
The Python Papers

Volume 3, Issue 1

pythonpapers.org

Journal Information

The Python Papers

ISSN: 1834-3147

Editors

Tennessee Leeuwenburg
Maurice Ling
Richard Jones

Stephanie Chong

Referencing Information

Articles from this edition of this journal may be referenced as follows:

Author, “Title” (2007) The Python Papers, Volume N, Issue M, pp. m:n

e.g. Maurice Ling, “Firebird Database Backup by Serialized Database Table Dump” (2007) The Python Papers, Volume 2,
Issue 1, pp. 7:15.

Copyright Statement

© Copyright 2007 The Python Papers and the individual authors
This work is copyright under the Creative Commons 2.5 license subject to Attribution,

Noncommercial and Share-Alike conditions. The full legal code may be found at
http://creativecommons.org/licenses/by-ncsa/2.1/au/

The Python Papers was first published in 2006 in Melbourne, Australia.

Referees

An academic peer-review was performed on all academic articles. A
list of reviewers will be published in each December issue. This has
been done in order to ensure the anonymity of reviewers for each
paper.

The Python Papers, Volume 3, Issue 1 1

The Python Papers
Volume Three, Issue One : March 2008

In this Edition:

Articles and Editorials:

Editorial Page 3
Editor-In-Chief, Tennessee Leeuwenburg

Pyfundamentalism: The Emotions Provoked by Python Pages 5-6
Gloria W. Jacobs

When doing a search for the term “Pyvangelism”, I found this link:
http://webpages.cs.luc.edu/~mt/Python-First/Py1.html, which is a small series of slides,
succinctly written by yet another Python fanatic. The words fanaticism and evangelism imply
the crossing of a boundary from rational to purely emotional state of mind. Fanaticism, or any
form of fundamentalist allegiance to any one person, place or thing, usually worries me. It
implies that the person may have relinquished all mental power to re-evaluate other tools,
techniques and options. At the same time, it's fascinating when a programming language
elicits deep emotion, and causes people to cross the line of rational thought into emotional
feeling and expression.

What is ShowMeDo? Pages 7-19
Ian Oswald and Kyran Dale

ShowMeDo is a tutorial video site mostly for open-source software with a strong Python focus.
Many videos are made by our open-source Authors and we also make our own tuition-focused
series especially for Python via a subscriptions package.

You can think of us as a 'YouTube for education' but note that we take a very strong anti-
YouTube approach to new material and comments. Whilst anyone can make a video, all
videos are previewed before being accepted, we don't believe that a wisdom-of-the-crowds
approach is suitable when dealing with education. We strive to provide our Authors with a
trustworthy portal through which their knowledge is shown.

Over 43,000 videos are played each month, we host all of them under liberal licenses (the
authors typically choose a Creative Commons license). We refuse to have the all-too-typical
adverts so you experience a clean site that is focused on teaching you new skills. You can
even embed the videos in your own site just like with YouTube - except that ours are crystal
clear!

An Efficient Scalar Package in Python Pages 20-25
Russell A. Paielli

A Python class was designed to represent physical scalars and to eliminate errors involving
implicit physical units (e.g., confusing angular degrees and radians). The standard arithmetic
operators are overloaded to provide syntax identical to that for built-in numeric types. The

http://webpages.cs.luc.edu/~mt/Python-First/Py1.html

The Python Papers, Volume 3, Issue 1 2

scalar class does not define any units itself but is part of a package that includes a complete
implementation of the standard metric system of units and many common non-metric units.
It also allows users to define a specialized or reduced set of appropriate physical units for any
particular application or domain. Once an application has been developed and tested, the
scalar class can easily be switched off, if desired, to achieve the execution efficiency of
operations on built-in numeric types, which can be nearly two orders of magnitude faster. The
scalar class can also be used for discrete units to enforce type checking of integer counts,
thereby enhancing the built-in dynamic type checking of Python. The scalar package is
available from http://RussP.us/scalar.htm.

PyGTK, PyQT, Tkinter and wxPython comparison Pages 26-37
Guilherme Polo

Python offers a multitude of GUI toolkits, much more than described here, for assisting on
development of graphical applications, and by having so many options available the chances
are you will be unable to make a good decision. A good decision would be one that fulfill your
requirements, and in order to achieve this it is necessary an understanding of choices
available.

Python Events Page 81

A list of upcoming Python events.

Peer Reviewed Submissions:

Doctest and unittest... now they'll live together happily Pages 38 - 51
Olemis Lang

This article presents a novel way to verify doctests while unittest runs. A new object oriented
API was crafted, and an underlying glue layer was built in order to reconcile both frameworks'
interfaces. In the process design patterns have been applied. The tool has been used to test
several examples. It provides new loaders to extract test cases from doctests. It also records
separately into unittest test results the match made for individual examples. Therefore
reports are consistent with unittest's, and automated test analysis require no further parsing.
Doctest readability and unittest flexibility are finally together.

The Python interpreter as a framework for integrating
scientific computing software-components

Pages 52 - 64

Michel F. Sanner

Building and simulating complex molecular system requires the tight interoperation of a
variety of software for tools originating from various scientific disciplines and usually
developed independently of each other... the Python interpreter serves as the integration
framework and provides a powerful and flexible glue for rapidly prototyping applications from
reusable software components.

Parts-of-Speech Tagger Errors Do Not Necessarily Degrade
Accuracy in Extracting Information from Biomedical Text

Pages 65 - 81

Maurice HT Ling, Christophe Lefevre and Kevin R Nicholas

An ongoing assessment of the literature is difficult with the rapidly increasing volume of
research publications and limited effective information extraction tools which identify entity
relationships from text. ...This study aims to evaluate the parts-of-speech (POS) tagging
accuracy and attempts to explore whether a comparable performance is obtained when a
generic POS tagger, MontyTagger, was used in place of MedPost, a tagger trained in
biomedical text.

http://RussP.us/scalar.htm

The Python Papers, Volume 3, Issue 1 3

Letter from the Editor

Tennessee Leeuwenburg

Hello to the readers of The Python Papers!

This issue marks the beginning of Volume 3. It almost feels like we are no longer
in “startup” mode. This issue is stuffed full on content, so thanks to all those in
the Python community who have contributed to this journal over its lifetime. We
have a fantastic, in-depth article on ShowMeDo who are setting a real example
for online Python content delivery. Ian Oswald and Kyran Dale have kindly put a
lot of work into giving a tour of what they have to offer.

Our newest editor, Guilherme Polo also gives us an up-do-date exploration of a number of
choices for Python GUI development, showing the pros and cons of the major toolkits. Gloria W.
Jacobs continues her fine column, with this issue covering “PyVangelism”. Most Python
developers that I talk with are passionate about their choice of language, so I'm sure this will
spark a great deal of interest. Unfortunately, I can't simply list every article in the journal here,
but read on for more great content.

A special thanks go out to those who help us by proof-reading our articles, pointing out errors
and helping us to manage the workload of maintaining a good editorial standard in a volunteer
publication.

Introducing The Team

Tennessee Leeuwenburg – Editor-in-Chief

Tennessee Leeuwenburg is a software developer working at the Australian Bureau of
Meteorology on automatic text generation of weather forecasts. Prior to this he spent time
working on meteorological data transfer standards in the form of the OpenDAP database
system.

Maurice Ling – Associate Editor

Maurice Ling is a PhD candidate in the department of Zoology of The University of Melbourne
working on text analysis of biological literature for the purpose of understanding hormone
interactions in the mouse mammary cell.

Stephanie Chong – Associate Editor

Stephanie is currently studying Arts/Law at The University of Melbourne.

Guilherme Polo – Associate Editor

I like variety, in my somewhat short time (around 7 years) as developer I have developed
programs related to Network, Data compression, Database, Web, Desktop, Data Modeling, Text
Parsers, among others, in diverse languages. Almost always you will find me programming,
reading, writing about something I enjoy, or even get me studying Computer Science at State
University of Maringá (Brazil).

The Python Papers, Volume 3, Issue 1 4

Contacting The Python Papers

The editors may be contacted via email at:editor@pythonpapers.org. We are always happy to
receive feedback, suggestions for improvement and ideas for future articles and topics.

Contribute to The Python Papers

If you would like to contribute an opinion piece, an article, participate in an interview or submit
a paper for review and publication, please don't hesitate to contact us at
editor@pythonpapers.org

mailto:editor@pythonpapers.org
mailto:editor@pythonpapers.org
mailto:editor@tennessee.id.au

The Python Papers, Volume 3, Issue 1 5

Pyfundamentalism: The Emotions Provoked by Python
Gloria W. Jacobs

When doing a search for the term “Pyvangelism”, I found this link:
http://webpages.cs.luc.edu/~mt/Python-First/Py1.html, which is a small series of slides,
succinctly written by yet another Python fanatic. The words fanaticism and evangelism imply
the crossing of a boundary from rational to purely emotional state of mind. Fanaticism, or any
form of fundamentalist allegiance to any one person, place or thing, usually worries me. It
implies that the person may have relinquished all mental power to re-evaluate other tools,
techniques and options. At the same time, it's fascinating when a programming language
elicits deep emotion, and causes people to cross the line of rational thought into emotional
feeling and expression.

I think the reasons why this happens become obvious if you've experienced this yourself.
Python's learning curve is quick, even for novice software developers, hobbyists and casual
enthusiasts who like to dabble in software. Advanced, fairly complex operations can be
learned and done in Python very quickly. And by now, the number of “dabblers” is so high
that the vast amount of examples makes it easy to get a running start on any aspect of
Python. There are numerous new blogs, comprised of only a few new pages, touting the “Hey!
Look what I just did in Python!” epiphanies people have experienced. It's so shockingly easy
for so many, that they feel the need to show the world how shockingly easy it was.

The appeal of Python to the seasoned developer is more relief than epiphany, but elicits a
similar reaction. The great relief of having to spend only two days writing and testing socket I/
O code which would have taken you first a week to write, and then another week to test, in C,
goes beyond words. For the seasoned developer, it give us new hope of actually having time
to visit the beach, or walk in the woods once again.

The new, true test of the viability of a programming language today has become that feeling
of empowerment, the “ah-ha” moment of “Hey, I can do this too, even though I have not
achieved wizard status”. In the very recent past, programming languages were what they
were. Everyone complained about their quirks and horrors, but we all simply accepted them,
warts and all. If a language made our programming tasks torturous, we shrugged it off,
hunkered down behind our desks, and did what we had to do to get the driver, app, network
protocol, or GUI working.

I have to admit, there was a great pride in achieving “wizard status” in UNIX environments
back in the 1980's. I relished the fact that I was the only person in my group back then who
knew what an alignment error was in C, and understood what caused it, and how to fix it.
Another example is Endianness. Most developers today have probably heard of Endianness,
but will probably never have to deal with it, or genuinely understand it. Back then it was a
common issue, and your Endian knowledge was one respectable way of proving your UNIX
prowess, and showing your “battle scars” from the trenches of UNIX software development.

The UNIX wizard analogy was very real in the 1980's; so real in fact, that a series of UNIX
wizard posters were printed and handed out at UNIX Expo, and other UNIX conventions.
People stood in line for them, and even laminated them and hung them over their desks in
pride. They are now collectors items. I am auctioning off two of these Unix Magic posters (
http://www.devchix.com/2008/01/20/two-mint-condition-original-unitech-unix-magic-posters-
for-auction/). Yes, I too stood in line for them, so often that I have extras. I was very young,
and admired whole wizard imagery, as many of us young role paying gamers did. It was “so
cool” back then, as cool as being Dungeon Master. Now it's laughable, but the seriousness of
the imagery was genuine back then. The stereotypical smart AT&T employee was a DMTS
(Distinguished Member of Technical Staff), did not need to wear a badge because everyone
read his book and knew who he was, and had the physical appearance of a gray haired

http://www.devchix.com/2008/01/20/two-mint-condition-original-unitech-unix-magic-posters-for-auction/
http://www.devchix.com/2008/01/20/two-mint-condition-original-unitech-unix-magic-posters-for-auction/
http://webpages.cs.luc.edu/~mt/Python-First/Py1.html

The Python Papers, Volume 3, Issue 1 6

“wizard”. Many of us young neophytes were not beholden to the wizard imagery. It didn't
properly represent us, although we could embody the role. But it was an image which paid
great respect to our UNIX elder pioneers. For that reason we too respected the wizard image,
and kept it alive. But in our hearts, we knew we would become “wizards” much faster than
many of our elders.

To some, these new, easy-to-learn languages were a threat to their treasured knowledge.
They worked long and hard to achieve their UNIX wizard status, and felt that everyone else
should also. RTFM was “the way”, the only way to properly learn, in many UNIX environments
back then. But this was rapidly changing, to the dismay of many elitist “wizards”.

I saw, and experienced a definitive change in mindset from wizard status to casual user with
the advent of the Sun Microsystems “Pizza Box”. Their machines did not arrive on crates, like
all other UNIX machines. These were workstations, which arrived in boxes which you could lift
by yourself, with complete and easy to read manuals. Much like a PC of today, you unpacked,
it, flipped through the manual, set it up, and you were up and running.

I can honestly say that I learned most of my UNIX system administration skills by reading the
Sun Microsystems manuals of the late 80's. I was contracted out to law firms, to set up X
terminals, transceivers, networking cable, modems, UUCP, cron and email daemons and
services, etc. I learned all of it directly from the manuals. It was empowering, to be 22 years
old, and have achieved “wizard” status from a series of manuals.

The languages to follow were just as empowering, allowing rapid development (a phrase
which was an oxymoron in the 1980's). Over these years, I had never heard developers
evangelizing C++, Java, or PHP. They were better languages than their predecessors – handy,
but not worth preaching about. So, why does Python elicit the preacher in the software
developer, and cause them to cross the line from rational acceptance to fundamentalist
adoration?

I can tell you from my personal experiences that Python seems to be the easiest language to
teach online. In my GrrlCamp group, the programming skill varies from novice to very
experienced, but in other languages. When I demonstrate things in Python, everyone gets it.
Very few discussions are about syntax and language nuance. Most discussions are about our
own design, implementation and use of the language. That alone is a beautiful thing, and for
this reason, our progress through this project is amazing.

I recently started another, smaller group online called PySheep. We are a small group of
female volunteers, writing supplemental image display and manipulations tools in Python and
Android, for the Electric Sheep project. For this project, I've chosen WxPython for the cross
platform GUI. WxPython is a robust series of Python wrappers written using SWIG, around the
WxWidgets libraries. In one day, I got the basics of mpeg to png conversion, and png frame
display working. Rapid development is an understatement. This is lightning fast development,
and it is most definitely empowering.

Could this empowerment make me feel like writing about my experiences, and encouraging
the use of Python. Certainly. It motivated me to write this article. Am I a pyfundamentalist?
Well, my answer is, right now, yes. I keep an open mind, I am aware of, and was bitten by the
GIL1 issue on one recent project. I do re-evaluate my choices on a regular basis, and Python
still rises to the top of my list as the easiest, most powerful and functional general purpose
language out there right now.

1 Global Interpreter Lock

The Python Papers, Volume 3, Issue 1 7

What is ShowMeDo?
Ian Oswald and Kyran Dale

ShowMeDo is a tutorial video site mostly for open-source software with a strong Python focus.
Many videos are made by our open-source Authors and we also make our own tuition-focused
series especially for Python via a subscriptions package.

You can think of us as a 'YouTube for education', but note that we take a very strong anti-
YouTube approach to new material and comments. Whilst anyone can make a video, all
videos are previewed before being accepted, we don't believe that a wisdom-of-the-crowds
approach is suitable when dealing with education. We strive to provide our Authors with a
trustworthy portal through which their knowledge is shown.

Over 43,000 videos are played each month, we host all of them under liberal licenses (the
authors typically choose a Creative Commons license). We refuse to have the all-too-typical
adverts so you experience a clean site that is focused on teaching you new skills. You can
even embed the videos in your own site just like with YouTube - except that ours are crystal
clear!

70 authors share their knowledge with thousands of daily visitors. Python was our original
focus (for the sake of history see: http://showmedo.com/videos/series?
name=PythonDownloadInstallTest) and forms 1/3 of our 500 videos. Videos are typically 5-30
minutes long and are shown in sharp VGA resolution backed with a source-code listing and
blog-like Comments for conversation. New videos are added every week.

Whilst our main focus is Python we have a range of other topics extending to Perl, Ruby,
Blender, Inkscape, OpenOffice and even OpenStreetMap. We welcome new screencasts on
any computing topic.

A brief history

We wanted a way to share geek-knowledge around the world 24/7 as if the friendly geek was
sitting next to you. What we wanted didn't exist so we built our own!

The video tutorials are the foundation stone from which we'll build some larger ideas
including on-line live group tuition. Kyran and I are a pair of Artificial Intelligence researchers
and Python programmers who turned to teaching and we've attracted a group of keen
authors who choose to work with us. Backed by years in academia and industry, we know
how to teach so that our users learn about new topics quickly and easily.

Notable Python Series and Authors

Over the next few pages, we will be introduced to some of the authors who have contributed
to ShowMeDo.

http://showmedo.com/videos/series?name=PythonDownloadInstallTest
http://showmedo.com/videos/series?name=PythonDownloadInstallTest

The Python Papers, Volume 3, Issue 1 8

Notable Author: Kyran Dale

Kyran (http://showmedo.com/videos/?author=8) is the co-founder of ShowMeDo and has
authored our most-popular-ever series which is an introduction to wxPython for new GUI
programmers (http://showmedo.com/videos/series?name=PythonWxPythonBeginnersSeries).

http://showmedo.com/videos/series?name=PythonWxPythonBeginnersSeries
http://showmedo.com/videos/?author=8

The Python Papers, Volume 3, Issue 1 9

Notable Author: Ian Oswald

Ian (http://showmedo.com/videos/?author=2) is the other co-founder of ShowMeDo. Ian has
authored 64 videos. Most are for Python including long Python tutorials with exercises for
subscribers.

One of Ian's most popular series is the subscriber-only 'Python 101 - easygui and csv' which
takes a new Python programmer through the task of building a simple user-interface to read a
comma separated file of numbers. The numbers are manipulated, a new file is generated and
unit-tests are used to verify that the program works exactly as expected.

http://showmedo.com/videos/?author=2

The Python Papers, Volume 3, Issue 1 10

Notable Author: Siddhi

Siddhi (http://showmedo.com/videos?author=1982) and 'empty'
(http://showmedo.com/videos/?author=4405) have authored a number of Django tutorials
(http://showmedo.com/videos/django). Siddhi's 'Create a wiki in 20 minutes'
(http://showmedo.com/videos/series?name=v7kABKL6R) has been one of our most popular
series since its addition last year.

http://showmedo.com/videos/series?name=v7kABKL6R
http://showmedo.com/videos/django
http://showmedo.com/videos/?author=4405
http://showmedo.com/videos?author=1982

The Python Papers, Volume 3, Issue 1 11

Notable Author: André Roberge

André Roberge (http://showmedo.com/videos/?author=22) is 'a Theoretical Physicist by
training, a University President by accident, and a hobbyist Python programmer' and creator
of the excellent Crunchy which runs a Python interpreter inside Firefox. His videos show you
how to try Python code samples using a nice editor directly inside a web page.

http://showmedo.com/videos/?author=22

The Python Papers, Volume 3, Issue 1 12

Notable Author: Jeff Rush

Jeff Rush (http://showmedo.com/videos/?author=709) has been the chair of PyCon 2006 and
2007, the Python Advocacy Co-ordinator and organises the Dallas-Ft. Worth Pythoneers. His
15 videos will teach you Python via walk-throughs, show you IPython in action and teach you
to screencast.

http://showmedo.com/videos/?author=709

The Python Papers, Volume 3, Issue 1 13

Notable Author: Lucas Holland

Lucas Holland (http://showmedo.com/videos/?author=79) covers both English and German
open-source tools and languages with his friend Marius Meinert and has produced 35
tutorials. They make screencasts from two locations in Germany joined via Skype and a
collaborative recording environment.

http://showmedo.com/videos/?author=79

The Python Papers, Volume 3, Issue 1 14

Notable Author: Horst Jens

Horst Jens (http://showmedo.com/videos/?author=71) was previously featured in Volume 2
Issue 2 of the Python Papers. He has authored 25 videos with various students at HIT
(www.hit.co.at) and other schools on Python and open-source topics.

Whilst many of Horst's videos are in English, some are English-subtitled with spoken German
or Chinese. Horst often uses an interesting technique - his students are shown in a small web-
cam window to the side of the screencast so you can see them talking as they present.

http://www.hit.co.at/
http://showmedo.com/videos/?author=71

The Python Papers, Volume 3, Issue 1 15

Case study - Erik and 'developing emol!'

Erik Thompson (http://showmedo.com/videos/?author=116) has authored 2 series for
ShowMeDo. The first was on the 3D Python physics engine VPython, the second is for a 3D
molecule viewer (using wxPython and PyOpenGL). Both series are well over an hour long. Erik
writes on why he chose to host his videos with ShowMeDo...

I s t art e d li st e nin g a n d w a t c hin g p o d c a s t s a c o u pl e y e a r s a g o a n d h a d th e u r g e t o p ut s o m e t hin g o ut th e r e
m y s e l f. I w o u n d u p m a kin g a vi d e o tut orial o n th e e a s y t o u s e 3 D P y t h o n p r o g r a m mi n g libra r y c all e d
V P yt h o n (http://vpyth o n. o r g) . In th e vi d e o s e r i e s I u s e d V P y t h o n t o p e r f o r m v a ri o u s p h y s i c s s i m ul ati o n s . I
w a nt e d t o r e vi e w m y p h y s i c s a n d I fi gur e d a g o o d w a y t o r e vi e w i s t o try a n d e x pl ain th e s u b j e c t t o
s o m e o n e e l s e . S o , rat h e r th a n g o fin d s o m e o n e n e a r b y w h o w o ul d li st e n t o m e ra m bl e , I m a d e th e vi d e o
tut orial s e r i e s . C r e a tin g a vi d e o tut orial g e a r e d t o w a r d s a P y t h o n p r o g r a m mi n g lib rar y c e r t ainly li mit e d m y
p o t e ntial a u di e n c e c o m p a r e d t o c r e a tin g s o m e t hin g lik e a g e n e r al t e c h p o d c a s t , b u t ni c h e s u b j e c t s all o w
f o r d e e p e r a n d m o r e int e r e s tin g c o nt e n t th a n i s g e n e r ally f o u n d in th e m o r e p o p ul ar p o d c a s t s o u t th e r e . I’ m
c o ntin u ally a m a z e d at th e n u m b e r o f p e o pl e w h o a c t u ally d o w a t c h th e vi d e o tut orial s a n d h a v e p o s t e d a n d
e m a il e d p o s iti v e f e e d b a c k .

T h at s e r i e s w a s c r e at e d b e f o r e I k n e w a b o ut S h o w M e D o a n d I p r e tty m u c h h a d t o m a int ain a w e b s it e f o r it
m y s e l f a n d vi e w e r s h a d t o d o w nl o a d larg e a vi fil e s , b e c a u s e I h a d n o id e a h o w t o e m b e d a fla s h pl a y e r o f
d e c e n t q u ality int o m y w e b s it e . A m a j o r r e a s o n I d e c i d e d t o u s e S h o w M e D o t o h o s t m y vi d e o s e r i e s i s th at
S h o w M e D o m a k e s s c r e e n c a s t s a c t u ally lo o k r e a s o n a bly g o o d w h e n w at c h e d thr o u g h a fla s h pl a y e r.
S c r e e n c a s t s o n Y o u Tu b e t e n d t o lo o k lik e a b l urry m e s s c o m p a r e d t o S h o w M e D o b e c a u s e Y o u Tu b e u s e s
o f a s m all e r pl a y e r a n d c o d e c s th at a r e o p ti mi z e d f o r g e n e r al vi d e o rath e r th a n f or a s c r e e n c a s t .
S h o w M e D o al s o all o w s u s e r s t o d o w nl o a d th e vi d e o s s o th e y c a n w a t c h th e m in th eir f a v o rit e m e d i a
pl a y e r. A n ot h e r b i g r e a s o n I w a nt e d m y vi d e o s o n S h o w M e D o i s th at th e y h a v e a P y t h o n a n d F L O S S
h e a v y c o m m u nity w hi c h m a k e s it e a s y f o r p o t e n tial vi e w e r s w h o m i g ht b e int e r e s t e d in m y P y t h o n vi d e o s
t o c o m e a c r o s s th e m .

R e c e n tly I s t a rt e d a n e w s e r i e s c all e d D e v e l o pin g e m o l! th at i s m e a n t t o b e a c r o s s b e t w e e n a tut orial a n d
a d o c u m e n t ar y f o r c r e a tin g a n O p e n S o u r c e a p pli c ati o n . T h e s e r i e s diff e r s fr o m m a n y o t h e r P y t h o n
tut orial s o u t th e r e in th at rath e r th a n s i m ply f o c u s i n g o n a s i n gl e p r o g r a m mi n g lib rar y it att e m p t s t o s h o w
s o m e o f th e o t h e r thin g s in v ol v e d with c r e a tin g a p r o g r a m . D e v e l o pin g e m o l! int e n d s t o c o v e r e v e r yt hin g
fr o m d e s i g n , h a vi n g th e p r oj e c t h o s t e d , u si n g th e B a z a a r v e r s i o n c o ntr ol s o ft w a r e , c o di n g , a n d d e b
p a c k a g e c r e a ti o n . T h e fin al p r o g r a m w ill b e a 3 D m o l e c ul e vi e w e r b uilt with P y O p e n G L , w x P y t h o n , a n d
S Q Lit e a n d h o s t e d o n L a u n c h p a d (http://lau n c h p a d.n e t/e m ol/) . M y s e c r e t h o p e f or th e vi d e o s e r i e s i s t o
attra c t futur e d e v e l o p e r s int e r e s t e d in e n h a n ci n g o r b r a n c hin g o ff th eir o w n v e r s i o n o f th e m o l e c ul e vi e win g
p r o g r a m . W h at b e tt e r w a y t o l e ar n a b o ut g e ttin g in v ol v e d with a n O p e n S o u r c e p r o g r a m th a n b y s e e i n g a
d o c u m e n t ar y o f a c t u ally h o w it w a s d e s i g n e d a n d c o d e d ? A s a s t u d e nt at C a lifor nia S t at u e U ni v e r s ity L o n g
B e a c h , I’ m in v ol v e d with r e s e a r c h in v ol vin g c o m p ut ati o n al c h e m i s tr y a n d I pl a n o n e v e n t u ally g e ttin g int o
c o m p ut ati o n al d r u g d e s i g n . T h e p r o g r a m h a s th e p o t e ntial t o b e c o m e u s e f ul f or m y r e s e a r c h.

M y o t h e r h o p e s f o r th e s e r i e s a r e s i m ply t o e n c o u r a g e o t h e r s t o c r e a t e th eir o w n O p e n S o u r c e p r o g r a m s
a n d t o e n c o u r a g e o t h e r s t o c r e a t e th eir o w n int e r e s tin g vi d e o tut orial s/d o c u m e n t ari e s f or m e t o e nj o y
w a t c hin g . It’s p r e tt y e a s y t o g e t s t a rt e d . A ll y o u n e e d i s a m i c r o p h o n e a n d t o in s t all a n y o f a n u m b e r o f fr e e
s o ft w a r e p a c k a g e s a v aila bl e t o c r e at e th e s c r e e n c a s t . O n c e y o u’v e r e c o r d e d y o u r tut orial (u s u ally a s a n
a vi fil e) S h o w M e D o m a k e s th e r e s t o f th e jo b e x tr e m e l y e a s y b y r e-e n c o din g it f or u s e in th eir fla s h pl a y e r
a n d m a ki n g it a v aila bl e in th eir fri e n dly c o m m u nity. It’s p r e tt y fu n t o h a v e s t uff o u t th e r e th at y o u’ v e c r e at e d
s o I e n c o u r a g e th e r e a d e r s o f T h e P y t h o n P a p e r s t o g i v e it a try!

Learn Python the Easy Way with a ShowMeDo Subscription

Our goal has always been to help document open-source software (especially Python!) and to
ease the learning-curve for a new user. Kyran and I decided during late 2007 to work on
ShowMeDo full-time, both building the environment for our authors and delivering new
tutorials under a subscription package.

We are completely focused on our goal of making Python easy to learn for everyone -
especially for new users. We'll show you the important modules, walk you through building

http://launchpad.net/emol/
http://vpython.org/
http://showmedo.com/videos/?author=116

The Python Papers, Volume 3, Issue 1 16

useful applications, help you learn to debug and unit-test and we'll test your knowledge with
exercises and worked-solutions. We've done the research so you don't have to.

"As Ian says somewhere, he's found, organized, and presented information that would take
weeks or months to learn in the ordinary way. Even if your time is worth only $10 per hour, I
figure the value in time saved is at least $800. The skills are priceless." - Vincent DiCarlo on
our first Subscriber series (Python Development on XP).

Our current topics include graphical user interface with wxPython and easygui, file
reading/writing, using IDEs, debugging, and refactoring. Future topics will include writing web
and desktop applications, reliably testing websites, controlling Windows applications using
pyWin32, writing GUIs, talking to databases, writing games and more.

The most recent subscriber-only series teaches the viewer to build a wxPython-based Image
Viewer (http://showmedo.com/videos/series?name=To3wW0reK) and runs for over an hour.
The viewer learns how to build a skeleton wx application which they can reuse, then add
menus, a splash screen and more. The series includes 3 exercises with fully-worked solutions.

The plan costs the same as several cups of coffee per month. If you need to refresh your skill-
set and you like the idea of learning at your own pace, backed by helpful admins who can
answer your questions and guide you forward then please visit our Subscriptions page to
learn more (http://showmedo.com/subscribe).

Additions to the main site

We run two Google Groups, use a blog for video-announces (which goes out to the Planet
Pythons) and have a wiki for additional material.

Our first Google Group is focused on Authors - come here to talk to the Authors and learn
about screencasting on Linux, Mac and Windows:
http://groups.google.com/group/showmedo

Our second Group, just recently established, is focused on users who are learning new skills.
It enables you to ask questions to other users who have watched the same videos as you:

http://groups.google.com/group/showmedo
http://showmedo.com/subscribe
http://showmedo.com/videos/series?name=To3wW0reK

The Python Papers, Volume 3, Issue 1 17

http://groups.google.com/group/showmedo-learners

The blog is used to post notifications to the two Planet Python aggregators announcing new
Python series to the world at large:
http://blog.showmedo.com/

The wiki holds additional information including some source-code, wallpaper, notes on video
making and editing and background material on some of the videos:
http://wiki.showmedo.com/index.php/Main_Page

We also announce videos to relevant mailing lists on behalf of our authors including
wxPython-users and Python's Tutor list. Whilst we encourage our Authors to publicise their
own videos we help them out as much as possible.

Getting Involved

Why would you want to make videos? Perhaps you want to give back to a favoured open-
source project by showing how it works - this is especially useful for the more complex tools
and modules.

You might want to encourage others to try the project, maybe you want to show why this
project is better than another. Whatever your reason - we are interested in hosting your
screencasts and helping you find the right viewers.

Users love to sit back and be shown exactly why they should use a tool and they're not afraid
to say Thank You – our authors receive over 160 comments each week
(http://showmedo.com/recentComments) from satisfied users. By sharing your knowledge
you'll help to promote the project you show and you'll build your own reputation in the
community.

Seen recently on http://showmedo.com/recentComments:

"I think thi s i s b y far th e m o s t e x c e ll e nt u n d e r s t a n din g I h a v e h a d o n h o w p yt h o n w o r k s . I b o u g ht m ultipl e
b o o k s , b u t th e p r o bl e m with e v e r y b o o k i s th at th e y r e p e a t th e s a m e fu n d a m e n t al s w ith o ut gi vin g a n
o v e r all p e r s p e c ti v e o f h o w a p r o g r a m mi n g s e t u p w o r k s ."

"Yet a n o t h e r v e r y ni c e & u s e f ul e p i s o d e . T h e e x pl a n ati o n o f d e s t r o yin g o bj e c t s a n d w h y y o u a r e s u p p o s e d
t o d e s t r o y th e m w a s v e r y c l e a r."

"I r e ally e n j o y e d th e tut orial. I' m n e w t o p y t h o n , a n d p r o g r a min g in g e n e r al . I pi c k e d p yt h o n b e c a u s e a ft e r
lo o kin g o v e r C# J a v a a n d P y t h o n , th e g e n e r al vi e w i s th at P y t h o n i s a g o o d b e gi nin e r lan g a u g e"

You'll find 'Add a video to ShowMeDo' in the navigation bar under 'make videos'
(http://showmedo.com/addVideoInstructions). This page includes notes on topics, resolutions,
video-lengths, techniques and screencasting videos. It also links to the Author's Google Group
where you can ask questions and learn how other's make their videos.

When you submit a video note that we check everything that comes into the site. It can take
us up to a day or so to get back to you. We only do the check to make sure no rubbish gets
posted. Don't be afraid to post a work-in-progress if you'd like feedback too.

For your first video we recommend making just 1 short video, about 5 minutes in length,
showing how to use a favoured tool or module. The reason for doing just 1 video is that it is
much easier to complete a good single video rather than contemplate and possibly fail to
finish a much more ambitious series on the first attempt.

You can embed the resulting video in your own blog or the site of your chosen module so it
can be shown to exactly the right users.

You are free to set your own license (we recommend Creative Commons, ShareALike,
NonCommercial). You own your own content, we don't ask for any rights-transfer (unlike some

http://showmedo.com/addVideoInstructions
http://showmedo.com/recentComments
http://showmedo.com/recentComments
http://wiki.showmedo.com/index.php/Main_Page
http://blog.showmedo.com/
http://groups.google.com/group/showmedo-learners

The Python Papers, Volume 3, Issue 1 18

other big-name video sites that could be mentioned...)

The Future

We are focusing our efforts on making it easier for people to learn Python at first (via our
Subscriptions scheme) with a view to covering other topics (like Linux, Perl, JavaScript and
OpenOffice) later. We'd love to help Python by having free videos covering all the major
modules and tools - you could help us out here!

We plan to have videos covering all of the major packages within the next year, along with a
really solid beginners video guide that introduces programming with Python for everyone.

One exciting new feature we're toying with is the integration of André Roberge's Crunchy into
ShowMeDo so that you can write Python code inside Firefox whilst following a tutorial. Extra
features which help learning - such as learning guides and tests - are also on our agenda.

What should you do now?

If you haven't seen ShowMeDo then please come by and take a look. Remember to leave a
Thank-You comment for an Author - authors really love to know that you've appreciated their
efforts. Next Visit one of our Google Groups and think about getting involved. We'd love to
hear from you and help you out as you make your first ShowMeDos.

Useful Links

Series and Topics

http://showmedo.com - 500 tutorial videos

http://showmedo.com/videos/python - 177 Python videos, more every week

http://showmedo.com/videos/wxpython - 3 wxPython series

http://showmedo.com/subscribe - "Learn Python the Easy Way"

http://showmedo.com/videos/series?name=L3dNy3tjR - '5 Minutes with Python'

http://showmedo.com/videos/series?name=DKKuA1cT6 - 'My Favourite App'

http://showmedo.com/videos/series?name=vXJsRwlBX - Erik's 'Developing emol!'

http://showmedo.com/videos/series?name=PythonWxPythonBeginnersSeries - 'Python GUI
Programming with wxPython'

http://showmedo.com/videos/series?name=To3wW0reK - ' Build a wxPython Image Viewer ' 

http://showmedo.com/videos/series?name=v7kABKL6R - 'Create a [Django] wiki in 20
minutes'

Named Authors

Kyran Dale (http://showmedo.com/videos/?author=8)

Ian Ozsvald (http://showmedo.com/videos/?author=2)

Siddhi - http://showmedo.com/videos?author=1982

'empty' - http://showmedo.com/videos/?author=4405

André Roberge - http://showmedo.com/videos/?author=22

http://showmedo.com/videos/?author=22
http://showmedo.com/videos/?author=4405
http://showmedo.com/videos?author=1982
http://showmedo.com/videos/?author=2
http://showmedo.com/videos/?author=8
http://showmedo.com/videos/series?name=v7kABKL6R
http://showmedo.com/videos/series?name=To3wW0reK
http://showmedo.com/videos/series?name=PythonWxPythonBeginnersSeries
http://showmedo.com/videos/series?name=vXJsRwlBX
http://showmedo.com/videos/series?name=DKKuA1cT6
http://showmedo.com/videos/series?name=L3dNy3tjR
http://showmedo.com/subscribe
http://showmedo.com/videos/wxpython
http://showmedo.com/videos/python
http://showmedo.com/

The Python Papers, Volume 3, Issue 1 19

Jeff Rush - http://showmedo.com/videos/?author=709

Lucas Holland - http://showmedo.com/videos/?author=79

Horst Jens - http://showmedo.com/videos/?author=71

Creating Screencasts and Adding to ShowMeDo

http://showmedo.com/addVideoInstructions

http://groups.google.com/group/showmedo

Site Links

http://showmedo.com/recentComments - Over 600 comments to authors each month

http://showmedo.com/mostPopular - Over 43,000 video-plays each month

http://pythonpapers.org/ - to see Horst's entry on ShowMeDo in Volume 2, Issue 2

http://pythonpapers.org/
http://showmedo.com/mostPopular
http://showmedo.com/recentComments
http://groups.google.com/group/showmedo
http://showmedo.com/addVideoInstructions
http://showmedo.com/videos/?author=71
http://showmedo.com/videos/?author=79
http://showmedo.com/videos/?author=709

The Python Papers, Volume 3, Issue 1 20

An Efficient Scalar Package in Python

Russell A. Paielli

Abstract-- A Python class was designed to represent physical scalars and to eliminate errors
involving implicit physical units (e.g., confusing angular degrees and radians). The standard
arithmetic operators are overloaded to provide syntax identical to that for built-in numeric
types. The scalar class does not define any units itself but is part of a package that includes a
complete implementation of the standard metric system of units and many common non-
metric units. It also allows users to define a specialized or reduced set of appropriate physical
units for any particular application or domain. Once an application has been developed and
tested, the scalar class can easily be switched off, if desired, to achieve the execution
efficiency of operations on built-in numeric types, which can be nearly two orders of
magnitude faster. The scalar class can also be used for discrete units to enforce type
checking of integer counts, thereby enhancing the built-in dynamic type checking of Python.
The scalar package is available from http://RussP.us/scalar.htm.

Introduction

Physical units and scalars are fundamental to scientific and engineering calculations and
computations. All scientists and engineers learn to add, subtract, multiply, divide, and
convert units, and to keep track of them with pencil and paper. When they program a
computer, however, they usually drop the explicit units and leave them implicit in the actual
numerical calculations, with perhaps a comment to document the units. They do that for two
basic reasons: (1) software that automatically tracks and checks units, although available, is
not widely standardized and well known, and (2) that software can, in some cases, drastically
reduce computational efficiency. The scalar class presented here addresses those problems.

As a consequence of the lack of explicit units in most scientific and engineering software,
mistaken units are a common source of error. Perhaps the most common such error involves
passing an angle in degrees to a trigonometric function that takes it in radians. Humans tend
to think in degrees, but standard trig functions take radians, and the conversion is often
forgotten until its omission is discovered after time-consuming debugging. In one case,
aircraft simulation results over a period of six months were corrupted by such an error. In
another case, confusion between seconds and minutes was found in Python code three years
after the results from it were published.

In air traffic management (ATM), horizontal distance is usually specified in nautical miles,
whereas altitude is specified in feet, hundreds of feet, or thousands of feet. Horizontal speed
is usually given in knots, whereas vertical speed is usually given in feet/minute. Such units
can easily get confused if comments in the code are the only mechanism for enforcing
consistency. Permitted units can be restricted by software coding standards, but draconian
restrictions on permitted units can be inelegant and inconvenient, forcing error-prone
conversions on input and output.

The approach taken here to prevent such confusion is to allow the user to select units that
are appropriate for the job, then to track those units explicitly in software just as an engineer
or scientist would do on paper. The scalar class itself does not specify any units, but a unit
definition file can be used to define the preferred units and the relevant conversion factors for
the particular application or domain. Two such definition files are included with the scalar
package, one for metric (and other common units) and one for traditional ATM units. These
files can be extended easily and also serve as examples for defining other sets of units.

When run in the interactive Python interpreter, the scalar class can serve as a “calculator”

The Python Papers, Volume 3, Issue 1 21

that tracks units and checks consistency. No longer must engineers enter only the numbers
into a calculator and manipulate the units separately in their heads or on paper. But the
larger benefit of the scalar class is in automatically catching unit errors in Python software.
For computationally intensive applications, the scalar class can be easily switched off for
efficient production runs that produce the same results. Thus, the scalar class can be used
during development and testing to guarantee unit correctness, then turned off to obtain the
execution efficiency associated with built-in numeric types. The resulting improvement in
efficiency, which will be discussed later, is nearly two orders of magnitude.

Several other software packages are also currently available in Python for representing and
manipulating physical scalars with units, but this scalar class was developed independently.
Any resemblance to other classes or packages is coincidental. The scalar class presented
here is believed to be the first to provide the option to be switched off to realize the efficiency
of operations on built-in numeric types. That capability could be a key to widespread
adoption, because the large computational overhead involved with tracking and checking
units is no longer a reason to avoid using them.

Usage

The scalar class is actually called “_scalar” because is not intended to be used directly.
Instead, a function called “unit” (which calls the _scalar class constructor) is intended to be
used to define units. But the user need not even call the unit function directly unless a new
unit is needed that is not already available in the unit definition file included with the
package. The units module (file units.py) defines a comprehensive set of standard units,
including the complete metric (SI) system and many common non-metric units. To access
those units, simply import the units module. Depending on how the installation was done, this
import could be done either of the following two lines:

from scalar.units import *
from units import *

The latter form will be assumed for the remainder of this guide. The unit module imports the
scalar module, hence the user should not import the scalar module directly. Doing so could
cause problems if the scalar class is later disabled for efficiency, which will be discussed later.

The pre-defined units in the units module are as consistent as possible with standard unit
abbreviations such as “s” for seconds and “m” for meters. Thus, for example, the scalar 23
m/s2 would be “constructed” as

accel = 23 * m/s**2

These short identifiers are convenient for interactive “calculator” sessions or small
applications, but they may be inappropriate for larger applications because short identifiers
at global scope can cause problems with name clashes and inadvertent shadowing or
overwriting of unit names. To avoid such problems, the units module can be imported with

import units

The meter object would then be referenced as “units.m.” A cleaner form can be realized with

import units as u

The meter object is then referenced simply as “u.m,” which saves on both typing and code
clutter, while maintaining the separate namespace. Another way to avoid the short identifiers
at global scope is to use the long unit names, such as “meters,” “seconds,” “milliseconds,”
etc., which are also provided. See the units module for the complete set of pre-defined unit
names.

The Python Papers, Volume 3, Issue 1 22

In addition to the units module, which is fairly comprehensive, another smaller module called
“ATMunits” is also included. It was designed for basic air traffic management (not actual
operational ATM, but prototyping, testing, and data analysis). It provides an example of a
simplified unit definition file for a particular application or domain without the overhead of all
the unneeded units in the units module. The smaller number of units and the lack of single-
letter unit names allows the ATM units to be used globally without causing significant
problems. Users are also free to copy the units module and strip out what they don't need, of
course.

As in the standard metric system of units, the base unit for length in the units module is the
meter, and several common scaled variations of it are defined:

m = meter = unit("m") # base unit for length
mm = millimeter = unit("mm", m/1000)
um = micrometer = unit("um", mm/1000)
cm = centimeter = unit("cm", m/100)
km = kilometer = unit("km", 1000*m)

If only one argument is passed to the unit function, it creates a new base unit, but if two
arguments are passed to it, it creates a derived unit that is defined by the second argument.
Although not strictly required, the first argument should be the string version of the unit
name on the left side of the assignment, as shown above (otherwise the “repr” function will
not work properly). Only one base unit should be defined for each unit type, such as time or
length. When inconsistent units are added or subtracted, an “InconsistentUnits” exception is
raised.

Outputs will be printed by default in the base unit, such as meters for length, unless the user
specifies otherwise. For example:

>>> dist = 5.2 * m
>>> dist += 27 * mm
>>> print dist
5.227 m
>>> print format(dist, "ft", "%2.2f")
17.15 ft

The third argument for numeric formatting is optional. The format function raises an
exception if the unit specified in the second argument is not of the correct type for the scalar
passed in the first argument. The available output units are the keys of the “to_” dictionary in
the units module. To print a scalar as a number without units, simply divide by the desired
units to convert to a float for output. For example:

>>> print dist/ft
17.1489501312
>>> print "%2.2f" % (dist/ft)
17.15

Note that the parentheses are needed here to get the correct operator precedence.

Users are free to define any set of units, but unit names should contain only alphabetic
characters (lowercase and/or uppercase letters). Note however, that unit names with non-
alphabetic characters will not raise an exception until they are printed out. [This allows
output conversions to units with non-alphabetic characters, such as “ft*lbf.”]

The convention for printing units with the “str” (string conversion) function is to show
multiplication with asterisks, division with slashes, and powers with double asterisks, as
expected. For example, “kilogram-meters/second-squared” would be shown as “kg*m/s**2.”
Only one slash is used, and if the denominator has multiplied units they are placed in
parentheses, as in “kg/(m*s**2).” These output conventions are consistent with the

The Python Papers, Volume 3, Issue 1 23

requirements of the “repr” (representation) function, which produces a string representation
of the object that can be parsed by “eval” to create a copy of the object. The repr function is
identical to the str function except that it places an asterisk (multiplication operator) between
the coefficient and the units, as in “23 * m/s.”

No function is provided to extract the numerical coefficient of a scalar independent of the
units because that would depend on the base units chosen, and the output should not
depend on the choice of base units. To write numerical data to a file without the units, or to
pass data to a third-party function or application without the units, simply divide the scalar by
the required unit. Suppose, for example, that a distance needs to be written or passed as a
number with implicit units of feet. If the variable is named “dist,” then “dist/ft” will be
automatically cast to a built-in type (typically a float) corresponding to the distance in feet.

A scalar cannot be cast to a built-in numeric type such as “float” unless it is dimensionless.
The predefined units of “rad” (radians) and “deg” (degrees) in the units module are
dimensionless, for example, and the base unit is radians. This convention guarantees that
standard trigonometric functions will be passed arguments in terms of radians, as expected,
and it prevents any other unit from being erroneously passed to a trigonometric function. For
example, “sin(30*deg)” returns 0.5 as expected rather than being converted to “sin(30),”
which would be wrong.

To facilitate the switching off of the scalar class for efficiency (to be discussed in the next
section), the scalar class has no public member functions (other than the overloaded
arithmetic operators). The reason is that calls of member functions using standard “dot”
notation cannot work on built-in numeric types.
The scalar module imports the standard math module, and it re-defines the functions “sqrt,”
“hypot,” and “atan2” so as to work correctly for both float and scalar arguments. Depending
on how the unit definition module was imported, these functions may need to be accessed
through the units module name. For example, if the import was done with “import units,”
then the sqrt will need to be accessed as “units.sqrt.”

An interesting question arises with regard to the handling of units when the numerical
coefficient is zero. When the coefficient is zero, the units shouldn't matter, and the scalar
class was designed to reflect that fact. Thus, when a variable is initialized to zero, the units
need not be specified, and any units can be added to zero. Also, an expression such as
“0*m+4*s” will execute without an exception even though the units are inconsistent.

Disabling the Scalar Class for Efficiency

The scalar class can be used as a units “calculator” in the interactive Python shell, and it is
also computationally efficient enough for many non-interactive applications. However, it may
be too slow for some computationally intensive applications. Computational “overhead” can
make arithmetic operations one to two orders of magnitude slower than corresponding
operations on built-in numeric types such as “float” and “int.”

The source of that overhead is twofold. First, the character-string manipulation involved with
tracking and checking the units obviously takes some time. But just disabling the unit
tracking cannot increase the efficiency to the level of built-in types. The mere fact that scalar
is a class rather than a built-in type also adds substantial overhead, slowing the execution
speed by up to an order of magnitude even if unit checking is disabled within the scalar class.

Fortunately, a simple method has been devised to eliminate both sources of overhead. After
an application has been tested and its unit consistency verified, the scalar class can be
switched off or disabled for production runs. During testing and development the scalar class
can be enabled all the time, but if the tests themselves are computationally intensive, it
needs to be enabled only occasionally to catch the vast majority of unit errors.

The Python Papers, Volume 3, Issue 1 24

The scalar class can be switched off by simply setting an environment variable called
“scalar_off.” To switch it back on, simply unset that variable. A couple of bash shell aliases are
useful here:

alias scalar_off='export scalar_off=yes'
alias scalar_on='unset scalar_off'

[The value assigned to scalar_off is irrelevant. It could just as well be nothing, but a non-null
value makes it easier to determine whether the scalar class is enabled or disabled using the
“echo” command in bash.] Note that the scalar class defaults to enabled if scalar_off is not
set.

The use of an environment variable to enable or disable the scalar class means that it can be
done with no changes to the Python client code. If the user prefers to enable and disable the
scalar class from within the Python client code itself, that can be done as follows:

from sys import argv
from getopt import getopt
from os import environ # dict of environment variables

_scalar_off = 1 # default to disabled scalar class

opts, args = getopt(argv[1:],"",["scalar_on","scalar_off"])

for opt in opts:
 if opt[0] == "--scalar_on": _scalar_off = 0
 if opt[0] == "--scalar_off": _scalar_off = 1

_off = "scalar_off"

if _scalar_off: environ[_off] = "yes"
elif _off in environ: del environ[_off]

from units import *

The command line argument “--scalar_on” enables the scalar class, which is disabled by
default here. This is most likely the proper default for “production” code, particularly if it will
be shipped to a customer. If the scalar class is set to enabled by default, then “--scalar_off”
can be used to disable it. This code provides another convenient way to control the status of
the scalar class without modifying any client Python code. It should be placed in the “main”
module before any unit definition file gets imported (either directly or indirectly through
another import).

When the scalar class is enabled, the “scalar.py” module gets imported, but when it is
disabled the “scalar_off.py” module gets imported instead. The latter replaces the unit
function with a function of the same name that simply returns 1 for base units. Thus, the
expression “25*m” would be replaced with “25*1,” or “25*km” would be replaced with
“25*1000.” This replacement of the scalar class eliminates its overhead. It may leave a few
unnecessary multiplications and divisions by one when base units are used, but that should
not be significant unless they occur in high-rate, numerically intensive loops. If they do, the
multiplication by the unit should be done ahead of the loop. In practice, explicit multiplication
by units tends to occur mainly on input, and explicit division by units tends to occur mainly
on output, so neither typically occur in high-rate loops. Assuming no unit inconsistencies, all
outputs with the scalar class disabled should be identical to what they were with it enabled.

To quantify the speedup resulting from disabling the scalar class, a simple timing test was
done in which scalars were added ten million times. The time required on a 2.0 GHz Dell
Linux workstation was approximately 140 seconds. When the scalar class was switched off,

The Python Papers, Volume 3, Issue 1 25

that time dropped to approximately 2.9 seconds, for a speedup factor of nearly 50, or nearly
two orders of magnitude. Very similar results occurred for multiplying scalars.

Note that most of the benefits of the scalar package are still available even when the scalar
class is “disabled” for efficiency. The only thing missing with the scalar class disabled is the
automatic checking for addition, subtraction, or comparison of scalars with incompatible
units. With the scalar class disabled, seconds can be added to meters without raising an
exception, for example. But with the scalar class disabled, the scalar package still
automatically converts everything to standard base units, so the user need not worry about
base units or conversion factors. Thus, confusion between different units representing the
same physical quantity will still be avoided, and those kinds of errors are probably much more
common than adding or subtracting incompatible units. Confusion between angular degrees
and radians will still be avoided, for example, as will confusion between seconds and minutes
or feet and meters.

When using the scalar package in the interactive Python shell, efficiency is unlikely to be an
issue, hence the user is unlikely to want to disable the scalar class. If the scalar_off
environment variable is unintentionally left set, however, the scalar class will be disabled,
which could be annoying. To prevent such an annoyance, a short file called “units_on” is
provided. If the “PYTHONSTARTUP” environment variable is set to point to this file, it will
automatically execute whenever the interactive Python shell is started. This file not only
guarantees that the scalar class is enabled for interactive usage, but it also automatically
imports the units module for convenience. To use this file, place the following in your
“.bashrc” file:

export PYTHONSTARTUP=~/scalar-x.x/scalar/units_on.py

Enhanced Dynamic Type Checking

The scalar class can also be used to implement a stronger form of dynamic type checking
than is provided by the built-in dynamic type checking in Python. Suppose, for example, that
a count of “bars” needs to be maintained and perhaps passed to a function or object. The
user can simply define a unit for it and use it like any other unit:

bar = unit("bar")
count = 0
...
count += bar

If a count of type “bar” is then erroneously added to an incompatible type, the error will be
detected and flagged immediately, possibly saving substantial debugging time.

The Python Papers, Volume 3, Issue 1 26

PyGTK, PyQT, Tkinter and wxPython comparison
Guilherme Polo

Python offers a multitude of GUI toolkits, much more than described here, for assisting on
development of graphical applications, and by having so many options available the
chances are you will be unable to make a good decision. A good decision would be one that
fulfill your requirements, and in order to achieve this it is necessary an understanding of
choices available.

If you are just beginning GUI development, sometime you will need to select a toolkit and a
lot of questions will eventually pop up, so I expect this article to help you making a sane
decision. And if you already do GUI development and are considering learning another
toolkit, or maybe you are moving from another language to Python, I, again, expect this text
to help you choose your next tool.

Writing about every possible point of comparison is not possible (maybe it would fit in a
book, a large one), so I have chosen to talk about some topics that you may face in your
role as GUI developer. Options will be given, and you will balance them according to your
requirements.

Each toolkit presented here has both strong and weak points, and it is, in fact, up to you to
decide which one fits your needs. All the four major GUI toolkits available for Python are
discussed on this text: PyGtk2, PyQt3, Tkinter, wxPython4.

Look and Feel

The main task of a GUI developer is to build applications that are easy to use and, to
achieve that, they have to be designed to be familiar. Knowing your users is a big step
towards success, and this is not really easy to achieve, it involves research, experience,
dedication, effort, and goes on.... Here follows a good paragraph that will remind you why it
is important to know your users, taken from "Designing Interfaces, By Jenifer Tidwell.
Chapter 1: What Users Do":

It starts with an understanding of people: what they're like,
why they use a given piece of software, and how they might
interact with it. The more you know about them, and the more
you empathize with them, the more effectively you can design
for them. Software, after all, is merely a means to an end for
the people who use it. The better you satisfy those ends, the
happier those users will be.

As a developer it should be interesting to follow some guidelines to make it easier to
develop pleasant interfaces. Namely there is the Gnome HIG5 (Human Interface Guidelines)
and Apple HIG6 that are widely used. Both describes good design tips that you should use
while developing user interfaces, independent of what platform you are planning to focus
on.

If you are going to use any of the toolkits presented here, it is good to know that your
application will not look the same across platforms and may not feel the same. If you want
this kind of thing, you should be looking for Lightweight GUI toolkits. They provide uniform
behavior on all platforms with the disadvantage of slower execution.

2 PyGtk site: http://www.pygtk.org/
3 PyQt site: http://www.riverbankcomputing.co.uk/pyqt/
4 wxPython site: http://www.wxpython.org/
5 Gnome HIG documentation: http://developer.gnome.org/projects/gup/hig/
6 Apple HIG documentation:

http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/XHI
GIntro/chapter_1_section_1.html

http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/XHIGIntro/chapter_1_section_1.html
http://developer.apple.com/documentation/UserExperience/Conceptual/OSXHIGuidelines/XHIGIntro/chapter_1_section_1.html
http://developer.gnome.org/projects/gup/hig/
http://www.wxpython.org/
http://www.riverbankcomputing.co.uk/pyqt/
http://www.pygtk.org/
http://gpolo.ath.cx:81/texts/mgt#

The Python Papers, Volume 3, Issue 1 27

By now, I believe it is important to show some screen shots. They were taken in three
different platforms and should give an idea of how different your applications may look
across platforms. This is too a first chance to select which one is more likely to fit your
users.

Gnome 2.20 KDE 4 Windows XP

PyGtk

PyQt

The Python Papers, Volume 3, Issue 1 28

Tkinter

wxPython

Source code for shown applications are available at
http://gpolo.ath.cx:81/download/gravity_game. This game is a simplified version of "The
Gravity Game", you can find the original source at book "Physics for Game Programmers",
Chapter 3 (in Java).

GUI Customization

The word "customization" can take different meanings according to the context, so, for this
section, it's meaning will be defined as: "capacity to modify default behavior of the widgets
contained within the toolkit, be these modifications beneficial or even harmful to users."

Said that, be sure customizations are needed before doing them. Remember it is important
to keep your application familiar to the users, so there must be a really strong point to opt
for customized look and feel. But depending on the kind of program you are developing, it
may make sense to choose for this. For example, music and video players usually uses
custom interfaces, therefore it is possible you could want customized look and feel too.

I classify customizations based on what they do: Compromising customizations, Pleasant
customizations and Runtime customizations.

• Compromising customizations
• Reasoning for this naming: Removes application's familiarity.

http://gpolo.ath.cx:81/download/gravity_game

The Python Papers, Volume 3, Issue 1 29

• Typical changes: Shaped widgets, changing widget colors, custom fonts.
• Pleasant customizations

• Reasoning for this naming: Any toolkit should provide in order to be useful
and the user probably will feel better with these changes.

• Typical changes: Possibility to change the label position relative to an image
in a button, changing toolbar position, general changes that could be done to
widgets available so they fit better your project.

• Runtime customizations
• Reasoning for this naming: Customizations are done while the program is

running.
• Typical changes: Widget placement, applications's appearance.

Note that Runtime customizations lists as typical change applications's appearance, this
would fall in Compromising customizations. But it was user's choice to do it, and he
probably feels better with these changes, making it a good thing.

It is not interesting to discuss Pleasant customizations here since all toolkits presented
provide them. Some of them supports more than others, mainly because they contain more
widgets thus allowing more possibilities of customizations.

Lastly note that Compromising customizations may be useful too, they can help low vision
users (for example). So they are not always dangerous or bad.

PyGtk customization

• Compromising
• Themes are the way to go for large customizations under PyGtk. Users can

choose a new look for your application just by setting a different theme
(requiring no code changes).

• PyGtk supports creation of shaped widgets.
• Runtime

• It is possible to change themes easily while the application is running.
• There is no support for dock widgets, so the user cannot freely relayout his

applications. If you need this kind of customization, there are wrappers for
GDL library which supports this functionality.

PyQt customization

• Compromising
• PyQt uses Styles instead of Themes to achieve large customizations.
• This toolkit also supports creation of shaped widgets.

• Runtime
• Like in PyGtk, it is pretty easy to change styles while the application is

running.
• PyQt contains a widget called QDockWidget allowing your users to freely

move and reposition widgets.

Tkinter cstomization

• Compromising
• Tkinter allows widgets fonts and colors to be customized, but not as easily as

using Themes or Styles.
• Shaped widgets are not supported by this toolkit.

• Runtime
• Not available at all.

wxPython Customization

• Compromising

The Python Papers, Volume 3, Issue 1 30

• Like Tkinter, this toolkit supports changing widgets fonts and colors but not as
easily as using Themes or Styles. wxPython may adapt its look and feel based
on changes done on your platform.

• Shaped widgets are supported.
• Runtime

• wxPython provides a library called AUI (Advanced User Interface) allowing
dockable floating frames (like PyQt dock widget) and much more.

Summary

Designing good user interfaces requires a decent amount of effort, following some
guidelines may help you and will make your users happier.

Customizations are not always welcomed by users, make sure you need it and your
applications benefits from this before diving into this area. If you believe they are needed,
both PyGtk and PyQt got more general solutions. If you are not planning changing the entire
interface through themes, wxPython may be good enough to you as well. Lastly, if you do
not need fancy customizations, Tkinter may be a choice.

Web Integration

As time passes by, it gets harder to ignore how much the Web is part of our daily lives, and
if it is not important for you yet, it is possible that in some time it will. It just keep growing
(only Google indexes several billions of pages), all the time.

For this reason, it may be possible that you will want (or need) to integrate Web resources
into your Desktop applications. Some programs already do it, be it a small part or even the
largest and most important part of the GUI application.

If you are planning to use Web resources (HTML, CSS, Javascript, Flash, ...) in your Desktop
applications, you need to be more careful when choosing among the toolkits just in case
frustration, anger, and co. are not your friends. But, be warned: depending on the level of
resources and portability desired, there may be no choices at all.

PyGtk

PyGtk comes with Pango that uses a SGML-like markup language that allows you specify
attributes with the text they are applied to by using a small set of markup tags. This is
helpful for displaying applications's documentation or simple HTML pages, for example.
With Pango it is possible to build a humble HTML renderer.

Next options are external libraries.

For rendering and/or printing simple HTML documents, you would need GtkHtml (python-
gtkhtml bindings7). If you need CSS 1,2 and/or DOM 1,2 then GtkHtml2 would be more
appropriate, but unfortunately I couldn't find any documentation for GtkHtml2. Even if you
do not need documentation at all to learn how to use it, you should worry about its lifetime.
It looks like both GtkHtml and GtkHtml2 are not being developed anymore (but it still
works), so I wouldn't pick them. Platform supported (GtkHtml, GtkHtml2): Linux.

And there is GtkMozEmbed that allows you to embed a Mozilla browser window into your
Gtk application. Its API is severely limited, it doesn't provide printing or viewing the page
source (as examples of the limitation). But if you do not need this kind of service, I would
opt for using it. The reason for this choice is the support for all Web resources your standard
web browser does, and it's very easy to use. Lastly, it seems to have been used only in
Linux for now.

7 python-gtkhtml bindings site: http://www.fcoutant.freesurf.fr/python-gtkhtml.html

http://www.fcoutant.freesurf.fr/python-gtkhtml.html
http://gpolo.ath.cx:81/texts/mgt#

The Python Papers, Volume 3, Issue 1 31

PyQt

PyQt's components QLabel, QGraphicsTextItem, QTextEdit and QTextBrowser supports HTML
(a subset of HTML 3.2 and 4) rendering. It isn't intended to support all features a browser
does, but at least it is multi-platform.

Furthermore PyQt supports ActiveX through QAxContainer making it possible to embed
Internet Explorer ActiveX control into your application. You get all features you might need
in exchange of being limited to Windows and it is only available for commercial versions of
PyQt.

Tkinter

Just like you could do in PyGtk (use Pango to build a simple HTML renderer), you can do one
in Tkinter using its Text widget. Next to this there is the possibility of using Python's built-in
module webbrowser8.

If using external libraries is not a problem, give TkHtml9 and its Python wrapper10 a try. I've
ran a sample that is included but didn't enjoy it all, it doesn't allow you to select text,
among other things. Lastly there is TkHtml311 that gives cooler features, like CSS support,
but there is no Python wrapper yet.

wxPython

This toolkit provides some components that supports basic HTML. This includes HtmlListBox
and HtmlWindow that serves as a basic and limited HTML render (like GtkHtml and
QTextEdit). The good thing is that they are both multi-platform.

It also provides ActiveX support, and a component called IEHtmlWin that is an ActiveX IE
window embedded in a wxWindow.

Summary

Integrating web in your desktop application using any of these toolkits and expecting them
to work everywhere with whatever you desire is just a hope nowadays. If you just need plain
and simple HTML rendering, wxPython and PyQt will serve you well. If you are targeting
Linux, PyGtk with GtkMozEmbed is your best shot. And if you are focusing on Windows
users, wxPython will provide all features you might need through ActiveX (at no charge).

Future

It seems WebKit12 will save you (some time in the future). There is support for gtk, qt, wx
and a project called wxWebKit13 that already provides bindings for wxPython. And hopefully
it will run in all platforms you expect to.

Licenses

Licenses affect your work more than you can imagine, if you don't do already. You could
want to hide the source, or keep any derivative works free, or maybe just put it in the public
domain, or other uses, but to do so, you need to use the correct license. Choosing an
appropriate license is not always easy, it may even require a lawyer, but this is out of scope
of this article.

8 Python module webbrowser documentation: http://docs.python.org/lib/module-
webbrowser.html

9 Tkhtml site: http://www.hwaci.com/sw/tkhtml/
10 Tkhtml Python wrapper: http://tix.sourceforge.net/Tixapps/src/Python/TkHtml.py
11 Tkhtml3 site: http://tkhtml.tcl.tk/index.html
12 WebKit site: http://webkit.org/
13 wxWebKit site: http://wxwebkit.wxcommunity.com/pmwiki/index.php?n=Main.HomePage

http://wxwebkit.wxcommunity.com/pmwiki/index.php?n=Main.HomePage
http://webkit.org/
http://tkhtml.tcl.tk/index.html
http://tix.sourceforge.net/Tixapps/src/Python/TkHtml.py
http://www.hwaci.com/sw/tkhtml/
http://docs.python.org/lib/module-webbrowser.html
http://docs.python.org/lib/module-webbrowser.html

The Python Papers, Volume 3, Issue 1 32

If you are worried about spending money, do not be. All the toolkits give you opportunity to
not need to invest any money on licenses, but depending on your kind of application
distribution and chosen toolkit, there may be some price to pay for.

PyGTK License

PyGTK uses LGPL (Lesser General Public License), this license is a middle term between GPL
and permissive licenses such as BSD and MIT licenses. The main difference between the
GPL and the LGPL is that the latter can be linked to a non-(L)GPLed program, which may be
free software or proprietary software. This means that you may choose to not distribute the
source along with your program. If you are in doubt to use LGPL, check out
http://www.fsf.org/licensing/licenses/why-not-lgpl.html.

PyQt Licenses

PyQT follows Trolltech's license model, that means you will use different licenses based on
how you use PyQT.

If your program is GPL compatible, then you do not need to buy a commercial PyQT license.
Being compatible with GPL means, among other things, that:

• You will be providing the source code for your application
• All modified and extended versions of the program will continue being free
• Users are allowed to re-use, modify and re-distribute the code

Note that does not mean you can't sell copies of the program for money. There is a GPL FAQ
that you should read in case of doubts: http://www.fsf.org/licensing/licenses/gpl-faq.html.
Previous to PyQt v4, this free version was only available for Linux and Mac OSX.

In case your use of PyQt is not compatible with GPL then you will need a commercial PyQt
license. Buying a license for PyQt does not include Qt licensing, so you must also purchase
copies of the commercial edition of Qt from Trolltech. More informations on buying PyQt
License can be found at http://www.riverbankcomputing.co.uk/pyqt/buy.php and for Qt at
http://trolltech.com/products/qt/licenses/licensing.

Tkinter License

Tkinter is bundled with Python and also uses the PSFL (Python Software Foundation
License). This is a permissive free software license which is compatible with the GNU
General Public License (GPL). Its primary use is for distribution of the Python project
software. Unlike the GPL the Python license is not a copyleft license, and allows
modifications to the source code, as well as the construction of derivative works, without
making the code open-source.

wxPython License

wxPython uses the same license as wxWidgets, the wxWindows License. This license is
essentially the L-GPL (Library General Public License), with an exception stating that derived
works in binary form may be distributed on the user's own terms. This is a solution that
satisfies those who wish to produce GPL'ed software using wxWidgets/wxPython, and also
those producing proprietary software.

Summary

If you don't even want to think about licenses in your way, Tkinter or wxPython would be
the first option. Next to this is PyGTK, its license basically only forbids distribution of static
linked libraries without neither source code nor linkable object files, so, if you are not
considering this kind of distribution, it's all good. Finally there is PyQT. If you will be
following GPL, you won't need to buy any licenses. But if that is not the case, you will need

http://trolltech.com/products/qt/licenses/licensing
http://www.riverbankcomputing.co.uk/pyqt/buy.php
http://www.fsf.org/licensing/licenses/gpl-faq.html
http://www.fsf.org/licensing/licenses/why-not-lgpl.html

The Python Papers, Volume 3, Issue 1 33

to invest some money in PyQT and QT before you start developing your application.

GUI Designer Tools

As your applications grow, you will notice a lot of lines of code used just to create window
components and by that time you will probably want to avoid unnecessary clutter in your
code. That is where these tools should be used. GUI Designer tools also allows you to focus
on the core development of your applications for the reason that GUI development will be a
breeze.
Tools available for each toolkit will be rapidly described below. But you should familiarize
yourself with them, or at least with the ones used by your chosen toolkit.

PyGtk tools
• Glade14 (First release: April 18, 1998 ; Latest release: December 18, 2007)
• Gazpacho15 (First release: June 30, 2004; Latest release: July 29, 2007)

Glade and Gazpacho are very similar from user perspective. They both requires you to
understand how GTK containers work in order to construct interfaces. Using Glade there is a
possibility of using a widget called "Fixed" that lets you drag and drop components into
Toplevel widgets without caring about containers. Using this "technique" leads to a very
problematic application, setting specific size and position for all widgets is a good recipe for
headache. It is very likely your interface will not appear as correct in someone's else
computer as it appeared on yours. For these reasons, you should learn how to use
containers, it is not hard and your programs will achieve better results.
These tools generates .glade files that are then used by your application. Gazpacho also
supports saving in gtkbuilder and gazpacho formats. GtkBuilder is said to take over glade
format, making it the new format to use (it has been added in Gtk+ 2.12 and is available for
PyGtk 2.12).
There are some reasons to pick Gazpacho over Glade, like the presence of a set of Kiwi16

widgets and the possibility to use GtkUIManager17.
And the reasons to pick Glade over Gazpacho are its development time and amount of
users.

PyQt tool
• Qt Designer18 (First release: September 07, 2000 ; Latest release: October 03, 2007)

Qt Designer 4 is a very easy GUI designer to use, and very powerful as well. It is a tool that
makes most people happy, you can just start dragging and dropping widgets and leave it
like that or ask it to layout the widgets for you, or, you may choose to create
Vertical/Horizontal/Grid Layout and drop widgets there.
Rarely you will need to change the tab order, but if you want to do it for the right reason, it
provides a very attractive visual editor for that. Other nice visual features are edition of
Signal/Slots and Buddies. The former provides a visual representation of the signal and slot
connections in the form that can help other developers understand how the final component
will behave. The later, associates a widget to its buddy. This association allows you to
connect a QLabel to a QLineEdit (its buddy) and then focus the buddy widget by pressing
QLabel's shortcut key combination.
This tool generates an .ui file, that you can choose to use through PyQT4.uic module or use
the pyuic tool that will convert the .ui file to a .py file. It may also generate a .qrc file if you
are using external resources, like images. To use the resources file, you need to use pyrcc
tool so it converts to a python module with the external resources embedded into it.

14 Glade site: http://glade.gnome.org/
15 Gazpacho site: http://gazpacho.sicem.biz/
16 Kiwi site: http://www.async.com.br/projects/kiwi/
17 GtkUIManager reference: http://www.pygtk.org/pygtk2reference/class-gtkuimanager.html
18 Qt Designer site: http://trolltech.com/products/qt/features/designer

http://trolltech.com/products/qt/features/designer
http://www.hwaci.com/sw/tkhtml/
http://www.hwaci.com/sw/tkhtml/
http://gazpacho.sicem.biz/
http://glade.gnome.org/

The Python Papers, Volume 3, Issue 1 34

Tkinter tool
• GUI Builder19 (Released into open source in November, 2006)

GUI Builder is a next-generation SpecTcl alternative, as its page says, but I didn't see much
difference except that GUI Builder menu creation is more straightforward to use than
SpecTcl's one.
It is pretty simple and somewhat intuitive, and enforces the use of Grid geometry manager
which is good because it makes you write applications with a consistent layout, that is, you
will not be hand positioning the widgets.
This tools generates two files, a _ui.py file and other .py file based on the name you gave
when you saved the your .ui file.

wxPython tools
• wxGlade20 (First release: July 31, 2002 ; Latest release: February 02, 2008)
• XRCed21 (First release: ~ August 31, 2001 ; Latest release: March 10, 2007)

Before moving on let me say that there are more GUI builders available for wxPython, like:
Boa Constructor22 (IDE and GUI Builder), VisualWx23 (Windows only), wxDesigner24

(Commercial). But I have chosen to talk only about wxGlade and XRCed because they are
under active development, both works cross-platform, and they are open source projects.
Now we may continue.
wxPython uses Sizers, and for the same reasons you should understand containers if you
are using PyGtk, you should invest some time understanding sizers. Sizers are a bit harder
and you will probably need to read some tutorial in order to use them perfectly. As
suggestion, read this page: http://wiki.wxpython.org/UsingSizers.
wxGlade looks like Glade-2, it is not as pretty as Glade-3 (but works), except that it is able
to generate XML-based resource system (or just XRC) files. Note that it is also able to
generate direct Python code, but the advantage of opting for XRC format is that they can be
used by XRCed as well.
XRCed is actually a resource editor that supports creating and editing files in XRC format,
but I am including it in this section anyway. It will be your preferred tool when you get
accustomed with wxPython, it is the fastest tool to develop an UI if you know enough about
wx. XRCed doesn't involve drag & drop of widgets into a beautiful window, on the other
hand you will drag & drop components into a XML tree, making it a bad choice if you are not
comfortable on wxPython.
If you prefer to separate the UI layout from the code, be sure to use a XRC file. Working with
this file is like working with glade files, but this is wxPython so it has several differences in
use.
Both wxGlade and XRCed misses a lot of widgets included in wxPython, a consequence of
this toolkit having so many widgets.

Summary
If you know your tool, and if the name of that tool is wxPython then XRCed is waiting for
you. If you are considering learning some GUI toolkit and it is important that it has a
powerful and featureful GUI Designer application, QT Designer will be your favorite tool.
Next to this there is Gazpacho, followed by Glade and wxGlade. Gazpacho takes the lead for
supporting action based menus and toolbars (Qt Designer supports this too). Lastly, if you
just want something simple and good looking is not important at all, GUI Builder is there for
you.

Built-in widgets

Unlike other sections this one does not contains subsections dedicated to each toolkit, all

19 GUI Builder site: http://spectcl.sourceforge.net/
20 wxGlade site: http://wxglade.sourceforge.net/
21 XRCed site: http://xrced.sourceforge.net/
22 Boa Constructor site: http://boa-constructor.sourceforge.net/
23 VisualWx site: http://visualwx.altervista.org/
24 wxDesigner site: http://www.roebling.de/

http://wiki.wxpython.org/UsingSizers
http://www.roebling.de/
http://visualwx.altervista.org/
http://boa-constructor.sourceforge.net/
http://xrced.sourceforge.net/
http://wxglade.sourceforge.net/
http://spectcl.sourceforge.net/

The Python Papers, Volume 3, Issue 1 35

the discussion will take place here.
All toolkits discussed provides a set of basic widgets that can construct any GUI application.
But as you start doing more advanced user interfaces the number of used widgets will tend
to increase and it is very likely that you will see yourself creating new widgets, or at least
using some external libraries, every time you have a different application to build, if you are
using Tkinter. That is because this toolkit has a very limited set of widgets and the chances
of it growing are rare (Tk 8.5 has new widgets, meaning they will eventually be available in
Tkinter) because it is part of Python and that means it is stable, which is not bad, but it
stays the same for a long time. This is also one of the reasons why it is unlikely that some
other GUI toolkit will take Tkinter's place in Python, because they are changing too often
and possibly causing some form of instability.
wxPython has the largest set of widgets between the four toolkits. This implies that the
chances of needing to construct a new widget are lower than if you were using PyGTK, PyQT
or Tkinter. Of course if you need a very specific widget, no toolkit will provide it, so, you can
either check if someone has already done it, or do it yourself. wxPython can save a great
amount of time depending on the application you are planning to do, one of the reasons
being the addition of wx.AUI library (AUI stands for Advanced User Interface). This library
instantly adds a huge amount of flexibility to your application, like: floating/docking frames,
customizable look and feel, perspective saving and loading, optional transparent window
effects while dragging and docking, and others.
PyGTK and PyQT provides a similar amount of widgets, but PyQT leads between the two
because QTextEdit supports HTML rendering, it also supports OpenGL in PyQT applications
through QtOpenGl (requiring PyOpenGL) and allows docking widgets, for example.

Documentation Available

This last section points out some documents that you will be visiting while developing a GUI
application. Note that there is much more "Documentation Available" than described here,
this was just an attempt to collect most of the interesting documents existing relative to the
toolkits discussed here.
Nevertheless, I hope these pointers will answer most of your question.

PyGtk

Document Audience

PyGtk 2.0
Tutorial25 Anyone starting in PyGtk

PyGTK FAQ26 If you use PyGtk, but don't know everything about it yet, this FAQ will solve
most of your questions that are likely to arise

PyGTk Wiki27 Both beginners and more experienced users will find this useful. Its main
purpose is to collect links for several other documentations.

• Others
• PyGTK 2.0 Reference Manual28
• Articles and Tutorials about PyGTK29

• Beginning Python, Chapter 1330

PyQt

Document Audience

Introduction to PyQT431 Anyone starting in PyQt

25 PyGtk 2 Tutorial: http://www.pygtk.org/pygtk2tutorial/index.html
26 PyGtk FAQ: http://faq.pygtk.org/index.py?req=index
27 PyGtk Wiki: http://live.gnome.org/PyGTK
28 PyGtk 2 Reference Manual: http://pygtk.org/docs/pygtk/index.html
29 Articles and Tutorials about PyGtk: http://pygtk.org/articles.html
30 Beginning Python book: http://www.amazon.com/Beginning-Python-Programmer-Peter-Norton/

dp/0764596543
31 Introduction to PyQt4 site: http://www.rkblog.rk.edu.pl/w/p/introduction-pyqt4/

http://www.rkblog.rk.edu.pl/w/p/introduction-pyqt4/
http://www.amazon.com/Beginning-Python-Programmer-Peter-Norton/dp/0764596543
http://www.amazon.com/Beginning-Python-Programmer-Peter-Norton/dp/0764596543
http://pygtk.org/articles.html
http://pygtk.org/docs/pygtk/index.html
http://live.gnome.org/PyGTK
http://faq.pygtk.org/index.py?req=index
http://www.pygtk.org/pygtk2tutorial/index.html

The Python Papers, Volume 3, Issue 1 36

Rapid GUI Programming with
Python and QT32

PyQt 4 book, one of the best options available for learning
how to program with this toolkit

The PyQT and PyKDE community
Wiki33

Good link collections, anyone interested in PyQt will find
this useful

Qt Quarterly34 For those already developing in Qt/PyQt interested in
learning more about this toolkit.

• Others
• PyQT v4 - Python Bindings for Qt v435

• PyQt's Classes36

Tkinter

Document Audience

An Introduction to
Tkinter37 Anyone starting in Tkinter

Python and Tkinter
Programming38 A good read, in form of a book, for those wanting to learn Tkinter

Tkinter Wiki39 Contains links for some tutorials, reference documentation, and
others. Better suited for intermediate users

• Others
• Tkinter reference: a GUI for Python40
• Tkinter -- Python interface to Tcl/Tk41

wxPython

Document Audience

The wxPython tutorial42 Anyone starting in wxPython

wxPython in Action43 Very good book, just a bit dated but still serves as one of the
best ways, if not the best, to learn wxPython

wxPyWiki44
I would say this is the best wiki among the others mentioned
here. Beginners, intermediate and experienced users will find
good and interesting informations here

• Others
• wxPython API45

Summary
There is a decent amount of documentation for all the toolkits. But it is important to ask
yourself if you are willing to learn. It does not matter how many books, tutorials, articles,
etc.. may exist for a toolkit (or anything else) if you just do not take time to learn what you
want/need. The excuse of documentation not being good enough, in this case, is hardly a
reason for preventing you from learning any of these toolkits.

32 Rapid GUI Programming with Python and QT book: http://www.qtrac.eu/pyqtbook.html
33 The PyQT and PyKDE community Wiki: http://www.diotavelli.net/PyQtWiki
34 Qt Quarterly site: http://doc.trolltech.com/qq/
35 PyQT v4 - Python Bindings for Qt v4 reference: http://www.riverbankcomputing.com/Docs/

PyQt4/pyqt4ref.html
36 PyQt's Classes reference:

http://www.riverbankcomputing.com/Docs/PyQt4/html/classes.html
37 PyQt's Classes: http://www.pythonware.com/library/tkinter/introduction/index.htm
38 Python and Tkinter Programming book: http://www.manning.com/grayson/
39 Tkinter Wiki: http://tkinter.unpythonic.net/wiki/
40 Tkinter Reference site: http://infohost.nmt.edu/tcc/help/pubs/tkinter/index.html
41 Tkinter Python module documentation: http://docs.python.org/lib/module-Tkinter.html
42 wxPython Tutorial site: http://www.zetcode.com/wxpython/
43 wxPython in Action book: http://www.manning.com/rappin/
44 wxPython Wiki: http://wiki.wxpython.org/
45 wxPython API site: http://www.wxpython.org/docs/api/

http://www.wxpython.org/docs/api/
http://wiki.wxpython.org/
http://www.manning.com/rappin/
http://www.zetcode.com/wxpython/
http://docs.python.org/lib/module-Tkinter.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/index.html
http://tkinter.unpythonic.net/wiki/
http://www.manning.com/grayson/
http://www.pythonware.com/library/tkinter/introduction/index.htm
http://www.roebling.de/
http://www.riverbankcomputing.com/Docs/PyQt4/pyqt4ref.html
http://www.riverbankcomputing.com/Docs/PyQt4/pyqt4ref.html
http://doc.trolltech.com/qq/
http://www.diotavelli.net/PyQtWiki
http://www.qtrac.eu/pyqtbook.html

The Python Papers, Volume 3, Issue 1 37

The Python Papers, Volume 3, Issue 1 38

Doctest and unittest... now they'll be merrily together
Olemis Lang (olemis@gmail.com)

Testing is a very important discipline to ensure and validate software quality. Python
includes two standard modules to perform functional testing. Prior to version 2.4 both tools
were unrelated, leading to scattered testing code. From this version on a unittest API is
provided by doctest. The present work aims to propose some enhancements to this API in
order to achieve a better unittest-doctest integration. Although there are more complex testing
tools (e.g. nose) which allow performing both kinds of tests, they are outside the scope of
this article. Firstly, they are not standard modules. Besides, the intent is to load and execute
doctests just like if we were using unittest.

Even though many types of tests exist these days46, functional testing is very important.
Firstly, it validates whether software behavior matches the business rules documented in
the software requirements. Besides, for continuously evolving systems and iterative
development processes it is also crucial to perform regression testing. Thereby introduced
defects are handled as soon as possible and the defect does not propagate to future
versions. These tests are also the main building block for test-driven development and
extreme programming techniques. A scripting language like Python ought to be aware of
this since it is often used to write test scripts (e.g. for Java47 and .NET48). Because of this, the
paper also covers the standard modules available nowadays in Python for functional testing.

Outline

Before explaining the whole new solution to integrate both major testing frameworks for
Python, it will be helpful to talk about them separately. This can be also useful for
pythoneers wishing to get a fuller understanding of the options available these days.
Nevertheless, the explanation will cover only the features needed to understand the work
done. Afterward they are compared so as to illustrate the need and the idea leading to their
integration in version 2.4. Its usage will also be portrayed, thereby clarifying the strongest
as well as the weakest points inherent to this new feature the way we know it today. These
facts help to establish a motivation for the proposition presented thereafter. Firstly the novel
implementation is discussed in detail. This can be useful for developers, and all those
aiming to understand how an object oriented API can merge both these frameworks. Next
some useful use cases are explained. They are helpful for testers because therein they will
find guidelines to face some testing scenarios. All the way through the emphasis made on
object orientation as well as other distinctive features are explained, and compared with
respect to the current standard.

Functional tests with doctest

The standard module doctest was included in Python 2.1. It is perhaps the most intuitive way
available in this language to write functional tests. In order to gain a deeper insight about
this framework it is important to know how tests are written. Once this is fully understood,
the next step is to know the API which allows running tests. Finally, it is relevant to know the
elements included in the framework in order to execute one test after another, and report
the results. Let’s briefly talk about these topics.

46 Several types of tests are described comprehensively in G. D. Everett, R. McLeod, Jr
“Software testing : testing across the entire software development life cycle” (2007)
John Wiley & Sons, ISBN 978-0-471-79371-7.

47 See M. Nadel "Use Jython to build JUnit test suites" available on-line at
http://www.ibm.com/developerworks/java/library/j-jythtest.html.

48 A. Henderson "Integrating NUnit & IronPython..." link available at http://ironpython-
urls.blogspot.com/2006/10/integrating-nunit-and-ironpython.html.

http://ironpython-urls.blogspot.com/2006/10/integrating-nunit-and-ironpython.html
http://ironpython-urls.blogspot.com/2006/10/integrating-nunit-and-ironpython.html
http://www.ibm.com/developerworks/java/library/j-jythtest.html
mailto:olemis@gmail.com

The Python Papers, Volume 3, Issue 1 39

Specifying tests with doctest is very easy as illustrated in Figure 1. They reside in docstrings
and therefore are expressed in textual form. This means that any element able to be
explicitly documented can contain such tests. Usually the documentation for one such
element includes only the tests needed to ensure that its implementation fulfills its
expected behavior. The syntax involved to declare them resembles interactive sessions with
the Python interpreter. In fact, coders can copy the characters outputted to the console
during one such session and paste them into docstrings. That would be enough to specify
the tests. But in real development it is often better, and more useful, to write the test before
actually implementing the code behind it. However, the former characteristic is what causes
using doctest to feel intuitive, because every Python programmer have interacted with the
interpreter. This means that anyone knowing the language can write tests.

1. def shuffle(seq):
2. “””
3. >>> seq = range(10)
4. >>> shuffle(seq)
5. >>> seq.sort()
6. >>> seq #doctest: +NORMALIZE_WHITESPACE
7. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
8. “””
9. # code omitted
10.
11. def sample():
12. “””
13. >>> seq = range(10)
14. >>> sample(seq, 20) # doctest: +ELLIPSIS
15. Traceback (most recent call last):
16. ...
17. ValueError: sample larger than population
18.
19. >>> [x in seq for x in sample(seq, 5)]
20. ... #doctest: +NORMALIZE_WHITESPACE
21. [True, True, True, True, True]
22. “””
23. # code omitted

24. def choice(seq):
25. “””
26. >>> seq = range(10)
27. >>> elem = choice(seq)
28. >>> elem in seq
29. True
30. “””
31. # code omitted
32.
33. # Running doctests
34. # from the command line
35.
36. if __name__ == '__main__':
37. import doctest
38. doctest.testmod()

Fi g u r e 1 : Te s tin g fu n cti o n s in s t a n d a r d random m o d ul e with doctest.49

After the tests are written, programmers must invoke one of the functions defined inside the
doctest module in order to execute the tests. The one most frequently used for this purpose is
testmod, but it is also possible to use either run_docstring_examples or testfile. So... what happens
immediately after they get called? The first thing that takes place after such call is test
hatching. This process is usually divided into two stages. When we test modules (testmod),
DocTestFinder instances are created. Their role is to enumerate the functions (methods) and
classes reachable from the module specified as a parameter, and also belonging to it. For
each such object found, DocTestFinder instances extract its docstrings and trigger the second
stage: parsing. If the tests reside in text files (testfile) or if a single object is to be tested
(run_docstring_examples) then parsing is started right away since there is no need to use
DocTestFinder objects. In the first case the contents of the text file will be parsed, whereas in
the second one the string bound to the object’s __doc__ attribute will be considered instead.

Then you may ask... why do we need parsing in this case? Well, mainly because tests are
intermingled with documentation, most of which is usually written in natural language.
That’s why the outcome of the previous step are the input to DocTestParser objects. Their duty
is to separate the text representing interactive sessions from intervening text. Interactive
sessions look like a collection of statements inputted by the programmer followed by the
result outputted by the interpreter in consequence of its execution. The instances of the
Example class encapsulate such information (statement to execute + expected interpreter
output). DocTestParser objects are thus also responsible for creating the Example instances

49 Throughout the text the different frameworks are compared against versions of the test
code provided in http://www.python.org/doc/2.5.1/lib/minimal-example.html.

http://www.python.org/doc/2.5.1/lib/minimal-example.html

The Python Papers, Volume 3, Issue 1 40

representing the interactive sessions they found.

After all parsing has been performed, the resulting Example objects are put together into a
container. Actually DocTest objects are liable for that, besides referencing a namespace
(global namespace) which will be used in the next phase: test execution.

The processing class used to execute and verify the interactive examples in a DocTest is
DocTestRunner. In order to do so, it uses an output handler (a callable object). Firstly, instances
of the later class notify that testing is about to start. Next, they extract the Example objects
included in the incoming DocTest. Each example is later on compiled. DocTestRunner requests
the interpreter to execute them in the context of the namespace held by the DocTest instance
under testing. The requesting object also gathers the interpreter output. At this time
OutputChecker instances get into action.

OutputChecker instances compare the aforesaid output with the expected result (contained in
Example objects). If both of them match, success is reported by the runner. If they do not
match then failure notification occurs. A third case is still possible if an unexpected
exception is raised during the execution. All these situations are reported by the
aforementioned output handler, sys.stdout.write being the default one.

The term unexpected exception was used before because by using doctest it is also possible
to specify that the expected behavior is an exception to be raised. The documentation for
function sample in Figure 1 shows how this is done. This kind of tests follows the same
philosophy of being similar to interactive sessions. However, in case of exceptions the
interpreter also outputs some fields which depend on the execution context and can vary
from time to time. The use of ellipsis is compulsory under these conditions. They are
wildcard characters which tell output checkers that a portion of the resulting string has to
be ignored because either it is not important for the check to perform, or perhaps because
this segment can vary from one time to another. Ellipsis ought to be used in together with
“boolean” option flags. The comments in lines 6 and 14 in Figure 1 portray how to set them.
They allow to customize how OutputCheckers verify the examples and the contents of the
subsequent report. A DocTestRunner can use another output checker so there is space to write
tests using a different syntax which supports user needs.

Assessing doctest

A direct consequence of the aforesaid layout for tests is that they can be considered as a
behavioral description of the element which is to be tested. In this case, the same language
used to code the feature is used to sketch its behavior, so there is no need for further

Fi g u r e 2 : R e tri e vin g DocTest in s t a n c e s fr o m m o d ul e d o c s trin g s .

The Python Papers, Volume 3, Issue 1 41

translations to get executable testing artifacts. The tests also tell us explicitly how to use
the different functions, classes, methods and so on. It is also clear what should be expected
in return. Since all this information is located in docstrings, the documentation of these
objects is enhanced. Example usage is available, being possible to record it in the form of a
simple tutorial combining source code written in Python, together with explanations written
in natural language. This is practical because “sometimes a single line of code is better than
one thousand words”.

Another benefit of doctest is its encapsulation. Coders need not to know what happens
behind the scene so as to test the different examples. This contributes a lot to make doctest
a user-friendly tool. On the other hand, its results are truthful since it relies on the
interpreter to execute the examples. So whatever you see happening during the test is what
you actually get once the statements in the docstrings are executed in a real scenario. This
could be the case when other coders use the library code being checked to build their own
systems.

However some enhancements to doctest are still possible. For example, DocTest class is meant
to represent a Composite but is not implemented considering this pattern. This implies that
it’s not easy to put together different instances of this class, as well as instances of other
classes representing other kinds of functional tests. This also means that it could be difficult
or unnatural to mix in the examples found in different modules in order to test them
altogether. In this case scattered test reports could be obtained while testing a populated
package, for example. Furthermore:

“test setup has to be either copied or hidden away from the test, making the
overall environment harder to understand.”50

Another valuable characteristic is that different subclasses of those used by doctest in test
execution can allow for customization of the whole process. However the API supplied for
this purpose restrains this flexibility and, for example, only allows sending reports to the
standard output. This means that test upshots for individual examples are intermingled.
Therefore if they were of interest, sys.stdout needs to be redirected perhaps via StringIO.
Besides further analyses are made difficult since test reports ought to be parsed.

PyUnit tests in action

The module unittest is included among the standard modules since version 2.1. It inherits a
long tradition started by Kent Beck’s Smalltalk testing framework (a.k.a. SUnit), and
followed by others like JUnit (Java), CppUnit (C++), JSUnit (JavaScript), HUnit (Haskell),
mlUnit (MATLAB), utMySQL (MySQL), NUnit, csUnit (.NET programming languages), and
many other implementations for at least 51 programming languages of different nature.
Python could not be the exception.

The notion of test cases is central to the testing process defined by xUnit frameworks. In a
simplistic way they could be viewed as the most atomic unit of testing. Broadly speaking,
they define the features under test and how to carry out the assessment. The most naive
way to implement a test is to extend the TestCase class and redefine its runTest method. Every
statement to check has to be asserted using the methods available in the prior base class. If
no such assertion fails then the test succeeds; otherwise, it is reported as a failure. Failures
represent anticipated problems. Once again a third case is possible when an unanticipated
exception (one not caught by assertRaises method) is raised while conducting the test. These
conditions are reported as errors, and are more catastrophic since they are unchecked bugs.

Even a simple application can demand several functional tests. That's the reason for having
the TestSuite class. Its instances group the test cases being part of a testing scenario. These
suites are implemented according to the Composite pattern. Therefore they can contain
other suites, as well as separate test cases. Infinite nesting levels are possible in theory. A
test suite can be built explicitly by hand. Nonetheless, in real life there will be several

50 Wikipedia page for doctest, available on-line at http://en.wikipedia.org/wiki/doctest.

http://en.wikipedia.org/wiki/doctest

The Python Papers, Volume 3, Issue 1 42

classes whose methods define tests over the target application. Suites construction would
be very tedious in these situations. Therefore unittest includes the TestLoader class. Its objects
automatically gather the tests defined within a module or class. In modules containing
many TestCase descendants, the tests found within each such class are returned wrapped in a
TestSuite. Well, what happens once loaders receive classes as input?

Ta bl e 1: Te s t C a s e m e t h o d s t o c h e c k f o r a n d r e p o rt failur e s .

Method Name Description

fail Signals a test failure unconditionally.

assert_ Signals a test failure if an expected condition is not met. A
message describing the failure can be supplied.

assertEqual Test that two values are equal. If not, the test will fail with a given
explanation.

assertNotEqual Test that two values are not equal. If they do compare equal, the
test will fail with a given explanation.

assertAlmostEqual Used to test for equality of two instances of inexact types like
float. An explanation may be given.

assertNotAlmostEqual Used to test if two instances of inexact types differ so much as to
be considered different. An explanation may be given.

assertRaises Test that an exception of a given type (or any of a group of
exceptions) is raised when a callable is invoked with known
positional and keyword arguments.

failIf Signals a test failure if an abnormal condition is met. A message
describing the failure can be supplied.

The fact is that unittest supports test fixtures. In practice, as software evolves testers find
groups of similar test cases. Often they require the same initialization and cleanup. If this is
the case a single TestCase inheritor can contain multiple test methods. When a test loader is
about to build a suite out of a TestCase descendant, it examines whether it contains any
method whose name starts with the “test” prefix like shown in Figure 3 lines 10, 18, and 22.
If this is not the case, only runTest is executed as explained before. Otherwise, for each
method the loader creates one instance of the class in order to execute the former. The
method name is bound to the _testMethodName attribute of this instance. All the objects thus
created are collected into a test suite.

Having nothing but a test suite is not enough. Its test cases should be executed. Test
runners are used for this purpose. They decide how to test the suite and what to do with
test results. PyUnit incorporates the class TextTestRunner in order to output the results in
textual form to a file-like object (sys.stderr by default).

The first things runners do is to create an instance of the class TestResult. Later, TestCase
instances contained into the target test suite are processed one by one. Immediately before
each test is actually performed, the test case's setUp method gets invoked. Since test cases
derived from the same fixture share this method, the common initialization steps should be
coded therein. Afterward, the test method bound to the test case instance gets called. The
framework monitors whether a failure, an error or a successful test occurs. In any case, the
result is stowed into the TestResult object created for this run. Immediately after the test
method has been called and the result recorded, the TestCase.tearDown method gets executed.
Since instances of the same fixture also share this method, it can be used to release the
resources allocated from within setUp.

The Python Papers, Volume 3, Issue 1 43

1. from random import shuffle,
2. choice, sample
3. import unittest
4.
5. class TestSequenceFunctions(
6. unittest.TestCase):
7.
8. def setUp(self):
9. self.seq = range(10)
10.
11. def testshuffle(self):
12. # make sure the shuffled
13. # sequence does not lose
14. # any elements
15. shuffle(self.seq)
16. self.seq.sort()
17. self.assertEqual(self.seq,
18. range(10))

19. def testchoice(self):
20. element = choice(self.seq)
21. self.assert_(element in self.seq)
22.
23. def testsample(self):
24. self.assertRaises(ValueError,
25. sample, self.seq, 20)
26. for elem in sample(self.seq, 5):
27. self.assert_(elem in self.seq)
28.
29. if __name__ == '__main__':
30. unittest.main() # Command-line test
31.
32. def explicit_test_run():
33. # Finer level of control to run tests
34. loader = unittest.TestLoader()
35. suite = loader.loadTestsFromModule(
36. sys.modules[__name__])
37. unittest.TextTestRunner(
38. verbosity=2).run(suite)

Fi g u r e 3 : W ritin g unittest t e s t c a s e s f o r th e random m o d ul e .

Assessing unittest.

Testing frameworks like unittest are quite popular since long time ago. One of the reasons
behind this success is perhaps that it shows a mature object design supported by a high
pattern density. Only the TestCase class is involved in at least four design patterns. This
implies that this tool is easier to use, but harder to change. For instance, test suites allow
different kinds of test cases to be tested altogether. Test cases of variate nature can dwell
inside a single suite. A larger group can be formed after appending this same suite to
another one perhaps containing other arbitrary suites. Regardless of their possibly different
nature, they all are attached and tested the same way. Consequently it is possible to say
that unittest encourages easy assembly and smooth integration.

Another key feature is the code reuse made possible thanks to an object oriented API. This
is possible mainly to a deep separation of concerns among test retrieval, test procedure,
test execution, and finally result gathering for later analysis. Firstly, this means that custom
test loaders can load test cases from diverse sources, can be represented in different
formats, or even follow different conventions. Separately, the system under test can be
assessed in many different ways. To do so it is only necessary to add new test methods to
TestCase descendants. Besides the testing process may be performed in dissimilar manners
without interfering with the test code that actually checks the target system. To illustrate
this point let's consider the example of the peer library JUnit. It is possible to run the same
test suites reporting the outcomes in text mode via junit.textui.TestRunner, or graphical mode
via one of junit.awtui.TestRunner or junit.swingui.TestRunner. Examples of special runners are those
used by IDEs (e.g. Eclipse) to represent a test run in their interface.

It is also possible to customize the way test outcomes are stored by using personalized
TestResult subclasses. Therefore besides volatile storage, either RDBMS, ORM, proprietary
files, or anything else can be used for this purposes. A test repository being part of the
project measurements could hence be deployed. The data gathered this way might give
support to test analyses which can illustrate continuous displays and evolution of project
status, the capacity to progress towards goals, and the efficacy of the development process.
Enterprises interested in moving their CMM51 level up, can take advantage by automating
key process areas from levels 2 (Repeatable) to 5 (Optimizing).

Nonetheless people usually spends far more time reading test code than actually writing it.
That's why the challenge is writing readable tests52. In this respect unittest code can be hard

51 Capability Maturity Model
52 J. Fulton, T. Peters “Literate Testing: Automated Testing with doctest” (2004), PyCon

2004.

The Python Papers, Volume 3, Issue 1 44

to understand, demanding from the reader previous knowledge about the framework. Test
code is usually separated from source code, which can possibly difficult this task even more.
This testing toolkit by itself makes no contribution to software documentation either.
Another controversial topic is the way exceptions are asserted. Maybe this is the most
notorious case illustrating that est code does not look like client code52. In this respect doctest
seems to be more natural.

The gathering

Before Python 2.4, doctest included the Tester class. It provided simple means to combine the
doctests retrieved from different modules (e.g. a package), and test them thoroughly. From
version 2.4 and on, this class has been deprecated. Now it is clear that both frameworks
complement each other. The weaknesses of the former turn into strengths of the later, as
explained before. At the moment, the unittest API provided by doctest makes possible to create
test suites from modules and text files containing doctests. The later can be combined with
tests from multiple sources. Consequently unittest runners can run them altogether at once.

33. # Override the statements in Figure 1 from line 33 on.
34. import doctest, unittest
35.
36. if __name__ == '__main__':
37. unittest.main(defaultTest='suite')
38.
39. def suite():
40. return doctest.DocTestSuite(sys.modules[__name__])
41.
42. def run_tests():
43. # Finer level of control to run tests
44. unittest.TextTestRunner(verbosity=2).run(suite())

Fi g u r e 4 : V e rifyin g d o c t e s t s u s i n g th e s t a n d a r d unittest A P I.

Suites are created from doctests out of modules via the DocFileSuite function. It accepts the
setUp and tearDown optional parameters. Both should be bound to a function object. In this
case a DocTest object is built as formerly explained with the help of DocTestFinder. Next it is
wrapped by an instance of DocTestCase (a TestCase descendant) and a regular suite containing
it is returned. During this process the aforementioned parameters are bound to attributes of
the new DocTestCase instance. Besides the unittest-oriented API consents testers to specify
custom instances of DocTestParser to extract doctest Examples out of docstrings. Personalized
OutputCheckers are welcomed as well in order to match differently the interpreter output
against the expected result. They both are supplied in the form of keyword arguments to
DocFileSuite. This feature is definitely an enhancement over the preceding API.

Running the new test case is a process which reuses the prior DocTestRunner class. However,
before the execution the function supplied in the setUp argument is invoked with the
wrapped DocTest instance as its sole parameter. After the test is performed the same
happens with the priorly mentioned tearDown argument, thereby imitating test fixtures. The
outcome given by the doctest runner is stored into a character string through StringIO objects.
If success was not accomplished, a failure is reported to the unittest runner carrying out the
global test. The doctest details are provided as the descriptive message. That's why all the
issues highlighted for DocTestRunner reports are also valid in this context. Eventually both
unittest and doctest formats will be interleaved. This could be annoying. Long reports might be
confusing especially in view of the fact that multiple summaries are made. Moreover the
number of individual doctests that failed or behaved erroneously are not considered for the
final statistics reported by the unittest runner. A single failure abbreviates them all.

The function DocFileSuite rescues us when doctests lie within text files. The whole procedure is
very similar to the one already explained. A characteristic common to both these functions
is that they have extensive signatures. The API itself lacks on object orientation, and is not
compliant with unittest test loaders. The main difference is that DocFileCase objects are used
instead of DocTestCase. Nothing new happens in practice since the former only overrides

The Python Papers, Volume 3, Issue 1 45

cosmetic features of the later.

One object oriented API to join them

After analyzing the former arguments the focus turned out to evolve the API available to
retrieve test cases from doctests. This new interfaces aims to allow programmers to write
doctests the same way they have done so far, but handle the tests like unittest users do.
Hence it mostly reuses both frameworks. It also overrides the classic doctest interface and
the one given for Python 2.4, but reuses important implementation details. So they can be
considered as a useful facilitator for this work.

Ta bl e 2: M a p pin g fr o m u nitt e s t int e g r ati o n A P I it e m s t o d o c t e s t' s.

doctest Standard unittest API OO unittest API

Example DocTestCase

DocTest DocTestCase DocTestSuite

DocTestFinder DocTestSuite function DocTestLoader

DocTestRunner DocTestRunner _Doc2UnitTestRunner

testmod function unittest.TextTestRunner unittest.TextTestRunner

The main variation introduced with respect to the 2.4 version is how legacy doctest classes
map to unittest concepts. Since one goal was to gather separately the information resulting
from testing individual Example instances (i.e. single statements), the unit of testing could be
no longer bound to DocTest object like before. Rather than this, the target for new test cases
are Example objects. Let's explain the whole in more detail.

A radical new feature is that test cases are no longer loaded through functions. They have
been replaced with the class DocTestLoader. It is a novel test loader introduced to achieve
better object orientation and conform to unittest rules. The loading process starts when
legacy DocTestFinder functionality is reused. And here we have the first feature contributing to
flexibility. The type of finder to use for this purposes can be specified when loaders are

Fi g u r e 5: R e tri e vin g t e s t c a s e s fr o m d o c t e s t s w ith lo a d e r s.

The Python Papers, Volume 3, Issue 1 46

created. The subsequent step is to wrap the resulting DocTest instances with specialized
suites and group the later into the TestSuite object returned by the loading process. The
aforementioned specialized suites are represented by the also new DocTestSuite class and its
descendants. And yes, since the suite type used in practice is bound to loaders'
docTestSuiteClass attribute, subtypes of DocTestLoader can override this value and instantiate
some other suites. Testers can thereby introduce their own features to meet particular
needs. This solution is inspired in the usage given to the suiteClass attribute in TestLoader class.

DocTestSuite class has a determining role in the integration and acts like DocTest peer. It maps a
unittest run carried out by an enclosing unittest runner to the run needed to verify doctest
examples. Thus It matches the Adapter pattern, being DocTestRunner the adaptee. In the
background a tailored DocTestRunner descendant (_Doc2UnitTestRunner) executes and verifies
interactive examples. Nonetheless before doing so, the suite instantiates a test case for
each Example contained within the DocTest wrapped by itself. A bidirectional association is
established among both examples and test cases. The novel DocTestCase class is used by
default. Once again it is possible to supersede this decision by overriding the type object
(i.e. DocTestCase subtype) bound to the docTestCaseClass attribute of the suite.

Next, when the interactive examples are executed and verified, the Adapter pattern is also
employed to hook _Doc2UnitTestRunner report methods. This allows to record the outcomes in
TestResult objects. Testers can refine the default runner by overriding the type object (i.e. a
subtype of _Doc2UnitTestRunner) bound to the docRunnerClass attribute of the suite (preferably by
sub-classing DocTestSuite).

Use cases

So far the focus has been placed in explaining how the different classes collaborate to
achieve the desired goal. Let's dedicate some time to illustrate how to use the novel API.

Basic usage

There are some changes with respect to running tests by using classic doctest, Python 2.4
unittest API, and the current solution. Assuming the same functions from line 1 to 32 in Figure
1 have been declared, Figure 7 shows how doctests are run with the object-oriented API.
Observe there is almost no difference with respect to unittest usage.

Fi g u r e 6 : T h e c u s t o m- m a d e doctest ru n yi el d s m o r e p r e c i s e r e p or t s.

The Python Papers, Volume 3, Issue 1 47

33. # Override the statements in Figure 1 from line 33 on.
34. import dutest
35.
36. if __name__ == '__main__':
37. dutest.main() # Command-line test
38.
39. def run_tests():
40. # Finer level of control to run tests
41. suite = dutest.DocTestLoader().loadTestsFromModule(sys.modules[__name__])
42. unittest.TextTestRunner(verbosity=2).run(suite)

Fi g u r e 7 : U s i n g th e o bj e c t o ri e nt e d A P I t o ru n t e s t s .

Using optional doctest features

Anybody can wonder “How can I control doctest's behavior via option flags?”. The initializer
in DocTestLoader accepts the extra keyword arguments shown in Figure 8. These arguments
allow the use of tailored output checkers, as well as the use of legacy doctest options. All
these parameters flow from DocTestLoader to DocTestSuites, where they are stored. At test
runtime, the _Doc2TestUnitRunner object involved employs them to perform the doctest run.
Besides the keyword arguments for option flags, it is also possible to supply in to the
initializer a dict to be used as the globals when executing examples. Parameterized doctests
are also possible by supplying in another dict to be merged into the globals used to execute
examples.

1. import doctest, dutest
2. from __future__ import CO_FUTURE_WITH_STATEMENT
3.
4. loader = dutest.DocTestLoader(
5. DocTestFinderSubClass(), # compatible with previous DocTestFinder subtypes
6. {'glob1': 1, 'glob2': 2, 'glob3': 3}, # globals used when executing examples
7. {'extra1' : 1, 'extra2' : 2}, # extra globals to execute examples
8. optionflags = doctest.REPORT_UDIFF, # doctest options flags to use
9. checker = MyOwnCheckerClass(), # override how examples are verified
10. runopts = dict(
11. compileflags = CO_FUTURE_WITH_STATEMENT, # options to compile examples
12. clear_globs = True) # clear global namespace after testing
13.)

Fi g u r e 8 : S p e c if yin g d o c t e s t o p ti o n al f e at ur e s .

Combining test cases and doctests

“What if my module contains both doctests and test cases?” Thanks to the object oriented
nature of the present API, a simple solution is at hand. Firstly, we need a loader whose
purpose is to retrieve various types of tests and assemble them into a test suite. An
implementation resembling the Chain of Responsibility pattern is shown in Figure 9c. An
instance of this loader holding a legacy TestLoader and a DocTestLoader does what we need.

Since testers might frequently face this situation in practice, the MultiTestLoader class has
been included into the API. It is important to notice that a single step is needed to set up
the testing scenario. Besides this all happens like we are used to with unittest loaders. Hence
this style encourages uniformity. The class MultiTestLoader is extremely reusable, even in other
contexts.

The Python Papers, Volume 3, Issue 1 48

1. def choice(seq):
2. “””
3. >>> seq = range(10)
4. >>> elem = choice(seq)
5. >>> elem in seq
6. True
7. “””
8. # code omitted
9.
10. def shuffle(seq):
11. # code omitted
12.
13. def sample():
14. “””
15. >>> seq = range(10)
16. >>> sample(seq, 20)
17. ... # doctest: +ELLIPSIS
18. Traceback (...):
19. ...
20. ValueError: ...
21. >>> [x in seq for x in \
22. ... sample(seq, 5)]
23. ... #doctest: +NORMALIZE_WHITESPACE
24. [True, True, True, True, True]
25. “””
26. # code omitted
27.
28. class TestSequenceFunctions(
29. unittest.TestCase):
30.
31. def setUp(self):
32. self.seq = range(10)
33.
34. def testshuffle(self):
35. shuffle(self.seq)
36. self.seq.sort()
37. self.assertEqual(
38. self.seq, range(10))
39.
40. def testsample(self):
41. self.assertEqual([],
42. sample(self.seq, 0))

43. import unitest
44. from dutest import DocTestLoader,
45. main, MultiTestLoader
46.
47. loaders = [unittest.defaultTestLoader,
48. DocTestLoader()]
49.
50. if __name__ == '__main__':
51. main(testloader=
52. MultiTestLoader(loaders))
53.
54. def run_tests():
55. # Finer level of control to run tests
56. loader = MultiTestLoader(loaders)
57. suite = loader.loadTestsFromModule(
58. sys.modules[__name__])
59. unittest.TextTestRunner(
60. verbosity=2).run(suite)

b) Running doctests and test cases altogether

1. class MultiTestLoader(
2. unittest.TestLoader):
3. def __init__(self, loaders= []):
4. self.loaders= loaders
5.
6. def loadTestsFromModule(self,
7. module):
8. return self.suiteClass(
9. [loader.loadTestsFromModule(
10. module) for loader in
11. self.loaders])
12. # further code omitted

a) Writing the tests c) A loader to retrieve different kinds of tests

Fi g u r e 9 : A s s e r tin g d o c t e s t s a n d t e s t c a s e s f o u n d in a s i n gl e m o d ul e .

Defining fixtures

The concept of fixtures pioneered by xUnit frameworks can be used to hide away test setup
code from docstrings, thereby obtaining more concise documentation. Nevertheless at the
same time readability might be jeopardized at some extent. Since test cases work at the
example level in this solution, the legacy setUp and tearDown methods are executed
respectively before and after the interpreter executes each example.

The current doctest unittest API behaves differently. It calls fixture methods once before and
after asserting all the examples. However the same behavior can be obtained using test
cases implemented with test patterns like Shared Fixture and Chained Tests53.

53 Test patterns are presented in G. Meszaros “XUnit test patterns : refactoring test
code” (2007), Addison-Wesley, ISBN 0-13-149505-4.

The Python Papers, Volume 3, Issue 1 49

13. “””
14. range(10) is assigned to seq before
15. executing each statement.
16.
17. >>> shuffle(seq); seq.sort(); seq
18. ... #doctest: +NORMALIZE_WHITESPACE
19. [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
20.
21. >>> sample(seq, 20) # doctest: +ELLIPSIS
22. Traceback (most recent call last):
23. ...
24. ValueError: sample larger than population
25.
26. >>> [x in seq for x in sample(seq, 5)]
27. ... #doctest: +NORMALIZE_WHITESPACE
28. [True, True, True, True, True]
29.
30. >>> choice(seq) in seq
31. True
32. “””

33. from dutest import main,
34. DocTestCase, DocTestSuite,
35. DocTestLoader
36.
37. class RandomTestLoader(
38. DocTestLoader):
39. class doctestSuiteClass(
40. DocTestSuite):
41. class docTestCaseClass(
42. DocTestCase):
43. def setUp(self):
44. exec 'seq = range(20)' in\
45. self._dt.globs
46.
47. # self._dt returns the DocTest
48. # object containing the Example
49.
50. if __name__ == '__main__':
51. main(loader=RandomTestLoader())

a) Concise docstrings b) Compact fixture code

Fi g u r e 10: P e r e x a m pl e p r e p a r ati o n a n d c l e a n u p a c ti o n s .

Conclusions

In 2007 Python has been considered by TIOBE as the language of the year54. According to
the same source in January 2008 it has scaled up to the sixth place among the most popular
programming languages. It is also considered as the glue language by excellence, and the
community behind it is undoubtedly healthy. Besides being a recognition to the work made
by many since years ago, all these arguments are so moving for new developers captured
by its beauty. Nonetheless there is still a place for enhancements.

The standard module doctest is one example of such a beauty, whereas unittest is a typical
case of strength, flexibility and stability. The later is full of design patterns, and sustains a
large number of testing patterns. The former reflects the strong support provided for meta-
programming in Python. It is related to many well-known xUnit patterns, especially test
automation patterns (e.g. Data-Driven Test, Recorded Test, Scripted Test), and result
verification patterns (e.g. Behavior Verification, State Verification, Delta Assertion)53.

The main ambition of the present work is to run the doctest machinery while performing
unittest runs. This has been accomplished after interleaving a layer which reconciles their
respective interfaces. Given the object oriented nature of the solution, it is not bizarre that
core classes be subjects of the Adapter pattern. Notably, _Doc2UnitTestRunner takes part twice.
It is also the main gateway between doctest and unittest in our solution. This confirms the fact
that pattern density gets higher around key classes. As already said, the novel API also
allows the use of many xUnit testing patterns while testing doctests.

Perhaps the strongest arguments in favor of this solution are related to its contribution to
automated test analysis. This discipline is very important because it is a powerful indicator
of a project's progress towards its goals. The number of attempted test cases over time
highlights how effective the testing activities perform. Otherwise it could be found that they
do not behave accordingly to the test plan. Test analysis can be helpful to adjust schedules,
assign tasks, track defects, prioritize goals, monitor the development process, discover root
causes, and many other dissimilar activities. In all cases, the main input consists of test
results. The process of obtaining detailed information via the current unittest API is more
complex in view of the fact that a full doctest report is stored. First, we need to extract the
report from a TestResult instance. Next, useful information is retrieved through parsing. In our
case, the same can be done by directly inspecting TestResult objects. This could ease tasks

54 News found at TIOBE's home page http://www.tiobe.com/.

http://www.tiobe.com/

The Python Papers, Volume 3, Issue 1 50

contributing to CMM key process areas like Software Project Tracking and Oversight,
Software Quality Assurance (Repeatable level), Peer reviews, Software Product Engineering,
Organization Process Focus, Intergroup Coordination (Defined level), Quantitative Process
Management, Software Quality Management (Managed level), and finally Defect Prevention
(Optimizing level).

F..F.FF
===
FAIL: testshuffle (__main__.TestSequenceFunctions)
--
Traceback (most recent call last):
 File "<stdin>", line 8, in testElems
AssertionError: [0, 1, 3, 4, 5, 6, 7, 8, 9] != [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

===
FAIL: __main__.choice (line 5)
--
AssertionError: Failed example:
 elem in seq
Expected:
 True
Got:
 False
===
FAIL: __main__.sample (line 4)
--
AssertionError: Failed example:
 sample(seq, 20) # doctest: +ELLIPSIS
Expected:
 Traceback (most recent call last):
 ...
 ValueError: sample larger than population
Got:
 []
===
FAIL: __main__.sample (line 9)
--
AssertionError: Failed example:
 [x in seq for x in sample(seq, 5)]
 #doctest: +NORMALIZE_WHITESPACE
Expected:
 [True, True, True, True, True]
Got:
 []
--
Ran 7 tests in 0.015s

FAILED (failures=4)

Fi g u r e 11: Te s t r e p or t o b t ain e d with th e o bj e c t-o ri e nt e d unittest A P I.

The implementation also contains plenty of interesting ideas, even for cosmetic features.
For example, Meyer's principle of uniform access was exercised while coding DocTestCase.
Built-in property objects assisted in hiding the complex computation to derive test method's
names from the corresponding Example's attributes.

Acknowledgments

The thorough reviews made by the editors were crucial to enhance the contents and catch
some mistakes. Their dedication and timeliness were highly valuable. The emphasis made
on readability while writing the code snippets, is mainly due to Medardo Rodríguez.
Moreover, the anonymous reviewers offered concise and very helpful comments.

The Python Papers, Volume 3, Issue 1 51

The Python Papers, Volume 3, Issue 1 52

The Python Papers, Volume 3, Issue 1 53

The Python Papers, Volume 3, Issue 1 54

The Python Papers, Volume 3, Issue 1 55

The Python Papers, Volume 3, Issue 1 56

The Python Papers, Volume 3, Issue 1 57

The Python Papers, Volume 3, Issue 1 58

The Python Papers, Volume 3, Issue 1 59

The Python Papers, Volume 3, Issue 1 60

The Python Papers, Volume 3, Issue 1 61

The Python Papers, Volume 3, Issue 1 62

The Python Papers, Volume 3, Issue 1 63

The Python Papers, Volume 3, Issue 1 64

Parts-of-Speech Tagger Errors Do Not Necessarily Degrade
Accuracy in Extracting Information from Biomedical Text

Maurice HT Ling1, Christophe Lefevre 1,2, Kevin R Nicholas1

1CRC for Innovative Dairy Products, Department of Zoology, The University of Melbourne,
Australia
2Victorian Bioinformatics Consortium, Monash University, Australia

Corresponding email: mauriceling@acm.org

Abstract
Background: An ongoing assessment of the literature is difficult with the
rapidly increasing volume of research publications and limited effective
information extraction tools which identify entity relationships from text. A
recent study reported development of Muscorian, a generic text processing
tool for extracting protein-protein interactions from text that achieved
comparable performance to biomedical-specific text processing tools. This
result was unexpected since potential errors from a series of text analysis
processes is likely to adversely affect the outcome of the entire process.
Most biomedical entity relationship extraction tools have used biomedical-
specific parts-of-speech (POS) tagger as errors in POS tagging and are likely
to affect subsequent semantic analysis of the text, such as shallow parsing.
This study aims to evaluate the parts-of-speech (POS) tagging accuracy and
attempts to explore whether a comparable performance is obtained when a
generic POS tagger, MontyTagger, was used in place of MedPost, a tagger
trained in biomedical text. Results: Our results demonstrated that
MontyTagger, Muscorian's POS tagger, has a POS tagging accuracy of 83.1%
when tested on biomedical text. Replacing MontyTagger with MedPost did
not result in a significant improvement in entity relationship extraction from
text; precision of 55.6% from MontyTagger versus 56.8% from MedPost on
directional relationships and 86.1% from MontyTagger compared to 81.8%
from MedPost on nondirectional relationships. This is unexpected as the
potential for poor POS tagging by MontyTagger is likely to affect the outcome
of the information extraction. An analysis of POS tagging errors
demonstrated that 78.5% of tagging errors are being compensated by
shallow parsing. Thus, despite 83.1% tagging accuracy, MontyTagger has a
functional tagging accuracy of 94.6%. Conclusions: The POS tagging error
does not adversely affect the information extraction task if the errors were
resolved in shallow parsing through alternative POS tag use.

mailto:mauriceling@acm.org

The Python Papers, Volume 3, Issue 1 65

1. Introduction
PubMed currently indexes more than 17.5 million papers that includes 1
million papers added in both 2006 and the first half of 2007. This trend of
increased volume of research papers makes it difficult for researchers to
maintain a productive assessment of relevant literature. Information
extraction (IE) has been used as a tool to analyze biological text to derive
assertions, such as entity interactions (Abulaish and Dey, 2007). To date,
there has been a number of IE tools to extract entity interactions from
published text, such as MedScan (Novichkova et al., 2003), Arizona Relation
Parser (Daniel et al., 2004), BioRAT (David et al., 2004) and Santos et al.
(2005).

A recent article by Ling et al. (2007) has classified entity interaction IE tools
by whether tools are developed with biological text in mind or adapted
generic tools for biological text. Ling et al. (2007) developed Muscorian, a
tool to extract protein-protein interactions from text. They also
demonstrated that a generic text analysis tool chain, MontyLingua (Liu and
Singh, 2004; Ling, 2006), incorporated into a two-layered generic-specialized
architecture as explained in MedScan (Novichkova et al. 2003), can give rise
to comparable performance in entity interaction extraction compared to
those IE systems that modified existing systems, such as BioRAT (David et
al., 2004), Chilibot (Chen and Sharp, 2004) and Santos et al. (2005). One of
the common features of both classes of tools defined by Ling et al. (2007) is
the specialization of the part-of-speech (POS) tagger. For example, Arizona
Relation Parser (Daniel et al., 2004) re-trained Brill tagger (Brill, 1995) and
Chilibot (Chen and Sharp, 2004) re-trained TnT tagger (Brants, 2000). POS
tagging is a process of assigning grammatical roles of each word and
punctuation in the source sentence. This plays a critical role in subsequent
text processing tasks, such as shallow parsing, where the sequence of POS
tags were used instead of the original sequence of words. At the same time,
it was known that errors in POS tagging often results in misunderstanding of
the sentence (Kodratoff et al., 2005; Amrani et al., 2005).

Muscorian (Ling et al., 2007) makes use of a generic POS tagger as part of
MontyLingua (Ling, 2006; Liu and Singh, 2004) and performs at a
comparable level to IE tools using POS taggers trained on biomedical text.
This contradicts the common view that “error propagation through cascades
of processors may in aggregate severely degrade performance on the final
task” as stated in the Call for Papers for the Tenth Conference on Natural
Language Processing 2006 (CoNLL-X). Tateisi and Tsujii (2004) have
demonstrated that generic POS taggers are only about 83% accurate when
used to tag biomedical text. This suggests that MontyTagger, the generic
POS tagger in MontyLingua, is unlikely to perform as well as taggers trained
on biomedical text, such as MedPost (Smith et al., 2004). Therefore, it is
likely that the above mentioned contradiction is resolved at the step
immediately downstream to POS tagging, the shallow parsing. In
MontyLingua shallow parsing (Ling et al., 2007), the input sentence is broken
into noun phrase and verb phrase. The process of shallow parsing can be

The Python Papers, Volume 3, Issue 1 66

seen as a collapse of a sequence of POS tags into 2 groups; hence, we
expect high level of permissible substitution of POS tags within related
classes. We term this permissible substitution as “alternate POS tag use”.

This study compares the performance of MedPost (Smith et al., 2004) with
the generic POS tagger, MontyTagger (Liu and Singh, 2004), in Muscorian
(Ling et al., 2007) and illustrates a case whereby POS tagging error does not
adversely affect the final information extraction task if the errors were
resolved in shallow parsing through alternate POS tag use.

2. Methods

2.1. Evaluating POS Tagging and Information Extraction
Performance

MontyTagger was evaluated on its own using MedPost corpus (Smith et al.,
2004) and its accuracy as the percentage of the number of correctly tagged
tokens (words and punctuations) in the total number of tokens (n=182399).
MedPost tagger was swapped in place of MontyTagger by modifying
MontyLingua's jist() and jist_predicates() functions to mpjist() and
mpjist_predicates(), giving MedPost-MontyLingua Muscorian:
 def jist(self,text):
 sentences =
self.split_sentences(text)
 tokenized =
map(self.tokenize,sentences)
 tagged =
map(self.tag_tokenized,tokenized)
 chunked =
map(self.chunk_tagged,tagged)
 extracted =
map(self.extract_info,chunked)
 return extracted

def jist_predicates(self,text):
 infos = self.jist(text)
 svoos_list = []
 for info in infos:
 svoos =
info['verb_arg_structures_concise']
 svoos_list.append(svoos)
 return svoos_list

to

The Python Papers, Volume 3, Issue 1 67

def mpjist(self,text):
 sentences =

self.split_sentences(text)
 tokenized =

map(self.tokenize,sentences)
 sourcefilename =

random.random()*1000000000
 outfilename =

random.random()*100000000000
0

 source = open('temp' + os.sep +
str(sourcefilename), 'w')

 source.writelines(tokenized)
 source.close()
 os.popen(os.getcwd() + os.sep +

'medpost/medpost -text -token
-penn < temp' + os.sep +
str(sourcefilename) + '> temp' +
os.sep + str(outfilename))

 mpout = open('temp' + os.sep +
str(outfilename), 'r')

 tagged = mpout.readlines()
 mpout.close()
 chunked =

map(self.chunk_tagged,tagged)
 extracted =

map(self.extract_info,chunked)
 return extracted

def mpjist_predicates(self,text):
 infos = self.mpjist(text)
 svoos_list = []
 for info in infos:
 svoos =

info['verb_arg_structures_concise'
]

 svoos_list.append(svoos)
 return svoos_list

Figure 1. Flowchart of
evaluation procedure for
Muscorian with native
MontyLingua and
MedPost-MontyLingua.
LLL05 test data was
processed for
abbreviations before
feeding into each
system and the
extracted genic
interactions (output)
were evaluated for
precision and recall.

MedPost-MontyLingua Muscorian's IE performance was evaluated using
Learning Languages in Logic 2005 test data (Cussens and Nedellec, 2005) in
the same manner as Muscorian (Ling et al., 2007) and the performances
were compared (Figure 1).

The Python Papers, Volume 3, Issue 1 68

2.2. Analysis of POS Tagging Errors

Wrongly tagged tokens from MontyTagger's output were first grouped by
their original tags in MedPost corpus (Smith et al., 2004), then sub-grouped
by MontyTagger's assigned tags (the wrong tag) and arranged in decreasing
order based on the numbers of tags in both main and sub-group. First 80%
of the tags in the main group where first 90% of the wrongly assigned tags
were chosen for further error analysis. Each of the pairs of original tag and
wrongly assigned tag were analysed with respect to the regular expressions
in MontyREChunker (Ling et al., 2007), the shallow parser in MontyLingua,
for the effects of the wrongly assigned tags on the operations of the shallow
parser.

3 Results

3.1 Evaluating POS Tagging and Information Extraction
Performance

Evaluating MontyTagger on MedTag corpus demonstrated correct tagging in
151663 of the tags representing 83.1% tagging accuracy. Using the LLL05
evaluation corpus, Muscorian with MedPost-MontyLingua on directional relationship was found
to be 56.8% precise with 24.8% recall, while nondirectional relationship was estimated to be
81.8% precise with 35.6% recall (Table 1).

Directional Relationships Nondirectional
MontyLin

gua
mpMontyLing

ua
MontyLing

ua
mpMontyLing

ua

Precisio
n

55.6% 56.8% 86.1% 81.8%

Recall 19.8% 24.8% 30.7% 35.6%

F-Score 0.292 0.345 0.453 0.496

Table 1. Summary of Muscorian's performances evaluated using Learning
Languages in Logic 2005 data (Cussens, 2005).

3.2. Analysis of POS Tagging Errors

Comparison of the reference tags (MedPost corpus) with the wrongly
assigned tags from MontyTagger showed the 30736 wrongly assigned tags
(52.3%, n=16067) should be tagged as nouns (tag: 'NN'), 15.8% (n=4865)
should be tagged as 'JJ' (adjectives), and the next four most common
wrongly assigned tags were 'NNS' (n=1987, 6.5%), 'SYM' (n=1496, 4.9%),
'VBP' (n=1470, 4.8%), and 'VBD' (n=745, 2.4%). These six reference tags
(NN, JJ, NNS, SYM, VBP, VBN) accounted for 26630 (86.6%) of the wrongly
assigned tags, while the rest of the errors (n=4106) were distributed across
25 tags. Six tags (TO, :, (,), WP, ,) were correctly assigned in every instance

The Python Papers, Volume 3, Issue 1 69

in this evaluation. A tabulation of errors is shown in Table 2 and a table
providing the definition of each POS tag is given in Table 3. The confusion
matrix can be found at http://ib-dwb.sf.net/Muscorian/MedPost_confuse.txt.

Tag %
Corpus

% Error
in Total
Error

%
Error
in Tag

Tag %
Corpus

% Error
in Total
Error

%
Error
in Tag

NN 28.56 52.27 30.84 VBG 0.64 0.06 1.59

IN 13.49 1.08 1.33 : 0.54 0.00 0.00

JJ 10.47 15.81 25.44 MD 0.43 0.01 0.2

DT 7.77 0.56 1.16 WDT 0.45 0.19 6.70

NNS 7.75 6.45 14.03 , 0.39 0.00 0.00

CC 6.66 1.30 3.29 PRP$ 0.28 0.01 0.40

. 3.67 0.01 0.03 FW 0.26 0.96 61.39

CD 3.13 2.02 10.84 WRB 0.23 0.59 43.33

VBN 3.05 1.70 10.13 JJR 0.17 0.17 17.74

VBD 2.81 2.42 14.56 NNP 0.14 0.03 3.53

RB 2.57 1.72 9.49 EX 0.08 0.01 1.38

) 1.89 0.00 0.00 POS 0.06 0.06 15.31

(1.88 0.00 0.00 WP 0.06 0.00 0.00

VBP 1.98 4.78 41.26 JJS 0.05 0.02 6.60

TO 1.55 0.00 0.00 RBS 0.05 0.01 4.40

VBZ 1.54 0.45 5.20 “ 0.03 0.19 100.00

SYM 1.07 4.87 76.43 `` 0.03 0.19 100.00

PRP 0.88 1.61 30.59 PDT 0.02 0.11 100.00

VB 0.74 0.05 1.11 RBR 0.01 0.03 44.44
Table 2. Percentage breakdown of POS tags in MedTag corpus and errors in MontyTagger as
percentage of POS tags assignation. This table tabulates the POS tagging errors made by
MontyTagger on MedTag corpus and the order is according to the abundance of each tag in
the MedTag corpus. For example, 'NN' is the most abundant tag accounting for 28.56% or
52093 of MedTag corpus of 182399 tokens. Of which, 3084% (16067 of 52093) of the 'NN'
tokens in MedTag corpus were wrongly assigned to a different POS tag by MontyTagger
which accounted for 52.27% of the total wrongly assigned POS tag of 30736 tokens.

http://ib-dwb.sf.net/Muscorian/MedPost

The Python Papers, Volume 3, Issue 1 70

Figure 2. Muscorian's generalization layer, from source text to subject-verb-object(s)
structures (Ling et al., 2007).

The Python Papers, Volume 3, Issue 1 71

Tag Description Tag Description

CC Coordinating
conjunction

PRP$ Possessive pronoun

CD Cardinal number RB Adverb

DT Determinant RBR Adverb, comparative

EX Existential there RBS Adverb, superlative

FW Foreign word RP Particle

IN Preposition or
subordinating
conjunction

SYM Symbol

JJ Adjective TO to

JJR Adjective,
comparative

UH Interjection

JJS Adjective,
superlative

VB Verb, base form

LS List item marker VBD Verb, past tense

MD Modal VBN Verb, past participle

NN Noun, singular or
mass

VBG Verb, gerund or
present participle

NNS Noun, plural VBP Verb, non-3rd person
singular present

NNP Proper noun,
singular

VBZ Verb, 3rd person singular
present

NNPS Proper noun, plural WDT Wh-determiner

PDT Predeterminer WP Wh-pronoun

POS Possessive ending WP$ Possessive wh-
pronoun

PRP Personal pronoun WRB Wh-adverb

Table 3. Penn Treebank Tag Set without Punctuation Tags (Adapted from
(Marcus et al., 1993))

An understanding of the general scheme of operations of MontyLingua as described in Ling et
al. (2007), especially downstream process of POS tagging, the process of shallow parsing by
MontyREChunker (MontyLingua's shallow parser) is crucial in our error analysis (Figure 2).
Source text (abstracts) were processed for abbreviations and tokenized into sentences, then
words and punctuations, before POS tagging. In POS tagging, each token was tagged first using
a lexicon and corrected using lexical and contextual rules. This was where the output was 83.1%
accurate compared to 96.9% in MedPost. POS tagging could be seen as a reduction of
potentially unlimited human English words into 45 “words” or tags using knowledge of English
grammar, and the sequence of tags was the input to the shallow parser, MontyREChunker.

The Python Papers, Volume 3, Issue 1 72

Firstly, verb tags (VBD, VBG and VBN) were protected by suffixing the tags to prevent
interference in subsequent noun phase recognition (Ling et al., 2007). This meant that wrong
tagging between these three tags, such as VBD was erroneously tagged as VBN, had no effect
on this process. However, wrong tagging of any of these three tags to any of the other 42 tags or
the other way around will be detrimental to this process. Secondly, noun phrases were
recognized by the following regular expression (according to Python regex engine in the Python
standard library):

((((PDT)?(DT |PRP[$] |WDT |WP[$])(VBG |VBD |VBN |JJ |JJR |JJS |, |CC |NN |NNS |NNP |
NNPS |CD)*(NN |NNS |NNP |NNPS |CD)+)|((PDT)?(JJ |JJR |JJS |, |CC |NN |NNS |NNP |
NNPS |CD)*(NN |NNS |NNP |NNPS |CD)+)|EX |PRP |WP |WDT)POS)?(((PDT)?(DT |
PRP[$] |WDT |WP[$])(VBG |VBD |VBN |JJ |JJR |JJS |, |CC |NN |NNS |NNP |NNPS |CD)
*(NN |NNS |NNP |NNPS |CD)+)|((PDT)?(JJ |JJR |JJS |, |CC |NN |NNS |NNP |NNPS |CD)
*(NN |NNS |NNP |NNPS |CD)+)|EX |PRP |WP |WDT)

A number of relationships that potentially contribute to reduced POS tagging errors were
considered. Firstly, these four tags; DT, PRP[$], WDT, and WP[$]; were alternatives to each
other and erroneous tagging between them had no effect on shallow parsing. Secondly, the ten
tags; JJ, JJR, JJS, “,”,CC, NN, NNS, NNP, NNPS, and CD; were alternatives to each other.
Lastly, these four tags; EX, PRP, WP, and WDT; were alternatives to each other.

Subsequently, verb phases were de-protected by removing the suffix appended during the tag
protection phase (Ling et al., 2007), followed by verb phrase recognition. This meant that verb
tag protection had the highest precedence, followed by noun phrase recognition, and then verb
phrase recognition. This meant that nullified errors in higher precedence would not affect
downstream processes. Verb phrases were recognized by the following regular expression:

(RB |RBR |RBS |WRB)*(MD)?(RB |RBR |RBS |WRB)*(VB |VBD |VBG |VBN |VBP |VBZ)
(VB |VBD |VBG |VBN |VBP |VBZ |RB |RBR |RBS |WRB)*(RP)?(TO (RB)*(VB |VBN)
(RP)?)?

In terms of compensation for POS tagging errors, this meant that the four tags; RB, RBR, RBS,
and WRB; and these six tags; VB, VBD, VBG, VBN, VBP, and VBZ; were alternatives to each
other. However, verb phrase required terminal VB or VBN, which meant that although verb tag
protection allowed for interchangeable use of VBN, VBG and VBD, erroneous tagging of VBG
and VBD to VBN or VBN to VBG or VBD would be detrimental to verb phrase recognition.

A deeper analysis was undertaken to examine the errors in each reference
tag (tabulated in Table 4). Firstly, by grouping close POS types, for example
'NN', 'NNP', and 'NNS' were all nouns, wrong sub-type assignation, such as
'NN' assigned as 'NNP' and 'NNS' assigned as 'NNP', accounted for 55% of
the errors (n=14634). Secondly, 58% (n=2818) of 'JJ' (adjective) errors were
resulted by tagging as noun (NN and NNP) while 34.9% (n=1698) of the 'JJ'
errors were tagged as verb (VBN and VBG). Thirdly, about 5% (n=941) of
'NN' (noun) errors were tagged as cardinal numbers (CD). Fourthly, plural
nouns accounted for 51.6% (n=1026) of 'NNS' (singular noun) errors. Fifthly,
48.7% (n=729) and 39.3% (n=587) of 'SYM' (symbol) errors were either not
assigned or assigned as 'NN' (noun) respectively. Lastly, 87% (n=1927) of
verb errors (VBP and VBD) were due resolution of tenses, such as non-third

The Python Papers, Volume 3, Issue 1 73

party singular present tense (VBP) was assigned as infinite verb form (VB).

Error breakdown (in Table 4) demonstrated erroneous POS tagging by MontyTagger in 31 tags,
with 6 tags having no errors. A total of 6 of the 32 tags (19.4%) accounted for 86.6% (n=26630)
of the total errors and were chosen for further analysis. Applying these error nullification rules
to each of the examined erroneous tags (86.6% of the errors), it was found that 78.6% of the
errors had no effect on shallow parsing. A tabulated analysis is shown in Table 4.

Refere
nce
Tag

Wrong
ly

Assign
ed Tag

Number
of

Wrong
Assignat

ion

Cummulat
ive

Frequency
for

Reference
Tag

Impact on Shallow
Parsing?

NN
(16067)

NNP 10865 67.6% No, NNP was an
alternative match to
NN in noun phrase

JJ 2527 83.4% No, JJ was an alternative
match to NN in noun
phrase recognition

CD 941 89.2% No, CD was an
alternative match to
NN in noun phrase

VBG 812 94.3% Yes, protected verb tag

JJ
(4865)

NN 1600 32.9% No, NN was an
alternative match to
JJ in noun phrase

NNP 1218 58.0% No, NNP was an
alternative match to
JJ in noun phrase

VBN 1170 82.0% Yes, protected verb tag

VBG 528 92.8% Yes, protected verb tag

NNS
(1987)

NNP 1026 51.6% No, NNP was an
alternative match to
NNS in noun phrase

NN 701 86.9% No, NN was an
alternative match to
NNS in noun phrase

VBZ 128 93.4% No, VBZ was an
alternative match to
NNS in noun phrase
and was not a
protected verb tag

The Python Papers, Volume 3, Issue 1 74

Refere
nce
Tag

Wrong
ly

Assign
ed Tag

Number
of

Wrong
Assignat

ion

Cummulat
ive

Frequency
for

Reference
Tag

Impact on Shallow
Parsing?

SYM
(1496)

Not
Assigne
d

729 48.7% No, tokens not tagged
were non-existent
and SYM was not

NN 587 88.0% Yes, NN was matched in
noun phrase

- 115 95.7% No, both tags was not
used in shallow
parsing

VBP
(1470)

VB 1249 85.0% Yes, mandatory
requirement of VB in
verb phraseNN 178 97.1% No, NN was an
alternative match to
VBP in noun phrase

VBD
(745)

VBN 678 91.0% Yes, mandatory
requirement of VBN
in verb phraseJJ 34 95.6% Yes, protected verb tag

Table 4. Error breakdown and analysis on the effects of six most commonly mis-assigned POS
tags. Six reference tags; NN, JJ, NNS, SYM, VBP, and VBD; which accounted for 86.6% of all
wrong POS assignation by MontyTagger were chosen and in each tag, the assigned tags which
accounted for 90% of the errors were chosen for further analysis. For example, of 16067 tags
that were tagged as 'NN' in MedTag corpus, MontyTagger wrongly tagged 10865 tokens as
'NNP' and has no effect on shallow parsing, 2527 tokens as 'JJ' and has no effect on shallow
parsing, 941 tokens as 'CD' and has no effect on shallow parsing, and 812 tokens as 'VBG' with
an effect on shallow parsing. These 4 wrong tagging accounted for 94.3% of all 'NN' tag errors.
This also meant that 922 'NN' tag errors (5.7%) were not further analyzed. A complete confusion
matrix is given in http://ib-dwb.sf.net/Muscorian/MedPost-confuse.txt.

4. Discussion
The precision and recall of native MontyLingua Muscorian for extracting
genic interactions from the LLL05 data set (Cussens and Nedellec, 2005)
was 55.6% and 19.7% (F-score = 0.29) respectively for directional
interactions which is about 5% higher in precision and similar in recall to
that reported in LLL05 (Cussens and Nedellec, 2005). The precision and
recall was 86.1% and 30.7% (F-score = 0.45) respectively for nondirectional
interaction. The term “directional” means that the direction of protein
activity is non-commutative, for example, “proteinA activates proteinB” does
not the same as “proteinB activates proteinA”. However, nondirectional
means that the protein activity is commutative, for example, “proteinA binds

The Python Papers, Volume 3, Issue 1 75

to proteinB” has no different biological significance than “proteinB binds to
proteinA”. This formed the baseline to evaluate a biomedical-specialized
part-of-speech (POS) tagger (Smith et al., 2004) modification of Muscorian,
MedPost-MontyLingua Muscorian. The main reason for examining this
specialized POS tagger was that it was developed for biomedical information
extraction systems (Daniel et al., 2004; Chen and Sharp, 2004) and POS tagging
errors were known to be detrimental in understanding human text (Kodratoff
et al., 2005; Amrani et al., 2005). In addition, POS tagger modification had been
done in a number of biomedical information extraction systems, such as
Jang et al. (2006) and Chilibot (Chen and Sharp, 2004).

Examining MontyLingua's source codes, the main function that processes
text is the jist_predicate() function, which calls the jist() function to process
text (tokenization, POS tagging and shallow parsing) and then to extract the
resulting set of subject-verb-objects (SVO) from jist's output (Ling et al.,
2007). The Python codes for these two functions were as follows:
 def jist(self,text):
 sentences =
self.split_sentences(text)
 tokenized =
map(self.tokenize,sentences)
 tagged =
map(self.tag_tokenized,tokenized)
 chunked =
map(self.chunk_tagged,tagged)
 extracted =
map(self.extract_info,chunked)
 return extracted

def jist_predicates(self,text):
 infos = self.jist(text)
 svoos_list = []
 for info in infos:
 svoos =
info['verb_arg_structures_concise']
 svoos_list.append(svoos)
 return svoos_list

As observed, jist() function calls tokenize function to tokenize the text,
tag_tokenized function to perform POS tagging, chunk_tagged function to
perform shallow parsing, and finally, extract_info function to extract SVOs
from the parsed text. The systematic structure of MontyLingua's codes,
especially the jist() function had simplified the substitution of MontyTagger
(by tag_tokenized function) with MedPost. This implied that any of the other
components in the text analysis process, like shallow parser (by
chunk_tagged function) could be easily exchanged.

The precision and recall of MedPost-MontyLingua Muscorian evaluated using
the LLL05 data set (Cussens and Nedellec, 2005) were 56.8% and 24.8% (F-
score = 0.35) respectively for directional interactions, and 81.8% and 35.6%
(F-score = 0.50) respectively for nondirectional interaction. Our results
showed that using MedPost in place of MontyLingua's POS tagger,
MontyTagger, had improved the F-score by about 5% in both directional and
nondirectional interactions extraction, and recall (24.8% versus 19.7% and
35.6% versus 30.7%). However, as reasoned in Ling et al. (2007), precision
was more important than recall when extracted protein-protein interactions
were used to support other biological analyses and the problem with
mediocre recall is resolved with large volumes of text.

Our results indicated that MedPost-MontyLingua Muscorian outperformed un-

The Python Papers, Volume 3, Issue 1 76

modified-MontyLingua Muscorian in extracting directional genic interactions
in terms of both precision and recall, suggesting that MedPost-MontyLingua
Muscorian was more suited for this purpose. However, the precision of
MedPost-MontyLingua Muscorian underperformed in extracting non-
directional genic interactions, despite better recall. This suggested that
errors in MontyTagger (un-modified-MontyLingua's POS tagger) resulted in
more directional errors than that of MedPost. Given that our interest was in
nondirectional interactions and precision was more important than recall in
our case, un-modified-MontyLingua Muscorian was chosen for future work.

We conclude that our experimental results indicated that un-modified-
MontyLingua Muscorian performed as well as MedPost-MontyLingua
Muscorian for the purpose of processing biomedical text for the extraction of
genic interactions. Thus, in contrary to the general assumption that generic text processing
systems must be modified before being suitable for processing biological text for extracting
genic interactions as evident from numerous systems to date, we presented a case study where
comparable performance could be achieved by using generic text processing tools. This outcome
is consistent with a previous study using un-modified MontyLingua for processing peer-
reviewed economics papers (van Eck, 2005; van Eck and van Den Berg, 2005).

An initial evaluation of MontyTagger on MedTag Corpus (Smith et al., 2004)
indicated 83.1% accuracy, which was considerably less than from MedPost's reported accuracy
of 96.9% (Smith et al., 2004) and was close to the 83.0% tagging accuracy of a generic POS
tagger on biomedical text (Tateisi and Tsujii, 2004). This result was expected as MontyTagger
was not developed for biomedical text (Ling et al., 2007).

The POS tagging errors were expected to impact on performance of the entire text processing
pipeline but this was not observed in our results. Instead, the precision of un-modified-
MontyLingua Muscorian was comparable to that of MedPost-MontyLingua Muscorian on
directional genic interactions (55.6% versus 56.8%) and un-modified-MontyLingua Muscorian
outperformed MedPost-MontyLingua Muscorian on nondirectional genic interactions (86.1%
versus 81.8%). Taken collectively the precision of both system and their respective POS tagging
accuracies, seemed contradictory to general expectations as stated in the Call for Papers for the
Tenth Conference on Natural Language Processing 2006 (CoNLL-X).

An error analysis on MontyTagger was carried out in attempt to provide insight into resolving
this contradiction. A likely hypothesis to explain why POS tagging errors did not derail the
entire text processing pipeline was that the errors were nullified post-tagging. Text processing is
used in Muscorian as a means to convert unstructured text into structured form for data mining -
an extremely limited use of natural language processing compared to more complex uses, such
as automated translation. As mentioned previously, POS tagging can be seen as a process of
mapping potentially infinite number of words in the English language into a finite set of tags,
based on their syntactic meanings. Shallow parsing, also known as chunking, can then be seen
as a process which examines the sequence of tags and splits them into semantic phrases, of
which verb phrase and noun phrase are of interest in this case. Given that MontyLingua's
shallow parser parses the sequence of tags into 3 types of phrases (verb, noun, and adjectives), it
is conceivable that a number of POS errors have no effect on shallow parsing.

Of the 182399 token in MedTag Corpus (Smith et al., 2004), 30736 were erroneously tagged by

The Python Papers, Volume 3, Issue 1 77

MontyTagger (16.9% error) spreading over 40 tags. The top 6 most common tag errors
accounted for 86.6% of the total errors and were chosen for further evaluation. In each of the 6
most abundant error tags, the top 95% of the errors were examined.

The effects of each type of errors, such as 'NN' wrongly tagged to 'NNP', were examined by
analyzing the routines for shallow parsing which uses Regular Expressions. It was found that in
26630 of the examined POS tagging errors, 20928 (78.6% of 26630) had no effect on the
chunking process and the remaining 5703 errors adversely affected shallow parsing, which
might account for lower recall of un-modified-MontyLingua Muscorian as compared to
MedPost-MontyLigua Muscorian.

Therefore, despite a low POS tagging accuracy of 83.1% by MontyTagger, more than three-
quarters of the errors had no detrimental effect on chunking, suggesting a “functional POS
tagging accuracy” of at least 94.6%, which was relatively close to MedPost's reported 97%
accuracy (Smith et al., 2004). This apparent high “functional POS tagging performance” despite
poor actual tagging accuracy might be the reason to explain un-modified-MontyLingua
Muscorian's good performance in LLL05 test (Cussens and Nedellec, 2005) despite
poor tagging accuracy compared to MedPost-MontyLigua Muscorian. This suggested
that the nature of POS tagging errors might be more important than a single measure of POS
tagging accuracy in a specific use of generic text processing tools where a shallow parser is
involved. Therefore, it can be inferred that applications of biomedical literature analysis where a
shallow parser is likely to be involved, such as extracting entity interactions and protein or
molecule localization, POS tagging errors may not result in a decline in system performance.

At the same time, it is known that building domain-specific text processing tools requires much
manual efforts (Jensen et al., 2006) suggesting that the cost and effort needed to train taggers
specifically for biomedical text may not be needed, depending on the target application.
However, it should also be cautioned that other applications or systems that do not involve
shallow parser, such as Arizona Relation Parser (Daniel et al., 2004) which uses full sentence
parsing, are likely to benefit from superior POS tagging accuracy of MedPost (Smith et al.,
2004) and may experience degraded results from tagging errors.

MedTag Corpus (Smith et al., 2004) was used as a standard for evaluating MontyTagger.
However, only 38 of the 45 tags in Penn Treebank Tag Set were used to annotate the corpus
while the tagged output of MontyTagger illustrated the use of 45 tags. This might suggest
inconsistencies or errors in MedPost Corpus, which were found in other POS tagged corpora
(Peshkin and Savova, 2003; Ratnaparkhi, 1996).

5. Conclusions
In summary, analysis of the effects of MontyTagger's errors on downstream shallow parsing by
MontyREChunker illustrated that 78.6% of the examined errors had no effect on shallow
parsing. This implied that although the POS tagging accuracy of MontyTagger on MedPost
Corpus was 83.1%, a majority of the errors had no downstream effect; thus, the functional POS
tagging accuracy of MontyTagger was between 94.6% and 96.9%. A good functional POS
tagging accuracy despite poor POS tagging accuracy, with respect to shallow parsing, is a likely
reason for a comparative performance in extracting protein-protein interactions from text using a
domain-specific or a generic POS tagger.

The Python Papers, Volume 3, Issue 1 78

References
1. Abulaish M, Dey L: Biological relation extraction and query answering from

MEDLINE abstracts using ontology-based text mining. D ata & K n o wl ed ge
E n gin e e r ing 2007, 61(2):228.

2. Amrani A, Roche M, Kodratoff Y, Matte-Tailliez O: Inductive Improvement of
Part-of-Speech Tagging and Its Effect on a Terminology of Molecular
Biology. In: 18th Conference of the Canadian Society for Computational Studies
of Intelligence, Canadian AI 2005: May 9-11, 2005 2005 ; Victoria, Canada:
Springer Berlin / Heidelberg; 2005: 366.

3. Brants T: TnT - a statistical part-of-speech tagger. In: 6th A p pli ed Natu ral L anguag e
P r o c e s s ing C o nfe r en c e : 2000 ; S e attle , Wa shington, U S A ; 2000.

4. Brill E: Transformation-based error-driven learning and natural language
processing: a case study in part of speech tagging. C o m p utational L ingui sti c s 1995,
21(4):543-565.

5. Chen H, Sharp BM: Content-rich biological network constructed by mining PubMed
abstracts. B M C Bi oinfo r m ati c s 2004, 5:147.

6. Cussens J, Nédellec C (eds.): Proceedings of the 4th Learning Language in
Logic Workshop (LLL05). Bonn; 2005.

7. Daniel MM, Hsinchun C, Hua S, Byron BM: Extracting gene pathway relations using
a hybrid grammar: the Arizona Relation Parser. Bi oinfo r m ati c s 2004, 20(18):3370.

8. David PAC, Bernard FB, William BL, David TJ: BioRAT: extracting biological
information from full-length papers. Bi oinfo r mati c s 2004, 20(17):3206.

9. Jang H, Lim J, Lim JH, Park SJ, Lee KC, Park SH: Finding the evidence for protein-
protein interactions from PubMed abstracts. Bi oinfo r mati c s 2006, 22(14):e220-226.

10. Jensen LJ, Saric J, Bork P: Literature mining for the biologist: from information
retrieval to biological discovery. Nature R e vi e w G e n eti c s 2006, 7(2):119-129.

11. Kodratoff Y, Dimulescu A, Amrani A: Man-Machine Cooperation in Retrieving
Knowledge from Technical Texts. In: A A AI 2005 Sy mp o sium on Mi x e d-Initiative
P r o bl e m-S olving A s s i stant s : 2005; 2005.

12. Ling MH: An Anthological Review of Research Utilizing MontyLingua, a Python-
Based End-to-End Text Processor. The P ython P a p e r s 2006, 1(1):5-12.

13. Ling MH, Lefevre C, Nicholas KR, Lin F: Re-construction of Protein-Protein
Interaction Pathways by Mining Subject-Verb-Objects Intermediates. In: S e c ond
IA P R Wo rk sh op on P a tt e r n R e c o gnition in B i oinfo r m ati c s (P RI B 2007). Singapore:
Springer-Verlag; 2007.

14. Liu H, Singh P: ConceptNet: A Practical Commonsense Reasoning Toolkit. BT
Te chn ol ogy J o u r nal 2004, 22(4):211-226.

15. Marcus MP, Santorini B, Marcinkiewicz MA: Building a large annotated corpus
of English: the Penn Treebank. Computational Linguistics 1993,
19(2):313-330.

The Python Papers, Volume 3, Issue 1 79

16. Novichkova S, Egorov S, Daraselia N: MedScan, a natural language processing
engine for MEDLINE abstracts. Bi oinfo r mati c s 2003, 19:1699-1706.

17. Ratnaparkhi A: A Maximum Entropy Model for Part-of-Speech Tagging. In:
Conference on Empirical Methods in Natural Language Processing: 1996 ;
University of Pennsylvania: Association for Computational Linguistics; 1996:
133-142.

18. Peshkin L, Savova V: Why Build Another Part-of-Speech Tagger? A Minimalist
Approach. In: Recent Advances in Natural Language Processing
(RANLP-2003): 2003 ; Borovets, Bulgaria; 2003.

19. Santos C, Eggle D, States DJ: Wnt pathway curation using automated natural
language processing: combining statistical methods with partial and full parse for
knowledge extraction. Bi oinfo r mati c s 2005, 21(8):1653-1658.

20. Smith L, Rindflesch T, Wilbur WJ: MedPost: a part-of-speech tagger for bioMedical
text. Bi oinfo r mati c s 2004, 20(14):2320-2321.

21. Tateisi Y, Tsuji Ji: Part-of-Speech Annotation of Biology Research Abstracts.
In: 4th International Conference on Language Resource and Evaluation
(LREC2004): 2004; 2004: 1267-1270.

22. van Eck NJ: Towards automatic knowledge discovery from scientific literature.
M a st e r s . Rotterdam: Erasmus University; 2005.

23. van Eck NJ, van den Berg J: A novel algorithm for visualizing concept associations.
In: 16th Inter national Wo rk sh op on D ata ba s e and E xp e r t Sy st e m A p pli cation s
(D EX A'05) : 2005; 2005.

The Python Papers, Volume 3, Issue 1 80

Upcoming Events
The following events, taken from the python.org events wiki55, are being held between
December this year and March 2008.

April 7-11, 2008: Atlanta, GA, USA. Django Bootcamp at the Big Nerd Ranch.
http://bignerdranch.com/classes/django.shtml

April 12-13, 2008: Poznan, Poland. RuPy 2008. http://rupy.eu/

May 5-7, 2008: San Franciso, CA, USA. (Comprehensive) Introduction to Python course given
by Wesley Chun. http://cyberwebconsulting.com/

May 14-16, 2008: Longmont, CO, USA. Learning Python course taught by Mark Lutz.
http://home.earthlink.net/~python-training/longmont-public-classes.htm

May 17-18, 2008: Paris, France. PyCon FR / Journees Python 2008. http://fr.pycon.org/

June 9-13, 2008: Atlanta, GA, USA. Python Bootcamp with David Beazley at the Big Nerd
Ranch. http://bignerdranch.com/classes/python.shtml

July 7-12, 2008: Vilnius, Lithuania. EuroPython 2008.

 http://wiki.python.org/moin/EuroPython2008

To include your event in our next issue, or to include expanded event information, please
contact us directly to ensure that your event is represented as you would like. All events
available from the python.org events wiki will be included with a basic reference.

55 http://wiki.python.org/moin/PythonEvents

http://wiki.python.org/moin/EuroPython2008
http://bignerdranch.com/classes/python.shtml
http://fr.pycon.org/
http://home.earthlink.net/~python-training/longmont-public-classes.htm
http://cyberwebconsulting.com/
http://rupy.eu/
http://bignerdranch.com/classes/django.shtml

The Python Papers, Volume 3, Issue 1 81

The Python Papers' Review Policy

0. Preamble
The Python Papers (ISSN 1834-3147) is intended to be both a industrial journal as well as an
academic journal, in the sense that the editorial board welcomes submissions from all aspects
related to the Python programming language, its tools and libraries, and community, both of
academic and industrial inclinations. The Python Papers aims to be a publication for the Python
community at large. In order to cater for this, The Python Papers seeks to publish submissions under
2 main streams: the industrial stream (technically reviewed) and the academic stream (peer-
reviewed). This policy statement seeks to clarify the process of technical review and peer-review in
The Python Papers.

1. Right of submission author(s) to choose streams
The submission author(s); that is, the author(s) of the article or code or any submissions in any other
forms deemed by The Python Papers editorial board (hereafter known as 'editorial board') as being
suitable; reserves the right to choose if he/she wants his/her submission to be in the industrial
stream, where it will be technically reviewed, or in the academic stream, where it will be peer-
reviewed. It is also the onus of the submission author(s) to nominate the stream. The editorial board
defaults all submissions to be industrial (technical review) in event of non-nomination by the
submission author(s) but the editorial board reserves the right to place such submissions into the
academic stream if it deems fit.

2. Right of submission author(s) to nominate potential reviewers
The submission author(s) can exercise the right to nominate up to 4 potential reviewers (hereafter
known as "external reviewer") for his/her submission if the submission author(s) choose to be peer-
reviewed. When this right is exercised, the submission author(s) must declare any prior
relationships or conflict of interests with the nominated potential reviewers. The final decision rests
with the Chief Reviewer.

3. Right of submission author(s) to exclude potential reviewers
The submission author(s) can exercise the right to recommend excluding any reasonable numbers of
potential reviewers for his/her submission. When this right is exercised, the submission author(s)
must indicate the grounds on which such exclusion should be recommended. Decisions for the
editorial board to accept or reject such exclusions will be solely based on the grounds as indicated
by the submission author(s).

4. Peer-review process
Upon receiving a submission for peer-review, the Editor-in-Chief (hereafter known as "EIC") may
choose to reject the submission or the EIC will nominate a Chief Reviewer (hereafter known as
"CR") from the editorial board to chair the peer-review process of that submission. The EIC can
nominate himself/herself as CR for the submission. The CR will send out the submission to TWO or
more external reviewers to be reviewed. The CR reserves the right not to call upon the nominated
potential reviewers and/or not to call upon any of the excluded potential reviewers as suggested by
the submission author(s). The CR may also concurrently send the submission to one or more
Associate Editor(s) (hereafter known as "AE") for review. Hence, a submission in the academic
stream will be reviewed by at least three persons, the EIC as CR and two external reviewers.
Typically, a submission is reviewed by three to four persons: the EIC as CR, an AE, and two

The Python Papers, Volume 3, Issue 1 82

external reviewers. There is no upper limit to the number of reviews in a submission. Upon
receiving the review from external reviewer(s) and AE(s), the CR decides on one of the following
options: accept without revision, accept with revision, reject; and notifies the submission author(s)
of the decision on behalf of the EIC. If the decision is "accept with revision", the CR will provide a
deadline to the submission author(s) for revisions to be done and will automatically accept the
revised submission if the CR deems that all revision(s) were done; however, the CR reserves the
right to move to reject the original submission if the revision(s) were not carried out by the
stipulated deadline by the CR. If the decision is "reject", the submission author(s) may choose to
revise for future re-submission. Decision(s) by CR or EIC is final.

5. Technical review process
Upon receiving a submission for technical review, the Editor-in-Chief (hereafter known as "EIC")
may choose to reject the submission or the EIC will nominate a Chief Reviewer (hereafter known as
"CR") from the editorial board to chair the review process of that submission. The EIC can
nominate himself/herself as CR for the submission. The CR may decide to accept or reject the
submission after reviewing or may seek another AE's opinions before reaching a decision. The CR
will notify the submission author(s) of the decision on behalf of the EIC. Decision(s) by CR or EIC
is final.

6. Main difference between peer-review and technical review
The process of peer-review and technical review are similar, with the main difference being that in
the peer review process, the submission is reviewed both internally by the editorial board (EIC/CR
and assigned AE(s)) and externally by external reviewers (nominated by submission author(s) or
nominated by EIC/CR). In a technical review process, the submission is reviewed by the editorial
board and any external review may be at the editorial board's discretion.

7. Umbrella philosophy
The Python Papers' editorial board firmly believes that all good (technically and/or
scholarly/academic) submissions should be published and that the editorial board is integral in
refining all submissions. The board believes in giving good advice to all submission author(s)
regardless of the final decision to accept or reject and hopes that advice to rejected
submissions will assist in their revisions.

	The Python Papers
	Parts-of-Speech Tagger Errors Do Not Necessarily Degrade Accuracy in Extracting Information from Biomedical Text
	Maurice HT Ling1, Christophe Lefevre 1,2, Kevin R Nicholas1
	Corresponding email: mauriceling@acm.org
	Abstract
	1.	Introduction
	2.	Methods
	2.1.	Evaluating POS Tagging and Information Extraction Performance
	2.2.	Analysis of POS Tagging Errors

	3	Results
	3.1	Evaluating POS Tagging and Information Extraction Performance
	3.2.	Analysis of POS Tagging Errors

	4.	Discussion
	5.	Conclusions
	References

