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Editorial
by Peter Dalgaard

Welcome to the 2nd issue of the 2nd volume of The
R Journal.

I am pleased to say that we can offer ten peer-
reviewed papers this time. Many thanks go to the
authors and the reviewers who ensure that our arti-
cles live up to high academic standards. The tran-
sition from R News to The R Journal is now nearly
completed. We are now listed by EBSCO and the
registration procedure with Thomson Reuters is well
on the way. We thereby move into the framework of
scientific journals and away from the grey-literature
newsletter format; however, it should be stressed
that R News was a fairly high-impact piece of grey
literature: A cited reference search turned up around
1300 references to the just over 200 papers that were
published in R News!

I am particularly happy to see the paper by
Soetart et al. on differential equation solvers. In
many fields of research, the natural formulation of
models is via local relations at the infinitesimal level,
rather than via closed form mathematical expres-
sions, and quite often solutions rely on simplifying
assumptions. My own PhD work, some 25 years ago,
concerned diffusion of substances within the human
eye, with the ultimate goal of measuring the state
of the blood-retinal barrier. Solutions for this prob-
lem could be obtained for short timespans, if one as-
sumed that the eye was completely spherical. Ex-
tending the solutions to accommodate more realis-
tic models (a necessity for fitting actual experimental
data) resulted in quite unwieldy formulas, and even
then, did not give you the kind of modelling freedom
that you really wanted to elucidate the scientific is-
sue.

In contrast, numerical procedures could fairly
easily be set up and modified to better fit reality.
The main problem was that they tended to be com-

putationally demanding. Especially for transient so-
lutions in two or three spatial dimensions, comput-
ers simply were not fast enough in a time where nu-
merical performance was measured in fractions of a
MFLOPS (million floating point operations per sec-
ond). Today, the relevant measure is GFLOPS and
we should be getting much closer to practicable so-
lutions.

However, raw computing power is not sufficient;
there are non-obvious aspects of numerical analysis
that should not be taken lightly, notably issues of sta-
bility and accuracy. There is a reason that numerical
analysis is a scientific field in its own right.

From a statistician’s perspective, being able to fit
models to actual data is of prime importance. For
models with only a few parameters, you can get
quite far with nonlinear regression and a good nu-
merical solver. For ill-posed problems with func-
tional parameters (the so-called “inverse problems”),
and for stochastic differential equations, there still
appears to be work to be done. Soetart et al. do not
go into these issues, but I hope that their paper will
be an inspiration for further work.

With this issue, in accordance with the rotation
rules of the Editorial Board, I step down as Editor-
in-Chief, to be succeded by Heather Turner. Heather
has already played a key role in the transition from
R News to The R Journal, as well as being probably
the most efficient Associate Editor on the Board. The
Editorial Board will be losing last year’s Editor-in-
Chief, Vince Carey, who has now been on board for
the full four years. We shall miss Vince, who has al-
ways been good for a precise and principled argu-
ment and in the process taught at least me several
new words. We also welcome Hadley Wickham as
a new Associate Editor and member of the Editorial
Board.

Season’s greetings and best wishes for a happy
2011!

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859
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Solving Differential Equations in R
by Karline Soetaert, Thomas Petzoldt and R. Woodrow
Setzer1

Abstract Although R is still predominantly ap-
plied for statistical analysis and graphical repre-
sentation, it is rapidly becoming more suitable
for mathematical computing. One of the fields
where considerable progress has been made re-
cently is the solution of differential equations.
Here we give a brief overview of differential
equations that can now be solved by R.

Introduction

Differential equations describe exchanges of matter,
energy, information or any other quantities, often as
they vary in time and/or space. Their thorough ana-
lytical treatment forms the basis of fundamental the-
ories in mathematics and physics, and they are in-
creasingly applied in chemistry, life sciences and eco-
nomics.

Differential equations are solved by integration,
but unfortunately, for many practical applications
in science and engineering, systems of differential
equations cannot be integrated to give an analytical
solution, but rather need to be solved numerically.

Many advanced numerical algorithms that solve
differential equations are available as (open-source)
computer codes, written in programming languages
like FORTRAN or C and that are available from
repositories like GAMS (http://gams.nist.gov/) or
NETLIB (www.netlib.org).

Depending on the problem, mathematical for-
malisations may consist of ordinary differential
equations (ODE), partial differential equations
(PDE), differential algebraic equations (DAE), or de-
lay differential equations (DDE). In addition, a dis-
tinction is made between initial value problems (IVP)
and boundary value problems (BVP).

With the introduction of R-package odesolve
(Setzer, 2001), it became possible to use R (R Devel-
opment Core Team, 2009) for solving very simple ini-
tial value problems of systems of ordinary differen-
tial equations, using the lsoda algorithm of Hind-
marsh (1983) and Petzold (1983). However, many
real-life applications, including physical transport
modeling, equilibrium chemistry or the modeling of
electrical circuits, could not be solved with this pack-
age.

Since odesolve, much effort has been made to
improve R’s capabilities to handle differential equa-
tions, mostly by incorporating published and well
tested numerical codes, such that now a much more

complete repertoire of differential equations can be
numerically solved.

More specifically, the following types of differen-
tial equations can now be handled with add-on pack-
ages in R:

• Initial value problems (IVP) of ordinary differ-
ential equations (ODE), using package deSolve
(Soetaert et al., 2010b).

• Initial value differential algebraic equations
(DAE), package deSolve .

• Initial value partial differential equations
(PDE), packages deSolve and ReacTran
(Soetaert and Meysman, 2010).

• Boundary value problems (BVP) of ordinary
differential equations, using package bvpSolve
(Soetaert et al., 2010a), or ReacTran and root-
Solve (Soetaert, 2009).

• Initial value delay differential equations
(DDE), using packages deSolve or PBSddes-
olve (Couture-Beil et al., 2010).

• Stochastic differential equations (SDE), using
packages sde (Iacus, 2008) and pomp (King
et al., 2008).

In this short overview, we demonstrate how to
solve the first four types of differential equations
in R. It is beyond the scope to give an exhaustive
overview about the vast number of methods to solve
these differential equations and their theory, so the
reader is encouraged to consult one of the numer-
ous textbooks (e.g., Ascher and Petzold, 1998; Press
et al., 2007; Hairer et al., 2009; Hairer and Wanner,
2010; LeVeque, 2007, and many others).

In addition, a large number of analytical and nu-
merical methods exists for the analysis of bifurca-
tions and stability properties of deterministic sys-
tems, the efficient simulation of stochastic differen-
tial equations or the estimation of parameters. We
do not deal with these methods here.

Types of differential equations

Ordinary differential equations

Ordinary differential equations describe the change
of a state variable y as a function f of one independent
variable t (e.g., time or space), of y itself, and, option-
ally, a set of other variables p, often called parameters:

y′ =
dy
dt

= f (t,y, p)

1The views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental
Protection Agency
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In many cases, solving differential equations re-
quires the introduction of extra conditions. In the fol-
lowing, we concentrate on the numerical treatment
of two classes of problems, namely initial value prob-
lems and boundary value problems.

Initial value problems

If the extra conditions are specified at the initial value
of the independent variable, the differential equa-
tions are called initial value problems (IVP).

There exist two main classes of algorithms to nu-
merically solve such problems, so-called Runge-Kutta
formulas and linear multistep formulas (Hairer et al.,
2009; Hairer and Wanner, 2010). The latter contains
two important families, the Adams family and the
backward differentiation formulae (BDF).

Another important distinction is between explicit
and implicit methods, where the latter methods can
solve a particular class of equations (so-called “stiff”
equations) where explicit methods have problems
with stability and efficiency. Stiffness occurs for in-
stance if a problem has components with different
rates of variation according to the independent vari-
able. Very often there will be a tradeoff between us-
ing explicit methods that require little work per inte-
gration step and implicit methods which are able to
take larger integration steps, but need (much) more
work for one step.

In R, initial value problems can be solved with
functions from package deSolve (Soetaert et al.,
2010b), which implements many solvers from ODE-
PACK (Hindmarsh, 1983), the code vode (Brown
et al., 1989), the differential algebraic equation solver
daspk (Brenan et al., 1996), all belonging to the linear
multistep methods, and comprising Adams meth-
ods as well as backward differentiation formulae.
The former methods are explicit, the latter implicit.
In addition, this package contains a de-novo imple-
mentation of a rather general Runge-Kutta solver
based on Dormand and Prince (1980); Prince and
Dormand (1981); Bogacki and Shampine (1989); Cash
and Karp (1990) and using ideas from Butcher (1987)
and Press et al. (2007). Finally, the implicit Runge-
Kutta method radau (Hairer et al., 2009) has been
added recently.

Boundary value problems

If the extra conditions are specified at different
values of the independent variable, the differen-
tial equations are called boundary value problems
(BVP). A standard textbook on this subject is Ascher
et al. (1995).

Package bvpSolve (Soetaert et al., 2010a) imple-
ments three methods to solve boundary value prob-
lems. The simplest solution method is the single
shooting method, which combines initial value prob-
lem integration with a nonlinear root finding algo-

rithm (Press et al., 2007). Two more stable solu-
tion methods implement a mono implicit Runge-
Kutta (MIRK) code, based on the FORTRAN code
twpbvpC (Cash and Mazzia, 2005), and the collocation
method, based on the FORTRAN code colnew (Bader
and Ascher, 1987). Some boundary value problems
can also be solved with functions from packages Re-
acTran and rootSolve (see below).

Partial differential equations

In contrast to ODEs where there is only one indepen-
dent variable, partial differential equations (PDE)
contain partial derivatives with respect to more than
one independent variable, for instance t (time) and
x (a spatial dimension). To distinguish this type
of equations from ODEs, the derivatives are repre-
sented with the ∂ symbol, e.g.

∂y
∂t

= f (t, x,y,
∂y
∂x

, p)

Partial differential equations can be solved by sub-
dividing one or more of the continuous independent
variables in a number of grid cells, and replacing the
derivatives by discrete, algebraic approximate equa-
tions, so-called finite differences (cf. LeVeque, 2007;
Hundsdorfer and Verwer, 2003).

For time-varying cases, it is customary to discre-
tise the spatial coordinate(s) only, while time is left in
continuous form. This is called the method-of-lines,
and in this way, one PDE is translated into a large
number of coupled ordinary differential equations,
that can be solved with the usual initial value prob-
lem solvers (cf. Hamdi et al., 2007). This applies to
parabolic PDEs such as the heat equation, and to hy-
perbolic PDEs such as the wave equation.

For time-invariant problems, usually all indepen-
dent variables are discretised, and the derivatives ap-
proximated by algebraic equations, which are solved
by root-finding techniques. This technique applies to
elliptic PDEs.

R-package ReacTran provides functions to gener-
ate finite differences on a structured grid. After that,
the resulting time-varying cases can be solved with
specially-designed functions from package deSolve,
while time-invariant cases can be solved with root-
solving methods from package rootSolve .

Differential algebraic equations

Differential-algebraic equations (DAE) contain a
mixture of differential ( f ) and algebraic equations
(g), the latter e.g. for maintaining mass-balance con-
ditions:

y′ = f (t,y, p)
0 = g(t,y, p)

Important for the solution of a DAE is its index.
The index of a DAE is the number of differentiations
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needed until a system consisting only of ODEs is ob-
tained.

Function daspk (Brenan et al., 1996) from pack-
age deSolve solves (relatively simple) DAEs of index
at most 1, while function radau (Hairer et al., 2009)
solves DAEs of index up to 3.

Implementation details

The implemented solver functions are explained by
means of the ode-function, used for the solution of
initial value problems. The interfaces to the other
solvers have an analogous definition:

ode(y, times, func, parms, method = c("lsoda",
"lsode", "lsodes", "lsodar",
"vode", "daspk", "euler", "rk4",
"ode23", "ode45", "radau", "bdf",
"bdf_d", "adams", "impAdams",
"impAdams_d"), ...)

To use this, the system of differential equations
can be defined as an R-function (func) that computes
derivatives in the ODE system (the model definition)
according to the independent variable (e.g. time t).
func can also be a function in a dynamically loaded
shared library (Soetaert et al., 2010c) and, in addition,
some solvers support also the supply of an analyti-
cally derived function of partial derivatives (Jacobian
matrix).

If func is an R-function, it must be defined as:
func <- function(t, y, parms, ...)

where t is the actual value of the independent vari-
able (e.g. the current time point in the integration),
y is the current estimate of the variables in the ODE
system, parms is the parameter vector and ... can be
used to pass additional arguments to the function.

The return value of func should be a list, whose
first element is a vector containing the derivatives
of y with respect to t, and whose next elements are
optional global values that can be recorded at each
point in times. The derivatives must be specified in
the same order as the state variables y.

Depending on the algorithm specified in argu-
ment method, numerical simulation proceeds either
exactly at the time steps specified in times, or us-
ing time steps that are independent from times and
where the output is generated by interpolation. With
the exception of method euler and several fixed-step
Runge-Kutta methods all algorithms have automatic
time stepping, which can be controlled by setting ac-
curacy requirements (see below) or by using optional
arguments like hini (initial time step), hmin (minimal
time step) and hmax (maximum time step). Specific
details, e.g. about the applied interpolation methods
can be found in the manual pages and the original
literature cited there.

Numerical accuracy

Numerical solution of a system of differential equa-
tions is an approximation and therefore prone to nu-
merical errors, originating from several sources:

1. time step and accuracy order of the solver,

2. floating point arithmetics,

3. properties of the differential system and stabil-
ity of the solution algorithm.

For methods with automatic stepsize selection,
accuracy of the computation can be adjusted us-
ing the non-negative arguments atol (absolute tol-
erance) and rtol (relative tolerance), which control
the local errors of the integration.

Like R itself, all solvers use double-precision
floating-point arithmetics according to IEEE Stan-
dard 754 (2008), which means that it can represent
numbers between approx. ±2.25 10−308 to approx.
±1.8 10308 and with 16 significant digits. It is there-
fore not advisable to set rtol below 10−16, except set-
ting it to zero with the intention to use absolute tol-
erance exclusively.

The solvers provided by the packages presented
below have proven to be quite robust in most prac-
tical cases, however users should always be aware
about the problems and limitations of numerical
methods and carefully check results for plausibil-
ity. The section “Troubleshooting” in the package vi-
gnette (Soetaert et al., 2010d) should be consulted as
a first source for solving typical problems.

Examples

An initial value ODE

Consider the famous van der Pol equation (van der
Pol and van der Mark, 1927), that describes a non-
conservative oscillator with non-linear damping and
which was originally developed for electrical cir-
cuits employing vacuum tubes. The oscillation is de-
scribed by means of a 2nd order ODE:

z′′ − µ(1− z2)z′ + z = 0

Such a system can be routinely rewritten as a system
of two 1st order ODEs, if we substitute z′′ with y′1 and
z′ with y2:

y′1 = y2

y′2 = µ · (1− y1
2) · y2 − y1

There is one parameter, µ, and two differential
variables, y1 and y2 with initial values (at t = 0):

y1(t=0)
= 2

y2(t=0)
= 0

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859
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The van der Pol equation is often used as a test
problem for ODE solvers, as, for large µ, its dy-
namics consists of parts where the solution changes
very slowly, alternating with regions of very sharp
changes. This “stiffness” makes the equation quite
challenging to solve.

In R, this model is implemented as a function
(vdpol) whose inputs are the current time (t), the val-
ues of the state variables (y), and the parameters (mu);
the function returns a list with as first element the
derivatives, concatenated.

vdpol <- function (t, y, mu) {
list(c(
y[2],
mu * (1 - y[1]^2) * y[2] - y[1]

))
}

After defining the initial condition of the state
variables (yini), the model is solved, and output
written at selected time points (times), using de-
Solve’s integration function ode. The default rou-
tine lsoda, which is invoked by ode automatically
switches between stiff and non-stiff methods, de-
pending on the problem (Petzold, 1983).

We run the model for a typically stiff (mu = 1000)
and nonstiff (mu = 1) situation:

library(deSolve)
yini <- c(y1 = 2, y2 = 0)
stiff <- ode(y = yini, func = vdpol,

times = 0:3000, parms = 1000)

nonstiff <- ode(y = yini, func = vdpol,
times = seq(0, 30, by = 0.01),
parms = 1)

The model returns a matrix, of class deSolve,
with in its first column the time values, followed by
the values of the state variables:

head(stiff, n = 3)

time y1 y2
[1,] 0 2.000000 0.0000000000
[2,] 1 1.999333 -0.0006670373
[3,] 2 1.998666 -0.0006674088

Figures are generated using the S3 plot method
for objects of class deSolve:

plot(stiff, type = "l", which = "y1",
lwd = 2, ylab = "y",
main = "IVP ODE, stiff")

plot(nonstiff, type = "l", which = "y1",
lwd = 2, ylab = "y",
main = "IVP ODE, nonstiff")
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Figure 1: Solution of the van der Pol equation, an
initial value ordinary differential equation, stiff case,
µ = 1000.
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Figure 2: Solution of the van der Pol equation, an
initial value ordinary differential equation, non-stiff
case, µ = 1.

solver non-stiff stiff

ode23 0.37 271.19
lsoda 0.26 0.23
adams 0.13 616.13
bdf 0.15 0.22
radau 0.53 0.72

Table 1: Comparison of solvers for a stiff and a
non-stiff parametrisation of the van der Pol equation
(time in seconds, mean values of ten simulations on
an AMD AM2 X2 3000 CPU).

A comparison of timings for two explicit solvers,
the Runge-Kutta method (ode23) and the adams
method, with the implicit multistep solver (bdf,
backward differentiation formula) shows a clear ad-
vantage for the latter in the stiff case (Figure 1). The
default solver (lsoda) is not necessarily the fastest,
but shows robust behavior due to automatic stiff-
ness detection. It uses the explicit multistep Adams
method for the non-stiff case and the BDF method
for the stiff case. The accuracy is comparable for all
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solvers with atol= rtol= 10−6, the default.

A boundary value ODE

The webpage of Jeff Cash (Cash, 2009) contains many
test cases, including their analytical solution (see be-
low), that BVP solvers should be able to solve. We
use equation no. 14 from this webpage as an exam-
ple:

ξy′′ − y = −(ξπ2 + 1)cos(πx)

on the interval [−1,1], and subject to the boundary
conditions:

y(x=−1) = 0

y(x=+1) = 0

The second-order equation first is rewritten as two
first-order equations:

y′1 = y2

y′2 = 1/ξ · (y1 − (ξπ2 + 1)cos(πx))

It is implemented in R as:

Prob14 <- function(x, y, xi) {
list(c(
y[2],
1/xi * (y[1] - (xi*pi*pi+1) * cos(pi*x))

))
}

With decreasing values of ξ, this problem becomes
increasingly difficult to solve. We use three val-
ues of ξ, and solve the problem with the shooting,
the MIRK and the collocation method (Ascher et al.,
1995).

Note how the initial conditions yini and the con-
ditions at the end of the integration interval yend
are specified, where NA denotes that the value is not
known. The independent variable is called x here
(rather than times in ode).

library(bvpSolve)
x <- seq(-1, 1, by = 0.01)
shoot <- bvpshoot(yini = c(0, NA),

yend = c(0, NA), x = x, parms = 0.01,
func = Prob14)

twp <- bvptwp(yini = c(0, NA), yend = c(0,
NA), x = x, parms = 0.0025,
func = Prob14)

coll <- bvpcol(yini = c(0, NA),
yend = c(0, NA), x = x, parms = 1e-04,
func = Prob14)

The numerical approximation generated by bvptwp
is very close to the analytical solution, e.g. for ξ =
0.0025:

xi <- 0.0025
analytic <- cos(pi * x) + exp((x -

1)/sqrt(xi)) + exp(-(x + 1)/sqrt(xi))
max(abs(analytic - twp[, 2]))

[1] 7.788209e-10

A similar low discrepancy (4 · 10−11) is noted for
the ξ = 0.0001 as solved by bvpcol; the shooting
method is considerably less precise (1.4 · 10−5), al-
though the same tolerance (atol = 10−8) was used
for all runs.

The plot shows how the shape of the solution
is affected by the parameter ξ, becoming more and
more steep near the boundaries, and therefore more
and more difficult to solve, as ξ gets smaller.

plot(shoot[, 1], shoot[, 2], type = "l", lwd = 2,
ylim = c(-1, 1), col = "blue",
xlab = "x", ylab = "y", main = "BVP ODE")

lines(twp[, 1], twp[, 2], col = "red", lwd = 2)
lines(coll[, 1], coll[, 2], col = "green", lwd = 2)
legend("topright", legend = c("0.01", "0.0025",
"0.0001"), col = c("blue", "red", "green"),
title = expression(xi), lwd = 2)
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Figure 3: Solution of the BVP ODE problem, for dif-
ferent values of parameter ξ.

Differential algebraic equations

The so called “Rober problem” describes an auto-
catalytic reaction (Robertson, 1966) between three
chemical species, y1, y2 and y3. The problem can be
formulated either as an ODE (Mazzia and Magherini,
2008), or as a DAE:

y′1 = −0.04y1 + 104y2y3

y′2 = 0.04y1 − 104y2y3 − 3107y2
2

1 = y1 + y2 + y3
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where the first two equations are differential
equations that specify the dynamics of chemical
species y1 and y2, while the third algebraic equation
ensures that the summed concentration of the three
species remains 1.

The DAE has to be specified by the residual func-
tion instead of the rates of change (as in ODEs).

r1 = −y′1 − 0.04y1 + 104y2y3

r2 = −y′2 + 0.04y1 − 104y2y3 − 3 107y2
2

r3 = −1 + y1 + y2 + y3

Implemented in R this becomes:

daefun<-function(t, y, dy, parms) {
res1 <- - dy[1] - 0.04 * y[1] +

1e4 * y[2] * y[3]
res2 <- - dy[2] + 0.04 * y[1] -

1e4 * y[2] * y[3] - 3e7 * y[2]^2
res3 <- y[1] + y[2] + y[3] - 1
list(c(res1, res2, res3),

error = as.vector(y[1] + y[2] + y[3]) - 1)
}

yini <- c(y1 = 1, y2 = 0, y3 = 0)
dyini <- c(-0.04, 0.04, 0)
times <- 10 ^ seq(-6,6,0.1)

The input arguments of function daefun are the
current time (t), the values of the state variables and
their derivatives (y, dy) and the parameters (parms).
It returns the residuals, concatenated and an output
variable, the error in the algebraic equation. The lat-
ter is added to check upon the accuracy of the results.

For DAEs solved with daspk, both the state vari-
ables and their derivatives need to be initialised (y
and dy). Here we make sure that the initial condi-
tions for y obey the algebraic constraint, while also
the initial condition of the derivatives is consistent
with the dynamics.

library(deSolve)
print(system.time(out <-daspk(y = yini,
dy = dyini, times = times, res = daefun,
parms = NULL)))

user system elapsed
0.07 0.00 0.11

An S3 plot method can be used to plot all vari-
ables at once:

plot(out, ylab = "conc.", xlab = "time",
type = "l", lwd = 2, log = "x")

mtext("IVP DAE", side = 3, outer = TRUE,
line = -1)

There is a very fast initial change in concentra-
tions, mainly due to the quick reaction between y1
and y2 and amongst y2. After that, the slow reaction
of y1 with y2 causes the system to change much more
smoothly. This is typical for stiff problems.
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Figure 4: Solution of the DAE problem for the sub-
stances y1,y2,y3; mass balance error: deviation of to-
tal sum from one.

Partial differential equations

In partial differential equations (PDE), the func-
tion has several independent variables (e.g. time and
depth) and contains their partial derivatives.

Many partial differential equations can be solved
by numerical approximation (finite differencing) af-
ter rewriting them as a set of ODEs (see Schiesser,
1991; LeVeque, 2007; Hundsdorfer and Verwer,
2003).

Functions tran.1D, tran.2D, and tran.3D from
R package ReacTran (Soetaert and Meysman, 2010)
implement finite difference approximations of the
diffusive-advective transport equation which, for the
1-D case, is:

− 1
Ax
·
[

∂

∂x
Ax

(
−D · ∂C

∂x

)
− ∂

∂x
(Ax · u · C)

]
Here D is the “diffusion coefficient”, u is the “advec-
tion rate”, and Ax is some property (e.g. surface area)
that depends on the independent variable, x.

It should be noted that the accuracy of the finite
difference approximations can not be specified in the
ReacTran functions. It is up to the user to make sure
that the solutions are sufficiently accurate, e.g. by in-
cluding more grid points.

One dimensional PDE

Diffusion-reaction models are a fundamental class of
models which describe how concentration of matter,
energy, information, etc. evolves in space and time
under the influence of diffusive transport and trans-
formation (Soetaert and Herman, 2009).
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As an example, consider the 1-D diffusion-
reaction model in [0,10]:

∂C
∂t

=
∂

∂x

(
D · ∂C

∂x

)
−Q

with C the concentration, t the time, x the distance
from the origin, Q, the consumption rate, and with
boundary conditions (values at the model edges):

∂C
∂x x=0

= 0

Cx=10 = Cext

To solve this model in R, first the 1-D model Grid is
defined; it divides 10 cm (L) into 1000 boxes (N).

library(ReacTran)
Grid <- setup.grid.1D(N = 1000, L = 10)

The model equation includes a transport term,
approximated by ReacTran function tran.1D and
a consumption term (Q). The downstream bound-
ary condition, prescribed as a concentration (C.down)
needs to be specified, the zero-gradient at the up-
stream boundary is the default:

pde1D <-function(t, C, parms) {
tran <- tran.1D(C = C, D = D,

C.down = Cext, dx = Grid)$dC
list(tran - Q) # return value: rate of change

}

The model parameters are:

D <- 1 # diffusion constant
Q <- 1 # uptake rate
Cext <- 20

In a first application, the model is solved to
steady-state, which retrieves the condition where the
concentrations are invariant:

0 =
∂

∂x

(
D · ∂C

∂x

)
−Q

In R, steady-state conditions can be estimated using
functions from package rootSolve which implement
amongst others a Newton-Raphson algorithm (Press
et al., 2007). For 1-dimensional models, steady.1D is
most efficient. The initial “guess” of the steady-state
solution (y) is unimportant; here we take simply N
random numbers. Argument nspec = 1 informs the
solver that only one component is described.

Although a system of 1000 equations needs to be
solved, this takes only a fraction of a second:

library(rootSolve)
print(system.time(
std <- steady.1D(y = runif(Grid$N),
func = pde1D, parms = NULL, nspec = 1)

))

user system elapsed
0.02 0.00 0.02

The values of the state-variables (y) are plotted
against the distance, in the middle of the grid cells
(Grid$x.mid).

plot (Grid$x.mid, std$y, type = "l",
lwd = 2, main = "steady-state PDE",
xlab = "x", ylab = "C", col = "red")
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Figure 5: Steady-state solution of the 1-D diffusion-
reaction model.

The analytical solution compares well with the
numerical approximation:

analytical <- Q/2/D*(Grid$x.mid^2 - 10^2) + Cext
max(abs(analytical - std$y))

[1] 1.250003e-05

Next the model is run dynamically for 100 time
units using deSolve function ode.1D, and starting
with a uniform concentration:

require(deSolve)
times <- seq(0, 100, by = 1)
system.time(
out <- ode.1D(y = rep(1, Grid$N),
times = times, func = pde1D,
parms = NULL, nspec = 1)

)

user system elapsed
0.61 0.02 0.63

Here, out is a matrix, whose 1st column contains
the output times, and the next columns the values of
the state variables in the different boxes; we print the
first columns of the last three rows of this matrix:

tail(out[, 1:4], n = 3)

time 1 2 3
[99,] 98 -27.55783 -27.55773 -27.55754
[100,] 99 -27.61735 -27.61725 -27.61706
[101,] 100 -27.67542 -27.67532 -27.67513
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We plot the result using a blue-yellow-red color
scheme, and using deSolve’s S3 method image. Fig-
ure 6 shows that, as time proceeds, gradients develop
from the uniform distribution, until the system al-
most reaches steady-state at the end of the simula-
tion.

image(out, xlab = "time, days",
ylab = "Distance, cm",
main = "PDE", add.contour = TRUE)
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Figure 6: Dynamic solution of the 1-D diffusion-
reaction model.

It should be noted that the steady-state model is
effectively a boundary value problem, while the tran-
sient model is a prototype of a “parabolic” partial dif-
ferential equation (LeVeque, 2007).

Whereas R can also solve the other two main
classes of PDEs, i.e. of the “hyperbolic” and “ellip-
tic” type, it is well beyond the scope of this paper to
elaborate on that.

Discussion

Although R is still predominantly applied for statis-
tical analysis and graphical representation, it is more
and more suitable for mathematical computing, e.g.
in the field of matrix algebra (Bates and Maechler,
2008). Thanks to the differential equation solvers, R
is also emerging as a powerful environment for dy-
namic simulations (Petzoldt, 2003; Soetaert and Her-
man, 2009; Stevens, 2009).

The new package deSolve has retained all the
funtionalities of its predecessor odesolve (Setzer,
2001), such as the potential to define models both in

R code, or in compiled languages. However, com-
pared to odesolve, it includes a more complete set
of integrators, and a more extensive set of options to
tune the integration routines, it provides more com-
plete output, and has extended the applicability do-
main to include also DDEs, DAEs and PDEs.

Thanks to the DAE solvers daspk (Brenan et al.,
1996) and radau (Hairer and Wanner, 2010) it is now
also possible to model electronic circuits or equilib-
rium chemical systems. These problems are often of
index ≤ 1. In many mechanical systems, physical
constraints lead to DAEs of index up to 3, and these
more complex problems can be solved with radau.

The inclusion of BVP and PDE solvers have
opened up the application area to the field of re-
active transport modelling (Soetaert and Meysman,
2010), such that R can now be used to describe quan-
tities that change not only in time, but also along
one or more spatial axes. We use it to model how
ecosystems change along rivers, or in sediments, but
it could equally serve to model the growth of a tu-
mor in human brains, or the dispersion of toxicants
in human tissues.

The open source matrix language R has great po-
tential for dynamic modelling, and the tools cur-
rently available are suitable for solving a wide va-
riety of practical and scientific problems. The perfor-
mance is sufficient even for larger systems, especially
when models can be formulated using matrix alge-
bra or are implemented in compiled languages like
C or Fortran (Soetaert et al., 2010b). Indeed, there
is emerging interest in performing statistical analysis
on differential equations, e.g. in package nlmeODE
(Tornøe et al., 2004) for fitting non-linear mixed-
effects models using differential equations, pack-
age FME (Soetaert and Petzoldt, 2010) for sensitiv-
ity analysis, parameter estimation and Markov chain
Monte-Carlo analysis or package ccems for combina-
torially complex equilibrium model selection (Radi-
voyevitch, 2008).

However, there is ample room for extensions
and improvements. For instance, the PDE solvers
are quite memory intensive, and could benefit from
the implementation of sparse matrix solvers that are
more efficient in this respect2. In addition, the meth-
ods implemented in ReacTran handle equations de-
fined on very simple shapes only. Extending the
PDE approach to finite elements (Strang and Fix,
1973) would open up the application domain of R to
any irregular geometry. Other spatial discretisation
schemes could be added, e.g. for use in fluid dynam-
ics.

Our models are often applied to derive unknown
parameters by fitting them against data; this relies on
the availability of apt parameter fitting algorithms.

Discussion of these items is highly welcomed, in
the new special interest group about dynamic mod-

2for instance, the “preconditioned Krylov” part of the daspk method is not yet supported
3 https://stat.ethz.ch/mailman/listinfo/r-sig-dynamic-models
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els3 in R.
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Table 2: Summary of the main functions that solve differential equations.

Function Package Description

ode deSolve IVP of ODEs, full, banded or arbitrary sparse Jacobian
ode.1D deSolve IVP of ODEs resulting from 1-D reaction-transport problems
ode.2D deSolve IVP of ODEs resulting from 2-D reaction-transport problems
ode.3D deSolve IVP of ODEs resulting from 3-D reaction-transport problems
daspk deSolve IVP of DAEs of index ≤ 1, full or banded Jacobian
radau deSolve IVP of DAEs of index ≤ 3, full or banded Jacobian
dde PBSddesolve IVP of delay differential equations, based on Runge-Kutta formu-

lae
dede deSolve IVP of delay differential equations, based on Adams and BDF for-

mulae
bvpshoot bvpSolve BVP of ODEs; the shooting method
bvptwp bvpSolve BVP of ODEs; mono-implicit Runge-Kutta formula
bvpcol bvpSolve BVP of ODEs; collocation formula
steady rootSolve steady-state of ODEs; full, banded or arbitrary sparse Jacobian
steady.1D rootSolve steady-state of ODEs resulting from 1-D reaction-transport prob-

lems
steady.2D rootSolve steady-state of ODEs resulting from 2-D reaction-transport prob-

lems
steady.3D rootSolve steady-state of ODEs resulting from 3-D reaction-transport prob-

lems
tran.1D ReacTran numerical approximation of 1-D advective-diffusive transport

problems
tran.2D ReacTran numerical approximation of 2-D advective-diffusive transport

problems
tran.3D ReacTran numerical approximation of 3-D advective-diffusive transport

problems

Table 3: Summary of the auxilliary functions that solve differential equations.

Function Package Description

lsoda deSolve IVP ODEs, full or banded Jacobian, automatic choice for stiff or
non-stiff method

lsodar deSolve same as lsoda, but includes a root-solving procedure.
lsode, vode deSolve IVP ODEs, full or banded Jacobian, user specifies if stiff or non-

stiff
lsodes deSolve IVP ODEs, arbitrary sparse Jacobian, stiff method
rk4, rk, euler deSolve IVP ODEs, using Runge-Kutta and Euler methods
zvode deSolve IVP ODEs, same as vode, but for complex variables
runsteady rootSolve steady-state ODEs by dynamically running, full or banded Jaco-

bian
stode rootSolve steady-state ODEs by Newton-Raphson method, full or banded

Jacobian
stodes rootSolve steady-state ODEs by Newton-Raphson method, arbitrary sparse

Jacobian
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Source References
by Duncan Murdoch

Abstract Since version 2.10.0, R includes ex-
panded support for source references in R code
and ‘.Rd’ files. This paper describes the origin
and purposes of source references, and current
and future support for them.

One of the strengths of R is that it allows “compu-
tation on the language”, i.e. the parser returns an R
object which can be manipulated, not just evaluated.
This has applications in quality control checks, de-
bugging, and elsewhere. For example, the codetools
package (Tierney, 2009) examines the structure of
parsed source code to look for common program-
ming errors. Functions marked by debug() can be
executed one statement at a time, and the trace()
function can insert debugging statements into any
function.

Computing on the language is often enhanced by
being able to refer to the original source code, rather
than just to a deparsed (reconstructed) version of
it based on the parsed object. To support this, we
added source references to R 2.5.0 in 2007. These are
attributes attached to the result of parse() or (as of
2.10.0) parse_Rd() to indicate where a particular part
of an object originated. In this article I will describe
their structure and how they are used in R. The arti-
cle is aimed at developers who want to create debug-
gers or other tools that use the source references, at
users who are curious about R internals, and also at
users who want to use the existing debugging facili-
ties. The latter group may wish to skip over the gory
details and go directly to the section “Using Source
References".

The R parsers

We start with a quick introduction to the R parser.
The parse() function returns an R object of type
"expression". This is a list of statements; the state-
ments can be of various types. For example, consider
the R source shown in Figure 1.

1: x <- 1:10 # Initialize x
2: for (i in x) {
3: print(i) # Print each entry
4: }
5: x

Figure 1: The contents of ‘sample.R’.

If we parse this file, we obtain an expression of
length 3:

> parsed <- parse("sample.R")
> length(parsed)

[1] 3

> typeof(parsed)

[1] "expression"

The first element is the assignment, the second ele-
ment is the for loop, and the third is the single x at
the end:

> parsed[[1]]

x <- 1:10

> parsed[[2]]

for (i in x) {
print(i)

}

> parsed[[3]]

x

The first two elements are both of type "language",
and are made up of smaller components. The dif-
ference between an "expression" and a "language"
object is mainly internal: the former is based on the
generic vector type (i.e. type "list"), whereas the
latter is based on the "pairlist" type. Pairlists are
rarely encountered explicitly in any other context.
From a user point of view, they act just like generic
vectors.

The third element x is of type "symbol". There are
other possible types, such as "NULL", "double", etc.:
essentially any simple R object could be an element.

The comments in the source code and the white
space making up the indentation of the third line are
not part of the parsed object.

The parse_Rd() function parses ‘.Rd’ documenta-
tion files. It also returns a recursive structure contain-
ing objects of different types (Murdoch and Urbanek,
2009; Murdoch, 2010).

Source reference structure

As described above, the result of parse() is essen-
tially a list (the "expression" object) of objects that
may be lists (the "language" objects) themselves, and
so on recursively. Each element of this structure from
the top down corresponds to some part of the source
file used to create it: in our example, parse[[1]] cor-
responds to the first line of ‘sample.R’, parse[[2]] is
the second through fourth lines, and parse[[3]] is
the fifth line.

The comments and indentation, though helpful
to the human reader, are not part of the parsed object.
However, by default the parsed object does contain a
"srcref" attribute:

> attr(parsed, "srcref")
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[[1]]
x <- 1:10

[[2]]
for (i in x) {
print(i) # Print each entry

}

[[3]]
x

Although it appears that the "srcref" attribute con-
tains the source, in fact it only references it, and the
print.srcref() method retrieves it for printing. If
we remove the class from each element, we see the
true structure:

> lapply(attr(parsed, "srcref"), unclass)

[[1]]
[1] 1 1 1 9 1 9
attr(,"srcfile")
sample.R

[[2]]
[1] 2 1 4 1 1 1
attr(,"srcfile")
sample.R

[[3]]
[1] 5 1 5 1 1 1
attr(,"srcfile")
sample.R

Each element is a vector of 6 integers: (first line, first
byte, last line, last byte, first character, last character).
The values refer to the position of the source for each
element in the original source file; the details of the
source file are contained in a "srcfile" attribute on
each reference.

The reason both bytes and characters are
recorded in the source reference is historical. When
they were introduced, they were mainly used for re-
trieving source code for display; for this, bytes are
needed. Since R 2.9.0, they have also been used to
aid in error messages. Since some characters take up
more than one byte, users need to be informed about
character positions, not byte positions, and the last
two entries were added.

The "srcfile" attribute is also not as simple as it
looks. For example,

> srcref <- attr(parsed, "srcref")[[1]]
> srcfile <- attr(srcref, "srcfile")
> typeof(srcfile)

[1] "environment"

> ls(srcfile)

[1] "Enc" "encoding" "filename"
[4] "timestamp" "wd"

The "srcfile" attribute is actually an environment
containing an encoding, a filename, a timestamp,
and a working directory. These give information
about the file from which the parser was reading.
The reason it is an environment is that environments
are reference objects: even though all three source ref-
erences contain this attribute, in actuality there is
only one copy stored. This was done to save mem-
ory, since there are often hundreds of source refer-
ences from each file.

Source references in objects returned by
parse_Rd() use the same structure as those returned
by parse(). The main difference is that in Rd objects
source references are attached to every component,
whereas parse() only constructs source references
for complete statements, not for their component
parts, and they are attached to the container of the
statements. Thus for example a braced list of state-
ments processed by parse() will receive a "srcref"
attribute containing source references for each state-
ment within, while the statements themselves will
not hold their own source references, and sub-
expressions within each statement will not generate
source references at all. In contrast the "srcref" at-
tribute for a section in an ‘.Rd’ file will be a source
reference for the whole section, and each component
part in the section will have its own source reference.

Relation to the "source" attribute

By default the R parser also creates an attribute
named "source" when it parses a function definition.
When available, this attribute is used by default in
lieu of deparsing to display the function definition.
It is unrelated to the "srcref" attribute, which is in-
tended to point to the source, rather than to duplicate
the source. An integrated development environment
(IDE) would need to know the correspondence be-
tween R code in R and the true source, and "srcref"
attributes are intended to provide this.

When are "srcref" attributes added?

As mentioned above, the parser adds a "srcref"
attribute by default. For this, it is assumes that
options("keep.source") is left at its default setting
of TRUE, and that parse() is given a filename as argu-
ment file, or a character vector as argument text.
In the latter case, there is no source file to refer-
ence, so parse() copies the lines of source into a
"srcfilecopy" object, which is simply a "srcfile"
object that contains a copy of the text.

Developers may wish to add source references in
other situations. To do that, an object inheriting from
class "srcfile" should be passed as the srcfile ar-
gument to parse().

The other situation in which source references
are likely to be created in R code is when calling
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source(). The source() function calls parse(), cre-
ating the source references, and then evaluates the
resulting code. At this point newly created functions
will have source references attached to the body of
the function.

The section “Breakpoints” below discusses how
to make sure that source references are created in
package code.

Using source references

Error locations

For the most part, users need not be concerned with
source references, but they interact with them fre-
quently. For example, error messages make use of
them to report on the location of syntax errors:

> source("error.R")

Error in source("error.R") : error.R:4:1: unexpected
'else'
3: print( "less" )
4: else

^

A more recent addition is the use of source ref-
erences in code being executed. When R evaluates
a function, it evaluates each statement in turn, keep-
ing track of any associated source references. As of
R 2.10.0, these are reported by the debugging sup-
port functions traceback(), browser(), recover(),
and dump.frames(), and are returned as an attribute
on each element returned by sys.calls(). For ex-
ample, consider the function shown in Figure 2.

1: # Compute the absolute value
2: badabs <- function(x) {
3: if (x < 0)
4: x <- -x
5: x
6: }

Figure 2: The contents of ‘badabs.R’.

This function is syntactically correct, and works
to calculate the absolute value of scalar values, but is
not a valid way to calculate the absolute values of the
elements of a vector, and when called it will generate
an incorrect result and a warning:

> source("badabs.R")
> badabs( c(5, -10) )

[1] 5 -10

Warning message:
In if (x < 0) x <- -x :
the condition has length > 1 and only the first
element will be used

In this simple example it is easy to see where the
problem occurred, but in a more complex function
it might not be so simple. To find it, we can convert
the warning to an error using

> options(warn=2)

and then re-run the code to generate an error. After
generating the error, we can display a stack trace:

> traceback()

5: doWithOneRestart(return(expr), restart)
4: withOneRestart(expr, restarts[[1L]])
3: withRestarts({

.Internal(.signalCondition(
simpleWarning(msg, call), msg, call))

.Internal(.dfltWarn(msg, call))
}, muffleWarning = function() NULL) at badabs.R#2

2: .signalSimpleWarning("the condition has length
> 1 and only the first element will be used",
quote(if (x < 0) x <- -x)) at badabs.R#3

1: badabs(c(5, -10))

To read a traceback, start at the bottom. We see our
call from the console as line “1:”, and the warning
being signalled in line “2:”. At the end of line “2:”
it says that the warning originated “at badabs.R#3”,
i.e. line 3 of the ‘badabs.R’ file.

Breakpoints

Users may also make use of source references when
setting breakpoints. The trace() function lets us set
breakpoints in particular R functions, but we need to
specify which function and where to do the setting.
The setBreakpoint() function is a more friendly
front end that uses source references to construct a
call to trace(). For example, if we wanted to set a
breakpoint on ‘badabs.R’ line 3, we could use

> setBreakpoint("badabs.R#3")

D:\svn\papers\srcrefs\badabs.R#3:
badabs step 2 in <environment: R_GlobalEnv>

This tells us that we have set a breakpoint in step 2 of
the function badabs found in the global environment.
When we run it, we will see

> badabs( c(5, -10) )

badabs.R#3
Called from: badabs(c(5, -10))

Browse[1]>

telling us that we have broken into the browser at the
requested line, and it is waiting for input. We could
then examine x, single step through the code, or do
any other action of which the browser is capable.

By default, most packages are built without
source reference information, because it adds quite
substantially to the size of the code. However, setting
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the environment variable R_KEEP_PKG_SOURCE=yes
before installing a source package will tell R to keep
the source references, and then breakpoints may be
set in package source code. The envir argument to
setBreakpoints() will need to be set in order to tell
it to search outside the global environment when set-
ting breakpoints.

The #line directive

In some cases, R source code is written by a program,
not by a human being. For example, Sweave() ex-
tracts lines of code from Sweave documents before
sending the lines to R for parsing and evaluation. To
support such preprocessors, the R 2.10.0 parser rec-
ognizes a new directive of the form

#line nn "filename"

where nn is an integer. As with the same-named
directive in the C language, this tells the parser to
assume that the next line of source is line nn from
the given filename for the purpose of constructing
source references. The Sweave() function doesn’t
currently make use of this, but in the future, it (and
other preprocessors) could output #line directives
so that source references and syntax errors refer to
the original source location rather than to an inter-
mediate file.

The #line directive was a late addition to R
2.10.0. Support for this in Sweave() appeared in R
2.12.0.

The future

The source reference structure could be improved.
First, it adds quite a lot of bulk to R objects in mem-
ory. Each source reference is an integer vector of

length 6 with a class and "srcfile" attribute. It is
hard to measure exactly how much space this takes
because much is shared with other source references,
but it is on the order of 100 bytes per reference.
Clearly a more efficient design is possible, at the ex-
pense of moving support code to C from R. As part of
this move, the use of environments for the "srcfile"
attribute could be dropped: they were used as the
only available R-level reference objects. For develop-
ers, this means that direct access to particular parts
of a source reference should be localized as much as
possible: They should write functions to extract par-
ticular information, and use those functions where
needed, rather than extracting information directly.
Then, if the implementation changes, only those ex-
tractor functions will need to be updated.

Finally, source level debugging could be imple-
mented to make use of source references, to single
step through the actual source files, rather than dis-
playing a line at a time as the browser() does.
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hglm: A Package for Fitting Hierarchical
Generalized Linear Models
by Lars Rönnegård, Xia Shen and Moudud Alam

Abstract We present the hglm package for fit-
ting hierarchical generalized linear models. It
can be used for linear mixed models and gener-
alized linear mixed models with random effects
for a variety of links and a variety of distribu-
tions for both the outcomes and the random ef-
fects. Fixed effects can also be fitted in the dis-
persion part of the model.

Introduction

The hglm package (Alam et al., 2010) implements
the estimation algorithm for hierarchical general-
ized linear models (HGLM; Lee and Nelder, 1996).
The package fits generalized linear models (GLM;
McCullagh and Nelder, 1989) with random effects,
where the random effect may come from a distribu-
tion conjugate to one of the exponential-family dis-
tributions (normal, gamma, beta or inverse-gamma).
The user may explicitly specify the design matrices
both for the fixed and random effects. In conse-
quence, correlated random effects, as well as random
regression models can be fitted. The dispersion pa-
rameter can also be modeled with fixed effects.

The main function is hglm() and the input is spec-
ified in a similar manner as for glm(). For instance,

R> hglm(fixed = y ~ week, random = ~ 1|ID,
family = binomial(link = logit))

fits a logit model for y with week as fixed effect and ID
representing the clusters for a normally distributed
random intercept. Given an hglm object, the stan-
dard generic functions are print(), summary() and
plot().

Generalized linear mixed models (GLMM) have
previously been implemented in several R functions,
such as the lmer() function in the lme4 package
(Bates and Maechler, 2010) and the glmmPQL() func-
tion in the MASS package (Venables and Ripley,
2002). In GLMM, the random effects are assumed
to be Gaussian whereas the hglm() function allows
other distributions to be specified for the random
effect. The hglm() function also extends the fitting
algorithm of the dglm package (Dunn and Smyth,
2009) by including random effects in the linear pre-
dictor for the mean, i.e. it extends the algorithm so
that it can cope with mixed models. Moreover, the
model specification in hglm() can be given as a for-
mula or alternatively in terms of y, X, Z and X.disp.
Here y is the vector of observed responses, X and
Z are the design matrices for the fixed and random

effects, respectively, in the linear predictor for the
means and X.disp is the design matrix for the fixed
effects in the dispersion parameter. This enables a
more flexible modeling of the random effects than
specifying the model by an R formula. Consequently,
this option is not as user friendly but gives the user
the possibility to fit random regression models and
random effects with known correlation structure.

The hglm package produces estimates of fixed
effects, random effects and variance components as
well as their standard errors. In the output it also
produces diagnostics such as deviance components
and leverages.

Three illustrating models

The hglm package makes it possible to

1. include fixed effects in a model for the residual
variance,

2. fit models where the random effect distribution
is not necessarily Gaussian,

3. estimate variance components when we have
correlated random effects.

Below we describe three models that can be fitted us-
ing hglm(), which illustrate these three points. Later,
in the Examples section, five examples are presented
that include the R syntax and output for the hglm()
function.

Linear mixed model with fixed effects in
the residual variance

We start by considering a normal-normal model with
heteroscedastic residual variance. In biology, for in-
stance, this is important if we wish to model a ran-
dom genetic effect (e.g., Rönnegård and Carlborg,
2007) for a trait y, where the residual variance differs
between the sexes.

For the response y and observation number i we
have:

yi | β,u, βd ∼ N (Xiβ + Ziu, exp (Xd,iβd))

u ∼MVN
(

0, Iσ2
u

)
where β are the fixed effects in the mean part of the
model, the random effect u represents random vari-
ation among clusters of observations and βd is the
fixed effect in the residual variance part of the model.
The variance of the random effect u is given by σ2

u .
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The subscript i for the matrices X, Z, and Xd indi-
cates the i’th row. Here, a log link function is used
for the residual variance and the model for the resid-
ual variance is therefore given by exp(Xd,iβd). In
the more general GLM notation, the residual vari-
ance here is described by the dispersion term φ, so
we have log(φi) = Xd,iβd.

This model cannot be fitted with the dglm pack-
age, for instance, because we have random effects in
the mean part of the model. It is also beyond the
scope of the lmer() function since we allow a model
for the residual variance.

The implementation in hglm() for this model is
demonstrated in Example 2 in the Examples section
below.

A Poisson model with gamma distributed
random effects

For dependent count data it is common to model
a Poisson distributed response with a gamma dis-
tributed random effect (Lee et al., 2006). If we assume
no overdispersion conditional on u and thereby have
a fixed dispersion term, this model may be specified
as:

E (yi | β,u) = exp (Xiβ + Ziv)

where a level j in the random effect v is given by
vj = log(uj) and uj are iid with gamma distribution
having mean and variance: E(uj) = 1, var(uj) = λ.

This model can also be fitted with the hglm pack-
age, since it extends existing GLMM functions (e.g.
lmer()) to allow a non-normal distribution for the
random effect. Later on, in Example 3, we show the
hglm() code used for fitting a gamma-Poisson model
with fixed effects included in the dispersion parame-
ter.

A linear mixed model with a correlated
random effect

In animal breeding it is important to estimate vari-
ance components prior to ranking of animal perfor-
mances (Lynch and Walsh, 1998). In such models the
genetic effect of each animal is modeled as a level
in a random effect and the correlation structure A is
a matrix with known elements calculated from the
pedigree information. The model is given by

yi | β,u ∼ N
(

Xiβ + Ziu,σ2
e

)
u ∼MVN

(
0,Aσ2

u

)
This may be reformulated as (see Lee et al., 2006;

Rönnegård and Carlborg, 2007)

yi | β,u ∼ N
(

Xiβ + Z∗i u∗,σ2
e

)
u∗ ∼MVN(0, Iσ2

u)

where Z∗ = ZL and L is the Cholesky factorization of
A.

Thus the model can be fitted using the hglm()
function with a user-specified input matrix Z (see R
code in Example 4 below).

Overview of the fitting algorithm

The fitting algorithm is described in detail in Lee
et al. (2006) and is summarized as follows. Let n be
the number of observations and k be the number of
levels in the random effect. The algorithm is then:

1. Initialize starting values.

2. Construct an augmented model with response

yaug =

(
y

E(u)

)
.

3. Use a GLM to estimate β and v given the vec-
tor φ and the dispersion parameter for the ran-
dom effect λ. Save the deviance components
and leverages from the fitted model.

4. Use a gamma GLM to estimate βd from the
first n deviance components d and leverages
h obtained from the previous model. The re-
sponse variable and weights for this model are
d/(1− h) and (1− h)/2, respectively. Update
the dispersion parameter by putting φ equal to
the predicted response values for this model.

5. Use a similar GLM as in Step 4 to estimate λ
from the last k deviance components and lever-
ages obtained from the GLM in Step 3.

6. Iterate between steps 3-5 until convergence.

For a more detailed description of the algorithm
in a particular context, see below.

H-likelihood theory

Let y be the response and u an unobserved random
effect. The hglm package fits a hierarchical model
y | u∼ fm(µ,φ) and u∼ fd(ψ,λ) where fm and fd are
specified distributions for the mean and dispersion
parts of the model.

We follow the notation of Lee and Nelder (1996),
which is based on the GLM terminology by McCul-
lagh and Nelder (1989). We also follow the likelihood
approach where the model is described in terms of
likelihoods. The conditional (log-)likelihood for y
given u has the form of a GLM

`(θ′,φ;y | u) = yθ′ − b(θ′)
a(φ)

+ c(y,φ) (1)

where θ′ is the canonical parameter, φ is the disper-
sion term, µ′ is the conditional mean of y given u
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where η′ = g(µ′), i.e. g() is a link function for the
GLM. The linear predictor is given by η′ = η + v
where η = Xβ and v = v(u) for some strict monotonic
function of u. The link function v(u) should be spec-
ified so that the random effects occur linearly in the
linear predictor to ensure meaningful inference from
the h-likelihood (Lee et al., 2007). The h-likelihood
or hierarchical likelihood is defined by

h = `(θ′,φ;y | u) + `(α;v) (2)

where `(α;v) is the log density for v with parameter
α. The estimates of β and v are given by ∂h

∂β = 0 and
∂h
∂v = 0. The dispersion components are estimated by
maximizing the adjusted profile h-likelihood

hp =

(
h− 1

2
log | − 1

2π
H|
)

β=β̂,v=v̂
(3)

where H is the Hessian matrix of the h-likelihood.
The dispersion term φ can be connected to a lin-
ear predictor Xdβd given a link function gd(·) with
gd(φ) = Xdβd. The adjusted profile likelihoods of `
and h may be used for inference of β, v and the dis-
persion parameters φ and λ (pp. 186 in Lee et al.,
2006). More detail and discussion of h-likelihood
theory is presented in the hglm vignette.

Detailed description of the hglm fitting al-
gorithm for a linear mixed model with het-
eroscedastic residual variance

In this section we describe the fitting algorithm in de-
tail for a linear mixed model where fixed effects are
included in the model for the residual variance. The
extension to distributions other than Gaussian is de-
scribed at the end of the section.

Lee and Nelder (1996) showed that linear mixed
models can be fitted using a hierarchy of GLM by
using an augmented linear model. The linear mixed
model

y = Xb + Zu + e

v = ZZTσ2
u + Rσ2

e

where R is a diagonal matrix with elements given
by the estimated dispersion model (i.e. φ defined be-
low). In the first iteration of the HGLM algorithm, R
is an identity matrix. The model may be written as
an augmented weighted linear model:

ya = Taδ + ea (4)

where

ya =

(
y
0q

)
Ta =

(
X Z
0 Iq

)
δ =

(
b
u

)
ea =

(
e
−u

)

Here, q is the number of columns in Z, 0q is a vec-
tor of zeros of length q, and Iq is the identity matrix
of size q × q. The variance-covariance matrix of the
augmented residual vector is given by

V(ea) =

(
Rσ2

e 0
0 Iqσ2

u

)
Given σ2

e and σ2
u , this weighted linear model gives

the same estimates of the fixed and random effects
(b and u respectively) as Henderson’s mixed model
equations (Henderson, 1976).

The estimates from weighted least squares are
given by:

Tt
aW−1Ta δ̂ = Tt

aW−1ya

where W ≡ V(ea).
The two variance components are estimated iter-

atively by applying a gamma GLM to the residuals
e2

i and u2
i with intercept terms included in the linear

predictors. The leverages hi for these models are cal-
culated from the diagonal elements of the hat matrix:

Ha = Ta(Tt
aW−1Ta)

−1Tt
aW−1 (5)

A gamma GLM is used to fit the dispersion part of
the model with response

yd,i = e2
i /(1− hi) (6)

where E(yd) = µd and µd ≡ φ (i.e. σ2
e for a Gaussian

reponse). The GLM model for the dispersion pa-
rameter is then specified by the link function gd(.)
and the linear predictor Xdβd, with prior weights
(1− hi)/2, for

gd(µd) = Xdβd (7)

Similarly, a gamma GLM is fitted to the dispersion
term α (i.e. σ2

u for a GLMM) for the random effect v,
with

yα,j = u2
j /(1− hn+j), j = 1,2, ...,q (8)

and

gα(µα) = λ (9)

where the prior weights are (1− hn+j)/2 and the esti-
mated dispersion term for the random effect is given
by α̂ = g−1

α (λ̂).
The algorithm iterates by updating both R =

diag(φ̂) and σ2
u = α̂, and subsequently going back to

Eq. (4).
For a non-Gaussian response variable y, the esti-

mates are obtained simply by fitting a GLM instead
of Eq. (4) and by replacing e2

i and u2
j with the de-

viance components from the augmented model (see
Lee et al., 2006).
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Implementation details

Distributions and link functions

There are two important classes of models that can
be fitted in hglm: GLMM and conjugate HGLM.
GLMMs have Gaussian random effects. Conjugate
HGLMs have been commonly used partly due to the
fact that explicit formulas for the marginal likelihood
exist. HGLMs may be used to fit models in sur-
vival analysis (frailty models), where for instance the
complementary-log-log link function can be used on
binary responses (see e.g., Carling et al., 2004). The
gamma distribution plays an important role in mod-
eling responses with a constant coefficient of varia-
tion (see Chapter 8 in McCullagh and Nelder, 1989).
For such responses with a gamma distributed ran-
dom effect we have a gamma-gamma model. A sum-
mary of the most important models is given in Tables
1 and 2. Note that the random-effect distribution can
be an arbitrary conjugate exponential-family distri-
bution. For the specific case where the random-effect
distribution is a conjugate to the distribution of y,
this is called a conjugate HGLM . Further implemen-
tation details can be found in the hglm vignette.

Possible future developments

In the current version of hglm() it is possible to in-
clude a single random effect in the mean part of the
model. An important development would be to in-
clude several random effects in the mean part of the
model and also to include random effects in the dis-
persion parts of the model. The latter class of models
is called Double HGLM and has been shown to be
a useful tool for modeling heavy tailed distributions
(Lee and Nelder, 2006).

The algorithm of hglm() gives true marginal like-
lihood estimates for the fixed effects in conjugate
HGLM (Lee and Nelder, 1996, pp. 629), whereas
for other models the estimates are approximated.
Lee and co-workers (see Lee et al., 2006, and refer-
ences therein) have developed higher-order approx-
imations, which are not implemented in the current
version of the hglm package. For such extensions,
we refer to the commercially available GenStat soft-
ware (Payne et al., 2007), the recently available R
package HGLMMM (Molas, 2010) and also to com-
ing updates of hglm.

Examples

Example 1: A linear mixed model

Data description The output from the hglm() func-
tion for a linear mixed model is compared to the re-
sults from the lme() function in the nlme (Pinheiro
et al., 2009) package using simulated data. In the sim-
ulated data there are five clusters with 20 observa-

tions in each cluster. For the mean part of the model,
the simulated intercept value is µ = 0, the variance
for the random effect is σ2

u = 0.2, and the residual
variance is σ2

e = 1.0 .

Both functions produce the same estimate of
the fixed intercept effect of 0.1473 (s.e. 0.16)
and also the same variance component estimates.
The summary.hglm() function gives the estimate
of the variance component for the random in-
tercept (0.082) as well as the residual variance
(0.84). It also gives the logarithm of the vari-
ance component estimates together with standard
errors below the lines Model estimates for the
dispersion term and Dispersion model for the
random effects. The lme() function gives the
square root of the variance component estimates.

The model diagnostics produced by the
plot.hglm function are shown in Figures 1 and 2.
The data are completely balanced and therefore pro-
duce equal leverages (hatvalues) for all observations
and also for all random effects (Figure 1). Moreover,
the assumption of the deviance components being
gamma distributed is acceptable (Figure 2).
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Figure 1: Hatvalues (i.e. diagonal elements of the
augmented hat-matrix) for each observation 1 to 100,
and for each level in the random effect (index 101-
105).
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Table 1: Commonly used distributions and link functions possible to fit with hglm()

Model name y | u distribution Link g(µ) u distribution Link v(u)

Linear mixed model Gaussian identity Gaussian identity
Binomial conjugate Binomial logit Beta logit
Binomial GLMM Binomial logit Gaussian identity
Binomial frailty Binomial comp-log-log Gamma log
Poisson GLMM Poisson log Gaussian identity
Poisson conjugate Poisson log Gamma log
Gamma GLMM Gamma log Gaussian identity
Gamma conjugate Gamma inverse Inverse-Gamma inverse
Gamma-Gamma Gamma log Gamma log

Table 2: hglm code for commonly used models
Model name Setting for family argument Setting for rand.family argument
Linear mixed modela gaussian(link = identity) gaussian(link = identity)

Beta-Binomial binomial(link = logit) Beta(link = logit)

Binomial GLMM binomial(link = logit) gaussian(link = identity)

Binomial frailty binomial(link = cloglog) Gamma(link = log)

Poisson GLMM poisson(link = log) gaussian(link = identity)

Poisson frailty poisson(link = log) Gamma(link = log)

Gamma GLMM Gamma(link = log) gaussian(link = identity)

Gamma conjugate Gamma(link = inverse) inverse.gamma(link = inverse)

Gamma-Gamma Gamma(link = log) Gamma(link = log)
aFor example, the hglm() code for a linear mixed model is
hglm(family = gaussian(link = identity), rand.family = gaussian(link = identity), ...)
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Figure 2: Deviance diagnostics for each observation
and each level in the random effect.

The R code and output for this example is as fol-
lows:

R> set.seed(123)
R> n.clus <- 5 #No. of clusters
R> n.per.clus <- 20 #No. of obs. per cluster
R> sigma2_u <- 0.2 #Variance of random effect
R> sigma2_e <- 1 #Residual variance
R> n <- n.clus*n.per.clus
R> X <- matrix(1, n, 1)
R> Z <- diag(n.clus)%x%rep(1, n.per.clus)
R> a <- rnorm(n.clus, 0, sqrt(sigma2_u))
R> e <- rnorm(n, 0, sqrt(sigma2_e))
R> mu <- 0
R> y <- mu + Z%*%a + e
R> lmm <- hglm(y = y, X = X, Z = Z)
R> summary(lmm)

R> plot(lmm)

Call:
hglm.default(X = X, y = y, Z = Z)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:[1] 0.8400608

Model estimates for the dispersion term:
Link = log
Effects:
Estimate Std. Error
-0.1743 0.1441

Dispersion = 1 is used in Gamma model on deviances
to calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.08211

Dispersion model for the random effects:
Link = log
Effects:
Estimate Std. Error
-2.4997 0.8682

Dispersion = 1 is used in Gamma model on deviances
to calculate the standard error(s).

MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value Pr(>|t|)
X.1 0.1473 0.1580 0.933 0.353
Note: P-values are based on 96 degrees of freedom
Summary of the random effects estimate

Estimate Std. Error
[1,] -0.3237 0.1971
[2,] -0.0383 0.1971
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[3,] 0.3108 0.1971
[4,] -0.0572 0.1971
[5,] 0.1084 0.1971

EQL estimation converged in 5 iterations.

R> #Same analysis with the lme function
R> library(nlme)
R> clus <- rep(1:n.clus,
+ rep(n.per.clus, n.clus))
R> summary(lme(y ~ 0 + X,
+ random = ~ 1 | clus))

Linear mixed-effects model fit by REML
Data: NULL

AIC BIC logLik
278.635 286.4203 -136.3175

Random effects:
Formula: ~1 | clus

(Intercept) Residual
StdDev: 0.2859608 0.9166

Fixed effects: y ~ 0 + X
Value Std.Error DF t-value p-value

X 0.1473009 0.1573412 95 0.9361873 0.3516

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.5834807 -0.6570612 0.0270673 0.6677986 2.1724148

Number of Observations: 100
Number of Groups: 5

Example 2: Analysis of simulated data for
a linear mixed model with heteroscedastic
residual variance

Data description Here, a heteroscedastic residual
variance is added to the simulated data from the pre-
vious example. Given the explanatory variable xd,
the simulated residual variance is 1.0 for xd = 0 and
2.72 for xd = 1. The output shows that the vari-
ance of the random effect is 0.109, and that β̂d =
(−0.32,1.47), i.e. the two residual variances are es-
timated as 0.72 and 3.16. (Code continued from Ex-
ample 1)

R> beta.disp <- 1
R> X_d <- matrix(1, n, 2)
R> X_d[,2] <- rbinom(n, 1, .5)
R> colnames(X_d) <- c("Intercept", "x_d")
R> e <- rnorm(n, 0,
+ sqrt(sigma2_e*exp(beta.disp*X_d[,2])))
R> y <- mu + Z%*%a + e
R> summary(hglm(y = y, X = X, Z = Z,
+ X.disp = X_d))

Call:
hglm.default(X = X, y = y, Z = Z, X.disp = X_d)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:
Link = log
Effects:

Estimate Std. Error

Intercept -0.3225 0.2040
x_d 1.4744 0.2881

Dispersion = 1 is used in Gamma model on deviances
to calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.1093

Dispersion model for the random effects:
Link = log
Effects:
Estimate Std. Error
-2.2135 0.8747

Dispersion = 1 is used in Gamma model on deviances
to calculate the standard error(s).
MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value Pr(>|t|)
X.1 -0.0535 0.1836 -0.291 0.771
Note: P-values are based on 96 degrees of freedom
Summary of the random effects estimate

Estimate Std. Error
[1,] 0.0498 0.2341
[2,] -0.2223 0.2276
[3,] 0.4404 0.2276
[4,] -0.1786 0.2276
[5,] -0.0893 0.2296

EQL estimation converged in 5 iterations.

Example 3: Fitting a Poisson model with
gamma random effects, and fixed effects in
the dispersion term

Data description We simulate a Poisson model
with random effects and estimate the parameter in
the dispersion term for an explanatory variable xd.
The estimated dispersion parameter for the random
effects is 0.6556. (Code continued from Example 2)

R> u <- rgamma(n.clus,1)
R> eta <- exp(mu + Z%*%u)
R> y <- rpois(length(eta), eta)
R> gamma.pois <- hglm(y = y, X = X, Z = Z,
+ X.disp = X_d,
+ family = poisson(
+ link = log),
+ rand.family =
+ Gamma(link = log))
R> summary(gamma.pois)

Call:
hglm.default(X = X, y = y, Z = Z,

family = poisson(link = log),
rand.family = Gamma(link = log), X.disp = X_d)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:
Link = log
Effects:

Estimate Std. Error
Intercept -0.0186 0.2042
x_d 0.4087 0.2902

Dispersion = 1 is used in Gamma model on deviances
to calculate the standard error(s).
Dispersion parameter for the random effects
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[1] 1.926

Dispersion model for the random effects:
Link = log
Effects:

Estimate Std. Error
0.6556 0.7081

Dispersion = 1 is used in Gamma model on deviances
to calculate the standard error(s).
MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value Pr(>|t|)
X.1 2.3363 0.6213 3.76 0.000293
---

Note: P-values are based on 95 degrees of freedom
Summary of the random effects estimate

Estimate Std. Error
[1,] 1.1443 0.6209
[2,] -1.6482 0.6425
[3,] -2.5183 0.6713
[4,] -1.0243 0.6319
[5,] 0.2052 0.6232

EQL estimation converged in 3 iterations.

Example 4: Incorporating correlated ran-
dom effects in a linear mixed model - a ge-
netics example

Data description The data consists of 2025 indi-
viduals from two generations where 1000 individ-
uals have observed trait values y that are approxi-
mately normal (Figure 3). The data we analyze was
simulated for the QTLMAS 2009 Workshop (Coster
et al., 2010)1. A longitudinal growth trait was sim-
ulated. For simplicity we analyze only the val-
ues given on the third occasion at age 265 days.

y

F
re

qu
en

cy

2 4 6 8 10 14

0
50

10
0

15
0

20
0

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −1 0 1 2 3

2
4

6
8

10
12

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 3: Histogram and qqplot for the analyzed
trait.

We fitted a model with a fixed intercept and a
random animal effect, a, where the correlation struc-
ture of a is given by the additive relationhip matrix
A (which is obtained from the available pedigree in-
formation). An incidence matrix Z0 was constructed
and relates observation number with id-number in
the pedigree. For observation yi coming from indi-

vidual j in the ordered pedigree file Z0[i, j] = 1, and
all other elements are 0. Let L be the Cholesky factor-
ization of A, and Z = Z0L. The design matrix for the
fixed effects, X, is a column of ones. The estimated
variance components are σ̂2

e = 2.21 and σ̂2
u = 1.50.

The R code for this example is given below.

R> data(QTLMAS)
R> y <- QTLMAS[,1]
R> Z <- QTLMAS[,2:2026]
R> X <- matrix(1, 1000, 1)
R> animal.model <- hglm(y = y, X = X, Z = Z)
R> print(animal.model)

Call:
hglm.default(X = X, y = y, Z = Z)

Fixed effects:
X.1

7.279766
Random effects:

[1] -1.191733707 1.648604776 1.319427376 -0.928258503
[5] -0.471083317 -1.058333534 1.011451565 1.879641994
[9] 0.611705900 -0.259125073 -1.426788944 -0.005165978

...

Dispersion parameter for the mean model:[1] 2.211169
Dispersion parameter for the random effects:[1] 1.502516

EQL estimation converged in 2 iterations

Example 5: Binomial-beta model applied
to seed germination data

Data description The seed germination data pre-
sented by Crowder (1978) has previously been ana-
lyzed using a binomial GLMM (Breslow and Clay-
ton, 1993) and a binomial-beta HGLM (Lee and
Nelder, 1996). The data consists of 831 observations
from 21 germination plates. The effect of seed vari-
ety and type of root extract was studied in a 2 × 2
factorial lay-out. We fit the binomial-beta HGLM
used by Lee and Nelder (1996) and setting fix.disp
= 1 in hglm() produces comparable estimates to the
ones obtained by Lee and Nelder (with differences
< 2× 10−3). The beta distribution parameter α in Lee
and Nelder (1996) was defined as 1/(2a) where a is
the dispersion term obtained from hglm(). The out-
put from the R code given below gives â = 0.0248 and
the corresponding estimate given in Lee and Nelder
(1996) is â = 1/(2α̂) = 0.023. We conclude that the
hglm package produces similar results as the ones
presented in Lee and Nelder (1996) and the disper-
sion parameters estimated using the EQL method in
GenStat differ by less than 1%. Additional examples,
together with comparisons to estimates produced by
GenStat, are given in the hglm vignette included in
the package on CRAN.

R> data(seeds)
R> germ <- hglm(
+ fixed = r/n ~ extract*I(seed=="O73"),

1http://www.qtlmas2009.wur.nl/UK/Dataset
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+ weights = n, data = seeds,
+ random = ~1|plate, family = binomial(),
+ rand.family = Beta(), fix.disp = 1)
R> summary(germ)

Call:
hglm.formula(family = binomial(), rand.family = Beta(),

fixed = r/n ~ extract * I(seed == "O73"),
random = ~1 | plate, data = seeds,
weights = n, fix.disp = 1)

DISPERSION MODEL
WARNING: h-likelihood estimates through EQL can be biased.
Model estimates for the dispersion term:[1] 1

Model estimates for the dispersion term:
Link = log
Effects:
[1] 1

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
Dispersion parameter for the random effects
[1] 0.02483

Dispersion model for the random effects:
Link = log

Effects:
Estimate Std. Error
-3.6956 0.5304

Dispersion = 1 is used in Gamma model on deviances to
calculate the standard error(s).
MEAN MODEL
Summary of the fixed effects estimates

Estimate Std. Error t value
(Intercept) -0.5421 0.1928 -2.811
extractCucumber 1.3386 0.2733 4.898
I(seed == "O73")TRUE 0.0751 0.3114 0.241
extractCucumber:I(seed=="O73") -0.8257 0.4341 -1.902

Pr(>|t|)
(Intercept) 0.018429
extractCucumber 0.000625
I(seed == "O73")TRUE 0.814264
extractCucumber:I(seed=="O73") 0.086343
---

Note: P-values are based on 10 degrees of freedom
Summary of the random effects estimate

Estimate Std. Error
[1,] -0.2333 0.2510
[2,] 0.0085 0.2328
...

[21,] -0.0499 0.2953

EQL estimation converged in 7 iterations.

Summary

The hierarchical generalized linear model approach
offers new possibilities to fit generalized linear mod-
els with random effects. The hglm package extends
existing GLMM fitting algorithms to include fixed ef-
fects in a model for the residual variance, fits mod-
els where the random effect distribution is not neces-
sarily Gaussian and estimates variance components
for correlated random effects. For such models there
are important applications in, for instance: genet-
ics (Noh et al., 2006), survival analysis (Ha and Lee,

2005), credit risk modeling (Alam and Carling, 2008),
count data (Lee et al., 2006) and dichotomous re-
sponses (Noh and Lee, 2007). We therefore expect
that this new package will be of use for applied statis-
ticians in several different fields.
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dclone: Data Cloning in R
by Péter Sólymos

Abstract The dclone R package contains low
level functions for implementing maximum like-
lihood estimating procedures for complex mod-
els using data cloning and Bayesian Markov
Chain Monte Carlo methods with support for
JAGS, WinBUGS and OpenBUGS.

Introduction

Hierarchical models, including generalized linear
models with mixed random and fixed effects, are
increasingly popular. The rapid expansion of ap-
plications is largely due to the advancement of the
Markov Chain Monte Carlo (MCMC) algorithms and
related software (Gelman et al., 2003; Gilks et al.,
1996; Lunn et al., 2009). Data cloning is a statistical
computing method introduced by Lele et al. (2007). It
exploits the computational simplicity of the MCMC
algorithms used in the Bayesian statistical frame-
work, but it provides the maximum likelihood point
estimates and their standard errors for complex hi-
erarchical models. The use of the data cloning al-
gorithm is especially valuable for complex models,
where the number of unknowns increases with sam-
ple size (i.e. with latent variables), because inference
and prediction procedures are often hard to imple-
ment in such situations.

The dclone R package (Sólymos, 2010) provides
infrastructure for data cloning. Users who are fa-
miliar with Bayesian methodology can instantly use
the package for maximum likelihood inference and
prediction. Developers of R packages can build on
the low level functionality provided by the pack-
age to implement more specific higher level estima-
tion procedures for users who are not familiar with
Bayesian methodology. This paper demonstrates the
implementation of the data cloning algorithm, and
presents a case study on how to write high level func-
tions for specific modeling problems.

Theory of data cloning

Imagine a hypothetical situation where an experi-
ment is repeated by k different observers, and all k
experiments happen to result in exactly the same set
of observations, y(k) = (y,y, . . . ,y). The likelihood
function based on the combination of the data from
these k experiments is L(θ,y(k)) = [L (θ,y)]k. The lo-
cation of the maximum of L(θ,y(k)) exactly equals
the location of the maximum of the function L (θ,y),
and the Fisher information matrix based on this like-
lihood is k times the Fisher information matrix based
on L (θ,y).

One can use MCMC methods to calculate the pos-
terior distribution of the model parameters (θ) condi-
tional on the data. Under regularity conditions, if k
is large, the posterior distribution corresponding to
k clones of the observations is approximately normal
with mean θ̂ and variance 1/k times the inverse of
the Fisher information matrix. When k is large, the
mean of this posterior distribution is the maximum
likelihood estimate and k times the posterior vari-
ance is the corresponding asymptotic variance of the
maximum likelihood estimate if the parameter space
is continuous. When some of the parameters are on
the boundaries of their feasible space (Stram and Lee,
1994), point estimates can be correct, but currently
the Fisher information cannot be estimated correctly
by using data cloning. This is an area for further re-
search, but such situations challenge other comput-
ing techniques as well.

Data cloning is a computational algorithm to
compute maximum likelihood estimates and the in-
verse of the Fisher information matrix, and is related
to simulated annealing (Brooks and Morgan, 1995).
By using data cloning, the statistical accuracy of the
estimator remains a function of the sample size and
not of the number of cloned copies. Data cloning
does not improve the statistical accuracy of the esti-
mator by artificially increasing the sample size. The
data cloning procedure avoids the analytical or nu-
merical evaluation of high dimensional integrals, nu-
merical optimization of the likelihood function, and
numerical computation of the curvature of the like-
lihood function. Interested readers should consult
Lele et al. (2007, 2010) for more details and mathe-
matical proofs for the data cloning algorithm.

The data cloning algorithm

Consider the following Poisson generalized linear
mixed model (GLMM) with a random intercept for
i.i.d. observations of Yi counts from i = 1,2, . . . ,n lo-
calities:

αi ∼ normal
(

0,σ2
)

λi = exp
(

αi + XT
i β
)

Yi | λi ∼ Poisson (λi)

The corresponding code for the simulation with β =
(1.8,−0.9), σ = 0.2, xi ∼ U (0,1) is:

> library(dclone)
> set.seed(1234)
> n <- 50
> beta <- c(1.8, -0.9)
> sigma <- 0.2
> x <- runif(n, min = 0, max = 1)
> X <- model.matrix(~ x)
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> alpha <- rnorm(n, mean = 0, sd = sigma)
> lambda <- exp(alpha + drop(X %*% beta))
> Y <- rpois(n, lambda)

The first step in the data cloning algorithm is
to construct the full Bayesian model of the prob-
lem with proper prior distributions for unknown pa-
rameters. We use flat normal priors for βs and for
log (σ). First we use the rjags (Plummer, 2010b) and
coda (Plummer et al., 2010) R packages and the JAGS
(Plummer, 2010a) software for model fitting. But the
dclone package also supports WinBUGS (Spiegelhal-
ter et al., 2003) and OpenBUGS (Spiegelhalter et al.,
2007) via the R packages R2WinBUGS (Sturtz et al.,
2005) and BRugs (Thomas et al., 2006), respectively.
The corresponding model in the BUGS language is:

> glmm.model <- function() {
+ for (i in 1:n) {
+ Y[i] ~ dpois(lambda[i])
+ lambda[i] <- exp(alpha[i] +
+ inprod(X[i,], beta[1,]))
+ alpha[i] ~ dnorm(0, tau)
+ }
+ for (j in 1:np) {
+ beta[1,j] ~ dnorm(0, 0.001)
+ }
+ log.sigma ~ dnorm(0, 0.001)
+ sigma <- exp(log.sigma)
+ tau <- 1 / pow(sigma, 2)
+ }

Note that instead of writing the model into a file,
we store it as an R function (see JAGS and Win-
BUGS documentation for how to correctly specify
the model in the BUGS language). Although the
BUGS and R syntaxes seem similar, the BUGS model
function cannot be evaluated within R. Storing the
BUGS model as an R function is handy, because the
user does not have to manage different files when
modeling. Nevertheless, the model can be supplied
in a separate file by giving its name as character.

We also have to define the data as elements of a
named list along with the names of nodes that we
want to monitor (we can also set up initial values,
number of burn-in iterations, number of iterations
for the posterior sample, thinning values, etc.; see
dclone package documentation for details). Now we
can do the Bayesian inference by calling the jags.fit
function:

> dat <- list(Y = Y, X = X, n = n,
+ np = ncol(X))
> mod <- jags.fit(dat,
+ c("beta", "sigma"), glmm.model, n.iter = 1000)

The output mod is an "mcmc.list" object, which can
be explored by methods such as summary or plot pro-
vided by the coda package.

The dclone package provides the bugs.fit wrap-
per function for WinBUGS/OpenBUGS. The BUGS
model needs to be changed to run smoothly in Win-
BUGS/OpenBUGS:

> glmm.model.bugs <- function() {
+ for (i in 1:n) {
+ Y[i] ~ dpois(lambda[i])
+ lambda[i] <- exp(alpha[i] +
+ inprod(X[i,], beta[1,]))
+ alpha[i] ~ dnorm(0, tau) %_% I(-5, 5)
+ }
+ for (j in 1:np) {
+ beta[1,j] ~ dnorm(0, 0.01) %_% I(-5, 5)
+ }
+ log.sigma ~ dnorm(0, 0.01) %_% I(-5, 5)
+ sigma <- exp(log.sigma)
+ tau <- 1 / pow(sigma, 2)
+ }

In the bugs.fit function, the settings besides the
data, params, model, and inits arguments follow
the settings in the bugs/openbugs functions in the
R2WinBUGS package. This leads to some differ-
ences between the arguments of the jags.fit and
the bugs.fit functions. For example bugs.fit uses
n.thin instead of thin, and n.burnin is equivalent to
n.adapt + n.update as compared to jags.fit. The
bugs.fit can return the results either in "mcmc.list"
or "bugs" format. The reason for leaving different ar-
guments for jags.fit and bugs.fit is that the aim of
the dclone package is not to make the MCMC plat-
forms interchangeable, but to provide data cloning
facility for each. It is easy to adapt an existing BUGS
code for data cloning, but it sometimes can be tricky
to adapt a JAGS code to WinBUGS and vice versa,
because of differences between the two dialects (i.e.
truncation, censoring, autoregressive priors, etc., see
Plummer (2010b)).

Here are the results from the three MCMC plat-
forms:

> mod.wb <- bugs.fit(dat, c("beta", "sigma"),
+ glmm.model.bugs, DIC = FALSE, n.thin = 1)
> mod.ob <- bugs.fit(dat, c("beta", "sigma"),
+ glmm.model.bugs, program = "openbugs",
+ DIC = FALSE, n.thin = 1)

> sapply(list(JAGS = mod, WinBUGS = mod.wb,
+ OpenBUGS = mod.ob), coef)

JAGS WinBUGS OpenBUGS
beta[1] 1.893 1.910 1.9037
beta[2] -1.050 -1.074 -1.0375
sigma 0.161 0.130 0.0732

The idea in the next step of the data cloning al-
gorithm is that instead of using the likelihood for the
observed data, we use the likelihood corresponding
to k copies (clones) of the data. Actually cloning (re-
peating) the data k times is important if the model
includes unobserved (latent) variables: in this way
latent variables are cloned as well, thus contributing
to the likelihood. We can use the rep function to re-
peat the data vectors, but it is less convenient for e.g.
matrices or data frames. Thus, there is the dclone
generic function with methods for various R object
classes:

> dclone(1:5, 1)
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[1] 1 2 3 4 5

> dclone(1:5, 2)

[1] 1 2 3 4 5 1 2 3 4 5
attr(,"n.clones")
[1] 2
attr(,"n.clones")attr(,"method")
[1] "rep"

> dclone(matrix(1:4, 2, 2), 2)

[,1] [,2]
[1,] 1 3
[2,] 2 4
[3,] 1 3
[4,] 2 4
attr(,"n.clones")
[1] 2
attr(,"n.clones")attr(,"method")
[1] "rep"

> dclone(data.frame(a=1:2, b=3:4), 2)

a b
1_1 1 3
2_1 2 4
1_2 1 3
2_2 2 4

The number of clones can be extracted by the
nclones function; it returns NULL for k = 1 and k oth-
erwise.

The BUGS data specification might contain some
elements that we do not want to clone (e.g. "np", the
number of columns of the design matrix in this case).
Thus the dclone method has different behaviour for
lists, than for non list classes (including data frames).
We can define which elements should not be cloned,
or which should be multiplied by k instead of being
cloned k times.

> dat2 <- dclone(dat, n.clones = 2,
+ multiply = "n", unchanged = "np")
> nclones(dat2)

[1] 2
attr(,"method")

Y X n np
"rep" "rep" "multi" NA

The "method" attribute of the cloned object stores
this information. There are three different ways of
cloning (besides NA standing for unchanged): "rep"
is for (longitudinal) repetitions, "multi" is for mul-
tiplication, and "dim" is repeating the data along an
extra dimension (see later).

Now we do the model fitting with k = 2. The
"mcmc.list" object inherits the information about
the cloning:

> mod2 <- jags.fit(dat2,
+ c("beta", "sigma"), glmm.model, n.iter = 1000)

Similarly, the bugs.fit function takes care of the
cloning information passed through the data argu-
ment:

> mod.wb2 <- bugs.fit(dat2, c("beta", "sigma"),
+ glmm.model.bugs, DIC = FALSE, n.thin = 1)
> mod.ob2 <- bugs.fit(dat2, c("beta", "sigma"),
+ glmm.model.bugs, program = "openbugs",
+ DIC = FALSE, n.thin = 1)

And here are the results based on k = 2 for the three
MCMC platforms:

> sapply(list(JAGS = mod2, WinBUGS = mod.wb2,
+ OpenBUGS = mod.ob2), coef)

JAGS WinBUGS OpenBUGS
beta[1] 1.918 1.905 1.896
beta[2] -1.114 -1.080 -1.078
sigma 0.207 0.187 0.243

For some models, indexing can be more complex,
and simple repetitions of the data ("rep" method)
are not appropriate. In case of non independent
data (time series or spatial autoregressive models),
cloning should be done over an extra dimension to
ensure that clones are independent. For this purpose,
one can use the dcdim function:

> (obj <- dclone(dcdim(data.matrix(1:5)), 2))

clone.1 clone.2
[1,] 1 1
[2,] 2 2
[3,] 3 3
[4,] 4 4
[5,] 5 5
attr(,"n.clones")
[1] 2
attr(,"n.clones")attr(,"method")
[1] "dim"
attr(,"n.clones")attr(,"method")attr(,"drop")
[1] TRUE

If data cloning consists of repetitions of the data, our
BUGS model usually does not need modifications. If
we add an extra dimension to the data, the BUGS
model and the data specification must reflect the ex-
tra dimension, too.

To demonstrate this, we consider a model and
data set from Ponciano et al. (2009). They used the
single-species population growth data from labora-
tory experiments of Gause (1934) with Paramecium
aurelia. Gause initiated liquid cultures on day 0 at a
concentration of two individuals per 0.5 cm3 of cul-
ture media. Then, on days 2–19, he took daily 0.5
cm3 samples of the microbe cultures and counted the
number of cells in each sample. Ponciano et al. (2009)
fitted discrete time stochastic models of population
dynamics to describe Gause’s data taking into ac-
count both process noise and observation error. The
Beverton-Holt model incorporates a latent variable
component (Nt, t = 0,1, . . . ,q) to describe an unob-
served time series of actual population abundance.
The latent variable component contains density de-
pendence (β) and stochastic process noise (σ2). The
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model incorporates a Poisson observation compo-
nent to account for variability caused by sampling:

µt = log(λ) + log(Nt−1)− log(1 + βNt−1)

log(Nt) ∼ normal(µt,σ2)

Yt | Nt ∼ Poisson(Nt)

λ is the finite rate of increase in population abun-
dance. The corresponding BUGS model is:

> beverton.holt <- function() {
+ for (j in 1:k) {
+ for(i in 2:(n+1)){
+ Y[(i-1),j] ~ dpois(exp(log.N[i,j]))
+ log.N[i,j] ~ dnorm(mu[i,j], 1 / sigma^2)
+ mu[i,j] <- log(lambda) + log.N[(i-1),j]
+ - log(1 + beta * exp(log.N[(i-1),j]))
+ }
+ log.N[1,j] ~ dnorm(mu0, 1 / sigma^2)
+ }
+ beta ~ dlnorm(-1, 1)
+ sigma ~ dlnorm(0, 1)
+ tmp ~ dlnorm(0, 1)
+ lambda <- tmp + 1
+ mu0 <- log(lambda) + log(2) - log(1 + beta * 2)
+ }

Note that besides the indexing for the time series,
the model contains another dimension for the clones.
We define the data set by using the dcdim method for
cloning the observations. We include an element k =
1 that will be multiplied to indicate how many clones
(columns) are in the data, while n (number of obser-
vations) remains unchanged:

> paurelia <- c(17, 29, 39, 63, 185, 258, 267,
+ 392, 510, 570, 650, 560, 575, 650, 550,
+ 480, 520, 500)
> bhdat <- list(Y=dcdim(data.matrix(paurelia)),
+ n=length(paurelia), k=1)
> dcbhdat <- dclone(bhdat, n.clones = 5,
+ multiply = "k", unchanged = "n")

> bhmod <- jags.fit(dcbhdat,
+ c("lambda","beta","sigma"), beverton.holt,
+ n.iter=1000)

> coef(bhmod)

beta lambda sigma
0.00218 2.18755 0.12777

Results compare well with estimates in Ponciano
et al. (2009) (β̂ = 0.00235, λ̂ = 2.274, σ̂ = 0.1274).

Iterative model fitting

We can use the dc.fit function to iteratively fit the
same model with various k values as described in
Lele et al. (2010). The function takes similar ar-
guments to dclone and jags.fit (or bugs.fit, if
flavour = "bugs" is used). Because the informa-
tion in the data overrides the priors by increasing the

number of clones, we can improve MCMC conver-
gence by making the priors more informative during
the iterative fitting process. We achieve this by modi-
fying the BUGS model for the Poisson GLMM exam-
ple:

> glmm.model.up <- function() {
+ for (i in 1:n) {
+ Y[i] ~ dpois(lambda[i])
+ lambda[i] <- exp(alpha[i] +
+ inprod(X[i,], beta[1,]))
+ alpha[i] ~ dnorm(0, 1/sigma^2)
+ }
+ for (j in 1:np) {
+ beta[1,j] ~ dnorm(pr[j,1], pr[j,2])
+ }
+ log.sigma ~ dnorm(pr[(np+1),1], pr[(np+1),2])
+ sigma <- exp(log.sigma)
+ tau <- 1 / pow(sigma, 2)
+ }

We also define a function to update the priors. The
function returns values for flat prior specification in
the first iteration, and uses the updated posterior
means (via the coef method) and data cloning stan-
dard errors (via the dcsd method) in the rest, be-
cause priors that have large probability mass near the
maximum likelihood estimate require fewer clones
to achieve the desired accuracy.

> upfun <- function(x) {
+ if (missing(x)) {
+ np <- ncol(X)
+ return(cbind(rep(0, np+1),
+ rep(0.001, np+1)))
+ } else {
+ ncl <- nclones(x)
+ if (is.null(ncl))
+ ncl <- 1
+ par <- coef(x)
+ se <- dcsd(x)
+ log.sigma <- mcmcapply(x[,"sigma"], log)
+ par[length(par)] <- mean(log.sigma)
+ se[length(se)] <- sd(log.sigma) * sqrt(ncl)
+ return(cbind(par, se))
+ }
+ }

Finally, we define prior specifications as part of the
data ("pr"), and provide the updating function in the
dc.fit call:

> updat <- list(Y = Y, X = X, n = n,
+ np = ncol(X), pr = upfun())
> k <- c(1, 5, 10, 20)
> dcmod <- dc.fit(updat, c("beta", "sigma"),
+ glmm.model.up, n.clones = k, n.iter = 1000,
+ multiply = "n", unchanged = "np",
+ update = "pr", updatefun = upfun)

> summary(dcmod)

Iterations = 1001:2000
Thinning interval = 1
Number of chains = 3
Sample size per chain = 1000
Number of clones = 20
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1. Empirical mean and standard deviation for each
variable, plus standard error of the mean:

Mean SD DC SD Naive SE
beta[1] 1.894 0.0368 0.164 0.000671
beta[2] -1.082 0.0734 0.328 0.001341
sigma 0.278 0.0256 0.114 0.000467

Time-series SE R hat
beta[1] 0.00259 1.01
beta[2] 0.00546 1.01
sigma 0.00194 1.04

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
beta[1] 1.823 1.869 1.89 1.920 1.964
beta[2] -1.230 -1.133 -1.08 -1.029 -0.943
sigma 0.226 0.260 0.28 0.296 0.323

The summary contains data cloning standard errors
(DC SD) and R̂ values for MCMC chain convergence
(Gelman and Rubin, 1992).

Diagnostics

We can see how the increase in the number of clones
affects our inferences on single nodes by using the
dctable function. This function retrieves the infor-
mation stored during the iterative fitting process (or
can be used to compare more than one fitted model).
Only the last MCMC object is returned by dc.fit,
but descriptive statistics of the posterior distribution
are stored in each step (Figure 1). The asymptotic
convergence can be visually evaluated by plotting
the posterior variances scaled by the variance for the
model at k = 1 (or the smallest k). If scaled vari-
ances are decreasing at a 1/k rate and have reached a
lower bound (say < 0.05), the data cloning algorithm
has converged. If scaled variances are not decreas-
ing at the proper rate, that might indicate identifia-
bility issues (Lele et al., 2010). On the log scale, this
graph should show an approximately linear decrease
of log(scaled variance) vs. log(k) for each parameter
(Figure 2).

> dct <- dctable(dcmod)
> plot(dct)

> plot(dct, type="log.var")

Lele et al. (2010) introduced diagnostic measures
for checking the convergence of the data cloning al-
gorithm which are based on the joint posterior dis-
tribution and not only on single parameters. These
include calculating the largest eigenvalue of the pos-
terior variance covariance matrix (lambdamax.diag),
or calculating the mean squared error and another
correlation-like fit statistic (r2) based on a χ2 approx-
imation (chisq.diag with a plot method). The max-
imum eigenvalue reflects the degeneracy of the pos-

terior distribution, while the two fit measures re-
flect the adequacy of the normal approximation. All
three statistics should converge to zero as k increases.
If this happens, different prior specifications are no
longer influencing the results (Lele et al., 2007, 2010).

These measures and multivariate R̂ values for
MCMC chain convergence (Brooks and Gelman,
1997) are calculated during the iterations by dc.fit
as well, and can be retrieved by the function dcdiag:

> dcdiag(dcmod)

n.clones lambda.max ms.error r.squared r.hat
1 1 0.11538 0.1282 0.02103 1.66
2 5 0.02225 0.0229 0.00277 1.02
3 10 0.01145 0.0383 0.00612 1.01
4 20 0.00643 0.0241 0.00173 1.03

The data cloning algorithm requires that MCMC
chains are properly mixed and the posterior distribu-
tion is nearly degenerate multivariate normal. These
requirements have been satisfied in the case of the
Poisson GLMM model. R̂ values show better mix-
ing properties of the MCMC chains with higher k
values, and in this example it is expected, because
we have used informative priors near the maximum
likelihood estimates for the cases k > 1.

The functions dctable and dcdiag can be used to
determine the number of clones required for a par-
ticular model and data set. Also, these diagnostic
functions can alert the modeller when the model con-
tains non-identifiable parameters. Lele et al. (2010)
gives several examples; here we consider the normal-
normal mixture:

µi ∼ normal(γ,τ2)

Yi | µi ∼ normal(µi,σ2)

where the parameters (γ,σ2 + τ2) are known to be
identifiable, but (γ,σ2,τ2) are not.

We simulate random observations under this
model (γ = 2.5,σ = 0.2,τ = 0.5) and fit the corre-
sponding BUGS model:

> gamma <- 2.5
> sigma <- 0.2
> tau <- 0.5
> set.seed(2345)
> mu <- rnorm(n, gamma, tau)
> Y <- rnorm(n, mu, sigma)
> nn.model <- function() {
+ for (i in 1:n) {
+ Y[i] ~ dnorm(mu[i], prec1)
+ mu[i] ~ dnorm(gamma, prec2)
+ }
+ gamma ~ dnorm(0, 0.001)
+ log.sigma ~ dnorm(0, 0.001)
+ sigma <- exp(log.sigma)
+ prec1 <- 1 / pow(sigma, 2)
+ log.tau ~ dnorm(0, 0.001)
+ tau <- exp(log.tau)
+ prec2 <- 1 / pow(tau, 2)
+ }
> nndat <- list(Y = Y, n = n)
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Figure 1: Summary statistics for the Poisson mixed model example. Means are converging towards the maxi-
mum likelihood estimates (points), standard errors (vertical lines) are getting shorter with increasing number
of clones (95 and 50% quantile ranges and median also depicted).
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Figure 2: Convergence diagnostics for data cloning based on the Poisson mixed model example. Log of Scaled
Variances should decrease linearly with log(k), the scaled variance value close to zero (< 0.05) indicates con-
vergence of the data cloning algorithm.

> nnmod <- dc.fit(nndat, c("gamma","sigma","tau"),
+ nn.model, n.clones=c(1,10,20,30,40,50),
+ n.iter=1000, multiply="n")

> dcdiag(nnmod)

n.clones lambda.max ms.error r.squared r.hat
1 1 0.0312 0.508 0.02985 1.18
2 10 0.0364 0.275 0.00355 2.06
3 20 1.2617 1.111 0.13714 50.15
4 30 0.1530 0.753 0.10267 12.91
5 40 1.7972 0.232 0.03770 92.87
6 50 1.8634 0.241 0.04003 15.72

> vars <- mcmcapply(nnmod[,c("sigma","tau")],
+ array)^2
> sigma^2 + tau^2

[1] 0.29

> summary(rowSums(vars))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.21 0.23 2.87 3.00 6.04 6.84

The high r.hat and the variable lambda.max and fit
statistic values that are not converging to zero indi-
cate possible problems with identifiability.

Inference and prediction

We can explore the results with methods defined for
"mcmc.list" objects (many such methods are avail-
able in the coda package, e.g. summary, plot, etc.).
The dclone package adds a few more methods: coef
returns the mean of the posterior, dcsd the data
cloning standard errors. Any function returning a
scalar statistic can be passed via the mcmcapply func-
tion:

> coef(dcmod)

beta[1] beta[2] sigma
1.894 -1.082 0.278
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> dcsd(dcmod)

beta[1] beta[2] sigma
0.164 0.328 0.114

> mcmcapply(dcmod, sd) * sqrt(nclones(dcmod))

beta[1] beta[2] sigma
0.164 0.328 0.114

The asymptotic multivariate normality can be
used to get Wald-type confidence intervals for the
estimates based on the inverse of the Fisher infor-
mation matrix. The vcov method returns the inverse
Fisher information matrix, the confint method cal-
culates confidence intervals assuming multivariate
normality for MCMC objects with k > 1:

> confint(dcmod)

2.5 % 97.5 %
beta[1] 1.5718 2.217
beta[2] -1.7253 -0.438
sigma 0.0534 0.502

> vcov(dcmod)

beta[1] beta[2] sigma
beta[1] 0.02705 -0.04604 -0.00291
beta[2] -0.04604 0.10783 -0.00156
sigma -0.00291 -0.00156 0.01308

Confidence intervals can also be obtained via para-
metric bootstrap or based on profile likelihood (Pon-
ciano et al., 2009), but these are not currently avail-
able in the dclone package and often require substan-
tial user intervention.

These methods are handy when we make predic-
tions. We can use the maximum likelihood estimates
and the variance-covariance matrix defined as a mul-
tivariate normal node in the BUGS model. For the
Poisson mixed model example, the BUGS model for
prediction will look like:

> glmm.pred <- function() {
+ for (i in 1:n) {
+ Y[i] ~ dpois(lambda[i])
+ lambda[i] <- exp(mu[i])
+ mu[i] <- alpha[i] +
+ inprod(X[i,], beta[1,])
+ alpha[i] ~ dnorm(0, tau)
+ }
+ tmp[1:(np+1)] ~ dmnorm(param[], prec[,])
+ beta[1,1:np] <- tmp[1:np]
+ sigma <- tmp[(np+1)]
+ tau <- 1 / pow(sigma, 2)
+ }

Now we add the estimates and the precision ma-
trix prec to the data (the make.symmetric function
prevents some problems related to matrix symmetry
and numerical precision), and define X for the pre-
dictions (now we simply use the observed values of
the covariates). Then do the modeling as usual by
sampling the node "lambda":

> prec <- make.symmetric(solve(vcov(dcmod)))
> prdat <- list(X = X, n = nrow(X), np = ncol(X),
+ param = coef(dcmod), prec = prec)
> prmod <- jags.fit(prdat, "lambda", glmm.pred,
+ n.iter = 1000)

Writing high level functions

Suppose we want to provide a user friendly func-
tion to fit the Poisson mixed model with random in-
tercept. We are now modeling the observed abun-
dances (count based on point counts) of the Oven-
bird (Seiurus aurocapilla) as a function of ecological
site characteristics (upland/lowland, uplow) and per-
centage of total human disturbance around the sites
(thd in the ovenbird data set). Data were collected
from 182 sites in the Northern Boreal region of Al-
berta, Canada, between 2003 and 2008. Data were
collected by the Alberta Biodiversity Monitoring In-
stitute and are available at http://www.abmi.ca.

Our goal is to determine the effect of human dis-
turbance on Ovenbird abundance, by controlling for
site characteristics. But we know that other factors
not taken into account, e.g. the amount of deciduous
forest, might influence the abundance as well (Hob-
son and Bayne, 2002). So the random intercept will
account for this unexplained environmental variabil-
ity. The Poisson error component will account for
random deviations from expected abundances (λi)
and observed counts (Yi) represent a realization of
this quantity.

Here is the high level function for fitting the Pois-
son mixed model built on data cloning with a simple
print, summary and predict method:

> glmmPois <- function(formula,
+ data = parent.frame(), n.clones, ...) {
+ lhs <- formula[[2]]
+ Y <- eval(lhs, data)
+ formula[[2]] <- NULL
+ rhs <- model.frame(formula, data)
+ X <- model.matrix(attr(rhs, "terms"), rhs)
+ dat <- list(n = length(Y), Y = Y,
+ X = X, np = ncol(X))
+ dcdat <- dclone(dat, n.clones,
+ multiply = "n", unchanged = "np")
+ mod <- jags.fit(dcdat, c("beta", "sigma"),
+ glmm.model, ...)
+ coefs <- coef(mod)
+ names(coefs) <- c(colnames(X),
+ "sigma")
+ rval <- list(coefficients = coefs,
+ call = match.call(),
+ mcmc = mod, y = Y, x = rhs,
+ model = X, formula = formula)
+ class(rval) <- "glmmPois"
+ rval
+ }
> print.glmmPois <- function(x, ...) {
+ cat("glmmPois model\n\n")
+ print(format(coef(x), digits = 4),
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+ print.gap = 2, quote = FALSE)
+ cat("\n")
+ invisible(x)
+ }
> summary.glmmPois <- function(object, ...) {
+ x <- cbind("Estimate" = coef(object),
+ "Std. Error" = dcsd(object$mcmc),
+ confint(object$mcmc))
+ cat("Call:", deparse(object$call,
+ width.cutoff = getOption("width")),
+ "\n", sep="\n")
+ cat("glmmPois model\n\n")
+ printCoefmat(x, ...)
+ cat("\n")
+ invisible(x)
+ }
> predict.glmmPois <- function(object,
+ newdata = NULL, type = c("mu", "lambda", "Y"),
+ level = 0.95, ...){
+ prec <- solve(vcov(object$mcmc))
+ prec <- make.symmetric(prec)
+ param <- coef(object)
+ if (is.null(newdata)) {
+ X <- object$model
+ } else {
+ rhs <- model.frame(object$formula, newdata)
+ X <- model.matrix(attr(rhs, "terms"), rhs)
+ }
+ type <- match.arg(type)
+ prdat <- list(n = nrow(X), X = X,
+ np = ncol(X), param = param, prec = prec)
+ prval <- jags.fit(prdat, type, glmm.pred, ...)
+ a <- (1 - level)/2
+ a <- c(a, 1 - a)
+ rval <- list(fit = coef(prval),
+ ci.fit = quantile(prval, probs = a))
+ rval
+ }

Note that the functions glmm.model and glmm.pred
containing the BUGS code are used within these R
functions. This implementation works fine, but is
not adequate when building a contributed R pack-
age, because functions such as dnorm and inprod are
not valid R objects, etc. For R packages, the best way
is to represent the BUGS model as a character vector
with lines as elements, and put that inside the R func-
tion. The custommodel function of the dclone pack-
age can be used to create such character vectors and
pass them to other dclone functions via the model ar-
gument.

Now we fit the model for the ovenbird data set to
estimate the effect of human disturbance on Oven-
bird abundance. We fit the model using the function
glmmPois:

> data(ovenbird)
> obmod <- glmmPois(count ~ uplow + thd,
+ ovenbird, n.clones = 5, n.update = 1000,
+ n.iter = 1000)

Then print the object and inspect the summary,

> obmod

glmmPois model

(Intercept) uplowlowland thd
2.00312 -1.34242 -0.01647
sigma

1.19318

> summary(obmod)

Call:
glmmPois(formula = count ~ uplow + thd, data = ovenbird,

n.clones = 5, n.update = 1000, n.iter = 1000)

glmmPois model

Estimate Std. Error 2.5 % 97.5 %
(Intercept) 2.00312 0.13767 1.73328 2.27
uplowlowland -1.34242 0.21503 -1.76387 -0.92
thd -0.01647 0.00569 -0.02763 -0.01
sigma 1.19318 0.09523 1.00653 1.38

Finally predict abundances as a function of distur-
bance (0–100%) by controlling for site characteristics
(Figure 3):

> thd <- seq(0, 100, len = 101)
> ndata <- data.frame(uplow = rep("lowland",
+ length(thd)), thd = thd)
> levels(ndata$uplow) <- levels(ovenbird$uplow)
> obpred <- predict(obmod, ndata, "lambda")
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Figure 3: Expected Ovenbird abundance (lambda) as
the function of percentage human disturbance (thd)
based on the Poisson mixed model. Line represents
the mean, gray shading indicates 95% prediction in-
tervals. Points are observations.

Ovenbird abundance was significantly higher in up-
land sites, and human disturbance had a significant
negative effect on expected Ovenbird abundance.
Unexplained variation (σ2 =1.425 ± 0.102 SE) was
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substantial, thus the choice of the Poisson mixed
model makes sense for this data set.

Summary

The data cloning algorithm is especially useful for
complex models for which other likelihood based
computational methods fail. The algorithm also can
numerically reveal potential identifiability issues re-
lated to hierarchical models. The dclone package
supports established MCMC software and provides
low level functions to help implementing high level
estimating procedures to get maximum likelihood
inferences and predictions for more specialized prob-
lems based on the data cloning algorithm.
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stringr: modern, consistent string
processing
by Hadley Wickham

Abstract String processing is not glamorous, but
it is frequently used in data cleaning and prepa-
ration. The existing string functions in R are
powerful, but not friendly. To remedy this, the
stringr package provides string functions that
are simpler and more consistent, and also fixes
some functionality that R is missing compared
to other programming languages.

Introduction

Strings are not glamorous, high-profile components
of R, but they do play a big role in many data clean-
ing and preparations tasks. R provides a solid set of
string operations, but because they have grown or-
ganically over time, they can be inconsistent and a
little hard to learn. Additionally, they lag behind the
string operations in other programming languages,
so that some things that are easy to do in languages
like Ruby or Python are rather hard to do in R.
The stringr package aims to remedy these problems
by providing a clean, modern interface to common
string operations.

More concretely, stringr:

• Processes factors and characters in the same
way.

• Gives functions consistent names and argu-
ments.

• Simplifies string operations by eliminating op-
tions that you don’t need 95% of the time (the
other 5% of the time you can use the base func-
tions).

• Produces outputs than can easily be used as in-
puts. This includes ensuring that missing in-
puts result in missing outputs, and zero length
inputs result in zero length outputs.

• Completes R’s string handling functions with
useful functions from other programming lan-
guages.

To meet these goals, stringr provides two basic
families of functions:

• basic string operations, and

• pattern matching functions which use regular
expressions to detect, locate, match, replace,
extract, and split strings.

These are described in more detail in the follow-
ing sections.

Basic string operations

There are three string functions that are closely re-
lated to their base R equivalents, but with a few en-
hancements:

• str_c is equivalent to paste, but it uses the
empty string (“”) as the default separator and
silently removes zero length arguments.

• str_length is equivalent to nchar, but it pre-
serves NA’s (rather than giving them length
2) and converts factors to characters (not inte-
gers).

• str_sub is equivalent to substr but it returns a
zero length vector if any of its inputs are zero
length, and otherwise expands each argument
to match the longest. It also accepts negative
positions, which are calculated from the left of
the last character. The end position defaults to
-1, which corresponds to the last character.

• str_str<- is equivalent to substr<-, but like
str_sub it understands negative indices, and
replacement strings not do need to be the same
length as the string they are replacing.

Three functions add new functionality:

• str_dup to duplicate the characters within a
string.

• str_trim to remove leading and trailing
whitespace.

• str_pad to pad a string with extra whitespace
on the left, right, or both sides.

Pattern matching

stringr provides pattern matching functions to de-
tect, locate, extract, match, replace, and split strings:

• str_detect detects the presence or absence of
a pattern and returns a logical vector. Based on
grepl.

• str_locate locates the first position of a
pattern and returns a numeric matrix with
columns start and end. str_locate_all locates
all matches, returning a list of numeric matri-
ces. Based on regexpr and gregexpr.
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• str_extract extracts text corresponding to
the first match, returning a character vector.
str_extract_all extracts all matches and re-
turns a list of character vectors.

• str_match extracts capture groups formed by
() from the first match. It returns a char-
acter matrix with one column for the com-
plete match and one column for each group.
str_match_all extracts capture groups from all
matches and returns a list of character matrices.

• str_replace replaces the first matched
pattern and returns a character vector.
str_replace_all replaces all matches. Based
on sub and gsub.

• str_split_fixed splits the string into a fixed
number of pieces based on a pattern and re-
turns a character matrix. str_split splits a
string into a variable number of pieces and re-
turns a list of character vectors.

Figure 1 shows how the simple (single match) form
of each of these functions work.

Arguments

Each pattern matching function has the same first
two arguments, a character vector of strings to pro-
cess and a single pattern (regular expression) to
match. The replace functions have an additional ar-
gument specifying the replacement string, and the
split functions have an argument to specify the num-
ber of pieces.

Unlike base string functions, stringr only offers
limited control over the type of matching. The
fixed() and ignore.case() functions modify the
pattern to use fixed matching or to ignore case, but
if you want to use perl-style regular expressions or
to match on bytes instead of characters, you’re out
of luck and you’ll have to use the base string func-
tions. This is a deliberate choice made to simplify
these functions. For example, while grepl has six ar-
guments, str_detect only has two.

Regular expressions

To be able to use these functions effectively, you’ll
need a good knowledge of regular expressions
(Friedl, 1997), which this paper is not going to teach
you. Some useful tools to get you started:

• A good reference sheet1

• A tool that allows you to interactively test2

what a regular expression will match

• A tool to build a regular expression3 from an
input string

When writing regular expressions, I strongly rec-
ommend generating a list of positive (pattern should
match) and negative (pattern shouldn’t match) test
cases to ensure that you are matching the correct
components.

Functions that return lists

Many of the functions return a list of vectors or ma-
trices. To work with each element of the list there
are two strategies: iterate through a common set of
indices, or use mapply to iterate through the vectors
simultaneously. The first approach is usually easier
to understand and is illustrated in Figure 2.

Conclusion

stringr provides an opinionated interface to strings
in R. It makes string processing simpler by remov-
ing uncommon options, and by vigorously enforcing
consistency across functions. I have also added new
functions that I have found useful from Ruby, and
over time, I hope users will suggest useful functions
from other programming languages. I will continue
to build on the included test suite to ensure that the
package behaves as expected and remains bug free.
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library(stringr)
strings <- c(" 219 733 8965", "329-293-8753 ", "banana", "595 794 7569",
"387 287 6718", "apple", "233.398.9187 ", "482 952 3315", "239 923 8115",
"842 566 4692", "Work: 579-499-7527", "$1000", "Home: 543.355.3679")

phone <- "([2-9][0-9]{2})[- .]([0-9]{3})[- .]([0-9]{4})"

# Which strings contain phone numbers?
str_detect(strings, phone)
strings[str_detect(strings, phone)]

# Where in the string is the phone number located?
loc <- str_locate(strings, phone)
loc
# Extract just the phone numbers
str_sub(strings, loc[, "start"], loc[, "end"])
# Or more conveniently:
str_extract(strings, phone)

# Pull out the three components of the match
str_match(strings, phone)

# Anonymise the data
str_replace(strings, phone, "XXX-XXX-XXXX")

Figure 1: Simple string matching functions for processing a character vector containing phone numbers
(among other things).

library(stringr)
col2hex <- function(col) {
rgb <- col2rgb(col)
rgb(rgb["red", ], rgb["green", ], rgb["blue", ], max = 255)

}

# Goal replace colour names in a string with their hex equivalent
strings <- c("Roses are red, violets are blue", "My favourite colour is green")

colours <- str_c("\\b", colors(), "\\b", collapse="|")
# This gets us the colours, but we have no way of replacing them
str_extract_all(strings, colours)

# Instead, let's work with locations
locs <- str_locate_all(strings, colours)
sapply(seq_along(strings), function(i) {

string <- strings[i]
loc <- locs[[i]]

# Convert colours to hex and replace
hex <- col2hex(str_sub(string, loc[, "start"], loc[, "end"]))
str_sub(string, loc[, "start"], loc[, "end"]) <- hex
string

})

Figure 2: A more complex situation involving iteration through a string and processing matches with a func-
tion.
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Bayesian Estimation of the GARCH(1,1)
Model with Student-t Innovations
by David Ardia and Lennart F. Hoogerheide

Abstract This note presents the R package
bayesGARCH which provides functions for the
Bayesian estimation of the parsimonious and ef-
fective GARCH(1,1) model with Student-t inno-
vations. The estimation procedure is fully auto-
matic and thus avoids the tedious task of tuning
an MCMC sampling algorithm. The usage of the
package is shown in an empirical application to
exchange rate log-returns.

Introduction

Research on changing volatility using time series
models has been active since the pioneer paper by
Engle (1982). From there, ARCH (AutoRegressive
Conditional Heteroscedasticity) and GARCH (Gen-
eralized ARCH) type models grew rapidly into a rich
family of empirical models for volatility forecasting
during the 80’s. These models are widespread and
essential tools in financial econometrics.

In the GARCH(p,q) model introduced by Boller-
slev (1986), the conditional variance at time t of the
log-return yt (of a financial asset or a financial index),
denoted by ht, is postulated to be a linear function of
the squares of past q log-returns and past p condi-
tional variances. More precisely:

ht
.
= α0 +

q

∑
i=1

αi y2
t−i +

p

∑
j=1

β jht−j ,

where the parameters satisfy the constraints αi ≥ 0
(i = 0, . . . ,q) and β j ≥ 0 (j = 1, . . . , p) in order to en-
sure a positive conditional variance. In most empir-
ical applications it turns out that the simple speci-
fication p = q = 1 is able to reproduce the volatil-
ity dynamics of financial data. This has led the
GARCH(1,1) model to become the workhorse model
by both academics and practitioners. Given a model
specification for ht, the log-returns are then modelled
as yt = εth1/2

t , where εt are i.i.d. disturbances. Com-
mon choices for εt are Normal and Student-t distur-
bances. The Student-t specification is particularly
useful, since it can provide the excess kurtosis in the
conditional distribution that is often found in finan-
cial time series processes (unlike models with Nor-
mal innovations).

Until recently, GARCH models have mainly been
estimated using the classical Maximum Likelihood
technique. Several R packages provide functions
for their estimation; see, e.g. fGarch (Wuertz and
Chalabi, 2009), rgarch (Ghalanos, 2010) and tseries

(Trapletti and Hornik, 2009). The Bayesian approach
offers an attractive alternative which enables small
sample results, robust estimation, model discrimi-
nation, model combination, and probabilistic state-
ments on (possibly nonlinear) functions of the model
parameters.

The package bayesGARCH (Ardia, 2007) imple-
ments the Bayesian estimation procedure described
in Ardia (2008, chapter 5) for the GARCH(1,1) model
with Student-t innovations. The approach, based
on the work of Nakatsuma (1998), consists of a
Metropolis-Hastings (MH) algorithm where the pro-
posal distributions are constructed from auxiliary
ARMA processes on the squared observations. This
methodology avoids the time-consuming and diffi-
cult task, especially for non-experts, of choosing and
tuning a sampling algorithm. The program is writ-
ten in R with some subroutines implemented in C in
order to speed up the simulation procedure. The va-
lidity of the algorithm as well as the correctness of
the computer code have been verified by the method
of Geweke (2004).

Model, priors and MCMC scheme

A GARCH(1,1) model with Student-t innovations for
the log-returns {yt} may be written via data aug-
mentation (see Geweke, 1993) as

yt = εt
(

ν−2
ν vt ht

)1/2 t = 1, . . . , T

εt
iid∼N (0,1)

vt
iid∼ IG

(ν

2
,
ν

2

)
ht

.
= α0 + α1y2

t−1 + βht−1 ,

(1)

where α0 > 0, α1, β ≥ 0 and ν > 2; N (0,1) denotes
the standard normal distribution; IG denotes the in-
verted gamma distribution. The restriction on the
degrees of freedom parameter ν ensures the condi-
tional variance to be finite and the restrictions on the
GARCH parameters α0,α1 and β guarantee its posi-
tivity. We emphasize the fact that only positivity con-
straints are implemented in the MH algorithm; no
stationarity conditions are imposed in the simulation
procedure.

In order to write the likelihood function, we de-
fine the vectors y .

= (y1, . . . ,yT)
′, v

.
= (v1, . . . ,vT)

′

and α
.
= (α0,α1)

′. We regroup the model parameters
into the vector ψ

.
= (α, β,ν). Then, upon defining the

T × T diagonal matrix

Σ .
= Σ(ψ,v) = diag

(
{vt

ν−2
ν ht(α, β)}T

t=1

)
,
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where ht(α, β)
.
= α0 + α1y2

t−1 + βht−1(α, β), we can
express the likelihood of (ψ,v) as

L(ψ,v |y) ∝ (detΣ)−1/2 exp
[
− 1

2 y′Σ−1y
]

. (2)

The Bayesian approach considers (ψ,v) as a random
variable which is characterized by a prior density de-
noted by p(ψ,v). The prior is specified with the help
of parameters called hyperparameters which are ini-
tially assumed to be known and constant. Moreover,
depending on the researcher’s prior information, this
density can be more or less informative. Then, by
coupling the likelihood function of the model param-
eters with the prior density, we can transform the
probability density using Bayes’ rule to get the pos-
terior density p (ψ,v | y) as follows:

p (ψ,v | y) = L (ψ,v | y) p (ψ,v)∫
L (ψ,v | y) p (ψ,v)dψdv

. (3)

This posterior is a quantitative, probabilistic descrip-
tion of the knowledge about the model parameters
after observing the data. For an excellent introduc-
tion on Bayesian econometrics we refer the reader to
Koop (2003).

We use truncated normal priors on the GARCH
parameters α and β

p (α) ∝ φN2 (α | µα,Σα) 1
{

α ∈ R2
+

}
p (β) ∝ φN1

(
β | µβ,Σβ

)
1{β ∈ R+} ,

where µ• and Σ• are the hyperparameters, 1{·} is the
indicator function and φNd is the d-dimensional nor-
mal density.

The prior distribution of vector v conditional on
ν is found by noting that the components vt are in-
dependent and identically distributed from the in-
verted gamma density, which yields

p (v | ν) =
(ν

2

) Tν
2
[
Γ
(ν

2

)]−T
(

T

∏
t=1

vt

)− ν
2−1

× exp

[
−1

2

T

∑
t=1

ν

vt

]
.

We follow Deschamps (2006) in the choice of the
prior distribution on the degrees of freedom parame-
ter. The distribution is a translated exponential with
parameters λ > 0 and δ ≥ 2

p (ν) = λexp [−λ (ν− δ)] 1{ν > δ} .

For large values of λ, the mass of the prior is con-
centrated in the neighborhood of δ and a constraint
on the degrees of freedom can be imposed in this
manner. Normality of the errors is assumed when
δ is chosen large. As pointed out by Deschamps
(2006), this prior density is useful for two reasons.
First, it is potentially important, for numerical rea-
sons, to bound the degrees of freedom parameter

away from two to avoid explosion of the conditional
variance. Second, we can approximate the normal-
ity of the errors while maintaining a reasonably tight
prior which can improve the convergence of the sam-
pler.

The joint prior distribution is then formed by as-
suming prior independence between the parameters,
i.e. p(ψ,v) = p(α)p(β)p(v | ν)p(ν).

The recursive nature of the GARCH(1,1) variance
equation implies that the joint posterior and the full
conditional densities cannot be expressed in closed
form. There exists no (conjugate) prior that can rem-
edy this property. Therefore, we cannot use the sim-
ple Gibbs sampler and need to rely on a more elab-
orated Markov Chain Monte Carlo (MCMC) simu-
lation strategy to approximate the posterior density.
The idea of MCMC sampling was first introduced by
Metropolis et al. (1953) and was subsequently gen-
eralized by Hastings (1970). The sampling strategy
relies on the construction of a Markov chain with re-
alizations (ψ[0],v[0]), . . . , (ψ[j],v[j]), . . . in the parame-
ter space. Under appropriate regularity conditions,
asymptotic results guarantee that as j tends to infin-
ity, (ψ[j],v[j]) tends in distribution to a random vari-
able whose density is (3). Hence, after discarding a
burn-in of the first draws, the realized values of the
chain can be used to make inference about the joint
posterior.

The MCMC sampler implemented in the pack-
age bayesGARCH is based on the approach of Ardia
(2008, chapter 5), inspired from the previous work by
Nakatsuma (1998). The algorithm consists of a MH
algorithm where the GARCH parameters are up-
dated by blocks (one block for α and one block for β)
while the degrees of freedom parameter is sampled
using an optimized rejection technique from a trans-
lated exponential source density. This methodology
has the advantage of being fully automatic. More-
over, in our experience, the algorithm explores the
domain of the joint posterior efficiently compared to
naive MH approaches or the Griddy-Gibbs sampler
of Ritter and Tanner (1992).

Illustration

We apply our Bayesian estimation methods to daily
observations of the Deutschmark vs British Pound
(DEM/GBP) foreign exchange log-returns. The sam-
ple period is from January 3, 1985, to December 31,
1991, for a total of 1974 observations. This data set
has been promoted as an informal benchmark for
GARCH time series software validation. From this
time series, the first 750 observations are used to
illustrate the Bayesian approach. The observation
window excerpt from our data set is plotted in Fig-
ure 1.
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Figure 1: DEM/GBP foreign exchange daily log-
returns.

We fit the GARCH(1,1) model with Student-t in-
novations to the data for this observation window
using the bayesGARCH function

> args(bayesGARCH)

function (y, mu.alpha = c(0, 0),
Sigma.alpha = 1000 * diag(1,2),
mu.beta = 0, Sigma.beta = 1000,
lambda = 0.01, delta = 2,
control = list())

The input arguments of the function are the vec-
tor of data, the hyperparameters and the list control
which can supply any of the following elements:

• n.chain: number of MCMC chain(s) to be gen-
erated; default 1.

• l.chain: length of each MCMC chain; default
10000.

• start.val: vector of starting values of the
chain(s); default c(0.01,0.1,0.7,20). Alter-
natively, the starting values could be set to the
maximum likelihood estimates using the func-
tion fGarch available in the package fGarch,
for instance.

• addPriorConditions: function which allows
the user to add any constraint on the model pa-
rameters; default NULL, i.e. not additional con-
straints are imposed.

• refresh: frequency of reports; default 10.

• digits: number of printed digits in the reports;
default 4.

As a prior distribution for the Bayesian estima-
tion we take the default values in bayesGARCH, which
are diffuse priors. We generate two chains for 5000
passes each by setting the control parameter values
n.chain = 2 and l.chain = 5000.

> data(dem2gbp)
> y <- dem2gbp[1:750]
> set.seed(1234)
> MCMC <- bayesGARCH(y, control = list(

l.chain = 5000, n.chain = 2))

chain: 1 iteration: 10
parameters: 0.0441 0.212 0.656 115
chain: 1 iteration: 20
parameters: 0.0346 0.136 0.747 136
...
chain: 2 iteration: 5000
parameters: 0.0288 0.190 0.754 4.67

The function outputs the MCMC chains as an ob-
ject of the class "mcmc" from the package coda (Plum-
mer et al., 2010). This package contains functions
for post-processing the MCMC output; see Plummer
et al. (2006) for an introduction. Note that coda is
loaded automatically with bayesGARCH.

A trace plot of the MCMC chains (i.e. a plot of
iterations vs. sampled values) can be generated us-
ing the function traceplot; the output is displayed
in Figure 2.

Convergence of the sampler (using the diagnostic
test of Gelman and Rubin (1992)), acceptance rates
and autocorrelations in the chains can be computed
as follows:

> gelman.diag(MCMC)

Point est. 97.5% quantile
alpha0 1.02 1.07
alpha1 1.01 1.05
beta 1.02 1.07
nu 1.02 1.06

Multivariate psrf

1.02

> 1 - rejectionRate(MCMC)

alpha0 alpha1 beta nu
0.890 0.890 0.953 1.000

> autocorr.diag(MCMC)

alpha0 alpha1 beta nu
Lag 0 1.000 1.000 1.000 1.000
Lag 1 0.914 0.872 0.975 0.984
Lag 5 0.786 0.719 0.901 0.925
Lag 10 0.708 0.644 0.816 0.863
Lag 50 0.304 0.299 0.333 0.558

The convergence diagnostic shows no evidence
against convergence for the last 2500 iterations (only
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Figure 2: Trace plot of the two MCMC chains (in black and gray) for the four model parameters generated by
the MH algorithm.

the second half of the chain is used by default
in gelman.diag) since the scale reduction factor is
smaller than 1.2; see Gelman and Rubin (1992) for
details. The MCMC sampling algorithm reaches very
high acceptance rates ranging from 89% for vector α
to 95% for β suggesting that the proposal distribu-
tions are close to the full conditionals. The rejection
technique used to generate ν allows a new value to
be drawn at each pass in the MH algorithm.

The one-lag autocorrelations in the chains range
from 0.87 for parameter α1 to 0.98 for parameter ν.
Using the function formSmpl, we discard the first
2500 draws from the overall MCMC output as a burn
in period, keep only every second draw to diminish
the autocorrelation, and merge the two chains to get
a final sample length of 2500.

> smpl <- formSmpl(MCMC, l.bi = 2500,
batch.size = 2)

n.chain : 2
l.chain : 5000
l.bi : 2500
batch.size: 2
smpl size : 2500

Basic posterior statistics can be easily obtained
with the summary method available for mcmc objects.

> summary(smpl)

Iterations = 1:2500
Thinning interval = 1
Number of chains = 1
Sample size per chain = 2500

1. Empirical mean and standard deviation
for each variable, plus standard error
of the mean:

Mean SD Naive SE Time-series SE
alpha0 0.0345 0.0138 0.000277 0.00173
alpha1 0.2360 0.0647 0.001293 0.00760
beta 0.6832 0.0835 0.001671 0.01156
nu 6.4019 1.5166 0.030333 0.19833

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
alpha0 0.0126 0.024 0.0328 0.0435 0.0646
alpha1 0.1257 0.189 0.2306 0.2764 0.3826
beta 0.5203 0.624 0.6866 0.7459 0.8343
nu 4.2403 5.297 6.1014 7.2282 10.1204

The marginal distributions of the model param-
eters can be obtained by first transforming the out-
put into a matrix and then using the function hist.
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Marginal posterior densities are displayed in Fig-
ure 3. We clearly notice the asymmetric shape of the
histograms; this is especially true for parameter ν.
This is also reflected by the differences between the
posterior means and medians. These results should
warn us against the abusive use of asymptotic justifi-
cations. In the present case, even 750 observations
do not suffice to justify the asymptotic symmetric
normal approximation for the parameter estimator’s
distribution.

Probabilistic statements on nonlinear functions of
the model parameters can be straightforwardly ob-
tained by simulation from the joint posterior sample.
In particular, we can test the covariance stationarity
condition and estimate the density of the uncondi-
tional variance when this condition is satisfied. Un-
der the GARCH(1,1) specification, the process is co-
variance stationary if α1 + β < 1, as shown by Boller-
slev (1986, page 310). The term (α1 + β) is the degree
of persistence in the autocorrelation of the squares
which controls the intensity of the clustering in the
variance process. With a value close to one, past
shocks and past variances will have a longer impact
on the future conditional variance.

To make inference on the persistence of the
squared process, we simply use the posterior sam-
ple and generate (α

[j]
1 + β[j]) for each draw ψ[j] in

the posterior sample. The posterior density of the
persistence is plotted in Figure 4. The histogram is
left-skewed with a median value of 0.923 and a max-
imum value of 1.050. In this case, the covariance sta-
tionarity of the process is supported by the data. The
unconditional variance of the GARCH(1,1) model is
α0/(1− α1 − β) given that α1 + β < 1. Conditionally
upon existence, the posterior mean is 0.387 and the
90% credible interval is [0.274,1.378]. The empirical
variance is 0.323.

Other probabilistic statements on interesting
functions of the model parameters can be obtained
using the joint posterior sample. Under specifica-
tion (1), the conditional kurtosis is 3(ν − 2)/(ν − 4)
provided that ν > 4. Using the posterior sample, we
estimate the posterior probability of existence for the
conditional kurtosis to be 0.994. Therefore, the exis-
tence is clearly supported by the data. Conditionally
upon existence, the posterior mean of the kurtosis is
8.21, the median is 5.84 and the 95% confidence in-
terval is [4.12,15.81], indicating heavier tails than for
the normal distribution. The positive skewness of the
posterior for the conditional kurtosis is caused by a
couple of very large values (the maximum simulated
value is 404.90). These correspond to draws with ν
slightly larger than 4. Note that if one desires to rule
out large values for the conditional kurtosis before-
hand, then one can set δ > 4 in the prior for ν. For
example, the choice δ = 4.5 would guarantee the kur-
tosis to be smaller than 15.

α1 + β

0.8 0.9 1.0 1.1

0

100

200

300

400

Figure 4: Posterior density of the persistence. The
histogram is based on 2500 draws from the joint pos-
terior distribution.

Prior restrictions and normal innovations

The control parameter addPriorConditions can be
used to impose any type of constraints on the model
parameters ψ during the estimation. For instance,
to ensure the estimation of a covariance stationary
GARCH(1,1) model, the function should be defined
as

> addPriorConditions <- function(psi)
+ psi[2] + psi[3] < 1

Finally, we can impose normality of the innova-
tions in a straightforward manner by setting the hy-
perparameters λ = 100 and δ = 500 in the bayesGARCH
function.

Practical advice

The estimation strategy implemented in
bayesGARCH is fully automatic and does not re-
quire any tuning of the MCMC sampler. This is
certainly an appealing feature for practitioners. The
generation of the Markov chains is however time
consuming and estimating the model over several
datasets on a daily basis can therefore take a signifi-
cant amount of time. In this case, the algorithm can
be easily parallelized, by running a single chain on
several processors. This can be easily achieved with
the package foreach (REvolution Computing, 2010),
for instance. Also, when the estimation is repeated
over updated time series (i.e. time series with more
recent observations), it is wise to start the algorithm
using the posterior mean or median of the param-
eters obtained at the previous estimation step. The
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Figure 3: Marginal posterior distributions of the model parameters. This histograms are based on 2500 draws
from the joint posterior sample.

impact of the starting values (burn-in phase) is likely
to be smaller and thus the convergence faster.

Finally, note that as any MH algorithm, the sam-
pler can get stuck at a given value, so that the chain
does not move anymore. However, the sampler
uses Taylor-made candidate densities that are espe-
cially constructed at each step, so it is almost im-
possible for this MCMC sampler to get stuck at a
given value for many subsequent draws. For ex-
ample, for our data set we still obtain posterior re-
sults that are almost equal to the results that we
obtained for the reasonable default initial values
c(0.01,0.1,0.7,20), even if we take the very poor
initial values c(0.1,0.01,0.4,50). In the unlikely
case that such ill behaviour does occur, one could
scale the data (to have standard deviation 1), or run
the algorithm with different initial values or a differ-
ent random seed.

Summary

This note presented the Bayesian estimation of the
GARCH(1,1) model with Student-t innovations us-
ing the R package bayesGARCH. We illustrated the
use of the package with an empirical application to

foreign exchange rate log-returns.

Acknowledgements

The authors acknowledge two anonymous review-
ers and the associate editor, Martyn Plummer, for
helpful comments that have led to improvements of
this note. David Ardia is grateful to the Swiss Na-
tional Science Foundation (under grant #FN PB FR1-
121441) for financial support. Any remaining errors
or shortcomings are the authors’ responsibility.

Bibliography

D. Ardia. Financial Risk Management with Bayesian
Estimation of GARCH Models: Theory and Ap-
plications, volume 612 of Lecture Notes in Eco-
nomics and Mathematical Systems. Springer-Verlag,
Berlin, Germany, June 2008. ISBN 978-3-540-78656-
6. URL http://www.springer.com/economics/
econometrics/book/978-3-540-78656-6.

D. Ardia. bayesGARCH: Bayesian Estimation of the
GARCH(1,1) Model with Student-t Innovations in R,

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://www.springer.com/economics/econometrics/book/978-3-540-78656-6
http://www.springer.com/economics/econometrics/book/978-3-540-78656-6


CONTRIBUTED RESEARCH ARTICLES 47

2007. URL http://CRAN.R-project.org/package=
bayesGARCH. R package version 1.00-05.

T. Bollerslev. Generalized autoregressive conditional
heteroskedasticity. Journal of Econometrics, 31(3):
307–327, Apr. 1986.

P. J. Deschamps. A flexible prior distribution for
Markov switching autoregressions with Student-t
errors. Journal of Econometrics, 133(1):153–190, July
2006.

R. F. Engle. Autoregressive conditional heteroscedas-
ticity with estimates of the variance of United
Kingdom inflation. Econometrica, 50(4):987–1008,
July 1982.

A. Gelman and D. B. Rubin. Inference from itera-
tive simulation using multiple sequences. Statisti-
cal Science, 7(4):457–472, Nov. 1992.

J. F. Geweke. Getting it right: Joint distribution tests
of posterior simulators. Journal of the American Sta-
tistical Association, 99(467):799–804, Sept. 2004.

J. F. Geweke. Bayesian treatment of the independent
Student-t linear model. Journal of Applied Economet-
rics, 8(S1):S19–S40, Dec. 1993.

A. Ghalanos. rgarch: Flexible GARCH modelling in
R, 2010. URL http://r-forge.r-project.org/
projects/rgarch.

W. K. Hastings. Monte Carlo sampling meth-
ods using Markov chains and their applications.
Biometrika, 57(1):97–109, Apr. 1970.

G. Koop. Bayesian Econometrics. Wiley-Interscience,
London, UK, 2003. ISBN 0470845678.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller. Equations of state cal-
culations by fast computing machines. Journal of
Chemical Physics, 21(6):1087–1092, June 1953.

T. Nakatsuma. A Markov-chain sampling algo-
rithm for GARCH models. Studies in Nonlin-
ear Dynamics and Econometrics, 3(2):107–117, July
1998. URL http://www.bepress.com/snde/vol3/
iss2/algorithm1/. Algorithm nr.1.

M. Plummer, N. Best, K. Cowles, and K. Vines.
CODA: Convergence diagnosis and output anal-
ysis for MCMC. R News, 6(1):7–11, Mar. 2006.

M. Plummer, N. Best, K. Cowles, and K. Vines. coda:
Output analysis and diagnostics for MCMC, 2010.
URL http://CRAN.R-project.org/package=coda.
R package version 0.13-5.

REvolution Computing. foreach: Foreach looping con-
struct for R, 2009. URL http://CRAN.R-project.
org/package=foreach.

C. Ritter and M. A. Tanner. Facilitating the Gibbs
sampler: The Gibbs stopper and the Griddy-Gibbs
sampler. Journal of the American Statistical Associa-
tion, 87(419):861–868, Sept. 1992.

A. Trapletti and K. Hornik. tseries: Time series anal-
ysis and computational finance, 2009. URL http:
//CRAN.R-project.org/package=tseries.

D. Wuertz and Y. Chalabi. fGarch: Rmetrics -
Autoregressive Conditional Heteroskedastic Modelling,
2009. URL http://CRAN.R-project.org/package=
fGarch.

David Ardia
University of Fribourg, Switzerland
david.ardia@unifr.ch

Lennart F. Hoogerheide
Erasmus University Rotterdam, The Netherlands

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://CRAN.R-project.org/package=bayesGARCH
http://CRAN.R-project.org/package=bayesGARCH
http://r-forge.r-project.org/projects/rgarch
http://r-forge.r-project.org/projects/rgarch
http://www.bepress.com/snde/vol3/iss2/algorithm1/
http://www.bepress.com/snde/vol3/iss2/algorithm1/
http://CRAN.R-project.org/package=coda
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=foreach
http://CRAN.R-project.org/package=tseries
http://CRAN.R-project.org/package=tseries
http://CRAN.R-project.org/package=fGarch
http://CRAN.R-project.org/package=fGarch
mailto:david.ardia@unifr.ch


48 CONTRIBUTED RESEARCH ARTICLES

cudaBayesreg: Bayesian Computation in
CUDA
by Adelino Ferreira da Silva

Abstract Graphical processing units are rapidly
gaining maturity as powerful general parallel
computing devices. The package cudaBayesreg
uses GPU–oriented procedures to improve the
performance of Bayesian computations. The
paper motivates the need for devising high-
performance computing strategies in the con-
text of fMRI data analysis. Some features of the
package for Bayesian analysis of brain fMRI data
are illustrated. Comparative computing perfor-
mance figures between sequential and parallel
implementations are presented as well.

A functional magnetic resonance imaging (fMRI)
data set consists of time series of volume data in 4D
space. Typically, volumes are collected as slices of
64 x 64 voxels. The most commonly used functional
imaging technique relies on the blood oxygenation
level dependent (BOLD) phenomenon (Sardy, 2007).
By analyzing the information provided by the BOLD
signals in 4D space, it is possible to make inferences
about activation patterns in the human brain. The
statistical analysis of fMRI experiments usually in-
volve the formation and assessment of a statistic im-
age, commonly referred to as a Statistical Paramet-
ric Map (SPM). The SPM summarizes a statistic in-
dicating evidence of the underlying neuronal acti-
vations for a particular task. The most common
approach to SPM computation involves a univari-
ate analysis of the time series associated with each
voxel. Univariate analysis techniques can be de-
scribed within the framework of the general linear
model (GLM) (Sardy, 2007). The GLM procedure
used in fMRI data analysis is often said to be “mas-
sively univariate”, since data for each voxel are in-
dependently fitted with the same model. Bayesian
methodologies provide enhanced estimation accu-
racy (Friston et al., 2002). However, since (non-
variational) Bayesian models draw on Markov Chain
Monte Carlo (MCMC) simulations, Bayesian esti-
mates involve a heavy computational burden.

The programmable Graphic Processor Unit
(GPU) has evolved into a highly parallel proces-
sor with tremendous computational power and
very high memory bandwidth (NVIDIA Corpora-
tion, 2010b). Modern GPUs are built around a scal-
able array of multithreaded streaming multipro-
cessors (SMs). Current GPU implementations en-
able scheduling thousands of concurrently executing
threads. The Compute Unified Device Architecture
(CUDA) (NVIDIA Corporation, 2010b) is a software
platform for massively parallel high-performance

computing on NVIDIA manycore GPUs. The CUDA
programming model follows the standard single-
program multiple-data (SPMD) model. CUDA
greatly simplifies the task of parallel programming
by providing thread management tools that work
as extensions of conventional C/C++ constructions.
Automatic thread management removes the bur-
den of handling the scheduling of thousands of
lightweight threads, and enables straightforward
programming of the GPU cores.

The package cudaBayesreg (Ferreira da Silva,
2010a) implements a Bayesian multilevel model
for the analysis of brain fMRI data in the CUDA
environment. The statistical framework in cud-
aBayesreg is built around a Gibbs sampler for multi-
level/hierarchical linear models with a normal prior
(Ferreira da Silva, 2010c). Multilevel modeling may
be regarded as a generalization of regression meth-
ods in which regression coefficients are themselves
given a model with parameters estimated from data
(Gelman, 2006). As in SPM, the Bayesian model
fits a linear regression model at each voxel, but
uses uses multivariate statistics for parameter esti-
mation at each iteration of the MCMC simulation.
The Bayesian model used in cudaBayesreg follows
a two–stage Bayes prior approach to relate voxel
regression equations through correlations between
the regression coefficient vectors (Ferreira da Silva,
2010c). This model closely follows the Bayesian
multilevel model proposed by Rossi, Allenby and
McCulloch (Rossi et al., 2005), and implemented
in bayesm (Rossi and McCulloch., 2008). This ap-
proach overcomes several limitations of the classi-
cal SPM methodology. The SPM methodology tra-
ditionally used in fMRI has several important limi-
tations, mainly because it relies on classical hypoth-
esis tests and p–values to make statistical inferences
in neuroimaging (Friston et al., 2002; Berger and Sel-
lke, 1987; Vul et al., 2009). However, as is often the
case with MCMC simulations, the implementation of
this Bayesian model in a sequential computer entails
significant time complexity. The CUDA implemen-
tation of the Bayesian model proposed here has been
able to reduce significantly the runtime processing
of the MCMC simulations. The main contribution
for the increased performance comes from the use
of separate threads for fitting the linear regression
model at each voxel in parallel.

Bayesian multilevel modeling

We are interested in the following Bayesian mul-
tilevel model, which has been analyzed by Rossi
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et al. (2005), and has been implemented as
rhierLinearModel in bayesm. Start out with a gen-
eral linear model, and fit a set of m voxels as,

yi = Xiβi + εi, εi
iid∼ N

(
0,σ2

i Ini

)
, i = 1, . . . ,m. (1)

In order to tie together the voxels’ regression equa-
tions, assume that the {βi} have a common prior dis-
tribution. To build the Bayesian regression model we
need to specify a prior on the {βi} coefficients, and a
prior on the regression error variances {σ2

i }. Follow-
ing Ferreira da Silva (2010c), specify a normal regres-
sion prior with mean ∆′zi for each β,

βi = ∆′zi + νi, νi
iid∼ N

(
0,Vβ

)
, (2)

where z is a vector of nz elements, representing char-
acteristics of each of the m regression equations.

The prior (2) can be written using the matrix form
of the multivariate regression model for k regression
coefficients,

B = Z∆ + V (3)

where B and V are m × k matrices, Z is a m × nz
matrix, ∆ is a nz × k matrix. Interestingly, the prior
(3) assumes the form of a second–stage regression,
where each column of ∆ has coefficients which de-
scribes how the mean of the k regression coefficients
varies as a function of the variables in z. In (3), Z
assumes the role of a prior design matrix.

The proposed Bayesian model can be written
down as a sequence of conditional distributions (Fer-
reira da Silva, 2010c),

yi | Xi, βi,σ2
i

βi | zi,∆,Vβ

σ2
i | νi, s2

i

Vβ | ν,V

∆ | Vβ, ∆̄, A.

(4)

Running MCMC simulations on the set of full condi-
tional posterior distributions (4), the full posterior for
all the parameters of interest may then be derived.

GPU computation

In this section, we describe some of the main de-
sign considerations underlying the code implemen-
tation in cudaBayesreg, and the options taken for
processing fMRI data in parallel. Ideally, the GPU
is best suited for computations that can be run
on numerous data elements simultaneously in par-
allel (NVIDIA Corporation, 2010b). Typical text-
book applications for the GPU involve arithmetic
on large matrices, where the same operation is per-
formed across thousands of elements at the same
time. Since the Bayesian model of computation out-
lined in the previous Section does not fit well in this

framework, some design options had to be assumed
in order to properly balance optimization, memory
constraints, and implementation complexity, while
maintaining numerical correctness. Some design re-
quirements for good performance on CUDA are as
follows (NVIDIA Corporation, 2010a): (i) the soft-
ware should use a large number of threads; (ii) dif-
ferent execution paths within the same thread block
(warp) should be avoided; (iii) inter-thread commu-
nication should be minimized; (iv) data should be
kept on the device as long as possible; (v) global
memory accesses should be coalesced whenever pos-
sible; (vi) the use of shared memory should be pre-
ferred to the use of global memory. We detail be-
low how well these requirements have been met
in the code implementation. The first requirement
is easily met by cudaBayesreg. On the one hand,
fMRI applications typically deal with thousands of
voxels. On the other hand, the package uses three
constants which can be modified to suit the avail-
able device memory, and the computational power
of the GPU. Specifically, REGDIM specifies the maxi-
mum number of regressions (voxels), OBSDIM speci-
fies the maximum length of the time series observa-
tions, and XDIM specifies the maximum number of re-
gression coefficients. Requirements (ii) and (iii) are
satisfied by cudaBayesreg as well. Each thread ex-
ecutes the same code independently, and no inter-
thread communication is required. Requirement (iv)
is optimized in cudaBayesreg by using as much con-
stant memory as permitted by the GPU. Data that
do not change between MCMC iterations are kept in
constant memory. Thus, we reduce expensive mem-
ory data transfers between host and device. For in-
stance, the matrix of voxel predictors X (see (1)) is
kept in constant memory. Requirement (v) is insuf-
ficiently met in cudaBayesreg. For maximum per-
formance, memory accesses to global memory must
be coalesced. However, different fMRI data sets
and parameterizations may generate data structures
with highly variable dimensions, thus rendering co-
alescence difficult to implement in a robust manner.
Moreover, GPU devices of Compute Capability 1.x
impose hard memory coalescing restrictions. Fortu-
nately, GPU devices of Compute Capability 2.x are
expected to lift some of the most taxing memory co-
alescing constraints. Finally requirement (vi) is not
met by the available code. The current kernel im-
plementation does not use shared memory. The rel-
ative complexity of the Bayesian computation per-
formed by each thread compared to the conventional
arithmetic load assigned to the thread has prevented
us from exploiting shared memory operations. The
task assigned to the kernel may be subdivided to re-
duce kernel complexity. However, this option may
easily compromise other optimization requirements,
namely thread independence. As detailed in the next
paragraph, our option has been to keep the compu-
tational design simple, by assigning the whole of the

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859



50 CONTRIBUTED RESEARCH ARTICLES

univariate regression to the kernel.
The computational model has been specified as

a grid of thread blocks of dimension 64 in which a
separate thread is used for fitting a linear regression
model at each voxel in parallel. Maximum efficiency
is expected to be achieved when the total number
of required threads to execute in parallel equals the
number of voxels in the fMRI data set, after appropri-
ate masking has been done. However, this approach
typically calls for the parallel execution of several
thousands of threads. To keep computational re-
sources low, while maintaining significant high effi-
ciency it is generally preferable to process fMRI data
slice-by-slice. In this approach, slices are processed
in sequence. Voxels in slices are processed in paral-
lel. Thus, for slices of dimension 64× 64, the required
number of parallel executing threads does not exceed
4096 at a time. The main computational bottleneck in
sequential code comes from the necessity of perform-
ing Gibbs sampling using a (temporal) univariate re-
gression model for all voxel time series. We coded
this part of the MCMC computation as device code,
i.e. a kernel to be executed by the CUDA threads.
CUDA threads execute on the GPU device that oper-
ates as a coprocessor to the host running the MCMC
simulation. Following the proposed Bayesian model
(4), each thread implements a Gibbs sampler to draw
from the posterior of a univariate regression with a
conditionally conjugate prior. The host code is re-
sponsible for controlling the MCMC simulation. At
each iteration, the threads perform one Gibbs itera-
tion for all voxels in parallel, to draw the threads’
estimators for the regression coefficients βi as speci-
fied in (4). In turn, the host, based on the simulated
βi values, draws from the posterior of a multivariate
regression model to estimate Vβ and ∆. These values
are then used to drive the next iteration.

The bulk of the MCMC simulations for Bayesian
data analysis is implemented in the kernel (device
code). Most currently available RNGs for the GPU
tend to be have too high time- and space-complexity
for our purposes. Therefore, we implemented and
tested three different random number generators
(RNGs) in device code, by porting three well-known
RNGs to device code. Marsaglia’s multicarry RNG
(Marsaglia, 2003) follows the R implementation, is
the fastest one, and is used by default; Brent’s
RNG (Brent, 2007) has higher quality but is not-
so-fast; Matsumoto’s Mersenne Twister (Matsumoto
and Nishimura, 1998) is slower than the others. In
addition, we had to ensure that different threads re-
ceive different random seeds. We generated random
seeds for the threads by combining random seeds
generated by the host with the threads’ unique iden-
tification numbers. Random deviates from the nor-
mal (Gaussian) distribution and chi-squared distri-
bution had to be implemented in device code as well.
Random deviates from the normal distribution were
generated using the Box-Muller method. In a similar

vein, random deviates from the chi-squared distri-
bution with ν number of degrees of freedom, χ2(ν),
were generated from gamma deviates, Γ(ν/2,1/2),
following the method of Marsaglia and Tsang speci-
fied in (Press et al., 2007).

The next Sections provide details on how to use
cudaBayesreg (Ferreira da Silva, 2010b) for fMRI
data analysis. Two data sets, which are included and
documented in the complementary package cud-
aBayesregData (Ferreira da Silva, 2010b), have been
used in testing: the ‘fmri’ and the ‘swrfM’ data sets.
We performed MCMC simulations on these data
sets using three types of code implementations for
the Bayesian multilevel model specified before: a
(sequential) R-language version, a (sequential) C-
language version, and a CUDA implementation.
Comparative runtimes for 3000 iterations in these
three situations, for the data sets ‘fmri’ and ‘swrfM’,
are as follows.

Runtimes in seconds for 3000 iterations:

slice R-code C-code CUDA
fmri 3 1327 224 22
swrfM 21 2534 309 41

Speed-up factors between the sequential versions
and the parallel CUDA implementation are summa-
rized next.

Comparative speedup factors:

C-vs-R CUDA-vs-C CUDA-vs-R
fmri 6.0 10.0 60.0
swrfM 8.2 7.5 61.8

In these tests, the C-implementation provided,
approximately, a 7.6× mean speedup factor relative
to the equivalent R implementation. The CUDA im-
plementation provided a 8.8× mean speedup factor
relative to the equivalent C implementation. Over-
all, the CUDA implementation yielded a significant
60× speedup factor. The tests were performed on a
notebook equipped with a (low–end) graphics card:
a ‘GeForce 8400M GS’ NVIDIA device. This GPU de-
vice has just 2 multiprocessors, Compute Capability
1.1, and delivers single–precision performance. The
compiler flags used in compiling the source code are
detailed in the package’s Makefile. In particular, the
optimization flag -O3 is set there. It is worth noting
that the CUDA implementation in cudaBayesreg af-
fords much higher speedups. First, the CUDA im-
plementation may easily be modified to process all
voxels of a fMRI volume in parallel, instead of pro-
cessing data in a slice-by-slice basis. Second, GPUs
with 16 multiprocessors and 512 CUDA cores and
Compute Capability 2.0 are now available.
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Experiments using the fmri test
dataset

The data set ‘fmri.nii.gz’ is available from the FM-
RIB/FSL site (www.fmrib.ox.ac.uk/fsl). This data
set is from an auditory–visual experiment. Au-
ditory stimulation was applied as an alternating
“boxcar” with 45s-on-45s-off and visual stimula-
tion was applied as an alternating “boxcar” with
30s-on-30s-off. The data set includes just 45 time
points and 5 slices from the original 4D data.
The file ‘fmri_filtered_func_data.nii’ included in cud-
aBayesregData was obtained from ‘fmri.nii.gz’ by
applying FSL/FEAT pre-preprocessing tools. For
input/output of NIFTI formatted fMRI data sets
cudaBayesreg depends on the R package oro.nifti
(Whitcher et al., 2010). The following code runs the
MCMC simulation for slice 3 of the fmri dataset, and
saves the result.

> require("cudaBayesreg")
> slicedata <- read.fmrislice(fbase = "fmri",
+ slice = 3, swap = TRUE)
> ymaskdata <- premask(slicedata)
> fsave <- "/tmp/simultest1.sav"
> out <- cudaMultireg.slice(slicedata,
+ ymaskdata, R = 3000, keep = 5,
+ nu.e = 3, fsave = fsave, zprior = FALSE)

We may extract the posterior probability (PPM)
images for the visual (vreg=2) and auditory (vreg=4)
stimulation as follows (see Figures 1 and 2).

> post.ppm(out = out, slicedata = slicedata,
+ ymaskdata = ymaskdata, vreg = 2,
+ col = heat.colors(256))

Figure 1: PPM images for the visual stimulation

> post.ppm(out = out, slicedata = slicedata,
+ ymaskdata = ymaskdata, vreg = 4,
+ col = heat.colors(256))

Figure 2: PPM images for the auditory stimulation

To show the fitted time series for a (random) ac-
tive voxel, as depicted in Figure 3, we use the code:

> post.tseries(out = out, slicedata = slicedata,
+ ymaskdata = ymaskdata, vreg = 2)

range pm2: -1.409497 1.661774

Figure 3: Fitted time–series for an active voxel

Summary statistics for the posterior mean values
of regression coefficient vreg=2, are presented next.
The same function plots the histogram of the pos-
terior distribution for vreg=2, as represented in Fig-
ure 4.

> post.simul.hist(out = out, vreg = 2)
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Call:
density.default(x = pm2)

Data: pm2 (1525 obs.); Bandwidth 'bw' = 0.07947

x y
Min. :-1.6479 Min. :0.0000372
1st Qu.:-0.7609 1st Qu.:0.0324416
Median : 0.1261 Median :0.1057555
Mean : 0.1261 Mean :0.2815673
3rd Qu.: 1.0132 3rd Qu.:0.4666134
Max. : 1.9002 Max. :1.0588599

[1] "active range:"
[1] 0.9286707 1.6617739
[1] "non-active range:"
[1] -1.4094965 0.9218208
hpd (95%)= -0.9300451 0.9286707

Figure 4: Histogram of the posterior distribution of
the regression coefficient β2 (slice 3).

An important feature of the Bayesian model used
in cudaBayesreg is the shrinkage induced by the
hyperprior ν on the estimated parameters. We
may assess the adaptive shrinkage properties of the
Bayesian multilevel model for two different values of
ν as follows.

> nu2 <- 45
> fsave2 <- "/tmp/simultest2.sav"
> out2 <- cudaMultireg.slice(slicedata,
+ ymaskdata, R = 3000, keep = 5,
+ nu.e = nu2, fsave = fsave2,
+ zprior = F)
> vreg <- 2
> x1 <- post.shrinkage.mean(out = out,
+ slicedata$X, vreg = vreg,
+ plot = F)
> x2 <- post.shrinkage.mean(out = out2,
+ slicedata$X, vreg = vreg,
+ plot = F)
> par(mfrow = c(1, 2), mar = c(4,

+ 4, 1, 1) + 0.1)
> xlim = range(c(x1$beta, x2$beta))
> ylim = range(c(x1$yrecmean, x2$yrecmean))
> plot(x1$beta, x1$yrecmean, type = "p",
+ pch = "+", col = "violet",
+ ylim = ylim, xlim = xlim,
+ xlab = expression(beta), ylab = "y")
> legend("topright", expression(paste(nu,
+ "=3")), bg = "seashell")
> plot(x2$beta, x2$yrecmean, type = "p",
+ pch = "+", col = "blue", ylim = ylim,
+ xlim = xlim, xlab = expression(beta),
+ ylab = "y")
> legend("topright", expression(paste(nu,
+ "=45")), bg = "seashell")
> par(mfrow = c(1, 1))

Figure 5: Shrinkage assessment: variability of mean
predictive values for ν = 3 and ν = 45.

Experiments using the SPM audi-
tory dataset

In this Section, we exemplify the analysis of the ran-
dom effects distribution ∆, following the specifica-
tion of cross-sectional units (group information) in
the Z matrix of the statistical model. The Bayesian
multilevel statistical model allows for the analysis
of random effects through the specification of the Z
matrix for the prior in (2). The dataset with pre-
fix swrfM (argument fbase="swrfM") in the pack-
age’s data directory, include mask files associated
with the partition of the fMRI dataset ‘swrfM’ in 3
classes: cerebrospinal fluid (CSF), gray matter (GRY)
and white matter (WHT). As before, we begin by
loading the data and running the simulation. This
time, however, we call cudaMultireg.slice with the
argument zprior=TRUE. This argument will launch
read.Zsegslice, that reads the segmented images
(CSF/GRY/WHT) to build the Z matrix.
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> fbase <- "swrfM"
> slice <- 21
> slicedata <- read.fmrislice(fbase = fbase,
+ slice = slice, swap = TRUE)
> ymaskdata <- premask(slicedata)
> fsave3 <- "/tmp/simultest3.sav"
> out <- cudaMultireg.slice(slicedata,
+ ymaskdata, R = 3000, keep = 5,
+ nu.e = 3, fsave = fsave3,
+ zprior = TRUE)

We confirm that areas of auditory activation have
been effectively selected by displaying the PPM im-
age for regression variable vreg=2.

> post.ppm(out = out, slicedata = slicedata,
+ ymaskdata = ymaskdata, vreg = 2,
+ col = heat.colors(256))

Figure 6: PPM images for the auditory stimulation

Plots of the draws of the mean of the random ef-
fects distribution are presented in Figure 7.

> post.randeff(out)

Figure 7: Draws of the mean of the random effects
distribution

Random effects plots for each of the 3 classes are
obtained by calling,

> post.randeff(out, classnames = c("CSF",
+ "GRY", "WHT"))

Plots of the random effects associated with the 3
classes are depicted in Figures 8–10.

Figure 8: Draws of the random effects distribution
for class CSF
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Figure 9: Draws of the random effects distribution
for class GRY

> post.randeff(out, classnames = c("CSF",
+ "GRY", "WHT"))

Figure 10: Draws of the random effects distribution
for class WHT

Conclusion

The CUDA implementation of the Bayesian model in
cudaBayesreg has been able to reduce significantly
the runtime processing of MCMC simulations. For
the applications described in this paper, we have
obtained speedup factors of 60× compared to the
equivalent sequential R code. The results point out
the enormous potential of parallel high-performance
computing strategies on manycore GPUs.
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binGroup: A Package for Group Testing
by Christopher R. Bilder, Boan Zhang, Frank
Schaarschmidt and Joshua M. Tebbs

Abstract When the prevalence of a disease or of
some other binary characteristic is small, group
testing (also known as pooled testing) is fre-
quently used to estimate the prevalence and/or
to identify individuals as positive or negative.
We have developed the binGroup package as
the first package designed to address the esti-
mation problem in group testing. We present
functions to estimate an overall prevalence for
a homogeneous population. Also, for this set-
ting, we have functions to aid in the very impor-
tant choice of the group size. When individu-
als come from a heterogeneous population, our
group testing regression functions can be used
to estimate an individual probability of disease
positivity by using the group observations only.
We illustrate our functions with data from a mul-
tiple vector transfer design experiment and a hu-
man infectious disease prevalence study.

Introduction

Group testing, where individuals are composited
into pools to screen for a binary characteristic, has
a long history of successful application in areas
such as human infectious disease detection, veteri-
nary screening, drug discovery, and insect vector
pathogen transmission (Pilcher et al., 2005; Peck,
2006; Remlinger et al., 2006; Tebbs and Bilder, 2004).
Group testing works well in these settings because
the prevalence is usually small and individual spec-
imens (e.g., blood, urine, or cattle ear notches) can
be composited without loss of diagnostic test accu-
racy. Group testing is performed often by assigning
each individual to a group and testing every group
for a positive or negative outcome of the binary char-
acteristic. Using these group responses alone, esti-
mates of overall prevalence or subject-specific prob-
abilities of positivity can be found. When further
individual identification of the binary characteristic
is of interest, re-testing of specimens within positive
groups can be performed to decode the individual
positives from the negatives. There are other vari-
ants to how group testing is applied, and some will
be discussed in this paper. A recent review of group
testing for estimation and identification is found in
Hughes-Oliver (2006).

Our binGroup package (Zhang et al., 2010) is the
first dedicated to the group testing estimation prob-
lem within homogeneous or heterogeneous popula-
tions. We also provide functions to determine the op-
timal group size based on prior knowledge of what
the overall prevalence may be. All of our functions

have been written in familiar formats to those where
individual testing is used (e.g., binom.confint() in
binom (Dorai-Raj, 2009) or glm() in stats).

Homogeneous populations

Group testing has been used traditionally in settings
where one overall prevalence of a binary character-
istic within a homogeneous population is of interest.
Typically, one assumes that each individual is inde-
pendent and has the same probability p of the charac-
teristic, so that p is the overall prevalence. In the next
section, we will consider the situation where individ-
uals have different probabilities of positivity. Here,
we let θ denote the probability that a group of size s is
positive. One can show then p = 1− (1− θ)1/s when
diagnostic testing is perfect. This equation plays
a central role in making estimates and inferences
about individuals when only the group responses are
known and each individual is within only one group.

We have written two functions to calculate a con-
fidence interval for p. First, the bgtCI() function cal-
culates intervals for p when a common group size is
used throughout the sample. For example, Ornaghi
et al. (1999) estimate the probability that the female
Delphacodes kuscheli (planthopper) transfers the Mal
Rio Cuarto (MRC) virus to maize crops. In stage 4 of
the experiment, n = 24 enclosed maize plants each
had s = 7 planthopper vectors placed on them for
forty-eight hours and there were y = 3 plants that
tested positive for the MRC virus after two months.
The 95% confidence interval for the probability of
transmission p is calculated by

> bgtCI(n = 24, y = 3, s = 7,
+ conf.level = 0.95,
+ alternative = "two.sided",
+ method = "Score")

95 percent Score confidence interval:
[ 0.006325, 0.05164 ]

Point estimate: 0.0189

where the score (Wilson) interval was used. While
the score interval is usually one of the best in terms of
coverage (Tebbs and Bilder, 2004), other intervals cal-
culated by bgtCI() include the Clopper-Pearson, the
asymptotic second-order corrected, and the Wald.
The maximum likelihood estimate for p is 1− (1−
3/24)1/7 = 0.0189.

Group testing is applied usually with equally
sized groups. When a common group size is not
used, perhaps due to physical or design constraints,
our bgtvs() function can calculate the exact interval
proposed by Hepworth (1996, equation 5). The ar-
guments to bgtvs() include the following vectors: s,
the different group sizes occurring in the design; n,
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the corresponding numbers of groups for each group
size; and y, the corresponding numbers of observed
positive groups for each group size. Note that the al-
gorithm becomes computationally expensive when
the number of different group sizes is more than
three.

One of the most important design considerations
is the choice of the group size. Choosing a group size
that is too small may result in few groups testing pos-
itive, so more tests are used than necessary. Choos-
ing a group size that is too large may result in almost
all groups testing positive, which leads to a poor es-
timate of p. As a rule of thumb, one tries to choose a
group size so that about half of the groups test pos-
itive. More formally, one can choose an s that mini-
mizes the mean square error (MSE) for a fixed n and a
prior estimate of p (Swallow, 1985). If we use a prior
prevalence estimate of 0.0189, 24 groups, and a max-
imum possible group size of 100, our estDesign()
function finds the optimal choice of s to be 43:

> estDesign(n = 24, smax = 100, p.tr = 0.0189)
group size s with minimal mse(p) = 43

$varp [1] 3.239869e-05

$mse [1] 3.2808e-05

$bias [1] 0.0006397784

$exp [1] 0.01953978

The function provides the corresponding variance,
MSE, bias, and expected value for the maximum like-
lihood estimator of p. While s = 43 is optimal for
this example, large group sizes can not necessarily
be used in practice (e.g., dilution effects may prevent
using a large group size), but this can still be used as
a goal.

Our other functions for homogeneous popula-
tion settings include bgtTest(), which calculates a
p-value for a hypothesis test involving p. Also,
bgtPower() calculates the power of the hypothesis
test. Corresponding to bgtPower(), the nDesign()
and sDesign() functions calculate the power with in-
creasing n or s, respectively, with plot.bgtDesign()
providing a plot. These functions allow researchers
to design their own experiment in a similar manner
to that described in Schaarschmidt (2007).

Heterogeneous populations

When covariates for individuals are available, we
can model the probability of positivity as with any
binary regression model. However, the complicat-
ing aspect here is that only the group responses
may be available. Also, if both group responses
and responses from re-tests are available, the cor-
relation between these responses makes the analy-
sis more difficult. Vansteelandt et al. (2000) and Xie

(2001) have both proposed ways to fit these models.
Vansteelandt et al. (2000) use a likelihood function
written in terms of the initial group responses and
maximize it to obtain the maximum likelihood esti-
mates of the model parameters. This fitting proce-
dure can not be used when re-tests are available. Xie
(2001) writes the likelihood function in terms of the
unobserved individual responses and uses the EM
algorithm for estimation. This approach has an ad-
vantage over Vansteelandt et al. (2000) because it can
be used in more complicated settings such as when
re-tests are available or when individuals appear in
multiple groups (e.g., matrix or array-based pool-
ing). However, while Xie’s fitting procedure is more
general, it can be very slow to converge for some
group testing protocols.

The gtreg() function fits group testing regres-
sion models in situations where individuals appear
in only one group and no re-tests are performed. The
function call is very similar to that of glm() in the
stats package. Additional arguments include sensi-
tivity and specificity of the group test; group num-
bers for the individuals, and specification of either
the Vansteelandt or Xie fitting methods. Both model-
fitting methods will produce approximately the same
estimates and corresponding standard errors.

We illustrate the gtreg() function with data
from Vansteelandt et al. (2000). The data were ob-
tained through a HIV surveillance study of pregnant
women in rural parts of Kenya. For this example, we
model the probability that a women is HIV positive
using the covariates age and highest attained educa-
tion level (treated as ordinal). The data structure is

> data(hivsurv)
> tail(hivsurv[,c(3,5,6:8)], n = 7)

AGE EDUC HIV gnum groupres
422 29 3 1 85 1
423 17 2 0 85 1
424 18 2 0 85 1
425 18 2 0 85 1
426 22 3 0 86 0
427 30 2 0 86 0
428 34 3 0 86 0

Each individual within a group (gnum is the
group number) is given the same group response
(groupres) within the data set. For example, indi-
vidual #422 is positive (1) for HIV, and this leads to
all individuals within group #85 to have a positive
group response. Note that the individual HIV re-
sponses are known here because the purpose of the
original study was to show group testing works as
well as individual testing (Verstraeten et al., 1998).
Continuing, the gtreg() function fits the model and
the fit is summarized with summary():

> fit1 <- gtreg(formula = groupres ~ AGE + EDUC,
+ data = hivsurv, groupn = gnum, sens = 0.99,
+ spec = 0.95, linkf = "logit",
+ method = "Vansteelandt")
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> summary(fit1)

Call: gtreg(formula = groupres ~ AGE + EDUC,
data = hivsurv, groupn = gnum, sens = 0.99,
spec = 0.95, linkf = "logit",
method = "Vansteelandt")

Deviance Residuals:
Min 1Q Median 3Q Max

-1.1811 -0.9384 -0.8219 1.3299 1.6696

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.99039 1.59911 -1.870 0.0615 .
AGE -0.05163 0.06748 -0.765 0.4443
EDUC 0.73621 0.43885 1.678 0.0934 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*'
0.05 '.' 0.1 ' ' 1

Null deviance: 191.4 on 427 degrees of freedom
Residual deviance: 109.4 on 425 degrees of freedom
AIC: 115.4

Number of iterations in optim(): 138

The results from gtreg() are stored in fit1 here,
which has a "gt" class type. The estimated model
can be written as

logit( p̂ik) = −2.99− 0.0516Ageik + 0.7362Educik

where p̂ik is the estimated probability that the ith in-
dividual in the kth group is positive. In addition to
the summary.gt() function, method functions to find
residuals and predicted values are available.

We have also written a function sim.g() that sim-
ulates group test responses for a given binary regres-
sion model. The options within it allow for a user-
specified set of covariates or one covariate that is
simulated from a gamma distribution. Individuals
are randomly put into groups of a specified size by
the user. The function can also be used to simulate
group testing data from a homogeneous population
by specifying zero coefficients for covariates.

One of the most important innovations in group
testing is the development of matrix or array-based
pooling (Phatarfod and Sudbury, 1994; Kim et al.,
2007). In this setting, specimens are placed into a
matrix-like grid so that they can be pooled within
each row and within each column. Potentially pos-
itive individuals occur at the intersection of positive
rows and columns. If identification of these positive
individuals is of interest, individual re-testing can be
done on specimens at these intersections. With the
advent of high-throughput screening, matrix pooling
has become easier to perform because pooling and
testing is done with minimal human intervention.

The gtreg.mp() function fits a group testing re-
gression model in a matrix pooling setting. The row
and column group responses can be used alone to fit
the model. If individual re-testing is performed on

the positive row and column intersections, these re-
tests can be included when fitting the model. Note
that the speed of model convergence can be im-
proved by including re-tests. Within gtreg.mp(),
we implement the EM algorithm given by Xie (2001)
for matrix pooling settings where individual re-tests
may or may not be performed. Due to the compli-
cated response nature of matrix pooling, this algo-
rithm involves using Gibbs sampling for the E-step
in order to approximate the conditional expected val-
ues of a positive individual response.

Through personal communication with Minge
Xie, we discovered that while he suggested the
model fitting procedure could be used for matrix
pooling, he had not implemented it; therefore, to our
knowledge, this is the first time group testing regres-
sion models for a matrix pooling setting have been
put into practice. Zhang and Bilder (2009) provide
a technical report on the model fitting details. We
hope that the gtreg.mp() function will encourage re-
searchers to include covariates when performing ma-
trix pooling rather than assume one common p, as
has been done in the past.

The sim.mp() function simulates matrix pooling
data. In order to simulate the data for a 5× 6 and a
4× 5 matrix, we can implement the following:

> set.seed(9128)
> sa1a <- sim.mp(par = c(-7,0.1), n.row = c(5,4),
+ linkf = "logit", n.col = c(6,5), sens = 0.95,
+ spec = 0.95)
> sa1 <- sa1a$dframe
> head(sa1)

x col.resp row.resp coln rown arrayn retest
1 29.961 0 0 1 1 1 NA
2 61.282 0 1 1 2 1 NA
3 34.273 0 1 1 3 1 NA
4 46.190 0 0 1 4 1 NA
5 39.438 0 1 1 5 1 NA
6 45.880 1 0 2 1 1 NA

where sa1 contains the column, row, and re-test re-
sponses along with one covariate x. The coln, rown,
and arrayn variables are the column, row, and array
numbers, respectively, for the responses. The covari-
ate is simulated using the default gamma distribu-
tion with shape parameter 20 and scale parameter
2 (a user-specified matrix of covariates can also be
used with the function). The par argument gives the
coefficients in the model of logit(pijk) = −7 + 0.1xijk
where xijk and pijk are the covariate and positivity
probability, respectively, for the individual in row i,
column j, and array k. We fit a model to the data us-
ing the following:

> fit1mp <- gtreg.mp(formula = cbind(col.resp,
+ row.resp) ~ x, data = sa1, coln = coln,
+ rown = rown, arrayn = arrayn, sens = 0.95,
+ spec = 0.95, linkf = "logit", n.gibbs = 2000)
> coef(fit1mp)
(Intercept) x
-6.23982684 0.08659878
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The coefficients are similar to the ones used to simu-
late the data. Methods to summarize the model’s fit
and to perform predictions are also available.

Conclusion

Group testing is used in a vast number of applica-
tions where a binary characteristic is of interest and
individual specimens can be composited. Our pack-
age combines together the most often used and rec-
ommended confidence intervals for p. Also, our
package makes the regression methods of Vanstee-
landt et al. (2000) and Xie (2001) easily accessible
for the first time. We hope this will encourage re-
searchers to take into account potentially important
covariates in a group testing setting.

We see the current form of the binGroup pack-
age as a beginning rather than an end to meeting re-
searcher needs. There are many additions that would
be further helpful to researchers. For example, there
are a number of re-testing protocols, such as halving
(Gastwirth and Johnson, 1994) or sub-dividing posi-
tive groups of any size (Kim et al., 2007), that could
be implemented, but would involve a large amount
of new programming due to the complex nature of
the re-testing. Also, the binGroup package does not
have any functions solely for individual identifica-
tion of a binary characteristic. For example, the opti-
mal group size to use for identification alone is usu-
ally different to the optimal group size to use when
estimating p. Given these desirable extensions, we
encourage others to send us their functions or write
new functions of their own. We would be willing to
work with anyone to include them within the bin-
Group package. This would enable all researchers
to have one group testing package rather than many
small packages with much duplication.
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The RecordLinkage Package: Detecting
Errors in Data
by Murat Sariyar and Andreas Borg

Abstract Record linkage deals with detecting
homonyms and mainly synonyms in data. The
package RecordLinkage provides means to per-
form and evaluate different record linkage meth-
ods. A stochastic framework is implemented
which calculates weights through an EM al-
gorithm. The determination of the necessary
thresholds in this model can be achieved by tools
of extreme value theory. Furthermore, machine
learning methods are utilized, including deci-
sion trees (rpart), bootstrap aggregating (bag-
ging), ada boost (ada), neural nets (nnet) and
support vector machines (svm). The generation
of record pairs and comparison patterns from
single data items are provided as well. Com-
parison patterns can be chosen to be binary or
based on some string metrics. In order to reduce
computation time and memory usage, blocking
can be used. Future development will concen-
trate on additional and refined methods, perfor-
mance improvements and input/output facili-
ties needed for real-world application.

Introduction

When dealing with data from different sources that
stem from and represent one realm, it is likely that
homonym and especially synonym errors occur. In
order to reduce these errors either different data files
are linked or one data file is deduplicated. Record
linkage is the task of reducing such errors through
a vast number of different methods. These methods
can be divided into two classes. One class consists of
stochastic methods based on the framework of Fel-
legi and Sunter (1969). The other class comprises
non-stochastic methods from the machine learning
context. Methods from both classes need preliminary
steps in order to generate data pairs from single data
items. These record pairs are then transformed into
comparison patterns. An exemplary comparison pat-
tern is of the form γ = (1,0,1,0,1,0,0,0) where only
agreement and non-agreement of eight attributes
are evaluated. This transformation and other pre-
processing steps are described in the next section.
Stochastic record linkage is primarily defined by the
assumption of a probability model concerning prob-
abilities of agreement of attributes conditional on the
matching status of the underlying data pair. Machine
learning methods reduce the problem of record link-

age to a classification problem.
The package RecordLinkage is designed to facil-

itate the application of record linkage in R. The idea
for this package evolved whilst using R for record
linkage of data stemming from a German cancer reg-
istry. An evaluation of different methods thereafter
lead to a large number of functions and data struc-
tures. The organisation of these functions and data
structures as an R package eases the evaluation of
record linkage methods and facilitates the applica-
tion of record linkage to different data sets. These
are the main goals behind the package described in
this paper.

RecordLinkage is available from our project
home page on R-Forge1 as well as from CRAN.

Data preprocessing

First steps in data preprocessing usually include
standardization of data, for example conversion of
accented characters or enforcing a well-defined date
format. However, such methods are not included in
RecordLinkage. In the package, the user is respon-
sible for providing the data in the form the package
expects it.

Data must reside in a data frame where each
row holds one record and columns represent at-
tributes. The package includes two example data
sets, RLdata500 and RLdata10000, which differ in the
number of records.2 The following example shows
the structure of RLdata500.

> library(RecordLinkage)
> data(RLdata500)
> RLdata500[1:5, ]

fname_c1 fname_c2 lname_c1 lname_c2 by bm bd
1 CARSTEN <NA> MEIER <NA> 1949 7 22
2 GERD <NA> BAUER <NA> 1968 7 27
3 ROBERT <NA> HARTMANN <NA> 1930 4 30
4 STEFAN <NA> WOLFF <NA> 1957 9 2
5 RALF <NA> KRUEGER <NA> 1966 1 13

The fields in this data set are first name and fam-
ily name, each split into a first and second compo-
nent, and the date of birth, with separate components
for day, month and year.

Column names are reused for comparison pat-
terns (see below). If a record identifier other than
the row number is desired, it should be included as
a separate column instead of using row.names.

1http://r-forge.r-project.org/projects/recordlinkage/
2The data were created randomly from German name statistics and have no relation to existing persons.
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Building comparison patterns

We include two functions for the creation of compari-
son patterns from data sets: compare.dedup for dedu-
plication of a single data set and compare.linkage for
linking two data sets together. In the case of three
or more data sets, iteratively two of them are linked
and replaced by the data set which is the result of the
linkage. This leads to n− 1 linkages for n data sets.

Both compare functions return an object of class
"RecLinkData" which includes, among other compo-
nents, the resulting comparison patterns as compo-
nent pairs. In the following, such an object will be
referred to as a data object .

> rpairs <- compare.dedup(RLdata500,
+ identity = identity.RLdata500)
> rpairs$pairs[1:5, ]

id1 id2 fname_c1 fname_c2 lname_c1 lname_c2 by
1 1 2 0 NA 0 NA 0
2 1 3 0 NA 0 NA 0
3 1 4 0 NA 0 NA 0
4 1 5 0 NA 0 NA 0
5 1 6 0 NA 0 NA 0
bm bd is_match

1 1 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 1 0 0

The printed slice of datapairs$pairs shows the
structure of comparison patterns: The row numbers
of the underlying records are followed by their cor-
responding comparison vector. Note that a missing
value in either of two records results in a NA in the
corresponding column of the comparison pattern.
The classification procedures described in the follow-
ing sections treat these NAs as zeros by default. If
this behaviour is undesired, further preprocessing by
the user is necessary. Column is_match denotes the
true matching status of a pair (0 means non-match,
1 means match). It can be set externally by using
the optional argument identity of the compare func-
tions.3 This allows evaluation of record linkage pro-
cedures based on labeled data as a gold standard.

Blocking

Blocking is the reduction of the amount of data pairs
through focusing on specified agreement patterns.

Unrestricted comparison yields comparison pat-
terns for all possible data pairs: n(n− 1)/2 for dedu-
plication of n records, n ·m for linking two data sets
with n and m records. Blocking is a common strategy
to reduce computation time and memory consump-
tion by only comparing records with equal values for

a subset of attributes, called blocking fields. A block-
ing specification can be supplied to the compare func-
tions via the argument blockfld. The most simple
specification is a vector of column indices denoting
the attributes on which two records must agree (pos-
sibly after applying a phonetic code, see below) to
appear in the output. Combining several such spec-
ifications in a list leads to the union of the sets ob-
tained by the individual application of the specifica-
tions. In the following example, two records must
agree in either the first component of the first name
or the complete date of birth to appear in the result-
ing set of comparison patterns.

> rpairs <- compare.dedup(RLdata500,
+ blockfld = list(1, 5:7),
+ identity = identity.RLdata500)
> rpairs$pairs[c(1:3, 1203:1204), ]

id1 id2 fname_c1 fname_c2 lname_c1 lname_c2
1 17 119 1 NA 0 NA
2 61 106 1 NA 0 NA
3 61 175 1 NA 0 NA
1203 37 72 0 NA 0 NA
1204 44 339 0 NA 0 NA

by bm bd is_match
1 0 0 0 0
2 0 0 1 0
3 0 0 1 0
1203 1 1 1 1
1204 1 1 1 0

Phonetic functions and string comparators

Phonetic functions and string comparators are sim-
ilar, yet distinct approaches to dealing with ty-
pographical errors in character strings. A pho-
netic function maps words in a natural language to
strings representing their pronunciation (the pho-
netic code). The aim is that words which sound
similar enough get the same phonetic code. Obvi-
ously one needs different phonetic functions for dif-
ferent languages.4 Package RecordLinkage includes
the popular Soundex algorithm for English and a
German language algorithm introduced by Michael
(1999), implemented through functions soundex and
pho_h respectively. The argument phonetic of the
compare functions controls the application of the
phonetic function, which defaults to pho_h and can
be set by argument phonfun. Typically, an integer
vector is supplied which specifies the indices of the
data columns for which a phonetic code is to be com-
puted before comparison with other records. Note
that the phonetic function, if requested, is applied
before the blocking process, therefore the equality
restrictions imposed by blocking apply to phonetic
codes. Consider, for example, a call with arguments
phonetic = 1:4 and blockfld = 1. In this case, the

3See documentation for compare.* for details.
4For this reason, problems may arise when records in one file stem from individuals from different nationalities.
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actual blocking criterion is agreement on phonetic
code of the first attribute.

String comparators measure the similarity be-
tween strings, usually with a similarity measure in
the range [0,1], where 0 denotes maximal dissimilar-
ity and 1 equality. This allows ‘fuzzy’ comparison
patterns as displayed in the following example.5

> rpairsfuzzy <- compare.dedup(RLdata500,
+ blockfld = c(5, 6), strcmp = TRUE)
> rpairsfuzzy$pairs[1:5, ]

id1 id2 fname_c1 fname_c2 lname_c1 lname_c2
1 357 414 1.0000000 NA 1.0000000 NA
2 389 449 0.6428571 NA 0.0000000 NA
3 103 211 0.7833333 NA 0.5333333 NA
4 6 328 0.4365079 NA 0.4444444 NA
5 37 72 0.9750000 NA 0.9500000 NA
by bm bd is_match

1 1 1 0.7000000 NA
2 1 1 0.6666667 NA
3 1 1 0.0000000 NA
4 1 1 0.0000000 NA
5 1 1 1.0000000 NA

Controlling the application of string comparators
works in the same manner as for phonetic functions,
via the arguments strcmp and strcmpfun. The al-
gorithms by Winkler (1990) (function jarowinkler)
and one based on the edit distance by Leven-
shtein (function levenshteinSim) are included in
the package. String comparison and phonetic en-
coding cannot be used simultaneously on one at-
tribute but can be applied to different attributes
within one set of comparison patterns, as in the
function call compare.dedup(RLdata500, phonetic
= 1:4, strcmp = 5:7). We refer to the reference
manual for further information.

Stochastic record linkage

Theory

Stochastic record linkage relies on the assumption of
conditional probabilities concerning comparison pat-
terns. The probabilities of the random vector γ =
(γ1, ...,γn) having value γ̃ = (γ̃1, ..., γ̃n) conditional
on the match status Z are defined by

uγ̃ = P(γ = γ̃ | Z = 0), mγ̃ = P(γ = γ̃ | Z = 1),

where Z = 0 stands for a non-match and Z = 1 for a
match. In the Fellegi-Sunter model these probabili-
ties are used to compute weights of the form

wγ̃ = log
(

P(γ = γ̃ | Z = 1)
P(γ = γ̃ | Z = 0)

)
.

These weights are used in order to discern between
matches and non-matches.

There are several ways of estimating the proba-
bilities involved in this model. In RecordLinkage an
EM algorithm is used as a promising method for re-
liable estimations. The backbone of this algorithm
is described by Haber (1984). We extended and im-
plemented this algorithm in C in order to improve
its performance. Without a proper stochastic model,
the probabilities have to be fixed manually. If only
weights are to be computed without relying on the
assumptions of probabilities, then simple methods
like the one implemented by Contiero et al. (2005)
are suitable. Further details of these methods are also
found in Sariyar et al. (2009).

Weight calculation based on the EM algorithm
and the method by Contiero et al. (2005) are im-
plemented by functions emWeights and epiWeights.
Both take a data set object as argument and return a
copy with the calculated weights stored in additional
components. Calling summary on the result shows the
distribution of weights in histogram style. This infor-
mation can be helpful for determining classification
thresholds, e.g. by identifying clusters of record pairs
with high or low weights as non-matches or matches
respectively.

> rpairs <- epiWeights(rpairs)
> summary(rpairs)

Deduplication Data Set

500 records
1221 record pairs

49 matches
1172 non-matches
0 pairs with unknown status

Weight distribution:

[0.15,0.2] (0.2,0.25] (0.25,0.3] (0.3,0.35]
1011 0 89 30

(0.35,0.4] (0.4,0.45] (0.45,0.5] (0.5,0.55]
29 8 7 1

(0.55,0.6] (0.6,0.65] (0.65,0.7] (0.7,0.75]
14 19 10 2

(0.75,0.8]
1

Discernment between matches and non-matches
is achieved by means of computing weight thresh-
olds. In the Fellegi-Sunter model, thresholds are
computed via specification of destined (and feasi-
ble) values of homonym and synonym errors so that
the amount of doubtable cases is minimized. In
the package three auspicious variants for determin-
ing the threshold are implemented. The most com-
mon practice is to determine thresholds by cleri-
cal review, either a single threshold which separates
links and non-links or separate thresholds for links

5Blocking is used in this example for the purpose of reducing computation time.
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and non-links which define a range of doubtable
cases between them. RecordLinkage supports this
by the function getPairs, which shows record pairs
aligned in two consecutive lines along with their
weight (see the following example). When appropri-
ate thresholds are found, classification is performed
with emClassify or epiClassify, which take as argu-
ments the data set object and one or two classification
thresholds.

> tail(getPairs(rpairs, 0.6, 0.5))

Weight id fname_c1 fname_c2 lname_c1
25 0.5924569 266 KARIN <NA> HORN
26 437 KARINW <NA> HORN
27 0.5924569 395 GISOELA <NA> BECK
28 404 GISELA <NA> BECK
29 0.5067013 388 ANDREA <NA> WEBER
30 408 ANDREA <NA> SCHMIDT

lname_c2 by bm bd
25 <NA> 2002 6 4
26 <NA> 2002 6 4
27 <NA> 2003 4 16
28 <NA> 2003 4 16
29 <NA> 1945 5 20
30 <NA> 1945 2 20

> result <- epiClassify(rpairs, 0.55)

The result is an object of class "RecLinkResult",
which differs from the data object in having a com-
ponent prediction that represents the classification
result. Calling summary on such an object shows error
measures and a table comparing true and predicted
matching status.6

> summary(result)

Deduplication Data Set

[...]

46 links detected
0 possible links detected
1175 non-links detected

alpha error: 0.061224
beta error: 0.000000
accuracy: 0.997543

Classification table:

classification
true status N P L

FALSE 1172 0 0
TRUE 3 0 46

One alternative to threshold determination by
clerical review needs labeled training data on which
the threshold for the whole data set is computed by
minimizing the number of wrongly classified pairs.

After weights have been calculated for these data,
the classification threshold can be obtained by call-
ing optimalThreshold on the training data object.

The other alternative for determining thresholds
is an unsupervised procedure based on concepts of
extreme value statistics. A mean excess plot is gener-
ated on which the interval representing the relevant
area for false match rates is to be determined. Based
on the assumption that this interval corresponds to a
fat tail of the empirical weights distribution, the gen-
eralized Pareto distribution is used to compute the
threshold discerning matches and non-matches. De-
tails of this latter procedure will be found in a forth-
coming paper which is still under review.

A function getParetoThreshold is included in
the package which encapsulates the necessary steps.
Called on a data set for which weights have been
calculated, it brings up a mean excess plot of the
weights. By clicking on the graph, the boundaries of
the weight range in which matches and non-matches
presumably overlap are selected. This area is usu-
ally discernible as a relatively long, approximately
linear section in the middle region of the mean ex-
cess graph. This corresponds to the assumption that
the generalized Pareto distribution is applicable. The
data sets in the package provide only weak support
for this assumption, especially because of their lim-
ited size. Figure 1 shows an example plot where the
appropriate limits are displayed as dashed lines. The
return value is a threshold which can be used with
emClassify or epiClassify, depending on the type
of weights. We refer to the package vignette Classify-
ing record pairs by means of Extreme Value Theory for an
example application.
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Figure 1: Example mean excess plot of weights with
selected limits.

6True status is denoted by TRUE and FALSE, classification result by "N" (non-link),"L" (link) and "P" (possible link). To save space, some
output is omitted, marked by ‘[...]’ in this and some of the following examples
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Machine learning methods

Record Linkage can be understood as a classification
problem with comparison pattern γ as input and the
matching status variable Z as output. With this view,
a vast range of machine learning procedures, such
as clustering methods, decision trees or support vec-
tor machines, becomes available for deduplicating or
linking personal data. The following describes the
application of machine learning to record linkage as
it is implemented in the package.

Unsupervised classification

Unsupervised classification methods are attractive as
they eliminate the necessity to provide representa-
tive training data, which can turn out to be a time-
consuming task, involving either manual review or
the finding of an adequate mechanism to generate
artificial data. Motivated by this advantage, unsu-
pervised clustering is incorporated into the package
by means of the classifyUnsup function, which uses
k-means clustering via kmeans or bagged clustering
via bclust from package e1071 (Dimitriadou et al.,
2009). It must be noted that the quality of the re-
sulting classification varies significantly for different
data sets and poor results can occur. The following
example shows the invocation of k-means clustering
and the resulting classification.

> summary(classifyUnsup(rpairs, method = "kmeans"))

Deduplication Data Set

[...]

62 links detected
0 possible links detected
1159 non-links detected

alpha error: 0.000000
beta error: 0.011092
accuracy: 0.989353

Classification table:

classification
true status N P L

FALSE 1159 0 13
TRUE 0 0 49

Supervised classification

Training data for calibrating supervised classification
methods can be obtained in a variety of ways in the
context of this package. An important distinction is
to be made between cases where additional training
data with known true identity status are available
and those where a training set has to be determined
from the data on which linkage is performed. In the

former case, one can provide a distinct set of records
which are compared by one of the compare functions
(see above) to obtain a training set. In the latter case,
two approaches exist, first through what we call a
minimal training set , second through unsupervised
classification.

To construct a minimal training set, compari-
son patterns in a data set are grouped according
to their configuration of agreement values. For ev-
ery present configuration, one representative is ran-
domly chosen. Naturally, this procedure is only fea-
sible for binary comparisons (agreement or disagree-
ment coded as 1 and 0).

In our experience, the use of supervised classifi-
cation with a minimal training set can yield results
similar to those that might be achieved with ran-
domly sampled training sets of a substantially larger
size. Their small magnitude allows minimal training
sets to be classified by clerical review with manage-
able effort.

Two functions in RecordLinkage facilitate the use
of minimal training sets. A set with the defined prop-
erties can be assembled by calling getMinimalTrain
on a data object. Calling editMatch on the result
opens an edit window which prints each record pair
on two consecutive lines and allows for setting its
matching status (as displayed in Figure 2). In the fol-
lowing example, 17 comparison patterns are selected
randomly as a minimal training set.

> minTrain <- getMinimalTrain(rpairs)
> minTrain <- editMatch(minTrain)

Figure 2: Edit window for clerical review

The second approach to obtaining training data
when no labelled data are available, provided by
function genSamples, uses unsupervised clustering
in a manner similar to classifyUnsup. Instead of di-
rectly classifying all the data, a subset is extracted
and classified by bagged clustering. It can then be
used to calibrate a supervised classifier which is ul-
timately applied to the remaining set. Arguments to
genSamples are the original data set, the number of
non-matches to appear in the training set and the
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desired ratio of matches to non-matches. For ex-
ample, the call genSamples(datapairs, num.non =
200, des.mprop = 0.1) tries to build a training set
with 200 non-matches and 20 matches. The return
value is a list with two disjoint sets named train and
valid.

In an scenario where different record linkage ap-
proaches are evaluated, it is useful to split a data
set into training and validation sets. Such a split
can be performed by splitData. The return value
is a list with components train and valid as in the
case of genSamples. The most basic usage is to spec-
ify a fraction of patterns that is drawn randomly
as a training set using the argument prop. For ex-
ample, splitData(rpairs, prop = 0.1) selects one
tenth of the data for training. By setting keep.mprop
= TRUE it can be enforced that the original ratio of
matches to non-matches is retained in the resulting
sets. Another possibility is to set the desired num-
ber of non-matches and the match ratio through ar-
guments num.non and mprop as with genSamples().

Classification functions

All classification methods share two interface
functions: trainSupv for calibrating a classifier,
classifySupv for classifying new data. At least two
arguments are required for trainSupv, the data set
on which to train and a string representing the clas-
sification method. Currently, the supported methods
are:

"rpart" Recursive partitioning trees, provided by
package rpart (Therneau et al., 2009).

"bagging" Bagging of decision trees, provided by
package ipred (Peters and Hothorn, 2009).

"ada" Stochastic boosting, provided by package ada
(Culp et al., 2006).

"svm" Support vector machines, provided by pack-
age e1071 (Dimitriadou et al., 2009).

"nnet" Single-hidden-layer neural networks, pro-
vided by package e1071 (ibid.).

Of the further arguments, use.pred is notewor-
thy. Setting it to TRUE causes trainSupv to treat the
result of a previous prediction as outcome variable.
This has to be used if the training data stem from a
run of genSamples. Another application is to obtain a
training set by classifying a fraction of the data set by
the process of weight calculation and manual setting
of thresholds. In order to train a supervised classifier
with this training set, one would have to set use.pred
= TRUE.

The return value is an object of class
"RecLinkClassif". Classification of new data is car-
ried out by passing it and a "RecLinkData" object to

classifySupv. The following example shows the ap-
plication of bagging based on the minimal training
set minTrain from the example above.

> model <- trainSupv(minTrain, method = "bagging")
> result <- classifySupv(model, newdata = rpairs)
> summary(result)

Deduplication Data Set

[...]

53 links detected
0 possible links detected
1168 non-links detected

alpha error: 0.020408
beta error: 0.004266
accuracy: 0.995086

Classification table:

classification
true status N P L

FALSE 1167 0 5
TRUE 1 0 48

Discussion

During its development, the functionalities of the
package RecordLinkage have already been used by
the authors for a period of about one year, individual
functions even before that. Thanks to this process of
parallel development and usage, bugs were detected
early and new requirements that became apparent
were accounted for by implementing new features.
Therefore, the package is generally in a usable state.
However, there is still potential for future improve-
ments, mainly regarding data handling and perfor-
mance.

RecordLinkage was developed mainly as a tool
for empirical evaluation of record linkage methods,
i.e. the main focus of our research was on the perfor-
mance of particular record linkage methods. Only
in one case, the evaluation of a deterministic record
linkage procedure used in a German cancer registry,
were we actually interested in detecting duplicates.
Development of the package followed the needs
of this detection process. But many other desir-
able improvements concerning data processing and
input/ouput facilities are needed for a real-world
record linkage process, such as:

• The possibility to use a database connection for
data input and output.

• Improved print facilities for clerical review,
such as highlighting of agreement or disagree-
ment in record pairs.
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• The possibility to output a deduplicated data
set based on the matching result. This is not
a trivial task as it requires choosing the most
likely record from each group of matching
items which can be accomplished by means of
linear programming.

Another important future task is performance en-
hancement. When handling large data sets of about
106 or more record pairs, high memory consumption
often leads to errors or destabilizes the computer sys-
tem R is run on. We are currently working on code
changes to avoid unnecessary copying of objects and
plan to incorporate these in future releases. Another
possibility, which needs further evaluation, is to use
more sophisticated ways of storing data, such as a
database or one of the various R packages for large
data sets. The current disadvantage of R concerning
performance and memory can be compensated by an
elaborated blocking strategy.

As a general improvement, it is intended to sup-
port the usage of algorithms not considered in the
package through a generic interface for supervised
or unsupervised classification.

We are aware that RecordLinkage lacks an im-
portant subtask of record linkage, the standardiza-
tion of records. However, this is an area that itself
would need extensive research efforts. Moreover, the
appropriate procedures depend heavily on the data
to be linked. It is therefore left to the users to tai-
lor standardization methods fitting the requirements
of their data. We refer to R’s capabilities to handle
regular expressions and to the CRAN task view Nat-
uralLanguageProcessing7.
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spikeslab: Prediction and Variable
Selection Using Spike and Slab
Regression
by Hemant Ishwaran, Udaya B. Kogalur and J. Sunil Rao

Abstract Weighted generalized ridge regres-
sion offers unique advantages in correlated high-
dimensional problems. Such estimators can be
efficiently computed using Bayesian spike and
slab models and are effective for prediction.
For sparse variable selection, a generalization
of the elastic net can be used in tandem with
these Bayesian estimates. In this article, we de-
scribe the R-software package spikeslab for im-
plementing this new spike and slab prediction
and variable selection methodology.

The expression spike and slab , originally coined
by Mitchell and Beauchamp (1988), refers to a type
of prior used for the regression coefficients in lin-
ear regression models (see also Lempers (1971)).
In Mitchell and Beauchamp (1988), this prior as-
sumed that the regression coefficients were mutu-
ally independent with a two-point mixture distribu-
tion made up of a uniform flat distribution (the slab)
and a degenerate distribution at zero (the spike).
In George and McCulloch (1993) a different prior for
the regression coefficient was used. This involved a
scale (variance) mixture of two normal distributions.
In particular, the use of a normal prior was instru-
mental in facilitating efficient Gibbs sampling of the
posterior. This made spike and slab variable selec-
tion computationally attractive and heavily popular-
ized the method.

As pointed out in Ishwaran and Rao (2005),
normal-scale mixture priors, such as those used
in George and McCulloch (1993), constitute a wide
class of models termed spike and slab models. Spike
and slab models were extended to the class of
rescaled spike and slab models (Ishwaran and Rao,
2005). Rescaling was shown to induce a non-
vanishing penalization effect, and when used in tan-
dem with a continuous bimodal prior, confers useful
model selection properties for the posterior mean of
the regression coefficients (Ishwaran and Rao, 2005,
2010).

Recently, Ishwaran and Rao (2010) considered the
geometry of generalized ridge regression (GRR), a
method introduced by Hoerl and Kennard to over-
come ill-conditioned regression settings (Hoerl and
Kennard, 1970a,b). This analysis showed that GRR
possesses unique advantages in high-dimensional
correlated settings, and that weighted GRR (WGRR)
regression, a generalization of GRR, is potentially
even more effective. Noting that the posterior mean

of the regression coefficients from a rescaled spike
and slab model is a type of WGRR estimator, they
showed that this WGRR estimator, referred to as the
Bayesian model averaged (BMA) estimator, when
coupled with dimension reduction, yielded low test-
set mean-squared-error when compared to the elastic
net (Zou and Hastie, 2005).

Additionally, Ishwaran and Rao (2010) intro-
duced a generalization of the elastic net, which they
coined the gnet (short for generalized elastic net).
The gnet is the solution to a least-squares penaliza-
tion problem in which the penalization involves an
overall `1-regularization parameter (used to impose
sparsity) and a unique `2-regularization parameter
for each variable (these latter parameters being in-
troduced to combat multicollinearity). To calculate
the gnet, a lasso-type optimization is used by fix-
ing the `2-regularization parameters at values de-
termined by finding the closest GRR to the BMA.
Like the BMA, the gnet is highly effective for predic-
tion. However, unlike the BMA, which is obtained by
model averaging, and therefore often contains many
small coefficient values, the gnet is much sparser,
making it more attractive for variable selection.

The gnet and BMA estimators represent attractive
solutions for modern day high-dimensional data set-
tings. These problems often involve correlated vari-
ables, in part due to the nature of the data, and in part
due to an artifact of the dimensionality [see Cai and
Lv (2007); Fan and Lv (2008) for a detailed discus-
sion about high-dimensional correlation]. The BMA
is attractive because it addresses the issue of corre-
lation by drawing upon the properties of WGRR es-
timation, a strength of the Bayesian approach, while
the gnet achieves sparse variable selection by draw-
ing upon the principle of soft-thresholding, a power-
ful frequentist regularization concept.

Because high-dimensional data is becoming in-
creasingly common, it would be valuable to have
user friendly software for computing the gnet and
BMA estimator. With this in mind, we have devel-
oped an R package spikeslab for implementing this
methodology (Ishwaran, Kogalur and Rao, 2010).

The main purpose of this article is to describe this
package. Because this new spike and slab approach
may be unfamiliar to users in the R-community, we
start by giving a brief high-level description of the al-
gorithm [for further details readers should however
consult Ishwaran and Rao (2010)]. We then highlight
some of the package’s key features, illustrating its
use in both low- and high-dimensional settings.
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The spike and slab algorithm

The spikeslab R package implements the rescaled
spike and slab algorithm described in Ishwaran and
Rao (2010). This algorithm involves three key steps:

1. Filtering (dimension reduction).

2. Model Averaging (BMA).

3. Variable Selection (gnet).

Step 1 filters all but the top nF variables, where
n is the sample size and F > 0 is the user specified
fraction. Variables are ordered on the basis of their
absolute posterior mean coefficient value, where the
posterior mean is calculated using Gibbs sampling
applied to an approximate rescaled spike and slab
posterior. Below is a toy-illustration of how filter-
ing works [p is the total number of variables and
(V(k))

p
k=1 are the ordered variables]:

V(1), . . . ,V([nF])︸ ︷︷ ︸
retain these variables

V([nF]+1), . . . ,V(p)︸ ︷︷ ︸
filter these variables

.

The value for F is set using the option
bigp.smalln.factor, which by default is set to the
value F = 1. The use of an approximate posterior in
the filtering step is needed in high dimensions. This
yields an ultra-fast Gibbs sampling procedure, with
each step of the Gibbs sampler requiring O(np) op-
erations. Thus, computational effort for the filtering
step is linear in both dimensions.

Step 2 fits a rescaled spike and slab model using
only those variables that are not filtered in Step 1.
Model fitting is implemented using a Gibbs sampler.
Computational times are generally rapid as the num-
ber of variables at this point are a fraction of the orig-
inal size, p. A blocking technique is used to further
reduce computational times. The posterior mean of
the regression coefficients, which we refer to as the
BMA, is calculated and returned. This (restricted)
BMA is used as an estimator for the regression co-
efficients.

Step 3 calculates the gnet. In the optimization,
the gnet’s `2-regularization parameters are fixed
(these being determined from the restricted BMA ob-
tained in Step 2) and its solution path with respect
to its `1-regularization parameter is calculated using
the lars R package (Hastie and Efron, 2007) [a pack-
age dependency of spikeslab]. The lars wrapper is
called with type=”lar” to produce the full LAR path
solution (Efron et al., 2004). The gnet is defined as
the model in this path solution minimizing the AIC
criterion. Note importantly, that cross-validation is
not used to optimize the `1-regularization parameter.
The gnet estimator is generally very stable, a prop-
erty that it inherits from the BMA, and thus even
simple model selection methods such as AIC work
quite well in optimizing its path solution. This is
different than say the elastic net (Zou and Hastie,

2005) where cross-validation is typically used to de-
termine its regularization parameters (often this in-
volves a double optimization over both the `1- and
`2-regularization parameters). This is an important
feature which reduces computational times in big-p
problems.

Low-dimensional settings

Although the spike and slab algorithm is especially
adept in high-dimensional settings, it can be used ef-
fectively in classical settings as well. In these low-
dimensional scenarios when p < n, the algorithm is
implemented by applying only Steps 2 and 3 (i.e.,
Step 1 is skipped). The default setting for spikeslab,
in fact, assumes a low-dimensional scenario.

As illustration, we consider the benchmark dia-
betes data (n = 442, p = 64) used in Efron et al. (2004)
and which is an example dataset included in the
package. The response Y is a quantitative measure
of disease progression for patients with diabetes. The
data includes 10 baseline measurements for each pa-
tient, in addition to 45 interactions and 9 quadratic
terms, for a total of 64 variables for each patient. The
following code implements a default analysis:

data(diabetesI, package = "spikeslab")
set.seed(103608)
obj <- spikeslab(Y ~ . , diabetesI)
print(obj)

The print call outputs a basic summary of the analy-
sis, including a list of the selected variables and their
parameter estimates (variables selected are those
having nonzero gnet coefficient estimates):

bma gnet bma.scale gnet.scale
bmi 24.076 23.959 506.163 503.700
ltg 23.004 22.592 483.641 474.965
map 14.235 12.894 299.279 271.089
hdl -11.495 -10.003 -241.660 -210.306
sex -7.789 -6.731 -163.761 -141.520
age.sex 6.523 5.913 137.143 124.322
bmi.map 3.363 4.359 70.694 91.640
glu.2 2.185 3.598 45.938 75.654
age.ltg 1.254 0.976 26.354 20.528
bmi.2 1.225 1.837 25.754 38.622
age.map 0.586 0.928 12.322 19.515
age.2 0.553 0.572 11.635 12.016
sex.map 0.540 0.254 11.349 5.344
glu 0.522 0.628 10.982 13.195
age.glu 0.417 0.222 8.757 4.677

In interpreting the table, we note the following:

(i) The first column with the heading bma lists the
coefficient estimates for the BMA estimator ob-
tained from Step 2 of the algorithm. These val-
ues are given in terms of the standardized co-
variates (mean of 0 and variance of 1).
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(ii) The second column with the heading gnet lists
the coefficient estimates for gnet obtained from
Step 3 of the algorithm. These values are also
given in terms of the standardized covariates.

(iii) The last two columns are the BMA and gnet
estimators given in terms of the original scale
of the variables. These columns are used for
prediction, while the first two columns are use-
ful for assessing the relative importance of vari-
ables.

Note that all columns can be extracted from the spike
and slab object, obj, if desired.

Stability analysis

Even though the gnet accomplishes the goal of vari-
able selection, it is always useful to have a measure
of stability of a variable. The wrapper cv.spikeslab
can be used for this purpose.

The call to this wrapper is very simple. Here we
illustrate its usage on the diabetes data:

y <- diabetesI[, 1]
x <- diabetesI[, -1]
cv.obj <- cv.spikeslab(x = x, y = y, K = 20)

This implements 20-fold validation (the number of
folds is set by using the option K). The gnet estima-
tor is fit using the training data and its test-set mean-
squared-error (MSE) for its entire solution-path is de-
termined. As well, for each fold, the optimal gnet
model is determined by minimizing test-set error.
The average number of times a variable is selected
in this manner defines its stability (this is recorded in
percentage as a value from 0%-100%). Averaging the
gnet’s test-set MSE provides an estimate of its MSE
as a function of the number of variables.

The gnet’s coefficient values (estimated using the
full data) and its stability values can be obtained
from the cv.obj using the following commands:

cv.stb <- as.data.frame(cv.obj$stability)
gnet <- cv.stb$gnet
stability <- cv.stb$stability

Figure 1 (top) plots the gnet’s cross-validated MSE
curve as a function of the model size. The plot was
produced with the command

plot(cv.obj, plot.type = "cv")

Close inspection (confirmed by considering the ob-
ject, cv.obj) shows that the optimal model size
is somewhere between 9 and 17, agreeing closely
with our previous analysis. The bottom plot shows
how gnet coefficient estimates vary in terms of their
stability values (obtained by plotting gnet versus
stability). There are 10 variables having stability
values greater than 80%.
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Figure 1: Stability analysis for diabetes data.

High-dimensional settings

To analyze p� n data, users should use the option
bigp.smalln=TRUE in the call to spikeslab. This will
invoke the full spike and slab algorithm including
the filtering step (Step 1) which is crucial to suc-
cess in high-dimensional settings (note that p≥ n for
this option to take effect). This three-step algorithm
is computationally efficient, and because the bulk
of the computations are linear in p, the algorithm
should scale effectively to very large p-problems.
However, in order to take full advantage of its speed,
there are a few simple, but important rules to keep in
mind.

First, users should avoid using the formula and
data-frame call to spikeslab when p is large. In-
stead they should pass the x-covariate matrix and y-
response vector directly. This avoids the tremendous
overhead required to parse formula in R.

Second, the final model size of the BMA and gnet
are controlled by two key options; these must be set
properly to keep computations manageable. These
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options are: bigp.smalln.factor and max.var. The
first option restricts the number of filtered variables
in Step 1 of the algorithm to be no larger than
Fn, where F > 0 is the value bigp.smalln.factor.
The default setting F = 1 should be adequate in
most scenarios [one exception is when n is very
large (but smaller than p); then F should be de-
creased to some value 0 < F < 1]. The second op-
tion, max.var, restricts the number of selected vari-
ables in both Steps 1 and 3 of the algorithm. Its
function is similar to bigp.smalln.factor, although
unlike bigp.smalln.factor, it directly controls the
size of gnet. The default value is max.var=500.
In most examples, it will suffice to work with
bigp.smalln.factor.

Thus, if x is the x-matrix, y is the y-response
vector, and f and m are the desired settings for
bigp.smalln.factor and max.var, then a generic call
in high-dimensional settings would look like:

obj <- spikeslab(x=x, y=y, bigp.smalln = TRUE,
bigp.small.n.factor = f, max.var = m)

Although spikeslab has several other options, most
users will not need these and the above call should
suffice for most examples. However, if computa-
tional times are a still of concern even after tuning
f and m, users may consider changing the default
values of n.iter1 and n.iter2. The first controls the
number of burn-in iterations used by the Gibbs sam-
pler, and the second controls the number of Gibbs
sampled values following burn-in (these latter val-
ues are used for inference and parameter estimation).
The default setting is 500 in both cases. Decreas-
ing these values will decrease computational times,
but accuracy will suffer. Note that if computational
times are not a concern, then both values could be
increased to 1000 (but not much more is needed) to
improve accuracy.

As illustration, we used a simulation with n =
100 and p = 2000. The data was simulated inde-
pendently in blocks of size 40. Within each block,
the x-variables were drawn from a 50-dimensional
multivariate normal distribution with mean zero and
equicorrelation matrix with ρ = 0.95. With probabil-
ity 0.9, all regression coefficients within a block were
set to zero, otherwise with probability 0.1, all regres-
sion coefficients were set to zero except for the first 10
coefficients, which were each assigned a randomly
chosen value from a standard normal distribution.
Random noise ε was simulated independently from
a N(0,σ2) distribution with σ = 0.4.

The top plot in Figure 2 displays the path solution
for the gnet. Such a plot can be produced by a call to
the lars wrapper plot.lars using the gnet.obj ob-
tained from the spikeslab call. As gnet.obj is a lars-
type object it is fully interpretable by the lars pack-
age, and thus it can be parsed by the packages’ var-
ious wrappers. For convenience, the path solution
can be produced by a direct call to plot; a typical call

being:

obj <- spikeslab(x=x, y=y, bigp.smalln = TRUE)
plot(obj, plot.type = "path")

Actually Figure 2 was not produced by a call to plot
but in fact was obtained by slightly modifying the
plot.lars wrapper so as to display the paths of a
variable color coded by its true coefficient value (blue
for truly zero and red for truly nonzero). We did this
in order to facilitate comparison to the lasso. The
lasso path (obtained using the LAR-solution) is dis-
played in the bottom plot of Figure 2. Notice how
in contrast to gnet, the path solution for the lasso
has a wiggly "spaghetti"-like shape and that many of
the truly nonzero coefficients are hard to identify be-
cause of this. This a direct consequence of the high-
correlation in the x-variables of this example. This
correlation creates instability in the lasso-LAR solu-
tion, and this ultimately impacts its performance.
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Figure 2: Path solutions for the gnet (top) and the
lasso (bottom) from a correlated high-dimensional
simulation (n = 100 and p = 2000). Blue and red
lines correspond to truly zero and truly nonzero co-
efficient values, respectively.
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Summary

The gnet incorporates the strength of Bayesian
WGRR estimation with that of frequentist soft
thresholding. These combined strengths make it an
effective tool for prediction and variable selection in
correlated high-dimensional settings. If variable se-
lection is not of concern, and the key issue is ac-
curate prediction, than the BMA may be preferred.
Both the gnet and BMA can be computed using the
spikeslab R package. This package is computation-
ally efficient, and scales effectively even to massively
large p-problems.

As one example of this scalability, we added
100,000 noise variables to the diabetes data set
and then made a call to cv.spikeslab with the
added options bigp.smalln = TRUE, max.var = 100
and parallel = TRUE (as before we used K = 20
fold validation). The parallel option invokes par-
allel processing that is implemented via the package
snow (Tierney et al., 2008) [note that sending in an
integer for the option parallel sets the number of
socket clusters on the local machine on which the ses-
sion is being initiated; in our example we actually
used parallel = 8]. The snow package should be
loaded prior to making the cv.spikeslab call.
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Figure 3: Path solution for the gnet for diabetes data
with p = 100,000 noise variables.

Figure 3 displays the gnet’s path solution (ob-
tained using the full data). While only 4 variables
have path-profiles that clearly stand out, impres-
sively these variables are the top 4 from our previous
analysis. The gnet estimates (scaled to standardized
covariates), its averaged cv-estimates, and the stabil-
ity values for the top 15 variables were:

gnet gnet.cv stability
ltg 20.1865498 20.14414604 100
bmi 18.7600433 22.79892835 100

map 4.7111022 4.83179363 95
hdl -2.5520177 -2.66839785 95
bmi.2 3.6204750 0.46308305 40
x.61746 0.0000000 -0.74646210 35
x.42036 4.8342736 0.41993669 30
x.99041 0.0000000 -0.70183515 30
x.82308 5.2728011 0.75420320 25
glu 1.3105751 0.16714059 25
x.46903 0.0000000 -0.65188451 25
x.57061 0.0000000 0.73203633 25
x.99367 -2.7695621 -0.22110463 20
tch 0.2542299 0.14837708 20
x.51837 0.0000000 -0.09707276 20

Importantly, note that the top 4 variables have
greater than or equal to 95% stability (variables start-
ing with “x.” are noise variables). It is also interest-
ing that 3 other non-noise variables, "bmi.2", "glu",
and "tch" were in the top 15 variables. In fact, when
we inspected the 100 variables that passed the filter-
ing step of the algorithm (applied to the full data),
we found that 10 were from the original 64 variables,
and 6 were from the top 15 variables from our earlier
analysis. This demonstrates stability of the filtering
algorithm even in ultra-high dimensional problems.

Finally, we remark that in illustrating the
spikeslab package in this article, we focused pri-
marily on the spikeslab wrapper, which is the main
entry point to the package. Other available wrap-
pers include predict.spikeslab for prediction on
test data, and sparsePC.spikeslab. The latter imple-
ments variable selection for multiclass gene expres-
sion data (Ishwaran and Rao, 2010).

In future work we plan to extend the rescaled
spike and slab methodology to high-dimensional
generalized linear models. At that time we will in-
troduce a corresponding wrapper.
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What’s New?
by Kurt Hornik and Duncan Murdoch

Abstract We discuss how news in R and add-
on packages can be disseminated. R 2.10.0 has
added facilities for computing on news in a com-
mon plain text format. In R 2.12.0, the Rd format
has been further enhanced so that news can be
very conveniently recorded in Rd, allowing for
both improved rendering and the development
of new news services.

The R development community has repeatedly
discussed how to best represent and dissemi-
nate the news in R and R add-on packages.
The GNU Coding Standards (http://www.gnu.org/
prep/standards/html_node/NEWS-File.html) say

In addition to its manual, the package
should have a file named ‘NEWS’ which
contains a list of user-visible changes
worth mentioning. In each new release,
add items to the front of the file and iden-
tify the version they pertain to. Don’t
discard old items; leave them in the file
after the newer items. This way, a user
upgrading from any previous version can
see what is new.

If the ‘NEWS’ file gets very long, move
some of the older items into a file named
‘ONEWS’ and put a note at the end refer-
ring the user to that file.

For a very long time R itself used a three-layer (series,
version, category) plain text ‘NEWS’ file recording in-
dividual news items in itemize-type lists, using ‘o’ as
item tag and aligning items to a common column (as
quite commonly done in open source projects).

R 2.4.0 added a function readNEWS() (eventually
moved to package tools) for reading the R ‘NEWS’
file into a news hierarchy (a series list of version lists
of category lists of news items). This makes it pos-
sible to compute on the news (e.g. changes are dis-
played daily in the RSS feeds available from http://
developer.r-project.org/RSSfeeds.html), and to
transform the news structure into sectioning markup
(e.g. when creating an HTML version for reading via
the on-line help system). However, the items were
still plain text: clearly, it would be useful to be able to
hyperlink to resources provided by the on-line help
system (Murdoch and Urbanek, 2009) or other URLs,
e.g., those providing information on bug reports. In
addition, it has always been quite a nuisance to add
LATEX markup to the news items for the release notes
in the R Journal (and its predecessor, R News). The R
Core team had repeatedly discussed the possibilities
of moving to a richer markup system (and generat-
ing plain text, HTML and LATEX from this), but had

been unable to identify a solution that would be ap-
propriate in terms of convenience as well as the effort
required.

R add-on packages provide news-type informa-
tion in a variety of places and plain text formats, with
a considerable number of ‘NEWS’ files in the pack-
age top-level source directory or its ‘inst’ subdirec-
tory, and in the spirit of a one- or two-layer variant
of the R news format. Whereas all these files can
conveniently be read by “users”, the lack of stan-
dardization implies that reliable computation on the
news items is barely possible, even though this could
be very useful. For example, upgrading packages
could optionally display the news between the avail-
able and installed versions of packages (similar to
the apt-listchanges facility in Debian-based Linux
systems). One could also develop repository-level
services extracting and disseminating the news in
all packages in the repository (or suitable groups of
these, such as task views (Zeileis, 2005)) on a regular
basis. In addition, we note that providing the news in
plain text limits the usefulness in package web pages
and for possible inclusion in package reference man-
uals (in PDF format).

R 2.10.0 added a function news() (in package
utils) to possibly extract the news for R or add-on
packages into a simple (plain text) data base, and use
this for simple queries. The data base is a charac-
ter frame with variables Version, Category, Date and
Text, where the last contains the entry texts read, and
the other variables may be NA if they were missing
or could not be determined. These variables can be
used in the queries. E.g., we build a data base of all
currently available R news entries:

> db <- news()

This has 2950 news entries, distributed according to
version as follows:

> with(db, table(Version))

Version
2.0.1 2.0.1 patched 2.1.0

56 27 223
2.1.1 2.1.1 patched 2.10.0

56 31 153
2.10.1 2.10.1 patched 2.11.0

43 35 132
2.11.1 2.2.0 2.2.1

28 188 63
2.2.1 patched 2.3.0 2.3.1

18 250 38
2.3.1 patched 2.4.0 2.4.1

28 225 60
2.4.1 patched 2.5.0 2.5.1

15 208 50
2.5.1 patched 2.6.0 2.6.1

16 177 31
2.6.2 2.6.2 patched 2.7.0
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53 14 186
2.7.1 2.7.2 2.7.2 patched

66 45 6
2.8.0 2.8.1 2.8.1 patched
132 59 27

2.9.0 2.9.1 2.9.2
124 56 26

2.9.2 patched
5

(This shows “versions” such as ‘2.10.1 patched’,
which correspond to news items in the time inter-
val between the last patchlevel release and the next
minor or major releases of R (in the above, 2.10.1
and 2.11.0), respectively. These are not valid ver-
sion numbers, and are treated as the corresponding
patchlevel version in queries.) To extract all bug fixes
since R 2.11.0 that include a PR number from a formal
bug report, we can query the news db as follows:

> items <- news(Version >= "2.11.0" &
+ grepl("^BUG", Category) &
+ grepl("PR#", Text),
+ db = db)

This finds 22 such items, the first one being

> writeLines(strwrap(items[1, "Text"]))

The C function mkCharLenCE now no longer
reads past 'len' bytes (unlikely to be a
problem except in user code). (PR#14246)

Trying to extract the news for add-on packages
involved a trial-and-error process to develop a rea-
sonably reliable default reader for the ‘NEWS’ files
in a large subset of available packages, and subse-
quently documenting the common format (require-
ments). This reader looks for version headers and
splits the news file into respective chunks. It then
tries to read the news items from the chunks, after
possibly splitting according to category. For each
chunk found, it records whether (it thinks) it success-
fully processed the chunk. To assess how well this
reader actually works, we apply it to all ‘NEWS’ files
in the CRAN packages. As of 2010-09-11, there are
427 such files for a “news coverage” of about 20%.
For 67 files, no version chunks are found. For 40
files, all chunks are marked as bad (indicating that
we found some version headers, but the files really
use a different format). For 60 files, some chunks are
bad, with the following summary of the frequencies
of bad chunks:

Min. 1st Qu. Median Mean 3rd Qu.
0.005747 0.057280 0.126800 0.236500 0.263800

Max.
0.944400

Finally, for 260 files, no chunks are marked as bad,
suggesting a success rate of about 61 percent. Given
the lack of formal standardization, this is actually
“not bad for a start”, but certainly not good enough.

Clearly, package maintainers could check readabil-
ity for themselves and fix incompatibilities with the
default format, or switch to it (or contribute read-
ers for their own formats). But ideally, maintainers
could employ a richer format allowing for more reli-
able computations and better processing.

In R 2.12.0, the new Rd format was enhanced
in several important ways. The \subsection and
\newcommand macros were added, to allow for sub-
sections within sections, and user-defined macros.
One can now convert R objects to fragments of Rd
code, and process these. And finally, the rendering
(of text in particular) is more customizable. Given
the availability of \subsection, one can now conve-
niently map one- and two-layer hierarchies of item
lists into sections (and subsections) of Rd \itemize
lists. Altogether, the new Rd format obviously
becomes a very attractive (some might claim, the
canonical) format for maintaining R and package
news information, in particular given that most R de-
velopers will be familiar with the Rd format and that
Rd can be rendered as text, HTML (for on-line help)
and LATEX (for PDF manuals).

R 2.12.0 itself has switched to the Rd format
for recording its news. To see the effect, run
help.start(), click on the NEWS link and note that
e.g. bug report numbers are now hyperlinked to the
respective pages in the bug tracking system. The
conversion was aided by the (internal) utility func-
tion news2Rd() in package tools which converted the
legacy plain text ‘NEWS’ to Rd, but of course required
additional effort enriching the markup.

R 2.12.0 is also aware of ‘inst/NEWS.Rd’ files in
add-on packages, which are used by news() in pref-
erence to the plain text ‘NEWS’ and ‘inst/NEWS’ files.
For ‘NEWS’ files in a format which can successfully
be handled by the default reader, package maintain-
ers can use tools:::news2Rd(dir, "NEWS.Rd"), pos-
sibly with additional argument codify = TRUE, with
dir a character string specifying the path to a pack-
age’s root directory. Upon success, the ‘NEWS.Rd’
file can be further improved and then be moved to
the ‘inst’ subdirectory of the package source direc-
tory. For now, the immediate benefits of switching
to the new format is that news() will work more reli-
ably, and that the package news web pages on CRAN
will look better.

As packages switch to Rd format for their news,
additional services taking advantage of the new for-
mat can be developed and deployed. For the near
future, we are planning to integrate package news
into the on-line help system, and to optionally inte-
grate the news when generating the package refer-
ence manuals. A longer term goal is to enhance the
package management system to include news com-
putations in apt-listchanges style. We hope that
repository “news providers” will take advantage of
the available infrastructure to enhance their news
services (e.g., using news diffs instead of, or in ad-
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dition to, the currently employed recursive diff sum-
maries). But perhaps most importantly, we hope that
the new format will make it more attractive for pack-
age maintainers to actually provide valuable news
information.
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useR! 2010
by Katharine Mullen

Abstract A summary of the useR! 2010 confer-
ence.

The R user conference, useR! 2010, took place on
the Gaithersburg, Maryland, USA campus of the Na-
tional Institute of Standards and Technology (NIST)
July 21-23 2010. Following the five previous useR!
conferences (held in Austria, Germany, Iowa, and
France), useR! 2010 focused on

• R as the ‘lingua franca’ of data analysis and sta-
tistical computing,

• providing a venue to discuss and exchange
ideas on the use of R for statistical computa-
tions, data analysis, visualization, and exciting
applications in various fields and

• providing an overview of the new features of
the rapidly evolving R project.

The conference drew over 450 R users hailing
from 29 countries. The technical program was com-
posed of 167 contributed presentations, seven in-
vited lectures, a poster session, and a panel discus-
sion on ‘Challenges of Bringing R into Commercial
Environments’. The social program of the conference
included several receptions and a dinner at the Na-
tional Zoo.

Program, organizing and confer-
ence committees

Organization of the conference was thanks to indi-
viduals participating in the following committees:

Program Committee:
Louis Bajuk-Yorgan, Dirk Eddelbuettel, John Fox,
Virgilio Gómez-Rubio, Richard Heiberger, Torsten
Hothorn, Aaron King, Jan de Leeuw, Nicholas
Lewin-Koh, Andy Liaw, Uwe Ligges, Martin Mäch-
ler, Katharine Mullen, Heather Turner, Ravi Varad-
han, H. D. Vinod, John Verzani, Alan Zaslavsky,
Achim Zeileis

Organizing Committee:
Kevin Coakley, Nathan Dodder, David Gil, William
Guthrie, Olivia Lau, Walter Liggett, John Lu,
Katharine Mullen, Jonathon Phillips, Antonio Pos-
solo, Daniel Samarov, Ravi Varadhan

R Conference Committee:
Torsten Hothorn, Achim Zeileis

User-contributed presentations

The diversity of interests in the R community was
reflected in the themes of the user-contributed ses-
sions. The themes were:

• Bioinformatics workflows
• Biostatistics (three sessions)
• Biostatistics workflows
• Business intelligence
• Cloud computing
• Commercial applications (two sessions)
• Computer experiments and simulation
• Data manipulation and classification
• Data mining, machine learning
• Finance and resource allocation
• fMRI
• Fene expressions, genetics
• Grid computing
• Graphical User Interfaces (two sessions)
• High-performance-computing
• Interfaces
• Lists and objects
• Longitudinal data analysis
• MetRology
• Optimization
• Parallel computing
• Pedagogy (three sessions)
• Real-time computing
• Reproducible research and generating reports
• R social networks
• RuG panel discussion
• Social sciences
• Spatio-temporal data analysis
• Spreadsheets and RExcel
• Time series
• Visualization

In addition to sessions on these themes, research
was presented in a poster session and in Kalei-
descope sessions aimed at a broad audience.

Tutorials

The day before the official start of the conference, on
July 20, the following nineteen 3-hour tutorials were
given by R experts:

• Douglas Bates: Fitting and evaluating mixed
models using lme4

• Peter Danenberg and Manuel Eugster: Liter-
ate programming with Roxygen

• Karin Groothuis-Oudshoorn and Stef van Bu-
uren: Handling missing data in R with MICE
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• Frank Harrell Jr: Statistical presentation
graphics

• François Husson and Julie Josse: Exploratory
data analysis with a special focus on clustering
and multiway methods

• Uwe Ligges: My first R package
• Daniel Samarov, Errol Strain and Elaine

McVey: R for Eclipse
• Jing Hua Zhao: Genetic analysis of complex

traits
• Alex Zolot: Work with R on Amazon’s Cloud
• Karim Chine: Elastic-R, a google docs-like por-

tal for data analysis in the cloud
• Dirk Eddelbuettel: Introduction to high-

performance computing with R
• Michael Fay: Interval censored data analysis
• Virgilio Gómez-Rubio: Applied spatial data

analysis with R
• Frank Harrell Jr: Regression modeling strate-

gies using the R package rms
• Olivia Lau: A crash course in R programming
• Friedrich Leisch: Sweave - Writing dynamic

and reproducible documents
• John Nash: Optimization and related nonlin-

ear modelling computations in R
• Brandon Whitcher, Pierre Lafaye de

Micheaux, Bradley Buchsbaum and Jörg
Polzehl: Medical image analysis for structural
and functional MRI

Invited lectures

The distinguished invited lecturers were:

• Mark S. Handcock: Statistical Modeling of
Networks in R

• Frank E. Harrell Jr: Information Allergy
• Friedrich Leisch: Reproducible Statistical Re-

search in Practice

• Uwe Ligges: Prospects and Challenges for
CRAN - with a glance on 64-bit Windows bi-
naries

• Richard M. Stallman: Free Software in Ethics
and in Practice

• Luke Tierney: Some possible directions for the
R engine

• Diethelm Würtz: The Hull, the Feasible Set,
and the Risk Surface: A Review of the Portfolio
Modeling Infrastructure in R/Rmetrics

In addition, Antonio Possolo (Chief of the Statis-
tical Engineering Division at NIST) began the confer-
ence with a rousing speech to welcome participants.

Conference-related information
and thanks

The conference webpage http://www.R-project.
org/useR-2010 makes available abstracts and slides
associated with presentations, as well as links to
video of plenary sessions. Questions regarding
the conference may be addressed to useR-2010@R-
project.org.

Many thanks to all those who contributed to
useR! 2010. The talks, posters, ideas, and spirit
of cooperation that R users from around the world
brought to Gaithersburg made the conference a great
success.

Katharine Mullen
Structure Determination Methods Group
Ceramics Division
National Institute of Standards and Technology (NIST)
100 Bureau Drive, M/S 8520
Gaithersburg, MD, 20899, USA
Email: Katharine.Mullen@nist.gov

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://www.R-project.org/useR-2010
http://www.R-project.org/useR-2010


NEWS AND NOTES 79

Forthcoming Events: useR! 2011
The seventh international R user conference, useR!
2011, will take place at the University of Warwick,
Coventry, 16–18 August 2011.

Following previous useR! conferences, this meet-
ing of the R user community will provide a platform
for R users to discuss and exchange ideas of how R
can be used for statistical computation, data analysis
and visualization.

The program will consist of invited talks, user-
contributed sessions and pre-conference tutorials.

Invited Talks

The invited talks represent the spectrum of interest,
ranging from important technical developments to
exciting applications of R, presented by experts in the
field:

• Adrian Bowman: Modelling Three-dimensional
Surfaces in R.

• Lee Edlefsen: High Performance Computing in
R.

• Ulrike Grömping: Design of Experiments in R.
• Wolfgang Huber: From Genomes to Phenotypes.
• Brian Ripley: The R Development Process.
• Jonathan Rougier: Calibration and Prediction for

Stochastic Dynamical Systems Arising in Envi-
ronmental Science.

• Simon Urbanek: R Graphics: Supercharged - Re-
cent Advances in Visualization and Analysis of
Large Data in R.

• Brandon Whitcher: Quantitative Analysis of
Medical Imaging Data in R.

User-contributed Sessions

In the contributed sessions, presenters will share in-
novative and interesting uses of R, covering topics
such as:

• Bayesian statistics
• Bioinformatics
• Chemometrics and computational physics
• Data mining
• Econometrics and finance
• Environmetrics and ecological modeling
• High performance computing
• Imaging
• Interfaces with other languages/software
• Machine learning
• Multivariate statistics
• Nonparametric statistics
• Pharmaceutical statistics
• Psychometrics
• Spatial statistics

• Statistics in the social and political sciences
• Teaching
• Visualization and graphics
Abstracts may be submitted for the poster ses-

sion, which will be a major social event on the
evening of the first day of the conference, or for the
main program of talks. Submissions for contributed
talks will be considered for the following types of
session:

• useR! Kaleidoscope: These sessions give a broad
overview of the many different applications of
R and should appeal to a wide audience.

• useR! Focus Session: These sessions cover topics
of special interest and may be more technical.

The scientific program is organized by members
of the program committee, comprising Ramón Díaz-
Uriarte, John Fox, Romain François, Robert Gramacy,
Paul Hewson, Torsten Hothorn, Kate Mullen, Brian
Peterson, Thomas Petzoldt, Anthony Rossini, Barry
Rowlingson, Carolin Strobl, Stefan Theussl, Heather
Turner, Hadley Wickham and Achim Zeileis.

In addition to the main program of talks and new
for useR! 2011, all participants are invited to present
a Lightning Talk, for which no abstract is required.
These talks provide a 5-minute platform to speak on
any R-related topic and should particularly appeal to
those new to R. A variation of the pecha kucha1 and
ignite2 formats will be used in which speakers must
provide 15 slides to accompany their talk and each
slide will be shown for 20 seconds.

Pre-conference Tutorials

Before the start of the official program, the following
half-day tutorials will be offered on Monday, 15 Au-
gust:

• Douglas Bates: Fitting and evaluating mixed
models using lme4

• Roger Bivand and Edzer Pebesma: Handling and
analyzing spatio-temporal data in R

• Marine Cadoret and Sébastien Lê: Analysing cat-
egorical data in R

• Stephen Eglen: Emacs Speaks Statistics
• Andrea Foulkes: High-dimensional data meth-

ods with R
• Frank E Harrell Jr: Regression modeling strate-

gies using the R package rms
• Søren Højsgaard: Graphical models and

Bayesian networks with R
• G. Jay Kerns: Introductory probability and

statistics using R
• Max Kuhn: Predictive modeling with R and the

caret package
1http://en.wikipedia.org/wiki/Pecha_Kucha
2http://en.wikipedia.org/wiki/Ignite_(event)
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• Nicholas Lewin Koh: Everyday R: Statistical con-
sulting with R

• Fausto Molinari, Enrico Branca, Francesco De Fil-
ippo and Rocco Claudio Cannizzaro: R-Adamant:
Applied financial analysis and risk manage-
ment

• Martin Morgan: Bioconductor for the analysis
of high-throughput genomic data

• Paul Murrell: Introduction to grid graphics
• Giovanni Petris: State space models in R
• Shivani Rao: Topic modeling of large datasets

with R using Amazon EMR
• Karline Soetaert and Thomas Petzoldt: Simulating

differential equation models in R
• Antony Unwin: Graphical data analysis
• Brandon Whitcher, Jörg Polzehl, Karsten Tabelow:

Medical image analysis for MRI

Location & Surroundings

Participants will be well catered for at the University
of Warwick, with meals and accommodation avail-

able on campus. The university is in the city of
Coventry which offers a number of places to visit
such as the cathedral and city art gallery. In the
heart of England, the city is within easy reach of
other attractions such as Warwick’s medieval castle
and the new Royal Shakespeare and Swan Theatres
in Stratford-upon-Avon (Shakespeare’s birthplace).

Further Information

A web page offering more information on useR! 2011,
including details regarding registration and abstract
submission, is available at http://www.R-project.
org/useR-2011/

We hope to meet you in Coventry!

The organizing committee:
John Aston, Julia Brettschneider, David Firth, Ashley
Ford, Ioannis Kosmidis, Tom Nichols, Elke Thönnes and
Heather Turner
useR-2011@R-project.org
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Changes in R
From version 2.11.1 patched to version 2.12.1

by the R Core Team

CHANGES IN R VERSION 2.12.1

NEW FEATURES

• The DVI/PDF reference manual now includes
the help pages for all the standard packages:
splines, stats4 and tcltk were previously omit-
ted (intentionally).

• http://www.rforge.net has been added to
the default set of repositories known to
setRepositories().

• xz-utils has been updated to version 5.0.0.

• reshape() now makes use of sep when form-
ing names during reshaping to wide format.
(PR#14435)

• legend() allows the length of lines to be set by
the end user via the new argument seg.len.

• New reference class utility methods copy(),
field(), getRefClass() and getClass() have
been added.

• When a character value is used for the EXPR ar-
gument in switch(), a warning is given if more
than one unnamed alternative value is given.
This will become an error in R 2.13.0.

• StructTS(type = "BSM") now allows series
with just two seasons. (Reported by Birgit
Erni.)

INSTALLATION

• The PDF reference manual is now built as PDF
version 1.5 with object compression, which on
platforms for which this is not the default (no-
tably MiKTeX) halves its size.

• Variable FCLIBS can be set during configura-
tion, for any additional library flags needed
when linking a shared object with the Fortran
9x compiler. (Needed with Solaris Studio 12.2.)

BUG FIXES

• seq.int() no longer sometimes evaluates ar-
guments twice. (PR#14388)

• The data.frame method of format() failed if a
column name was longer than 256 bytes (the
maximum length allowed for an R name).

• predict(<lm object>, type ="terms", ...)
failed if both terms and interval were
specified. (Reported by Bill Dunlap.)

Also, if se.fit = TRUE the standard errors
were reported for all terms, not just those se-
lected by a non-null terms.

• The TRE regular expressions engine could ter-
minate R rather than give an error when given
certain invalid regular expressions. (PR#14398)

• cmdscale(eig = TRUE) was documented to re-
turn n− 1 eigenvalues but in fact only returned
k. It now returns all n eigenvalues.

cmdscale(add = TRUE) failed to centre the re-
turn configuration and sometimes lost the la-
bels on the points. Its return value was de-
scribed wrongly (it is always a list and contains
component ac).

• promptClass() in package methods now
works for reference classes and gives a suitably
specialized skeleton of documentation.

Also, callSuper() now works via the
methods() invocation as well as for initially
specified methods.

• download.file() could leave the destination
file open if the URL was not able to be opened.
(PR#14414)

• Assignment of an environment to functions or
as an attribute to other objects now works for
S4 subclasses of "environment".

• Use of ‘[[<-’ for S4 subclasses of
"environment" generated an infinite re-
cursion from the method. The method has
been replaced by internal code.

• In a reference class S4 method, callSuper()
now works in initialize() methods when
there is no explicit superclass method.

• ‘!’ dropped attributes such as names and
dimensions from a length-zero argument.
(PR#14424)

• When list2env() created an environment it
was missing a PROTECT call and so was vulner-
able to garbage collection.

• Sweave() with keep.source=TRUE dropped
comments at the start and end of code chunks.
It could also fail when ‘\SweaveInput’ was
combined with named chunks.

• The Fortran code used by nls(algorithm =
"port") could infinite-loop when compiled
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with high optimization on a modern version of
gcc, and SAFE_FFLAGS is now used to make this
less likely. (PR#14427, seen with 32-bit Win-
dows using gcc 4.5.0 used from R 2.12.0.)

• sapply() with default simplify = TRUE
and mapply() with default SIMPLIFY = TRUE
wrongly simplified language-like results,
as, e.g., in mapply(1:2, c(3,7), FUN =
function(i,j) call(’:’,i,j)).

• Backreferences to undefined patterns in
[g]sub(pcre = TRUE) could cause a segfault.
(PR#14431)

• The format() (and hence the print()) method
for class "Date" rounded fractional dates to-
wards zero: it now always rounds them down.

• Reference S4 class creation could generate am-
biguous inheritance patterns under very spe-
cial circumstances.

• ‘[[<-’ turned S4 subclasses of "environment"
into plain environments.

• Long titles for help pages were truncated in
package indices and a few other places.

• Additional utilities now work correctly with S4
subclasses of "environment" (rm, locking tools
and active bindings).

• spec.ar() now also work for the "ols"
method. (Reported by Hans-Ruedi Kuensch.)

• The initialization of objects from S4 subclasses
of "environment" now allocates a new environ-
ment object.

• R CMD check has more protection against
(probably erroneous) example or test output
which is invalid in the current locale.

• qr.X() with column names and pivoting now
also pivots the column names. (PR#14438)

• unit.pmax() and unit.pmin() in package grid
gave incorrect results when all inputs were of
length 1. (PR#14443)

• The parser for ‘NAMESPACE’ files ignored mis-
spelled directives, rather than signalling an er-
ror. For 2.12.x a warning will be issued, but this
will be correctly reported as an error in later re-
leases. (Reported by Charles Berry.)

• Fix for subsetting of "raster" objects when
only one of i or j is specified.

• grid.raster() in package grid did not accept
"nativeRaster" objects (like rasterImage()
does).

• Rendering raster images in PDF output was re-
setting the clipping region.

• Rendering of raster images on Cairo X11 device
was wrong, particularly when a small image
was being scaled up using interpolation.

With Cairo < 1.6, will be better than before,
though still a little clunky. With Cairo >= 1.6,
should be sweet as.

• Several bugs fixed in read.DIF(): single col-
umn inputs caused errors, cells marked as
"character" could be converted to other types,
and (in Windows) copying from the clipboard
failed.

CHANGES IN R VERSION 2.12.0

NEW FEATURES

• Reading a package’s ‘CITATION’ file now de-
faults to ASCII rather than Latin-1: a package
with a non-ASCII ‘CITATION’ file should declare
an encoding in its ‘DESCRIPTION’ file and use
that encoding for the ‘CITATION’ file.

• difftime() now defaults to the "tzone" at-
tribute of "POSIXlt" objects rather than to the
current timezone as set by the default for the
tz argument. (Wish of PR#14182.)

• pretty() is now generic, with new methods
for "Date" and "POSIXt" classes (based on code
contributed by Felix Andrews).

• unique() and match() are now faster on char-
acter vectors where all elements are in the
global CHARSXP cache and have unmarked en-
coding (ASCII). Thanks to Matthew Dowle for
suggesting improvements to the way the hash
code is generated in ‘unique.c’.

• The enquote() utility, in use internally, is ex-
ported now.

• .C() and .Fortran() now map non-zero return
values (other than NA_LOGICAL) for logical vec-
tors to TRUE: it has been an implicit assumption
that they are treated as true.

• The print() methods for "glm" and "lm" ob-
jects now insert linebreaks in long calls in
the same way that the print() methods for
"summary.[g]lm" objects have long done. This
does change the layout of the examples for a
number of packages, e.g. MASS. (PR#14250)

• constrOptim() can now be used with method
"SANN". (PR#14245)

It gains an argument hessian to be passed to
optim(), which allows all the ... arguments to
be intended for f() and grad(). (PR#14071)
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• curve() now allows expr to be an object of
mode "expression" as well as "call" and
"function".

• The "POSIX[cl]t" methods for Axis() have
been replaced by a single method for "POSIXt".

There are no longer separate plot() meth-
ods for "POSIX[cl]t" and "Date": the default
method has been able to handle those classes
for a long time. This inter alia allows a sin-
gle date-time object to be supplied, the wish of
PR#14016.

The methods had a different default ("") for
xlab.

• Classes "POSIXct", "POSIXlt" and "difftime"
have generators .POSIXct(), .POSIXlt() and
.difftime(). Package authors are advised to
make use of them (they are available from R
2.11.0) to proof against planned future changes
to the classes.

The ordering of the classes has been changed,
so "POSIXt" is now the second class. See the
document ‘Updating packages for changes in
R 2.12.x’ on http://developer.r-project.org
for the consequences for a handful of CRAN
packages.

• The "POSIXct" method of as.Date() allows a
timezone to be specified (but still defaults to
UTC).

• New list2env() utility function as an in-
verse of as.list(<environment>) and for
fast multi-assign() to existing environment.
as.environment() is now generic and uses
list2env() as list method.

• There are several small changes to output
which ‘zap’ small numbers, e.g. in print-
ing quantiles of residuals in summaries from
"lm" and "glm" fits, and in test statistics in
print.anova().

• Special names such as "dim", "names", etc, are
now allowed as slot names of S4 classes, with
"class" the only remaining exception.

• File ‘.Renviron’ can have architecture-specific
versions such as ‘.Renviron.i386’ on systems
with sub-architectures.

• installed.packages() has a new argument
subarch to filter on sub-architecture.

• The summary() method for packageStatus()
now has a separate print() method.

• The default summary() method returns an ob-
ject inheriting from class "summaryDefault"
which has a separate print() method that calls
zapsmall() for numeric/complex values.

• The startup message now includes the plat-
form and if used, sub-architecture: this is use-
ful where different (sub-)architectures run on
the same OS.

• The getGraphicsEvent() mechanism
now allows multiple windows to re-
turn graphics events, through the new
functions setGraphicsEventHandlers(),
setGraphicsEventEnv(), and
getGraphicsEventEnv(). (Currently im-
plemented in the windows() and X11()
devices.)

• tools::texi2dvi() gains an index argument,
mainly for use by R CMD Rd2pdf.

It avoids the use of texindy by texinfo’s
texi2dvi >= 1.157, since that does not emu-
late ’makeindex’ well enough to avoid prob-
lems with special characters (such as ‘(’, ‘{’, ‘!’)
in indices.

• The ability of readLines() and scan() to re-
encode inputs to marked UTF-8 strings on Win-
dows since R 2.7.0 is extended to non-UTF-8 lo-
cales on other OSes.

• scan() gains a fileEncoding argument to
match read.table().

• points() and lines() gain "table" methods
to match plot(). (Wish of PR#10472.)

• Sys.chmod() allows argument mode to be a vec-
tor, recycled along paths.

• There are |, & and xor() methods for classes
"octmode" and "hexmode", which work bitwise.

• Environment variables R_DVIPSCMD,
R_LATEXCMD, R_MAKEINDEXCMD, R_PDFLATEXCMD
are no longer used nor set in an R ses-
sion. (With the move to tools::texi2dvi(),
the conventional environment variables
LATEX, MAKEINDEX and PDFLATEX will be used.
options("dvipscmd") defaults to the value of
DVIPS, then to "dvips".)

• New function isatty() to see if terminal con-
nections are redirected.

• summaryRprof() returns the sampling interval
in component sample.interval and only re-
turns in by.self data for functions with non-
zero self times.

• print(x) and str(x) now indicate if an empty
list x is named.

• install.packages() and remove.packages()
with lib unspecified and multiple libraries in
.libPaths() inform the user of the library lo-
cation used with a message rather than a warn-
ing.
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• There is limited support for multiple com-
pressed streams on a file: all of [bgx]zfile()
allow streams to be appended to an existing
file, but bzfile() reads only the first stream.

• Function person() in package utils now
uses a given/family scheme in preference to
first/middle/last, is vectorized to handle an ar-
bitrary number of persons, and gains a role
argument to specify person roles using a con-
trolled vocabulary (the MARC relator terms).

• Package utils adds a new "bibentry" class for
representing and manipulating bibliographic
information in enhanced BibTeX style, unifying
and enhancing the previously existing mecha-
nisms.

• A bibstyle() function has been added to the
tools package with default JSS style for render-
ing "bibentry" objects, and a mechanism for
registering other rendering styles.

• Several aspects of the display of text
help are now customizable using the
new Rd2txt_options() function. op-
tions("help_text_width") is no longer used.

• Added ‘\href’ tag to the Rd format, to allow
hyperlinks to URLs without displaying the full
URL.

• Added ‘\newcommand’ and ‘\renewcommand’
tags to the Rd format, to allow user-defined
macros.

• New toRd() generic in the tools package
to convert objects to fragments of Rd code,
and added "fragment" argument to Rd2txt(),
Rd2HTML(), and Rd2latex() to support it.

• Directory ‘R_HOME/share/texmf’ now follows
the TDS conventions, so can be set as a texmf
tree (‘root directory’ in MiKTeX parlance).

• S3 generic functions now use correct S4 inher-
itance when dispatching on an S4 object. See
?Methods, section on “Methods for S3 Generic
Functions” for recommendations and details.

• format.pval() gains a ... argument to pass
arguments such as nsmall to format(). (Wish
of PR#9574)

• legend() supports title.adj. (Wish of
PR#13415)

• Added support for subsetting "raster" ob-
jects, plus assigning to a subset, conversion to
a matrix (of colour strings), and comparisons
(‘==’ and ‘!=’).

• Added a new parseLatex() function (and
related functions deparseLatex() and
latexToUtf8()) to support conversion of
bibliographic entries for display in R.

• Text rendering of ‘\itemize’ in help uses a Uni-
code bullet in UTF-8 and most single-byte Win-
dows locales.

• Added support for polygons with holes to the
graphics engine. This is implemented for the
pdf(), postscript(), x11(type="cairo"),
windows(), and quartz() devices (and
associated raster formats), but not for
x11(type="Xlib") or xfig() or pictex().
The user-level interface is the polypath()
function in graphics and grid.path() in grid.

• File ‘NEWS’ is now generated at installation
with a slightly different format: it will be in
UTF-8 on platforms using UTF-8, and other-
wise in ASCII. There is also a PDF version,
‘NEWS.pdf’, installed at the top-level of the R
distribution.

• kmeans(x, 1) now works. Further, kmeans now
returns between and total sum of squares.

• arrayInd() and which() gain an argument
useNames. For arrayInd, the default is now
false, for speed reasons.

• As is done for closures, the default print
method for the formula class now displays the
associated environment if it is not the global en-
vironment.

• A new facility has been added for insert-
ing code into a package without re-installing
it, to facilitate testing changes which can
be selectively added and backed out. See
?insertSource.

• New function readRenviron to (re-)read files in
the format of ‘~/.Renviron’ and ‘Renviron.site’.

• require() will now return FALSE (and not fail)
if loading the package or one of its dependen-
cies fails.

• aperm() now allows argument perm to be a
character vector when the array has named
dimnames (as the results of table() calls do).
Similarly, array() allows MARGIN to be a char-
acter vector. (Based on suggestions of Michael
Lachmann.)

• Package utils now exports and documents
functions aspell_package_Rd_files() and
aspell_package_vignettes() for spell check-
ing package Rd files and vignettes using
Aspell, Ispell or Hunspell.
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• Package news can now be given in Rd format,
and news() prefers these ‘inst/NEWS.Rd’ files to
old-style plain text ‘NEWS’ or ‘inst/NEWS’ files.

• New simple function packageVersion().

• The PCRE library has been updated to version
8.10.

• The standard Unix-alike terminal interface de-
clares its name to readline as ’R’, so that can be
used for conditional sections in ‘~/.inputrc’ files.

• ‘Writing R Extensions’ now stresses that the
standard sections in ‘.Rd’ files (other than
‘\alias’, ‘\keyword’ and ‘\note’) are intended
to be unique, and the conversion tools now
drop duplicates with a warning.

The ‘.Rd’ conversion tools also warn about an
unrecognized type in a ‘\docType’ section.

• ecdf() objects now have a quantile() method.

• format() methods for date-time objects now
attempt to make use of a "tzone" attribute with
"%Z" and "%z" formats, but it is not always pos-
sible. (Wish of PR#14358.)

• tools::texi2dvi(file, clean = TRUE) now
works in more cases (e.g. where emulation is
used and when ‘file’ is not in the current direc-
tory).

• New function droplevels() to remove unused
factor levels.

• system(command, intern = TRUE) now gives
an error on a Unix-alike (as well as on Win-
dows) if command cannot be run. It reports a
non-success exit status from running command
as a warning.

On a Unix-alike an attempt is made to re-
turn the actual exit status of the command
in system(intern = FALSE): previously this
had been system-dependent but on POSIX-
compliant systems the value return was 256
times the status.

• system() has a new argument ignore.stdout
which can be used to (portably) ignore stan-
dard output.

• system(intern = TRUE) and pipe() connec-
tions are guaranteed to be available on all
builds of R.

• Sys.which() has been altered to return "" if the
command is not found (even on Solaris).

• A facility for defining reference-based S4
classes (in the OOP style of Java, C++, etc.) has
been added experimentally to package meth-
ods; see ?ReferenceClasses.

• The predict method for "loess" fits gains an
na.action argument which defaults to na.pass
rather than the previous default of na.omit.

Predictions from "loess" fits are now named
from the row names of newdata.

• Parsing errors detected during Sweave() pro-
cessing will now be reported referencing their
original location in the source file.

• New adjustcolor() utility, e.g., for simple
translucent color schemes.

• qr() now has a trivial lm method with a simple
(fast) validity check.

• An experimental new programming model has
been added to package methods for refer-
ence (OOP-style) classes and methods. See
?ReferenceClasses.

• bzip2 has been updated to version 1.0.6 (bug-
fix release). ‘--with-system-bzlib’ now re-
quires at least version 1.0.6.

• R now provides ‘jss.cls’ and ‘jss.bst’ (the class
and bib style file for the Journal of Statis-
tical Software) as well as ‘RJournal.bib’ and
‘Rnews.bib’, and R CMD ensures that the ‘.bst’
and ‘.bib’ files are found by BibTeX.

• Functions using the TAR environment vari-
able no longer quote the value when mak-
ing system calls. This allows values such
as ‘tar --force-local’, but does require ad-
ditional quotes in, e.g., TAR = "’/path with
spaces/mytar’".

DEPRECATED & DEFUNCT

• Supplying the parser with a character string
containing both octal/hex and Unicode es-
capes is now an error.

• File extension ‘.C’ for C++ code files in pack-
ages is now defunct.

• R CMD check no longer supports configuration
files containing Perl configuration variables:
use the environment variables documented in
‘R Internals’ instead.

• The save argument of require() now defaults
to FALSE and save = TRUE is now deprecated.
(This facility is very rarely actually used, and
was superseded by the ‘Depends’ field of the
‘DESCRIPTION’ file long ago.)

• R CMD check -no-latex is deprecated in
favour of ‘--no-manual’.

• R CMD Sd2Rd is formally deprecated and will be
removed in R 2.13.0.
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PACKAGE INSTALLATION

• install.packages() has a new argument
libs_only to optionally pass ‘--libs-only’ to R
CMD INSTALL and works analogously for Win-
dows binary installs (to add support for 64- or
32-bit Windows).

• When sub-architectures are in use, the installed
architectures are recorded in the Archs field of
the ‘DESCRIPTION’ file. There is a new default
filter, "subarch", in available.packages() to
make use of this.

Code is compiled in a copy of the ‘src’ direc-
tory when a package is installed for more than
one sub-architecture: this avoid problems with
cleaning the sources between building sub-
architectures.

• R CMD INSTALL -libs-only no longer over-
rides the setting of locking, so a previous ver-
sion of the package will be restored unless
‘--no-lock’ is specified.

UTILITIES

• R CMD Rprof|build|check are now based on
R rather than Perl scripts. The only re-
maining Perl scripts are the deprecated R
CMD Sd2Rd and install-info.pl (used only if
install-info is not found) as well as some
maintainer-mode-only scripts.

NB: because these have been completely
rewritten, users should not expect undocu-
mented details of previous implementations to
have been duplicated.

R CMD no longer manipulates the environment
variables PERL5LIB and PERLLIB.

• R CMD check has a new argument
‘--extra-arch’ to confine tests to those needed
to check an additional sub-architecture.

Its check for “Subdirectory ’inst’ contains no
files” is more thorough: it looks for files, and
warns if there are only empty directories.

Environment variables such as R_LIBS and
those used for customization can be set
for the duration of checking via a file
‘~/.R/check.Renviron’ (in the format used by
‘.Renviron’, and with sub-architecture specific
versions such as ‘~/.R/check.Renviron.i386’ tak-
ing precedence).

There are new options ‘--multiarch’ to check
the package under all of the installed sub-
architectures and ‘--no-multiarch’ to confine
checking to the sub-architecture under which
check is invoked. If neither option is supplied,
a test is done of installed sub-architectures and

all those which can be run on the current OS
are used.

Unless multiple sub-architectures are selected,
the install done by check for testing purposes is
only of the current sub-architecture (via R CMD
INSTALL -no-multiarch).

It will skip the check for non-ascii char-
acters in code or data if the environ-
ment variables _R_CHECK_ASCII_CODE_ or
_R_CHECK_ASCII_DATA_ are respectively set to
FALSE. (Suggestion of Vince Carey.)

• R CMD build no longer creates an ‘INDEX’ file
(R CMD INSTALL does so), and -force removes
(rather than overwrites) an existing ‘INDEX’
file.

It supports a file ‘~/.R/build.Renviron’ analo-
gously to check.

It now runs build-time ‘\Sexpr’ expressions in
help files.

• R CMD Rd2dvi makes use of
tools::texi2dvi() to process the package
manual. It is now implemented entirely in R
(rather than partially as a shell script).

• R CMD Rprof now uses
utils::summaryRprof() rather than Perl.
It has new arguments to select one of the tables
and to limit the number of entries printed.

• R CMD Sweave now runs R with -vanilla so the
environment setting of R_LIBS will always be
used.

C-LEVEL FACILITIES

• lang5() and lang6() (in addition to pre-
existing lang[1-4]()) convenience functions
for easier construction of eval() calls. If you
have your own definition, do wrap it inside
#ifndef lang5 .... #endif to keep it work-
ing with old and new R.

• Header ‘R.h’ now includes only the C headers it
itself needs, hence no longer includes errno.h.
(This helps avoid problems when it is included
from C++ source files.)

• Headers ‘Rinternals.h’ and ‘R_ext/Print.h’ include
the C++ versions of ‘stdio.h’ and ‘stdarg.h’ re-
spectively if included from a C++ source file.

INSTALLATION

• A C99 compiler is now required, and more C99
language features will be used in the R sources.

• Tcl/Tk >= 8.4 is now required (increased from
8.3).
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• System functions access, chdir and getcwd are
now essential to configure R. (In practice they
have been required for some time.)

• make check compares the output of the exam-
ples from several of the base packages to ref-
erence output rather than the previous output
(if any). Expect some differences due to differ-
ences in floating-point computations between
platforms.

• File ‘NEWS’ is no longer in the sources, but gen-
erated as part of the installation. The primary
source for changes is now ‘doc/NEWS.Rd’.

• The popen system call is now required to
build R. This ensures the availability of
system(intern = TRUE), pipe() connections
and printing from postscript().

• The pkg-config file ‘libR.pc’ now also works
when R is installed using a sub-architecture.

• R has always required a BLAS that conforms to
IE60559 arithmetic, but after discovery of more
real-world problems caused by a BLAS that did
not, this is tested more thoroughly in this ver-
sion.

BUG FIXES

• Calls to selectMethod() by default no longer
cache inherited methods. This could previ-
ously corrupt methods used by as().

• The densities of non-central chi-squared are
now more accurate in some cases in the ex-
treme tails, e.g. dchisq(2000, 2, 1000), as
a series expansion was truncated too early.
(PR#14105)

• pt() is more accurate in the left tail for ncp
large, e.g. pt(-1000, 3, 200). (PR#14069)

• The default C function (R_binary) for binary
ops now sets the S4 bit in the result if either
argument is an S4 object. (PR#13209)

• source(echo=TRUE) failed to echo comments
that followed the last statement in a file.

• S4 classes that contained one of "matrix",
"array" or "ts" and also another class now ac-
cept superclass objects in new(). Also fixes fail-
ure to call validObject() for these classes.

• Conditional inheritance defined by argument
test in methods::setIs() will no longer be
used in S4 method selection (caching these
methods could give incorrect results). See
?setIs.

• The signature of an implicit generic is now
used by setGeneric() when that does not use
a definition nor explicitly set a signature.

• A bug in callNextMethod() for some examples
with "..." in the arguments has been fixed.
See file ‘src/library/methods/tests/nextWithDots.R’
in the sources.

• match(x, table) (and hence %in%) now treat
"POSIXlt" consistently with, e.g., "POSIXct".

• Built-in code dealing with environ-
ments (get(), assign(), parent.env(),
is.environment() and others) now behave
consistently to recognize S4 subclasses;
is.name() also recognizes subclasses.

• The abs.tol control parameter to nlminb()
now defaults to 0.0 to avoid false declarations
of convergence in objective functions that may
go negative.

• The standard Unix-alike termination dialog to
ask whether to save the workspace takes a EOF
response as n to avoid problems with a dam-
aged terminal connection. (PR#14332)

• Added warn.unused argument to
hist.default() to allow suppression of
spurious warnings about graphical parameters
used with plot=FALSE. (PR#14341)

• predict.lm(), summary.lm(), and indeed lm()
itself had issues with residual DF in zero-
weighted cases (the latter two only in connec-
tion with empty models). (Thanks to Bill Dun-
lap for spotting the predict() case.)

• aperm() treated resize = NA as resize =
TRUE.

• constrOptim() now has an improved conver-
gence criterion, notably for cases where the
minimum was (very close to) zero; further,
other tweaks inspired from code proposals by
Ravi Varadhan.

• Rendering of S3 and S4 methods in man pages
has been corrected and made consistent across
output formats.

• Simple markup is now allowed in ‘\title’ sec-
tions in ‘.Rd’ files.

• The behaviour of as.logical() on factors (to
use the levels) was lost in R 2.6.0 and has been
restored.

• prompt() did not backquote some default ar-
guments in the ‘\usage’ section. (Reported by
Claudia Beleites.)

• writeBin() disallows attempts to write 2GB or
more in a single call. (PR#14362)
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• new() and getClass() will now work if Class
is a subclass of "classRepresentation" and
should also be faster in typical calls.

• The summary() method for data frames makes
a better job of names containing characters in-
valid in the current locale.

• [[ sub-assignment for factors could create an
invalid factor (reported by Bill Dunlap).

• Negate(f) would not evaluate argument f un-
til first use of returned function (reported by
Olaf Mersmann).

• quietly=FALSE is now also an optional argu-
ment of library(), and consequently, quietly
is now propagated also for loading dependent
packages, e.g., in require(*, quietly=TRUE).

• If the loop variable in a for loop was deleted,
it would be recreated as a global variable. (Re-
ported by Radford Neal; the fix includes his op-
timizations as well.)

• Task callbacks could report the wrong expres-
sion when the task involved parsing new code.
(PR#14368)

• getNamespaceVersion() failed; this was an ac-
cidental change in 2.11.0. (PR#14374)

• identical() returned FALSE for external
pointer objects even when the pointer ad-
dresses were the same.

• L$a@x[] <- val did not duplicate in a case it
should have.

• tempfile() now always gives a random file
name (even if the directory is specified) when
called directly after startup and before the R
RNG had been used. (PR#14381)

• quantile(type=6) behaved inconsistently.
(PR#14383)

• backSpline(.) behaved incorrectly when the
knot sequence was decreasing. (PR#14386)

• The reference BLAS included in R was as-
suming that 0*x and x*0 were always zero
(whereas they could be NA or NaN in IEC 60559
arithmetic). This was seen in results from
tcrossprod, and for example that log(0) %*%
0 gave 0.

• The calculation of whether text was completely
outside the device region (in which case, you
draw nothing) was wrong for screen devices
(which have [0, 0] at top-left). The symp-
tom was (long) text disappearing when re-
sizing a screen window (to make it smaller).
(PR#14391)

• model.frame(drop.unused.levels = TRUE)
did not take into account NA values of factors
when deciding to drop levels. (PR#14393)

• library.dynam.unload required an absolute
path for libpath. (PR#14385)

Both library() and loadNamespace() now
record absolute paths for use by searchpaths()
and getNamespaceInfo(ns, "path").

• The self-starting model NLSstClosestX failed if
some deviation was exactly zero. (PR#14384)

• X11(type = "cairo") (and other devices such
as png using cairographics) and which use
Pango font selection now work around a bug in
Pango when very small fonts (those with sizes
between 0 and 1 in Pango’s internal units) are
requested. (PR#14369)

• Added workaround for the font problem with
X11(type = "cairo") and similar on Mac OS
X whereby italic and bold styles were inter-
changed. (PR#13463 amongst many other re-
ports.)

• source(chdir = TRUE) failed to reset the work-
ing directory if it could not be determined –
that is now an error.

• Fix for crash of example(rasterImage) on
x11(type="Xlib").

• Force Quartz to bring the on-screen display
up-to-date immediately before the snapshot is
taken by grid.cap() in the Cocoa implementa-
tion. (PR#14260)

• model.frame had an unstated 500 byte limit on
variable names. (Example reported by Terry
Therneau.)

• The 256-byte limit on names is now docu-
mented.

• Subassignment by [, [[ or $ on an expression
object with value NULL coerced the object to a
list.

CHANGES IN R VERSION 2.11.1
patched

NEW FEATURES

• install.packages() has a new optional argu-
ment INSTALL_opts which can be used to pass
options to R CMD INSTALL for source-package
installs.

• R CMD check now runs the package-specific
tests with LANGUAGE=en to facilitate comparison
to ‘.Rout.save’ files.
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• sessionInfo() gives more detailed platform
information, including 32/64-bit and the sub-
architecture if one is used.

DEPRECATED & DEFUNCT

• The use of Perl configuration variables for R
CMD check (as previously documented in ‘Writ-
ing R Extensions’) is deprecated and will be re-
moved in R 2.12.0. Use the environment vari-
ables documented in ‘R Internals’ instead.

BUG FIXES

• R CMD Rd2dvi failed if run from a path contain-
ing space(s). This also affected R CMD check,
which calls Rd2dvi.

• stripchart() could fail with an empty factor
level. (PR#14317)

• Text help rendering of ‘\tabular{}’ has been
improved: under some circumstances leading
blank columns were not rendered.

• strsplit(x, fixed=TRUE) marked UTF-8
strings with the local encoding when no splits
were found.

• weighted.mean(NA, na.rm=TRUE) and similar
now returns NaN again, as it did prior to R
2.10.0.

• R CMD had a typo in its detection of whether the
environment variable TEXINPUTS was set (re-
ported by Martin Morgan).

• The command-line parser could mistake
‘--file=size...’ for one of the options for
setting limits for Ncells or Vcells.

• The internal strptime() could corrupt its copy
of the timezone which would then lead to spu-
rious warnings. (PR#14338)

• dir.create(recursive = TRUE) could fail if
one of the components existed but was a direc-
tory on a read-only file system. (Seen on So-
laris, where the error code returned is not even
listed as possible on the man page.)

• The postscript() and pdf() devices will now
allow lwd values less than 1 (they used to force
such values to be 1).

• Fixed font face for CID fonts in pdf() graphics
output. (PR#14326)

• GERaster() now checks for width or height of
zero and does nothing in those cases; previ-
ously the behaviour was undefined, probably
device-specific, and possibly dangerous.

• wilcox.test(x, y, conf.int = TRUE) failed
with an unhelpful message if x and y were con-
stant vectors, and similarly in the one-sample
case. (PR#14329)

• Improperly calling Recall() from outside a
function could cause a segfault. (Reported by
Robert McGehee.)

• ‘\Sexpr[result=rd]’ in an Rd file added a spu-
rious newline, which was displayed as extra
whitespace when rendered.

• require(save = TRUE) recorded the names of
packages it failed to load.

• packageStatus() could return a data frame
with duplicate row names which could then
not be printed.

• txtProgressBar(style = 2) did not work cor-
rectly.

txtProgressBar(style = 3) did not display
until a non-minimum value was set.

• contour() did not display dashed line types
properly when contour lines were labelled.
(Reported by David B. Thompson.)

• tools::undoc() again detects undocumented
data objects. Of course, this also affects R CMD
check.

• ksmooth(x,NULL) no longer segfaults.

• approxfun(), approx(), splinefun() and
spline() could be confused by x values
that were different but so close as to print
identically. (PR#14377)

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859



90 NEWS AND NOTES

Changes on CRAN
2010-06-04 to 2010-12-12

by Kurt Hornik and Achim Zeileis

New CRAN task views

OfficialStatistics Topic: Official Statistics & Sur-
vey Methodology. Maintainer: Matthias
Templ. Packages: Amelia, EVER, Hmisc,
MImix, RecordLinkage, SDaA, SeqKnn, Stat-
Match, TeachingSampling, VIM, cat, im-
pute, ineq, laeken, lme4, memisc, mi, micE-
con, mice, missMDA, mitools, mix, nlme,
norm, odfWeave.survey, pan, pps, reweight,
robCompositions, rrcovNA, sampfling, sam-
pling, samplingbook, sdcMicro, sdcTable,
simFrame, simPopulation, spsurvey, stratifi-
cation, survey∗, surveyNG, urn, x12, yaIm-
pute.

ReproducibleResearch Topic: Reproducible Re-
search. Maintainer: Max Kuhn. Packages:
Design∗, Hmisc∗, R.cache, R.rsp, R2HTML∗,
R2PPT, R2wd, SRPM, SweaveListingUtils,
TeachingSampling, animation, apsrtable,
ascii, brew, cacheSweave, cxxPack, ex-
ams, highlight, hwriter, memisc, odfWeave,
odfWeave.survey, pgfSweave, quantreg, r2lh,
reporttools, rms∗, svSweave, tikzDevice,
xtable∗.

(* = core package)

New packages in CRAN task views

Bayesian Ratings, RxCEcolInf, SimpleTable,
spikeslab.

ChemPhys OrgMassSpecR, plsRglm∗, solaR.

ClinicalTrials DoseFinding, MCPMod.

Distributions mc2d, nacopula, truncnorm.

Environmetrics DSpat, SPACECAP, secr.

ExperimentalDesign DoseFinding.

Finance orderbook, rrv, schwartz97.

HighPerformanceComputing gcbd, magma, rpud.

MachineLearning Boruta, LiblineaR, LogicForest,
LogicReg, RSNNS, SDDA, hda, quantregFor-
est, rda, rgp, sda.

MedicalImaging RNiftyReg∗, dpmixsim∗, mritc∗.

Optimization Rcgmin, Rsolnp∗, Rvmmin, minqa∗,
optimx∗.

Psychometrics QuantPsyc, REQS, catR, equate,
plsRglm.

Spatial CompRandFld, MarkedPointProcess, con-
strainedKriging, divagis, geosphere, raster∗,
sparr, sphet, vardiag.

Survival aster, aster2, censReg, exactRankTests,
glrt, saws, simexaft, spef, splinesurv,
survPresmooth.

TimeSeries MARSS, TSAgg, mondate, pomp.

gR catnet.

(* = core package)

New contributed packages

ACCLMA ACC & LMA Graph Plotting. Authors:
Tal Carmi, Liat Gaziel.

AMA Anderson-Moore Algorithm. Authors: Gary
Anderson, Aneesh Raghunandan.

AllPossibleSpellings Computes all of a word’s pos-
sible spellings. Author: Antoine Tremblay,
IWK Health Center.

BMS Bayesian Model Averaging Library. Authors:
Martin Feldkircher and Stefan Zeugner. In
view: Bayesian.

BayHap Bayesian analysis of haplotype association
using Markov Chain Monte Carlo. Authors:
Raquel Iniesta and Victor Moreno.

Benchmarking Benchmark and frontier analysis us-
ing DEA and SFA (BeDS). Authors: Peter
Bogetoft and Lars Otto.

BlakerCI Blaker’s binomial confidence limits. Au-
thor: J. Klaschka.

CFL Compensatory Fuzzy Logic. Authors: Pablo
Michel Marin Ortega, Kornelius Rohmeyer.

CNVassoc Association analysis of CNV data. Au-
thors: Juan R González, Isaac Subirana.

COSINE COndition SpecIfic sub-NEtwork. Author:
Haisu Ma.

COUNT Functions, data and code for count data.
Author: Joseph M Hilbe.

Ckmeans.1d.dp Optimal distance-based clustering
for one-dimensional data. Authors: Joe Song
and Haizhou Wang.

ClustOfVar Clustering of variables. Authors: Marie
Chavent and Vanessa Kuentz and Benoit Li-
quet and Jerome Saracco.

The R Journal Vol. 2/2, December 2010 ISSN 2073-4859

http://CRAN.R-project.org/view=OfficialStatistics
http://cran.r-project.org/package=Amelia
http://cran.r-project.org/package=EVER
http://cran.r-project.org/package=Hmisc
http://cran.r-project.org/package=MImix
http://cran.r-project.org/package=RecordLinkage
http://cran.r-project.org/package=SDaA
http://cran.r-project.org/package=SeqKnn
http://cran.r-project.org/package=StatMatch
http://cran.r-project.org/package=StatMatch
http://cran.r-project.org/package=TeachingSampling
http://cran.r-project.org/package=VIM
http://cran.r-project.org/package=cat
http://cran.r-project.org/package=impute
http://cran.r-project.org/package=impute
http://cran.r-project.org/package=ineq
http://cran.r-project.org/package=laeken
http://cran.r-project.org/package=lme4
http://cran.r-project.org/package=memisc
http://cran.r-project.org/package=mi
http://cran.r-project.org/package=micEcon
http://cran.r-project.org/package=micEcon
http://cran.r-project.org/package=mice
http://cran.r-project.org/package=missMDA
http://cran.r-project.org/package=mitools
http://cran.r-project.org/package=mix
http://cran.r-project.org/package=nlme
http://cran.r-project.org/package=norm
http://cran.r-project.org/package=odfWeave.survey
http://cran.r-project.org/package=pan
http://cran.r-project.org/package=pps
http://cran.r-project.org/package=reweight
http://cran.r-project.org/package=robCompositions
http://cran.r-project.org/package=rrcovNA
http://cran.r-project.org/package=sampfling
http://cran.r-project.org/package=sampling
http://cran.r-project.org/package=sampling
http://cran.r-project.org/package=samplingbook
http://cran.r-project.org/package=sdcMicro
http://cran.r-project.org/package=sdcTable
http://cran.r-project.org/package=simFrame
http://cran.r-project.org/package=simPopulation
http://cran.r-project.org/package=spsurvey
http://cran.r-project.org/package=stratification
http://cran.r-project.org/package=stratification
http://cran.r-project.org/package=survey
http://cran.r-project.org/package=surveyNG
http://cran.r-project.org/package=urn
http://cran.r-project.org/package=x12
http://cran.r-project.org/package=yaImpute
http://cran.r-project.org/package=yaImpute
http://CRAN.R-project.org/view=ReproducibleResearch
http://cran.r-project.org/package=Design
http://cran.r-project.org/package=Hmisc
http://cran.r-project.org/package=R.cache
http://cran.r-project.org/package=R.rsp
http://cran.r-project.org/package=R2HTML
http://cran.r-project.org/package=R2PPT
http://cran.r-project.org/package=R2wd
http://cran.r-project.org/package=SRPM
http://cran.r-project.org/package=SweaveListingUtils
http://cran.r-project.org/package=TeachingSampling
http://cran.r-project.org/package=animation
http://cran.r-project.org/package=apsrtable
http://cran.r-project.org/package=ascii
http://cran.r-project.org/package=brew
http://cran.r-project.org/package=cacheSweave
http://cran.r-project.org/package=cxxPack
http://cran.r-project.org/package=exams
http://cran.r-project.org/package=exams
http://cran.r-project.org/package=highlight
http://cran.r-project.org/package=hwriter
http://cran.r-project.org/package=memisc
http://cran.r-project.org/package=odfWeave
http://cran.r-project.org/package=odfWeave.survey
http://cran.r-project.org/package=pgfSweave
http://cran.r-project.org/package=quantreg
http://cran.r-project.org/package=r2lh
http://cran.r-project.org/package=reporttools
http://cran.r-project.org/package=rms
http://cran.r-project.org/package=svSweave
http://cran.r-project.org/package=tikzDevice
http://cran.r-project.org/package=xtable
http://CRAN.R-project.org/view=Bayesian
http://cran.r-project.org/package=Ratings
http://cran.r-project.org/package=RxCEcolInf
http://cran.r-project.org/package=SimpleTable
http://cran.r-project.org/package=spikeslab
http://CRAN.R-project.org/view=ChemPhys
http://cran.r-project.org/package=OrgMassSpecR
http://cran.r-project.org/package=plsRglm
http://cran.r-project.org/package=solaR
http://CRAN.R-project.org/view=ClinicalTrials
http://cran.r-project.org/package=DoseFinding
http://cran.r-project.org/package=MCPMod
http://CRAN.R-project.org/view=Distributions
http://cran.r-project.org/package=mc2d
http://cran.r-project.org/package=nacopula
http://cran.r-project.org/package=truncnorm
http://CRAN.R-project.org/view=Environmetrics
http://cran.r-project.org/package=DSpat
http://cran.r-project.org/package=SPACECAP
http://cran.r-project.org/package=secr
http://CRAN.R-project.org/view=ExperimentalDesign
http://cran.r-project.org/package=DoseFinding
http://CRAN.R-project.org/view=Finance
http://cran.r-project.org/package=orderbook
http://cran.r-project.org/package=rrv
http://cran.r-project.org/package=schwartz97
http://CRAN.R-project.org/view=HighPerformanceComputing
http://cran.r-project.org/package=gcbd
http://cran.r-project.org/package=magma
http://cran.r-project.org/package=rpud
http://CRAN.R-project.org/view=MachineLearning
http://cran.r-project.org/package=Boruta
http://cran.r-project.org/package=LiblineaR
http://cran.r-project.org/package=LogicForest
http://cran.r-project.org/package=LogicReg
http://cran.r-project.org/package=RSNNS
http://cran.r-project.org/package=SDDA
http://cran.r-project.org/package=hda
http://cran.r-project.org/package=quantregForest
http://cran.r-project.org/package=quantregForest
http://cran.r-project.org/package=rda
http://cran.r-project.org/package=rgp
http://cran.r-project.org/package=sda
http://CRAN.R-project.org/view=MedicalImaging
http://cran.r-project.org/package=RNiftyReg
http://cran.r-project.org/package=dpmixsim
http://cran.r-project.org/package=mritc
http://CRAN.R-project.org/view=Optimization
http://cran.r-project.org/package=Rcgmin
http://cran.r-project.org/package=Rsolnp
http://cran.r-project.org/package=Rvmmin
http://cran.r-project.org/package=minqa
http://cran.r-project.org/package=optimx
http://CRAN.R-project.org/view=Psychometrics
http://cran.r-project.org/package=QuantPsyc
http://cran.r-project.org/package=REQS
http://cran.r-project.org/package=catR
http://cran.r-project.org/package=equate
http://cran.r-project.org/package=plsRglm
http://CRAN.R-project.org/view=Spatial
http://cran.r-project.org/package=CompRandFld
http://cran.r-project.org/package=MarkedPointProcess
http://cran.r-project.org/package=constrainedKriging
http://cran.r-project.org/package=constrainedKriging
http://cran.r-project.org/package=divagis
http://cran.r-project.org/package=geosphere
http://cran.r-project.org/package=raster
http://cran.r-project.org/package=sparr
http://cran.r-project.org/package=sphet
http://cran.r-project.org/package=vardiag
http://CRAN.R-project.org/view=Survival
http://cran.r-project.org/package=aster
http://cran.r-project.org/package=aster2
http://cran.r-project.org/package=censReg
http://cran.r-project.org/package=exactRankTests
http://cran.r-project.org/package=glrt
http://cran.r-project.org/package=saws
http://cran.r-project.org/package=simexaft
http://cran.r-project.org/package=spef
http://cran.r-project.org/package=splinesurv
http://cran.r-project.org/package=survPresmooth
http://CRAN.R-project.org/view=TimeSeries
http://cran.r-project.org/package=MARSS
http://cran.r-project.org/package=TSAgg
http://cran.r-project.org/package=mondate
http://cran.r-project.org/package=pomp
http://CRAN.R-project.org/view=gR
http://cran.r-project.org/package=catnet
http://cran.r-project.org/package=ACCLMA
http://cran.r-project.org/package=AMA
http://cran.r-project.org/package=AllPossibleSpellings
http://cran.r-project.org/package=BMS
http://CRAN.R-project.org/view=Bayesian
http://cran.r-project.org/package=BayHap
http://cran.r-project.org/package=Benchmarking
http://cran.r-project.org/package=BlakerCI
http://cran.r-project.org/package=CFL
http://cran.r-project.org/package=CNVassoc
http://cran.r-project.org/package=COSINE
http://cran.r-project.org/package=COUNT
http://cran.r-project.org/package=Ckmeans.1d.dp
http://cran.r-project.org/package=ClustOfVar


NEWS AND NOTES 91

CompQuadForm Distribution function of quadratic
forms in normal variables. Author: P. Lafaye
de Micheaux.

CompRandFld Composite-likelihood based Anal-
ysis of Random Fields. Authors: Simone
Padoan, Moreno Bevilacqua. In view: Spatial.

DCGL Differential Coexpression Analysis of Gene
Expression Microarray Data. Authors: Bao-
Hong Liu, Hui Yu.

DECIDE DEComposition of Indirect and Direct Ef-
fects. Author: Christiana Kartsonaki.

DMwR Functions and data for “Data Mining with
R”. Author: Luis Torgo.

DNAtools Tools for analysing forensic genetic DNA
data. Authors: Torben Tvedebrink and James
Curran.

DeducerExtras Additional dialogs and functions for
Deducer. Author: Ian Fellows.

DeducerPlugInScaling Reliability and factor analy-
sis plugin. Authors: Alberto Mirisola and Ian
Fellows.

DiceView Plot methods for computer experiments
design and models. Authors: Yann Richet,
Yves Deville, Clement Chevalier.

EMA Easy Microarray data Analysis. Author: EMA
group.

EquiNorm Normalize expression data using equiv-
alently expressed genes. Authors: Li-Xuan
Qin, Jaya M. Satagopan.

FAwR Functions and Datasets for “Forest Analytics
with R”. Authors: Andrew Robinson and Jeff
Hamann.

FeaLect Scores features for Feature seLection. Au-
thor: Habil Zare.

FitARMA FitARMA: Fit ARMA or ARIMA using
fast MLE algorithm. Author: A.I. McLeod.

FourierDescriptors Generate images using Fourier
descriptors. Author: John Myles White.

GAD General ANOVA Design (GAD): Analysis of
variance from general principles. Author:
Leonardo Sandrini-Neto & Mauricio G. Ca-
margo.

GPseq Using the generalized Poisson distribution
to model sequence read counts from high
throughput sequencing experiments. Authors:
Sudeep Srivastava, Liang Chen.

GWASExactHW Exact Hardy-Weinburg testing for
Genome Wide Association Studies. Author:
Ian Painter, GENEVA project, University of
Washington.

HDclassif High Dimensionnal Classification. Au-
thors: R. Aidan, L. Berge, C. Bouveyron, S. Gi-
rard.

HWEintrinsic Objective Bayesian Testing for the
Hardy-Weinberg Equilibrium Problem. Au-
thor: Sergio Venturini.

HapEstXXR Haplotype-based analysis of associa-
tion for genetic traits. Authors: Sven Knueppel
and Klaus Rohde.

HumMeth27QCReport Quality control and prepro-
cessing of Illumina’s Infinium HumanMethy-
lation27 BeadChip methylation assay. Author:
F.M. Mancuso.

IMIS Incremental Mixture Importance Sampling.
Authors: Adrian Raftery, Le Bao.

ImpactIV Identifying Causal Effect for Multi-
Component Intervention Using Instrumental
Variable Method. Author: Peng Ding.

IniStatR Initiation à la Statistique avec R. Authors:
Frederic Bertrand, Myriam Maumy-Bertrand.

LMERConvenienceFunctions An assortment of
functions to facilitate modeling with linear
mixed-effects regression (LMER). Author: An-
toine Tremblay.

LPCM Local principal curve methods. Authors:
Jochen Einbeck and Ludger Evers.

LSD Lots of Superior Depictions. Authors: Bjoern
Schwalb, Achim Tresch, Romain Francois.

LVQTools Learning Vector Quantization Tools. Au-
thor: Sander Kelders.

LogicForest Logic Forest. Author: Bethany Wolf. In
view: MachineLearning.

MARSS Multivariate Autoregressive State-Space
Modeling. Authors: Eli Holmes, Eric Ward,
and Kellie Wills, NOAA, Seattle, USA. In view:
TimeSeries.

MCLIME Simultaneous Estimation of the Regres-
sion Coefficients and Precision Matrix. Au-
thors: T. Tony Cai, Hongzhe Li, Weidong Liu
and Jichun Xie.

MMST Datasets from “Modern Multivariate Statis-
tical Techniques” by Alan Julian Izenman. Au-
thor: Keith Halbert.

MOCCA Multi-objective optimization for collecting
cluster alternatives. Author: Johann Kraus.
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MSToolkit The MSToolkit library for clinical trial
design. Authors: Mango Solutions & Pfizer.

MatrixModels Modelling with Sparse And Dense
Matrices. Authors: Douglas Bates and Martin
Maechler.

MeDiChI MeDiChI ChIP-chip deconvolution li-
brary. Author: David J Reiss.

MetabolAnalyze Probabilistic latent variable mod-
els for metabolomic data. Authors: Nyamun-
danda Gift, Isobel Claire Gormley and Lorraine
Brennan.

Modalclust Hierarchical Modal Clustering. Au-
thors: Surajit Ray and Yansong Cheng.

MsatAllele Visualizes the scoring and binning of
microsatellite fragment sizes. Author: Filipe
Alberto.

NCBI2R Navigate and annotate genes and SNPs.
Author: Scott Melville.

NetCluster Clustering for networks. Authors: Mike
Nowak, Solomon Messing, Sean J Westwood,
and Dan McFarland.

NetData Network Data for McFarland’s SNA R labs.
Authors: Mike Nowak, Sean J Westwood,
Solomon Messing, and Dan McFarland.

NetworkAnalysis Statistical inference on popula-
tions of weighted or unweighted networks.
Author: Cedric E Ginestet.

ORDER2PARENT Estimate parent distributions
with data of several order statistics. Author:
Cheng Chou.

OSACC Ordered Subset Analysis for Case-Control
Studies. Authors: Xuejun Qin, Elizabeth R.
Hauser, Silke Schmidt (Center for Human Ge-
netics, Duke University).

OrgMassSpecR Organic Mass Spectrometry. Au-
thors: Nathan G. Dodder, Southern Califor-
nia Coastal Water Research Project (SCCWRP).
Contributions from Katharine M. Mullen. In
view: ChemPhys.

PERregress Regression Functions and Datasets. Au-
thor: Peter Rossi.

PKreport A reporting pipeline for checking popula-
tion pharmacokinetic model assumption. Au-
thor: Xiaoyong Sun.

PermAlgo Permutational algorithm to simulate sur-
vival data. Authors: Marie-Pierre Sylvestre,
Thad Edens, Todd MacKenzie, Michal Abra-
hamowicz.

PhysicalActivity Process Physical Activity Ac-
celerometer Data. Authors: Leena Choi,
Zhouwen Liu, Charles E. Matthews, and Ma-
ciej S. Buchowski.

PoMoS Polynomial (ordinary differential equation)
Model Search. Authors: Mangiarotti S.,
Coudret R., Drapeau L.

ProjectTemplate Automates the creation of new sta-
tistical analysis projects. Author: John Myles
White.

QSARdata Quantitative Structure Activity Rela-
tionship (QSAR) Data Sets. Author: Max Kuhn.

QuACN Quantitative Analysis of Complex Net-
works. Author: Laurin Mueller.

R4dfp 4dfp MRI Image Read and Write Routines.
Author: Kevin P. Barry with contributions from
Avi Z. Snyder.

RBrownie Continuous and discrete ancestral char-
acter reconstruction and evolutionary rate
tests. Authors: J. Conrad Stack, Brian O’Meara,
Luke Harmon.

RGCCA Regularized Generalized Canonical Corre-
lation Analysis. Author: Arthur Tenenhaus.

RGtk2Extras Data frame editor and dialog making
wrapper for RGtk2. Authors: Tom Taverner,
with contributions from John Verzani and Iago
Conde.

RJSONIO Serialize R objects to JSON, JavaScript
Object Notation. Author: Duncan Temple
Lang.

RMC Functions for fitting Markov models. Author:
Scott D. Foster.

RNCBI The java ncbi interface to R. Author: Martin
Schumann.

RNCBIAxis2Libs Axis2 libraries for use in the R en-
vironment. Author: Martin Schumann.

RNCBIEUtilsLibs EUtils libraries for use in the R
environment. Author: Martin Schumann.

RNiftyReg Medical image registration using the
NiftyReg library. Authors: Jon Clayden; based
on original code by Marc Modat and Pankaj
Daga. In view: MedicalImaging.

RSNNS Neural Networks in R using the Stuttgart
Neural Network Simulator (SNNS). Author:
Christoph Bergmeir. In view: MachineLearning.

RSearchYJ Search with Yahoo Japan. Author: Yohei
Sato.

RWebMA An R interface toWebMA of Yahoo Japan.
Author: Yohei Sato.
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RWekajars R/Weka interface jars. Author: Kurt
Hornik.

RandForestGUI Authors: Rory Michelland,
Genevieve Grundmann.

RcmdrPlugin.EHESsampling Tools for sampling
in European Health Examination Surveys
(EHES). Author: Statistics Norway.

RcmdrPlugin.SensoMineR Graphical User Inter-
face for SensoMineR. Authors: F. Husson, J.
Josse, S. Le.

RcmdrPlugin.TextMining Rcommander plugin for
tm package. Author: Dzemil Lusija.

RcppGSL Rcpp integration for GNU GSL vectors
and matrices. Authors: Romain Francois and
Dirk Eddelbuettel.

Rd2roxygen Convert Rd to roxygen documentation.
Authors: Hadley Wickham and Yihui Xie.

Records Record Values and Record Times. Author:
Magdalena Chrapek.

Renext Renewal method for extreme values extrap-
olation. Authors: Yves Deville, IRSN.

Rfit Rank Estimation for Linear Models. Author:
John Kloke.

Rramas Matrix population models. Author:
Marcelino de la Cruz.

Runiversal Convert R objects to Java variables and
XML. Author: Mehmet Hakan Satman.

RunuranGUI A GUI for the UNU.RAN random
variate generators. Author: Josef Leydold.

SAPP Statistical Analysis of Point Processes. Au-
thor: The Institute of Statistical Mathematics.

SE.IGE Standard errors of estimated genetic param-
etes. Author: Piter Bijma.

SII Calculate ANSI S3.5-1997 Speech Intelligibility
Index. Author: Gregory R. Warnes.

SMCP Smoothed minimax concave penalization
(SMCP) method for genome-wide association
studies. Author: Jin (Gordon) Liu.

SPOT Sequential Parameter Optimization. Authors:
T. Bartz-Beielstein with contributions from J.
Ziegenhirt, W. Konen, O. Flasch, P. Koch, M.
Zaefferer.

SQUAREM Squared extrapolation methods for ac-
celerating fixed-point iterations. Author: Ravi
Varadhan.

SSSR Server Side Scripting with R. Author: Mehmet
Hakan Satman.

SamplerCompare A framework for comparing the
performance of MCMC samplers. Author:
Madeleine Thompson.

SlimPLS SlimPLS multivariate feature selection.
Author: Michael Gutkin.

SortableHTMLTables Turns a data frame into an
HTML file containing a sortable table. Author:
John Myles White.

TEQR Target Equavelence Range Design. Author:
M. Suzette Blanchard.

TRIANGG General discrete triangular distribution.
Authors: Tristan Senga Kiessé, Francial G.
Libengué, Silvio S. Zocchi, Célestin C. Koko-
nendji.

TSAgg Time series Aggregation. Author: JS Lessels.
In view: TimeSeries.

ThreeGroups ML Estimator for Baseline-Placebo-
Treatment (Three-group) designs. Author:
Holger L. Kern.

TilePlot This package performs various analyses of
functional gene tiling DNA microarrays for
studying complex microbial communities. Au-
thor: Ian Marshall.

TreePar Estimating diversification rate changes in
phylogenies. Author: Tanja Stadler.

TunePareto Multi-objective parameter tuning for
classifiers. Authors: Christoph Muessel, Hans
Kestler.

VecStatGraphs2D Vector analysis using graphical
and analytical methods in 2D. Authors: Juan
Carlos Ruiz Cuetos, Maria Eugenia Polo Gar-
cia, Pablo Garcia Rodriguez.

VecStatGraphs3D Vector analysis using graphical
and analytical methods in 3D. Authors: Juan
Carlos Ruiz Cuetos, Maria Eugenia Polo Gar-
cia, Pablo Garcia Rodriguez.

WDI Search and download data from the World
Bank’s World Development Indicators. Au-
thor: Vincent Arel-Bundock.

WGCNA Weighted Gene Co-Expression Network
Analysis. Authors: Peter Langfelder and
Steve Horvath with contributions by Jun Dong,
Jeremy Miller, Lin Song, Andy Yip, and Bin
Zhang.

WMTregions Exact calculation of WMTR. Author:
Pavel Bazovkin.

abc Functions to perform Approximate Bayesian
Computation (ABC) using simulated data. Au-
thors: Katalin Csillery, with contributions from
Michael Blum and Olivier Francois.
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adaptivetau Tau-leaping stochastic simulation. Au-
thor: Philip Johnson.

alabama Constrained nonlinear optimization. Au-
thor: Ravi Varadhan (with contributions from
Gabor Grothendieck).

allan Automated Large Linear Analysis Node. Au-
thor: Alan Lee.

andrews Andrews curves. Author: Jaroslav Mys-
livec.

aratio Assessment ratio analysis. Author: Daniel
McMillen.

ares Environment air pollution epidemiology: a li-
brary for time series analysis. Authors: Wash-
ington Junger and Antonio Ponce de Leon.

aster2 Aster Models. Author: Charles J. Geyer. In
view: Survival.

bayesDem Graphical User Interface for bayesTFR.
Author: Hana Sevcikova.

bayesTFR Bayesian Fertility Projection. Authors:
Hana Sevcikova, Leontine Alkema, Adrian
Raftery.

bbemkr Bayesian bandwidth estimation for multi-
variate kernel regression with Gaussian error.
Authors: Han Lin Shang and Xibin Zhang.

beadarrayMSV Analysis of Illumina BeadArray
SNP data including MSV markers. Author:
Lars Gidskehaug.

beeswarm The bee swarm plot, an alternative to
stripchart. Author: Aron Charles Eklund.

belief Contains basic functions to manipulate be-
lief functions and associated mass assignments.
Authors: N. Maillet, B. Charnomordic, S.
Destercke.

benchmark Benchmark Experiments Toolbox. Au-
thor: Manuel J. A. Eugster.

ber Batch Effects Removal. Author: Marco Giordan.

bfp Bayesian Fractional Polynomials. Author:
Daniel Sabanes Bove.

bild BInary Longitudinal Data. Authors: M. Helena
Gonçalves, M. Salomé Cabral and Adelchi Az-
zalini; incorporates Fortran-77 code written by
R. Piessens and E. de Doncker in ‘Quadpack’.

bisoreg Bayesian Isotonic Regression with Bernstein
Polynomials.

bivarRIpower Sample size calculations for bivariate
longitudinal data. Authors: W. Scott Comulada
and Robert E. Weiss.

cMonkey cMonkey intgrated biclustering algo-
rithm. Authors: David J Reiss, Institute for
Systems Biology.

care CAR Estimation, Variable Selection, and Re-
gression. Authors: Verena Zuber and Kor-
binian Strimmer.

caspar Clustered and sparse regression (CaSpaR).
Author: Daniel Percival.

catR Procedures to generate IRT adaptive tests
(CAT). Authors: David Magis (U Liege, Bel-
gium), Gilles Raiche (UQAM, Canada). In
view: Psychometrics.

cccd Class Cover Catch Digraphs. Author: David J.
Marchette.

censReg Censored Regression (Tobit) Models. Au-
thor: Arne Henningsen. In view: Survival.

cgdsr R-Based API for accessing the MSKCC Cancer
Genomics Data Server (CGDS). Author: An-
ders Jacobsen.

charlson Converts listwise icd9 data into comorbid-
ity count and Charlson Index. Author: Vanessa
Cox.

cherry Multiple testing methods for exploratory re-
search. Author: Jelle Goeman.

clustsig Significant Cluster Analysis. Authors: Dou-
glas Whitaker and Mary Christman.

colcor Tests for column correlation in the presence
of row correlation. Author: Omkar Muralidha-
ran.

compareGroups Descriptives by groups. Authors:
Héctor Sanz, Isaac Subirana, Joan Vila.

constrainedKriging Constrained, covariance-
matching constrained and universal point or
block kriging. Author: Christoph Hofer. In
view: Spatial.

corrsieve CorrSieve. Author: Michael G. Campana.

costat Time series costationarity determination and
tests of stationarity. Authors: Guy Nason and
Alessandro Cardinali.

crossmatch The cross-match test. Authors: Ruth
Heller, Dylan Small, Paul Rosenbaum.

cudaBayesregData Data sets for the examples used
in the package cudaBayesreg. Author: Adelino
Ferreira da Silva.

cumSeg Change point detection in genomic se-
quences. Author: Vito M.R. Muggeo.

curvHDR curvHDR filtering. Authors: George
Luta, Ulrike Naumann and Matt Wand.
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cxxPack R/C++ Tools for Literate Statistical Prac-
tice. Author: Dominick Samperi. In view: Re-
producibleResearch.

dafs Data analysis for forensic scientists. Authors:
James Curran, Danny Chang.

dcv Conventional Cross-validation statistics for
climate-growth model. Author: Zongshan Li
with contributions from Jinlong Zhang.

ddepn Dynamical Deterministic Effects Propagation
Networks: Infer signalling networks for time-
course RPPA data. Author: Christian Bender.

delftfews delftfews R extensions. Authors: Mario
Frasca, Michèl van Leeuwen.

demography Forecasting mortality, fertility, migra-
tion and population data. Authors: Rob J Hyn-
dman with contributions from Heather Booth,
Leonie Tickle and John Maindonald.

dicionariosIBGE Dictionaries for reading survey
microdata from IBGE. Authors: Erick Fonseca,
Alexandre Rademaker.

directlabels Direct labels for plots. Author: Toby
Dylan Hocking.

discretization Data preprocessing, discretization for
classification. Authors: Kim, H. J.

dismo Species distribution modeling. Authors:
Robert Hijmans, Steven Phillips, John Leath-
wick and Jane Elith.

distory Distance Between Phylogenetic Histories.
Authors: John Chakerian and Susan Holmes.

divisors Find the divisors of a number. Author:
Greg Hirson.

dixon Nearest Neighbour Contingency Table Anal-
ysis. Authors: Marcelino de la Cruz Rot and
Philip M. Dixon.

dpa Dynamic Path Approach. Author: Emile Chap-
pin.

eVenn A powerful tool to compare lists and draw
Venn diagrams. Author: Nicolas Cagnard.

ecoreg Ecological regression using aggregate and in-
dividual data. Author: Christopher Jackson.

egarch EGARCH simulation and fitting. Author:
Kerstin Konnerth.

emg Exponentially Modified Gaussian (EMG) Dis-
tribution. Author: Shawn Garbett.

evaluate Parsing and evaluation tools that provide
more details than the default. Author: Hadley
Wickham.

expm Matrix exponential. Authors: Vincent Goulet,
Christophe Dutang, Martin Maechler, David
Firth, Marina Shapira, Michael Stadelmann.

fANCOVA Nonparametric Analysis of Covariance.
Author: Xiao-Feng Wang.

factorQR Bayesian quantile regression factor mod-
els. Author: Lane Burgette.

fastR Data sets and utilities for Foundations and
Applications of Statistics by R Pruim. Author:
Randall Pruim.

fmsb Functions for medical statistics book with
some demographic data. Author: Minato
Nakazawa.

futile.paradigm A framework for working in a func-
tional programming paradigm in R. Author:
Brian Lee Yung Rowe.

fwdmsa Forward search for Mokken scale analysis.
Author: Wobbe P. Zijlstra.

gMCP A graphical approach to sequentially rejec-
tive multiple test procedures. Author: Kor-
nelius Rohmeyer.

galts Genetic algorithms and C-steps based LTS es-
timation. Author: Mehmet Hakan Satman.

games Statistical Estimation of Game-Theoretic
Models. Authors: Curtis S. Signorino and
Brenton Kenkel.

gaussDiff Difference measures for multivariate
Gaussian probability density functions. Au-
thor: Henning Rust.

gcbd GPU/CPU Benchmarking in Debian-based
systems. Author: Dirk Eddelbuettel. In view:
HighPerformanceComputing.

genepi Genetic Epidemiology Design and Inference.
Author: Venkatraman E. Seshan.

geofd Spatial prediction for function value data.
Authors: Ramon Giraldo, Pedro Delicado,
Jorge Mateu.

glmpathcr Fit a penalized continuation ratio model
for predicting an ordinal response. Author:
Kellie J. Archer.

glrt Generalized Logrank Tests for Interval-censored
Failure Time Data. Authors: Qiang Zhao and
Jianguo Sun. In view: Survival.

googleVis Using the Google Visualisation API with
R. Authors: Markus Gesmann, Diego de
Castillo.

gptk Gaussian Processes Tool-Kit. Authors: Alfredo
A. Kalaitzis, Pei Gao, Antti Honkela, Neil D.
Lawrence.
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gridExtra functions in Grid graphics. Author: Bap-
tiste Auguie.

grt General Recognition Theory. Authors: The origi-
nal Matlab toolbox by Leola A. Alfonso-Reese.
R port, with several significant modifications
by Kazunaga Matsuki.

gsc Generalised Shape Constraints. Author: Char-
lotte Maia.

helpr Help for R. Authors: Hadley Wickham and
Barret Schloerke.

hisemi Hierarchical Semiparametric Regression of
Test Statistics. Authors: Long Qu, Dan Nettle-
ton, Jack Dekkers.

hotspots Hot spots. Author: Anthony Darrouzet-
Nardi.

huge High-dimensional Undirected Graph Estima-
tion. Authors: Tuo Zhao, Han Liu, Kathryn
Roeder, John Lafferty, Larry Wasserman.

hydroGOF Goodness-of-fit functions for compari-
son of simulated and observed hydrological
time series. Author: Mauricio Zambrano Bigia-
rini.

hydroTSM Time series management, analysis and
interpolation for hydrological modelling. Au-
thor: Mauricio Zambrano-Bigiarini.

icaOcularCorrection Independent Components
Analysis (ICA) based eye-movement correc-
tion. Authors: Antoine Tremblay, IWK Health
Center.

igraphtosonia Convert iGraph graps to SoNIA .son
files. Author: Sean J Westwood.

imguR Share plots using the image hosting service
imgur.com. Author: Aaron Statham.

indicspecies Functions to assess the strength and
significance of relationship of species site
group associations. Authors: Miquel De Cac-
eres, Florian Jansen.

inference Functions to extract inferential values of a
fitted model object. Author: Vinh Nguyen.

infochimps An R wrapper for the infochimps.com
API services. Author: Drew Conway.

interactivity toggle R interactive mode. Authors:
Jeffrey Horner, Jeroen Ooms.

ipdmeta Individual patient and Mixed-level Meta-
analysis of Time-to-Event Outcomes. Author:
S. Kovalchik.

isdals Provides data sets for “Introduction to Statis-
tical Data Analysis for the Life Sciences”. Au-
thors: Claus Ekstrom and Helle Sorensen.

isva Independent Surrogate Variable Analysis. Au-
thor: Andrew E Teschendorff.

iv Information Visualisation with UML and Graphs.
Author: Charlotte Maia.

labeling Axis Labeling. Author: Justin Talbot.

laeken Laeken indicators for measuring social cohe-
sion. Authors: Andreas Alfons, Josef Holzer
and Matthias Templ. In view: OfficialStatistics.

landsat Radiometric and topographic correction of
satellite imagery. Author: Sarah Goslee.

lessR Less Code, More Results. Authors: David W.
Gerbing, School of Business Administration,
Portland State University.

list Multivariate Statistical Analysis for the Item
Count Technique. Authors: Graeme Blair, Ko-
suke Imai.

log4r A simple logging system for R, based on log4j.
Author: John Myles White.

longpower Sample size calculations for longitudinal
data. Authors: Michael C. Donohue, Anthony
C. Gamst, Steven D. Edland.

lubridate Make dealing with dates a little easier.
Authors: Garrett Grolemund, Hadley Wick-
ham.

magma Matrix Algebra on GPU and Multicore Ar-
chitectures. Author: Brian J Smith. In view:
HighPerformanceComputing.

makesweave Literate Programming with Make and
Sweave. Author: Charlotte Maia.

maxLinear Conditional Samplings for Max-Linear
Models. Author: Yizao Wang.

mcmcplots Create Plots from MCMC Output. Au-
thor: S. McKay Curtis.

mcprofile Multiple Contrast Profiles. Author:
Daniel Gerhard.

mem Moving Epidemics Method R Package. Au-
thor: Jose E. Lozano Alonso.

memoise Memoise functions. Author: Hadley
Wickham.

metatest Fit and test metaregression models. Au-
thor: Hilde M. Huizenga & Ingmar Visser.

mfr Minimal Free Resolutions of Graph Edge Ideals.
Author: David J. Marchette.

mhurdle Estimation of models with limited depen-
dent variables. Authors: Fabrizio Carlevaro,
Yves Croissant, Stephane Hoareau.
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mixedQF Estimator with Qudratics Forms in
Mixeds Models. Authors: Jean-Benoist Leger,
ENS Cachan & Jean-Benoist Leger, INRA.

mixsep Forensic Genetics DNA Mixture Separation.
Author: Torben Tvedebrink.

mixsmsn Fitting finite mixture of scale mixture of
skew-normal distributions. Authors: Marcos
Prates, Victor Lachos and Celso Cabral.

mkssd Efficient multi-level k-circulant supersatu-
rated designs. Author: B N Mandal.

modelcf Modeling physical computer codes with
functional outputs using clustering and dimen-
sionality reduction. Author: Benjamin Auder.

modelfree Model-free estimation of a psychometric
function. Authors: Ivan Marin-Franch, Kamila
Zychaluk, and David H. Foster.

mondate Keep track of dates in terms of months.
Author: Dan Murphy. In view: TimeSeries.

mpmcorrelogram Multivariate Partial Mantel Cor-
relogram. Author: Marcelino de la Cruz.

mpt Multinomial Processing Tree (MPT) Models.
Author: Florian Wickelmaier.

mr Marginal regresson models for dependent data.
Authors: Guido Masarotto and Cristiano Varin.

mritc MRI tissue classification. Authors: Dai Feng
and Luke Tierney. In view: MedicalImaging.

mtsdi Multivariate time series data imputation. Au-
thors: Washington Junger and Antonio Ponce
de Leon.

multitaper Multitaper Spectral Analysis. Author:
Karim Rahim.

mutoss Unified multiple testing procedures.
Authors: MuToss Coding Team (Berlin
2010), Gilles Blanchard, Thorsten Dickhaus,
Niklas Hack, Frank Konietschke, Kornelius
Rohmeyer, Jonathan Rosenblatt, Marsel Scheer,
Wiebke Werft.

mutossGUI A graphical user interface for the Mu-
Toss Project. Authors: MuToss Coding Team
(Berlin 2010), Gilles Blanchard, Thorsten Dick-
haus, Niklas Hack, Frank Konietschke, Kor-
nelius Rohmeyer, Jonathan Rosenblatt, Marsel
Scheer, Wiebke Werft.

nacopula Nested Archimedean Copulas. Authors:
Marius Hofert and Martin Maechler. In view:
Distributions.

neuRosim Functions to generate fMRI data includ-
ing activated data, noise data and resting state
data. Authors: Marijke Welvaert with contri-
butions from Joke Durnez, Beatrijs Moerkerke,
Yves Rosseel and Geert Verdoolaege.

nnc Nearest Neighbor Autocovariates. Authors: A.
I. McLeod and M. S. Islam.

nncRda Improved RDA Using nnc. Authors: M. S.
Islam and A. I. McLeod.

normwhn.test Normality and White Noise Testing.
Author: Peter Wickham.

npst A generalization of the nonparametric season-
ality tests of Hewitt et al. (1971) and Rogerson
(1996). Author: Roland Rau.

openair Tools for the analysis of air pollution data.
Authors: David Carslaw and Karl Ropkins.

operator.tools Utilities for working with R’s opera-
tors. Author: Christopher Brown.

optimx A replacement and extension of the optim()
function. Authors: John C Nash and Ravi
Varadhan. In view: Optimization.

orQA Order Restricted Assessment Of Microar-
ray Titration Experiments. Author: Florian
Klinglmueller.

orderbook Orderbook visualization/Charting soft-
ware. Authors: Andrew Liu, Khanh Nguyen,
Dave Kane. In view: Finance.

parfossil Parallelized functions for palaeoecologi-
cal and palaeogeographical analysis. Author:
Matthew Vavrek.

partitionMap Partition Maps. Author: Nicolai
Meinshausen.

pathClass Classification using biological pathways
as prior knowledge. Author: Marc Johannes.

pathmox Segmentation Trees in Partial Least
Squares Path Modeling. Authors: Gaston
Sanchez, and Tomas Aluja.

pbapply Adding Progress Bar to ‘*apply’ Functions.
Author: Peter Solymos.

pequod Moderated regression package. Author: Al-
berto Mirisola & Luciano Seta.

pesticides Analysis of single serving and compos-
ite pesticide residue measurements. Author:
David M Diez.

pfda Paired Functional Data Analysis. Author: An-
drew Redd.

pglm panel generalized linear model. Author: Yves
Croissant.
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pheatmap Pretty Heatmaps. Author: Raivo Kolde.

phitest Nonparametric goodness-of-fit methods
based on phi-divergences. Author: Leah R.
Jager.

phybase Basic functions for phylogenetic analysis.
Author: Liang Liu. In view: Phylogenetics.

phylosim R packge for simulating biological se-
quence evolution. Authors: Botond Sipos, Gre-
gory Jordan.

phylotools Phylogenetic tools for ecologists. Au-
thors: Jinlong Zhang, Xiangcheng Mi, Nancai
Pei.

pi0 Estimating the proportion of true null hypothe-
ses for FDR. Authors: Long Qu, Dan Nettleton,
Jack Dekkers.

plotGoogleMaps Plot HTML output with Google
Maps API and your own data. Author: Milan
Kilibarda.

plsRglm Partial least squares Regression for gen-
eralized linear models. Authors: Frederic
Bertrand, Nicolas Meyer, Myriam Maumy-
Bertrand. In views: ChemPhys, Psychometrics.

pmr Probability Models for Ranking Data. Authors:
Paul H. Lee and Philip L. H. Yu.

polysat Tools for Polyploid Microsatellite Analysis.
Author: Lindsay V. Clark.

portes Portmanteau Tests for ARMA, VARMA,
ARCH, and FGN Models. Author: Esam
Mahdi & A. Ian McLeod.

ppstat Point Process Statistics. Author: Niels
Richard Hansen.

processdata Process Data. Author: Niels Richard
Hansen.

pso Particle Swarm Optimization. Author: Claus
Bendtsen.

ptinpoly Point-In-Polyhedron Test (3D). Authors:
Jose M. Maisog, Yuan Wang, George Luta, Jian-
fei Liu.

pvclass P-values for Classification. Authors: Niki
Zumbrunnen, Lutz Duembgen.

qualityTools Statistical Methods for Quality Sci-
ence. Author: Thomas Roth.

rAverage Parameter estimation for the Averaging
model of Information Integration Theory. Au-
thors: Giulio Vidotto, Stefano Noventa, Davide
Massidda, Marco Vicentini.

rDNA R Bindings for the Discourse Network Ana-
lyzer. Author: Philip Leifeld.

rJython R interface to Python via Jython. Au-
thors: G. Grothendieck and Carlos J. Gil Bel-
losta (authors of Jython itself are Jim Hugunin,
Barry Warsaw, Samuele Pedroni, Brian Zim-
mer, Frank Wierzbicki and others; Bob Ippolito
is the author of the simplejson Python module).

rTOFsPRO Time-of-flight mass spectra signal pro-
cessing. Authors: Dariya Malyarenko, Mau-
reen Tracy and William Cooke.

refund Regression with Functional Data. Authors:
Philip Reiss and Lei Huang.

relevent Relational Event Models. Author: Carter T.
Butts.

reportr A general message and error reporting sys-
tem. Author: Jon Clayden.

reshape2 Flexibly reshape data: a reboot of the re-
shape package. Author: Hadley Wickham.

rmac Calculate RMAC or FMAC agreement coeffi-
cients. Author: Jennifer Kirk.

rphast R interface to PHAST software for compar-
ative genomics. Authors: Melissa Hubisz,
Katherine Pollard, and Adam Siepel.

rpud R functions for computation on GPU. Author:
Chi Yau. In view: HighPerformanceComputing.

rrcovNA Scalable Robust Estimators with High
Breakdown Point for Incomplete Data. Author:
Valentin Todorov. In view: OfficialStatistics.

rseedcalc Estimation of Proportion of GM Stacked
Seeds in Seed Lots. Authors: Kevin Wright,
Jean-Louis Laffont.

rvgtest Tools for Analyzing Non-Uniform Pseudo-
Random Variate Generators. Authors: Josef
Leydold and Sougata Chaudhuri.

satin Functions for reading and displaying satel-
lite data for oceanographic applications with
R. Authors: Héctor Villalobos and Eduardo
González-Rodríguez.

schwartz97 A package on the Schwartz two-factor
commodity model. Authors: Philipp Erb,
David Luethi, Juri Hinz, Simon Otziger. In
view: Finance.

sdcMicroGUI Graphical user interface for package
sdcMicro. Author: Matthias Templ.

selectMeta Estimation weight functions in meta
analysis. Author: Kaspar Rufibach.

seqCBS CN Profiling using Sequencing and CBS.
Authors: Jeremy J. Shen, Nancy R. Zhang.

seqRFLP Simulation and visualization of restriction
enzyme cutting pattern from DNA sequences.
Authors: Qiong Ding, Jinlong Zhang.
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sharx Models and Data Sets for the Study of Species-
Area Relationships. Author: Peter Solymos.

sigclust Statistical Significance of Clustering. Au-
thors: Hanwen Huang, Yufeng Liu & J. S. Mar-
ron.

simexaft Authors: Juan Xiong, Wenqing He, Grace
Y. Yi. In view: Survival.

sinartra A simple web app framework for R, based
on sinatra. Author: Hadley Wickham.

smirnov Provides two taxonomic coefficients from
E. S. Smirnov “Taxonomic analysis” (1969)
book. Author: Alexey Shipunov (with help of
Eugenij Altshuler).

smoothmest Smoothed M-estimators for 1-
dimensional location. Author: Christian Hen-
nig.

soil.spec Soil spectral data exploration and regres-
sion functions. Author: Thomas Terhoeven-
Urselmans.

soiltexture Functions for soil texture plot, classifi-
cation and transformation. Authors: Julien
MOEYS, contributions from Wei Shangguan.

someMTP Functions for Multiplicty Correction and
Multiple Testing. Author: Livio Finos.

spacetime classes and methods for spatio-temporal
data. Author: Edzer Pebesma.

splinesurv Nonparametric bayesian survival anal-
ysis. Authors: Emmanuel Sharef, Robert L.
Strawderman, and David Ruppert. In view:
Survival.

sprint Simple Parallel R INTerface. Author: Univer-
sity of Edinburgh SPRINT Team.

survJamda Survival prediction by joint analysis of
microarray gene expression data. Author:
Haleh Yasrebi.

survJamda.data Author: Haleh Yasrebi.

synchronicity Boost mutex functionality for R. Au-
thor: Michael J. Kane.

tableplot Represents tables as semi-graphic dis-
plays. Authors: Ernest Kwan and Michael
Friendly.

tfer Forensic Glass Transfer Probabilities. Authors:
James Curran and TingYu Huang.

thgenetics Genetic Rare Variants Tests. Author:
Thomas Hoffmann.

tpsDesign Design and analysis of two-phase sam-
pling and case-control studies. Authors:
Takumi Saegusa, Sebastien Haneuse, Nilanjan
Chaterjee, Norman Breslow.

treemap Treemap visualization. Author: Martijn
Tennekes.

triads Triad census for networks. Authors: Solomon
Messing, Sean J Westwood, Mike Nowak and
Dan McFarland.

validator External and Internal Validation Indices.
Author: Marcus Scherl.

violinmplot Combination of violin plot with mean
and standard deviation. Author: Raphael W.
Majeed.

wSVM Weighted SVM with boosting algorithm for
improving accuracy. Authors: SungHwan Kim
and Soo-Heang Eo.

weirs A Hydraulics Package to Compute Open-
Channel Flow over Weirs. Author: William
Asquith.

wild1 R Tools for Wildlife Research and Manage-
ment. Authors: Glen A. Sargeant, USGS North-
ern Prairie Wildlife Research Center.

wvioplot Weighted violin plot. Author: Solomon
Messing.

xpose4 Xpose 4. Authors: E. Niclas Jonsson, An-
drew Hooker and Mats Karlsson.

xpose4classic Xpose 4 Classic Menu System. Au-
thors: E. Niclas Jonsson, Andrew Hooker and
Mats Karlsson.

xpose4data Xpose 4 Data Functions Package. Au-
thors: E. Niclas Jonsson, Andrew Hooker and
Mats Karlsson.

xpose4generic Xpose 4 Generic Functions Package.
Authors: E. Niclas Jonsson, Andrew Hooker
and Mats Karlsson.

xpose4specific Xpose 4 Specific Functions Package.
Authors: E. Niclas Jonsson, Andrew Hooker
and Mats Karlsson.

Other changes

• The following packages were moved to the
Archive: AIS, BayesPanel, BootCL, DEA,
FKBL, GRASS, MSVAR, NADA, PhySim,
RGtk2DfEdit, Rfwdmv, Rlsf, SNPMaP,
SharedHT2, TwslmSpikeWeight, VDCutil,
VaR, XReg, aaMI, asuR, bayesCGH, bicre-
duc, bim, birch, celsius, csampling, cts,
demogR, dprep, glmc, grasp, grnnR, ifa,
ig, inetwork, ipptoolbox, knnTree, lnMLE,
locfdr, logilasso, lvplot, marg, mlCopulaS-
election, mmlcr, netmodels, normwn.test,
npde, nytR, ofw, oosp, pga, pinktoe, ppc,
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qgen, risksetROC, rjacobi, rv, sabreR, single-
case, smd.and.more, stochasticGEM, titecrm,
and udunits.

• The following packages were resurrected from
the Archive: MIfuns, agsemisc, assist, gllm,
mlmmm, mvgraph, nlts, rgr, and supclust.

• The following packages were removed from
CRAN: seaflow and simpleR.

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org
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News from the Bioconductor Project
by the Bioconductor Team
Program in Computational Biology
Fred Hutchinson Cancer Research Center

We are pleased to announce Bioconductor 2.7, re-
leased on October 18, 2010. Bioconductor 2.7 is
compatible with R 2.12.0, and consists of 419 pack-
ages. There are 34 new packages, and enhancements
to many others. Explore Bioconductor at http://
bioconductor.org, and install packages with

> source("http://bioconductor.org/biocLite.R")
> biocLite() # install standard packages...
> biocLite("IRanges") # ...or IRanges

New and revised packages

This release includes new packages for diverse areas
of high-throughput analysis. Highlights include:

Next-generation sequencing packages for ChIP
(iSeq, RMAPPER), methylated DNA im-
munoprecipitation (MEDIPS), and RNA-seq
(rnaSeqMap) work flows, 454 sequencing
(R453Plus1Toolbox) and management of mi-
crobial sequences (OTUbase).

Microarray analysis of domain-specific applica-
tions (array CGH, ADaCGH2; tiling arrays,
les; miRNA, LVSmiRNA; and bead arrays,
MBCB); specialized statistical methods (fabia,
farms, RDRToolbox), and graphical tools (Iso-
GeneGUI).

Gene set, network, and graph oriented approaches
and tools include gage, HTSanalyzeR, Patient-
GeneSets, BioNet, netresponse, attract, Co-
GAPS, ontoCAT, DEgraph, NTW, and RCy-
toscape.

Advanced statistical and modeling implementations
relevant to high-throughtput genetic analysis
include BHC (Bayesian Hierarchical Cluster-
ing), CGEN (case-control studies in genetic
epidemiology), and SQUADD.

Image, cell-based, and other assay packages, in-
clude imageHTS, CRImage, coRNAi,
GeneGA, NuPoP.

Our large collection of microarray- and organism-
specific annotation packages have been updated to
include information current at the time of the Biocon-
ductor release. These annotation packages contain
biological information about microarray probes and
the genes they are meant to interrogate, or contain
gene-based annotations of whole genomes. They are

particularly valuable in providing stable annotations
for repeatable research.

Several developments in packages maintained by
the Bioconductor core team are noteworthy. The
graphBAM class in the graph package is available to
manipulate very large graphs. The GenomicRanges,
GenomicFeatures, and Biostrings packages have en-
hanced classes such as TranscriptDb for representing
genome-scale ‘track’ annotations from common data
resources, MultipleAlignment for manipulating refer-
ence (and other moderate-length) sequences in a mi-
crobiome project, and SummarizedExperiment to col-
late range-based count data across samples in se-
quence experiments. The chipseq package has en-
hanced functionality for peak calling, and has been
updated to use current data structures.

Further information on new and existing pack-
ages can be found on the Bioconductor web site,
which contains ‘views’ that identify coherent groups
of packages. The views link to on-line package
descriptions, vignettes, reference manuals, and use
statistics.

Other activities

The Bioconductor community met on July 28-30
at our annual conference in Seattle for a combina-
tion of scientific talks and hands-on tutorials, and
on November 17-18 in Heidelberg, Germany for
a meeting highlight contributions from the Euro-
pean developer community. The active Bioconduc-
tor mailing lists (http://bioconductor.org/docs/
mailList.html) connect users with each other, to do-
main experts, and to maintainers eager to ensure
that their packages satisfy the needs of leading edge
approaches. Bioconductor package maintainers and
the Bioconductor team invest considerable effort in
producing high-quality software. The Bioconductor
team continues to ensure quality software through
technical and scientific reviews of new packages, and
daily builds of released packages on Linux, Win-
dows, and Macintosh platforms.

Looking forward

Contributions from the Bioconductor community
play an important role in shaping each release. We
anticipate continued efforts to provide statistically
informed analysis of next generation sequence data,
especially in the down-stream analysis of compre-
hensive, designed sequencing experiments and inte-
grative analyses. The next release cycle promises to
be one of active scientific growth and exploration.
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R Foundation News
by Kurt Hornik

Donations and new members

Donations

Agrocampus Ouest, France
Helsana Versicherungen AG, Switzerland
Kristian Kieselman, Sweden

New benefactors

eoda, Germany
Giannasca Corrado & Montagna Maria, Italy

New supporting institutions

Marine Scotland Science, UK

New supporting members

Ian M. Cook, USA
Chris Evans, UK
Martin Fewsow, Germany
Laurence Frank, Netherlands
Susan Gruber, USA
Robert A. Muenchen, USA
Geoff Potvin, USA
Ivo Welch, USA
Alex Zolot, USA

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org
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