
Olympiads  Olympiads  
in Informaticsin Informatics17

IOI
InternatIonal olympIad In InformatIcs

I S S N  1 8 2 2 - 7 7 3 2

Olympiads  
in Informatics
Volume 17, 2023

O
lym

piads in Inform
atics   V

olum
e 17, 2023

Olympiads
in Informatics
Volume 17, 2023

Foreword 1
G. KÉPES, Á. ERDŐSNÉ NÉMETH  

As the Epitome of Talent: John von Neumann and Hungarian-born Scientists Around Him
 
3

G. AUDRITO, M. CIOBANU, L. LAURA 
Giochi di Fibonacci: Competitive Programming for Young Students

 
19

B. GAÁL 
The Introduction of Micro:bit in Elementary School, from Unplugged Activity to Programs

 
33

B. GAÁL
Online Robotics Activities During the Pandemic Period – Challenges and Experiences

 
43

L.G. MENYHÁRT, L. ZSAKÓ 
Elementary Algorithms – Prefix Sum

 
53

V. NATALI, NATALIA, C.E. NUGRAHENI 
Indonesian Bebras Challenge 2021 Exploratory Data Analysis

 
65

P.S. PANKOV, A.A. BELYAEV
Latent and Evident Knowledge to Compose and to Solve Tasks in Informatics

 
87

T. VERHOEFF
Understanding and Designing Recursive Functions via Syntactic Rewriting

 
99

M. VISNOVITZ, G. HORVÁTH
Trends in Teaching Programming in Schools in Hungary

 
121

REPORTS          
M. DOLINSKY

Secondary School Programming Olympiads in Gomel Region
 

131
F. JINGGA, Y.K. ISAL, A. CENDRANATA, M.I LIEM, A MULYANTO

Change Management in Preparing Indonesian Team to IOI
 

143
S.N. KODITUWAKKU, T. GUNAWARDENA

National Olympiad in Informatics: Sri Lanka
 

159
M. OPMANIS, D. SILIŅA, S. SILIŅA, P. PAKALNS

Team Competition in Informatics and Mathematics “Cēsis”
 

173

REVIEWS, COMMENTS          
O. HAZZAN, K. MIKE

Guide to Teaching Data Science: An Interdisciplinary Approach
 

189

ISSN 1822-7732



ISSN 1822-7732

INTERNATIONAL OLYMPIAD IN INFORMATICS

VILNIUS UNIVERSITY

OLYMPIADS IN INFORMATICS

Volume 17   2023

Selected papers of
the International Conference joint with

the XXXV International Olympiad in Informatics
Szeged, Hungary, 28 August–4 September, 2023

 



OLYMPIADS IN INFORMATICS

Editor-in-Chief
Valentina Dagienė
Vilnius University, Lithuania, valentina.dagiene@mif.vu.lt

Executive Editor
Mile Jovanov
Sts. Cyril and Methodius University, North Macedonia, mile.jovanov@finki.ukim.mk
Ágnes Erdősné Németh
Eötvös Loránd University, Hungary, erdosne@inf.elte.hu

Technical Editor
Tatjana Golubovskaja
Vilnius University, Lithuania, tatjana.golubovskaja@mif.vu.lt

International Editorial Board
Benjamin Burton, University of Queensland, Australia, bab@maths.uq.edu.au
Michal Forišek, Comenius University, Bratislava, Slovakia, misof@ksp.sk
Gerald Futschek, Vienna University of Technology, Austria, futschek@ifs.tuwien.ac.at
Marcin Kubica, Warsaw University, Poland, kubica@mimuw.edu.pl
Luigi Laura, Uninettuno University, Rome, Italy, luigi.laura@uninettunouniversity.net
Ville Leppänen, University of Turku, Finland, villelep@cs.utu.fi
Krassimir Manev, New Bulgarian University, Bulgaria, kmanev@nbu.bg
Seiichi Tani, Nihon University, Japan, tani.seiichi@nihon-u.ac.jp
Peter Waker, International Qualification Alliance, South Africa,
      waker@interware.co.za
Willem van der Vegt, Windesheim University for Applied Sciences, The Netherlands, 
      w.van.der.vegt@windesheim.nl

The journal Olympiads in Informatics is an international open access journal devoted to publishing 
original research of the highest quality in all aspects of learning and teaching informatics through 
olympiads and other competitions.

https://ioinformatics.org/page/ioi-journal

ISSN  1822-7732 (Print) 
           2335-8955 (Online)

© International Olympiad in Informatics, 2023
      Vilnius University, 2023                                                                               
       All rights reserved



Olympiads in Informatics, 2023, Vol. 17, 1–2
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.00

Foreword

The publication of this issue marks a milestone in the International Olympiad in Informat-
ics (IOI): for the first time in three years, the IOI is returning on-site. Alongside it, we will 
have the first face-to-face IOI conference since 2019.

The IOI will be held in Hungary from August 28th to September 4th, 2023, in com-
memoration of the renowned mathematician and computer scientist, John von Neumann. 
This year marks the 120th anniversary of Neumann’s birth, and Hungary has organized a 
series of remarkable events to honour his legacy. The IOI serves as the pinnacle event for 
the IOI community, among various commemorations: exhibitions, conferences, competi-
tions, scholarships, the Neumann Memorial Coin, and the publication of various books.

Neumann János’ collector coin 
https://www.mnb.hu/en/banknotes-and-coins/collector-and-commemorative-coins/2023/

collector-coin-to-honour-john-von-neumann

Hungary, having hosted the IOI once before in 1996, is privileged to have been grant-
ed the opportunity once again. The success of the previous IOI, held in Veszprém, under 
the leadership of the Neumann Society and Eötvös Loránd University (ELTE), has left 
an indelible mark on our community. This time, a team of professionals from ELTE 
has prepared the tasks for the competition. Our community at ELTE has an extensive 
experience in competitive programming, including the development of study materials 
for talented students, organizing national competitions, selection contests, and prepara-
tion camps, as well as being leaders in international Olympiads, we are confident in the 
quality of the tasks presented.

Participants will be guided by the international student community of the University 
of Szeged (SZTE, Your Future – Our Mission), where they will have the opportunity to 
experience the city’s hospitality. Moreover, Szeged is home to one of the world’s larg-
est collections of historical computers, showcasing the evolution of technology in both 
Eastern and Western countries. The Neumann Society’s experts have diligently expand-
ed and made part of this impressive collection accessible online through the Informatics 
History Forum (https://ajovomultja.hu).



The IOI journal – closely tied to the annual scientific conference held during the 
IOI – presents the newest research and best practices of computing professionals in-
volved in teaching informatics to talented secondary and high school students. In this 
17th volume, we have curated an array of diverse and captivating articles. Firstly, we are 
delighted to present a unique paper that reminisces about the life and legacy of John von 
Neumann, enriched with captivating stories and fascinating pictures from his era.

The second part of the volume focuses on research. With distinguished lecturers 
from ELTE contributing four papers that delve into various topics. Bence Gaál presents 
unplugged activities with Micro:bits and explores the challenges of robotics activi-
ties during a pandemic. László Menyhárt et al. analyse an intriguing algorithm related 
to competitive programming, specifically examining the emergence and mathematical 
background of variants of the prefix sum. Márton Visnovitz et al. discuss current trends 
in teaching programming in Hungary.

Georgio Audrito et al. share their experiences and lessons learned from the intro-
duction of a new talent selection competition. Additionally, Vania Natalia et al. conduct 
an analysis of Indonesian students’ computational thinking (CT) knowledge based on 
their participation in the Bebras challenge, offering insightful ideas for improvement. 
Pavel Pankov et al. present an engaging paper that delves into knowledge beyond the 
IOI syllabus, highlighting the significance of mathematics, other STEM subjects, and 
general knowledge required in competitions. They propose time-dependent tasks along 
with a corresponding time checker. Lastly, Tom Verhoff sheds new light on recursion, 
exploring its intricacies and providing fresh perspectives on this divisive yet intriguing 
problem-solving technique.

The third part of this volume features four reports based on national experiences 
and important news within our community. Michael Dolinsky presents a report on tra-
ditional programming Olympiads in the Gomel region for grades 5–8, encompassing 
motivational aspects. Felix Jingga et al. share the impact of changes in the preparation 
methods of the Indonesian team on their results in the IOI. We also have a report on the 
national Olympiads in Sri Lanka, followed by Mārtiņš Opmanis et al.’s insights into the 
challenges of a new team competition that allows the use of Internet resources.

Lastly, in the fourth part of this volume, Orit Hazzan et al. introduce an innovative 
and interdisciplinary approach to teaching data science, offering valuable insights into 
this emerging field.

We would like to express our deepest gratitude to all those who have contributed 
to this volume, particularly the authors and reviewers. Their dedication and hard work, 
not only in writing the papers but also in the extensive review and correction process, 
have been instrumental in producing this exceptional collection. May it be a memorable 
and enriching experience for everyone involved. We extend our warmest regards to all 
participants, speakers on the conference, and members of the IOI community, as we ea-
gerly anticipate the upcoming event in Hungary. May it be a memorable and enriching 
experience for everyone involved.

Editors



Olympiads in Informatics, 2023, Vol. 17, 3–18
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.01

3

As the Epitome of Talent: John von Neumann 
and Hungarian-born Scientists Around Him

Gábor KÉPES1, Ágnes ERDŐSNÉ NÉMETH1,2

1John von Neumann Computer Society , Budapest, Hungary
2Eötvös Loránd University, Budapest, Hungary
e-mail: kepes.gabor@njszt.hu, erdosne@inf.elte.hu

This paper is dedicated to the lasting memory and impact of an outstanding scholar 
on the field of computing. 

Abstract. John von Neumann (1903–1957) was a Hungarian-American mathematician, physicist, 
computer scientist, and polymath who made significant contributions to various fields of science 
and technology. He is best-known for his pioneering work in computer science, game theory, and 
the development of the Neumann architecture, which forms the basis of most modern computers.

Neumann’s work laid the foundation for the development of the digital computer, and he is 
often regarded as one of the founding figures of the field of computer science. He made important 
contributions to the development of early computing machines, including the concept of stored-
program computers, which enabled computers to store and manipulate instructions as data, and the 
idea of self-replicating machines, which has been influential in the field of artificial intelligence 
and robotics.

In addition to his work in computer science, Neumann made significant contributions to other 
fields, such as mathematics, physics, economics, and nuclear physics. He also played a key role in 
the development of the atomic bomb during World War II as part of the Manhattan Project.

Neumann’s work has had a profound impact on modern science, technology, and society, and 
his legacy continues to inspire and influence researchers and practitioners in various fields. His 
visionary ideas and interdisciplinary approach to problem-solving make him a remarkable figure 
in the history of science and technology.

Keywords: John von Neumann, anniversary, talent, CS, digital computer.

1. Introduction

Neumann János − as the international scientific community knows him, John von Neu-
mann − is undoubtedly the most well-known Hungarian mathematician of the 20th cen-
tury, whom the Financial Times named “Man of the Century” in 1999. In Hungary, he 
is considered the “father of computers”. Even with less bias, it can be stated that he be-
longed to the group of computer pioneers − such as the German Konrad Zuse, the British 



G. Képes, Á. Erdősné Németh4

Alan Turing, the Americans J. Presper Eckert, John Mauchly, Herman Goldstine, John 
Vincent Atanasoff − who had a fundamental impact on the history of information tech-
nology in the world. They laid the true foundations of modern informatics, building on 
19th century precedents such as the algebra of British George Boole and the work of Brit-
ish Charles Babbage and Ada Lovelace in the development of programmable machines.

Describing the principles of operation of the modern computer and making it public-
ly available was just a small part of Neumann’s extensive work, as his thoughts enriched 
numerous scientific fields during his fifty-four years of life.

In Hungary, Neumann is held in extraordinary respect. The John von Neumann Com-
puter Society (NJSZT) − which adopted its name 55 years ago − has since become a 
well-established institution among Hungarian computer scientists, recognizing his sig-
nificant and outstanding role in the evolution of computers. It is particularly interesting 
that Neumann was well-respected in Hungary even during the cold war, even though he 
had emigrated to the USA.

NJSZT has been involved in international talent nurturing programs from the very 
beginning, as well as in the community of competitive programming Olympiads, es-
tablishing a solid connection between von Neumann, Hungary, and the international 
network of teachers for decades.

This year marks the 120th anniversary of Neumann’s birth, which is the occasion 
for Hungary to host the International Olympiad in Informatics in Szeged, where the 
IT Museum of the NJSZT is also located. The museum has been greatly influenced 
by the intellectual legacy of the University of Szeged, as well as the spirit of another 
computer pioneer, László Kalmár. The exhibition prominently presents the life’s work 
of Neumann. In honour of the 120th anniversary of Neumann, the NJSZT has planned 
numerous celebratory programs for 2023, including a traveling exhibition based on the 
panels of our current study.

Fig. 1. A late photo of John von Neumann. 
Source: https://biografieonline.it/foto-john-von-neumann



As the Epitome of Talent: John von Neumann and Hungarian-born Scientists ... 5

2. Neumann, the Talent. The importance of Family Environment  
and Education

The first third of the 20th century saw the birth of several great scientists in Budapest, 
including Theodore von Kármán, a pioneer of rocket technology, Leo Szilard, Eugene 
Wigner, and Edward Teller, giants of nuclear physics, Neumann, the father of the com-
puter, and John G. Kemeny, co-author of the BASIC language.

Fig. 2. The exclusive issue of “Természet Világa” magazine dedicated to Neumann. 
Photo: njszt.hu

Fig. 3. A new bilingual (Hungarian-English) volume titled “Quotable John von Neumann” 
has been released by NJSZT. Photo: njszt.hu



G. Képes, Á. Erdősné Németh6

Neumann was born on December 28, 1903, and his childhood home was in the city 
centre of Budapest (at 62 Bajcsy-Zsilinszky Street). He came from a wealthy and highly 
educated Jewish family. His father, Miksa Neumann, was a respected banker who was 
granted a noble – baronial – title by Emperor Franz Joseph I and took on the prefix “of 
Margitta”. According to family memories, the name Neumann referred to János’ moth-
er, Margit Kann, and the daisy, which symbolized her. János had two brothers, Mihály 
and Miklós. They grew up in great love, and the stained-glass window in the Neumann 
House (made by Miksa Róth, the most famous Hungarian glass artist) reminds us of all 
three of them: János as the rooster, Mihály as the rabbit, and Miklós as the cat.

It was typical of the family environment that famous scholars were guests at their 
dining table, and family members sometimes joked with each other in Ancient Greek. 
According to the summary of Endre Czeizel, the geneticist professor, Neumann had 
already mastered differential and integral calculus at the age of eight. Lipót Fejér and 
Rudolf Ortvay, mathematician/physicist professors, also visited them frequently. They 
also had dinner guests such as Frigyes Karinthy, the writer, Dezső Kosztolányi, the poet 
and Max Reinhardt, the theatre director. (Czeizel, 2011)

“Genius training” of early childhood continued in high school (Budapest Ágostai 
Lutheran High School), where Neumann became student of László Rátz. His other stu-
dents included Eugene Wigner, the future Nobel Prize-winning physicist, and John Har-
sanyi, later Nobel Prize-winning economist studied in this community.

Jancsi – as Neumann was called during his childhood − received special attention 
from his teacher, László Rátz. They edited a mathematical journal together in high 

   

Fig. 4. Interior from the exhibition “Neumann Milieu” by NJSZT.  
The paintings depict John von Neumann’s aunt and maternal grandmother.  

The furniture belonged to the Neumann family. Photo: njszt.hu



As the Epitome of Talent: John von Neumann and Hungarian-born Scientists ... 7

school while others progressed with normal curriculum. His teacher organized meetings 
with professors from the Technical University for the exceptionally talented boy.  

Later László Rátz became Hungary’s most famous talent developer. Since 2000, 
“Rátz László Teacher Lifetime Achievement Award” recognizes the most significant 
high-school teachers in mathematics, physics, biology, and chemistry in Hungary.

In 2023, NJSZT presented an exhibition titled “Neumann Milieu” at his high school 
with the original furniture of Neumann’s family. The interior designer György Selmeczi 
– who owns the objects – discovered that the paintings in his possession depict Neu-
mann’s maternal grandparents. The portraits of Neumann’s grandfather, Jakab Kann, 
and his teacher, László Rátz, were placed side by side at the exhibition. Both oil paint-
ings were created by Hungarian painter, Cézár Kunwald. According to Selmeczi’s as-
sumption, Neumann’s father supported the school by immortalizing the teacher with his 
“house painter”. (Selmeczi, 2023)

John von Neumann was reserved but had a good sense of humour and expressed 
himself wittily. This is evident from the letters he wrote to his classmates. (Szabó)

He studied mathematics, experimental physics, and chemistry in Budapest, and phi-
losophy, mathematics, physics, and chemistry in Berlin. At the request of his father, 
the young man with a fundamental interest in mathematics also obtained a “useful” 
chemical engineering degree in Zurich, Switzerland, but he obtained his doctorate in 
mathematics in Budapest.

John von Neumann followed the development of Hungarian science, and even dur-
ing his lifetime, he was esteemed by Hungarian scholars. However, during the era of the 
infamous “Jewish laws”, World War II, and the Cold War, he became a prominent figure 
in the scientific community of his adopted country, the United States of America. He 
visited Budapest several times until World War II.

His first wife was Marietta Kövesi, they had a daughter, Marina von Neumann-
Whitman (Marina later became a renowned economist and advisor to President Nix-
on). In 1938 Neumann divorced from Marietta and married Klára Dán, who was one 

Fig. 5. Selmeczi giving a guided tour at the “Neumann Milieu” exhibition.  
Above him are the paintings by Cézár Kunwald depicting John von Neumann’s maternal 

grandfather (pointing at him) and teacher László Rátz. Photo: njszt.hu



G. Képes, Á. Erdősné Németh8

of the world’s first programmers and a perfect intellectual partner for him. They emi-
grated together to the United States.

3. Neumann, the Scientist Role Model and Gamer

After completing his university studies in Budapest, Neumann taught as a private 
lecturer at the University of Berlin (1926–28) and at the University of Hamburg 
(1929–1930). Between 1930 and 1933, he taught at Princeton University. In 1933 he 
was invited to the renowned Institute for Advanced Study (IAS) in Princeton, where 
some of the world’s most distinguished scientists − including Albert Einstein and Kurt 
Gödel − worked.

The pure mathematics fascinated and occupied him throughout his life. Between 1926 
and 1937, he focused mainly on mathematical and quantum mechanical questions.

In 1928, the minimax principle was formulated in connection with two-player, zero-
sum games, stating that one should choose the option that minimizes the maximum loss. 
This gave birth to game theory, which evolved from a branch of mathematics and the 
observation of card games, board games, sports − including poker, favoured by Neu-
mann. Game theory assumes rational decision-making (utility maximization) and the 
interactions it observes are not only present in games, but also in arms races and wars as 
well as many other areas (economics, politics, psychology, sociology, ...)

After contributing to the axiom system of set theory, he embarked on axiomatizing 
quantum mechanics. As a result of his work, his fundamental book, “The Mathemati-

Fig. 6. John von Neumann in his youth, around the 1920s. 
Source: Archive of the Budapest-Fasori Lutheran High School.



As the Epitome of Talent: John von Neumann and Hungarian-born Scientists ... 9

cal Foundations of Quantum Mechanics”, was published in 1932. His further research, 
together with G. Birkhoff, proved that quantum mechanics requires a different logic than 
classical mechanics.

In 1944, Neumann published the book “Theory of Games and Economic Behav-
iours” with Oskar Morgenstern, making it clear how the examination of games can be 
useful in economics. The book was a milestone for psychology, economics, political 
science, and history, as their foundations – in many ways – lie in the concept of a game. 
Most researchers agree that game theory connects social sciences and is a great help in 
the analysis of human interactions. 

John von Neumann did indeed have a deep love for games − as mentioned by his 
daughter in her autobiography, stating that her father always kept games at his fingertips. 
(Neumann-Whitman, 2012) If he had lived during the era of computer games, he would 
likely have become an avid gamer. From this perspective, he is also suitable as an at-
tractive role model for children: not a recluse avoiding enjoyable activities, but a true 
humorous and playful mind.

4. Neumann and Historical Responsibility

In 1937, Neumann obtained US citizenship. By this time, World War II seemed inevi-
table, and he eventually became involved in military preparations against Nazism. His 
interest shifted increasingly towards the practical applications of mathematics. As an 
advisor, he participated in several US military projects. From 1943 he regularly visited 
Los Alamos, where he was involved in the theoretical and practical work related to the 
development of the first atomic bombs.

The secret program was the Manhattan Project, which had its starting point in a letter 
from Albert Einstein to President Roosevelt in 1939, initiated by Leo Szilard and Eugene 
Wigner. In the letter, Einstein strongly emphasized that new research indicated that a 
new, extraordinarily powerful bomb could be created from uranium. Einstein pointed 
out in the letter that Nazi Germany was also intensively engaged in similar research, and 

Fig. 7. Eugene Wigner. Source: wignerkozepiskola.hu



G. Képes, Á. Erdősné Németh10

as a result, the Third Reich had already halted the export of mined uranium in occupied 
Czechoslovakia.

Alongside Robert Oppenheimer, Enrico Fermi, Leo Szilard, Edward Teller, and Eu-
gene Wigner became key figures in the project. At that time, Hungarian-born scientists 
of this generation were nicknamed „Martians” − most likely because they spoke to each 
other in Hungarian, which sounded exotic to American ears, and because their knowl-

Fig. 8. J. Robert Oppenheimer and John von Neumann − standing in front of computer 
Alan Richards, photographer, 1952. From the Photograph collection. Shelby White and  

Leon Levy Archives Center, Institute for Advanced Study in Princeton, NJ.

Fig. 9. Edward Teller, in 1958, as Director of Lawrence Livermore National Laboratory.  
Source: https://commons.wikimedia.org/wiki/File:EdwardTeller1958_

(dust_%26_scratches).jpg



As the Epitome of Talent: John von Neumann and Hungarian-born Scientists ... 11

edge was almost „otherworldly.” Moreover, Edward Teller’s monogram was E.T., which 
stood for aliens. (Marx,1997)

During the study of shock waves generated by the detonation of atomic and hydro-
gen bombs, Neumann discovered complex mathematical relationships that could not be 
solved using classical methods. This led him to become interested in the possibilities 
of high-speed electronic computing. In the United States, the scientist – known as John 
von Neumann – participated in the atomic program, despite knowing the dangers and 
moral objections. Meanwhile, in the 1940s and 1950s, he became a leading expert and a 
prominent public figure considered as an opinion leader by U.S. presidents.

We consider it is very important what Marina, her daughter said at the opening of 
NJSZT’s Informatics History Exhibition in Szeged: “...my father led a dual life: as a 
leading figure in the ivory tower of pure science, and as a man of action whose advisory 
and decision-making activities were constantly in demand in the long struggle to ensure 
that the United States would prevail in both the hot and cold wars that dominated the 
half-century from 1939 to 1989.” (Neumann-Whitman, 2013)

He participated in the research and military application of nuclear energy and played 
a role in the direction of peaceful energy production: In 1954, he was appointed as a 
member of the five-member Atomic Energy Commission (AEC) of the USA.

5. The Father of Modern Computers

Although many people mistakenly refer to Neumann as the inventor of the computer, he 
was not an inventor. What we now call a computer was the result of a series of innova-
tions. Major milestones: (Dömölki, 2016)

1941: Zuse, Z3: stored-program, relay-based computer. ●
1942: Atanasoff, ABC: electronic purpose-built machine. ●
1944–46: Mauchly-Eckert, ENIAC: electronic, general-purpose machine. ●
1944–45: EDVAC a stored-program, electronic, general-purpose machine. ●

In 1944, Neumann met Herman Goldstine at the Aberdeen train station, who was 
one of the leaders of the ENIAC construction and Goldstine told him about developing 
an electronic structure with enormous computing power. Neumann’s eyes lit up: he was 
revered in his circle as an almost fearsomely knowledgeable “human computer”, but for 
certain mathematical, physical, and military problems − even the combined capacity of 
a whole village of mathematicians, mechanical calculators, and years of work − were 
not enough.

In the fall of 1944, Neumann joined the designers of the EDVAC − a new computer 
to be built based on the experiences with the ENIAC − at the Moore School (University 
of Pennsylvania, Philadelphia, USA). Based on the results of their collaborative work, 
he formulated the operational principles of the EDVAC in his “First Draft on a Report 
of EDVAC”. In this innovative approach to computer design, he provided a plan for the 
logical structure of the machine − instead of describing the hardware components − al-



G. Képes, Á. Erdősné Németh12

lowing for its realization in various hardware environments. The principles formulated 
by Neumann in this document:

Fully electronic computer. ●
Use of binary number system. ●
Application of arithmetic unit. ●
Application of central control unit. ●
Internal program and data storage (the principle of stored program). ●

The first electronic computers − which were as big as a room − generated a lot of 
heat, had high energy requirements, and required frequent repairs, were initially custom-
made machines. Neumann foresaw their military and scientific applications, but their 
widespread adoption − due to their size and cost − was not evident for a long time.

Neumann himself took on the direction of designing a new stored-program com-
puter: this machine, the famous IAS, was completed by 1951 in Princeton. It fully met 
all the requirements of the Neumann’s architecture. The scientist − who enjoyed hosting 
large parties and social events − threw a party to celebrate the unveiling of the machine: 
the highlight of the evening was the presentation of an ice sculpture model of the com-
puter, alongside fine martinis. While the ice sculpture melted, the “grandchildren” of the 
IAS machine − referring to the spread of similar computer designs around the world − 
became widely adopted. (Neumann-Whitman, 2012)

Fig. 10. Herman Goldstine at the presentation of the Hungarian edition of the book  
“The Computer from Pascal to von Neumann,” standing next to him is Győző Kovács,  

the Secretary-General of NJSZT, in 1987. Photo: NJSZT.



As the Epitome of Talent: John von Neumann and Hungarian-born Scientists ... 13

The most advanced Neumann machine, the IAS, weighed nearly half a ton and uti-
lized 1700 vacuum tubes. It had a memory capacity of approximately 5 kilobytes! with 
word lengths of 40 bits. It could perform 16,000 additions and 400 multiplications per 
second. This computer − which incorporated numerous innovations such as the efficient 
use of Williams tubes as memory and small oscilloscope screens as displays − remained 
in operation until 1958. It was relatively reliable compared to other computers of the 
time and was used for calculations in fields such as nuclear physics and numerical me-
teorology. (Aspray, 2004)

In Hungary − the first computer based on Neumann’s principles − the M-3 was com-
pleted in 1959, based on a Soviet design, refined and further developed by the Cybernet-
ics Research Group of the Hungarian Academy of Sciences (MTA KKCS). The day of 
the presentation of the M-3 is proposed by NJSZT as a new celebration: the Hungarian 
IT Day is 21st of January. Rezső Tarján, the deputy director of MTA KKCS, and Győző 
Kovács, the head of the first computer center based on the M-3, became dedicated sup-
porters and promoters of Neumann’s intellectual legacy.

Neumann considered the computer as a new scientific achievement of human prog-
ress. Therefore, he was not opposed to the emergence of new computers based on the 
refined Neumann principles and − if his health allowed − he followed the mathematical 
and programming challenges arising from these computers. “The genius of John von 
Neumann not only facilitated the birth of high-speed computers, but also the solution of 
mathematical problems, arising from their utilization,” characterized the significance of 
the scientist by Hungarian mathematician, Gyula Obádovics. (Obádovics, 2003)

In the over half a century of digital computers the Neumann principles have been 
defining, whether it be the behemoth machines of the early days or the smart pocket 

Fig. 11. Princeton IAS Computer, the complete system. 
Source: https://historyofinformation.com/image.php?id=5524



G. Képes, Á. Erdősné Németh14

devices of today. Of course, classical computer design principles are now supplemented 
with new knowledge, as we are living in the age of microelectronics and nanotechnol-
ogy, and we may even be witnessing the dawn of quantum computing.

6. The Antechamber of Artificial Intelligence

“What kind of logical structure is sufficient for an automatic machine capable of self-
reproduction?” Neumann posed the question. As a true mathematician, he also contem-
plated computers on a theoretical level. In early 1940s, he introduced the concept of 

Fig. 12. Electron tubes from the first Hungarian von Neumann-inspired computer, M3. 
Photo: ajovomultja.hu

Fig. 13. The first Hungarian von Neumann-inspired computer, the M-3, in 1959. 
Photo: ajovomultja.hu



As the Epitome of Talent: John von Neumann and Hungarian-born Scientists ... 15

“cellular automata,” a mathematical model in which cells can take on different states. 
He developed a “Universal Constructor” with cells capable of assuming 29 different 
states. The main theme of his 1948 lecture titled “The General and Logical Theory of 
Automata” was the formulation of new logical principles for automata, including self-
replicating automata. His last unfinished (posthumously published) masterpiece, “The 
Computer and the Brain,” is about computers as automata. It aims to approach the under-
standing of the nervous system. He compares neurons and neural memory with artificial 
components, seeking analog and digital parallels.

Neumann stated: “In the future, science will be more concerned with the problems 
of regulation and control, programming, data processing, communication, organization, 
and system management.” He recognized that the security and efficiency of a system are 
not determined by the elements it is composed of, but by how it is organized as a system 
and the quality and quantity of information that flows between the elements.

Since Neumann’s ideas, the field of cellular automata has undergone significant theo-
retical development, and automation has evolved into a vast area encompassing robotics 
and artificial intelligence. A successful Hungarian entrepreneur, Gábor Bojár compares 
the revolution of computers to the emergence of speech and writing in human history: 
“but even those who express more cautious views acknowledge that we are living in an 
era of another industrial revolution, the foundations of which were laid by Neumann and 
his generation.” (Bojár, 2022)

Indeed, Neumann played an incredibly significant and pioneering role in the de-
velopment of cellular automata theory, which has had a profound impact on various 
fields such as life games (popularized by John Conway), evolutionary genetics, and the 
concept of self-replicating automata. His principles for creating reliable machines from 
unreliable components also shape the entire IT industry, and his propositions regarding 

Fig. 14: The wax figure of John von Neumann exhibited in 2023 at the Madame Tussauds, 
Budapest. Photo: njszt.hu



G. Képes, Á. Erdősné Németh16

the functioning of the human mind can serve as inspiration for both IT professionals 
and brain researchers alike. These fields are not so far apart, and Neumann’s work has 
fundamental importance in many areas of IT.

7. Can we Survive Technology? Neumann, the Visionary

John von Neumann passed away in 1957, suffering from bone cancer, likely because 
of radiation exposure. He was a highly respected personality whose merits were recog-
nized in various ways during his lifetime. He was a member of the National Academy 
of Sciences, President of the American Mathematical Society, and received the Medal of 
Freedom from the President of the United States (1956) − which Eisenhower presented 
to him at his hospital bed − as well as the Albert Einstein Medal and the Enrico Fermi 
Award from the U.S. Atomic Energy Commission (1956).

His legacy left to the world was of great interest. He was not even sure if what he had 
created would still be interesting “a hundred years from now.” Immortality was granted 
to him through his theoretical mathematical summations and his practical contributions 
with real-world impact.

We owe him a lot in terms of weather observation as well. He was very interested in 
the role of computers in weather forecasting and even in climate modification. He put 
the ENIAC computer into service of numerical meteorology and the accurate prediction 
of weather. By numerically integrating the barytropic vorticity equations, he achieved 
the first successful 24-hour forecast for North America based on actual data from four 
selected days in the first two months of 1949. He continued to work on this topic with 
his later machines, and even organized conferences on computer modelling of climate 
processes.

In 1955, Neumann wrote an almost prophetic article titled “Can we survive technol-
ogy?” for Fortune magazine. Although Neumann was not yet a “climate alarmist” (since 
the term did not exist at the time), he accurately foresaw the increasing globalization, 

Fig. 15. József Füzér’s caricature of John von Neumann. 
Photo: njszt.hu



As the Epitome of Talent: John von Neumann and Hungarian-born Scientists ... 17

interdependence of humanity, and the opportunities presented by nuclear energy and 
automation, and treated the possibility of weather control as a fact. “Technologies are 
always constructive and beneficial, directly or indirectly. Yet their consequences tend to 
increase instability…” (Neumann, 1955)

He believed that the impacts of the achievements created by his generation were ex-
plosive in nature, and their magnitude was “the size of the whole world.” “For progress, 
there is no cure” he said, meaning that progress cannot and should not be stopped. The 
only thing we can do is to intelligently execute daily decisions.

“The one solid fact is that the difficulties are due to an evolution that, while useful 
and constructive, is also dangerous. Can we produce the required adjustments with the 
necessary speed? The most hopeful answer is that the human species has been subjected 
to similar tests before and seems to have a congenital ability to come through, after vary-
ing amounts of trouble. To ask in advance for a complete recipe would be unreasonable. 
We can specify only the human qualities required: patience, flexibility, intelligence.” 
(Hargittai et al., 2023)

It’s dizzying to think about all the interesting questions we could have read Neu-
mann’s thoughts on, had he lived for almost 100 years, like his brother Miklós. What 
would he have said about the information society? Personal computers, video games, 
mobile phones? The end of the Cold War? The ecological crisis, climate change?

Neumann could have been a true role model for the generation facing the great chal-
lenges of the 21st century, the current students of Olympiads, whose task is to solve chal-
lenges determine the future of humanity. The stakes are high in nurturing this talent, as 
we search for the future Neumanns.

References

Aspray, W. (2004). Neumann János és a modern számítástechnika kezdetei, Vince Kiadó.
Bojár, G. (2022). 4th industrial or 3rd IT revolutions? Speech at Neumann Conference. 

https://www.youtube.com/watch?v=AbsCmPgmVVQ

Czeizel, E. (2011). Matematikusok – gének – rejtélyek, Galenus Kiadó.
Dömölki, B. (2016). John von Neumann in Computer Science, The 2016 IEEE International Conference on 

Systems, Man, and Cybernetics. 
https://njszt.hu/sites/default/files/page/2018/domolki_-_john_von_neumann.pdf

Hargittai, B., Hargittai, I. (2023) Quotable John von Neumann, NJSZT
Kovács, Gy. (1997). Neumann János, Műszaki Kiadó
Kovacs, Gy. (n.d.). Hungarian Scientists in Information Technology in Reflections on the History of Computing 

(Ed. Arthur Tatnall), IFIP AICT I. 
https://dl.ifip.org/db/series/ifip/ifip387/Kovacs12.pdf

Marx, Gy. (1997). A Marslakók legendája, Fizikai Szemle, XLVII./3. 
https://mek.oszk.hu/03200/03286/html/tudos1/marsl.html

Neumann-Whitman, M. (2012). The Martian’s Daughter: A Memoir. The University of Michigan Press
Neumann-Whitman, M. (2013). The Past of the Future Conference – Keynote speech. 

https://www.youtube.com/watch?v=MbAtnVgZ1LU

Neumann, J. (1955). Can we survive technology? Fortune Magazine. 
https://fortune.com/2013/01/13/can-we-survive-technology/

Neumann120 (2023). To celebrate the 120th anniversary of von Neumann’s birth, the John von Neumann Soci-
ety is preparing a series of commemorative events. Our aim is to make the von Neumann heritage as acces-
sible as possible. Join in with us! NJSZT.  https://n120.njszt.hu/ 



G. Képes, Á. Erdősné Németh18

NJSZT History of Informatics: https://itf.njszt.hu/szemely/neumann-janos-john-von-neumann
NJSZT’s Repository preserves the memoirs of Neumann about his brother, Miklós. 

https://itf.njszt.hu/objektum/john-von-neumann-as-seen-by-his-brother

Obádovics, Gy. (2003). Az első számítógép alkalmazásával megjelenő numerikus problémák, In: Ki volt ig-
azából Neumann János?, Nemzeti Tankönyvkiadó, p. 5–40.

Selmeczi, Gy. (2023). Neumann-miliő a szülői házban, Természet Világa, V. p. 228–233
Szabó, Zs. cared Neumann’s letters in the archiv of Fasori High School

G. Képes obtained an MA degree in Hungarian language and literature 
at Faculty of Humanities, Eötvös Loránd University in 2004, and also 
pursued studies in digital humanities at the same institution. Between 
2004 and 2014, he served as the curator of the computing collection at 
the Hungarian Museum of Science, Technology and Transport. From 
2014 to 2016, he was the head of department at the Hungarian National 
Digital Archive. Since 2016, he has been a senior researcher at the 
Neumann Society (NJSZT), and he has been the director of marketing 
since 2021. In 2014, he was awarded the Janos Kemény Prize for his 
publications on the history of informatics.

Á.  Erdősné Németh is an assistant professor at Faculty of Infor-
matics, Eötvös Loránd University in Hungary. Previously, she taught 
mathematics and informatics at Batthyány Lajos High School in Nagy-
kanizsa, where many of her students excelled in national programming 
competitions and some of them in CEOI and IOI. Her research focus is 
on promoting computational thinking among all students and prepar-
ing talented pupils for competitive programming contests, in primary 
and secondary schools. Since 2018, she has been serving as the vice-
president of Neumann Society (NJSZT).



Olympiads in Informatics, 2023, Vol. 17, 19–31
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.02

19

Giochi di Fibonacci:  
Competitive Programming for Young Students

Giorgio AUDRITO1, Madalina CIOBANU2, Luigi LAURA3

1Department of Computer Science, University of Torino, Italy 
2University of Molise, Italy 
3Uninettuno University, Rome, Italy 
e-mail: giorgio.audrito@unito.it, madalina.ciobanu@unimol.it,  
luigi.laura@uninettunouniversity.net 

Abstract. In this paper, we share the experience gained by organizing and running a programming 
contest for upper primary and lower secondary schools students; contestants compete in their own 
age division. This contest, called Giochi di Fibonacci (Fibonacci’s games), is organized in three 
phases, where the first one is based only on logical and algorithmical quizzes, whilst the other 
two deal with coding, either in Scratch or in a simplified pseudo-code programming environment 
developed for this scope. 

Keywords: programming contest, Olympiads in Informatics, peer education, programming train-
ing. 

1. Introduction 

The integration of computational thinking skills and computer programming in prima-
ry and lower secondary education has become increasingly important in recent years, 
as also witnessed by the large success of Bebras1 (Dagienė, 2008); see also the recent 
work of Dagienė et al. (2022) for a picture of the worldwide diffusion of Computational 
Thinking teaching in primary schools, whilst some considerations about the curriculum 
and teachers’ perspectives related to the introduction of informatics in primary education 
are discussed in (Dagienė et al., 2019). 

Indeed, as also observed in (Dolinsky, 2022), there is a plethora of approaches: 
unplugged education (Vegt, 2016; Pluhár, 2021), the use of Scratch (Fagerlund et al., 
2020), robot programming (Kanemune et al., 2017), LEGO robotics (Souza et al., 2018), 
and gamification (Combéfis et al., 2016). 

In this context, programming contests can serve as an effective tool to motivate students 
and expose them to problem-solving challenges. In this paper, we describe the introduction 

1 https://www.bebras.org/



G. Audrito, M. Ciobanu, L. Laura20

of a programming contest in upper primary and lower secondary education, with each age 
division competing separately, aimed at enhancing students’ computational thinking and 
programming skills. The competition, named ”Giochi di Fibonacci” (Fibonacci’s games), 
is comprised of three distinct stages, where the initial stage is solely based on logical and 
algorithmic assessments, similar to Bebras, while the other two phases involve the use of 
coding, either via Scratch or a specially designed simplified pseudo-code programming 
environment catered to this competition. 

In the literature, there are reports about similar experiences (in Belarus (Dolinsky, 
2022)) and also about training students for this events (Vegt, 2016; Kiryukhin et al., 
2022). 

This paper is organized as follows: in the next section we provide a general overview 
of the Giochi di Fibonacci, whilst the three sections that follow detail the three phases of 
the competition, providing info about both the structure and the results obtained. Then, 
in Section 6, we discuss the lessons we learnt in this first experimental edition, together 
with some changes we plan to implement in the next year. Finally, Section 7 addresses 
final remarks and conclusions. 

2. Giochi di Fibonacci 

Our competition mimics the structure of the Italian Olympiads in Informatics (Audrito 
et al., 2021), divided into three phases as well. The first phase does not involve coding, 
and problems proposed are similar to the ones of Bebras, thus aiming to involve students 
from that competition to participate. 

Why Fibonacci. Leonardo Pisano, more commonly known as Fibonacci, is a mathema-
tician from the 13th century. He learned the Hindu-Arabic numeral system during his 
travels to North Africa with his father, a customs agent, and described them in the Liber 
Abaci, or “Book of Calculation”, which revolutionized the way commerce was conduct-
ed. It enabled average individuals to buy and sell goods, convert currencies, and maintain 
accurate records of their possessions more easily than ever before. Its publication led to 
extensive international commerce and contributed to the scientific and artistic advance-
ments of the Renaissance. 

Fibonacci is most famously known for the Fibonacci sequence, which is a recurring 
pattern of numbers that can be generated using a simple recursive algorithm. This algo-
rithm is based on the idea that each number in the sequence is the sum of the previous 
two numbers: 

we discuss the lessons we learnt in this first experimental edition, together with some changes we
plan to implement in the next year. Finally, Section 7 addresses final remarks and conclusions.

2 Giochi di Fibonacci

Our competition mimics the structure of the Italian Olympiads in Informatics [1], divided into
three phases as well. The first phase does not involve coding, and problems proposed are similar
to the ones of Bebras, thus aiming to involve students from that competition to participate.

Why Fibonacci. Leonardo Pisano, more commonly known as Fibonacci, is a mathematician from
the 13th century. He learned the Hindu-Arabic numeral system during his travels to North Africa
with his father, a customs agent, and described them in the Liber Abaci, or “Book of Calculation”,
which revolutionized the way commerce was conducted. It enabled average individuals to buy
and sell goods, convert currencies, and maintain accurate records of their possessions more easily
than ever before. Its publication led to extensive international commerce and contributed to the
scientific and artistic advancements of the Renaissance.

Fibonacci is most famously known for the Fibonacci sequence, which is a recurring pattern
of numbers that can be generated using a simple recursive algorithm. This algorithm is based on
the idea that each number in the sequence is the sum of the previous two numbers:

fib(n) = fib(n− 1) + fib(n− 2)

where the first two numbers in the sequence are 0 and 1, and thus the sequence begins
with 0, 1, 1, 2, 3, 5, 8, 13, 21, etc. In his book [6], Devlin points out the remarkable similarities
between the computing revolution that took place in Tuscany during the 13th century, under
the guidance of Fibonacci, and the one that began in California’s Silicon Valley more recently,
with the personal computing revolution of the 1980s started by Steve Jobs, the founder of Apple
computers, with the introduction of the mouse and a graphical interface. Devlin offers a unique
perspective, showing how history repeated itself.

The structure of the competition The competition has been organized in three distinct phases.
Due to the young age of the participants all the phases took place in their own schools, under
the supervision of their own teachers.

– First phase: logical and algorithmic quizzes, similar to Bebras but with more weight on
“program reading” quizzes.

– Second phase: pseudo-code or Scratch programming.
– Third phase: pseudo-code or Scratch programming, with more difficult problems.

In the following sections we discuss each of the phases, describing in detail the types of
exercises proposed and the overall feedback received after the conclusion of this first experimental
edition.

3 First Phase

During the first phase, students could access the administered exercises through appropriate
accessible online tools both via computer and via tablet or smartphone.5 The exercises provided

5 An interactive training version of the exercises is available online at: https://scolastiche.olinfo.it.

2

where the first two numbers in the sequence are 0 and 1, and thus the sequence begins 
with 0, 1, 1, 2, 3, 5, 8, 13, 21, etc. In his book (Devlin, 2011), Devlin points out the re-
markable similarities between the computing revolution that took place in Tuscany during 
the 13th century, under the guidance of Fibonacci, and the one that began in California’s 



Giochi di Fibonacci: Competitive Programming for Young Students 21

Silicon Valley more recently, with the personal computing revolution of the 1980s started 
by Steve Jobs, the founder of Apple computers, with the introduction of the mouse and 
a graphical interface. Devlin offers a unique perspective, showing how history repeated 
itself. 

The structure of the competition The competition has been organized in three distinct 
phases. Due to the young age of the participants all the phases took place in their own 
schools, under the supervision of their own teachers. 

First phase ● : logical and algorithmic quizzes, similar to Bebras but with more 
weight on “program reading” quizzes. 
Second phase ● : pseudo-code or Scratch programming. 
Third phase ● : pseudo-code or Scratch programming, with more difficult problems. 

In the following sections we discuss each of the phases, describing in detail the types 
of exercises proposed and the overall feedback received after the conclusion of this first 
experimental edition. 

3. First Phase 

During the first phase, students could access the administered exercises through appro-
priate accessible online tools both via computer and via tablet or smartphone2. The ex-
ercises provided were intended to measure logic and basic mathematics thinking, ability 
to identify problem-solving algorithms and ability to understand descriptions of simple 
procedures. In this phase, no knowledge of programming languages was required to 
carry out and understand the exercises. 

Questions required either multiple-choice or numeric answers. All multiple choice 
questions had 5 options, of which only one was correct. The score assigned for these 
questions was: 

5 points for a correct answer.  ●
1 point for a blank answer.  ●
0 points for an incorrect answer.  ●

Each numerical open-ended question required an integer (possibly negative) number 
as an answer. The score assigned for these questions was: 

5 points for a correct answer.  ●
0 points for an incorrect or blank answer.  ●

The phase was managed and carried out independently by every single educational 
institution, at the times most suited to them, giving 50 minutes to students to complete 
the test. Further details follow, divided between primary and lower secondary schools. 
Overall, we had 9 questions for primary school and 10 questions for lower secondary 
school, and the response distributions are shown, respectively, in Fig. 1 and Fig. 2. 

2 An interactive training version of the exercises is available online at: https://scolastiche.olinfo.it 



G. Audrito, M. Ciobanu, L. Laura22

3.1. Primary School 

The test for primary school contained 9 questions, divided into three parts as follows: 
Logical thinking (4 multiple-choice questions).  ●
Algorithmic thinking (2 open-ended numeric questions).  ●
Program reading (3 multiple-choice questions).  ●

In each of the three parts, the questions were roughly ordered by increasing difficulty. 
A sample of the questions follows. 

Question 1. Every Monday, Tap-Tap picks 10 carrots from his garden. Every day of 
the week, Tap-Tap eats a carrot. How many carrots does he have left over each week? 
(see Fig. 3) 

Question 6. Tip-Tap has gone on a trip to Turing’s farm, and he wants to bring back 
lots of carrots to his farm mates. On Turing’s farm, the Carrot Market takes place every 

Fig. 1. Response distribution in primary school. 

Fig. 2. Response distribution in lower secondary school. 



Giochi di Fibonacci: Competitive Programming for Young Students 23

week, where it is possible to buy many boxes of carrots, each at a cost of 10 carrots. 
Carrots are good for your eyesight, and Tip-Tap eats so many he can see through the 
boxes! These are the numbers of carrots contained in each box [. . . ] how many carrots 
can Tip-Tap earn at most, by buying a set of boxes of his choice? (see Fig. 4) 

Fig. 3. User interface for question 1 (multiple-choice, logic thinking). 

Fig. 4. User interface for question 6 (open-ended, algorithmic thinking).



G. Audrito, M. Ciobanu, L. Laura24

This question is the one that received the most wrong answers as we can see from the 
graph in Fig. 1. That was somewhat expected, as the topic of the question (algorithmic 
thinking) is mostly novel for this age group. In primary schools in Italy, competitions 
already exist that develop logical thinking, but not developing algorithmic thinking. 

Question 8. Consider this process, represented as a flowchart. The procedure refers to 
three numerical variables, represented by letters a, b and c. This program runs twice. 
The first time the variables are assigned values a = 7, b = 4 and c = 6. The second time 
the values assigned are instead a = 5, b = 7, c = 9. What numbers does the procedure 
write in the two runs? (see Fig. 5) 

Fig. 5. User interface for question 8 (multiple choice, program reading). 



Giochi di Fibonacci: Competitive Programming for Young Students 25

3.2. Lower Secondary School 

The test administered to lower secondary school students consisted of 10 questions, 
divided into three parts as follows: 

Logical thinking (3 multiple-choice questions).  ●
Algorithmic thinking (4 open-ended numeric questions).  ●
Program reading (3 multiple-choice questions).  ●

In each of the three parts, the questions were roughly ordered by increasing difficulty. 
Some of the easier questions were shared with the test for primary school: 2 logical 
thinking questions, 2 algorithmic thinking questions, and all program reading questions. 
The two additional algo rithmic questions were increased difficulty follow-ups of the two 
questions shared with primary schools. A sample of the questions follows. 

Question 1. Bunny found three piles of books in the library of the Fibonacci farm! 
Bunny would like to read any two gardening books, and he knows that the books on this 
subject are the ones with a yellow cover. To get a book Bunny has to move all the books 
above it. Bunny is very lazy, so he wants to be able to grab any two of the books he’s 
interested in by moving as few books as possible! What’s the minimum number of books 
Bunny has to move, counting the gardening books he takes? (see Fig. 6) 

Fig. 6. User interface for question 1 (multiple-choice, logic thinking). 



G. Audrito, M. Ciobanu, L. Laura26

Question 4.1. Bunny found these five slips of paper with numbers written on them: [. . . ] 
Bunny wants to know which numbers can obtain by aligning the slips vertically and read-
ing a column. For instance, aligning slips as in the picture, he can obtain 14518: [. . . ] 
What is the largest number he can obtain in that way? 

Question 4.2. Actually, Bunny would also like to figure out what is the biggest number 
he can get if he can change the order of the slips. For example, exchanging the first sheet 
with the last one, the order of the sheets would become: [. . . ] What is the largest number 
he can obtain in that way? (see Fig. 7) 

Question 4.2 is the one with the most percentage of incorrect answers (see Fig. 2). 
Even though lower secondary school students performed better on the two algorithmic 
questions shared with primary school students, they still had issues on the more complex 
follow-ups of them, showing that algorithmic thinking is indeed a skill that needs to be 
further encouraged and developed also in their age group. 

11,581 students took part in the first phase: 4,274 from primary school and 7,307 
from lower secondary school. The school with the highest number of participants was 
the “I. C. L. Da Vinci/G. Carducci” school in Palermo, with 633 students. 86 students 
obtained a full score: 38 from primary school and 48 from lower secondary school. 
The school with the most full scores was the “I. C. Torgiano-Bettona” primary school, 
with 13 full scores. The mean score was 19.5 and the median score was 20, the same 
for both primary and lower secondary schools. The reported satisfaction was high: 
the students enjoyed learning and showing off their potential, through a test deemed 
adequate in all its sections, and effective administration tools despite some minor 
technical difficulties. 

4. Second Phase 

Students who achieved sufficient results in the first phase were invited to participate in 
a second phase dedicated to coding which involved carrying out the questions using the 
computer. Also in this case, the test was prepared at a national level by the technical-
didactic operational unit of the Italian Informatics Olympics committee. The compe-
tition consisted in solving algorith mic problems by writing computer programs. The 
programming language used was a choice of Python, Scratch, or Pseudo-code based on 
suggestions from the school teachers. The test con sisted in three tasks to be completed in 
two hours, different for the two school levels but with an overlap: primary schools had 
tasks mele, dadi, monologo; while lower secondary schools had tasks dadi, monologo, 
soldatini.3 The students who obtained the best results in this second phase were invited 
to carry out the tests of the third phase. 

1,320 students took part in the second phase: 295 from primary school and 1,025 
from lower secondary school. Unfortunately, the test turned out to be very difficult 
and only half of these managed to score points: 142 from primary school and 442 from 

3 An interactive training version of the exercises is available at: https://demo.fibonacci.olinfo.it 



Giochi di Fibonacci: Competitive Programming for Young Students 27

Fig. 7. User interface for questions 4.1 and 4.2 (open-ended, algorithmic thinking). 



G. Audrito, M. Ciobanu, L. Laura28

lower secondary school. There was only one full score for primary school, and six full 
scores for secondary school. 25 primary school students with a score of at least 55 
points, and 57 lower secondary school students with a score of at least 100 points were 
selected for the national final. The feedback gathered from teacher was varied, but 
leaning on the negative side overall, as the test was discouraging most students. Par-
ticularly negative was the interaction with the test system for Scratch: as we weren’t 
able to integrate Scratch within our platform, students were required to download and 
re-upload multiple files between two sites, resulting in a cumbersome and confusing 
interaction. 

5. Third Phase 

67 students participated in the third and final phase: 21 from 7 primary schools and 46 
from 18 lower secondary schools. Of these, 18 primary school students and 36 second-
ary school students managed to get points. Among these, 32 medals were awarded, fol-
lowing the assignments used in other scientific competitions: 14 bronzes, 12 silvers, and 
6 golds. The test consisted in four programming tasks to be solved in three hours. Three 
tasks were borrowed from the regional selections of the Italian Informatics Olympiads 
(rettangolo, newlines and muro), while the fourth easier task was specific to the com-
petition (formiche).4 Every task was solved by at least a contestant, but no contestant 
solved every task, so that the maximum score was of 118 points out of 200. This was a 
satisfactory result for the contest itself, but quite far from the level that higher secondary 
school students achieved on the common tasks. The students selected for the national 
Italian Informatics Olympiads all scored at least 110 points on the three common tasks, 
with all of them fully solving the easier of the three tasks (rettangolo). As the additional 
formiche task was even easier, this projects their likely cutoff score to be at about 160 
points out of 200. Since even the best scoring student from lower secondary school was 
quite far from this cutoff, we decided to not invite any student from this competition to 
join the Italian Informatics Olympiads, as we feared that would not be a constructive 
experience for them. 

The feedback for this phase was positive overall: even though the test had the same 
format of the second phase, which was not well received, the more selected pool of 
students was able to handle the system effectively. This is not surprising as only the 
students performing well on the second phase were selected for the third, which are stu-
dents that were already able to work successfully with the competition format previous-
ly. On the other hand, it is an indication that the format and level of the third phase was 
indeed appropriate for a national-level final competition for lower secondary schools, as 
sufficiently many students nation-wide were able to score well. Unfortunately, the same 
can not be said for elementary schools: only one student scored well (obtaining a lower 
gold medal with 104 points out of 200), while the other 17 participating students scored 
at most 11 points out of 200 (which were not enough for any medal). 

4 An interactive training version of the exercises is available at: https://demo.fibonacci.olinfo.it 



Giochi di Fibonacci: Competitive Programming for Young Students 29

6. Lessons Learned 

Based on the feedback and results gathered, we concluded that the competition should 
live for the following years, but with several necessary changes. As the first phase was 
the most successful, we plan to leave it mostly untouched, only reducing slightly the 
weight of logical quizzes in favor of algorithmic and program interpretation. We also 
plan to propose the programs to be interpreted in a block-like format, in order to be more 
preparatory for the following phases; and making our first phase more of a “further step” 
after Bebras. In this way, we plan to perform slightly more selection before the second 
round, to ensure that most of the students proceeding in the competition have the skills 
needed to take profit from it. 

As the second phase was the most unsuccessful, we decided to completely rethink 
it. Instead of having it with an identical format as the third phase (but with easier tasks), 
we plan to have it with a similar format as the first phase, having it hosted on the same 
quiz-based web platform, with the goal of making the second phase somewhat more of 
an intermediate step between the first and the third. The second phase will differ from 
the first in two main aspects: 

The removal of the section on logical quizzes, thus only focusing on algorithmic  ●
thinking and program reading. 
The algorithmic questions will be solvable by writing a program in Blockly ● 5 com-
puting their answers. 

More precisely, each algorithmic question will feature a Blockly editor integrated 
with the website, and multiple answer boxes for inputs of increasing complexity (in-
spired by the two-step questions asked in the first phase for lower secondary schools). 
By composing a simple program solving the question and pressing a “run” button, it will 
be possible to automatically fill in all answers and see whether they are correct. Only the 
first input will be small enough to be solved by hand, so that being able to correctly write 
a block-based solution should result in an higher score. 

Finally, as the third phase was successful for lower secondary schools, we plan 
to leave it mostly untouched, but propose it only to lower secondary school students. 
Few selected primary school students may be invited as well if they score well enough, 
with their teacher’s consent, but by being an exception rather than the rule we hope 
that having very few primary school students at the third phase in this way should 
not detract from the sentiment of the (many) primary school students that will not be 
selected. In fact, we feel that we cannot propose a full-fledged programming contest 
to primary school students in Italy at the time of this writing (except for very few ex-
ceptional students). 

5 The choice of relying on Blockly instead of the more well-known similar platform Scratch is due to its 
easier integration with our website. Blockly can be tried online at: https://blockly.games 



G. Audrito, M. Ciobanu, L. Laura30

7. Conclusions 

In this paper we described our experience in the organization of a programming competi-
tion devoted to students of upper primary and lower secondary education. 

Being a first edition, we clearly communicated that it was an experimental edition, 
and that we would collect feedback from both teachers and students. 

Overall, the competition has been a success, with some issues that we plan to fix in 
the following editions: besides minor fixes, the main change will be the in the second 
phase, that will follow the format of the first phase, thus being some sort of a more dif-
ficult first phase instead of an easier third phase. Also, we plan to have only the first two 
phases for the upper lower education, with only few exceptions for some very talented 
students that will be invited with their teacher’s consent. 

Summing up, our experience with organizing and running the Giochi di Fibonacci 
program ming contest has demonstrated, once again, the large need for computational 
thinking and pro gramming skills in upper primary and lower secondary education. Our 
contest has shown, as ob served in prior researches, that students of these ages are ca-
pable of engaging in complex logical reasoning and algorithmic problem-solving if pro-
vided with the appropriate tools and training. By introducing simplified programming 
environments like Scratch or our custom pseudo-code environment, students were able 
to apply their abstract reasoning to real-world programming challenges. We believe that 
initiatives like the Giochi di Fibonacci contest are crucial in preparing the next genera-
tion for an increasingly technology-driven society. We hope that our experience can be 
helpful for others to create similar programs that promote computational thinking and 
programming skills among young students. 

References 

Audrito, G., Luigi, W. di, Laura, L., Morassutto, E., Ostuni, D. et al. (2021). The Italian Job: Moving (Mas-
sively) Online a National Olympiad. Olympiads in Informatics, 15, 3–12. 

Combéfis, S., Beresnevičius, G., Dagienė, V. (2016). Learning program ming through games and contests: over-
view, characterisation and discussion. Olympiads in Informatics, 10, 39–60. 

Dagienė, V. (2008). The BEBRAS contest on informatics and computer literacy–students drive to science edu-
cation”. In: Joint Open and Working IFIP Conference. ICT and Learn ing for the Net Generation, Kuala 
Lumpur. pp. 214–223. 

Dagienė, V., Jevsikova, T., Stupurienė, G. (2019). Introducing informatics in primary education: Curriculum 
and teachers’ perspectives. In: Informatics in Schools. New Ideas in School Informatics: 12th International 
Conference on Informatics in Schools: Situation, Evolution, and Perspectives, ISSEP 2019, Larnaca, Cy-
prus, November 18–20, 2019, Proceedings 12. Springer, pp. 83–94. 

Dagienė, V., Jevsikova, T., Stupurienė, G., Juškevičienė, A. (2022). Teach ing computational thinking in primary 
schools: Worldwide trends and teachers’ attitudes. In: Computer Science and Information Systems. 19.1, 
pp. 1–24. 

Devlin, K. (2011). Leonardo and Steve: The Young Genius Who Beat Apple to Market by 800 Years. Indepen-
dently published. 

Dolinsky, M. (2022). Primary School Programming Olympiads in Gomel Region (Belarus). Olympiads of In-
formatics, 16, 107–123. 

Fagerlund, J., Häkkinen, P., Vesisenaho, M., Viiri, J. (2020). Assessing 4th grade students’ computational think-
ing through scratch programming projects. Informatics in Education, 19(4). 



Giochi di Fibonacci: Competitive Programming for Young Students 31

Kanemune, S., Shirai, S., Tani, S. (2017). Informatics and programming edu cation at primary and secondary 
schools in Japan. Olympiads in Informatics, 11, 143–150. 

Kiryukhin, V.M., Kinder, M.I., Cvetkova, M.S., Borisov, N.A., et al. (2022). Methods of tracks for training 
juniors in Olympiad Informatics: The ISIJ experience. Olympiads of Informatics, 16, 75–87. 

Pluhár, Z. (2021). Extending computational thinking activities. Olympiads in Informat ics 15, 83–89. 
Souza, I.M.L, Andrade, W.L., Sampaio, L.M.R., Souto O Araujo, A.L. (2018). A Systematic Review on the use 

of LEGO® Robotics in Education. In: 2018 IEEE Frontiers in Education Conference (FIE). IEEE. 1–9. 
Vegt, W. van der. (2016). Bridging the gap between Bebras and Olympiad: Experiences from the Netherlands. 

Olympiads in Informatics, 10, 223–230. 

G. Audrito is involved in the training of the Italian team for the IOI 
since 2006, and since 2013 is the team leader of the Italian team. Since 
2014 he has been coordinating the scientific preparation of the OIS 
and of the first edition of the IIOT. He got a Ph.D. in Mathematics in 
the University of Turin, and currently works as a Junior Lecturer in the 
University of Turin. 

M. Ciobanu is involved in Italian Olympiads in Informatics since 
2009. She got a Ph.D in Computer Science in the University of Sal-
erno, and currently she is a teacher in a high school. 

L. Laura is currently the president of the organizing committee of the 
Italian Olympiads in Informatics that he joined in 2012; previously, 
since 2007, he was involved in the training of the Italian team for the 
IOI. He is Associate Professor of Theoretical Computer Science in 
Uninettuno university. 





Olympiads in Informatics, 2023, Vol. 17, 33–42
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.03

33

The Introduction of Micro:bit in Elementary 
School, from Unplugged Activity to Programs

Bence GAÁL
ELTE Faculty of Informatics – Department of Media and Educational Informatics, Budapest
e-mail: gaalbence@inf.elte.hu

Abstract. In this article we would like to present a good practice and its results, in which the 
main role is given to understanding the micro:bit device and its programming. Starting from 
an unplugged activity that helps understand the device’s functioning and basic concepts, the 
workshop leads fourth-grade students to create simple, yet impressive programs written in the 
device’s block-based language. The research was focused on investigating the success of the 
unplugged activity developed specifically for micro:bit, as well as on assessing the motivation 
of the students and the level of knowledge that could be transferred to the students through this 
method. It was also important that, in addition to the results, the practice material, with a detailed 
description, should be available to other teachers who would like to introduce micro:bit to their 
students in this way.

Keywords: unplugged, robotics, micro:bit, programming, STEM, elementary school.

1. Introduction

In Hungary, before 2020, informatics was only present as an optional subject in school 
education for students in grades 3–4. However, in most schools, informatics does not 
appear among the optional subjects, which is probably due to the fact that career aban-
donment is highest among informatics and engineering teachers, and the ageing teach-
ing population is more difficult to keep up with the development of informatics (Gaál, 
2020). The situation will definitely be improved by the new National Core Curriculum, 
where digital culture is already present as a compulsory subject in grades 3–4 (Education 
Authority, 2020a).

The students of fourth grade participating in the experiment first encountered infor-
matics in classroom conditions during the unplugged session, as they were still under 
the old curriculum at the time of writing the article. The topic focused on programming 
the micro:bit and getting to know it, but we felt it was important to introduce the topic 
in an unplugged way. The Computer Science (CS) unplugged methods are extremely 
effective in that students see another, interesting side of informatics, namely what hap-



B. Gaál34

pens inside the computer (Rivka et al., 2012). It is important that their first experience 
be appropriate for their age and that they encounter different logical and programming 
problems through activities where they do not have to write program code to solve them 
(CSERG, 2021). Therefore, in the first half of the session, we simulated the running of a 
micro:bit program in an unplugged activity, through which the children were introduced 
to the device and gained an understanding of how it works, as well as some basic pro-
gramming concepts.

The second half of the session focused on creating short (robotics-related) programs. 
We tried to present programs that were sufficiently attention-grabbing and enjoyable 
for the students. Before the method is implemented, we also set up several hypotheses, 
which were followed by a questionnaire for both the unplugged activity and the pro-
gramming part, which we will elaborate on in the second half of the article. 

[Hypothesis 1]: By the unplugged activity, students will be able to distinguish the differ-
ent elements of the micro:bit, and be familiar with some basic concepts that only older 
age groups know. 

[Hypothesis 2]: Even just one of these robotics lessons can spark children’s interest and 
motivation to work with robotics, in their informatics and science lessons and even in 
their free time. 

For other future research, it was important that students were also open to using 
micro:bit in other subjects.

2. Presentation of the Lesson Material

We used the new V2 version of the micro:bit for the sessions (Fig. 1). The device has 
undergone a lot of innovation and many new features that are interesting for children 
have been integrated. In addition to the increased memory and more modern processor, 
the device also received a capacitive touch sensor, speaker, and built-in microphone. We 
also tried out the latter function with the fourth-grade students. It is important that during 

Fig. 1. The front and back of the micro:bit V2  
(Source: https://microbit.org/new-microbit/).



The Introduction of Micro:bit in Elementary School, from Unplugged Activity ... 35

the development of the device, one of the key topics of the 21st century, environmental 
awareness, was also taken into account and the device became more energy efficient and 
already has a sleep state function (MEF, 2021; Abonyi-Tóth, 2021).

The implementation of the session took place in two parts, which took four lessons, 
but this can be greatly influenced by the group dynamics and the individual needs of 
the students. 

The first half of the session was devoted to testing and verifying the unplugged 
method developed during my studies. This was preceded by a detailed presentation of 
the device so that students have an idea of what we are going to work with. The es-
sence of the unplugged activity is to familiarize students with the internal functioning 
of the micro:bit, to show them playfully what operations the processor has to perform 
and how the device communicates with the user. This also clarifies the concept of in-
put and output peripherals. The first step in implementation was to select from among 
the students those who played the roles of different parts of the micro:bit (Fig. 2). The 
students were given the role of certain parts of the micro:bit, for example, the “Manag-
ers of the screen pixels” were given the task of plotting the output on the board as if 
it were the LED matrix of the micorbit, and the students in the role of “buttons” were 
given the task of indicating when they were pressed. Those who did not want to take 
on these roles were given the programmer role. They were the ones who created the 
program commands using statements cut out of paper and passed them to the CPU. The 
preparatory requirement for the session was to print out the blocks according to the 
task. And through the unplugged activity, students simulated the entire programming 
process, from coding to switching on the LEDs, by personifying the processes of the 
device themselves.

After the preparation, students in role of “programmers” independently try to cre-
ate the program code from the blocks. In our case, an animation about a waving robot 
(Abonyi-Tóth, 2018) was the first program to be implemented. The code causes the 
image of a robot to wave with its left or right arm by pressing the appropriate button. 

Fig. 2. How to implement the method  
(Note: the use of variables was not discussed during this exercise).



B. Gaál36

The instructions are received by the student in the “processor” role and based on these 
it notifies the students in role of another necessary micro:bit parts and assigns the tasks, 
e.g.: the button sends a notification if it is pressed. The display can be implemented at 
the board. Here we can assign more students for the role of “managers of the screen 
pixels” to speed up the process, as each movement has to be drawn out. With this role, 
we can ensure that everyone is part of the activities even in larger groups. We can 
further increase the number of roles, if necessary, for example, we can also distribute 
messenger roles. After we played a few steps, discuss with students what happened dur-
ing the process. For a better understanding, it is recommended to project the schematic 
diagram that students can see the direction of the arrows and understand why the direc-
tions are important (Fig. 2). 

The questionnaire examining the success of the unplugged activity was completed 
after this part of the session. (see Chapter 3) The second part of the session involved 
implementing the previously created program in a digital environment as well, using 
the makecode interface. The length of solving the task was greatly increased by the fact 
that they were fourth-grade students, for whom this was the first informatics lesson. 
And for us to get the micro:bits working, it is essential to know file and folder opera-
tions. During the session, perhaps this was the most difficult part of the material for 
the students. Once the animation was already waving with one hand, it was up to the 
students to get the other hand working as well (Fig. 3), and to create individual anima-
tions with both buttons pressed. Implementing this did not cause any problems after the 
unplugged activity and the implementation of the first version of the code.

Fig. 3. Example code of the waving robot (Abonyi-Tóth 2018).



The Introduction of Micro:bit in Elementary School, from Unplugged Activity ... 37

The second task we prepared with the students was a graph that changes with sound. 
Here, the students could choose their favorite music, which, when played on a smart-
phone, provided a perfect effect for the spectacular presentation of the program code. 
Here the emphasis was more on the spectacle than on the difficulty of programming, this 
was sort of a relief for them, as they learned a lot of new things in a very tight pace. At 
the end of the session, the stem:bit accessory package developed for micro:bit was also 
presented and students could also take a look at an obstacle-avoiding crawler robot. 

This part of the session also ended with a questionnaire. (see Chapter 4) This ques-
tionnaire focused on the motivation of using micro:bits and the feelings of the students 
related to the lessons. 

3. Testing the Success of the Unplugged Activity

The questionnaire related to the activity contained four multiple-choice test questions 
and two open-ended questions. The test was completed by all of the participant students 
(N = 18). The questions cover computer knowledge, of which only the concept of a 
“program” appears in grade 4. The other concepts (loop, sensor, peripheral, processor) 
are only included in the digital culture curriculum for grades 5–6 (Education Authority, 
2020b/c). The goal was for students to have some clarity about these concepts, even after 
only one lesson. In the following, we will go through the results of the tasks one by one.

Question 1. What is the processor for?
 Out of the 18 respondents, only one person gave a wrong answer, marking the third 

option. The other respondents correctly marked the second option (Fig. 4). It can be 
concluded that the group understood the basic role of the processor.

Question 2. What the sensors do?
 In this case, the understanding was made more difficult by the fact that only the 

concept was mentioned verbally, its presentation did not take place within the frame-

     
Fig. 4. Question 1 and the distribution of responses. 

Out of the 18 respondents, only one person gave a wrong answer, marking the third 
option. The other respondents correctly marked the second option (Figure 4.). It can 
be concluded that the group understood the basic role of the processor. 
Question 2. What the sensors do? 

  
Fig. 5. Question 2 and the distribution of responses. 

In this case, the understanding was made more difficult by the fact that only the con-
cept was mentioned verbally, its presentation did not take place within the framework 
of the unplugged activity. Since learning did not take place through experience, it was 
expected that we would get a weaker result. Accordingly, 8 students gave incorrect 
answers out of the group. Of these, 5 students marked the second, 2 the fourth and 1 
the third option. 10 students correctly gave the first option as an answer (Figure 5.). 

Question 3. What peripherals are the buttons? 
Question 4. What peripheral is the display? 
The next answers are closely related to each other, as they had to decide on the differ-
ent parts of the micro:bit (buttons, display) whether they are input or output periph-
erals. At these questions, convincing results were also achieved. Most of the children 

17; 94% 

1; 6% 

Correct Incorrect

10; 
56% 

8; 
44% 

Correct Incorrect

Fig. 4. Question 1 and the distribution of responses.



B. Gaál38

work of the unplugged activity. Since learning did not take place through experience, it 
was expected that we would get a weaker result. Accordingly, 8 students gave incorrect 
answers out of the group. Of these, 5 students marked the second, 2 the fourth and 1 the 
third option. 10 students correctly gave the first option as an answer (Fig. 5).

Question 3. What peripherals are the buttons?

Question 4. What peripheral is the display?
The next answers are closely related to each other, as they had to decide on the differ-

ent parts of the micro:bit (buttons, display) whether they are input or output peripherals. 
At these questions, convincing results were also achieved. Most of the children correctly 
distinguished between input and output peripherals (16 correct answers for buttons, 15 
for display) that are on the device. Distinguishing this is still difficult not only in grade 
4 but in grade 5 according to our experience. Two students gave wrong answer to both 
questions. It can also be stated here that as a result of the activity, they answered cor-
rectly in a large proportion to the question asked.

Question 5. What a computer program is?
The next question was an open-ended question. This is, according to the new cur-

riculum, already some knowledge to be learned in grade 4, but as we wrote earlier, the 
students who participated here, did not have digital culture or informatics as a subject 
either (Education Authority, 2020b). Considering the age characteristics, we accepted all 
those answers as correct solutions that included the following expressions: it contains 
instructions, it gives instructions to the computer, or instructions after each other. The 
given definition during the activity was the following: a set of instructions given to a 
computer (Gregorics et al., 2012).

Almost three-quarters of the group, 13 students, gave an appropriate answer to the 
question, so we think that the activity may be suitable for them to learn what a program 
is (Fig. 6). In the case of wrong answers, 3 students also wrote that the program is the 
brain of the micro:bit. This answer may be interesting if we think about how the students 
thought. Perhaps they tried to solve the problem with something closer to them and drew 
a parallel with the relationship between human action and the brain, because our brain 
also gives instructions to our body.

   

  
Fig. 4. Question 1 and the distribution of responses. 

Out of the 18 respondents, only one person gave a wrong answer, marking the third 
option. The other respondents correctly marked the second option (Figure 4.). It can 
be concluded that the group understood the basic role of the processor. 
Question 2. What the sensors do? 

  
Fig. 5. Question 2 and the distribution of responses. 

In this case, the understanding was made more difficult by the fact that only the con-
cept was mentioned verbally, its presentation did not take place within the framework 
of the unplugged activity. Since learning did not take place through experience, it was 
expected that we would get a weaker result. Accordingly, 8 students gave incorrect 
answers out of the group. Of these, 5 students marked the second, 2 the fourth and 1 
the third option. 10 students correctly gave the first option as an answer (Figure 5.). 

Question 3. What peripherals are the buttons? 
Question 4. What peripheral is the display? 
The next answers are closely related to each other, as they had to decide on the differ-
ent parts of the micro:bit (buttons, display) whether they are input or output periph-
erals. At these questions, convincing results were also achieved. Most of the children 

17; 94% 

1; 6% 

Correct Incorrect

10; 
56% 

8; 
44% 

Correct Incorrect

Fig. 5. Question 2 and the distribution of responses.



The Introduction of Micro:bit in Elementary School, from Unplugged Activity ... 39

Question 6. What does a loop do? 
Similar to the previous question, this was an open-ended question too. The given 

definition was the following: the loop repeats the instructions it contains several times. 
(Gregorics et al., 2012). This concept is not part of the grade 4 curriculum, and only 
appears in grade 5 (Education Authority, 2020c). As correct answers, we accepted the 
following: instruction repetition, repeating part, repeat something/process, repeat the 
thing several times.

The result here is also convincing. Out of the group, 14 students gave a correct an-
swer to the question and only 4 students failed the task (Fig. 7). It can therefore be stated 
that the activity may also be suitable for illustrating the loop.

Success of the activity
The activity was successful according to expectations. It can be said that in every 

question, at least 70% of the students answered correctly from the questions asked, which 
we covered during the unplugged activity. Breaking down the results by individuals, ev-
eryone reached 50%, even students with weaker digital skills and children who had not 
used a computer at all before. They were able to distinguish and understand the functions 
of the different parts of the device, such as button, display, processor. The implementa-
tion of the activity can of course also work through another example program, where not 
only the loop but also the if-else statement can be taught to the students. 

correctly distinguished between input and output peripherals (16 correct answers for 
buttons, 15 for display) that are on the device. Distinguishing this is still difficult not 
only in grade 4 but in grade 5 according to our experience. Two students gave wrong 
answer to both questions. It can also be stated here that as a result of the activity, they 
answered correctly in a large proportion to the question asked. 

Question 5. What a computer program is? 
The next question was an open-ended question. This is, according to the new curricu-
lum, already some knowledge to be learned in grade 4, but as we wrote earlier, the 
students who participated here, did not have digital culture or informatics as a subject 
either (Education Authority, 2020b). Considering the age characteristics, we accepted 
all those answers as correct solutions that included the following expressions: it con-
tains instructions, it gives instructions to the computer, or instructions after each oth-
er. The given definition during the activity was the following: a set of instructions 
given to a computer (Gregorics et al., 2012). 

 
Fig. 6. Question 5 and the distribution of responses. 

Almost three-quarters of the group, 13 students, gave an appropriate answer to the 
question, so we think that the activity may be suitable for them to learn what a pro-
gram is (Figure 6.). In the case of wrong answers, 3 students also wrote that the pro-
gram is the brain of the micro:bit. This answer may be interesting if we think about 
how the students thought. Perhaps they tried to solve the problem with something 
closer to them and drew a parallel with the relationship between human action and the 
brain, because our brain also gives instructions to our body. 

Question 6. What does a loop do?  
Similar to the previous question, this was an open-ended question too. The given defi-
nition was the following: the loop repeats the instructions it contains several times. 
(Gregorics et al., 2012). This concept is not part of the grade 4 curriculum, and only 
appears in grade 5 (Education Authority, 2020c). As correct answers, we accepted the 
following: instruction repetition, repeating part, repeat something/process, repeat the 
thing several times. 

  

13; 72% 

5; 28% 

Correct

Incorrect

Fig. 6. Distribution of responses to Question 5.

 
Fig. 7. Question 5 and the distribution of responses. 

The result here is also convincing. Out of the group, 14 students gave a correct an-
swer to the question and only 4 students failed the task (Figure 7.). It can therefore be 
stated that the activity may also be suitable for illustrating the loop. 

Success of the activity 
The activity was successful according to expectations. It can be said that in every 
question, at least 70% of the students answered correctly from the questions asked, 
which we covered during the unplugged activity. Breaking down the results by indi-
viduals, everyone reached 50%, even students with weaker digital skills and children 
who had not used a computer at all before. They were able to distinguish and under-
stand the functions of the different parts of the device, such as button, display, proces-
sor. The implementation of the activity can of course also work through another ex-
ample program, where not only the loop but also the if-else statement can be taught to 
the students.  
Based on the above and the results of the questionnaires, it can be stated that the [H1] 
hypothesis that By the unplugged activity, students will be able to distinguish the dif-
ferent elements of the micro:bit, and be familiar with some basic concepts that only 
older age groups know., has been fully confirmed. 

1. 4. Results of the Satisfaction 

Within the framework of this questionnaire, we were mainly interested in how much 
the students enjoyed the activity and how the whole activity affected their motivation 
related to robotics. The response was on a Likert scale ranging from 1 to 5. The ques-
tionnaire was completed by 16 students. In the meantime, one student had to leave, 
and one student instead of filling out the questionnaire started to further develop the 
program of the lesson. In his case, the activity can definitely be considered successful. 
In the following, we will deal with the distribution of answers to each question. 

Question 1. How interesting did you find the lesson? 
For the first question, all the students rated the value five, so everyone found the les-
son very interesting. Robotics could play a big role in this, as it is by its nature a sub-

14; 78% 

4; 22% 

Correct

Incorrect

Fig. 7. Distribution of responses to Question 6.



B. Gaál40

Based on the above and the results of the questionnaires, it can be stated that the [H1] 
hypothesis that By the unplugged activity, students will be able to distinguish the differ-
ent elements of the micro:bit, and be familiar with some basic concepts that only older 
age groups know., has been fully confirmed.

4. Results of the Satisfaction

Within the framework of this questionnaire, we were mainly interested in how much the 
students enjoyed the activity and how the whole activity affected their motivation related 
to robotics. The response was on a Likert scale ranging from 1 to 5. The questionnaire 
was completed by 16 students. In the meantime, one student had to leave, and one stu-
dent instead of filling out the questionnaire started to further develop the program of the 
lesson. In his case, the activity can definitely be considered successful. In the following, 
we will deal with the distribution of answers to each question.

Question 1. How interesting did you find the lesson?
For the first question, all the students rated the value five, so everyone found the 

lesson very interesting. Robotics could play a big role in this, as it is by its nature a 
subject in which children are more interested. It should also be noted that the teacher’s 
presentation style also influenced the answers. An interesting approach without a com-
mitted, enthusiastic teacher is less likely to be successful. Nevertheless, the fact that the 
students all gave the highest marks shows that the method tested is capable of delivering 
an interesting lesson for all.

Question 2. How much fun did you have?
The second question was “How much fun did you have?” The average of the given 

values is 4.9375, as 15 of the students marked grade five and only 1 person ticked the 
answer option of four, rather yes. The fact that 15 students gave the highest rating of five 
suggests that a significant proportion of the class had a very enjoyable experience of the 
activity or lesson. This positive response can be attributed to a variety of factors, such as 
engaging content, interactive teaching methods or the general classroom atmosphere. The 
last factor is not significant in this case because the trainer and the group were unknown 
to each other. This implies that the content of the lesson largely determined the answers.

Question 3. How much would you like to use the device in your free time?
The last question was “How much would you like to use the device in your free 

time?” In this case, the opinion of students was somewhat divided. If we look at the aver-
age, the response value was 4.4375 and the standard deviation was 0.629. The distribu-
tion was as follows. 8 students would love to use the device, 7 would rather use it, and 1 
person would not use it. Responses for leisure use are less consistent. In our opinion, this 
is not a problem, since the aim of using the tool is to make classroom activities interest-
ing and to introduce programming effectively. Nevertheless, half of the students found 
the tool interesting enough to want to use it in their free time. 

It may be worth exploring the background of the negative response to find out the 
personal preference of the student and the underlying content of the negative response. 



The Introduction of Micro:bit in Elementary School, from Unplugged Activity ... 41

Question 4. Would you like to use the tools in your informatics class next year? (Yes 
or No question)

All 16 students responded positively, confirming that robotics has a place in the new 
curriculum. Consequently, in the group’s subsequent informatics lessons, we were able 
to put a strong emphasis on micro:Bit programming, which was mainly implemented 
in pairs.

Question 5. Would you like to use the tools in your science class next year? (Yes or 
No question)

The general unanimous positive answer to this question provided a good basis for 
further research, focusing on robotics-enhanced science education. The enthusiasm and 
openness of the students allows the benefits of robotics and micro:bit to be used in other 
subjects. This question and the previous one were intended to assess the group’s open-
ness towards micro:bit in order to determine whether further research with the group 
would be possible in the future.

Summary of the satisfaction questionnaire
The answers to the satisfaction questionnaire were overwhelmingly positive for all 

questions. Students enjoyed the lessons and found it interesting, and most of them 
would use the micro:bit at home in their free time. In addition, all the students were 
open to using the device in future computer science and science lessons, thus getting 
to know them better. It can therefore be clearly concluded that the [H2] hypothesis that 
even just one of these robotics lessons can spark children’s interest and motivation to 
work with robotics, in their informatics and science lessons and even in their free time, 
has also been confirmed.

5. Conclusion

The integration of robotics into education is inevitable. Therefore, we would like to 
design an activity that gives students the opportunity to explore the world of robotics 
in a playful way. During the experimental session, the participating group 4, without 
any previous knowledge of informatics, was able to write programs on micro:bits and 
modify them individually during a longer session. The playful introduction of the topic, 
which introduced and personalised the micro:bit in an unplugged activity, played a 
major role in this. Its success lies in showing students, through an easy-to-understand 
role-play, the complex and abstract process of programming and the basic principles of 
micro:bit operation.

Based on the results reviewed in this paper, it can be concluded that the use of ro-
botics and unplugged methods positively influences learners’ understanding and helps 
learners to acquire knowledge beyond their age, as learning for them is playful and ac-
tive, where the mechanism of playful learning is implemented.

The beneficial effects of robotics should also be highlighted, as even a single session 
greatly influences how students relate to the given subject. We encourage all colleagues 
to use these robots not only within the framework of digital culture, but also to integrate 



B. Gaál42

them into natural sciences, as it seems that students would like to see them there as 
well. With the help of these tools, motivation and skills for STEM subjects can be easily 
developed, and they also provide a great opportunity to develop soft skills during educa-
tion with the appropriate methodology, where group- and pair work and project-based 
education are emphasized. Through such processes, students will have a great opportu-
nity to gain an experience that will benefit them in many situations later in life.

References

Abonyi-Tóth, A. (2018). Programozzunk mciro:Biteket! ELTE Informatikai Kar 1117 Budapest, Pázmány Pé-
ter sétány 1/C. 23–25. Retrieved May 30, 2023, from http://microbit.inf.elte.hu/wp-content/
uploads/2018/05/Programozzunk-microbiteket-2018.pdf 

Abonyi-Tóth, A. (2021). Micro:bit V2 – többet, jobban, gyorsabban, továbbra is olcsón… Retrieved May 30, 
2023, from http://microbit.inf.elte.hu/2020/11/26/microbit-v2-tobbet-jobban-gyors-
abban-tovabbra-is-olcson/

Computer Science Education Research Group – CSERG (2021). https://csunplugged.org/en/about/
Education Authority (2020). Digitális kultúra – Kerettanterv az általános iskola 1–4. évfolyama számára. 

Retrieved May 30, 2023, from https://www.oktatas.hu/pub_bin/dload/kozoktatas/kerettan-
terv/Digitalis_kultura_A.docx

Education Authority (2020). Digitális kultúra – Kerettanterv az általános iskola 5–8. évfolyama számára. Re-
trieved May 30, 2023, from: https://www.oktatas.hu/pub_bin/dload/kozoktatas/kerettan-
terv/Digitalis_kultura_F.docx

Education Authority (2020). Nemzeti Alaptanterv. Retrieved May 30, 2023, from https://magyarkozlony.
hu/dokumentumok/3288b6548a740b9c8daf918a399a0bed1985db0f/letoltes 

Gaál, B. (2019). A robotika témakör integrálásának lehetőségei a természettudományos tan-tárgyak okta-
tásában, InfoDidact 2019, 59–72.

Horváth, G., Gregorics, T., Heizlerné Bakonyi, V., Menyhárt, L., Pap, G. S., Papp-Varga, Z., Szlávi, P., Zsakó, L. 
(2012). Programozási alap-ismeretek. Eötvös Loránd Tudományegyetem, Informatikai Kar. Retrieved May 
30, 2023, from http://progalap.elte.hu/downloads/seged/eTananyag/lecke6_lap1.html#hiv4

Micro:bit Educational Foundation(MEF). Meet the new BBC micro:bit. Retrieved May 30, 2023, from 
https://microbit.org/new-microbit/ 

Taub, R., Armoni, M., Ben-Ari, M. (2012). CS Unplugged and Middle-School Students’ Views, Attitudes, and 
Intentions Regarding CS. ACM Transactions on Computing Education, 1–29.

B. Gaál – PhD student and assistant lecturer at ELTE Institute of Com-
puter Science – Department of Media & Educational Technology. He 
is a member of the Hungarian Bebras Organization Team. Graduated 
with an MSc degree in teaching Geography and teaching Informatics. 
His main research areas are the integrability of robotics in the natural 
sciences and the usage of micro:bit in education.



Olympiads in Informatics, 2023, Vol. 17, 43–51
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.04

43

Online Robotics Activities During the Pandemic 
Period – Challenges and Experiences

Bence GAÁL
ELTE Faculty of Informatics – Department of Media and Educational Informatics, Budapest 
e-mail: gaalbence@inf.elte.hu

Abstract. The situation caused by the Covid-19 made it impossible to keep our traditional in-
person summer camps and activities, so our university decided to hold the sessions online. Thus, 
enthusiastic students aged 13–16 were able to participate in robotics sessions that were fully im-
plemented in the online space. In the article, we want to present the experiences and challenges of 
these sessions, as well as the way of implementation and the range of tools needed for it.

Keywords: robotics, Covid-19, distance learning, IT education, learning activities.

1. Introduction

The robotics workshops that are the subject of our article were organized by ELTE T@T 
Kuckó in the summer of 2020 in three different weeks. A different group took part each 
week. The content of the curriculum was the same each week. The three-week split was 
necessary to make the groups easier to manage and to allow more time for individual 
assistance. Since the target group was 13–16 years old, we did not want to implement 
coding in a block-based programming environment. The workshops were primarily de-
signed for students who had not programmed in python and/or had not yet encountered 
the micro:bit. The aim of the workshop was therefore to learn the basics of programming 
in addition to getting to know the device. During the three weeks, each workshop started 
with the maximum number of students (14 students) and there was no dropout.

When choosing the programming language, it was important to use a language that 
is ideal for beginners. The advantages of python include its simplicity, security, and 
support for object orientation. (John, 1999) Research also shows that students found 
python more fun and easier to learn than the languages they had used before. However, 
it is important to note that there are also disadvantages to using the language. Since it is 
a scripting language, performance loss occurs when running longer programs. Another 
disadvantage is the lack of information encryption and dynamic type assignments (as-
signing multiple types to a variable) (Grandell et al., 2006). From an educational point 
of view, however, it is advantageous that language requires the user to create code in a 



B. Gaál44

structured way because in python, indentations will indicate the beginning and end of 
code snippets. In other languages, readability is left to the programmer, while here the 
language requires us to code in a readable and “good looking” way (Donaldson, 2003). 
This helps students internalize this type of coding, which can be perfectly capitalized 
on in other languages as well.

When choosing micro:bit, we considered two main criteria. One was its excellent 
usability in education and the other was the price of the devices. Participants had to 
purchase their own devices to participate in the workshops. In addition to purchasing 
the device, no other costs were incurred by participants as the workshops were free of 
charge. Thanks to its versatility, it can be suitable for children with different interests 
and can be integrated into several areas of disciplines and programs related to the topic 
can be created (Abonyi-Tóth, 2018; Gaál, 2019). In addition, we talk about a compact 
device that can be easily extended even for beginner users.

2. The Curriculum of the Workshop

The main goal was to have enough knowledge and understanding of the device to im-
plement a game on micro:bit by the end of the week. The main elements of the work-
shop’s curriculum were mainly based on the following workshop resources:

Programming micro:bits in python – Norbert Szűcs ● 1.
Programming micro:bits – Andor Abonyi-Tóth ● 2.

The curricula mentioned above must be adapted to the duration of the workshop. and 
the number of sessions, which took place in 5x2 hour intervals. Due to distance learning, 
we completely omitted the presentation of the device’s radio functions during the ses-
sions, as this would have required more devices for the students.

Below we briefly explain the content of each session. Learning materials supported 
by full lesson plans can be found in the resources above. We tried to combine the classes 
with continuous independent assignments, which were submitted online. Do not forget 
to use these materials as a kind of outline and always try to customize the course of the 
lesson to the participants of the given course. 

Session 1:
The essential part of the session was preceded by a so-called installation part. This 
is because the interface, which we will detail later, will only recognize devices with 
the latest firmware version, and only then will functions be available that greatly 
speed up workflows. This can be easily achieved by visiting the following website:  
https://microbit.org/get-started/user-guide/firmware/.

This was followed by the preparation of our first program, which was nothing more 
than the announcement of “Hello World!”. The rest of the lesson was spent drawing 

1 http://microbit.inf.elte.hu/wp-content/uploads/2019/10/microbit_python_szakkor_
szucsnorbert.zip

2 http://microbit.inf.elte.hu/wp-content/uploads/2018/05/Programozzunk-microbite-
ket-2018.pdf



Online Robotics Activities During the Pandemic Period – Challenges and Experiences 45

shapes and animations on the micro:bit LED display. As an independent task, it was left 
to the children to take their own pictures (Fig. 1).

Session 2:
We also started the second session focusing on the display of the microbit. However, 
here we no longer displayed coherent images, but addressed the points of the LED matrix 
separately. Here random numbers and their role in IT came up. The attention of children 
can be captured very well by using their favorite computer games as examples and intro-
ducing new knowledge through them, so the presentation of random numbers is presented 
through the loot mechanism known from the games.

In the second half of the lesson, we implemented the animation of the bunk house 
available from the block curriculum in python language and the students also had time 
to implement a manipulated dice roll It can be concluded that a playful and interesting 
approach to random numbers greatly facilitates the acquisition of knowledge by children 
and their ability to apply it.

This is where the basics of event-driven programming through the use of buttons 
were presented.

Session 3:
In this session, sensors already played the main role. After creating the compass, we cre-
ated a jump counter application in python.

Fig. 1. Some results of students work on the first day.



B. Gaál46

With the students, we reviewed other ways to give instructions to the micro:bit be-
sides button presses, and then we created our own magic 8 ball3 program, where the data 
structure and operations of the list were already needed. The essential part of the imple-
mentation was the independent task of the students, after they became familiar with the 
commands for the new operations.

Session 4:
In the fourth session, we solved “do it yourself”-type tasks. This occasion was very pop-
ular among children during all three weeks. Here the following accessories were also 
needed:

4 crocodile clips with cable/lots of tinfoil. ●
2 pieces of nails. ●
Pot and earth, which was preferably dry. ●
1 banana. ●
1 orange. ●

In the first half of the lesson, we made a fruit piano (Fig. 2), where we extended the 
micro:bit circuit with the help of ourselves and the fruits, thus playing sounds with the 
device. After making the piano, the students were given the task of making a siren.

In the second part of the session, we created a moisture meter (Fig. 3) that can be 
used in a smart home project, which monitors soil moisture in real time by monitoring 
soil resistance. Here an elaborate, micro:bit controlled irrigation system was presented, 
and the construction of smart homes was also discussed.

It was this task that really left its mark on the children, and taking sustainability and 
energy saving into account, many people thought about the task further and started to 
implement their own project.

3 In fairy tales and films, the magic 8 ball has repeatedly starred, which randomly answers our questions.

Fig. 2. Fruit pianos made by students.



Online Robotics Activities During the Pandemic Period – Challenges and Experiences 47

Session 5:
On the last day, the most awaited activity for the students took place. Here we implement-
ed Flappy Bird on micro:bits. During the process of creating the game, we built heavily 
on what we have learned so far, and almost every single element we learned has been put 
into use. The students can now use what they had learned to create a complex program 
and receive feedback on how well they had mastered this knowledge.

During the creation of the game, object-oriented programming appeared as a new 
knowledge, and the participants gained insight into the different development phases. 
The programing process was divided into parts, and some sub-problems had to be solved 
by the students in an independent form of work.

3. Software Requirements of the Workshop, Presentation of the Virtual Envi-
ronment

During the workshop, we used several software to create the most ideal environment for 
online education for students. We tried to choose programs that are suitable for organiza-
tion and task assignment, holding online classes, visualization and of course coding and 
its supervision. Below we will review these platforms.

The virtual classroom and sessions
For this part of the implementation, we used Google services. On the Google Classroom 
interface it is possible to organize groups, assign assignments, and share information with 
students. It is perfectly usable for traditional school activities as well, as Google offers us 
a complete LMS.

In the “Classroom”, we can enter the schedule into the group calendar, which can be 
associated with a conference call using the Google Meet application. “Meet” also has all 

Fig. 3. The implemented moisture meters.



B. Gaál48

the features needed to conduct online meetings. Children can easily start screen sharing, 
so the teacher can provide personalized help to them.

Several factors influenced the selection criteria. We needed a software package 
that not only allowed for classroom organization but also for holding online classes. 
It was also important to be able to easily integrate different file types into the site, as 
tasks had to be assigned and students had to upload pictures and videos. We needed a 
system that most students were familiar with and could easily handle and access. The 
Google software package fully met these criteria and only required an email address 
to access it.

If students under the age of 16 want to use Google accounts, logging in with their 
parent’s email address can be a solution in non-institutional cases. However, institutions 
have the option of applying for the G-Suite system, which allows for a uniform email 
address to be given to students and these accounts can also be supervised by those with 
system administrator privileges. It is also worth noting that Google’s software package is 
perfectly usable on multiple platforms, so students do not necessarily need a computer.

The virtual board
We would like to highlight a possibility for replacing board drawings in the case of online 
classes. We believe that board drawing is an indispensable pedagogical visualization tool 
in teaching programming, which helps students better understand processes and represen-
tations at an abstract level.

In our case, we used one of Google’s applications for this, namely “Jamboard”. In ad-
dition, we had a tablet with a pen. This can be replaced with a simpler drawing tablet or, 
if there is no tablet in our toolkit, we can draw with a mouse. Jamboard is a good choice 
because our virtual notebook can be shared with others and thus students can receive 
notes and create products together.

During the workshop, we opened the Jamboard application on the teacher’s computer 
and participants could see what we were drawing on the tablet on the shared screen. This 
solution, where they do not open another application but only see the result projected, 
is a better solution so as not to overload their devices too much, as participants are not 
equipped with uniform strength hardware.

The online programming interface
We haven’t talked about the programming interface yet. Online programming and col-
laborative document editing is not a new thing. Instead of well-established sites like repl.
it, we chose a site that is still in beta but was specifically designed for the micro:bit. This 
interface is the micro:bit classroom.

On the site, we can program not only in python but also in a block-based environ-
ment. After selecting the language, the website generates an entry password consisting 
of icons and a pin code. This ensures that unauthorized persons do not enter the group.

In this article, we will focus on presenting the coding part of the website (Fig. 4) and 
explore its possibilities. The interface is perfectly usable in the field of online education. 
Its outstanding usability lies in providing solutions that make it easier for students to 
connect between the device and the computer and provide good opportunities for teach-
ers to bridge distances. We will detail these properties below.



Online Robotics Activities During the Pandemic Period – Challenges and Experiences 49

At the time of the workshops, the code editor was nothing more than a classic python 
IDLE. This was perhaps the only drawback of the environment that it does not contain 
any kind of verification system, as in Visual Studio, for example, or on the repl.it page 
mentioned earlier. Since then, however, an interface has been created that mixes block 
and text programming, and students can insert ready-made python code snippets in drag 
and drop principle. In addition, the editor provides tips related to various commands and 
debugging has been implemented. (Fig. 5)

We can also download our finished code, but if we have connected a micro:bit, we 
can skip all file operations. With a simple click, we can load our code directly onto the 
connected device. The connection of the device should be implemented as described 
earlier. As teachers, we can view the code of all students in the classroom and with one 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 
 

 

 

        

Fig. 4. Old interface of micro:bit classroom.

Fig. 5. The current version of micro:bit classroom interface.



B. Gaál50

click we can choose which student’s code we want to see and easily help them. There 
is no need for screen sharing or other settings, and it is also a great advantage from a 
teacher’s point of view that we can send the code written by us to all or selected stu-
dents with one click. Students will be notified of this and can accept our code or contin-
ue working with their own. It is extremely useful for issuing framework programmes. 
In addition, we have the possibility to create a document of all codes and save it. This 
document will contain the codes of each student and structure them for us.

The interface was created specifically for micro:bit, and considering all the positive 
features mentioned above, it can be concluded that we can see the realization of an 
almost perfect concept on the micro:bit classroom site. Compared to the beta version 
stage, there were very few bugs and it has now taken the place of the text editor, a semi-
block interface that is much more friendly to students. 

4. Final Thoughts

Even within the framework of digital education, robotics can motivate children and 
stimulate their interest in programming. The group can be considered completely suc-
cessful, as anyone had the opportunity not to come to the next event, but fortunately no 
one took advantage of this, and all students participate in every event. The participants 
had a good time during the workshop and perhaps despite the situation at that time, they 
managed to bond a little. There were several examples of students reaching out to each 
other during the afternoon as well, about learning or playing together.

Approaching it from the side of the device, it is important to note that we could 
make better use of the functions of the device if we are attending a classic classroom 
class. Nevertheless, we should not discourage holding online workshops either, as this 
way students who would almost certainly not have been able to attend robotics classes 
could not have been introduced to robotics by overcoming the distance, as they live 
hundreds of kilometers away from Budapest. We believe that with the help of online 
workshops we can reach more children, thus transferring the knowledge from which 
they can discover the world of programming and the functions of the given device on 
their own.

References

Abonyi-Tóth, A. (2018). A micro:Bitek felhasználási lehetőségei az oktatásban. InfoDidact 2018. Retrieved 
May 30, 2023, from https://people.inf.elte.hu/szlavi/InfoDidact18/Manuscripts/ATA.pdf

Gaál, B. (2019). A robotika témakör integrálásának lehetőségei a természettudományos tantárgyak ok-ta-
tásában. InfoDidact 2019. Retrieved May 30, 2023, from 
https://people.inf.elte.hu/szlavi/InfoDidact19/Manuscripts/GB.pdf 

Grandell, L., Peltomäki, M., Back, R.J., & Salakoski, T. (2006). Why complicate things? Introducing program-
ming in High School using Python. In: Tolhurst, D. and Mann, S., Eds. Proc. Eighth Australasian Comput-
ing Education Conference (ACE2006). Hobart, Australia. CRPIT, 52. ACS, pp. 71–80.

Donaldson T. (2003). Python as a First Programming Language for Everyone.
Zelle, J.M. (1999). Python as a First Language.



Online Robotics Activities During the Pandemic Period – Challenges and Experiences 51

B. Gaál – PhD student and assistant lecturer at ELTE Institute of Com-
puter Science- Department of Media & Educational Technology. He 
is a member of the Hungarian Bebras Organization Team. Graduated 
with an MSc degree in teaching Geography and teaching Informatics. 
His main research areas are the integrability of robotics in the natural 
sciences and the usage of micro:bit in education.





Olympiads in Informatics, 2023, Vol. 17, 53–64
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.05

53

Elementary Algorithms – Prefix Sum

László Gábor MENYHÁRT, László ZSAKÓ
Eötvös Loránd University, Budapest
e-mail: menyhart@inf.elte.hu, zsako@caesar.elte.hu

Abstract. In this paper we present a special problem, named as prefix sum, and its variations. We 
analyse the base problem more detailed and compare the possible solutions. Our students solved 
simi-lar problems in competitions, so we have statistics about their solutions. We offer this article 
for those readers who are interested in programming methodology, or who are teachers, and their 
students will be participated in competitions.

Keywords: systematic programming, teaching, measurement, prefix sum, cumulative sum.

1. Introduction

During teaching of programming, after the introduction of algorithmic structures (se-
quence, condition, loop), basic algorithms (programming patterns, type algorithms), 
such as e.g. summary, search, maxi-mum selection, sort, etc. are being dealt.

Problem-solving strategies appear in programming competitions (and in talent man-
agement) (e.g. greedy strategy, dynamic programming). However, the gap between the 
two is rarely filled. This was handled by J. Bentley’s classic series of articles and book 
(Programming Pearls (Bentley, 1984)) from 1984, and more recently, for example, 
websites teaching algorithmization (Sannemo, 2018; ACM, 2023). Its first appearance 
was in 1954, in a magazine not directly on IT (Page, 1954).

In this article, we take a look at what the participants of Hungarian programming 
competitions do with the prefix sum (cumulative sum) task type. Interestingly, we are 
examining two very different age groups, in first students aged 13–16 can participate – 
Nemes Tihamér Online Programming Competition (Nemes, n.d.) (see later: Online), 
and in the other, university students who are studying computer science and just getting 
to know programming – Talent Search University Programming Competition (ELTE 
IK, n.d.) (see later: TUPC).

In this article, we do not intend to deal with advanced applications of the algorithm 
(balanced binary trees, Fenwick trees, ...).



L.G. Menyhárt, L. Zsakó54

2. Basic Task of Prefix Sum

Task: There is a series of numbers with N element in X and it contains both positive and 
negative numbers. Give the interval [a, b] of series where the sum of the elements is 
maximal! We must define such an a and b indexes for which the following condition is 
satisfied:

  
1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑁 

 
 

∀𝑝, 𝑞 (1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑁): �𝑋�
𝑏

��𝑎
≥�𝑋�

𝑞

��𝑝
 

 
 

 

 

 

 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

        

and

  
1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑁 

 
 

∀𝑝, 𝑞 (1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑁): �𝑋�
𝑏

��𝑎
≥�𝑋�

𝑞

��𝑝
 

 
 

 

 

 

 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

        

Solution: The basic solution calculates the sum of the numbers for each interval, and then 
selects the maximum for them:

sum(X,i,j):
  S:=0
  For k=i to j
    S:=S+X[k]
  End for 
  sum:=S
End function.

BasicSolution(N,X,a,b,max):
  max:=-∞
  For i=1 to N
    For j=i to N
      s:=sum(X,i,j)
      If s>max then max:=s; a:=i; b:=j
    End for
  End for
End function.

Due to the three loops, its running time is proportional to N3. A frequently used idea is 
to first calculate not what the task asks for, but something simpler, from which it is easy 
to get the solution to the task.

Let’s calculate the sum of the first i element of the series in the vector s.─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

∀𝑖 (1 ≤ 𝑖 ≤ 𝑁): 𝑠(𝑖) = �𝑋�
𝑖

�=1
 

  
∀𝑖 (1 ≤ 𝑖 ≤ 𝑁): 𝑠(𝑖) = 𝑠(𝑖 − 1) + 𝑋(𝑖), 𝑠(0) = 0 

 
 

 �𝑋𝑖
𝑏

𝑖=𝑎
= 𝑠(𝑏) − 𝑠(𝑎 − 1) 

 

 

 

 

 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

        

which, using a recursive relation, is simpler:

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

∀𝑖 (1 ≤ 𝑖 ≤ 𝑁): 𝑠(𝑖) = �𝑋�
𝑖

�=1
 

  
∀𝑖 (1 ≤ 𝑖 ≤ 𝑁): 𝑠(𝑖) = 𝑠(𝑖 − 1) + 𝑋(𝑖), 𝑠(0) = 0 

 
 

 �𝑋𝑖
𝑏

𝑖=𝑎
= 𝑠(𝑏) − 𝑠(𝑎 − 1) 

 

 

 

 

 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

        



Elementary Algorithms – Prefix Sum 55

Then, the sum of the elements of an interval can be expressed as follows (Fig. 1):

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

∀𝑖 (1 ≤ 𝑖 ≤ 𝑁): 𝑠(𝑖) = �𝑋�
𝑖

�=1
 

  
∀𝑖 (1 ≤ 𝑖 ≤ 𝑁): 𝑠(𝑖) = 𝑠(𝑖 − 1) + 𝑋(𝑖), 𝑠(0) = 0 

 
 

 �𝑋𝑖
𝑏

𝑖=𝑎
= 𝑠(𝑏) − 𝑠(𝑎 − 1) 

 

 

 

 

 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

        

Thus, the following algorithm – the method of cumulative summation – takes a step 
proportional to N2.

Cumulative sum(N,X,a,b,max):
  s[0]:=0
  For i=1 to N
    s[i]:=s[i-1]+X[i]
  End for
  max:=-∞
  For i=1 to N
    For j=i to N
      If s[j]-s[i-1]>max then max:=s[j]-s[i-1]; a:=i; b:=j
    End for
  End for
End function.

3. Variations of Prefix Sum

This strategy can be used not only for summation (serial calculation), but also for other 
types of tasks. Basically, in cases where operations are associative (Blelloch, 1990), 
there is an “inverse” (Sannemo, 2018), so─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 

 
𝑓(𝑎, 𝑏) = 𝑓−1(𝑓(1, 𝑏), 𝑓(1, 𝑎 − 1)). 

 

�𝑋�
𝑏

�=𝑎
=�𝑋�

𝑏

�=1
−�𝑋�

𝑎−1

�=1
 

or 

𝑋𝑎 ∗ 𝑋𝑎+1 ∗ … ∗ 𝑋𝑏 =
𝑋1 ∗ 𝑋� ∗ … ∗ 𝑋𝑏
𝑋1 ∗ 𝑋� ∗ … ∗ 𝑋𝑎−1

 

 

Index 0 1 2 3 4 5 6

Series 3 5 1 8 2 4

prefix sum 0 3 8 9 17 19 23

sum(1,6) 0 3 8 9 17 19 23

sum(1,2) 0 3 8 9 17 19 23

sum(3,5) 0 3 8 9 17 19 23 19-8=11

Fig. 1. prefix sum.



L.G. Menyhárt, L. Zsakó56

For example

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

𝑓(𝑎, 𝑏) = 𝑓−1(𝑓(1, 𝑏), 𝑓(1, 𝑎 − 1)). 
 

�𝑋�
𝑏

�=𝑎
=�𝑋�

𝑏

�=1
−�𝑋�

𝑎−1

�=1
 

or 

𝑋𝑎 ∗ 𝑋𝑎+1 ∗ … ∗ 𝑋𝑏 =
𝑋1 ∗ 𝑋� ∗ … ∗ 𝑋𝑏
𝑋1 ∗ 𝑋� ∗ … ∗ 𝑋𝑎−1

 

 

or

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

𝑓(𝑎, 𝑏) = 𝑓−1(𝑓(1, 𝑏), 𝑓(1, 𝑎 − 1)). 
 

�𝑋�
𝑏

�=𝑎
=�𝑋�

𝑏

�=1
−�𝑋�

𝑎−1

�=1
 

or 

𝑋𝑎 ∗ 𝑋𝑎+1 ∗ … ∗ 𝑋𝑏 =
𝑋1 ∗ 𝑋� ∗ … ∗ 𝑋𝑏
𝑋1 ∗ 𝑋� ∗ … ∗ 𝑋𝑎−1

 

 
assuming that none of the values is 0.

However, the maximum selection task for the interval [a, b] is not always interest-
ing for the above, for example, for the sum it is uninteresting if all numbers are positive, 
and for the product, if all numbers are greater than 1.

Often the task is not maximum selection, but answering many questions for different 
intervals (Yao and Miaoh, 1990; USACO, 2015). In another type, we are looking for a 
certain type of sum, in the competition problem (USACO, 2016), for example, the long-
est series, where the sum of the numbers is divisible by 7.

Counting can also make sense for the item, but then either the length of the interval 
or some other property must be modified.

They can be:
Let’s give a sequence of at most K length, in which the number of elements with  ●
the given property is maximal!
Let’s give at most K long part of a series, in which the number of elements with  ●
the given property is maximal and the two extreme elements also have the given 
property!
Let’s give the longest part of a series in which at least half of the elements have a  ●
given property and the two extreme elements!

In many tasks, the method is included as a supplement, moreover, only if certain 
prerequisites are met.

Task: A random number generator generates numbers between 0 and M-1. We received 
the first N random numbers produced by the generator. Write a program to check the gen-
erator, it calculates for K pieces of interval [A,B], how many numbers between 0 and M-1 
do not occur in the given interval! The value of K is much greater than the value of M!

Solution: We can write a not so naive solution for it (it solves the counting by index-
ing):

None(N,X,K):
  For i=1 to K
    In: A,B
    number[]:=(0,...,0)
    For j=A to B
      number[X[j]]:=number[X[j]]+1
    End for



Elementary Algorithms – Prefix Sum 57

    C:=0
    For j=0 to M-1
      If number[j]=0 then C:=C+1
    End for
    Out: C
  End for
End function.

According to this, its running time is proportional to K*(N+M).
Cumulative summation first calculates in a matrix how many j values are in the first 

random number i, and then calculates the result from this:

None(N,X,K):
  number[0]:=(0,...,0)
  For i=1 to N
    number[i]:=number[i-1]; number[i, X[i]]:=number[i, X[i]]+1
  End for
  For i=1 to K
    In: A, B
    C:=0
    For j=0 to M-1
      If number[b, j]-number[a-1, j]=0 then C:=C+1
    End for
    Out: C
  End for
End function.

The first loop is N*M, and the second is K*M, even in the case of slow implemen-
tation of array evaluation. According to the task description, K is much larger than M, 
so K*N+K*M is greater than N*M+K*M, and this is true if K>M, as stated in the task 
description.

4. Add an Extra Step

We can modify the task with extra steps. For instance, the solution of next task is more 
efficient with order.

Task: At an event, the number of male and female visitors is recorded for each day. Create 
a program that gives the period during which the total number of men and women was 
the closest to each other!

Solution: We can create the naïve solution when all time periods are calculated. Let x[i] 
be i. the difference in the number of men and women per day! Running time O(N3).

  min:=+∞
  For i=1 to N
    For j=i to N
      S:=0
      For k=i to j



L.G. Menyhárt, L. Zsakó58

        S:=S+X[k]
      End For
      If |S|<min then mink:=i; minv:=j; min:=|S|
    End For
  End For

In the second version we calculate prefix amounts, and then take the smallest one 
from their difference. Running time O(N2).

  s[0]:=0
  For i=1 to N
    s[i]:=s[i-1]+X[i]
  End For
  min:= +∞
  For i=1 to N
    For j=i to N
      If |s[j]-s[i-1]|<min
        then mink:=i; minv:=j; min:=|s[j]-s[i-1]|
    End For
  End For

The optimal solution uses the difference between arranged and adjacent ones. The 
difference between two values in s is the smallest if they are closest to each other in 
value. Let’s arrange them in a row, then take the one with the smallest difference from 
the adjacent ones! Running time O(N*log2N).

  s[0].db:=0; s[0].ind:=0
  For i=1 to N
    s[i].db:=s[i-1].db+X[i]; s[i].ind:=i
  End For
  Order(s,0..N)
  mini:=1
  For i=1 to N-1
    If s[i+1].db-s[i].db<s[mini+1].db-s[mini].db then mini:=i
  End For
  min:=s[mini+1,1]-s[mini,1]
  mink:=less(s[mini].ind,s[mini+1].ind)+1
  minv:=greater(s[mini].ind,s[mini+1].ind)

Based on the test cases, we managed to achieve different scores for the different solu-
tion methods, so we can determine the distribution of solution types based on the scores 
achieved by the competitors (Fig. 2).

optimal 71–100

prefix sum 31–70

naïve 0–30

Fig. 2. Scoring of different solutions.



Elementary Algorithms – Prefix Sum 59

Different scores within each group may be due to good or bad handling of special 
cases.

Fig. 3 shows the distribution of scores between each type of solution.

5. Mathematics and Matrices with Prefix Sum

A prefix sum problem can be generalized not only to vectors, but also to other structures, 
for example to a matrix as you can see in the following:

Task: A farmer wants to buy a rectangular plot of land in an N×M rectangle. He knows 
about each piece of land that can be bought, how much he would profit or lose if he culti-
vated it. Enter the rectangle on which the greatest profit can be achieved!

Solution: In the elementary solution, the sum of the elements of each (P,Q) upper-left 
and (R,S) lower-right sub-rectangle would have to be calculated, which would result in 
6 loops, and then we could take their maximum (Fig. 4).

Fig. 3. Distribution of solution types.

Fig. 4. The task.



L.G. Menyhárt, L. Zsakó60

Let’s try to set a partial goal: calculate the value of the (1,1) upper left and (u, v) 
lower right corner tiles and store it in E(u, v)!

X = value of densely dotted rectangle + value of rarely dotted 
rectangle (Fig. 5)

E[1..N,0]:=(0,...0)
For v=1 to M
  x:=0
  For u=1 to N
    x:=x+T[u,v]
  End for
  E[u,v]:=E[u,v-1]+x
End for

Based on these, the sum of the values of the (i, j) upper left and (u, v) lower 
right rectangles is: value(E,i,j,u,v)=E[u,v]-E[u,j-1]-E[i-1,v]+E[i-1-
,j-1]. See the same on Fig. 6!

Fig. 5. Calculation of E.

Fig. 6. Calculation of result.



Elementary Algorithms – Prefix Sum 61

We write here the algorithm only so that we can modify it in the next step:

max:=-∞
For i=1 to N
  For j=1 to M
    For k=i to N
      For l=j to M
        o:=value(E,i,j,k,l)
        If o>max then P,Q,R,S:=i,j,k,l; max:=o
      End for
    End for 
  End for
End for

The 4 loops are clearly visible, i.e. if N and M are of the same order of magnitude, then 
the running time is proportional to O(N4), to the fourth power of N.

In the competitions, we modified the task in the same way for both age groups, we 
fixed the area of the rectangle to be selected, i.e. we searched for four values for which 
there was a new condition that (R-P+1)*(S-Q+1)=A, for a given A constant, and the 
number of elements of some type had to be specified instead of the sum.

One of the tasks of the 3rd round of the competition held in 2017/18 was as follows: 
“In a rectangular area, we know the altitude above sea level of N*M points. Points that are 
larger than their four neighbours are called vertices. There are certainly no peaks at the 
edges of the area. Write a program that gives you a rectangular area containing exactly 
A points, with as many vertices as possible!”

A significant part of the competitors, as expected based on the previous ones, gave 
the naive solution, with 6 loops. A significant part of those competitors who knew the 
method examined the size of the area within the above 4 loops:

If (k-i+1)*(l-j+1)=A then
    o:=value(E,i,j,k,l)
    If o>max than P,Q,R,S:=i,j,k,l; max:=o

Those who were a little more skilled could have saved one more loop and calculated 
the value of the variable l only for k values where A divided by (k-i+1), but we hardly 
found such a solution.

max:=-∞
For i=1 to N
  For j=1 to M
    For k=i to N
      If A mod (k-i+1)=0 then
        o:=value(E,i,j,k,j+A div k-1)
        If o>max then P,Q,R,S:=i,j,k, j+A div k-1; max:=o
      End if
    End for
  End for
End for



L.G. Menyhárt, L. Zsakó62

In the most effective solution, the divisors of A can be calculated in square_
root(A)1 steps into a vector D with C elements, since the area can be calculated as the 
product of two sides.

Thus, the expected solution is O(N2C), taking advantage of the fact that D[k]*D[C-
k+1]=A:

max:=-∞
For i=1 to N
  For j=1 to M
    For k=1 to C
      o:=value(E,i,j,i+D[k]-1,j+D[C-k+1]-1)
      If o>max then P,Q,R,S:=i,j,i+D[k]-1,j+D[C-k+1]-1; max:=o
    End for
  End for
End for

Based on the test cases, we managed to achieve different scores for the different solu-
tion methods, so we can determine the distribution of solution types based on the scores 
achieved by the competitors (Fig. 7).

Different scores within each group may be due to good or bad handling of special 
cases.

The university students use their more mathematical knowledge to score more points, 
and that they are moving from the naive and cumulative solution to a more efficient solu-
tion. They didn’t even have a naive and simple cumulative solution. On the other hand, 
these together hardly reached the 50% rate in the 13–16 age group. However, the best 
competitors also found the optimal solution (Fig. 8).

6. Conclusion

The basic idea of the cumulative summation is therefore: Instead of a value calculated on 
an arbitrary subseries, we should only calculate a value for that subseries whose begin-

1 It’s enough to determine all divider till square root of A, because if x is divider of A, A/x is also divider.

optimal, only with divider k, calculation of l from k 92–100

only with divider k, only with divider l 71–91

calculation of k from l 55–70

simple cumulative 41–54

naive 16–40

good with luck 0–15

Fig. 7. scoring of different solutions.



Elementary Algorithms – Prefix Sum 63

ning is the beginning of the whole series, and then express the value calculated on the 
subseries from these!

The same principle can also be applied to calculation tasks instead of summation, i.e. 
the operation can be any associative operation whose inverse can be calculated.

Based on our experience in the competition, students learn the basic method easily, 
but they do not figure it out by themselves – typically, the younger we look at, the more 
the proportion of naive, slow solution makers increases. Only some of them notice the 
small modifications, e.g. when such sums need to be calculated both from the front and 
from the back, or another operation must be used instead of summation.

It is important to note that naive solutions include summation and maximum selec-
tion for most tasks, but these elementary algorithms (programming theorems) are also 
needed to write effective, cumulative summation. In other words, we are not talking 
about new algorithms, but we must think differently when applying the usual algo-
rithms!

Mathematical considerations, as we saw in the last task, cause problems for stu-
dents who are not strong in mathematics. And the math was just that if an integer is the 
product of two integers, then both numbers must divide the product – so it is necessary 
to produce the divisors. It can also be seen from the results that a significantly higher 
proportion of first semester university students solved the task with the maximum 
score.

Because of the above, we believe that in teaching programming, we should deal 
with the above basic method (avoiding all more complicated data structures). In this, 
teachers currently receive little help (Szlávi and Zsakó, n.d.), because the vast majority 
of scientific articles are about advanced solutions using different trees.

            

Fig. 8. Distribution of solution types.



L.G. Menyhárt, L. Zsakó64

References

ACM (2023). Category: Teaching kids programming. Algorithms, Blockchain and Cloud. (Accessed on: 
2023.05.26.) https://helloacm.com/category/teaching-kids-programming/  

Bentley, J. (1984). Programming Pearls – Algorithm Design Techniques. Comm. ACM, 27(9), 865–871.
Blelloch, G.E. (1990). Prefix Sums and Their Applications. Tech. Rep. CMU-CS-90-190. School of Computer 

Science, Carnegie Mellon University, Pittsburgh. (Accessed on: 2023.05.26.)  
https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf 

ELTE IK (n.d.).Talent Search University Programming Competition. Informatikai versenyek. (Accessed on: 
2023.05.26.) 
http://versenyek.inf.elte.hu/versenyek/tehetsegkutato-egyetemi-programozasi-verseny 

Nemes, T. (n.d.). Online Programming Competition. (Accessed on: 2023.05.26.) 
http://tehetseg.inf.elte.hu/nemes-online/index.html  

Page, E.S. (1954). Continuous Inspection Schemes. Biometrika, 41(1/2), 100–115. (Accessed on: 2023.05.26.) 
https://www.jstor.org/stable/2333009?origin=JSTOR-pdf&seq=1#metadata_info_tab_contents  

Sannemo, J. (2018). Principles of Algorithmic Problem Solving. (Accessed on: 2023.05.26.) 
https://usaco.guide/PAPS.pdf#page=207 

Szlávi, P., Zsakó, L. (n.d.) Elemi algoritmusok (a programozási tételek után). ELTE Informatikai Kar, Budapest. 
(Accessed on: 2023.05.26.) 
http://tehetseg.inf.elte.hu/szakkorefop2017/pdf/elteikszakkor_elemi_algoritmusok.pdf 

USACO (2015). USACO 2015 December Contest, Silver, Problem 3. Breed Counting. USA Computing Olympi-
ad. (Accessed on: 2023.05.26.) http://www.usaco.org/index.php?page=viewproblem2&cpid=572 

USACO (2016). USACO 2016 January Contest, Silver Problem 2. Subsequences Summing to Sevens. USA 
Computing Olympiad. (Accessed on: 2023.05.26.) 
http://www.usaco.org/index.php?page=viewproblem2&cpid=595  

Yao, D., Miaoh, D. (n.d.). Introduction to Prefix Sums. (Accessed on: 2023.05.26.)
https://usaco.guide/silver/prefix-sums?lang=cpp

L.G. Menyhárt is assistant professor at Department of Media & Edu-Department of Media & Edu-
cational Informatics, Faculty of Informatics, Eötvös Loránd Univer-
sity in Hungary. Since 2003 he has been involved in task creation of 
programming competitions in Hungary. His research interest includes 
teaching algorithms and data structures; didactics of informatics; 
methodology of programming in education; teaching programming 
languages; talent management.

L. Zsakó is a professor at Department of Media & Educational In-
formatics, Faculty of Informatics, Eötvös Loránd University in Hun-
gary. Since 1990 he has been involved in organizing of programming 
competitions in Hungary, including the CEOI. He has been a deputy 
leader for the Hungarian team at IOI since 1989. His research interest 
includes teaching algorithms and data structures; didactics of infor-
matics; methodology of programming in education; teaching program-
ming languages; talent management. He has authored more than 68 
vocational and textbooks, some 200 technical papers and conference 
presentations.



Olympiads in Informatics, 2023, Vol. 17, 65–85
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.06

65

Indonesian Bebras Challenge 2021 Exploratory 
Data Analysis

Vania NATALI, NATALIA, Cecilia Esti NUGRAHENI 
Informatics Departments, Parahyangan Catholic University, Bandung, Indonesia
e-mail: vania.natali@unpar.ac.id, natalia@unpar.ac.id, cheni@unpar.ac.id

Abstract. Indonesia is a full member of International Bebras Community and regularly perform 
the annual Bebras Challenge since 2016. The tasks for the Indonesian Bebras Challenge are taken 
and adapted from International Bebras Task pool, and each of the tasks is related to informatics 
and Computational Thinking (CT). We explore and analyze the Indonesian Bebras Challenge 2021 
data to find interesting insight into Indonesian student’s competencies in informatics and compu-
tational thinking, the suitability of the selected Bebras Tasks difficulty level for each age group, 
and the relation between participants’ score and time duration in completing Bebras Challenge. 
The data exploratory has been done with statistics and data visualizations. We found that Indone-
sian students need to learn more about informatics and CT. The difficulty level of the Indonesian 
Bebras Challenge for elementary school students is still in accordance with Indonesian students’ 
competency. In contrast, the Bebras Challenge difficulty level for junior and senior high school is 
higher than the students’ competency. By analyzing the time duration of each participant complet-
ing the challenge, we also found some dishonest attitude presumptions during the online Bebras 
Challenge. We discover some suggestions for the improvement of Indonesian Bebras Challenge 
event as a means to improve Indonesian students’ informatics and CT skills.

Keywords: Bebras Challenge, Bebras task, Exploratory data analysis.

1. Introduction

The Indonesian Ministry of Education, Culture, Research, and Technology (MoECRT) 
launched “Kurikulum Merdeka” (Independent Curriculum) as one of the curricula that 
are available in elementary, junior, and senior high schools in Indonesia (Direktorat 
Jendral PAUD Dikdas dan Dikmen, 2022). Before the implementation of Kurikulum 
Merdeka, informatics was an elective subject, and Computational Thinking (CT) is un-
recognized in most of Indonesian education. In Kurikulum Merdeka, informatics has be-
come a compulsory subject in junior and senior high school. For the elementary school, 
CT has integrated into Mathematics, Indonesian, Natural and Social Sciences subjects. 
CT has become a fundamental part of the informatics subject for junior and senior high 
school (MoECRT, 2021).



V. Natali, Natalia, C.E. Nugraheni66

One of the challenges in Indonesian education is the inequality of education quality 
and IT facilities between big cities and remote areas (MoECRT, 2022). Indonesian stu-
dents didn’t get good results on the PISA Test (OECD, 2019). However, Indonesia still 
has excellent students who regularly participate in international Olympiads of various 
subjects, including Olympiads in Informatics (IOI), and got some achievements (IOI, 
2023). Liem (2016) was said that although there is a gap in the quality of education be-
tween remote areas and big cities in Indonesia, it is hoped that the selection process for 
IOI will remain balanced between “potential candidates” from remote areas and “ready 
to compete” candidates from big cities.

Bebras Community is an international initiative that aims to promote informatics and 
computational thinking among students and teachers of all ages. One of the activities of 
Bebras community is organizing an annual contest called Bebras Challenge. Bebras task, 
the name of each question in Bebras Challenge, involves informatics and/or computa-
tional thinking concepts and must be possible to be answered without prior knowledge 
of informatics (Dagienė and Stupurienė, 2015).

Indonesia has been participating in organizing Bebras Challenge since 2016. The 
number of Indonesian Bebras Challenge participants in 2016–2021 is shown in Fig. 1. 

The growing number of Indonesian Bebras Challenge participants in 2016–2021 
(Bebras.org, 2011b) shows that Bebras is getting increasingly known in Indonesian edu-
cation. Bebras Challenge become a good potential means to improve the informatics and 
CT skills of Indonesian students. Since Bebras Task can be answered without using a 
computer, it is suitable to be used to improve informatics skills for Indonesian students 
in remote areas with limited computer facilities. 

Exploratory Data Analysis (EDA) is the act of looking at the data from many angles 
lookout for some interesting features. In short, EDA is looking at the data to see what it 
seems to say (Morgenthaler, 2009). Our data features are task code, task title, difficulty 
level, age group, CT and informatics concept, a unique identifier for each participant, 
time spent for each participant to complete the challenge, the score for each task, and the 
total scores of each participant.

Based on the fact about the challenges in Indonesian education, the potential that 
Indonesian students have, the new position of informatics subject and CT in Kurikulum 

Fig. 1. Indonesian Bebras Challenge Participants Number.



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 67

Merdeka, and the growing number of Indonesian Bebras Challenge participants, the ob-
jectives of this Indonesian Bebras Challenge 2021 Exploratory Data Analysis (2021-ID-
EDA) is exploring and finding interesting insights from Indonesian Bebras Challenge 
2021 data. The EDA insights we discover are related to:

(1. RQ1) How appropriate is the difficulty level for each age group for students in 
Indonesia? 
(2. RQ2) What is the general description of the informatics abilities of Indonesian 
students based on the results of the 2021 Bebras Challenge? Is there any specific 
kind of informatics or CT skill that need more attention for students in Indone-
sia?
(3. RQ3) Is there any interesting information about the participants’ time compet-
ing in the Indonesian Bebras Challenge 2021? Is there any interesting relation-
ship between the time spent on Bebras Challenge and the participants’ grades? 
Are there any unreasonable data in the relation between spent time and partici-
pants’ grades in the contest?

We hope that the result represents Indonesian students in the informatics and CT 
field.

The paper is organized as follows: Section 1 describes the introduction of this work, 
and in Section 2, we describe the literature review and we describe Indonesian Bebras 
Challenge 2021 characteristics in Section 3. In Section 4, we describe our EDA process. 
In Section 5, we report the 2021-ID-EDA results. Last, in the Section 6, we draw some 
conclusions and suggestions and describe our future works.

2. Literature Review

Bebras is an international initiative whose goal is to promote informatics and computa-
tional thinking, especially among teachers and students of all ages, but also to the public 
at large (Dagienė and Stupurienė, 2015). Currently, 55 countries join as full-member 
of Bebras International and 22 countries as provisional-member of Bebras (Bebras.org, 
2023). Each country that joins Bebras is led by National Bebras Organization (NBO), 
that responsible for Bebras’ activities within its country, such as creating and submit-
ting Bebras Task, teacher training, organizing Bebras Challenge, selecting and translat-
ing Bebras Task so that the task become suitable for their country’s Bebras Challenge 
(Dagienė and Stupurienė, 2016).

Bebras Challenge is a contest for elementary, junior, and senior high school pupils 
organized by International Bebras Community (IBC) and NBO in each country. The 
challenge is held on the second week of November, declared as worldwide Bebras 
Week. The main goal of Bebras Challenge is to motivate and encourage pupils to 
learn informatics fundamentals (concepts) and to support the development of algorith-
mic thinking and Computational Thinking. There are five age group recommendations 
from IBC, that are Little Beavers (grades 3–4), Benjamin (grades 5–6), Cadet (grades 
7–8), Junior (grades 9–10), and Senior (grades 11–12). Each age group has its own 
question set.



V. Natali, Natalia, C.E. Nugraheni68

Bebras task is a short question that involves fundamental informatics concepts and 
is answerable through the computerized interface. The criteria of Bebras task are solv-
able in 3 minutes, presentable on a single screen page, and independent from a specific 
system. Each task is equipped with recommendations about age group preferences and a 
difficulty level for each age group. 

Some previous studies have analyzed Bebras Task and Bebras Challenge results. 
Bebras Challenge’s result is significant to be analyzed because each country has a 
different standard of education. Bebras Task difficulty level needs to be assessed to 
ensure that the participants do not perceive it as appealing because it is too easy or 
too difficult (Bellettini, et al., 2015). In (Bellettini, et al., 2015), the difficulty level 
of the Bebras Challenge for Italian students has been analyzed using Item Response 
Theory (IRT). They found that 30% of the selected tasks were too easy or too difficult 
than the question preparation team expected. The results of this research can be used 
as input for the team compiling their questions in making adjustments for the next 
Bebras Challenge.

Izu, Mirolo, Settle, & Mannila (2017) analyzed the role of the CT concept in deter-
mining the difficulty level of questions, students’ performance between schools in seven 
countries (Italy, Australia, Finland, Lithuania, South Africa, Switzerland, and Canada), 
and how gender differences affect scores. One part of their research was determining 
the CT concept that each Bebras Task addressed. Their research concludes that there 
are no significant differences in the CT skills of students from different schools. The 
CT concept does not determine the difficulty level of the questions. Differences in abili-
ties for different genders are relative to age. At senior age, boys outperform girls in all 
countries.

3. Indonesian Bebras Challenge 2021

Even though Bebras Challenge is an international event, each country organizes its own 
Bebras Challenge. Bebras NBO can independently determine the age group of the pu-
pils, select Bebras Tasks from the internationally accepted Bebras task pool, translate the 
task (Dagienė and Stupurienė, 2016), adjust the task’s context based on the local situa-
tion, and determine the tools for their Bebras Challenge. 

As we are in the pandemic situation, Indonesian Bebras Challenge 2021 was held 
fully online, and could be done at school or at home under the supervision of teachers. 
In multiple choice tasks, the participant gets plus points for the correct answer, 0 for the 
unanswered tasks, and negative points for wrong answers. While for short answer tasks, 
there is no penalty point for the wrong answer. Due to the limitation of Indonesian Con-
test Management System, Indonesia does not offer interactive task.

Indonesian Bebras Challenge is organized into four age groups. The name of the age 
category is inspired by the Indonesian scouting organization: Siaga (Cub Scout), Peng-
galang (Scouts), and Penegak (Rover Scouts). The youngest age group is named SiKecil 
(the small one). The age group, number of given tasks, and duration of the challenge are 
shown in Table 1.



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 69

The tasks selected for each age group are based on Bebras International age group 
and difficulty level preference. Each age group has a combination of task difficulty 
levels: easy, medium, and hard. 

Since 2020, the Indonesian Bebras Challenge has been given in Indonesian or Eng-
lish. The English option has been offered as requested by some schools that adopt the 
international curriculum, primarily the school in big cities, where many of their students 
are interested in continuing their studies abroad. The number of participants for each 
category and language is shown in Table 2.

4. Exploratory Data Analysis Process

The 2021-ID-EDA process given in Fig. 2 is described below:
Data collection. The data are collected from two sources: (step 1) the Indonesian 1. 
Bebras Challenge 2021 result and (step 2) the information related to each Be-
bras Task feature. Indonesian Bebras Challenge result was taken from the Bebras 
Challenge website with the permission of the Bebras Indonesia NBO. 33 files 
need to be combined before the data analysis process. The data features are a 
unique identifier for each participant, start time, end time, duration of the chal-
lenge, total score, and score for each task number. 

The features of each Bebras Task are task code, task title, difficulty level, 
age group, and informatics concept. Those features are simply taken from the 
International Bebras Taks Workshop recommendation contained in the header 

Table 1
Indonesian Bebras Challenge Age Group

Age group name’s / category Student’s age Number of tasks Duration of the challenge (minutes)

SiKecil Up to 3rd grade   8 30
Siaga 4th–6th grade 12 40
Penggalang 7th–9th grade 15 45
Penegak 10th–12th grade 15 25

Table 2
Number of Participants of Indonesian Bebras Challenge 2021

Age group  
name’s / category

Number of Indonesian 
participants

Number of English 
participants

Total

siKecil   3.604    308   3.912 
Siaga   5.800    348   6.148 
Penggalang   9.558    582 10.140 
Penegak   6.297    377   6.674 

Total 25.259 1.615 26.847 



V. Natali, Natalia, C.E. Nugraheni70

of each task. We extracted other task features: question/task type and CT con-
cepts involved in each task and the task language. We extracted manually CT 
concepts that were addressed in each task with a similar process that was done 
in (Izu, Mirolo, Settle, & Mannila, 2017).
Data preprocessing (step 3). The first step of data preprocessing is to combine 2. 
the data from each age group category. There are three or four separate files for 
each age group (Table 1): the result of English participants, the result of Indone-
sian participants, and the make-up challenge for a specific language. We add a 
language column to the data. 

For each task, there is a value that defines the score of that specific task 
for each participant. The maximum score is 100/(number of tasks in a specific 
age group category). The minimum value is 0 for short answer questions and a 
negative point for the multiple-choice wrong answer. We do the data normal-
ization by changing the score value with an integer 1 for the correct answer, 
-1 for the wrong answer, or 0 for the unanswered task. The normalization aims 
to categorize the participants’ answers and calculate the percentage of each 
category.
The 43. th and 5th steps are described in Sections 5 and 6.

The tool we used for this EDA is R Studio.

5. Exploratory Data Analysis

We did two points of view data exploration and analysis:
Score distribution for each task (Section 5.1). This exploration aims to answer 1. 
RQ1 and RQ2. 

To answer RQ1, we explore the mean, the standard deviation of partic-a. 
ipants’ scores in each age group, and the success rate for each Bebras 
Task.

Fig. 2. Data Exploratory and Analysis Process.



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 71

RQ2 is related to (Dagienė and Stupurienė, 2016) that the tasks should b. 
attract students and drive them to learn and explore to develop skills in a 
particular area. The exploration of each Bebras Task success rate can be 
analyzed for answering RQ2 as well.

Time spent completing Bebras Challenge (Section 5.2). This exploration aims to 3. 
answer RQ3.

The threat of validity of this EDA is the data taken from all Indonesian Bebras 
Challenge 2021 participants. Due to the uneven education facilities and infrastructures 
(MoECRT, 2022) that may affect education quality in some areas of Indonesia, we could 
say that we use uncontrolled data.

5.1. Exploration and Analysis of Score Distribution for Each Age Group  
and Each Bebras Task Used in Indonesian Bebras Challenge 2021

The score distribution for each age group is shown in Fig. 3. Based on Fig. 3, we can 
see that the achieved score is lower in the older age group. Fig. 4 shows the score dis-
tribution for each age group and each Bebras Task language. There is no significant 
difference in score distribution between each task language. This finding is the first 
identification of no significant task language translation problem. However, the transla-
tion result will be analyzed further by each task analysis in Sections 5.1.1–5.1.4.

Fig. 3. Score Distribution for Each Age Group in Indonesian Bebras Challenge 2021.



V. Natali, Natalia, C.E. Nugraheni72

The statistic of the Indonesian Bebras Challenge 2021 result is shown in Table 3. The 
maximum score for each participant is 100.

The statistics in Table 3 show that the mean score of English participants is higher 
than that of Indonesian participants and the mean scores are getting lower in the older 
age groups. There is no significant difference between the English and the Indonesian 
standard deviation. It means that score dispersions for both languages are similar. The 

Fig. 4. Score Distribution in Indonesian Bebras Challenge 2021  
for Each Age Group and Each Task Language.

Table 3
Statistics of Indonesian Bebras Challenge 2021

Age Category and Statistic Components Language
Indonesian English

Up to 3rd grade students (SiKecil)
Score mean
Score standard deviation

55,66
26,78

63,64
25,65

4th–6th grade students (Siaga)
Score mean
Score standard deviation

33,95
26,35

46,24
26,39

7th–9th grade students (Penggalang)
Score mean
Score standard deviation

25,44
19,46

39,37
22,09

10th–12th grade students (Penegak)
Score mean
Score standard deviation

19,39
15,90

30,48
18,63



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 73

Indonesian translation for Bebras Task tends to be difficult because some common terms 
in English, especially informatics terms, do not have the Indonesian standard word trans-
lation. Thus, sometimes the sentences in Indonesian Bebras Task are longer than in Eng-
lish, so the students need more time to read the task.

In Sections 5.1.1–5.1.4, Indonesian students’ performance is analyzed by their suc-
cess rate in answering each Bebras Task. The success rate describes the students’ ability 
to answer each task correctly. The answer category of each Bebras Task is displayed in 
different colors and category numbers, described in Table 4.

Each task answer category distribution is analyzed with the information about the 
task: difficulty level for each age group recommendation, task type, informatics con-
cepts, and CT concepts. Here are the abbreviations used in each Indonesian Bebras Task 
2021 description:

Difficulty level: Hard (H), Medium (M), Easy (E).a. 
Task type: Multiple choices (MC) and Short answer (SA).b. 
Informatics concepts: Algorithms and programming (AP); Data, data structures, c. 
and representations (DSR); Interactions, systems, and society (ISC); Computer 
processes and hardware (CH); Communication and networking (CN).
CT concepts: Abstraction (A); Algorithmic thinking (AT); Decomposition (D); d. 
Evaluation (E); Pattern recognition (P).
Language: English (en); Indonesian (id).e. 

5.1.1. Students up to 3rd Grade Age Group Performance (Category: SiKecil)

The Indonesian Bebras Challenge 2021 answer category distribution for the SiKecil 
Category for each language is shown in Fig. 5.

The color and category explanation for Fig. 5 is given in Table 4. Based on Fig. 5, 
the success rate of Indonesian and English participants in task number 8 differs quite a 
lot. The success rate of Indonesian and English are 44,9% and 24%, respectively. Thus, 
the difference is 20%. This information can be a reason for reviewing the Indonesian 
task translation.

To review the suitability of the international difficulty level suggestion of the Bebras 
Task and the competency of the SiKecil age group, we analyze each task’s success rate. 
The Bebras task list for the SiKecil category is given in Table 5. The grey rows in Table 5 

Table 4
Bebras Task Answer Category for Fig. 5–Fig. 8

Category number Category color Meaning

 1
 
blue Correct answer

 0
 
green Blank

-1
 
pink Wrong answer



V. Natali, Natalia, C.E. Nugraheni74

refer to tasks with a success rate of less than 50%. It means more than half of the students 
cannot answer the task correctly.

Based on Fig. 5 and Table 5, the students didn’t perform well in Bebras Tasks number 
2, 6, and 8, which have a hard difficulty level. The worst students’ performance was on 
task number 8, which has a hard difficulty level and task type as short answer question. 
The characteristics of CT concepts on tasks 2, 6, and 8 combine algorithmic thinking 
and another concept. The tasks that have an easy and medium difficulty level can be 
answered correctly by most Indonesian participants. The difficulty level for the SiKecil 
category is generally suitable for Indonesian students.

Fig. 5. Answer Distribution for up to 3rd Grade Students (SiKecil).

Table 5
Bebras Task List for up to 3rd Grade Students (SiKecil)

Number Task Code Task Title Success 
rate 

Difficulty 
Level

Task 
Type

Informatics 
Concepts

CT 
Concepts

1 2021-CN-01 The Lost Gold 89,34% M MC DSR AT
2 2021-CN-06a Forgetful Little Beaver 46,37% H MC AP AT, E
3 2021-IE-05 Dancing Dress 85,69% E MC AP, DSR E
4 2021-LT-06 Do They Meet 59,94% H MC AP AT
5 2021-PK-09a Creatures 80,44% E MC AP, DSR E, D
6 2021-SA-02 Flower Growth Phase 44,86% H MC AP AT, A
7 2021-UY-01 Circular Beaver 72,11% M MC DSR A
8 2021-UY-06 Fruit Road 25,72% H SA DSR AT, E



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 75

5.1.2. 4th–6th Grade Age Group Students’ Performance (Category: Siaga)

The color and category explanation for Fig. 6 is given in Table 4. Based on Fig. 6, task 
number 3, 4, 5, and 9 have success rates that differ quite a lot between English and Indo-
nesian participants. The success rates are:

Task number 9: Indonesian: 34,6%; English: 77,2%; difference: 42,6%.a. 
Task number 5: Indonesian: 34,6%; English: 71,8%; difference: 37,2%.b. 
Task number 3: Indonesian: 45,3%; English: 64%; difference: 18,7%.c. 
Task number 4: Indonesian: 40,3%; English: 56%; difference: 15,7%.d. 

The differences in the success rates can be a suggestion to review the task translation 
or context for Indonesian students.

The suitability between the international difficulty level suggestion of the Bebras 
Task and the competency of the Siaga category participants has been made in the same 
way as the SiKecil age group. The grey rows in Table 6 have the same meaning as in 
Table 5.

The retrieved information from Fig. 6 and Table 6 are: 
The lowest participants’ success rate is at task number 1 (2021-CA-01, Cuckoo a. 
Birds), which has a hard difficulty level. The Indonesian and English success rates 
are 23,6% and 34,7%, respectively.
The highest participants’ success rate is task number 10 (2021-PK-09, Creatures), b. 
which has an easy difficulty level. The Indonesian and English success rates are 
69,5% and 55,1%, respectively.

Fig. 6. Answer Distribution for 4th–6th Grade Students (Siaga).



V. Natali, Natalia, C.E. Nugraheni76

7 of 12 tasks got success rates less than 50%.c. 
More than 50% of participants can correctly answer both easy tasks.d. 
2 of 6 medium tasks can be correctly answered by more than 50% of partici-e. 
pants.
1 of 4 hard tasks can be correctly answered by more than 50% of participants.f. 
Five tasks combining Algorithmic Thinking and Evaluation CT concepts (tasks g. 
no. 2, 3, 4, 9, 11). The success rates for four of them are less than 50%.

Based on points a to f, the difficulty level of the twelve Bebras tasks in the Siaga 
category is still in accordance with the competence of Indonesian students.

5.1.3. 7th–9th Grade Age Group Students’ Performance (Category: Penggalang)

The color and category explanation for Fig. 7 is given in Table 4. Based on Fig. 7, the 
success rates of Indonesian and English participants differ quite a lot on task number 5 
and 6. The differences are:

Task number 5: Indonesian: 46,7%; English: 68,3%; difference: 21,6%.a. 
Task number 6: Indonesian: 42,2%; English: 60,6%; difference: 18,4%.b. 

The differences in the task’s success rate may have two meanings, the quality of the 
students is different or can be a suggestion to improve the task translation or context for 
Indonesian students.

The grey rows in Table 7 have the same meaning as in Table 5. The retrieved infor-
mation from Fig. 7 and Table 7 are:

12 of 15 tasks cannot be correctly answered by more than 50% of participants in a. 
the Penggalang category.
2 of 3 easy tasks can be answered correctly by more than 50% of participants in b. 
the Penggalang category. The easy task difficulty level is still in accordance with 
Penggalang category participants.

Table 6
Bebras Task List for 4th–6th Grade Students (Siaga)

Number Task Code Task Title Success 
Rate

Difficulty 
Level

Task 
Type

Informatics 
Concepts

CT 
Concepts

1 2021-CA-01b Cuckoo Birds 24,32% H MC DSR E
2 2021-CN-03a Picking Up Carrots 44,65% M MC AP, DSR AT, E
3 2021-CN-06 Forgetful Little Beaver 46,39% H MC AP AT, E
4 2021-IE-01 Presents Program 41,20% H MC AP A, E, AT
5 2021-IE-02 Coin Bag 36,73% M MC DSR A, D
6 2021-KR-01 Gujeolpan 57,03% M MC DSR P, E
7 2021-KR-02 Moving the Balls 52,80% M MC AP, DSR AT
8 2021-LT-06 Do they Meet 49,41% M MC AP AT
9 2021-LT-07 Find a Mistake 37,09% M MC AP AT, E
10 2021-PK-09 Creatures 68,69% E MC AP, DSR E, D
11 2021-RO-02 Volcanos 54,68% H MC CN AT, E
12 2021-UY-01 Circular Beaver 54,21% E MC DSR A



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 77

The lowest participants’ success rate is task number 14 (2021-LT-03, Three Bea-c. 
vers). The task type is a short answer question. It needs an integer as the input, so 
there is a low possibility of a wrong formatting answer or typo.
The participants’ success rates for short answer tasks (2021-LT-03 and 2021-AT-d. 
01) are meager.

Fig. 7. Answer Distribution for 7th–9th Grade Students (Penggalang).

Table 7
Bebras Task List for 7th–9th Grade Students (Penggalang)

Number Task Code Task Title Success 
Rate

Difficulty 
Level

Task 
Type

Informatics 
Concepts

CT 
Concepts

1 2021-BE-03 Necklace Instruction 31,70% M MC AP, DSR A, P
2 2021-CA-02 Spider Quilt 31,95% H MC DSR AT, D
3 2021-CA-04 Line of Fish 26,58% M MC AP, DSR AT, E
4 2021-CH-04c2 Strawberry Thief 55,64% E MC AP, DSR A, E
5 2021-CN-02 Maze 47,99% E MC AP AT
6 2021-DE-07 Turtle Path 43,26% M MC AP A, AT
7 2021-ID-10 Density of Liquid 64,42% M MC DSR E, AT
8 2021-IS-04a Between Dots 80,33% E MC AP, DSR AT
9 2021-IT-1b Strange Sorting 31,83% H MC AP, DSR E, AT
10 2021-LT-01 Meeting race 23,78% H MC AP, ISC AT
11 2021-LT-05 Compare 43,19% H MC AP AT, E
12 2021-NZ-01 Hidden Chocolate 23,28% H MC AP AT, E, D
13 2021-UZ-02 Pruning the Tree 24,47% M MC AP, DSR AT, D
14 2021- LT-03 Three Beavers   5,93% M SA AP, CH A, AT
15 2021-AT-01 Forest Observation 28,81% M SA AP A, AT



V. Natali, Natalia, C.E. Nugraheni78

Due to the low success rate in general, the CT and Informatics concepts analysis e. 
cannot be done.

Based on points a to e, the performance of the Penggalang category participants is 
lower than the expectation of the International Bebras Committee, which is stated in 
each task difficulty level.

5.1.4. 10th–12th Grade Students’ Performance (Category: Penegak)

The color and category explanation for Fig. 8 is given in Table 4. Based on Fig. 8, five 
tasks cannot be answered correctly by most of the participants. The participants’ success 
rates are:

Task number 12: Indonesian: 11,70%; English: 3,18%; in general: 1,29%.a. 
Task number 14: Indonesian: 3,03%; English: 7,16%; in general: 3,26%.b. 
Task number 11: Indonesian: 3,76%; English: 8,48%; in general: 4,03%.c. 
Task number 13: Indonesian: 10,60%; English: 22,01%; in general: 11,32%.d. 
Task number 10: Indonesian: 11,95%; English: 26,79%; in general: 12,79%.e. 

Task 15 is the task that has the most difference in English and Indonesian success 
rates. The success rate for Indonesian participants is 42,57% and for English participants 
is 63,12%; thus, the difference is 20,55%.

The grey rows in Table 8 have the same meaning as in Table 5.
The retrieved information from Fig. 8 and Table 8 are:

13 of 15 tasks cannot be correctly answered by more than 50% of participants in a. 
the Penegak category.
The participant’s success rate for tasks number 1 and 8 are also under 60%.b. 
4 of 5 tasks with the lowest success rate are short answer questions.c. 

Fig. 8. Answer Distribution for 10th–12th Grade Students (Penegak).



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 79

All the easy tasks get a success rate under 50%.d. 
As in the Penegak category, the CT and Informatics concepts analysis cannot be e. 
done due to the low participants’ success rate in general.

Based on points a to e, the performance of the Penegak category participants is lower 
than the expectation of the International Bebras Committee, which is stated in each task 
difficulty level.

5.2. Exploration and Analysis of Time Spent Completing Indonesian  
Bebras Challenge 2021

The purposes of the analysis of time spent completing the Indonesian Bebras Challenge 
2021 are to know the majority of the time needed by Indonesian Bebras Challenge par-
ticipants in completing the challenge and identify whether there is unreasonable data 
found during the challenge. We assume that the unreasonable data of time spent behavior 
is when the participant got a high score in less than the given duration for each age group 
category. The assumption was taken because we assume it is very difficult for the student 
to solve each task in one and a half minutes since they need time to read and understand 
the problem before thinking about its solution. We realize that this assumption may not 
be true for a very clever student.

Fig. 9 shows the time distribution for each Indonesian Bebras Challenge age group 
participant to complete the challenge. The graphic shows that the older the age group 
is, the longer time needed to finish the challenge. There are some outliers in Penggalang 
and Penegak categories. 

Table 8
Bebras Task List for 10th–12th Grade Students (Penegak)

Number Task Code Task Title Success 
Rate

Difficulty 
Level

Task 
Type

Informatics 
Concepts

CT 
Concepts

1 2021-AT-04d Hashing 55,38% M MC AP, DSR AT
2 2021-BE-02 Vaccination Center 21,56% M MC AP, DSR E, AT
3 2021-CH-26b Chez Connie 41,95% E MC CH AT
4 2021-NZ-02 Ice Cream Machine 36,20% H MC CH AT, E, D
5 2021-PT-05 Flooding 36,86% E MC AP, DSR A, AT
6 2021-RU-01 Save the Trees 21,82% M MC AP, DSR AT, E 
7 2021-SK-02 Lift 43,66% E MC DSR D, A
8 2021-SP-01 Ordering 7 Students 53,27% M MC AP AT
9 2021-TW-03b Napping Together 24,60% E MC DSR AT, A
10 2021-DE-04 Lawn Mover 12,80% E SA AP, DSR, ISC AT
11 2021-EE-03 Logs   4,03% M SA AP, CN AT, P, A
12 2021-IT-05 Snow White   1,29% M MC AP AT, E
13 2021-LT-01 Meeting Race 11,33% M SA AP, ISC AT
14 2021-PH-03 Great Wall of Beavaria   3,27% M SA AP AT
15 2021-CH-06 Compact Representation 43,74% H SA DSR AT



V. Natali, Natalia, C.E. Nugraheni80

To gain more information, we explore the relationship between the time taken to 
complete Indonesian Bebras Challenge 2021 and the participant’s scores for each age 
group. The plot results are shown in Fig. 10. There are two unreasonable data based 
on Fig. 10:

The blue boxes in Fig. 10, show the scores from participants who completed i. 
the challenge in more than the given duration. It was confirmed to the Indo-
nesian Bebras Challenge 2021 organizing committee that those were the con-
sequences of the server’s queue due to the auto-submit system when the chal-
lenge’s time was up.
The red boxes in Fig. 10 show the mapping between participants who got high ii. 
scores in less than half of the given challenge duration for each age group. 
These unreasonable data indicate the possibility that some participants behaved 
dishonestly during the challenge.

Fig. 10 shows that some participants finished the challenge in a short time. We 
looked closer and made the plots to observe whether the low participants’ scores re-
sulted from the perfunctory participants. We assume that the perfunctory participants 
were guessing the answer without thinking carefully to get the correct answer. The plot 
is shown in Fig. 11.

We took data from 25% of the participants who got the lowest score in each age 
group and drew the chart of their time taken in finishing the challenge in Fig. 11. Those 
graphics show that most participants with low scores still worked for over half the du-
ration. Some of them finished the challenge within the maximum given duration. This 
information may lead to the conclusion that not all participants with low scores are 
perfunctory. They still gave their effort until the time was up.

Fig. 9. Time Taken for Completing Indonesian Bebras Challenge 2021 Distribution  
for Each Age Group.



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 81

Fig. 10. Time Taken for Completing Indonesian Bebras Challenge 2021  
and Scores Mapping.

Fig. 11. Time Taken for Completing the Indonesian Bebras Challenge 2021  
from 25% of Participants with the Lowest Score.



V. Natali, Natalia, C.E. Nugraheni82

5.3. The Result of Indonesian Bebras Challenge 2021 EDA

The result of the Indonesian Bebras Challenge 2021 EDA is given by answering each 
EDA question (RQ1–RQ3).

 1. Respond to RQ1. Based on Fig. 5–Fig. 8 and Table 5–Table 8, the difficulty 
levels of selected Bebras Tasks for SiKecil and Siaga categories are still in 
accordance with Indonesian students’ competence. Due to the many questions 
that cannot be answered correctly by more than 50% of participants, it can be 
concluded that the difficulty level of Bebras Tasks in Penggalang and Penegak 
categories as stated by the international Bebras Task Committee are higher than 
the Indonesian participants’ competence. 

In general, the participants of SiKecil (up to 3rd-grade students) and Siaga 
(4th–6th-grade students) categories perform quite well in the Bebras Challenge. 
The participants of Penggalang (7th–9th grade students) and Penegak (10th–12-
th grade students) categories did not perform well enough. The score mean of 
each age group given in Table 3 shows that the younger age group is higher 
than the older age group.
 2. Respond to RQ2. In general, Indonesian students’ informatics competency 
still needs improvement. Based on Table 5, the informatics concepts in selected 
Bebras Tasks for the SiKecil category are not varied enough to be the base of 
informatics skill analysis. The participants of the SiKecil category need more 
exercise on the task that involves an Algorithmic Thinking concept combined 
with another concept. Based on Table 6, Table 7, and Table 8, the analysis of 
participants’ informatics and CT skills cannot be done due to the low success 
rate in many tasks. 
 3. Respond to RQ3. Based on Fig. 9, it can be concluded that the higher the chal-
lenge category was, the longer time needed to complete the challenge. Many 
participants finished the challenge in the maximum given time in Penggalang 
and Penegak categories. We also found two unreasonable data based on the 
plot of the relation between the time needed to complete the challenge and 
the participants’ score as shown and described in Fig. 10. Some dishonest at-
titude presumptions during the online Bebras Challenge event can be caught in 
Fig. 10: some participants got high scores in a short completion time.

The suggestion for the next Indonesian Bebras Challenge events based on this EDA 
are:

The method in selecting Bebras Task for each age group in the Indonesian Bebras a. 
Challenge must be discussed in the Indonesian Bebras Challenge task preparation 
team, especially for Penggalang and Penegak categories which have low success 
rates in many tasks. Bebras Task difficulty level needs to be assessed to ensure that 
the participants do not perceive it as appealing because it is too easy or difficult 
(Bellettini, et al., 2015). The task preparation teams need to adjust the difficulty 
level of each age group as suggested by the International Bebras Task Workshop 



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 83

since Indonesia still has low PISA Test scores compared to other countries that 
join PISA Test, that shows, in general, the Indonesian students’ performance is 
lower than many other countries. The fact that Informatics and CT are new in 
Indonesian education curriculum may affect the Indonesian students’ performance 
in Indonesian Bebras Challenge. 
The Indonesian Bebras Challenge preparation teams may ask teacher review for b. 
the Indonesian tasks translation so that the translation is appropriate for each age 
group.
The Indonesian Bebras Challenge preparation teams need to adjust the rules or the c. 
system related to the online Bebras Challenge event. The monitoring system of 
the online event needs to be evaluated to minimize the dishonesty that happened 
in Indonesian Bebras Challenge. Indonesian Bebras NBO needs to work with the 
teacher to encourage the students to work independently.

6. Conclusion

The 2021-ID-EDA questions (RQ1–RQ3) has been answered by the EDA result. By 
exploring the data related to Indonesian students’ performance in Indonesian Bebras 
Challenge 2021 and the evaluation of Bebras tasks difficulty level for each age group, 
we found that the task difficulty level for the elementary students age group is still 
in accordance with the Indonesian student’s competencies. But the junior and senior 
high school students did not perform well in the Indonesian Bebras Challenge 2021. 
The difficulty level of selected Bebras Tasks for Penggalang and Penegak categories is 
higher than the students’ competencies. The unreasonable data was found by analyzing 
the relation between the time for completing the challenge and the participants’ scores 
that led to a presumption of students’ dishonest attitude in the online Bebras Challenge 
event. The older the age group, the longer time needed for the students to finish the 
challenge. In general, Indonesian students still need a lot of work to increase their skills 
in informatics and CT.

We also discover three suggestions for the Indonesian Bebras Challenge preparation 
team to improve the Indonesian Bebras Challenge event. The suggestions are about (1) 
the selection of Bebras Task difficulty level for each age group, (2) the improvement of 
Indonesian task translation, and (3) the evaluation of the monitoring system of the on-
line Indonesian Bebras Challenge event. We hope that the results of 2021-ID-EDA can 
make the Bebras challenge implemented better in Indonesia so that Indonesian students 
can practice and increase their knowledge in informatics and CT. 

Our future work will analyze the Indonesian Bebras Tasks translation used in SiKecil 
and Siaga (up to 6th-grade students) categories. There is some feedback from the teach-
ers and parents that their child cannot understand some terms used in the tasks. This 
research will be done together with elementary school teachers. 



V. Natali, Natalia, C.E. Nugraheni84

Acknowledgments 

The authors would like to thank Inggriani Liem, the head of Indonesian NBO, and Adi 
Mulyanto, the leader of the organizing committee of Indonesian Bebras Challenge for 
their support and the permission to use the data for this research. 

References

Bebras.org (2011a). Countries. Retrieved February 17, 2023, from Bebras: International Challenge on Informat-
ics and Computational Thinking: https://www.bebras.org/countries.html

Bebras.org (2011b). Statistics. Retrieved December 2022, 2021, from Bebras: International Challenge on Infor-
matics and Computational Thinking: https://www.bebras.org/statistics.html

Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M. (2015). How Challenging are 
Bebras Tasks? An IRT analysis based on the performance of Italian students. The 2015 ACM Conference. 
DOI: 10.1145/2729094.2742603

Dagienė, V., Sentance, S. (2016). It’s computational thinking! Bebras tasks in the curriculum. In: International 
Conference on Informatics in Schools: Situation, Evolution, and Perspectives. 

Dagienė, V., Stupurienė, G. (2015). Informatics Education based on Solving Attractive Tasks through a Con-
test. 

Dagienė, V., Stupurienė, G. (2016). Bebras – a sustainable community building model for the concept based 
learning of informatics and computational thinking. Informatics in Education, 15(1), 25–44.

Direktorat Jendral PAUD Dikdas dan Dikmen (2022, February 12). Luncurkan Kurikulum Merdeka, Mendik-
budristek: Ini Lebih Fleksibel! Retrieved January 17, 2023, from Direktorat Sekolah Dasar: 
https://ditpsd.kemdikbud.go.id/artikel/detail/luncurkan-kurikulum-merdeka-mendik-

budristek-ini-lebih-fleksibel

Izu, C., Mirolo, C., Settle, A., Mannila, L. (2017). Exploring Bebras tasks content and performance: A multina-
tional study. Informatics in Education, 39–59. DOI: 10.15388/infedu.2017.03

Liem, I. (2016). Reshaping Indonesian students training for IOI. Olympiads in Informatics, 195–205.
MoECRT (2021). Kebijakan Kurikulum untuk Membantu Pemulihan Pembelajaran. Kementrian Pendidikan, 

Kebudayaan, Riset, dan Teknologi.
MoECRT (2022). Kajian Akademik: Kurikulum untuk Pemulihan Pembelajaran. Indonesia: Pusat Kurikulum 

dan Pembelajaran Badan Standar, Kurikulum, dan Asesmen Pendidikan Kementerian Pendidikan, Kebu-
dayaan, Riset, dan Teknologi.

Morgenthaler, S. (2009). Exploratory data analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 
33–44.



Indonesian Bebras Challenge 2021 Exploratory Data Analysis 85

V. Natali earned her bachelor’s degree from the Department of Com-
puter Science, Parahyangan Catholic University (UNPAR), and mas-
ter’s degree from Dept. of Informatics Engineering, Bandung Institute 
of Technology (ITB), Bandung, Indonesia. In 2017, she began to be 
involved in Computational Thinking and Informatics education with 
Bebras Indonesia and became a member of the Scientific Committee 
of Bebras Indonesia. She became Indonesia’s representative at the In-
ternational Bebras Task Workshop in 2022 and 2023, and in charged 
as Bebras Task Preparation team for Indonesian Bebras Challenge. 
She was involved in a writing team for Informatics textbooks for 
7th–9th grade school and Computational Thinking module for Teacher 
Profession Program published by the Ministry of Education, Culture, 
Research and Technology of the Republic of Indonesia.

Natalia studied at the Mathematics Department of Parahyangan 
Catholic University (UNPAR) and earned her bachelor’s degree in 
2012. She took Mathematics Master program at the Bandung Insti-
tute of Technology. Currently, she is a lecturer in the Department of 
Informatics at Parahyangan Catholic University. Since 2017, Natalia 
has been actively involved in community service in Computational 
Thinking and Informatics education with Bebras Indonesia. She be-
came Indonesia’s representative at the 2023 International Bebras Task 
Workshop and in charged as Bebras Task Preparation team for Indo-
nesian Bebras Challenge. She was part of the writing team for the 
8th and 9th grades Informatics textbooks and Computational Thinking 
module for the Teacher Professional Program published by the Min-
istry of Education, Culture, Research and Technology of the Republic 
of Indonesia.

C.E. Nugraheni received her bachelor’s degree (1993) and master’s 
degree (1995) from Dept. of Informatic Engineering, Bandung Insti-
tute of Technology (ITB), Bandung, Indonesia. She received her doc-
toral degree (2004) from Dept. of Informatics, Ludwig Maximilians 
Universität, Munich, Germany. Her research interest includes formal 
methods, intelligent systems, machine learning, meta-heuristic and 
hyper-heuristic techniques. Since 2019, she has been actively in-
volved in activities to introduce Computational Thinking to students 
and teachers in elementary and middle schools in Bandung, Indo-
nesia. She was once the head of the Bebras Bureau of Parahyangan 
Catholic University. She is also the editor of an Informatics book, a 
textbook for students and teachers of Informatics subjects in grades 
VII and X, which is published by the Indonesian Ministry of Educa-
tion, Culture, Research, and Technology.





Olympiads in Informatics, 2023, Vol. 17, 87–97
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.07

87

Latent and Evident Knowledge to Compose  
and to Solve Tasks in Informatics

Pavel S. PANKOV, Artem A. BELYAEV   
Institute of Mathematics, Kyrgyzstan
Kyrgyz-Russian Slavic University, Kyrgyzstan 
e-mail: pps5050@mail.ru, artem_belyaev@mail.ru

Abstract. On the base of the IOI Syllabus, the following problem was stated: what additional 
mathematical knowledge (including one invented by jury before OI and by contestants during 
OI) and other branches of knowledge are permissible in tasks? Socrates’ idea (a human has vast 
latent knowledge which can be extracted by corresponding quests) is involved. Mathematical 
knowledge, special (physics, chemistry, geography) knowledge, general, or common knowledge 
are considered. It is demonstrated that the well-known notion “Turing-complete language” does 
not include time and cannot be called computationally universal. The Time dependent tasks and 
the corresponding time checker are proposed.

Keywords: Informatics, Olympiad, latent knowledge, special knowledge, time task.

1. Introduction

The International Olympiad in Informatics Syllabus (2022) (https://ioinformat-
ics.org/page/syllabus/12) provides all necessary knowledge (“included topics”) 
in mathematics to be involved in Olympiad tasks and “forbidden to be necessary” 
knowledge (“excluded topics”). 

Consider arising problems on example of the ancient.

Task 1 “Heads-feet”. Given natural numbers H, F in 2 .. 1000. Geese and cats together 
have H heads and F feet. How many geese and how many cats are there? If it is impos-
sible, output 0 0. 

Firstly, the task must be “culturally neutral”. For instance, “Geese and platypuses” 
belong to Australian culture (although “wombats” were at IOI’2013). 

“Included topics” are not enough to solve this task. The contestant is to use “latent 
knowledge” not related to mathematics and informatics. It is also stipulated in Syllabus 
(2022): Contestants are not expected to have knowledge of these topics. … However … 
The ISC may wish to include such a competition task in order to broaden the scope of the 
IOI… the ISC will make sure that the task can reasonably be solved without prior knowl-



P.S. Pankov, A.A. Belyaev88

edge of the particular topic, and that the task can be stated in terms of √ … concepts in 
a precise, concise, and clear way.

If we add an explanation: a goose has one head and two feet; a cat has one head and 
four feet then the task losses sense: arbitrary numbers can be substituted (fabulous geese 
and cats… is used to be added; we proposed “naturalness” (Pankov, 2008) to avoid such 
technique). Also, such addition violate the demand “short and elegant formulations” 
(Dagienė et al., 2007).

If we add, as usually, strict mathematical formulation of task: find such natural 
numbers G and C that G + C = H and 2 ∙ G + 4 ∙ C = F then, firstly, it becomes almost 
a solution, and secondly, Linear algebra is an “explicitly excluded topic” in Syllabus 
(2022).

Meanwhile, if this task is given without such addition and the contestant (or their 
coach) protests: Linear algebra is an “explicitly excluded topic” in Syllabus (2022) that 
is why I could not solve this task” then the jury may respond: Neither linear equations 
nor other notions of Linear algebra are mentioned in the task. If you reduce the task to 
a system of linear equations then it’s your problem. The task can be solved, for instance, 
by brute force method. 

We will consider the tasks without redundant mathematical formulation; “thin”, 
“light”, “little”, ratio of car length to road length … mean “neglectable”.

The general problem arises: What “latent knowledge” not related to mathematics and 
informatics is permitted?

Besides of “included topics” and “explicitly excluded topics” listed in Syllabus 
(2022), there are unbounded mathematical topics including ones invented by the authors 
of tasks and the jury before the OI and by contestants during the OI (Pankov et al., 2015; 
Pankov et al., 2018). What mathematical topics can be meant latently?

In Section 2 we discuss various mathematical topics including such “discoverable 
ones”.

We proposed wider use of the achievements of science and technologies to create 
tasks (Pankov, 2010). Section 3 discusses “special knowledge” being necessary to solve 
such tasks.

Section 4 reviews the “latent general knowledge” of life and imagery ability for suc-
cessfully solving of the tasks.

In Section 5 we propose a new type of tasks on measuring real time, discuss and 
improve “universal algorithmic language”.
Remark. Issues under discussion in this article cannot be covered by any general defini-
tions or explanations. They can be demonstrated by examples only.

2. Mathematical Knowledge

The following tasks use topics which are not mentioned or are explicitly excluded from 
Syllabus (2022). Nevertheless, they can be posted and be solved successfully. 

A popular at initial stages of OIs and of mathematical Olympiads (with a fixed 
large N)



Latent and Evident Knowledge to Compose and to Solve Tasks in Informatics 89

Task 2 “Last digit”. Given integer number N in 2 .. 10^12, what is F(N) := (last digit of 
7^N in decimal system)? 

Most of contestants will be successful in such a task.
If the contestant (or their coach) protests: “Fermat’s little theorem is not included 

in Syllabus (2022) that is why I could not solve this task” then the jury may respond: 
“You could count F(2), F(3), F(4), F(5)… and note a regularity”. That is, the ability to 
make small mathematical discoveries in addition to knowledge within Syllabus (2022) 
is meant at OIs. 

Geometry in 3D is explicitly excluded in (Syllabus, 2022). But

Task 3 “Null-transportation”. There are three distinct 10^6 × 10^6-squares A, B, C on 
a plane, crossing a boundary of a square is prohibited. Each square has its own coor-
dinate system 0 <= x, y <= 10^6. All numbers are integer. The cost of passing from a 
point A(i, j) to points A(i + 1, j) or A(i − 1, j) or A(i, j + 1) or A(i, j − 1) (if they belong to 
the square), as well as for squares B and C, is 2 Euros. The cost of null-transportations 
A(i, j) ↔ B(i, j) or C(i, j) ↔  B(i, j) is 10 Euros. Given numbers x, y, u, v in 0 .. 10^6, 
find the minimal cost of passing from the point A(x, y) to the point C(u, v).

Obviously, any way of “common” search in the graph with 3∙(10^6 + 1)^2 vertices is 
hopeless. However, most of contestants will be successful in this task.
Remark. If the contestant protests: “3D-Manhattan metrics is explicitly excluded in Syl-
labus (2022) that is why I could not solve this task” then the jury may respond: “Neither 
a 3D-space nor Manhattan metrics are mentioned in the text of task. If you interpret the 
media as a 3D-space then it is your problem”. If the contestant protests: “There are not 
algorithms to find an optimal way in such a vast graph during one second” then the jury 
may respond: “If you interpret the media as a graph then it’s your problem”.

Euler’s formula for planar graphs is not mentioned in Syllabus (2022).

Task 4 “Triangles”. Let us call an intersection (point only) of two drawn segments 
as “node”, the drawn segment between two nodes without inner nodes as “fragment” 
and a drawn triangle without drawn inner points as “domain”. Let a triangle UVW be 
drawn, number N of nodes is 3, number F of fragments is 3, number D of domains is 1. 
The operation “draw a segment splitting any domain into two domains” was executed 
some times. Given numbers N and D in 10 .. 10^6, N − 2 <= D <= 2N − 6, find num-
ber F. If it is impossible, output 0.

Example 4.1. 1st operation: draw segment UP, point P is in VW; 2nd operation: draw 
segment VQ, point Q is in UP; 3rd operation: draw segment WQ. The result is N = 5; 
F = 8; D = 4.

At first, contestants will be frightened by arbitrariness but after some attempts most 
of them will be successful in this task.
Remark. If the contestant’s coach protests: “Euler’s formula for planar graphs is not an 
included topic in Syllabus (2022)” then the jury may respond: “There are other ways 
to solve the task, for instance, constructing a sequence of operations yielding given N 
and D.”



P.S. Pankov, A.A. Belyaev90

For convenience, we will use the denotation [∙] also for rounding down to integer.
“Calculus” is explicitly excluded in Syllabus (2022). 
Nevertheless, we (Pankov, 2013) proposed tasks of type.

Task 5 “Minimization”. Given a natural number F in 1 .. 10^300; find such natural 
number X that the expression H(X) := X^3 + F / (X + 1) is minimal; if there are some 
such numbers then output the greatest of them.

The author of the task is obliged to calculate the derivative H′(X) and to prove that it 
increases for (real) X > 0. But the contestant who does not know the notion “derivative” 
can easily guess (feel) that H(X) is a unimodal function, guess and implement the fol-
lowing effective algorithm. H(0) = F + 1, H(X) > X^3. Hence, it is enough to consider 
X between L = 0 and M = 10^100.

Algorithm: Repeat {Let P := [(3*L + M)/4]; Q := [(L + 3*M)/4]; if H(P) > H(Q) then 
L := P else M := Q} until M − L <= 5. Calculate and compare H(L), …, H(M).

“Non-trivial calculations on floating point numbers, manipulating precision errors; 
trigonometric functions” are explicitly excluded in Syllabus (2022).

Some countries, organizations, companies, firms (alleged sponsors) have central-
symmetric elements on their coat-of-arms, logos.

Corresponding modifications of the following task may be in their honor (Pankov 
et al., 2009).

Task 6 “Regular polygon”. Given integer numbers N in 2..2023, K in 1..64. The center 
of the regular 64-polygon is in (0; 0), the 1st vertex is in (N; 0), vertices are numbered 
counterclockwise. Find such integers X and Y that the Kth vertex is within the square 
(X, X + 2) × (Y, Y + 2). If there exist some such pairs output one of them.

Remark. The task to find a square [X, X + 1) × [Y, Y + 1) is close to unresolvable one 
due to the following theorem of constructive mathematics: the problem of distinguishing 
a computable real number from zero is unsolvable.

The author’s solution of the task is a little rational-numbers-interval-analysis-soft. 
Trigonometric functions are not used in the solution; coordinates of vertices are calcu-
lated by formulas for vectors, such as V[1] := (N; 0); V[17] := (0; N); V[9] := (V[1] + 
V[17]) / |(V[1] + V[17])| * N … (Euclidean distances, Pythagorean theorem are in-
cluded in Syllabus (2022)). 

But such solution takes about half of hour to type even for an experienced con-
testant. And the contestant writes a program for floating point numbers X1, Y1 in a 
minute: 

Let X1 := N * cos(2.*pi/64.*(K − 1)); Y1 := N*sin(2.*pi/64.*(K − 1)); 
X := floor(X1); If X1 − X < 0.5 then X := X − 1; Y := floor(Y1); If Y1 − Y < 0.5 then 

Y := Y − 1;
Output (X, Y).
Because of high accuracy of the built-in functions cos and sin such program should 

pass all tests successfully.
Will the jury accept this solution? Checking of texts of programs is permitted only 

to detect (Cheating, 2022): contestants must not attempt to submit illegal programs as 



Latent and Evident Knowledge to Compose and to Solve Tasks in Informatics 91

discussed above [not perform explicit input and output operations…] … to gain access 
…to store information…to access any machine … to reboot… 

3. Special Knowledge

In our opinion, the tasks based on real facts and scientific laws are useful for the contes-
tants because they are natural, they demonstrate the diversity of the world and prepare 
for a future fruitful activity.

Consider some branches of knowledge.

3.1. Physics

Velocity is a common physical notion. Nevertheless, by our experience, even simple 
tasks with piecewise-uniform speed are very difficult for contestants (see Section 5 be-
low for probable reason of it).

Task 7 “Villages”. (Kyrgyzstan, Republican OI, IV stage, 2022). There are five villages 
on a straight road. The car started from the beginning of the road at 5.00 am. From 6.00 
am to 7.00 am the cattle go to the pasture along villages, so the car speed within villages 
is 6 km/h, otherwise the car speed is 60 km/h. Find the coordinates (in meters) of the car 
in M minutes after 5.00 am.

Input: M < 216; coordinates of villages (km) 0 < B1 < A1 < B2 < A2 < B3 < A3 < B4 
< A4 < B5 < A5 < 216.

Gravitation, the lever law (by our opinion, it is natural and can be felt or guessed 
from the example). 

Task 8 “Weighing” (Kyrgyzstan, National OI, I stage, 2023). Points … −3, −2, −1, 0, 1, 
2, … are marked on a long ruler at equal distances between them. The ruler is suspended 
in the middle, at the point 0. There is plenty of a flour, a light bag for flour, and weights of 
natural numbers (given) P kg and (given) Q kg. A bag of flour and weights can be hung 
on a ruler, only at marked points. There cannot be two loads at same point. It is required 
to weigh (given) Z kg of flour. 

Find the minimum possible length of the segment occupied by the weights. Example 
8.1. (with comments): P = 2 (hung at “1”), Q = 50 (hung at “2”), Z = 102 (hung at 
“−1”) → 3. 

Task 9 “Non-symmetrical scale” (Kyrgyzstan, Republican OI, III stage, 2023). Giv-
en natural numbers P, Q, Z in 1 .. 2023. The (very light) bowls of the scale are sus-
pended at distances P and Q (horizontally) from the suspension point of the scale. To 
weigh Z kg how many 1-kg-kettlebells are necessary? Example 9.1. P = 20, Q = 10, 
Z = 1993 → 998. 

Gravitation, properties of liquid.



P.S. Pankov, A.A. Belyaev92

Task 10 “Rain”. (Kyrgyzstan, Republican OI, II stage, 2023). Given integer number 
K in 4 .. 6. K thin rectangular walls were built on the plane in “north-south” or “east-
west” directions (two walls can be intersected). It is raining, raining… How much 
water do the walls hold? (“zero” can also be).

Input. The first row contains K. The next K rows contain five natural numbers X1, 
Y1, X2, Y2, Z in 1 .. 10, the coordinates of the end-points and height of the i-th wall, 
i = 1  .. K.

Properties of snow (snow is not “solid” in physical terminology; it is a unique 
object). 

Task 11 “Snow” (Kyrgyzstan, Republican OI, III stage, 2006). Let the streets in the 
city [Bishkek] form a rectangular grid (with coordinates), all blocks are 1 × 1. The 
firm Lоgic [sponsor] is located at a given crossing (X, Y). Two friends wish to come to 
Lоgic. Now the first is at the crossing (X1, Y1), the second is at the crossing (X2, Y2). 
Because of the plentiful snowing they wish to minimize the trampled path (the sum 
of paths trampled by the first, by the second and by the both going together). Write a 
program calculating the minimal length of path.

Law of reflection.

Task 12 “Mirrors”. Given integer numbers P and Q in 1 .. 10^6. The rectangle ABCD 
is made of four mirror segments, |AB| = |CD| = P, |AС| = |B| = Q. The ray came out 
of the vertex A along the bisector of the angle BAC. What vertex will the ray come in? 
Example 12.1.: 6000 1500 → B

If the contestant is doubt in their memory or guessing on the law then the example 
confirms it. 

Law of impulse conservation.

Task 13 “Carts”. (Kyrgyzstan, Republican OI, III stage, 2023). All data are integer. 
The “zero” point was marked on a horizontal long straight road. Two small carts 
move without friction along the road. If they collide then they concatenate and then 
move together. Their weights S1 and S2 (kilograms), initial locations J1 ≠ J2 (meters), 
and initial velocities Y1 and Y2 (meters/second) are given. Where will the first cart be 
after U(seconds)? Give the answer as a fraction.

Example 13.1. U = 8, S1 = 7, S2 = 7, J1 = 50, J2 = 51, Y1 = 1, Y2 = 0 → 9/2
X-rays, tomography.

General task 14 “Restoration”. To restore an object (an image) by its projections (by 
sums along columns, rows). 

3.2. Chemistry

Task 15 “Equalization”. Chemical elements are denoted by an uppercase letter or 
by an uppercase letter and a lowercase letter; number of such atoms in the mole-



Latent and Evident Knowledge to Compose and to Solve Tasks in Informatics 93

cule (less than 100), if it is greater than one, is written after. Given molecules M1, 
M2, M3. Find such a non-negative (the least possible) integer numbers N1, N2, N3 
that N1 ∙ M1 + N2 ∙ M2 = N3 ∙ M3. If it is impossible, output 0 0 0.

Example 15.1. H2 O2 H2O → 2 1 2. Example 2. Bb17Bb3 Sx2 Bb22 → 11 0 10.
Remark. “Chemical language for molecules” is non-formal, writings may be more or 
less detailed. To avoid questions, “Bb” is written twice in one molecule and “Sx” is 
not used. 

3.3. Geography, Astronomy

Task 16 “Above the equator”. All numbers are integer. Western longitude is denoted 
with “−“. Given (N in 2..360) distinct points with latitudes (in −179..180 degrees) on 
the equator. A geostationary satellite can cover (K in 1..30) degrees on the equator. How 
many geostationary satellites are necessary to cover all points? Example 16.1. K = 2, 
N = 4 / 50 −179 179 −45 → 3.

Task 17 “Satellite”. Angles are measured in degrees. All numbers (except V) are in-
teger. There is a planet P (its center C) with a satellite (S) far from the Earth (E). The 
straight-line EC is in the plane of the circular orbit of S. Denote the angle between EC 
and CS as A (if S is to the left of EC then let “−A” be written). When S is before or be-
hind P (|A| < K), S is not seen. When S is seen, we can measure A but we cannot detect 
whether S is farer or nearer than C. Suppose that the angular velocity of S be (rational 
number) V /hour.

By results of series of N observations on A at 0, 1, 2, …N − 1 hours find the minimal 
value of V. 

Input: numbers K in 2..45, N in 2..5 / N numbers in −90..90 (“0” means “not seen”) .
Example 17.1. 30 2 / −84 −84 → 12/1. Example 17.2. 30 2 / 84 86 → 2/1. 
Example 17.3. 30 3 / 31 0 −32 → 63/2.

3.4. Linguistics

Similar tasks for Kyrgyz language were used to be given. To be “culturally neutral”:

General Task 18 “Ciphering”. A number in 1..99 (without the sign “−“) was written 
in lowercase letters. Each letter was changed (bijective) to an uppercase letter. One of 
the letters was erased (or: One of the letters was changed; or Any letter was added …). 
Restore the greatest possible value of the number.

Example 18.1. WZ → 10. Example 18.2. QWQZSKKG → 59. 



P.S. Pankov, A.A. Belyaev94

4. General, or Common Terminology and Knowledge

Notions of language, odometer are mentioned in Syllabus (2022) as examples. 
Traditional notions are persons (IOI participants, players, travelers), animals (it 

is better that their properties in the task be similar to their actual ones, for instance, 
jumping frog at IOI’2002; hounds and moths with GPS; warms as mathematical tasks 
characters from ancient times), ways, roads, crosses, villages (as points or segments on 
highways) and cities (large, with rectangular street grid), walls (as segments on a plane), 
cars (as points), pixels … 

We proposed voxels, timexels, 2D-printers, 3D-printers, future (3D + T)-printers for 
wider using (Pankov et al., 2021). 

Various natural tasks can be composed on the notions of (ideal, thin, inextensible) 
rope and other idealized household items.

Task 19 “Rope”. Given a rope of length L and a graph, all its arcs have lengths 1 and 
are thin tubes. Rope is arranged within arcs, without touching itself. Can Rope be drawn 
through all arcs without self-touching? If it is possible, find the minimal time to do it. 

Every language carries its own specific notions. Examples:
Latin “formula”, “registration”, “optimization” and many others; Ancient Greek 

“program”, “axiom” and many others. It is difficult to explain them but they became 
international and can be used. 

Fijian “taboo” (and its versions in other Pacific Ocean languages) is convenient to be 
used in some Olympiad tasks but it would not be “culturally neutral”. 

Kyrgyz “irgöö” is more general than the word “synergetic” (Kenenbaeva, 2014). It 
yields self-ordering in stochastic processes. As statistics is an “explicitly excluded topic” 
in Syllabus (2022), such process can be imitated by “arbitrary operations, operations in 
arbitrary order”, as in Task 4. Will such task be “culturally neutral”?

The next layer is “relations”: neighbors, friends, teacher and students, teammates…
Many verbs mean various facts, laws, operations: glue, cut, paint (are used for 

graphs), pour (see Task 10), fold …

Task 20 “Folding”. Given a number N and a (large) polygon glued of equal 1 × 1-squares. 
We can fold it by lines of gluing. How many foldings are necessary to obtain a (multi-
layer) polygon with area not greater than N? 

Every native speaker has vast knowledge about and some skills. What of it can be 
used in tasks?

For example, is latent knowledge in Task 1 related to common one or to zoological 
one? 

Are properties of water (liquid) in Task 10 physical or obvious?
Properties of snow cannot be explained formally, mathematically. By what knowl-

edge do contestants solve Task 11?
Obviously, for successful solving of Task 10 the contestant is to have the property of 

measuring imagery (Pankov, 1996).  



Latent and Evident Knowledge to Compose and to Solve Tasks in Informatics 95

5. On Universal Algorithmic Languages, Time Tasks and Random Phenomena

Nowadays computers cover anyway almost all universe known to the mankind. In our 
turn, we are to cover more aspects of life by Olympiad tasks. Firstly, what algorithmic 
language is suitable for such purposes? 

Well-known statements which are also meant in OI: 

“a system of data-manipulation rules (such as a computer’s instruc-
tion set, a programming language, or a cellular automaton) is said 
to be Turing-complete or computationally universal if it can be used 
to simulate any Turing machine” (https://en.wikipedia.org/
wiki/Turing_completeness).

But by our opinion, such language is neither “complete” nor “universal”. 
A simple command “in (2 ± 0.01) second output 2023” or a natural condition “if 
(1.99 < time < 2.01) and (5.01 < X < 5.02) then …” cannot be written in such lan-
guage.

Probably, “time” was not included in “universal language” because a human does not 
have a built-in timer unlike some animals. But various automats and devices since XIX 
century had. It turns out that developers of this important notion in middle of XX century 
did not pay attention to them.

To broaden the horizons of participants we propose to include the following type of 
tasks in initial stages of OI:

Task 21 “Just-in-time”
Given natural numbers A, B and N. Write a program to output (A + B) in (N +/− 10) 
milliseconds.

Input: A, B in −10^9 .. 10^9, N in 100 .. 1000.
Output: Sum (A + B) and an integer number denoting actual time from running the pro-
gram (milliseconds)
Example 21.1. Input: 5 6 900 Output: 11 905 or 11 897 or …

The full text of the task is at https://cloud.mail.ru/public/S9wJ/dqzHxWPNa
The checker is at https://cloud.mail.ru/public/DTgK/QFx8mrP7K
A text of program is at https://cloud.mail.ru/public/gn17/hpnoEJWjG
This task is also included in: 
      https://olymp.krsu.edu.kg/GeneralProblemset.aspx

Remark. To support the idea of Turing-complete language, the physical Church-Turing 
thesis was proposed, for instance, (Arrighi et al., 2012): any function that can be com-
puted by a physical system can be computed by a Turing Machine.

The following physical system (Pankov et al., 2018a) refutes this thesis. 
The surface (made of tin) consists of six triangles with the following seven vertices 

(in cylindrical coordinates: radial distance; angle; height): A[0] := (0″; 0; 0″); A[K] := 
(15″; π * i/3; (5 + 2 * (−1)^K)″); K = 1 .. 6. 



P.S. Pankov, A.A. Belyaev96

The little ball (made of steel) is launched from the point A[1]. It rolls down along 
the “valley” to the point A[0], rolls up a bit along the “ridge” A[0] – A[4], falls off left 
to “valley” A[5] – A[0] or right to “valley” A[3] – A[0] randomly, rolls down to the 
point A[0], rolls up a bit along the “ridge” A[0] – A[2] or along the “ridge” A[0] – A[6] 
respectively etc. Actually, the ball rolls up trice before stop in the point A[0] (for in-
stance, in 4 second). Each launch initiates another function [0, 4] → R3 and none Turing 
Machine can calculate it.

 

6. Conclusion

We hope that this paper would draw attention to more general problem (especially for 
international students): what latent and evident knowledge and skills are necessary for 
successful life, study and work in our changing world? 

Results from the focus group discussions showed that international 
students face challenges in their everyday life, dormitory life, cam-
pus life, social life and academic life. (Gebru et al., 2020)

Eynullayeva et al. (2021) examined whether the cultural adaptation levels of inter-
national students vary according to gender, place of residence, academic achievement 
level, education level, faculty they attend, and their age.

And how can OIs (covering millions young people at initial stages) contribute to 
this problem? 

Fig. 1. Pavel Pankov, Sabina Tagaeva © 2018 Made by Nuraly Niyasbekov.



Latent and Evident Knowledge to Compose and to Solve Tasks in Informatics 97

References

Arrighi P., Dowek G. (2012). The physical Church-Turing thesis and the principles of quantum theory. Interna-
tional Journal of Foundations of Computer Science, 23(5), 1131–1145.

Cheating (2022). https://ioi2022.id/competition-rules/
Dagienė, V., Skupienė, J. (2007). Contests in programming: quarter century of Lithuanian experience. Olympi-

ads in Informatics: Country Experiences and Developments, 1, 37–49. 
Eynullayeva, K., Gökalp, M., Hatunoglu, B.Y. (2021). Investigation of the Turkish Cultural Adaptation of Inter-

national Students Living in Turkey. European Educational Researcher, 2(2), 155–169.
Gebru, M. S., Yuksel-Kaptanoglu, I. (2020). Adaptation Challenges for International Students in Turkey. Open 

Journal of Social Sciences, 8, 262–278. 
Kenenbaeva G. (2014). Framework Definitions of Effects and Phenomena and Examples in Differential and 

Difference Equations. Journal of Mathematics and System Science, 4, 766–768.
Pankov P.S. (1996). Independent learning for open society. Collection of papers as results of seminars conduct-

ed within the frames of the program “High Education Support”. Foundation «Soros-Kyrgyzstan», Bishkek, 
issue 3, 27–38. 

Pankov, P.S. (2008). Naturalness in Tasks for Olympiads in Informatics. Olympiads in Informatics: Country 
Experiences and Developments, 2, 16–23.

Pankov, P.S. (2010). Real Processes as Sources for Tasks in Informatics. Olympiads in Informatics, 4, 95–103.
Pankov, P.S. (2013). Tasks in Informatics of Continuous Content. Olympiads in Informatics, 7, 101–112.
Pankov, P.S., Baryshnikov, K.A. (2009). Representational Means for Tasks in Informatics. Olympiads in Infor-

matics, 3, 101–111.
Pankov, P.S., Imanaliev, T.M., Kenzhaliev, A.A. (2021). Automatic Makers as a Source for Olympiad Tasks. 

Olympiads in Informatics, 15, 75–82.
Pankov, P., Janalieva, J., Naimanova, A. (2015). Inductive and experimental studying of mathematical subjects 

(mathematical facts and notions which can be discovered independently), LAP Lambert Academic Publish-
ing, Saarbrücken. 

Pankov, P.S., Kenzhaliev, A.A. (2018). Combinatorial property of sets of boxes in Euclidean spaces and theo-
rems in Olympiad tasks. Olympiads in Informatics, 12, 111–117.

Pankov, P.S., Tagaeva, S.B. (2018a). Computer and real simulation of phenomenon of strange attractor by sys-
tem of differential equations. Herald of Institute of Mathematics of National Academy of Sciences of Kyrgyz 
Republic, 1, 17–23.

Syllabus (2022). The International Olympiad in Informatics Syllabus. 
https://ioinformatics.org/ page/syllabus/12

P.S. Pankov (1950), doctor of physics-mathematics sciences, prof., 
corr. member of Kyrgyzstani National Academy of Sciences (KR 
NAS), was the chairman of jury of Bishkek City OIs, 1985–2013, 
of Republican OIs, 1987–2012, participates in National Olympiads 
since 2020, was the leader of Kyrgyzstani teams at IOIs, 2002–2013, 
2018–2022. Graduated from the Kyrgyz State University in 1969, is a 
head of laboratory of Institute of mathematics of KR NAS.

A.A. Belyaev (1978), Kyrgyz-Russian Slavic University. Deputy 
leader at IOI’2018. Regional Director of NERC ICPC Kyrgyzstan 
Regionals.





Olympiads in Informatics, 2023, Vol. 17, 99–119
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.08

99

Understanding and Designing Recursive Functions 
via Syntactic Rewriting

Tom VERHOEFF
Mathematics and Computer Science, Eindhoven University of Technology
Groene Loper 5, 5612 AE, Eindhoven, Netherlands
e-mail: t.verhoeff@tue.nl

Abstract. Recursion is considered a challenging programming technique by many students. 
There are two common approaches intended to help students understand recursion. One of them 
is based on the operational semantics of function execution involving a stack, where students 
trace the execution of a recursively defined function for some concrete arguments. The other 
approach is based on the axiomatic semantics involving inductive reasoning with the contract of 
the recursively defined function. The former approach is not so helpful when designing recursive 
functions, whereas the latter can be helpful (being a special case of divide and conquer) but con-
tracts can be hard to discover.

In this article, I will show a third approach. It is based neither on an operational nor an 
axiomatic semantics. Rather, it involves a rewriting semantics using program transformation 
by substitution, thereby inlining function calls. We show that this approach not only may help 
understanding, but can also be used to design recursive functions.

Keywords: computer science, education, programming, recursion.

1. Introduction

I have written about recursion before (Verhoeff, 2018, 2021) and until recently I would 
not have thought to have something significant to add. But while preparing a program-
ming Q&A session for first-year mathematics students, I was struck by a (for me) new 
idea, which is the topic of this article.

Verhoeff (2018) presents the two common approaches to understand recursion. 
As example, consider the following Python code for the recursively defined function 
print_bit_strings (we left it undocumented for now on purpose):

 1 def print_bit_strings(n: int, s: str = "") -> None:
 2     if n == 0:
 3         print(s)  
 4     else:



T. Verhoeff100

The call print_bit_strings(2) prints

00
01
10
11

One could wonder why there is a need for this extra parameter s, and why the recursive 
call on line 6 has argument s + b rather than b + s.

To understand this, students could use the operational approach, where they trace the 
execution of a specific call of the recursive function in question through multiple levels 
of subsequent recursive calls. Beginning programmers perceive this execution as magi-
cal and confusing, because there is a single definition of the given recursive function, 
but multiple calls are simultaneously executing that same piece of code independent of 
each other. That is, each invocation can be at a different location in that code, and the 
parameters and other local variables can have different values. The execution of a re-
cursive function traverses an imaginary dynamic call tree (Verhoeff, 2018, §3.1), where 
each node corresponds to the execution of a call, which then gives rise to zero or more 
subsequent recursive calls. The active invocations form a root path in this tree, and the 
‘instruction pointer’ and values of local variables are stored on a stack, that grows and 
shrinks as the root path.

For example, the call print_bit_strings(2, "s") gives rise to the call tree in 
Fig. 1. This approach helps in understanding how a stack machine can correctly execute 
a recursively defined function in an imperative programming language. But in my ex-
perience it is neither helpful for reasoning about (the correctness) of recursive function 
definitions nor for designing them.

Alternatively, there is the axiomatic approach (Verhoeff, 2018, §4), which requires a 
specification of the recursive function in terms of a contract consisting of a precondition 
and a postcondition, such that

if ●  the precondition is satisfied before the function call,
then ●  the postcondition is satisfied after the function call.

 5         for b in "01":
 6             print_bit_strings(n - 1, s + b)

The call print_bit_strings(2) prints

00
01
10
11

One could wonder why there is a need for this extra parameter s, and why the
recursive call on line 6 has argument s + b rather than b + s.

To understand this, students could use the operational approach, where they
trace the execution of a specific call of the recursive function in question through
multiple levels of subsequent recursive calls. Beginning programmers perceive
this execution as magical and confusing, because there is a single definition of
the given recursive function, but multiple calls are simultaneously executing that
same piece of code independent of each other. That is, each invocation can be at
a different location in that code, and the parameters and other local variables
can have different values. The execution of a recursive function traverses an
imaginary dynamic call tree (Verhoeff, 2018, §3.1), where each node corresponds
to the execution of a call, which then gives rise to zero or more subsequent
recursive calls. The active invocations form a root path in this tree, and the
‘instruction pointer’ and values of local variables are stored on a stack, that
grows and shrinks as the root path.

For example, the call print_bit_strings(2, "s") gives rise to the call
tree in Figure 1. This approach helps in understanding how a stack machine can
correctly execute a recursively defined function in an imperative programming
language. But in my experience it is neither helpful for reasoning about (the
correctness) of recursive function definitions nor for designing them.

(2, "s")

(1, "s0")

(0, "s00") (0, "s01")

(1, "s1")

(0, "s10") (0, "s11")

Figure 1: Call tree for print_bit_strings(2, "s"), only showing parameters

Alternatively, there is the axiomatic approach (Verhoeff, 2018, §4), which
requires a specification of the recursive function in terms of a contract consisting
of a precondition and a postcondition, such that

• if the precondition is satisfied before the function call,

• then the postcondition is satisfied after the function call.

The docstring for print_bit_strings(n, s) could read:

7 """Print s + t for all strings t over "01" of length n,
8 in lexicographic order.
9

10 Assumption: n >= 0
11 """

2

Fig. 1. Call tree for print_bit_strings(2, "s"), only showing parameters.



Understanding and Designing Recursive Functions via Syntactic Rewriting 101

The docstring for print_bit_strings(n, s) could read:

That is, its precondition is n >= 0 and its postcondition is: ‘for all strings t over 
"01" of length n, strings s + t have been printed’. To reason about the call with 
parameters (n, s), we assume as induction hypothesis that calls with parameters 
(n_, s_) where n_ < n work as specified by the contract. The design of function 
print_bit_strings can be argued as follows. The goal is to prove that lines 2–6 
satisfy the contract, under the assumption that the recursive call on line 6 satisfies its 
contract; that is, it satisfies ‘if n > 0, then for all strings u of length n - 1 over 
"01", it prints strings s + b + u’.

If ●  n == 0, then there is only one string t of length n, viz. the empty string. Ob-
serve that s extended with the empty string equals s (line 3). Thus, the contract 
is fulfilled by printing just s.
If ●  n > 0 then extensions of length n over "01" start with a single bit, say b, in 
"01", followed by n - 1 more bits over "01". Thus, by the induction hypoth-
esis, the loop on lines 5–6 prints all required strings.

In this reasoning style, the induction hypothesis is sometimes referred to as the re-
cursive leap of faith (Roberts, 1986; Rubio, 2018). I find this terminology unfortunate, 
because faith has nothing to do with it. There is already good terminology, viz. induction 
hypothesis. Trusting the compiler, runtime system, and hardware to execute recursive 
definitions faithfully, could be called a leap of faith. Students need to understand this 
implementation only once, e.g., by tracing an execution through the call tree and ob-
serving the role of the stack. But this is not needed (nor helpful) to understand specific 
recursive definitions, and certainly not for designing them.

2. Syntactic Rewriting

There is a third kind of semantics for programming languages, viz. based on rewriting. 
It is typically used to describe the semantics of more advanced language constructs in 
terms of simpler language constructs. For example, i += 1 can be rewritten into i = 
i + 1. That way, the meaning of += is defined, without the need to speak of how += 
works operationally, nor how to reason about it axiomatically. This rewriting is a purely 
syntactic operation and is also called a semantics-preserving program transformation. 
One sometimes calls the notation += syntactic sugar, because it does not make the 
language more expressive. It is a mere abbreviation that can be eliminated by rewriting, 
also known as syntactic desugaring.

 7     """Print s + t for all strings t over "01" of length n,
 8     in lexicographic order.

9 

 10     Assumption: n >= 0
 11     """



T. Verhoeff102

2.1. Rewriting Function Calls, by Inlining

In the absence of recursion, the function mechanism is syntactic sugar for abbreviations 
that can be eliminated by a program transformation. Consider a void1 function definition 
without return statements of the form

The call func(expr_1, expr_2, ...) can be eliminated as follows.
Replace the call1.  func(expr_1, expr_2, ...) by

where param_1, param_2, ... are local variables.
Systematically rename any local variables in2.  body whose name clashes with a 
name occurring in the context of the call.

When the expressions expr_i are free of side effects, also known as referential trans-
parency (which will be the case in our examples), Step 1 can be replaced by a double 
substitution:

1.a. Replace the call func(expr_1, expr_2, ...) by body,
1.b. in which all occurrences of parameters param_i are simultaneously replaced 

by the corresponding argument expressions (expr_i). The parentheses are 
needed to guarantee the proper evaluation order.

The result of this transformation is a program that is semantically equivalent to the origi-
nal program. As a compiler optimization technique and as a code refactoring technique, 
it is also known as inlining. In Lambda Calculus, the double substitution corresponds to 
𝛽-reduction.

For example, consider the Python function definition

Then we can rewrite as follows

1 In some programming languages void functions are known as procedures. In Python, their body does not 
contain return expr. For non-void functions and return, see Appendix A.

 13 def func(param_1, param_2, ...):
 14     body # containing param1, param2, ..., but no return

 15     param_1, param_2, ... = expr_1, expr_2, ...
 16     body

 17 def f(x, y):
 18     z = x * y
 19     print(z)

 20     f(z - 1, z + 1)
 21     print(z)

22 

 23 # inline call: x, y = z - 1, z + 1
24 



Understanding and Designing Recursive Functions via Syntactic Rewriting 103

Note that in this case the parentheses are really needed to preserve the evaluation order 
of operators. When they are not needed, we silently omit them.

Non-recursive function definitions can be completely eliminated by inlining all their 
calls. This may result in faster execution, at the expensive of a larger code foot print. 
Recursive function definitions cannot be completely eliminated this way. Well, they can, 
provided we allow infinite program texts. Conceptually, there is nothing wrong with an 
infinite program text. Termination of the recursion corresponds to guaranteeing that only 
a finite (though unbounded) part of that infinite program gets executed.

2.2. Rewriting if-statements, by Deleting Dead Branches

It turns out that for the examples in §3 we also need rewriting rules for if-statements 
with constant conditions. These are the two relevant rewrite rules:

and

2.3. Rewriting Expressions, by Constant Folding

The final rewrite step that we use in the examples below is that of evaluating an expres-
sion involving only constants. As a compiler optimization technique this is known as 
constant folding. We label such rewrites by simplify.

 25     z1 = (z - 1) * (z + 1) # z1: fresh local variable
 26     print(z1)
 27     print(z)

 28     if True:
 29         statement_suite_1
 30     else: # unreachable
 31         statement_suite_2

32 

 33 # delete dead else-branch
34 

 35     statement_suite_1

 36     if False: # unreachable
 37         statement_suite_1
 38     else:
 39         statement_suite_2

40 

 41 # delete dead if-branch
42 

 43     statement_suite_2



T. Verhoeff104

3. Example for Understanding Via Rewriting

Let’s rewrite the call print_bit_strings(2):

 44     print_bit_strings(2)
45 

 46 # inline call: n, s = 2, ""
47 

 48     if 2 == 0:
 49         print("")  
 50     else:
 51         for b in "01":
 52             print_bit_strings(2 - 1, "" + b)

53 

 54 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1 ; "" + b == b
55 

 56     for b in "01":
 57         print_bit_strings(1, b)

58 

 59 # inline call: n, s = 1, b; rename local variables
60 

 61     for b1 in "01":
 62         # print_bit__strings(1, b1)
 63         if 1 == 0:
 64             print(b1)
 65         else:
 66             for b2 in "01":
 67                 print_bit_strings(1 - 1, b1 + b2)

68 

 69 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
70 

 71     for b1 in "01":
 72         for b2 in "01":
 73             print_bit_strings(0, b1 + b2)

74 

 75 # inline call: n, s = 10, b1 + b2; rename local variable
76 

 77     for b1 in "01":
 78         for b2 in "01":
 79             # print_bit_strings(0, b1 + b2)
 80             if 0 == 0:
 81                 print(b1 + b2)
 82             else:
 83                 for b3 in "01":



Understanding and Designing Recursive Functions via Syntactic Rewriting 105

So, by equational reasoning, the recursive function applied to argument 2 is equiva-
lent to 2 nested for-loops. It is now believable that for argument n, the call is equiva-
lent to n nested for-loops, since each recursive call adds a level of nesting:

The role of (accumulation) parameter s can apparently be viewed as collecting the 
state of all enclosing for-loops. We see that recursion enables one to write programs 
with a variable number of nested for-loops. Without recursion this is often not possible 
in an imperative programming language. However, see §4 for a way of doing it in Python 
without recursion.

To my delight, the IntelliJ IDE can do the refactoring steps of inlining calls of recur-
sive functions and deleting dead branches in if-statements, but only for Java. It can’t 
do them for Python (neither can VS Code). It can inline nonrecursive Python function 
calls, but not for direct recursive functions. Surprisingly, if the recursive function is 
duplicated and turned into a pair of mutually recursive functions, the IDE will refactor 
their function calls properly.

Finally, it is important to note the difference between tracing the execution and re-
writing the program as ways of understanding recursion. Execution tracing suffers from 
the exponential blow up in branching recursion, whereas syntactic program rewriting 
does not. The latter reasons about the (unexecuted) program as a whole.

4. Designing Recursive Function Definitions

The rewriting approach described in the previous section to help understand recursive 
function definitions can also be used to help design such functions. The steps are as 
follows.

Write down a non-recursive program that solves a particular instance of the prob-1. 
lem.

 84                     print_bit_strings(0 - 1, b1 + b2 + b3)
85 

 86 # delete dead else-branch: 0 == 0
87 

 88     for b1 in "01":
 89         for b2 in "01":
 90             print(b1 + b2)

 91     # print_bit_strings(n)
 92     for b1 in "01":
 93         for b2 in "01":
 94             ...
 95                 for bn in "01":
 96                     print(b1 + b2 + ... + bn)



T. Verhoeff106

Decide which part will be done in a single layer of the recursion, which part will 2. 
be handled by recursion, and which part is handled by preceding layers. Focus on 
the perspective of that single layer.
Introduce appropriate parameters to feed in data that comes from the preceding 3. 
layers, and modify and pass them on to the lower layers. In particular, there will 
also be a parameter for the problem size.
Decide on the base case(s).4. 
Define the recursive function; in particular, introduce an5.  if-statement to distin-
guish the base case(s) and the ‘general’ case that adds a single layer.

4.1. First Design Example

As an example, consider the problem of printing all bit strings of length n.
A straightforward non-recursive program for1.  n = 3 consisting of 3 nested 
for-loops:

A single layer of the recursion does one2.  for-loop, say with control variable b2, 
the loops nested inside will be handled by the recursive call, and the outer loops 
were done in the preceding layers:

Note that the part handled by recursion concerns a generalization, be-
cause those for-loops do not just contain print(b3). Rather, they contain 
print(b1 + b2 + b3). So, the generalization is that the recursive call must 
print s = b1 + b2 extended with b3. That first part must come in via an 
extra parameter, say s. This also means that the call itself will receive that 
parameter, but then its value will be b1, received from the preceding layers. 
For the top-level call, we can take s = "", because it is the unit of string 
concatenation.

 97     for b1 in "01":
 98         for b2 in "01":
 99             for bn in "01":
 100                 print(b1 + b2 + b3)

 101     # print_bit_strings(3)
 102     ##################
 103     for b1 in "01":  # preceding layers
 104     ##################
 105         for b2 in "01":  # < this will be done in one layer
 106             ##########################
 107             for b3 in "01":          # handled by
 108                 print(b1 + b2 + b3)  # recursion
 109             ##########################



Understanding and Designing Recursive Functions via Syntactic Rewriting 107

Thus, we obtain the following structure:3. 

In case4.  n == 0, there are no for-loops, and only a print statement, which 
can be fed with the parameter s.

This leads to the following definition, which we have seen before:5. 

Note the default value s = "", corresponding to an empty context of preceding 
recursive layers.

In this approach, one can use the IDE refactoring technique known as extract func-
tion. It will introduce appropriate parameters to feed in values that are must be sup-
plied.

4.2. Second Design Example

Consider a binary tree of depth 2 (Fig. 2, left). How can it be used to create a binary tree 
of depth 3? One way is to copy the binary tree of depth 2 and combine the two instances 
with a fork on top (Fig. 2, middle). This is the view we followed in the preceding ex-
ample. But one can also grow a binary fork on each of the leaves of the binary tree of 
depth 2 to get a binary tree of depth 3 (Fig. 2, right).

 110     ##################
 111     for b1 in "01":  # preceding layers
 112     ##################
 113         # print_bit_strings(2, b1) # call being designed
 114         for b2 in "01":
 115             print_bit_strings(1, b1 + b2) # recursive call
 116             # which should inline as
 117             # for b3 in "01":
 118             #     print(b1 + b2 + b3)

 119 def print_bit_strings(n: int, s: str = "") -> None:
 120     """Print s + t for all strings t over "01" of length n,
 121     in lexicographic order.

122 

 123     Assumption: n >= 0
 124     """

125 

 126     if n == 0:
 127         # t == ""
 128         print(s)
 129     else:
 130         # n > 0, write t == b + u for b in "01"
 131         for b in "01":
 132             print_bit_strings(n - 1, s + b)



T. Verhoeff108

Let’s see how that alternative choice can be worked out in case of function print_
bit_strings.

The non-recursive program is the same as above in §4.1.1. 
A single layer of the recursion does one2.  for-loop, but now the recursion will do 
the outer for-loops and the preceding layers did the inner loops:

This may look strange, but bear with me. Apparently, in the recursion, bit 
strings of length one shorter are produced, and these still need to be extended 
and printed. So, again, we see a generalization: rather then just print all bit 
strings, we need to apply a function to them, and this function is going to be 
an extra parameter, say f. The call we are designing receives this parameter, 
which represents the work to be done in the preceding layers (inner loops) For 
the top-level call, we can take f = print. The recursive call will receive a 
function (as parameter) that adds one for-loop around the given f.
Thus, we obtain the following structure:3. 

 133     # print_bit_strings(3)
 134     ##################
 135     for b1 in "01":  # handled by recursion
 136     ##################
 137         for b2 in "01":  # < this will be done in one layer
 138             ##########################
 139             for b3 in "01":          # preceding
 140                 print(b1 + b2 + b3)  # layers
 141             ##########################

 142     # print_bit_strings(2, f)
 143     def g(s: str) -> None:
 144         for b2 in "01":
 145             f(s + b2)
 146 

Figure 2: Binary tree of depth 2 (left); two ways (middle, right) of constructing
a binary tree of depth 3 from trees of depth 2.

133 # print_bit_strings(3)
134 ##################
135 for b1 in "01": # handled by recursion
136 ##################
137 for b2 in "01": # < this will be done in one layer
138 ##########################
139 for b3 in "01": # preceding
140 print(b1 + b2 + b3) # layers
141 ##########################

This may look strange, but bear with me. Apparently, in the recursion,
bit strings of length one shorter are produced, and these still need to be
extended and printed. So, again, we see a generalization: rather then just
print all bit strings, we need to apply a function to them, and this function
is going to be an extra parameter, say f. The call we are designing receives
this parameter, which represents the work to be done in the preceding
layers (inner loops) For the top-level call, we can take f = print. The
recursive call will receive a function (as parameter) that adds one for-loop
around the given f.

3. Thus, we obtain the following structure:

142 # print_bit_strings(2, f)
143 def g(s: str) -> None:
144 for b2 in "01":
145 f(s + b2)
146

147 print_bit_strings(1, g)
148 # which should eventually inline as
149 # for b1 in "01":
150 # g(s + b1)
151

152 # where def f(s: str) -> None:
153 ########################
154 for b3 in "01": # preceding
155 print(s + b3) # layers
156 ########################

4. In case n == 0, there are no for-loops and f can just be applied to "".

5. This leads to the following recursive definition:

9

Fig. 2. Binary tree of depth 2 (left); two ways (middle, right)  
of constructing a binary tree of depth 3 from trees of depth 2.



Understanding and Designing Recursive Functions via Syntactic Rewriting 109

In case4.  n == 0, there are no for-loops and f can just be applied to "".
This leads to the following recursive definition:5. 

Let’s now see if we can understand this recursive definition by rewriting the call 
print_bit_strings(2):

 147     print_bit_strings(1, g)
 148     # which should eventually inline as
 149     # for b1 in "01":
 150     #     g(s + b1)

151 

 152     # where def f(s: str) -> None:
 153     ########################
 154         for b3 in "01":    # preceding
 155             print(s + b3)  # layers
 156     ########################

 157 def print_bit_strings(n: int, 
 158                       f: Callable[[str], None] = print
 159                      ) -> None:
 160     """Apply f to each string over "01" of length n,
 161     in lexicograhpic order.

162 

 163     Assumption: n >= 0
 164     """
 165     if n == 0: # only the empty string has length 0
 166         f("")
 167 else: # n > 0
 168         def g(s: str) -> None:
 169             for b in "01":
 170                 f(s + b)

171 

 172         print_bit_strings(n - 1, g)

 173     print_bit_strings(2)
174 

 175 # inline call: n, f = 2, print
176 

 177     if 2 == 0:
 178         print("")
 179     else:
 180         def g(s: str) -> None:
 181             for b in "01":
 182                 print(s + b)



T. Verhoeff110

183 

 184         print_bit_strings(2 - 1, g)
185 

 186 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
187 

 188     def g(s: str) -> None:
 189         for b in "01":
 190             print(s + b)

191 

 192     print_bit_strings(1, g)
193 

 194 # inline call: n, f = 1, g; rename new local function g -> g2
195 

 196     def g(s: str) -> None:
 197         for b in "01":
 198             print(s + b)

199 

 200     if 1 == 0:
 201         g("")
 202     else:
 203         def g2(s: str) -> None: # renamed local function
 204             for b in "01":
 205                 g(s + b)

206 

 207         print_bit_strings(1 - 1, g2)
208 

 209 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
210 

 211     def g(s: str) -> None:
 212         for b in "01":
 213             print(s + b)

214 

 215     def g2(s: str) -> None:
 216         for b in "01":
 217             g(s + b)

218 

 219     print_bit_strings(0, g2)
220 

 221 # inline call g(s + b); rename control variables
222 

 223     def g2(s: str) -> None:
 224         for b1 in "01": # renamed control variable
 225             for b2 in "01": # renamed control variable
 226                 print((s + b1) + b2)



Understanding and Designing Recursive Functions via Syntactic Rewriting 111

Now, the extra parameter (f) accumulates the work to be done, and in the base case 
it is applied to the empty string. Such a parameter is called a continuation. Observe that 
this definition of print_bit_strings is tail recursive and thus can easily be trans-
formed into a while-loop:

227 

 228     print_bit_strings(0, g2)
229 

 230 # inline call: n, f = 0, g2; rename new local function g -> g3
231 

 232     def g2(s: str) -> None:
 233         for b1 in "01":
 234             for b2 in "01":
 235                 print((s + b1) + b2)

236 

 237     if 0 == 0:
 238         g2("")
 239     else:
 240         def g3(s: str) -> None:
 241             for b in "01":
 242                 g2(s + b)

243 

 244         print_bit_strings(0 - 1, g3)
245 

 246 # delete dead else-branch: 0 == 0
247 

 248     def g2(s: str) -> None:
 249         for b1 in "01":
 250             for b2 in "01":
 251                 print((s + b1) + b2)

252 

 253     g2("")
254 

 255 # inline call g2("")
256 

 257     for b1 in "01":
 258         for b2 in "01":
 259             print("" + b1 + b2)

260 

 261 # simplify: "" + b1 = b1
262 

 263     for b1 in "01":
 264         for b2 in "01":
 265             print(b1 + b2)



T. Verhoeff112

Note that here g needs an extra parameter f with default value f, to ensure that 
the definition of g is a closure that properly captures the function object currently 
bound to the name f at the moment of definition. Without that f parameter, the defini-
tion of g would contain an ‘open’ (un-dereferenced) name f, which will be looked up 
during execution of g to find the value bound to f at the moment of execution, rather 
than at the moment of definition.

By redefining f directly, print_bit_strings can be simplified to

Note that f here is not defined recursively, since the f in its body is the parameter, 
which is bound to the earlier value of f.

Apparently, in Python one can write a non-recursive program that behaves like a 
variable number of nested loops. Actually, the program constructs a function that be-
haves like those nested loops. Thus, this is a form of metaprogramming.

 266 def print_bit_strings(n: int) -> None:
 267     """Print all strings over "01" of length n,
 268 i    n lexicographic order.

269 

 270     Assumption: n >= 0
 271     """
 272     f = print

273 

 274     while n > 0:
 275         def g(s: str, f=f) -> None:
 276             for b in "01":
 277                 f(s + b)

278 

 279         n, f = n - 1, g
280 

 281     f("")

 282      f = print
283 

 284      for _ in range(n):
 285          def f(s: str, f=f) -> None:
 286              for b in "01":
 287                  f(s + b)

288 

 289      f("")



Understanding and Designing Recursive Functions via Syntactic Rewriting 113

5. Conclusion

I have described and illustrated how a rewriting semantics can help understand and 
design recursive function definitions. This approach complements the traditional ap-
proaches based on operational semantics (execution tracing) and axiomatic semantics 
(contracts). I am not claiming that the approach via rewriting is the best, but I do find 
it better than execution tracing, because (i) it is purely syntactic, (ii) does not need a 
stack to distinguish the states of concurrently active recursive calls, (iii) nor does it 
suffer from any exponential blow up. Furthermore, the rewriting approach may help in 
discovering and formulating generalized contracts, which are needed for the approach 
via axiomatic semantics.

There is a clear relationship to functional programming, whose semantics can be 
based on Lambda Calculus, which has a rewriting semantics via 𝛽-reduction (inlining). 
Note that a rewriting semantics does not need a stack. In this article, I have shown that 
this approach also can work for imperative programs. It thus allows equational reason-
ing on the level of whole programs. However, some care is needed, in particular when 
return statements are used and when expressions can have side effects, causing a lack 
of referential transparency.

The approach via rewriting would benefit from IDE support for the relevant refactor-
ing techniques, because manual rewriting is tedious and error-prone. Unfortunately, such 
support is currently rather limited (JetBrains IntelliJ can do it for Java).

A word of warning is in place concerning the examples. The rewriting approach 
can help to come up with recursive definitions. But these definitions may still have 
performance issues. There are other techniques to improve the performance of recur-
sively defined functions, e.g., see Verhoeff (2018). Appendix B offers better ways of 
printing bit strings in Python. To show the power of a purely functional programming 
language, I have included some Haskell programs for generating bit strings in Ap-
pendix C.

I hope also that I have shown some nifty uses of Python. Maybe the recent Python 
compiler named Codon (Shajii, 2023) can make Python interesting for use in program-
ming contests such as the IOI.

Acknowledgment

I would like to thank Berry Schoenmakers and Sten Wessel (TU Eindhoven, Nether-
lands) and Radu Negulescu (Ontario, Canada) for helping me improve this article.

References

Roberts, E. (1986). Thinking Recursively (1st Ed.). Wiley.
Rubio-Sánchez, M. (2018). Introduction to Recursive Programming. Taylor & Francis. 



T. Verhoeff114

DOI: 10.1201/9781315120850
Shajii, A. et al. (2023). Codon: A Compiler for High-Performance Pythonic Applications and DSLs. In: Proceed-

ings of the 32nd ACM SIGPLAN International Conference on Compiler Construction. ACM, pp. 191–202. 
DOI: 10.1145/3578360.3580275

Verhoeff, T. (2018). A Master Class on Recursion. In: Adventures Between Lower Bounds and Higher Altitudes. 
Lecture Notes in Computer Science Vol. 11011. Springer, pp. 610–633. 
DOI: 10.1007/978-3-319-98355-4_35

Verhoeff, T. (2021). Look Ma, Backtracking without Recursion. (IOI Conference 2021). Olympiads in Informat-
ics, 15, 119–132. DOI: 10.15388/ioi.2021.10

Verhoeff, T. (2023). Git repository with source code for “Understanding and Designing Recursive Functions 
via Syntactic Rewriting”. (Accessed 29 April 2023)  
https://gitlab.tue.nl/t-verhoeff-software/code-for-understanding-recursion

T. Verhoeff is Assistant Professor in Computer Science at Eindhoven 
University of Technology, where he works in the group Software Engi-
neering & Technology. His research interests are support tools for veri-
fied software development and model driven engineering. He received 
the IOI Distinguished Service Award at IOI 2007 in Zagreb, Croatia, 
in particular for his role in setting up and maintaining a web archive of 
IOIrelated material and facilities for communication in the IOI com-
munity, and in establishing, developing, chairing, and contributing to 
the IOI Scientific Committee from 1999 until 2007.



Understanding and Designing Recursive Functions via Syntactic Rewriting 115

Appendix A. Python Example with Non-void Function

Eliminating the call of a non-void2 function is a bit more involved than for void func-
tions. To keep things simple, we will assume that the return statements in the function 
body occur at tail positions, that is, if the return statement would have been a function 
call, it would be the last thing done in the body (a so-called tail call). Now consider a 
non-void function definition of the form

A call of this function occurs as a (sub)expression, which is part of some statement, such 
as for example

In general, such a call takes the form

where stmt is a void function. Assuming, for simplicity, that the argument expressions 
have no side effects, it can be eliminated as follows.

Replace1.  stmt(func(expr_1, expr_2, ...) by body.
Replace every occurrence of2.  return expr in body by stmt(expr). N.B. 
The expression may need to be parenthesized as (expr).
Simultaneously replace all occurrences of parameters3.  param_i by their cor-
responding argument expressions (expr_i).
Systematically rename any local variables in4.  body whose name clashes with a 
name occurring in the context of the call.

If a return statement would not occur in a tail position, then a ‘jump’ to the end of the 
body would also be needed. Note, however, that Python does not support goto state-
ments (except on April’s Fool Day 2004).

Here is an example involving the famous recursive factorial function:

2 Non-void functions are sometimes known as fruitful functions. In Python, they contain 
return expr.

 290 def func(param_1, param_2, ...):
 291     body # containing 'return expr' in tail positions only

 292     print(func(expr_1, expr_2, ...) + 1)

 293     stmt(func(expr_1, expr_2, ...))

 294 def fac(n: int) -> int:
 295     """For n >= 0, return n factorial.
 296     """
 297     if n == 0:
 298         return 1
 299     else:
 300         return n * fac(n - 1)



T. Verhoeff116

Note that the two return statements occur in tail positions. Let‘s rewrite the statement  
print(fac(2)):

In general, print(fac(n)) rewrites to

where there are n + 1 factors in the expression.

 301     print(fac(2))
302 

 303 # inline call: n = 2
304 

 305     if 2 == 0:
 296         print(1)
 297     else:
 298         print(2 * fac(2 - 1))

299 

 300 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
301 

 302     print(2 * fac(1))
303 

 304 # inline call: n = 1
305 

 306     if 1 == 0:
 307         print(2 * 1)
 308     else:
 309         print(2 * 1 * fac(1 - 1))

310 

 311 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
312 

 313     print(2 * 1 * fac(0))
314 

 315 # inline call: n = 0
316 

 317     if 0 == 0:
 318         print(2 * 1 * 1)
 319     else:
 320         print(0 * 2 * * 1 * fac(0 - 1))

321 

 322 # delete dead else-branch: 0 == 0 ; simplify: 2 * 1 == 2
323 

 324     print(2 * 1 * 1)

  335     print(n * (n - 1) * ... * 2 * 1 * 1)



Understanding and Designing Recursive Functions via Syntactic Rewriting 117

If the body of a non-void function consists of single return statement, then one can 
do equational reasoning directly on the level of expressions rather than statements. For 
instance, consider the following definition of function fac:

Now, rewriting call fac(2) is less complicated:

 336 def fac(n: int) -> int:
 337     return 1 if n == 0 else n * fac(n - 1)

 338     fac(2)
339 

 340 # inline call: n = 2
341 

 342     1 if 2 == 0 else 2 * fac(2 - 1)
343 

 344 # delete dead if-branch: 2 != 0 ; simplify: 2 - 1 == 1
345 

 346     2 * fac(1)
347 

 348 # inline call: n = 1
349 

 350     2 * (1 if 1 == 0 else 2 * 1 * fac(1 - 1))
351 

 352 # delete dead if-branch: 1 != 0 ; simplify: 1 - 1 == 0
353 

 354     2 * 1 * fac(0)
355 

 356 # inline call: n = 0
357 

 358     2 * 1 * (1 if 0 == 0 else 0 * 2 * 1 * fac(0 - 1))
359 

 360 # delete dead else-branch: 0 == 0 ; simplify: 2 * 1 == 2
361 

 362     2 * 1 * 1



T. Verhoeff118

Appendix B. Better Python Solutions for Bit Strings

For completeness sake, let me note that the problem of printing all bit strings of a given 
length can be solved in a better way. Decompose the problem into:

Constructing all bit strings of a given length.1. 
Printing them all.2. 

In Python, one might be tempted to construct all those bit strings, by putting them in 
a list. But then they are all stored in memory before printing them (or doing whatever 
one wants, for instance, count them). For that reason, generator expressions were intro-
duced in Python. They allow on-demand construction. Here is a Python solution based 
on Fig. 2 (middle):

It can be invoked to print the bit strings like this:

And here is a solution based on Fig. 2 (right):

 363 from typing import Iterator
364 

 365 def generate_bit_strings(n: int) -> Iterator[str]:
 366     """Yield all strings over "01" of length n,
 367     in lexicographic order.

368 

 369     Assumption: n >= 0
 370     """
 371     if n == 0:
 372         yield ""
 373     else: # n > 0
 374         yield from (b + u
 375                     for b in "01"
 376                     for u in generate_bit_strings(n - 1)
 377                    )

 378 print(*generate_bit_strings(3), sep='\n')

 379 def generate_bit_strings(n: int) -> Iterator[str]:
 380     if n == 0:
 381         yield ""
 382     else: # n > 0
 383         yield from (u + b
 384                     for u in generate_bit_strings(n - 1)
 385                     for b in "01"
 386                    )



Understanding and Designing Recursive Functions via Syntactic Rewriting 119

Appendix C. Haskell Solutions for Bit Strings

It is illustrative to see the same definitions in a pure non-strict functional programming 
language like Haskell. Using the recursive decomposition in Fig. 2 (middle), combining 
two recursively grown trees of size one smaller:

and when growing one tree of size one smaller and splitting all its leaves (Fig. 2, right):

The latter is not efficient, because appending at the end of a list is not efficient in Haskell. 
But this can be improved by introducing an accumulation parameter:

Observe that this definition is more efficient, because it now prepends to a list. More-
over, it is tail recursive, and thus the recursion can be compiled into a loop. Also note 
that in Haskell, lists are lazy, that is, they are only constructed in so far as needed (like 
the generator expressions in Python used in Appendix B).

 392 bitStrings 0 = [""]
 393 bitStrings n = [u ++ [b] | u <- bitStrings (n - 1), b <- "01"]

 394 gbitStrings :: [String] -> Int -> [String]
 395 -- gbitStrings s n = [t ++ u | t <- bitStrings n, u <- s]
 396 -- hence, gbitStrings [""] = bitStrings
 397 gbitStrings s 0 = s
 398 gbitStrings s n = gbitStrings [b : t | b <- "01", t <- s] (n - 1)

 387 bitStrings :: Int -> [String]
 388 -- bitStrings n = list of strings over "01" of length n (n >= 0),
 389 -- in lexicographic order
 390 bitStrings 0 = [""]
 391 bitStrings n = [b : u | b <- "01", u <- bitStrings (n - 1)]





Olympiads in Informatics, 2023, Vol. 17, 121–130
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.09

121

Trends in Teaching Programming in Schools  
in Hungary 

Márton VISNOVITZ, Győző HORVÁTH
Eötvös Loránd University, Budapest
e-mail: visnovitz.marton@inf.elte.hu, horvath.gyozo@inf.elte.hu

Abstract. Programming education in Hungary has undergone significant changes with the new 
National Core Curriculum released in 2020. It introduced a new, revised Digital Culture cur-
riculum in public schools as a successor to the earlier informatics subject. The new curriculum 
contains several new themes and topics, with a bigger emphasis on programming and algo-
rithms. However, little is known about the effect of these changes on the teaching practices and 
tools used to teach programming. In this paper, we present the results of a survey conducted 
with schoolteachers, and data provided by the Educational Authority of Hungary. We identify 
the most common programming languages, environments and pedagogical methods used by 
teachers, to give a general overview of the trends in teaching programming in Hungarian public 
schools.

Keywords: programming, programming languages, teaching strategies, CS curriculum, Hungary.

1. Introduction

In Hungary the content of education in public schools is determined by the National 
Core Curriculum1 (thereinafter NCC), a document issued by the government. The first 
NCC was issued in 1995, new versions were released in 2003, 2007, 2012, and most 
recently in the year 2020. While the NCC from 2012 is still in effect for students who 
started their current level of education before 2020, the latest 2020 NCC is already being 
implemented as well.

Informatics as a standalone subject was present in the NCC since its first 1995 edi-
tion. Even though the contents of the informatics subject went through a lot of changes 
through the years, the contents of the 2012 NCC was considered to be outdated soon 
after its release (Zsakó and Horváth, 2017). Textbooks designed for the 2012 NCC 
(Farkas, 2011; Rozgonyi-Borus and Kokas, 2018) had very little on algorithms and 
programming in general. In addition to some introductory programming with the Logo 

1 In Hungarian: Nemzeti Alaptantanterv, or NAT for short.



M. Visnovitz, G. Horváth122

programming language, these textbooks only included code examples in the Basic and 
Pascal programming languages.

In 2020 the new NCC introduced a lot of changes to the informatics education land-
scape in Hungary. In addition to new themes, topics, and concepts, it contained changes 
to the high school final exam as well. The school subject itself has been renamed from 
informatics to digital culture. With the new NCC also came new textbooks for the 
digital culture subject. While in the past teachers were allowed to choose from several 
state-approved textbooks and exercise books, the new 2020 NCC has a single textbook 
for each subject for the given year and school type. With this change teachers no longer 
have the liberty to choose their preferred book for their classes. The new textbooks 
cover a more diverse set of programming topics than their predecessors. In addition to 
classic algorithmic programming, they showcase modern tools and environments like 
Scratch or Micro:bit boards. For advanced years the programming language of choice 
in these textbooks is Python.

In Hungary, the final exams (or graduation exams) are the final test for high school 
students before they go to university. Their score on these exams forms the basis of the 
score for applying to college. In addition to the contents of education, the NCC and re-
lated documents specify the contents of the final exams for each school subject. When it 
comes to the programming task of the final exam, both the current and the previous regu-
lations allow the students to choose from several programming languages and environ-
ments. This provides a wide variety of options for teachers when it comes to choosing 
the programming language to use for teaching programming for their students.

Considering the changes in the National Core Curriculum and the overall changing 
landscape of programming education in Hungary, we decided to conduct research on the 
methods and tools that are being used in the country, as well as the changes and current 
trends in teaching programming.

2. Research Method

To create a map of teaching methods and technologies (i.e., programming languages, 
programming environments and other educational tools) that are currently being used 
in Hungary, a nationwide online survey was conducted with teachers who teach in-
formatics, digital culture, or some other related subject in schools. Questions in the 
survey focused on the programming languages and environments the teacher uses, as 
well as the type of tasks they choose for their classes. We also asked what tools they 
used earlier but decided to abandon, to have a better understanding of the changes in 
the choice of tools.

We wanted to get differentiated information about the methods used for students of 
various age groups, thus our survey consisted of similar questions for years 1–4, years 
5–6, years 7–8, years 9–10, and years 11–13. Hungarian school is twelve or thirteen 
years (some schools have an extra year for intensive language courses), usually divided 
into three stages. Years 1–4 is elementary school, years 5–8 is primary school, and years 
9–12 is secondary school or high school. 



Trends in Teaching Programming in Schools in Hungary 123

To have a better understanding of the demographic distribution of the respondents, 
we also asked for anonymous data about the teachers themselves. These questions were 
about the type and location of the school where they teach, their level of education in 
teaching/pedagogy, and information about their years of experience teaching informat-
ics-related subjects.

To complement the data collected with the survey, we also contacted the Educational 
Authority2 of Hungary to request information on the programming languages and pro-
gramming environments used by students on the final exams in informatics. The data we 
received about the final exams from 2013 to 2020 also provides some insight on the tools 
and methods that are being used to teach programming, even though we cannot observe 
the changes induced by the NCC of 2020 on this dataset.

3. Survey Results

The online survey was filled out by a total of 169 teachers. According to the Educational 
Authority and the National Institute of Vocational and Adult Education3 at the time of 
the survey there were a total of 8038 teachers in Hungary who were teaching informat-
ics or some other informatics-related subject. Of this total number, 4702 teachers work 
in general curriculum schools, and 3338 teachers work in vocational schools. Data from 
the survey responses was aggregated and analyzed. Where applicable, data entered in the 
freeform fields was merged with the responses for the predefined answers. Other infor-
mation in freeform answers was processed manually to gain more insight on the trends 
and the reasoning for changes.

Demographic Data

As seen on Fig. 1a, respondents are evenly distributed between Budapest (capital of 
Hungary, 34%), county capitals (34%) and other cities (30%). With only four respon-
dents, smaller towns and villages are not well represented (2%). As the 2012 NCC had 
no informatics subjects for the first four years of school, it is possible that many of 
the elementary schools in these smaller settlements don’t employ informatics teachers 
at all.

Most teachers who filled out the survey (84%) have a university degree as opposed 
to those who posess a college degree (12.4%). While in the past teacher training was 
available on the college level, since 2006 all teacher training programs grant a university 
degree. This is well represented by that data about the respontents’ academic training as 
seen in Fig. 1b. 

2 In Hungarian: Oktatási Hivatal.
3 In Hungarian: Nemzeti Szakképzési és Felnőttképzési Hivatal.



M. Visnovitz, G. Horváth124

Programming Languages and Environments

The biggest part of our online survey contained questions about programming languages 
and environments. We asked teachers to indicate what tools they use to teach program-
ming to students of certain ages. As our default options we selected a mix of visual and 
code-based programming environments, but they also had the opportunity to add new 
options to the list. 

As seen in Fig. 2 the most popular programming environment between years 1 
through 8 is Scratch (with adoption rates of 62%, 81% and 49%), but it is still popular 

 

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

 

  

 

  

57 58 
50 

4 
0

20

40

60

80

100

120

140

160

Captial City with
county rights

City Town/Village

Distribution of respondents 
by type of their school 

5 

142 

21 

1 
0

20

40

60

80

100

120

140

160

PhD University College Vocational

Distribution of respondents 
by education 

a.                                                                                      b.

Fig. 1. Distribution of respondents based on their type of school (a) and their education (b).

 

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Year 1-4 Year 5-6 Year 7-8 Year 9-10 Year 11-13

Programming languages and environments used in different years 

Scratch Logo/Imagine Micro:bit Python C# JavaScript C++ Java

Fig. 2. Programming languages and enviromments used  
for teaching programming for different age groups.



Trends in Teaching Programming in Schools in Hungary 125

in years 9 and 10 (36%). Another popular choice throughout the years are Micro:bit 
boards. They are most popular also from years 1 to 8 (43%, 50%, 47%), but still used 
by some in years 9 and 10 (22%). This correlates with parts of the content of new text-
books for the NCC of 2020 (Abonyi-Tóth et al., 2020; Abonyi-Tóth et al., 2022, 2023; 
Lénárd et al., 2020) that among others use these two environments for introductory 
programming for younger students. While Logo and turtle graphics is not present in the 
new elementary school textbooks (Lénárd et al., 2021, 2022), it is still popular in the 
early years (43%, 33%, 26%), but it loses significance by the later years. Textbooks for 
these ages focus on teaching algorithmic thinking by the programming of virtual and 
physical robots.

As classical algorithmic programming goes, the new textbooks for years 9 to 11 
(Abonyi-Tóth et al., 2020; Abonyi-Tóth et al., 2020; Varga et al., 2020) use Python 
almost exclusively. Data from the responses show that Python is popular among teach-
ers in these years (48% and 35%), but some teachers also use it earlier as well (27% in 
years 7–8). Other popular languages in the high school years are C# (33% and 55%), 
and C++ (15% and 21%). Java, a programming language that is also available for the 
final exams has lower numbers (5% and 16%). An interesting outlier in the later years 
is JavaScript, a language that cannot be used on the final exams, but it is still the 3rd 
most popular code-based language based on responses (22% and 27%). It is also worth 
noting, that Scratch is also used extensively in years 9 and 10 (36%), even though 
textbooks for these years already drop block programming in favor of code-based 
programming.

In our survey we also asked teachers about the programming languages and environ-
ments that they used in the past but have abandoned for some reason. We wanted to find 
out what are the tools and methods that teachers decided not to use anymore, and what 
was their reasoning to do so. Many respondents (roughly an average of 45% between 
years 7–13) said that they abandoned Pascal as they see it outdated compared to more 
modern options. Another language/environment that a lot of teachers mentioned in this 
category is Logo. Roughly 50% of teachers said that they used Logo in the past between 
years 1 and 8 but they decided to drop it. Many of these respondents said that they 
stopped using Logo in favour of Scratch.

Strategies for Teaching Programming

In addition to information about programming languages and environments, we also 
wanted to learn more about the types of tasks teachers use to teach programming to 
students of certain ages. We based our options on the strategies identified by Bernát and 
Zsakó (Bernát and Zsakó, 2017). These strategies include teaching programming and 
algorithmic thinking through turtle graphics, robotics, everyday algorithms, the creation 
of animations and graphical games, fundamental algorithms (mathematics-based) and 
application development (desktop or mobile).

As seen on Fig. 3, turtle graphics and robotics are popular methods in years 1 through 
8. Even though Logo is no longer directly a part of the digital culture curriculum, it still 



M. Visnovitz, G. Horváth126

has around 60% adoption rate in these years (62%, 64%, and 59%). This could mean 
that teachers found new tools to teach using turtle graphics, as several respondents said 
that they abandoned Logo in favor of Scratch. The high numbers for the usage of robots 
(43%, 48%, and 47%) in these years aligns well with the new NCC of 2020 in which 
robotics gets a lot of focus in the early years.

The usage of everyday algorithms to teach programming is significant throughout 
all years. Interestingly it seems to be more popular in high school than in earlier years 
(64% and 60% in high schools compared to the 33%, 38% and 52% in elementary and 
primary school). The development of complex programs with graphical user interfaces 
is also used by a significant number of teachers in high school (37% and 48%4), but by 
far the most used method in this age group is the use of fundamental algorithms or pro-
gramming theorems (Gregorics et al., 2019; Szlávi et al., 2019). Its use gets significant 
in years 7 and 8 (60%) and is used by almost all teachers in later years (85% and 92%). 
This is expected as the most popular programming competitions in Hungary as well as 
the programming tasks of the final exam focus almost exclusively on the usage of fun-
damental algorithms.

The creation of animations and graphical games teaching strategies for programming 
is most popular between years 5 and 8 with approximately half of respondents saying 
they use these approaches (57% and 49% for animation and 52% and 55% for games). 
Scratch, a popular tool for this age group can be used for both, so it can be a good choice 
for teachers who want to use these methods in their classrooms. The textbooks of the 
2020 NCC also explore animations and games to a degree, but focus more on Micro:bit 
boards for this age group.

4 Application development was not listed as an option for years 1–8.

 

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

 

 

 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Turle graphics Robots Everyday
algorithms

Animations Graphical games Fundamental
algorithms

App development

Task types for teaching programming 

Year 1-4 Year 5-6 Year 7-8 Year 9-10 Year 11-13

Fig. 3. Task types used for teaching programming in different years.



Trends in Teaching Programming in Schools in Hungary 127

4. Data on Final Exams

In Hungary final exams are organized biannually with one exam in the summer (May–
June) and another in the autumn (October–November). As the normal time to take the 
final exams for students who finish high school is the summer, the number of students 
who participate in the exams of the summer period is significantly higher than those who 
take the autumn exams (ca. 11 times as much for years between 2013 and 2020).

Before the final exams in informatics, participating students must fill out a prelimi-
nary form to indicate the programming environment they want to use on the exam. The 
Educational Authority of Hungary has provided us with anonymous data about the re-
sponses from these forms for the exams between 2013 and 2020. The data we received 
contains information about both exam periods for each year, but as summer exams have 
a lot more participants, we opted to compare data for these exams to determine trends. 
Also, it is worth noting that the last year we have information about is 2020, so the 
changes triggered by the new 2020 NCC are not visible in the data.

On the form students only specify a programming environment, not the actual pro-
gramming language. This means that we cannot get exact information about the pro-
gramming languages used on the exam, but the environment is a good indicator of the 
language used. This means that for the analysis we grouped some programming lan-
guages together (e.g., C#, Visual Basic and Visual C++) as it is not possible to determine 
which one was used based on the data available. On the other hand, some environments 
in the list clearly indicate the programming language by listing the compilers available. 
We also have no data about the programming languages chosen by students who decided 
to take the exams on a Linux environment rather than Windows, as this is listed as a 
single environment on the form. The number of these students is very low (~0.6%) so 
omitting this data does not change the overall trends significantly.

As seen on Fig. 4, with consistently over 40% of students choosing it, the most popu-
lar programming languages on the final exams is the Visual Basic/C#/C++ group. While 

 

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

 

 

  

0%

10%

20%

30%

40%

50%

60%

Summer Summer Summer Summer Summer Summer Summer Summer

2013 2014 2015 2016 2017 2018 2019 2020

Popularity of C-style programming languages on the final exam 

Visual Basic/Visual C#/Visual C++ C/C++/Objective C Java

Fig. 4. Programming environments chosen by students  
on the summer final exams (2013–2020).



M. Visnovitz, G. Horváth128

based on the form responses we cannot tell which of the three indicated languages was 
used by the student, based on the results of the teacher survey it is logical to assume that 
most of the students in this category chose C# to solve the tasks of the final exam. This 
choice of environment shows a slight increasing trend in popularity with an average of 
about 1% per year increase in the investigated period.

C, C++, and Objective C are also in the same category based on the available options 
on the final exam form. These languages were selected by an average of 16% of the 
students with a very slight (~0.7%/year) decreasing trend between 2013 and 2020. With 
a similarly slight average change (~0.7% increase/year) Java is not particularly popular 
with an average of 9% of the students choosing it for the exams.

As seen on Fig. 5, the most significant changes in popularity can be seen in the us-
age of Pascal and Python in the given years. While popular in the past, the selection rate 
of Pascal dropped from 33% to only 5% in seven years. At the same time the number 
of students choosing Python has increased from 2% to 24% making it the second most 
popular choice. This trend is also indicated by the number of teachers who said in the 
survey that they use Python, and the high number of educators who said that they no 
longer use Pascal to teach programming.

5. Conclusions

With the release of the new National Core Curriculum in 2020 a lot of changes were 
introduced to the landscape of programming education of Hungary. With a bigger focus 
on algorithms and programming in the new curriculum we conducted an investigation 
on what programming languages, environments and task types are used by teachers in 
the country to teach programming, as well as the trends in the usage of programming 
languages in schools and the final exams.

Based on a nationwide survey conducted with teachers, we found that Scratch is a 
very popular tool in the country to teach programming, especially in elementary and pri-

 

─⧿       –+− −        –  –  ‒ − – ⎼ ⎻ ─ ‒ – ― - − ⎼⎻ 
 

 

  

0%

5%

10%

15%

20%

25%

30%

35%

Summer Summer Summer Summer Summer Summer Summer Summer

2013 2014 2015 2016 2017 2018 2019 2020

Changes in the usage of Pascal and Python in the final exams 

Python Pascal

Fig. 5. The change in the popularity of Python and Pascal on the final exams (2013–2020).



Trends in Teaching Programming in Schools in Hungary 129

mary schools. While Scratch is also used in high schools, the most popular languages for 
students of this age group are C# and Python. These languages are popular choices in the 
final exams as well. JavaScript is also popular in high schools, even though its use is not 
allowed on the final exams in informatics or digital culture. Other popular educational 
tools include Logo and Micro:bit boards. They are widely used to teach programming 
between years 1 and 8. 

As for types of tasks, turtle graphics, robotics, and the creation of animations and 
visual games are the most popular methods to teach programming in the early years. 
In high schools tasks based on fundamental algorithms are dominant, with application 
development also being a relevant method. While used in every age group, the usage of 
everyday algorithms to deepen students’ understanding of algorithms seems to be more 
popular in later years.

On the final exams between 2013 and 2020 the most popular programming environ-
ment of choice for students was Visual Studio. This indicates the popularity of C# for 
solving the programming tasks of the exam. The usage of Pascal is in a rapid decline in 
the final exam, while Python is becoming more and more popular.

While the data we collected through our survey and the data received from the au-
thorities helped us to have a better understanding of how we teach programming in the 
schools of Hungary, due to the recent modifications in the framework of informatics edu-
cation, it is important to repeat this research in the upcoming years to see what changes 
were caused in the trends in teaching programming.

Reference

Abonyi-Tóth, A., Farkas, C., Fodor, Z., Jeneiné Horváth, K., Reményi, Z., Siegler, G., Varga, P. (2020). 
Digitális Kultúra 11. Oktatási Hivatal.

Abonyi-Tóth, A., Farkas, C., Jeneiné Horváth, K., Reményi, Z., Tóth, T., Varga, P. (2020). Digitális Kultúra 
10. Oktatási Hivatal.

Abonyi-Tóth, A., Farkas, C., Turzó-Sovák, N., Varga, P. (2020). Digitális Kultúra 6. Oktatási Hivatal.
Abonyi-Tóth, A., Farkas, C., Varga, P. (2022). Digitális Kultúra 7. Oktatási Hivatal.
Abonyi-Tóth, A., Farkas, C., Varga, P. (2023). Digitális Kultúra 8. Oktatási Hivatal.
Bernát, P., Zsakó, L. (2017). Methods of Teaching Programming – Strategy. XXXth DIDMATTECH 2017, 

40–51.
Farkas, C. (2011). Informatikai ismeretek a 7. évfolyam részére (B. Danitz (ed.)). Jedlik Oktatási Stúdió.
Gregorics, T., Kovácsné Pusztai, K., Fekete, I., Veszprémi, A. (2019). Programming theorems and their 

applications. Teaching Mathematics and Computer Science, 213–241. https://doi.org/10.5485/
TMCS.2019.0466

Lénárd, A., Abonyi-Tóth, A., Turzó-Sovák, N., Varga, P. (2020). Digitális Kultúra 5. Oktatási Hivatal.
Lénárd, A., Sarbó, G., Tarné, É. (2021). Digitális Kultúra 3. Oktatási Hivatal.
Lénárd, A., Turzó-Sovák, N., Tarné, É., Sarbó, G. (2022). Digitális Kultúra 4. Oktatási Hivatal.
Rozgonyi-Borus, F., Kokas, K. (2018). Informatika 8. (K. Tóth (ed.)). Mozaik Kiadó.
Szlávi, P., Zsakó, L., Törley, G. (2019). Programming theorems have the same origin. Central-Euro-

pean Journal of New Technologies in Research, Education and Practice, 1(1), 1–12. https://doi.
org/10.36427/cejntrep.1.1.380

Varga, P., Jeneiné Horváth, K., Reményi, Z., Farkas, C., Takács, I., Siegler, G., Abonyi-Tóth, A. (2020). 
Digitális Kultúra 9. Oktatási Hivatal.

Zsakó, L., Horváth, G. (2017). Quo Vadis, Informatics Education? – Towards a more up-to-date informatics 
education. Acta Didactica Napocensia, 10(3), 45–52.



M. Visnovitz, G. Horváth130

M. Visnovitz is a PhD student at Eötvös Loránd University, Budapest 
at the Faculty of Informatics since 2018. He also obtained his degree 
here as a teacher of informatics and environmental sciences. Between 
2017 and 2021 he worked as an assistant lecturer at the Department of 
Media and Educational Informatics, his primary courses were on web 
programming and teaching methodology. His research focuses on the 
usage of the web as a programming platform to teach programming in 
schools.

G. Horváth is an associate professor at Eötvös Loránd University, the 
head of the Department of Media and Educational Informatics since 
2022. He obtained his PhD in physics in 2009 from the Faculty of 
Science of Eötvös Loránd University as well. His main research topic 
is methods of introductory programming, programming methodology 
and web technologies in programming education. He is also active-
ly participating in preparing students for international programming 
competitions, such as the IOI.



Olympiads in Informatics, 2023, Vol. 17, 131–142
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.10

131

REPORTS

Secondary School Programming Olympiads  
in Gomel Region

Michael DOLINSKY,
Faculty of Mathematics and Technologies of Programming, F. Skorina Gomel State University 
Sovetskaya str., 104, Gomel. 246019. Republic of Belarus 
e-mail: dolinsky@gsu.by 

Abstract. This article describes the content of programming competitions for students in grades 
5–8 of the Gomel region. A general idea of the content of the tasks and examples of tasks by 
topic are given. The methodology for teaching and preparing schoolchildren for such Olympiads 
is also briefly described. A serious technical basis is the instrumental system of distance learning 
developed under the supervision of the author (http://dl.gsu.by).

Keywords: programming olympiads, secondary school, instrumental system of distance learning.

1. Introduction

Nowadays programming starts in elementary school (Dagienė et al., 2019). It then 
continues into secondary school in a variety of ways: it could be machine-less learn-
ing.(Pluhar, 2021; van der Vegt, 2016), game learning (Combefis et al., 2016), using 
Scratch (Fagerlund et al., 2020), using of specialized software development environ-
ments (Kabátová et al., 2016; Tsvetkova et al., 2021; Alemany et al., 2016), robot pro-
gramming (Kanemune et al., 2017; Panskyi et al., 2021). 

Since September 1996, on the basis of secondary school 27 in Gomel, and in Sep-
tember 1999, additionally and on the basis of the distance learning site DL.GSU.BY 
(hereinafter referred to as DL), work is being carried out on the optional study of com-
puter science and programming for schoolchildren of different ages (Dolinsky, 2016). 
The key feature of this training is the early start of education – actually from the 1st 



M. Dolinsky132

grade, and in some cases from kindergarten (Dolinsky, 2018). For such students, spe-
cial programming olympiads are held in order to increase motivation for classes, as 
well as for the early acquisition of competitive experience. Problems for Olympiad in 
programming for 1–4 grades students of primary school are described at (Dolinsky, 
2022). Verification of solutions is carried out automatically on the DL.GSU.BY website 
(Dolinsky, 2017). This article offers materials for programming Olympiads for students 
in grades 5–8 of secondary school and a brief description of teaching programming and 
preparing for such Olympiads.

Training includes a consistent study of the necessary information and fixing them 
by solving the proposed problems from the systematically collected problems of Olym-
piads of past years. Solutions are checked automatically on the DL.GSU.BY website. 
Note that all the Olympiad tasks of the current academic year are included in the sys-
tematic training immediately after the last Olympiad. We also note how ideas for new 
problems appear. On the one hand, we focus on the IOI-curriculum, and on the other 
hand, every year we solve the problems of the USACO, COCI, St. Petersburg indi-
vidual and team Olympiads. It is they (or their subtasks) that serve as a source for the 
tasks of our Olympiads in subsequent years.

2. Content of the Olympiads

Tasks for grades 5–8 include 10 tasks in ascending order of complexity (each student is 
invited to solve all these tasks) on the following topics:

Introduction to programming.1. 
One-dimensional array.2. 
Two-dimensional array.3. 
Geometry.4. 
Strings.5. 
Sorting.6. 
Text task.7. 
Elements of number theory.8. 
Greedy.9. 
Queue.10. 

Topic 1: Introduction to Programming

The topic Introduction to Programming includes tasks in which you need to enter the 
initial data and output the answer, that is, to solve them, you do not need to know any-
thing other than input and output operators. At the same time, these tasks are used for 
Propaedeutics of knowledge that may be needed in the future, in mathematics, program-
ming language, Olympiad programming.

At the moment, the topic “Introduction to Programming” contains tasks on the fol-
lowing subtopics: formatted output; algebraic formulas; numeric operations (AND, OR, 



Secondary School Programming Olympiads in Gomel Region 133

XOR, DIV, MOD, SHL,SHR); built-in functions and procedures (ABS, SQR, ODD, 
ROUND, TRUNC, ORD, CHR, UPCASE, STR, VAL, LENGTH, COPY, DELETE, IN-
SERT, POS); number systems.

An example of a task on the topic “Introduction to Programming”:
Problem “Partial and Remainder”

Sample Input Sample Input:

7 
2

6 
4

Sample output: Sample output:

7 div 2 = 3 
7 mod 2 = 1

6 div 4 = 1 
6 mod 4 = 2

Topic 2: One-Dimensional Array

The topic One-Dimensional Array includes tasks to solve that require knowledge of 
the one-dimensional array declaration, IF condition statements, FOR and WHILE loops. 
At the same time, it contains tasks both for standard algorithms for processing one-
dimensional arrays and tasks for Propaedeutics of useful knowledge. Currently, the topic 
“One-Dimensional Array” contains tasks on the following subtopics: sum; count; maxi-
mum/minimum; maximum/minimum number; cycle range; even/odd positions; long 
arithmetic (addition, subtraction, multiplication of a number by a digit, signs of divisibil-
ity), prefix/suffix sums, maximums, minimums; sorting by counting; cycle parameters; 
cyclic account; deque; search; running in a row; finding of all different numbers.

An example of a task on the topic “One-Dimensional Array”:
Problem “Divisibility by 3”

Find out if a positive integer is divisible by 3. The number can have up to 30 digits 
and is given by an array A of N digits. Note: A number is divisible by 3 when the sum of 
its digits is divisible by 3. For example, the number 159 is divisible by 3 because the sum 
of its digits 1 + 5 + 9 = 15 is divisible by 3. Print the remainder of the sum of its digits 
divided by 3 and Yes/No (divided or not given number by 3)

Input format: Sample Input

N
A[1] A[2] ... A[N]
(numbers are entered with a space)

3
1 5 9

Output Format: Sample output:

r – remainder after dividing the sum of digits by 3
Yes/No

0
Yes



M. Dolinsky134

Topic 3: Two-dimensional array

The topic Two-dimensional array includes tasks for solving which require additional 
knowledge of the declaration of a two-dimensional array and the use of nested loops. 
Currently, the topic “Two-Dimensional Array” contains tasks on the following sub-top-
ics: sub-array – sum; sub-array – count; line count; array generation; array modification; 
counting along the perimeter of the array; prefix sums, maximums, minimums; strings 
comparison in array.

An example of a task on the topic “Two-dimensional array”:
Problem “Reset the maximum in rows”

A two-dimensional array of N*N elements is given. Zero out the first maximum ele-
ment in each row.

Input Format: Sample Input 

N (N<=10)
a[1,1] a[1,2] ... a[1,N]
a[2,1] a[2,2] ... a[2,N]
...
a[N,1] a[N,2] ... a[N,N]

5
3 4 1 3 8
2 5 6 6 5
1 3 6 1 4
3 5 1 7 2
1 2 3 2 1

Output Format: Sample output:

b[1,1] b[1,2] ... b[1,N]
b[2,1] b[2,2] ... b[2,N]
...
b[N,1] b[N,2] ... b[N,N]

3 4 1 3 0
2 5 0 6 5
1 3 0 1 4
3 5 1 0 2
1 2 0 2 1

Topic 4: Geometry

The topic Geometry includes tasks that require the ability to solve such problems 
as find the distance between: two points, a point and a set of points, all points of the 
set, and then apply the previously studied algorithms on one-dimensional and two-
dimensional arrays. In addition, this topic includes tasks on such basic concepts of 
geometry as perimeter and area. Currently, the topic “Geometry” contains tasks on 
the following subtopics: rectangle, Manhattan distance, distances from one point to 
set of points, the distance between the same points of two sets; neighboring distances; 
distances between all pairs of points; distances between all pairs of points of two sets; 
polygon area.

An example of a task on the topic “Geometry”:
Problem “Area under the segment”

The segment is given by the coordinates of its ends (x1, y1) and (x2, y2).



Secondary School Programming Olympiads in Gomel Region 135

Determine the area of the figure bounded by this segment, the vertical lines from its 
ends and the X axis.

Notes.
The educated figure is a trapezoid.1. 
The area of a trapezoid is half the sum of the bases times the height.2. 

Input Format: Sample Input 

x1 y1
x2 y2

2 2
1 1

Output Format: Sample output:

S
output the answer with one decimal place

1.5

Topic 5: Strings

The topic Strings includes tasks for the solution of which you need to know the data 
types character, string, array of strings and be able to invent and debug your own al-
gorithms. In fact, this topic is key to determining the potential abilities of the student. 
Currently, the topic “Strings” contains tasks on the following subtopics: cyclic shift to 
the right; if; string reversal; count on string; maximum per string; using of ORD; search 
in a string; bracket strings; lengths of array strings; count in array of strings; strings 
generation; strings array generation; converting a sentence into an array of words; for-
mation of arrays of strings; subarray of characters; strings array editor; analysis of all 
cyclic shifts of the string.

An example of a task on the topic “Strings”:
Problem “Maximum match”

N, A, B are given. A and B are strings of the same length, N is the length of these 
strings. Among all cyclic shifts to the right of string A, choose the one that matches the 
positions of the maximum number of characters with string B. Output this maximum 
number.

Input Format: Sample Input Explanations

L
S1
s2

4
AGTC
CTGA

Output Format: Sample output:

Max 2 CAGT
CTGA



M. Dolinsky136

Topic 6: Sorting

The topic Sorting includes tasks on the ability to apply the sorting algorithm by ex-
change, bubble, counting and includes tasks on the following subtopics: sorting only; 
sorting and output element with fixed number; fixed numbers; post-condition after sort-
ing; sorting and output elements with variable numbers; sorting and output elements 
from variable range of numbers; sorting with numbers; sorting by counting; compres-
sion of coordinates; all different in ascending order.

An example of a task on the topic “Sorting”:
Problem “Compression of coordinates on a straight line”

Compress coordinates of points on a straight line. All coordinates are different inte-
gers from −10^9 to 10^9. The essence of coordinate compression is as follows: – sort all 
points by coordinate. instead of the coordinates of their numbers.

Input Format: Sample Input:

K – number of numbers (k ≤ 10)
a[1] a[2] ... a[K] 
– numbers separated by spaces – coordinates before 
compression

4
1000 -2000 -1000 2000

Output Format: Sample output:

n[1] n[2] ... n[K] – coordinates after compression 3 1 2 4

Topic 7: Text problem

The topic Text problem contains problems with the original texts of the conditions of 
problems from the Belarusian Republican or Regional Olympiad (usually 1–2 pages), 
in which the task is changed so that its completion does not require knowledge more 
than that used in solving problems from topics 1–6 . The main difficulty for the partici-
pant is to single out the algorithmic statement of the problem from the textual condi-
tion. At the moment, topic 7 includes subtasks on the following algorithmic subtopics: 
one-dimensional array: sum, sum + condition, count, maximum, maximum number, 
minimum, minimum number, conditional sum, conditional minimum, selection of ele-
ments, counting sort, divisors, loops; two-dimensional array: number of maximum in 
a column, row sum, maximum in an array, adjacency matrix; array of strings: count by 
array; line count.

An example of a task on the topic “Text task”:
Task “Martian games (simplified)”

One of the most important sporting events on Mars is coming soon – the Martian 
Games! Athletes from all regions of Mars take part in them. Sergei Petrovich, coach of 
the Olymp City team, is also preparing his athletes for the Games. He trains n athletes, 



Secondary School Programming Olympiads in Gomel Region 137

k of which will go to the Games. The coach faced a difficult question: it is necessary to 
decide who will get into the national team. Competitions are held on Mars in two stages: 
steeplechase and swimming, with each athlete going through both stages. The coach 
calculated that the i-th athlete could run in ai minutes and swim in bi minutes.

There is one feature at the Mars Games: the personal results of the athletes are prac-
tically not taken into account, and the penalty time of the team plays the main role. In 
competitions, the penalty time of the team is calculated according to the following for-
mula: the product of the total running time by the total time for which all team members 
swam the distance. The smaller the penalty time of the team, the higher the place.

For example, let there be three athletes who ran in 3, 8, and 5 minutes, respectively, 
and swam in 4, 9, and 1 minute. Then the team penalty time is s = (3 + 8 + 5) * (4 + 9 + 
1) = 16 * 14 = 224.

Sergey Petrovich wants to choose k athletes in such a way as to minimize the team’s 
penalty time.

Your task is much simpler: print the number of the first athlete with the minimum 
total running and swimming time.

Input format
The first line of the input contains two integers n and k (1 <= k <= n <= 2000) – the num-
ber of Sergey Petrovich’s athletes and the required team size for the Mars Games.

Each of the next n lines contains two integers ai and bi (1 <= ai; bi <= 10^6) – the 
number of minutes during which the i-th athlete will be able to run and swim the dis-
tance.
Output format
Print the number of the first athlete with the minimum total running and swimming 
time.
Example

Input Output

10 8
12 1
13 4
1 33
10 10
3 6
1 19
3 12
10 10
7 7
33 2

5

Topic 8: Elements of number theory

The topic Elements of number theory includes tasks that require a preliminary study 
of the relevant theory. Currently, the topic “Elements of Number Theory” includes sub-



M. Dolinsky138

tasks on the following topics: For loop; nested For loops; while loop; For + While; 
dividers; simplicity test by definition; sieve of Eratosthenes; number systems; bit pro-
cessing; submasks.

An example of a problem on the topic “Elements of number theory”:
Problem “All submasks”

You are given a positive integer i (i < 1000). It is required to display in descending 
order all submasks of the binary representation of this number, starting from the number 
itself.

Input Format: Sample Input: 

I 19

Output Format: Sample Output:

Ib
I1 b1
i2 b2
…
Here
Ik – decimal number in three positions
bk is its bit representation
(in the same number of bits as the original number)

19 10011
18 10010
17 10001
16 10000
  3 00011
  2 00010
  1 00001

Topic 9: Greedy algorithm

The topic Greedy algorithm includes tasks for the solution of which it is required to pre-
sort the input data. Currently, this topic includes tasks on the following subtopics: qua-
dratic sorting; sorting with numbers; sorting by counting; quick sort; quick sort + while; 
quick sorting with numbers; comparison function; sorting array from numbers 1, 2, 3; 
correct bracket sequence; maximum depth of bracket expression; two arrays; selec-
tion of applications; deadline and price; minimum coverage; enumeration + greedy; 
stack + greedy; ad hoc.

An example of a problem on the topic “Greedy Algorithm”:
Problem “Applications”

Given N applications for conducting classes in a certain audience. In each applica-
tion, the beginning and end of the lesson are indicated (si and fi, respectively, for the i-th 
application). In the case of intersection of requests, only one of them can be satisfied. 
Requests with numbers i and j are joint (do not intersect) if the intervals [si, fi) and [sj, fj) 
do not intersect (that is, fi <= sj or fj <= si). The task is to collect the maximum number 
of not intersected applications.

Input format:
N
S[1] F[1]



Secondary School Programming Olympiads in Gomel Region 139

S[2] F[2]
…
S[N] F[N]
Where: 
N – Number of orders. 
S[i] F[i] – description of the i-th order. 
Restrictions: 
1 <= N <= 200,000
0 <= S[i] < F[i] <= 100,000,000
All numbers are integers.
Output Format:
Ans – the answer to the problem – the maximum number of not intersected applications
Example:

Sample Input: Sample output:

5
1 13
6 8
24
4 5
7 10

3

Topic 10: Queue

The topic Queue includes tasks for the solution of which it is necessary to know the 
theory on this topic. At the moment, this topic contains tasks on the following subtopics: 
horse; labyrinth; three-dimensional labyrinth; pieces; three-dimensional pieces; a horse 
with a dynamic list of moves; numerical sequences; research with help of queue; 01-
BFS; queue with bit processing.

An example of a task on the topic “Queue”
Problem “Introvert”

Ruslan is an introvert. He doesn’t like to socialize, but prefers to be alone. He lives 
in a cubidom with many rooms: K floors, K*K rooms on each floor. He constantly has to 
look for the most remote room from all the neighbors and guests. You are given a map of 
this cubidom, count how many moves Ruslan needs to make to reach the nearest guest 
or neighbor.

Input format:
The first line contains the number K (1 <= K <= 100). Next is the description of K floors 
separated by an empty line. Each floor is a K*K matrix. Symbol ‘*’ = empty cell ‘G’ = 
guest ‘S’ = neighbor ‘R’ = Ruslan. Unambiguity and correctness of tests is guaranteed.
Output Format:
Print the minimum distance from Ruslan to the nearest guest or neighbor. You can move 



M. Dolinsky140

from any room in 6 directions (left, right, forward, backward, up a floor, down a floor) if 
you don’t go outside the house.
Example:

Sample Input: Sample Output:

3
G**
***
***

*** 
*** 
*** 

*** 
*** 
**R

6

Systematic and purposeful preparation of regional Olympiads is an important means 
of developing the Olympiad movement in the region. Regional Olympiads are held in 
the Gomel region five times in the academic year: in October–November, school and 
city grades 1–11, and in March–April, school, city and regional (zonal) for students in 
grades 1–9. When conducting these Olympiads, Internet technologies and the DL.GSU.
BY website are used, which allows not only schoolchildren from the Gomel region, 
but also everyone to participate in all the Olympiads. And, it should be noted, there are 
dozens of such people from all regions of Belarus and Minsk.

3. Training and Motivation System

It is important to note that, despite the focus on programming, training is essentially 
developing in nature and therefore it is very useful both for those who later choose in-
formation technology as their professional field, and for everyone who will be engaged 
in at least some time. Practice also shows that training is built in a rather interesting 
form. All classes are conducted only on a voluntary basis during extracurricular time. 
Another equally important aspect is a differentiated teaching. The use of Internet tech-
nologies makes it possible to provide individual training along a personal educational 
trajectory. If the student is unable to solve the problem, he is consulted by other stu-
dents or the teacher. Face-to-face classes are held on Wednesdays and Sundays on the 
basis of the computer science cabinet of secondary school 27 in Gomel. Additionally, 
all students can work from home, skipping tasks that they themselves cannot solve, in 
order to subsequently receive help on this task in a face-to-face lesson.

In addition, weekly on weekends from Friday 8.00 to Sunday 20.00, one of the re-
gional Olympiads that took place earlier in 2010–2022 opens for solving, solving which 
(at a convenient time for himself) each student can check how well he knows the mate-



Secondary School Programming Olympiads in Gomel Region 141

rial he has covered, and also what topics are still to be studied. The teacher receives 
similar information about each of his students.

We also note the presence of seasonal Cups (who solves more problems in learning 
for a certain period – autumn, winter, spring, summer from all students in grades 5–8). 
The awards ceremony for the top three students takes place on the first Sunday of the 
next season. Additionally, on the first Sunday of September, the “Person of the Year” is 
awarded – a student who solves the most tasks in learning for the entire academic year 
(autumn, winter, spring, summer). Prizes and diplomas are sent to non-resident winners 
by mail. These awards are provided by OpenMyGame (http://OpenMyGame.com), 
founded by graduates of our classes.

In addition, every season of the year, the student who has made the most progress 
during that period of time is awarded. This award is held by the leader of the circles for 
programming based on the use of DL in St. Petersburg (http://vk.com/spb_dl).

4. Conclusion

This article presents the materials of programming olympiads for students in grades 
5–8 and briefly presents the methodology for teaching and preparing these students for 
such Olympiads. In April 2023, 3 secondary school students Gennady Martsinkevich 
(grade 6), Kirill Kardash (grade 7), Mikhail Brel (grade 8) became diploma winners 
of the Belarusian Republican Olympiad. And Mikhail Brel also got to the selection for 
IOI 2023. This became possible because they are ahead of the curve and participated in 
9–11 grade Olympiads, which additionally contain the following topics: recursion; re-
current relations and dynamic programming; graphs; complex data structures; complex 
dynamic programming. In the future, we plan to include these topics in the Olympiads 
for grades 5–8.

References

Alemany, F.J., Vilahur, V.J. (2016). eSeeCode: Creating a computer language from teaching experiences. 
Olympiads in Informatics, 10, 3–18.

Combéfis, S., Beresnevičius, G., Dagienė V. (2016). Learning programming through games and contests: 
Overview, characterization and discussion. Olympiads in Informatics, 10, 39–60.

Dolinsky, M. (2013). An approach to teach introductory-level computer programming. Olympiads in Informat-
ics, 7, 14–22.

Dolinsky, M. (2014). Technology for the development of thinking of preschool children and primary school 
children. Olympiads in Informatics, 8, 63–68.

Dolinsky, M. (2016). Gomel training school for Olympiads in Informatics. Olympiads in Informatics, 10, 237–
247.

Dolinsky, M. (2017). A new generation distance learning system for programming and Olympiads in Informat-
ics. Olympiads in Informatics, 11, 29–39.

Dolinsky, M., Dolinskaya, M. (2018). How to start teaching programming at Primary School. Olympiads in 
Informatics, 12, 13–24.

Dolinsky, M., Dolinskaya, M. (2019). Training in writing the simplest programs from early ages, Olympiads in 
Informatics, 13, 21–30.



M. Dolinsky142

Dolinsky, M., Dolinskaya, M. (2020). The Technology of Differentiated Instruction in Text Programming in 
Elementary School Based on the Website dl.gsu.by, Olympiads in Informatics, 14, 37–46.

Dolinsky, M.(2022). Primary School Programming Olympiads in Gomel Region (Belarus). Olympiads in In-
formatics, 16, 107–123.

Fagerlund, J., Hakkinen, P., Vesisenano, M., Viiri, J. (2020). Assessing 4th Grade Students’ Computational 
Thinking through Scratch Programming Projects. Informatics in Education, 19(4), 611–640. DOI: 10.15388/
infedu.2020.27

Kabátová, M., Kalaš, I., Tomcsányiová, M. (2016). Programming in Slovak Primary Schools. Olympiads in 
Informatics, 10, 125–159.

Kanemune, S., Shirai, S., Tani, S. (2017). Informatics and Programming Education at Primary and Secondary 
Schools in Japan. Olympiads in Informatics, 11, 143–150.

Panskyi, T., Rowinska, Z. (2021). A Holistic Digital Game-Based Learning Approach to Out-of-School Primary 
Programming Education. Informatics in Education, 20(2), 255–276. DOI: 10.15388/infedu.2021.12

Pluhar, Z. (2021). Extending computational thinking activities. Olympiads in Informatics, 15, 83–89.
Pozdniakov, S., Dagienė, V. (eds.) (2019). Informatics in schools. New ideas in school informatics. ISSEP 

2019. Lecture Notes in Computer Science, vol 11913. Springer, Cham. 
https://doi.org/10.1007/978-3-030-33759-9_7

Tsvetkova, M.S., Kiryukhin V.M. (2021). Algorithmic thinking and new digital literacy. Olympiads in Informat-
ics, 15, 105–118.

van der Vegt, W. (2016). Bridging the gap between Bebras and Olympiad; experiences from the Netherlands. 
Olympiads in Informatics, 10, 223–230.

M. Dolinsky is a lecturer in Gomel State University “Fr. Skoryna” 
from 1993. Since 1999 he is a leading developer of the educational 
site of the University (dl.gsu.by). Since 1997 he is heading prepara-
tion of the scholars in Gomel to participate in programming contests 
and Olympiad in informatics. He was a deputy leader of the team of 
Belarus for IOI’2006, IOI’2007, IOI’2008 and IOI’2009. His PhD is 
devoted to the tools for digital system design. His current research is in 
teaching Computer Science and Mathematics from early age.



Olympiads in Informatics, 2023, Vol. 17, 143–157
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.11

143

Change Management in Preparing  
Indonesian Team to IOI

Felix JINGGA1, Yugo K. ISAL2, Andreas CENDRANATA1,  
Inggriani LIEM3, Adi MULYANTO4 
1Ikatan Alumni Tim Olimpiade Komputer Indonesia (IA-TOKI), Indonesia
2Faculty of Computer Science, University of Indonesia, Indonesia 
3Bebras Indonesia National Board Organization, Indonesia
4School of Electrical Engineering and Informatics, Bandung Institute of Technology, Indonesia 
e-mail: felix@ia-toki.org, yugo@cs.ui.ac.id, andreasc002@gmail.com,  
ingebebras@gmail.com, adi@informatika.org

Abstract. Indonesia has been participating at the International Olympiad in Informatics (IOI) 
since 1995. The process of selecting the four contestants remains unchanged. All medalists in 
the national level competition were invited to take a series of training camps to select competi-
tively the candidates. In the first two decades of participation in IOI, Indonesia have collected 
two gold medals, and these surprising achievements were merely more because of luck, and 
not as a result of a reliable training/selection process. We believe reliable and good training is a 
basis to predict and expect a stable achievement. Through careful observations and reflections, 
a change of course of action is needed to bring Indonesia’s achievement to the next level. This 
paper shares Indonesia’s experience in changing and implementing strategies during the national 
training camps to better prepare the four contestants to IOI. What are the changes taken by the 
coaching team that have been exercised that made it possible for Indonesia to achieve three gold 
in the last four consecutive years?

Keywords: informatics, olympiad, training, national report, secondary education.

1. Background

Indonesia began to participate in the International Olympiad of Informatics (IOI) in 
1995 (Kurnia & Marshal, 2010; Isal et al., 2014), represented by one contestant who 
won a silver medal. This surprising achievement was covered and echoed by many news 
media and gained support from many parties to continue Indonesia’s participation in fu-
ture IOIs. The government recognizes IOI as a very prestigious competition which puts 
the country’s reputation at stake, and hence deserves endorsement and support.

The quality of training process is crucial to select the best four contestants. Despite 
many challenges, since 1995, Indonesia continued to participate in IOI. In the early 



F. Jingga et al.144

years, the selection process was conducted simply by inviting students through school 
to take the selection process, and then followed by a series of crash training camps. As 
time went by, beginning in 2002, a more proper and formal competition was conducted 
nationwide for several international olympiads in science – including informatics – in 
the form of Olimpiade Sains Nasional (OSN). This annual event is supported by the 
Ministry of Education and Culture (MoEC) of the Republic of Indonesia and has at-
tracted more participating students. Through a lot of qualifications, there will be around 
100 students attending OSN and only 30 students get medals.

Every year, all the OSN medalists of that year are invited to take part in the selection 
process which consists of four national training camps (Liem, 2016), as shown in Fig. 1. 
In P1, X represents the number of students who participated in previous year’s P1 and 
P2 that are not qualified to the next stage but still eligible for this year’s IOI. In P2 and 
P3, Y and Z represent the number of students who participated in previous year’s P3 and 
P4 respectively but are still eligible for this year’s IOI. Each training camp takes two to 
three weeks and is held in one university which can provide all the necessary facilities 
for the training. In each training camp, a set of tasks and various activities are prepared 
to be done by all the participants. All these activities are designed to select the best four 
participants who meet some criteria in a competitive and objective manner. The tasks 
and activities will be described and discussed in detail later in this paper.

Hosting a big international event such as IOI surely requires strong intention, re-
sources and huge concerted efforts to make it happen successfully. However, the experi-
ence and lessons learned from its complexity usually gives a “jump/leap” in improve-
ments in many aspects, including the achievement. After its participation in IOI for more 
than two decades, it was about time for Indonesia to offer and dare to become the host of 
IOI. The first bidding was proposed in the International Committee (IC) Meeting of IOI 
2017 in Teheran, but it was unsuccessful. In the following year, with more determination 
and preparation, our proposal to become the host of IOI was granted in the IC Meeting 
and was announced in the last General Assembly Meeting of IOI 2018 in Tsukuba.

Shortly upon returning from Tsukuba, some preparation as the future host of IOI 
took place with two objectives: success as the host and success to get a higher level of 
achievement. Until 2018, one silver and one bronze are achievable each year. Table 1 
shows the achievement of medals during past IOIs, grouped by interval of three years. 
See also from Table 1 the fact that since 2016, we managed to get one medal for each 
contestant, indicated by 0 in the “No Medal” column. This stable achievement reflects 
the effectiveness of the national training camps (Liem, 2016).

Fig. 1. Preparation Stages to Select the Indonesian Team to IOI.



Change Management in Preparing Indonesian Team to IOI 145

How can getting a gold each year be feasible? The two golds that have been col-
lected in the previous IOIs were believed more as luck than a result of a reliable training 
process. With “GO GET GOLDS” as our motto, several changes in strategies to conduct 
training camps were made and exercised. In short, as shown in Table 1, one gold was 
collected each year during 2019–2022 for three consecutive years.

In summary, in the last four years, Indonesia achieved its best results so far in IOI 
with 3 gold medals, 9 silver medals, 8 bronze medals. These results are new achieve-
ment records for Indonesia, and kicked off the “Golden Era of Indonesia” – cemented 
Indonesia to be a top performing country1 in the IOI which can be seen in Fig. 2. The 
aim of this study is to reflect on the changes made during this period for better reshap-

1 https://stats.ioinformatics.org/delegations/2019?sort=medals_desc 
 https://stats.ioinformatics.org/delegations/2020?sort=medals_desc 
 https://stats.ioinformatics.org/delegations/2021?sort=medals_desc 

Table 1
Indonesian Participant Medal Achievements at IOI 1995–2022 (grouped)

Year Gold Silver Bronze No Medal

2022 (host) 0 3 5 0
2019–2021 3 6 3 0
2016–2018 0 4 8 0
2013–2015 0 4 7 1
2010–2012 0 3 6 3
2007–2009 1 2 8 1
2004–2006 0 5 2 6
2001–2003 0 1 2 5
1998–2000 0 2 3 7
1995–1997 1 1 1 7

Fig. 2. Plot of Indonesia’s Country Ranking in IOI from year to year.



F. Jingga et al.146

ing of Indonesia’s national training program so that stable gold medals can be achieved. 
Over the years, the overall achievement tends to improve slightly as shown by the dot-
ted line in Fig. 2. 

Despite continuous improvement, several questions for further improvement have to 
be answered by TOKI, especially by the coaching team during the four national training 
camps. The rest of the paper is organized as follows. Section 2 describes several notice-
able challenges to be considered. Section 3 elaborates and discusses the recent changes 
in Indonesia’s TOKI Training Camps. Next, future works and potential challenges are 
planned and anticipated in Section 4. Finally, Section 5 concludes the discussion by list-
ing all the good practices exercised and good results observed, and implementing them 
in the future rounds of national training camps.

2. Past Challenges (from 2019 Onwards)

Given the above problem’s background, the coaching team needs to identify several 
challenges they might face, before deciding and making any changes. The following are 
the list of the challenges under consideration.

2.1. Covid-19

In the wake of COVID-19, discovering a correct formula to run every important event 
from the lowest selection in school level until reaching the last TOKI Training Camp 
was quite challenging. There were a lot of uncertainties and limitations that must be 
followed during this pandemic outbreak. Reduced overall budget from the Government, 
and regulations that limit people’s mobility just to name a few. Even though an online 
meeting was always possible, there were some IOI candidate students who had internet 
connection problems. This made the early stage of the TOKI Training Camp not optimal. 
Having online meetings as the only option, the interaction between IOI candidate stu-
dents, coaching team, and the board of supervisors become less and not optimal.

2.2. Schedule

The coaching team wants to make the best schedule so that during every TOKI Train-
ing Camp, each IOI candidate student can focus only on the training. However, it is 
hard to satisfy every IOI candidate student’s schedule from many schools. During this 
pandemic, some of the IOI candidate students also get more homework than usual. 
Some of the students need to attend A-level, university interviews, and some are still 
deciding which university they want to go to. Some of their schools also do not give 
them enough excuses so they must attend the exam – even during the TOKI Training 
Camp contest.



Change Management in Preparing Indonesian Team to IOI 147

2.3. Skill-gap

Skills gap between the top performer IOI candidate students and the bottom ones is pret-
ty wide. It is inherently hard to make a problem set challenging for the top performer, but 
still possible to solve for the bottom one. The coaching team considers separating the top 
performer from the rest, but it is very challenging to maintain balance for both problem 
sets in the operational level.

2.4. Regeneration

Regeneration for a good Scientific Committee (SC) is quite challenging. The coaching 
team needs to find SC that is committed to supporting TOKI Training Camps to succeed, 
considering that they also have their own business to take care of. An SC member should 
have strong integrity that he/she should avoid conflict of interest, especially when they 
have a close relation with any IOI candidate students. An SC member is also required 
to have a certain level of knowledge about IOI. Furthermore, not only the regeneration 
of SC is important; the regeneration of the candidate students is equally important. We 
do not want to make sure that we get a great result in one year but get nothing in the 
following year.

2.5. Synchronizing Sparring Schedules with other Countries

Synchronizing sparring schedules with other countries is also tricky since each country 
has their own activity with their own schedule. Fortunately, the sparring partners that we 
have so far are those countries with at most one hour time difference.

3. Changes in Indonesia’s TOKI Training Camp

After defining the challenges, the coaching team urged several changes for significant 
improvement in achievement in the IOI (i.e. getting at least a gold medal in each year) 
towards hosting the IOI in 2022. The coaching team did some brainstorming and decided 
to try the new coaching framework. The difference between the new coaching frame-
work and the past will be described in the following subsections. 

3.1. Restructuring Coaching Team

Previously, the coaching team structure was always the same as presented by Isal et al. 
(2014). There were four different roles: Participants, (TOKI) alumni, (TOKI bureau) 



F. Jingga et al.148

universities, and Government (Ministry of Education and Culture). Nowadays, a slight 
change has been made. In this paper, we change the term for Participants to IOI candi-
date students. As for (TOKI) alumni, it is separated into two parts, which are SC and 
TC (Technical Committee). Our team structure consists of a Board of Supervisors, a 
Head Coach, and the SC. The SC is responsible to prepare all the materials and the 
problem set given in each TOKI Training Camp. During the training camp, SC became 
the closest one that interacts with the IOI candidate students. Around 10–15 active col-
lege students who have experience in IOI or ICPC2 volunteer to be in the SC each year. 
SC used to consist of only TOKI Alumni (Isal, et al., 2014), but now non-TOKI college 
students who have experience in ICPC are also welcomed. An SC member can reside 
anywhere in the globe. Meanwhile, the TC members are those who are responsible for 
the CMS, to ensure that each round of the National Training Camp runs smoothly and 
effectively (Isal, et al., 2014). 

A new role, called Head Coach (HC), is the one who thinks of the training strategy, 
decides the curriculum, and oversees the whole progress of the National Training Camp. 
The (TOKI Bureaus) Universities, represented by the Board of Supervisors (SPVs), are 
those who give full endorsement and ensure that the TOKI Training Camp will be op-
timally supported by the government, give advice, guidance, and moral support to the 
candidate students whenever deemed necessary. SPVs members consist of lecturers ap-
pointed by the MoEC who have coached in the past since Indonesia’s first IOI participa-
tion. The Government (MoEC) remains the same.

With the current structure, the HC, SC, and TC will work closely together in coach-
ing the IOI candidate students on a day-to-day basis, while SPVs support the admin-
istration needs. Also, HC is responsible for bridging the information between the SC 
and SPVs. This scenario aligns with the future works quoted in Isal, et al. (2014), in 
which the involvement and contribution of the TOKI Alumni significantly increase 
(and the involvement of SPVs decrease) in the execution of each round of the National 
Training Camps.

3.2. Incorporating More Pedagogical Method in National Training Camps 

According to Kapur (2020), “Having a well-thought-out pedagogy can bring about im-
provements in the quality of life of teaching and the way the students can learn.” We feel 
that the new coaching framework should incorporate more pedagogical methods with 
careful thinking. The coaching framework is then proposed by borrowing from the fol-
lowing pedagogical concepts. 

3.2.1. Goodhart’s Law and McNamara Fallacy 

According to Strathern (1997), Goodhart’s Law is often stated as, “When a measure 
becomes a target, it ceases to be a good measure.” Fischer (1970) introduced a quanti-

2 International Collegiate Programming Contest – the premier global programming competition conducted 
by and for the world’s universities (https://icpc.global/).



Change Management in Preparing Indonesian Team to IOI 149

tative fallacy – called McNamara fallacy – which states that making a decision based 
solely on quantitative observations (or metrics) and ignoring all other variables often 
leads to wrong decisions.

Following both the Goodhart’s Law and the McNamara Fallacy, we decided not to 
use a single metric (i.e. points) in determining qualified IOI candidate students in Na-
tional Training Camps. We also measure outcomes – getting medals in important events. 
With that being said however, the coaching team track several daily metrics like IOI can-
didate students’ participation in discussions; each IOI candidate student’s daily problem 
solved outside the given contest; how much upsolving they do; how is the performance 
in each day; etc, only as a signal whether the coaching team need changes or not. This 
makes the IOI candidate students focus on doing their best in all aspects rather than only 
when it is in an important contest. We believe that it is important for them to do the prac-
tice contest even though its score weight is less than an important contest.

In selecting IOI candidate students that will advance to the next round of TOKI 
Training Camp, the coaching team also looks into the motivation and behavior aspects. 
The coaching team do believe that motivation and right behavior can impact each IOI 
candidate student’s performance and growth.

3.2.2. Spacing Effect and Forgetting Curve 

According to Ebbinghaus (1885) and estimations from Paul (2007), through spacing 
effect and repetition, the coaching team can minimize the forgetting effect, as shown 
by the curve in Fig. 3. Based on this consideration, the coaching team incorporates the 
repetition and spacing effect to our training method by setting the number of repetitions 
and their schedule.

Fig. 3. Alteration of forgetting curve through spacing effect.



F. Jingga et al.150

Each TOKI Training Camp is usually held in a month period (Liem, 2016). The train-
ing activities in the schedule include discussions or knowledge sharings; free time; game 
time (refer to 3.2.6); practice contests and simulation contests, alternatingly to simulate 
the spacing effect and repetition. The coaching team encourages IOI candidate students 
to solve past unsolved problems during the free time session, but it is okay for them to 
rest if they need to.

3.2.3. Co-Coaching and Community of Practice

The coaching team essentially have made the TOKI Training Camp a “community of 
practice” (CoP) for IOI candidate students. In CoP, it is stated by Lave & Wenger (1991) 
that, “it is through the process of sharing information and experiences with the group, 
members learn from each other, and have an opportunity to develop personally and pro-
fessionally”. Research shows that students learn a concept more deeply when they have 
to teach it to their peers (Fiorella & Mayer, 2013). Thus, we encourage the IOI candidate 
students to help each other “level up”.

In this community, the coaching team actively tries to create psychological safety 
so that the IOI candidate students can freely ask and learn from the coach, mentors, or 
other IOI candidate students. Not to mention that IOI candidate students can also be 
coached by other IOI candidate students in one way or another. They should feel safe 
and confident to share the knowledge they have learned with each other because shar-
ing is a way to help master what they share. In that way, the IOI candidate students can 
enjoy the learning process more in each round of the TOKI Training Camps. Within 
the community, they also can re-evaluate their understanding of the material when they 
share it through the feedback and questions from their peers or coach/mentors to see 
what they are lacking. With this new setup, not only do they improve their hard skills, 
but also their soft skills (curiosity, communication, public speaking, etc.).

3.2.4. Learn – Unlearn – Relearn

The coaching team decided to make all the TOKI Training Camp materials available in 
advance. This resulted in the IOI candidate students not knowing which specific topic 
came out in a contest. It gives each of them the opportunity to analyze the problem with 
every material that has been given to them previously. This spaced retrieval technique 
encourages the IOI candidate student to understand the problem at hand comprehen-
sively and to know more deeply about the problem addressed by the material. After the 
contest, IOI candidate students that do well need to share the insight that they get during 
the contest (refer to 2.2.3) to others through a slide presentation. The action of doing the 
contest, solving the problems, making the slides, and presenting it hopefully triggers 
what we called the “learn – unlearn – relearn” process.

The IOI candidate students “learn” the way of solving the problem when they work 
on the problem set in the contest. After that, they need to “unlearn” what they discovered 
during the contest when making the slides by revisiting and once again carefully exam-
ining the problem set and thinking about the whys and its proofs. After that, the process 
of “relearn” is done when they finish the slides and present it to their peers.



Change Management in Preparing Indonesian Team to IOI 151

3.2.5. Self-fulfilling Prophecy, Goal Setting and Pygmalion Effect 

The coaching team believes that by setting the goal of getting a gold medal, it will even-
tually yield the dream result. Chandrasegaran & Padmakumari (2018) claimed that “self-
fulfilling prophecies have a significant role in the academic domain. The findings of this 
research support previous studies, that high teacher expectations produce high student 
achievement and low expectations produce low achievement”. Based on this claim, it is 
hoped that each IOI candidate student will have full determination to get a gold medal. 
Our belief is also supported by a psychological phenomenon called Pygmalion effect in 
which high goal setting will lead to an improved performance to match that expectation 
(Mitchell & Daniels, 2003). In every meeting with the IOI candidate students, the coach-
ing team always shows their faith in them that they can get the gold medal.

3.2.6. Emotional Exhaustion (IOI TOKI Students)

As stated by Wright & Cropanzano (1998), emotional exhaustion is a chronic state of 
physical and emotional depletion that results from excessive job, personal demands, 
and/or continuous stress. TOKI Training Camp is a highly competitive environment 
and the pressure of doing well in a TOKI Training Camp to achieve the “once in a 
lifetime” opportunity for representing one’s country in IOI can be very stressful for 
the IOI candidate students. Due to this, the coaching team realizes that emotional ex-
haustion (or usually called “burnout”) can also happen to our IOI candidate students. 
Lack of interest in the work being done, decrease in work performance level, feeling of 
helplessness, and troubled sleeping are said to be examples of the effect of emotional 
exhaustion (Aamodt, 2016).

In the case of Indonesian IOI candidate students, burnout can be in the form of 
their losing motivation and even losing ambition to study anymore. To balance that, 
the coaching team introduces refreshing activities and calls it “game time”. During this 
“game time”, the coaching team and the IOI candidate students play games, laugh and 
chat together to relax and release the stress. They choose games that focus on bonding 
rather than individual results.

3.2.7. Talk & Care

The coaching team not only cares about each student’s knowledge, but also about their 
mental health (in a limited capacity – the coaching team currently does not have a mental 
health specialist). The coaching team has a weekly talk with the IOI candidate students, 
but when they feel that there is something that is troubling them, an additional talk for 
them to share their problem is offered. It can start from one SC member who is the 
closest with the student and if any further help is needed, SC will escalate to HC. If 
necessary, the HC will have a one-on-one session with the IOI candidate student. The 
talk does not really have to be formal; it can be informal like text chat, or voice call. 
The coaching team tries to make the students feel as safe as possible. Some examples 
are when the coaching team needs to adjust our schedule to accommodate IOI candidate 
students that are taking exams, or give some makeup contests later than scheduled due to 



F. Jingga et al.152

a certain student having a school issue or family issue to be taken care of. The coaching 
team needs them to feel that they are being cared for.

Another aspect is the motivational talk by the HC, also TOKI’s board of super-
visors, and/or government officials. In this talk, the coaching team reminds the IOI 
candidate students how they should love and make an impact for the country. Not 
only that, the coaching team felt that they need to give the IOI candidate students a 
purpose/a dream on why they pursue this path not only for their country, but also for 
themselves.

3.3. Raising the National Olympiad Lower Bound

Indonesia also raised the lower bound for the OSN. Some of the material that was given 
in the First Round of TOKI Training Camp (P1) is now on the syllabus of the OSN. 

Another effort is that more TOKI’s (even ICPC) Alumni are helping to teach students 
in the many Provincial Training Camps or schools. With these initiatives, OSN results 
discover more students that are better in raw talent. It is not uncommon now to have 9th 
grade students become OSN medallists. These efforts are part of an ongoing initiative 
mentioned in (Kurnia and Marshal, 2010).

3.4. Shifting More Advanced Material Earlier

Before 2019, the coaching team would give more advanced material based on the IOI 
syllabus in the Third Round of TOKI Training Camp (P3) or later. Due to 2.3, we can 
start the First Round of TOKI Training Camp (P1) with the more advanced material on 
the IOI syllabus. The coaching team also can give more problems that have a similar 
difficulty with IOI. They also can introduce material that goes beyond the IOI syllabus 
that gives a good insight to help IOI candidate students in solving problems with a higher 
level of difficulty.

3.5. Jet-lag Training

In the Fourth Round of TOKI Training Camp (P4) before IOI, the coaching team tries 
to replicate it as much as they can so that every contest in the Fourth Round of TOKI 
Training Camp (P4) is like an IOI contest – we call this “Jet-lag training”. They try to 
replicate the platform that has been used by IOI that year, the tools, and even the time 
for the contest. Based on (Mohavedi et al., 2007), the coaching team makes our Fourth 
Round of TOKI Training Camp (P4) feel like a “mini-IOI” with some other countries 
joining to be our sparring partners. The coaching team hope that with this setup, the IOI 
candidate students’ arousal level in the practice in the Fourth Round of TOKI Training 
Camp will be similar to that of IOI.



Change Management in Preparing Indonesian Team to IOI 153

3.6. Multi-countries Sparring

Since 2019, the coaching team has always tried to conduct many sparring contests with 
other countries like Singapore, Vietnam, Philippines, Malaysia, and Egypt. The reasons 
for doing the multi-countries sparring are:

The sparring contests benefit all the participating countries.1. 
The coaching team wants to know how our IOI candidate students perform not 2. 
only within ourselves, but also with peers from other countries in the contest. 
For example, the best student in one school does not mean that he/she is also 
the best student when he/she meets with other best students from other schools. 
Considering the “Goodhart’s Law”, the relative rank for each student is only 
known by the coaching team of each country.
There are some materials that are more favored in Indonesia’s National Training 3. 
Camp but not in other countries’ National Training Camp, and vice versa. Now 
with the sparring contest, our IOI candidate students are more exposed to mate-
rials that are more favored in other countries. Thus, this makes our TOKI Train-
ing Camp more challenging and rich in content for our IOI candidate students. 
For example, Geometry is one of the least favored materials in Indonesia, and 
this makes our students have less interaction with geometry problems. Multi-
countries sparring is a way to balance this.

The multi-countries sparring rounds at first happened due to the HC of these coun-
tries knowing each other well, and in spontaneous talk they created this initiative. If 
feasible, increasing the number of participating countries in the contest would contribute 
to the enrichment of the problem sets.

TLX3, a contest management platform, made by the Technical Team from IA-TOKI 
gives a huge contribution to enable these multi-countries sparring rounds and simulate 
the contest to be similar to IOI. 

3.7. Significant Contribution by SC

In each TOKI Training Camp, SC provides materials such as videos, articles, slides, and 
many more in an internal repository, so that IOI candidate students can learn about the 
material better. SC also prepares problem sets that are not too difficult but also not too 
easy with the intention to make them feel better. HC also vetted each problem set so that 
it is up to standard and TOKI Training Camp syllabus.

Even during COVID-19 period where everything needed to be done online, SC 
worked hard to produce high quality problems and materials to support the TOKI Train-
ing Camp effectively. For example, for each contest in the TOKI Training Camp, two to 
three SC members had to prepare three to four problems. All of these problems were im-
ported to TLX. Without great teamworks and the significant contributions from SC, the 

3 TOKI Learning Center – a self-made Online Judge by IA-TOKI Technical Team (https://tlx.toki.id).



F. Jingga et al.154

TOKI Training Camp would not be going smoothly. Having said that, with the diverse 
experience and background of all SC members, the coaching team is capable of helping 
the IOI candidate students to reach gold medal level.

3.8. Pre-national Online Training Camp

As mentioned in (Liem, 2016) about how Indonesia conducts a cycle of training and se-
lections of IOI participants, and also the claimed “One year, or more precisely four train-
ing camps three weeks each, is not enough to well prepare IOI participants unless we are 
lucky to find an extraordinary student”, the coaching team felt the need to further improve 
the process. Instead of “between two successive camps”, students now will be enrolled in 
mandatory pre-national online training camp before each phase of TOKI Training Camps. 
These pre-national training camps aim to equip the IOI candidate students with necessary 
materials beforehand and plenty of time to do exercises for those given materials.

Oftentimes, the coaching team also asked the IOI candidate students to do mandatory 
online contests such as other countries OI – COCI, JOI, Google Code Jam, USACO, 
Codeforces, Atcoder if the schedule of such contests does not collide with the training 
camps. We asked for the IOI candidate students’ usernames in each of those contests 
so that the coaching team can gather their performance data. These pre-national online 
training camps act as a warm-up for the upcoming TOKI Training Camps. This also 
helps the IOI candidate students against the forgetting effects mentioned in 3.2.2.

3.9. Other Small Things

During the actual IOI contest, there exist some contestants who feel disturbed by the 
room temperature, constantly audible noise, slow response of the grader, etc, and this 
might distract their concentration or even ruin their mood which is most important 
during the competition. Contestants will lose their valuable opportunity if their time is 
spent complaining. Without any warning, once in a while the coaching team deliber-
ately sets the room temperature too cold (or too warm), slowing the grader’s response 
to the extreme, making constant/sudden loud noises and observing candidate students’ 
reaction to the uncomfortable situation. This trains the candidate students to be physi-
cally and mentally adaptive to certain situations. During the contest, maintaining full 
concentration is far more important than spending the valuable remaining time for 
something that is tolerable/negligible.

4. Future Works and Potential Challenges

Despite all of the changes and improvements described above, the coaching team still 
wants to make further improvements in the future. The first thing that we want to push 



Change Management in Preparing Indonesian Team to IOI 155

is that we would like to go back to onsite TOKI Training Camp. However, because of 
the experience we have learned during the pandemic era, we would like to keep the 
pre-national online training camp online. Even though we have made an onsite national 
training camp in the past, we would have new challenges given the new normal condi-
tion after the pandemic.

The other thing is that there are a lot of programming problems in the world. We 
as the coaching team need to prepare and archive the problems in a good format so 
that when we need a certain type of problem, we can find it easily. Not only program-
ming problems, we also want to make more advanced materials with more engaging 
content.

We also would like to have more different countries in our multi-countries sparring 
so that point 3.3.6 can make more impact. We would like to expand by trying to col-
laborate with more countries with small differences in our time zone first. We also want 
to make it more interesting if we can make a joint training camp with these countries. It 
will be a big challenge since managing a camp with a joint schedule from each country 
will be difficult.

Finally, every time before the departure of Indonesia’s contingent to IOI, the motto 
“GO GET GOLDS” keeps reminding us that the character “S” in the last word always 
means PLURAL.  

5. Conclusion

We have presented how Indonesia’s achievement progresses throughout the years of 
participation in IOI. A significant leap happened when a gold medal decorated the 
achievement each year in three consecutive years – we proudly called it as The Golden 
Era of Indonesia. Several changes have been discussed, implemented, and their effec-
tiveness observed in the previous sections. The determination and timing as to when 
the changes were begun to be implemented coincides with the time when Indonesia 
was appointed to become the Host of IOI, resulting in a surprise of getting one gold in 
each of the following years. Becoming a host surely means inviting many problems, 
but the extra pressures could also bring significant improvement in many aspects in 
the country’s training ecosystem. This sharing of Indonesia’s experience might be rel-
evant to other countries facing similar challenges and inspire them to become future 
hosts of IOI.

Acknowledgement

Thanks to the Ministry of Education, Culture, Research, and Technology through the 
National Achievement Center, we are able to conduct National Training Camps. Thanks 
also to the National Training Camp Board of Supervisors that support many coaching 
team’s decisions. Thanks also to the Technical Team of IA-TOKI led by Ashar Fuadi that 



F. Jingga et al.156

develop and maintain TLX to support all of the training camps. Thanks to members of 
IA-TOKI and all the volunteers that could not be mentioned in this paper for the direct/
indirect contribution for the training camp. Thanks to Kezia Aurelia Cendranata and 
Dennis Setiawan for helping us in proofreading.

References

Aamodt, M. (2016). Industrial/Organizational Psychology: An Applied Approach (8th ed.). Boston, MA: Cen-
gage Learning. p. 563. ISBN 978-1-305-11842-3.

Chandrasegaran, J., Padmakumari, P. (2018). https://files.eric.ed.gov/fulltext/EJ1186415.pdf
Ebbinghaus, H. (1885). Memory: A Contribution to Experimental Psychology. New York: Dover.
Fiorella, L., & Mayer, R.E. (2013). The relative benefits of learning by teaching and teaching expectancy. Con-

temporary Educational Psychology, 38(4), 281–288. 
https://doi.org/10.1016/j.cedpsych.2013.06.001

Fischer, D.H. (1970). Historians’ fallacies: toward a logic of historical thought. Harper Torchbooks (1st ed.). 
New York: HarperCollins. p. 90. ISBN 978-0-06-131545-9. OCLC 185446787.

Isal, Y.K., Liem, M.M.I., Mulyanto, A., Marshal, B. (2014). Indonesian Olympiad in Informatics: Significant 
advancements between 2010 and 2014. Olympiads in Informatics, 8, 191–198.

Kapur, R. (2020). Understanding the Meaning and Significance of Pedagogy.
Kurnia, I. & Marshal, B. (2022). Indonesian Olympiad in Informatics. 
Lave, J., Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation. Cambridge: Cambridge 

University Press. ISBN 978-0-521-42374-8.
Liem, M. (2016). Reshaping Indonesian Students Training for IOI. Olympiads in Informatics, 10, 195–205.  

DOI: 10.15388/ioi.2016.12. 
Mitchell, T., Daniels, D. (2003). Motivation. DOI: 10.1002/0471264385.wei1210. 
Movahedi, A., Sheikh, M., Bagherzadeh, F., Hemayattalab, R., Ashayeri, H. (2007). A practice-specificity-

based model of arousal for achieving peak performance. J Mot Behav., 39(6), 457–62.  
DOI: 10.3200/JMBR.39.6.457-462. PMID: 18055352.

Paul, K. (2007). Study Smarter, Not Harder. Self-Counsel Press
Strathern, M. (1997). ‘Improving ratings’: audit in the British University system”. European Review. 5(3), 

305–321. DOI: 10.1002/(SICI)1234-981X(199707)5:3<305::AID-EURO184>3.0.CO;2-4.



Change Management in Preparing Indonesian Team to IOI 157

F. Jingga was a faculty member of School of Computer Science, Bi-
nus University. He is now the active Head Coach for TOKI, leading 
TOKI to achieve 3 Golds for several consecutive years from 2019. 
He is a Certified Professional Coach by ICF (International Coaching 
Federation).

Y.K. Isal is a faculty member of the Faculty of Computer Science, 
University of Indonesia. He is an active organizer, coach and judge 
for Indonesian Olympiad in Informatics since 2006. He loves pho-
tography and music, and wrote the lyrics of the IOI Theme Song.

A. Cendranata was one of the 2021 ICPC World Finalists in Dhaka, 
and also the 2nd Indonesian Team team leader in IOI 2022. He has 
since helped to coach Indonesia’s IOI team from 2019 until now.

I. Liem was a faculty member of School of Electrical and Engineer-
ing, Bandung Institute of Technology from 1979 to 2018. She is an 
active organizer, coach and judge for Indonesian Olympiad in Infor-
matics since 2004. She is the Leader of Bebras Indonesia NBO since 
2016.

A. Mulyanto is a faculty member of School of Electrical Engineer-
ing and Informatics, Bandung Institute of Technology. He is an active 
organizer, coach and judge for Indonesian Olympiad in Informatics 
since 2004. His special role as an organizer is in managing coordi-
nation among stakeholders such as universities and the Ministry of 
Education and Culture.





Olympiads in Informatics, 2023, Vol. 17, 159–172
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.12

159

National Olympiad in Informatics: Sri Lanka

Suvin Nimnaka KODITUWAKKU, Thisari GUNAWARDENA
University of Colombo School of Computing, Sri Lanka
e-mail: hello@suvin.me, thisarigun99@gmail.com 

Abstract. The National Olympiad in Informatics (NOI) in Sri Lanka is an annual programming 
competition for students in Sri Lanka. The competition aims to identify and encourage talented 
young programmers in the country. The competition consists of several rounds, including train-
ing rounds, a screening round, a national round, and a training camp for the top performers. The 
problems in the competition are designed to test the students’ programming skills, algorithmic 
thinking, and problem-solving abilities. The NOI Sri Lanka competition plays an important 
role in promoting the development of computer science and programming skills among young 
people in Sri Lanka. 

Keywords: IOI, programing olympiads, informatics, distance learning, informatics.

1. Introduction 

The National Olympiad in Informatics (NOI) serves as a significant platform for stu-
dents in Sri Lanka to cultivate their skills in computer science and programming. The 
competition aims to promote the development of theoretical knowledge, programming 
proficiency, and logical, critical, and creative thinking among students. Through the 
identification of exceptional participants, the competition facilitates the advancement 
of computer science education, raises awareness among secondary school students and 
teachers, and ultimately selects a national team to represent Sri Lanka at the Interna-
tional Olympiad in Informatics (IOI).

The National Olympiad in Informatics (NOI) was established in 1992 with the aim 
of providing a platform for Sri Lankan students to enhance their theoretical knowledge 
and programming skills in computer science. Despite its initial success, the program 
faced various challenges in management and organization, which led to stagnation in 
its progress. However, in 2018, a group of IOI Informatics Olympiad Alumni took 
the initiative to revive the program. Since then, the organizers of the NOI have been 
working tirelessly to improve the quality of the program year by year, making it one of 
the foremost olympiads in Sri Lanka. The Ministry of Education in Sri Lanka has also 
endorsed the competition, recognizing its importance in promoting computer science 
education and identifying exceptional students in the field. The competition includes 



S.N. Kodituwakku, T. Gunawardena160

training rounds, a screening round, a national round, and a training camp for the top 
performers, with one-on-one discussions available to resolve any issues encountered 
during the process.

The competition consists of several rounds, including training rounds, a screening 
round, a national round, and a training camp for the highest-performing participants. In 
addition, the organizing committee provides opportunities for one-on-one discussions 
between students and mentors to address any issues encountered during the competition. 
These initiatives provide a comprehensive platform for students to hone their skills and 
gain valuable experience.

The remainder of this country report is organized as follows: in Section 2 the orga-
nizational structure of the NOI is discussed; in Section 3 the program structure of the 
NOI is discussed; in Section 4 the performance of the Sri Lankan Delegation at the IOI 
is discussed; in Section 5 the syllabus followed at the competition is discussed; the 
Section 6 discusses how the NOI was conducted during the COVID-19 pandemic; the 
Section 7 concludes the report and Section 8 provides the acknowledgments

2. Organizational Structure of the NOI 

The NOI organization is a part of the ACM Student Chapter of UCSC managed under 
the University of Colombo School of Computing (UCSC). The NOI organization has 3 
distinct sections, namely, (i) EAC – The Executive Advisory Committee, (ii) SC – The 
Scientific Committee, (iii) OC – The Organizing Committee as shown in the Fig. 1.

2.1. Executive Advisory Committee

The EAC is composed of the academic staff members of the University of Colombo 
School of Computing (UCSC). The Director of the UCSC acts as the Patron of the 
NOI program and the Faculty Advisor of the ACM Student Chapter of UCSC also 

Fig. 1. Organizational Structure of the NOI.



National Olympiad in Informatics: Sri Lanka 161

acts as the Faculty Advisor for the NOI program. Additionally, the previous faculty 
sponsors and staff members of the UCSC who are interested in the program are part 
of the EAC.

2.2. Organizing Committee

The OC is responsible for organizing the entire NOI program. It includes volunteers 
from the ACM Student Chapter of UCSC and there are 3 major positions within the 
OC.

Project Coordinator – Responsible for the entire NOI program. ●
Project Secretary – Responsible for the operational activities. ●
Project Treasurer – Responsible for the financial activities. ●

The coordinator, secretary and treasurer are appointed by the Executive Committee 
of the ACM Student Chapter of UCSC.

The team leader and the deputy leader for the Sri Lankan delegation for the Interna-
tional Olympiad in Informatics (IOI) are appointed from the Scientific Committee and 
the Organizing Committee, one from each section. In case the team leader is selected 
from the SC, the deputy leader will be selected from the OC, and vice versa.

2.3. The University of Colombo School of Computing

In response to the rapid development and evolving nature of the Information Technol-
ogy field, coupled with anticipated structural changes, there arose an urgent need for a 
higher education institution dedicated to computing in Sri Lanka. In 2002, Vidya Jyothi 
Professor V. K. Samaranayake founded the University of Colombo School of Computing 
(UCSC) with the objective of establishing such an institution.

Since its inception, the UCSC has established a distinguished reputation as the fore-
most higher education institution for computing in Sri Lanka. Its primary objective is 
to equip students with the necessary knowledge and skills to pursue careers in Informa-
tion and Communication Technology, such as Software Developers, Systems Analysts, 
Network Administrators, Database Administrators, Web Developers, IT Managers, IT 
Strategic Planners, and IT Policy Makers.

3. Program Structure of the NOI

The NOI Sri Lanka program’s structure has 3 stages (as shown in Fig. 2); 
(i)   Monthly practice contests.
(ii)  Online qualifier round.
(iii) The National Olympiad in Informatics.



S.N. Kodituwakku, T. Gunawardena162

3.1. Monthly Practise Contests

The NOI program starts with the monthly practice contests. The participating students 
will be split into Division A and Division B, and separate monthly contests will be host-
ed for each of them. Students who are interested in participating in the NOI program 
are required to create an account at https://www.noi.lk. Once the registration is 
completed, the students will have access to the NOI Portal (https://portal.noi.
lk/), which is the Learning Management System (LMS) of the NOI program. All the 
announcements, contests and other material related to NOI Sri Lanka will be published 
on the aforementioned LMS.

3.1.1. Division A 

Each year, Division A begins with the eight participants who had the highest scores dur-
ing the NOI program the year before (Wang et al., 2010). Participants who enter this 
division will remain until the end of the next Division B monthly practice contest. Every 
month, the participants will be required to take part in a particular set of programming 
contests that the Scientific Committee determines. The contests are chosen from Code-
Forces1, AtCoder2 and CodeChef3. In most cases, there will be 4 contests each month. The 
score of the participants in the division A program will be calculated based on the score 
obtained by participating in the aforementioned contests by the Scientific Committee and 
the participants will be ranked accordingly. At the end of each month, the last ranking two 
members of Division A will be demoted to Division B.

Contestants in the division A program are allowed to compete in Division B monthly 
contests, but their results will not be considered for the final leaderboard of the Division 
B contest.

1 Available: https://codeforces.com/
2 Available: https://atcoder.jp/
3 Available: https://www.codechef.com/

Fig. 2. Program Structure of the NOI.



National Olympiad in Informatics: Sri Lanka 163

3.1.2. Division B 

Apart from the Division A participants, every other participant will be included in Divi-
sion B. Contestants in this division have to face separate monthly practice contests hosted 
by the ACM Student Chapter of UCSC in collaboration with the Scientific Committee of 
the NOI. At the end of each Division B monthly contest, the top two contestants of the 
Division B program will be promoted to the Division A program.

The monthly contests will continue for about 5 months depending on the timeline of 
the International Olympiad in Informatics (IOI).

3.2. Online Qualifier Round

The online qualifier round serves as a screening test to select the topmost participants 
of the large participant pool of Division B of the NOI. The competition is open to all 
primary and secondary school students in Sri Lanka who are younger than 20 years. 
The contest will be hosted on HackerRank4 by the ACM Student Chapter of UCSC. In 
previous years, the qualifier round was held as a 5-hour contest where the participants 
were asked to be present at the UCSC. However, due to logistical challenges and travel 
challenges, the competition was switched to a virtual mode. During the COVID-19 pan-
demic, the online qualifier was held as a 5-hour online contest with virtual proctoring but 
later in 2022, the contest was switched to a 12-hour virtual contest where the participants 
were given 6 problems to solve.

The student submissions were manually checked for plagiarism by the Scientific 
Committee and volunteers from the ACM Student Chapter of UCSC. Only the students 
with at least one valid submission were issued a certificate of participation. The top 8 
participants with the highest scores were selected to compete in the National Olym-
piad in Informatics contest (also known as the final round). In addition to the 8 partici-
pants from the qualifier round, the 8 students who remained in Division A after the final 
practice contest will be competing in the National Olympiad in Informatics. Altogether, 
16 students will be participating in the National Olympiad in Informatics.

3.3. The National Olympiad in Informatics

The National Olympiad in Informatics is a similar contest to the International Olympiad 
in Informatics (IOI). The contest will run for 2 days and contestants will receive 3 prob-
lems to solve each day within a 5-hour time block. As similar to the previous contests, 
the problems will be set by the Scientific Committee in collaboration with the Informat-
ics Olympiad alumni. The 4 students who score the highest marks in this competition 
and who satisfy the eligibility criteria of the IOI will be representing Sri Lanka at the 
International Olympiad in Informatics (IOI).

4 Available: https://www.hackerrank.com/



S.N. Kodituwakku, T. Gunawardena164

3.3.1. Awards

Considering the scores of the National Olympiad in Informatics, the following awards 
will be awarded. Unlike the competition, the medals are awarded according to two age 
groups to motivate and increase the participation of younger students.

The IOI Sri Lankan delegation – Awarded to the 4 students who score the highest in  ●
the National Olympiad in Informatics and get selected to the Sri Lankan delegation 
for the International Olympiad in Informatics (IOI).
Under 16 age category: ●

Gold – Awarded to the student with the highest score in the under-16 age  ○
category.
Silver – Awarded to the student with the second-highest score in the under-16  ○
age category.
Bronze – Awarded to the student with the third highest score in the under-16  ○
age category.

Under 20 age category: ●
Gold – Awarded to the student with the highest score in the under-20 age  ○
category.
Silver – Awarded to the student with the second-highest score in the under  ○
20 age category.
Bronze – Awarded to the student with the third highest score in the under-20  ○
age category.

Special Awards: ●
Best Performing Contestant – Awarded to the student with the highest score  ○
regardless of the age category.
Best Performing School – Awarded to the school that has the highest count  ○
of students among the finalists who participated in the final round, and have 
achieved a score that is greater than the median.
Best Performing Girl Coder – Awarded to the female participant with the  ○
highest score regardless of the age category to encourage female participants 
to take part in the contest.

The awards ceremony will be held after the Sri Lankan delegation returns home from 
the International Olympiad in Informatics (IOI).

4. Performance of the Sri Lankan Delegation

The following section will discuss the performance of the Sri Lankan delegation at the 
International Olympiad in Informatics (IOI) over the past 5 years.

According to the performance statistics from the International Olympiad in Infor-
matics-Statistics5, after the revival of the competition in 2018, a steady improvement 
could be observed in the IOI Team Performance. The IOI Team Performance shown 

5 Available: https://stats.ioinformatics.org/



National Olympiad in Informatics: Sri Lanka 165

in Fig. 4 is calculated by averaging the sum of each contestant’s average marks as 
follows.

Hi, 
Here is my photo and bio: 
  
Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the 
supervision of Professor Orit Hazzan. He continued his a post-doc research on data science education at the Bar-Ilan 
University, and retains B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University. After two decades of 
professional career is the Israeli hi-tech industry, he returned to academia for his doctoral studies on data science 
education. As part of his research, Koby developed and taught several data science programs for high school 
students, high school computer science teachers, and graduate students and researchers in social sciences and 
digital humanities. 
Best regards, 
Koby 
  
Professor Orit Hazzan is a faculty member at the Technion’s Department of Education in Science and 
Technology since October 2000. Her research focuses on computer science, software engineering and 
data science education. Within this framework she researches cognitive and social processes on the 
individual, the team and the organization levels, in all kinds of organizations. She has published about 
130 papers in professional refereed journals and conference proceedings, and eight books. In 2007-
2010 she chaired the High School Computer Science Curriculum Committee assigned by the Israeli 
Ministry of Education. In 2011-2015 Hazzan was the faculty Dean. From 2017 to 2019, Hazzan served 
the Technion Dean of Undergraduate Studies. Additional details can be found in her personal 
homepage. 
  
  
 

𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑎𝑟𝑘𝑠_𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑_𝑏𝑦_𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡
𝑡𝑜𝑡𝑎𝑙_𝑚𝑎𝑟𝑘𝑠  ∗  100%  

 

𝐼𝑂𝐼_𝑡𝑒𝑎𝑚_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝛴 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑎𝑒𝑟𝑎𝑔𝑒
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡𝑠 

 

 

 

 

 

 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

Hi, 
Here is my photo and bio: 
  
Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the 
supervision of Professor Orit Hazzan. He continued his a post-doc research on data science education at the Bar-Ilan 
University, and retains B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University. After two decades of 
professional career is the Israeli hi-tech industry, he returned to academia for his doctoral studies on data science 
education. As part of his research, Koby developed and taught several data science programs for high school 
students, high school computer science teachers, and graduate students and researchers in social sciences and 
digital humanities. 
Best regards, 
Koby 
  
Professor Orit Hazzan is a faculty member at the Technion’s Department of Education in Science and 
Technology since October 2000. Her research focuses on computer science, software engineering and 
data science education. Within this framework she researches cognitive and social processes on the 
individual, the team and the organization levels, in all kinds of organizations. She has published about 
130 papers in professional refereed journals and conference proceedings, and eight books. In 2007-
2010 she chaired the High School Computer Science Curriculum Committee assigned by the Israeli 
Ministry of Education. In 2011-2015 Hazzan was the faculty Dean. From 2017 to 2019, Hazzan served 
the Technion Dean of Undergraduate Studies. Additional details can be found in her personal 
homepage. 
  
  
 

𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑎𝑟𝑘𝑠_𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑_𝑏𝑦_𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡
𝑡𝑜𝑡𝑎𝑙_𝑚𝑎𝑟𝑘𝑠  ∗  100%  

 

𝐼𝑂𝐼_𝑡𝑒𝑎𝑚_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝛴 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑎𝑒𝑟𝑎𝑔𝑒
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡𝑠 

 

 

 

 

 

 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

It could be observed from Fig. 3 that the IOI Team Performance declined with the 
collapse of the NOI but after the revival of the program, the team is observed to be mak-
ing steady progress as depicted in Fig. 4. Also, it could be observed as shown in Fig. 4, 

Fig. 3. IOI Sri Lanka Team Performance from years 2008 to 2017.

Fig. 4. IOI Sri Lanka Team Performance from years 2018 to 2022.



S.N. Kodituwakku, T. Gunawardena166

the Sri Lankan Team saw a commendable improvement in IOI 2021 but it declined dras-
tically in IOI 2022. The Scientific Committee is working on identifying probable causes 
and taking measures to improve the performance of the team in IOI 2023.

As seen in Fig. 5 from 1994 up until 2007, the Sri Lankan team has been able to win 
medals consistently6. However, due to the collapse of the program, for nearly 10 years, 
the team was not able to win any medals. After the revival of the program in 2018, the 
team came close to winning a medal but missed by just 5 points in IOI 20217.

5. Syllabus and the Tasks

A syllabus is important as a guide for the problem setters of NOI and for making sure 
that the relevant competencies expected of the contestants are covered properly. The 
syllabus of each year’s NOI program is compiled at the beginning of the program by 
the aforementioned Scientific Committee to make sure all the competencies are covered 
at the monthly practice contests, online qualifier round and the NOI. It is compiled by 
considering the IOI Syllabus8 and past IOI questions9.

The following outlines the syllabus that was used in the National Olympiad in Infor-
matics 2022:

Graphs and Trees ●
Shortest Path ○
Connected Component/ Disjoint Set ○
Directed Acyclic Graph ○
Minimum Spanning Tree ○

6 Available: https://stats.ioinformatics.org/results/LKA
7 Available: https://stats.ioinformatics.org/results/2021
8 Available: https://ioinformatics.org/page/syllabus/12
9 Available: https://ioinformatics.org/page/contests/10

Fig. 5.  Medal Distribution of the Sri Lankan Team.



National Olympiad in Informatics: Sri Lanka 167

Algorithmic Strategies ●
Greedy Algorithm ●

Brute Force Algorithm/ Implementation ○
Divide and Conquer ○

Dynamic Programming■ 
Recursion■ 

Backtracking ○
Binary Search ●
Two Pointers ●
Ad-hoc ●
String Algorithm ●

Substring ○
Bitmask/Boolean algebra ●
Combinatorics ●

Inclusion/exclusion ○
Pigeon Hole ○
Pascal’s Identity ○
Binomial Theorem/Coefficients ○

Data Structures ●
Binary Indexed Tree ○
Segment Tree ○
Stacks ○
Heap ○
Trie ○

Miscellaneous: ●
Covers any other topic that is not included in the aforementioned syllabus ○

Throughout the program, all the above were covered in varying difficulty levels from 
easy, medium to hard as seen fit by the Scientific Committee.

5.1. Sample Tasks

The sample tasks can be demonstrated under 3 categories considering the program struc-
ture of the NOI program; (i) Monthly contests (ii) Qualifier round (iii) NOI final round. 

5.2. Monthly Contest Problems

COVID-21 Variant: The problem involves analyzing interactions between people in a 
room to determine if there is at least one person who, if infected, would spread the dis-
ease to the entire room. The interactions are recorded without timestamps. The spreading 
behavior is influenced by age and distance. The goal is to determine if COVID-19 and 
COVID-21 variants would spread to the whole room based on the given interactions. 
The input consists of the number of test cases, the number of people, the number of 



S.N. Kodituwakku, T. Gunawardena168

interactions, the age of each person, and the distances between interacting people. The 
output should indicate whether COVID-19 and COVID-21 would spread to the whole 
room for each test case (Armoni et al., 2006).

33.33% of contestants who attempted this question obtained full marks.
Topic(s): Graph (MST), Contest: Monthly contest – April 2021. 

Palindromic Substring Discovery: The task is to find the largest substring within a given 
string that can be rearranged to form a palindrome. The goal is to determine the maximum 
length of such a substring.

33.33% of the contestants who attempted obtained full marks for this problem.
Topic(s): Bitmask, Dynamic Programming, Contest: Monthly contest – January 2021. 

5.3. Qualifier Round Problems

Petrol Queue: The task is to rearrange the distribution of items in an array in non-
increasing order. The input consists of an array representing the initial distribution, and 
the goal is to determine the minimum number of operations required to achieve a non-
increasing order. At each operation, two adjacent positions can be selected to perform a 
transformation. The possible transformations involve removing an item from one posi-
tion and adding it to the adjacent position, or vice versa. The output should be a single 
integer representing the minimum number of operations needed.

A comprehensive solution has not been proposed by the candidates, and the maxi-
mum score achieved was 81.08%.

Topic(s): Dynamic Programming, Contest: Qualifier round 2022.

Building the artifact: The task is to determine if it is possible to build an artifact by 
collecting interconnected parts. The input consists of the number of parts and their con-
nections, where each connection indicates that one part must be collected before another. 
However, some parts may have a self-connection, making them impossible to collect. 
The goal is to output “YES” if it is possible to build the artifact, and “NO” if it is not 
possible.

6.98% of the contestants who attempted have obtained full marks.
Topic(s): Topological sort, Contest: Qualifier round 2021.

5.4. Final Round Problems

Mouse in the Exploding Maze: The task is to calculate the minimum time to traverse a 
2D grid (R rows x C columns) from a starting cell to an exit cell. The grid contains free 
cells, blocked cells, or cells with a toggling obstacle that alternates between accessible 
and inaccessible every minute. Movement is allowed to an adjacent cell (up, right, down, 
left) or to remain stationary each minute. The starting and exit cells are always free.

4.17% of the contestants who attempted obtained full marks for this problem.
Topic(s): Graph traversal, Contest: Final round 2019.



National Olympiad in Informatics: Sri Lanka 169

Eat Your Peanuts: The task is to assign N contiguous segments, each containing a spe-
cific quantity, among a set of F recipients in a way that minimizes the maximum total 
quantity allocated to any single recipient. Each recipient should be given one or more ad-
jacent segments, and all segments must be assigned. The program should output a single 
integer, representing the maximum total quantity received by any single recipient under 
the optimal assignment.

A comprehensive solution has not been proposed by the candidates, and the maxi-
mum score achieved was 54.02%.

Topic(s): Binary search, Contest: Final round 2019.

Find the Worlds: The task is to analyze a set of points representing cities in a 2D uni-
verse, with each city located at a unique integer coordinate (x, y). Cities are grouped 
into distinct worlds such that the euclidean distance between any two cities within a 
single world is ≤10,000, and the distance between any two cities from different worlds is 
>10,000. The program should determine and output the number of worlds and the number 
of cities within each world.

A comprehensive solution has not been proposed by the candidates, and the maxi-
mum score achieved was 95%.

Topic(s): Ad-hoc, Hashing, Contest: Final round 2020.

6. Effects of the COVID-19 Pandemic

The COVID-19 pandemic has resulted in significant disruptions to educational institu-
tions and their operations worldwide. Social distancing and other public health measures 
necessitated the closure or transition to remote learning for many schools and universi-
ties. The National Olympiad in Informatics has been affected by the pandemic in terms 
of logistics, organization, student participation, and performance. In light of all the is-
sues associated with public health concerns, the Organizing Committee has made the 
decision to conduct the contest entirely online (Dhawan, 2020).

6.1. Early Efforts

During the initial stages of the COVID-19 pandemic, the National Olympiad in Infor-
matics (NOI) related contests were conducted virtually using Zoom10 video conferencing 
software for supervision. The participants were grouped and assigned a proctor, who was 
typically a volunteer recruited from the University of Colombo School of Computing 
(UCSC). Each group was allocated a Zoom breakout room and instructed to activate 
their web cameras, enabling the proctor to monitor their participation.

Despite the Organizing Committee’s efforts, instances of cheating by contestants 
were discovered during the virtual National Olympiad in Informatics (Arkorful et 

10 Available: https://www.zoom.us/



S.N. Kodituwakku, T. Gunawardena170

al., 2015). Moreover, other issues such as a lack of computer devices resulting from 
low family income and inadequate connectivity infrastructure in rural areas affected 
some students. In response to these challenges, the OC devised an innovative solu-
tion aimed at ensuring the contest’s integrity and ensuring inclusivity across diverse 
student backgrounds.

6.2. The NOI Virtual Proctor

The NOI Virtual Proctor is a simple web-based tool where it provides students with a 
safe exam environment to participate in the National Olympiad in Informatics contests. 
The students were onboarded into the platform with their registration details and they 
were informed of their respective credentials before the contest.

National Olympiad in Informatics Virtual Proctor required initial permission to ac-
cess the web camera and to screen record in order to capture the student’s environment 
during the initial sign-in. After unlocking the contest at the start time, the tool monitored 
the student’s browser tabs to verify that only authorized pages were accessed. The al-
lowed web pages were pre-configured into the platform by the OC, and in this instance, 
only the C++ manual and the Hackerrank11 contest were permitted.

In the event of an unauthorized tab being opened, no warning was given to the stu-
dent, but the incident was immediately reported to a Slack12 channel, which contest of-
ficials monitored throughout the contest. The tool periodically captured the candidate’s 
screen and uploaded it to cloud storage in the form of 2-minute chunks. In cases of 
connectivity issues, the tool cached the video chunks and incident reports on the local 
machine and synced them with the cloud once the connection was re-established.

National Olympiad in Informatics Virtual Proctor significantly aided in the manage-
ment of the contest and in minimizing attempts of cheating during the NOI.

The same group of organizers who developed the National Olympiad in Informatics 
Virtual Proctor tool further developed it into a commercial-grade product capable of 
accommodating online evaluations on a larger scale, globally. Additional information 
on this tool can be found via the following link: https://proktara.com. This devel-
opment serves as a testament to the innovation and adaptability of the NOI Organizing 
Committee in response to the challenges presented by the COVID-19 pandemic.

Students who faced difficulties in obtaining the necessary equipment to compete in 
the NOI were provided with an online form to inform contest officials of their situation. 
The OC took necessary measures to accommodate the students who responded, includ-
ing providing equipment such as laptops and internet routers. Volunteers from the UCSC 
were dispatched to the students’ locations with the necessary equipment and to monitor 
them throughout the contest, while strictly adhering to the health guidelines imposed by 
the Sri Lankan government. This initiative ensured that all students, regardless of their 
backgrounds, were given equal opportunities to participate in the contest.

11 Available: https://www.hackerrank.com/
12 Available: https://slack.com/



National Olympiad in Informatics: Sri Lanka 171

7. Conclusion

It could be observed that after the revival of the National Olympiad in Informatics 
competition in 2018, the quality of the competition has been improving year by year. 
Unprecedented challenges such as the COVID-19 pandemic and financial instabilities 
in Sri Lanka did not hinder the progress of the competition. Identifying strengths and 
weaknesses after each year’s competition and taking a course of action that further in-
creases the strengths and overcomes weaknesses has been vital in increasing the impact 
of the competition.

In conclusion, the NOI competition can have a significant impact on the education 
system and students of Sri Lanka.  It provides an opportunity for exceptional students 
to showcase their programming skills and compete with peers from all around the 
country. Garcia-Mateos (Garcia-Mateos and Fernandez-Aleman, 2009) and Dagienė 
(Dagienė, 2010) have noted the influence of programming, and informatics olym-
piads in studying computer science. Thereby, participating in the NOI can inspire 
students to pursue higher education and professional careers in Computer Science and 
related disciplines, consequently raising the standard of Computer Science education 
in Sri Lanka.

8. Acknowledgements

We would like to express our gratitude to all those who have contributed to the success-
ful completion of the National Olympiad in Informatics (NOI). First and foremost, we 
would like to thank the Ministry of Education – Sri Lanka and the University of Co-
lombo School of Computing (UCSC) for unwavering support and guidance throughout 
the entire NOI program.

We would also like to extend our sincere gratitude to the ACM Student Chapter of 
University of Colombo School of Computing and all the volunteers who generously 
gave their time and effort to the NOI program. Without their willingness to share their 
talents and expertise, the NOI program would not have been a success.

Furthermore, we are grateful to the Informatics Olympiad alumni, our colleagues and 
our friends who provided us with their encouragement and assistance in various aspects 
of the NOI. Their contributions, no matter how small, have been significant in helping 
us navigate the challenges of conducting a successful NOI program.

Lastly, we acknowledge the financial support provided by all the institutes, which 
enabled us to carry out the NOI. We are deeply appreciative of their investment in this 
program and the opportunities it has provided us.

We recognize that there are many others who have contributed to the National 
Olympiad in Informatics in one way or another, and we apologize for any uninten-
tional omission. Nevertheless, we are grateful for everyone who has supported us in 
this endeavor. 



S.N. Kodituwakku, T. Gunawardena172

References 

Arkorful, V., Abaidoo, N. et al. (2015). The role of e-learning, advantages and disadvantages of its adoption in 
higher education. International Journal of Instructional Technology and Distance Learning, 12(1), 29–42.

Armoni, M., Gal-Ezer, J., Hazzan, O. (2006). Reductive thinking in computer science. Computer Science Edu-
cation, 16, 281–301.

Dagienė, V. (2010). Sustaining informatics education by contests. In: Teaching Fundamentals Concepts of In-
formatics: 4th International Conference on Informatics in Secondary Schools-Evolution and Perspectives, 
ISSEP 2010, Zurich, Switzerland, January 13–15, 2010. Proceedings 4. pp. 1–12.

Dhawan, S. (2020). Online learning: A panacea in the time of COVID-19 crisis. Journal of Educational Tech-
nology Systems, 49(1), 5–22.

Garcia-Mateos, G., Fernandez-Aleman, J.L. (2009). Make learning fun with programming contests. Transac-
tions on Edutainment II, pp. 246–257.

Wang, H., Yin, B., Liu, R., Tang, W., Hu, W. (2010). Selection mechanism and task creation of Chinese national 
olympiad in informatics. Olympiads in Informatics, 4, 142–150.

 

S.N. Kodituwakku graduated from the Department of Information 
Systems Engineering of the University of Colombo School of Com-
puting, Sri Lanka. He headed the National Olympiad in Informatics 
in the years 2021–2022. He was the deputy leader for the Sri Lankan 
delegation at the IOI in 2021 and the team leader in 2022. He is also a 
former scientific & technical committee member of the International 
School of Informatics for Juniors. His current research is in Human 
Computer Interaction, focusing on visual analytics.

T. Gunawardena is an undergraduate of the Department of Com-
putation and Intelligent Systems, University of Colombo School of 
Computing, Sri Lanka. She served as the secretary of the National 
Olympiad in Informatics (NOI) of Sri Lanka from 2021–2022. She is 
a member of both the Association for Computing Machinery (ACM) 
and the Institute of Electrical and Electronics Engineers (IEEE). Her 
current research interest lies in emotion-based music generation using 
deep learning techniques.



Olympiads in Informatics, 2023, Vol. 17, 173–188
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.13

173

Team Competition in Informatics and  
Mathematics “Cēsis”

Mārtiņš OPMANIS1, Diāna SILIŅA2, Sandra SILIŅA1,  
Pēteris PAKALNS
1Institute of Mathematics and Computer Science, University of Latvia,
2Cēsis State Gymnasium
e-mail: martins.opmanis@lumii.lv, diana.silina@inbox.lv, sandra.silina@lumii.lv,  
peterispakalns@gmail.com

Abstract. Team competition in informatics and mathematics for high-school students “Cēsis” 
still is a rare competition where usage of Internet resources is allowed. Internet availability puts 
additional requirements for competition tasks. We give a brief overview of used task types to-
gether with task examples. Fast and accurate evaluation and grading of solutions to non-standard 
tasks in a limited time interval is challenging, and automated evaluation tools used at the com-
petition are described.

Keywords: team competition, automated evaluation, Internet resources, task types.

1. Introduction 

In the third volume of “Olympiads in Informatics,” there was a paper about the team 
competition in informatics and mathematics (TCIM) “Ugāle” (Opmanis, 2009). TCIM 
“Ugāle” was an annual event organized until its 20th edition in 2015. Since 2016 com-
petitions almost in the same format have been organized by Cēsis State Gymnasium. 
In the following, by the abbreviation TCIM, the TCIM “Cēsis” will be assumed. Re-
location of onsite competition from one town to another, even if problem setters re-
main the same, is not a trivial task, and some requirements and observations from the 
experience together with the general competition format are described in the second 
section, “From Ugāle to Cēsis.” The general structure of the competition is described 
in the third section, while tasks and solutions of various task types are described in the 
fourth section. While the main features of the competition were kept traditional, there 
are essential differences, including the evaluation and grading of solutions described 
in the fifth section. The last section briefly mentions features of the new evaluation and 
grading system, “UIM.”



M. Opmanis et al.174

2. From Ugāle to Cēsis

At the end of 2014, in discussions with Ugāle Secondary School teacher Aivars Žogla, 
the main organizer of TCIM “Ugāle,” it became clear that it would be better to finish 
organizing competitions in Ugāle since TCIM here was organized for 20 years, and in 
some sense reached its limits. At least for local organizers, onsite finals became a routine 
task for a few passionate people who established this event long ago. Not the slightest 
reason for this decision was almost a predefined impossibility for host teams to success-
fully compete with the strongest teams from the gymnasiums from the capital of Latvia, 
Riga, and other cities.

It should be noted that almost any event has its beginning and end. Even with the 
same title, the content may be completely different. The biggest challenge in our case 
in 2015 was providing competition in the usual way, already knowing that this would 
be the last one in the current form and Ugāle. Since there were people ready to continue 
contributing to organizing similar events even if the competition would be relocated, 
the process to find another host – an organization and, most importantly, passionate 
people willing to do this, started. It was clear that the new host should also be outside 
Riga. After rejecting some mostly theoretical candidates, there came a proposal from 
Cēsis State Gymnasium and namely teachers Diāna Siliņa and Agrita Bartušēvica to 
host the competition in Cēsis, one of the eldest towns (established in 1206) in Latvia. 
While towns are located in different regions (Ugāle in Kurzeme, Cēsis in Vidzeme), its 
distance from Riga (95 km), traditionally having most finalists, makes it a perfect place 
for the event.

3. The General Format of TCIM 

TCIM is an annual high-school team competition provided in two rounds – super-
vised online semifinals in January and onsite finals in May. Each team consists of 
three participants and may use one computer with access to the Internet. Due to the 
COVID pandemic in 2020, only the semifinals were organized, and the 2021 compe-
tition was canceled altogether. Up to now, seven semifinals and six finals have been 
organized.

In the semifinals, there is one week when the local supervisor should find a 5-hour 
window for a local contest. All solutions are sent for evaluation to TCIM organizers via 
e-mail. After evaluation, finalists are announced. The ten best teams from the semifinals 
are invited to the final round. The host can invite some additional teams – usually to 
widen geographical representation or to present finals to schools not previously partici-
pated. There is a strict rule that at the final round, no more than two teams can represent 
the same school or out-of-school organization, like a computer club.

The number of teams and the best result for a particular round are shown in Table 1.
In total, 651 teams from 47 schools were in the semifinals, and 73 teams from 20 

schools participated in Cēsis at the finals.



Team Competition in Informatics and Mathematics “Cēsis” 175

The schedule of finals is traditional – in the morning, all teams arrive in Cēsis, have 
a draw for a room where they work (each team in a separate room), and after the short 
opening ceremony, start working on tasks. For solving, 5.5 hours are given with a small 
break for lunch. After that jury proceeds with the evaluation of solutions, and at the clos-
ing ceremony, teams are awarded. All teams get diplomas – the first three place winners 
for medals, the following three get honorable mentions, and all others for participation. 
First-place winner also receives a trophy and is obliged to cut the winner’s cake in pieces 
to treat all participants and organizers. 

It should be noted that, despite a high level of competition content, the atmosphere 
at the finals is friendly and informal. For example, traditionally printed task descriptions 
are not simply given to teams; they should solve a small task to deserve them. For ex-
ample, in the final round of 2023, this task was to name any Latvian city having at least 
three letters shared with the name “CĒSIS.”

Traditionally, the strongest teams were from Riga State Gymnasium N1, which won 
6 out of 7 finals, and only in 2019, the host team from Cēsis State Gymnasium won the 
competition.

Besides the contest part, serious organizational work is “behind the scenes.” Since 
TCIM is provided without financial support from the state, the successful provision of 
competition depends on the support of local enthusiasts from Cēsis State Gymnasium 
(with the direct support of directors Gunta Bērziņa and Ina Gaiķe), Cēsis municipality 
and sponsors. At the finals, there are “must have” things like a separate working room, 
one computer with Internet access for each team, and writing utensils and scratch paper. 
Traditionally, during finals, there is an excursion for teachers of participating teams and 
some activities for participants while submitted answers are evaluated. All participants 
of TCIM finals receive small memorabilia gifts at the end of the competition.

4. Tasks and Solutions

A lot about task types in TCIMs was written in previous papers (Opmanis, 2009; Op-
manis, 2015). 

Table 1
Number of teams and schools represented at TCIM “Cēsis” and the best result

Year Semifinals:  
teams/schools

The best result  
(max 1000 points)

Finals:  
teams/schools

The best result 
(max 1000 points)

2016   75/18 833 11/8 652.18
2017 100/27 860 10/9 715
2018 126/31 979 13/10 666
2019 118/25 814 13/10 607.44
2020 109/24 809 – –
2022   40/15 988 11/7 863
2023   83/22 927 15/11 554.32



M. Opmanis et al.176

There still are no widely known competitions in mathematics and informatics where 
unlimited usage of Internet resources is allowed. It should be emphasized that “Internet 
resources” assumes only access to materials and not the usage of the Internet as a com-
munication environment to get help from outside. Allowance of Internet usage defines 
strict rules for task selection – tasks taken “as is” from public sources should be, in gen-
eral, avoided (if it is not intended to search for this particular information). Published 
tasks can be given with some modifications or as subtasks. However, figures should 
not be copied but made from scratch to exclude direct matches with published sources. 
Even if the author of the task assumes that his task is original, it should be carefully 
checked that a solution can’t be obtained by a simple search.

Since task descriptions are prepared in Latvian, it simplifies the risk of finding a 
similar task compared to task descriptions in English. However, participant’s knowl-
edge of English, the rapid evolution of translation and search systems, and artificial 
intelligence systems like ChatGPT make the preparation of task sets more and more 
challenging.

We will characterize some general aspects of tasks and expected answers:

Answers should be short in form – one or a few numbers, a short text string, some con-
figuration of elements (like domino or pentamino pieces) or filled table (like SUDOKU). 
All possible correct answers should be found if it is not stated that it is enough to find any 
one of them. Traditionally it is not said whether there is one or several answers.

The number of tasks. In each round, ten tasks, each worth 100 points, are given.

Subtasks and grading schema. In the task set, tasks with “all or nothing” grading 
are rare – almost all tasks have 2–5 subtasks with partial scores. Different amounts 
of points are given for solved subtasks in various tasks, and this results in an excel-
lent distribution of total points without (in finals) or rare (in semifinals) ties and, as a 
consequence, no problems with the determination of the winner or deciding the best 
teams.

Description of tasks. TCIM has much more freedom in task themes and task description 
formats than classic olympiads and contests like Bebras, where there is no space to de-
scribe unknown concepts or complicated rules. In Bebras, there is also time pressure since 
contestants should be able to comprehend and solve each task in 2–3 minutes.

TCIM has no formal limits on a description length or how standard language should 
be used. The main principle is that task descriptions should be clear and unambiguous. 
However, in the history of TCIM, there has been a case when due to text modification, 
the initial content of the task was slightly changed, leading to more than one correct 
answer. While the length of task descriptions is not limited, the usual length of a printed 
task set is 3 to 5 pages.

We feel free to use not-so-formal language. For example, in the task “Equivalent” 
(see below), after the observation that several jury members missed one particular clue, 
the last sentence was added.

While sometimes it is hard to label some tasks properly, the usual task types used 
are the following:



Team Competition in Informatics and Mathematics “Cēsis” 177

4.1. Data Processing/Data Mining Tasks

These tasks are traditional and were presented at all TCIM rounds. In these tasks file 
with some data or a link to the online data source is given, and teams are asked to ex-
plore these data and get answers to several questions. The intended tool is a spreadsheet, 
while it can be some database managing system or programming language. For example, 
at the finals of 2023, historical daily weather data for four years in five Latvian cities 
were obtained from the site “Visual Crossing Weather” (Visual Crossing), and one of the 
questions offered was: “In how many days there are no two cities with the same descrip-
tion of weather?”

It should be noted that since 2018 no team has gotten a full score in data processing 
tasks at TCIM finals.

4.2. Word Problems

Good tasks can be found in old journals and books. Since the Latvian National Digital 
Library (Periodika) contains scanned old periodicals, it is easy to find word problems 
even from the 19th century. One of such tasks from the “Rota” journal (issue 7, 1886) in 
its original form (including Gothic writing and rules to denote diacritical signs charac-
teristic for this period) was given in the semifinal of 2017 (see Fig. 1), and 67% of teams 
solved this task. 

A similar approach was used in the semifinals of 2023, where an even older task from 
the same journal (issue 1, 1884) in its original form was given. However, the success rate 
was lower this time – only 16,7% of teams solved this task. Of course, in these cases, the 
historical representation of the task is also essential.

4.3. Geometry

During the task preparation, several possible side effects should be considered. As a rule, 
there should be no answers that are easy to guess in geometrical tasks – like an angle 
of 30°, 45°, or 60°. From the experience of the last Latvian Math Olympiad (LMO), 
there may be an erroneous assumption that the answer should always be an integer. For 
example, if it is given that area of a rectangle is 20, then possible options for the shortest 

Fig. 1. The task from the journal “Rota.”



M. Opmanis et al.178

side can be only 1, 2, and 4. Therefore at TCIM, in geometrical tasks, almost all answers 
are real numbers, not integers, and an accuracy of 10-6 is required to get a full score. 
However, even this cannot help if the participant is familiar with software like GeoGebra 
in which you, in particular tasks, can get the proper answer just by the correct drawing.

Example of a task in geometry (semifinals of 2023):

In the convex quadrilateral ABCD, ∠ ABD = ∠ ACD = 90°. Lengths of three edges are 
known: AB = 487 cm, BC = 283 cm, and AD = 2022 cm. Find the length of the edge CD 
in centimeters! 

4.4. Combinatorics

Allowing the usage of Internet resources makes it more and more challenging to cre-
ate tasks in combinatorics. For example, suppose it is asked to find several different 
combinations for particular parameter values. In that case, a standard way of solving 
may be to find “by hand” the answers for some small parameter values and use them to 
search for an appropriate integer sequence in the famous Online Encyclopaedia of In-
teger Sequences (OEIS®). If there are enough correct first members and the contestant 
can understand the mathematical language of how the particular sequence is described, 
the problem can likely be solved (at least partially). The task for problem setters now 
includes mandatory checking of OEIS® sources and (if possible) asking for solutions 
for values above those given in OEIS® or linked resources. It should be noted that find-
ing an appropriate sequence, in general, is welcome, especially if a problem is formu-
lated in a not straightforward form where the skill to understand that this is the correct 
sequence is deciding.

The task authors can be even more proud if the task has no corresponding sequence 
in OEIS® at the time when this task is given in a competition. One such task, “Guards 
of a castle,” was presented at the finals of 2023:

Four walls of the castle are defended by guards who may be positioned only in eight 
places – in towers at the corners or in the middle of each wall. Guards in the towers 
defend two appendant walls while guards in the middle of the wall guard only this wall. 
Guards should be distributed so that the same number of guards defends all four walls. 
If one distribution can be obtained from another by reflection and/or rotation, they are 
counted as one. For example, if there are six guards, there are five different distributions 
shown in Fig. 2. 

What is the number of different distributions for a) 9, b) 30, c) 91, d) 2023 guards? 

Hi, 
Here is my photo and bio: 
  
Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the 
supervision of Professor Orit Hazzan. He continued his a post-doc research on data science education at the Bar-Ilan 
University, and retains B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University. After two decades of 
professional career is the Israeli hi-tech industry, he returned to academia for his doctoral studies on data science 
education. As part of his research, Koby developed and taught several data science programs for high school 
students, high school computer science teachers, and graduate students and researchers in social sciences and 
digital humanities. 
Best regards, 
Koby 
  
Professor Orit Hazzan is a faculty member at the Technion’s Department of Education in Science and 
Technology since October 2000. Her research focuses on computer science, software engineering and 
data science education. Within this framework she researches cognitive and social processes on the 
individual, the team and the organization levels, in all kinds of organizations. She has published about 
130 papers in professional refereed journals and conference proceedings, and eight books. In 2007-
2010 she chaired the High School Computer Science Curriculum Committee assigned by the Israeli 
Ministry of Education. In 2011-2015 Hazzan was the faculty Dean. From 2017 to 2019, Hazzan served 
the Technion Dean of Undergraduate Studies. Additional details can be found in her personal 
homepage. 
  
  
 

𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑎𝑟𝑘𝑠_𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑_𝑏𝑦_𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡
𝑡𝑜𝑡𝑎𝑙_𝑚𝑎𝑟𝑘𝑠  ∗  100%  

 

𝐼𝑂𝐼_𝑡𝑒𝑎𝑚_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝛴 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑎𝑒𝑟𝑎𝑔𝑒
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡𝑠 

 

 

         

 

 

 

 

 

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

Fig. 2. Different distributions of six guards.



Team Competition in Informatics and Mathematics “Cēsis” 179

This task is interesting because you should write an effective computer program to 
solve subtasks b) to d) and be ready to wait for the computations to get the answer in 
subtask d). At the competition, only one team solved three first subtasks, but no one 
succeeded with the last one. 

The task was inspired by tasks “The Courageous Garrison” and “Daylight lamps” 
(Kordemsky, 1972) where (in terms of our task) for the changing number of guards, 
it was asked to find a valid configuration for a particular constant number of guards 
defending each wall.

4.5. Number Theory

Immediate computer usage is not always the best option – from the viewpoint of time 
invested a “pure” mathematical approach can be more successful. At the finals of 2023, 
the task “Two last digits” was given:

Aivars investigates two increasing sequences of integers. In the sequence {pi} = {2, 3, 5, 
7, …}, he consecutively writes all prime numbers, and in the sequence {qi} = {499999999, 
589999999, 598999999, 599899999, 599989999, 599998999, …} – all integers with the 
sum of digits 76. After some time, Aivars notices a pair of consecutive numbers (pk = qm, 
pk+1 = qm+1) shared between the sequences, and the difference between these numbers is 72.

What are the last two digits of pk?
One obvious solution is to write a computer program that simulates the two se-

quences in the description until the matching pair is found. However, finding the first 
matching pair will take quite a lot of computational time (on the only available com-
puter!). Therefore, the best way is to get the only possible option by excluding all others 
and giving this as the answer.

Most probably, such a task will not be given at the pure mathematical competition be-
cause there it would not be enough to find the only possible candidate for the last two digits 
by excluding unacceptable options – you need to show also that such a number exists. To 
avoid the necessity to find the number itself, the task was reformulated from strict math-
ematical language to a story about some imaginary mathematician Aivars who found such a 
pair of numbers giving an indirect clue that there is a solution (maybe more than one).

4.6. Dominoes

Tasks about dominoes are traditionally used at almost all TCIM rounds. Sets of dominoes 
with various numbers of pieces appear in tasks alone or in combination with other classic 
games or puzzles (like SUDOKU at the finals of 2022 and chess at the finals of 2023).

Despite previous remarks about the need to avoid already published tasks, puzzle 
#492, “The domino column” from the book (Dudeney, 1976), was successfully used in 
the semifinals of 2020. While Dudeney’s book gives just one solution, it is easy to find 
general rules to obtain more solutions.



M. Opmanis et al.180

4.7. SUDOKU

SUDOKU is a well-known logical puzzle, and nine tasks with its variations have been 
used at TCIM. One of its variations was the task “LUDOKU” (finals of 2016):

Little Ludis invented a new logical puzzle based on SUDOKU and named it LUDOKU. 
LUDOKU is a traditional SUDOKU puzzle with the additional constraint that the only 
solution can be obtained by filling empty cells consecutively with numbers 1, 2, 3, 4, 5, 6, 
7, 8, 9, 1, 2, 3, 4, … in the rows from top-down and each row from left to right. One valid 
LUDOKU puzzle and its solution are shown in Fig. 3.

Create a LUDOKU puzzle with as many empty cells as possible! Be aware that the 
puzzle may have other solutions besides those obtained by LUDOKU rules!

4.8. Other Logical Puzzles

Variations of well-known puzzles besides SUDOKU are also given at TCIM rounds 
regularly.

For example, the previously mentioned task “Equivalent” (semifinals of 2023):

Fill squares in Fig. 4 with numbers from 1 to 6 so that:
In each row, all numbers are distinct. ●
In each column, all numbers are distinct. ●
If a line segment connects “diagonal neighbors” of two rows, then numbers in  ●
these squares are the same. It is known that all equivalent diagonal neighbors are 
marked.

Five squares are already filled. 
In the task description, there is one essential requirement that is missed by many 

readers (who are then surprised that they can’t solve the task).

 

𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑎𝑟𝑘𝑠_𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑_𝑏𝑦_𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡
𝑡𝑜𝑡𝑎𝑙_𝑚𝑎𝑟𝑘𝑠  ∗  100%  

 

𝐼𝑂𝐼_𝑡𝑒𝑎𝑚_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝛴 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑎𝑒𝑟𝑎𝑔𝑒
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡𝑠 

 

…  

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

 

        

Fig. 3. Example of a valid LUDOKU puzzle and its solution.



Team Competition in Informatics and Mathematics “Cēsis” 181

4.9. Non-traditional Tasks

It should be noted that contestants enjoy non-traditional tasks very much. 
At least twice, “think out of the box” tasks were given in the finals: to measure the 

precise volume of a trash bin (finals of 2018) and to estimate the length of yarn in a cro-
cheted object (finals of 2019, see Fig. 5).

4.10. Search for Information

Especially popular (in the sense that all teams tried to solve them and got at least some 
partial scores) have been tasks connected to Internet searches. A current example of such 
a task is “Traffic accident” (finals of 2023), where a fragment from a photo (see Fig. 6) 

Fig. 4. Task “Equivalent”.

Fig. 5. Photo from the task “The Sorting Hat”.



M. Opmanis et al.182

from a traffic accident was given, and it was asked when and where (country, precise 
coordinates) this accident took place.

It was assumed that contestants would find the proper place using “Google Maps” 
and a description of an accident in the local newspaper where the original photo was 
published. Even if contestants succeed and find the correct issue of the newspaper, they 
can easily lose points by missing the word “yesterday” in the accident description.

4.11. Tasks with the Unknown Best Answer

Strictly speaking, in all “classic” Math Olympiads and similar competitions, participants 
are solving tasks already solved previously by someone. At TCIM, tasks with the un-
known best answer are not rare. For grading such tasks, formulae gave maximum points 
if the answer is best known at the moment of grading and proportionally fewer points if 
the answer does not reach this value.

One such task, “Felicitous pyramid,” was given at the finals of 2023:

A pyramid of integer numbers is built in the following way: At the beginning, N (where 
N > 1) circles in a row are drawn, and in each of them, some distinct integer is written. 
Then above the first row, there the next row of circles is drawn having one circle less and so 
that each circle is located in-between and above two circles of the previous row:  

In the circle at the top (a) is written the absolute value of the difference between the 
two integers in circles located immediately below it (|b - c|). So rows are added and 
filled one by one until there is just one circle in the current row – the top of the pyramid 
is reached.

Let’s say that a pyramid is felicitous if all numbers in it are distinct.

Fig. 6. Photo from the task “Traffic accident”.



Team Competition in Informatics and Mathematics “Cēsis” 183

An example of a felicitous pyramid for N = 3 is shown in Fig. 7, and its largest 
integer is 7.

Your task is to create a felicitous pyramid with the largest integer as small as pos-
sible for a) N = 6, b) N = 10, c) N = 15.

If you know or find out during competition that such pyramids are called “anti-Pascal 
triangles” or “subtractive triangles,” then you can find (OEIS®, Cazor (2022)) the best 
answers for the first two subtasks. Unfortunately (for the participants), the answer for the 
last subtask still can’t be found there, and you should find some in any other way. 

4.12. Just Try!

There are a lot of tasks where the best option is to take paper and pencil and start think-
ing about possible solutions.

One such task is: “Equivalent parts” (finals of 2023):

Each of the given five figures (see Fig. 8) containing 36 unit squares should be cut by 
lines into as few equivalent parts as possible (the same number of squares and identical 
or symmetrical form) so that these parts can be put together to form a 6×6 square. In 
the square, parts obtained may be rotated and/or flipped. 

Each subtask should be solved separately.
Grading: 20 points for the subtask if the number of parts is the least known and 4 

points if it is the next possible (under the given conditions, only possible numbers of 
parts in increasing order are 2-3-4-6-9-12-18-36). Solutions where there will be differ-
ent parts will receive 0 points.

It can be added that no team got a full score on this task at the competition – the best 
result was 60 points.

Fig. 7. Example of the felicitous pyramid for N = 3.

 

𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝑚𝑎𝑟𝑘𝑠_𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑_𝑏𝑦_𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡
𝑡𝑜𝑡𝑎𝑙_𝑚𝑎𝑟𝑘𝑠  ∗  100%  

 

𝐼𝑂𝐼_𝑡𝑒𝑎𝑚_𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝛴 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡_𝑎𝑣𝑎𝑒𝑟𝑎𝑔𝑒
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑛𝑡𝑒𝑠𝑡𝑎𝑛𝑡𝑠 

 

…  

rezoliucija - 300 dpi, matmenys - 295 x 380 taškų, rekomenduojami spalvos parametrai - nespalvota (“Greyscale”); 
 

     
     
 

        

Fig. 8. Task “Equivalent parts” – given figures.



M. Opmanis et al.184

5. Evaluation and Grading

Evaluation of solutions at TCIM is challenging in two different ways: at the semifinals, 
there are many solutions, while at finals, solutions should be evaluated and graded in a 
short time interval (less than two hours). Without proper tools, it may lead to a heavy 
routine job at the semifinals or working in stressful conditions at finals. In both situa-
tions, there is a risk of making mistakes which can be crucial, especially in the final 
round. From the viewpoint of time invested, it was advantageous to implement an auto-
matic evaluation and grading system for all competition rounds.

Diāna Siliņa suggested the usage of MS Excel as an evaluation and grading tool. She 
had previously successfully used the same approach for evaluating tests and homework 
in the gymnasium.

MS Excel and VBA spreadsheet applications were used for checking and evaluating 
answers at all TCIM rounds from the first of 2016 till the semifinals of 2023.

Automatic evaluation can have different implementations. If it is expected that 
everyone will be allowed to check their work individually, then it would be natural 
that the task, answer, test, and result are in one file. However, including confidential 
information in the file offered to the participants in graded tests and competitions is 
not wise. 

Theoretically, part of the information can be hidden and the file protected with a 
password – but the risk remains that the password can be guessed. It is safer to put 
only the information the participants can see in the file intended for them (answer file). 
However, you still need a file that contains all the “magic” – the correct answers, the 
prepared table with empty cells for filling by the participants’ answers, formulas, condi-
tion formatting, and the START button (starts the execution of the VBA code. VBA is 
always used to record the results of the tasks in the summary table) – we will call this 
file the evaluation file. 

The overall evaluation and grading process contains the following steps:
Open the evaluation file.1) 
Open all submitted answer files and click the START button in the evaluation file. 2) 
After each submission is evaluated, a corresponding notification allows you to 
follow the progress. Creating backup copies of submissions and the result table 
would be advisable for security purposes.

The “evaluation difficulty” of the task has almost nothing in common with its “sci-
entific difficulty.”

By classifying the tasks of previous years and collecting data in a table (see Table 2), 
a subjective assessment of the difficulty of implementing evaluation and grading has 
been given, which includes the time and knowledge necessary for the implementation 
of the evaluation.

Some comments about the difficulty levels in the table:
The fastest and easiest way to implement an automated evaluation is for tasks 1. 
where the answer is unequivocal, entered in one cell of the spreadsheet, and only 
wholly correct answers are accepted by assigning 100 points.



Team Competition in Informatics and Mathematics “Cēsis” 185

Little more time-consuming is the implementation of evaluation if the answer is 2. 
unambiguous, but the task has partial scores, and/or the total number of points 
depends on the number of correctly solved sub-tasks.
The answer’s accuracy is also considered during the evaluation.3. 
Answers may sometimes be allowed to be entered in arbitrary order (it’s easier 4. 
not to allow this), so you need to sort them before comparing them with the set 
of correct answers. Participants may also find just some of the answers, so it 
may be necessary to review the textual information given by participants.
As it is usually more common in MS Excel to work with built-in functions 5. 
than using VBA, in some cases, it is more convenient to copy answers from 
participant files to additional tables, which are located in the worksheet created 
for a specific task, and perform calculations/checks afterward with standard MS 
Excel tools. Then the results obtained from this worksheet can be copied into 
the results table using VBA.

Of course, not all tasks are suitable for a fully automated evaluation and grading. 
For example, in domino tasks, it is too hard to implement checking that the complete 
set of domino pieces is correctly used. At the same time, in such tasks, checking can 
be done at least partially (like checking that sums of points in domino halves fulfill 
some requirement).

Likewise, there is checking of the uniqueness of the solution in the SUDOKU tasks 
in VBA – such checkers can be found on the Internet, and their integration into the evalu-
ation environment would be technically complicated. 

Also, answers with various figures whose borders may change are not automatically 
evaluated.

The answer file should be carefully prepared, namely:
Warn in the file that there will be automated evaluation, so the required input for- ●
mat should be strictly followed.
Control/restrict data entry as much as possible. ●
Strictly define the conditions for entering the answers, for example, forcing to enter  ●
the answers in alphabetical or ascending order.

Table 2
Estimation of the automated evaluation difficulty

Difficulty 
(1 – easy)

Task types Spreadsheet functions
(highest levels include 
lowers)

VBA Time Grading

1 Cryptarithms, geometry sum, average, min, 
max, if, round

- + Correct/incorrect – 
100/0

2 Equations, cryptarithms, data ana-
lysis, searching for information

or, and, countif, 
sumproduct

- ++ Contains subtasks

3 Geometry, data analysis abs, lookup, gcd - + The accuracy of the 
answer is rated.

4 Non-standard tasks + ++ Answers may be in 
arbitrary order.

5 Supporting sheets ++ +++



M. Opmanis et al.186

It is recommended to use the options offered by the spreadsheet application – drop- ●
down lists, control of data to be entered (Data Validation), while at the same time 
providing an option to input large numbers or numbers with high accuracy as text.
To reduce the possibility of entering information in an incorrect place, protect the  ●
worksheets (without a password, if an unexpected situation occurs that participants 
must be allowed to correct).
Even a hidden type and password-protected workbook offered to participants  ●
should not contain correct answers or other confidential information.

Summary of the experience obtained from the preparation of the evaluation file:
In all self-checking tasks, VBA is used to read information from answer files, pro- ●
cess and compile it.
If the answer to the task is short enough to be easily reviewed in the width of one  ●
screen, the information should be copied from the answer files to the evaluation file 
with the help of VBA – this helps to control the correctness of the evaluation, as 
well as quickly review all answers. 
If you can’t check submitted answers automatically, a summary is helpful to review  ●
and evaluate all teams’ responses manually.
Use MS Excel’s standard options where possible. ●
If the number of points assigned depends on the number of correct answers, it is  ●
advantageous to use the LOOKUP function.
Use conditional formatting for visual checking of evaluation correctness. ●

6. Further Development of the Evaluation System

The existing approach was successfully used till the semifinals of 2023 when Pēteris 
Pakalns suggested using a new web-based evaluation system, “UIM,” made by himself, 
at the finals of 2023. 

This system was used without any problems, and imposing was its strength in tasks 
where an Excel-based system could not have been used, like in the already mentioned 
task, “Equivalent parts,” in which participants were able to define their configuration of 
a part on-screen and move, flip, and rotate to be sure that their solution works.

A screenshot from the “UIM” system submission page for the previously mentioned 
task “Equivalent parts” is given in Fig. 9.

The UIM system is currently undergoing active development, and the platform is ac-
cessible online (UIM). Within the platform, all tasks of the TCIM 2023 finals are avail-
able for public solving in the Latvian language. To view tasks in other languages, please 
utilize the translation options provided by your web browser.

The UIM platform was developed to evaluate solutions more promptly and identify 
potential problems during the contest. After the contest, it also gives participants a sum-
mary of testing results without a score and allows for timely appeals before the award 
ceremony and results announcement.

In the UIM system, all submissions are evaluated immediately after submission us-
ing a program written in the Rust programming language. The program is fed with the 



Team Competition in Informatics and Mathematics “Cēsis” 187

definition of the answer form, the jury solution, and the participant solution. These pro-
grams validate the jury solution and participant solution based on the same criteria. If 
all criteria are passed, the participant’s score is calculated by comparing the processed 
jury and the participant’s answers. In addition, the UIM system provides a Rust library 
for writing submission evaluation programs, which makes the implementation process 
very ergonomic.

Due to the limited usage of the UIM system thus far, we have decided to postpone its 
detailed description until it reaches a more mature state after several (hopefully!) suc-
cessful future TCIMs.

Acknowledgments

The authors would like to thank “Tom Sawyer Software Latvia” for their support of the 
finals of TCIM 2023 and Ahto Truu for his valuable comments.

References 

Bebras. International Challenge on Informatics and Computational Thinking. https://www.bebras.org/
Cazor, D. (2022). Filling a subtractive triangle. Minimal solutions. oeis.org/A226239/a226239_1.pdf.
ChatGPT. https://chat.openai.com/
Dudeney, H.E. (1967). 536 Puzzles and Curious Problems. Charles Scribner’s sons. ISBN 0-684-71755-7, 

198.
GeoGebra. Tools for Teaching and Learning Math. https://www.geogebra.org/
Kordemsky, B.A. (1972). The Moscow Puzzles. Charles Scribner’s sons. ISBN 0-684-14870-6, 37-38.
LMO (n.d.). Latvian Olympiad in Mathematics. 

https://www.nms.lu.lv/olimpiades/valsts-olimpiade/

OEIS® (n.d.). The Online Encyclopedia of Integer Sequences®. https://oeis.org

Fig. 9. Task “Equivalent parts” – definition of a part and  
assembled initial figure and a square.



M. Opmanis et al.188

Opmanis, M. (2009). Team Competition in Mathematics and Informatics “Ugāle” – Finding New Task Types. 
Olympiads in Informatics, 3, 80–100.

Opmanis, M. (2015). Math Contests: Solutions without Solving. Olympiads in Informatics, 9, 147–161.
Periodika. Latvian National Digital Library, http://www.periodika.lv/
UIM (n.d.). Automated competition platform UIM. https://uim.apts.lv/
Visual Crossing. Global Forecast & History Data. https://www.visualcrossing.com/weather-data

M. Opmanis is a researcher at the Institute of Mathematics and Com-
puter Science of the University of Latvia. He is head of the jury of 
Latvian OI and TCIM, and a lot of times, was a leader of the Latvian 
team at IOI and Baltic OI. He is the author of tasks for various contests 
in informatics and mathematics.

D. Siliņa is an informatics and programming teacher (since 1995) 
at Cēsis State Gymnasium and one of the key organizers of TCIM. 
She was the leader of the Latvian team at Baltic OI in 2012 and 2020 
and the main organizer of Latvian OI in 2011 hosted by Cēsis State 
Gymnasium. 

S. Siliņa is a leading programming technician at the Institute of Math-
ematics and Computer Science of the University of Latvia. She gradu-
ated from Cēsis State Gymnasium and is the winner of TCIM 2019. 
Sandra works on the TCIM and Latvian OI jury, and she was the depu-
ty leader of the Latvian team at European Girls OI in 2022.

P. Pakalns graduated from Cēsis State Gymnasium and won TCIM 
“Ugāle” in 2014. Now he works on the TCIM and Latvian OI jury and 
was the leader of the Latvian team at Baltic OI. He is the developer 
of an automated system for evaluating student programming assign-
ments, used at the Faculty of Computer Science at the University of 
Latvia, evaluating over 20,000 student submissions. He is the author of 
the new automated competition platform UIM.



Olympiads in Informatics, 2023, Vol. 17, 189–205
© 2023 IOI, Vilnius University
DOI: 10.15388/ioi.2023.14

189

REVIEWS, COMMENTS

Guide to Teaching Data Science:  
An Interdisciplinary Approach 

Orit HAZZAN, Koby MIKE 
Faculty of Education in Science and Technology 
Technion – Israel Institute of Technology
e-mail: oritha@technion.ac.il, mike@technion.ac.il, kobymike@gmail.com

Introduction 

Data science is a new discipline of research that is gaining growing interest in both 
industry and academia. Data science is converging knowledge, skills and values from 
computer science, statistics, and various applications domains such as social science, 
digital humanities, life science and more (see Fig. 1).

As a result of the growing interest in data science, demand is increasing for data 
science programs for a variety of learners from a variety of disciplines (data science, 
computer science, statistics, engineering, life science, social science and humanities) 
and a variety of levels (from school children to academia and industry). While signifi-
cant efforts are being invested in the development of data science curricula, or in other 
words, in what to teach, only sporadic discussions focus today on the data science peda-
gogy, that is, on how to teach. This is the focus of our recently (March 2023) published 
book by Springer: Guide to Teaching Data Science: An Interdisciplinary Approach, 
described in this paper. 

The guide can be used by all educators in all educational environments and settings: 
in formal education (from elementary schools through high schools to academia) and 
informal education, in industry, and in non-profit governmental and third sector organi-
zations. Specifically, the guide can be used as a textbook for Methods of Teaching Data 



O. Hazzan, K. Mike190

Science courses, in which prospective and in-service teachers learn the pedagogy of data 
science, which is currently emerging in parallel to the development of the discipline of 
data science. 

To benefit all of its potential user populations, the guide is organized in a way that 
enables immediate application of its main ideas. This goal is achieved by presenting 
the rationale behind the inclusion of each topic presented in this guide, its background, 
development, and importance in the context of data science and data science education, 
as well as the details of the actual teaching process (including over 200 exercises, work-
sheets, topics for discussions, and more). 

Fig. 2. Guide to Teaching Data Science: An Interdisciplinary Approach – Front Cover. 

Fig. 1. The authors’ version of the data science Venn diagram,  
as inspired by Conway (2013).



Guide to Teaching Data Science: An Interdisciplinary Approach 191

Description of the Guide parts and chapters 

The guide is divided into five parts. 
Part A – Overview of Data Science and Data Science Education. ●  In this part, 
we discuss what data science and data science education are and review the cur-
rent state of data science education, including curricula and pedagogy.
Part B – Opportunities and Challenges of Data Science Education. ●  This part 
of the guide elaborates on the educational challenges of data science, from a 
variety of perspectives (including learners, teachers, and policy makers among 
other), addressing also the multi-faceted and interdisciplinary nature of data sci-
ence. 
Part C – Teaching Professional Aspects of Data Science. ●  In this part, we ex-
amine several topics related to the human aspects of data science, such as data 
science skills and social issues, in general, and ethics, in particular. We highlight 
the message that data science skills and other non-technical issues should be 
given special attention in any data science program regardless of its framework 
or level. 
Part D – Machine Learning Education. ●  We dedicate one part of this guide 
to machine learning education for two main reasons. First, machine learning is 
one of the central steps in the data science workflow and an important and cen-
tral emerging approach for data modeling. Second, machine learning is heavily 
based on mathematics and computer science content, and therefore poses unique 
pedagogical challenges that we address in this part of the guide. Specifically, 
we discuss teaching machine learning algorithms using a white box approach, 
teaching core concepts of machine learning algorithms that are commonly taught 
in introductory data science courses, and specific teaching methods suitable for 
teaching machine learning. 
Part E – Frameworks for Teaching Data Science. ●  This part of the guide pres-
ents several frameworks for teaching data science to professionals whose core 
activities are management, education, or research, and who need data science 
knowledge to foster their professional development and improve their profes-
sionalism. 

In what follows we present the book chapters along with 1 or 2 illustrative exercises 
from each chapter. From the variety of over 200 exercises included in the guide, we 
chose to present in this paper exercises that fit the readership of the Olympiads in Infor-
matics journal. 

Chapter 1. Introduction – What Is This Guide About?

In the introduction, we present the motivation for writing this guide, followed by the 
pedagogical principles we applied in it, its structure and how it can be used by educa-
tors who teach data science in different educational frameworks. We also present sev-



O. Hazzan, K. Mike192

eral main kinds of learning environments that are appropriate for teaching and learning 
data science: Textual programing environments for data science’ such as, Jupyter Note-
book1 and Google Colab2 and visual programing environments for data science, such as, 
Orange Data Mining3, KNIME4, and Weka5. 

Illustrative exercise

Reflection

Reflect on what you have read so far: 
What pedagogical ideas were introduced in this chapter?(a) 
Can you speculate how (b) you will use this guide when you teach data science (now 
or in the future)?

Part A – Overview of Data Science and Data Science Education

This part includes the following chapters: 
Chapter 2: What is Data Science?
Chapter 3: Data Science Thinking
Chapter 4: The Birth of a New Discipline: Data Science Education

Chapter 2. What is Data Science?

Data science integrates knowledge and skills form several disciplines, namely computer 
science, mathematics, statistics, and an application domain. One way to present such a 
relationship is using a Venn diagram, which is a diagram that shows logical relationships 
between different sets (See Fig. 1).

Although many attempts have been made to define data science, such a definition 
has not yet been reached. One reason for the difficulty to reach a single, consensus defi-
nition for data science is its multifaceted nature: it can be described as a science, as a 
research method, as a discipline, as a workflow, or as a profession. One single definition 
just cannot capture this diverse essence of data science. In this chapter, we first review 
the background for the development of data science. Then we present data science from 
several perspectives: data science as a science, data science as a research method, data 
science as a discipline, data science as a workflow, and data science as a profession 
(Mike and Hazzan, 2023). We conclude by highlighting three main characteristics of 
data science: interdisciplinarity, learner diversity, and its research-oriented nature.

1 https://jupyter.org/ 
2 https://colab.research.google.com/ 
3 https://orange.biolab.si/ 
4 https://www.knime.com/ 
5 https://www.cs.waikato.ac.nz/ml/index.html 



Guide to Teaching Data Science: An Interdisciplinary Approach 193

Illustrative exercise 

Pedagogical implications of the multi-faceted analysis of data science 

What pedagogical implications can you draw from the analysis of data science as a 
science? as a research method? as a discipline? as a workflow? as a profession? What 
mutual relationships exist between these implications?

Chapter 3. Data Science Thinking

This chapter highlights the cognitive aspect of data science. It presents a variety of modes 
of thinking, which are associated with the different components of data science, and de-
scribes the contribution of each one to data thinking – the mode of thinking required 
of data scientists (not only professional ones). Indeed, data science thinking integrates 
the thinking modes associated with the various disciplines that make up data science. 
Specifically, computer science contributes computational thinking, statistics contributes 
statistical thinking, mathematics adds different ways in which data science concepts 
can be conceived, and each application domain brings with it its thinking skills, core 
principles, and ethical considerations. Finally, we present data thinking. The definition 
of data science inspires the message that processes of solving real-life problems using 
data science methods should not be based only on algorithms and data, but also on the 
application domain knowledge (Mike et al., 2022). 

Illustrative exercise

Additional modes of thinking required for data science 

Different publications on data science skills mention different thinking skills as being 
required in order to deal meaningfully with data science. These include, among others, 
analytical thinking, critical thinking, and data literacy. 
Explore these thinking skills (and others you may find) as well as the interconnections 
between them and the various thinking skills presented in this chapter. 

Chapter 4. The Birth of a New Discipline: Data Science Education

Data science is a young field of research and its associated educational knowledge 
– data science education – is even younger. As of the time of writing this book, data 
science education has not yet gained recognition as a distinct field and is mainly dis-
cussed in the context of the education of the disciplines that make up data science, i.e., 
computer science education, statistics education, mathematics education, and the edu-
cational fields of the applications domains, such as medical education, business analyt-
ics education, or learning analytics. In this chapter, we present the story of the birth of 
the field of data science education by describing its short history. We focus on the main 



O. Hazzan, K. Mike194

efforts invested in the design of an undergraduate data science curriculum, and on the 
main initiatives aimed at tailoring a data science curriculum for school pupils. We also 
suggest several meta-analysis exercises that examine these efforts. 

Illustrative exercise

Didactic transposition in data science 

Didactic Transposition is a concept that refers to the process of adopting knowledge 
used by practitioners for teaching purposes (Chevallard, 1989). The term was first 
coined in the context of mathematics education, in which it refers to the process 
by which formal mathematics is adapted to fit school teaching and learning. For 
example, the introduction of a proof using two columns, one for the statement 
and the other for reasoning, represents “a didactic transposition from abstract 
knowledge about mathematical proofs” (Kang and Kilpatrick, 1992, p. 3). 

Suggest several examples of didactic transpositions of formal mathematics to (a) 
school mathematics. Reflect: What guidelines did you follow?
Read the paper by Hazzan et al (2010) in which the authors demonstrate (b) 
didactic transpositions of software development methods to educational 
frameworks. What are the paper’s main messages? 
Suggest possible didactic transpositions of data science concepts from the (c) 
academia to high school and elementary school.

Part B – Opportunities and Challenges of Data Science Education

This part includes the following chapters:
Chapter 5: Opportunities in Data Science Education
Chapter 6: The Interdisciplinarity Challenge
Chapter 7: The Variety of Data Science Learners
Chapter 8: Data Science as a Research Method
Chapter 9: The Pedagogical Chasm in Data Science Education

Chapter 5. Opportunities in Data Science Education 

Data science education opens up multiple new educational opportunities. In this chap-
ter, we elaborate on six such opportunities: teaching STEM in a real-world context, 
teaching STEM with real-world data, bridging gender gaps in STEM education, teach-
ing 21st century skills, interdisciplinary pedagogy, and professional development for 
teachers. We conclude with an interdisciplinary perspective on the opportunities of data 
science education. 



Guide to Teaching Data Science: An Interdisciplinary Approach 195

Illustrative exercise

Teaching the STEM subjects in a real-world context

Review the different topics you teach as part of your disciplinary teaching.
Select one of these topics and determine whether or not you currently teach it in the 
context of real world. If you teach it in a real-world context, choose another topic. Re-
peat this process until you find a topic that you do not teach in a real-world context.
Describe how you currently teach this topic and design a new teaching process for 
it, in a real-world context. Compare the two teaching processes. What are your con-
clusions? Suggest some general guidelines for teaching different subject matters in 
a real-world context. 

Chapter 6. The Interdisciplinarity Challenge

In this chapter, we elaborate on the challenges posed by the interdisciplinary structure 
of data science. First, we describe the unique and complex interdisciplinary structure of 
data science. Then, we present the challenge of balancing computer science and statistics 
in data science education, and the challenge of actually integrating the application do-
main knowledge into data science study programs, courses, and student projects. 

Illustrative exercise

Data science PCK

Imagine you are a data science teacher. Describe your teaching environment, 
according to your choice: characterize the students, define the study program, 
describe the physical learning environment, etc. 
What pedagogical-content knowledge PCK (Shulman, 1986) would you need in 
order to teach this class? Describe scenarios in which this PCK might be expressed 
in your teaching.

Chapter 7. The Variety of Data Science Learners 

Since data science is considered to be an important 21st century skill, it should be acquired 
by everyone - children as well as adults – on a suitable level, to a suitable breadth, and 
to a suitable depth. And so, after reviewing the importance of data science knowledge 
for everyone, this chapter reviews the teaching of data science to different populations: 
K-12 pupils in general and high school computer science pupils in particular, under-
graduate students, graduate students, researchers, data science educators, practitioners 
in the industry, policy makers, users, and the general public. For each population, we 
discuss the main purpose of teaching it data science, main concepts that the said popula-
tion should learn and (in some cases) learning environments and exercises that fit it. 



O. Hazzan, K. Mike196

Illustrative exercises

The AI + Ethics Curriculum for Middle School initiative 

The “AI + Ethics Curriculum for Middle School” initiative, presented at https://
www.media.mit.edu/projects/ai-ethics-for-middle-school/overview/, 
focuses on artificial intelligence. It seeks to develop an open-source curriculum for 
middle school students that is made up of a series of lessons and activities. 

Explore the activities proposed by this initiative. 

In your opinion, what were the pedagogical guidelines applied in the development 
of these activities? Can these guidelines be applied in the development of learning 
material that focuses on other data science topics? 

Chapter 8. Data Science as a Research Method

In this chapter, we focus on the challenges that emerge from the fact that data science 
is also a research method. First, we describe the essence of the research process that 
data science inspires. Then, we present examples of cognitive, organizational, and tech-
nological skills which are important for coping with the challenge of data science as a 
research method, and highlight pedagogical methods for coping with it. In the conclu-
sion of this chapter, we review, from an interdisciplinary perspective, the skills required 
to perform data science research. 

Illustrative exercise

The challenge of leaning the application domain 

As can be seen in Chapter 7, a variety of populations nowadays study data science. 
How can the challenge of familiarity with the application domain be overcome when 
a specific population studies data science research methods but lacks the required 
application domain knowledge? 

Chapter 9. The Pedagogical Chasm in Data Science Education

As an interdisciplinary discipline, data science poses many challenges for teachers. 
This chapter presents the story of one of them, specifically of the adoption of a new 
data science curriculum developed in Israel for high school computer science pupils, by 
high school computer science teachers. We analyze the adoption process using the dif-
fusion of innovation and the crossing the chasm theories. Accordingly, we first present 
the diffusion of innovation theory and the crossing the chasm theory. Then, we present 
the data science for high school curriculum case study. Data collected from teachers 
who learned to teach the program reveals that when a new curriculum is adopted, a 
pedagogical chasm might exist (i.e., a pedagogical challenge that reduces the motiva-



Guide to Teaching Data Science: An Interdisciplinary Approach 197

tion of most teachers to adopt the curriculum) that slows down the adoption process of 
the innovation. Finally, we discuss the implications of the pedagogical chasm for data 
science education.

Illustrative exercise 

Reflection on your experience with the adoption of innovation

According to the Diffusion of Innovation theory (Rogers, 1962), innovations spread 
in society by flowing from one of the following five distinct groups of adopters to the 
next: Innovators, early adopters, early majority, late majority, laggards. 

Explore the characteristics of each group.(a) 
Reflect on your personal experience with the adoption of innovations. What (b) 
group did you belong to in each case? Was it the same group? Were they 
different groups? What can you learn about your personality as an adaptor of 
innovation? 

Part C – Teaching Professional Aspects of Data Science 

This part includes the following chapters:
Chapter 10: The Data Science Workflow
Chapter 11: Professional Skills and Soft Skills in Data Science
Chapter 12: Social and Ethical Issues of Data Science 

Chapter 10. The Data Science Workflow

The examination of data science as a workflow is yet another facet of data science. 
In this chapter we elaborate on the data science workflow from an educational per-
spective. First, we present several approaches to the data science workflow, following 
which we elaborate on the pedagogical aspects of the different phases of the workflow: 
data collection, data preparation, exploratory data analysis, modeling, and communi-
cation and action. We conclude with an interdisciplinary perspective on the data sci-
ence workflow.

Illustrative exercises

Data preparation

Search for a dataset in an application domain you are familiar with. Review the data. 
Can you find erroneous data? Can you find outliers?
Search for a dataset in an application domain you are not familiar with. Review the 
data. Can you find erroneous data? Can you find outliers? 

Analyze differences (if such exist) between the results in the two cases: the familiar (a) 
application domain and the unfamiliar application domain. 



O. Hazzan, K. Mike198

Reflect on how you performed this exercise: How did you look for erroneous data? (b) 
How did you look for outliers? Did you use any resources in these processes? If 
you did, which resources? If not, why not? Can these processes be improved? If 
yes, how? If not, why?

Chapter 11. Professional Skills and Soft Skills in Data Science

Abstract In this chapter, we highlight skills that are required to deal with data science 
in a meaningful manner. The chapter describes two kinds of skills: professional skills 
and soft skills. Professional skills are specific skills that are needed in order to engage in 
data science, while soft skills are more general skills that acquire unique importance in 
the context of data science. In each section, we address both cognitive, organizational, 
and technological skills. 

Illustrative exercises

Critical thinking 

One of the most important cognitive skills required for dealing meaningfully with 
data science ideas is critical thinking. Propose a case study of a data science project in 
which decision-making processes, which were not accompanied with critical thinking 
processes, led to a chain of undesirable events. 

Chapter 12. Social and Ethical Issues of Data Science 

The teaching of social issues related to data science should be given special attention 
regardless of the framework or level at which data science is taught. This assertion 
is derived from the fact that data science (a) is relevant for many aspects of our lives 
(such as health, education, social life, and transportation); (b) can be applied in harm-
ful ways (even without explicit intention); and (c) involves ethical considerations de-
rived from the application domain. Of the many possible social topics whose teaching 
might have been discussed in this chapter, we focus on data science ethics. We also 
present teaching methods that are especially appropriate for the teaching of social is-
sues of data science. 

Illustrative exercise

Famous cases that illustrate the need for an ethical code for data science 
Locate resources about the two cases mentioned above that illustrate the need for (a) 
an ethical code for data science. List the ethical considerations involved in each 
case. 
Find additional cases that illustrate the importance of an ethical code for data (b) 
science. 



Guide to Teaching Data Science: An Interdisciplinary Approach 199

Part D – Machine Learning Education 

This part comprises the following chapters: 
Chapter 13: The Pedagogical Challenge of Machine Learning Education
Chapter 14: Core Concepts of Machine Learning 
Chapter 15: Machine Learning Algorithms 
Chapter 16: Teaching Methods for Machine Learning

Chapter 13. The Pedagogical Challenge of Machine Learning Education

Machine learning (ML) is the essence of the modeling phase of the data science work-
flow. In this chapter, we focus on the pedagogical challenges of teaching ML to various 
populations. We first describe the terms white box and black box in the context of ML 
education. Next, we describe the pedagogical challenge with respect to different learner 
populations including data science major students as well as non-major students. Then, 
we present three framework remarks for teaching ML (regarding statistical thinking, 
interdisciplinary projects, and the application domain knowledge), which are important 
to be kept in mind in ML teaching processes. We conclude this chapter by highlighting 
the importance of ML education in the context of the application domain. 

Illustrative exercise

The concepts of explainability and interpretability

Search the web and find 3-5 stories that exemplify the concepts of explainability and 
interpretability. 

For each story, identify its main actors, the ML algorithm it refers to, the context (a) 
in which these concepts are discussed, the end of the story, and what conclusions 
are drawn (if at all). 
Add your conclusions from the examination of each story. (b) 
Formulate three guidelines for users of ML methods. (c) 
Reflect on what you have learned while working on this exercise. What would you (d) 
do differently if you were asked to repeat it?
What conclusions can you draw for your own usage of ML results? (e) 

Chapter 14. Core Concepts of Machine Learning 

In this chapter, we focus on the teaching of several core concepts that are common to 
many machine learning (ML) algorithms (such as hyper-parameter tuning) and, as such, 
are essential learning goals in themselves, regardless of the ML algorithms. Specifically, 
we discuss types of ML, ML parameters and hyperparameters, model training, validation, 



O. Hazzan, K. Mike200

and testing, ML performance indicators, bias and variance, model complexity, overfit-
ting and underfitting, loss function optimization and the gradient descent algorithm, and 
regularization. We conclude this chapter by emphasizing what ML core concepts should 
be discussed in the context of the application domain. 

Illustrative exercise

True or false

Define the concepts true-positive, true-negative, false-positive, and false-negative. (a) 
Which of these concepts does the medical diagnosis problem use? 
Select a problem from any domain of life, whose formulation includes these (b) 
concepts. Formulate it in two ways: using frequencies and using probabilities 
(percentages). 
If you are working in a team, the team can discuss the different problems, (c) 
addressing questions such as: In what context is each formulation clearer? Was it 
easy to transition between the two formulations? Why? 

Chapter 15. Machine Learning Algorithms 

In this chapter, we describe the teaching of several machine learning (ML) algorithms 
that are commonly taught in introduction to ML courses, and analyze them from a peda-
gogical perspective. The algorithms we discuss are the K-nearest neighbors (KNN), de-
cision trees, Perceptron, linear regression, logistic regression, and neural networks. 

The exercises in this chapter are based on explorations whose length and depth are 
beyond the scope of this paper. 

Chapter 16. Teaching Methods for Machine Learning 

In this chapter, we review four teaching methods for machine learning: visualization, 
hands-on tasks, programming tasks, and project-based learning. When relevant, as part 
of the presentation of these pedagogical tools, we analyze them from the perspective of 
the process-object duality theory and the reduction of abstraction theory.

The exercises in this chapter are based on explorations whose length and depth are 
beyond the scope of this paper. 

Part E – Frameworks for Teaching Data Science 

This part includes the following chapters: 
Chapter 17: Data Science for Managers and Policymakers
Chapter 18: Data Science Teacher Preparation: The “Method for Teaching Data Sci-

ence” Course



Guide to Teaching Data Science: An Interdisciplinary Approach 201

Chapter 19: Data Science for Social Science and Digital Humanities Research
Chapter 20: Data Science for Research on Human Aspects of Science and Engi-

neering 

Chapter 17. Data Science for Managers and Policymakers

In this chapter, we describe a workshop for policy makers that focuses on the integra-
tion of data science into education systems for policy, governance, and operational 
purposes. The messages conveyed in this chapter can be applied in other systems and 
organizations in all sectors – governmental (the first sector), for-profit organizations 
(the second sector), and non-profit organizations (the third sector). We conclude with an 
interdisciplinary perspective on data science for managers and policymakers.

Illustrative exercise 

Data culture 

Explore the term data culture. Use at least three resources that address this concept. 
Give five examples of organizations that promote a healthy data culture. (a) 
List five characteristics of organizations that promote a healthy data culture. (b) 
Describe five practices that employees in originations that promote healthy data (c) 
cultures should master. 
Describe five scenarios involving managers in organizations that promote a (d) 
healthy data culture that illustrate the relevance of data science for their decision-
making processes. 
For each scenario, specify the data science knowledge the managers should 
have and suggest how and what they can learn from this specific data science 
content. 
Explore the concept of exponential organizations (Ismail, 2014). Exponential (e) 
Organizations: Why new organizations are ten times better, faster, and cheaper 
than yours (and what to do about it), Diversion Books). How do exponential 
organizations promote data culture? 

Chapter 18. Data Science Teacher Preparation: The “Method for Teaching Data 
Science” Course

In this chapter, we present a detailed description of the Method for Teaching Data 
Science (MTDS) course that we designed and taught to prospective computer science 
teachers at our institution, the Technion – Israel Institute of Technology. Since our 
goal in this chapter is to encourage the implementation and teaching of the MTDS 
course in different frameworks, we provide the readership with as many details as pos-
sible about the course, including the course environment, the course design, the learn-



O. Hazzan, K. Mike202

ing targets and structure of the course, the grading policy and assignments, teaching 
principles we employed in the course, and a detailed description of two of the course 
lessons. Full, detailed descriptions of all 13 course lessons are available on our Data 
Science Education website6. 

Illustrative exercise

Topics to be included in a Method of Teaching Data Science course

Before reading the description of the course lessons, suggest topics that you would 
include in a Methods of Teaching Data Science course. 

Chapter 19. Data Science for Social Science and Digital Humanities Research

In this chapter and in Chapter 20, we describe two data science teaching frameworks 
for researchers: this chapter addresses researchers in social science and digital humani-
ties; Chapter 20 addresses researchers in science and engineering. Following a dis-
cussion of the relevancy of data science for social science and digital humanities re-
searchers, we describe a data science bootcamp designed for researchers in those areas. 
Then, we present the curriculum of a year-long specialization program in data science 
for graduate psychology students that was developed based on this bootcamp. Finally, 
we discuss the data science teaching frameworks for researchers in social science and 
digital humanities from motivational perspectives and conclude by illuminating the 
importance of an interdisciplinary approach in designing data science curricula for ap-
plication domain specialists.

Illustrative exercise

Data science applications that require knowledge in social sciences and digital 
humanities 

Search the web for data science applications whose development required (a) 
knowledge in social sciences. What do these applications have in common? In 
what ways are they different?
Search the web for data science applications whose development required (b) 
knowledge in digital humanities? What do these applications have in common? 
In what ways are they different?
Are there similarities between the applications that require knowledge in (c) 
the social sciences and the applications that require knowledge in the digital 
humanities? If yes – what are the similarities? If not – explain the differences 
between these two. 

6 https://orithazzan.net.technion.ac.il/data-science-education/ 



Guide to Teaching Data Science: An Interdisciplinary Approach 203

Chapter 20. Data Science for Research on Human Aspects of Science and Engi-
neering 

In this chapter and in Chapter 19, we describe two data science teaching frameworks for 
researchers: Chapter 19 addresses researchers in social science and digital humanities; 
this chapter addresses science and engineering researchers and discusses how to teach 
data science methods to science and engineering graduate students to assist them in 
conducting research on human aspects of science and engineering. In most cases, these 
target populations, unlike the community of social scientists (discussed in Chapter 19), 
have the required background in computer science, mathematics, and statistics, and need 
to be exposed to the human aspects of science and engineering which, in many cases, are 
not included in scientific and engineering study programs. We start with the presentation 
of possible human-related science and engineering topics for investigation. Then, we 
describe a workshop for science and engineering graduate students that can be facilitated 
in a hybrid format, combining synchronous (online or face to face) and asynchronous 
meetings. We conclude with an interdisciplinary perspective of data science for research 
on human aspects of science and engineering.

Illustrative exercise 

Data-driven research 

Suggest five research topics in (a) scientific disciplines that may be initiated by data 
that is gathered incidentally.
Suggest five research topics in (b) engineering disciplines that may be initiated by data 
that is gathered incidentally. 
For each topic, suggest a human-related topic that you would find interesting to (c) 
investigate. 
Select two topics from the human-reacted scientific disciplines and two topics from (d) 
the human-related engineering disciplines and describe how you would research 
them. 

Epilogue

In the epilogue of the Guide to Teaching Data Science: An Interdisciplinary Approach, 
we view it from a holistic perceptive, reflecting on its big ideas and their interconnec-
tions, highlighting the following facts: 

The guide is multifaceted and addresses teaching methods, skills, learners, perspec- ●
tives, habits of mind, and data science topics – from programming and statistics, 
through problem solving processes to organizational skills. 
The guide reflects the richness of the discipline of data science, its relatedness to  ●
many aspects of our life, and its centrality and potential contribution to the educa-
tion of future generations in the 21st century. 



O. Hazzan, K. Mike204

The richness of the discipline of data science is reflected in the interconnections  ●
between the different chapters of the guide, as they are specified throughout the 
guide.

Illustrative exercise

Final reflection task 

Reflect: 
What do you like about data science? What do you dislike about it? (a) 
What do you like about data science education? What do you dislike about it? (b) 
If you had to formulate one main idea of data science education, what would it (c) 
be?
What will (d) your main new contribution to data science education be? 

Conclusion

In this paper we present the content of the Guide to Teaching Data Science: An In-
terdisciplinary Approach. We hope that it reflects the richness of data science and of 
data science education as emerging disciplines. Supplementary pedagogical material 
is available in our website at https://orithazzan.net.technion.ac.il/data-
science-education/. We will be happy to continue the dialogue with the readership 
of the Olympiads in Informatics journal. Specifically, we welcome questions and sug-
gestions for pedagogical tools and teaching methods as well as suggestions for col-
laboration for the promotion of data science education in the interdisciplinary spirit 
suggested in the guide. 

References

Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. In: Proceedings of the In-
ternational Symposium on Selected Domains of Research and Development in Mathematics Education. 
51–62.

Conway, D. (2013). The data science venn diagram. Datist.  
http://drewconway.com/zia/2013/3/26/the-data-science-venn-diagram 

Hazzan, O., Dubinsky, Y., Meerbaum-Salant, O. (2010). Didactic transposition in computer science education. 
ACM Inroads, 1(4), 33–37.

Ismail, S. (2014). Exponential Organizations: Why New Organizations are Ten Times Better, Faster, and Cheap-
er than Yours (and what to do about it). Diversion Books.

Kang, W., Kilpatrick, J. (1992). Didactic transposition in mathematics textbooks. For the Learning of Math-
ematics, 12(1), 2–7.

Mike, K., Hazzan, O. (2023). What is Data Science? Communications of the ACM, 66(2), 12–13.
Mike, K., Ragonis, N., Rosenberg-Kima, R.B., Hazzan, O. (2022). Computational thinking in the era of data 

science. Communications of the ACM, 65(8), 31–33.
Rogers, E.M. (1962). Diffusion of Innovations. Free Press.
Shulman, L.S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 

4–14.



Guide to Teaching Data Science: An Interdisciplinary Approach 205

O. Hazzan is a faculty member at the Technion’s Department of Ed-
ucation in Science and Technology since October 2000. Her research 
focuses on computer science, software engineering and data science 
education. Within this framework she researches cognitive and social 
processes on the individual, the team and the organization levels, in 
all kinds of organizations. She has published about 130 papers in 
professional refereed journals and conference proceedings, and eight 
books. In 2007-2010 she chaired the High School Computer Science 
Curriculum Committee assigned by the Israeli Ministry of Educa-
tion. In 2011-2015 Hazzan was the faculty Dean. From 2017 to 2019, 
Hazzan served the Technion Dean of Undergraduate Studies. Addi-
tional details can be found in her personal homepage: 
https://orithazzan.net.technion.ac.il/ 

K. Mike is a Ph.D. graduate from the Technion’s Department of Edu-
cation in Science and Technology under the supervision of Professor 
Orit Hazzan. He continued his a post-doc research on data science 
education at the Bar-Ilan University, and retains B.Sc. and an M.Sc. 
in Electrical Engineering from Tel Aviv University. After two de-
cades of professional career is the Israeli hi-tech industry, he returned 
to academia for his doctoral studies on data science education. As 
part of his research, Koby developed and taught several data science 
programs for high school students, high school computer science 
teachers, and graduate students and researchers in social sciences and 
digital humanities.





About Journal and Instructions to Authors

OLYMPIADS IN INFORMATICS is a peer-reviewed scholarly journal that provides 
an international forum for presenting research and developments in the specific scope 
of teaching and learning informatics through olympiads and other competitions. The 
journal is focused on the research and practice of professionals who are working in the 
field of teaching informatics to talented student. OLYMPIADS IN INFORMATICS is 
published annually (in the summer).

The format for the journal follows the tracks: 
the primary section of the journal focuses on research ●
the second report section is devoted to sharing experiences of countries in infor- ●
matics olympiads
the last smallest section presents books reviews or other information ●

The journal is closely connected to the scientific conference annually organized dur-
ing the International Olympiad in Informatics (IOI).

Abstracting/Indexing

OLYMPIADS IN INFORMATICS is abstracted/indexed by:
Cabell Publishing ●
Central and Eastern European Online Library (CEEOL) ●
EBSCO ●
Educational Research Abstracts (ERA) ●
ERIC ●
InfoBase Index ●
INSPEC ●
SCOPUS  ● – Elsevier Bibliographic Databases

Submission of Manuscripts

All research papers submitted for publication in this journal must contain original un-
published work and must not have been submitted for publication elsewhere. Any manu-
script which does not conform to the requirements will be returned.

The journal language is English. No formal limit is placed on the length of a paper, 
but the editors may recommend the shortening of a long paper.

Each paper submitted for the journal should be prepared according to the following 
structure: 

concise and informative title ●
full names and affiliations of all authors, including e-mail addresses ●



informative abstract of 70–150 words ●
list of relevant keywords ●
full text of the paper ●
list of references ●
biographic information about the author(s) including photography ●

All illustrations should be numbered consecutively and supplied with captions. They 
must fit on a 124 × 194 mm sheet of paper, including the title.

The references cited in the text should be indicated in brackets:
for one author –  (Johnson, 1999) ●
for two authors – (Johnson and Peterson, 2002) ●
for three or more authors – (Johnson  ● et al., 2002)
the page number can be indicated as (Hubwieser, 2001, p. 25) ●

The list of references should be presented at the end of the paper in alphabetic order. 
Papers by the same author(s) in the same year should be distinguished by the letters a, b, 
etc. Only Latin characters should be used in references.

Please adhere closely to the following format in the list of references:
For books:

Hubwieser, P. (2001). Didaktik der Informatik. Springer-Verlag, Berlin.
Schwartz, J.E., Beichner, R.J. (1999). Essentials of Educational Technology. Allyn 

and Bacon, Boston.
For contribution to collective works:

Batissta, M.T., Clements, D.H. (2000). Mathematics curriculum development as a 
scientific endeavor. In: Kelly, A.E., Lesh, R.A. (Eds.), Handbook of Research De-
sign in Mathematics and Science Education. Lawrence Erlbaum Associates Pub., 
London, 737–760.

Plomp, T., Reinen, I.J. (1996). Computer literacy. In: Plomp, T., Ely, A.D. (Eds.), In-
ternational Encyclopedia for Educational Technology. Pergamon Press, London, 
626–630.

For journal papers:
McCormick, R. (1992). Curriculum development and new information technolo-

gy. Journal of Information Technology for Teacher Education, 1(1), 23–49. 
http://rice.edn.deakin.edu.au/archives/JITTE/j113.htm

Burton, B.A. (2010). Encouraging algorithmic thinking without a computer. Olympi-
ads in Informatics, 4, 3–14.

For documents on Internet:
IOI (2008).  International Olympiads in Informatics 

http://www.IOInformatics.org/

Hassinen, P., Elomaa, J., Ronkko, J., Halme, J., Hodju, P. (1999). Neural Networks 
Tool – Nenet (Version 1.1).  
http://koti.mbnet.fi/~phodju/nenet/Nenet/General.html



Authors must submit electronic versions of manuscripts in PDF to the editors. The 
manuscripts should conform all the requirements above.

If a paper is accepted for publication, the authors will be asked for a computerpro-
cessed text of the final version of the paper, supplemented with illustrations and tables, 
prepared as a Microsoft Word or LaTeX document. The illustrations are to be presented 
in TIF, WMF, BMP, PCX or PNG formats (the resolution of point graphics pictures is 
300 dots per inch).

Contacts for communication

Valentina Dagienė
Vilnius University
Akademijos str. 4, LT-08663 Vilnius, Lithuania
Phone: +370 5 2109 732                              
Fax: +370 52 729 209
E-mail: valentina.dagiene@mif.vu.lt

Internet Address

All the information about the journal can be found at:

https://ioinformatics.org/page/ioi-journal





Olympiads
in Informatics
Volume 17, 2023

Foreword 1
G. KÉPES, Á. ERDŐSNÉ NÉMETH  

As the Epitome of Talent: John von Neumann and Hungarian-born Scientists Around Him
 
3

G. AUDRITO, M. CIOBANU, L. LAURA 
Giochi di Fibonacci: Competitive Programming for Young Students

 
19

B. GAÁL 
The Introduction of Micro:bit in Elementary School, from Unplugged Activity to Programs

 
33

B. GAÁL
Online Robotics Activities During the Pandemic Period – Challenges and Experiences

 
43

L.G. MENYHÁRT, L. ZSAKÓ 
Elementary Algorithms – Prefix Sum

 
53

V. NATALI, NATALIA, C.E. NUGRAHENI 
Indonesian Bebras Challenge 2021 Exploratory Data Analysis

 
65

P.S. PANKOV, A.A. BELYAEV
Latent and Evident Knowledge to Compose and to Solve Tasks in Informatics

 
87

T. VERHOEFF
Understanding and Designing Recursive Functions via Syntactic Rewriting

 
99

M. VISNOVITZ, G. HORVÁTH
Trends in Teaching Programming in Schools in Hungary

 
121

REPORTS          
M. DOLINSKY

Secondary School Programming Olympiads in Gomel Region
 

131
F. JINGGA, Y.K. ISAL, A. CENDRANATA, M.I LIEM, A MULYANTO

Change Management in Preparing Indonesian Team to IOI
 

143
S.N. KODITUWAKKU, T. GUNAWARDENA

National Olympiad in Informatics: Sri Lanka
 

159
M. OPMANIS, D. SILIŅA, S. SILIŅA, P. PAKALNS

Team Competition in Informatics and Mathematics “Cēsis”
 

173

REVIEWS, COMMENTS          
O. HAZZAN, K. MIKE

Guide to Teaching Data Science: An Interdisciplinary Approach
 

189



Publisher office: Vilnius University                                                                                                      
                            Akademijos str. 4, LT-08663 Vilnius, Lithuania                                
                            July, 2023



Olympiads  Olympiads  
in Informaticsin Informatics17

IOI
InternatIonal olympIad In InformatIcs

I S S N  1 8 2 2 - 7 7 3 2

Olympiads  
in Informatics
Volume 17, 2023

O
lym

piads in Inform
atics   V

olum
e 17, 2023

Olympiads
in Informatics
Volume 17, 2023

Foreword 1
G. KÉPES, Á. ERDŐSNÉ NÉMETH  

As the Epitome of Talent: John von Neumann and Hungarian-born Scientists Around Him
 
3

G. AUDRITO, M. CIOBANU, L. LAURA 
Giochi di Fibonacci: Competitive Programming for Young Students

 
19

B. GAÁL 
The Introduction of Micro:bit in Elementary School, from Unplugged Activity to Programs

 
33

B. GAÁL
Online Robotics Activities During the Pandemic Period – Challenges and Experiences

 
43

L.G. MENYHÁRT, L. ZSAKÓ 
Elementary Algorithms – Prefix Sum

 
53

V. NATALI, NATALIA, C.E. NUGRAHENI 
Indonesian Bebras Challenge 2021 Exploratory Data Analysis

 
65

P.S. PANKOV, A.A. BELYAEV
Latent and Evident Knowledge to Compose and to Solve Tasks in Informatics

 
87

T. VERHOEFF
Understanding and Designing Recursive Functions via Syntactic Rewriting

 
99

M. VISNOVITZ, G. HORVÁTH
Trends in Teaching Programming in Schools in Hungary

 
121

REPORTS          
M. DOLINSKY

Secondary School Programming Olympiads in Gomel Region
 

131
F. JINGGA, Y.K. ISAL, A. CENDRANATA, M.I LIEM, A MULYANTO

Change Management in Preparing Indonesian Team to IOI
 

143
S.N. KODITUWAKKU, T. GUNAWARDENA

National Olympiad in Informatics: Sri Lanka
 

159
M. OPMANIS, D. SILIŅA, S. SILIŅA, P. PAKALNS

Team Competition in Informatics and Mathematics “Cēsis”
 

173

REVIEWS, COMMENTS          
O. HAZZAN, K. MIKE

Guide to Teaching Data Science: An Interdisciplinary Approach
 

189

ISSN 1822-7732


