2022

