
The Python Papers

Volume 2, Issue 3

pythonpapers.org



Journal Information

The Python Papers

ISSN: 1834-3147

Editors

Tennessee Leeuwenburg
Maurice Ling
Richard Jones

Stephanie Chong

Referencing Information

Articles from this edition of this journal may be referenced as follows:

Author, “Title” (2007) The Python Papers, Volume N, Issue M, pp. m:n

e.g. Maurice Ling, “Firebird Database Backup by Serialized Database Table Dump” (2007) The Python Papers, Volume 
2, Issue 1, pp. 7:15.

Copyright Statement

© Copyright 2007 The Python Papers and the individual authors
This work is copyright under the Creative Commons 2.5 license subject to Attribution, Noncommercial and 
Share-Alike conditions. The full legal code may be found at http://creativecommons.org/licenses/by-

ncsa/2.1/au/

The Python Papers was first published in 2006 in Melbourne, Australia.

Referees

An academic peer-review was performed on all academic articles. A 
list of reviewers will be published in each December issue. This has 
been done in order to ensure the anonymity of reviewers for each 
paper. 



The Python Papers, Volume 2, Issue 3 1

The Python Papers
Volume Two, Issue Three : August 2007

In this Edition:

Articles and Editorials:

Editorial Page 3
Our feature article explores the barriers that women face in tech communities. This article 
applies generally, but holds a lot of valuable information for those individuals seeking to 
promote Python through advocacy, development or community involvement. We include our 
regular  section on Python User Group highlights,  this time examining Brisbane-PUG. Our 
academic  section  presents  PyPhant,  a  framework  for  the  creation  and  application  of 
information flow models.

Python User Group Highlights: Introducing BrisPy Pages 5-6  
David P Novakovic

The Brisbane Python User  Group is  heading  into  its  fourth  month  as  a  forum for  local 
Pythonistas. The user group was started by Stephen Thorne from NetBox Blue in Milton and is  
kindly hosted by NetBox Blue themselves who provide pizza and beer for the gathering.

The Barriers Women Face in Tech Communities Pages 7-13 
Gloria W. Jacobs

This subject has been on the minds of many tech women for years. The issue is discussed 
regularly, almost cyclically at times, as we spin our collective wheels to try to find causes and 
solutions. I was reluctant to write about it, since I find the subject matter daunting, and the 
problem  almost  insurmountable  at  times.  But  three  different  sources  approached  me 
simultaneously, asking for this article. This article feels as if it is manifesting through me 
rather than from me, as a collective opinion and observation from the many tech women with 
whom I’ve worked and spoken. So many factors are in play when discussing this issue that I  
can only hope to address many of them without writing a tome. 

Python Testimonials Pages 14-17
Various Authors

Python  testimonials  from a  wide  number  of  sources  have  contributed  to  this  article.  It 
presents somewhat of a snapshot of how Python is being used through the eyes of those  
individuals. 

The Longest Common Substring and Sentence Modification Pages 18-27
Tennessee Leeuwenburg

I had this problem. Some sentence (A) was modified somehow. Given the new sentence (B), 
identify what was added and what was removed, if anything? To solve this problem required 
a tree structure to store edits, a method for extracting the longest common substring and a 
little ingenuity.

Python Events Page 44

A list of upcoming Python events.



The Python Papers, Volume 2, Issue 3 2

Peer Reviewed Submissions:

Pyphant – A Python Framework for Modelling Reusable 
Information Processing Tasks

Pages 28-43

Klaus Zimmermann, Lorenz Quack and Andreas W. Liehr

We are presenting the Python framework “Pyphant” for the creation and application of 
information flow models. The central idea of this approach is to encapsulate each data 
processing step in one unit which we call a worker. A worker receives input via sockets and 
provides the results of its data processing via plugs. These can be connected to other 
workers' sockets. The resulting directed graph is called a recipe. This paper discusses the 
Pyphant framework and presents an example recipe for determining the length scale of 
aggregated polymeric phases from an Atomic Force Microscopy (AFM) phase mode image.

The Python Papers' Review Policy Pages 45-46
The Editorial Board

The Python Papers review policy covers both industry and peer-reviewed articles. This is 
included for academic purposes.



The Python Papers, Volume 2, Issue 3 3

Letter from the Editor

Tennessee Leeuwenburg

Hello to the readers of The Python Papers! This issue marks the end of our first 
full  year  of  publications  –  the  next  edition will  be  our  first  anniversary.  Our 
domain name is up for its yearly renewal and it seems appropriate to look at 
some of the things which we have achieved so far:

> 13 articles published and five academic papers;

> 18522 total site visits;

  > Highlights from Python User Groups in four countries

  > Connections with many individuals and groups

  > The creation of our website and editorial policies

It has been a time not without its trials. Our first issue was little more than a few contributions 
from the editorial board and a dash of planning with regards to layout and design. From these 
very humble beginnings,  the Python community has responded with the great contributions 
which  make our  continued existence possible.  It  is  only  appropriate  that  this  issue look  in 
particular  detail  at  some of  those individuals.  Our  feature article  explores the barriers that 
women face in tech communities.  This article applies generally,  but holds a lot  of  valuable 
information for those individuals seeking to promote Python through advocacy, development or 
community involvement. We include our regular section on Python User Group highlights, this 
time examining Brisbane-PUG. Our academic section presents PyPhant,  a  framework  for  the 
creation and application of information flow models.

I'd also like to say a big hello to everyone at the Front Range Pythoneers in Boulder, Colorado 
who were kind enough to include me in one of their meetups while I was on overseas visit!

Introducing The Team

Tennessee Leeuwenburg – Editor-in-Chief

Tennessee  Leeuwenburg  is  a  software  developer  working  at  the  Australian  Bureau  of 
Meteorology on automatic  text generation of  weather forecasts.  Prior  to  this  he spent time 
working on meteorological data transfer standards in the form of the OpenDAP database system.

Maurice Ling – Associate Editor

Maurice Ling is a PhD candidate in the department of Zoology of The University of Melbourne 
working on  text  analysis  of  biological  literature  for  the  purpose  of  understanding  hormone 
interactions in the mouse mammary cell.

Richard Jones – Associate Editor

Richard is Blue Box Device's lead OpenGL developer with over 10 years of broad experience 
working with multiple languages and tools in web-based management systems, data archive, 
meta-data systems, computer graphics, business systems, e-commerce and communications. He 
also  runs  the  bi-annual  PyWeek  Game  Programming  Challenge  and  is  involved  with  the 
organisation of the Open Source Developer's Conference in Melbourne, Australia.

Stephanie Chong – Associate Editor

Stephanie is currently studying Arts/Law at The University of Melbourne.



The Python Papers, Volume 2, Issue 3 4

Contacting The Python Papers

The editors may be contacted via email at:editor@pythonpapers.org.  We  are  always  happy  to 
receive feedback, suggestions for improvement and ideas for future articles and topics. 

Contribute to The Python Papers

If you would like to contribute an opinion piece, an article, participate in an interview or submit a 
paper for review and publication, please don't hesitate to contact us at editor@pythonpapers.org.

mailto:editor@tennessee.id.au
mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org
mailto:editor@tennessee.id.au
mailto:editor@tennessee.id.au


The Python Papers, Volume 2, Issue 3 5

Python User Group Highlights: Introducing BrisPy
David P Novakovic

BrisPy: The Python User Group Meetings

The  Brisbane  Python User  Group is  heading  into  its  fourth  month  as  a  forum for  local 
Pythonistas. The user group was started by Stephen Thorne from NetBox Blue in Milton and is 
kindly hosted by NetBox Blue themselves who provide pizza and beer for the gathering.

Milton  is  very  close  to  the  central 
business district of Brisbane. Brisbane is 
the capital of Queensland, Australia and 
is  about  two  hours  north  of  the  most 
easterly  point  on  the  Australian  east 
coast. Queensland is generally known as 
the  warmer,  sunnier  state  in  Australia. 
Brisbane has a mixture of both industrial 
and  business  oriented  industries, 
interspersed  with  a  large  tourism 
industry, particularly in it's neighbouring 
city  Gold  Coast.  There  are  three  major 
universities  with  many  campuses. 
Unfortunately,  Java  is  still  the  tertiary 
institution  language  of  choice,  so  most 
people  at  the  meetings  are  seasoned 
programmers who either  use  Python at 

work or wish they could. The IT industry in this area is not known for being particularly large 
or interesting,  so many people know each other.  This  made the first  BrisPy meeting an 
inevitable success. 

The first meeting went will with about 15 people coming to see Stephen's talk about using 
scapy  to  monitor  (sniff)  network  traffic.  This  also  gave  a  few people  from #python on 
irc.freenode.org a chance to meet face to face and have some good discussion. To see the 
slides for the presentation, head to: http://oss.netboxblue.com/pug/scapy.html

The second meeting was presented to by Clinton Roy 
who shared his  knowledge about  using ANTLR for 
Python. Initial comments about Java technology at a 
PUG  were  quickly  dispelled  as  Clinton  showed 
everyone  some  simple  examples  for  generating 
parsers (and lexers etc) for simple grammars. All in 
all a good night that was very interesting, especially 
provoking  when  considering  small  DSL  (domain 
specific languages). To see the slides for the ANTLR 
talk,  head  to:  http://azure.humbug.org.au/~croy/
antlr.pdf

At the moment the group is really keen to find any 
speakers  to  come  and  deliver  material  about  a 
Python topic that they may know a lot about or hold 
dear. Some hot topics include web frameworks, ctypes, parallel python and twisted.

After each meeting discussions, pizza and beer take up the rest of the night. Often it is quite 
late  when  the  meeting  finishes.  While  discussion  is  normally  around  topics  in  Python, 
discussion also often revolves around what people are using Python for, some of these topics 
include:

Brisbane at night by Chris 
Wallace

Brisbane at night by Chris Wallace

http://azure.humbug.org.au/~croy/antlr.pdf
http://azure.humbug.org.au/~croy/antlr.pdf
http://azure.humbug.org.au/~croy/antlr.pdf
http://azure.humbug.org.au/~croy/antlr.pdf
http://azure.humbug.org.au/~croy/antlr.pdf
http://azure.humbug.org.au/~croy/antlr.pdf
http://azure.humbug.org.au/~croy/
http://azure.humbug.org.au/~croy/
http://azure.humbug.org.au/~croy/


The Python Papers, Volume 2, Issue 3 6

Spam filtering

Natural Language Processing

Parsers

Web Frameworks

Testing Frameworks

Databases

For those interested in coming along to the BrisPy PUG, head to the Google Groups page at 
http://groups.google.com/group/brispy and register your interest. Alternatively head to the 
wiki for more information: http://wiki.python.org/moin/BrisbanePUG



The Python Papers, Volume 2, Issue 3 7

The Barriers Women Face in Tech Communities
Gloria W. Jacobs

[Editor's Note – This article was written for The Python Papers, but also co-published on the 
DevChix website prior  to  the release of  this  issue of  The Python Papers.  As a  result  of 
publication on the DevChix site, many comments were left discussing the contents of this  
article. They were in the main supportive, although many contrasting and at times opposing 
points of view were put forward.

Readers  who  would  like  to  comment  on  this  article  are  welcome to  send  feedback  to  
editor@pythonpapers.org for consideration in our next issue. As with all submissions, these 
will undergo an editorial process to ensure they meet with the standards of our journal.

DevChix is exactly what the article describes as a women-friendly group: a tightly moderated 
community for tech women to share ideas, paid gigs, and information, as well as a safe place 
to  learn  from  one  another  and  freely  ask  questions  without  harsh
criticism and elitist or exclusionary comments. ]

Introduction

This subject has been on the minds of many tech women for years. The issue is discussed 
regularly, almost cyclically at times, as we spin our collective wheels to try to find causes and 
solutions. I was reluctant to write about it, since I find the subject matter daunting and the 
problem  almost  insurmountable  at  times.  But  three  different  sources  approached  me 
simultaneously, asking for this article. This article feels as if it is manifesting through me 
rather than from me, as a collective opinion and observation from the many tech women with 
whom I’ve worked and spoken. So many factors are in play when discussing this issue that I 
can only hope to address many of them without writing a tome. 

My  tendencies  are  to  pick  up  on  patterns  –  in  human  interaction,  in  data,  in  almost 
everything. I am a computer science/math major, and my brain loves to seek out the non-
obvious patterns in whatever I am observing. One of my favorite pastimes is to figure out 
broken elevator algorithms: what event causes the doors to close too quickly, how the  cars 
are distributed amongst the people requesting the elevators, etc. One of the not-so-favorite 
puzzles my brain likes to do is to pick up on patterns of human behavior from both men and 
women which affect how tech women are treated, both on and off the job. This article is all 
about the patterns I and other women have found in human interaction, office and online 
environments, which make them less conducive to tech women participation. 

The less obvious

I won’t be addressing the more obvious problems affecting women in tech environments such 
as the pay scale gap between women and men,  the blatantly inappropriate sexism and 
personal harassment that has taken place, and persists. My reasons are because I feel these 
issues have been properly and effectively addressed by other women in tech (they’re not 
resolved by  any means,  but  at  least  public  awareness is  rising).  With this  article,  I  am 
attempting to address the less obvious or un-obvious reasons why some tech environments 
are intolerable for many women. 

The material for this article came about through my participation in both women-only and 
mixed gender groups of many kinds. When I wonder why tech groups aren’t tolerable for 
many women, I look at the inverse of the problem: What makes women-only tech groups 
more tolerable for women? My observations follow. 

Why do women-only tech groups exist?

Over the years I had participated in many different types of women-only groups. Women-only 

mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org


The Python Papers, Volume 2, Issue 3 8

drumming groups, women-only political groups, women-only tech groups, have all provided 
what women consider to be a ‘safe haven’ to freely learn these arts, share ideas, expose each 
other to paid ‘gigs’, and help each other accomplish tasks. Women in these groups usually 
had nothing else in common except for the fact that they (1) were female, and (2) shared an 
interest  and  experience  in  drumming/politics/tech.  Their  professions,  ages,  skill  levels, 
hobbies,  sexual  orientations,  life  experiences,  marital  status,  children/grandchildren/no 
children, everything else about these women varied vastly. 

My brain began to try and pick up on patterns which would explain why all of these different 
types of women feel as if they need a women-only group, and what such a group can provide 
that a mixed gender group cannot. Here are my observations. 

Community plays an important and prevalent role in women-only/women-friendly groups.

No matter the group or the reason for gathering,  all of the women-only, and most of the 
successful women-friendly groups to which I have belonged had a strong sense of community. 
They make a tremendous effort to communicate well,  to be fair  with each other, and to 
provide support related to the groups goals, sometimes even extending outside of the groups 
goals.

This mindset is so common that women come to expect it when joining these groups and 
foster it once they have joined. The implied message is that a strong, focused, collective 
effort  will  be  spent  to  run  things  fairly  and  treat  all  members  equally,  and  collective 
discussion happens when this is not accomplished. This is the lure to women-only groups.

Communication style is directly affected by this sense of community

I have never seen a woman harshly criticize another woman in these groups. Never have I 
seen or heard anything like “You suck”, “You’re wrong, idiot” when women in these groups 
communicate. Differences are usually discussed in a civilized manner. There is the occasional 
strong disagreement or ousting of a member now and again, but it happens after a discussion 
involving the entire  group,  and an effort  to work out their  differences.  I  am sure harsh 
criticism happens somewhere in some women’s groups.  But I  am also sure that it’s  not 
tolerated for very long by other female members.

This style of communication is directly at odds with much of the harsh criticism and disdain 
found in predominantly male public comments, especially in most public online tech comment 
spaces, unfortunately.

Destructive criticism is the best way to keep a site predominantly male. It implies that there 
is no concern about whether a person can learn from a response or not, or whether they 
would find offense. It is an outward display of ego, a territorial “pissing rite” in which most 
women do not and will not participate. 

That being said, there are many men who flock to women-only groups for the same reasons 
as  women.  They  do  not  want  to  be  subjected  to  the  predominantly  male  style  of 
communication where there is no sense of community, or even just simple accountability. 
They grow tired of the “pissing rite”, the absurd declarations of false boundaries, the outward 
display of insecurity through harsh criticism, implicit claims of “my way, my expertise, my 
right, never yours”, and poor display of ego. This mode of communication is an unproductive 
waste of time, and many men realize this as well. “I feel at home here because I really don’t 
want to deal with that male ego bullshit”, one male member of our political group stated to 
me. 

Men who seek out women’s groups are usually welcome, or a splinter group is formed to 
accommodate these men, once it is determined that they do not seek membership for the 
wrong reasons. Some of the wrong reasons are:

1. “I will be the only male member, and will therefore have my choice of ‘chicks’”. Nope. 
It’s not happening.



The Python Papers, Volume 2, Issue 3 9

2. “I will be the only male member, and I’ll guide/help/protect these lost / vulnerable / 
endangered women”. This is not only unnecessary, but laughable. Women find the 
implications of these assumptions both offensive and so primitive that it is hysterically 
funny.

3. “I will infiltrate because I hate women, and want to try to dissolve the group in some 
way”. This is very rare, but happens. The good news is that the motives of both men 
and women who attempt this become very obvious very quickly. 

Women-only/women-friendly tech groups and gatherings offer a level of awareness of and 
accountability for behavior not found in most mixed gender tech groups/gatherings.

Awareness of and accountability for behavior in women’s groups means a lot more than just 
safety from sexual harassment, or discrimination. It means that if one is treated unfairly or 
harshly in any manner that a person finds offensive, the entire community will hear your 
claim. They will give you advice, opinions, and will  collectively decide if action should be 
taken. 

There has recently been a call for all public message board admins to get tougher about 
removing blatantly discriminatory, harassing, or sexually objectifying comments. This is a 
very  necessary,  damned  good  start.  But  to  genuinely  make  an  online  tech  community 
women-friendly,  it  needs  even  tighter  moderation  against  harsh/demeaning criticism, 
elitist commentary, and exclusionist statements, the three most prevalent and women-
unfriendly  types  of  communication  found  in  almost  all  moderated  online  tech  message 
boards.  There is  no better way to give women a message that their  comments are not 
welcome than implying that: (1) this is forbidden territory, women have no expertise here; (2) 
your comments are stupid, wrong, or ridiculous; or (3) we’re so much smarter than you. 
Discussion, constructive criticism, even heated debate happens in women-only groups, but 
these methods of communication are avoided. 

Both online and off, I have seen men who communicate this way with everyone and men who 
only choose to communicate this way with women. I have also seen this behavior tolerated or 
ignored for the most part. Here are my observations on why this happens. 

Men are generally very good at ignoring bad behavior.

This is both a blessing and a curse. In my most recent office environment, we had situations 
where a male colleague’s behavior was abrasive in one of these three ways mentioned. “That 
sucks, doesn’t it?” I asked another male colleague. “Yeah, but I just ignore it. That’s just the 
way he is. He is always like that” He responded. This is what I’ve seen as the general male 
way of coping with this poor communication style.

It’s a blessing that many men can ignore it, in the sense that most men do not get caught up 
in deep analysis of why this person said a specific thing and what this person could have 
really meant, etc. When almost everything is taken at face value and not over-analyzed, the 
ability to ignore communication issues makes it is easier to resolve the simple issues and 
move on. I have seen some women in office environments do the over-analysis and take 
offense when there never was one given. I don’t see men do this very often and it makes 
communication quicker and easier. 

Ignoring communication issues is  also a curse because one obnoxious person is  allowed 
complete freedom to make excessive noise, be rude and disruptive, or explicitly offensive. 
Most men, online or in the office, will ignore it. Most women will notice it but not say or do 
anything about it, for a variety of reasons which are tangential to this article. The offender 
often thrives on the fact that no one told them to stop, so they continue. Sometimes the 
offender is not socially adept enough to pick up on the fact that ignoring someone implies 
intolerance at some level. They somehow missed the message most three year olds learn: 
“I’m ignoring  you because I  don’t  like  your  behavior”,  so  they continue the  intolerable 
behavior.



The Python Papers, Volume 2, Issue 3 10

This is  so prevalent in online tech communities that it  is  the primary reason why many 
women do not participate. The poor communication and behavior of even one boorish, ego-
driven, elitist, socially inept geek is simply intolerable for most women. Women generally 
tend to assume that everyone will be conscious of and annoyed by this behavior. Men tend to 
assume that everyone will  ignore it.  This causes problems in offices as well as in online 
communities, where women will complain about such behavior, and men will issue responses 
such as “toughen-up”, or “what’s the big deal?”, because this is how they cope with the 
problem. A female-friendly  group addresses and tries  to  resolve these issues,  while  the 
average group ignores it until/unless the person does something heinous. 

The sense of community fosters a protective behavior within that community.

If you do something awful to one woman in a women-only community, all will hear and know 
about it and you are ousted. Most of the time, this is first discussed and voted on by many 
group members. Many times the women’s group will  even make an effort to explain the 
offense to the oblivious offender. But if the offender is still oblivious and/or offending, the 
offender is out. This is done to protect the interests and goals of the group. Many male-
dominated online groups don’t run this way. Most if not all women’s groups run this way, 
whether online or off. This relates to the awareness and accountability mentioned before. It’s 
an essential  element of  all  women-only groups and seems necessary for  women-friendly 
groups to draw women. 

Women’s groups generally have a few vocal and many silent members

The vocal few express their opinions and either gain support or do not gain support. The ones 
who  gain  support  usually  implicitly  become  spokespeople  for  the  silent  many.
The silent many usually let the vocal few, with whom they agree, do the job of ousting, 
protecting the sense of  community and publicly representing the silent many. The silent 
many support the vocal few. The community in turn supports and protects the rights and 
privileges of the silent many.

Why this happens is again a dynamic which is tangential to this article. But it seems that 
many women in group participation give either their silent support or rejection, speaking up 
only occasionally. Because of this behavior, if a communication problem arises in any type of 
group, whether women-only or not, and there are not a vocal few who will attempt to resolve 
it, the silent many will often silently leave. The silent many often don’t want to complain, for 
fear of having to deal with the additional frustration of the unaware/unconcerned “toughen-
up”,  or  “what  problem?”  type  of  responses.  For  the  silent  many,  it’s  easier  and  less 
frustrating to just leave. I think it is important for groups that want to advertise themselves as 
being women-friendly to be aware of this pattern. 

One of the challenges of any women-only/women-friendly group is encouraging the silent 
many to speak up. Many women deal with demeaning and discriminatory behavior so often in 
their lives that they are too emotionally exhausted to deal with even the possibility of an 
online  onslaught  of  anonymous  discriminatory  and  demeaning  comments.  Many  women 
spend time observing online groups before deciding if  they will  participate, for  this very 
reason. They want to ensure that they will not feel verbally attacked once speaking up and 
that their issues, comments and contributions will be heard and handled fairly.

Women generally do not arm themselves for battle during tech discussions

Women  generally  do  not  work  things  out  through  verbal  battle.  By  the  time  they
reach that the point of wanting to argue, they are already so offended that they are in pure 
self-defense mode. Women treat the discussion of tech issues like the discussion of many 
other issues. It’s not competitive and they wish to bi-directionally share information.

Many tech men envision a technical debate as a battle and celebrate the supposed victory, 
exhibiting classic  ‘Alpha Male’  behavior.  I  have personally  seen it  so many times in my 
profession that I brace myself for it when discussing tech issues with new groups of men. So 



The Python Papers, Volume 2, Issue 3 11

many of  them arm themselves with  weapons of  aggression,  demeaning comments,  and 
behavior which encourages more of a filibuster than a healthy debate. The supposed tech 
discussion becomes a test of verbal and emotional endurance, where whomever can argue 
the hardest and last the longest wins. 

They can shake hands afterwards and congratulate each other over a ‘good fight’ after a 
technical debate. “I like the challenge of a good argument, which is why I do that”, one male 
colleague explained to me. “I  like a good technical  debate too, but I  don’t  want to feel 
verbally or emotionally abused afterward. Women don’t fight for fun, they fight for personal 
issues.” I explained to my male colleague. 

Unfortunately, the anonymity offered by many public wikis and message boards encourages 
the worst behavior in people. Even moderated tech chat areas and comment boards are rife 
with elitist, demeaning comments encouraging ‘the fight’. Some of it is due to oblivion, lack of 
knowledge that this is offensive to tech women. Some of it, unfortunately, is very intentional.

Apparently there are males online, in tech communities, who still believe that, like the cigar 
rooms of the Victorian Era, tech rooms should be male-only. Back then, the predominant 
purpose of smoking cigars in a common room was to have male-only space, and similarly 
today, the purpose of the demeaning and fight-provoking attempts is to maintain the male-
only presence of some online tech spaces. I know for a fact this happens with intent in some 
online chat rooms and message boards. It is not simply an act of oblivion, but a concentrated, 
misogynistic effort between like-minded men to keep women out. 

When I discuss this with people and we ask each other how this can be prevented, I feel 
overwhelmed.  How do  we  stop  any/all  of  the  human behavior  which  prevents  us  from 
evolving further? I have no answer to this, but I am certain that if less of this behavior is 
tolerated online, we at least squeeze people who discriminate into their own, personal hidden 
online spaces. There is no reason why we need to be subjected to every single person’s 
beliefs or comments in the name of the First Amendment1. We all have a right to remove from 
our lives anything and everything which holds us back in some way, even that which is subtly 
harmful or offensive. Web admins have a right to remove useless, demeaning, even subtly 
harmful comments in the best interest of an online community. The operative word here is 
“community”, and the appropriate questions is: “Does your public comment space contribute 
to a community, or is it just an open toilet that everyone can vandalize and pollute?”

Did you know?

When it was illegal for women to publish writing during various times in history throughout 
various countries, women published their work under male pseudonyms. Today, many tech 
women still use male pseudonyms when posting to lists or publishing tech articles. The 
reasons are to have their work read without bias, and to avoid misogynistic ‘hyper-scrutiny’ of 
their work. I have experimented with this myself using a male pseudonym to post articles, 
and being told that the articles are informative, useful, great. Six months later I republish the 
exact same article, using a different title and a female pseudonym, and suddenly the article is 
horrible,  technically incorrect, useless. It’s a fascinating study. I  would love to see some 
prominent male techs publish under female pseudonyms, and watch the responses. 

Women find it awkward to brag about their writing accomplishments published under male 
pseudonyms. For this reason, most of this work never gets credited to the correct person, and 
is never acknowledged on resumes or during job interviews. “How do I explain to a male 
‘potential boss’ why I have chosen to use a male pseudonym, without bringing up the whole 
discrimination issue?” is what one female tech friend asked me. I had no answer for her. I 
have also  let  my work  published under  male pseudonyms fall  between the  cracks,  into 
oblivion, not knowing what else to do. 

1 Specifically, the right to freedom of speech, see 
http://en.wikipedia.org/wiki/First_Amendment

http://en.wikipedia.org/wiki/First_Amendment
http://en.wikipedia.org/wiki/First_Amendment
http://en.wikipedia.org/wiki/First_Amendment


The Python Papers, Volume 2, Issue 3 12

To make an online community more women-friendly, try these suggestions:

1. Monitor  the public comments.  Treat the public comments interface much like the
front door to your home. You don’t simply leave it open for any idiot to waltz in.
You can be selective regarding who comes in, and what they do once they’re in.

Useless  comments  get  deleted  as  quickly  as  they  appear.  Any  non-technical,
offensive,  destructive,  or  off-topic  comment  is  removed.  This  gives  a  clear
message  about  will  and  will  not  be  tolerated.  As  useful  comments  accumulate,
useless ones are much less likely to appear.

2. The  technically  correct  but  aggressive/demeaning/overly  harsh  comment  gets 
returned to the sender,  asking the person to re-word using constructive criticism.
Sounds  like  overkill,  but  it’s  not.  The  “You’re  wrong,  here’s  the  right  answer”
type of response constitutes picking a battle that most women won’t fight, or won’t 
even bother dealing with. 

3. Treat your online space like a community. The web admin should act is if they’re on 
the board of chosen freeholders, voting on issues which affect themselves and the 
entire community. Don’t just throw up the comment space and leave it abandoned for 
vandals and other jerks. Maintain it according to the rules by which you want everyone 
to abide, and stick by your decisions. Have accountability for comments. Create a 
space where open discussion happens as if it were in an educational surrounding, not 
a seedy bar.

4. Explicitly state that your site is women-friendly. Doing this will encourage the silent 
many to speak up. Kick out the jerks who don’t want your online space to take this 
direction. 

For the men who care: Tips for communicating with women in Tech environments, 
online and Face-to-Face

1. Tech women usually express great enthusiasm about their work. They do what they 
love, and they love what they do. When a woman gets enthusiastic about her work 
and shares that enthusiasm with you, it has absolutely nothing to do with you, or 
sex. I cannot tell you how often I have seen this. Some men mix up their incoming 
signals, and a women’s enthusiasm at work somehow translates to someone flirting 
with them at a bar. I have no idea how this happens, but it’s profoundly sad to see it 
happen again and again. If you’re lacking something in your life, please do not look to 
your female tech colleague to fill that niche. Do not even presume her mind is there 
even if  yours is not,  because hers is  not, and your signal  indicator needs serious 
recalibration. 

2. Leave your libido at the door. Please. Women tech colleagues want to be appreciated 
for their brains, their technical expertise, their contributions and accomplishments. 
Tech women do not give a flying s**t about what their male colleagues think 
of their attire, their make-up or their body parts. Believe me when I say this is 
true. Women may give you a polite response, but on the inside they are offended, 
seething, and considering whether or not to go to their attorney. They will ask other 
women in the office or field if they too suffer from this problem, building an alliance 
against men in their company who do this. And soon you will have a legal problem. 
Leave it at the door, pick it up on your way out. No one else wants it. 

3. Some tech women dress up for work. It is NEVER for you. Many tech women wear 
clothing which makes them feel good. For some, comfort is paramount, if for example 
the tech female is crawling through the ceiling, moving dusty panels and running 
CAT5 cable. For other tech women who would not get their clothes ruined at work, 
they like to dress up. “It makes me feel confident. I look at myself in the mirror and I 
feel good.” my female colleague told me. For tech women at work, feeling “good” 
does not mean “sexy”, and it is not for you at all. It is entirely about self-confidence, 
self-encouragement, and giving one’s self the extra strength to prove they know their 



The Python Papers, Volume 2, Issue 3 13

stuff in a technical environment. Note the emphasis on “self”: it is entirely for her, by 
her, and your reaction is entirely irrelevant. 

I have heard males say horrible things in professional environments like “Well, you 
wore that dress, you do look great in it, that must be the reaction you wanted. Isn’t 
that why you wear that dress?” The answer is no, fool, get over yourself.

4. Tech women are generally open-minded about what is commonly called ‘guy humor’ 
and ‘guy socialization’. Guaranteed, many of them, myself included, have male friends 
with whom they hang out on a regular basis, so this is far from a foreign concept to 
tech women. Chances are, the tech women of your group would enjoy your jokes and 
would like to be invited out for beers, as long as points (1) through (3) above are met. 
I  personally enjoy and share many of my own raunchy or lewd jokes if I  feel safe 
around the people with whom I’m joking. I enjoy hanging out afterwards over a beer or 
two, or going out late with ‘the guys’ to a bar to welcome the ‘new guy’. These things 
could be fun for everyone if (1) through (3) are in order. 

5. To the men who do not do any of this: Thank you so much. We notice, and greatly 
appreciate this. I have been fortunate to work with some excellent men in tech and I 
wanted to thank you and the many others for not being this way. 

6. No, women are not perfect. This article doesn’t imply or suggest that women are close 
to prefect and men are far from it. I know there are female stereotypes not mentioned 
in this article, mostly because I personally don’t find them in tech environments. Your 
experience may vary. All of these points can be applied to both genders. But the fact 
that I was asked by several different sources to write this article proves that there is a 
recognized gender divide in many tech spaces. All of what I have posted is what I and 
others have observed and experienced. None of it is fiction. 

7. Is someone making you feel uncomfortable? Speak up! If someone at work makes you 
feel uncomfortable, tell them so. If you feel discomfort coming from another person, 
and you think you’ve caused it inadvertently, say so. Make it clear and shove it out of 
the way as quickly as you can, so work can continue. This applies from/to men and 
women. 

8. But isn’t creating a women-only group, and using terms like ‘male behavior’ reverse 
sexism? Doesn’t this defeat the very goal you wish to achieve? My response is no, not 
if these tools/verbiage are used to try to ultimately achieve equality. If it’s used for 
mudslinging, or through some act of elitist exclusion, yes, it is reverse sexism. 

Credits:  Many  thank  yous  to  Carla  Schroder  for  sharing  her  infinite  wisdom  and 
encouragement. A huge thank you to all of the women at LinuxChix.org for your tireless 
support of  the cause over the years.  Thank you to DevChix.com for  giving my wayward 
articles a very worthy home. Thank you to the many readers who have left constructive 
criticism and comments. 

More writings by this author can be found at www.devchix.com.

http://www.devchix.com/
http://www.devchix.com/
http://www.devchix.com/


The Python Papers, Volume 2, Issue 3 14

Letters to The Python Papers

Python users from across the globe have written to the Python Papers to let us know what 
they're up  to.

Krys Wilken

Krys wrote in to let us know about one of his blog posts which he felt expressed how much he 
thought of Python. We agreed! Krys' blog may be found at http://krys.ca/

Wow, it's been a while since I blogged. :( I've 
been busy obsessively coding a new reporting 
framework  for  work  to  replace  a  horribly 
designed/architected/coded/styled/everything 
ASP site. I have to say that: 

1. setuptools   completely  rocks!  Entry 
points are beautiful!

2. PasteScript   completely rocks! 
3. RuleDispatch   (which  needs  it's  own 

site/page,  btw) is  extremely  handy  in 
the right situations!

:D

With just these three libraries, I have created a 
completely extensible reporting framework with 
a  very  nice  command-line  interface  and 
template generation to get new reports off the 
ground quickly. And it's only around 250 lines 
of code! :) (... so far, anyway. Not done yet.)

I also discovered inspect.getargspec recently and I am using it, and dependency injection, to 
add a couple bits of really nice elegance to the framework. 

All this, combined with SQLAlchemy, makes generating reports in several formats from legacy 
(and badly designed) databases a walk in the park!

Thanks to learning these tools, I believe I have been able to elevate the level of beauty and 
quality of my code considerably.

Now, before anyone asks, the framework will very likely not be open-sourced, as I coded it at 
work and so it belongs to them.

That said, I just want to say a great big fat Thank You to Phillip Eby, Ian Bicking, Michael 
Bayer (could not find a blog or homepage for you, Mike), and everyone that helped make the 
above libraries. Not only do they make my life easier, but using and studying them makes me 
a better programmer. And while I have derived great satisfaction from most of my coding 
projects, this is the first time in a long while that I have actually been euphoric about it! This 
stuff is just cool! :D I mean, is this what Lisp programmers feel all the time? ;)

Interestingly, it's not that I'm proud of myself, it's that I am completely blown away by what 
Python and these extremely powerful tools (and other like them) let me accomplish. I try not 
to be a fanboy, but you know, sometimes it's really hard! :) 

Michael Ang 
After  our  call  to  Pythonistas  in  a  variety  of  
countries, Michael wrote in to let us know a 
little about how Python is used in Singapore...

“I am from Singapore, and a Python user... 
Have been using Python for about 7-8 years, 
and my other core programming languages are 
Delphi,  Clipper (xHarbour), and many others. 
The only sad thing is Python is not popular 
here, our academics emphasize very much to 
Microsoft,  so graduates tend to be more 
familiar to VB and what not. ”

http://python.org/
http://python.org/
http://python.org/
http://blog.ianbicking.org/
http://blog.ianbicking.org/
http://blog.ianbicking.org/
http://dirtsimple.org/programming/index.html
http://dirtsimple.org/programming/index.html
http://dirtsimple.org/programming/index.html
http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
http://www.sqlalchemy.org/
http://docs.python.org/lib/inspect-classes-functions.html
http://docs.python.org/lib/inspect-classes-functions.html
http://docs.python.org/lib/inspect-classes-functions.html
http://peak.telecommunity.com/
http://peak.telecommunity.com/
http://peak.telecommunity.com/
http://pythonpaste.org/script/
http://pythonpaste.org/script/
http://pythonpaste.org/script/
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/setuptools
http://krys.ca/
http://krys.ca/
http://krys.ca/


The Python Papers, Volume 2, Issue 3 15

Anyway,  I  just  needed to  express  that.  If  you 
have not checked out what these libraries can 
do, I highly recommend it. They are all obviously 
designed to scratch and itch and, at least for me, 
they broadened the way I think about program 
design. 

Just to finish this post off, I am curious if anyone 
else  has  had  this  kind  of  experience  with  a 
Python  library/tool/language  feature.  If  so,  I'd 
love  to  hear  about  them!  This  might  even 
provide  some  nice  material  for  the  Python 
Advocacy list.

Anyway, thanks again guys! You rock!

Peter Williams 

Peter is a subscriber to the Melbourne Python 
User's Group2 mailing list, and works for the New 
South Wales (Australia) Rural Doctors Network. 
Thanks to him and his organisation for allowing 
us to reproduce this email...

“We  are  developing  our  operational  database 
systems  in-house  almost  entirely  using  open 
source   software products.   We use  Postgresql  with  a  Python front-end.   Our  database 
includes  a  schema  which  we  call  "metadata"  –  basically  a  database  of  how our  data 
structures are designed and how they are to be presented by the python front-end.  Our users 

are  located  in  several  offices 
around   NSW,  and  we  use  a 
secure  shell  for  remote  access 
(head  office  is  here  in 
Newcastle).  Our users also  have 
a variety of platforms – Windows, 
Mac,  Linux,  so  this  combination 
of  Postgresql  +  Python   works 
very  well  for  us.   When a user 
logs in, the metadata schema is 
queried  to  determine  how  to 
present the various "screens" of 
data for the user.  If we want to 
change the  data  structures,  we 
change  the  records  in  the 
metadata schema, and then run 
a "rebuild" program, which drops 
data,   then  drops  database 
structures,  then  reads  the  new 
metadata, creates new database 
structures,  and   then  imports 
data  that  was  previously 
dropped.   The  rebuild  takes 
about  15  minutes,  and  we 

usually  schedule rebuilds at lunchtime.  Our system has several major functions.  Firstly, our 
"core module"  is a CRM module.  To this we have added a number of facilities to help users 
communicate  (calendars, task lists, resource booking system, alerts, procedures, meeting 
agendas and schedules,  staff whereabouts etc etc).  Then there are modules that are specific 

2. http://wiki.python.org/moin/MelbournePUG

Brian Blais 

Brian  Blais  works  as  an  Associate 
Professor  at  Bryant  University.  He  has 
been  corresponding  with  The  Python 
Papers  about  his  insights  on the  use  of 
Python in Universities, and was happy for 
us to include this message...

“I have been using Python for only about 1.5 
years, coming primarily from a Matlab+C 
background.  I currently use it both for 
teaching and research, and it has transformed 
the way I work.  I've used it  for student 
projects in Astronomy, Physics, Artificial 
Intelligence, Robotics, Computational 
Neuroscience, and Meteorology.  For 
research, I do a lot of numerical simulations 
(mostly neurons),  and I've transferred all of 
my heavy-hitting Matlab+C code into 
Python+Pyrex. ”

Flavio Codeco Coelho 
Flavio  has been  of  help  to The Python  Papers  reviewing  
some of our academic contributions,  and also keeping us 
up-to-date with regards to University research.

“I am a Brazilian researcher in the field of Biomathematics 
and I have been involved with Python for  many years now, 
both in the development of scientific software 
(http://epigrass.sourceforge.net and 
http://modelbuilder.sourceforge.net/) and in training 
young scientists to use Python for their  computational 
needs. I am currently finishing a book about  Python in 
Science, with should come out this year, in  portuguese 
(Translation offers welcome!). I also keep a blog about 
Python in Science  http://pyinsci.blogspot.com ”

http://pyinsci.blogspot.com/
http://pyinsci.blogspot.com/
http://pyinsci.blogspot.com/
http://wiki.python.org/moin/MelbournePUG
http://wiki.python.org/moin/MelbournePUG
http://wiki.python.org/moin/MelbournePUG
http://mail.python.org/mailman/listinfo/advocacy
http://mail.python.org/mailman/listinfo/advocacy
http://mail.python.org/mailman/listinfo/advocacy
http://mail.python.org/mailman/listinfo/advocacy
http://mail.python.org/mailman/listinfo/advocacy
http://mail.python.org/mailman/listinfo/advocacy


The Python Papers, Volume 2, Issue 3 16

to certain project areas eg  locum service module, general practitioner workforce module.  We 
plan to add more modules as we  continue to develop the system.  We also have a generic 
data collection instrument facility   staff can  use this to define questions, surveys (or data 
collection instruments), and then enter data from  survey respondents or applicants.  Some of 
these collect  data directly  from stakeholders via  a  php  web interface,  directly  into  the 
database.  Triggers then create alerts for appropriate staff members  to take action.  We use 
ReportLab for our reporting requirements, and all reports are created as pdf  documents 
which are then emailed to the user (no printer driver fuss!). ”(Object Oriented) Python Rant

Alex Nelson

Alex Nelson, originally Wednesday, August 1, 2007 on his blog “Object Oriented Kool Aid”.3 
Alex is a sophomore physics/math double major at the University of California at Davis. His  
research interests include quantum gravity, foundational issues in quantum mechanics, and 
general  relativity.  In his spare time, Alex studies file systems, and works on the Brainix 
operating system. 

Python is the way of the future...like Zeppelins and Autogyros. It's a lot more natural 
programming in Python than it is in Perl, at least for Object Oriented Programming. (Note that 
there is an interesting series called the Python Papers that is a good read!) [editor's note – we 
did not make him say this!]

When I first learned it, I hated it because it wasn't like C/C++/D/Java at all! However, I gave it 
high marks for having the lambda anonymous functions. It made me reminisce about the bad 
old days of LISP and SCHEME and The Structure and Interpretation of Programming.

Now, my tune has changed completely since I'm working on an operating system (Brainix). I 
recognize the value of having scripts, despite the fact that Brainix is not mature enough to 
run a simple shell. It's the benefit of platform independence at the cost of performance.

The problem is that there are no good scripting languages! Perl is esoteric as death, and 
BASH is not all that better...don't get me wrong, BASH is fabulous as a shell but terrible as a 
scripting language. Python is perhaps the best scripting language out there, and that's not 
saying all that much.

One particular problem that I have is, for perl I can do things like:

@files = `ls`;
for $file in @files
{
#do stuff!
}

However, for Python, having this neat scripting feature is changed! In the immortal words of 
"Grandpa" Simpson "I was with it once...then it changed into something horrible and scary." 
After a bit of study, I figured out that there is an OS module where I can use the os.system() 
method to invoke shell commands. Now I could write something like:

for filename in os.command("ls"):
# do stuff translated into python!

Perhaps a more disturbing difference for my inner C/C++/D/Java programmer is the lack of 
curly brackets. I got over this by using Python in a more functional manner that would make 
John Armstrong proud.

Finally I fought my fears and started programming in an object oriented manner. Object 
oriented programming is the way of my people! But this sort of object orientedness seemed 
odd. The self pointer (I assume, I thought it to be a python parallel to the this pointer at 
first) is the first argument in every method, which was bizarre. It reminded me of Phil's Object 

3 http://pqnelson.blogspot.com/2007/08/object-oriented-python-rant.html  

http://www.bolthole.com/OO-C-programming.html
http://www.bolthole.com/OO-C-programming.html
http://www.bolthole.com/OO-C-programming.html
http://unapologetic.wordpress.com/
http://unapologetic.wordpress.com/
http://unapologetic.wordpress.com/
http://code.google.com/p/brainix/
http://code.google.com/p/brainix/
http://code.google.com/p/brainix/
http://www.python.org/
http://www.python.org/
http://www.python.org/
http://pqnelson.blogspot.com/2007/08/object-oriented-python-rant.html


The Python Papers, Volume 2, Issue 3 17

Oriented ANSI C.

Perhaps what the open source movement needs is a good shell that's also a good scripting 
language...one that's open source, object oriented, and is an affront to the Windoze 
PowerShell. BeanShell is a possibility, but I think there is hope for python yet.

Well, this isn't much of a first post, but that's all I have to rant about so far about Python.

http://www.bolthole.com/OO-C-programming.html
http://www.bolthole.com/OO-C-programming.html
http://www.bolthole.com/OO-C-programming.html


The Python Papers, Volume 2, Issue 3 18

The Longest Common Substring and Sentence 
Modification
Tennessee Leeuwenburg

I had this problem. Some sentence (A) was modified somehow. Given the new sentence (B), 
identify what was added and what was removed, if anything? To solve this problem required a 
tree structure for the edits, a method for extracting the longest common substring and a little 
ingenuity.

First, let's look at why one might want to do such a thing. The example for which this code 
was developed requires a bit of expert knowledge, so what follows is hopefully a more 
generally applicable idea.

Supposing you're a Wikipedia reviewer and someone has just submitted a modification to an 
article. This article may be quite long, perhaps a couple of pages, while the edits may be 
quite short. In a program like Microsoft Office or Open Office, change-tracking may be 
employed to follow changes to a document by tracking each character modification to the 
original as it happens. I'm not an expert on the editing interface to Wikipedia, but I don't 
believe it tracks changes. So the reviewer has to manually compare the new, edited version 
with the original. They must rely on their ability to recognise changes between the two 
versions.

Wouldn't it be great if you could do this automatically?

For some applications, there's obviously a great tool out there which does this already – diff4. 
However, diff works on a line-by-line basis and isn't that easy to integrate into a Python 
application. The utility outlined here works on a word-by-word basis, allowing differences 
between documents to be highlighted very specifically. Moreover, the basis for tokenising can 
be overridden, allowing character-level differences to be shown if desired. 

The remainder of this article describes the means by which two documents may be compared 
and their edits identified and then covers the result of a public code review on the Melbourne 
Python User's Group mailing list.

Comparing Two Documents

Supposing I have the following two sentences:

“I was walking down the street one morning” and
“I was walking down the street early one morning”.

The modification here is fairly clear – the word “early” was inserted between “street” and 
“one”. Humans are pretty good at spotting this kind of thing and it's also an easy example.

There are a number of possible algorithms that can be imagined for identifying edits 
mechanistically. For example, the sentences could be considered front-first until the words 
were different (e.g. “I was walking down the street...”). Where do they merge again? In this 
case, it's the word immediately afterwards. However, supposing it wasn't that one. Maybe it's 
the word after that? Looks like we'll have to check every single word in the next sentence for 
similarity.

Come to think of it, how do we know only one word was changed? 

“I was walking down a darkened street one morning”
“I was walking down the street one fearful step at a time, one morning”

Hardly poetry, but it demonstrates the point. The best match for the sentence fragment “one 

4 http://en.wikipedia.org/wiki/Diff  

http://en.wikipedia.org/wiki/Diff


The Python Papers, Volume 2, Issue 3 19

morning” is not at the first occurrence of “one”. It happens to be at the end of the sentence, 
so maybe a reverse-search could identify it. But that's not what makes it the best match. 
What makes it the best match is that “one morning” is a longer contiguous matching block 
than simply “one”.

It is here that it is apparent that our eventual algorithm will have to prioritise longer matching 
blocks of text over shorter matching blocks of text.

This insight can be used to design an algorithm for identifying the smallest possible edit 
required to get from A to B. The smallest possible edit is exactly the complement of the 
longest possible match.

Only insertions and deletions are considered here. This means that “One morning I walked 
down the street” and “I walked down the street one morning” are quite dissimilar. While this 
could be represented by a single move, in terms of insertions and deletions it is several 
operations away. For the purpose to which the algorithm was put, that was the appropriate 
behaviour. Applications for, and implementations of, a move-based analysis of two 
documents could be fruitful areas for further investigation.

On that basis then, the words of both documents are guaranteed to share the same order. If a 
matching text block occurs in both (A) and (B), only the words before the match in (A) are 
potentially similar to the words before the match in (B).

This allows us to use a divide-and-conquer approach to the problem.

If the longest common substring can be identified, a sentence may be broken into three parts 
– that preceeding the match, the match itself and that following the match.

A: “I remember that I was walking down a darkened street one morning”
B: “It seemed as though I was walking down the street one fearful step at a time, one 
morning”

This can now be broken down into a shared longest common substring, a pair of prefixes and 
a pair of suffixes.

The pair of prefixes, “I remember that” and “It seems as though” have no common 
substrings. The progression from A to B therefore represents a deletion of the first prefix and 
the insertion of the second, followed by the common substring. The pair of suffices “a 
darkened street one morning” and “the street one fearful step at a time, one morning” have 
further common substrings, so the analysis can continue.

One representation of the full tree for this example is shown in figure one.

Figure 1: Final tree structure showing edits



The Python Papers, Volume 2, Issue 3 20

The tree structure can then be used to extract either sentence, or show the full deletion and 
insertion sequence.

The Code

The full code for the algorithm can be found immediately below. Following this section will be 
a discussion of the code, including modifications which were made as a result of the peer 
review process, recommendations which were not pursued and other finishing comments.

import re

class SentenceComparison:
    '''
        This class represents the comparison of one sentence with another. It produces
        a tree showing the differences. From this can be reconstructed the original
        sentences, showing where the sentences differ.
        
        Each word in a sentence is atomic.
    '''
    
    def __init__(self, string1, string2, depth=0, tokenize=str.split):
        '''
            string1: the first sentence
            string2: the second sentence
            
            If unicode strings are to be used, the tokenize function
            will need to be overridden to be unicode.split
        '''
        
        DEBUG = False
        
        if DEBUG: print "__init__: depth %s called with %s : %s" % (depth, string1, string2)

        self.tokenize = tokenize

        self.string1 = ' '.join(tokenize(string1))
        self.string2 = ' '.join(tokenize(string2))
        
        self.lcs = ""
        self.lTree = None
        self.rTree = None
        self.depth = depth

        self._buildTree()        
        
    def _buildTree(self):
        '''
            Based on string1 and string2, build up the (prefix, common, suffix) tree
            structure
        '''

        lTree = None
        rTree = None
        
        string1 = self.string1
        string2 = self.string2
        
        DEBUG = False
        if DEBUG: print "_buildTree depth %s: (%s : %s) " % (self.depth, string1, string2), 
                
        if string1 == "":            
            if DEBUG: print 'a'
            lTree = ""
            rTree = self.string2
            self.lcs = ""
            
        elif string2 == "":            
            if DEBUG: print 'b'
            lTree = self.string1
            rTree = None
            self.lcs = ""



The Python Papers, Volume 2, Issue 3 21

        
        else: #Both strings contain text
            self.lcs = self.LCS(string1, string2, tokenize=self.tokenize).strip()
            
            if self.lcs == '':
                lTree = string1
                rTree = string2
            
            else:
                
                tuple1 = string1.split(self.lcs, 1)
                if len(tuple1) == 2: 
                    prefix1, suffix1 = tuple1
                else: 
                    [prefix1] = tuple1
                    suffix1 = ''
                 
                tuple2 = string2.split(self.lcs, 1)
                if len(tuple2) == 2: 
                    prefix2, suffix2 = tuple2
                else: 
                    [prefix2] = tuple2
                    suffix2 = ''
                
                lTree = SentenceComparison(prefix1, prefix2, depth=self.depth + 1)        
                rTree = SentenceComparison(suffix1, suffix2, depth=self.depth + 1)
            
        self.lTree = lTree
        self.rTree = rTree

    def LCS(self, string1, string2, tokenize=str.split):
        '''
            Based on string1 and string2, returns the longest
            common substring, on a word-by-word basis using
            a word-matching regular expression.
        '''
        
        words1 = tokenize(string1)
        words2 = tokenize(string2)
        
        m = len(words1)
        n = len(words2)
        
        lengths = [[0] * (n+1) for i in xrange(m+1)]
        LCS = []
        longest = 0
        
        for i in xrange(m):
            for j in xrange(n):
                if words1[i] == words2[j]:
                    v = lengths[i][j] + 1
                    lengths[i+1][j+1] = v
    
                    if v > longest: longest = v
                    if v == longest: LCS = words1[i - v+1:i+1]
                    
        return ' '.join(LCS)

    def lString(self):
        '''
            Print out the left string, noting additions and removals
        '''
        
        DEBUG = False
        if DEBUG: print "\nlString: (%s : %s)" % (self.string1, self.string2), 
        
        lTree = self.lTree
        rTree = self.rTree
        lcs = self.lcs
        
        myString = ''
        
        if lTree is not None:
            if isinstance(lTree, basestring):
                if lTree is not "":



The Python Papers, Volume 2, Issue 3 22

                    myString +=  " (added %s) " %  (lTree)
            else: 
                myString += lTree.lString()
        else:
            if DEBUG: print 'lTree is None'
            
        if lcs != "":
            myString = myString + lcs
        
        if rTree is not None:
            if isinstance(rTree, basestring):
                if rTree is not "": 
                    myString  += " [removed %s] " % (rTree)
            else:
                myString += rTree.lString()
            
        return myString 

if __name__ == "__main__":
    
    string1 = "these two strings"
    string2 = "are completely different"
    
    a = SentenceComparison(string1, string2)
    print a.lString()
    print "See LCSTest.py for further tests"



The Python Papers, Volume 2, Issue 3 23

Comments and Responses

In this section, I include the comments of other developers on the approach taken. For the 
sake of space, I  have not included the full  code both before and after incorporating the 
suggestions made by those on the list, but rather have simply described the changes made 
as a result of each individuals' comments.

John Machin:

Capitalisation  is  another  problem:  original: 
“Envy and pride are ...” new: “Sloth, envy and 
pride are ...”

Comments say "words are atomic": what about 
typos? stuff cheesw?

At  the  Python  level  --  based  on  [possibly 
incorrect]  recollections  from  reading  it 
yesterday; detailed dissection later :-)

1.  tokens  produced  by  str.split()  don't  need 
str.strip() applied to them

2. blank lines in unexpected places e.g. before 
else:

3. "if not thing is None" -- syntactically correct 
but stylistically chundrous IMHO; what's wrong 
with "if thing is not None"?

4.  put  in  comments  that  explain  your  tree 
structure, or at the very least position the tree 
creating  method(s)  before  the  tree-examining 
method(s) --  save gentle readers the need to 
nut out the meaning of: “node is None”, “node 

== "", isinstance(node, str) # what about unicode? node is none of the above

5. Testing/example architecture could be a bit more robust than a collection of commented 
pairs of sentences down the end.

Tennessee:

More  good  points.  Capitalisation,  as  with  punctuation,  may  be  very  relevant  or  not  be 
relevant at all. 

Spotting typos, I feel, is a use case for the algorithm. It is probably a good thing that typos 
will cause an edit to show. However, should somebody wish it, I can imagine one approach.  
Somelike like the Levenshtein distance 5 could be used to determine if an edit is likely to be a 
typo or a genuine change of word. In this case though, it's beyond the requirements.

The bulk of the remainder of the comments relate to coding standards (i.e. PEP-86), poor 
idiom and just  a  little  outright  confusing  code.  :)  The first  two  of  those  criticism were  
hopefully addressed. A few differences may remain, but several were addressed.

To explain the aspect of the code which caused such confusion, a node may either be an 
intermediate node or it may be a leaf node. In this case, leaf nodes are identified by being of 
type basestring. It would almost certainly be preferable if designing a public API to explicitly  

5 http://www.cut-the-knot.org/do_you_know/Strings.shtml  

6 http://www.python.org/dev/peps/pep-0008/  

Maurice Ling:

1. How are the words identified? By whitespaces? 
If so, then there is a false removal (substitution) in 
this  case:  original: “Tom ate an apple”.  new: 
“Tom ate an apple and an orange”.

2.  Hyphenations  etc?  For  example,  "Tom  is 
twenty-three years old this year" and "Tom is 
twenty three years old this year".

Tennessee:

At the moment, str.split is used, which will result in 
a whitespace based split. This does indeed result  
in some undesirable behaviour due to punctuation.  
In  practical  application,  this is  of  limited impact.  
Indeed,  depending  on  the  requirements  of  each 
case,  the  response  to  punctuation  might  be 
different. In some cases, perhaps especially that of 
program code or legal writing, punctuation can be 
critical. In other cases, it can be virtually ignored.

In response to this point and others, it is possible 
to pass a tokenizer method in which allows people  
to  change  the  word  (or  token)  identification 
method.

http://www.python.org/dev/peps/pep-0008/
http://www.cut-the-knot.org/do_you_know/Strings.shtml


The Python Papers, Volume 2, Issue 3 24

identify leaf nodes and retrieve the string from them. For reasons of time, this suggestion 
was not adopted, but should be kept in mind for any future work.

The  original  code  contained  a  number  of  input/output  pairs  in  the  same  file  as  the  
SentenceComparison class.  This is,  to say the least,  not industry-leading practise. It  did,  
however, get the job done at the time of initial writing. In order to explore testing and also to 
be able to present a reasonable approach to good coding in this article, an additional file  
containing unit tests was created. This testing code was not reviewed, but is included at the  
end of this article for readers' reference purposes.

Anthony Briggs:

A  few  other  points  -  these  are  stylistic  though,  which  I'm  not  sure  is
what you want, but anyway:

       if lcs != "":
           myString = myString + lcs

is a no-op as far as I can tell. Since you only use it the once, you probably also don't need the 
'lcs = self.lcs' part either.

Tennessee: I checked this – turns out it's needed after all.

You've also got a couple of places where you're comparing the left side of the tree and then 
the right side of the tree. For example,

       if not lTree is None:
           if isinstance(lTree, str):
               if lTree is not "":
                   myString +=  " (added %s) " %  (lTree)
           else:
               myString += lTree.lString()
       else:
           if DEBUG: print 'lTree is None'

and the other rTree one could become something like:

       myString += self.parseTree(lTree, 'added')
       myString += self.parseTree(rTree, 'removed')

Similarly for the other tree building/exploring functions (lines 109, 116).

Tennessee: Yes, I can see the good sense in this. Another one for the 'should-do' list. It  
would greatly help in making the code easier to scan.

Other picky code style type things: On 76 + 77, you set lTree and rTree, even though all three 
branches set them anyway.

You seem to be using a fair few placeholder methods, and then not using them, eg. string1 
and string2 on lines 79 and 80.

When you're comparing string1 and string2, you might benefit (in terms of clarity of code) 
from returning early. eg.

       if string1 == "":
           self.lTree = ""
           self.rTree = self.string2
           self.lcs = ""
           return

       if string2 == "":



The Python Papers, Volume 2, Issue 3 25

           ...

And  you  seem  to  be  running  if  statements  onto  one  line,  which  I  find
makes things harder to read, eg.

                   if v > longest:longest = v
                   if v == longest: LCS = words1[i – v+1:i+1]

would (IMO) be better as:

                   if v > longest:
                       longest = v
                       LCS = words1[i - v+1:i+1]

Tennessee: I checked PEP-8 and while one-line ifs are discouraged, I feel that I have just enough wiggle room to 
stick with my preferred style, which is to use one line if statements liberally. I must say though, I believe the 
majority of people prefer to use multi-line if statements in all cases – so readers, probably best to follow Anthony's 
suggestion. For this specific example, also, I think the multi-line statement makes the logic clearer.

Ryan Kelly:

(replying to an email of Tennessee's)

T> 4) isinstance(node,  str) -- indeed, what about unicode? In Python 2.5, is a unicode string a
T> str? I'll have to research this to make sure.

From memory, the 'proper' way to do this is to compare with basestring, although everytime I 
use it I cringe slightly because it just doesn't read right:

  isinstance(node,basestring)

Tennessee: You can see that I have incorporated the use of basestring into the code. I would 
agree with Ryan that it reads clumsily to use basestring. Unicode generally is pretty tricky to 
deal with, so it's hard to suggest something obvious for Python to do about it.

T> 5) Testing. I'm not familiar with unit testing frameworks. The best  thing would probably
T> be to identify some kind of preferred testing framework and write a better set of formal
T> tests. Any suggestions?

I've had good experiences with the built-in unittest module, particularly using it via setuptools 
`python setup.py test` command. I've got simple needs but it's saved by bacon a few times 
:-)

Tennessee:  In  the  end  this  is  what  was  chosen,  for  two  major  reasons.  One  was  the 
recommendation from Anthony. The second is the major advantage that the module comes 
installed with Python by default. This means that the code used below will run anywhere, 
which is particularly appropriate for a magazine article.

In Conclusion

This article has now presented the problem (loosely specified), an algorithm to identify edits 
between two documents and made use of code review to improve on the system. Exposing 
ones code is always somewhat difficult. Indeed, it is rather with trepidation that I include my 
code in this magazine. The process of code review through the mailing list, however, I found 
to be entirely positive. If others are working on code and have access to a peer-group, I think 
that using them as a sounding board can be really good for your code, as well as giving you 
pointers to technologies which you might not be aware of or simply never fully explored. In 
my case, this was what tipped me over the edge to explore the unittest module. 



The Python Papers, Volume 2, Issue 3 26

Testing Code

import unittest
from LCS import SentenceComparison

class LCSTest(unittest.TestCase):

    testsMappings = [
                 ("Wind east to northeasterly tending southerly",
                 "Wind northeasterly tending southerly", 
                 "Wind (added east to) northeasterly tending southerly"),

                 ("Wind northeasterly tending southerly",
                 "Wind east to northeasterly tending southerly", 
                 "Wind [removed east to] northeasterly tending southerly"),
                 
                 ("Wind east to northeasterly tending southerly",
                  "Wind northeasterly tending southerly around midday then increasing to 20 to 25 
knots",
                  "Wind (added east to) northeasterly tending southerly [removed around midday 
then increasing to 20 to 25 knots] "),
                 
                 ('''<p> 
                                                Sunny. Winds north to northwesterly at up to 15 
km/h tending northeasterly at 15 to 30 km/h around midday. Temperatures in the mid 20s during the 
day. 
                                         </p>''',
                  '''<p> 
                                                Sunny. Winds north to northwesterly at up to 15 
km/h tending northeasterly at 15 to 30 km/h around midday. Temperatures in the mid 20s during the 
day. Green eggs and ham.
                                         </p>''',
                  "<p> Sunny. Winds north to northwesterly at up to 15 km/h tending northeasterly 
at 15 to 30 km/h around midday. Temperatures in the mid 20s during the day. [removed Green eggs 
and ham.] </p>"),
                  
                 ("Wind",
                  "Wind east to",
                  "Wind [removed east to] "),
                  
                 ("", "", ""),
                 ("Winds northeast to northwest", "", " (added Winds northeast to northwest) "),
                 ("", "Winds northeast to northwest", " [removed Winds northeast to northwest] ") 
             ]

    def testInit(self):
        
        lcs = SentenceComparison("These two strings", "are completely different")
        assert lcs is not None
        
    def testLCS(self):
        
        lcsTests = [
                    ("", ""),
                    ("", "a"),
                    ("a", ""),
                    ("these two strings", "are completely different"),
                    ("these strings are the same", "these strings are the same")
                    ]
        
        for (string1, string2) in lcsTests:
            sc = SentenceComparison(string1, string2)
            substring = sc.LCS(string1, string2)
            assert substring is not None
        
    def testLString(self):
        
        for (string1, string2, output) in self.testsMappings:
            a = SentenceComparison(string1, string2)
            
            try:
                self.assertEqual(a.lString(), output)
             
            except:



The Python Papers, Volume 2, Issue 3 27

                error = "\n<string1>: <%s> \n<string2>: <%s>\n     did not produce expected output 
\n<%s> \
                         \n     but rather \n<%s>" \
                        % (string1, string2, output, a.lString())
                        
                self.fail(error)

def suite():
    suite = unittest.TestSuite()
    suite.addTest(LCSTest("testInit"))
    suite.addTest(LCSTest("testLString"))
    suite.addTest(LCSTest("testLCS"))        
        
if __name__ == "__main__":
    unittest.main()
    



The Python Papers, Volume 2, Issue 3 28

Pyphant – A Python Framework for Modelling Reusable 
Information Processing Tasks
Klaus Zimmermann, Lorenz Quack and Andreas W. Liehr

We are  presenting  the  Python framework “Pyphant”  for  the  creation  and application  of 
information flow models.  The  central  idea of  this  approach is  to  encapsulate each data 
processing step in one unit which we call a worker. A worker receives input via sockets and 
provides the  results  of  its  data processing via  plugs.  These can be connected to  other 
workers' sockets. The resulting directed graph is called a  recipe. Classes for these objects 
comprise the Pyphant core. To implement the actual  processing steps,  Pyphant relies on 
third-party plug-ins which extend the basic worker class and can be distributed as Python 
eggs. On top of the core, Pyphant offers an information exchange layer which facilitates the 
interoperability of the workers, using Numpy objects. A third layer comprises textual and 
graphical user interfaces. The former allows for the batch processing of data and the latter 
allows for the interactive construction of recipes.

This paper discusses the Pyphant framework and presents an example recipe for determining 
the length scale of aggregated polymeric phases, building an amphiphilic conetwork from an 
Atomic Force Microscopy (AFM) phase mode image.

[This paper was originally presented at  Europython 2006 and has been updated for this 
publication. Full acknowledgements are included at the end of this article. -Ed]

1. Introduction

Working as a computer scientist in an interdisciplinary scientific community often means 
adapting a previously developed data processing algorithm to the very special context of a 
new  project.  An  example  might  be  that  of  image  processing7.  Consider  that  you  have 
previously developed an algorithm, which determines the particle size distribution of a certain 
blend of materials on the basis of an Atomic Force Microscopy (AFM) measurement. Given the 
measurement of  a  different  material,  it  is  likely  that  you would have to  apply  different 
processing steps in order to match the characteristics of the new sample. If you consider a 
programming environment which assists the adaptation of this data analysis algorithm, you 
will very quickly consider a flow-based programming paradigm. This approach was invented 
in  the  late  sixties8 and has  become established.  This  can  be  seen from the  variety  of 
commercial and open-source tools applying flow-based programming in the context of visual 
programming languages9. As regards data analysis, several flow-based environments have 
been implemented in Python, including ViPEr10 and the Modular Toolkit for Data Processing 

7. John C. Russ. The Image Processing Handbook. CRC Press, Boca Raton, 4 edition, 2002.
8. John Paul Morrison. Flow-based programming: A New Approach to Application Development. 
VNR computer library. Van Nostrand Reinhold, New York, 1994 

http://www.jpaulmorrison.com/fbp/index.shtml.
9. Wikipedia. Visual programming language. 

http://en.wikipedia.org/wiki/Visual_programming_language
10. Michel F. Sanner, Daniel Sto er, and Arthur J. Olson. ffl ViPEr a Visual Programming 
Environment for Python. In 10th International Python Conference, February 2002. 

http://www.scripps.edu/  ~  sanner/html/papers/IPC02.pdf  

http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://www.scripps.edu/~sanner/html/papers/IPC02.pdf
http://en.wikipedia.org/wiki/Visual_programming_language
http://en.wikipedia.org/wiki/Visual_programming_language
http://en.wikipedia.org/wiki/Visual_programming_language
http://www.jpaulmorrison.com/fbp/index.shtml
http://www.jpaulmorrison.com/fbp/index.shtml
http://www.jpaulmorrison.com/fbp/index.shtml


The Python Papers, Volume 2, Issue 3 29

(MDP)11.  It  has  also  been  demonstrated  that  Python  is  well-suited  to  integrate  several 
different software tools, e.g., for computation and visualization into a consistent data analysis 
environment12.

Inspired by these approaches and having in mind that quite different data analysis tools, 
ranging from standard algorithms of statistics or image processing up to specialized tools 
developed in the context of materials research13 14 15, have to be included into a consistent 
visual programming environment, we started to think about the Pyphant framework. A major 
prerequisite was that the resulting environment should be suitable not only for the creative 
work of a specialized scientist but also for standardized data processing in a daily laboratory 
routine or a large-scale data analysis campaign, computed in a grid computing environment. 
An attempt to balance these needs resulted in the Pyphant framework, enabling the fast 
integration of software modules into so-called workers, which receive input data via sockets 
and provide their cached results via  plugs. The data analysis algorithms are composed as 
directed graphs within the GUI wxPyphant16. The interactive evaluation of the algorithm is 
established using an extensible set of visualisers. Finally, the algorithm and its intermediary 
result can be saved in the Hierarchical Data Format HDF517. The resulting file is also the basis 
for Command Line Interfaces (CLI), which can be tailored as Python scripts.

11. Pietro Berkes and Tiziano Zito. Modular toolkit for Data Processing (MDP). 
http://mdp-      toolkit.sourceforge.net  , 2006.
12. M. F. Sanner, B. S. Duncan, C. J. Carrillo, and A. J. Olson. Integrating Computation 
and Visualization for Biomolecular Analysis: An Example Using Python and AVS. In 
Proc. Pacific Symposium in Biocomputing ‘99, pp 401–412, 1999.
13. J. Honerkamp and J. Weese. A nonlinear regularization method for the calculation of 
relaxation spectra. Rheologica Acta, 32(65):73, 1993.
14. T. Roths, M. Marth, J. Weese, and J. Honerkamp. A generalized regularization method 
for nonlinear ill- posed problems enhanced for nonlinear regularization terms. Computer 
Physics Communication, 139:279–296, 2001.
15. M. Bohnert, R. Walther, T. Roths, and J. Honerkamp. A Monte Carlo-based model for 
steady-state diffuse reflectance spectrometry in human skin: estimation of carbon 
monoxide concentration in livor mortis. Int J Legal Med, 119:355–362, 2005.
16. Servicegroup Scientific Information Processing, http://py  phant.sourceforge.ne  t  
17. The HDF Group (THG). Hdf5 (hierarchical data format 5) software library and 
utilities. http://hdf.ncsa.uiuc.edu/HDF5, 2006.

Figure 1. The Pyphant framework consists of a core layer 
comprising worker, connector, recipe and DataContainer 
objects. Workers for specialised data processing tasks can be 
provided by PyphantWorkerEggs. User interfaces are provided in 
the form of the GUI wxPyphant and a command­line interface for 
the individual recipe.

http://hdf.ncsa.uiuc.edu/HDF5
http://hdf.ncsa.uiuc.edu/HDF5
http://hdf.ncsa.uiuc.edu/HDF5
http://pyphant.sourceforge.net/
http://pyphant.sourceforge.net/
http://pyphant.sourceforge.net/
http://pyphant.sourceforge.net/
http://pyphant.sourceforge.net/
http://pyphant.sourceforge.net/
http://pyphant.sourceforge.net/
http://pyphant.sourceforge.net/
http://pyphant.sourceforge.net/
http://mdp-toolkit.sourceforge.net/
http://mdp-toolkit.sourceforge.net/
http://mdp-toolkit.sourceforge.net/


The Python Papers, Volume 2, Issue 3 30

This paper begins with an overview of the Pyphant framework and continues with a real-life 
example demonstrating the estimation of  the length scale of  a phase-separated polymer 
blend.

2. Framework

Pyphant is a layered, plugin-based framework suitable for the modelling and execution of a 
wide range of  information processing tasks.  It  is  built  on the idea that many computing 
algorithms can be  structured into  a  graph of  distinct  steps.  In  Pyphant  those  steps are 
represented by so-called workers, which also form the nodes in the directed graph. Such an 
algorithm is called a recipe, following the famous textbook  Numerical Recipes18.  In this 
context the development of a data analysis algorithm can be pictured as the composition of a 
meal from various available ingredients.

Fig. 1 shows an overview of the structure of the Pyphant framework. At its base we find the 
core. Apart from the workers and the recipe, we have the connectors which are used to model 
the edges of our graph and  which are usually members of the workers. Pyphant's core is 
completed  by  the  DataContainer  class.  While  the  most  basic  incarnation  of  a  Pyphant 
application does not impose any restriction on the data format exchanged amongst workers, 
we added this container format to enhance the interoperability of the various workers.

Above the core we find the user interface layer (UI-layer), which comes in two flavours. We 
have implemented a simple GUI called wxPyphant which realises the visual programming 
paradigm. Pyphant also facilitates the easy creation of a command-line interface (CLI) for a 
specific recipe. This feature is very useful for a daily laboratory routine or the analysis of large 
data sets, e.g. if  large scale data mining is performed in a grid computing environment.

18. William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. 
Numerical Recipes in C. The Art of Scientific Computing. Cambridge University Press, 
Cambridge, 2 edition, 1996.



The Python Papers, Volume 2, Issue 3 31

That's all for the Pyphant framework. However, it would not be useful if it wasn't for the 
plugins which do the actual work. The most important kind of plugin is the worker plugin. For 
now it suffices to notice that workers are bundled in PyphantWorkerEggs. Another kind of 
plugin is the visualisation plugin which is used to visualise data in a suitable way.

Now that you have a rough idea of Pyphant, let's start with a real-life example of a Pyphant 
application.

3. Image Processing Example

In this real-life example we will explain the steps needed to estimate the width distribution of 
an aggregated polymer phase from an AFM phase mode image. The example starts with 
loading the primary data, pre-processing the data and finally determining the size of the 
detected features. A possible evaluation step is also discussed.

Fig. 2 shows an AFM  phase mode image of an amphiphilic poly(2-hydroxyethyl acrylate)-l-
poly(dimethylsolixane) (PHEA-l-PDMS) conetwork with 23 wt% PDMS,19. In this visualization 

19. Nico Bruns, Jonas Scherble, Laura Hartmann, Ralf Thomann, Bela Ian, Rolf Mülhaupt and 
Joerg C. Tiller. Nanophase Separated Amphiphilic Conetwork Coatings and Membranes. 
Macromolecules 38 pp 2431–2438, 2005.

Figure 2. Atomic Force Microscopy (AFM) phase mode 
image1,14of an amphiphilic poly(2­hydroxyethyl 
acrylate)­l­poly(dimethylsolixane) (PHEA­l­PDMS) 
conetwork with 23 wt% PDMS. PHEA shows light and 
PDMS dark.



The Python Papers, Volume 2, Issue 3 32

the PHEA and PDMS show light and dark respectively. The task is to determine the with of the 
PDMS phase.

The complete Pyphant recipe is depicted as a snapshot of the GUI in Fig. 3. On the right-hand 
side of the GUI, the toolbox of available workers is visualised. Each worker can be placed by 
drag-and-drop on the canvas. The individual workers are clearly visible as white boxes which 
are connected by arrows pointing from the plug of one worker to the socket of  another 
worker. The colour of the connectors indicate different types of DataContainer. Red indicates 
a FieldContainer, while blue denotes a SampleContainer. 

Figure 3. Pyphant recipe composed in the wxPyphant GUI. Workers are 
visualised as white boxes with sockets placed in their upper­left corner and 
available plugs placed in their lower­right corner. By right­clicking a plug, 
a context menu with visualisation plugins is provided.



The Python Papers, Volume 2, Issue 3 33

Please note the context menu emerging from the plug of the HistogramWorker. It enables the 
interactive examination of the computed results via visualisation plugins. Let's have a short 
look at the algorithm:

1. Loading the image

Pyphant provides an ImageLoaderWorker which simply loads an image file from the 
location given in the workers configuration. The respective dialog can be opened by 
right-clicking the worker (Fig. 4). This scheme holds for all configuration dialogs of all 
workers. The loaded image is provided as a gray-scale image at the red plug. As the 
worker internally uses the Python Imaging Library (PIL20), it supports a wide variety of 
file formats.

2. Removing noise

Next we want to remove noise from the image. For this task, the PILMedianWorker is 
applied, which implements a standard median filter21. It can be configured by the size 
of the applied kernel and the number of smoothing runs. Here we have chosen a 5x5 
kernel and five smoothing runs.

3. Applying a threshold

Now we want to separate the dark features which represent the PDMS phase from the 
background. This is achieved through the ThresholdingWorker. It compares every pixel 
of the smoothed image with a given threshold and returns a binary image such that 
the pixels which comprise features are set to 0x00 while the pixels of the background 
are set to 0xFF. In this example the threshold is set to 90. The threshold is chosen 
such that the fraction of the image being covered by features corresponds to the 
volume fraction of PDMS of the sample.

4. Measuring the size of the features

20. Secret Labs AB. Python Imaging Library (PIL). http://www.pythonware.com/products/pil
21 cf. [1], p. 152ff

Figure 4. Configuration dialog for the ImageLoaderWorker 
which is automatically constructed from the definition of 
the ImageLoader class. It enables the interactive adjustment 
of all parameters, including the physical dimensions and 
units of the investigated sample. Note that the is external 
check­boxes are an experimental feature which allows the 
respective parameter to be set via a socket.

http://www.pythonware.com/products/pil
http://www.pythonware.com/products/pil
http://www.pythonware.com/products/pil


The Python Papers, Volume 2, Issue 3 34

By now we have a binary image representing the features we are taking into account. 
Next we would like to determine their size by calculating the distance of each pixel to 
the nearest background pixel22. This task is done by the DistanceMapper. The resulting 
gray-scale image is shown in Fig. 5a with pseudo-colours. Note the correct labelling of 
the colour palette indicating the distance of each feature pixel from the background.

5. Morphological transform

In order to retrieve the width of the features, they are skeletonised. This is achieved 
by iteratively removing the outer pixels of each feature until the core pixels remain23.

6. Checking result of skeleton computation

The skeleton of the features can be compared with the primary data by feeding both 
images to the DiffWorker. A display detail of the result is depicted in Fig. 5b.

7. Determining the width of the features

The skeleton of the features is applied as a mask to the distance map. This results in a 
skeleton image, where the brightness of each skeleton pixel corresponds to the width 
of the feature at the respective position. While this image is provided by the red plug, 
the blue plug returns the result as an Nx3 table representation. Here, each skeleton 
pixel is specified by its spatial position and the respective feature width.

8. Computing the histogram

22 cf. [1], p. 427ff.
23. Steven W. Smith. The Scientist and Engineer’s Guide to Digital Signal Processing. 
California Technical Publishing, San Diego, 1997, Chapter 25. 
http://www.dspguide.com/pdfbook.htm

Figure 5. (a) Visualisation of DistanceMapper result. The feature size is 
colour­coded. (b)  Display detail of difference between AFM image and 
skeleton of found features. Here the PDMS phase shows red while the skeleton 
is represented by blue lines.

http://www.dspguide.com/pdfbook.htm
http://www.dspguide.com/pdfbook.htm
http://www.dspguide.com/pdfbook.htm


The Python Papers, Volume 2, Issue 3 35

By now, the recipe produces the information we are interested in. The only thing left 
to  do  is  compute  a  histogram  from  the  data  provided.  This  is  done  by  the 
HistogramWorker. The resulting histogram presenting the length scale of the PDMS 
phase is shown in Fig. 6. The width distribution of the PDMS phase determined by the 

Pyphant recipe matches the results of Bruns et al24.

4 The Pyphant Core

In this section we will  describe the Pyphant core in greater detail.  First we will  show an 
example of  a  worker,  then the  worker base class in  general.  Next we will  describe the 
connection facilities that link the workers into the recipe and the efficient computing model 
this suggests. Finally, we discuss the DataContainer, which is the preferred data exchange 
class. It is designed to maximise worker interoperability.

4.1 The Worker

4.1.1 The DiffWorker – a Practical Example

Listing 1 shows the DiffWorker. It takes two images and provides their difference image. First, 
some general attributes are declared (Lst 1, 1ine.44).

API is a hint to Pyphant on how to invoke the worker.

VERSION is related to the semantics of the worker. It should be increased whenever it is 
altered.

REVISION identifies the specific revision of the worker in the subversion repository.

name is  the name of the worker as presented to the user. This would be the place for 
internationalisation (i18n). Omission of this information indicates an abstract worker, i.e. one 
that will not be presented to the user. An example for this is the fundamental Worker class.

Next, the sockets are declared. These are the input facilities of the worker. They are declared 

24 cf. [19]

Figure 6. Width distribution of the PDMS phase. The result obtained 
from the AFM phase mode image depicted in Fig. 2 with the Pyphant 
recipe shown in Fig. 3. PILMedianWorker: 5x5 kernel, 5 runs. 
ThresholdWorker: threshold 90.



The Python Papers, Volume 2, Issue 3 36

with a name and a type (Lst 1, line 48). The name is used to identify the socket. The type is 
used to provide visual hints to the user. Note that there is no declaration of output facilities. 
Those are referred to as plugs and are immediately coupled with a calculation method. From 
the implementors point  of  view,  the  leading parameters are ordinary parameters.  If  the 
worker is part of a recipe, Pyphant will  call the method at a good time with appropriate 
arguments. The last parameter, subscriber, is special because it acts as a simple feedback 
facility  for  the progress meter.  Therefore,  the method should write information about its 
completion in percent at meaningful points in the calculation. Pyphant will supply a property-
like object  at  runtime that is  used to inform the user about the overall  progress of  the 
calculation.

Note that the names of the parameters coincide with the aforementioned socket names. This 
is  necessary  for  Pyphant  to  figure  out  which  socket  should  be  associate  with  which 
parameter. The author of the worker is otherwise not required to deal specially with the input. 
The  author  simply  declares  a  method  and  Pyphant  takes  care  of  all  the  data-handling 
necessary. All that is required is to prefix the plug with the Worker.plug decorator, declaring 
the return type (Lst 1, 1ine 51).

40 from pyphant.core import (Worker , Connectors)
41 import copy, scipy
42
43 class DiffWorker (Worker.Worker) :
44         API = 2
45         VERSION = 1
46         REVISION = ”$Revision: ] 28 ] $”[11:−1]
47         name=” Diff ] Worker ”
48         _sockets = [ (”image1” , Connectors.TYPE_IMAGE) ,
49 (”image2” , Connectors.TYPE_IMAGE) ]
50
51         @Worker.plug(Connectors.TYPE_IMAGE)
52         def diffImages(self, image1, image2, subscriber=0) :
53 im1=image1.data
54 im2=image2.data
55 diff=scipy.absolute(im1−im2)
56 result=copy.deepcopy(image1)
57 result.data=diff
58 result.seal()

   Listing 1: The DiffWorker class which is included in Pyphant’s ImageProcessing toolbox

4.1.2 The Worker Module

In  section  4.1.1  we  have  presented  an  example  for  a  simple  worker,  which  like  all  of 
Pyphant's productive workers, inherits from the Worker class of the eponymous module (Lst 
1, line 43). A small but important function, which the Worker module provides, is the plug 
decorator (Lst 2).  It  is  merely used as a marker which adds the attributes  isPlug and 
returnType to the plug-deploying method of the respective worker (e.g. Lst 1, line 51). This 
meta-information is used by the WorkerFactory metaclass (Lst 3) for gathering all plugs in the 
list _plugs.

51 def plug(returnType) :
52 def setPlug(plug) :



The Python Papers, Volume 2, Issue 3 37

53 setattr(plug, ’isPlug’, True)
54 setattr(plug, ’returnType’, returnType)
55 return plug
56 return setPlug

        Listing 2: Plug decorator of Worker module

Next, we have the worker class itself. Of special interest is the construction. At runtime, the 
Worker.__init__ method will, for every worker instance, set the attributes: _sockets, 
_plugs and _params. All of them are lists, describing the respective requested objects. You 
have seen the _sockets list being filled in Listing 1. The list of plugs is constructed by the 
WorkerFactory metaclass on  basis of the plug decorators (Lst 3, line 69). The _params list 
contains parameter descriptions and is filled like the socket list if the worker has parameters. 
Actually, parameters are a special type of socket, but we will come back to this in Section 4.2. 
For every entry in those lists Worker.__init__ creates a corresponding connector 
instance as a member of the Worker instance.

64 class WorkerFactory(type):
65         workerRegistry=WorkerRegistry.WorkerRegistry.getInstance()
66         log=logging.getLogger(”WorkerFactory”)
67         def __init__(cls, name, bases, cdict):
68                cls._plugs=[]
69                for f in filter(lambda key : identifyPlugs(key, cdict), cdict):
70                        cls._plugs.append ((f,cdict[ f ]))
71                super(WorkerFactory, cls).__init__(name, bases, cdict)
72                try:
73                        WorkerFactory.workerRegistry.registerWorker(WorkerInfo (cls.name, cls))
74                except (AttributeError):
75                        WorkerFactory.log.warning(”Ignoring ] worker ] ”+name+” ] due ]

                                 to ] missing ] name ] attribute.”)

          Listing 3: WorkerFactory metaclass of Worker module.

4.2 The Connectors

The Connectors module defines the type constants and the FullSocketError which is raised 
when someone attempts to insert a plug into an already used socket. Apart from that, the 
connector classes are also found here (i.e. Connector, Socket and Plug).

54 class Connector(object):
55 def __init__(self, worker, name, type=DEFAULT_DATA_TYPE) :
56 self.worker=worker
57    self.na me=name
58            self.type=type
59       self._isExternal=True
60       def _getIsExternal(self):
61              return self._isExternal
62       def _setIsExternal(self, isExternal):
63              if isExternal != self._isExternal:
64               self._isExternal=isExternal
65            self.worker.connectorsExternalizationStateChanged(self)
66       isExternal=property(_getIsExternal, _setIsExternal)



The Python Papers, Volume 2, Issue 3 38

Listing 4: Connector class of Connectors module.

In Listing 4 you see the Connector class. It is the base class for sockets and plugs. As you can 
see, every connector carries a reference to its worker (Lst 4, line 56) as well as an identifying 
name (line 57). Furthermore, there is the  _isExternal property (line 59) which denotes 
whether the connector is exposed to input from outside the worker.

The Socket takes the connecting plugs and keeps track of the connection. If any connection is 
broken, or the respective plug becomes invalid, the socket will invalidate itself and its worker, 
which in turn invalidates all of its plugs. This way, the invalidation propagates through the 
recipe until all concerned workers are informed.

Finally, we have the Plug. It is perhaps the most interesting connector, since it is the one 
responsible for multithreading. In order to accomplish threading, the framework needs a little 
help from:

1. the Computer class (Listing 5); and

2. the createWrapper method (Listing 6).

While the Computer class encapsulates the thread running the various calculation tasks, the 
createWrapper method is used at the construction time of the plug to create a matching 
wrapper for the calculation method of the worker. To this end, it constructs a method that 
starts one thread for every socket used by the plug and joins them back with the main thread 
prior to calling the plug itself,  with the fetched results as its arguments. When a plug is 
queried via its  getResult method, it checks for an already available result, generates a 
new one if necessary and handles the required locking transparently.

68 class Computer(threading.Thread):
69         def __init__(self, method, **kwargs):
70 threading.Thread.__init__(self)
71 self.method=method
72 self.kwargs=kwargs
73 self.result=None
74         def run(self):
75 if self.method:
76 self.result=self.method(subscriber=self.kwargs[”subscriber”])

Listing 5: Computer class of connectors module.

 88 def createWrapper(self, method):
 89 args, varargs, varkw, defaults=inspect.getargspec(method)
 90     sockets=args[:−1]
 91     name=method.func_name+’PyphantWrapper’
 92     l=’def ] ’+name+’(subscriber, ] method=method, ] process=self):\n’
 93     for s in sockets:
 94     l+=’\t’+s+’=Computer(method.im_self.getSocket(”’+s+’”).getResult, 

subscriber=subscriber)\n’
 95     for s in sockets:
 96      l+=’\t’+s+’.start()\n’
 97     for s in sockets:
 98             l+=’\t’+s+’.join()\n’
 99     l+=’\tdef ] updater(percentage):\n’



The Python Papers, Volume 2, Issue 3 39

100    l+=’\t\tsubscriber.updateProcess(process, ] percentage)\n ’
101    l+=’\treturn method( ] subscriber=property(fset=updater),’ # If
              no sockets are needed that comma will be erased, so do
              not add a space!
102     for s in sockets:
103            l+=s+’=’+s+’.result,’
104            l=l[:−1]+’)\n’
105     exec l
106     return eval(name)

Listing 6: createWrapper helper of connectors module.

4.3 The Pyphant Execution Model

How is a Pyphant recipe executed? Actually, it is not so much executed as evaluated. The 
naïve approach to execution might be to determine an execution order for the graph, then 
execute each node in a top-to-bottom order. Pyphant instead starts from the bottom node 
and  fetches  the  required  results  of  previous  calculations.  For  example,  the 
UltimatePointsCalculator provides two results:

1. An image that shows the found extrema visually; and

2. a list of the found extrema

While in a pure computer-oriented recipe the list might be needed for further processing, it 
can be convenient to have immediate visual feedback on the success of the operation, e.g., 
to determine the usefulness of the image preprocessing. However, only the requested result 
is calculated, thus saving time and computing power by avoiding the calculation of the entire 
node. Furthermore, this order of execution allows for an easy caching of already computed 
results: when a plug is queried it simply provides the last computed result without even 
bothering the worker, unless it has been invalidated meanwhile.

Another feature of this execution approach is the simple implementation of multi-threading. 
In case a plug has no or only an invalidated result, Pyphant retrieves the data from every 
socket  used  by  that  plug  in  parallel,  each  in  its  own  thread.  Thus  a  non-trivial  recipe 
automatically leads to a pseudo-parallelised execution within the restrictions imposed on 
Pyphant by the global interpreter lock25.

4.4 Information Exchange and Visualisation

In most cases, the scientific community deals with normalised physical quantities in the form 
of  pure  numbers.  This is  of  course  very  convenient  because  it  allows  the  immediate 
application  of  a  wide  variety  of  methods  and  algorithms.  The  disadvantage is  that  the 
scientific information is stripped of its meaning and is reduced to pure data, such that the 
labels of a result-presenting graph have to be recompiled by hand if the primary data or the 
applied algorithm change.

Therefore we were seeking a self-descriptive data exchange format which encourages the 
annotation of data right from the start and enables the entrainment of the physical units 
involved in the algorithm, such that a well-labeled graph can be produced without effort. The 
result is the DataContainer module which reproduces the self-descriptiveness of the network 
Common Data Form (netCDF26) but is augmented in the following respects: once sealed, a 

25. Peyton McCollough. Basic threading in python. 
http://www.devshed.com/c/a/Python/Basic-Threading-in-Python, 2005.
26. Unidata. netcdf (network common data form). 
http://www.unidata.ucar.edu/software/netcdf, 2003

http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.unidata.ucar.edu/software/netcdf
http://www.devshed.com/c/a/Python/Basic-Threading-in-Python
http://www.devshed.com/c/a/Python/Basic-Threading-in-Python
http://www.devshed.com/c/a/Python/Basic-Threading-in-Python


The Python Papers, Volume 2, Issue 3 40

DataContainer is immutable and can be identified by its  emd5 attribute (Enhanced MD5). 
This is a unique identifier composed of information about the origin of the container, its type 
and its MD5 hash27 to ensure its integrity. It is also used to store the container as part of a 
recipe in  an hdf5  file.  Note  that  Pyphant  does not  impose any restrictions  on the  data 
exchange format, such that the described DataContainer is  just a convenient interface for 
exchanging scientific information between workers (e.g., Lst 1) and visualisers (e.g., Lst 7).

The module DataContainer provides the basic class DataContainer which has the following 
attributes:

longname: Notation  of  the  data,  e.g.  'electric  field',  which  is  used for  the  automatic  
annotation of charts.

shortname: Symbol of the physical variable in LaTeX notation, e.g. E_\alpha, which is 
also used for the automatic annotation of charts.

id: Identifier in Enhanced MD5 (emd5) format
emd5://NODE/USER/DATETIME/MD5­HASH.TYPESTRING
which is set by calling the method seal and indicates that the stored information is 
unchangeable.

label: Typical axis description, composed from the meta information of the DataContainer.

data: Data object, e.g. Numpy array28.

On top of the DataContainer we have defined a  FieldContainer and a  SampleContainer 
class.  The  FieldContainer  stores  an  n-dimensional  array  together  with  its  unit  and  the 
coordinates  of  the  independent  variables,  which  are  called  dimensions  and  in  turn  are 
represented as  FieldContainers.  The  SampleContainer  combines  different  FieldContainers 
which have the same number of sample points to a table-like representation.

The FieldContainer is characterised by the following properties:

data: Numpy.array representing the sampled field.

unit: PhysicalQuantity object29 denoting the unit of the sampled field.

dimensions: List of FieldContainer instances describing the dimensions of the sampled  
field.

data: Sampled field stored as Numpy.array.

error: Absolute error of the sampled field stored as Numpy.array.

A SampleContainer can be regarded as a table which is typically obtained from measurement 
campaigns.  It  stores different  observations  on  the  same subject  per  row,  whereby each 
column comprises a quantity of the same kind. From a statistical point of view, each row is 
the realisation of a random variable (sample). A SampleContainer is constructed from a list of 
FieldContainers and provides the following attributes:

data: table of samples stored in a Numpy.recarray;

desc: description of Numpy.dtype of the recarray; and

units: list of PhysicalQuantities objects denoting the units of the columns.

An example of a visualiser using the meta information provided by the FieldContainer is given 
in the following listing. A graph compiled by this visualiser is depicted in Fig. 5. From line 40 

27. R. Rivest. The md5 message-digest algorithm. http://tools.ietf.org/html/rfc1321, 1992
28. Travis E. Oliphant. Guide to Numpy. Trelgol Publishing, http://www.tramy.us, 2005
29. Konrad Hinsen. Scientific python. http://dirac.cnrs-
orleans.fr/plone/software/scientificpython/, 2007

http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
http://www.tramy.us/
http://www.tramy.us/
http://www.tramy.us/
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321


The Python Papers, Volume 2, Issue 3 41

of the ImageVisualiser module, you can see that we utilise the pylab module30 in order to 
visulise our results. However, in order to make a visualisation class available to Pyphant's 
GUI,  it  has to register itself via the  DataVisReg registry (Lst 7, line 74), from which the 
context menus of the plugs are constructed by means of the respective name attributes (Lst 
7, line 45).

While the graph itself is created by a simple call to pylab's imshow procedure, the majority of 
code is spent on annotating the graph: (Lst 7, line 57):

11.52­55: Determining the reference coordinate system from the dimension attribute of 
the FieldContainer

11.58­59: Labelling the axis with the meta information of the dimension attribute

11.61­70: Creating the colour bar, which maps the false colours of the image to the  
amplitude of the visualised field.

40 import pylab, scipy
41 from pyphant.core.Connectors import TYPE_IMAGE
42 from pyphant.wxgui2.DataVisReg import DataVisReg
43
44 class ImageVisualizer(object):
45         name=’Image ] Visualizer’                  
46         def  __init__(self, fieldContainer):
47              self.fieldContainer=fieldContainer
48              self.execute()
49
50         def execute(self):
51              self.figure=pylab.figure()
52              xmin=scipy.amin(self.fieldContainer.dimensions[0].data)
53              xmax=scipy.amax(self.fieldContainer.dimensions[0].data)
54              ymin=scipy.amin(self.fieldContainer.dimensions[1].data)
55              ymax=scipy.amax(self.fieldContainer.dimensions[1].data)
56
57              pylab.imshow(self.fieldContainer.data, extent=(xmin , xmax,ymin, ymax))
58              pylab.xlabel(self.fieldContainer.dimensions[0].label)
59              pylab.ylabel(self.fieldContainer.dimensions[1].label)
60
61              class F(pylab.Formatter):
62                    def __init__(self, container, args, **kwargs):
63                              self.container=container
64                   def __call__(self, x, pos=None):
65                              try:
66                                       return str(x*self.container.unit)
67                              except IndexError, error:
68                                       return str(x)
69              ax=pylab.gca()
70              pylab.colorbar(format=F(self.fieldContainer))
71              pylab.ion()
72              pylab.show()
73
74 DataVisReg.getInstance().registerVisualizer(TYPE_IMAGE, ImageVisualizer)

Listing 7: Excerpt from the ImageVisualizer module showing the homonymous class, which 
is used for visualizing the results depicted in Fig. 5.

30. John Hunter. Matplotlib. http://matplotlib.sourceforge.net, 2006.

http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/


The Python Papers, Volume 2, Issue 3 42

5 The User Interfaces

We employed a clean encapsulation of the core of Pyphant. This allows for a variety of user 
interfaces. For now, we have implemented a simple GUI based on the wxPython toolkit. You 
already got  a  glimpse at  the  GUI  in  Section 3.  In  this  section we will  elaborate on the 
technicalities of the GUI, which also gives a good example of a Pyphant application. Then we 
will discuss a short example on how to incorporate a Pyphant recipe into a simple Python 
script.

5.1 wxPyphant – the Graphical User Interface

A screenshot of the GUI is seen in Fig. 3. On the left hand side of the client area of the window 
you see the canvas. This is where you put the desired workers and link them. The available 
workers are discovered at startup of  the Pyphant framework via the entry points of  the 
respective Python eggs31 and are presented at the right hand side of the wxPython window.

The arrangement of the workers and their connections are conducted via an intuitive drag-
and-drop  interface.  By  placing  a  worker  onto  the  canvas,  the  following  mechanism  is 
triggered: the factory method provided by the corresponding WorkerInfo object is called in 
order to construct a worker of that kind. Then a corresponding GUI object is created and 
integrated into the recipe. Sockets are represented by coloured boxes at the upper-left corner 
of the workers, while plugs are represented by coloured circles in the lower-right corner. Plugs 
and sockets of the same colour can be connected by left-clicking the plug and releasing the 
mouse button over the socket. Apart from the construction of recipes, wxPyphant allows for 
the immediate inspection of intermediate results by right-clicking the appropriate plugs. Upon 
a right-click, a context menu is shown that offers all suitable visualisations. Finally, the GUI 
features the saving and loading of recipes to and from hdf5 files.

While the GUI as a whole is based on the wxPython toolkit, the canvas is based on the Object 
Graphics Library (OGL), which in its latest form is part of wxPython.

5.2 Scripting with Pyphant Recipes

Thanks to the encapsulation of the  core, Pyphant does not depend on the availability of a 
graphical  environment at all,  which allows the user to deploy recipes visually crafted on 
workstations into a more powerful computing environment. This is especially important for 
more complex tasks where the computation can easily take days.

Concerning the  recipe discussed in  Sec 3,  the  following Python script  demonstrates  the 
simplicity of re-using a Pyphant recipe with modified parameters. The only modules to be 
imported are: the PyTablesPersister (Lst 8, line 1) for loading the recipe; and ImageVisualiser 
(Lst 8, line 2) for saving the result of the analysis as a Portable Network Graphics (PNG) 
image. Once the recipe has been loaded, the individual workers can be accessed by the 
getWorkers method of the recipe (Lst 8, line 8). A Worker can be configured by setting the 
value attribute of the respective parameters (Lst 8, line 10). In order to obtain the result 
from a specific worker, the getResult method of the respective plug has to be called (Lst 8, 
line 14). The resulting DataContainer can be used to initialise a suitable visualiser instance 
(Lst 8, line 17) whose diagram can be exported to a suitable graphic file format (Lst 8, line 
18).

 1  import pyphant.core.PyTablesPersister
 2  from pyphant.visualizers.ImageVisualizer import ImageVisualizer
 3
 4  #Load recipe from hdffile
 5  recipe = pyphant.core.PyTablesPersister.loadRecipeFromHDF5File(’demo. h5’)

31 The PEAK Developers' Center: PythonEggs, 
http://peak.telecommunity.com/DevCenter/PythonEggs  , 2007  

http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/PythonEggs


The Python Papers, Volume 2, Issue 3 43

 6
 7  #Configure ImageLoaderWorker
 8  inputWorker = recipe.getWorkers(’Image ] Loader’)[0]
 9  imageName = ’demo.png’
10 inputWorker.getParam(’filename’).value=imageName
11
12 #Fetch Result
13 worker = recipe.getWorkers(’Apply_Mask’)[0]
14 result = worker.plugCreateMaskedImage.getResult()
15
16 #Visualise Result
17 visualizer = ImageVisualizer(result)
18 visualizer.figure.savefig(’result−’+imageName)

    Listing 8: Simple Python script interfacing the Pyphant recipe depicted in Fig. 3.

6 Summary and Outlook

Pyphant is a flexible Python framework for the composition of data-flow models. It offers easy 
integration of  new computing nodes and a  multithreading execution of  entire  workflows 
without special burdens on the user. Its scriptability allows for the application of carefully 
crafted recipes in a computing environment under the lack of graphical services or possibly 
the integration into completely different applications. The current stable version of Pyphant is 
0.4-alpha4 which is the basis of this paper. The framework and the worker toolboxes are 
published under the BSD license on Sourceforge32 and in the Cheese Shop33.

Concerning  the  application  of  the  Pyphant  framework,  we  are  planning  to  extend  the 
ImageProcessing toolbox with more tools  and provide a  toolbox for  solving ill-posed 
problems on the basis of non-linear regularisation methods34. Possibly the family of toolboxes 
can be extended even further to entirely different projects in  need of  a  similar  GUI.  To 
circumvent the restrictions imposed by the global interpreter lock and to harness the full 
potential of a parallel processing environment, we plan to refactor Pyphant into a compute 
server architecture, which is already hinted for by the present architecture. Furthermore, we 
are going to incorporate the emd5 identifier of the DataContainer into a processing history 
such that  the  origin  of  each  result  can be  backtracked to  the  actual  realisation  of  the 
underlying algorithm and the processed original data.

Acknowledgement

The authors would like to thank the editors for the opportunity to publish an updated version 
of our paper presented at the Europython 2006 conference35 in The Python Papers and would 
like to encourage everybody who finds the presented framework interesting to participate in 
the project. The authors would also like to thank Michael C. Röttger for creating Pyphant’s 
logo, Nico Bruns and Josef Honerkamp for fruitful discussions on the topic. The financial 
support by the German BMBF (Project No.: 03C0354A) is gratefully acknowledged. Finally, 
Andreas W. Liehr likes to thank Yanara M. L. Kempa for napping in a baby carrier at his chest 
while the introduction was written.

32. Klaus Zimmermann and Andreas W. Liehr. http://sourceforge.net/projects/pyphant/, 
2007.
33. Python Software Foundation. Python cheese shop. http://cheeseshop.python.org/pypi/, 
1990-2007.
34 cf. [7]
35. Klaus Zimmermann, Lorenz Quack, and Andreas W. Liehr. Pyphant - a python framework 
for modelling reusable data processing tasks. Refereed Paper Track, CERN 2006, 
http://tinyurl.com/r4rdz, 2006.

http://tinyurl.com/r4rdz
http://tinyurl.com/r4rdz
http://tinyurl.com/r4rdz
http://cheeseshop.python.org/pypi/
http://cheeseshop.python.org/pypi/
http://cheeseshop.python.org/pypi/
http://sourceforge.net/projects/pyphant/
http://sourceforge.net/projects/pyphant/
http://sourceforge.net/projects/pyphant/


The Python Papers, Volume 2, Issue 3 44

Upcoming Events
The following events, taken from the python.org events wiki36, are being held between August 
and December this year.

September 7, 2007: Leipzig, Germany, Python-Workshop "Python im deutschsprachigen Raum 
2007" 

September 8-9, 2007: Birmingham, United Kingdom, PyCon UK 

September 12, 2007: Cologne, Germany, monthly pyCologne meeting 

September 15-16, 2007: Houston, Texas, Texas Regional Unconference 

September 22-23, 2007: Leipzig, Germany, Python course for programmers (in English) taught 
by Python Academy. 

October 8-10, 2007: San Francisco, CA, (Comprehensive) Introduction to Python course taught 
by Wesley Chun 

October 10, 2007: Cologne, Germany, monthly pyCologne meeting 

October 13, 2007: San Francisco, CA, Internet Programming with Python seminar+lab taught 
by Wesley Chun 

October 20-21, 2007: Leipzig, Germany,  Python course for programmers (in German) taught 
by Python Academy. 

October 23-25, 2007: Longmont, Colorado, Python training class taught by Mark Lutz. 

November 5-9, 2007: Atlanta, Georgia,  Python Bootcamp taught by Dave Beazley at the Big 
Nerd Ranch 

November 14, 2007: Cologne, Germany, monthly pyCologne meeting 

December 12, 2007: Cologne, Germany, monthly pyCologne meeting 

To include your event in our next issue, or to include expanded event information, please contact 
us directly to ensure that your event is represented as you would like. All events available from 
the python.org events wiki will be included with a basic reference.

36  http://wiki.python.org/moin/PythonEvents

http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://bignerdranch.com/
http://bignerdranch.com/
http://bignerdranch.com/
http://bignerdranch.com/
http://bignerdranch.com/
http://bignerdranch.com/
http://bignerdranch.com/classes/python.shtml
http://bignerdranch.com/classes/python.shtml
http://bignerdranch.com/classes/python.shtml
http://home.earthlink.net/~python-training/formalbio.html
http://home.earthlink.net/~python-training/formalbio.html
http://home.earthlink.net/~python-training/formalbio.html
http://home.earthlink.net/~python-training/longmont-public-classes.htm
http://home.earthlink.net/~python-training/longmont-public-classes.htm
http://home.earthlink.net/~python-training/longmont-public-classes.htm
http://www.python-academy.de/
http://www.python-academy.de/
http://www.python-academy.de/
http://www.python-academy.de/Kurse/termine.html
http://www.python-academy.de/Kurse/termine.html
http://www.python-academy.de/Kurse/termine.html
http://cyberwebconsulting.com/
http://cyberwebconsulting.com/
http://cyberwebconsulting.com/
http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://cyberwebconsulting.com/
http://cyberwebconsulting.com/
http://cyberwebconsulting.com/
http://www.python-academy.com/
http://www.python-academy.com/
http://www.python-academy.com/
http://www.python-academy.com/courses/dates.html
http://www.python-academy.com/courses/dates.html
http://www.python-academy.com/courses/dates.html
http://pycamp.python.org/Texas/HomePage
http://pycamp.python.org/Texas/HomePage
http://pycamp.python.org/Texas/HomePage
http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://wiki.python.de/pyCologne#Termine
http://www.pyconuk.org/
http://www.pyconuk.org/
http://www.pyconuk.org/
http://www.python-academy.de/workshop/
http://www.python-academy.de/workshop/
http://www.python-academy.de/workshop/
http://www.python-academy.de/workshop/
http://www.python-academy.de/workshop/
http://www.python-academy.de/workshop/


The Python Papers, Volume 2, Issue 3 45

The Python Papers' Review Policy

0. Preamble
The Python Papers (ISSN 1834-3147) is  intended to  be both  a  industrial journal as well  as an 
academic journal, in the sense that the editorial board welcomes submissions from all aspects related 
to the Python programming language, its tools and libraries, and community, both of academic and 
industrial inclinations. The Python Papers aims to be a publication for the Python community at large. 
In order to cater for this, The Python Papers seeks to publish submissions under 2 main streams: the 
industrial  stream (technically  reviewed) and  the  academic stream (peer-reviewed). This  policy 
statement seeks to clarify the process of technical review and peer-review in The Python Papers.

1. Right of submission author(s) to choose streams
The submission author(s); that is, the author(s) of the article or code or any submissions in any other 
forms deemed by The Python Papers editorial board (hereafter known as 'editorial board') as being 
suitable; reserves the right to choose if he/she wants his/her submission to be in the industrial stream, 
where it will be technically reviewed, or in the academic stream, where it will be peer-reviewed. It is 
also the onus of the submission author(s) to nominate the stream. The editorial board defaults all 
submissions  to  be  industrial  (technical  review) in  event  of  non-nomination  by  the  submission 
author(s) but the editorial board reserves the right to place such submissions into the academic stream 
if it deems fit.

2. Right of submission author(s) to nominate potential reviewers
The submission author(s) can exercise the right to nominate up to 4 potential reviewers (hereafter 
known as "external reviewer") for his/her submission if the submission author(s) choose to be peer-
reviewed. When this right is exercised, the submission author(s) must declare any prior relationships 
or conflict of interests with the nominated potential reviewers. The final decision rests with the Chief 
Reviewer.

3. Right of submission author(s) to exclude potential reviewers
The submission author(s) can exercise the right to recommend excluding any reasonable numbers of 
potential reviewers for his/her submission. When this right is exercised, the submission author(s) must 
indicate the grounds on which such exclusion should be recommended. Decisions for the editorial 
board to accept or reject such exclusions will be solely based on the grounds as indicated by the 
submission author(s).

4. Peer-review process
Upon receiving a submission for peer-review, the Editor-in-Chief (hereafter known as "EIC") may 
choose to reject the submission or the EIC will nominate a Chief Reviewer (hereafter known as "CR") 
from the editorial board to chair the peer-review process of that submission. The EIC can nominate 
himself/herself as CR for the submission. The CR will send out the submission to TWO or more 
external reviewers to be reviewed. The CR reserves the right not to call upon the nominated potential 
reviewers and/or not  to  call  upon any of  the  excluded potential  reviewers as  suggested by  the 
submission author(s). The CR may also concurrently send the submission to one or more Associate 
Editor(s) (hereafter known as "AE") for review. Hence, a submission in the academic stream will be 
reviewed by at least three persons, the EIC as CR and two external reviewers. Typically, a submission 
is reviewed by three to four persons: the EIC as CR, an AE, and two external reviewers. There is no 
upper limit  to the number of reviews in a submission. Upon receiving the review from external 
reviewer(s) and AE(s), the CR decides on one of the following options: accept without revision, 
accept with revision, reject; and notifies the submission author(s) of the decision on behalf of the EIC. 



The Python Papers, Volume 2, Issue 3 46

If the decision is "accept with revision", the CR will provide a deadline to the submission author(s) 
for revisions to be done and will automatically accept the revised submission if the CR deems that all 
revision(s) were done; however, the CR reserves the right to move to reject the original submission if 
the revision(s) were not carried out by the stipulated deadline by the CR. If the decision is "reject", the 
submission author(s) may choose to revise for future re-submission. Decision(s) by CR or EIC is 
final.

5. Technical review process
Upon receiving a submission for technical review, the Editor-in-Chief (hereafter known as "EIC") 
may choose to reject the submission or the EIC will nominate a Chief Reviewer (hereafter known as 
"CR") from the editorial board to chair the review process of that submission. The EIC can nominate 
himself/herself as CR for the submission. The CR may decide to accept or reject the submission after 
reviewing or may seek another AE's opinions before reaching a decision. The CR will notify the 
submission author(s) of the decision on behalf of the EIC. Decision(s) by CR or EIC is final.

6. Main difference between peer-review and technical review
The process of peer-review and technical review are similar, with the main difference being that in the 
peer review process, the submission is reviewed both internally by the editorial board (EIC/CR and 
assigned  AE(s))  and  externally  by  external  reviewers  (nominated by  submission  author(s)  or 
nominated by EIC/CR). In a technical review process, the submission is reviewed by the editorial 
board and any external review may be at the editorial board's discretion.

7. Umbrella philosophy
The  Python  Papers'  editorial  board  firmly  believes  that  all  good  (technically  and/or 
scholarly/academic) submissions  should  be  published and that  the  editorial  board  is  integral in 
refining all  submissions.  The board believes in  giving  good  advice to  all  submission  author(s) 
regardless of the final decision to accept or reject and hopes that advice to rejected submissions will 
assist in their revisions.


	The Python Papers

