
The Python Papers

Volume 2, Issue 4

pythonpapers.org

Journal Information

The Python Papers

ISSN: 1834-3147

Editors

Tennessee Leeuwenburg
Maurice Ling
Richard Jones

Stephanie Chong

Referencing Information

Articles from this edition of this journal may be referenced as follows:

Author, “Title” (2007) The Python Papers, Volume N, Issue M, pp. m:n

e.g. Maurice Ling, “Firebird Database Backup by Serialized Database Table Dump” (2007) The Python Papers, Volume 2,
Issue 1, pp. 7:15.

Copyright Statement

© Copyright 2007 The Python Papers and the individual authors
This work is copyright under the Creative Commons 2.5 license subject to Attribution,

Noncommercial and Share-Alike conditions. The full legal code may be found at
http://creativecommons.org/licenses/by-ncsa/2.1/au/

The Python Papers was first published in 2006 in Melbourne, Australia.

Referees

An academic peer-review was performed on all academic articles. A
list of reviewers will be published in each December issue. This has
been done in order to ensure the anonymity of reviewers for each
paper.

The Python Papers, Volume 2, Issue 4 1

The Python Papers
Volume Two, Issue Four : December 2007

In this Edition:

Articles and Editorials:

Editorial Page 4
Editor-In-Chief, Tennessee Leeuwenburg

This issue marks some new beginnings. Gloria W. Jacobs joins us as a regular columnist,
chiefly addressing the issue of women in computing. We also include an interview with Giles
Thomas of Resolver Systems, our first article aimed equally at developers and the business
community. It is hoped that we will be able to include a lot more content which is of interest
to business. If we can stimulate more business interest in Python, it is believed this can help
developers to link with the business community. As many of our readers are involved with
open-source software, finding ways to effectively link with business will be of great interest.
Understanding the challenges faced by businesses which seek to use and indeed contribute
to the open-source Python software is a highly relevant task.

GrrlCamp: An Open Source Python Project for Women Page 6
Gloria W. Jacobs

Today, from where I stand as an experienced software developer, I survey the current
landscape and see a similar picture to that of ten years ago. Only this time it strikes me as
sad. Ten years ago, I considered it more to be happenstance, but that excuse is no longer
valid. There really should be more female F/OSS enthusiasts, hobbyists, tinkerers and
hackers. I have heard many women echo my concerns, and many more ask where they can
find such projects, so that they may become those enthusiasts, hobbyists, tinkerers and
hackers.

News from the Python Software Foundation Page 9
Stephan Deibel, Chairman of the Board, Python Software Foundation

“The mission of the Python Software Foundation is to promote, protect, and advance the
Python programming language, and to support and facilitate the growth of the international
community of Python programmers.”

The Python Software Foundation (PSF) is the non-profit legal entity that holds and protects
the intellectual property rights behind Python, keeping it free and open for all to use. The
PSF also contributes to the Python community by underwriting or sponsoring conferences,
funding grants and special projects, and leading volunteer efforts.

Everyone that programs with Python should know at least a little about the PSF, especially
how the Python license and trademarks work. While this may seem boring to many
programmers, there is much that an aware Python users base can do to help protect
Python, and keep the community behind Python vital and productive.

An Interview with Michael Foord on IronPython Page 16
Michael Foord

I've always loved programming. I started with Basic on the BBC microcomputer back when
32k was a lot of memory (actually 64k was a lot of memory, but 32k wasn't bad). I moved
onto assembly language on the Amiga (a truly beautiful computer and operating system),

The Python Papers, Volume 2, Issue 4 2

and then took a break from programming for ten years.

I got involved with Python completely by accident about five years ago and immediately fell
in love with the elegance and expressiveness of the language. I've been writing articles and
involved in open source projects ever since.

This article includes a sample section from Michael's upcoming book, “IronPython
in Action”!

Screen Scraping Web Pages Page 22
by Corey Goldberg

This tutorial shows how to programmatically retrieve a stock quote from Google Finance. It
uses Python's high level Web API and screen scraping with regular expressions.

Interview with Resolver Systems Page 24
The Python Papers interviews Giles Thomas

The Python Papers presents an interview with Managing Director and CTO of Resolver
Systems, Giles Thomas. Giles gives us an in-depth look at his company and how Python
supports the business. This is a great case study into how Python can be used
commercially. It includes a discussion of .NET technologies, the pros and cons of Python as
a language and other great topics.

Eight Tips to Start With Python Page 30
Tarek Ziade

A friend of mine is starting Python. I tried to sum up some tips for him, that may be useful
to others. Don’t hesitate to comment it if you think something important is missing.

Python Events Page 80

A list of upcoming Python events.

Peer Reviewed Submissions:

Acknowledgment of Reviewers Page 34
Editorial Board

In order to preserve the anonymity of reviewers, those who have been a part of the peer-
review process are acknowledged each year in our December issue (starting with this
issue). Those listed here have our thanks for helping to pioneer The Python Papers.

pypk - A Python extension module to handle chemical
kinetics in plasma physics modeling

Page 35

N. Pinhão1

Nuclear and Technological Institute, Physics Dept., Estrada Nacional 10, 2685 Sacavém,
Portugal

PLASMAKIN is a package to handle physical and chemical data used in plasma physics

1 Electronic address: npinhao@itn.pt; URL: http://plasmakin.sourceforge.net

mailto:npinhao@itn.pt
http://plasmakin.sourceforge.net/

The Python Papers, Volume 2, Issue 4 3

modeling and to compute gas-phase and gas-surface kinetics data: particle production and
loss rates, photon emission spectra and energy exchange rates... pypk is a new addition to
the package and provides access to libpk from Python programs. It is build on top of the
ctypes foreign function library module and is prepared to work with several Fortran
compilers. However pypk is more than a wrapper and provides its own classes and functions
taking advantage of Python language characteristics. Integration with Python tools allows
substantial productivity gains on program development and insight on plasma physics
problems.

The When and How for Design Patterns Page 48
Olemis Lang

Patterns are powerful tools in order to build trustworthy systems quickly, therefore the
article reveals that the core Python system incorporates the GoF design patterns
comprehensively. Additionally, it portrays how their structure can also describe interactions
among artifacts other than classes. All the way through, several illustrative examples
(many of which are extracted from Python Enhancement Proposals) are described using
either Python implementations or UML diagrams. They are the starting point to sketch a
simple (perhaps naive) method for pattern hatching, and also to unveil the relevant
subjects that determine when and how patterns are found.

Python Switch Statement Page 58
Lance Finn Helsten

The Python programming language does not have a built in switch/case control structure as
found in many other high level programming languages. It is thought by some that this is a
deficiency in the language, and the control structure should be added. This paper
demonstrates that not only is the control structure not needed, but that the methods
available in Python are more expressive than built in case statements in other high level
languages.

An Introduction to Test-Driven Code Generation Page 64
Raphael Marvie

Agile Software Development promotes the use of techniques such as Test-Driven
Development (TDD) and Automation in order to improve software quality and to reduce
development time. Code generation represents a way to achieve automation, reducing
repetitive and error-prone tasks.

Code generation is well accepted, writing a code generator is not necessarily that hard,
however it is not trivial to decide when and how to embrace code generation. Moreover, it
is even harder to embrace at the same time code generation and TDD, wondering for
example How to build a generator following a test driven approach? or How to test drive
generated code?

This paper aims at providing hints to answer these questions. It presents an agile approach
named Test-Driven Code Generation. The main principle is to gain knowledge about the
application during the first iterations of the development process and then to identify how
to implement code generation. As code generation should not drive you out of TDD, our
proposal, based on a double TDD Loop, provides hints to marry both approaches in order to
empower your developments.

The Python Papers, Volume 2, Issue 4 4

Letter from the Editor

Tennessee Leeuwenburg

Hello to the readers of The Python Papers! Here we are at the commencement
of our second year of publication. This issue is stuffed full of content. It feels
great to be putting our best foot forward after a difficult but rewarding first year.

This issue contains more original academic work than ever before, showing that
our efforts in that area are beginning to pay off. We are continuing to pursue
associations with major academic databases in an effort to lift the profile of our
authors and of Python. We really appreciate the authors who have submitted

papers to our journal as it helps us to present a good case for consideration as a serious
academic journal as well as being a home for hobbyists and business users.

This issue marks some new beginnings. Gloria W. Jacobs joins us as a regular columnist, chiefly
addressing the issue of women in computing. We also include an interview with Giles Thomas
of Resolver Systems, our first article aimed equally at developers and the business community.
It is hoped that we will be able to include a lot more content which is of interest to business. If
we can stimulate more business interest in Python, it is believed this can help developers to
link with the business community. As many of our readers are involved with open-source
software, finding ways to effectively link with business will be of great interest. Understanding
the challenges faced by businesses which seek to use and indeed contribute to the open-
source Python software is a highly relevant task.

The next year will be, for me, a real litmus test for the longer-term future. We have a big
agenda with the further expansion of our academic and business links. In this issue, we miss
our Python User Group Highlights, but we have lined up regional representatives in a number of
countries and hope to continue turning the journal's spotlight on the groups of people which
make up the Python user community.

Readers of our blog will already be aware that we are launching a companion publication, The
Python Papers Monograph Series. TPPM will carry longer publications, conference proceedings,
cutting-edge articles and other content which is inappropriate for the regular journal to contain
but which deserves a good home. We hope thereby to provide our experiences with publishing
this journal to community groups which may need help with publishing their works. This has the
potential to be a significant task however, and will need the support of the community.

We are also going to be expanding our editorial board further during the next year, hopefully
before our next issue. We would love to include more people in the production of this journal, at
high levels or otherwise. There is definitely a role for anyone who is interested in being a part
of our team.

A special thanks go out to those who help us by proof-reading our articles, pointing out errors
and helping us to manage the workload of maintaining a good editorial standard in a volunteer
publication.

Introducing The Team

Tennessee Leeuwenburg – Editor-in-Chief

Tennessee Leeuwenburg is a software developer working at the Australian Bureau of
Meteorology on automatic text generation of weather forecasts. Prior to this he spent time
working on meteorological data transfer standards in the form of the OpenDAP database
system.

The Python Papers, Volume 2, Issue 4 5

Maurice Ling – Associate Editor

Maurice Ling is a PhD candidate in the department of Zoology of The University of Melbourne
working on text analysis of biological literature for the purpose of understanding hormone
interactions in the mouse mammary cell.

Richard Jones – Associate Editor

Richard is Blue Box Device's lead OpenGL developer with over 10 years of broad experience
working with multiple languages and tools in web-based management systems, data archive,
meta-data systems, computer graphics, business systems, e-commerce and communications.
He also runs the bi-annual PyWeek Game Programming Challenge and is involved with the
organisation of the Open Source Developer's Conference in Melbourne, Australia.

Stephanie Chong – Associate Editor

Stephanie is currently studying Arts/Law at The University of Melbourne.

Contacting The Python Papers

The editors may be contacted via email at:editor@pythonpapers.org. We are always happy to
receive feedback, suggestions for improvement and ideas for future articles and topics.

Contribute to The Python Papers

If you would like to contribute an opinion piece, an article, participate in an interview or submit
a paper for review and publication, please don't hesitate to contact us at
editor@pythonpapers.org

mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org
mailto:editor@tennessee.id.au

The Python Papers, Volume 2, Issue 4 6

GrrlCamp: An Open Source Python Project for Women
Gloria W. Jacobs

The evolution of Free/Open Source Software was as much fun to watch as it was to help
push along. When I started designing and developing software professionally in 1989,
compilers cost thousands of dollars and freeware was just a tiny dream held by a small
group of UNIX developers and college professors.

I worked for a company which ported their software to the AT&T 3B series, the Pyramid
symmetric multiprocessor and the IBM XT. The XT version sold for $200 while the versions
for monster-sized machines sold for tens of thousands of dollars. When I asked why, the
response I got was essentially that companies which can afford these monster machines
can also afford monstrous software and licensing fees. Still no fair, I thought, especially
since the features on all versions were the same. But I was green and scooped up into this
very good job six months before I graduated, so I did not protest. I was happy to have a
company want to hire and train me, as well as allowing me to finish my studies
simultaneously.

There simply were no other options in 1989. People paid what companies wanted for
software, even down to the compiler and it's supplemental components. The hobbyist in this
field was either rich, or moonlighting on university equipment to design and develop the
software of their dreams (often with great difficulty). Cross-platform testing was nearly
impossible. Lab time had to be negotiated. It was not fun, to say the least.

In the early 90's, I began to see some small embedded-systems companies play with
software from the Free Software Foundation. The “gas” (GNU Assembler) was often tweaked
to work with proprietary hardware. The GNU C compiler (gcc) was maintained privately by a
tiny group, as well as professionally by companies charging $7000 a year for support. The
professional bug fixes were not shared with the public and were not rolled back into the free
code base, thus defeating the purpose of the free GNU tools in the first place. We were far
from a solution, but knew we would get there eventually.

As hardware dropped in price, more enthusiasts and hobbyists sprung forth, and more
freeware was developed. Now moonlighting could be done in the comfort of one's own
basement, on a better PC, or even on a $700 Motorola ethernet-ready prototype board. The
quality got progressively better, and the projects bigger, to the point where we are today.
Free/Open Source Software, or F/OSS, dominates the application development world (does
it?) and has infiltrated, but not yet consumed, the embedded systems world. In both cases,
software design and development is easier, cheaper and takes less time to ramp up. We
have a plethora of tools to draw upon and start with, so that project time and cost is
incredibly less than it was 15, 10, or even 5 years ago. F/OSS has exploded all over the
world, enabling everyone with a PC and an idea to explore and create.

I saw this evolution and helped push it along wherever I could. I helped embedded systems
companies hack the GNU assembler and use other GNU tools to automate building and
testing. I helped set up SAMBA servers for companies, showing them how Linux provides
affordable and reliable file servers (and authentication services?) for Windows clients. I
taught people how to use GNU make, wrote Perl wrappers, web interfaces and automation
tools for various companies over many years.

It was great fun, but lacking one aspect: women. I was often the only female for miles in
many of these environments. I didn't mind; I learned how to handle the bad, enjoy the good
and focus on my ultimate goals of learning and getting the work done. My hobbyist
tendencies also flourished as I could afford to buy better hardware, run free software on it
and have a few side projects at any moment in time. It was and still is great fun for me.

The Python Papers, Volume 2, Issue 4 7

Today, from where I stand as an experienced software developer, I survey the current
landscape and see a similar picture to that of ten years ago. Only this time it strikes me as
sad. Ten years ago, I considered it more to be happenstance, but that excuse is no longer
valid. There really should be more female F/OSS enthusiasts, hobbyists, tinkerers and
hackers. I have heard many women echo my concerns, and many more ask where they can
find such projects, so that they may become those enthusiasts, hobbyists, tinkerers and
hackers.

This inspired me to start something called GrrlCamp. It is an Open Source project which will
be written mostly in Python, my favorite language to date. The intuitive nature of Python
syntax, plus it's diversity, robustness and overall speed makes it the perfect choice for
every project I've done since 2001. Python is ideal for GrrlCamp also because it is fairly
easy to teach online. Since I run my own publicly accessible servers from my basement,host
commercial software from these servers and have taught online before, I figured it was time
to dedicate one server (and much of my time and energy) into starting this project.

This project is unique in several ways. It is entirely voluntary, even to the point of turning
down offers for corporate sponsorship to ensure that it is guided only by volunteers and
contributors. It is only for women, but it does not matter how novice or experienced they
are. The purpose of the project is for training as well as fun, so a few GrrlCamp members
offer online classes to members for free. It is entirely hosted from my home on my own
server and all participants take part in everything, including system administration. I started
by opening up services on my server, advertising for GrrlCamp participants on the net, and
preparing and organizing online group material.

I was fortunate to have a volunteer come forward and offer her outstanding organizational
skills to our group. This helps greatly. I have quickly learned that having a “kick-ass” group
manger on volunteer projects of this size is as essential as a right arm.

Within several weeks, I had a total of 31 participants from all over the world and in so many
time zones that we need to hold weekly repeat chat sessions ten hours after our first ones,
simply to ensure that we reach out to everyone and everyone can reach back. I started by
passing out system admin assignments and the work began.

Everything from the definition of the groups' operating rules and responsibilities to the build
and installation of all of the necessary Open Source packages is done by the group.
GrrlCamp has a mostly flat management structure with the exception of one small “bump”,
being the “kick-ass” group manager's absolute veto power over anything absurd.
Everything is decided by consensus and discussion. Needless to say, this is verbose and
time consuming, but so is any volunteer project where people contribute great time, energy
and effort.

We are currently at the end of the system admin and group principle definition phases,
finishing up the bash shell training and beginning OO design and development basic
training, as well as Python basic training. We now also begin the design phase of the project
source code and the content evaluation phase of how we document the process as well as
the project. Our plan is to continue online until May 2008, when we meet in person in New
York City for a week, wrap up the project and release a Beta version to the public under a
freeware license.

My hopes with GrrlCamp are multifaceted. Firstly I want to help a group of women learn and
experience Open Source development from the ground up, just as it is done by most
startups. This is an experience many women in IT want, but have not yet had for various
reasons. Luckily it is an experience I have enjoyed twenty times or more. I design, develop
and administer projects for startups from scratch, all the way to production, which has, in
hindsight, made me wonder why I did not start GrrlCamp sooner

With GrrlCamp, I also have a bigger goal of documenting the process as well as the project,
to try and preserve the learning experience and simplify it for future groups. The system
admin tasks, the discussions on participant principles, the design and development process
as well as the online classes, the code and the project, are being categorized, summarized

The Python Papers, Volume 2, Issue 4 8

and “wiki-fied.” This is only possible by having 31 people and an outstanding project
manager, and it is so far very successful.

Within GrrlCamp, all information is shared, all thoughts are shared and all questions are
aired. General consensus provides the answers and direction. For this reason it is much
more than just another Open Source development project. It is an evolving social
experiment, a project becoming more and more cohesive and substantial by the day. It has
only been three weeks since GrrlCamp started, and we have come a long way.

As time progresses I'll talk more about the tools and the technical aspects of the project. For
now I'll leave off by saying that we'll be using CherryPy and SqlAlchemy, two of my favorite
development tools, on the back end portion of this project. More information about
GrrlCamp will follow in subsequent issues of The Python Papers.

The Python Papers, Volume 2, Issue 4 9

News from the Python Software Foundation
Stephan Deibel, Chairman of the Board, Python Software Foundation

“The mission of the Python Software Foundation is to promote, protect, and advance the
Python programming language, and to support and facilitate the growth of the international
community of Python programmers.”

The Python Software Foundation (PSF) is the non-profit legal entity that holds and protects
the intellectual property rights behind Python, keeping it free and open for all to use. The
PSF also contributes to the Python community by underwriting or sponsoring conferences,
funding grants and special projects, and leading volunteer efforts.

Everyone that programs with Python should know at least a little about the PSF, especially
how the Python license and trademarks work. While this may seem boring to many
programmers, there is much that an aware Python users base can do to help protect
Python, and keep the community behind Python vital and productive.

Organization

The PSF was formed in 2001 as a non-profit corporation in the state of Delaware, USA.
Although it was formed in the US, the PSF's mission is world-wide, extending to wherever
there are Python programmers. Its membership is international, including individuals that
have played a significant role in the Python community and companies that sponsor the PSF
because they have an investment in Python. Both individual and sponsor members have
voting rights in the organization and thus are selected based on their ability to take part in
the PSF's stewardship role. It is the existing members that vote to accept new individual and
sponsor members to the organization.

The officers and board of directors of the PSF take care of most of the day-to-day business
of running the organization. The board of directors is voted in by the members and the
officers are appointed by the board. Some of the officers are paid a small salary since their
work requires constant availability and many hundreds of hours of effort per year. The other
officers and directors are unpaid volunteers. Currently, we have officers and board
members in the US, Canada and Germany.

The board of directors meets monthly, via IRC, and the PSF members meet once a year in
person at the North American PyCon conference. Members that cannot be present in person
at the annual meeting can vote by ballot submitted ahead of time or by proxy (assigning
their vote to someone they trust).

More information, including the membership roster and public records, is available at
http://python.org/psf

Financial Overview

The PSF is funded from a variety of sources. For example, in 2006 a total of $168K in
revenues came from: Individual donors (13%), PSF sponsor fees (17%), PyCon registration
and PyCon sponsor fees (51%), participation in the Google Summer of Code program (14%),
and interest on investments and other minor sources (5%).

In 2006 the PSF spent $158K total, for: PyCon 2006 related expenses (67%), funded grants
(13%), the advocacy special project (10%), payroll for officers (5%), and other expenses
such as bank charges, legal fees, and insurance (5%).

The PSF's assets currently stand at about $310K. A healthy balance enables the foundation
to take on the financial risk of underwriting PyCon each year, and provides a reserve for any
unexpected expenses, legal or otherwise.

The Python Papers, Volume 2, Issue 4 10

The PSF has obtained the status of 501(c)3 non-profit, which makes contributions from
individuals deductible from US federal taxes. The PSF is not yet officially registered as a
non-profit in other countries. However, in many cases, donations and sponsor fees paid by a
business are also pre-tax, but this depends on local rules.

Licensing

Python is licensed under a "stack" of open source licenses, which represent its history as an
open source project under the sponsorship of a number of different organizations. The
topmost license on this stack is the PSF License
(http://opensource.org/licenses/PythonSoftFoundation.php). Everything added to Python
since version 2.0.1 is covered by the PSF License, while some older portions of the code are
covered by the older licenses lower down on the stack.

For most users, the details of the license stack are irrelevant. All of the licenses grant
permission to use, modify, and redistribute the code in an non-restrictive way. However, it is
a good idea to have a basic understanding of how the licensing works, how it relates to
copyright ownership, and what factors make an open source release legally valid.

In fact, the PSF does not directly own the copyright to any of the Python source code. The
copyrights are retained by the organizations and individuals that contributed the code. The
PSF obtains its rights through licensing. An important concern here is that the licensing was
made by those that had a legal right to do so, in other words by the original authors or
copyright holders of the code.

The legal history of the code in Python is thus defined in two ways:

(1) In the earlier days of Python, employee contracts and related law ensured that the
organizations that released Python under the various licenses had the rights to the code
that was added in each release. The open source licenses used by those organizations
granted all the necessary rights to the world in general, which of course includes the PSF.
The only significant right the PSF does not have to this code is to re-license it. This is the
reason for the continued existence of the older licenses in the license stack. Since some of
the organizations involved no longer exist, it is unlikely that the PSF could obtain relicensing
rights in the future. Thus, the older licenses cannot be removed from the license stack.

(2) For newer contributions, including all those since the PSF License was introduced, the
PSF obtains the necessary rights to the code first from the author through a contribution
agreement. The author licenses the code to the PSF under one of several specially selected
open source licenses and simultaneously signs an agreement that gives the PSF the right to
relicense the code without restriction. The code is then re-licensed under the PSF License.

The initial licenses that accompany the contribution currently can be either the Academic
Free License version 2.1 or the Apache License version 2.0. These were selected because
they contain a patent clause and avoid unnecessary restrictions on the licensee.

The important thing to note here is that the PSF can demonstrate that Python contains only
code licensed to it by organizations and individuals that had the necessary rights to the
code in order to make that license legally valid. Python's case is further strengthened by the
existence of an intact revision control record that dates back to its very beginning, and
extensive email and other records that help to establish when and by whom the code was
developed. This body of evidence makes any legal claim against Python's open source
status difficult and very unlikely to succeed.

For more information, see the PSF License FAQ:

http://wiki.python.org/moin/PythonSoftwareFoundationLicenseFaq

The Python Papers, Volume 2, Issue 4 11

Trademarks

The PSF also holds and protects the trademarks behind the Python programming language.
This includes the "Python" name, when used in the domain of programming languages, and
also the Python logos. "Python" is a registered trademark in the US, while the logos have
not yet been registered.

There is much confusion about the nature and purpose of trademarks, and they are often
incorrectly viewed as incompatible with open source. This is simply not true. Trademarks are
another way to help keep Python free and open for all to use, and protecting the trademarks
helps to prevent confusion about the nature and purpose of Python.

For example, if an entirely different programming language were named "Python" or even
"Python Plus", it could cause considerable confusion, making life more difficult for the
developers and users of either language. Any other Pythons should be the same
programming language, within reason, even if they implement the language differently as
do IronPython and Stackless Python.

Similarly, the Python logos must refer only to the Python programming language and they
should not be modified in any way (color, font, shape, etc.) as this can cause confusion. It
dilutes the "brand" that helps to make Python distinctive and identifiable to the user (the
"consumer").

In fact, trademarks are intended primarily as a way to protect the consumer, and the
burden of keeping the trademark clear of confusion falls to the trademark owner. Because of
this, the PSF has no choice but to defend the Python related trademarks. Failing to do so
would mean that we lose rights to the marks and would be unable to prevent use of the
name for another programming language, or misleading uses such as those that obscure
the fact that Python is open source.

Because Python is free and open, our enforcement of the trademarks is indeed mostly about
avoiding confusion and not at all about holding the trademarks close as would be done with
some proprietary marks. We want the trademarks to be used as widely as possible. This
includes also the unaltered logos, which are often used to indicate suitability for Python or
implementation in Python.

One important and useful idea that applies to trademarks in general is the notion of
"nominative use" of the trademark. A trademark can always be used to name the
trademarked entity itself so long as the use does not imply some special relationship with
the trademark holder. Thus, the word "Python" can be used anywhere to refer to Python
without asking the PSF for permission, regardless of whether or not the use is commercial.

The PSF has extended the idea of nominative use also to the unaltered Python logos,
making it possible to use the logos in most contexts without any special permission. Again,
we want the trademarks to be used widely.

For details, see the PSF Trademark Policy:

http://www.python.org/psf/trademarks/

PyCon and Other Conferences

In 2003, the Python community started to run its own low-cost developer-focused Python
conference called PyCon. This conference format proved to be quite successful and the
conference has experienced substantial growth in size and offerings each year. The original
PyCon conference is held in North America. In 2007, PyCon-style conferences were added in
Italy, the UK and Brasil.

The Python Papers, Volume 2, Issue 4 12

The PSF has been closely involved with the North American PyCon since its creation. It
provides the financial backing that is necessary to plan and run the conference, and has
helped in other ways, for example by providing grants to pay need-based travel expenses
for selected attendees ($6.2K in 2007).

Any profit or loss from the conference is absorbed by the PSF. To keep the conference
affordable, the organizers attempt to break even or sustain a small loss. However, due to
the continued unexpected growth in the conferences, each of the five conferences held so
far has turned a profit. For example, PyCon 2007 drew in 593 attendees (seven short of the
venue's limit) and an unexpected six platinum sponsors, as well as sixteen other sponsors.
While the registration fee for attendees is set below the cost of running the conference, the
added sponsor fees more than made up the difference each year.

While unintended, turning a profit at PyCon has helped the PSF build a reserve fund which
now makes it possible to take on the significant financial commitment of booking ever-larger
conference venues.

More recently, PSF has started to fund some other Python conferences by sponsoring (or
donating funds to) the organizations that run the conferences. In 2007 this included
EuroPython ($5K), PyCon Italia (1.5K Euros), PyCon UK ($2.5K) and the Argentinian Python
conference ($500).

The PSF will continue to provide support for Python conferences around the world, certainly
by making donations to each event and possibly also by underwriting the major financial
commitments made by these other community-organized conferences as they grow.

For more information, see http://python.org/community/pycon/

Grants Program

In 2004, the PSF issued its first call for grant proposals, with a total budget of $40K. In
response to that call, over 60 proposals were submitted. Three of them were selected for
funding:

1) Software Carpentry (Greg Wilson, $27K) – an intensive introductory course in basic
software development practices for scientists and engineers. The proposed portion of the
work was completed in October 2006 and the course is still actively being improved and
expanded. For details, see http://www.swc.scipy.org/

2) Implementation of PySNMPv3 (Ilya Etingof, $1.5K) – an SNMP library for Python. This was
completed in October 2005. For details, see http://pysnmp.sourceforge.net/

3) Moving Jython Forward (Brian Zimmer, $10K) -- to bring Jython up to date with CPython.
Due to unexpected changes in the proposer's career, the work for this grant was only
partially completed, and only a subset of the funding ($2.3K) was paid. Even so, the Jython
project has seen progress with the release of version 2.2 in August 2007. For details, see
http://jython.org/

This initial experiment with a formal grant process, although largely successful, has not yet
been repeated because of the amount of volunteer labor that the grant review and
oversight process consumed.

The PSF board is, however, always open to receiving proposals for funded work, which will
be considered along with our other initiatives. Proposals that are likely to be successful are
those that will bootstrap a new project or sub-section of the Python community in a
relatively cost effective manner. Projects that won't be maintained after the funding ends
are unlikely to be considered.

For more information, see http://www.python.org/psf/grants/

The Python Papers, Volume 2, Issue 4 13

Special Project: python.org redesign

The PSF has funded several special projects outside of the formal grants process. One of
these was the redesign of the python.org website in 2005 and 2006. This included the
graphic design for the site and Python logo, repackaging of the site content in a uniform
format, and development of a new build system for the site.

The rationale for funding this change was that the volunteer site maintainers did not have
the time available to make these major labor-intensive changes and the community had
failed to agree on several earlier redesign attempts (both graphical design and
improvement of the technology behind the site).

Yet, a general consensus existed that the old site needed some intensive work.

This contract (valued at 4K GBP) was awarded to the proposer, Tim Parkin of Pollenation.
The graphical design and the repackaging of content (with help from volunteers during the
2006 PyCon Sprints) were both successful. The new general purpose build system, called
Pyramid, was however found to be slow, complicated, and hard to install. This made it
difficult for volunteers to be able to get started with maintaining the site. Some
improvements were made, but ultimately Pyramid was replaced with a much simpler and
faster build system that is custom-designed for python.org.

Despite these initial problems with the build software, this project was a success. The look
of the site has been improved and moving to a CSS based design and uniform content
format will make any future changes in design or toolset much easier.

To compare the new and old designs, visit http://python.org/ and http://web.archive.org/
web/20060207222027/http://www.python.org/

Looking ahead, there is still much work to be done in improving the site, adding and
keeping content up to date, and even rethinking some of the structure and presentation (for
example, to make it more accessible to new Python users, or to allow annotation). Please
consider volunteering as a site maintainer.

For more information, see http://www.python.org/dev/pydotorg/website/

Special Project: Advocacy Coordinator

Another special project undertaken by the PSF was the funding of a paid Advocacy
Coordinator for 13 months during 2006 and 2007 ($46K total). This was a proposal from Jeff
Rush, who had played a significant role in the organization and promotion of the 2006 and
2007 PyCons. The goal was to bootstrap a community of people interested in advocating
and promoting Python.

Unfortunately, this project failed in its primary goal – relatively few volunteers were found to
contribute to the advocacy effort and no sustained advocacy community appeared.

However, several important tasks were accomplished and these more than justified the
overall expense of the project:

1) Targeted promotion of PyCon 2007 led to a 50% increase in the number of attendees at
the conference, compared to 2006 (from 410 to 593 attendees). The PSF earned an
unexpected profit of $32.5K from PyCon 2007.

2) Intensive effort on the Forrester Wave report on dynamic languages led Forrester to
conclude that among all the dynamic languages "Python represents the best combination of
features, breadth of applicability, and strong community." These reports are used by
application development and management professionals to make technology choices. For
details see: http://www.forrester.com/Research/Document/Excerpt/0,7211,41386,00.html

http://web.archive.org/

The Python Papers, Volume 2, Issue 4 14

3) A number of high-quality screencasts about Python were developed. These are designed
to make it easier for new users to get started with Python. They can be seen, along with
videos contributed by other authors, at http://www.showmedo.com/videos/python

The lesson learned from this experiment is that, although many individual advocates for
Python exist, the Python community as a whole is not interested or able to engage in
organized advocacy. On the other hand, funding specific projects aimed at promoting
Python is a fruitful way for the PSF to approach advocacy in the future and the PSF board is
always open to new proposals in this area.

For more information, see http://wiki.python.org/moin/PythonAdvocacyCoordinator

Become a Volunteer

The exact total size of the Python user base is unknown, but even the known user base
utterly dwarfs the number of people that actively contribute to Python itself, or to the
community that surrounds it.

If you are not already working on Python or its website or contributing in some other way,
please consider getting involved! Python is open source, so it is – of course – the
community that makes it all work.

Helping out is fun, and it can be great for your career as well. Some of the many options to
consider are:

1. Work on python.org: http://www.python.org/dev/pydotorg/website/

2. Work on updating and expanding the documentation for Python:
http://www.python.org/doc/

3. Work on other infrastructure, such as the software behind http://us.pycon.org/ or the
wiki at http://wiki.python.org/ or by helping with system administration

4. Become an advocate: Blog, write, talk, or screencast about Python, and show your
friends what it can do. Casual peer recommendation is the number one most trusted
source of information used in making technology choices.

5. Promote Python to your boss and encourage its use in internal projects. A
company's use of Python in software testing, build scripting, and intranet
applications is often followed by use of Python in its core products.

6. Support your local Python user group, or start a new group in your area:
http://wiki.python.org/moin/LocalUserGroups

7. Attend or help out with your regional Python conference:
http://www.python.org/community/workshops/

8. Work on Python or its standard libraries: http://www.python.org/dev/

Notice that software development is just one part of the overall picture, and there is much
that you can do without becoming an expert in programming language design.

Regardless of how you get involved, the best way to get started is to find some useful task
or project where you can contribute. Take the initiative to work on it (no need to ask for
permission or instructions), announce it, and you'll soon find yourself engaged and having
fun as part of the world-wide Python community.

Make a Donation

Even if you cannot get involved as a volunteer, please consider donating to the PSF and
Python financially in one or more of the following ways:

The Python Papers, Volume 2, Issue 4 15

1. Donate to the PSF to help fund our activities: http://www.python.org/psf/donations/

2. Ask your company to sponsor PyCon. This is a great way to find employees that
know Python, or to gain exposure for your company:
http://us.pycon.org/2008/sponsors/

3. If your company uses Python extensively, becoming a sponsor of the PSF helps
protect that investment: http://www.python.org/psf/sponsorship/

More information on the PSF, including the membership roster and public records, is
available at http://python.org/psf

The author of this article welcomes questions and suggestions and can be contacted at
psf@python.org

The Python Papers, Volume 2, Issue 4 16

An Interview with Michael Foord on IronPython

by Michael Foord

Blog: http://www.voidspace.org.uk/python/weblog/index.shtml
Book: http://www.manning.com/foord
Job: Senior Software Engineer and Community Champion
Employer: Resolver Systems http://www.resolversystems.com/
Publisher: http://www.manning.com/affiliate/idevaffiliate.php?
id=282_94

The Python Papers> How did you first get involved with software development?

I've always loved programming. I started with Basic on the BBC microcomputer back when
32k was a lot of memory. I moved onto assembly language on the Amiga (a truly beautiful
computer and operating system), and then took a break from programming for ten years.

I got involved with Python completely by accident about five years ago and immediately fell
in love with the elegance and expressiveness of the language. I've been writing articles and
involved in open source projects ever since.

TPP> How did you get involved with IronPython?

About two years ago I started working for Resolver Systems, a new startup in London. They
were (well... are) developing a new spreadsheet application aimed at the financial services
market.

Since this market is very conservative technologically, Resolver had to be built on an
already accepted platform. This basically meant Java or .NET and for a desktop
application .NET was the logical choice. The two developers assumed they would be working
with C#, the default .NET language. Having an embedded interpreted language is a core
part of Resolver and so they started to evaluate .NET scripting language engines. At the
time IronPython was at version 0.7, but Giles and William were very impressed with it -
particularly the level of integration with the .NET framework. They decided to see how far
they could get writing Resolver in IronPython. I was the fourth Resolver developer and the
first with any experience of Python!

Two years later, Resolver consists of 30 000 lines of IronPython code, plus another 100 000
lines of Python in the test framework.

Resolver is a great application for anyone who does data processing with Python or
spreadsheets. Our public beta is now available and you can download it from our website.

TPP> IronPython is just for Windows users, right?

IronPython runs on both .NET and Mono. Mono is cross platform, running on various
operating systems like Linux Mac OS X, Solaris, NetBSD, FreeBSD, OpenBSD and even
Windows.

There is a community distribution of IronPython created by Seo Sanghyeon and called FePy
(http://fepy.sourceforge.net). This includes patches for Mono compatibility and comes with
the full Python standard library.

The Mono VM is an impressive platform, and there is a surprisingly healthy community of
people who use IronPython on non-Windows platforms.

http://fepy.sourceforge.net/
http://www.manning.com/foord
http://www.manning.com/foord
http://www.manning.com/foord
http://www.resolversystems.com/
http://www.manning.com/foord
http://www.voidspace.org.uk/python/weblog/index.shtml

The Python Papers, Volume 2, Issue 4 17

Advantages of IronPython over CPython, whichever VM you are running on, include:

• Performance. Some aspects of IronPython run much faster than CPython, particularly
because of the just-in-time compiler.

• Access to the .NET libraries, including third party extensions. For Windows
development the Windows Forms user interface library is better than anything I have
seen available for Cpython. [There are gtk and other interface libraries available for
linux and also Windows - Ed]

• No global interpreter lock. Multi-threaded programs can take advantage of multi-core
processors, which they can't on Cpython.

• Unicode strings. This is coming in Python 3, but really does make working with text
more pleasant.

• .NET may be an easier corporate sell than Cpython.

• IronPython is dramatically easier to extend with C# than CPython is with C.

• The .NET platform supports a wide range of 'native' languages (C#, VB.NET, and
functional languages like F# and Nemerle just to name a few). Inter-operation
between these languages is basically straightforward. The new DLR (Dynamic
Language Runtime) extends this range of languages to include IronRuby, managed
Javascript, Smalltalk and a port of Lua called Nua.

• Through Silverlight the browser can be scripted with IronPython.

TPP> You work for Resolver Systems, who are also featured in this issue. Could you
describe how you have found the experience of software development using
IronPython? How does it compare with other languages you have used
professionally?

My development experience is almost entirely with Python (plus a smattering of Javascript
which is hard to avoid these days). The nice thing about developing with IronPython is that
it is just Python, but you have this whole range of new libraries to use.

Working with IronPython was my first experience of using Windows APIs. I really didn't know
what to expect and feared the worst! To my surprise the majority of the .NET APIs are very
pleasant. A few are a bit over-engineered and make you jump through hoops, but in general
they are very good to use - almost Pythonic (except for all the camel case method names
and static methods instead of functions).

Since working at Resolver I have also regularly used C#. It is a fairly nice static typed
language and is sometimes described as 'Java done right'. I have actually read a lot more
C# than I have written. The .NET documentation, and most of the online examples, all use
C# (which is why I created the IronPython Cookbook). It is very easy to read and not much
harder to write, though I still prefer Python. Although they are very different languages, the
core object models are similar which helps.

TPP> You have been writing a book called "IronPython in Action" for Manning
Publications Co. How did you come to work with them?

I first got in touch with Manning by reviewing a couple of books from their "In Action" series
on my blog. I've always enjoyed writing, and after programming at Resolver for a few
months I thought IronPython would be the good subject for a book. I approached them, and
over six months or so we hammered out a proposal for "IronPython in Action". They've been
very good to work with and I would recommend them to any aspiring technical writers.

TPP> We have been lucky enough to be able to include a sample section in this

http://VB.NET/

The Python Papers, Volume 2, Issue 4 18

issue. Perhaps you'd just like to introduce it...

This is an excerpt from the first chapter. It is an introduction to IronPython for Python
programmers and explains why Python programmers should be interested in IronPython.

TPP> A lot of our readers will use Linux systems. IronPython can run through Mono.
Will your book have something that Linux users will be able to make use of?

Most of the book will be relevant to Mono. There is very little that is Windows specific in the
book, except perhaps for one chapter!

One of the outcomes of the recent Mono summit was the Mono team showing off the native
drivers for OS X, accessible through both Windows Forms and GTK#. This means that
IronPython is a viable choice for writing genuinely cross platform applications. Windows
Forms gets quite a lot of coverage in the early chapters of the book as it is used for the
example application. Most of the rest of the examples, including embedding and extending
IronPython, should 'just work' on Mono.

Seo Sanghyeon is helping review the book, so if there is anything that is different on Mono,
or doesn't work, then hopefully he will point it out for me.

TPP> What are the major communities for IronPython support and cooperation?

Central to the community are obviously the IronPython and FePy websites. On the
IronPython site you can report bugs and vote on ones that are important to you:

http://www.codeplex.com/IronPython
http://fepy.sourceforge.net

Most of the support happens on the IronPython mailing list. There is a very friendly
community there with a good combination of those using IronPython on .NET and Mono. It's
the best place to go for answers to specific questions:

http://lists.ironpython.com/listinfo.cgi/users-ironpython.com

Other useful places for information and articles are:

The IronPython Cookbook - http://www.ironpython.info/
A wiki with examples of using the .NET framework with IronPython, including
embedding IronPython.

IronPython-Urls - http://ironpython-urls.blogspot.com/
A blog that covers the IronPython world linking to news and articles.

My pages on IronPython and Silverlight -
http://www.voidspace.org.uk/ironpython/index.shtml

TPP> When is your book due to be published?

I hope to finish writing the book early in the new year. It will be available in hardcopy two or
three months after that.

In the meantime the first six chapters are already available via the Manning Early Access
Program. Another four chapters will be added very soon. I'm particularly proud of the
chapters on testing with IronPython, metaprogramming with IronPython and the integration
with the .NET framework. There will also be a chapter on ASP.NET with IronPython written by
my colleague Christian Muirhead. He has several years development experience writing
web applications with both Python and .NET and is also writing the chapter on databases
and web services.

http://ASP.NET/
http://www.voidspace.org.uk/ironpython/index.shtml
http://ironpython-urls.blogspot.com/
http://www.ironpython.info/
http://lists.ironpython.com/listinfo.cgi/users-ironpython.com
http://fepy.sourceforge.net/
http://www.codeplex.com/IronPython

The Python Papers, Volume 2, Issue 4 19

Book Exerpt: “1.1.3 IronPython for Python Programmers”

We were lucky enough to gain permission to reproduce a sample section of Michael's
upcoming book.

As I mentioned before, IronPython is a full implementation of Python 2.4. If you've already
programmed with Python there is nothing to stop you experimenting with IronPython
straight away.

The important question is; why would a Python programmer be interested in using
IronPython? The answer is basically twofold, the platform and the platform. Let me try and
make a bit more sense. First of all I mean the underlying platform that IronPython runs on;
the CLR. Secondly, along with the runtime comes the whole .NET framework, a huge library
of classes a bit like the Python standard library.

There are several reasons why the Common Language Runtime is an interesting platform.
The CLR has had an enormous amount of work to make it fast and efficient. Multithreaded
programs can take full advantage of multiple processors, something that CPython programs
can't do because of a tricky creature called the 'GIL'[1]. Because of the close integration of
IronPython with the CLR, extending IronPython through C# code is significantly easier than
extending CPython with C. There is no C API to contend with, you can pass objects back and
forth across the boundary without hassles and with no reference counting[2] to worry
about. On top of all this, .NET has a concept called 'AppDomains'. These allow you to run
code with reduced privileges, like preventing it from accessing the file system, which is a
feature that has long been missing from CPython.

IronPython uses .NET classes natively and seamlessly, and there are a lot of them. Two of
the gems in the collection are Windows Forms and the Windows Presentation Foundation,
which are excellent libraries for building attractive and native looking user interfaces. As a
Python programmer, you may be surprised by how straightforward the programmers
interface to these libraries feels. Whatever programming task you are approaching, it is
likely that there is some .NET assembly available to tackle it. This includes third party
libraries for sophisticated GUI components, like data grids, where there is nothing
comparable available for CPython. Table 1.1 shows a small selection of the libraries
available to you in the .NET framework.

Table 1.1 Common .NET Assemblies and Namespaces

Assembly Name Purpose

System Contains the base .NET types,
exceptions, garbage collection classes
and much more.

System.Data Classes for working with databases,
both high and low level.

System.Drawing Provides access to the GDI+ graphics
system.

System.Management Provides access to Windows
management information and events

http://mail.google.com/mail/?ui=2&view=bsp&ver=ymdfwq781tpu#1154dfa1871b221c__ftn2
http://mail.google.com/mail/?ui=2&view=bsp&ver=ymdfwq781tpu#1154dfa1871b221c__ftn1

The Python Papers, Volume 2, Issue 4 20

(WMI), useful for system administration
tasks.

System.Environment Allows you to access and manipulate
the current environment, like command
line arguments and environment
variables.

System.Diagnostics Interact with processes.

System.XML For processing XML, including SOAP,
XSL/T and more.

System.Web The ASP.NET web development
framework.

System.IO Contains classes for working with paths,
files and directories. Includes classes to
read and write to filesystems or data-
streams, synchronously or
asynchronously.

Microsoft.Win32 Classes that wrap Win32 common
dialogs and components including the
registry.

System.Threading Classes needed for multithreaded
application development.

System.Text Classes for working with strings (like
StringBuilder) and the Encoding classes
which can convert text to and from
bytes.

System.Windows.Forms Provides a rich user interface for
applications.

System.Windows The base namespace for WPF, the new
GUI framework that is part of .NET 3.0.

System.ServiceModel Contains classes, enumerations, and
interfaces to build Windows
Communication Foundation (WCF)
service and client applications.

As we go through the book we'll use several of the common .NET assemblies, including
some of those new to the .NET 3.0 release. More importantly we'll learn how to understand
the MSDN documentation so that you are equipped to use any assembly from IronPython.

http://ASP.NET/

The Python Papers, Volume 2, Issue 4 21

We will also do some client-side web programming with Silverlight, scripting the browser
with Python. This is something that has not been possible before IronPython and Silverlight.

Most of the Python standard library works with IronPython; ensuring maximum compatibility
is something the Microsoft team has put a lot of work into. Do beware though. Not all of the
standard library works; C extensions don't work because IronPython isn't written in C. n
some cases, alternative wrappers may be available[3], but parts of the standard library and
some common third party extensions don't work yet. If you are willing to swap out
components with .NET equivalents, or do some detective work to uncover the problems, it is
usually possible to port existing projects.

Where IronPython really shines is with new projects, particularly those that can leverage the
power of the .NET platform. In order to take full advantage of IronPython there are a few
particular features you will need to know about. These include things that past experience
with Python alone won't have prepared you for. Before we turn to actually using IronPython,
let’s first look at how it fits in the world of the .NET framework.

[1] The ‘Global Interpreter Lock’, which makes some aspects of programming with Python
easier but has this significant drawback.

[2] CPython uses reference counting for garbage collection, which extension programmers
have to take account of.

[3] Several of these are provided by IPCE – the IronPython Community Edition. We’ll look at
this in a later chapter.

http://mail.google.com/mail/?ui=2&view=bsp&ver=ymdfwq781tpu#1154dfa1871b221c__ftnref3
http://mail.google.com/mail/?ui=2&view=bsp&ver=ymdfwq781tpu#1154dfa1871b221c__ftnref2
http://mail.google.com/mail/?ui=2&view=bsp&ver=ymdfwq781tpu#1154dfa1871b221c__ftnref1
http://mail.google.com/mail/?ui=2&view=bsp&ver=ymdfwq781tpu#1154dfa1871b221c__ftn3

The Python Papers, Volume 2, Issue 4 22

Screen Scraping Web Pages

by Corey Goldberg

This tutorial shows how to programmatically retrieve a stock quote from Google
Finance. It uses Python's high level Web API and screen scraping with regular
expressions.

First, lets look at the page we want to get our content from. To get finance data for
the ticker "IBM", we use this URL:

http://finance.google.com/finance?q=IBM

If you enter this URL in your browser, you can see the page we are going to scrape
from.

To retrieve the content of the page, we can use Python's urllib module:

import urllib
content = urllib.urlopen("http://finance.google.com/finance?
q=IBM").read()

Now that we have the content stored, we want to scrape some data from it. If we
look inside the content (this is the same as if you used "View Source" in your
browser for this page), we see a line that contains the price quote:

116.26

To extract the price quote, we use a regular expression (regex) with matching
groups. Regular expressions are a powerful tool for doing pattern matching and
text extraction/parsing. Regexes may seem a little arcane (unless you are a Perl
hacker), but they allow you to search and manipulate text using a concise syntax.

In our regex, we mark a ”matching group”. This is the piece of the regex enclosed
in parenthesis as a section to extract data. In this case, we use (.*?) to define the
matching group. The group contains metacharacters that match a range of literal
characters. This is the pattern that matches our stock quote value:

class="pr".*?>(.*?)<

Once we do the search, we can get the text we extracted with the matching group.
Since we only used one group, our text will be contained in m.group(1):

import re
m = re.search('class="pr".*?>(.*?)<', content)
if m:
 quote = m.group(1)

Regular expressions are compiled into RegexObject instances. If we are going to
use a regex frequently, we can optimize it by compiling it once and then using our
compiled version:

The Python Papers, Volume 2, Issue 4 23

regex = re.compile('class="pr".*?>(.*?)<')
m = regex.search(content)

We can put all of this into a function which accepts a ticker symbol and returns a
price quote:

import urllib
import re

def get_quote(symbol):
 base_url = 'http://finance.google.com/finance?q='
 content = urllib.urlopen(base_url + symbol).read()
 m = re.search('class="pr".*?>(.*?)<', content)
 if m:
 quote = m.group(1)
 else:
 quote = 'no quote available for: ' + symbol
 return quote

About the author:
Corey Goldberg is a software engineer from Boston with over 10 years experience as a
developer and tester. He has contributed to many open source projects and developed and
maintained several on his own. Corey has a Master's Degree in Computer Information
Systems from Boston University. For questions and more information, visit his web site and
blog at: www.goldb.org

The Python Papers, Volume 2, Issue 4 24

Interview with Resolver Systems
The Python Papers interviews Giles Thomas

The Python Papers> How old is your organisation? How was it begun?

Giles> Resolver Systems was started right at the very end of 2005. The three of us who
founded it all had a lot of experience with how spreadsheets were used in financial
companies, and knew how unfavourably the spreadsheet developer's experience compared

to the software developer's. We felt
there had to be a better way, and we
came up with the idea that is now our
product. We developed a business
plan around it, presented it to a
number of investors, and received
the "angel" funding we needed to
make it a reality.

TPP> Resolver produces a
spreadsheet application. Could
you tell us a little about what it
does and who your typical clients
are?

Everyone knows that a spreadsheet
is just another way of writing a
computer program; it is less
immediately obvious that this makes
spreadsheet programming the most
successful tool for software
development in the world. And it
works really well for simple what-if
analyses, or even for complex
calculations so long as they are one-
off things that can be thrown away
after they're used.

The problem is that everything goes

horribly wrong when the simple applications become complex, or the disposable ones
become long-lived. We believe that things get so messy when this happens because a
traditional spreadsheet consists of two loosely-coupled programs: an implicit one written as
formulae in a grid, and an explicit one written in a programming language as macros. The
connection between the two is so narrow and so ill-defined that it is almost impossible to
write a maintainable program.

Our application, Resolver One, is designed to merge these programs together, back into
one, to make the overall application more manageable. It does this:

● By making the program that is implicit in the grid become an explicit IronPython
program, and by integrating it tightly with the user's own macro-like code (which is, of
course, also IronPython). This clarifies the way explicit and implicit code interact, and
also makes it easier for the business user to hand over a useable unit of functionality to
their IT department so that it can be used elsewhere.

Photo 1: Giles Thomas (left) and Michael Foord
(right)

The Python Papers, Volume 2, Issue 4 25

● By allowing the user
to put arbitrary
IronPython
expressions and
objects in the grid.
This makes
developing advanced
but well-structured
spreadsheets easier,
and lets people
integrate the Python
and .NET components
they and their
colleagues develop
easily into their
calculations.

● Our typical clients are
in investment banks
and hedge funds, in
particular the
"quants" -
quantitative traders
and analysts who
spend much of their time modeling incredibly complex derivatives in spreadsheets.
Very technical people who need a decent graphical way to write their programs. We've
also had a lot of interest from people in biotechnology, which we weren't expecting;
we're working to see how to best help people in that area.

TPP> What major competitors exist to Resolver? What makes Resolver unique?

Photo 3: A typical nearby street scene

Photo 2: Clerkenwell, St John's gate
(http://en.wikipedia.org/wiki/St_John's_Gate just
down the road from the office)

The Python Papers, Volume 2, Issue 4 26

Well, we have a spreadsheet application, so obviously the main competitor is Microsoft
Excel! I think our unique selling point is what I described before; we make it possible for
people to write simple, maintainable spreadsheets for complex applications. In addition,
because Resolver One can produce IronPython code representing the contents of your
spreadsheet, you can use it to produce backends for other systems. For example, we were
very easily able to write a simple Web server - the forerunner of the Resolver Web Server
that we're marketing today - that could serve up spreadsheets as HTML pages with input
fields in a form. To put that another way, in a week or two we'd managed to produce
something that did important parts of what Microsoft's SharePoint server - a huge enterprise
monster - can do with its Excel Services module. It would have been equally easy to write a
back-end for, say, an application server.

So, instead of having business people (who are happy with spreadsheets but scared of
code) try to explain calculations to developers and go through multiple design iterations
before getting a system that works as required, developers can work on putting together
the infrastructure that surrounds the calculations - the really difficult and interesting stuff
from a technical perspective - and just drop in the calculations, which are the really difficult
and interesting stuff from a business perspective.

I think this is a much better division of labour.

TPP> For how long has your organisation been using Python? I understand
Resolver uses IronPython. Was the decision to use the .NET framework made
before or after deciding to use Python?

From the start, our primary market was obviously going to be the business desktop - this
means Windows, and the least painful way to develop a slick Windows application is
using .NET. So, when we started out back at the end of 2005, we were intending to write our
application in C# and embed the traditional CPython engine as a scripting language. But
while searching online for details of how how to embed CPython in a .NET program, we
discovered IronPython. It was still a beta, but we quickly realised that people in the finance
world would be very interested in being able to seamlessly use the .NET libraries being build
by their IT teams in their Resolver scripts, and so we decided to embed it into our app
instead of Cpython.

Then came the defining moment: because we were only just starting out, and had no
existing codebase to worry about, we thought - let's try writing our application itself in
IronPython instead of C#, and see how far we get. After all, if all we had was a few hundred
lines of code, we'd be able to translate it over to C# pretty quickly if/when things didn't
work out.

That was back in 2005, and we've not needed to do that rewrite yet. Our entire application,
which is almost 30,000 lines of production code and over 100,000 lines of functional and
unit tests, contains maybe a few hundred lines of C#. The rest is IronPython.

It's a choice we've never regretted. The application is fast, responsive, and fills the needs of
our users precisely. Our concerns about performance have proven unnecessary - problems
we've had in that area have almost invariably come from our own choice of algorithms
rather than anything to do with the language. And IronPython is so nice to code in that we
can respond rapidly to changing client needs and make updates to our software relatively
painlessly.

TPP> How does development happen in your organisation? Is the development
group large, or small? Is it a "Python shop", or do you employ a mixture of
expertise? Do you subscribe to a particular development approach (e.g.
Waterfall, Agile/XP?)

The Python Papers, Volume 2, Issue 4 27

We are an 8.5-person XP
shop - the half-person being
me, as I'm often out talking
to clients. Many of the people
in the company, myself
included, had no Python
knowledge before they
started; we believe that a
sufficiently-good developer
can learn Python on the job
quickly, and while we're
delighted we've managed to
hire some Python gurus, and
couldn't survive without
them, we're also delighted to
be using a language that's
clean and simple enough
that we don't need every
new hire to already be expert
in every detail.

TPP> How did Python
fit with the software
architecture chosen?

Python - like, I suspect, all dynamic languages - is a perfect fit for the test-first development
required by XP. There are two main reasons:

• Duck-typing and other dynamic language features make writing tests much easier
than statically-typed languages.

• When you're writing unit tests for a program written in a statically-typed language,
there's a big overlap between the things you test with your unit tests and the things
that are checked by the static typing. To put it another way, when you write heavily-
tested code in a statically-typed language, you're duplicating effort. With a dynamic
language, you don't have that cost; the tests test what needs to be tested. A
corollary is that unit-testing is vitally important for programs written in dynamic
languages - but I'd argue that it's vital for any non-trivial program anyway,
regardless of the language used.

TPP> Were developers able to work quickly using Python? Has Python been a
good choice in terms of the performance of your coders?

Definitely. Moving from Java to Python has felt to me like my earlier move from C++ to Java
- there's this sudden feeling of freedom from all this fussy detail that was holding me back.

But equally important for us, I think, has been the filtering effect. The words "all of our
development is done in Python" is an excellent way of maximising the number of good
programmers that apply, and minimising the... less good programmers. I think Paul Graham
commented on this a long time ago.

Good programmers have either learned Python in their spare time, or aren't afraid of
learning it on the job. Bad programmers, people who've read "Java for dummies" and then
slouched into a career writing enterprise systems for customers who know no better, are
unlikely to have learned a weird, techie language with greek letters in its list of reserved
words.

Photo 4: Resolver office interior: Michael Foord
and Menno Smits pairprogramming. To the right you
can see part of our build farm, with a monitor
showing one of our 3, 600 test cases running.

The Python Papers, Volume 2, Issue 4 28

TPP>Have there been any performance difficulties using Python?

Not so far! That's not to say that we've not encountered performance problems, but the
ones we've seen have been largely due to our own choices of algorithms or to .NET's
architecture.

TPP> Have you had to employ any other technologies to work around problems
that could not be solved in Python?

Yes, we've used C# in a few places in our product and in our testing framework; this has
been exclusively in places where we've wanted to call down to the underlying Windows
APIs, below the .NET layer. In order to do that, you have to use a service called P/Invoke,
which relies on .NET attributes; IronPython, sadly, does not support these right now.

TPP> Have you encountered any major roadblocks and how did you get past
these?

The biggest issues have been:

• Getting a decent functional
testing framework operating. The
unit-testing module that comes
as part of the Python standard
library is great, and works fine
with IronPython, but functionally-
testing .NET GUIs is harder than
we originally hoped. None of the
frameworks on the market seem
quite enough. We've spent a lot
of time getting our one just right.

• Dealing with the CPython C
extensions. These don't work
with IronPython, and while
there's a .NET equivalent for
many of them, for some there's
not. This is a general problem for
IronPython users, not just a
problem for us, so we've started
an open-source project to build
some kind of bridge between
IronPython and the C extensions.
We've got a mailing list at
< http://groups.google.com/
group/c-extensions-for-
ironpython> and we'd be
delighted if readers of the Python
Papers joined us! We're working
on getting a few basic libraries
working right now, with the aim
being to support NumPy as soon
as we can – and in the long term to see if we can support C extensions in general.

TPP> What other major projects has Resolver undertaken? Did these other
projects also use Python?

We're a one-product company right now, but I expect our future projects to use Python in a
big way.

Photo 5: A local pub. The editor does not
dare suggest this had anything to do with
major roadblocks or getting past them.

http://groups.google.com/group/c-extensions-for-ironpython
http://groups.google.com/group/c-extensions-for-ironpython
http://groups.google.com/group/c-extensions-for-ironpython
http://groups.google.com/group/c-extensions-for-ironpython
http://groups.google.com/group/c-extensions-for-ironpython
http://groups.google.com/
http://groups.google.com/group/c-extensions-for-ironpython

The Python Papers, Volume 2, Issue 4 29

TPP> If you could 'fix' one thing about Python, what would it be?

Significant whitespace!

Only kidding, I'm a big fan of stopping people from writing unreadable code. I would say my
#1 would be the ability to write multi-line anonymous functions with statements in them. I
use lambdas a lot in my coding, but they're just not quite enough... I think Ruby's blocks do
the kind of thing I'd like to see, though I can't say I like the syntax.

TPP> If readers would like to try or buy your application, how can they do this?

You can download a version to try out from our website, http://www.resolversystems.com/

TPP> Are you currently hiring?

We're not actively hiring right now, but we are likely to have some open positions in early
2008.

http://www.resolversystems.com/

Eight Tips to Start With Python
Tarek Ziade from a blog post dated September 24th 2007 on his blog
http://tarekziade.wordpress.com/

A friend of mine is starting Python. I tried to sum up some tips for him, that may be useful
to others. Don’t hesitate to comment it if you think something important is missing.

1. Get the best online documentation.

There are a few online documentation you must read:

• the official tutorial, that gives you a quite complete overview of Python;
• the standard library module index. You can download it to simplify the search

through greps. This is the documentation you get through the help command
in the prompt.

• Active State’s Python Cookbook. There are thousands of code snippets that
are created, ranked, categorized and commented by developers.

• Dive Into Python online book, that makes you discover Python features
through well thought examples.

2. Read PyCon, EuroPython and Pycon UK wrapups and slides.

They are the three main Python events, and a lot of things are happening there.
You’ll learn a lot by reading the talks slides. If you can go there, it’s even better:
sprints, bird of feathers and lighting talks are organized. To convince your boss to
send you there, you could make a talk proposal “My first steps in Python”

3. Suscribe to the right feeds.

• The mainstream is Planet Python. It gathers most of the blogs out there, so it
is the best place to start.

• Pythonware’s Daily Python URL. Human-filtered feed. It used to provide
several dozains of links per week, but it seems to have slowed down, and
provides a few links a week now. I think it’s better this way.

4. Learn and use the rising standards.

There are a few libraries that have a deep impact on the way people write and
distribute their work:

• setuptools : helpers to build and distribute your code eggs. A public repository
à la Perl’s CPAN called Cheeseshop is wired with this library so people can
distribute their code there. It’s one of the major innovation of last years in
Python world in my opinion.

• sqlalchemy : The ORM that is now used by the majority of Python frameworks.
Its flexibility is impressive. I think there is no equivalent tool in any other
language (please let me know if there is);

• Python paster . This tool allows you to create templates that can be used to
generate skeletons for your code. It is used by many web frameworks to
provide people a simple way to generate a standardized boiler-plate code
canvas when they start up something. This is done in Java for quite a long
time (you cannot do without it in Java, otherwise it would take you years to
write any program ;)), and tools like PyDev and Eclipse would provide the
canvas to do similar things. But the paster is independant from any IDE;

• reStructuredText : learn how to use it. It’s our LaTeX. Your code documentation
should use it.

I am sure they are other tools out of my domain of expertise that are
major. I am thinking of libraries in the scientific world for example.

http://docutils.sourceforge.net/rst.html
http://sqlalchemy.org/
http://pythonpaste.org/
http://en.wikipedia.org/wiki/Object-relational_mapping
http://sqlalchemy.org/
http://cheeseshop.python.org/pypi/
http://peak.telecommunity.com/DevCenter/PythonEggs
http://peak.telecommunity.com/DevCenter/setuptools
http://www.pythonware.com/daily
http://planet.python.org/
http://www.pyconuk.org/
http://europython.org/
http://us.pycon.org/2008/about
http://www.diveintopython.org/
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://docs.python.org/modindex.html
http://docs.python.org/tut/tut.html
http://tarekziade.wordpress.com/

Anyone can help me on this topic to complete this tip ?

5. Ask for help. The three places you can get some help are:
• the mailing list
• the irc channel #python on freenode.
• the tutor mailing list . Mihai Campean says: “This is a list specifically for those

new to Python and those interested in helping people learn the language, and
the atmosphere is very friendly. It’s probably a better place to start than
python-list, in my opinion”

There are some talented guys that dedicate their free time to help newcomers.

6. Try to adapt your successfull code patterns.

When I started Python, I tried to adapt what I used to do with the tool I mastered
then (Delphi). Since There should be one– and preferably only one –obvious way to
do it. (try import this in a prompt), that helped me a lot to learn and understand all
the subtles of Python on use cases I mastered. The most pleasant thing about it is
that you quickly drop all Python books and guide to work with the language, unlike
Java for example, where you need to keep many reference books on your desk.

7. Share on your experience and participate !.

A newcomer (yeah! fresh blood!) experience is a highly valuable material for the
language advocacy: the discovering state of mind sometime reveals weaknesses or
absurdities experienced users don’t see anymore. Furthermore, fresh new ideas are
often brought by people that comes from other communities. If you feel that
something is absurd, unclear or wrong, you should start a thread on the language
mailing list. If you have an idea onany kind of enhancement, maybe it worth a
Python Enhancement Proposal.

8. Watch what is being done in Python 3, PyPy and web frameworks

Python 3 is the next version of Python, PyPy is Python written in Python. Web
frameworks like Django or Zope are large Python codebases. These three sub-
communities have something in common: they form the R&D of the language.
Zope for example, has enhanced a lot setuptools and doctest through a massive
feedback. Keeping an eye on them even if you don’t use them will make you live and
understand what rises in the language.

PyPy is an amazing project. Even if you don’t understand everything (Python in
Python ? what the… ;)), seeing one of Armin Ringo talks will give you an instructive
high level view of Python. Now for Python 3, even if you cannot read and understand
all threads in the dedicated mailing list, keeping an eye of Guido’s wrapups and
thread subjects will help you to do the jump on P3k, and probably make your Python
2 code look nicer.

Posted by Tarek Ziadé
Filed in python

8 Responses to “Eight tips to start with Python”
1. Mihai Campean said:

September 24th, 2007 at 8:59 am

Thanks for the useful tips Tarek, I am also starting to learn Python and this kind of
information is just what I am looking for. However there is a subject less touched by
you in this post, and this is good IDE’s for Python. I would really appreciate some
recommendations on this subject.

2. Kalle Svensson said:
September 24th, 2007 at 9:08 am

I’d also recommend the tutor@python.org mailing list (http://www.python.org/
mailman/listinfo/tutor). This is a list specifically for those new to Python and those

http://www.python.org/
mailto:tutor@python.org
http://tarekziade.wordpress.com/2007/09/24/eight-tips-to-start-with-python/#comment-5027
http://tarekziade.wordpress.com/2007/09/24/eight-tips-to-start-with-python/#comment-5026
http://hypersynapse.blogspot.com/
http://wordpress.com/tag/python/
http://zope.org/
http://djangoproject.org/
http://codespeak.net/pypy/dist/pypy/doc/news.html
http://en.wikipedia.org/wiki/Python_3
http://www.python.org/dev/peps/
http://www.python.org/mailman/listinfo/tutor
http://mail.python.org/mailman/listinfo/python-list

The Python Papers, Volume 2, Issue 4 32

interested in helping people learn the language, and the atmosphere is very friendly.
It’s probably a better place to start than python-list, in my opinion.

3. Michael Easter said:
September 24th, 2007 at 11:35 pm

IMHO, the single most important tip is to get one’s hands dirty! Either with quick
scripts or in the console… Then find a pet problem (preferably known from a previous
language) and implement it.

Also, experiment, play, and be curious. Rediscover the joy of programming.

Experimentation is always rewarding but _especially_ with Python. It’s like holding a
strange substance that can be liquid and solid at the same time.

4. Alan said:
September 25th, 2007 at 12:44 am

The book that helped me most was “Dive Into Python”.

More info per page than most, but all explained clearly and cleanly.

Find it at http://www.diveintopython.org/

5. Tennessee Leeuwenburg said:
September 25th, 2007 at 1:19 am

Hi Tarek,

I thought your article was really great. Also, thanks to the commenter who
mentioned tutor@python.org. I didn’t know about this (or forgotten about it) and I
got a real jolt of “gee, that’s a good idea” when I read your comment.

If you would be interested in including your article in the next issue of The Python
Papers, I’d love to include this post. Contact me at tleeuwenburg@gmail.com if you’d
like to follow up…

Thanks,
-Tennessee

6. Tarek Ziadé said:
September 25th, 2007 at 7:11 am

@Mihai: Thanks for the tip. I think this is a good starting point here:
http://spyced.blogspot.com/2005/09/review-of-6-python-ides.html. I am going to see

how I can integrate it. It’s not easy because it’s a topic on itself

@Kalle: Thanks, great to know, I added it.

@Michael: You are right, and the prompt is really neat for that.

@Alan: Added, thanks.

@Tennessee: Thanks ! Sure i’ll send you a mail

7. osKanpur said:
September 25th, 2007 at 2:12 pm

Thanks for the Python tips. I am looking for an easy to “get hands dirty” resource for
introducing children to Python programming. Is there any resource which you could
point to for children ages 10 - 15 learning their first programming language ?
Maybe some simple interactive resource which sums up great ways to do maths or

http://tarekziade.wordpress.com/2007/09/24/eight-tips-to-start-with-python/#comment-5041
http://spyced.blogspot.com/2005/09/review-of-6-python-ides.html.
http://tarekziade.wordpress.com/2007/09/24/eight-tips-to-start-with-python/#comment-5039
http://tarekziade.wordpress.com/
mailto:tleeuwenburg@gmail.com
mailto:tutor@python.org.
http://tarekziade.wordpress.com/2007/09/24/eight-tips-to-start-with-python/#comment-5036
http://pythonpapers.org/
http://www.diveintopython.org/
http://tarekziade.wordpress.com/2007/09/24/eight-tips-to-start-with-python/#comment-5035
http://www.al-got-rhythm.net/
http://tarekziade.wordpress.com/2007/09/24/eight-tips-to-start-with-python/#comment-5034
http://codetojoy.blogspot.com/

The Python Papers, Volume 2, Issue 4 33

algebra or in fact any typical school problems with Python ?
Many Thanks osKanpur

8. Mihai Campean said:
September 28th, 2007 at 10:05 am

The review of the 6 python IDE’s is a good article, thanks for the pointers.

http://tarekziade.wordpress.com/2007/09/24/eight-tips-to-start-with-python/#comment-5072
http://hypersynapse.blogspot.com/

The Python Papers, Volume 2, Issue 4 34

Acknowledgment of Reviewers
The editorial board would like to thank the following reviewers for their assistance during
this past year. In order to prevent people reasoning through who reviewed each paper, the
reviewers are listed in the December issue only.

1. David Bouchard, Massachusetts Institute of Technology, United States of
America <davidb@media.mit.edu>

2. Helen Borrie, IBPhoenix, France <helebor@iinet.net.au>

3. Bruce Cropley, Melbourne eXtreme Programming Enthusiasts Group (MXPEG),
Australia <cropleyb@yahoo.com.au> Review Panel. My career has been mainly
spent in stockbroking, aviation simulation and security software.

4. Zoltán Donkó, Research Institute for Solid State Physics and Optics, Hungary
<donko@sunserv.kfki.hu>

5. Alan Green, Cirrus Technology Pty Ltd, Australia <alang@bright-green.com>

6. Ann W. Harrison, IBPhoenix, France <aharrison@ibphoenix.com>

7. Hugo Liu, Massachusetts Institute of Technology, United States of America
<hugo@media.mit.edu>

8. Michael YJ Loke, BearingPoint, Australia <jymloke@gmail.com>

9. Raphael Marvie, University of Sciences and Technologies of Lille
<Raphael.Marvie@lifl.fr>

10. James Stroud, University of California - Los Angeles, United States of
America <jstroud@mbi.ucla.edu>

11. Sitalakshmi Venkatraman, Victoria University of Wellington, New Zealand

12. Jingxian Wang, The University of Melbourne, Australia

13. Helena Nowakowska, Centre for Plasma and Laser Engineering, Institute of
Fluid Flow Machinery, Polish Academy of Sciences

14. Kelvin KL Yeo, Telstra, Australia

15. Roberto de Almeida

16. Flavio Coelho

17. Kevlin Henney

18. Jason Diamond

19. Jessica Wang

20. Art Haas

21. Harry George

22. Graham Ellis

23. Jim Crutchfield

24. Bruce Sherwoord

mailto:jstroud@mbi.ucla.edu
mailto:Raphael.Marvie@lifl.fr
mailto:jymloke@gmail.com
mailto:hugo@media.mit.edu
mailto:aharrison@ibphoenix.com
mailto:alang@bright-green.com
mailto:donko@sunserv.kfki.hu
mailto:cropleyb@yahoo.com.au
mailto:helebor@iinet.net.au
mailto:davidb@media.mit.edu

The Python Papers, Volume 2, Issue 4 35

pypk - A Python extension module to handle chemical
kinetics in plasma physics modeling
N. Pinhão2

Nuclear and Technological Institute, Physics Dept., Estrada Nacional 10, 2685 Sacavém,
Portugal

Abstract

PLASMAKIN is a package to handle physical and chemical data used
in plasma physics modeling and to compute gas-phase and gas-
surface kinetics data: particle production and loss rates, photon
emission spectra and energy exchange rates. A large number of
species properties and reaction types are supported, namely: gas or
electron temperature dependent collision rate coefficients,
vibrational and cascade levels, evaluation of branching ratios,
superelastic and other reverse processes, three-body collisions,
radiation imprisonment and photoelectric emission. Support of non-
standard rate coefficient functions can be handled by a user-
supplied shared library.
The main block of the PLASMAKIN package is a Fortran module that
can be included in an user's program or compiled as a shared
library, libpk. pypk is a new addition to the package and provides
access to libpk from Python programs. It is build on top of the
ctypes foreign function library module and is prepared to work with
several Fortran compilers. However pypk is more than a wrapper
and provides its own classes and functions taking advantage of
Python language characteristics. Integration with Python tools
allows substantial productivity gains on program development and
insight on plasma physics problems.

1. Introduction

A plasma is the state of ionized gases and is the most pervasive state of matter in Nature: It
is found anywhere from stars and interstellar gas clouds to semi-conductor processing and
fluorescent lamps. It encompasses a wide range of characteristic parameters: length scale
10−2

−1016m ; charged particle densities 10
6
−1021particles /m3

 ; time scale 10
−10

−∞ s ;

electron temperature 10
−1
−105eV ; magnetic field 10

−10
−5 T and involves the

interaction of different types of particles – neutral atoms and molecules, excited species,
electrons and photons – between them and with electromagnetic fields3.

Modeling of plasma physics problems requires the solution of conservation equations (mass,
momentum and sometimes, energy) for the species involved together with electromagnetic
field equations, subject to appropriate boundary conditions. Source and sink terms in the
conservation equations include the chemical interactions of these particles in a wide range
of processes.

Thus, from electron kinetics studies to collisional-radiative models or large multifluid and
time dependent models, whichever the numerical method used, simulation of plasma and
gas discharges invariably requires the reading, classification, sorting and manipulation of
particles and reactions and, frequently, the evaluation of reaction rates and power transfer

2 Electronic address: npinhao@itn.pt; URL: http://plasmakin.sourceforge.net
3 In some problems the gravitational field has also to be taken into account.

http://plasmakin.sourceforge.net/
mailto:npinhao@itn.pt

The Python Papers, Volume 2, Issue 4 36

rates.

The handling of these data frequently requires a significant amount of code, development
time and effort. It is clearly advantageous to have a package able to deal with that data
regardless of the number or nature of the species and chemical reactions involved and of
the problem being solved or the method used. Such a package can be used as a “black box”
moving the description of particles and reactions from code to a data file, thus allowing the
user to concentrate on the algorithm, and once the code is developed, to easily modify and
test different chemical models.

The need for a “language” to write chemical reactions and to compute the kinetic terms in a
generic way is a subject with very broad application of which several approaches have been
developed. Several packages have been published that are directed to specific fields -
plasma physics [1]; atmospheric chemistry [2-3] - or to general purpose chemistry [4]. All of
the above packages include ODE (ordinary differential equations) solvers. However, the first
does not include surface reactions, the atmospheric chemistry codes do not cover the needs
of plasma physics and the last, although quite complete, is a proprietary, commercial
product. More recently, a Chemical Markup Language schema to describe reactions in XML
has been finalized [5].

The PLASMAKIN package is designed to provide a framework to handle species and
reactions in a way that is not dependent on a user's program, the number of space
dimensions or the nature of the problem being solved. At the same time, taking into
account the rather different applications that can benefit from PLASMAKIN and the
continuous improvement of numerical algorithms, an ODE solver was not included, leaving
this choice to the user.

These design options allow PLASMAKIN to focus on the treatment of chemical kinetics data
and be useful in a large range of codes - Boltzmann equation solvers, collisional-radiative
codes, fluid and hybrid codes, Monte Carlo or PIC codes, etc.

The central element of the package is a library - libpk - providing data reading and
computational functions4.

The library can be extended “downwards” to support non-standard reaction rate laws by a
user-supplied library.

The library has also been extended “upwards” through a Python module - pypk - with higher
level functions and classes and allowing the development of complete Python programs.

The development of a Python module allows integration with the broad range of services
provided in Python (numeric libraries; plotting services; testing frameworks; graphical user
interfaces) and an increase of productivity on application development. However the most
significant advantage is the perceived increase of insight into the problems.

Section 2 gives a description of the problems PLASMAKIN is able to address. However, only
a brief survey of the physics and chemistry bases is discussed. More detailed information
can be found in [6]. The following sections discuss the architectural design including the
libpk structure and the data model, the range of properties supported, the characteristics of
the pypk module and finish with a summary and discussion of future developments. In the
Appendix we present a sample data file.

2. Plasma Physics Problems

Plasma processes occur in a wide range of conditions. To understand these phenomena, the
first set of information needed are – gas density or pressure; initial temperature; and
whether the process occurs at constant pressure or at constant volume.

4 The first version of this library was published with the name PLASMAKIN. However, when
pypk was developed it was decided to reserve the name PLASMAKIN for the package and
use the name libpk for the library.

The Python Papers, Volume 2, Issue 4 37

Depending on the problem being studied, the description of the plasma requires the
solution of some form of Maxwell's equations together with conservation equations. For the
sake of clarity we will focus on the particle conservation equation5:

(1)

where is the density of particle i, the mean particle velocity, and are gain and

loss terms by collisions. These have the general expression:

(2)

 are rates for unimolecular reactions (i.e. radiative processes) and and rates

for bimolecular and termolecular reactions, respectively. The sum index j in the first
equation is on all reaction producing species i and in the second equation is on all reactions
consuming species i. These reaction rates are, in general, functions of the electron or gas
temperature.

To study the contribution of collisions to the energy balance in the plasma we are interested
in three quantities: The power density lost (or gained) by the electrons (Pe), the power
density converted to heat (PH), and the radiated power density (P r). The computation of
each of these terms is similar to the and terms above but slightly more complex and

in most cases requires the use of the reaction enthalpy, Hr . As a simple example, the

radiated power density is given by Pr=∑m,n
mn A j

mnm where the sum is on all radiative
transitions of all species and is the photon energy.

The reaction enthalpy is calculated as , where is the

enthalpy of formation of the reaction products and reactants, respectively. We assume a
simple linear dependency on temperature, , where is the

standard temperature (and the specific heat, which is a reasonable

approximation for gases at low pressure.

Finally we may also be interested in knowing the relative contribution of each reaction for
the source and loss terms both in equation (1) and on the power loss terms.

The computation of the and terms, the power loss terms, () and the relative

contribution of each reaction for these terms, are the main tasks of the libpk library. For that
purpose we need to consider the different properties of the chemical species and reactions
involved.

2.1. Chemical Species

In a plasma, different types of species are present - atoms and molecules in different
excited levels, positive and negative ions, electrons, and photons. In some applications (i.e.
dusty plasmas), it is also necessary to consider bigger particles.

As we are interested in processes leading to excitation of different energy levels of the
same atom or molecule, atoms or molecules in different excited levels are treated as

5 Both the momentum and the energy conservation equations also include collisional
terms. These terms, however, are small in the momentum conservation equation and thus,
frequently neglected. This is not always true for the energy conservation equation
although a good number of problems can be solved without including this equation.

The Python Papers, Volume 2, Issue 4 38

different chemical species.

Some of the properties needed to characterize these species are common to any species -
name, energy, mass, charge, formation enthalpy - while others are meaningful only to some
species or needed only for some types of reactions.

Molecular species are a special case: In some problems it is important to consider the
vibrational levels of molecules. The density of these levels can be estimated from a
modified Treanor distribution [7-8] provided the vibrational frequency, vibrational
temperature and anharmonicity constant for those levels are known. This allows them to be
considered as a group and to leave the details of each level to be handled by the library.

The full range of species properties considered can be found in [6].

2.2. Chemical Reactions

A large range of reaction processes can be handled by the library:

Unimolecular processes include radiative process, radiation imprisonment and the
treatment of cascade levels.

Both forward and reverse bimolecular reactions are supported.

A large number of forward rate coefficients have an Arrhenius temperature dependence,

(3)

where is the Boltzmann constant, the gas temperature and, , and constants

characterizing the reaction.

Reactions in plasma, however, can have more complex temperature dependencies or, as is
the case for electron collision reactions, depend on the electron temperature. To
accommodate this, PLASMAKIN assumes a power series dependence on temperature in the
exponential term of the rate coefficients:

(4)

where T is the electron temperature, , for electron collision reactions and for other

cases. The rate coefficients are characterized by a maximum of twelve parameters
.

The rate coefficient for forward and reverse reactions are related through the principle of
detailed balancing. Hence, once the forward rate, , is known, the reverse rate, (for a

two-body collision,) is determined from

(5)

where and are the reduced masses for particles in “forward” and “reverse” reactions,

 the degeneracies of the energy levels and the energy change.

Thermolecular reactions are supported both as standard reactions and as pressure-
dependent reactions where different 3rd-body species can have different reaction

The Python Papers, Volume 2, Issue 4 39

efficiencies.

Finally, to account for more complex type of reaction rate coefficients, libpk can call a
dynamic library or can be linked with a user's routine.

The full range of reactions, including surface reactions, can be found in [6].

3. PLASMAKIN Architecture

The PLASMAKIN package is composed of three units: a Fortran 95 module that becomes,
after compilation, the libpk library, a dummy or stub routine that can be replaced by user-
supplied rate coefficient equations and a Python module, pypk. We postpone the discussion
of the Python module to section 5.

The development of the Fortran module was influenced by the application of Object
Oriented methodologies to Fortran [9-10]. The programming paradigms of abstraction,
information hiding, data encapsulation and function overloading guided the design of data
types and routines and have simplified the development of bindings for other languages.
The module subroutines are organized in five groups of tasks:

Data reading and processing:
Parse the datafile, test the correctness of the data and build species and reactions;

Inquiry routines:
Allow the user to inquire about plasma, species or reaction properties and to compute
the source and loss terms for the conservation equations;

Setting routines:
Allow the user to set some of the plasma, species or reaction properties (i.e. the gas
or electron temperatures. In this case all the temperature dependent rate coefficients
are recomputed.)

Error processing and diagnostics:
Depending on user's choice, errors are handled either by returning an error code or
printing an error message and stopping the program.

Interface routines:
These routines allow the calling of module routines from C programs solving calling
conventions differences between C and Fortran such as the use of a null character in C
strings and the handling of assumed-shape arrays in the Fortran routine interfaces.

All names of public procedures follow a simple convention: pk<action><subject>, where pk
is used to identify libpk procedures, <action> is a verb or an inquiry clause (Read, Get, Set,
Clean, Is) and <subject> is the data acted on by the procedure (Data, Value, Species,
Reactions, ReverseReaction, Sources, PhotonEmission, PowerLosses).

Details of the procedure interfaces can be found in [6].

The dummy routine is included to allow the computation of reaction rates through non-
standard expressions. The routine included in the package is just a template with the proper
calling convention that a user has to adopt whenever non-standard rate expressions are
needed. Ideally this routine should be compiled as a shared library (a dll for MS Windows
users). The arguments passed from libpk include the index of the reaction in the datafile,
arrays with the vibrational quantum number of reactant and product species, the gas and
electron temperatures and the densities of species involved in 3-body reactions.

The Python Papers, Volume 2, Issue 4 40

4. libpk Data Input

Data input files are ASCII files using Fortran NAMELIST structures to take advantage of
Fortran native IO support. NAMELIST structures are annotated lists of values that provide a
simple and convenient mechanism of data input. Each record is specified by a namelist
name preceded by an ampersand, followed by pairs of names and values separated by the
equals sign, and is terminated by a slash character. These records can appear anywhere
and in any number in the file and can include comments started by a '!' character.

libpk recognizes three NAMELIST:

PLASMAKIN_DATA:
used to read plasma initial values for gas density or pressure, units and gas and
electron temperatures. See the example below:

In this case the gas density is computed from the pressure and temperature values

and the output will be specified in ;

CHEM_SPECIES:
used to input individual species or groups of species in the case of vibrational levels.
The amount of data that has to be written is minimized as all properties have default
values and the parser is able to deduce missing values from the information already
available. Three examples are shown below:

In the first case the species Ne has a default value of zero for the energy . The second
species, Ne[3P2] inherits the mass value from its parent, Ne. Additional data can be
read from the file trp.dat. In this case the library just passes the file name to the
calling program. Finally in the last case we have a group of vibrational species. The
library converts the group into individual species from A2[X,v= 0] to A2[X,v=45] and
computes the initial concentrations as refered in section 2.1 using the indicated values
for vib_T, omega and anharmonicity.

CHEM_REACTION:
used to input individual reactions or reaction groups in the case of reactions involving
vibrational levels.

The first namelist describes a single reaction following an Arrhenius law:

. The second example represents a group of

reactions with reaction rates obtained from the 5th equation of a user's routine. Taking
into account the combinations of vibrational numbers in the example above, this
reaction group symbolizes 2025 reactions.

5. pypk: The Python Module

The most recent addition to the PLASMAKIN package is a Python wrapper based on the
ctypes foreign function library.

The Python Papers, Volume 2, Issue 4 41

The development of a Python module serves several purposes:

1. It allows a broader audience to use the library since it does not require knowledge of
Fortran;

2. It integrates the library with the rich set of Python modules. Of special importance to
plasma modeling is the integration with other modules for scientific computing as
Scipy [11] or Matplotlib; and

3. It allows the use of Python development tools as doctest or unittest that have
proved useful to track errors in the library itself.

The module is organized into three levels:

1. The lower level comprises the loading of the shared version of libpk and function
definitions to call the library C-compatible routines.

These function definitions depend on the compiler used to link the library as each
compiler uses its own convention to assign external names of module entities. For
instance gfortran uses the convention __modulename__entityname where
module-name and entity-name are in lowercase, while g95 uses module
name_MP_entityname and Microsoft Fortran uses _MODULENAME_mp_entity
name, with module-name in uppercase. This requires an initial inquire of which
Fortran compiler is installed and the import of submodules with the correct function
definitions for each compiler. Presently the gfortran and g95 compilers are
supported and a submodule for the Intel Fortran compiler is being developed.

The arguments and return values of these functions are ctypes data types. While in
Fortran the public subroutines have overloaded interfaces that accept different types
of data, ctypes do not include any mechanism to support a similar behavior. Thus
the number of functions defined had to be increased. These routines are not meant
to be called directly, thus all the routines names start with two underscore
characters;

2. The second level are functions that use only Python built-in types as function
arguments or as return values. These functions call the lower level functions to
access the libpk library. The naming convention is similar to the equivalent library
subroutines (<action><subject>). A closer similarity can even be obtained if the
Python module is imported as pk (making the function calls pk.<action><subject>).
The functions have the following characteristics:

1. They accept different type of data allowing the recovery of the level of
abstraction of the Fortran routines that had been lost with the first level
functions;

2. The argument list is simplified. In the Fortran library most of the procedures
are subroutines, returning values in the argument list. Because in Python we
deal with functions, all the arguments in Fortran that are used only to return
values have been removed from the argument list or, when these arguments
were optional arguments, they have been transformed into logical flags;

3. They use as much as possible, arguments with default values which further
simplify the use of these functions;

4. Have proper exception handling.
3. The higher level comprises class definitions. The following classes are defined:

PK
- a class to keep the information on global properties. The values of the gas
temperature (GasTemp), electron temperature (eTemp) and gas density (GasN)
can be set. All the other properties are fixed. In this case, an attempt to assign
a new value raises an exception.

Species
- a class representing the chemical species. The density (n) or concentration
can be changed by the user (changing also the values in the library) but all

The Python Papers, Volume 2, Issue 4 42

other properties have fixed values. An attempt to change these values raises
an exception;

Reaction
- a class representing reactions. The value of the reaction coefficient can be
changed. This class defines a method Update() to update the value of the rate
coefficient. This is necessary because if the value of rate coefficents in the
library are changed, i.e. due to a change in temperature, the only way to
update the corresponding values in the class instance is to call this function;

Phys_Property
- a helper class to describe a physical property, containing a float value and a
string for the units;

Data_Column
- a helper class to hold the string for a filename and an integer index.

6. A Sample Case

As an illustration of the usage of this package we study the passage of an electron swarm
through a gas.

The electron density has a Gaussian profile and along their passage, they excite and ionize
the gas, producing several chemical species. These species take part in several reactions
among themselves and with the electrons, and are transported either by diffusion or
advection to the walls where they are neutralized or de-excited.

Here we consider an hypothetical gas with diffusion coefficients and rate coefficients
adjusted for this example.

The species density is obtained from the solution of a system of ordinary differential
equations.

The listing of the program can be found in Appendix A. To solve this problem pypk is used
together with scipy and pylab for computational and plotting services, respectively.

The calls to pypk are limited to a few lines:

• The loading of the module in line 20;
• In line 24 the datafile with the description of species and reaction (see Appendix B) is

read;
• In lines 25 - 27 we define instances of the classes PK and Species; and
• In line 47 all the “magic” is done when the and terms are computed.

Changing the values in the datafile and running the again the program allows a quick study
of the influence of several parameters - gas density, reactions included in the model, values
of the rate coefficients. The result of one simulation is shown in Figure 1.

The Python Papers, Volume 2, Issue 4 43

Figure 1: Time dependency of species formed during the passage of an electron swarm
through a gas.

7. Conclusions

A Python extension module has been developed to access the libpk library and enriching
the PLASMAKIN chemical kinetics package.

The Python module, however, is not just a wrapper around the library and adds a “Pythonic”
way of problem solving to the analysis of plasma physics problems.

Taking advantage of other Python modules for debugging, numerical computation and data
analysis and representation is possible to build programs quickly and reliably. The flexibility
introduced by this module allows the users to concentrate on the chemical kinetics and
helps to gain insight on the problems.

Further work will continue both on the extension of the libpk library and the pypk module.
Future plans include the simulation of photon emission spectra taking into account line
broadening; the introduction of a database for species properties and reactions, and the
migration of the datafile format to XML.

Appendix

A. Sample code

1 #!/usr/bin/env python
2
3 “““Example showing the use of pypk.py: Electron pulse in a gas.
4

The Python Papers, Volume 2, Issue 4 44

5 Description :
6 This program evaluates the interaction of a short electon pulse in an ideal gas.
7 The distribution of the electron pulse in time has a Gaussian profile with tMax=5.e−5 s
8 and Std Dev= 1.e−5 s.
9 The electron pulse excites and ionizes the gas producing several species.
10 These species react through several processes and drift or difuse to the walls, where they are
11 neutralized or deexcited. The values of rate coefficients are not realistic as sometimes they are too
12 high or too low comparing with the range of values found in real gases but serve the purpose of testing
13 the pypk module.
14 Changing the values in this file or in the data file the user can quickly see the results.
15 In this way this programs serves a pedagogical purpose.
16
17 Owner: N. Pinhao, ITN − Physics Dept . − PORTUGAL
18 Date : June 2007”””
19
20 import pypk as pk
21 from scipy import *
22 from pylab import *
23
24 pk.ReadData(’test.dat’)
25 gas = pk.PK()
26 gas.eTemp = 10. # mean electron energy = 10 eV
27 sp = [pk.Species(i) for i in range(gas.NnC, gas.NnTV+gas.NnC)]
28
29 # Time
30 dt = 5.e−6; t = arange(0.0, 4.e−4, dt)
31
32 # Initial density for non−constant species, except electrons
33 n0 = array([sp[i].n for i in range(gas.NnTV− 1)])
34
35 # Electron density
36 ne = stats.norm.pdf (t , 5.e −5 ,1.e −5)
37 norm = max(ne) * 1.e3
38 ne = where(ne>1e−20, ne/norm, 0)
39
40 # Artificial difusion/advection for conservation equations
41 Dv = array([5.e+3 ,5.e+3 ,5.e+3 ,5.e+3 ,4.e+4 ,2.e+4])
42
43 def dndt(y,x) :
44 net = gas.GasN*stats.norm.pdf(x, 5.e−5, 1.e−5)/norm
45 net = net >1e−20 and net or 0
46 tt = list(y); tt.append(net)
47 SrC , SrP = pk.GetSources(tt)
48 return array(SrC [: gas.NnTV−1]) − y * (array(SrP[: gas.NnTV−1]+Dv))
49
50 # Integration of the ode system
51 z = integrate.odeint(dndt, n0, t, h0 =1.e−10)
52
53 # Plot the results
54 lines = [’k+’, ’k:’, ’k−.’, ’k .’, ’k−− ’, ’k−’, ’ko−−’]
55 for i in range(gas.NnTV−1):
56 semilogy(t, z[:, i] / gas.GasN, lines[i], label = sp[i].name, lw =2)
57
58 # ...add the electrons scaled by 1e−6
59 semilogy(t, ne/1.e6, lines[gas.NnTV−1], label = sp[gas.NnTV−1].name, lw =2)
60 ylim((1.e−25, 1.e −8))
61 xlabel(’Time / s’ , size =16); xticks(size =12)

The Python Papers, Volume 2, Issue 4 45

62 ylabel(’Relative concentration’, size =16); yticks(size =12)
63 legend()
64 savefig(’test.eps’)
65 #show ()

B. Sample Datafile

! **
! test.dat
! Datafile for the Python example program
! **

&PLASMAKIN_DATA Pressure=10.,'mbar', Gas_n=,'cm3', Gas_T=350,'K'/

! 1. Gas species
&CHEM_SPECIES name='Ne', constant=T, mass=20.18, initial_conc=100,'%'/
&CHEM_SPECIES name='Ne[3P2]', energy=16.61, g=5, data_file='NeTransp.txt'/
&CHEM_SPECIES name='Ne[3P1]', energy=16.67, g=3/
&CHEM_SPECIES name='Ne[3P0]', energy=16.71, g=1/
&CHEM_SPECIES name='Ne[1P1]', energy=16.85, g=3/
&CHEM_SPECIES name='Ne[3p]', energy=18.38, cascade=T/
&CHEM_SPECIES name='Ne[3pM]', energy=18.97, cascade=T/
&CHEM_SPECIES name='Ne[4s]', energy=19.66, cascade=T/
&CHEM_SPECIES name='Ne+', energy=21.56, charge=+1/
&CHEM_SPECIES name='Ne2+', mass=40.36, charge=+1/
&CHEM_SPECIES name='photon', v=1,13/
&CHEM_SPECIES name='e', charge=1 /

! 2. Electron excitation and ionization
! 2.1. Excitation of 3s levels
&CHEM_REACTION reaction='e + Ne > e + Ne[3P2]', value=5.e4, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne > e + Ne[3P1]', value=3.e5, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne > e + Ne[3P0]', value=5.e6, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne > e + Ne[1P1]', value=1.e6, units='cm3s1'/

! 2.2. Excitation of 3p and 4s+upper levels
&CHEM_REACTION reaction='e + Ne > e + Ne[3p]', value=5.e7, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne > e + Ne[3pM]', value=3.e7, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne > e + Ne[4s]', value=1.e7, units='cm3s1'/

! 2.5. Ionization
&CHEM_REACTION reaction='e + Ne > 2*e + Ne+', value=1.e8, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne[3P2] > 2*e + Ne+', value=1.e7, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne[3P1] > 2*e + Ne+', value=1.e7, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne[3P0] > 2*e + Ne+', value=1.e7, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne[1P1] > 2*e + Ne+', value=1.e7, units='cm3s1'/

! 2.3. s_js_i transitions
&CHEM_REACTION reaction='e + Ne[3P2] > e + Ne[3P1]'
 value=1.603e6,0.3,6.0e2,1, units='cm3s1'/
&CHEM_REACTION reaction= 'e + Ne[3P1] <> e + Ne[3P0]'
 value=3.1e8,,5.176e3,1 units='cm3s1'/
&CHEM_REACTION reaction='e + Ne[3P2] <> e + Ne[3P0]'
 value=8.2e9,,1.118e3,1, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne[3P2] <> e + Ne[1P1]'
 value=5.e9,,2.658e3,1, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne[3P1] <> e + Ne[1P1]'
 value=5.e9,,2.054e3,1, units='cm3s1'/
&CHEM_REACTION reaction='e + Ne[3P0] <> e + Ne[1P1]'
 value=2.3e7,,1.543e3,1, units='cm3s1'/

! 3. Radiative transitions

The Python Papers, Volume 2, Issue 4 46

! 3.1. 3s radiative levels
&CHEM_REACTION reaction='Ne[3P1] > Ne + photon1', value=0.486e8/
&CHEM_REACTION reaction='Ne[1P1] > Ne + photon2', value=6.11e8/
! 3.2 4s radiative levels
&CHEM_REACTION reaction='Ne[4s] > Ne + photon11', value=1.21e8/

! 3.3. Radiation imprisonment
&CHEM_REACTION reaction='Ne + photon1 > Ne[3P1]', value=1.539e3/
&CHEM_REACTION reaction='Ne + photon2 > Ne[1P1]', value=1.746e3/
&CHEM_REACTION reaction='Ne + photon11 > Ne[4s]', value=1.0e3/

! 3.4. Cascade reactions
&CHEM_REACTION reaction='Ne[3p] > Ne[3P2] + photon3', value=9.24e7/
&CHEM_REACTION reaction='Ne[3pM] > Ne[3P2] + photon4', value=6.128e7/
&CHEM_REACTION reaction='Ne[3p] > Ne[3P1] + photon5', value=6.722e7/
&CHEM_REACTION reaction='Ne[3pM] > Ne[3P1] + photon6', value=9.397e7/
&CHEM_REACTION reaction='Ne[3p] > Ne[3P0] + photon7', value=1.691e7/
&CHEM_REACTION reaction='Ne[3pM] > Ne[3P0] + photon8', value=2.49e7/
&CHEM_REACTION reaction='Ne[3p] > Ne[1P1] + photon9', value=6.689e7/
&CHEM_REACTION reaction='Ne[3pM] > Ne[1P1] + photon10', value=9.208e7/
&CHEM_REACTION reaction='Ne[4s] > Ne[3p] + photon12', value=1.034e7/
&CHEM_REACTION reaction='Ne[4s] > Ne[3pM] + photon13', value=1.434e7/

! 4. Heavy species kinetics
! 4.1 Pooling reactions
&CHEM_REACTION reaction='2*Ne[3P2] > Ne + Ne+ + e', value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P2] + Ne[3P1] > Ne + Ne+ + e'
 value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P2] + Ne[3P0] > Ne + Ne+ + e'
 value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P2] + Ne[1P1] > Ne + Ne+ + e'
 value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='2*Ne[3P1] > Ne + Ne+ + e', value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P1] + Ne[3P0] > Ne + Ne+ + e'
 value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P1] + Ne[1P1] > Ne + Ne+ + e'
 value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='2*Ne[3P0] > Ne + Ne+ + e', value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P0] + Ne[1P1] > Ne + Ne+ + e'
 value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='2*Ne[1P1] > Ne + Ne+ + e', value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='2*Ne[3P2] > Ne2+ + e', value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P2] + Ne[3P1] > Ne2+ + e', value=3.2e10,
units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P2] + Ne[3P0] > Ne2+ + e', value=3.2e10,
units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P2] + Ne[1P1] > Ne2+ + e', value=3.2e10,
units='cm3s1'/
&CHEM_REACTION reaction='2*Ne[3P1] > Ne2+ + e', value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P1] + Ne[3P0] > Ne2+ + e', value=3.2e10,
units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P1] + Ne[1P1] > Ne2+ + e', value=3.2e10,
units='cm3s1'/
&CHEM_REACTION reaction='2*Ne[3P0] > Ne2+ + e', value=3.2e10, units='cm3s1'/
&CHEM_REACTION reaction='Ne[3P0] + Ne[1P1] > Ne2+ + e', value=3.2e10,
units='cm3s1'/
&CHEM_REACTION reaction='2*Ne[1P1] > Ne2+ + e', value=3.2e10, units='cm3s1'/

! 3.2. Molecular ion formation
&CHEM_REACTION reaction='Ne+ + Ne + M > Ne2+ + M' value=3.5e31, units='cm6s1'/

! 4. electronion recombination

The Python Papers, Volume 2, Issue 4 47

&CHEM_REACTION reaction='e + Ne2+ > Ne[3p] + Ne', value=1.338e6,0.67,
units='cm3s1'/
&CHEM_REACTION reaction='e + Ne2+ > Ne[3pM] + Ne', value=1.338e6,0.67,
units='cm3s1'/
&CHEM_REACTION reaction='e + Ne2+ > Ne[3P2] + Ne', value=6.693e7,0.67,
units='cm3s1'/
&CHEM_REACTION reaction='e + Ne2+ > Ne[3P1] + Ne', value=6.693e7,0.67,
units='cm3s1'/
&CHEM_REACTION reaction='e + Ne2+ > Ne[3P0] + Ne', value=6.693e7,0.67,
units='cm3s1'/
&CHEM_REACTION reaction='e + Ne2+ > Ne[1P1] + Ne', value=6.693e7,0.67,
units='cm3s1'/

Bibliography

[1] S. A. Roberts, PLASKEM, Comp. Phys. Commun. 18 (1979) 363
[2] C. J. Aro, CHEMSODE, Comp. Phys. Commun. 97 (1996) 304
[3] G. D. Carver, P.D. Brown and O. Wild, ASAD, Comp. Phys. Commun. 105 (1997)
197
[4] R. J. Kee, F.M. Rupley, E. Meeks and J.A. Miller, CHEMKIN - III, Sandia Nat.
Laboratories, 1996
[5] Gemma L. Holliday, Peter Murray-Rust, and Henry S. Rzepa J. Chem. Inf. Model.
46(1) (2006) 145 - 157
[6] N. Pinhao, Comp. Phys. Commun. 135 (2001) 105
[7] C. E. Treanor, J. W. Rich and R. G. Rehm, J. Chem. Phys. 48 (1968) 1768
[8] B. F. Gordiets, S. S. Mamedov and L. A. Shelepin, JETP 40 (1972) 640-646
[9] C. D. Norton, Object Oriented Programming Paradigms in Scientific Computing,
PhD thesis,
 Renssleaer Polytechnic Institute, Troy, New York, August 1996
[10] C. D. Norton, B. K. Szymanski and V. K. Decyk, Communications of the ACM,
38(10) (1995) 88-100
[11] E. Jones, T. Oliphant, P. Peterson et al. SciPy: Open Source Scientific Tools for
Python, (2001–)
 URL: http://www.scipy.org

http://www.scipy.org/

The Python Papers, Volume 2, Issue 4 48

The When and How for Design Patterns
Olemis Lang

Keywords: Design patterns, Python, OOP, concurrency, object-oriented design methods
and methodologies, analysis patterns, software architecture, operating systems, process
synchronization, software process models.

Previous articles6 have been devoted to portray Design Patterns together with useful
guidelines to code them in Python. However, the former arguments could be complemented
by displaying other important patterns and revealing that they can also solve large-scale
issues. Also they can be part of a design strategy and it would be nice to put them in
context with design methods. In this respect, it is very important to know when and how
they are discovered.

This article is a first attempt to identify when design patterns come into play during system
analysis and design, and also suggests how to translate their structure into Python. This
text is written from the perspective of an author who applies patterns since before
discovering this programming language. Readers will find hereinafter some illustrative
examples where patterns go beyond the traditional class relationships. They can contribute
to get a deeper insight into patterns even though the original scenarios were not coded in
Python. That’s because design patterns are higher-level abstractions concerned with class
structures and its relationships, instead of how coders specify them by means of a particular
programming language. Besides, further arguments are provided to demonstrate that
Python is full of patterns, since they are comprehensively mentioned throughout Python
Enhancement Proposals (PEP).

Although a lot of patterns have been discovered up to this date, our discussion remains
limited to those included in the GoF catalog. It is believed that there is no need to be
exhaustive in this respect to achieve the goals of this paper. Therefore, forthcoming articles
shall address those left out.

Design Patterns illustrated

For some of us design patterns were among the greatest discoveries of our undergraduate
studies. A fuller understanding of these patterns is achieved after considering them during
the design of applications and systems. For this reason we start by analyzing some concrete
scenarios, where they are not applied ad-hoc and interact with different design artifacts.

The StartStop application

Let’s first consider an application similar to the product StartStop7, whose main goal is to
control the execution of applications once users start Windows sessions (thus possibly
preventing virus infection). As may be seen in Figure 1a, the user can list the applications
executed when he (she) starts a session in the local computer and for each one specify one
of three actions: a) always execute (i.e. in case of a critical process or a “healthy”
executable file), b) ask for confirmation (the default choice if a new application, perhaps
infected by a virus, has not been put into another state), or c) never execute (i.e. a
suspicious file or potentially useless application).

6 T. Leeuwenburg, “Programming Idioms pt 2 Design Patterns” (2007) The Python Papers,
vol. 2, no. 1, pp 5:7

7 J.L. López “StartStop. Un vigía imprescindible al iniciarse Windows” (2002)
VSantivirus no. 6 vol 542.

The Python Papers, Volume 2, Issue 4 49

a) Main form b) Multiple asynchronous confirmations

Figure 1: The StartStop application

Once a new session is started, the StartStop application intercepts the execution of each
target program in a separate process and performs the requested action. Therefore, it is
concerned with “controlling the execution of another process under certain conditions”, and
so acts like the “protection proxy” mentioned in the applicability of the Proxy pattern8.
Figure 1b shows what happens when several of these processes require a confirmation. Any
user might be panicked by the amount of dialogs shown, or even think that a critical error
has occurred. A successful approach is to show confirmation dialogs one by one as the user
approves or rejects process execution; in other words, “ensure that only one instance of the
confirmation dialog class is shown to the user, and provide a global point of access to it to
retrieve the user’s choice”. Notice the match between the prior statement and the intent of
the Singleton pattern. But, what happens if the structure proposed by the GoF8 is coded as-
is to solve this “problem”? As the singleton instances reside in separate processes (i.e.
address spaces) there is indeed a single dialog per application, but each one is still shown.
So nothing has changed.

The code in Listing 1 describes a simple and correct implementation of the Singleton for
Windows operating systems based on process synchronization. The first lines of code in
Listing 1a import some modules and bind into the local name space the functions to
manipulate mutexes. In Listing 1b a named mutex is acquired before each singleton dialog
instance is “created” (within the __new__ method) and is released when they are destroyed
(or the application exits). Therefore there is no overlapping between the lifetimes of two
different instances; hence multiple dialogs cannot be displayed at the same time. This
implementation differs from the traditional structure because the “feeble” encapsulation
supported by Python does not allow hiding of the initialization process. This implies that no
“static” (or class) method is needed to access the singleton instance, but also motivates the
introduction of a flag (_doInit) to prevent initializing the singleton instance more than once.

8 E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable
ObjectOriented Software” (1995) Reading, Mass.: AddisonWesley. ISBN 0201633612.

The Python Papers, Volume 2, Issue 4 50

1 import ctypes, wx, types
2

3 kernellib = ctypes.windll.kernel32
4 CreateMutexA = kernellib.CreateMutexA
5 CloseHandle = kernellib.CloseHandle
6 ReleaseMutex = kernellib.ReleaseMutex
7 WaitForSingleObject = \
8 kernellib.WaitForSingleObject
9

10 APP_TITLE = 'StartStop confirmation...'
11 LCKNM = 'StartStop'
12

13 SL_ALWAYSEXEC, SL_NEVEREXEC,
SL_ASK = \

14 range(3)
15

16 class StartStopCheckApp(wx.App):
17 def main(self):
18 choice = self.getSecLevel()
19 if choice == SL_ALWAYSEXEC:
20 self.execTarget()
21 elif choice == SL_ASK:
22 dlg = StartStopDlg()
23 if dlg.ShowModal() == wx.ID_YES:
24 self.execTarget()
25
26 def execTarget(self):
27 """ Execute the 'suspicious' application """
28 def getSecLevel(self):
29 """ Determine what to do when an
30 application is executed at boot time.
31
32 Returns one of SL_ALWAYSEXEC,
33 SL_NEVEREXEC, SL_ASK """
34

35 if __name__ == '__main__'
36 StartStopCheckApp().main()

37 class StartStopDlg(wx.Dialog, object):
38 """ wxPython frame instanciated only once in the
39 context of the local host computer."""
40
41 _inst, _doInit, _hLock = None, True, None
42
43 def __new__(cls, parent= None, id= 1, \
44 title= APP_TITLE, pos= (100, 100), \
45 sz= wx.DefaultSize, style= wx.CAPTION):
46
47 if cls._inst is None:
48 cls._hLock = CreateMutexA(None, False, LCKNM)
49
50 # Acquire the lock... wait until "forever"
51 WaitForSingleObject(cls._hLock, 1)
52 cls._inst = wx.Dialog.__new__(cls, parent, \
53 id, title, pos, sz, style)
54
55 return cls._inst
56 def __init__(self, parent= None, id= 1, \
57 title= APP_TITLE, pos= (100, 100), \
58 sz= wx.DefaultSize, s= wx.CAPTION):
59
60 if not self.__class__._doInit:
61 return
62 wx.Dialog.__init__(self, parent, id, title, pos, sz, s)
63 self.buildLayout()
64 self.__class__._doInit = False
65
66 def buildLayout(self):
67 """ Incorporate child windows """
68
69 def __del__(self):
70 ReleaseMutex(self.__class__._hLock)
71 CloseHandle(self.__class__._hLock)
72 self.__cls__._inst = None
73 self.Destroy()
74 wx.Dialog.__del__(self)

a) Proxy application (process) b) Synchronized Singleton

Listing 1: Implementing the StarStop application with wxPython.

To use the Singleton pattern in the former example perhaps is not accurate enough since
the desired functionality should be established in a per-user basis. Otherwise, users
remotely logged in could experience some troubles. A more accurate solution could be to
apply the Parametric Singleton9 pattern. In this case, local users would be the parameter
restraining the creation of dialog instances. The choice presented was preferred because
the GoF pattern is more familiar to the audience. This decision does not spoil the underlying
idea in any sense. We have seen so far design patterns solving problems in which multiple
processes (i.e. architectural artifacts) are involved. Since many libraries and frameworks
define classes to handle threads, they could also be mapped to a participant in a pattern.

9 D. Lyon and F. Castellanos “The Parametric Singleton Design Pattern”, in Journal of
Object Technology, vol. 6 no. 3, March April 2007, pp. 1323
http://www.jot.fm/issues/ issue_2007_03/ column2 .

http://www.jot.fm/issues/issue_2007_03/column2
http://www.jot.fm/issues/issue_2007_03/
http://www.jot.fm/issues/

The Python Papers, Volume 2, Issue 4 51

Printing formatted documents

The second example is concerned with printing a formatted document by setting up a dot
matrix printer in text mode. In this mode all the features (e.g. different page formats and
font styles) are set up by sending control codes to the printer through a parallel interface. In
Python this can be done either by supplying control commands to Linux parport driver
through the function fnctl.ioctl, or by calling the Win32 API function DeviceIoControl made
available after using the ctypes.windll loader, or otherwise by means of file operations.

The main issues to handle during the design are the representation of the document
structure and the means to perform basic (e.g. bold, italics, different page formats and font
styles) and/or complex (e.g. hyphenation and text justification) formatting on the output.

1 class TextItem(object):
2 def ToEscCodes(self): pass
3

4 class ParagraphDecoration(TextItem):
5 ...
6 def ToEscCodes(self, printer_state):
7 escStr= self.par.ToEscCodes()
8 return self.processEscCodes(escStr)
9

10 class FormattedText(TextItem):
11 ...
12 def ToEscCodes(self, printer_state):
13 itm = self.rawItem
14 escStr = itm.ToEscCodes(printer_state)
15 before, after = \
16 self.getEscCodes(printer_state)
17 return before + escStr + after
18

19 def ec_FontType (fontType):
20 """ Returns escape codes needed to
21 set a font type """
22

23 class FontType(FormattedText):
24 def getEscCodes(printer_state):
25 curfont= printer_state.fontType
26 return ec_FontType(self.fontType), \
27 escCodesSetFontType(curfont)

a) Class hierarchy b) Simple Decorators in Python

Figure 2: Printing formatted documents with textmode printers.

The first issue is related to “composing objects into tree structures to represent documents
containing paragraphs, which in turn contain pieces of plain text or text formatted in several
ways.” Formatting operations require “accessing sequentially the elements in the resulting
hierarchy and treating them uniformly in order to print the contents of the document
without regard of their underlying representation.” This leads to the idea of using the
patterns Composite (e.g. classes CompositeText and Paragraph in Figure 2a), Iterator, and
perhaps Visitor. However, a more subtle problem must be solved in the later case. Several
adornments can apply over the same text (e.g. bold, italics, and Courier fonts) or paragraph
(e.g. justification, hyphenation, indentation). Thus the number of different behaviors to be
supported by the classes involved is proportional to the number of combinations in which

P l a i n T e x t
t e x t S t r

U n d e r l i n e d T e x t

B o l d T e x t

I t a l i c s

I n d e n t a t i o n

T e x t M o d e P r i n t e r

p r i n t (d o c u m e n t)

C o m p o s i t e T e x t
F o r m a t t e d T e x t

g e t E s c C o d e s (b e f o r e , a f t e r)

T e x t I t e m

T o E s c C o d e s () 0 . . *
+ i t e m s

0 . . *
1+ r a w I t e m 1

D o c u m e n t

T o E s c C o d e s ()

11

F o n t T y p e
f o n t T y p e

C o n d e n s e d

P r i n t e r S t a t e
f o n t T y p e

J u s t i f i c a t i o n

H y p h e n a t i o n

P a r a g r a p h D e c o r a t i o n

P a r a g r a p h
l i n e s B e f o r e
l i n e s A f t e r 1

+ p a r
1

The Python Papers, Volume 2, Issue 4 52

diverse adornments can be applied together. Only having nine such features, 512
possibilities should be potentially considered. Besides, if a new such feature shall be
inserted then several classes should mix it in with the former. So “a flexible alternative to
sub-classing is necessary for extending formatting functionality considering that additional
responsibilities shall be attached to an object dynamically. Extension by sub-classing is
impractical in this case due to the large number of possible independent behaviors and the
explosion of subclasses to support every combination.” Compare this statement with the
intent and applicability of the Decorator pattern. This is among the most important found in
the GoF pattern catalog, since it solves a broad situation directly tied with inheritance
relationships, a key concept of object-oriented models. It also provides an alternative to
mixins which does not involve inheritance but aggregation. Therefore it is more dynamic
and is determined at run-time instead of source code compilation.

PEP Types
There are three kinds of PEP:

1. A Standards Track PEP describes a new feature or
implementation for Python.

2. An Informational PEP describes a Python design
issue, or provides general guidelines or information
to the Python community, but does not propose a
new feature. Informational PEPs do not necessarily
represent a Python community consensus or
recommendation, so users and implementors are free
to ignore Informational PEPs or follow their advice.

3. A Process PEP describes a process surrounding
Python, or proposes a change to (or an event in) a
process. Process PEPs are like Standards Track
PEPs but apply to areas other than the Python
language itself. They may propose an
implementation, but not to Python's codebase; they
often require community consensus; unlike
Informational PEPs, they are more than
recommendations, and users are typically not free to
ignore them.

a) Example formatted text10 b) Object structure

Figure 3: Representing formatted documents.

The classes FormattedText and ParagraphDecoration in Figure 2a and their descendants are
example decorators. Their implementations are shown in Figure 2b. Instances of FormattedText
contain (decorate) a single text item. These decorators gather the string to be sent to the
text-mode printer in order to represent the “raw” text item. Next they enclose it within
escape codes. As a result, the text-mode printer applies an adornment (e.g. bold, italics and
underlined text) to it. By the other hand, ParagraphDecoration descendants contain a single
Paragraph instance. Like in the previous case, they gather the string needed to print the
whole paragraph in text-mode. The difference resides in the fact that they perform more
complex frills which involve keeping track of the beginning and the end of the printed lines.
In order to do so, they query printer state and measure the width of the individual
characters outputted. For example, Indentation instances place some whitespace characters
at the beginning of each line. In this way indented text like the one shown in Figure 3a could

10 B. Warsaw et al. “PEP Purpose and Guidelines” PEP 001, at http://www.python.org/peps/
pep0001.html.

http://www.python.org/peps/pep-0001.html
http://www.python.org/peps/pep-0001.html
http://www.python.org/peps/

The Python Papers, Volume 2, Issue 4 53

be obtained. Other useful paragraph decorators perform hyphenation and paragraph
justification. They employ the same basic algorithm, but introduce different characters at
different places into lines. Figure 3 shows an example text and its representation (object
tree). It highlights how these embellishments can be deeply nested within each other.

Scheduling tasks in SCADA systems

Another application of design patterns occurs when implementing a SCADA system11. Its
main users are Operators who are responsible for the performance of industrial processes.
An important requirement to fulfill is the automation of the actions performed in response to
some important events (e.g. measure process variables in regular time intervals, remote
notification of critical events, complex system recovery strategies). That’s why a subsystem
should be liable for scheduling tasks.

Figure 4a shows the way Operators define tasks, and how the scheduling mechanism works.
Therein the messages 13 to 15 reveal the Observer pattern. They are exchanged several
times, as long as the source subject (labeled src in the diagram) triggers the specified event
(labeled ev). Further refinements during system design transform Task (entity class) into the
Task Scheduling subsystem. Likewise Subject (control class) can be traced to several
subsystems which extend the former core functionality by implementing a common
interface. For example, the Timer subsystem generates periodical events. If it is used
together with the Process subsystem, process variables could be measured in regular
intervals. The later can also generate events once one such measurement exceeds
operational limits, and in turn generate different types of notifications like e-mails –Mail
subsystem–, messages sent over wireless networks –Communications subsystem– or sound
alarms –Alarms subsystem–. Moreover, the Mail and Web subsystems could notify incoming
messages or HTTP requests sent by Operators. As a result the Process subsystem could act
upon the target process. Such a structure is known as a micro-kernel architecture12.

11 O. Lang, “Proceso de construcción de Consola de Control Local para subestaciones de
distribución de energía eléctrica” (2007) III Taller de Realidad Virtual. Informática
2007.

12 F. Buschmann et al. “PatternOriented Software Architecture: A System of Paterns”, Vol.
1, John Wiley & Sons, ISBN: 0471958897.

The Python Papers, Volume 2, Issue 4 54

a) Interactions during analysis

b) Patterns quantified

Figure 4: Patterns in the Scheduling subsystem.

The main responsibility of the scheduling subsystem is actually to “define a one-to-many
dependency between different Subjects so that when one such entity triggers an event
matching a task definition, all its dependent Subjects are notified and react accordingly.”
Also the role of the Subject abstraction can be to “standardize an interface to relate the
triggering of multiple events with performing actions as to decouple the required operations
from its implementation so that the two can vary independently. Event/action associations
shall be selected or switched at run-time. Besides the behavior needed to capture new
events and perform new actions must be hidden to the scheduling subsystem in order to
add it dynamically at run-time without changing the core task monitoring implementation.”
Compare the former statements with the intent and applicability sections of the Observer
and Bridge patterns, respectively. Notice that although the relationships among subsystems
can be described using the former patterns, their implementation introduces many others.

Python is full of Patterns

It is incredible the job done by the community of pythonistas in order to build an extremely
dynamic language upon a small set of basic concepts. And how is it possible? Do patterns
contribute to this success? Several PEPs reveal that this language and its standard modules
incorporate plenty of patterns. Let’s cite some relevant examples:

• The standard module weakref and PEP 205 “Weak References” introduce a mechanism
suitable for implementing the Flyweight8 pattern via such references. Therein some
surrogates act like weak smart references (Proxy pattern8) which attempt to behave
like the object they refer to.

• The iterator protocol for Python described in PEP 234 “Iterators” and its enhancements13
are based on the pattern of the same name identified by the GoF8.

• The special methods __copy__ and __deepcopy__ introduced by the standard module copy

13 G. van Rossum, P.J. Eby “Coroutines via Enhanced Generators” PEP 342.

The Python Papers, Volume 2, Issue 4 55

resemble the structure of the Prototype pattern8. This module also solves some issues
identified for this pattern, e.g. full support to customize the clone operation at any
point throughout the class hierarchy, provisions for default cloning semantics for “any
imaginable class on earth”, and resolution of the shallow versus deep copy dilemma.

Figure 5: Overview of the Python I/O Library proposed in PEP 311614.

• The Python I/O Library15 envisioned for Python 300016 defines layers of stream-like
objects. Therein the classes BufferedIOBase and TextIOBase follow the Decorator pattern8.

• The hierarchy of Logger instances defined by the Manager class at the standard module
logging (depicted in PEP 282 “A Logging System”) is a peculiar way for structuring the
Chain of Responsibility pattern8. The same pattern is followed by the multiple Filter
instances that can be installed on Logger and Handler objects. Moreover LogRecord
objects are simple examples of the Command pattern8.

• In PEP 302 “New Import Hooks” candidate importer objects in the list bound to
sys.path_hooks are asked whether they can handle a sys.path item, until one is found that
can. Likewise, sys.meta_path provides a similar mechanism for importers that don't need
any entry on sys.path (e.g. built-in and frozen modules). In both cases we are in
presence of the Chain of Responsibility pattern8.

These examples have been discovered after examining standard libraries, but further

14 Classes are not modeled exactly as in PEP 3116. An equivalent layout is presented
instead in order to make clear the applicability of the pattern.

15 D. Stutzbach, M. Verdone, G. van Rossum “New I/O” PEP 3116 at http://www.python.org/
peps/ pep3116.html .

16 G. van Rossum “Python 3000” PEP 3000 at http://www.python.org/peps/pep3000.html.

M M a p I O B y t e I O

F i l e I O

f i l e n o () : i n t

S o c k e t I O

f i l e n o () : i n t

B u f f e r e d
W r i t e r

B u f f e r e d
R e a d e r

B u f f e r e d I O B a s e

w r i t e (b : b y t e s) : i n t
r e a d (n : i n t) : b y t e s

R a w I O B a s e

r e a d i n t o (b : b y t e s) : i n t
w r i t e (b : b y t e s) : i n t
s e e k (p o s : i n t , w h e n c e : i n t) : i n t
t e l l () : i n t
t r u n c a t e (n : i n t) : i n t
c l o s e ()
r e a d a b l e () : B o o l e a n
w r i t e a b l e () : B o o l e a n
s e e k a b l e () : B o o l e a n
_ _ e n t e r _ _ ()
_ _ e x i t _ _ ()
r e a d (n : i n t) : b y t e s

T h e ` ` r e a d ` ` m e t h o d m a y m a k e m u l t i p l e
c a l l s t o ` ` r a w . r e a d () ` ` t o g a t h e r t h e b y t e s , o r
m a y m a k e n o c a l l s t o ` ` r a w . r e a d () ` ` i f a l l o f
t h e n e e d e d b y t e s a r e a l r e a d y b u f f e r e d .

T h e b y t e s s u p p l i e d t o ` ` w r i t e ` ` a r e n o t
g u a r a n t e e d t o b e w r i t t e n t o t h e R a w I / O
o b j e c t i m m e d i a t e l y ; t h e y m a y b e b u f f e r e d .

B u f f e r e d
R a n d o m

S t r i n g I O

T e x t I O W r a p p e r

B u f f e r e d
R W P a i r

T e x t I O B a s e

w r i t e (b : b y t e s) : i n t
r e a d (n : i n t) : b y t e s
s e e k (p o s : i n t , w h e n c e : i n t) : i n t
t e l l () : i n t
t r u n c a t e (n : i n t) : i n t
r e a d l i n e () : s t r
_ _ i t e r _ _ () : I t e r a t o r
n e x t () : s t r

S t r e a m

r e a d i n t o (b : b y t e s) : i n t
w r i t e (b : b y t e s) : i n t
s e e k (p o s : i n t , w h e n c e : i n t) : i n t
t e l l () : i n t
t r u n c a t e (n : i n t) : i n t
c l o s e ()
r e a d a b l e () : B o o l e a n
w r i t e a b l e () : B o o l e a n
s e e k a b l e () : B o o l e a n
_ _ e n t e r _ _ ()
_ _ e x i t _ _ ()
r e a d (n : i n t) : b y t e s

S t r e a m D e c o r a t o r s
r a w : S t r e a m

1

+ r a w

1

I t s m e t h o d s o p e r a t e o n a
p e r c h a r a c t e r (i n s t e a d o f
p e r b y t e) b a s i s .

C o n s i d e r s d i f f e r e n t c h a r a c t e r
e n c o d i n g s , n e w l i n e
d e l i m i t e r s , a n d s o o n .

http://www.python.org/peps/pep-3000.html
http://www.python.org/peps/pep-3116.html
http://www.python.org/peps/
http://www.python.org/peps/
http://www.python.org/

The Python Papers, Volume 2, Issue 4 56

examples could be found if either third party non-standard modules are also inspected or
patterns beyond the GoF catalog were identified as well.

So… what’s next?

After considering the former situations, some relevant conclusions arise. The first thing
involved in identifying design patterns is to properly determine the problems the design
should solve, the context where its found and the requirements to support. These problems
might be complex. If this is the case they shall be successively decomposed into simpler
ones until atomic statements are found. Later, these atomic statements should be
reformulated trying to make them match the intent or applicability of different design
patterns. This process can lead to several potential solutions, so each one should be
assessed considering the interactions with other problems, supporting features and project
constraints. As should be seen, design patterns are not a straitjacket, but a template that
contributes with useful guidelines when solving a frequent problem. So while conducting the
prior steps, bear in mind that singular requirements might imply further enhancements to
the pattern structure.

Moreover, Figure 4b shows that consecutive refinements made to a system can bring in new
patterns. Therefore all the major components of a system can be arranged following a
particular pattern, but once they are implemented another design pattern(s) can be widely
applied. It is important to confess that the patterns Iterator, Visitor, Adapter, Proxy and
Bridge in that order, have been those mostly applied by the author to several projects of
different nature. This statement is supported by measurements stored in a Measurements
Repository. They were performed by considering stable versions of the deliverables.

The previous discussion may seem vague but the fact is that pattern selection and
application can be seen like the art coders and system designers should become experts in.
Therefore straight answers are either complex to fulfill or yield in generic concerns. More
effective arguments can be obtained considering the notion of pattern systems. They put
together collections of patterns and state how they relate with each other, offering
guidelines for their implementation and how to combine them in order to satisfy the more
complex requirements demanded for specific applications. They also organize the
constituent patterns in order to speed up the process of finding those suitable for the
situation at hand. Nowadays, several such systems have been crafted12. Nevertheless, since
software gets done in many different ways, software teams should adequate them
according to their needs, possibilities and skills.

Furthermore, the previous examples show how the relationships established between
architectural artifacts (e.g. system processes in the run-time architecture, interfaces and
subsystems) look like design patterns or interact with them. Regularly design patterns are
abstractions lying between architectural patterns and programming idioms (e.g. classes,
algorithmic features, coding styles), but sometimes either major system components can be
arranged according to their structure, or they support idioms present in programming
languages (e.g. Python built-in iterator protocol, the for statement, list comprehensions, and
prototyping by means of the standard module copy). So two questions arise… Is there
anything else interacting with design patterns? When are design patterns discovered?

The second question is the most difficult to answer because it is not only concerned with
the nature of patterns but also with how software gets done by teams of individuals17. If the
development process is chaotic it could be almost impossible to know when patterns will be
discovered. Besides, the development process determines the relevant support artifacts and
also can promote the early depiction of an architecture (e.g. RUP18) or not (e.g. Extreme

17 O. Lang, “Emergencia de los patrones de diseño en las arquitecturas de software con
ayuda de RUP” (2007) III Taller de Calidad de Software, Informática 2007, ISBN
9789592860025.

18 I. Jacobson, G. Booch, and J. Rumbaugh “The Unified Software Development
Process” (1998). Addison Wesley Longman. ISBN: 0201571692.

The Python Papers, Volume 2, Issue 4 57

Programming19, alias XP). Architectures are in fact another relevant topic, since different
architectural patterns encourage the presence of different subsets of the full set of design
patterns. These should be the subjects to explore in order to obtain more answers.

Acknowledgments

Before the end it is necessary to thank professors Medardo Rodríguez and Luis Alberto
Zarrabeitia. Their lectures on Python and the foundations of the object model contributed
significantly to the understanding of the underlying concepts and technologies commented
in this paper, as well as for focusing on readability.

The anonymous referees made also several useful comments, which were very important to
enhance the contents and catch some mistakes. Together with the editors, they provided
guidelines which undoubtedly contributed to enhance the style and layout of the document.

19 K. Beck, C. Andres. “Extreme Programming Explained: Embrace Change” (2004) Second
Edition. Addison Wesley Professional. ISBN: 0321278658.

The Python Papers, Volume 2, Issue 4 58

Python Switch Statement

Lance Finn Helsten

2007-11-20

Abstract

The Python programming language does not have a built in switch/case
control structure as found in many other high level programming languages. It
is thought by some that this is a deficiency in the language, and the control
structure should be added. This paper demonstrates that not only is the
control structure not needed, but that the methods available in Python are
more expressive than built in case statements in other high level languages.

1 Introduction
The lack of switch...case statements in Python has caused some complaints that take the
form: “Python is simple so why doesn’t it have a simple switch...case statement”. I will show
that Python has a structure that is simpler and more expressive than the case constructs
that exist in other imperative programming languages.

This article is written to explain the history of the case from its genesis in assembly
language, to its current implementation in other languages, and give a formal definition of
case hen it will discuss the strengths and weaknesses of case as used in other languages.

Then I give two simple methods that will achieve the same objective as that desired with
switch...case and which will have more power than case as defined in other languages.

All of this is necessary as the likely-hood of switch...case being added is remote; it has been
requested and rejected by Guido van Rossum earlier this year (van Rossum, 2007). He also
mentions in PEP 3103 (van Rossum, 2007) that at PyCon 2007 there was no popular support
for adding switch...case to the language.

I do not discuss other methods of achieving the same results through the use of
if...elseif (Beck, 2005), or the use of exceptions (Isailovski, 2005): each of those try to
emulate other languages which is not the purpose of this paper.

2 Assembly
The case control structure had its genesis in assembly language in the form of a jump table
or vector table. Jump tables consisted of an array of memory addresses to blocks of
executable instructions well ordered on the values the variable could assume.

The execute a branch through a jump table required loading the variable and jump table
address, then using index addressing into the table the branch address is loaded, and then
a branch to that address would be taken. For the assembly (Listing 1) it requires three
instruction cycles regardless of the range for the variable. The memory used, assuming four
bytes for each instruction and address, is four bytes for each discrete value plus another
twelve bytes for the instructions (28 bytes in this example).

The Python Papers, Volume 2, Issue 4 59

Listing 1: Assembly Jump Table

jumptable:

DS address0

DS address1

DS address2

DS address3

case:

lw a0, variable

lw a0, jump_table(a0)

bra a0

Now compare with the test control structure, which most high level language programmers
associate with if...else if...else statements in C, C++, C#, Pascal, Java, PHP, Perl, or
Python. For the assembly (Listing 2) it requires two instructions for each test case and one
more for the variable load, in this example that requires nine instructions. The memory used
is eight bytes for each discrete value plus four for the load instruction (36 bytes in this
example).

Listing 2: Assembly Test

case:

lw a0, variable

cmp a0,0

beq address_0

cmp a0,1

beq address_1

cmp a0,2

beq address_2

cmp a0,3

beq address_3

In neither of the above cases is a check made to determine if the variable’s value is within
the valid range. case would require two tests, for less than and greater than the range,
which would add four instructions for a total of seven. test would require no extra testing as

The Python Papers, Volume 2, Issue 4 60

we know at the end of the block the variable value is invalid.

As can be seen the case is subject to O(1) or constant time, whereas the test is subject to
O(x) or linear time. In addition the memory required for test quickly approaches twice that
needed for case . This is a rare case where a trade-off of memory to gain speed does not
occur. Therefore jump tables have always been popular when programming in assembly.

There is a restriction which an attentive reader will have noticed in that the set of values
must be well ordered for it to be used by a variable in the jump table. In other words each
value in the set must be given a number 0,1,2,& to allow indexing into the table. This
means is that if the set consisted of the values {5,19,26,135} then these values would need
to be mapped to the set {0,1,2,3} or the jump table itself would need to have one-hundred
thirty-six entries where most of those entries would be value error handling addresses.

3 High Level Languages
ALGOL, the father of all procedural languages, did not have a case statement as the
concept of case had not been invented yet in high level languages. Then in 1965 a rarely
used language ALGOL W was released that contained switch...case statement invented by
C. A. R. Hoare which allowed for non-ordered non-overlapping values and ranges.

C and Pascal both derived from this parent language, and both had a form of case : C the
familiar switch (variable) case ... and Pascal using case variable begin
value1: C++, PHP, C#, and Java syntax are derived from the C version.

Generally the switch...case was converted to assembly as a sequence of test and branch
structures so performance is linear. Whereas in well optimized C compilers it was not
unusual for the switch...case to be reduced to a jump table whenever possible.

The limitation in any of the above languages is that a variable must be an integer (e.g. in C
this would include char, short, int, and long).

A problem with the C case is that complex code, that would be better placed into a sub-
routine, may be placed directly in the switch...case itself. The length of this code could be so
large that seeing the structure of the switch...case would be impossible: this does not imply
that placing code directly in the switch...case is a wrong; only that doing so reduces the
readability and maintainability of the source code.

4 Formal Definition
What is needed now is a formal definition of a generalized case . Thus case is defined as let
X be a countable set, let F be a set of functions, let c be a function that maps X to F where �f
� F �x � X : f = c(x).

In English, this means that for every value the case variable may take there is a function
that will be called. This seems fairly obvious from assembly jump tables and C switch...case
however they are limited to the countable set of integers, and not to a general countable
set. The definition given here allows all countable sets to be used as the domain for the
case variable.

This generalized case is not possible with language constructs in Algol, C, C++, Objective C,
C#, Java, or PHP. Though it is clear that if X is limited to the set of integers then this
describes a switch...case in C perfectly. To gain the generalized case requires writing special
code to handle other cases (for example when the variable is a string).

I will now show that Python is able to handle the generalized case and is therefore more
expressive.

The Python Papers, Volume 2, Issue 4 61

5 Python
The key to a Python case is to use the dictionary structure with the knowledge that
functions in Python are first-class. The general form (Listing 3) such that key_x represents
an x � X, and function_f represents a function f � F. This general form represents the c in
the definition, therefore it fulfills the definition.

Listing 3: Python Case General Form

{

key_1: function_1,

key_2: function_2,

key_3: function_3,

key_4: function_4

}.get(x, defaultFunction)()

Advantages of this structure are:

1. Any first-class type may be a key: including other functions.

2. Access is in constant time (O(1)).

3. There is a defaultFunction() to handle invalid keys.

4. Late binding of the functions allows for dynamic code.

5. The dictionary may be stored after it is created to improve speed (Listing 4): the
dictionary is interpreted a single time.

6. A dictionary may be selected and then a function generated from that dictionary
(Listing 5).

Listing 4: Stored Switch

MY_SWITCH = {...}

def fastSwitch(x):

return MY_SWITCH..get(x, defaultFunction)()

Listing 5: Selectable Switch

SWITCH_1 = {...}

SWITCH_2 = {...}

The Python Papers, Volume 2, Issue 4 62

def chooseSwitch(switch, x):

return switch.get(x, defaultFunction)()

chooseSwitch(SWITCH_2, x)

5.1 Pure Jump Table
For a pure jump table a simple sequence of functions in a list or tuple may be used (Listing
6). Functions then may be chosen based on a simple integer index in much the same way
that assembly jump tables (Listing 1) operate. This has the same O(1) advantage as a
dictionary, does not require typing of keys, but does have the limitation on the keys being
integers.

Listing 6: Python Jump Table

{

function_0,

function_1,

function_2,

function_3

}[x]()

5.2 C Style Case
For a C style case use a dictionary that maps integer keys to functions, and if a default is
needed use the get(x, defaultFunction) instead of placing the key in brackets (Listing
7). This is almost identical to the jump table case (Listing 6), but it is not a requirement that
all the keys be well ordered and sequential.

Fall through handling needs to be dealt with in each of the functions, but this has the
advantages of clarification of code, and misuse of fall through behavior. This also results in
the requirement that every case be explicitly placed in the dictionary.

Listing 7: Python C Style Switch

{

0: function_0,

1: function_1,

3: function_3,

7: function_7

}[x]()

The Python Papers, Volume 2, Issue 4 63

6 Conclusion
The expressive nature of a dictionary for case in Python eliminates the need to have a
switch...case statement placed in the language. A switch...case would obscure the
usefulness of this construct that exists currently, and to make it like a C switch...case would
require the limitation of the general case to keys that are integers.

The progress of computing has always been linked to the progress of the languages we
have used: machine code to assembly to C to Python. With this progress some constructs
must be left behind to allow more efficient and expressive constructs to replace them.
Therefore, to continue the progress of computing and languages a feature should be added
to a language when there is a demonstrable benefit in efficiency and expressiveness.

References
Guido van Rossum. A switch/case statement, June 2007. URL

http://www.python.org/dev/peps/pep-3103/.

Brian Beck. Readable switch construction without lambdas or dictionaries, April 2005.
URL http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/410692.

Zoran Isailovski. Exception-based switch-case, May 2005. URL
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/410695.

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/410695

The Python Papers, Volume 2, Issue 4 64

The Python Papers, Volume 2, Issue 4 65

The Python Papers, Volume 2, Issue 4 66

The Python Papers, Volume 2, Issue 4 67

The Python Papers, Volume 2, Issue 4 68

The Python Papers, Volume 2, Issue 4 69

The Python Papers, Volume 2, Issue 4 70

The Python Papers, Volume 2, Issue 4 71

The Python Papers, Volume 2, Issue 4 72

The Python Papers, Volume 2, Issue 4 73

The Python Papers, Volume 2, Issue 4 74

The Python Papers, Volume 2, Issue 4 75

The Python Papers, Volume 2, Issue 4 76

The Python Papers, Volume 2, Issue 4 77

The Python Papers, Volume 2, Issue 4 78

The Python Papers, Volume 2, Issue 4 79

The Python Papers, Volume 2, Issue 4 80

Upcoming Events
The following events, taken from the python.org events wiki20, are being held between
December this year and March 2008.

December 12, 2007: Cologne, Germany, monthly pyCologne meeting

December 13, 2007: IRC, Internet, Kubuntu Tutorials Day features "Get programming with
PyKDE 4"

March 15, 2008: Portland, Oregon Python workshop SIGCSE'08 (workshop 32) led by Atanas
Radenski

March 13, 2008: Chicago, Illinois, PyCon 2008 Tutorial Day

March 14-16, 2008: Chicago, Illinois, PyCon 2008

March 17-20, 2008: Chicago, Illinois, PyCon 2008 Sprints

To include your event in our next issue, or to include expanded event information, please
contact us directly to ensure that your event is represented as you would like. All events
available from the python.org events wiki will be included with a basic reference.

20 http://wiki.python.org/moin/PythonEvents

http://us.pycon.org/2008/sprints/
http://us.pycon.org/2008/conference/
http://us.pycon.org/2008/tutorials/
http://www.chapman.edu/~radenski/
http://www.chapman.edu/~radenski/
http://db.grinnell.edu/sigcse/sigcse2008/Program/Program.asp
http://studypack.com/comp/mod/resource/view.php?inpopup=true&id=15293
https://wiki.kubuntu.org/KubuntuTutorialsDay
http://wiki.python.de/pyCologne#Termine

The Python Papers, Volume 2, Issue 4 81

The Python Papers' Review Policy

0. Preamble
The Python Papers (ISSN 18343147) is intended to be both a industrial journal as well as an
academic journal, in the sense that the editorial board welcomes submissions from all aspects
related to the Python programming language, its tools and libraries, and community, both of
academic and industrial inclinations. The Python Papers aims to be a publication for the Python
community at large. In order to cater for this, The Python Papers seeks to publish submissions under
2 main streams: the industrial stream (technically reviewed) and the academic stream (peer
reviewed). This policy statement seeks to clarify the process of technical review and peerreview in
The Python Papers.

1. Right of submission author(s) to choose streams
The submission author(s); that is, the author(s) of the article or code or any submissions in any
other forms deemed by The Python Papers editorial board (hereafter known as 'editorial board') as
being suitable; reserves the right to choose if he/she wants his/her submission to be in the industrial
stream, where it will be technically reviewed, or in the academic stream, where it will be peer
reviewed. It is also the onus of the submission author(s) to nominate the stream. The editorial board
defaults all submissions to be industrial (technical review) in event of nonnomination by the
submission author(s) but the editorial board reserves the right to place such submissions into the
academic stream if it deems fit.

2. Right of submission author(s) to nominate potential reviewers
The submission author(s) can exercise the right to nominate up to 4 potential reviewers (hereafter
known as "external reviewer") for his/her submission if the submission author(s) choose to be peer
reviewed. When this right is exercised, the submission author(s) must declare any prior relationships
or conflict of interests with the nominated potential reviewers. The final decision rests with the
Chief Reviewer.

3. Right of submission author(s) to exclude potential reviewers
The submission author(s) can exercise the right to recommend excluding any reasonable numbers of
potential reviewers for his/her submission. When this right is exercised, the submission author(s)
must indicate the grounds on which such exclusion should be recommended. Decisions for the
editorial board to accept or reject such exclusions will be solely based on the grounds as indicated
by the submission author(s).

4. Peerreview process
Upon receiving a submission for peerreview, the EditorinChief (hereafter known as "EIC") may
choose to reject the submission or the EIC will nominate a Chief Reviewer (hereafter known as

The Python Papers, Volume 2, Issue 4 82

"CR") from the editorial board to chair the peerreview process of that submission. The EIC can
nominate himself/herself as CR for the submission. The CR will send out the submission to TWO or
more external reviewers to be reviewed. The CR reserves the right not to call upon the nominated
potential reviewers and/or not to call upon any of the excluded potential reviewers as suggested by
the submission author(s). The CR may also concurrently send the submission to one or more
Associate Editor(s) (hereafter known as "AE") for review. Hence, a submission in the academic
stream will be reviewed by at least three persons, the EIC as CR and two external reviewers.
Typically, a submission is reviewed by three to four persons: the EIC as CR, an AE, and two
external reviewers. There is no upper limit to the number of reviews in a submission. Upon
receiving the review from external reviewer(s) and AE(s), the CR decides on one of the following
options: accept without revision, accept with revision, reject; and notifies the submission author(s)
of the decision on behalf of the EIC. If the decision is "accept with revision", the CR will provide a
deadline to the submission author(s) for revisions to be done and will automatically accept the
revised submission if the CR deems that all revision(s) were done; however, the CR reserves the
right to move to reject the original submission if the revision(s) were not carried out by the
stipulated deadline by the CR. If the decision is "reject", the submission author(s) may choose to
revise for future resubmission. Decision(s) by CR or EIC is final.

5. Technical review process
Upon receiving a submission for technical review, the EditorinChief (hereafter known as "EIC")
may choose to reject the submission or the EIC will nominate a Chief Reviewer (hereafter known as
"CR") from the editorial board to chair the review process of that submission. The EIC can
nominate himself/herself as CR for the submission. The CR may decide to accept or reject the
submission after reviewing or may seek another AE's opinions before reaching a decision. The CR
will notify the submission author(s) of the decision on behalf of the EIC. Decision(s) by CR or EIC
is final.

6. Main difference between peerreview and technical review
The process of peerreview and technical review are similar, with the main difference being that in
the peer review process, the submission is reviewed both internally by the editorial board (EIC/CR
and assigned AE(s)) and externally by external reviewers (nominated by submission author(s) or
nominated by EIC/CR). In a technical review process, the submission is reviewed by the editorial
board and any external review may be at the editorial board's discretion.

7. Umbrella philosophy
The Python Papers' editorial board firmly believes that all good (technically and/or
scholarly/academic) submissions should be published and that the editorial board is integral in
refining all submissions. The board believes in giving good advice to all submission author(s)
regardless of the final decision to accept or reject and hopes that advice to rejected
submissions will assist in their revisions.

	The Python Papers
	8 Responses to “Eight tips to start with Python”

	1 Introduction
	2 Assembly
	3 High Level Languages
	4 Formal Definition
	5 Python
	5.1 Pure Jump Table
	5.2 C Style Case
	6 Conclusion
	References

