
Volume 3, Issue 2

pythonpapers.org

Journal Information

The Python Papers

ISSN: 1834-3147

Editors

Co-Editors-in-Chief: Maurice Ling
Tennessee Leeuwenburg

Associate Editors: Guilherme Polo
Guy Kloss
Richard Jones
Sarah Mount
Stephanie Chong

Referencing Information

Articles from this edition of this journal may be referenced as follows:

Author, “Title” (2007) The Python Papers, Volume N, Issue M, pp. m:n
e.g. Maurice Ling, “Firebird Database Backup by Serialized Database Table Dump” (2007) The Python

Papers, Volume 2, Issue 1, pp. 7:15.

Copyright Information

© Copyright 2007 The Python Papers and the individual authors
This work is copyright under the Creative Commons 2.5 license subject to

Attribution, Noncommercial and
Share-Alike conditions. The full legal code may be found at

http://creativecommons.org/licenses/byncsa/2.1/au/
The Python Papers was first published in 2006 in Melbourne, Australia.

Referees

An academic peer-review was performed on all academic articles.
A list of reviewers will be published in each December issue.

This has been done in order to ensure the
anonymity of reviewers for each paper.

Editorial

Maurice Ling and Tennessee Leeuwenburg

Tennessee> Readers may have noticed that we did not follow our usual publishing cycle, releasing
this issue later in the year than usual. This reflects time taken to migrate The Python Papers to a
new journal management system, as well as significant changes happening on the editorial
committee. Maurice Ling is now Editor-In-Chief, but I am continuing my involvement by sharing
this role as Co-Editor-In-Chief. This is due to the significant workload involved in the Editor-In-
Chief role, requiring many hours of work to assemble each issue.

We also welcome Sarah Mount and Guy Kloss to the editorial committee; Sarah will be working to
support our academic sections. With the leadership of Maurice, and the assistance of Sarah and
Guy, I will hopefully be able to bring additional attention to the industry and community aspects of
the journal.

In a blatantly Australian plug, I would also like to draw reader's attention to the Open Source
Developer's Conference 2008 (http://osdc.com.au/2008/index.html). This is an excellent local
conference for software developers, with a lot of Python content.

Maurice> Hi there, dear readers. Sorry for making everyone wait so long for this issue. As
Tennessee had mentioned, there are a number of changes in The Python Papers which I will explain
here.

Firstly, in an attempt to widen our reach, we are now using Open Journal System
(http://pkp.sfu.ca/?q=ojs) to manage The Python Papers. As a result, TPP is now indexed in:

• OAIster (http://www.oaister.org/browse/browsep.html)

• Public Knowledge Project (http://pkp.sfu.ca/harvester2/demo/index.php/browse)

• Google Scholar

http://scholar.google.com/scholar?hl=en&lr=&q=&as _publication= Python +Papers& btnG=Search

• At the same time, we had ported all past issues of The Python Papers into this new system
(http://ojs.pythonpapers.org/index.php/tpp).

Secondly, we had soft-launched 2 more periodicals – The Python Papers Monographs and The
Python Papers Source Codes. The Python Papers Monographs (TPPM) will cater for monograph-
length submissions which may include dissertations, conference proceedings, case studies and
advanced-level lectures. The Python Papers Source Codes (TPPSC) is modeled after ACM
Collected Algorithms and provides a collection of software and source codes, usually associated
with papers published in The Python Papers and The Python Papers Monograph. Collectively, we
had named these 3 periodicals as The Python Papers Anthology (TPPA,
http://ojs.pythonpapers.org/) under the same editorial committee. At the same time, to make it easier
for all readers, we will regularly synchronize users across these periodicals.

Thirdly, TPP will only be published 3 times a year instead of 4. This is in-line with our original
ISSN registration. Hence, the 3 issues will be scheduled for April, August and December each year.

Fourthly, we are pleased to announce that we had signed up Ian Ozsvald as TPP's regular columnist
on “ShowMeDo Updates” where Ian will do a periodic updates on the new additions to
ShowMeDo.

Lastly and perhaps most importantly, we welcome Sarah Mount and Guy Kloss into the editorial

http://osdc.com.au/2008/index.html
http://scholar.google.com/scholar?hl=en&lr=&q=&as_publication=Python+Papers&
http://scholar.google.com/scholar?hl=en&lr=&q=&as_publication=Python+Papers&
http://scholar.google.com/scholar?hl=en&lr=&q=&as_publication=Python+Papers&
http://scholar.google.com/scholar?hl=en&lr=&q=&as_publication=Python
http://scholar.google.com/scholar?hl=en&lr=&q=&as_publication=Python
http://scholar.google.com/scholar?hl=en&lr=&q=&as_publication=Python
http://scholar.google.com/scholar?hl=en&lr=&q=&as
http://scholar.google.com/scholar?hl=en&lr=&q=&as
http://scholar.google.com/scholar?hl=en&lr=&q=&as
http://pkp.sfu.ca/harvester2/demo/index.php/
http://pkp.sfu.ca/harvester2/demo/index.php/
http://pkp.sfu.ca/harvester2/demo/index.php/
http://www.oaister.org/
http://www.oaister.org/
http://www.oaister.org/
http://osdc.com.au/2008/index.html
http://osdc.com.au/2008/index.html

committee. Sarah is a Senior Lecturer in School of Computing and Information Technology at the
University of Wolverhampton, UK, and is also the co-author of “Python for Rookies: A First
Course in Programming” published by Thomson Learning. Guy Kloss is a PhD candidate of
computer science in Massey University in New Zealand with interest in grid computing and
artificial intelligence.

Errata

The previous issue had a number of editorial mistakes, for which we convey our apologies to both
readers and authors. The errors in Volume3, Issue 3 were:

● Correction to"showmedo-authors" by Ian Ozsvald on page 14:
Horst Jens (http://showmedo.com/videos/?author=71) was previously featured in Volume 2,
Issue 2 of The Python Papers. He has authored 25 videos with various students at
spielendprogrammieren (www.spielendprogrammieren.at) and other schools on Python and
open-source topics.

● Ian Ozsvald's name was misspelled in several places.

● Some difficulties in page formatting occurred as the journal grew too large for effective
editing in our journal layout program. Specifically, some readers reported pages being
overlaid on one another rather than having a proper page order. From this issue, individual
articles may be downloaded which will at least provide alternative access should any further
issues occur.

http://www.spielendprogrammieren.at/
http://www.spielendprogrammieren.at/
http://www.spielendprogrammieren.at/
http://showmedo.com/videos/?author=71
http://showmedo.com/videos/?author=71
http://showmedo.com/videos/?author=71

The Python Papers Volume 3 Issue 2

ShowMeDo Updates

Ian Ozsvald

ShowMeDo.com exists to teach you new skills using screencasts. We and over 100 open-source
contributors make videos for the site, in total we have 730 screencasts for topics like Python,
Inkscape, Open-Office, Perl and web-programming.

By visiting ShowMeDo you'll get to see how other people use a language like Python - which
libraries they use, their development environment and the projects they favour. You'll find over 340
Python videos here: http://showmedo.com/videos/python

If you're a beginner to Python then you'll want access to strong, complete tutorials that teach you
the necessary core skills. Our Club hosts a subset of the videos and is for paying subscribers, each
week we add two new videos (we're at 102 and counting). These series include walk-throughs,
examples and practical exercises. You can find out more about the Club here:
http://showmedo.com/club

"As Ian says somewhere, he's found, organized, and presented information
that would take weeks or months to learn in the ordinary way. Even if your
time is worth only $10 per hour, I figure the value in time saved is at least
$800. The skills are priceless."
- Vincent DiCarlo

In an earlier Python Papers (Volume Three, Issue One : March 2008) we took a tour of the tutorials
by our main Python authors. In this issue we'll look at the Python videos that have been added
since last time.

Free Python Videos

First, let's take a look at the free videos. Most of these have been contributed by our open-source
authors - you could contribute too (learn more at the end of this article). By contributing you'll help
to teach others about the power of Python.

Learning and Teaching Python
Gasto, Horst and Kirby have created 9 videos aimed at new Pythonistas. Gasto shows you how to
get started with the language and the new 'set' datatype:

● Python from zero (2 videos), Gasto
(http://showmedo.com/videos/series?name=cqZALPzt8)

Horst shows you how to use xturtle to draw turtle graphics:

● Python: xturtle, random and genetischer Algorithmus (German), Horst Jensâ‚
(http://showmedo.com/videos/series?name=yRIJviWLO)

http://showmedo.com/club

The Python Papers Volume 3 Issue 2

● Kirby talks about using Python for math-education (which includes very nice graphics):
Python for Math Teachers‚ (6 videos), Kirby Urner
(http://showmedo.com/videos/series?name=JkD78HdCD)

"Very helpful. I like the repetition you give using your examples it helps me
more clearly understand what you are trying to say."

Simple installation videos have been created for users who are unsure of 'easy_install' and
'nosetests' - these tools should be core skills for all Pythonistas:

● Installing easy_install, Ian Ozsvald
(http://showmedo.com/videos/video?name=2070000&fromSeriesID=207)

● Installing nosetests, Ian Ozsvald
(http://showmedo.com/videos/video?name=2100000&fromSeriesID=210)

Florian then builds upon these skills with an introduction to unit-testing, including a look at unit-
testing classes:

● Basic Unittesting with Python, Florian Mayer
(http://showmedo.com/videos/video?name=2840000&fromSeriesID=284)

Percious further extends these skills - first he looks at 'virtualenv' and 'pastescript', these are
excellent tools to help with building virtual development environments and deployable applications.

Next he covers unit-testing with 'nosetests' and execution coverage, finally he looks at how we can
create robust documentation with 'sphinx'. This series of videos is called "Agile Development
Tools in Python": http://showmedo.com/videos/series?name=mcfckfJ4w

"Very cool. I learned a lot from that. Fluid demonstration, easy to follow. I
really hadn't heard much about virtualenv before but it looks hugely useful.
Will become part of my workflow methinks. Great screencast"
-- Kyran

Python's use for web-development continues to grow with frameworks like Django, TurboGears
and Pylons. We have some great videos on:

● Setting Up a Django Development Environment‚(2 videos), ericflo
(http://showmedo.com/videos/series?name=LY7fNbpc1)

● TurboGears 2, percious
(http://showmedo.com/videos/video?name=2870000&fromSeriesID=287)

● Agile Python+Pylons to build pySvnManager, Jiang Xin
(http://showmedo.com/videos/series?name=Y7x8NhL6h)

Related tools include 'twill' which allows us to act as if Python was a web-browser (great for testing
web-sites with unit-testing!):

● Installing twill
(http://showmedo.com/videos/video?name=2080000&fromSeriesID=208)

and a simple guide to using the simple XML-RPC remote procedure-calls library:
● Calling functions on a server using XMLRPC, Florian Mayer

(http://showmedo.com/videos/video?name=2830000&fromSeriesID=283)

http://showmedo.com/videos/video?name=2080000&fromSeriesID=208

The Python Papers Volume 3 Issue 2

Whilst most of the videos in ShowMeDo are in English, some are in German. Lucas and Marius
are extending a new introductory Python series aimed at German speakers:

● Programmierung mit Python, Lucas Holland and Marius Meinertâ‚ (4 videos)
(http://showmedo.com/videos/series?name=47MFnkxOe)

Finally, Erik Thompson keeps adding to his excellent 'Developing emol!' series. Over 24 videos
show you the complete development process from initial plans, through class development, to 3D
GUI programming and bug-fixing:

● Developing emol!, Erik Thompson
(http://showmedo.com/videos/series?name=vXJsRwlBX)

"I can see that this was a labor of love. I simply love the way you present
this video. You do not pretend to be a GL expert and go through details to
make it simple to understand for a beginner. You are not trying to show how
good you are but to make the subject easy to understand."

Club ShowMeDo (for Subscribers)

In the Club (http://showmedo.com/club) we're focusing on new and intermediate Python
programmers. We're aiming to layout all the core skills, along with worked-examples of the major
libraries, so a new programmer can quickly become productive. Our paying subscribers give us the
resources to spend more time building these long, well-researched tutorials. We also give full Club
access to all of our authors (you too can have full free access if you author a video for us).

For new Pythonistas our 'Python Beginners' sets introduce the core language, with some
comparisons to other languags like Java and C++, using simple real-world examples:

● Python Beginners - What Does Python Look Like?‚ (6 videos), Ian Ozsvald
(http://showmedo.com/videos/series?name=kmNu2xcp3)

● Python Beginners - Loops and Iteration‚ (4 videos), Ian Ozsvald
(http://showmedo.com/videos/series?name=tIZs1K8h4)

● Python Beginners - Common Variables and Containers‚ (14 videos), Ian Ozsvald
(http://showmedo.com/videos/series?name=AzsZ2afN2)

"Excellent tutorial - Well thought out example, clear, with a logical
progression that builds on itself. In the end the goal of the tut is attained very
well."
-- Hamish

Given Python's popularity for web-app development, we have a back-to-basics series on using the
plain-old Common Gateway Interface:

● Introduction to Python web-programming: CGI, John Montgomery
(http://showmedo.com/videos/series?name=gLK7tmgf4)

and this builds the viewer's basic knowledge so that tools like the Google App Engine make more
sense:

● A Gentle Introduction to the Google App Engine Python SDK‚ (5 videos), Kyran Dale
(http://showmedo.com/videos/series?name=FtBpzKiWL)

http://showmedo.com/videos/series?name=AzsZ2afN2

The Python Papers Volume 3 Issue 2

"Glad to see you covering something quite current, and that does not require
extensive programming experience."
-- Mike Adams

Database development is always popular, Kyran introduces the topic with plenty of examples:
● An Introduction to Database Programming with Python‚ (5 videos), Kyran Dale

(http://showmedo.com/videos/series?name=iNiVCfz5B)

"Thank you a million again for such a great series."
-- hessianmatrix

Finally, since Win32 COM programming such a tricky - but useful - subject, we have a series
showing how to interact with MS Excel in Windows XP using just a few lines of Python:

● COM and Python with pyWin32‚ (6 videos), Ian Ozsvald
(http://showmedo.com/videos/ series?name=KTN7wMXVN)

Would you like your tutorials to be seen by thousands of Python
viewers?

We always welcome new authors - any topics that will educate our usual audience are wanted.
You'll find instructions for recording your first screencast here:
http://showmedo.com/addVideoInstructions

and posting it to ShowMeDo is just as simple as adding it to YouTube (although we host videos at a
larger size and much higher quality than YouTube!).

Our most popular topics include Django, wxPython and development environments but all topics
have viewers in the long-tail and anything you record will find an audience:
http://showmedo.com/mostPopular

We have several forums and we're happy to help you create your first screencast, please do come
and join us making more tutorials for Python.

http://showmedo.com/videos/

The Python Papers Volume 3 Issue 2

Embedding a Python interpreter into your program

Alan J. Salmoni

Do you want to write your own Python interpreter that you can embed into your
program rather than use IDLE? What, exactly, is the point of reinventing the wheel?
Well, first of all, it’s not reinventing it: it’s re-designing it. This is a worthy task unless
we prefer to use stone wheels.

While extending my statistics package, SalStat, I needed to embed an interpreter
within the program. Primarily, this was for debugging purposes: with an interpreter, I
could check on the state of variables and classes, and try to work out what was going
on. But I found it such a useful tool to use as the main interface to the program that I
extended it to include all sorts of weird functionality that may be fun. For example,
instead of clicking through various screens to perform a range of descriptive statistics,
I could script the entire thing.

for i in DO.varlist:
 descriptives([i], “sum”,”mean”, “stdev”)

This article describes how you can write your very own Python interpreter, and how
it can be modified.

How does an interpreter work? Put simply, you create some kind of text interface
(this could be a console, a simple multi-line edit control within a Tkinter window, or a
wxPython frame with Scintilla – which is what ours is), and run the program. With a
bit of magic, instead of clicking on buttons etc, you can examine variables in situ,
modify things, run some code, and do pretty much what ever you would like as long
as it’s valid Python. The best thing is that you don’t have to resort to exec or eval
statements and there is persistence of variables. You can also import whatever
variables you want. This was important because the interpreter needs to access those
variables of interest to the user (whether the user is the programmer who wishes to
debug the program, or the end-user who wishes to use the interpreter to issue
commands).

I should point out that running a program from IDLE can probably achieve the
same things; but it’s fun to run your own, and sometimes IDLE is a bit heavy and this
code is probably easier to customise and integrate. In addition, you can embed a very
capable interpreter using iPython. The difference with the way described here is that
when you make changes to the variables in the interpreter, they propagate back to the
rest of the program.

The Code Module

An interpreter is based around the built-in ‘code’ module which isn’t very large (it
has two classes) but is extremely useful. This module “provides facilities to
implement read-eval-print loops in Python”.

The Python Papers Volume 3 Issue 2

The simplest way to implement an interpreter is using the InteractiveConsole class.
This works much like Python when invoked from the command line. It is by far the
simplest way to do things, but I don’t use it because it stops all other operations until
the interpreter is closed down. There are ways around this, but I consider the use of
the other class, the InteractiveInterpreter class to be a better solution.

But if you want the InteractiveConsole, it’s quite easy. Try this from IDLE or a
script:

import code
terp = code.InteractiveConsole() # ‘terp’ is short for interpreter
terp.interact()

Wow. How clever. Here, I have managed to make a Python interpreter from a
Python interpreter. Of course, I could have gone through all that drawn-out
convoluted nonsense of typing just “python” at the command prompt instead (or even
done nothing), so maybe not so clever. But remember that this can be called from
within a program. One problem is that execution of the rest of the program halts until
I kill the console. Still, it’s a single import statement and two other statements to make
it work. One fun thing to do might be to add arguments to the interact statement such
as:

terp.interact("A kind of Python interpreter")

which brings up a different banner to the normal one. If you have an application and
you want to advertise your organisation, you can insert what you want here. To either
the InteractiveConsole or interact statement, you can also add local variables which
will be discussed later.

We can get around this drawback by using the InteractiveInterpreter class which
requires a little more work but is more flexible. First, we import the code module and
then we have to put the InteractiveInterpreter class into the window. In this case, it’s a
wx styled text control (STC, also known as Scintilla which is great fun and extremely
capable). I won’t detail the STC here other than going through what is essential to
setting up an interpreter.

First of all, we need to import the relevant modules: code for the interpreter, wx and
wx.stc for the GUI widgets, sys to take stdout and stderr, and __main__ to deal with
what objects are within the scope of the interpreter.

import wx # needed for the GUI
import wx.stc as stc # needed for the styled text control (Scintilla
component)
import code # where the interpreter is
import sys # needed for admin stuff
import __main__ # needed to import the variables you want to interact
with

Next, get the InteractiveInterpreter up and running. I did this by deriving a new
class (called II) from this class.

The Python Papers Volume 3 Issue 2

class II(code.InteractiveInterpreter):
def __init__(self, locals):

code.InteractiveInterpreter.__init__(self, locals)

def Runit(self, cmd):
code.InteractiveInterpreter.runsource(self, cmd)

This class adds a new method called Runit which is not entirely necessary as
runsource can be accessed directly. However, it is useful sometimes to derive classes
so as to have custom functionality. What this class does is set up an interpreter and it
can receive commands. The command output will be sent to stdout or stderr and these
can be redirected to an appropriate place using the sys module (this is described later).
When instantiated, this class requires an argument, locals. These are objects that
should be visible to the interpreter and it is through this that you can define what
should lie within the interpreter’s scope.

So far, so good. You can type the above code into IDLE and instantiate the class.
This will allow you to run simple code like this:

>>> x = II(None)
>>> x.Runit('print "hi"')
hi

which shows that the interpreter seems to work. These last two pieces of code are
the core of the interpreter. However, for something more useful, you need to have
some way of getting data in and out of this interpreter that is independent of IDLE, or
in other words have a GUI with a customised Python interpreter running. For this
paper, we are going to use a wxPython frame to hold the interpreter so we define a wx
frame with a Scintilla component embedded:

class ecpintframe(wx.Frame):
def __init__(self, *args, **kwds):

kwds["size"] = (700,600)
wx.Frame.__init__(self, *args, **kwds)
self.ed = PySTC(self, -1)

This is the class definition of the wx frame that holds the STC. This is basic
wxPython stuff. Then we have some code to instantiate the wxFrame which will cause
it to appear once we have defined the PyTSC class:

if __name__ == '__main__':
Ecpint = wx.PySimpleApp(0)
win = ecpintframe(None, -1, "EcPint - Interactive intepreter")
win.Show()
Ecpint.MainLoop()

Then we define the Scintilla styled text control to do the hard work for us.

class PySTC(stc.StyledTextCtrl):

The Python Papers Volume 3 Issue 2

def __init__(self, parent, ID, pos=(10,10), size=(700, 600),
style=0):

stc.StyledTextCtrl.__init__(self, parent, ID, pos, size,
style)

sys.stdout = self
sys.stderr = self
self.Bind(wx.EVT_KEY_DOWN, self.OnKeyPressed)
KEY_RETURN = 13

def SetInter(self, interpreter):
self.inter = interpreter

def write(self, ln):
self.AppendTextUTF8('%s'%str(ln))
self.GotoLine(self.GetLineCount())

 def OnKeyPressed(self, event):
 self.changed = True # records what’s been typed in
 char = event.GetKeyCode() # get code of keypress
 if char == 13:
 lnno = self.GetCurrentLine()
 ln = self.GetLine(lnno)
 self.cmd = self.cmd + ln + '\r\n'
 self.NewLine()
 self.cmd = self.cmd.replace('\r\n','\n')
 self.inter.Runit(self.cmd)
 self.cmd = ''
 self.lastpos = self.GetCurrentPos()
 event.Skip() # ensure keypress is shown

This subclasses from the StyleTextCtrl class and changes a few attributes like
making it take stdout and stderr (in other words, console output will be routed to this
control). The SetInter method sets something (mysteriously called ‘interpreter’) as an
attribute of the class. This is a direct link to the interpreter so that text typed into the
STC can be sent straight there to be run. The write method outputs the text to the STC
and is necessary if you want stdout and/or stderr output to be written there (they
always look for a write method). The lines sys.stdout = self and sys.stderr = self
redirect stdout and stderr respectively to the STC. This is a neat trick that means that
all interpreter output is sent to the STC. You can of course decide to have errors
printed elsewhere if that meets your needs better. The OnKeyPressed method catches
keypresses and checks to see if they are the return key. If so, then the interpreter
assumes that the user wishes to run the command; and the self.inter.Runit(self.cmd)
does just that by sending the line just typed in to the interpreter. As we have already
shown, stdout goes to the STC so you can use this already for input and ouput.

If you run this code, you will find that it works! If you type ‘print “hi”’ into the
editor, it should print “hi” just underneath – we have a working interpreter!

However, there are problems with code blocks longer than one line. It is possible to
get the interpreter to handle blocks at a time but this needs careful preparation of the
data which means altering how the STC deals with typed-in data. Change the
OnKeyPressed method above for this one below:

def OnKeyPressed(self, event):

The Python Papers Volume 3 Issue 2

self.changed = True # records what’s been typed in
char = event.GetKeyCode() # get code of keypress
if (self.GetCurrentPos() < self.lastpos) and (char <314)

or (char > 317):
pass
need to check for arrow keys in this

elif char == 13:
lnno = self.GetCurrentLine()
ln = self.GetLine(lnno)
self.cmd = self.cmd + ln + '\r\n'
self.NewLine()
self.tabs = ln.count('\t')
if (ln.strip() == '') or ((self.tabs < 1) and (':'

not in ln)):
record command in command list
self.cmd = self.cmd.replace('\r\n','\n')
run command now
self.inter.Runit(self.cmd)
self.cmd = ''
self.lastpos = self.GetCurrentPos()

else:
if ':' in ln:

self.tabs = self.tabs + 1
self.AppendText('\t' * self.tabs)
change cursor position now
p = self.GetLineIndentPosition(lnno + 1)
self.GotoPos(p)

else:
event.Skip() # ensure keypress is shown

What this does is check whether the code would be expecting another line (say you
typed in ‘for x in range(5):’), and if so, it auto-indents using an extra tab for you.
Purists will prefer spaces and this code can easily be changed to that if you wish.
However, the above code will also indent if a colon is on the just-typed-in line so if
there is a colon within a print statement, or a dictionary is set, then the code will be
indented. This is far from a disaster and solved with backspacing; and you are
encouraged to come up with a better method of knowing when to indent the next line.

Adding Local Variables

We can also add our own local variables. These are particularly useful for an
embedded interpreter because they allow the interpreter to access your program’s
variables and objects. These aren’t automatically included any of your program
variables, functions, classes or methods and need to be explicitly specified. Adding
them is easy. The interpreter has its own space which it calls __main__ (the same as
the module that we imported at the start). This module contains references to a base
set of objects. If you open the interpreter and import __main__, you can see what is
available by typing dir(__main__). You should see objects concerning the interpreter
(‘Ecpint’, ‘I’, ‘II’, ‘PySTC’, ‘code’ and others) as well as some others like
__builtins__ or __doc__. The one that doesn’t show up is the one of interest and this
is __main__.__dict__ which is a dictionary that keeps the name and reference of
objects. When you use an object, it looks in this dictionary to find out the object’s
reference, and can then call it. All we have to do is provide a reference to the objects
we want to make available and provide a suitable name for them.

The Python Papers Volume 3 Issue 2

Let’s assume you have an object called a dataObject which is instantiated using the
name DO. We want that object to be visible to the interpreter (i.e., within the
interpreter’s scope). This is done with a simple one-line instruction:

__main__.__dict__["DO"] = DO

Of course, when this is issued, the DO needs to be visible. It could be passed (along
with any other objects you want to be made visible) as an argument to the Inter class.
Using this, you can make all of a program’s objects available to the interpreter.

Interrupting Exceptions

The InteractiveInterpreter class also has a very useful method called
‘showtraceback’. This is called when an exception is raised and normally shows the
traceback that occurred along with the exception. It is possible to interrupt this and
have some fun.

def showtraceback(self):
type, value, tb = sys.exc_info()
if type == exceptions.NameError:

cd = tb.tb_frame.f_locals["code"]
print cd

else:
follow this to catch all other errors!
code.InteractiveInterpreter.showtraceback(self)

What this does is catch the exception. If the exception is a NameError, it grabs the
code that caused the exception and prints it out. If it is not a NameError, it continues
with the traceback as normal.

But why do this? My application imported data from databases and the names of
columns / fields were not always valid Python variable names (sometimes including
white space, starting with numerics and so on). It would have been possible to change
the names and tell our users that they have to be more sensible with naming. The
other alternative (which might get purists a bit annoyed!) was to use the name strings
as variables.

This was done by watching our for attribute errors, catching them, and redirecting
them to the object that holds the variables (in this case, as a list in the dataObject we
dealt with earlier):

When doing this, remember to use the
‘code.InteractiveInterpreter.showtraceback(self)’ so that all other errors will be
shown.

Other Things

It is possible to build a restricted Python interpreter. In this case, you would simply
compare the self.cmd of the STC against the list of keywords that are allowed so that
only the valid ones are put through to the interpreter. Of course, it is entirely possible
that a clever user will find a way around this so it’s not a secure solution. However, it
should work for most users if the aim is to reduce complexity.

The Python Papers Volume 3 Issue 2

The Scintilla component is extremely rich and a lot of options can be configured (so
many that there could be another article just for them). Things like tooltips, auto-
completion, line numbering, and syntax highlighting are all available.

Internationalisation

If your application is internationalised, you have a little thing to watch out for. That
little thing is the underscore character, which tells the gettext module to treat the
string as one for interpretation. The problem is that the interpreter uses the underscore
for something else and this will always overwrite the gettext version. This means that
when you set up an interpreter within an internationalised application, you need to
substitute the interpreters ‘magic’ underscore with something else. This function
needs to import the sys module (which has already been done) and the __builtin__
module.

import sys, __builtin__

def newhook(val):
if val is not None:
__builtin__.__last__ = val

sys.stdout.write('%r\n'%val)

Then put this code somewhere before the interpreter is instantiated:

sys.displayhook = newhook

This code came courtesy of Peter Otten from the comp.lang.python newsgroup.

Embedding iPython

iPython is an extremely powerful extension and can also be embedded easily into a
program. Although a program’s variables and objects can all be examined, this is a
one-way process and any changes are not propagated back to the program.

from IPython.Shell import IPShellEmbed

ipshell = IPShellEmbed()

ipshell() # this call anywhere in your program will start IPython

Conclusion.

You can see that more programming is required for the InteractiveInterpreter class
than the InteractiveConsole class, but it offers a lot more power. Most of the code for
the InteractiveInterpreter class concerns the user interface like doing things like
indentation properly. But once you have it in place, you can easily build an interpreter
that would fit into almost any application. The biggest danger is that because it’s so
useful, you may be tempted to put an interactive interpreter in every program that you
do!

The Python Papers Volume 3 Issue 2

aReference:

Otten, Peter[__peter__@web.de] “gettext and the interpreter” In [comp.lang.python]
4 April 2004.

Appendix

This is all the code together

import wx
import wx.stc as stc
import code
import sys
import __main__

#x = code.InteractiveConsole()
#x.interact("A kind of Python interpreter")

class II(code.InteractiveInterpreter):
def __init__(self, locals):

code.InteractiveInterpreter.__init__(self, locals)

def Runit(self, cmd):
code.InteractiveInterpreter.runsource(self, cmd)

class PySTC(stc.StyledTextCtrl):
def __init__(self, parent, ID, pos=(10,10), size=(700, 600),

style=0):
stc.StyledTextCtrl.__init__(self, parent, ID, pos, size,

style)
sys.stdout = self
sys.stderr = self
self.Bind(wx.EVT_KEY_DOWN, self.OnKeyPressed)
self.cmd = ''
self.lastpos = self.GetCurrentPos()

def SetInter(self, interpreter):
self.inter = interpreter

def write(self, ln):
self.AppendTextUTF8('%s'%str(ln))
self.GotoLine(self.GetLineCount())

def OnKeyPressed(self, event):
self.changed = True # records what’s been typed in
char = event.GetKeyCode() # get code of keypress
if (self.GetCurrentPos() < self.lastpos) and (char <314)

or (char > 317):
pass
need to check for arrow keys in this

elif char == 13:
"""
What to do if <enter> is pressed? It depends if

there are enough
instructions
"""
lnno = self.GetCurrentLine()

The Python Papers Volume 3 Issue 2

ln = self.GetLine(lnno)
self.cmd = self.cmd + ln + '\r\n'
self.NewLine()
self.tabs = ln.count('\t') #9
if (ln.strip() == '') or ((self.tabs < 1) and (':'

not in ln)):
record command in command list
self.cmd = self.cmd.replace('\r\n','\n')
run command now
self.inter.Runit(self.cmd)
self.cmd = ''
self.lastpos = self.GetCurrentPos()

else:
if ':' in ln:

self.tabs = self.tabs + 1
self.AppendText('\t' * self.tabs)
change cursor position now
p = self.GetLineIndentPosition(lnno + 1)
self.GotoPos(p)

else:
event.Skip() # ensure keypress is shown

class ecpintframe(wx.Frame):
def __init__(self, *args, **kwds):

kwds["size"] = (700,600)
wx.Frame.__init__(self, *args, **kwds)
self.ed = PySTC(self, -1)

if __name__ == '__main__':
Ecpint = wx.PySimpleApp(0)
I = II(None)
win = ecpintframe(None, -1, "EcPint - Interactive intepreter")
win.Show()
win.ed.SetInter(I)
Ecpint.MainLoop()

1
The Python Papers, Volume 3, Number 2 (2008)

Designing Semiconductor Heterostructures with Python

ANITTA THOMAS†
School of Computing, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa

and

ANDRÉ E. BOTHA
Department of Physics, University of South Africa, P.O. Box 392, Pretoria 0003, South Africa

ABSTRACT
Matplotlib is used to visualize and design electronic potentials in layered semiconductor devices (heterostructures).

1. INTRODUCTION

Quantum mechanics plays a key role in the design of semiconductor heterostructures. The quantum mechanical
behaviour of small particles is often very unintuitive and hence, the ability to visualise the data is advantageous, not
only as a modelling tool for the design of heterostructures, but also as a teaching aid in quantum mechanical classes.
In this article, we present a proof-of-concept application to demonstrate how Python can be used in the design of
semiconductor heterostructures. This application provides a designer with the ability to predict how electrons are
likely to behave within a semiconductor device without developing prototypes in a laboratory.

The following discussion introduces the quantum theory underlying the application. Although incomplete, it should
be enough to provide the reader with an intuitive understanding of what the various quantities represent in practical
terms.

2. PHYSICS BASICS

2.1 Schrödinger’s Equation

The Schrödinger wave equation of quantum mechanics can be used to model a wide variety of microscopic
henomena to a very high degree of accuracy. For example, the behaviour of nuclei, atomic and molecular systems,
iquids, gases and plasmas, can all in principle be calculated by solving the appropriate Schrödinger equation.

p
l

For the purposes of this work, which aims to model the behaviour of electrons in semiconductor heterostructures
(i.e. layers of different semiconductors grown together), the appropriate equation is the one-dimensional, time-
independent, Schrödinger equation:

() () () ()]1[

d
d

2

2
xExxVx

x
ψψψ =+

A physically acceptable solution ψ(x) (i.e. the so-called wave function in Eq. [1]) contains all the mechanical
information about the electron, but strictly in a probabilistic sense! For example, the probability of finding the

† Corresponding author. E-mail: thomaa@unisa.ac.za

2
The Python Papers, Volume 3, Number 2 (2008)

electron between position x and x + dx is given exactly by |ψ(x)|2 dx. Here the quantity dx > 0 represents a very small
interval along the x-axis and |ψ(x)| denotes the magnitude of the complex valued wave function, ψ(x).

In Eq. [1], E is the total energy of the electron. The first term on the left represents the kinetic energy of the electron,
while the second term represents its potential energy, V(x). The potential energy of the electron is determined by the
properties of the semiconductor in which the electron resides. It therefore changes abruptly as the electron moves,
within the heterostructure, from one layer to another. This behaviour of the potential is shown in Fig. 1, in which a
typical potential V, has been plotted as a function of position x, along the growth direction of the heterostructure.
Each abrupt change in this potential corresponds to a transition from one semiconductor layer to the next. In Fig. 1,
for example, there are seven layers in the heterostructure (not counting the outer two layers, in which the potential is
zero).

Fig. 1. A typical potential, in units of electronvolt (eV), for a heterostructure lying between 5 and 20 nm (1 nm = 10-9 m).

2.2 The Direct Problem

In general we can assume that the heterostructure is situated in some finite interval (xL, xR), and that the potential is
zero everywhere outside of this interval. We then consider what happens in a so called scattering experiment, in
which an electron approaches the interval (called the interaction interval) from the left and either passes through the
interval or else gets reflected backwards. Since V(x) = 0 to the left of the interaction interval the incident electron
has a plane wave, wave function given by eikx. The reader may easily verify (by substitution) that eikx is a solution to
Eq. [1], provided k = ±E . Physically the positive sign in the last equation is interpreted as an electron incident from
the left. The negative sign corresponds to an electron which has been reflected backwards by the non-zero potential
within the interaction interval. In general, when a unit flux of electrons is incident upon the interactive region from
the left, a certain percentage of electrons get reflected backwards and the remainder move through the interaction
interval and continue indefinitely towards the right.

Mathematically, the wave function outside of the interaction interval thus has the form:

()
()

]2[
)(when,
)(when,)(
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

<
<+

= +

−+

xxekT
xxekRex

R
ikx

L
ikxikx

ψ

3
The Python Papers, Volume 3, Number 2 (2008)

The quantities R(k) and T(k) in Eq. [2] are called the reflection and transmission coefficients, respectively.
Physically, they are interpreted as follows: |R(k)|2 gives the probability that the electron is reflected backwards,
while |T(k)|2 gives the probability that it is transmitted through the interaction interval towards the right. Note that
since the electron must either be reflected or else transmitted, the total probability for these two events must be equal
to one, i.e. |R(k)|2 + |T(k)|2 = 1.

If the potential V(x) is known throughout the interaction interval, then both R(k) and T(k) can be calculated by
solving the Schrödinger equation numerically, using Eq. [2] as boundary conditions. This problem of calculating
R(k) from a given V(x) is referred to as the direct problem. As an example, Fig. 2 shows the calculated electron
reflectance |R(k)|2 as a function of k, for the potential in Fig. 1. In this case the heterostructure functions as a high-
pass filter, effectively blocking all electrons with k < 0.3 nm-1 and allowing almost complete transmission of
electrons with k > 0.5 nm-1. Further details on the solution of the direct problem can be found in Ref. (1) and the
references therein.

Fig. 2. Calculated electron reflectance as a function of wave vector k, corresponding to the potential in Fig. 1.

2.3 The Inverse Problem

In simple terms, the inverse problem consists of recovering V(x) from R(k). Given that a designer may want a device
which has a particular effect on electrons, it is natural to ask what should the potential look like? Theoretically the
answer to this question is obtained by calculating V(x) from the desired R(k). The calculations for this inverse
problem, however, turn out to be substantially more difficult than those for the direct problem. Nevertheless, so-
called inverse quantum scattering theory has developed considerably over the past few years and the problem can
now be solved. Briefly, it entails solving the Marchenko integral equation:

() () () ()]3[, with ,0,d, xyzxKyzBzyxByxK
x

x

<=++++ ∫
+

−

which takes, as input, the Fourier transform of R(k). In Eq. [3], B(x) denotes the Fourier transform of R(k). If the
active interval of the potential lies between 0 < xL and xR < xmax , the potential may be recovered from the solution
to Eq. [3], i.e. K(x, y) for x,y ∈[0, xmax] and the relation:

() ()]4[,

d
d xxK
x

xV =

4
The Python Papers, Volume 3, Number 2 (2008)

For completeness we mention that the phase of reflection coefficient R(k), which is defined as the ratio of the
imaginary part of R(k) to the real part of R(k), cannot be measured experimentally. It is because the reflectance
|R(k)|2 corresponds more naturally to the real experimental situation, that it is used here to apply the above theory.
Further details about the inverse problem can be found in Ref. (2) and the references therein.

3. THE FORTRAN CODES

The present application allows the user to visualize data which is generated by the numerical solution of the
quantum mechanical equations described in the previous section. Without Python’s ability to make use of codes
written in Fortran, the present visualization would not be possible. The equations are simply too complicated. Even
with the highly efficient Fortran codes which we use, the calculations take just about as long as one can reasonably
expect a user to wait for the curves to be updated – on a 3GHz desktop computer it takes 5 to 8 seconds to perform
either the direct or inverse calculation.

A full discussion of the numerical difficulties encountered in solving the aforementioned equations is well beyond
the scope of this article. Nevertheless, in order to provide a better understanding of how the Python code functions,
we provide the following brief explanation. The module marchenko.pyd was created from Fortran 95 codes
which were developed and perfected over a period of several years, by using the f2py conversion utility available
through Numerical Python (numpy). Details concerning the use of f2py are provided in Ref. (3).

The module marchenko.pyd makes available three functions as listed below:

>>> import marchenko
>>> print marchenko.Reflectance.__doc__
reflectance - Function signature:
 re = reflectance(vx)
Required arguments:
 vx : input rank-1 array('d') with bounds (nv)
Optional arguments:
 nv := len(vx) input int
Return objects:
 re : rank-1 array('d') with bounds (nq)

The function reflectance() takes the potential as argument, in the form of an array vx of points (x, V), and
returns the reflectance in the form of an array re of points (x, |R(k)|2, φ), where φ is the phase of the reflection
coefficient R(k). As indicated by the above function signature, if N points in the form (x, V) are passed to
reflectance()then nv = 2N and the array vx has bounds [0, nv-1]. Similarly, if M points in the form
(x, |R|2, φ) are desired as output then nq = 3M and re has bounds [0, nq-1]. The potentials in the present work are
specified by 500 points, i.e. nv = 1000 and nq is set (within the Fortran code) to 2250, i.e. 3 times 750. Doubling
the value of nq (or nv, or both nq and nv) has no visible effect on the calculated reflectance. The Fortran code
calculates the reflectance by using the Numerov-Cowling method described in Ref. (4).

>>> print marchenko.cubic.__doc__
cubic - Function signature:
 xq,fq = cubic(xp,fp,np,nq)
Required arguments:
 xp : input rank-1 array('d') with bounds (np)
 fp : input rank-1 array('d') with bounds (np)
 np : input int
 nq : input int

5
The Python Papers, Volume 3, Number 2 (2008)

Return objects:
 xq : rank-1 array('d') with bounds (nq)
 fq : rank-1 array('d') with bounds (nq)

The function cubic() can interpolate smooth curves through a given set of points using the cubic spline
interpolation. The use of this function in the present application is discussed later in the article. Details on numerical
method of cubic spline interpolation can be found in Ref. (5).

>>> print marchenko.inversion.__doc__
inversion - Function signature:
 vv = inversion(re)
Required arguments:
 re : input rank-1 array('d') with bounds (nq)
Return objects:
 vv : rank-1 array('d') with bounds (1000)

The function inversion(), calculates the potential from the reflectance by solving the Marchenko integral
equation [3], using the Nystrom method. A description of this numerical method can be found in Ref. (6).

Next, we will show how Matplotlib is used, in conjunction with the above three functions, to develop an application
for designing semiconductor heterostructures. The main advantage of having such an application is that it allows the
user to perform both the direct and inverse calculations, which are highly non-trivial, by merely using a computer
mouse, and the results of the calculations can be viewed almost immediately.

4. APPLICATION REQUIREMENTS

The data for this application consists of lists of points in the form (x, y), where each list represents either a curve of
the potential profile (x, V) or electron reflectance (k, |R|2) (for simplicity, we will suppress the phase in this part of
the discussion). Since it is possible to calculate the potential from the reflectance and vice versa, each curve has a
corresponding partner. The user interface therefore consists of two windows, one for each type of curve. Several
curves of a particular type may be represented within one window at any given time, with their corresponding
partners in the other window. The application should then provide the user with the ability to:

(1) Choose any curve for modification
(2) Select a specific interval of the chosen curve for modification
(3) Specify new points within the selected interval
(4) Construct a smooth curve (using the cubic() function written in Fortran) through the selected points
(5) View the modified curve
(6) Update its corresponding partner curve in the other window
(7) Delete unwanted curves (their partners should be deleted automatically)

The following generic features were added to:

a) Provide a way to select the processes (1) to (7) above
b) Present the user with a choice of several starting potential profiles
c) Limit the maximum number of curves in one window to three
d) Start the application with a default potential profile

6
The Python Papers, Volume 3, Number 2 (2008)

5. IMPLEMENTATION DETAILS

5.1 User Interface Basics

The two windows in the application support similar functionalities and hence they have similar layouts. Both
windows are therefore created by using a single function initialiseFigure(), which specifies all their
common features.

1. def initialiseFigure(xlabel, ylabel, title):
2. """
3. Create a figure.
4.
5. xlabel and ylabel refer to the x and y axes labels.
6. title refers to the title of the figure.
7. Return handles to the created figure and subplot.
8. """
9. fig = figure(figsize =(12,4.5))
10. ax = fig.add_subplot(111)
11. subplots_adjust(left=0.07,right = 0.8,bottom = 0.2)
12. ax.set_xlabel(xlabel, size=19)
13. ax.set_ylabel(ylabel, size=19)
14. ax.set_title(title)
15. fig.text(.85,0.86, 'KEY SELECTION', fontweight='bold')
16. fig.text(.81,0.79, 'Select Graph', fontsize='13')
17. fig.text(.81,0.75, '"r"--red', fontweight='13')
18. fig.text(.81,0.71, '"b"--blue', fontweight='13')
19. fig.text(.81,0.67, '"g"--green', fontweight='13')
20. fig.text(.81,0.60, 'Select Process', fontsize='13')
21. fig.text(.81,0.55, '"t"',fontsize = '13')
22. fig.text(.84,0.55, '-- 2 points')
23. fig.text(.81,0.51, '"p"',fontsize = '13')
24. fig.text(.84,0.51, '-- new points')
25. fig.text(.81,0.47, '"i"',fontsize = '13')
26. fig.text(.84,0.47, '-- interpolate')
27. fig.text(.81,0.43, '"d"',fontsize ='13')
28. fig.text(.84,0.43, '-- delete')
29. fig.text(.81,0.39, '"u"',fontsize = '13')
30. fig.text(.84,0.39, '-- update')
31. return fig, ax

Lines 9-14 create a figure (window) with the given size; add a canvas for plotting curves, and set the appropriate
axis labels and title for the figure. Lines 15-30 enable the generic feature (a) mentioned at end of the previous
section (Application Requirements). Line 31 returns the handles for the created figure and subplot, which are
used later in the application to change the properties of the figure and the subplot.

The window that displays potential profiles has an additional set of radio buttons to support the generic feature (b),
also mentioned at the end of the previous section. The radio buttons are added by a simple user-defined function
named addRadioButtons(), which is given below:

7
The Python Papers, Volume 3, Number 2 (2008)

1: def addRadioButtons(fig):
2: """
3: Add radio buttons to the figure.
4: """
5: fig.text(0.81, 0.33, 'Select Potential', fontsize='13')
6: rax = axes([0.83, 0.10, 0.08, 0.20],axisbg='0.75')
7: radio = RadioButtons(rax, ('--1', '--2', '--3', '--4', '--5','—
8: 6','--7'), active=4)

Using the functions initialiseFigure()and addRadioButtons()the two windows are created by the
following statements:

figure1, axis1 = initialiseFigure
(r'$x\/\rm{(nm)}$',r'$V\/\rm{(eV)}$','Potential Profile')
addRadioButtons(figure1)
figure2, axis2 = initialiseFigure
(r'$k\/\rm{(nm}^{-1}\/\rm{)}$',r'$\mid R \/ \mid^{2\/}$','Electron
Reflectance')

In the above listing, figure1 and figure2 refer to the windows for the potential profile and electron reflectance,
respectively (See top left hand corner of Figures 3 and 4, for example).

5.2 The Graph Class

A curve is modelled using the class Graph - a template for any valid curve in the application. The Graph class has
attributes to specify the curve in terms of a list of (x, y) values, its unique colour and its type, i.e. either potential
profile or electron reflectance. The constructor of the class is given below:

1. def __init__(self, x, y, color, type):
2. """
3. Define a Graph class.
4.
5. x and y refer to the (x,y) values of the curve.
6. color refers to the color in which the curve is represented.
7. type is a string to describe the type of the curve i.e. potential
8. profile or electron reflectance.
9. """
10. self.x = x
11. self.y = y
12. self.color =color
13. self.type = type

5.3 Visualising Multiple Graph Objects

Multiple Graph objects are handled in the application using a list variable listGraphObjects. To
visualise multiple Graph instances two aspects should be considered; (i) to draw curves in the respective windows
and, (ii) to set the axis limits of the subplots.

The drawing of curves is achieved using the function updatePlots(), which is listed below:

8
The Python Papers, Volume 3, Number 2 (2008)

1. def updatePlots(ty):
2. """
3. Update the curves in a figure.
4.
5. The input parameter ty is used to determine which figure should be
6. updated.
7. """
8. temp = [x for x in listGraphObjects if x.typ == ty]
9. Xmin, Xmax, Ymin, Ymax = findLimits(ty,temp)
10. if(ty == 'profile'):
11. for o in temp:
12. axis1.plot(o.x, o.y,(o.color[0]).lower())
13. axis1.set_xlim(Xmin, Xmax)
14. axis1.set_ylim(Ymin, Ymax)
15. axis1.grid(True)
16. figure1.canvas.draw()
17. elif(ty == 'reflectance'):
18. for o in temp:
19. axis2.plot(o.x, o.y,(o.color[0]).lower())
20. axis2.set_xlim(Xmin, Xmax)
21. axis2.set_ylim(Ymin, Ymax)
22. axis2.grid(True)
23. figure2.canvas.draw()

This function takes an input parameter ty to determine whether the window for visualising curves is figure1 or
figure2. Using this input parameter, the function creates a list temp of all the Graph objects of type ty,
calculates the x and y limits of all the Graph objects in temp using the function findLimits()(discussed
below), plots the curves and sets the limits of the axes in the subplots.

Usually the limits of the axes in a subplot are determined by using the (x, y) values of the relevant Graph objects
and the predetermined offset values, if required. However, in this application, both the x and y limits of the
subplot for visualising electron reflectance are fixed by experimental considerations. Similarly the x limits of the
subplot for visualising the potential profile are also fixed by the spatial extent of the heterostructure.

Based on these assumptions, the function findLimits() is implemented as:

1. def findLimits(ty, subsetList):
2. """
3. Determine the maximum and minimum of x and y values of the
4. Graph objects.
5.
6. subsetList is the list of Graph objects for which the x and y
7. limits should be calculated.
8. ty refers to the type (electron reflectance or potential profile)
9. of the curve.
10. Return the maximum and minimum of x and y values of the given Graph
11. objects.
12. """
13. Ymin = -0.1
14. Ymax = +1.1

9
The Python Papers, Volume 3, Number 2 (2008)

15. Xmin = 0.0
16. Xmax = 1.40001
17. if(ty == 'profile'):
18. Xmax = 25.0
19. Xmin = 0.0
20. if(len(subsetList)==0):
21. Ymin = 0.0
22. Ymax = 0.4
23. else:
24. aMinY = min(subsetList[0].y)
25. aMaxY = max(subsetList[0].y)
26. for o in subsetList:
27. aMinY = min(aMinY,min(o.y))
28. aMaxY = max(aMaxY,max(o.y))
29. Ymin = aMinY - abs((aMaxY - aMinY)/2.5)
30. Ymax = aMaxY + abs((aMaxY - aMinY)/2.5)
31. return Xmin, Xmax, Ymin, Ymax

Lines 17-19 are used to set the y limits of the subplot in figure1 to predetermined values in the event of an
empty listGraphObjects list. This scenario occurs when the user deletes all the curves in figure1. Deleting
all the curves in figure2 does not require any additional coding since the x and y limits are fixed.

Lines 24-28 determine the minimum and maximum y values of all the Graph objects in the subsetList.
Appropriate offsets are added to these values by lines 29 and 30.

5.4 Creating Potential Profile and Electron Reflectance Curves

The user is given a number of initial potential profiles, which are essentially files containing (x, y) values. The
application starts with a default potential profile file, thereby creating a Graph object for the respective potential
profile curve. It also calculates the electron reflectance and creates the corresponding Graph object.

A Graph object is created in the application using a function createGraphObject(), which implements the
following:

• It checks whether the creation of a new Graph object satisfies the criteria of not having more than three
curves in a window.

• If the criteria above is satisfied, the function assigns a colour to the curve, which is not already taken by the
existing curves in the window.

• It creates a new Graph object, with the assigned colour and (x, y) values given to the function.

After initialising the windows, the following statements create a Graph object and the corresponding curve in
figure1.

f1 = load('potential5.dat')
createGraphObject(f1,'profile')
updatePlots('profile')

The curve displayed, for example, is shown in Figure 3.

10
The Python Papers, Volume 3, Number 2 (2008)

Fig. 3. The display window for the potential. In this simple example the heterostructure consists of three layers which are located between 5

and 17 nm. Notice that the central layer of this heterostructure is made of the same material as the surrounding substrate material.

The corresponding partner for this curve is calculated and created using a function named
electronReflectance(), which performs the following:

• It invokes the Fortran code reflectance(), with the (x, y) values of the potential profile curve to obtain

the electron reflectance data.
• Using the (x, y) values returned by reflectance() a new Graph object (of type ‘reflectance’ is

created).
• updatePlots() is invoked to draw the new curve in figure2.

After a potential curve has been created, the statement electronReflectance(f1) thus creates the partner
curve of the potential, as shown in Fig. 4.

Fig. 4. The display for the electron reflectance corresponding to the potential in Fig. 3.

11
The Python Papers, Volume 3, Number 2 (2008)

Any time when a new curve of electron reflectance has to be created, the function electronReflectance() is
invoked. In a similar way, there is another function potentialProfile() which creates a curve of the potential
profile, when given the electron reflectance. The function potentialProfile() works similarly to
electronReflectance(), except that it invokes the Fortran code inversion() to calculate the (x, y) values
of the potential profile.

5.5 Event Handling in the Application

The application handles key and mouse events to achieve interactivity. Key events allow the user to select a curve
for modification, to choose an interval for modification on the selected curve, to specify new points within the
chosen interval, to create a new curve through the specified points, to create the partner curve and to delete any
curve (and its partner). The choice of an interval for modification, the specification of new points within the chosen
interval and the selection of a potential profile from a list of profiles are achieved using mouse events. Again, the
events handled in both windows are almost the same; the only difference being the Fortran functions which are
invoked to perform either the direct or inverse calculation.

A figure in Matplotlib is registered for key events using the statement:

figure.canvas.mpl_connect('key_press_event', delegateProcess)

In this application, the function linked to the key_press_event, invokes appropriate methods based on the keys
entered and manages connection ids for mouse events. A basic layout of the method delegateProcess is given
below:

1:def delegateProcess(event):
2: if((event.key == 'r')or(event.key == 'b')or(event.key =='g')):
3: # Choose a curve
4: if event.key == 't':
5: # Allow the user to specify the interval to be modified
6: elif event.key == 'p':
7: # Allow the user to choose points in the selected interval
8: elif event.key =='i':
9: # Draw a new curve based on the new points
10: elif event.key == 'd':
11: # Delete the curve
12: elif event.key == 'u':
13: # Create the partner curve

Each of these processes and the process of selecting a potential profile from a list of potential profiles are achieved
by one or more dedicated functions, as explained in the following six sections.

5.6 Selecting a Curve for Modification

A curve is selected by keying in the colour (for example r for red) of the curve in the appropriate window. This
event causes the Graph object to be selected as the active object in the application. The code below shows how the
active Graph object is created:

1: def createActiveObject(ty, key):
2: """
3: Select a curve for modification.
4:

12
The Python Papers, Volume 3, Number 2 (2008)

5: ty refers to the type (electron reflectance or potential profile)
6: of the curve.
7: key refers to the color of the curve.
8: """
9: activeGObject = [x for x in listGraphObjects if ((x.typ ==
10: ty)&((((x.color)[0]).lower())==key))];

5.7 Choosing an Interval for Modification

Once a curve has been selected, the user specifies the interval which is to be modified by first entering the key t, and
then choosing an interval with the mouse. In this application, an interval is chosen by clicking on two points, which
lie on the curve (within a certain tolerance). The two valid points are represented by a visual object (in this case a
RegularPolyCollection) on the figures.

The function listed below allows the user to choose two points on the selected curve. It also represents the points
using visual cues.

1: def selectTwoPoints (event):
2: """
3: Allow users to select two valid points on a curve.
4: """
5: temp = []
6: flag = False
7: n = len(activeGObject[0].x) – 1
8: deltax = abs((activeGObject[0].x)[n] - (activeGObject[0].x)[n-1])
9: deltay = abs(max(activeGObject[0].y) - min(activeGObject[0].y))/60.0
10:
11: for i in range(len(activeGObject[0].x)):
12: if (((abs(event.xdata - (activeGObject[0].x)[i]))< deltax) and
13: ((abs(event.ydata - (activeGObject[0].y)[i]))< deltay)):
14: temp = (((activeGObject[0].x)[i]), ((activeGObject[0].y)[i]))
15: flag = True
16: break

17: if ((flag==True) & (countclicks <2)):
18: thetwopoints.append(temp)
19: if (activeGObject[0].type == 'profile'):
20: offsets1.append(((thetwopoints[countclicks])[0],
21: (thetwopoints[countclicks])[1]))
22: figure1.canvas.draw()
23: elif(activeGObject[0].type == 'reflectance'):
24: offsets2.append(((thetwopoints[countclicks])[0],
25: (thetwopoints[countclicks])[1]))
26: figure2.canvas.draw()
27: countclicks = countclicks + 1

Lines 11-16 check if a mouse click is a valid point on the curve (considering the tolerance specified in lines 8 and
9). If the selected point is valid and the user has not yet chosen two points the selected point will be added to a list
named thetwopoints, to indicate the interval to be modified in the curve. Lines 20 and 24 add the selected two

13
The Python Papers, Volume 3, Number 2 (2008)

points into a list of points (either offsets1 or offsets2) that should be displayed by the
RegularPolyCollection object.

In Fig. 5 the two points, indicating the interval for modification, are shown.

Fig. 5. Electron reflectance, as in Fig. 4, with the two points denoting the interval in which the reflectance is to be modified. In this

example the resonance peak between k = 0.2 and k = 0.4 nm-1 will be enhanced to allow almost all electrons with k = 0.26 nm-1 to pass

through the device.

5.8 Specifying the Points within the Chosen Interval

Once the user has chosen the interval for modification, he/she may specify one or more additional points within this
interval by keying in p. The additional points may then be selected with the mouse. This process should consider
two aspects; (i) the user is only allowed to specify points within the chosen interval and, (ii) the user has to be
supplied with visual cues representing the specified points.

The function listed below achieves these two requirements:

1: def selectPoints (event):
2: """
3: Allow users to select points within the chosen interval.
4: """
5: thetwopoints.sort()
6: if ((event.xdata < (thetwopoints[1])[0]) & (event.xdata >
7: (thetwopoints[0])[0])):
8: selectedpoints.append((event.xdata, event.ydata))
9: selectedpoints.sort();
10: if (activeGObject[0].typ == 'profile'):
11: offsets1.append((event.xdata, event.ydata))
12: figure1.canvas.draw()
13: elif(activeGObject[0].typ == 'reflectance'):
14: offsets2.append((event.xdata, event.ydata))
15: figure2.canvas.draw()

14
The Python Papers, Volume 3, Number 2 (2008)

As long as the selected points are within the specified interval, they are appended to a list named
selectedpoints, and also to the appropriate lists of the RegularPolyCollection objects of the figures.

Fig. 6 shows one additional point selected within the interval of interest.

Fig. 6. Electron reflectance, as in Figures. 4 and 5. Here a single point has been chosen between the previously selected two points to

enhance the resonance peak at k = 0.26 nm-1.

5.9 Creating the Modified Curves

The user types the key i to draw a new curve through the specified points. The new curve is a smooth curve which
passes through all the specified points and coincides with the unmodified part of the original curve. To achieve this,
a function interpolate() is defined to implement the following aspects:

• Create a new list of points (x, y) which includes (x, y) data of the activeGObject by replacing the points
in the chosen interval with the new points (thetwopoints and selectedpoints).

• Invoke the Fortran function cubic() to obtain the cubic spline points for the interpolated smooth curve
within the modified interval.

• Combine the points (x, y) in the unmodified section of activeGObject with the new points returned by
cubic() and create a new Graph object to represent the new curve.

15
The Python Papers, Volume 3, Number 2 (2008)

The modified electron reflectance (green) is displayed in Fig, 7 below.

Fig. 7. Electron reflectance, as in Figures 4, 5 and 6. The green curve shows the enhanced resonance peak which has been interpolated

through the selected points.

The partner curve (in this case, the potential profile) is created when the user keys in u; which invokes, in this case,
potentialProfile(). The new potential profile corresponding to the modified electron reflectance is shown in
Fig. 8.

Fig. 8. The original potential (blue) as well as the modified potential (green) which was calculated from the modified reflectance shown

in Fig. 7. This result indicates how the potential should be modified (by, for example, modulation doping) in order to achieve the

enhanced resonance peak shown in Fig. 7. Without the inverse calculation it would not be obvious how to dope the heterostructure in

order to enhance the resonance.

16
The Python Papers, Volume 3, Number 2 (2008)

5.10 Deleting a Curve

An active curve can be deleted by keying d, which invokes a user defined function delete(). This function
simply deletes both Graph objects (with the specified colour) from listGraphObjects. Subsequently the axes
of the subplots in figure1 and figure2 are cleared and updatePlots() is invoked.

5.11 Choosing Various Potential Profiles

At any time, the user is allowed to select a new starting potential profile by clicking on one of the seven radio
buttons. The selection of a new potential involves; deleting all the Graph objects in the application, clearing the
appropriate lists (e.g. thetwopoints and selectedpoints), reading the new potential data from the file,
creating and displaying the appropriate Graph objects.

6. IMPROVEMENTS AND CONCLUSION

Since this application was developed as a proof-of-concept, there is plenty of room for improvement. In terms of the
front-end of the application, a more user-friendly interface can be added to make the selection of various options
easier. Handling of exceptions, providing feedback to the user on various aspects of the calculations, including
features to increase robustness and implementing multi-threading to improve the general efficiency and
responsiveness are some of the improvements we intend making in future work.

In terms of the physics underlying this application, several improvements are possible. Firstly, the model can be
developed to include bound states (2). Secondly, in order to facilitate more accurate comparisons with experimental
data, the model can be extended, either to multi-band k·p models (1), or else by directly using the (periodic) crystal
potential (7). Lastly, for designing spintronic devices, which in addition to the change on the electron also exploit its
spin degree of freedom, spin-dependence will have to be incorporated into the model.

Our provisional results suggest that further work along these lines would be rewarding. Until now, there has been no
commercially available application to provide the user with an interactive visualization of the highly non-trivial
numerical computations required for designing heterostructures. Future work, based on refinements of the above
ideas, could be of great practical use in the emerging field of computational semiconductor heterostructure design.

ACKNOWLEDGEMENTS

This material is based upon work supported financially by the National Research Foundation of South Africa. The
second author (AEB) would like to thank Prof. M. Braun for his helpful (informal) discussions on Python.

BIBLIOGRAPHY

1. Botha, A. E. 2007, Microelectronics Journal, Vol. 38, p. 332.

2. Sofianos S.A., et al. 2007, Microelectronics Journal, Vol. 38, p. 235.

3. Langtangen, H.P. Python Scripting for Computational Science. Berlin : Spinger-Verlag, 2004.

4. Meredith, S.E. and Koonin D.C. Computational Physics. New York : Westview Press, 1990.

5. De Boor, C. A Practical Guide to Splines. New York : Springer-Verlag, 1978.

6. Press W.H., et al. Numerical Recipes in Fortran. New York : Cambridge University Press, 1992.

7. Allen, L.J., et al. 2001, Acta Crystallographica A, Vol. 57, p. 473.

seismic-py: Reading seismic data with Python

Kurt Schwehr

Center for Coastal and Ocean Mapping, University of New Hampshire

Abstract. The field of seismic exploration of the Earth has changed
dramatically over the last half a century. The Society of Exploration
Geophysicists (SEG) has worked to create standards to store the vast
amounts of seismic data in a way that will be portable across computer
architectures. However, it has been impossible to predict the needs of the
immense range of seismic data acquisition systems. As a result, vendors have
had to bend the rules to accommodate the needs of new instruments and
experiment types. For low level access to seismic data, there is need for a
standard open source library to allow access to a wide range of vendor data
files that can handle all of the variations. A new seismic software package,
seismic-py, provides an infrastructure for creating and managing drivers for
each particular format. Drivers can be derived from one of the known formats
and altered to handle any slight variations. Alternatively drivers can be
developed from scratch for formats that are very different from any previously
defined format. Python has been the key to making driver development easy
and efficient to implement. The goal of seismic-py is to be the base system
that will power a wide range of experimentation with seismic data and at the
same time provide clear documentation for the historical record of seismic
data formats.

INTRODUCTION

Seismic data systems use acoustic pulses to send
sound waves through water and the solid earth to map
layers within the subsurface. They vary from simple
single source and single receiver systems to multiple
sources and long arrays of geophones or hydrophones.
The processing of the received sound waves requires a
range of data storage and signal analysis techniques.
Python can support both the data archival and pre-
cessing tasks.

In this paper, I will use the example of a single
source seismic instrument towed behind a ship (e.g. Fig-
ure 1a,b). The device (known as a tow-fish, or just a
fish) is a 2m long device that emits a pulse of sound
energy over a range of frequencies straight down using
piezoelectric transducers. The energy travels as waves
through the water and bottom material. As the sound
velocity of the medium changes, a small portion of the
energy is reflected back up towards the fish where it is
collected by the receivers and stored for later process-
ing. Each pulse of outgoing energy is referenced to as

a shot and the resulting returned data are collectively
called a trace. A GPS on-board the ship records the po-
sition and time of the ship for each shot. When traces
are combined and georeferenced, a ribbon view is cre-
ated that is call a seismic line (Figure 1c). The inset
in Figure 1c shows the seismic lines combined with the
bathymetry to give an overall picture of the ocean bot-
tom. The process of going from shots to a 3D model
with interpretation through to a publication can be ar-
duous, especially when there are terabytes data.

There are literally thousands of pieces of code around
the world for reading and writing seismic data both
in the commercial and academic world. Do we need
yet another one? The Society of Exploration Geophysi-
cists (SEG) has worked to provide a number of well
thought out standards for seismic data (e.g. SEGY Rev
0) [Barry et al., 1975]. The SEG has continued evalu-
ating the needs of the community and has released an
updated format that attempts to accommodate changes
in the industry (e.g. SEGY Rev 1) [Norris and Faich-
ney , 2002]. However, the reality is that no one software
package can read all of the variations on these standard

1

Schwehr: seismic-py, Python Papers 2008 2

0.5-6 kHz
Transducer

2-16 kHz
Transducer
High frequency
receiver
4 low frequency
receivers

b)a) c)

Wire out

GPS

Layback

Fish

Figure 1. a) Schematic of a ship towing a seismic subbottom profiler (fish). Base image courtesy Genevieve
Tauxe. b) Underside of an EdgeTech Chirp fish showing the transducers that produce the acoustic shot and the
sensors that receive the reflected energy, which are stored as a trace. Image courtesy Laurent Beguery. c) Traces
are shown together as a curtain to show a seismic line and are often combined with multibeam bathymetry as
visualized by Fledermaus in the inset. Data courtesy Neal Driscoll and Pat Iampietro.

formats and there is no central repository document-
ing how these formats differ from the SEGY standards.
Many seismic processing packages come with tools that
allow binary level inspection of data files to attempt
to ascertain how a particular SEGY file is structured.
Users currently need a range of tools in their arsenal to
extract critical data from recorded data streams.

seismic-py is a package designed to alleviate the prob-
lems of changing data file formats in the seismic indus-
try. It provides a Python Application Programming
Interface (API) for seismic data that relies on a set of
drivers that specify and document the actual layout of
a particular file format. seismic-py provides this critical
functionality in a library released under the GNU Gen-
eral Public License (GPL) [Stallman, 1984–], an Open
Source Initiative (OSI) [Raymond , 1998–] approved li-
cense. This means that students and professionals alike
have the right to modify and improve the seismic-py
package. The source code is available for download here:

http://schwehr.org/software/seismic-py/

SEGY FILE LAYOUT

Before proceeding into the details of the software sys-
tem, it is important to have an understanding of the lay-
out of SEGY Rev 1 data. The format is a Fortran style
series of binary data records preceded by a header. The
overall layout of SEGY files breaks the content into two
major sections. First is a header group starting with
a 3200 byte text block (either ASCII or EBCDIC)
that is either free form or grouped into 40 predefined
80 character records. Following the text block is a well
defined 400 byte binary header region. After this are

zero or more Extended Textual File Headers that do
not have their format defined in the standard. The rest
of the file consists of seismic trace records. These trace
records are not required to all be the same size, but
they are required to have a 240 byte binary header at
the beginning of each trace. Vendors and people pro-
cessing seismic data frequently create their own format
by changing the meaning of these binary fields.

DESIGN

The choice of computer language is the most pivotal
design element of a software project. This choice alters
which tasks will be hard or easy. For most seismic pack-
ages, Fortran and/or C/C++ are the usual choices for
implementation. Fortran is the most common language
for the geophysical community, but is rather rigid. The
C/C++ family of languages provides extreme flexibil-
ity, dynamically loadable modules, object oriented de-
sign and much more, but at a cost of complexity and fre-
quency of bugs. Python appears to be an excellent com-
promise between the two groups of languages. Python
comes with additional functionality not easily available
with either of the other alternatives. Students are able
to quickly pickup skills in Python faster than Fortran
or C. Python’s additional functionality simplified the
initial design and implementation of seismic-py.

With the wide range of vendor implementations of
SEGY writers, it is critical that SEGY readers be able
to easily handle a large number of drivers and allow
driver writers to quickly produce the needed changes.
With C/C++, this task is possible with dynamically
loaded, shared libraries or by parsing specification files,

http://schwehr.org/software/seismic-py/

Schwehr: seismic-py, Python Papers 2008 3

def createDriverName(drvStr):
’’’Make Python filename to load:
xstar -> segy_drv_xstar
drv_xstar -> segy_drv_xstar
segy_drv_xstar.py -> segy_drv_xstar
’’’
if -1 != drvStr.find(’.py’):

drvStr = drvStr[:-3]
if -1 == drvStr.find(’drv_’):

drvStr = ’segy_drv_’+drvStr
if -1 == drvStr.find(’segy_’):

drvStr = ’segy_’+drvStr
return drvStr

def getDriverModule(drvStr=’segy_drv_rev1’):
drivername = createDriverName(drvStr)
file, pathname, description =

imp.find_module(drivername)
drv = imp.load_module(drivername,file,

pathname,description)
return drv

Figure 2. The getDriverModule function wraps the
Python module loaded. By wrapping the standard
Python module loader with the createDriverName
function, seismic-py is able to let the user use
shorthand driver names such as “rev1” instead of
“segy drv rev1.py”.

but is prone to errors and difficulties with dynamic link-
ers. Python provides this functionality with the imp
module [Python Software Foundation, 2008b] allowing
device loading to be coded in python. The imp mod-
ule provides the components required to create a cus-
tom import function in python. seismic-py provides a
getDriverModule function that wraps the imp module
allowing the user to specify the driver name in any one
of four forms (Figure 2). Python loads a driver module
from the users PYTHONPATH and returns the drv object.
All Python code is then able to access the driver data
just as it would any other Python module.

A non object-oriented design works just as well and
should be more approachable to scientists who may
not be familiar with object-oriented design. For most
projects of this nature, the obvious choice for a design
would be to create a parent class and derive drivers from
the parent class or from sibling drivers. With the his-
tory of the SEGY formats, a straight inheritance tree
would probably be rather difficult. It is expected that as
the pool of drivers increases, new drivers will pull pieces

1. textFileHeaderEntries (Optional)
2. binaryHeaderEntries
3. extTextFileHeaderEntries (Optional)
4. traceHeader
5. fileHeaderTables
6. traceHeaderTables
7. fileHeaderShortList
8. traceHeaderShortList

Figure 3. Lookup tables (dictionaries) for a SEGY file
driver. Each table specifies all of the valid field names
and byte locations for each field. All of these tables are
required except the text and extended text file header
entries.

from a wide variety of existing drivers. A true object-
oriented design would potentially create a complicated
path of multiple inheritances. The driver approach here
appears to simplify this problem and allows drivers to
reuse pieces from where ever they exist without code
duplications. If one were to try to draw the histori-
cal relationships of SEGY format variations, it might
look something like the attempts to graph Unix system
lineages: very complicated and never truly accurate.

Driver Specification File

Each specification driver is simply a Python file with
a set of required dictionaries (lookup tables; Figure 3).
These lookup tables have a variety of tasks ranging
from acting as pointers into binary data to allowing
decoding of data elements. Each section dictionary
contains byte offset ranges for each data field. The
“segy drv rev1.py” provides the reference driver.

Items 1-4 in Figure 3 provide the core lookup tables.
These tables specify the location for each field in the
headers. The binaryHeaderEntries and traceHeader
tables together dictate how to decode the data in the
traces. The majority of these fields are integers. For
those integers that are enumerated values, it is impor-
tant to be able to create human readable text represen-
tations of values. Take the dataField dictionary as an
example. A ’5’ means that the data will be a ”4-byte
IEEE floating-point.” The lookup tables provide byte
offsets in items 5 and 6 for each field. Figure 4 shows a
code example showing how to use the tables contained
in a driver.

The short lists (items 7 and 8) are used for programs
that wish to show a smaller list of items considered to
be the most critical. The short list provides a less over-
whelming view of the trace header and are the items

Schwehr: seismic-py, Python Papers 2008 4

>>> import segy
>>> s = segy.Segy(’file.sgy’)
>>> print s.drv.binaryHeaderEntries

[’SampleFormat’]
[3225, 3226, ’Data sample format code’]

>>> s.header.getBinEntry(’SampleFormat’)
1

>>> print s.drv.fileHeaderTables
[’SampleFormat’][1]

4-byte IBM floating point

Figure 4. The Python command line is a quick way to
explore a SEGY file. Once a file is loaded, it is possi-
ble to query for the raw values as with getBinEntry or
get the English translation by using one of the lookup
tables.

from segy_drv_rev1 import dataFormats
from segy_drv_rev1 import dataFormatStruct
from segy_drv_rev1 import traceSortingCodes
from segy_drv_rev1 import sweepTypeCodes

Figure 5. Reuse of common driver functionality is en-
couraged. This can also be used to show the heritage of
file format. For example, if a driver is essentially SEGY
Rev 1 with a few modifications, this will immediately
be clear to anyone who reads the driver file.

that the driver author decided are the most important
for users to examine. For example, the short list for
a trace header might consist of only the shot number
(Shotpoint), the geographic location of the GPS (X,
Y), and the delay from the shot firing to the time the
receivers start recording (Delay). The standard trace
header has an overwhelming 90 items, whereas the short
list might have just 4 or 5 entries.

Deriving Variant Specifications

Once a basic driver has been created for a family of
SEGY formats, it is easy to create derivative drivers
that only modify small portions of an existing driver.
The segy drv xstar.py file provides an example of a
derivative driver. The SIO EdgeTech Chirp XStar for-
mat is similar to SEGY Rev 1. All of the components
that remain the same are directly imported (Figure 5).

Python tries to keep only references to objects when
they are used elsewhere within a Python program. For
items that need to be changed, it is important to make
a completely new and separate local copy of the data.
This is done with what Python calls a deepcopy [Python

binaryHeaderEntries = copy.deepcopy (
segy_drv_rev1.binaryHeaderEntries
)

del binaryHeaderEntries[’JobId’]
del binaryHeaderEntries[’ReelNo’]
del binaryHeaderEntries[’TracesPerEnsemble’]

Figure 6. It is critical to use deepcopy when deriving
tables from drivers. This prevents the original driver
from being corrupted when altering of deleting entries
in a new driver.

Software Foundation, 2008a]. Figure 6 is an example
with the binaryHeaderEntries. The XStar format does
not fill in a number of fields. Missing entries are re-
moved from the local copy after the SEGY Rev 1 entries
are deep copied.

Performance

Software performance is critical to seismic processing
applications. Seismic instruments are capable of rapidly
generating enormous quantities of data. If the code is
not able to cope with this volume, users will quickly be-
come frustrated. seismic-py takes the approach of using
the mmap system call through the mmap Python module
[Python Software Foundation, 2008c]. This call allows
the operating system (OS) to page data into memory on
demand via the paging system. Since these pages are
marked as read only, the OS can dump pages quickly
as memory pressure increases during processing runs.
Locations of each name are stored in a Python dictio-
nary (basically hash tables). With the small size of
these dictionaries, the lookups proceed quickly. mmap
brings in raw binary data that cannot be direct read
with Python. However, Python provides the struct
module [Python Software Foundation, 2008d] that can
convert binary data to Python objects given a conver-
sion string. The struct module can convert a range
of integer types along with IEEE 32- and 64-bit float-
ing point numbers. Much older seismic data is in IBM
floating point format that is not supported by struct,
therefore seismic-py can not yet read those seismic data
files.

If the speed of the pure Python is not fast enough, it
is possible to replace data parsing code with optimized
C or C++ code. Originally, this was only possible with
the Python/C programming API [van Rosum, 2008],
but there now exist a wide range of tools for wrap-
ping C++ for using python such as SWIG [Beazley and
Lomdhal , 1997] or Boost.Python [Abrahams, 2002–], or

Schwehr: seismic-py, Python Papers 2008 5

-20000

-15000

-10000

-5000

 0

 5000

 10000

 15000

 20000

 750 800 850 900 950 1000 1050 1100

A
m

pl
itu

de

A/D sample

Seismic Trace

'file.sgy-00002.dat'

Figure 7. Gnuplot output from plotting the ASCII
trace values written to disk by segydump. Plotted with
“plot ’file.sgy-00002.dat’ with linespoints”.

alternatively using C inline within Python source code
[Mardal and Westlie, 2007-; Simpson, 2001].

SAMPLE APPLICATIONS

To make it easier to get started with seismic-py, the
package comes with many sample applications. I will
discuss 3 applications to give a flavor of the possibili-
ties. Segydump provides a quick look capability similar
standard hex viewers, but with an understanding of the
header field names. Seqysql loads the trace headers
into a simple SQL database. Segysqlgmt combines the
trace locations with a program to draw maps.

Segydump

Segydump provides internal listings and trace data
dumps for SEGY data files. This is an excellent starting
example as it exercises just about all of the functionality
in the driver but hides most of it behind the Segy class.
The most challenging portion of Segydump is handling
all of the command line options such as being able to in-
clude the filename in front of each line of text. Figure 8
is a stripped down version of the dumping code.

By specifying the driver with the Segy class, all of
the quirks of the XStar format are irrelevant at this
level of the interface. The code starts by opening a
SEGY data file with the specified driver on Line 3.
Line 4 prints out the number of traces in the file. The
printBinaryHeaders call in line 5 prints out all of the
header entries. The user can request that traces be
dumped out to disk, which is done in lines 6-8. Line 9
finishes by printing out the header information for each
trace. Additional code in segydump (not shown here)
handles looping over each of the provided files, selecting

1 traceNum = 123
2 filename = ’LaJolla-line101.xstar’
3 s = Segy(filename, drivername=’xstar’)
4 print ’traces = %s’ % s.getNumberOfTraces()
5 s.header.printBinaryHeaders()
6 s.writeTraceToFile(’%s-%05d.dat’ \
7 % (filename,traceNum),
8 traceNum)
9 s.getTraceHdr(traceNum).printHeader()

Figure 8. This code snippet writes the data from a
trace out to an ASCII text data file. This data file is
suitable to loading into Octave or plotting with Gnu-
plot.

short or long output, and providing additional informa-
tion. It is up to the user to use a tool like grep to pull
out specific header fields. Think of segydump as the
equivalent to the Unix ls or DOS dir commands.

The ability to write out individual traces should
make a wide range of studies more convenient. Most
processing environments and languages can read in
ASCII data that is in (sample number,value) pairs. The
simplest case is visual inspection of individual traces as
shown in Figure 7, which shows the gnuplot results
from running “segydump -w -t 2 file.sgy” followed
by gnuplot. This idea can be extended to programs
such as MATLAB and IDL/ENVI where additional signal
processing is traditionally can be performed.

Segysql

One of the most common tasks of working with seis-
mic data is trying to manage all of the metadata for
SEGY files. Python provides a rich set of modules that
simplify many of these tasks. Users often want to know
which lines cross through a region or the shot closest
to a feature, core, or station. The strategy most fre-
quently used in the academic world is to create a wide
range of text columns managed with awk, sed, and Perl
scripts. SQL provides an easier way to query large data
sets. The problem is that there has been no easy way
to import the header data for files and traces into an
SQL database. Segysql provides a complete example
of database importing using the SQLite [Wyrick and
Hipp, 2000–] database. SQLite was solely for its ease
of use. There is no need to setup a database server.
As of version 2.5, Python has a SQLite database inter-
face called sqlite3, that simply uses a single file as the
database repository. Older versions of Python can use
pysqlite [Owens and Haering , 2001–]. Switching to any

Schwehr: seismic-py, Python Papers 2008 6

01 import segy
02 import sqlite3
03 cx = sqlite3.connect(’segy.db3’)
04 cu = cx.cursor()
05 cu.execute(segy.sqlCreateFileTable(’xstar’))
06 cu.execute(segy.sqlCreateTraceTable(’xstar’))
07 cx.commit()
08 xstar = segy.Segy(filename,’xstar’)
09 cu.execute(xstar.header.sqlInsert(filename))
10 cx.commit()
11 cu.execute(’SELECT fileKey FROM segyFile WHERE filename=:1;’,(filename,))
12 fileKey = cu.fetchone()[’fileKey’]
13 for i in range(1,xstar.getNumberOfTraces()+1):
14 cu.execute(xstar.getTraceHdr(i).sqlInsert(traceNumber=i,fileKey=fileKey))
15 cx.commit()

Figure 9. seismic-py provides helper mechanisms to simplify SQL database creation that can easily be combined
with SQLite.

other database interface requires changing only a few
lines. The seismic-py Python API provides methods
that return the necessary SQL string for table creation
and row insertion. Just pass these string into a new
database interface.

Figure 9 demonstrates a stripped down version of
code to create and fill an SQL database from a set of
SEGY files. Lines 3-7 connect to a new database file and
create the database tables. Once, the database has been
created, the first task is to add a file to the database
(Line 09). To insert all of the trace headers into the
headers, first we have to get (with an SQL SELECT) the
reference key created by the database for the file (Line
9-10). Finally, each trace is added in a loop over all of
the traces (Line 13-14). The commit calls are part of the
SQL database interface transaction handling. Nothing
is actually added to the database until the commit call.

Segysqlgmt

Once header information is in a database, it becomes
much easier to create mini-applications that add to the
seismic processor’s tool chest. Marine scientists typi-
cally use GMT [Wessel and Smith, 2006] and MBSys-
tem [Caress and Chayes, 2001–] to make maps of areas
that can incorporate other critical data. segysqlgmt, a
program to display the tracks of seismic lines on a map,
illustrates this concept. mbm grdplot, a script with in
MB System, reads a GMT grd and then outputs a de-
fault plotting script using GMT commands, providing
a simple basemap. For example, with a Santa Barbara
Basin, CA mutlibeam data set [Hatcher and Maher ,

1999], the command is “mbm grdplot -Igmt.grd.” This
is much easier that starting off writing your own GMT
script. Segysqlgmt can then provide text format data
files for the ship tracks and shot counts at intervals in a
format suitable for GMT’s psxy and pstext along with
the shell script lines to add to the mbm grdplot orig-
inal script. segysqlgmt creates quick look shot plots
for surveys on top of that base map that can be seen in
Figure 10.

FUTURE DIRECTIONS

There is still much work to be done on seismic-
py. This paper describes only the initial work done
by one developer. seismic-py takes a different approach
to seismic data processing compated to other academic
packages such as sioseis [Henkart , 1975]), Seismic Unix
[Stockwell , 1997], or pltsegy [Harding , 2005] by provid-
ing stand alone base level drivers. An open source con-
tribution to the seismic community will hopefully spur
more research into seismic data processing, visualiza-
tion, and interpretation that will give the geoscience
community new views into our rocky planets.

To date, seismic-py only implements the SEGY Rev
1 and the EdgeTech XStar format, but it holds promise
for providing a vast range of data formats. Critical
missing features include full handling of ASCII/EBCDIC
headers, extended text headers, IBM floating point
data, definition of non-integer header values, and many
more vendors’ formats. All of these are not hard to
provide and are just a matter of additional developer

Schwehr: seismic-py, Python Papers 2008 7

Ship Track and Shotpoints for BPSIO 2004

239˚35’

239˚35’

239˚45’

239˚45’

239˚55’

239˚55’

240˚05’

240˚05’

240˚15’

240˚15’

240˚25’

240˚25’

34˚00’ 34˚00’

34˚10’ 34˚10’

34˚20’ 34˚20’

34˚30’ 34˚30’

Figure 10. Ship tracks and shot points for a Santa Barbara Basin chirp cruise in 2004. The map was created with
a combination of MB-System, GMT, and seismic-py. By drawing cores, ship tracks, and shot numbers, analysts
can quickly find the relevant data.

time. Python has proved to be an ideal language for
handling formats like this that are Fortran style binary
data records. The built-in dictionary and list data types
make the driver files appear very close to the original
text specification documents.

The segy class interface needs a few additions. The
most critical to making seismic-py more ”Pythonic” is
to add an iterator interface, such that a for loop on a
segy object will loop over the traces. Additionally, the
initial database interface only supports traditional SQL
calls. Future versions need to add support for spatial
databases such as PostGIS [Refractions Research, 2008]
and [Furieri , 2008]

The initial work on seismic-py used Python dictio-
naries to define the SEGY file format and for the files
variances produced by each instrument. This is effective
for initial prototypes, but for larger impact on the com-
munity, future projects should use eXtensible Markup
Language (XML) configuration files. XML allows soft-
ware implementers to choose their language of prefer-
ence (assuming that it has an XML reading library) or
a compiler could be generated that emits source code
for any particular programming language. A compiled
version (resulting in Python code) could be made faster
without the current run-time table lookups.

CONCLUSION

seismic-py provides a reference implementation of an
interface to the wide variety of seismic data that end
users encounter in processing seismic data. seismic-
py will provide the basis for the rapid development of
new tools for inspecting and processing seismic data.
seismic-py removes the restriction of using one type of
seismic data at a time. Users can open many differ-
ent seismic streams at the same time with each stream
utilizing a different driver matching each data file type.

Today, many students in geophysics and geology
learn programming on non-geoscience type problems.
Tools like seismic-py will allow beginning students learn
the computer languages such as Python while working
with data sets that are exciting and cutting edge. Why
not have students start by accessing and viewing seis-
mic data when they are learning to program if they are
studying geophysics? The hope is to turn seismic-py
into one component of an introduction to scientific com-
puting class. The class can use packages such as SciPy
[Jones et al., 2001–], ScientificPython[Hinsen, 1999–],
the pygsl interface to Gnu Scientific Library [Gaedke
and Schnizer , 2001–]), and the Python Imaging Library
[PythonWare, 2006] to dive right into processing real
data while learning data structures and algorithms. The
various tasks can then be combined to create figures

Schwehr: seismic-py, Python Papers 2008 8

suitable for scientific publications (e.g. Figure 1c).
Perhaps the most important side effect of seismic-

py is the beginning of a library that documents seis-
mic formats. There is a vast wealth of commercial and
academic seismic data already collected to date. By
keeping these older data sets readable, new experiments
studying change in earth structures become more man-
ageable. Huge amounts of money have already been
spent collecting seismic data and it is important to sim-
plify access to the valuable resource.

Acknowledgments

I would like to thank the reviewers and many other
people who read drafts of this paper for their valuable
input. Lisa Tauxe and Neal Driscoll provided much
encouragement. NSF and BP provided funding the data
collection that led to this software project.

References

Abrahams, D., Boost.Python, http: // www. boost.

org/ doc/ libs/ release/ libs/ python/ doc/ ,
2002–.

Barry, K. M., D. A. Cavers, and C. W. Kneale, Report
on recommended standards for digital tape formats,
Geophysics, 40 , 344–352, 1975.

Beazley, D. M., and P. S. Lomdhal, Feeding a
Large–scale Physics Application to Python, Inter-
national Python Conference, 6 , http://www.swig.
org/papers/Py97/beazley.html, 1997.

Caress, D., and D. Chayes, MB-System Ver-
sion 5, Open source software distributed from
the MBARI and L-DEO web sites, 12 beta
releases, http: // www. ldeo. columbia. edu/ res/

pi/ MB-System/ MB-System. intro. html , 2001–.
Furieri, A., SpatiaLite - VirtualShape, http: // www.

gaia-gis. it/ spatialite-2. 0/ index. html ,
2008.

Gaedke, A., and P. Schnizer, PyGSL: Python inter-
face for GNU Scientific Library, http: // pygsl.

sourceforge. net/ , 2001–.
Harding, A., pltsegy, 2005.
Hatcher, G., and N. Maher, MBARI Santa Barbara

Basin Multibeam Survey, http: // www. mbari.

org/ data/ mapping/ SBBasin/ default. htm , 1999.
Henkart, P., Sioseis, http: // sioseis. ucsd. edu/ ,

1975.
Hinsen, K., ScientificPython, http: // starship.

python. net/∼hinsen/ ScientificPython/ , 1999–
.

Jones, E., T. Oliphant, P. Peterson, et al., SciPy:
Open source scientific tools for Python, http: //

www. scipy. org/ , 2001–.
Mardal, K., and M. Westlie, Instant, http: // www.

fenics. org/ wiki/ Instant , 2007-.
Norris, M. W., and A. K. Faichney, SEG Y

rev 1 Data Exchange format, http: // seg. org/

publications/ tech-stand/ , 2002.
Owens, M., and G. Haering, pysqlite - A DB API v2.0

compatible interface to SQLite, http: // initd.

org/ tracker/ pysqlite , 2001–.
Python Software Foundation, copy – Shallow and deep

copy operations, http: // docs. python. org/ lib/
module-copy. html , 2008a.

Python Software Foundation, imp – Access the im-
port internals, http: // docs. python. org/ lib/

module-imp. html , 2008b.
Python Software Foundation, mmap – Memory-

mapped file support, http: // docs. python. org/

lib/ module-mmap. html , 2008c.
Python Software Foundation, struct – Interpret strings

as packed binary data, http: // docs. python. org/
lib/ module-struct. html , 2008d.

PythonWare, Python Imaging Library (PIL), http: //
www. pythonware. com/ products/ pil/ , 2006.

Raymond, E. S., The Open Source Initiative, http:

// www. opensource. org/ , 1998–.
Refractions Research, PostGIS, http: // postgis.

refractions. net/ , 2008.
Simpson, K., PyInline, http: // www. fenics. org/

wiki/ Instant , 2001.
Stallman, R., The GNU General Public License, http:

// www. gnu. org/ licenses/ licenses. html ,
1984–.

Stockwell, J. W., Free Software in Education: A case
study of CWP/SU: Seismic Un*x, The Leading Edge,
1997.

van Rosum, G., Python/C API Reference, http: //

docs. python. org/ api/ api. html , 2008.
Wessel, P., and W. H. F. Smith, Generic Mapping Tools,

http: // gmt. soest. hawaii. edu/ , 2006.
Wyrick, G., and R. Hipp, SQLite, http: // www.

sqlite. org/ , 2000–.

K. Schwehr, Center for Coastal and Ocean Map-
ping, University of New Hampshire, Chase Ocean
Engineering 24 Colovos Rd, Durham, NH 03824,
schwehr@ccom.unh.edu, http://schwehr.org

http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.boost.org/doc/libs/release/libs/python/doc/
http://www.swig.org/papers/Py97/beazley.html
http://www.swig.org/papers/Py97/beazley.html
http://www.ldeo.columbia.edu/res/pi/MB-System/MB-System.intro.html
http://www.ldeo.columbia.edu/res/pi/MB-System/MB-System.intro.html
http://www.gaia-gis.it/spatialite-2.0/index.html
http://www.gaia-gis.it/spatialite-2.0/index.html
http://pygsl.sourceforge.net/
http://pygsl.sourceforge.net/
http://www.mbari.org/data/mapping/SBBasin/default.htm
http://www.mbari.org/data/mapping/SBBasin/default.htm
http://sioseis.ucsd.edu/
http://starship.python.net/~hinsen/ScientificPython/
http://starship.python.net/~hinsen/ScientificPython/
http://www.scipy.org/
http://www.scipy.org/
http://www.fenics.org/wiki/Instant
http://www.fenics.org/wiki/Instant
http://seg.org/publications/tech-stand/
http://seg.org/publications/tech-stand/
http://initd.org/tracker/pysqlite
http://initd.org/tracker/pysqlite
http://docs.python.org/lib/module-copy.html
http://docs.python.org/lib/module-copy.html
http://docs.python.org/lib/module-imp.html
http://docs.python.org/lib/module-imp.html
http://docs.python.org/lib/module-mmap.html
http://docs.python.org/lib/module-mmap.html
http://docs.python.org/lib/module-struct.html
http://docs.python.org/lib/module-struct.html
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.opensource.org/
http://www.opensource.org/
http://postgis.refractions.net/
http://postgis.refractions.net/
http://www.fenics.org/wiki/Instant
http://www.fenics.org/wiki/Instant
http://www.gnu.org/licenses/licenses.html
http://www.gnu.org/licenses/licenses.html
http://docs.python.org/api/api.html
http://docs.python.org/api/api.html
http://gmt.soest.hawaii.edu/
http://www.sqlite.org/
http://www.sqlite.org/
http://schwehr.org

	Volume 3, Issue 2
	pythonpapers.org
	ShowMeDo Updates
	Free Python Videos
	Club ShowMeDo (for Subscribers)
	Would you like your tutorials to be seen by thousands of Python viewers?

	Embedding a Python interpreter into your program
	The Code Module
	Adding Local Variables
	Interrupting Exceptions
	Other Things
	Internationalisation
	Embedding iPython
	Conclusion.
	aReference:
	Appendix

	INTRODUCTION
	SEGY FILE LAYOUT
	DESIGN
	Driver Specification File
	Deriving Variant Specifications
	Performance

	SAMPLE APPLICATIONS
	Segydump
	Segysql
	Segysqlgmt

	FUTURE DIRECTIONS
	CONCLUSION
	Acknowledgments

