
The Python Papers

Volume 2, Issue 1

pythonpapers.org

Journal Information

The Python Papers

ISSN: 1834-3147

Editors

Tennessee Leeuwenburg
Maurice Ling
Richard Jones

Referencing Information

Articles from this edition of this journal may be referenced as below:

Author, “Title” (2007) The Python Papers, Volume N, Issue M, pp. m:n

e.g. Maurice Ling, “Firebird Database Backup by Serialized Database Table Dump”, (2007) The Python Papers, Volume
2, Issue 1, pp. 7:15.

Copyright Statement

© Copyright 2007 The Python Papers and the individual authors
This work is copyright under the Creative Commons 2.5 license subject to Attribution, Noncommercial and
Share­Alike conditions. The full legal code may be found at http://creativecommons.org/licenses/by-

ncsa/2.1/au/

The Python Papers was first published in 2006 in Melbourne, Australia.

Referees

1. Tennessee Leeuwenburg (tennessee@tennessee.id.au)

2. Helen Borrie, Firebird Project administrator and author of "The
Firebird Book: A Reference for Database Developers" (Apress,
2004)

3. Ann Harrison, Firebird Project administrator

mailto:tennessee@tennessee.id.au

The Python Papers, Volume 2, Issue 1 1

The Python Papers
Volume Two, Issue One : February 2007

In this Edition:

Articles and Editorials:

Editorial Page 2

Letter from the Editor, with free Wing IDE giveaway announcement!

Python Interview Page 4

The Python Papers talks to Ron Stephens of Python 411.

Coding Idioms pt 2 – Design Patterns Page 5
Tennessee Leeuwenburg

“I'll admit it – I live under a rock. I hadn't heard about Design Patterns until a couple of
months ago. So sue me.

That said, I'll bet I'm not the only one. So what's a Design Pattern?”

Python User Group Highlights Page 8

The Python Papers talk to PyGTA (Toronto) and PythonBrasil

Python Events Page 15

A list of upcoming Python events.

Peer Reviewed Submissions:

Firebird Database Backup by Serialized Database Table
Dump

Page 10

Maurice Ling

This paper presents a simple data dump and load utility for Firebird databases which mimics
mysqldump in MySQL. This utility, fb_dump and fb_load, for dumping and loading
respectively, retrieves each database table using kinterbasdb and serializes the data using
marshal module. This utility has two advantages over the standard Firebird database backup
utility, gbak. Firstly, it is able to backup and restore single database tables which might help
to recover corrupted databases. Secondly, the output is in text-coded format (from marshal
module) making it more resilient than a compressed text backup, as in the case of using
gbak.

The Python Papers, Volume 2, Issue 1 2

Letter from the Editor

G'day Pythonistas! Welcome to Issue Two of The Python Papers. It has been an
exciting time and we are pleased to have reached this milestone.

The last few months have involved a lot of effort connecting with many groups
within the Python community. I'd like to say a big hello to all the people who have
provided their input in making this a reality: the python-advocacy list,
comp.lang.python, the Python User Groups that responded to the call to
participate and also many individuals.

The effort to support and assist in the growth of the Python community is an ongoing one. One
way to help in this process would be to build a strong presence of Python developers in various
online networks. One that springs to mind is LinkedIn1, a job-related social networking site.

If we could encourage Python developers to start adding each-other to their LinkedIn network,
then we should be able to create a well-connected developer network with business and industry
contacts. This should benefit everyone -- both people looking for Python developers, and also
people looking for work.

This effort has already begun online, with many from the python-advocacy list linking to each-
other, and word is also leaking into the blogosphere2.

The idea is that Python developers link to other people they know personally (including via online
groups). Just a few such connections could put more Python developers within a few degrees of
separation of a huge network of employers and social contacts.

The benefits of this are manifold: each individual is connected to more people who might be able
to help them in future, both from the client and employer side; Python developers generally
become a well-connected resource, making Python more visible to the community at large and
potentially helping to drive its acceptance and adoption.

This is also the first issue where we have attempted to publish both a PDF and an HTML edition.
The choice of format was clearly an issue for many people on both sides. Going forward, we will
continue to use PDF as our primary 'authorative' version for the purposes of page numbering and
referencing, however the HTML editions will be made public in order to reach a wider audience.

Stop Press – Contribute and win!
We are also now able to announce that we have a free license to Wing IDE, a fantastic Python
development environment created by Wingware3. In order to win a 3-OS license for this software,
all you have to do is contribute an article4 to the next edition of The Python Papers. Keep your
eyes out next edition to see if you are the lucky winner!

Introducing The Team

Tennessee Leeuwenburg – Editor-in-Chief

Tennessee Leeuwenburg is a software developer working at the Australian Bureau of
Meteorology on automatic text generation of weather forecasts. Prior to this he spent time
working on meteorological data transfer standards in the form of the OpenDAP database system.

1 http://www.linkedin.com/
2 http://agiletesting.blogspot.com/2007/01/connecting-to-people-on-linkedin.html
3 http://wingide.com/
4 Contributors must not be on the editorial board to be eligible

The Python Papers, Volume 2, Issue 1 3

Maurice Ling – Associate Editor

Maurice Ling is a PhD candidate in the department of Zoology of the University of Melbourne
working on text analysis of biological literature for the purpose of understanding hormone
interactions in the mouse mammary cell.

Richard Jones – Associate Editor

Richard is Common Ground's 5 senior software developer with 10 years of broad experience
working with multiple languages and tools in web-based management systems, data archive,
meta-data systems, business systems, e-commerce and communications. He also runs the bi-
annual PyWeek Game Programming Challenge 6 and is involved with the organisation of the Open
Source Developer's Conference 7 in Melbourne, Australia.

Stephanie Chong – Design Assistant

One of Stephanie's first comments regarding the The Python Papers was “how can we make it
prettier?” We hired her on the spot.

Stephanie is currently studying Arts/Law at the University of Melbourne.

Contacting The Python Papers

The editors may be contacted via email at:

editor@pythonpapers.org

We are always looking for new writers for The Python Papers. If you would like to contribute an
opinion piece, an article, participate in an interview or submit a paper for review and publication,
please don't hesitate to contact us.

5 http://commongroundgroup.com/
6 http://www.pyweek.org/
7 http://osdc.com.au/

mailto:editor@pythonpapers.org
mailto:editor@tennessee.id.au
http://osdc.com.au/
http://osdc.com.au/
http://www.pyweek.org/
http://www.commonground.com.au/

The Python Papers, Volume 2, Issue 1 4

Python Interview – Ron Stephens of Python 411
The Python Papers (TPP) talks to Ron Stephens of Python 4118.

TPP: Who is Ron Stephens?

Ron> I am a middle aged man living in
Connecticut, USA, a father of four children and an
electronics industry executive who discovered
Python while attending a Linux Users Group with
my son about 6 years ago.

TPP: What motivated you to start the
Awaretek site?

Ron> I actually started the AwareTek site about 10 years ago as a means of self-expression. The
Python orientation of the site was inspired when, not long after I discovered Python, I read a
book about the wonderful open source community in which Guido van Rossum was quoted
talking about "Computer Programming for Everybody". I felt an overwhelming desire to
participate.

TPP: Have you made many new contacts since starting to publish information?

Ron> Yes, I get many emails from Pythonistas from all over the world, as well as talking to the
folks whom I interview for the Python411 podcast series.

TPP: What do you think is the current biggest problem with Python (in a broad
sense)?

Ron> You know, I don't see any problems, I'm a glass-half-full kind of guy. I can hardly believe
what a beautiful language and powerful set of tools has been created by a group of dedicated
programmers and given freely to all of us to use, and all of this is out of the goodness of people's
hearts. It doesn't get much better than this.

TPP: What is best best feature of Python (again in a broad sense)?

Ron> Ease of learning and ease of use are the killer features of Python.

TPP: As a contributor to the Python community, do you feel well connected to other
Python developers?

Ron> I attended PyCon last year for the first time, and I plan on being in Dallas in late February
to do so again, and that is my first real face to face exposure to other Pythonistas. I highly
recommend PyCon to anyone who has a chance to go. I do not a have local user's group close
enough to attend, so other than PyCon, I do miss talking with real live Pythonistas; but I am
thankful for the online virtual world, without which the Python and larger open source
communities as we know them could not exist.

TPP: What are some of the most exciting Python projects that you know about?

Ron> My favorite Python projects include 'Chandler', a sort of cross platform uber-PIM;
'PythonCard', an incredibly easy to use GUI creator; and 'Firedrop', a weblog and content
management system for Python hackers.

8 http://www.awaretek.com/

Python Learning Foundation

1. An organisation promoting Python information

2. Host of the popular “Python 411” podcast
series

Text 1: Source: www.awaretek.com

The Python Papers, Volume 2, Issue 1 5

Programming Idioms pt 2 -- Design Patterns
Tennessee Leeuwenburg

I'll admit it – I live under a rock. I hadn't heard about Design Patterns until a couple of months
ago. So sue me. That said, I'll bet I'm not the only one. So what's a Design Pattern?

Simple. It's boilerplate design. The idea seems simple enough – many problems can be
expressed in common ways. If that's true, then there should exist some small set of program
structures which are useful for many, many problems.

Identifying these and documenting them is what is involved in creating a Design Pattern. Armed
with a library of Design Patterns, solving a complex problem can be simplified by expressing it in
terms of a problem that you already know how to solve – at least more or less.

The seminal text in this area is Design Patterns: Elements of Reusable Object-Oriented Software9,
often referred to as the GoF or Gang of Four, partly because it has four authors and partly
because it is a much shorter title.

One of the first things that occurred to me when I was thinking about this topic was
MapReduce10, an algorithm used by Google in distributed processing.

Many problems can be expressed in terms of operations which also happen to be easily run in
parallel. If a problem can be expressed in terms of a Map() and then Reduce() function, then it is
easy to make use of distributed processing.

While MapReduce is not one of the patterns addressed in GoF, many that are may already be
familiar to many programmers. These include Factories, Singleton classes, Adapters, Iterators
and others.

They have all been built many times over because they are a sensible way to deconstruct a
program design. Design Patterns are an attempt to bring additional tools born from experience to
bear on problem analysis and code design.

There are further similarities with, for example, Agent-Oriented architectures and other such
design systems. If they have anything in common, it is because there is an overriding truth that a
complex problem must often be broken into component parts before a solution may be found.

A programming idiom is the lowest-level expression of this truth. As discussed in part one of this
series, a programming idiom is a practise adopted to help make the meaning of code clearer.

It is perhaps reasonable to say then that a Design Pattern is a practise adopted to help make the
medium-scale structure of code clearer.

Design Patterns for Python

Many Design Patterns appear to be closely linked to particular Object-Oriented models which do
not apply to Python as neatly as to other languages. For example, Python's dynamic duck typing
obviates some of the patterns which relate to issues caused by static typing, for example the
Abstract Factory and Builder Patterns.

For specific information on how to use design patterns in your own code, “Design Patterns in
Python”11 is a good start. However, I will briefly list the Design Patterns which appear to me to be
most relevant to Python. These patterns are, in no particular order: Prototype; Singleton
(optionally with Borg style); Composite; Facade; Flyweight; Proxy (looks Evil, Ed); Chain of

9 http://www.amazon.com/Design-Patterns-Object-Oriented-Addison-Wesley-
Professional/dp/0201633612

10http://labs.google.com/papers/mapreduce.html
11http://www.python.org/workshops/1997-10/proceedings/savikko.html

The Python Papers, Volume 2, Issue 1 6

Responsibility; Command; Iterator; Interpreter; Mediator; Memento; Observer (or Listener) and
Strategy.

Having read up on each of these (see GoF or else Wikipedia12 has an entry for each, see “Gang of
Four”), I made a sub-list of patterns that I have used myself: Strategy; Observer (or Listener);
Iterator; Chain of Responsibility; Facade; Composite and Singleton.

However, I have rarely used these patterns as part of an overarching design strategy. Indeed, it
is still unclear how these patterns may be best integrated into system design for significant
components or applications. They appear more applicable to small-scale problems.

It is not clear, for example, how the Iterator pattern applies to a larger task – implementing a
Customer Relations Manager for example. Only once that larger system is broken down to
include a component which processes each customer does an Iterator become useful in solving
the problem.

Design Patterns, then, are a higher level of abstraction than an algorithm, but a lower level of
abstraction than system design.

When to use Design Patterns

The question then is, 'When should a Design Pattern be used?' If not during system design (too
low-level) and not line-by-line (too high-level), then when?

There are no hard and fast rules. Little academic research has been done on the topic, and there
are no de-facto standards here. As such, if you see an opportunity to make use of a Design
Pattern, doing so may well save you much time spent in the design phase.

Typically, the right time is when working on an individual component of a larger system. For
example, supposing the task at hand were to build an Internet chat room. This might require a
central server to which multiple clients could connect, some kind of user interface for interacting
with the system, and messaging processing logic on both sides. This is the system design level.

Let's dive into the server logic. The server will need to manage client connections and handle the
relevant message-passing. A simple server could be structured around a simple main loop
(Iterator pattern):

class ChatServer:

 def _mainLoop(self):
 outgoing = ''

 # Get messages coming in from each client
 for client in clients:
 incoming = client.getMessages()
 outgoing = outgoing + '\n'.join(incoming)

 # Push the message stack back to each client
 for client in clients:
 client.recieveMessages(outgoing)

Here we see the use of an iterator which is central to the Python language. The ability of for
loops to process interated information is very useful. It allows iteration over lists, sequences or
even user-defined functions.

The Iterator pattern can also be used from the other side, so to speak, in writing code which
generates the items to be iterated over. It could be used, for example, as the basis of an event-

12www.wikipedia.org

The Python Papers, Volume 2, Issue 1 7

based system. Writing an Iterator which yields events would allow a simple for loop to control
program execution.

It can be seen that there are uses for Design Patterns just below the level of system design –
when building components identified during this earlier phase. This process of taking a design
requirement, and looking for a Design Pattern which might be able to meet that requirement, is
not just an exercise for its own sake. Rather, it is a logical short-cut. Implementing a problem in
an already familiar way will make the job quicker and simpler. Should the code ever be passed to
another programmer, they will be able to understand the execution flow that much more easily.

To use another analogy, using Design Patterns liberally will encourage the use of common
structures in various system components, indeed across programs and even across programming
languages and systems. While a Java implementation may not be syntactically the same as a
Python implementation, the underlying structure of the code will be similar.

The Python Papers, Volume 2, Issue 1 8

Python User Group Highlights

This regular section will cover the activities of Python User Groups (PUGs) and Special Interest
Groups (SIGs) around the Planet. If your local group would like to feature in the next edition,
please contact editor@pythonpapers.org. This issue we cover the Toronto Python User's Group
and Python Brasil. The Python Papers (TPP) spoke to Mike Fletcher and Rodrigo Senra.

Toronto Python User's Group: PyGTA
Mike Fletcher> PyGTA is the Toronto
Python User's Group. It was first
convened in September of 2002 and
meets monthly at the Linux Caffe in
downtown Toronto. We have around 8
regular attendees, with the more
popular discussions topping 30
attendees. Our members have a larger
than normal (for Python)
representation in the embedded
systems space, but the range of
interest is broad, from accounting and
billing software through 3D graphics,
web development, systems
administration, media editing and radio
broadcasting.

Python is used by a considerable
number of companies in the Greater
Toronto Area as an in-house
development language. We also have a number of independent contracting companies who
provide bespoke software development. Although we know there are a lot of academic and
personal Python programmers in the city, we don't seem to attract them to the meetings as
much as the professional programmers, a situation we would love to rectify.

HTH,
Mike

Contact details for reaching Mike and others at PyGTA are available at the PyGTA website.13

13 http://web.engcorp.com/pygta

Illustration 1: PyGTA meeting in Jan 2007

mailto:editor@pythonpapers.org

The Python Papers, Volume 2, Issue 1 9

PythonBrasil

TPP: Where is the user group
based?

Rodrigo Senra> There is no
basecamp. We are scattered
across the country. But our virtual
headquarters is our Wiki portal.14

TPP: Who are the active
members?

Rodrigo> We keep a detailed list
by state at with about a 100
people. These are the most
active. In our mailing list we have
over 700 subscriptions.15

TPP: How long has the group
existed for?

Rodrigo> It is about 4 or 5 years
old.

TPP: How frequently are
meetings held?

Rodrigo> Next year we are going to have our 3rd national conference about Python/Zope/Plone
called... PyconBrasil ;o)

The first one was in 2005 with an audience around 100 people. This year the crowd has tripled.

TPP: What are the particular programming interests held by members?

Rodrigo> It is a big country, and interests are vast.

TPP: Are there any upcoming events?

Rodrigo> August 2007 -> 3rd PyConBrasil. We' ll announce it at c.l.py 16 in due time.

TPP: How is Python used in your country?

Rodrigo> I have presented “The growth of the Brazilian Python Community” during Europython
2005. Thit is the tip of the iceberg. I can make the slides available in case there is any interest.

14 http://www.pythonbrasil.com.br

15 http://www.pythonbrasil.com.br/moin.cgi/GrupoDeUsuarios

16 http://groups.google.com/group/comp.lang.python

Illustration 2: Pycon Brasil 2006. These are some of the usual
suspects, including world famous figures like: Sidnei da Silva,
Dorneles Tremea, Gustavo Niemeyer

http://c.l.py/
http://www.pythonbrasil.com.br/moin.cgi/GrupoDeUsuarios
http://www.pythonbrasil.com/br

The Python Papers, Volume 2, Issue 1 10

Firebird Database Backup by Serialized Database
Table Dump
Maurice HT Ling
Department of Zoology, The University of Melbourne, Australia

Correspondence: mauriceling@acm.org

Abstract

This paper presents a simple data dump and load utility for Firebird databases which mimics
mysqldump in MySQL. This utility, fb_dump and fb_load, for dumping and loading respectively,
retrieves each database table using kinterbasdb and serializes the data using marshal module.
This utility has two advantages over the standard Firebird database backup utility, gbak. Firstly,
it is able to backup and restore single database tables which might help to recover corrupted
databases. Secondly, the output is in text-coded format (from marshal module) making it more
resilient than a compressed text backup, as in the case of using gbak.

Categories and Subject Descriptors
H.2.7 [Database Administration]: Logging and Recovery
E.5 [Files]: Backup/recovery

1. Introduction

The only database backup and restore utility in Firebird database management system is gbak
(chapter 38 of Borrie, 2004), which required the database to be in an uncorrupted state and
backed-up into a compressed textual format known as External Data Representation (XDR)
format (Srinivasan, 1995). Although some forms of database corruption can be repaired using the
standard housekeeping tool, gfix (chapter 39 of Borrie, 2004), serious errors can still persist,
preventing standard backup to be performed (page 936 of Borrie, 2004). In such cases, data
within the corrupted database might be rescued by exporting the data out by third-party tools or
qli within the standard installation.

On the other hand, MySQL's (another popular open source RDBMS) backup utility is a database
dumper utility which dumps the database, table by table, as SQL insert statements. Although
there are advantages with Firebird gbak utility (for a complete discussion of gbak's capabilities,
please refer to chapter 38 of Borrie, 2004), it might be useful to be able to backup or dump
individual Firebird database tables into a text or text-coded format as requested by several users
(Palaparambil, 2006; Piridi, 2006). A major advantage of text or text-coded format over
binarycompressed text format is the resilience of text format over compressed format to
corruption. Corruption in text or text-coded format may result in loss of several records but
corruption in compressed format may result in loss of entire tables.

This paper presents a simple data dump and load utility for Firebird databases (versions
supported by kinterbasdb library which included virtually all versions of Firebird) which mimics
mysqldump in MySQL. Each Firebird table is retrieved using kinterbasdb library and serialized
into a text-coded file using Python's marshal module.

Two other third-party backup systems available for Firebird databases are nBackup (Vinkenoog,
2005) and dBak (http://www.telesiscomputing.com.au/dbk.htm) which were presented as
alternatives to gbak. Both dBak and nBackup are comparable to the proposed method in the
aspect of table-level data extraction. However, dBak relied on Borland Delphi's IBObjects; hence,
unlike the proposed Python-based method, dBak is not available for Unix-based systems. Despite
not being able to ascertain whether nBackup will be available for both Unix-based systems and
Microsoft systems, nBackup is only available for Firebird version 2.0 and above as a standard
Firebird utility (Vinkenoog, 2005). The proposed method in this paper used kinterbasdb library;

http://www.telesiscomputing.com.au/dbk.htm
mailto:mauriceling@acm.org

The Python Papers, Volume 2, Issue 1 11

thus, making it available for use with all kinterbasdb-supported versions of Firebird which
included versions lesser than 2.0. The version of Firebird used in this study is version 1.5.2.
Although the proposed method in this paper lacked the ability to create incremental backups
with similar ease as that of nBackup, it is able to backup multifile databases and change
database owner by re-creating a clean database. Therefore, we consider our proposed method as
another possible complementary Firebird database backup method (utility) to gbak, dBak, and
nBackup.

2. Implementation

"""
Firebird database dumper which mimics MySQL database dump. The resulting files are serialized records.
Date created: October 18, 2006
Copyright (c) 2006, Maurice Ling
"""
import kinterbasdb, marshal, os, gc

db_path = 'employe2.fdb'
db_user = 'SYSDBA'
db_password = 'masterkey'
number_of_records = 500000 # number of records (tuple) in a dump file

sql_script = [
 ["cross_rate",
 "select from_currency, to_currency, conv_rate, cast(update_date as char(24)) from cross_rate",
 "insert into cross_rate (from_currency, to_currency, conv_rate, update_date) values (?,?,?,?)"]
]

con = kinterbasdb.connect(dsn=db_path, user=db_user, password=db_password)
cur = con.cursor()

data = {}

for table in sql_script:
 data.clear()
 gc.collect()
 data['insert_sql'] = table[2]
 print 'Dumping table: ' + table[0]
 cur.execute(table[1])
 rowcount, setcount = 0, 0
 temp = []
 for row in cur:
 temp.append(row)
 rowcount = rowcount + 1
 if (rowcount % number_of_records) == 0:
 setcount = setcount + 1
 data['data'] = temp
 temp = []
 f = open(table[0] + '.' + str(setcount) + '.dump', 'w')
 marshal.dump(data, f)
 print '%s records dumped into %s file' % (str(number_of_records), table[0] + '.' + str(setcount) + '.dump')
 f.close()
 if len(temp) > 0:
 setcount = setcount + 1
 data['data'] = temp
 temp = []
 f = open(table[0] + '.' + str(setcount) + '.dump', 'w')
 marshal.dump(data, f)
 print '%s records dumped into %s file' % (str(len(data['data'])), table[0] + '.' + str(setcount) + '.dump')
 f.close()
 print 'Total number of records in %s table: %s' % (table[0], str(rowcount))
 print 'Dumping ' + table[0] + ' table successful.'

"""
Firebird database loader to load dump files from fb_dump
Date created: October 18, 2006
Copyright (c) 2006, Maurice Ling
"""
import kinterbasdb, marshal, os, gc, sys

def load(f, db_path, db_user, db_password):

The Python Papers, Volume 2, Issue 1 12

 con = kinterbasdb.connect(dsn=db_path, user=db_user, password=db_password)
 cur = con.cursor()
 data = marshal.load(open(f, 'r'))
 for tuple in data['data']:
 try:
 cur.execute(data['insert_sql'], tuple)
 con.commit()
 except: 'Unable to load record: %s' % tuple
 print '%s file loaded successful.' % f
 con.close()

if __name__ == "__main__":
 if len(sys.argv) < 5:
 print "Usage: python db_load.py <path_to_database> <database_user> <database_password> <dump_file>+"
 for dumpfile in sys.argv[4:]:
 load(dumpfile, sys.argv[1], sys.argv[2], sys.argv[3])

3. Evaluation

Two evaluation tests were carried out – the first evaluation demonstrated a proof of concept
while the second evaluation demonstrated that the utility could be used on a larger database
with reasonable performance.

In the first evaluation, a sample database was constructed using the following script as supplied
as an example in the Firebird installation:

set sql dialect 1;
create database "employe2.fdb";
CREATE TABLE cross_rate(
 from_currency VARCHAR(10) NOT NULL,
 to_currency VARCHAR(10) NOT NULL,
 conv_rate FLOAT NOT NULL,
 update_date DATE,
 PRIMARY KEY (from_currency, to_currency));

INSERT INTO cross_rate VALUES ('Dollar', 'CdnDlr', 1.3273, '11/22/93');
INSERT INTO cross_rate VALUES ('Dollar', 'FFranc', 5.9193, '11/22/93');
INSERT INTO cross_rate VALUES ('Dollar', 'D-Mark', 1.7038, '11/22/93');
INSERT INTO cross_rate VALUES ('Dollar', 'Lira', 1680.0, '11/22/93');
INSERT INTO cross_rate VALUES ('Dollar', 'Yen', 108.43, '11/22/93');
INSERT INTO cross_rate VALUES ('Dollar', 'Guilder', 1.9115, '11/22/93');
INSERT INTO cross_rate VALUES ('Dollar', 'SFranc', 1.4945, '11/22/93');
INSERT INTO cross_rate VALUES ('Dollar', 'Pound', 0.67774, '11/22/93');
INSERT INTO cross_rate VALUES ('Pound', 'FFranc', 8.734, '11/22/93');
INSERT INTO cross_rate VALUES ('Pound', 'Yen', 159.99, '11/22/93');
INSERT INTO cross_rate VALUES ('Yen', 'Pound', 0.00625, '11/22/93');
INSERT INTO cross_rate VALUES ('CdnDlr', 'Dollar', 0.75341, '11/22/93');
INSERT INTO cross_rate VALUES ('CdnDlr', 'FFranc', 4.4597, '11/22/93');

The resulting serialized dump file is as follows:

{t^D^@^@^@data[^N^@^@^@(^D^@^@^@s^F^@^@^@Dollars^F^@^@^@CdnDlrf^Q1.3272999525070
19s^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@s^F^@^@^@Dollars^F^@^@^@FFrancf^R5.9
193000793457031s^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@s^F^@^@^@Dollars^F^@^@
^@D-Markf^R1.7037999629974365s^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@s^F^@^@^@
Dollars^D^@^@^@Liraf^F1680.0s^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@s^F^@^@^@D
ollars^C^@^@^@Yenf^R108.43000030517578s^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@
s^F^@^@^@Dollars^G^@^@^@Guilderf^R1.9114999771118164s^X^@^@^@1993-11-22 00:00:00
.0000(^D^@^@^@s^F^@^@^@Dollars^F^@^@^@SFrancf^R1.4945000410079956s^X^@^@^@1993-1
1-22 00:00:00.0000(^D^@^@^@s^F^@^@^@Dollars^E^@^@^@Poundf^S0.67773997783660889s
^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@s^E^@^@^@Pounds^F^@^@^@FFrancf^R8.73400
02059936523s^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@s^E^@^@^@Pounds^C^@^@^@Yenf
^R159.99000549316406s^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@s^C^@^@^@Yens^E^@
^@^@Poundf^U0.0062500000931322575s^X^@^@^@1993-11-22 00:00:00.0000(^D^@^@^@s^F^@
^@^@CdnDlrs^F^@^@^@Dollarf^R0.7534099817276001s^X^@^@^@1993-11-22 00:00:00.0000(
^D^@^@^@s^F^@^@^@CdnDlrs^F^@^@^@FFrancf^R4.4597001075744629s^X^@^@^@1993-11-22 0
0:00:00.0000t
^@^@^@insert_sqls\^@^@^@insert into cross_rate (from_currency, to_currency, conv
_rate, update_date) values (?,?,?,?)0

The Python Papers, Volume 2, Issue 1 13

The resulting serialized dump file yielded the correct corresponding dictionary when de-
serialized:

>>> import marshal
>>> data = marshal.load(open('cross_rate.1.dump', 'r'))
>>> data
{'insert_sql': 'insert into cross_rate (from_currency, to_currency, conv_rate, update_date) values (?,?,?,?)', 'data':
[('Dollar', 'CdnDlr', 1.327299952507019, '1993-11-22 00:00:00.0000'), ('Dollar', 'FFranc', 5.9193000793457031, '1993-
11-22 00:00:00.0000'), ('Dollar', 'D-Mark', 1.7037999629974365, '1993-11-22 00:00:00.0000'), ('Dollar', 'Lira', 1680.0,
'1993-11-22 00:00:00.0000'), ('Dollar', 'Yen', 108.43000030517578, '1993-11-22 00:00:00.0000'), ('Dollar', 'Guilder',
1.9114999771118164, '1993-11-22 00:00:00.0000'), ('Dollar', 'SFranc', 1.4945000410079956, '1993-11-22
00:00:00.0000'), ('Dollar', 'Pound', 0.67773997783660889, '1993-11-22 00:00:00.0000'), ('Pound', 'FFranc',
8.7340002059936523, '1993-11-22 00:00:00.0000'), ('Pound', 'Yen', 159.99000549316406, '1993-11-22
00:00:00.0000'), ('Yen', 'Pound', 0.0062500000931322575, '1993-11-22 00:00:00.0000'), ('CdnDlr', 'Dollar',
0.7534099817276001, '1993-11-22 00:00:00.0000'), ('CdnDlr', 'FFranc', 4.4597001075744629, '1993-11-22
00:00:00.0000')]}

The second evaluation test was performed on a research database containing more than 50
tables of which 48 million records in 20 tables were chosen for backup. This task took about 22
minutes to complete on a 2GHz G5 PowerPC system with 2GB onboard RAM, with 104 dump files
totaling 9.54 gigabytes. For comparison, the 104 dump files were loaded into a newly created
database (this task took about 9 hours and 10 minutes) on and re-backup using gbak on the
same system. The comparative backup using gbak took about 26 minutes and restoring the
resulting gbak-backup-ed file took about 51 minutes. The results for this backup/restore
comparison is summarized in Table 1 below for clarity.

Using gbak utility This study

Time needed to backup 48 million
records in 20 tables

9 hours 10 minutes 22 minutes

Time needed to restore 48 million
records in 20 tables

51 minutes 26 minutes

Table 1: Comparison of the length of time needed to backup and restore a test set of 48 million records in
20 tables of a Firebird database using gbak and the proposed method in this study.

4. Discussion

The standard Firebird database backup utility, gbak, backs up database into a compressed
textual format (XDR), in contrast to MySQL's mysqldump utility which backs up database into a
plain text format of SQL insert statements. There are advantages and disadvantages in each
method. Firebird's method allowed for optimization of the indexes during the backup and restore
process while MySQL's method enabled single table backup which tends to be more resilient to
data corruption in the backup file. The main disadvantage of Firebird's method is its requirement
for an uncorrupted database structure to be backed up successfully while MySQL's method does
not allow certain optimizations of the database, such as index balancing, during the
backup/restore process. Despite the advantages and disadvantages of each method, there are
practical situations where one method might be preferred over another.

This paper presented a simple utility based on Python/kinterbasdb setup for table-level backup
and restore in a text-coded format, using marshal module in Python Standard Library. The
evaluation tests demonstrated that this utility performed with reasonable efficiency of backing up
about 2 to 2.2 million records in a minute on a production system which is comparable to that of
gbak. The evaluation results illustrated that restoring the database using the proposed utility is
significantly slower than that of gbak, this might be use to the serialized use of the restore utility.
That is, the dump files are restored one at a time. However, several instances of the restore
utility (fb_load.py) could be executed in parallel (restoring different sets of dump files in each
instance) and might significantly improve performance, especially on a multi-CPU/multi-core
platform with Firebird classic version which allows for multiple instance of Firebird to be
concurrently active.

As this utility is based on marshal module, Firebird tables containing un-marshallable objects,

The Python Papers, Volume 2, Issue 1 14

such as timestamp or date, cannot be dumped without conversion as shown in the evaluation
test where update_date attribute (which is date type) had to be casted into 25-character
attribute before serialization is possible. Hence, there are some limitations of this proposed
method posed by data type mismatch between Firebird data types and marshallable data types.
Despite the limitations, it might be possible to circumvent the limitation by type-casting as
demonstrated in the evaluation test. Future improvements into the increasing range of
serializable data types by marshal module may assist in reducing this limitation observed. At the
same time, this utility had not been tested with BLOB objects in spite of kinterbasdb's capabilities
to handle BLOBs using file-like input/output streams (please refer to kinterbasdb's usage guide
for more information). Therefore, we believe that BLOB object handling may be currently possible
with modifications and may be included in future versions.

Comparing with gbak, restoring a database using this utility does not result in an optimized set of
indexes. However, this could be easily remedied as re-creating table indexes in Firebird is simply
a 2-step process of dropping (deleting) a current index (using DROP INDEX SQL statement) and
re-creating the same index (using CREATE INDEX SQL statement). These index re-creation could
easily be made into an SQL script for routine database maintenance; hence, is not considered as
an important feature for this utility.

In summary, we had presented a simple text-formatted backup and loading utility to perform
table-by-table backup of a Firebird database for serialize-able or type-cast-able to serialize-able
Firebird data types.

5. References

BORRIE, HELEN. (2004) The Firebird Book: A Reference for Database Developers. United States of
America, APress.

PALAPARAMBIL, SUDHEER. (2006) October 14, 'Updating Remote DB'. Firebird Support Forum
[online]. Available at http://tech.groups.yahoo.com/group/firebird-support/message/80223.
Last accessed on November 11, 2006.

PIRIDI, RAMBABU. (2006) November 3, 'Regarding Backup of Firebird Tables'. Firebird Support
Forum [online]. Available at http://tech.groups.yahoo.com/group/firebird-
support/message/80770. Last accessed on November 11, 2006.

SRINIVASAN, RAJ. (1995) XDR: External Data Representation Standard. Network Working Group.
Request for Comments 1832.

VINKENOOG, PAUL. (2005) Firebird's nBackup Tool. Available at http://firebird.sourceforge.net/
manual/nbackup.html. Last accessed on January 22, 2007.

http://firebird.sourceforge.net/manual/
http://firebird.sourceforge.net/manual/
http://firebird.sourceforge.net/
http://tech.groups.yahoo.com/group/firebird-support/message/80770
http://tech.groups.yahoo.com/group/firebird-support/message/80770
http://tech.groups.yahoo.com/group/firebird-support/message/80223

The Python Papers, Volume 2, Issue 1 15

Python Events

Title Location Dates

February

PyCon 2007 Addison (Dallas), Texas February 23-25, 2007

URL: http://us.pycon.org/

March

Python course taught by
Graham Ellis.

Melksham, England March 12-14, 2007

URL: http://www.wellho.net/course/ypfull.html

April

RuPy 2007 Ruby and Python
conference

Poznan, Poland April 7-8, 2007

URL: http://rupy.wmid.amu.edu.pl/

May

Python course taught by
Graham Ellis.

Melksham, England May 14-16, 2007

URL: http://www.wellho.net/course/ypfull.html

Advanced Python course
taught by Wesley Chun

San Francisco, CA May 16-18, 2007

URL: http://roadkill.com/~wesc/cyberweb/pp2dsc.html

June

Python training class taught by
Mark Lutz.

Longmont, Colorado June 11-13, 2007

http://home.earthlink.net/%7Epython-training/longmont-public-classes.htm

To list your event details here, or to include additional information, please contact
editor@pythonpapers.org

http://home.earthlink.net/~python-training/formalbio.html
http://home.earthlink.net/~python-training/longmont-public-classes.htm
http://cyberwebconsulting.com/
http://www.wellho.net/net/graham.html
http://www.wellho.net/course/ypfull.html
http://rupy.wmid.amu.edu.pl/
http://www.wellho.net/net/graham.html
http://www.wellho.net/course/ypfull.html
http://us.pycon.org/

	The Python Papers
	Stop Press – Contribute and win!
	Toronto Python User's Group: PyGTA
	PythonBrasil

