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Editorial
by Bettina Grün

On behalf of the editorial board, I am pleased to publish Volume 7, Issue 2 of the R Journal.
This issue contains 20 contributed research articles and several contributions to the News
and Notes section.

In the Contributed Research Articles section each of the articles presents an R package
or new features of an existing R package which was extended. The articles cover different
specialized statistical modeling tools, e.g., for regression with different distributions for
the dependent variable, such as implemented by packages zoib for zero/one inflated beta
regression and hermite for the generalized Hermite distribution, or different data structures
as provided by packages hglm for conditional and simultaneous autoregressive spatial
models and apc for age-period-cohort analysis. In addition tools for program evaluation
are provided by package pampe and quantization-based quantile regression by package
QuantifQuantile. Other aspects of statistical modeling are to perform variable selection or
variable grouping and are covered for example by packages VSURF, BSGS and ClustVarLV
or to determine dissimilarities between observations with special data structures as provided
by packages treeClust and mmpp.

Other areas in applied statistics, e.g., to determine optimal designs, suitable sample
sizes or perform uncertainty and sensitivity analysis are covered by packages ALTopt,
PracTools and mtk. Diagnostic tools for approximate Bayesian computation are provided
by package abctools; tools for dealing with multilabel datasets are contained in package
mldr. Visualization methods for pairwise comparisons, which are for example used when
comparing algorithms in machine learning, are given in package SRCS.

In addition new areas of application of R are seized, e.g., by package rivr which provides
the tools for undergraduate and graduate courses in open-channel hydraulics. Infrastructure
in the area of numerical mathematics for evaluating the hypergeometric function is given in
package hypergeo and tools to help with coding in R are contained in package GUIProfiler
for profiling R code.

Overall this collection of contributed research articles indicates the wide range of statis-
tical methods from different areas currently covered by extension packages for R and the
increasing possible use of R in new areas of application.

In addition the News and Notes section contains news by the R Consortium and the R
Foundation providing some background information to the setting up of the Consortium
and its interaction with the R Foundation. In addition a conference report on useR! 2015, the
annual international R user conference, which took place from June 30 until July 3, 2015 in
Aalborg, Denmark and attracted 660 participants from 42 countries is given. Furthermore
this section contains the usual updates on the Bioconductor project, changes in R itself and
CRAN. I hope you enjoy the issue.

With the end of the year, it is also time for a refresh of the editorial board. Deepayan
Sarkar is leaving the board after a four-year term. We welcome John Verzani who is joining
the editorial board in his place. Publishing this issue is my last act as Editor-in-Chief, with
Michael Lawrence taking over the job for the next year.

Bettina Grün
Bettina.Gruen@jku.at
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Fitting Conditional and Simultaneous
Autoregressive Spatial Models in hglm
by Moudud Alam, Lars Rönnegård, and Xia Shen

Abstract We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized
linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for con-
ditional and simultaneous autoregressive random effects were implemented. Eigen decomposition
of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform
the CAR/SAR random effects into an independent, but heteroscedastic, Gaussian random effect. A
linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR
models. This gives a computationally efficient algorithm for moderately sized problems.

Introduction

We present an algorithm for fitting spatial generalized linear models with conditional and simultaneous
autoregressive (CAR & SAR; Besag, 1974; Cressie, 1993) random effects. The algorithm completely
avoids the need to differentiate the spatial correlation matrix by transforming the model using an eigen
decomposition of the precision matrix. This enables the use of already existing methods for hierarchical
generalized linear models (HGLMs; Lee and Nelder, 1996) and this algorithm is implemented in the
latest version (> 2.0) of the hglm package (Rönnegård et al., 2010).

The hglm package, up to version 1.2-8, provides the functionality for fitting HGLMs with uncor-
related random effects using an extended quasi likelihood method (EQL; Lee et al., 2006). The new
version includes a first order correction of the fixed effects based on the current EQL fitting algorithm,
which is more precise than EQL for models having non-normal outcomes (Lee and Lee, 2012). Similar
to the h-likelihood correction of Noh and Lee (2007), it corrects the estimates of the fixed effects and
thereby also reduces potential bias in the estimates of the dispersion parameters for the random effects
(variance components). The improvement in terms of reduced bias is substantial for models with a
large number of levels in the random effect (Noh and Lee, 2007), which is often the case for spatial
generalized linear mixed models (GLMMs).

Earlier versions of the package allow modeling of the dispersion parameter of the conditional
mean model, with fixed effects, but not the dispersion parameter(s) of the random effects. The current
implementation, however, enables the user to specify a linear predictor for each dispersion parameter
of the random effects. Adding this option was a natural extension to the package because it allowed
implementation of our proposed algorithm that fits CAR and SAR random effects.

Though the CAR/SAR models are widely used for spatial data analysis there are not many software
packages which can be used for their model fitting. GLMMs with CAR/SAR random effects are often
fitted in a Bayesian way using BUGS software (e.g., WinBUGS; Lunn et al., 2000, or alike), which leads
to extremely slow computation due to its dependence on Markov chain Monte Carlo simulations.
The R package INLA (Martins et al., 2013) provides a relatively fast Bayesian computation of spatial
HGLMs via Laplace approximation of the posterior distribution where the model development has
focused on continuous domain spatial modeling (Lindgren and Rue, 2015) whereas less focus has been
on discrete models including CAR and SAR. Recently, package spaMM (Rousset and Ferdy, 2014) was
developed to fit spatial HGLMs but is rather slow even for moderately sized data. Here, we extend
package hglm to also provide fast computation of HGLMs with CAR and SAR random effects and
at the same time an attempt has been made to improve the accuracy of the estimates by including
corrections for the fixed effects.

The rest of the paper is organized as follows. First we give an introduction to CAR and SAR
structures and present the h-likelihood theory together with the eigen decomposition of the covariance
matrix of the CAR random effects and show how it simplifies the computation of the model. Then we
present the R code implementation, show the use of the implementation for two real data examples
and evaluate the package using simulations. The last section concludes the article.
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CAR and SAR structures in HGLMs

HGLMs with spatially correlated random effects are commonly used in spatial data analysis (Cressie,
1993; Wall, 2004). A spatial HGLM with Gaussian CAR random effects is given by

E (zs|us) = µs, s = 1, 2, . . . , n,

g (µs) = ηs = Xsβ + Zsus, (1)

zs|us ∼ Exponential Family, (2)

with zs|us ⊥ zt|ut, ∀s 6= t and

u = (u1, u2, . . . , un)
T ∼ N

(
0, Σ = τ (I− ρD)−1

)
, (3)

where s represents a location identified by the coordinates (x (s) , y (s)), β is a vector of fixed effects,
Xs is the fixed-effect design matrix for location s, us being the location specific random effects and Zs
is a design matrix associated with us. While

u = (u1, u2, . . . , un)
T ∼ N

(
0, Σ = τ (I− ρD)−1

(
I− ρDT

)−1
)

(4)

gives a Gaussian SAR random effects structure. The D matrix in Equations (3) and (4) is some known
function of the location coordinates (see, e.g., Clayton and Kaldor, 1987) and ρ is often referred to as the
spatial dependence parameter (Hodges, 2013). In application, D is often a neighborhood matrix whose
diagonal elements are all 0, and off-diagonal elements (s, t) are 1 if locations s and t are neighbors.

If Σ = τI, i.e., there is no spatial correlation, then this model may be estimated by using usual
software packages for GLMMs. With Σ = τD, i.e., defining the spatial correlation directly via the
D matrix, the model can be fitted using earlier versions of the hglm package. However, for the
general structure in Equations (3) and (4), estimation using explicit maximization of the marginal or
profile likelihood involves quite advanced derivations as a consequence of partial differentiation of
the likelihood including Σ with ρ and τ as parameters (see, e.g., Lee and Lee, 2012). In this paper,
we show that by using eigen decomposition of Σ, we can modify an already existing R package, e.g.,
hglm, with minor programming effort, to fit a HGLM with CAR or SAR random effects.

h-likelihood estimation

In order to explain the specific model fitting algorithm implemented in hglm, we present a brief
overview of the EQL algorithm for HGLMs (Lee and Nelder, 1996). First, we start with the standard
HGLM containing only uncorrelated random effects. Then, we extend the discussion for CAR and SAR
random effects. Though it is possible to have more than one random-effect term, in a HGLM, coming
from different distributions among the conjugate distributions to GLM families, for presentational
simplicity we consider only one random-effect in this section. The (log-)h-likelihood for a HGLM with
independent random effects can be presented as

h = ∑
i

∑
j


(

yi,jθi,j − b
(

θi,j

))
φ

+ c
(

yi,j, φ
)+ ∑

i

(
ψvi − bR (vi)

τ
+ cR (τ)

)
, (5)

where, i = 1, 2, . . . , n, j = 1, 2, . . . k, θ is the canonical parameter of the mean model, φ is the disper-

sion parameter of th mean model, b (.) a function which satisfies E
(

yi,j|ui

)
= µi,j = b′

(
θi,j

)
and

Var
(

yi,j|ui

)
= φb′′

(
θi,j

)
= φV

(
µi,j

)
, where V(.) is the GLM variance function. Furthermore, φ is

the dispersion parameter of the mean model, θR (ui) = vi with θR (.) being a so-called weak canonical
link for ui (leading to conjugate HGLMs) or an identity link for Gaussian random effects leading to
GLMMs (Lee et al., 2006, pp. 3–4), ψ = E (ui), τ is the dispersion parameter, and bR and cR are some
known functions depending on the distribution of ui. Equation (5) also implies that h can be defined
uniquely by using the means and the mean-variance relations of yi,j|ui and the quasi-response ψ,
allowing us representing it as a sum of two extended quasi-likelihoods (double EQL; Lee and Nelder,
2003) as

−2D = ∑
i

∑
j

( d0,i,j

φ
+ log

(
2πφV

(
yi,j|ui

)))
+ ∑

i

(
d1,i
τ

+ log (2πτV1 (ui))

)
, (6)
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where d0,i,j and d1,i are the deviance components of yi,j|ui and ψ respectively and Var (ψ) = τV1 (ui).
It is worth noting that −2D is an approximation to h if y|u or u (or both) belongs/belong to Binomial,
Poisson, double-Poisson (or quasi-Poisson), Beta, or Gamma families. However, no such equivalent
relation (even approximately) is known for the quasi-Binomial family.

In order to estimate the model parameters, Lee and Nelder (1996) suggested a two-step procedure
in which the first, for fixed dispersion parameters φ and τ, h (or equivalently −2D) is maximized w.r.t.
β and v = {vi}. This maximization leads to an iteratively weighted least-square (IWLS) algorithm
which solves

T′a
−1Taδ = T′a

−1ya,

where Ta =

(
X Z
0 In

)
, δ =

(
β
v

)
, ya =

(
y0,a
y1,a

)
with y0,a =

{
ηi,j −

(
yi,j − µi,j

)
∂ηi,j
∂µi,j

}
and y1,a ={

vi − (ψi − ui)
∂vi
∂ui

}
are the vectors of GLM working responses for yi,j|ui and vi respectively, and

= IW−1 with I being a diagonal matrix whose first n diagonal elements are all equal to φ and the re-

maining k diagonal elements are all equal to τ and W = diag (w0, w1) where w0 =

{(
∂µi,j
∂ηi,j

)2 1
V(µi,j)

}
and w1 =

{(
∂ui
∂vi

)2 1
V1(ui)

}
.

In the second step, the following profile likelihood is maximized to estimate the dispersion
parameters.

pβ,v (h) =

(
h− 1

2

∣∣∣∣∣ ∂2h

∂ (β, v) ∂ (β, v)T

∣∣∣∣∣
)

β=β̂,v=v̂

, (7)

where β̂ and v̂ are obtained from the fist step. One needs to iterate between the two steps until
convergence. This procedure is often referred to as “HL(0,1)” (Lee and Lee, 2012) and is available
in the R packages spaMM and HGLMMM (Molas and Lesaffre, 2011). Because there is no unified
algorithm to maximize pβ,v computer packages often carry out the maximization by using general
purpose optimization routines, e.g., package spaMM uses the optim function.

A unified algorithm for estimating the variance components can be derived by using profile
likelihood adjustment in Equation (6) instead of (5). This leads to maximizing

pβ,v (Q) =

(
−2D− 1

2

∣∣∣∣∣ ∂2 (−2D)

∂ (β, v) ∂ (β, v)T

∣∣∣∣∣
)

β=β̂,v=v̂

(8)

for estimating τ and φ. The corresponding score equation of the dispersion parameters, after ignoring
the fact that β̂ and v̂ are functions of φ and τ, can be shown (see, e.g., Lee and Nelder, 2001) to have

the form of Gamma family GLMs with d0,i,j/
(

1− hi,j

)
and d1,i/ (1− hi) as the responses for φ and

τ respectively, where hi,j and hi are the hat values corresponding to yi,j and vi in the first step, and(
1− hi,j

)
/2 and (1− hi) /2 as the respective prior weights. This procedure is often referred to as

EQL (Lee et al., 2006) or DEQL (Lee and Nelder, 2003) and was the only available procedure in hglm
(6 1.2-8). An advantage of this algorithm is that fixed effects can also be fitted in the dispersion
parameters (Lee et al., 2006) without requiring any major change in the algorithm.

HL(0,1) and EQL were found to be biased, especially for binary responses when the cluster size is
small (Lee and Nelder, 2001; Noh and Lee, 2007) and when τ is large in both Binomial and Poisson
GLMMs. Several adjustments are suggested and explained in the literature (see, e.g., Lee and Nelder,
2001, 2003; Lee and Lee, 2012) to improve the performance of h-likelihood estimation. Among these
alternative suggestions HL(1,1) is the most easily implementable and found to be computationally
faster than the other alternatives (Lee and Lee, 2012). The HL(1,1) estimates the fixed effects, β, by
maximizing pv (h) instead of h and can be implemented by adjusting the working response ya in
the IWLS step, according to Lee and Lee (2012). In hglm (> 2.0), this correction for the β estimates
has been implemented, through the method = "EQL1" option, but still pβ,v (Q) is maximized for the
estimation of the dispersion parameters, in order to make use of the unified algorithm for dispersion
parameter estimates via Gamma GLMs. Table 1 shows available options for h-likelihood estimation
(subject to the corrections mentioned above) in different R packages.

The above EQL method cannot be directly applied to HGLMs with CAR/SAR random effects
because the resulting pβ,v (Q) does not allow us to use the Gamma GLM to estimate the dispersion
parameters, τ and ρ. In the following subsection we present a simplification which allows us to use
the Gamma GLM for estimating τ and ρ.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859
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hglm spaMM HGLMMM

EQL method = "EQL" HLmethod = "EQL-" -
HL(0,1) - HLmethod = "HL(0,1)" LapFix = FALSE
HL(1,1) a HLmethod = "HL(1,1)" LapFix = TRUE

a By specifying method = "EQL1" in the hglm package, the HL(1,1) correction of the working response is
applied in the EQL algorithm.

Table 1: Implemented h-likelihood methods in hglm compared to spaMM and HGLMMM packages.

Simplification of model computation

The main difference between an ordinary GLMM with independent random effects and CAR/SAR
random effects models is that the random effects in the later cases are not independent. In the
following we show that by using the eigen decomposition we can reformulate a GLMM with CAR or
SAR random effects to an equivalent GLMM with independent but heteroscedastic random effects.

Lemma 1 Let ω = {ωi}n
i=1 be the eigenvalues of D, and V is the matrix whose columns are the

corresponding orthonormal eigenvectors, then

1
τ
(I− ρD) = VΛVT , (9)

where Λ is diagonal matrix whose ith diagonal element is given by

λi =
1− ρωi

τ
. (10)

Proof of Lemma 1

VΛVT = Vdiag
{

1− ρωi
τ

}
VT

=
1
τ
(VVT − ρVdiag{ωi}VT)

=
1
τ
(I− ρD) (11)

It is worth noting that the relation between the eigenvalues of D and Σ was already known as early as
in Ord (1975) and was used to simplify the likelihood function of the Gaussian CAR model. Similarly,
for simplification of the SAR model, we have

1
τ
(I− ρD)(I− ρDT) = Vdiag

{
(1− ρωi)

2

τ

}
VT . (12)

An anonymous referee has pointed out that a somewhat extended version of Lemma 1, which deals
with simultaneous diagonalization of two positive semi-definite matrices (Newcomb, 1969), has
already been used to simplify the computation of Gaussian response models with intrinsic CAR
random effects, especially in a Bayesian context (see, e.g., He et al., 2007, and the related discussions in
Hodges 2013, Chap. 5). Therefore, Lemma 1 is not an original contribution of this paper, however, to
the authors’ knowledge, no software package has yet utilized this convenient relationship to fit any
HGLM by using interconnected GLMs, as discussed below.

Re-arranging Equation (1), we have

η = Xβ + Z̃u∗, (13)

where, η = {ηs}, X = {Xs}, Z̃ = {Zs}V and u∗ = VTu. With the virtue of Lemma 1 and the properties
of the multivariate normal distribution, we see that u∗ ∼ N

(
0, Λ−1). This model can now easily be

fitted using the hglm package in R. Further note that, for the CAR model, from Lemma 1, we have

λi =
1− ρωi

τ

= θ0 + θ1ωi (14)

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859
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Option Explanation

rand.family = CAR(D = nbr) The random effect has conditional or simul-
rand.family = SAR(D = nbr) taneous autoregressive covariance structure.

Here nbr is a matrix provided by the user.
method = "EQL1" The first order correction of fixed effects

(Lee and Lee, 2012) applied on the EQL estimates.
rand.disp.X = X Linear predictor for the variance component

of a random effect. The matrix X is provided
by the user.

rand.family = This option provides the possibility of having
list(Gamma(),CAR()) different distributions for the random effects.

Table 2: New options in the hglm function.

where θ0 = 1/τ and θ1 = −ρ/τ. While for the SAR model,

λi =
(1− ρωi)

2

τ

⇒
√

λi = θ0 + θ1ωi, (15)

where θ0 = 1/
√

τ and θ1 = −ρ/
√

τ. Following Lee et al. (2006), we can use an inverse link for CAR
or an inverse square-root link for SAR in a Gamma GLM with response ui

∗2/ (1− hi), where hi is the
corresponding hat value from the mean model (Equation (13)), (1− hi) /2 as the weight and the linear
predictor given by Equations (14) and (15) to obtain an EQL estimate of θ0 and θ1.

Implementation

The spatial models above are implemented in the hglm package (> 2.0) by defining new families,
CAR() and SAR(), for the random effects. The “CAR” and “SAR” families allow the user to define
spatial structures by specifying the D matrix. Using Lemma 1, these families are created using D with
default link function “identity” for the Gaussian random effects u, and “inverse” and “inverse.sqrt”
for the dispersion models (14) and (15). When the “CAR” or “SAR” family is specified for the random
effects, the parameter estimates ρ̂ and τ̂ are given in the output in addition to the other summary
statistics of the dispersion models. The new input options in hglm are described in Table 2.

Throughout the examples below, we use Gaussian CAR random effects to introduce spatial
correlation. However, one can also add additional independent non-Gaussian random effects along
with the Gaussian CAR random effect. For example, an overdispersed count response can be fitted
using a Poisson HGLM with an independent Gamma and Gaussian CAR random effects.

Examples and simulation study

In the hglm package vignette, we look at the improvement of EQL1 in comparison to EQL. Here, we
focus on the precision of the parameter estimates with spatial HGLMs.

Poisson CAR & SAR model

We study the properties of the estimates produced by hglm using a simulation study built around the
Scottish Lip Cancer example (see also the examples). We simulate data with the same X values, offset
and neighborhood matrix as in the Scotthis Lip Cancer example data. We use the true values of the

parameters, after Lee and Lee (2012), as
(

intercept, β f pp, τ, ρ
)
= (0.25, 0.35, 1.5, 0.1). The parameter

estimates for 1000 Monte Carlo iterations are summarized in Table 3.

Both the EQL and the EQL1 correction are slightly biased for τ and ρ (Table 3) though the absolute
amount of bias is small and may be negligible in practical applications. The EQL1 correction mainly
improves the estimates of the intercept term. There were convergence problems for a small number of
replicates, which was not surprising given the small number of observations (n = 56) and that the
simulated value for the spatial autocorrelation parameter ρ connects the effects in the different Scottish
districts rather weakly. Such convergence problems can be addressed by pre-specifying better starting
values. For the converged estimates the bias was small and negligible.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859
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Bias in the estimation methods
Parameter True value CAR SAR

EQL† EQL1 correction† EQL† EQL1 correction†

intercept 0.2500 0.0351∗ 0.0105* 0.0541∗ 0.0307*
β f pp 0.3500 −0.0018∗ −0.0004* −0.0034∗ −0.0022*
1/τ 0.6667 0.0660∗ 0.0658∗ n/a* n/a*
−ρ/τ −0.0667 0.0118∗ 0.0119∗ n/a* n/a*
1/
√

τ 0.8165 n/a* n/a* 0.0393∗ 0.0370∗

−ρ/
√

τ −0.0817 n/a* n/a* 0.0037∗ 0.0049∗

τ 1.5000 −0.0770∗ −0.0760∗ −0.0880∗ −0.0860∗

ρ 0.1000 −0.0247∗ −0.0250∗ −0.0097∗ −0.0102∗
∗ Significantly different from 0 at the 5% level.
† The estimates are the means from 1000 replicates.

Table 3: Average bias in parameter estimates in the simulation using the Scottish Lip Cancer example.

Figure 1: Density plot of the spatial variance-covariance parameter estimates from CAR models via
"EQL1" over 1000 Monte Carlo simulations for the Scottish Lip Cancer example.

The simulation results also revealed that the distribution of ρ̂ from CAR models is skewed (see
Figure 1), which was also pointed out by Lee and Lee (2012). However, the distribution of −ρ̂/τ̂
turned out to be less skewed than the distribution of ρ̂. Similar observation was also found for SAR
models. This suggests, we might draw any inference on spatial variance-covariance parameters in the
transformed scale, θ0 and θ1.

Computational efficiency

Fitting CAR and SAR models for large data sets could be computationally challenging, especially
for the spatial variance-covariance parameters. Using our new algorithm in hglm, moderately sized
problems can be fitted efficiently.

We re-sampled from the ohio data set (for more details on the data set see also the examples)
for different number of locations, each with 10 replicates, executed on a single Intel© Xeon© E5520
2.27GHz CPU. In each replicate, the data was fitted using both hglm and spaMM, for the same model
described above. The results regarding average computational time are summarized in Figure 2. hglm
is clearly more usable for fitting larger sized data sets. In the package vignette, we also show the
comparisons of the parameter estimates, where the "EQL" estimates from hglm are almost identical
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Figure 2: Comparison of the execution time for fitting CAR models using hglm and spaMM.

to the "EQL-" estimates from spaMM, with high correlation coefficients between the two methods:
1.0000, 0.9998, 0.9997 and 0.9999 for the residual variance, ρ, τ and the intercept, respectively.

Examples

Scottish Lip Cancer data set

Here we analyze the cancer data set (source: Clayton and Kaldor, 1987) from the hglm package.
Calling data(cancer) loads a numeric vector E that represents the expected number of skin cancer
patients in different districts in Scotland, a numeric vector O giving the corresponding observed counts,
a numeric vector Paff giving proportion of people involved agriculture, farming, and fisheries, and
matrix D giving the neighborhood structure among Scottish districts. Here we demonstrate how the
data is fitted as a CAR model or a SAR model, using the hglm package with the EQL method.

> library(hglm)
> data(cancer)
> logE <- log(E)
> XX <- model.matrix(~ Paff)
> cancerCAR <- hglm(X = XX, y = O, Z = diag(56),
+ family = poisson(),
+ rand.family = CAR(D = nbr),
+ offset = logE, conv = 1e-8,
+ maxit = 200, fix.disp = 1)
> summary(cancerCAR)

Call:
hglm.default(X = XX, y = O, Z = diag(56), family = poisson(),

rand.family = CAR(D = nbr), conv = 1e-08, fix.disp = 1, offset = logE)

----------
MEAN MODEL
----------
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Summary of the fixed effects estimates:

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.26740 0.20732 1.290 0.20893
Paff 0.03771 0.01215 3.103 0.00471 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note: P-values are based on 25 degrees of freedom

Summary of the random effects estimates:

Estimate Std. Error
[1,] 0.6407 1.0467
[2,] 0.5533 0.3829
[3,] 0.4124 0.5202
...
NOTE: to show all the random effects, use print(summary(hglm.object),

print.ranef = TRUE).

----------------
DISPERSION MODEL
----------------

NOTE: h-likelihood estimates through EQL can be biased.

Dispersion parameter for the mean model:
[1] 1

Model estimates for the dispersion term:

Link = log

Effects:
[1] 1

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

Dispersion parameter for the random effects:
[1] 656.3

Dispersion model for the random effects:

Link = log

Effects:
.|Random1

Estimate Std. Error
1/CAR.tau 6.487 1.727
-CAR.rho/CAR.tau -1.129 0.303
CAR.tau (estimated spatial variance component): 0.1542
CAR.rho (estimated spatial correlation): 0.174

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

EQL estimation converged in 10 iterations.

In the above output provided by the summary() method, fixed effects estimates are given under MEAN
MODEL, and the dispersion parameter estimates are given under DISPERSION MODEL. Here, we have
only one random effects term that has a CAR structure, and the corresponding parameter estimates,
θ̂0 = 6.487 and θ̂1 = −1.129, are given under .|Random1. However, these are not the natural parameters
of the CAR model (see Section Simplification of model computation) therefore the estimates of the
natural dispersion parameters are given just after them which are, in this case, τ̂ = 0.15 and ρ̂ = 0.17.
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Because the D matrix was a neighborhood matrix (consisting of 0’s and 1’s), the results imply that the
partial correlation of the random effect for any two neighboring districts, given the same for all other
districts, is 0.17.

Furthermore, the value 656.3 for the dispersion of the random effects given in the output above is
an overall variance of u∗ in Equation (13). This output is usually not of interest to the user and the
main results are contained in τ̂ and ρ̂.

> cancerSAR <- hglm(X = XX, y = O, Z = diag(56), family = poisson(),
+ rand.family = SAR(D = nbr), offset = logE,
+ conv = 1e-08, fix.disp = 1)
> summary(cancerSAR)

Call:
hglm.default(X = XX, y = O, Z = diag(56), family = poisson(),

rand.family = SAR(D = nbr), conv = 1e-08, fix.disp = 1, offset = logE)

----------
MEAN MODEL
----------

Summary of the fixed effects estimates:

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 0.19579 0.20260 0.966 0.34241
Paff 0.03637 0.01165 3.122 0.00425 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note: P-values are based on 27 degrees of freedom

Summary of the random effects estimates:

Estimate Std. Error
[1,] 0.7367 1.0469
[2,] 0.6336 0.3930
[3,] 0.4537 0.5784
...
NOTE: to show all the random effects, use print(summary(hglm.object),

print.ranef = TRUE).

----------------
DISPERSION MODEL
----------------

NOTE: h-likelihood estimates through EQL can be biased.

Dispersion parameter for the mean model:
[1] 1

Model estimates for the dispersion term:

Link = log

Effects:
[1] 1

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

Dispersion parameter for the random effects:
[1] 16.3

Dispersion model for the random effects:

Link = log
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Effects:
.|Random1

Estimate Std. Error
1/sqrt(SAR.tau) 2.7911 0.4058
-SAR.rho/sqrt(SAR.tau) -0.4397 0.0822
SAR.tau (estimated spatial variance component): 0.1284
SAR.rho (estimated spatial correlation): 0.1575

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

EQL estimation converged in 12 iterations.

For the CAR model, the hglm estimates are exactly the same as those labelled as “PQL” estimates in
Lee and Lee (2012). To get the EQL1 correction the user has to add the option method = "EQL1" and the
hglm function gives similar results to those reported in Lee and Lee (2012), e.g., their HL(1,1) estimates

were
(

intercept, β f pp, τ, ρ
)
= (0.238, 0.0376, 0.155, 0.174) whereas our "EQL1" correction gives (0.234,

0.0377, 0.156, 0.174) (see also Section “Fitting a spatial Markov Random Field model using the CAR
family” in the package vignette). A minor difference to the "EQL1" result appears because Lee and Lee
(2012) used the HL(1,1) modification to their HL(0,1) whereas we apply such a correction directly to
EQL which is slightly different from HL(0,1) (see Table 1).

Ohio elementary school grades data set

We analyze a data set consisting of the student grades of 1,967 Ohio Elementary Schools during the year
2001–2002. The data set is freely available on the internet (URL http://www.spatial-econometrics.
com/) as a web supplement to LeSage and Pace (2009) but was not analyzed therein. The shape
files were downloaded from http://www.census.gov/cgi-bin/geo/shapefiles2013/main and the
districts of 1,860 schools in these two files could be connected unambiguously. The data set contains
information on, for instance, school building ID, Zip code of the location of the school, proportion of
passing on five subjects, number of teachers, number of students, etc. We regress the median of 4th
grade proficiency scores, y, on an intercept, based on school districts. The statistical model is given as

yi,j = µ + vj + εi,j, (16)

where i = 1, 2, . . . , 1860 (observations), j = 1, 2, . . . , 616 (districts), εi,j ∼ N
(
0, σ2

e
)
, {vj} = v ∼

N
(

0, τ (I− ρW)−1
)

and W = {wp,q}616
p,q=1 is a spatial weight matrix (i.e., the neighborhood matrix).

We construct wp,q = 1 if the two districts p and q are adjacent, and wp,q = 0 otherwise.

The above choice of constructing the weight matrix is rather simple. Because the aim of this paper
is to demonstrate the use of hglm for fitting spatial models rather than drawing conclusions from real
data analysis, we skip any further discussion on the construction of the weight matrix. Interested,
readers are referred to LeSage and Pace (2009) for more discussion on the construction of the spatial
weight matrices. With the spatial weight matrix defined as above, we can estimate model (16) by using
our hglm package in the following way.

> ## load the data object 'ohio'
> data(ohio)
>
> ## fit a CAR model for the median scores of the districts
> X <- model.matrix(MedianScore ~ 1, data = ohioMedian)
> Z <- model.matrix(~ 0 + district, data = ohioMedian)
> ohioCAR <- hglm(y = ohioMedian$MedianScore, X = X, Z = Z,
+ rand.family = CAR(D = ohioDistrictDistMat))
> summary(ohioCAR)

Call:
hglm.default(X = X, y = ohioMedian$MedianScore, Z = Z,

rand.family = CAR(D = ohioDistrictDistMat))

----------
MEAN MODEL
----------
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Summary of the fixed effects estimates:

Estimate Std. Error t-value Pr(>|t|)
(Intercept) 72.429 0.819 88.44 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Note: P-values are based on 1566 degrees of freedom

Summary of the random effects estimates:

Estimate Std. Error
[1,] -21.433 11.071
[2,] -17.890 10.511
[3,] -4.537 7.844
...
NOTE: to show all the random effects, use print(summary(hglm.object),

print.ranef = TRUE).

----------------
DISPERSION MODEL
----------------

NOTE: h-likelihood estimates through EQL can be biased.

Dispersion parameter for the mean model:
[1] 190.5

Model estimates for the dispersion term:

Link = log

Effects:
Estimate Std. Error
5.2498 0.0357

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

Dispersion parameter for the random effects:
[1] 1.01

Dispersion model for the random effects:

Link = log

Effects:
.|Random1

Estimate Std. Error
1/CAR.tau 0.0097 8e-04
-CAR.rho/CAR.tau -0.0011 2e-04
CAR.tau (estimated spatial variance component): 103.6
CAR.rho (estimated spatial correlation): 0.1089

Dispersion = 1 is used in Gamma model on deviances to calculate the
standard error(s).

EQL estimation converged in 5 iterations.

The estimated spatial correlation parameter among school districts is 0.109. We can obtain fitted
values from the CAR model and predict the school districts without any observations. The following
codes perform such prediction and the results are visualized in Figure 3(B). We remove the estimate of
Lake Erie, as estimation for an uninhabited region is meaningless.

> ## extract districts from the map data
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Figure 3: Observed (A) and predicted (B) median 4th grade proficiency scores of the school districts in
Ohio. Districts without any observations are displayed in gray.

> districtShape <- as.numeric(substr(as.character(ohioShape@data$UNSDIDFP), 3, 7))
>
> ## calculate fitted values from the CAR model
> CARfit <- matrix(ohioCAR$ranef + ohioCAR$fixef,
+ dimnames = list(rownames(ohioDistrictDistMat), NULL))
> ohioShape@data$CAR <- CARfit[as.character(districtShape),]
> is.na(ohioShape@data$CAR[353]) <- TRUE # remove estimate of Lake Erie
>
> ## visualize the results
> spplot(ohioShape, zcol = "CAR", main = "Fitted values from CAR",
+ col.regions = heat.colors(1000)[1000:1], cuts = 1000)

A predict() method is not available because predicting spatially correlated random effects for
autoregressive models requires re-fitting the whole model. Thus standard kriging cannot be used
because the covariance structure changes if the neighborhood matrix is altered, while keeping τ and ρ
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unchanged. Instead, the fitted model needs to include the entire neighborhood matrix with districts
having missing data as well. Consequently, the incidence matrix Z has more columns than rows. This
method of predicting random effects is frequently used in animal breeding applications (Henderson,
1984) but, to our knowledge, has not been applied to spatial autoregressive models previously.

In the example above, ohioMedian$district has 616 levels and 54 of the districts have no records
(Figure 3(A)). The incidence matrix Z, created using the model.matrix function, therefore has 616
columns and 54 of these are columns of zeros. Hence, there are 616 levels in the fitted spatial random
effect giving predictions for the districts without records.

Conclusion

The hglm package is one of few non-Bayesian packages on CRAN to fit spatial HGLMs, where the
fixed and random effects are estimated simultaneously. We have shown how the HGLM framework,
allowing linear predictors to model variance components, can be exploited to fit CAR and SAR models.
This gives a computationally efficient algorithm for moderately sized problems (number of locations
< approx. 5000).

Acknowledgement

X. Shen was supported by a Swedish Research Council grant (No. 2014-371).

Bibliography

J. Besag. Spatial interaction and the statistical analysis of lattice systems (with discussion). Journal of
the Royal Statistical Society, Series B, 36:192–236, 1974. [p5]

D. Clayton and J. Kaldor. Empirical bayes estimation of age-standardized relative risk for use in
disease mapping. Biometrics, 43:671–681, 1987. [p6, 11]

N. A. C. Cressie. Statistics for Spatial Data. Wiley, New York, revised edition, 1993. [p5, 6]

Y. He, J. S. Hodges, and B. P. Carlin. Re-considering the variance parameterization in multiple precision
models. Bayesian Analysis, 2:529–556, 2007. [p8]

C. R. Henderson. Applications of Linear Models in Animal Breeding. University of Guelph, Guelph,
Ontario, 1984. [p17]

J. S. Hodges. Richly Parametarized Linear Models: Additive Linear and Time Series and Spatial Models Using
Random Effects. Chapman and Hall/CRC, Boca Raton, 2013. [p6, 8]

W. Lee and Y. Lee. Modifications of REML algorithm for HGLMs. Statistics and Computing, 22:959–966,
2012. [p5, 6, 7, 9, 10, 14]

Y. Lee and J. A. Nelder. Hierarchical generalized linear models (with discussion). Journal of the Royal
Statistical Society, Series B, 58:619–678, 1996. [p5, 6, 7]

Y. Lee and J. A. Nelder. Hierarchical generalised linear models: A synthesis of generalised linear
models, random effect models and structured dispersions. Biometrika, 88:987–1006, 2001. [p7]

Y. Lee and J. A. Nelder. Extended-REML estimators. Journal of Applied Statistics, 30:845–846, 2003. [p6,
7]

Y. Lee, J. A. Nelder, and Y. Pawitan. Generalized Linear Models with Random Effects: Unified Analysis via
H-Likelihood. Chapman & Hall/CRC, Boca Raton, 2006. [p5, 6, 7, 9]

J. LeSage and R. Pace. Introduction to Spatial Econometrics. Chapman & Hall/CRC, Boca Raton, 2009.
[p14]

F. Lindgren and H. Rue. Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(19):
1–25, 2015. URL http://www.jstatsoft.org/v63/i19. [p5]

D. J. Lunn, J. A. Thomas, N. Best, and D. Spiegelhalter. WinBUGS – a Bayesian modelling framework:
concepts, structure, and extensibility. Statistics and Computing, 10:325–337, 2000. [p5]

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

http://www.jstatsoft.org/v63/i19


CONTRIBUTED RESEARCH ARTICLES 18

T. G. Martins, D. Simpson, F. Lindgren, and H. Rue. Bayesian computing with INLA: New features.
Computational Statistics & Data Analysis, 67:68–83, 2013. [p5]

M. Molas and E. Lesaffre. Hierarchical generalized linear models: The R package HGLMMM. Journal
of Statistical Software, 39(13):1–20, 2011. URL http://www.jstatsoft.org/v39/i13. [p7]

R. Newcomb. On the simultaneous diagonalization of two semi-definite matrices. Quarterly of Applied
Mathematics, 19:144–146, 1969. [p8]

M. Noh and Y. Lee. REML estimation for binary data in GLMMs. Journal of Multivariate Analysis, 98:
896–915, 2007. [p5, 7]

K. Ord. Estimation methods for models of spatial interaction. Journal of the American Statistical
Association, 70:120–126, 1975. [p8]

L. Rönnegård, X. Shen, and M. Alam. hglm: A package for fitting hierarchical generalized linear
models. The R Journal, 2(2):20–28, 2010. [p5]

F. Rousset and J.-B. Ferdy. Testing environmental and genetic effects in the presence of spatial
autocorrelation. Ecography, 37(8):781–790, 2014. [p5]

M. M. Wall. A close look at the spatial structure implied by the CAR and SAR models. Journal of
Statistical Planning and Inference, 121:311–324, 2004. [p6]

Moudud Alam
Statistics, School of Technology and Business Studies
Dalarna University, Sweden
maa@du.se

Lars Rönnegård
Statistics, School of Technology and Business Studies
Dalarna University, Sweden
and
Department of Animal Breeding and Genetics
Swedish University of Agricultural Sciences, Sweden
and
Division of Computational Genetics
Department of Clinical Sciences
Swedish University of Agricultural Sciences, Sweden
lrn@du.se

Xia Shen
Department of Medical Epidemiology and Biostatistics
Karolinska Institutet, Sweden
and
MRC Human Genetics Unit
MRC Institute of Genetics and Molecular Medicine
University of Edinburgh, United Kingdom
xia.shen@ki.se

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

http://www.jstatsoft.org/v39/i13
mailto:maa@du.se
mailto:lrn@du.se
mailto:xia.shen@ki.se


CONTRIBUTED RESEARCH ARTICLES 19

VSURF: An R Package for Variable
Selection Using Random Forests
by Robin Genuer, Jean-Michel Poggi and Christine Tuleau-Malot

Abstract This paper describes the R package VSURF. Based on random forests, and for both regression
and classification problems, it returns two subsets of variables. The first is a subset of important
variables including some redundancy which can be relevant for interpretation, and the second one
is a smaller subset corresponding to a model trying to avoid redundancy focusing more closely on
the prediction objective. The two-stage strategy is based on a preliminary ranking of the explanatory
variables using the random forests permutation-based score of importance and proceeds using a
stepwise forward strategy for variable introduction. The two proposals can be obtained automatically
using data-driven default values, good enough to provide interesting results, but strategy can also
be tuned by the user. The algorithm is illustrated on a simulated example and its applications to real
datasets are presented.

Introduction

Variable selection is a crucial issue in many applied classification and regression problems (see
e.g. Hastie et al., 2001). It is of interest for statistical analysis as well as for modelisation or prediction
purposes to remove irrelevant variables, to select all important ones or to determine a sufficient subset
for prediction. These main different objectives from a statistical learning perspective involve variable
selection to simplify statistical problems, to help diagnosis and interpretation, and to speed up data
processing.

Genuer et al. (2010b) proposed a variable selection method based on random forests (Breiman,
2001), and the aim of this paper is to describe the associated R package called VSURF and to illustrate
its use on real datasets. The stable version of the package is available from the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/package=VSURF.1 In order to make the
paper self-contained, the description of the variable selection method is provided. A simulated toy
example and a classical real dataset are processed using VSURF. In addition, two real examples in a
high-dimensional setting, not previously addressed by the authors, are used to illustrate the value of
the strategy and the effectiveness of the R package.

Introduced by Breiman (2001), random forests (abbreviated RF in the sequel) are an attractive
nonparametric statistical method to deal with these problems, since they require only mild conditions
on the model supposed to have generated the observed data. Indeed, since RF are based on decision
trees and use aggregation ideas, they allow us to consider in an elegant and versatile framework
different models and problems, namely regression, two-class and multiclass classifications.

Considering a learning set L = {(X1, Y1), . . . , (Xn, Yn)}, supposed to consist of independent
observations of the random vector (X, Y), we distinguish as usual the predictors (or explanatory
variables), collected in the vector X = (X1, . . . , Xp) where X ∈ Rp, from the explained variable
Y ∈ Y where Y is either a class label for classification problems or a numerical response for regression
ones. Let us recall that a classifier t is a mapping t : Rp → Y while the regression function naturally
corresponds to the function s when we suppose that Y = s(X) + ε with E[ε|X] = 0. Then random
forests provide estimators of either the Bayes classifier, which minimizes the classification error
P(Y 6= t(X)), or the regression function.

The CART (Classification and Regression Trees) method defined by Breiman et al. (1984) is a
well-known way to design optimal single binary decision trees. It proceeds by performing first a
growing step and then a pruning one. The principle of random forests is to aggregate many binary
decision trees coming from two random perturbation mechanisms: the use of bootstrap samples of
L instead of L and the random choice of a subset of explanatory variables at each node instead of
all of them. There are two main differences with respect to CART trees: first, in the growing step, at
each node, a fixed number of input variables are randomly chosen and the best split is calculated only
among them and, second, no pruning step is performed so all the trees of the forest are maximal trees.
The RF algorithm is a very popular machine learning algorithm and appears to be powerful in a lot
of different applications, see for example Verikas et al. (2011) and Boulesteix et al. (2012) for recent
surveys.

Several implementations of these methods are available. Focusing on R packages we must mention
rpart (Therneau et al., 2015) for CART, randomForest (Liaw and Wiener, 2002) for RF, party (Hothorn

1The current development version of the package is also available at https://github.com/robingenuer/VSURF.
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et al., 2006) for CART and RF (through the function cforest) and ipred (Peters et al., 2002) for bagging
(Breiman, 1996), a closely related method cited here for the sake of completeness. In this paper, we use
the randomForest procedure, which is based on the initial contribution of Breiman and Cutler (2004).
We will concentrate on the prediction performance of RF focusing on the out-of-bag (OOB) error (see
Breiman, 2001) and on the quantification of the variable importance (VI in the sequel) which are key
ingredients for our variable selection strategy. For a general discussion about variable importance, see
Azen and Budescu (2003). In the random forests framework, one of the most widely used scores of
importance of a given variable is the increase in mean of the error of a tree (mean square error (MSE)
for regression and misclassification rate for classification) in the forest when the observed values of
this variable are randomly permuted in the OOB samples (see Archer and Kimes, 2008).

Strobl et al. (2007) showed that VI scores are biased towards correlated variables, and Strobl
et al. (2008) proposed an alternative permutation scheme as a solution, which, however, increases the
computation cost. This seems to be especially critical for high-dimensional problems with strongly
correlated predictors. Nevertheless, our previous experiments (Genuer et al., 2010b) on variable
selection and, more recently, the theoretical study of Gregorutti et al. (2013) show that, in some
situations, the VI scores are biased towards uncorrelated variables. Additional theoretical results and
experiments are needed to more deeply understand these phenomenons, but this is out of the scope of
the paper.

A lot of variable selection procedures are based on the combination of variable importance for
ranking and model estimation to generate, evaluate and compare a family of models, i.e., in particular
in the family of “wrapper” methods (Kohavi and John, 1997; Guyon and Elisseeff, 2003) which include
the prediction performance in the score calculation, for which a lot of methods can be cited. We choose
to highlight one of them which is widely used and close to our procedure. Díaz-Uriarte and Alvarez
De Andres (2006) propose a strategy based on recursive elimination of variables. At the beginning,
they compute RF variable importance and then, at each step, eliminate iteratively the 20% of the
variables having the smallest importance and build a new forest with the remaining variables. The
final set of variables is selected by minimizing over the obtained forests, the OOB error rate defined
by:

errOOB =

{
1
n Card {i ∈ {1, . . . , n} | yi 6= ŷi} in the classification framework
1
n ∑i∈{1,...,n} (yi − ŷi)

2 in the regression framework

where ŷi is the aggregation of the predicted values by trees t for which (xi, yi) belongs to the associated
OOB sample (data not included in the bootstrap sample used to construct t). The proportion of
variables to eliminate is an arbitrary parameter of their method and does not depend on the data. Let
us remark that we propose an heuristic strategy which does not depend on specific model hypotheses,
but which is based on data-driven thresholds to take decisions.

This topic of variable selection still continues to be of interest. Indeed recently Hapfelmeier and
Ulm (2012) propose a new variable selection approach using random forests and, more generally,
Cadenas et al. (2013) describe and compare different approaches in a survey paper.

Some packages are available to cope with variable selection problems. Let us cite, for classification
problems the R package Boruta, described in Kursa and Rudnicki (2010), which aims at finding
all relevant variables using a random forest classification algorithm which iteratively removes the
variables using a statistical test. The R package varSelRF, described in Díaz-Uriarte (2007), implements
the previously described method for selecting very small sets of genes in the context of classification.
The R package ofw (Lê Cao and Chabrier, 2008), also dedicated to the context of classification, selects
relevant variables based on the application of supervised multiclass classifiers such as CART or
support vector machines. The R package spikeSlabGAM implements Bayesian variable selection
via regularized estimation in additive mixed models (Scheipl, 2011). Dedicated to the biomarker
identification in the life sciences, the R package BioMark implements two meta-statistics for variable
selection (Wehrens et al., 2012): the first sets a data-dependent selection threshold for significance,
which is useful when two groups are compared, and the second, more general one, uses repeated
subsampling and selects the model coefficients remaining consistently important.

The paper is organized as follows. After this introduction, we present the general variable selection
strategy. We then describe how to use package VSURF on a simple simulated dataset. Finally, we
examine three real-life examples to illustrate the method in action in high-dimensional situations as
well as in a standard one.
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The strategy

Objectives

In Genuer et al. (2010b) we distinguished two variable selection objectives referred to as interpretation
and prediction.

Even if this distinction can be a little bit confusing since we use for both objectives the same
criterion related to prediction performance, the idea is the following. The first objective, called
interpretation, is to find important variables highly related to the response variable, even with some
redundancy, possibly high. The second one, namely prediction, is to find a smaller number of variables
with very low redundancy and sufficient for a good enough prediction of the response variable. The
terminology used here can be misunderstood since usually for interpretation, one usually looks for
parsimony but in many situations one may often want to identify all predictor variables associated
with the response to interpret correctly the relation. We thank one anonymous reviewer for raising
this issue and we detail an example in the next paragraph to clarify the difference.

A typical situation illustrates the distinction between the two kinds of variable selection. Let us
consider a high-dimensional (n � p) classification problem for which the predictor variables are
associated to a pixel in an image or a voxel in a 3D-image as in fMRI brain activity classification
problems (see e.g. Genuer et al., 2010a). In such situations, it is supposed that a lot of variables are
useless and that there exist unknown groups of highly correlated predictors corresponding to brain
regions involved in the response to a given stimulation. The two distinct objectives about variable
selection can be of interest. Finding all the important variables highly related to the response variable
is useful for interpretation, since it corresponds to the determination of entire regions in the brain or a
full parcel in an image. By contrast, finding a small number of variables sufficient for good prediction
allows to get the most discriminant variables within the previously highlighted regions. For a more
formal approach to this distinction, see also the interesting paper Nilsson et al. (2007).

Principle

The principle of the two-steps algorithm is the following. First, we rank the variables according to
a variable importance measure and the unimportant ones are eliminated. Second, we provide two
different subsets obtained either by considering a collection of nested RF models and selecting the
variables of the most accurate one, or by introducing sequentially the sorted variables.

Since the quantification of the variable importance is crucial for our procedure, let us recall the
definition of RF variable importance. For each tree t of the forest, consider the associated OOBt sample
(data not included in the bootstrap sample used to construct t). Denote by errOOBt the error (MSE for
regression and misclassification rate for classification) of a single tree t on this OOBt sample. Now,

randomly permute the values of X j in OOBt to get a perturbed sample denoted by ÕOBt
j

and compute

errÕOBt
j
, the error of predictor t on the perturbed sample. Variable importance of X j is then equal to:

VI(X j) =
1

ntree ∑
t

(
errÕOBt

j
− errOOBt

)
,

where the sum is over all trees t of the RF and ntree denotes the number of trees of the RF. Notice that
we use this definition of importance and not the normalized one. Indeed, instead of considering (as
mentioned in Breiman and Cutler, 2004) that the raw VI are independent replicates, normalizing them
and assuming normality of these scores, we prefer a fully data-driven solution. This is a key point of
our strategy: we prefer to estimate directly the variability of importance across repetitions of forests
instead of using normality when ntree is sufficiently large, which is only valid under some specific
conditions. Those conditions are difficult to check since their validity depends heavily on tuning
parameters and problem peculiarities, so data-driven normalization prevents some misspecified
asymptotic behavior.

Another useful argument, which provides the rationale for this kind of variable selection procedure
based on a classical stepwise method combined with the use of a VI measure, is that a variable not
included in the underlying true model has a null “theoretical” importance. In a recent paper Gregorutti
et al. (2013) theoretically state that, in the case of additive models, irrelevant variables have null
“theoretical” VI. A similar result for the mean decrease impurity index (not used in this paper) has
been proven by Louppe et al. (2013).
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Detailed strategy

Let us now describe more precisely our two-steps procedure. Note that each RF is typically built using
ntree = 2000 trees.

• Step 1. Preliminary elimination and ranking:

– Rank the variables by sorting the VI (averaged over typically 50 RF runs) in descending
order.

– Eliminate the variables of small importance (let m denote the number of remaining vari-
ables).
More precisely, starting from this order, consider the ordered sequence of the correspond-
ing standard deviations (sd) of VI and use it to estimate a threshold value for VI. Since
variability of VI is larger for true variables compared to useless ones, the threshold value is
given by an estimation of the VI standard deviation of the useless variables. This threshold
is set to the minimum prediction value given by a CART model where the Y are the sd of
the VI and the X are the ranks.
Then only the variables with an averaged VI exceeding this threshold are retained.

• Step 2. Variable selection:

– For interpretation: construct the nested collection of RF models involving the k first vari-
ables, for k = 1 to m and select the variables involved in the model leading to the smallest
OOB error. This leads to consider m′ variables.
More precisely, we compute OOB error rates of RF (averaged typically over 25 runs) of the
nested models starting from the one with only the most important variable, and ending
with the one including all important variables previously kept. Ideally, the variables of
the model leading to the smallest OOB error are selected. In fact, in order to deal with
instability, we use a classical trick: we select the smallest model with an OOB error less
than the minimal OOB error augmented by its standard deviation (based on the same 25
runs).

– For prediction: starting with the ordered variables retained for interpretation, construct an
ascending sequence of RF models, by invoking and testing the variables in a stepwise way.
The variables of the last model are selected.
More precisely, the sequential variable introduction is based on the following test: a
variable is added only if the error decrease is larger than a threshold. The idea is that the
OOB error decrease must be significantly greater than the average variation obtained by
adding noisy variables. The threshold is set to the mean of the absolute values of the first
order differentiated OOB errors between the model with m′ variables and the one with m
variables:

1
m−m′

m−1

∑
j=m′
| errOOB(j + 1)− errOOB(j), | (1)

where errOOB(j) is the OOB error of the RF built using the j most important variables.

Comments

In addition to the detailed strategy, let us give some additional comments. Regarding the first step of
our procedure, our previous simulation study in Genuer et al. (2010b) shows that both VI level and
variability are larger for relevant variables.

We assume that the stabilized ranking performed in the first step of our procedure will not change
after the elimination step.

The use of CART to find the threshold is of course not strictly necessary and can be replaced by
many other strategies but it is interesting in our case because the idea is typically to find a constant on
a large interval. Since CART fits a piece-wise constant function, this desired constant is the threshold
for VI and is defined as the minimum prediction value given by a CART model fitting the curve of
VI standard deviations. It is obtained automatically by the CART strategy whereas the user needs to
select some window parameter if, for example, a simple smoothing method is used.

Note that the threshold value is based on VI standard deviations while the effective thresholding
is performed on the VI mean. In general, this rule is conservative and leads to keep more variables
than necessary, postponing to the next step a more parsimonious choice.

In addition, we note that several implementation choices have been made: randomForest for RF
fitting and VI calculation (repeated 50 times to quantify variability) and rpart for estimating the VI
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variability level associated with irrelevant variables leading to a convenient threshold value. Of course
other choices would be possible, for example, using the function cforest of the package party to
implement the same scheme of variable selection.

The next section describes the use of the package VSURF together with a complete illustration of
the strategy which is not supported by specific model hypotheses but based on data-driven thresholds
to take decisions.

But before entering in this description, let us emphasize that the objects of interest here are the
subsets of important variables and not precisely the corresponding models. Thus OOB errors from the
figures (or from the fitted objects) cannot be used or reported as the prediction error estimation of the
final model because this would need a proper cross-validation scheme.

Using the package VSURF

From data to final results

We illustrate the use of the VSURF package on a simple simulated moderately high-dimensional
dataset (n = 100 < p = 200) called toys data, introduced by Weston et al. (2003). It comes from an
equiprobable two-class problem, Y ∈ {−1, 1}, with 6 influential variables and with the others being
noise variables. Let us define the simulation model by giving the conditional distribution of the Xi for
Y = y:

• For the six first variables: with probability 0.7, Xi ∼ N (yi, 1) for i = 1, 2, 3 and Xi ∼ N (0, 1)
for i = 4, 5, 6; with probability 0.3, Xi ∼ N (0, 1) for i = 1, 2, 3 and Xi ∼ N (y(i− 3), 1) for
i = 4, 5, 6.

• The remaining variables are noise: Xi ∼ N (0, 1) for i = 7, . . . , p.

The variables obtained in the simulation are standardized before further analysis.

First, we load the VSURF package and the toys data (and fix the random number generation seed
for reproducibility):

> library("VSURF")
> data("toys")
> set.seed(3101318)

The standard way to use the VSURF package is to use the VSURF function. This function executes
the complete procedure, and is just a wrapper for the three intermediate functions VSURF_thres,
VSURF_interp and VSURF_pred which are described in the next section. Typical use of the VSURF
function is as follows:

> toys.vsurf <- VSURF(x = toys$x, y = toys$y, mtry = 100)

The only mandatory inputs are x, an object containing input variables, and y, the output variable.

In this example, we also choose a specific value for mtry (default is p/3 for classification and
regression problems in VSURF), which only affects RF runs in the first step of the procedure. In addition,
we stress that the default value for ntree is 2000 in VSURF. Those values were considered as well
adapted for VI calculations (see Genuer et al., 2010b, Section 2.2) and these two arguments are passed
to the randomForest function (we kept the same name for consistency).

The function outputs a list containing all results.

> names(toys.vsurf)

[1] "varselect.thres" "varselect.interp" "varselect.pred"
[4] "nums.varselect" "imp.varselect.thres" "min.thres"
[7] "imp.mean.dec" "imp.mean.dec.ind" "imp.sd.dec"
[10] "mean.perf" "pred.pruned.tree" "err.interp"
[13] "sd.min" "err.pred" "mean.jump"
[16] "nmin" "nsd" "nmj"
[19] "overall.time" "comput.times" "ncores"
[22] "clusterType" "call"

The most important objects are varselect.thres, varselect.interp and varselect.pred, which
contain the set of variables selected after the thresholding, interpretation and prediction step respec-
tively.

The summary method gives a short summary of the results: numbers of selected variables and
computation times.
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Figure 1: VSURF for the toys data: Top graphs illustrate the thresholding step, bottom left and bottom
right graphs are associated with interpretation and prediction steps respectively.

> summary(toys.vsurf)

VSURF computation time: 1.6 mins

VSURF selected:
36 variables at thresholding step (in 57.6 secs)
4 variables at interpretation step (in 38.4 secs)
3 variables at prediction step (in 2.2 secs)

The plot method gives a plot (see Figure 1) of the results in 4 graphs. To selectively obtain
single graphs of Figure 1 one can either suitably specify the arguments of this plot method, or use
intermediate plot methods (associated with each procedure step) included in the package.

> plot(toys.vsurf)

In addition, we include a predict method, which permits to predict the outcomes for new data
with RF using only the variables selected by VSURF.

Finally, we point out that all computations of the package can be executed in parallel, whenever it
is possible. For example, the following command runs VSURF in parallel on a Linux computing server
using 40 cores:

> set.seed(2734, kind = "L'Ecuyer-CMRG")
> toys.vsurf.parallel <- VSURF(toys$x, toys$y, mtry = 100, parallel = TRUE,
+ ncores = 40, clusterType = "FORK")

> summary(toys.vsurf.parallel)

VSURF computation time: 8.3 secs

VSURF selected:
35 variables at thresholding step (in 3.8 secs)
4 variables at interpretation step (in 2.3 secs)
3 variables at prediction step (in 2.2 secs)

VSURF ran in parallel on a FORK cluster and used 40 cores

Note that we use the "L'Ecuyer-CMRG" kind in the set.seed function to allow reproducibility
(when the call is on a FORK cluster with the same number of cores). Even if one should have a
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Figure 2: Zoom of the top right graph of Figure 1.

computing server with 40 cores to benefit from this execution time reduction, the resulting ‘VSURF’
object from this call will be the same on a computer with fewer cores available. Parallel calls of VSURF
will be used to deal with the two high-dimensional datasets at the end of the paper.

How to get intermediate results

Let us now detail the main stages of the procedure together with the results obtained on the toys data.
Note that unless explicitly stated otherwise, all graphs refer to Figure 1.

• Step 1.

– Variable ranking.
The result of variable ranking is drawn on the top left graph. True variables are significantly
more important than the noisy ones.

– Variable elimination.
Starting from this order, the plot of the corresponding standard deviations of VI is used
to estimate a threshold value for VI. This threshold (figured by the dotted horizontal red
line in Figure 2, which is a zoom of the top right graph of Figure 1) is set to the minimum
prediction value given by a CART model fitting this curve (see the green piece-wise
constant function on the same graph).
Then only the variables with an averaged VI exceeding this level (i.e. above the horizontal
red line in the top left graph of Figures 1) are retained.
The computation of the 50 forests, the ranking and elimination steps are obtained with the
VSURF_thres function:

> set.seed(3101318)
> toys.thres <- VSURF_thres(toys$x, toys$y, mtry = 100)

The VSURF_thres function outputs a list containing all results of this step. The main
outputs are: varselect.thres which contains the indices of variables selected by this step,
imp.mean.dec and imp.sd.dec which hold the VI mean and standard deviation (the order
according to decreasing VI mean can be found in imp.mean.dec.ind).

> toys.thres$varselect.thres

[1] 3 2 6 5 1 4 184 37 138 159 81 17 180 131 52 191
[17] 96 192 165 94 198 25 21 109 64 12 29 188 107 157 70 46
[33] 54 143 186 111

Finally, Figure 2 can be obtained with the following command:

> plot(toys.vsurf, step = "thres", imp.mean = FALSE, ylim = c(0, 2e-4))

We can see in the plot of the VI standard deviations (top right graph of Figure 1) that the
true variables’ standard deviations are large compared to those of the noisy variables,
which are close to zero.
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• Step 2.

– Variable selection procedure for interpretation.
We use VSURF_interp for this step. Note that we have to specify the indices of variables
selected at the previous step. So we set argument vars to toys.thres$varselect.thres:

> toys.interp <- VSURF_interp(toys$x, toys$y,
+ vars = toys.thres$varselect.thres)

The list resulting from the VSURF_interp function mainly contains varselect.interp: the
variables selected by this step, and err.interp: OOB error rates of RF nested models.

> toys.interp$varselect.interp

[1] 3 2 6 5

In the bottom left graph, we see that the error decreases quickly. It reaches its (almost)
minimum when the first four true variables are included in the model (see the vertical red
line) and then it remains nearly constant. The selected model contains variables V3, V2,
V6, V5, which are four of the six true variables, while the actual minimum is reached for
35 variables.
Note that, to ensure quality of OOB error estimations (e.g. Genuer et al., 2008, Section 2)
along embedded RF models, the mtry parameter of the randomForest function is here set
to its default value if k (the number of variables involved in the current RF model) is not
greater than n, while it is set to k/3 otherwise.

– Variable selection procedure for prediction.
We use the VSURF_pred function for this step. We need to specify the error rates and
the variables selected in the interpretation step in the err.interp and varselect.interp
arguments:

> toys.pred <- VSURF_pred(toys$x, toys$y,
+ err.interp = toys.interp$err.interp,
+ varselect.interp = toys.interp$varselect.interp)

The main outputs of the VSURF_pred function are the variables selected by this final step,
varselect.pred, and the OOB error rates of RF models, err.pred.

> toys.pred$varselect.pred

[1] 3 6 5

For the toys data, the final model for prediction purpose involves only variables V3, V6,
V5 (see the bottom right graph). The threshold is set to the mean of the absolute values of
the first order differentiated OOB errors between the model with m′ = 4 variables and the
one with m = 36 variables.

Finally, we mention that VSURF_thres and VSURF_interp can be executed in parallel with the same
syntax as VSURF (setting parallel = TRUE), while VSURF_pred cannot be parallelized.

Tuning the different steps of the procedure

We provide two additional functions for tuning the thresholding and interpretation steps without
having to rerun all computations.

• First, a tune method which, applied to the result of VSURF_thres, can be used to tune the
thresholding step. We can use the nmin parameter (which has default value 1) in order to set the
threshold to the minimum prediction value given by the CART model times nmin.

> toys.thres.tuned <- tune(toys.thres, nmin = 3)
> toys.thres.tuned$varselect.thres

[1] 3 2 6 5 1 4 184 37 138 159 81 17 180 131 52 191

We get 16 selected variables instead of 36 previously.

• Secondly, a tune method which, applied to the result of VSURF_interp, is of the same kind and
allows to tune the interpretation step. If we now want to be more restrictive in our selection
in the interpretation step, we can select the smallest model with an OOB error less than the
minimal OOB error augmented by its empirical standard deviation times nsd (with nsd ≥ 1).

> toys.interp.tuned <- tune(toys.interp, nsd = 5)
> toys.interp.tuned$varselect.interp
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[1] 3 2 6

We get 3 selected variables instead of 4 previously.

We did not write a tuning method for the prediction step because it is a recursive step and needs to
recompute the sequence. Hence, to adjust the parameter for this step, we have to rerun the VSURF_pred
function with a different value of nmj (which has default value 1). This multiplicative constant allows
to modulate the threshold defined in (1).

For example, increasing the value of nmj leads to selection of fewer variables:

> toys.pred.tuned <- VSURF_pred(toys$x, toys$y, err.interp = toys.interp$err.interp,
+ varselect.interp = toys.interp$varselect.interp,
+ nmj = 70)
> toys.pred.tuned$varselect.pred

[1] 3 6

Remark

Thanks to one of the three anonymous reviewers, we would like to give a warning following
a remark made by Svetnik et al. (2004). Indeed, this work considers a situation where there is no
link between X and Y and for which they use OOB errors in a recursive strategy, different but not
too far from our procedure, to select variables. Their results show that this kind of strategy can be
seriously biased and can overfit the data. To illustrate explicitly this phenomenon, let us start with the
original dataset toys for which our procedure performs quite well (see the paper Genuer et al., 2010b,
containing an extensive study of the operating characteristics of the algorithm including no overfitting
in presence of many additional dummy variables). Then, modify it by scrambling the Y values thus
removing the link between X and Y. Applying VSURF on this modified dataset leads to an OOB error
rate, in the interpretation step, starting from 50% (which is correct) and exhibiting a minimum for 10
variables corresponding to 37%. So, in this situation for which there is no optimal solution and the
desirable behavior is to find a constant OOB error rate along the sequence, the procedure still provides
a solution. So, the conclusion is that even when there is no link between X and Y the procedure can
highlight a set of variables.

Of course, using an external 5-fold cross-validation of our entire procedure leads to the correct
estimate of 51% error rate for both interpretation and prediction steps and the correct conclusion: there
is nothing to find in the data. Alternatively, if we simulate a second sample coming from the same
simulation model and use it only to rank the variables, the interpretation step exhibits an OOB error
rate curve oscillating around 50%, which leads to the correct conclusion.

Three illustrative examples

In this section we apply the proposed procedure on three real-life examples: two high-dimensional
datasets (associated with a regression problem and a classification one respectively) and, before that, a
standard one to illustrate the versatility of the procedure.

Let us mention that the VSURF stability is a natural issue to investigate (see e.g. Meinshausen and
Bühlmann, 2010) and is considered in Genuer et al. (2010b) Sections 3 and 4.

Ozone data

The Ozone dataset consists of n = 366 observations for 12 independent variables and 1 dependent
variable. These variables are numbered as in the R package mlbench (Leisch and Dimitriadou, 2010):
1 – Month, 2 – Day of month, 3 – Day of week, 5 – Pressure height, 6 – Wind speed, 7 – Humidity,
8 – Temperature (Sandburg), 9 – Temperature (El Monte), 10 – Inversion base height, 11 – Pressure
gradient, 12 – Inversion base temperature, 13 – Visibility, for independent variables and 4 – Daily
maximum one-hour-average ozone, for the dependent variable.

What makes the use of this dataset interesting, is that it has already been extensively studied and
that even though it is a real one, it is possible to a priori know which variables are expected to be
important. Moreover, this dataset, which is not a high-dimensional one, includes some missing data,
allowing us to give an example of how to handle such data using VSURF.

To begin, we load the data:

> data("Ozone", package = "mlbench")
> set.seed(221921186)
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Figure 3: Sorted VI mean associated with the 12 explanatory variables of the Ozone data, with variable
names on the x-axis.

Then, we apply the complete procedure via VSURF. Note that the following formula-type call is
necessary to handle missing values (as in randomForest).

> vozone <- VSURF(V4 ~ ., data = Ozone, na.action = na.omit)
> summary(vozone)

VSURF computation time: 1.7 mins

VSURF selected:
9 variables at thresholding step (in 1.1 mins)
5 variables at interpretation step (in 26.3 secs)
5 variables at prediction step (in 12.4 secs)

In the first step, we look at the variable importance associated with each of the explanatory variables.

> plot(vozone, step = "thres", imp.sd = FALSE, var.names = TRUE)

In Figure 3, and as noticed in previous studies, three very sensible groups of variables can be
discerned ranging from the most to the least important. The first group contains the two temperatures
(8 and 9), the inversion base temperature (12) known to be the best ozone predictors, and the month
(1), which is an important predictor since ozone concentration exhibits an heavy seasonal component.
The second group of clearly less important meteorological variables consists of: pressure height (5),
humidity (7), inversion base height (10), pressure gradient (11) and visibility (13). Finally the last
group contains three unimportant variables: day of month (2), day of week (3) of course and more
surprisingly wind speed (6). This last fact is classical: wind enters in the model only when ozone
pollution arises, otherwise wind and pollution are weakly correlated (see for example Chèze et al.,
2003, who highlight this phenomenon using partial estimators).

Let us now examine the results of the selection procedures. To reflect the order used in the
definition of the variables, we reorder the output variables of the procedure.

> number <- c(1:3, 5:13)
> number[vozone$varselect.thres]

[1] 9 8 12 1 11 5 10 7 13

After the first elimination step, the 3 variables of negative importance (variables 6, 3 and 2) are
eliminated, as expected.

> number[vozone$varselect.interp]

[1] 9 8 12 1 11

Then the interpretation procedure leads to select the model with 5 variables, which contains all of
the most important variables.
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> number[vozone$varselect.pred]

[1] 9 8 12 1 11

With the default settings, the prediction step does not remove any additional variable.

Remark

Even though the comparison with other variable selection strategies is out of the scope of the paper,
one of the three anonymous reviewers has kindly compared the results of the VSURF package with
the results of the R package Boruta, described in Kursa and Rudnicki (2010), on the two datasets toys
and Ozone.

Let us recall that this module directly aims at selecting all-relevant features. Hence the comparison
with the interpretation set delivered by VSURF is of interest. In the toys dataset, the number of truly
relevant variables is 6. VSURF finds 4 out of 6 variables in the interpretation stage while Boruta
finds all six truly relevant variables and one more false positive variable. In the case of the Ozone
data set VSURF finds 5 variables in the interpretation stage, while Boruta finds 9. So, this seems to
confirm that the heuristic proposed by VSURF is prediction oriented (the price to pay is a risk of
false negatives) and suggests that the strategy proposed by Boruta is more accurate to recover weak
redundant correlations between predictors and decision variable (the price to pay seems to be a risk of
false positives).

In fact our strategy assumes more or less that there are unnecessary variables in the set of all
available variables initially, which is not really the case in the Ozone dataset. However, it is the case in
the following two high-dimensional examples.

Toxicity data

This second dataset is also a regression framework, however, unlike before, this case is a high-
dimensional problem. The liver.toxicity dataset, available in the R package mixOmics (Lê Cao
et al., 2015), is a real dataset from a study by Heinloth et al. (2004). In this study, 4 male rats of
the inbred strain Fisher 344 were exposed to different doses of acetaminophen (non toxic dose (50
or 150 mg/kg), moderate toxic dose (1500 mg/kg), severe toxic dose (2000 mg/kg)) in a controlled
experiment. Necropsies were performed at different hours after exposure (6, 18, 24 and 48 hours)
and the mRNA from the liver was extracted. In the original study, 10 clinical chemistry variables
containing markers for the liver injury were measured. Those variables are numerical variables since
they measure the serum enzymes level. For our analysis, the dataset extracted from this study contains:

• a data frame, called gene, with 64 rows representing the subjects and 3116 columns repre-
senting explanatory variables which are the gene expression levels after normalization and
preprocessing due to Bushel et al. (2007),

• a vector, called clinic, with 64 rows and 1 column, one of the 10 clinical variables for the same
64 subjects: more precisely, the variable named ALB.g.dL., which corresponds to the albumin
level and which is the one considered in González et al. (2012).

As in previous studies (Gidskehaug et al., 2007; Lê Cao et al., 2008), our aim is, using VSURF, to
predict our clinical variable by the genes.

First, we load the data as follows:

> data("liver.toxicity", package = "mixOmics")
> clinic <- liver.toxicity$clinic$ALB.g.dL.
> set.seed(7162013, "L'Ecuyer-CMRG")

Now we apply our procedure and analyze the results.

> vtoxicity <- VSURF(liver.toxicity$gene, clinic, parallel = TRUE, ncores = 40,
+ clusterType = "FORK")

> summary(vtoxicity)

VSURF computation time: 5.9 mins

VSURF selected:
550 variables at thresholding step (in 1.1 mins)
5 variables at interpretation step (in 4.8 mins)
5 variables at prediction step (in 3.4 secs)

VSURF ran in parallel on a FORK cluster and used 40 cores
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Figure 4: VSURF for the toxicity data.

We notice that after the elimination step, only 550 variables remain, thus the number of variables
has been reduced by a factor of six. This ratio is not surprising since we know that there exists extreme
redundancy in the gene expression data together with a lot of irrelevant variables.

> plot(vtoxicity)

By considering the top left graph of Figure 4, it seems quite obvious to keep just a few variables.
Indeed, the procedure leads to 5 variables, after both interpretation and prediction steps. Even if the
numbers of selected variables are very small, they are not surprisingly low if we refer to the study
in González et al. (2012), where 12 variables were selected. It would be noted that, in general, our
method failed to deliver all the variables related to the response variable in the case of numerous
strongly correlated predictors. In addition, we do not select the same genes but our set of selected
variables and the one in González et al. (2012) exhibit strong correlations.

Even if the results are quite similar, an advantage of using VSURF is that this procedure does not
involve tuning parameters unlike the procedure developed in González et al. (2012). This difference is
the main reason for the gap in computation time: several minutes with 40 cores for VSURF compared to
several minutes with 1 core for González et al. (2012).

SRBCT data

The dataset we consider here will allow us to apply our procedure in a classification framework. The
real classification dataset is a small version of the small round blue cell tumors of childhood data and
contains the expression measure of genes measured on 63 samples. This set is composed of:

• a data frame, called gene, of size 63 × 2308 which contains the 2308 gene expressions;

• a response factor of length 63, called class, indicating the class of each sample (4 classes in
total).

These data, presented in details in Khan et al. (2001), available in the R package mixOmics, have
been widely studied but in most cases only 200 genes were considered and data have been transformed
to reduce the problem to a regression problem (see e.g. Lê Cao and Chabrier, 2008). As in Díaz-Uriarte
and Alvarez De Andres (2006), we consider the 2308 genes and we deal directly with the classification
problem, using VSURF.

> data("srbct", package = "mixOmics")
> set.seed(10131419, "L'Ecuyer-CMRG")
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> vSRBCT <- VSURF(srbct$gene, srbct$class, parallel = TRUE, ncores = 40,
+ clusterType = "FORK")

> summary(vSRBCT)

VSURF computation time: 3.6 mins

VSURF selected:
676 variables at thresholding step (in 22.6 secs)
25 variables at interpretation step (in 3 mins)
13 variables at prediction step (in 13.6 secs)

VSURF ran in parallel on a FORK cluster and used 40 cores

On this dataset, the procedure leads to 25 and 13 selected variables after the interpretation and
prediction step respectively, and the selected variable sets are stable.

We can compare these results with those obtained in Díaz-Uriarte and Alvarez De Andres (2006)
where the authors select 22 genes on the original dataset and their number of selected variables is
quite stable.

To get an idea of the performance of our procedure on the dataset, we perform an error rate
estimation using an external 5-fold cross-validation scheme (meaning that we apply VSURF on each
fold of the cross-validation). We obtain the following error rates2 for interpretation and prediction sets
respectively:

interp pred
0.01587302 0.07936508

The comparison with error rates evaluated using 200 bootstrap samples in Díaz-Uriarte and
Alvarez De Andres (2006) suggests that our selections are reasonable.
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zoib: An R Package for Bayesian
Inference for Beta Regression and
Zero/One Inflated Beta Regression
by Fang Liu and Yunchuan Kong

Abstract The beta distribution is a versatile function that accommodates a broad range of probability
distribution shapes. Beta regression based on the beta distribution can be used to model a response
variable y that takes values in open unit interval (0, 1). Zero/one inflated beta (ZOIB) regression
models can be applied when y takes values from closed unit interval [0, 1]. The ZOIB model is based a
piecewise distribution that accounts for the probability mass at 0 and 1, in addition to the probability
density within (0, 1). This paper introduces an R package – zoib that provides Bayesian inferences for
a class of ZOIB models. The statistical methodology underlying the zoib package is discussed, the
functions covered by the package are outlined, and the usage of the package is illustrated with three
examples of different data and model types. The package is comprehensive and versatile in that it
can model data with or without inflation at 0 or 1, accommodate clustered and correlated data via
latent variables, perform penalized regression as needed, and allow for model comparison via the
computation of the DIC criterion.

Introduction

The beta distribution has two shape parameters α1 and α2: Beta(α1, α2). The mean and variance of a
variable y that follows the beta distribution are E(y) = µ = α1(α1 + α2)

−1 and V(y) = µ(1− µ)(α1 +
α2 + 1)−1, respectively. A broad spectrum of distribution shapes can be generated by varying the two
shapes values of α1 and α2, as demonstrated in Figure 1. The beta regression has become more popular
in recent years in modeling data bounded within open interval (0, 1) such as rates and proportions,
and more generally, data bounded within (a, b) as long as a and b are fixed and known and it is sensible
to transform the raw data onto the scale of (0, 1) by shifting and scaling, that is, y′ = (y− a)(b− a)−1.
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Figure 1: Beta distribution with various values of the two shape parameters.

Given the flexibility and increasing popularity of the beta regression, significant development has
been made in the theory, methodology, and practical applications of the beta regression
(Cepeda-Cuervo, 2001; Paolino, 2001; Williams, 1982; Prentice, 1986; Ferrari and Cribari-Neto, 2004;
Smithson and Verkuilen, 2006; Simas et al., 2010; Smithson and Verkuilen, 2006; Hatfield et al., 2012;
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Ospina and Ferrari, 2012; Cepeda-Cuervo, 2015). Mostly recently, Grün et al. (2012) apply the tech-
niques of the model-based recursive partitioning (Zeileis et al., 2008) and the finite mixture model
(Dalrymplea et al., 2003) in the framework of beta regression to account for heterogeneity between
groups/clusters of observations. They also propose bias-corrected or bias-reduced estimation in the
beta regression by applying the unifying iteration technique (Kosmidis and Firth, 2010).

In many cases of real life data, exact 0’s and 1’s occur in additional to y values between 0 and 1,
producing zero-inflated, one-inflated, or zero/one-inflated outcomes. Though the beta distribution
covers a variety of the distribution shape, it does not accommodate excessive values at 0 and 1.
Smithson and Verkuilen (2006) propose transformation n−1(y(n− 1) + 0.5), where n is the sample size,
so all data points after transformation are bounded within 0 and 1 and the regular beta regression can
be applied. This approach, while offering a simple way to circumvent the complexity from modeling
the boundary values, only shifts the excessiveness in point mass from one location to another. Hatfield
et al. (2012) model the zero/one inflated VAS responses by relocating all 1 to 0.9995 and keep 0 as
is, and apply the zero-inflated beta (ZIB) regression. The approach of only shifting 1 but not 0 when
there is inflation at both is ad-hoc especially if there is no justification for treating 0 differently from
1. From a practical perspective, the observed 0’s and 1’s might carry practical meanings that would
be otherwise lost if being replacing with other values, regardless how close the raw and substitutes
values are. Ospina and Ferrari (2012) propose the zero-or-one inflated beta regression model (inflation
at either 0 or 1, but not both) and obtain inferences via the maximum likelihood estimation (MLE).
When there is inflation at both 0 and 1, it is sensible to model the excessiveness explicitly with the
zero/one inflated beta (ZOIB) regression, especially when population 0’s and 1’s are real. For example,
if the response variable is the death proportion of mice on different doses of a chemical entity; the
death rate caused by administration of the chemical entity theoretically can be 0 when its dosage is
0, and 1 when the dosage increases to a 100% lethal level. The ZOIB regression technique has been
previously discussed in the literature (Swearingen et al., 2012). Most beta regression and zoib models
focus on fixed effects models only, and thus cannot handle clustered or repeated measurements. Liu
and Li (2014) apply a joint model with latent variables to model the dependency structure among
multiple [0, 1]-bounded responses with repeated measures in the Bayesian framework.

From a software perspective, beta regression can be implemented in a software suite or package
that accommodate nonlinear regression models, such as SPSS (NLR and CNLR) and SAS (PROC
NLIN, PROC NLMIXED). There are also contributed packages or macros devoted specifically to
beta regression, such as the SAS macro developed by Swearingen et al. (2011), which implements
the beta regression directly and provides residuals plots for model fit diagnostics. In R, there are
a couple of packages targeted specifically at beta regression. betareg (Zeileis et al., 2014) models a
single response variable bounded within (0, 1), with fixed-effects linear predictors in the link functions
for the mean and precision parameter of the beta distribution (Cribari-Neto and Zeileis, 2010). The
package is later updated by Grün et al. (2012) to perform bias correction/reduction, model-based
recursive partitioning, and finite mixture models with added functions betatree() and betamix()
in package betareg. In betareg, the coefficients of the regression are estimated by the MLE and
inferences are based on large sample assumptions. Bayesianbetareg (Marin et al., 2014) allows the
joint modelling of mean and precision of a single response in the Bayesian framework, as is proposed
in Cepeda-Cuervo (2001), with logit link for the mean and logarithmic for the precision. Neither
betareg nor Bayesianbetareg accommodate inflation at 0 or 1 (betareg transforms y with inflation at
0 and 1 using (y(n− 1) + 0.5)n−1); neither can model multiple response variables, repeated measures,
or clustered/correlated response variables. In other words, the linear predictors in the link functions
of the mean and precision parameters of the beta distribution in both betareg and Bayesianbetareg
contain fixed effects only.

In this discussion, we introduce a new R package zoib (Liu and Kong, 2014) that models responses
bounded within [0, 1] – without inflation at 0 nor 1, with inflation at 0 only, at 1 only, or at both 0 and 1.
The package can model a single response with or without repeated measures, or multiple or clustered
[0, 1]-bounded response variables, taking into account the dependency among them. Compared to the
existing packages on beta regression in R, zoib is more comprehensive and flexible from the modeling
perspective and can accommodate more data types. The inferences of the mdoel parameters in package
zoib are obtained in the Bayesian framework via the Markov Chain Monte Carlo (MCMC) approach
as implemented in JAGS (Plummer, 2014a).

The rest of the paper is organized as follows. Section Zero/one inflated beta regression describes
the methodology underlying the ZOIB regression. Section Implementation in R introduces the package
zoib, including its functionality and outputs. Section Examples illustrates the usage of the package
with 3 real-life data sets and 1 simulated data of different types. The paper ends in Section Summary
with summaries and discussions.
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Zero/one inflated beta regression

The ZOIB model

Suppose yj is the jth variable out of a total p response variables measured on n independent units,
that is, yj = (y1j, . . . , ynj)

t. The zoib model assumes yij follows a piecewise distribution when yij has
inflation at both 0 and 1.

f (yij|ηij) =


pij if yij = 0
(1− pij)qij if yij = 1
(1− pij)(1− qij)Beta(αij1, αij2) if yij ∈ (0, 1).

(1)

pij is the probability of yij = 0, and qij is the conditional probability Pr(yij = 1|yij 6= 0), and αij1 and
αij2 are the shape parameters of the beta distribution when yij ∈ (0, 1). The probability parameters
from the binomial distributions and the two shape parameters from the beta distributions are linked to
observed explanatory variables xij or unobserved latent variable zij via link functions. Some natural

choices for the link functions for pij, qij, and the mean of the beta distribution µ
(0,1)
ij = E(yij|yij ∈

(0, 1)) = αij1(αij1 + αij2)
−1, which are all parameters within (0, 1), include the logit function, the

probit function, or the complementary log-log (cloglog) function. While the binomial distribution is
described by a single probability parameter, the beta distribution is characterized by two parameters.
The variance of the beta distribution is not only a function of its mean but also the sum of two

shape parameters νij = αij1 + αij2; that is, V(yij|yij ∈ (0, 1)) = µ
(0,1)
ij (1− µ

(0,1)
ij )(αij1 + αij2 + 1)−1 =

µ
(0,1)
ij (1− µ

(0,1)
ij )(νij + 1)−1. νij is often referred to as the precision (dispersion) parameter and can also

be affected by external explanatory variables or latent variables (Simas et al., 2010; Cribari-Neto and
Zeileis, 2010). An example of the formulation of the zoib model, if the logit function is applied to pij,

qij, and µ
(0,1)
ij , and the log link function is applied to νij, is

logit(µ(0,1)
ij ) = x1,ijβ1j + I1(z1,ijγ1,i) (2)

log(νij) = x2,ijβ2j + I2(z2,ijγ2,i) (3)

logit(pij) = x3,ijβ3j + I3(z3,ijγ3,i) (4)

logit(qij) = x4,ijβ4j + I4(z4,ijγ4,i), (5)

where βm,j represents the linear fixed effects in link function m (m = 1, 2, 3, 4) for response j (j =
1, . . . , p); xm,ij is the design matrix for the fixed effects; Im(zm,ijγm,i) is an indicator function on whether
link function m has a random component or not, that is, Im(zm,ijγm,i) = zm,ijγm,i if link function has a
random component, Im(zm,ijγm,I) = 0 otherwise. zm,i represents the design matrix associated with

the random components; Unless stated otherwise, we assume γm,i
ind∼ N(0, Σm) for i = 1, . . . , n in link

function m throughout this discussion. When p ≥ 2, dependency among the p response variables are
modeled through their sharing of γm,i for each m.

When there are no random/latent components in the linear predictors, the mean of the beta
distribution for yij ∈ (0, 1) is given by exp(x1,ijβ1j)(1 + exp(x1,ijβ1j))

−1 while exp(x2,ijβ2j) is the sum
of the two shape parameters. exp(x3,ijβ3j)(1 + exp(x3,ijβ3j))

−1 is Pr(yij = 0), and exp(x4,ijβ4j)(1 +

exp(x4,ijβ4j))
−1 is Pr(yij = 1|yij > 0). The overall mean of yij is thus given by

E(yij) = (1− pij)
(

qij + (1− qij)µ
(0,1)
ij

)
=

exp(x1,ijβ1j)(1 + exp(x1,ijβ1j))
−1 + exp(x4,ijβ4j)

(1 + exp(x3,ijβ3j))(1 + exp(x4,ijβ4j))

When there are random/latent components, then the conditional mean of yij given zm,i is

E(yij|γ1,i, γ2,i, γ3,i, γ4,i) = (1− pij)
(

qij + (1− qij)µ
(0,1)
ij

)
(6)

=
exp{x1,ijβ1j + I1(z1,ijγ1,i)}(1 + exp{x1,ijβ1j + I1(z1,ijγ1,i)})−1 + exp{x4,ijβ4jI4(z4,ijγ4,i)}

(1 + exp{x3,ijβ3j + I1(z3,ijγ3,i)})(1 + exp{x4,ijβ4j + I2(z4,ijγ4,i)})

Calculation of the marginal mean of yij involves integrating out γm,i over its distribution; that is,
E(yij) =

∫
E(yij|γ1,i, γ2,i, γ3,i, γ4,i) f (γ1,i|Σ1) f (γ2,i|Σ2) f (γ3,i|Σ3) f (γ4,i|Σ4)dγi,1dγ2,idγ3,idγ4,i, which

can become computationally and analytically tractable if the MLE approach is taken. In contrast, E(yij)
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is easier to obtain by the Monte Carlo approach in the Bayesian computational framework.

Equations (2) to (5) give a full parameterization of the ZOIB model. Various reduced forms of the
fully parameterized model as given in equations (2) to (5) are available. For example, if a constant
dispersion parameter is assumed, then equation (3) can be simplified log(νij) = cj that differs only by
response variable. In practice, it might also be reasonable to assume zm,ijγm,i is the same across all
links functions, that is, Σm = Σ, since information to distinguish among Σm’s is unlikely available in
many real life applications.

Bayesian inference

Though the inferences of the parameters in the proposed ZOIB model can be obtained via the MLE
approach, the task can be analytically and computationally challenging, considering the nonlinear
nature of the model and existence of possible random effects. We adopt the Bayesian inferential
approach in package zoib. Let Θ = {β1, β2, β3, β4, Σ} denote the set of the parameters from the ZOIB
model (zoib sets γm,i = γi and Σm = Σ ∀ m). The joint posterior distribution of Θ and the random
effects γ given data y is p(Θ, γ|y) ∝ p(y|Θ, γ)p(γ|Θ)p(Θ). The likelihood p(y|Θ, γ) is constructed
from the ZOIB model in equation (1)

p(y|Θ, γ) ∝ ∏
i

∏
j

{
p

I(yij=0)
ij (1− pij)

I(yij>0)q
I(yij=1)
ij

}
×

(1− qij)
Γ(νij)

Γ(νijµ
(0,1)
ij )Γ(νij(1− µ

(0,1)
ij ))

(yij)
νijµ

(0,1)
ij −1(1− yij)

νij(1−µ
(0,1)
ij )−1


I(yij∈(0,1))

,

noting pij, qij, νij and µ
(0,1)
ij are functions of Θ, and p(γ|Θ) ∼ N(0, Σ). zoib assumes all the parameters

in Θ are a priori independent, thus f (Θ) = f (Σ)∏
p
j=1 ∏4

m=1 f (βmj). zoib offers the following prior
choices on βm,j:

• Diffuse normal (DN) on all intercept terms βm,j0 ∼ N(0, C), where C is the precision of the nor-
mal distribution that can be specified by users. The smaller C is, the more “diffuse” the normal
distribution is (the less a priori information there is about βm,j0). The default C = 10−3.

• For the rest of elements in βm,j (minus the intercept term), there are 4 options:

� diffuse normal (DN, default): βm,jk
ind∼ N(0, C) across k = 1, . . . , pm for a given j (j = 1, . . . , q)

and m (m = 1, . . . , 4). C is the precision of the normal distribution that can be specified by
users; the default C = 10−3.

� L2-prior (L2): The L2 prior shrinks the regression coefficients in the same link function m on
the same variable yj in a L2 manner as in ridge regression(Lindley and Smith, 1972). The L2

prior helps when there is non-orthogonality among the covariates. βm,jk|λm,jk
ind∼ N(0, λm,j)

for k = 1, . . . , pm and the precision parameter λm,j
ind∼ gamma(α, β) given j and m. α and β,

the shape and scale parameters of the gamma distribution, are small constants that can be
specified by the user. The default is α = β = 10−3 for all m and j.

� L1-prior (L1): The L1 prior shrinks the regression coefficients in the same link function m on
the same variable yj in a L1 manner(Lindley and Smith, 1972) as in Lasso regression (Park
and Casella, 2008). As such, the L1-prior helps there is a large of covariates and sparsity in

the regression coefficients is desirable. βm,jk|λm,jk
ind∼ N(0, λm,jk) and λm,jk

ind∼ exp(εm,j) for
k = 1, . . . , pm given j and m. εm,j is a small constant that can be specified by users. The default
εm,j = 10−3 for all m and j.

� automatic relevance determination (ARD): ARD, as the L2 and L1 priors, regularizes the
regression coefficients toward sparsity. Different from the L2 prior, where every coefficient
has the same precision parameter λm,j, the precision is coefficient-specific in the ARD prior

(MacKay, 1996; Neal, 1994): βm,jk|λm,jk
ind∼ N(0, λm,jk) and λm,jk

ind∼ gamma(αm,j, βm,j) for
k = 1, . . . , pm given j and m. αm,j, βm,j are small constants that can be specified by users. The
default αm,j = βm,j = 10−3 for all m and j.

Regarding the random effects specification in zoib, it is assumed z ∼ N(0, σ2) in the case of a single
random variable z; when there are multiple random variables z1, . . . , zL, it is assumed z ∼ N(0, Σ).
zoib offers two structures on Σ: variance components (VC) and unstructured (UN).

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 38

• In the VC case, Σ is diagonal, indicating all the random variables are independent. zoib offers two
priors on σl , the standard deviation of zl (l = 1, . . . , L): 1) σl ∼ unif(0, C), where C is a large constant
that can be specified by users (default C = 20); 2) σl ∼ half-Cauchy(C), the half-t distribution with

degree freedom equal to 1. Symbolically, f (σj) ∝
(

1 + σ2
j C−2

)−1
, where C is the scale parameter

(Gelman, 2006) (default C = 20). The half-Cauchy distribution is the default in zoib.

• When Σ is fully parameterized with L(L + 1)/2 parameters (the UN structure), we write Σ =
Diag(σl) · R · Diag(σj), where R is the correlation matrix . The priors for σl for l = 1, . . . , L are
the same as in the VC case. zoib supports L up to 3 in the UN structure. When L = 2, there
is a single correlation parameter and a uniform prior is imposed ρ ∼unif(0, 1). When L = 3,
the uniform prior is imposed on two out of three correlation coefficients, say ρ12 ∼unif(0, 1) and
ρ12 ∼unif(0, 1). In order to ensure positive definitiveness of R, ρ23 has to be bounded within (L, U),

where L = ρ12ρ13 −
√
(1− ρ2

12)(1− ρ2
13) and U = ρ12ρ13 +

√
(1− ρ2

12)(1− ρ2
13). The prior on ρ13

is thus specified as unif(L, U).

All taken together, zoib offers 4 options on the prior for the covariance matrix Σ in the case of more
than one random variables: VC.unif,VC.halft,UN.unif, and UN.halft.

Implementation in R

The joint distribution f (Θ, γ|y) in the zoib model is not available in closed form. We apply slice
sampling(Neal, 2003), a Markov chain Monte Carlo (MCMC) method, to draw posterior samples
on the parameters leveraging on the available software JAGS (Plummer, 2014a). Before using zoib,
users need to download JAGS and the R package rjags that offers a connection between R and JAGS.
The main function in zoib generates a JAGS model object, and the posterior samples on the model
parameters, the observed y and their posterior predictive values, and the design matrices x1, x2, x3 and
x4, as applicable. Convergence diagnostics, mixing of the MCMC chains, summary of the posterior
draws, and the deviance information criterion (DIC) (Spiegelhalter et al., 2002) of the model can be
calculated using the functions already available in packages coda (Plummer et al., 2006) and rjags
(Plummer, 2014b). Trace plots and auto-correlation plots can be generated, the Gelman-Rubin’s
potential scale reduction factor (psrf) (Gelman and Rubin, 1992) and multivariate psrf (Brooks and
Gelman, 1998) can be computed. To check on the mixing and convergence of the Markov chains,
multiple independent Markov chains should be run. More details on the output and functions of zoib
are provided in Section Implementation in R below.

The package zoib contains 23 functions (Table 1). Users can call the main function zoib( ),
which produces a MCMC (JAGS) model object and posterior samples of model parameters as
an MCMC object, among others. Convergence of the MCMC chains can be checked using the
traceplot(MCMC.object), autocorr.plot(MCMC.object) and gelman.diag(MCMC.object) functions
provided by package coda. Posterior summary of the parameters can be obtained by function summary(
) if the posterior draws are in a format of a mcmc.list. The DIC of the proposed model can be calcu-
lated using function dic.samples(JAGS.object) available in rjags for model comparison purposes.
Besides these existing functions, zoib provides an additional function check.psrf( ) that checks
whether multivariate psrf value can be calculated for multi-dimensional model parameters, provides
box plots and summary statistics on multiple univariate psrf values, and the paraplot( ) function
which provides a visual display on the posterior inferences on the model parameters. The remaining
20 functions are called internally by function zoib( ). The main function zoib( ) is used as follows:

zoib(model, data, zero.inflation = TRUE, one.inflation = TRUE, joint = TRUE,
random = 0, EUID, link.mu = "logit", link.x0 = "logit", link.x1 = "logit",
prior.beta = rep("DN",4), prec.int = 0.001, prec.DN = 0.001,
lambda.L2 = 0.001, lambda.L1 = 0.001, lambda.ARD = 0.001,
prior.Sigma = "VC.halft", scale.unif = 20, scale.halft = 20,
n.chain = 2, n.iter = 5000, n.burn=200 , n.thin = 2)

data represents the data set to be modeled. model presents a symbolic description of the zoib
model in the format of formula responses y ∼ covariates x. zero.inflation and one.inflation
contain the information on whether the data has inflation at zero or one. joint specifies whether to
model multiple response variables jointly or separately. random = 0 indicates the ZOIB model has no
random effects; random = m (for m = 1, 2, 3, 4) instructs zoib which linear predictor(s) out of the four
(as given in equations (2) to (5) have a random component. For example, if random = 13, then the linear
predictors associated with the link function of the mean of the beta regression (1) and the probability
of zero inflation (3) have a random component, while the linear predictors associated with the link
function of the precision parameters of (2) and the probability one inflation (4) do not have a random

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=coda
https://CRAN.R-project.org/package=rjags


CONTRIBUTED RESEARCH ARTICLES 39

Function Description

Functions called by users

zoib( ) main function; produces a MCMC (JAGS) model object and
posterior samples of model parameters

check.psrf( ) checks whether the multivariate psrf value can be calculated for
multi-dimensional parameters; provides a box plot and summary
statistics for multiple univariate psrf values

paraplot( ) plots the posterior mode, mean, or median with Bayesian credible
intervals for the parameters from a zoib model.

Internal functions called by zoib( )

fixed-effect model
fixed( ) without y inflation at 0 or 1
fixed0( ) with y inflation at 0 only
fixed1( ) with y inflation at 1 only
fixed01( ) with y inflation at at both 0 and 1

joint modeling of ≥ 2 response variables when there is a single random variable
join.1z( ) without y inflation at 0 or 1
join.1z0( ) with y inflation at 0 only
join.1z1( ) with y inflation at 1 only
join.1z01( ) at both 0 and 1

joint modeling of ≥ 2 response variables when there are ≥ 2 random variables
join.2z( ) without y inflation at 0 or 1
join.2z0( ) with y inflation at 0 only
join.2z1( ) with y inflation at 1 only
join.2z01( ) with y inflation at both 0 and 1

separate modeling of ≥ 2 response variables when there is a single random variable
sep.1z( ) without y inflation at 0 or 1
sep.1z0( ) with y inflation at 0 only
sep.1z1( ) with y inflation at 1 only
sep.1z01( ) at both 0 and 1. called by function zoib( ).

separate modeling of ≥ 2 response variables when there are ≥ 2 random variables
sep.2z( ) without y inflation at 0 or 1
sep.2z0( ) with y inflation at 0
sep.2z1( ) with y inflation at 1 only
sep.2z01( ) with y inflation at both 0 and 1

Table 1: Functions developed in package zoib.

component. Similarly, if random = 124, then the linear predictors associated with the mean (1) and
precision parameters (2) of the beta distribution, and the probability of one inflation (4) have a random
component, but the link function associated with the probability of zero inflation (4) does not. random
= 1234 would suggest all 4 linear predictors have random components. There are total 24 − 1 = 15
possibilities to specify the random components and zoib supports all 15 possibilities.

The remaining arguments in function zoib( )are necessary for Bayesian model formulation and
computation, including the hyper-parameter specification in the prior distributions of the parameters
in the ZOIB model (prior.beta,prec.int,prec.DN,lambda.L2,lambda.L1,lamdda.ARD,scale.unif,
scale.halft,prior.Sigma), the number of Markov chains to run (n.chain), the number of MCMC
iterations per chain (n.iter), and the burin-in period (n.burn) and thinning period (n.thin). In
addition, the link functions that relate linear predictors to Pr(y = 0), Pr(y = 1), and µ(0,1) can be
chosen from logit (the default), probit, and cloglog. The link function that links a linear predictor to
the sum of the two shape parameters of the beta distribution is the log function.

Table 2 lists the functions offered by packages coda and rjags that can be used to check the
convergence of the MCMC chains from the ZOIB models, to compute the posterior summaries of the
model parameters, and to calculate the penalized deviance of the converged models.

Examples

We apply the package zoib to three examples. In the first example zoib is applied to analyze the
GasolineYield data available in R package betareg, to provide a comparison between the results
obtained from the two packages. There is no inflation in either 0 or 1 in data GasolineYield. In

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 40

Function Description

traceplot( ) plots number of iterations vs. drawn values for each parameter in
per Markov chain (from package coda)

autocorr.plot( ) plots the autocorrelation for each parameter in each Markov chain
(from package coda)

gelman.diag( ) calculates the potential scale reduction factor (psrf) value for each
variable drawn from at least two Markov chains, together with the
upper and lower 95% confidence limits. When there are multiple
variables, a multivariate psrf value is calculated (from package coda)

dic.samples( ) extracts random samples of the penalized deviance from a jags
model (from package rjags)

summary( ) calculates posterior mean, standard deviation, 50%, 2.5% and 97.5%
for each parameters using the posterior draws from Markov chains

Table 2: Existing functions for checking the convergence and mixing of the Markov chain of the ZOIB
model and summarizing the posterior samples.

Example 2, zoib is applied to a simulated data with two correlated beta variables, where joint modeling
of the variable is used with a single random variable. In Example 3, zoib is applied to a real life data
on alcohol use in California teenagers. Example 3 is used to demonstrate how to model clustered beta
variables via zoib. The data set in Example 3 can be downloaded from website http://www.kidsdata.
org. In all three example, the ZOIB model is specified using the generic function formula in R. When
there are multiple response variables, each variable should be separated by |, such as y1|y2|y3 on the
left hand side of the formula. On the right side of the formula, it can take up to 5 parts in the following
order:

1. fixed-effect variables x1 in the link function of the mean of the beta distribution;

2. fixed-effect variables x2 in the link function of the precision parameter of the beta distribution;

3. fixed-effect variables x3 in the link function of Pr(y = 0);

4. fixed-effect variables x4 in the link function of Pr(y = 1); and

5. random-effects variables z.

x1 and x2 should always be specified, even if x2 contains only an intercept (represented by 1). If there
is no zero inflation in any of the y’s, then the x3 part can be omitted, similarly with x2 and the random
component z. For example, if there are 3 response variables y1,y2,y3 and 2 independent variables
(xx1, xx2), and none of the y’s has zero inflation, then model y1 | y2 | y3 ∼ xx1 + xx2 | 1 |
xx1 | xx2 implies x1 = (1,xx1,xx2), x2= 1 (intercept), x3 = NULL, x4 = (1,xx1), z = (1,xx2). If y1 has
inflation at zero, y3 has inflation at one, and there is no random effect, model y1 | y2 | y3 ∼ xx1 +
xx2 | xx1 | xx1 implies x1 =(1,xx1,xx2), x2 = (1 ,xx1), x3 = c(1,xx1) for y1, x4 = (1,xx1) for y3.
The details on how to specify the model using formula can be found in the user manual of package
zoib.

Example 1: univariate fixed-effect beta regression

According to the description in betareg, the GasolineYield data was collected by Prater (1956) and
analyzed by Atkinson (1985). The data set contains 32 observations and 6 variables. The dependent
variable is the proportion of crude oil after distillation and fractionation. There is no 0 or 1 inflation in
y. betareg fits a beta regression model with all 32 observations and 2 independent variables: batch
ID (1, . . . , 10) corresponding to 10 different crudes that were subjected to experimentally controlled
distillation conditions, and temp (quantitative, Fahrenheit temperature at at which all gasoline has
vaporized). Both batch and temp are treated as fixed effects.

logit
(

α1
α1 + α2

)
= β0 + β1 · temp + β2 · batch1 + ... + β10 · batch9,

log(α1 + α2) = η.

The R command for fitting the model using betareg is

library(zoib)
library(betareg)
data("GasolineYield", package = "zoib")
GasolineYield$batch <- as.factor(GasolineYield$batch)
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#### betareg
gy <- betareg(yield ~ temp + batch, data = GasolineYield)
summary(gy)$coeff

Fitting the same model in zoib, we have

#### zoib: fixed effect on batch.
d <- GasolineYield
eg1.fixed <-

zoib(yield ~ temp + as.factor(batch)| 1, data = GasolineYield, joint = FALSE,
random = 0, EUID = 1:nrow(d), zero.inflation = FALSE,
one.inflation = FALSE, n.iter = 1050, n.thin = 5, n.burn = 50)

sample1 <- eg.fixed$coeff
# check convergence of the MCMC chains
traceplot(sample1); autocorr.plot(sample2); gelman.diag(sample1)

The procedure took about 25 seconds on a PC with Intel Core-i5 2520M CPU 2.5GHz (2 chains, 1050
iterations, burin-in periods = 5, and thinning period = 5 per chain). The trace plots, the autocorrelation
plots, and the values of the potential scale reduction factors (psrf) (Gelman and Rubin, 1992; Brooks
and Gelman, 1998) suggest the Markov chains mixed well and reached satisfactory convergence
(Appendix Figure A1 and Table A1).

If the 10 batches constitute a random sample of many possible batches and the mean of each batch
is of little interest, we can treat batch as a random variable rather than dummying code batch. The
following model is a mixed-effects model with a random component in the link function of the mean
of the beta distribution.

#### zoib: random effect on batch
eg1.random <- zoib(yield ~ temp | 1 | 1, data = GasolineYield, joint = FALSE,

random = 1, EUID = GasolineYield$batch, zero.inflation = FALSE,
one.inflation = FALSE, n.iter = 10200, n.thin = 50, n.burn = 200)

sample2 <- eg1.random$oripara
summary(sample2); traceplot(sample2); autocorr.plot(sample2); gelman.diag(sample2)

The above procedure took about 42 seconds on a PC with Intel Core-i5 2520M CPU 2.5GHz (2 chains,
10200 iterations, burin-in periods = 50, and thinning period = 50 per chain). The trace plots, the
auto-correlation plots, and the psrf values suggest that the Markov chains mixed well and converged
(Appendix Figure A2 and Table A1).

The inferential results on the parameters from all three analyses (betareg, zoib-fixed, zoib-random)
are depicted in Figure 2, which is generated using the paraplot function.

### posterior inferences from zoib: fixed
summ1 <- summary(sample1); summ1 <- cbind(summ1$stat[, 1], summ1$quant[, c(1, 5)])
### posterior inferences from zoib: random
summ2 <- summary(sample2); summ2 <- cbind(summ2$stat[, 1], summ2$quant[, c(1, 5)])
summ2<- summ2[-4, ]
### inferences from betareg
summ3 <- cbind(c(summ3$mean[, 1], summ3$precision[, 1]), confint(gy))
summ3[12,] <- log(summ3[12, ]) # log-precision
### plot
names <- rownames(summ3); names[1] <- "intercept"; names[12] <- "log(precision)"
rownames(summ1) <- names; rownames(summ3) <- names
rownames(summ2) <- names[c(1, 2, 12)]
paraplot(summ1, summ2, summ3, legpos = c(2, 10), annotate = TRUE,

legtext = c("zoib: fixed", "zoib: random", "betareg"))

Figure 2 suggests minimal difference between the Bayesian and the frequentist approaches in the
inferences of the intercept and regression coefficients in the fixed-effects model. The posterior mean
of η (log sum of the two shape parameters in the beta distribution) is numerically smaller from the
Bayesian approach compared to the MLE of the frequentist approach. The mixed-effects approach
yields similar estimates on η and the regression coefficients as in the fixed effect approaches, but the
point estimate on the intercept is smaller. Appendix Figure A3 also presents the posterior mean of
y plotted against the observed y for the two zoib models, and suggests both zoib models provide
satisfactory goodness-of-fit.
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Figure 2: Inferences of model parameters in Example 1 (posterior mean and 95% posterior interval
from zoib; MLE and 95% CI from betareg).

Example 2: bivariate repeated measures

Example 2 demonstrates how to jointly model multiple [0, 1]-bounded response variables using zoib.
The data set contains two beta variables (yi1, yi2) from 200 independent cases (i = 1, ..., 200). Both
yi1 and yi2 are repeatedly measured at a set of covariate values x = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6). That is,
yi1 = (yi11, yi12, . . . , yi16), and yi2 = (yi21, yi22, . . . , yi26). BiRepeated is a simulated data set from the
following model,

logit

(
αijk,1

αijk,1 + αijk,2

)
= (β0j + ui1) + (β1j + ui2)xijk

log(αijk,1 + αijk,2) = ηj, and (7)

ui = (ui1, ui2) ∼ N(2)(0, Σ),whereΣ = Diag(σ) R Diag(σ)

where i = 1, . . . , 200 and k = 1, . . . , 6, β01 = −1, β11 = 1, β02 = −2, β12 = 2, ρ = 0, and σ2 =
(σ2

1 , σ2
2 ) = (0.2, 0.2). σ1 and σ2 are the marginal standard deviation of the two random variables ui1

and ui2, and R =
(

1 ρ
ρ 1

)
is the correlation matrix. The data is available in R by name BiRepeated

in package zoib. The joint model as given in equation (7) is applied to the data. The priors for the
model parameters are β0j ∼ N(0, 10−3), β1j ∼ N(0, 10−3), ηj ∼ N(0, 10−3), σj ∼ unif(0, 20), and
ρ ∼ unif(−1, 1). The R codes for realizing the above model are

library(zoib)
data("BiRepeated", package = "zoib")
eg2 <- zoib(y1|y2 ~ x|1|x, data = BiRepeated, random = 1, EUID = BiRepeated$id,

zero.inflation = FALSE, one.inflation = FALSE, prior.Sigma = "UN.unif",
n.iter = 7000, n.thin = 25, n.burn = 2000)

post.sample <- eg2$oripara; summary(post.sample)

The above procedure took about 3 hours 55 minutes on a Linux server with 2.4 GHz AMD Opteron
processors (2 chains, 7000 iterations, burin-in periods is 2000, and thinning period is 25 per chain). The
trace plots, the auto-correlation plots, and the psrf values suggest that the Markov chains mixed well
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and converged (Appendix Figures A4 and Table A2).

The Bayesian inferences on β0j, β1j and ηj for j = 1, 2 are given in Table 3. Note the purpose of
Example 2 is to demonstrate how zoib can model the correlated data; so only one simulated data set is
used. The posterior means of β and ηj are nevertheless close to the true parameter values used to the
simulate the data, even with the finite not-so-large sample size (n = 200).

Parameter posterior mean posterior median 2.5% quantile 97.5% quantile

β01 −0.957 −0.958 −1.059 −0.866
β11 0.906 0.903 0.720 1.092
β02 −2.022 −2.020 −2.119 −1.935
β12 2.040 2.040 1.865 2.234
η1 2.505 2.506 2.433 2.582
η2 3.014 3.017 2.926 3.091
σ2

1 0.180 0.179 0.135 0.235
σ2

2 0.334 0.331 0.152 0.530
ρ −0.70 −0.70 −0.84 −0.62

Table 3: Bayesian inferences of the joint ZOIB model parameters in Example 2.

Example 3: clustered zero-inflated beta regression

In this example, zoib is applied to the county-level monthly alcohol use data collected from students
in California from year 2008 to 2010. The data is available in zoib by name AlcoholUse. The data can
be downloaded at http://www.kidsdata.org. AlcoholUse contains the percentage of public school
students in grades 7, 9, and 11 reporting the number of days in which they drank alcohol in the past
30 days by gender (students at the “Non-Traditional" grade level refer to those enrolled in Community
Day Schools or Continuation Education and are not included in this analysis). The following model is
fitted to the data

logit

(
αij,1

αij,1 + αij,2

)
= (β1,0 + ui) + β1xij

log(αij,1 + αij,2) = η

logit(pij) = β2,0 + β2xi j

ui ∼ N(0, σ−2)

where ui is the cluster-level (county-level) random variable (i = 1, . . . , 56) and j indexes the jth case
in cluster i. β1,1 contains the regression coefficients associated with the main effects associated with
gender, grade, and the mid-point of each days bucket on which teenagers drank alcohol, and the
interaction between gender and grade; so does β2,1. σ−2 is the precision of the distribution of random
effect ui. The prior specification of the model parameters are: β1,0 ∼ N(0, 10−3), β2,0 ∼ N(0, 10−3),

β1,k
ind∼ N(0, 10−3) and β2,k

ind∼ N(0, 10−3) for k = 1, . . . , 6, η ∼ N(0, 10−3), and σ ∼ unif(0, 20). The R
codes for realizing the model in zoib are

data("AlcoholUse", package = "zoib")
AlcoholUse$Grade <- as.factor(AlcoholUse$Grade)
eg3 <- zoib(Percentage ~ Grade * Gender + MedDays|1|Grade * Gender + MedDays|1,

data = AlcoholUse, random = 1, EUID = AlcoholUse$County,
zero.inflation = TRUE, one.inflation = FALSE, joint = FALSE,
n.iter = 5000, n.thin = 20, n.burn = 1000)

sample1 <- eg3$coeff
summary(sample1)

The above procedure took about 10 hours 56 minutes on a Linux server with 2.4 GHz AMD Opteron
processors (2 chains, 5000 iterations, burin-in periods is 1000, and thinning period is 20 per chain). The
trace plots, the auto-correlation plots, and the psrf values suggest that the Markov chains mixed well
and reached satisfactory convergence (Appendix Figures A5 and Table A4).

The results from Example 3 are presented in Table 4. The posterior mean difference in the
logit(mean) of the beta distribution between a 9-th grader and a 7-th grader is 0.702 (β1,1), assuming
they are of the same gender, and fall in the same Days Bucket. Similarly, the posterior mean difference
in logit(mean) of the beta distribution between a male and a female students is -0.0503 (β1,3), assuming
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they are equal with regard to other covariates. The posterior mean difference logit(Pr(y = 0) between
a a 9-th grader and a 7-th grader is β2,1 = −0.563; in other words, the ratio in the odds of not drinking
alcohol between the a 7-th grader and a 9-th grader is exp(0.563) = 1.75. The other parameters in β1
and β2 can be interpreted in a similar manner. The posterior mean of the log(sum of the two shape
parameters) η in the beta distribution is 4.389, and the posterior mean of the variance of the random
effect ui is 0.021.

Effect Parameter mean median 2.5% quantile 97.5% quantile

Intercept β1,0 −2.392 −2.392 −2.484 −2.299
Grade 9 β1,1 0.702 0.702 0.609 0.791
Grade 11 β1,2 0.955 0.956 0.869 1.036
Gender M β1,3 −0.053 −0.052 −0.156 0.054
MedDays β1,4 −0.092 −0.092 −0.096 −0.088
Grade 9*Gender M β1,5 −0.123 −0.118 −0.255 0.003
Grade 11*Gender M β1,6 0.053 0.055 -0.087 0.193

intercept β2,0 −3.365 −3.332 −4.158 −2.635
Grade 9 β2,1 −0.563 −0.572 −1.648 0.427
Grade 11 β2,2 −0.874 −0.884 −2.027 0.181
Gender M β2,3 0.465 0.469 -0.382 1.329
MedDays β2,4 0.028 0.028 -0.003 0.062
Grade 9*Gender M β2,5 −0.246 −0.213 −1.628 0.999
Grade 11*Gender M β2,6 −0.664 −0.695 −2.117 1.015

η 4.384 4.385 4.302 4.463
σ2 0.021 0.020 0.011 0.034

Table 4: Posterior inferences (Example 3).

Discussion

We have introduced an R package for obtaining the Bayesian inferences from the beta regression and
zero/one inflated beta regression. We have provided the methodological background behind the
package and demonstrated how to apply the package using both real-life and simulated data. zoib
is more versatile and comprehensive from a modeling perspective compared to other R packages
betareg and Bayesainbetareg on beta regression. First, zoib accommodates boundary inflation at 0
or 1. Second, it models clustered and correlated beta variables by introducing random components
into the linear predictors of the link functions, and users can specify which linear predictors have
a random component. Last but not least, the Bayesian inferential approach provides a convenient
way for obtaining inferences for parameters that can be computationally expensive in the frequentist
approach, such as the marginal means of response variables when there are random effects. For the
regression coefficients in a linear predictor, 4 different priors are offered with options for penalized
regression if needed. DIC criteria can be calculated using existing function from package rjags for
model comparison purposes. Future updates to the zoib package include the development of more
efficient computational algorithms to shorten the computational time in running the MCMC chains,
especially when a zoib model contains a relatively large number of parameters.
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Appendices
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Figure A1: Trace and auto-correlation plots in the zoib-fixed model in Example 1.
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(a) trace plot (b) auto-correlation plot

Figure A2: Trace and auto-correlation plots in the zoib-random model in Example 1.

zoib-fixed zoib-random
Parameter point upper bound (95%) point upper bound (95%)

β1,0 (intercept) 0.997 0.998 1.036 1.037
β1,1 1.001 1.002
β1,2 1.008 1.008
β1,3 1.013 1.040
β1,4 0.998 1.006
β1,5 1.005 1.007
β1,6 1.000 1.014
β1,7 0.999 1.004
β1,8 1.003 1.033
β1,9 1.001 1.015
β1,10 1.007 1.048 1.003 1.017
β20 (temperature) 1.018 1.032 1.002 1.006
σ2 0.997 0.997

Table A1: Potential scale reduction factors of the zoib model parameters in Example 1.
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Figure A3: Posterior mean of Y vs. observed Y in Example 1.
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Figure A4: Example 1, zoib-fixed.
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Parameter point upper bound
(95%)

β0,1 1.083 1.332
β1,1 1.004 1.035
β0,2 1.163 1.582
β1,2 1.008 1.100
σ2

1 0.997 0.997
σ2

2 1.036 1.165

Table A2: Potential scale reduction fac-
tors in Example 2.
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Table A3: Posterior mean of Y vs. observed Y (Example 2).

Parameter β1,0 β1,1 β1,2 β1,3

point 1.018 1.005 1.000 0.997
upper limit 1.092 1.042 1.015 0.999
(95% CI )

parameter β1,4 β1,5 β1,6 η

point 0.997 1.006 0.997 1.068
upper limit 1.000 1.047 0.998 1.279
(95% CI )

parameter β2,0 β2,1 β2,2 β2,3

point 0.998 1.001 0.998 0.998
upper limit 1.000 1.001 0.999 1.004
(95% CI )

parameter β2,4 β2,5 β2,6 σ2

point 0.996 1.012 0.996 1.001
upper limit 0.997 1.012 0.999 1.020
(95% CI )

Table A4: Potential scale reduction fac-
tors in Example 3.
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Table A5: Posterior mean of Y vs. observed Y (Example 2).
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Figure A5: Trace and auto-correlation plots in the zoib-fixed model in Example 1.
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apc: An R Package for Age-Period-Cohort
Analysis
by Bent Nielsen

Abstract The apc package includes functions for age-period-cohort analysis based on the canonical
parametrisation of Kuang et al. (2008a). The package includes functions for organizing the data,
descriptive plots, a deviance table, estimation of (sub-models of) the age-period-cohort model, a plot
for specification testing, plots of estimated parameters, and sub-sample analysis.

Introduction

Age-period-cohort models are extensively used in actuarial sciences, demography, epidemiology and
social sciences. They have an identification problem in that the predictor is defined from time effects
for age, period and cohort, but these time effects cannot be fully recovered from the predictor. The apc
package, see Nielsen (2015a), implements the solution proposed by Kuang et al. (2008a) and Nielsen
(2014), which is to abandon the time effects and reparametrise the predictor in terms of freely varying
parameters. The vector of freely varying parameters is of a lower dimension than the vector of the
original time effects. These freely varying parameters describe the variation of the likelihood function
fully. The intention with the package is to focus on the aspects of the time effect that are identified by
the likelihood.

The age-period-cohort model has three time scales: age, period and cohort. These are linked
through the identity age + cohort = period. The package is concerned with the situation where two
of the time scales are measured in discrete and equidistant time. The third time scale can then be
computed through age + cohort = period. The choice of these two indices vary from application to
application. For instance, the example in this paper is a an age-period array of annual counts of
mesothelioma deaths by age group. The interface of the package is constructed in such a way that the
user does not need to keep track of the coordinate system. Internally, the package uses an age-cohort
coordinate system to exploit that period is a symmetric function of age and cohort.

The statistical model is a generalized linear model with a predictor of the form

µage,cohort = αage + βperiod + γcohort + δ. (1)

The likelihood is a function of the predictor µage,cohort. In turn, the predictor is constructed from time
effects for age, αage, period, βperiod, and cohort, γcohort. If only we could estimate the time effects, we
could learn about the predictor through manipulations of the time effects. This would be done by
treating these as time series: plot them, fit time series models to them, perhaps forecast future values,
and finally combine them to get the predictor. However, the time effects are not fully identifiable from
the predictor so this approach has to be pursued with some care.

The identification problem is that linear trends can be moved between the time effects without
changing the predictor. Indeed, the predictor in (1) satisfies

µage,cohort = (αage + a + d× age) + (βperiod + b− d× period)

+ (γcohort + c + d× cohort) + (δ− a− b− c), (2)

for any choice of a, b, c and d. In other words, knowledge of the predictor from the likelihood is not
enough to pin down the time effects. The problem is discussed, for instance, by Carstensen (2007),
Clayton and Schifflers (1987a,b), Holford (1985), Kuang et al. (2008a), Luo (2013), Nielsen and Nielsen
(2014), O’Brien (2011), and Yang and Land (2013). There appears to be two types of solutions to the
problem: either to introduce four constraints to the time effects or to abandon the time effects and
seek a parsimonious and freely varying parametrisation of the predictor. The apc package follows the
latter approach. With the former approach, the constraints must come from some external argument as
the likelihood carries no information in this respect. An example is the ‘intrinsic estimator’, which is
based on a particular choice of a generalized matrix inverse, see Yang and Land (2013). The constraints
need to be tracked carefully through the analysis to clearify which inferences are driven by data and
which inferences are driven by the constraints; see Nielsen and Nielsen (2014) for an algebraic analysis
both for frequentist and Bayesian settings.

The apc package addresses the identification through the parsimonious parametrization of the
predictor suggested by Kuang et al. (2008a), see also Nielsen (2014). This exploits the fact that the
second differences of the time effects are identified and that the predictor itself is also identifiable.
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As an example, the age second difference is ∆2αage = ∆αage − ∆αage−1, where the first differences are
∆αage = αage − αage−1. The second differences are identifiable from the predictor through

∆2αage = µage,cohort − µage−1,cohort+1 − µage−1,cohort + µage−2,cohort+1. (3)

The double differences are well-known to be identifiable in the age-period-cohort model (1), see for
instance Clayton and Schifflers (1987b). Martínez Miranda et al. (2015) give a log-odds interpretation of
the double differences. If the double differences are all zero, or equivalently, all time effects are linear
then the model reduces to a linear plane. That linear plane is parametrised by the any three elements
of the predictor, µage,cohort, µage† ,cohort† , µage‡ ,cohort‡ say, for which the coordinates form a triangle rather
than a line. Accordingly, Kuang et al. (2008a) suggest to use

ξ = (µage,cohort, µage† ,cohort† , µage‡ ,cohort‡ , . . . , ∆2αage, . . . , ∆2βperiod, . . . , ∆2γcohort, . . . )′ (4)

A dimension reduction of 4 is achieved, since double differencing reduces each set of time effects by
two elements. The parameter is invariant to the identification problem (2) due to (3). To be of any
use it has to be shown how the predictor can be formed from the parsimonious parameter. Double
summation of double differences of the time effects results in the original time effects up to a linear
trend. Thus, for the user of the package it is sufficient to know that predictor can be found from the
parsimonious parameter through a formula of the form

µage,cohort = a linear plane + ∑ ∑
age

∆2αs + ∑ ∑
period

∆2βs + ∑ ∑
cohort

∆2γs. (5)

The formula that is actually used internally in the package is shown in (11). In that parametrisation
the linear plane is a function exclusively of µage,cohort, µage† ,cohort† , µage‡ ,cohort‡ so that linear plane
parameters and double differences are separated. The formula that is used in default plots uses
detrended versions of the double sums of double differences, see (15). This allows the user to focus on
deviations from linearity. The parsimonious predictor is identified since it can be shown that different
values ξ† 6= ξ‡ imply different predictors µ† 6= µ‡, see Kuang et al. (2008a). In the context of an
exponential family ξ is therefore the canonical parameter and the family is regular.

An existing package, Epi, for age-period-cohort analysis is created by Carstensen et al. (2014). It is
based on Carstensen (2007). It has a series of functions for demographic and epidemiological analysis
as well as some functions for age-period-cohort analysis. There are several differences between the
packages apc and Epi. First, apc uses the canonical parametrization of Kuang et al. (2008a), whereas
Epi does not. Second, apc, at present, is concerned with age-period-cohort data in various matrix
formats. These have to be vectorized before fitting the generalized linear model, but this is done
internally, so that the user only has to consider the original matrix format, while Epi takes data in
vectorized form and uses the data frame format. Third, at present, apc cannot handle the problem of
over-lapping cohorts: the people of age 25 in April 2015 will have been born either in 1989 or in 1990.
Conversely those born in 1990 will either be 24 or 25 in April 2015. When data on all three time scales
are available, cells can be sub-divided into two Lexis triangles with non-overlapping cohorts. Epi has
functions for exploiting such information.

The main contributions of the apc are therefore

1. to consider data in matrix format indexed in a number of different ways;

2. to provide specification graphics illustrating the quality of the fit;

3. to estimate the model parametrised in terms of the canonical parameter ξ in (4);

4. to visualize the components of the representation of the predictor µ in (5) as time series;

5. and to do this from a range of sub-models where some of the components of ξ or, correspond-
ingly, of the time effects, are set to zero.

The remainder of the paper will illustrate this. It is envisaged to extend the package with further time
series tools in the future. For reference, a theory of forecasting in the age-period-cohort model is given
in Kuang et al. (2008b) and used in for instance Martínez Miranda et al. (2015).

The apc package

The apc package includes functions for organizing the data, descriptive plots, a deviance table,
estimation of (sub-models of) the age-period-cohort model, a plot for specification testing, plots of
estimated parameters, and sub-sample analysis. These are described in turn.

The example for this analysis is a data set for annual mesothelioma deaths in the UK taken from
Martínez Miranda et al. (2015). It is thought that most mesothelioma deaths are caused by exposure to

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=Epi


CONTRIBUTED RESEARCH ARTICLES 54

30 50 70 90

2
5

1
0

5
0

2
0
0

5
0
0

response

age

s
u
m

s
 o

f 
d
a
ta

1970 1990
1
0
0

2
0
0

5
0
0

1
0
0
0

2
0
0
0 response

period

s
u
m

s
 o

f 
d
a
ta

1880 1920 1960

1
5

1
0

5
0

5
0
0

response

cohort

s
u
m

s
 o

f 
d
a
ta

Data sums by age/period/cohort index

Figure 1: Data sums by age, by period and by cohort.

asbestos. The data set has counts of male deaths by age 25–89 and by 1967–2007. There is no direct
measure for the exposure to asbestos.

Organizing the data

Age-period-cohort data may include doses and responses or just responses. They come in different
types of data arrays. apc allows eight matrix formats arising from the choice of two indices from the age,
period, and cohort time scales, a triangular format for chain-ladder analysis, as well as a generalized
trapezoid format encompassing the other options, see (8). A special data format apc.data.list is
used to keep track of the data format and the time scales. An artificial response-only data set organized
in age-period format can be coded as follows

> library(apc)
> m.data <- matrix(data = seq(12), nrow = 3, ncol = 4)
> data.artificial <- apc.data.list(m.data, "AP", age1 = 25, per1 = 1990, unit = 5)
> data.artificial$response

[,1] [,2] [,3] [,4]
[1,] 1 4 7 10
[2,] 2 5 8 11
[3,] 3 6 9 12

The value returned to the variable data.artificial from apc.data.list is a list with ten elements.
The list includes the response, m.data; a dose which is set to NULL in this example; the data format
"AP"; and information about the real time scales. This is all based on the arguments of the function
apc.data.list. The first argument defines the response data, while the second argument signifies that
the response matrix is rectangular with coordinates in age-period format. The remaining arguments
are optional. In this case information about the times scales have been given. This shows that the
real time scales are 25, 30, 35 for age and 1990, 1995, 2000, 2005 for period, which in turn implies that
the cohorts are 1955, 1960, · · · , 1980. At this point data.artificial$response simply stores the input
matrix. We can think of it as varying in a simple age-period coordinate system. From a practical
viewpoint this is not particularly helpful. Therefore apc will exploit the optional information on the
real time scales when reporting estimators in the subsequent analysis.

A variety of data from the literature are pre-coded including the asbestos data from Martínez Mi-
randa et al. (2015). The available information for that data set is exactly as in the previous example: a
data matrix for responses in period-age format, though much larger, along with information about the
time scales. It can be called through

> data.asbestos <- data.asbestos()
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Figure 2: Sparsity plot.

Descriptive plots

The apc package has a variety of plots for descriptive analysis. These include plots of sums of the data
by age, period, or cohort to get an idea of the aggregate development; plots of the data matrix against
two of the three time indices to spot patterns in the data; and sparsity plots indicating if some entries
in the data matrix are very small. For instance, there are very few mesothelioma deaths for young
people. These plots can be called and manipulated individually or they can be called with a single
command, for example:

> apc.plot.data.all(data.asbestos)

Figure 1 shows the plots of data sums. The responses are seen to be sparse for young people and for
old and recent cohorts. The sparsity plot in Figure 2 illustrates this in more detail. It shows with black
and grey entries in the data matrix with zero or one. The data are very sparse for young age groups
and for old cohorts.

Deviance analysis

At this point the distribution is chosen. Currently four distributions are implemented: A Poisson
response model, a Poisson dose-response model, a logistic dose-response model, and a Gaussian
model giving least squares regression. The sampling theory for the two Poisson models is described in
Martínez Miranda et al. (2015) and Nielsen (2014), respectively.

The age-period-cohort model has a variety of interesting sub-models. These arise by setting some
of the coordinates of the canonical parameter ξ to zero. Nielsen (2014) gives a detailed discussion of
the interpretation of the sub-models. An age-cohort model "AC" arises by setting the period double-
differences to zero, so ∆2β j = 0 for j = 1, . . . , J. The drift models of Clayton and Schifflers (1987a,b)
arise by setting two sets of double-differences to zero. An age-drift model "Ad" arises by setting the
double differences ∆2β j and ∆2γk to zero. Thus, it is a sub-model of "AC". An age model code"A"
arises by by setting ∆2β j , ∆2γk, and the cohort slope to zero. Thus, it is a sub-model of "Ad". A trend
model "t" is the linear plane where all double differences ∆2αi, ∆2β j and ∆2γk are set to zero. Thus,
it is a sub-model of "Ad", but not nested in "A" as it has a cohort slope. An age trend model arises
by setting all double differences ∆2αi, ∆2β j and ∆2γk as well as the cohort slope to zero. Thus it is a
sub-model of both "t" and "Ad". Finally, an intercept model is denoted "1". A deviance table gives an
overview of the relative performance of the different models. For the mesothelioma data we get the
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following output.

> apc.fit.table(data.asbestos, "poisson.response")
-2logL df.residual prob(>chi_sq) LR.vs.APC df.vs.APC prob(>chi_sq) aic

APC 2384.923 2457 0.848 NA NA NA 10805.81
AP 5336.034 2560 0.000 2951.111 103 0.000 13550.92
AC 2441.728 2496 0.778 56.805 39 0.033 10784.61
PC 8265.746 2520 0.000 5880.823 63 0.000 16560.63
Ad 5912.422 2599 0.000 3527.499 142 0.000 14049.31
Pd 23461.384 2623 0.000 21076.461 166 0.000 31550.27
Cd 8494.658 2559 0.000 6109.735 102 0.000 16711.54
A 21948.036 2600 0.000 19563.113 143 0.000 30082.92
P 34391.044 2624 0.000 32006.121 167 0.000 42477.93
C 28415.983 2560 0.000 26031.060 103 0.000 36630.87
t 24037.772 2662 0.000 21652.849 205 0.000 32048.66
tA 40073.386 2663 0.000 37688.463 206 0.000 48082.27
tP 34967.432 2663 0.000 32582.509 206 0.000 42976.32
tC 50558.531 2663 0.000 48173.607 206 0.000 58567.42
1 51003.046 2664 0.000 48618.123 207 0.000 59009.93

The first column in the table has the heading -2logL, noting that the deviance for Poisson and
logistic models can be interpreted as minus twice the log likelihood for the model normalized to be
zero in the saturated model. The deviance table indicates that the reduction worth considering is an
age-cohort model, which is denoted "AC". Moreover, the likelihood value and p-value for the "APC"
model indicate that the quality of the unrestricted model is quite good, with a deviance smaller than
the degrees of freedom.

Estimation of a particular model

We can look a bit closer at a particular sub-model. For instance, in the case of the asbestos data the
unrestricted age-period-cohort model is estimated as follows. The estimation in apc is based on the
representation (11). Along with the estimates we get standard errors, which are discussed below. The
canonical parameter has 208 parameters, so only the first 8 estimates are reported here.

> fit.apc<- apc.fit.model(data.asbestos, "poisson.response", "APC")
> fit.apc$coefficients.canonical[1:8, ]

Estimate Std. Error z value Pr(>|z|)
level 1.041126756 NA NA NA
age slope 0.379386996 0.1115535 3.400941274 0.0006715425
cohort slope 0.358297074 0.1125026 3.184789061 0.0014485956
DD_age_27 1.029446394 1.6467618 0.625133761 0.5318832712
DD_age_28 0.065309039 1.4311381 0.045634337 0.9636017004
DD_age_29 -1.097279478 1.1180554 -0.981417831 0.3263867366
DD_age_30 0.414467808 1.1902557 0.348217448 0.7276768856
DD_age_31 0.003217972 1.2247555 0.002627441 0.9979036081

Note that the names for the parameters utilize the information about the real time scales coded through
apc.data.list().

For this data set exposure or dose is not available. We therefore apply the multinomial sampling
scheme used in Martínez Miranda et al. (2015). With this approach we condition on the overall level of
the data. The asymptotic distribution approximations will therefore be good in a situation where the
dimension of the data is fixed and the total number of responses is large. Thus, in this response model
we do not get standard errors for the level.

The level and the age and period slope define the linear plane that would arise if all double
differences were set to zero. The interpretation derives from the general representation (11). The level
is the estimate of the predictor µ57,1967,1910, which is the predictor of the middle age group for the
lowest period. The slopes have more interesting interpretations. The age (cohort) slope shows how
much the predictor changes when increasing age (cohort) by one, while keeping cohort (age) fixed.
Thus, the age and cohort slopes estimate

µ58,1968,1910 − µ57,1967,1910, µ57,1968,1911 − µ57,1967,1910, (6)

where any cell could be taken as a reference point. While the level and slopes have an explicit
interpretation it is perhaps easier to interpret them in terms of a plot. Plots of the estimates are
discussed below. While the package parametrises the linear plane in terms of the age and cohort slopes
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Figure 3: Probability transform plot of age-period-cohort fit to asbestos data.

other choices could be made, such as age and period slopes. The age and cohort slopes are chosen due
to the age and cohort symmetry of the model.

A probability transform plot for the fit

The quality of the fit can be illustrated using a probability transform plot. Using the estimates it plots
probability transforms of responses given the fitted value. In other words: are the actual observations
probable given the estimated model? The plot is given in the original coordinate system. Colours
and symbols are used to indicate whether responses are central to the fitted distribution or in the tails
of the fitted distribution. The intention of the plot is to reveal if there are particularly many extreme
observations given the fit and if they form a particular pattern.

For the asbestos data the probability transform plot is coded as:

> apc.plot.fit.pt(fit.apc)

Figure 3 shows the result. For instance, all red point triangles indicates observations in the extreme 1
% of the distribution. Those pointing down indicate the lower end of the distribution. The number
of red triangles is not particular large given the number of observations, n = 2665, but, they form a
pattern among the most recent cohorts. Therefore, a sub-sample analysis is performed below.

Plots of the estimates

The estimates can be plotted using a single command. This command will automatically pick up
information about which sub-model and adjust accordingly, based on the analysis in Nielsen (2014).
There are two types of plots, which are illustrated using a sequence of three plots. Details follow.

1. Figure 4. Plot of type "sum.sum". This is illustrates the canonical parameter and the representa-
tion (11), but it is possibly the less useful choice in practical work.

2. Figure 5. Plot of type "detrend". This is illustrates the representation (15). It is the default
choice.

3. Figure 6. Plot of type "detrend" for a sub-sample. The above plots appear very messy, in part
because of the sparsity. This evidence leads to a sub-sample, for which the estimates look much
cleaner.
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Figure 4: Plots of the fitted canonical parameters illustrating representation (11).

Plot of type "sum.sum". Figure 4 is generated by:

> apc.plot.fit(fit.apc, type = "sum.sum")

It shows the canonical parameter estimates and illustrates the representation (11).

Figure 4 (a)–(c) shows the estimated second difference parameters ∆2αi, ∆2β j, ∆2γk. The estimates
are plotted with pointwise confidence bands centered around zero. The age double differences are
noisy for young ages while the cohort double differences are noisy for young and old cohorts. This is
due to the sparsity of observations for those age and cohort groups as shown in Figure 2. This calls for
a sub-sample analysis, which is described below.

The next row of panels in Figure 4 illustrates the estimated level and the slopes (6). Panel (e) shows
the estimated level of 1.04. No confidence bands are shown due to the multinomial sampling scheme.
Panels (d), (f) show the age and cohort slopes anchored at age 57 and cohort 1910 as discussed above.

Figure 4(g)–(i) shows double sums of double difference based on the representation (11). In each
plot two values of the double sums are set to zero. In other words, the degrees of freedom, that is the
number of non-zero values, in these plots are exactly the same as for the double differences. For exact
values of the double sums see the last section of the paper.

The sum of the information in Figure 4(d)–(i) gives the linear predictor of the model. That, is for
someone born in 1920 and dying at age 70 in 1990, the predictor is the sum of the linear age trend in
(d) evaluated at 70, the level in (e), the linear cohort trend in (f) evaluated at 1920, the age effect in (g)
evaluated at 70, the period effect in (h) evaluated at 1990, and the cohort effect in (i) evaluated at 1920.

The plots have a messy appearance. There are several reasons. First, double sums of double
differences are only identified up to arbitrary linear trends. It can be difficult to abstract from that
arbitrary linear trend with these plots. In particular the period effect in (h) has a strong linear trend.
It is hard to discern what the variation around that linear trend could be. We address this in the
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Figure 5: Plots of the fitted values using the detrended representation (15).

sub-sample analysis in connection with Figure 5. Second, the data are sparse for young age groups and
for young and old cohorts. This shows up in panels (a),(c),(g),(i). We address this in the sub-sample
analysis in connection with Figure 6.

Plot of type "detrend". Figure 5 is generated by:

> apc.plot.fit(fit.apc)

This plot illustrates the detrended representation (15). Figure 5(a)–(c) show exactly the same double
differences as before.

The level, slopes and double sums in Figure 5(d)–(i) are now changed. The idea is to give a good
visual impression of variation over and above a linear trend while preserving the degrees of freedom
in panels (a)–(c). In this way Figure 5(g)–(i) show double sums of double differences detrended so
as to start and end in zero. The level and slopes in Figure 5(d)–(f) are then changed according to
representation (15). The interpretation is as before: The linear predictor for someone born in 1920
and dying at age 70 in 1990 is the sum of the linear age trend in (d) evaluated at 70, the level in (e),
the linear cohort trend in (f) evaluated at 1920, the detrended age effect in (g) evaluated at 70, the
detrended period effect in (h) evaluated at 1990, and the detrended cohort effect in (i) evaluated at
1920.

There are several noteworthy features of the detrended plots. The detrended double sums in
Figure 5(g)–(i) fill the plot area better than those in Figure 4(g)–(i). Visually, it is easier to abstract from
the arbitrary linear trend and focus on deviation from the linear trend. A possible drawback of the
detrended plot is that age-period-cohort models can have perfect fit in some corners of the data array.
For an age-period array, the very first and last cohort double differences will therefore be based on one
data entry each. When looking at the detrended double sums those double differences are, however,
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Figure 6: Plots of the fitted values for sub-sample.

combined with double sums of all the other double differences which are better determined.

The detrended age double sums in Figure 5(g) are broadly similar to those in Figure 4(g) apart
from a lift in the scale and a slight change of slope. The plot indicates a near concave deviation from
linearity after age 35. The development over the range 25-35 could be driven by the sparsity of the
data in that region. We return to this point in the sub-sample analysis.

The detrended period double sums in Figure 5(h) have a very different appearance from those in
Figure 4(h). The appearance is now seen to be a ragged concave shape. The first period stands out.
Abstracting from that, the plot looks very linear. We return to this point in the sub-sample analysis.

The detrended cohort double sums in Figure 5(h) are just as messed up in appearance as those
in Figure 4(h). The confidence bands have dropped off the plot and a warning is given. Again, the
sub-sample analysis will address this point.

Plot of type "detrend" for a sub-sample. Figure 6 shows the result of a sub-sample analysis.

The asbestos data is sparse for low ages and for old and young cohorts. A recursive analysis
can be used to check how sensitive the above analysis is in this respect. The idea is to cut parts of
observations away and redo the analysis. This can be done through the command:

> data.asbestos.subset <- apc.data.list.subset(data.asbestos, 10, 0, 0, 0, 3, 16)

which cuts the lower 10 age groups, the lower 3 cohort groups and the upper 16 groups. The subset
of the data is no longer a rectangle in the period-age coordinate system, but rather a rectangle with
some corners cut off. This is a generalized trapezoid, see (8) for details. The above analysis can now
be redone. The deviance table, which is not reported, gives approximately the same information as
before, with only weak support for the "AC" sub-model (p = 4%).

Prompted by the jump in the period effect in Figure 5(h) we can go one step further and drop the
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data for the first period, 1967. It is possible that the data collection scheme was slightly different the
first year. This is also consistent with Tan et al. (2010). We achieve this with only a small modification
of the previous code

> data.asbestos.subset <- apc.data.list.subset(data.asbestos, 10, 0, 1, 0, 3, 16)
> fit.apc.subset <- apc.fit.model(data.asbestos, "poisson.response", "APC")
> apc.plot.fit(fit.apc.subset)

The deviance table, which is not reported, now gives stronger support for the "AC" sub-model (p =
12%).

Figure 6 shows plots of the estimates. The difference relative to Figure 5 is that the noise from
the youngest age groups, the first period group and the youngest and oldest cohorts group has been
eliminated. Remarkably, the estimates for the remaining age, period and cohort groups are very
similar. This is most clear in the plot of ∆2β in panels (b) of Figure 5,6, which are nearly identical. The
plots of ∆2α and ∆2γ in panels (a), (c) are also very similar, although this is masked by the difference
in scales. For a good empirical model the predictors for the sub-sample should be the same in the full
sample and in the sub-sample. Since the double differences are identifiable from the predictors, the
same should apply to them.

The double sums of double differences in panels (g)–(i) and the consequent level and linear slopes
in (d)–(f) are changed. They depend on the normalisation, which depends on the choice of sample. For
the sub-sample, we now see a concave shape in the double sums for age and cohort. Since the sums
are pinned down to be zero at both ends this is very visible. This is quite common in cancer studies.
Nielsen (2014) argues that this is consistent with double differences that increase from a negative value
and sub log linear age effects.

It is worth noting that the sub-sample analysis is used in two ways here. First, it is used to trim
off noise from sparse parts of the data set. Secondly, it is used to show that estimates do not depend
very much on the choice of data array. Martínez Miranda et al. (2015) are concerned with forecasting
future mortality and use the sub-sample analysis to show that forecasts are robust to the choice of data
array. However, at present forecast methods are not implemented in apc. For an identification theory
of forecasting see Kuang et al. (2008b). Recursive sub-sample graphs are very common in time series
econometrics, see Hendry and Nielsen (2007, §13.4) and could, with advantage, be developed further.

Some details on the representation

Internally apc uses a representation developed in Nielsen (2014) that generalises the representation
(5) from Kuang et al. (2008a). An overview of the representation is given along with some notes on
the level and slope estimates in the mesothelioma example as well as on the ad hoc identification of
double sums of double differences and the application to the mesothelioma data.

The representation

The package can handle data arrays that are generalized trapezoids. To illustrate this, while keeping a
notation that is consistent with Nielsen (2014) the age-period-cohort model (1) is now written as

µik = αi + β j + γk + δ, (7)

where i is age, j is period and k is cohort, so that i + k = j + 1. The generalized trapezoids are arrays
of the form

I = {i, k : 1 ≤ i ≤ I, 1 ≤ k ≤ K, L + 1 ≤ j ≤ L + J}, (8)

where I, J and K are the numbers of age, period and cohort indices, while L + 1 is the lower period
index. An age-cohort rectangular array arises when L = 0 and J = I + K− 1. A reserving triangle is a
triangular age-cohort array where I = J = K, L = 0. A period-age rectangular array is an age-cohort
trapezoid where L = I− 1 and K = I + J− 1. The above sub-sample analysis is based on a rectangular
age-cohort array with two corners chopped off.

It is convenient to choose a representation of the model that is symmetric in age and cohort. Nielsen
(2014) derives such a representation. The level is anchored in the middle of the first diagonal of odd
length. Thus, define U = integer{(L + 3)/2}. For a period-age array where L = I − 1 this reduces to
U = integer(I + 2)/2. If I is odd the anchoring point will be the middle age group (I + 1)/2 for the
first period. If I is even the anchoring point will be the age group I/2 + 1 for the second period. The
age and cohort slopes are then define as the one-step slopes in age and cohort directions from that
point. The canonical parameter is then chosen as

ξ = (ν0, νa, νc, ∆2α3, . . . , ∆2αI , ∆2βL+2, . . . , ∆2βL+J , ∆2γ3, . . . , ∆2γK)
′, (9)
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where

ν0 = µUU , νa = (i−U)(µU+1,U − µUU), νc = (k−U)(µU,U+1 − µUU). (10)

It can then be shown that the predictor has the representation

µik = ν0 + νa + νc + Ai + Bj + Ck, (11)

where

Ai = 1(i<U)

U+1

∑
t=i+2

U+1

∑
s=t

∆2αs + 1(i>U+1)

i

∑
t=U+2

t

∑
s=U+2

∆2αs (12)

Bj = 1(L odd & j=2U−2)∆
2β2U + 1(j>2U)

j

∑
t=2U+1

t

∑
s=2U+1

∆2βs (13)

Ck = 1(k<U)

U+1

∑
t=k+2

U+1

∑
s=t

∆2γs + 1(k>U+1)

k

∑
t=U+2

t

∑
s=U+2

∆2γs (14)

Estimates for the time effects Ai, Bj, Ck can be found by the code

> id.apc <- apc.identify(fit.apc)
> id.apc$coefficients.ssdd

The canonical parameter (9) and the predictor (11) can be visualized through the command

> apc.plot.fit(fit.apc, "sum.sum")

The interpretation is similar to that given in the discussion of Figure 5. The package includes a vignette,
Nielsen (2015b), showing how the parameters Ai, Bj, Ck are computed from the canonical parameter.

The representation (11) has the advantage that it is symmetric in age and cohort, reducing to
that of Kuang et al. (2008a) for age-cohort data arrays. There is some separation between the linear
plane parameters and the non-linear parameters. Indeed, the transformation from (9) to (11) does not
mix the two. The choice of parametrisation is primarily for internal uses and will usually not be of
importance to the user. It should be noted that any bijective transformation of ξ could be used as the
parsimonious parameter. If the transformation is linear, the transformed parameter will also be the
canonical parameter in an exponential family context. Some times non-linear transformations of the
parameter are preferred. An example is the chain ladder model, which is an age-cohort model for an
age-cohort triangle. This is often parametrised in terms of the development factors, see Kuang et al.
(2009) for a discussion.

The detrended representation

The default plot of the parameters uses a detrended version of the parameters Ai, Bj, Ck. To be specific,
it uses the representation

µik = νdetrend
0 + (i− 1)νdetrend

a + (k− 1)νdetrend
c + Adetrend

i + Bdetrend
j + Cdetrend

k , (15)

where

Adetrend
i = Ai − A1 −

i− 1
I − 1

(AI − A1) (16)

Bdetrend
j = Bj − B1 −

j− L− 1
J − 1

(BL+J − BL+1) (17)

Cdetrend
k = Ck − C1 −

k− 1
K− 1

(CK − C1), (18)

which all start and end in zero. Consequently, it must hold that

νdetrend
0 = ν0 − (U − 1)(νa + νc)− A1 − BJ+1 − C1 −

L
J − 1

(BL+J − BL+1), (19)

νdetrend
a = νa +

1
I − 1

(AI − A1) +
1

J − 1
(BJ+L − BJ+1), (20)

νdetrend
c = νc +

1
K− 1

(CK − C1) +
1

J − 1
(BJ+L − BJ+1). (21)

The parameters νdetrend
0 , νdetrend

a , νdetrend
c , Adetrend

i , Bdetrend
j , Cdetrend

k can be found by the code
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> fit.apc$coefficients.detrend

They are visualized in Figures 5. In particular, the plotted level and slopes are those derived in (19)–
(21). The vignette Nielsen (2015b) shows how to check the transformation from the representation (11)
to (15).

The level and slope estimates for the mesothelioma data

Recall that the canonical parameter estimates for the mesothelioma data are available through:

> fit.apc$coefficients.canonical[1:5, ]
Estimate Std. Error z value Pr(>|z|)

level 1.041126756 NA NA NA
age slope 0.379386996 0.1115535 3.400941274 0.0006715425
cohort slope 0.358297074 0.1125026 3.184789061 0.0014485956
DD_age_27 1.029446394 1.6467618 0.625133761 0.5318832712
DD_age_28 0.065309039 1.4311381 0.045634337 0.9636017004

The level estimate for the mesothelioma arises as follows. The data is organised in an period-
age array with I = 65 age groups and J = 41 cohort groups. Thus, L = I − 1 = 64 and U =
integer{(L + 3)/2} = integer(67/2) = 33. The anchoring point for the level is therefore in the age-
cohort coordinate system µ33,33, or, in an period-age coordinates µ1,33. The corresponding, real time
period-age coordinates are µ1967,57. To check this predictor estimates the level, run the following code,
which organises the linear predictor for the vectorized data as a matrix in the original format.

> # create matrix of same dimension as response matrix
> m.linear.predictor <- data.asbestos$response
> m.linear.predictor[fit.apc$index.data] <- fit.apc$linear.predictor
> m.linear.predictor[1,33]
[1] 1.041127

For comparison, there are 5 observed deaths of age 57 in 1967, which is not far from exp(µ̂1967,57) = 2.8.

The slope estimates arise as follows. The age and cohort slopes are now, in age-cohort coordinates,
µ34,33 − µ33,33 and µ33,34 − µ33,33, or, in period-age coordinates, µ2,34 − µ1,33 and µ2,33 − µ1,33. The
estimates are

> m.linear.predictor[2,34]-m.linear.predictor[1,33]
[1] 0.379387
> m.linear.predictor[2,33]-m.linear.predictor[1,33]
[1] 0.3582971

The estimates of the double sums appearing in (11) can be computed by as follows.

> id.apc$coefficients.ssdd[c(35:38, 69:71, 141:144), ]
Estimate Std. Error z value Pr(>|z|)

SS_DD_age_56 -0.02995345 0.09120714 -0.3284113 0.7426007
SS_DD_age_57 0.00000000 NA NA NA
SS_DD_age_58 0.00000000 NA NA NA
SS_DD_age_59 0.09970809 0.08965228 1.1121646 0.2660674
SS_DD_period_1967 0.00000000 NA NA NA
SS_DD_period_1968 0.00000000 NA NA NA
SS_DD_period_1969 -0.33556503 0.21566380 -1.5559636 0.1197167
SS_DD_cohort_1909 -0.15147783 0.12248429 -1.2367124 0.2161939
SS_DD_cohort_1910 0.00000000 NA NA NA
SS_DD_cohort_1911 0.00000000 NA NA NA
SS_DD_cohort_1912 0.02337873 0.12074650 0.1936183 0.8464748

Summary

This article describes the apc package for age-period-cohort modelling. It implements the canonical
parametrisation of Kuang et al. (2008a). The package includes functions for organizing the data, a
descriptive plot, a deviance table, estimation of sub-models of the age-period-cohort model, a plot for
specification testing, plots of estimated parameters, and sub-sample analysis.
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QuantifQuantile: An R Package for
Performing Quantile Regression Through
Optimal Quantization
by Isabelle Charlier, Davy Paindaveine and Jérôme Saracco

Abstract In quantile regression, various quantiles of a response variable Y are modelled as func-
tions of covariates (rather than its mean). An important application is the construction of reference
curves/surfaces and conditional prediction intervals for Y. Recently, a nonparametric quantile regres-
sion method based on the concept of optimal quantization was proposed. This method competes very
well with k-nearest neighbor, kernel, and spline methods. In this paper, we describe an R package,
called QuantifQuantile, that allows to perform quantization-based quantile regression. We describe
the various functions of the package and provide examples.

Introduction

In numerous applications, quantile regression is used to evaluate the impact of a d-dimensional
covariate X on a (scalar) response variable Y. Quantile regression is an interesting alternative to
standard regression whenever the conditional mean does not provide a satisfactory picture of the
conditional distribution. Denoting by F(·|x) the conditional distribution of Y given X = x, the
conditional quantile functions

x 7→ qα(x) = inf {y ∈ R : F(y|x) ≥ α} , α ∈ (0, 1), (1)

indeed always yield a complete description of the conditional distribution. For our purposes, it is
useful to recall that the conditional quantiles in (1) can be equivalently defined as

qα(x) = arg min
a∈R

E[ρα(Y− a)|X = x], (2)

where ρα(z) = αzI[z≥0] − (1− α)zI[z<0] is the so-called check function.

For fixed α, the quantile functions x 7→ qα(x) provide reference curves (when d = 1), one for each
value of α. For fixed x, they provide conditional prediction intervals of the form Iα = [qα(x), q1−α(x)]
(α < 1/2). Such reference curves and prediction intervals are widely used, e.g. in economics, ecology,
or lifetime analysis. In medicine, they are used to provide reference growth curves for children’s
height and weight given their age.

Many approaches have been developed to estimate conditional quantiles. After the seminal
paper of Koenker and Bassett (1978) that introduced linear quantile regression, much effort has been
made to consider nonparametric quantile regression. The most classical procedures in this vein are
the nearest neighbor estimators (Bhattacharya and Gangopadhyay, 1990), the (kernel) local linear
estimators (Yu and Jones, 1998) or the spline-based estimators (Koenker et al., 1994; Koenker and
Mizera, 2004). For related work, we also refer to, e.g. Fan et al. (1994), Gannoun et al. (2002), Muggeo
et al. (2013) and Yu et al. (2003). There also exists a wide variety of R functions/packages dedicated to
the estimation of conditional quantiles. Among them, let us cite the functions rqss (only for d ≤ 2) and
gcrq (only for d = 1) from the packages quantreg (Koenker, 2015) and quantregGrowth (Muggeo,
2015), respectively.

Recently, Charlier et al. (2015a) proposed a nonparametric quantile regression method based on the
concept of optimal quantization. Optimal quantization replaces the (typically continuous) covariate X
with a discretized version X̃N obtained by projecting X on a collection of N points (these N points,
that form the quantization grid, are chosen to minimize the Lp-norm of X− X̃N ; see below). As shown
in Charlier et al. (2015b), the resulting conditional quantile estimators compete very well with their
classical competitors.

The goal of this paper is to describe an R package, called QuantifQuantile (Charlier et al., 2015c),
that allows to perform quantization-based quantile regression. This includes the data-driven selection
of the grid size N (that plays the role of a tuning parameter), the construction of the corresponding
quantization grid, the computation of the resulting sample conditional quantiles, as well as (for d ≤ 2)
their graphical representation.

The paper is organized as follows. The first section briefly recalls the construction of quantization-
based quantile regression introduced in Charlier et al. (2015a,b) and explains the various steps needed
to obtain the resulting estimators. The second section lists the main functions of QuantifQuantile and
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describes their inputs and outputs. Finally, the third section provides several examples that illustrate
the use of the various functions. We conclude the paper by comparing our method with R alternatives
on a real data set. An illustration of the function computing optimal quantization grids is given in
the Appendix, which can be of independent interest in numerical probability, finance or numerical
integration where quantization is extensively used (Pagès, 1998; Pagès et al., 2004).

Quantile regression through quantization

As mentioned above, the R package we describe in this paper implements the Charlier et al. (2015a,b)
quantization-based methodology to perform nonparametric quantile regression. This section describes
this methodology.

Approximating population conditional quantiles through quantization

Let γN ∈ (Rd)N be a grid of size N, that is, a collection of N points in Rd. For any x ∈ Rd, we will
denote by x̃γN

= ProjγN (x) the projection of x onto this grid, that is, the point of γN that is closest to x
(absolute continuity assumption makes ties unimportant in the sequel). This allows to approximate
the d-dimensional covariate X by its quantized version X̃γN

.

Obviously, the choice of the grid has a significant impact on the quality of this approximation.
Under the assumption that ‖X‖p := E[|X|p]1/p < ∞ (throughout, | · | denotes the Euclidean norm),
optimal quantization selects the grid γN that minimizes the Lp-quantization error ‖X− X̃γN‖p. Such
an optimal grid exists under the assumption that the distribution PX of X does not charge any
hyperplane, i.e. under the assumption that PX [H] = 0 for any hyperplane H (Pagès, 1998). In practice,
an optimal grid is constructed using a stochastic gradient algorithm (see the following section). For more
details on quantization, the reader may refer to Pagès (1998) and Graf and Luschgy (2000).

Based on optimal quantization of X, we can approximate the conditional quantile qα(x) in (2) by

q̃N
α (x) := arg min

a∈R
E
[
ρα(Y− a)|X̃N = x̃N], (3)

where X̃N (resp., x̃N) denotes the projection of X (resp., x) onto an optimal grid. It is shown in Charlier
et al. (2015a) that under mild assumptions,1 q̃N

α (x) converges to qα(x) as N → ∞, uniformly in x.

Obtaining an optimal N-grid

As we will see below, whenever independent copies (X′1, Y1)
′, . . . , (X′n, Yn)′ of (X′, Y)′ are available,

the first step to obtain a sample version of (3) is to compute an optimal N-grid (we assume here that
N is fixed). As already mentioned, this can be done through a stochastic gradient algorithm. This
algorithm, called Competitive Learning Vector Quantization (CLVQ) when p = 2, is an iterative procedure
that operates as follows :

• First, an initial grid – γ̂N,0, say – is chosen by sampling randomly without replacement among
the Xi’s.

• Second, n iterations are performed (one for each observation available). The grid γ̂N,t =

(γ̂N,t
1 , . . . , γ̂N,t

N ) at step t is obtained through

γ̂N,t
i =

{
γ̂N,t−1

i − δt|γ̂N,t−1
i − Xt|p−1 γ̂N,t−1

i −Xt

|γ̂N,t−1
i −Xt |

if Projγ̂N,t−1 (Xt) = γ̂N,t−1
i ,

γ̂N,t−1
i otherwise,

where (δt), t ∈N0, is a deterministic sequence in (0, 1) such that ∑t δt = ∞ and ∑t δ2
t < ∞. At

the tth iteration, only one point of the grid moves, namely the one that is closest to Xt.

The optimal grid provided by this algorithm is then γ̂N,n.

Estimating conditional quantiles

Assume now that a sample (X′1, Y1)
′, . . . , (X′n, Yn)′ as above is indeed available. The sample analog

of (3) is then defined as follows :
1Our method actually requires assumptions on the link function between Y and X and on the error term of the

model. These assumptions in particular guarantee that, for any x, the conditional distribution of Y given X = x is
absolutely continuous; we refer to Charlier et al. (2015a) for details.
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(S1) First, we compute the optimal grid γ̂N,n through the stochastic gradient algorithm just described,
and we write X̂N

i = Projγ̂N,n (Xi), i = 1, . . . , n.

(S2) Then, the conditional quantiles are estimated by

q̂N,n
α (x) = arg min

a∈R

n

∑
i=1

ρα(Yi − a)I[X̂N
i =x̂N ], (4)

where x̂N = Projγ̂N,n (x). In practice, q̂N,n
α (x) is simply evaluated as the sample α-quantile of the

Yi’s for which X̂N
i = x̂N .

It is shown in Charlier et al. (2015a) that under mild assumptions, q̂N,n
α (x), for any fixed N and x,

converges in probability to q̃N
α (x) as n→ ∞, provided that quantization is based on p = 2.

When the sample size n is small to moderate (n ≤ 300, say), the estimated reference curves x 7→
q̂N,n

α (x) typically are not smooth. To improve on this, Charlier et al. (2015a,b) introduced the following
bootstrapped version of the estimator in (4). For some positive integer B, generate B samples of size n
from the original sample {(X′i , Yi)

′}i=1,...,n with replacement. From each of these bootstrap samples,
the stochastic gradient algorithm provides an “optimal” grid, using these bootstrapped samples to
perform the iterations. The bootstrapped estimator of conditional quantile is then

q̄N,n
α,B (x) =

1
B

B

∑
b=1

q̂(b)α (x), (5)

where q̂(b)α (x) = q̂(b),N,n
α (x) denotes the estimator in (4) computed on the basis of the bth optimal grid.

We stress that, when computing q̂(b)α (x), the original sample is used in (S2); the bootstrapped samples
are only used to provide the B different grids. As shown in Charlier et al. (2015a,b), the bootstrapped
reference curves are much smoother than the original ones. Of course, B should be chosen large
enough to make the bootstrap useful, but also small enough to keep the computational burden under
control. For d = 1, we usually choose B = 50.

Selecting the grid size N

Both for the original estimators q̂N,n
α (x) and for their bootstrapped versions q̄N,n

α,B (x), an appropriate
value of N should be identified. If N is too small, then reference curves will have a large bias, while if
N is too large, then they will show much variability. This leads to the usual bias/variance trade-off
that is to be achieved when selecting the value of a smoothing parameter in nonparametric statistics.

Charlier et al. (2015b) proposed the following data-driven method to choose N. Let {x1, . . . , xJ}
be a set of x-values at which we want to estimate qα(x) (the xj’s are for instance chosen equispaced
on the support of X) and let N be a finite collection of N-values (this represents the values of N one
allows for and should typically be chosen according to the sample size n). Ideally, we would like to
select the optimal value of N as

N¯
α;opt = arg min

N∈N
ISE¯

α(N), with ISE¯
α(N) =

1
J

J

∑
j=1

(
q̄N,n

α,B (xj)− qα(xj)
)2. (6)

This, however, is infeasible, since the population quantiles qα(xj) are unknown. This is why we draw
B̃ extra bootstrap samples (still of size n) from the original sample and consider

N̂¯
α;opt = arg min

N∈N
ÎSE

¯
α(N), with ÎSE

¯
α(N) =

1
J

J

∑
j=1

(
1
B̃

B̃

∑
b̃=1

(
q̄N,n

α,B (xj)− q̂(b̃)α (xj)
)2
)

, (7)

where q̂(b̃)α (xj), for b̃ = 1 . . . , B̃, makes use of this b̃th new bootstrap sample; more precisely, the
bootstrap sample is still only used to perform the iterations of the algorithm, whereas the original
sample is used in both the initial grid and in (S2).

As shown in Charlier et al. (2015b) through simulations, both N 7→ ISE¯
α(N) and N 7→ ÎSE

¯
α(N) are

essentially convex in N and lead to roughly the same minimizers. This therefore provides a feasible
way to select a reasonable value of N for the estimator q̄N,n

α,B (x) in (5). Note that this also applies

to q̂N,n
α (x) by simply taking B = 1 in the procedure above.

If quantiles are to be estimated at various orders α, (7) will provide an optimal N-value for each α. It
may then happen, in principle, that the resulting reference curves cross, which is of course undesirable.
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One way to guarantee that no such crossings occur is to identify a common N-value for the various α’s.
In such a case, N will be chosen as

N̂¯
opt = arg min

N∈N
ÎSE

¯
(N), with ÎSE

¯
(N) = ∑α ÎSE

¯
α(N), (8)

where the sum is computed over the various α-values considered.

Charlier et al. (2015b) performed extensive comparisons between the quantization-based estimators
in (5) – based on the efficient data-driven selection method for N just described – and some of their
main competitors, namely estimators obtained from spline, k-nearest neighbor, and kernel methods.
This revealed that the quantization-based estimators compete well in all cases, and often dominates
their competitors (in terms of integrated square errors), particularly so for complex link functions; see
Charlier et al. (2015b) for details.

Unlike the local linear and local constant estimators from Yu and Jones (1998), that are usually
based on a global-in-x bandwidth, our quantization-based estimators are locally adaptive in the sense
that, when estimating qα(x), the “working bandwidth” – that is, the size of the quantization cell
containing x – depends on x. The k-nearest neighbor (kNN) estimator is closer in spirit to quantization-
based estimators but always selects k neighbors, irrespective of the x-value considered, whereas the
number of Xi’s in the quantization cell of x may depend on x. This subtle local-in-x behavior may
explain the good empirical performances of quantization-based estimators over kernel and nearest-
neighbor competitors. Finally, spline methods (implemented in R with the rqss and qss functions)
tend to perform poorly for complex link functions, since they always provide piecewise linear reference
curves (Koenker et al., 1994). Moreover, the current implementation of the rqss function only supports
dimensions 1 and 2, whereas our package allows to compute quantization-based estimators in any
dimension d.

The QuantifQuantile package

This section provides a description of the various functions offered in the R package QuantifQuantile.
We first detail the three functions that allow to estimate conditional quantiles through quantization.
Then we describe a function computing optimal quantization grids.

Conditional quantile estimation

QuantifQuantile is composed of three main functions that each provide estimated conditional quan-
tiles in (4)-(5). These functions work in a similar way but address different values of d (recall that d is
the dimension of the covariate vector X) :

• The function QuantifQuantile is suitable for d = 1.

• The function QuantifQuantile.d2 addresses the case d = 2.

• Finally, QuantifQuantile.d can deal with an arbitrary value of d.

Combined with the plot function, the first two functions provide reference curves and reference
surfaces, respectively. No graphical outputs can be obtained from the third function if d > 2.

The three functions share the same arguments, but not necessarily the same default values. For
each function, using args() displays the various arguments and corresponding default values :

QuantifQuantile(X, Y, alpha = c(0.05, 0.25, 0.5, 0.75, 0.95), x = seq(min(X), max(X),
length = 100), testN = c(35, 40, 45, 50, 55), p = 2, B = 50, tildeB = 20,
same_N = TRUE, ncores = 1)

QuantifQuantile.d2(X, Y, alpha = c(0.05, 0.25, 0.5, 0.75, 0.95),
x = matrix(c(rep(seq(min(X[1, ]), max(X[1, ]), length = 20), 20),
sort(rep(seq(min(X[2, ]), max(X[2, ]), length = 20), 20))), nrow = 2, byrow = TRUE),
testN = c(110, 120, 130, 140, 150), p = 2, B = 50, tildeB = 20, same_N = TRUE,
ncores = 1)

QuantifQuantile.d(X, Y, x, alpha = c(0.05, 0.25, 0.5, 0.75, 0.95),
testN = c(35, 40, 45, 50, 55), p = 2, B = 50, tildeB = 20, same_N = TRUE, ncores = 1)

We now give more details on these arguments.

• X: a d× n real array (required by all three functions, a vector of length n for QuantifQuantile).
The columns of this matrix are the Xi’s, i = 1, . . . , n.
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• Y: an n× 1 real array (required by all three functions). This vector collects the Yi’s, i = 1, . . . , n.

• alpha: an r× 1 array with components in (0, 1) (optional for all three functions). This vector
contains the orders for which qα(x) should be estimated.

• x: a d × J real array (optional for QuantifQuantile and QuantifQuantile.d2, required by
QuantifQuantile.d). The columns of this matrix are the xj’s at which the quantiles qα(xj)
are to be estimated. If x is not provided when calling QuantifQuantile, then it is set to a
vector of J = 100 equispaced values between the minimum and the maximum of the Xi’s. If
this argument is not provided when calling QuantifQuantile.d2, then the default for x is a
matrix whose J = 202 = 400 column vectors are obtained as follows: 20 equispaced values are
considered between the minimum and maximum values of the (Xi)1’s and similarly for the
second component. The 400 column vectors of the default x are obtained by considering all
combinations of those 20 values for the first component with the 20 values for the second one2.

• testN: an m× 1 vector of pairwise distinct positive integers (optional for all three functions).
The entries of this vector are the elements of the set N in (7)-(8), hence are the N-values for
which the ÎSE

¯
α quantity considered will be evaluated. The default is (35, 40, . . . , 55) but it is

strongly recommended to adapt it according to the sample size n at hand.

• p: a real number larger than or equal to one (optional for all three functions). This is the
parameter p to be used when performing optimal quantization in Lp-norm.

• B: a positive integer (optional for all three functions). This is the number of bootstrap replications
B to be used in (5).

• tildeB: a positive integer (optional for all three functions). This is the number of bootstrap
replications B̃ to be used when determining N̂¯

α;opt or N̂¯
opt.

• same_N: a boolean variable (optional for all three functions). If same_N=TRUE, then a common
value of N (that is, N̂¯

opt in (8)) will be selected for all α’s. If same_N=FALSE, then optimal values
of N will be chosen independently for the various of α (which will provide several N̂¯

α;opt, as
in (7)).

• ncores: number of cores to use. These functions can use parallel computation to save time by
increasing this parameter. Parallel computation relies on mclapply from parallel package, hence
is not available on Windows.

All three functions return the following list of objects, which is of class ‘QuantifQuantile’ :

• hatq_opt: an r× J real array (where r is the number of α-values considered). If same_N=TRUE,

then the entry (i, j) of this matrix is q̄
N̂¯

opt,n
αi ,B (xj). If same_N=FALSE, then it is rather q̄

N̂¯
αi ;opt,n

αi ,B (xj).
This object can also be returned using the usual fitted.values function.

• N_opt: a positive integer (if same_N=TRUE) or an r× 1 array of positive integers (if same_N=FALSE).
Depending on same_N, this provides the value of N̂¯

opt or the vector (N̂¯
α1;opt, . . . , N̂¯

αr ;opt).

• hatISE_N: an r×m real array. The entry (i, j) of this matrix is ÎSE
¯
αi
(Nj). Plotting this for fixed α

or plotting its average over the various α, in both cases over testN, allows to assess the global
convexity of these ISEs. Hence, it can be used to indicate whether or not the choice of testN
was adequate. This will be illustrated in the examples below.

• hatq_N: an r× J ×m real array. The entry (i, j, `) of this matrix is q̄N` ,n
αi ,B (xj), where N` is the `th

entry of the argument testN. From this output, it is easy by fixing the third entry to get the
matrix of the q̄N,n

αi ,B(xj) values for any N in testN.

• The arguments X, Y, x, alpha, and testN are also reported in this response list.

Moreover, when the optimal value N_opt selected is on the boundary of testN, which means that
testN most likely was not well chosen, a warning message is printed.

The ‘QuantifQuantile’ class response can be used as argument of the functions plot (only for
d ≤ 2), summary and print. The plot function draws the observations and plots the estimated
conditional quantile curves (d = 1) or surfaces (d = 2) – for d = 2, the rgl package is used (Adler et al.,
2015), which allows to change the perspective in a dynamic way. In order to illustrate the selection
of N, the function plot also has an optional argument ise. Setting this argument to TRUE (the default
is FALSE), this function, that can be used for any dimension d, provides the plot (against N) of the ÎSE

¯
α

and ÎSE
¯

quantities in (7) or in (8), depending on the choice same_N=FALSE or same_N=TRUE, respectively;
see the examples below for details. If d ≤ 2, it also returns the fitted quantile curves or surfaces.

2Since the number J of points in a default value of x obtained in this fashion would increase exponentially with
the dimension d, we did not adopt the same approach for d ≥ 3.
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Computing optimal grids

Besides the functions that allow to estimate conditional quantiles and to plot the corresponding
reference curves/surfaces, QuantifQuantile provides a function that computes optimal quantization
grids. This function, called choice.grid, admits the following arguments :

• X: a d× n real array (required). The columns of this matrix are the Xi’s, i = 1, . . . , n, for which
the optimal quantization grid should be determined. Each point of X is used as a stimulus in the
stochastic gradient algorithm to get an optimal grid.

• N: a positive integer (required). The size of the desired quantization grid.

• ng: a positive integer (optional). The number of desired quantization grids. The default is 1.

• p: a real number larger than or equal to one (optional). This is the parameter p used in the
quantization error. The default is 2.

In some cases, it may be necessary to have several quantization grids, such as in (5), where B +
tildeB grids are needed. The three functions computing quantization-based conditional quantiles
then call the function choice.grid with ng > 1. In such case, the various grids are obtained using as
stimuli a resampling version of X (the Xt’s in the previous section).

The output is a list containing the following elements :

• init_grid: a d×N×ng real array. The entry (i, j, `) of this matrix is the ith component of the jth

point of the `th initial grid.

• opti_grid: a d×N×ng real array. The entry (i, j, `) of this matrix is the ith component of the jth

point of the `th optimal grid provided by the algorithm.

Illustrations

In this section, we illustrate on several examples the use of the functions described above. Examples 1–
3 restrict to QuantifQuantile/QuantifQuantile.d2 and provide graphical representations in each
case. Example 4 deals with a three-dimensional covariate, without graphical representation. An
illustration of the function choice.grid is given in the Appendix.

Example 1: Simulated data with one-dimensional covariate

We generate a random sample (Xi, Yi)
′, i = 1, . . . , n = 300, where the Xi’s are uniformly distributed

over the interval (−2, 2) and where the Yi’s are obtained by adding to X2
i a standard normal error

term that is independent of Xi :

set.seed(258164)
n <- 300
X <- runif(n, -2, 2)
Y <- X^2 + rnorm(n)

We test the number N of quantizers between 10 and 30 by steps of 5 and we do not change
the default values of the other arguments. We then run the function QuantifQuantile with these
arguments and stock the response in res.

testN <- seq(10, 30, by = 5)
res <- QuantifQuantile(X, Y, testN = testN)

No warning message is printed, which means that this choice of testN was adequate. To assess this
in a graphical way, we use the function plot with ise argument set to TRUE that plots hatISEmean_N
(obtained by taking the mean of hatISE_N over alpha) against the various N-values in testN.

plot(res, ise = TRUE)

Figure 1a provides the resulting graph, which confirms that testN was well chosen since hatISEmean_N
is larger for smaller and larger values of N than N_opt. We then plot the corresponding estimated
conditional quantiles curves in Figure 1b. The default colors of the points and of the curves are
changed by using the col.plot argument. This argument is a vector of size 1+length(alpha), whose
first component fixes the color of the data points and whose remaining components determine the
colors of the various reference curves.

col.plot <- c("grey", "red", "orange", "green", "orange", "red")
plot(res, col.plot = col.plot, xlab = "X", ylab = "Y")
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Figure 1: For the sample considered in Example 1, this figure provides (a) the plot of N 7→ ÎSE
¯
(N)

with N ∈ {10, 15, 20, 25, 30}, and (b) the resulting reference curves. The panels (c)–(d) provide the
corresponding plots when taking N ∈ {10, 11, 12, . . . , 19, 20, 25, 30}.

It is natural to make the grid testN finer. Of course, the more N-values we test, the longer it takes.
This is why we adopted this two-stage approach, where the goal of the first stage was to get a rough
approximation of the optimal N-value. In the second stage, we can then refine the grid only in the
vicinity of the value N_opt obtained in the first stage.

testN <- c(seq(10, 20, by = 1), seq(25, 30, by = 5))
res_step1 <- QuantifQuantile(X, Y, testN = testN)
plot(res_step1, ise = TRUE, col.plot = col.plot, xlab = "X", ylab = "Y")

The resulting graphs are provided in Figures 1c–1d, respectively. We observe that the value
of N_opt is made more precise, since we now get N_opt=18 instead of 15. The resulting estimated
conditional quantiles curves in Figure 1b are very similar to the ones in Figure 1d.

So far, we used the default value same_N=TRUE, which leads to selecting an N-value that is common
to all α’s. For the sake of comparison, we now explore the results for same_N=FALSE.

testN <- c(seq(10, 30, by = 5))
res2 <- QuantifQuantile(X, Y, testN = testN, same_N = FALSE)
plot(res2, ise = TRUE, col.plot = col.plot, xlab = "X", ylab = "Y")
testN <- c(seq(10, 20, by = 1), seq(25, 30, by = 5))
res2_step1 <- QuantifQuantile(X, Y, testN = testN, same_N = FALSE)
plot(res2_step1, ise = TRUE, col.plot = col.plot, xlab = "X", ylab = "Y")

The results are provided in Figure 2. Comparing the left panels of Figures 1 and 2, we see that
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Figure 2: The same results as in Figure 1, but when selecting optimal values of N separately for each α.

when choosing N by steps of five, we find N_opt = 15 with same_N = TRUE and N_opt = 15 or
20 (depending on alpha) for same_N = FALSE. When we refine the grid testN, we find analogously
N_opt = 18 for same_N = TRUE and N_opt = 14, 15, or 16 for same_N = FALSE. In the present setup,
thus, both methods provide relatively close optimal N-values, which explains why the corresponding
estimated reference curves are so similar (see the right panels of Figures 1 and 2). Therefore, the grid
of N-values tested in Figure 1, that may seem too coarse at first sight, actually provides fitted curves
that are as satisfactory as those associated with the finer grid in Figure 2.

Example 2: Simulated data with two-dimensional covariate

The sample considered here is made of n = 1, 000 independent realizations of a random vector (X′, Y)′,
where X = (X1, X2)

′ is uniformly distributed on the square (−2, 2)2 and where Y is obtained by
adding to X2

1 + X2
2 an independent standard normal error term.

set.seed(642516)
n <- 1000
X <- matrix(runif(n*2, -2, 2), ncol = n)
Y <- apply(X^2, 2, sum) + rnorm(n)

We test N between 40 and 90 by steps of 10. We change the values of B and tildeB to reduce the
computational burden, which is heavier for d = 2 than for d = 1. We keep the default values of all
other arguments when running the function QuantifQuantile.d2. Here, a warning message is printed
informing us that testN was not well-chosen. We confirm it with the function plot with ise argument
set to TRUE.
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Figure 3: For the sample considered in Example 2, this figure plots N 7→ ÎSE
¯
(N) (a) for N ∈

{40, 50, 60, 70, 80} and (b) for N ∈ {80, 90, . . . , 120, 130}.

testN <- seq(40, 90, by = 10)
B <- 20
tildeB <- 15
res <- QuantifQuantile.d2(X, Y, testN = testN, B = B, tildeB = tildeB)
plot(res, ise = TRUE)

Figure 3a provides the resulting graph. The parameter testN was not well chosen since hatISEmean_N
becomes smaller and smaller as N_opt increases. We then adapt the choice of testN accordingly and
rerun the procedure, which identifies an optimal N-value equal to 100; see Figure 3b.

testN <- seq(80, 130, by = 10)
res <- QuantifQuantile.d2(X, Y, testN = testN, B = B, tildeB = tildeB)
plot(res, ise = TRUE)

We then plot the corresponding estimated conditional quantile surfaces in Figure 4.

col.plot <- c("black", "red", "orange", "green", "orange", "red")
plot(res, col.plot = col.plot, xlab = "X_1", ylab = "X_2", zlab = "Y")

Example 3: Real data study and comparison with some competitors

This example aims at illustrating the proposed estimated reference curves on a real data set and at
comparing them with some competitors. In this example, the ncores parameter of QuantifQuantile
function was set to the number of cores detected by R minus 1. The data used here, that are included
in the QuantifQuantile package, involves several variables related to employment, housing and
environment associated with n = 542 towns/villages in Gironde, France. For the present illustration,
we restrict to the regressions R1 and R2 involving (X, Y) = (percentage of owners living in their
primary residence, percentage of buildings area) and (X, Y) = (percentage of middle-range
employees, population density), respectively. In both cases, n = 542 observations are available and
we are interested in the estimation of reference curves for α = 0.05, 0.25, 0.50, 0.75 and 0.95. For both R1
and R2, we tested the number N of quantizers to be used between 5 and 15 by step of 1, using the
methodology described in Example 1.

set.seed(644925)
data(gironde)
X <- gironde[[2]]$owners
Y <- gironde[[4]]$building
testN <- seq(5, 15, by = 1)
res <- QuantifQuantile(X, Y, testN = testN, same_N = F, ncores = detectCores() - 1)
col.plot <- c("grey", "red", "orange", "green", "orange", "red")
plot(res, col.plot = col.plot, xlab = "X", ylab = "Y")
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(a) (b)

Figure 4: For the sample considered in Example 2, this figure plots (with two different views) the
estimated conditional quantile surfaces obtained with the plot function for α = 0.05, 0.25, 0.50, 0.75
and 0.95.

The same exercise is repeated with (X, Y) = (percentage of middle-range employees, population
density). For each α-value considered, we obtained N̂¯

α;opt = 13 for R1 and N̂¯
α;opt = 7 for R2. The

corresponding quantization-based reference curves are plotted in Figures 5a and 5c, respectively. For
the sake of comparison, spline-based curves are provided in Figures 5b and 5d. These were obtained
from the function rqss in the package quantreg. Since the parameter λ involved, that governs the
trade-off between fidelity and smoothness, is not automatically selected by rqss, we selected it through
AIC (via the AIC function), separately for each order α.

rank <- rank(X, ties.method = "random")
X[rank] <- X
Y[rank] <- Y
alpha <- c(0.05, 0.25, 0.5, 0.75, 0.95)
x <- seq(min(X), max(X), length = 100)
n <- length(X)
lambda <- array(0, dim = c(length(alpha), 1))
interval = c(0.2, 10)
for(i in 1:length(alpha)){
AIC_crit <- function(lambda){
AIC(rqss(Y ~ qss(X, lambda = lambda), tau = alpha[i]))[1]

}
select_lambda <- optimize(AIC_crit, interval = interval)
lambda[i] <- select_lambda$min

}
hatq <- array(0, dim = c(length(x), length(alpha)))
fitted_matrix <- array(0, dim = c(n,length(alpha)))
for(l in 1:length(alpha)){
res_rqss <- rqss(Y ~ qss(X, lambda = lambda[l]),tau = alpha[l])
fitted_matrix[,l] <- fitted(res_rqss)

}
plot(X, Y, col = col.plot[1], cex = 0.7);
for(i in 1:length(alpha)){
lines(fitted_matrix[, i] ~ X, type = "l", col = col.plot[i+1])

}

The same exercise is repeated for R2, but with λ tested between 0.5 and 15. Since they are piecewise
linear, the resulting spline-based reference curves are less smooth than the one based on quantization.
Arguably, the latter better adapt to the samples even though they are sometimes quite wiggly.

Of course, the computational burden is also an important issue. Therefore, Table 1 gathers, for
each method and each regression problem, the average and standard deviation of the computing times
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Figure 5: Estimated conditional quantile curves obtained with QuantifQuantile (left) and rqss (right),
for regression R1 (top) and regression R2 (bottom). In each case, the quantile orders considered
are α = 0.05, 0.25, 0.50, 0.75 and 0.95.

QuantifQuantile rqss

R1 2.83 (0.117) 4.39 (0.119)
R2 2.47 (0.085) 4.08 (0.115)

Table 1: Averages of the computing times (in seconds) to obtain 50 times the conditional quantile
curves in Example 3 for QuantifQuantile and rqss, respectively; standard deviations are reported in
parentheses.

in a collection of 50 runs (these 50 runs were considered to make results more reliable). In each case,
our method is faster than its spline-based competitor.

Example 4: Real data with three-dimensional covariate

To treat an example with d > 2, we reconsider the data set in Example 3, this time with the response Y =
population density and the three covariates X1 = percentage of farmers, X2 = percentage of
unemployed workers, and X3 = percentage of managers. In this setup, no graphical output is
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available. We therefore restrict to a finite collection of x-values where conditional quantiles are
to be estimated. Denoting by Mj and X j, j = 1, 2, 3, the maximal value and the average of Xij,
i = 1, . . . , n = 542, respectively, we consider the following eight values of x :

x1 =

X1

X2

X3

 , x2 =


1
2 (X1 + M1)

X2

X3

 , x3 =

 X1
1
2 (X2 + M2)

X3

 , x4 =

 X1

X2
1
2 (X3 + M3)

 ,

x5 =


1
2 (X1 + M1)
1
2 (X2 + M2)

X3

 , x6 =


1
2 (X1 + M1)

X2
1
2 (X3 + M3)

 , x7 =

 X1
1
2 (X2 + M2)
1
2 (X3 + M3)

 , x8 =


1
2 (X1 + M1)
1
2 (X2 + M2)
1
2 (X3 + M3)

 .

The function QuantifQuantile.d is then evaluated for the response and covariates indicated
above, and with the arguments alpha = (0.25, 0.5, 0.75)′, testN = (5, 6, 7, 8, 9, 10)′, x being the 3× 8
matrix whose columns are the vectors x1, x2, . . . , x8 just defined and ncores being the number of cores
detected by R minus 1.

data(gironde)
set.seed(729848)
X1 <- gironde[[1]]$farmers
X2 <- gironde[[1]]$unemployed
X3 <- gironde[[1]]$managers
Y <- gironde[[2]]$density
X <- matrix(c(X1, X2, X3), nr = 3, byrow = TRUE)
n <- length(X)/3
d <- 3
alpha <- c(0.25, 0.5, 0.75)
x1 <- round(c(mean(X1), mean(X2), mean(X3)))
x2 <- round(c((mean(X1) + max(X1))/2, mean(X2), mean(X3)))
x3 <- round(c(mean(X1), (mean(X2) + max(X2))/2, mean(X3)))
x4 <- round(c(mean(X1), mean(X2), (mean(X3) + max(X3))/2))
x5 <- round(c((mean(X1) + max(X1))/2, (mean(X2) + max(X2))/2, mean(X3)))
x6 <- round(c((mean(X1) + max(X1))/2, mean(X2), (mean(X3) + max(X3))/2))
x7 <- round(c(mean(X1), (mean(X2) + max(X2))/2, (mean(X3) + max(X3))/2))
x8 <- round(c((mean(X1) + max(X1))/2, (mean(X2) + max(X2))/2, (mean(X3) + max(X3))/2))
x <- matrix(c(x1, x2, x3, x4, x5, x6, x7, x8), nr = d)
res <- QuantifQuantile.d(X, Y, x , alpha = alpha, testN = seq(5, 10, by = 1),
same_N = F, ncores = detectCores() - 1)

round(fitted.values(res), 2)

This provided N̂¯
α;opt = 8, 7 and 7, for α = 0.25, 0.50 and 0.75, respectively. The total computation time

is 6.86 seconds. The fitted.values function then allowed to return the following matrix hatq_opt of
estimated conditional quantiles :

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 44.30 22.59 39.50 71.59 25.05 22.40 76.37 24.19
[2,] 80.07 32.31 81.24 161.85 35.01 31.92 145.29 38.18
[3,] 139.16 46.50 223.13 344.92 53.73 47.01 402.98 73.19

This collection of (estimated) conditional quartiles allows to appreciate the impact of a marginal
perturbation of the covariates on Y’s conditional median (location) or interquartile range (scale). For
instance, the results suggest that Y’s conditional median decreases with X1, is stable with X2, and
increases with X3, whereas its conditional interquartile range decreases with X1 but increases much
with X2 and with X3. The eight x-values considered further allow to look at the joint impact of two or
three covariates on Y’s conditional location and scale. Of course, other shifts in the covariates (and
other orders α) should further be considered to fully appreciate the dependence of Y on X.

Conclusion

In this paper, we described the package QuantifQuantile that allows to implement the quantization-
based quantile regression method introduced in Charlier et al. (2015a,b). The package is simple to use,
as the function QuantifQuantile and its multivariate versions essentially only require providing the
covariate and response as arguments. Since the choice of the tuning parameter N is crucial, a warning
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message is printed if it is not well-chosen and the function plot can also be used as guide to change
adequately the value of the parameter testN in the various functions. Moreover, a graphical illustration
is directly provided by the same function plot when the dimension of the covariate is smaller than
or equal to 2. Finally, this package also contains a function that provides optimal quantization grids,
which might be useful in other contexts, too.

Finally, we stress that quantization-based estimators, like most nonparametric smoothing proce-
dures, are likely to perform poorly in high-dimensional situations due to the curse of dimensionality.
For large d, it is therefore unclear how to assess whether a given covariate has a significant impact on
the response variable. For small d, however, it is always possible, in the absence of a formal testing
procedure, to resort to visual inspection. In the simplest case of a single covariate (d = 1), this would
lead to looking whether or not fitted curves approximately are horizontal lines. This can be extended
to the case d = 2.
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Appendix

Illustration of choice.grid

We here put to work the function choice.grid in the univariate and bivariate cases. This function
provides the “optimal” grid generated by the stochastic gradient algorithm described earlier. As above
mentioned, quantization was extensively used in many other fields as numerical integration, cluster
analysis, numerical probability or finance (Pagès, 1998; Pagès et al., 2004). Therefore, this function can
be of interest outside the regression setup considered here.

We start with the univariate case and generate a random sample of size n = 500 from the uniform
distribution over (−2, 2). With N = 15 and ng = 1, this function provides a single initial grid (obtained
by sampling without replacement among the uniform sample) and the corresponding optimal grid
returned by the algorithm. Figure 6 represents the observations (in grey), the initial grid (in red), and
the optimal grid (in green). The same exercise is repeated with sample size n = 5, 000, and the results
are also given in Figure 6.

set.seed(643625)
n <- 500
X <- runif(n, -2, 2)
N <- 15
ng <- 1
res <- choice.grid(X, N, ng)
# Plots of the initial and optimal grids
plot(X, rep(1, n), col = "grey", cex = 0.5, ylim = c(-0.1, 1.1), yaxt = "n",
ylab = "")

points(res$init_grid, rep(0.5, N), col = "red", pch = 16, cex = 1.2)
points(res$opti_grid, rep(0, N), col = "forestgreen", pch = 16, cex = 1.2)

Since the parent distribution is uniform over (−2, 2), the population optimal grid is the equispaced
grid on that interval (Pagès, 1998). For both sample sizes considered, the optimal grid provided by
the choice.grid function is much closer to the population optimal grid than the initial one. Recalling
that the stochastic gradient algorithm in choice.grid performs as many iterations as observations in
the original sample, it is not surprising that the optimal grid associated with the sample of size 5, 000
better approximates the population optimal grid than the optimal grid associated with the sample of
size 500.

Finally, we turn to the bivariate case and generate two random samples of size n = 2, 000 and
size n = 20, 000 from the uniform distribution over the square (−2, 2)2. The function choice.grid was
applied to these samples with N = 30 and ng = 1. The resulting couple of initial and optimal grids are
plotted in Figure 7. As in the univariate case, we observe an improvement when going from the initial
grids to the corresponding optimal grids provided by the function choice.grid (here as well, the
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Figure 6: For n = 500 (left) and n = 5, 000 (right), a random sample of size n from the uniform
distribution over (−2, 2) (in grey), an initial grid of size 15 obtained by sampling without replacement
among these n observations (in red), and the “optimal” grid returned by choice.grid (in green).
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Figure 7: For n = 2, 000 (left) and n = 20, 000 (right), an initial grid of size 15 obtained by sampling
without replacement among a random sample of size n from the uniform distribution over (−2, 2)
(top), and the corresponding optimal grid returned by choice.grid (bottom).

population optimal grid should be uniformly spread over the support of the underlying distribution).
Also, it is still the case that the resulting optimal grid is better when based on a larger sample size n.
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set.seed(345689)
n <- 2000
X <- matrix(runif(n*2, -2, 2), nc = n)
N <- 30
ng <- 1
res <- choice.grid(X, N, ng)
col <- c("red", "forestgreen")
plot(res$init_grid[1,,1], res$init_grid[2,,1], col = col[1], xlab = "", ylab = "")
plot(res$opti_grid[1,,1], res$opti_grid[2,,1], col = col[2], xlab = "", ylab = "")
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Numerical Evaluation of the Gauss
Hypergeometric Function with the
hypergeo Package
by Robin K. S. Hankin

Abstract This paper introduces the hypergeo package of R routines for numerical calculation of
hypergeometric functions. The package is focussed on efficient and accurate evaluation of the Gauss
hypergeometric function over the whole of the complex plane within the constraints of fixed-precision
arithmetic. The hypergeometric series is convergent only within the unit circle, so analytic continuation
must be used to define the function outside the unit circle. This short document outlines the numerical
and conceptual methods used in the package; and justifies the package philosophy, which is to
maintain transparent and verifiable links between the software and Abramowitz and Stegun (1965).
Most of the package functionality is accessed via the single function hypergeo(), which dispatches to
one of several methods depending on the value of its arguments. The package is demonstrated in the
context of game theory.

Introduction

The geometric series ∑∞
k=0 tk with tk = zk may be characterized by its first term and the constant ratio

of successive terms tk+1/tk = z, giving the familiar identity ∑∞
k=0 zk = (1− z)−1. Observe that while

the series has unit radius of convergence, the right hand side is defined over the whole complex plane
except for z = 1 where it has a pole. Series of this type may be generalized to a hypergeometric series
in which the ratio of successive terms is a rational function of k:

tk+1
tk

=
P(k)
Q(k)

where P(k) and Q(k) are polynomials. If both numerator and denominator have been completely
factored we would write

tk+1
tk

=
(k + a1)(k + a2) · · · (k + ap)

(k + b1)(k + b2) · · · (k + bq)(k + 1)
z

where z is the ratio of the leading terms of P(k) and Q(k) (the final term in the denominator is due to
historical reasons), and if we require t0 = 1 then we write

∞

∑
k=0

tkzk = pFq

[
a1, a2, . . . , ap

b1, b2, . . . , bq
; z
]

(1)

where it is understood that q > p− 1. The series representation, namely

1 +
∏

p
i=1 ai

∏
q
i=1 bi

z +
∏

p
i=1 ai (ai + 1)

∏
q
i=1 bi (bi + 1) 2!

z2 + · · ·+ ∏
p
i=1 ai (ai + 1) · · · (ai + k)

∏
q
i=1 bi (bi + 1) · · · (bi + k) k!

zk + · · · (2)

is implemented in the package as genhypergeo_series() and operates by repeatedly incrementing
the upper and lower index vectors

(
a1, . . . , ap

)
and

(
b1, . . . , bq

)
, and taking an appropriate running

product. Terms are calculated and summed successively until a new term does not change the sum.

In most cases of practical interest one finds that p = 2, q = 1 suffices (Seaborn, 1991). Writing a, b, c
for the two upper and one lower argument respectively, the resulting function 2F1 (a, b; c; z) is known
as the hypergeometric function, or Gauss’s hypergeometric function. Many functions of elementary
analysis are of this form; examples would include logarithmic and trigonometric functions, Bessel

functions, etc. For example, 2F1

(
1
2 , 1; 3

2 ;−z2
)
= z−1 arctan z.

Michel and Stoitsov (2008) state that physical applications are “plethora”; examples would include
atomic collisions (Alder et al., 1956), cosmology (de la Cruz-Dombriz and Dobado, 2006), and analysis
of Feynman diagrams (Davydychev and Kalmykov, 2004). In addition, naturally-occuring combinato-
rial series frequently have a sum expressible in terms of hypergeometric functions (Petkovšek et al.,
1997). One meets higher-order hypergeometric functions occasionally; the hypergeometric distribution,
for example, has a cumulative distribution function involving the 3F2 generalized hypergeometric
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function. An example from the author’s work in the field of game theory is given below.

Numerical implementations

There are two other numerical implementations for the hypergeometric function for R: the gsl pack-
age (Hankin, 2006b), a wrapper for the Gnu Scientific Library, although this does not cover complex
values (Galassi et al., 2013); and the appell package (Bove et al., 2013) which implements the Gauss
hypergeometric function as hyp2f1().

Outside the R world, there are several proprietary implementations but the evaluation methodol-
ogy is not available for inspection. Open-source implementations include that of Sage (Stein et al.,
2015) and Maxima (2014). The hypergeo package is offered as an R-centric suite of functionality with
an emphasis on multiple evaluation methodologies, and transparent coding with nomenclature and
structure following that of Abramowitz and Stegun (1965). An example is given below in which the
positions of the cut lines may be modified.

Equivalent forms

The hypergeometric function’s series representation, namely

2F1 (a, b; c; z) =
∞

∑
k=0

(a)k (b)k
(c)k k!

zk, (a)k = Γ(a + k)/Γ(a) (15.1.1)

has unit radius of convergence by the ratio test [NB: equations with three-part numbers, as 15.1.1
above, are named for their reference in Abramowitz and Stegun (1965)]. However, the integral form

2F1 (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

t=0
tb−1(1− t)c−b−1(1− tz)−a dt, (15.3.1)

due to Gauss, furnishes analytic continuation; it is usual to follow Riemann and define a cut along the
positive real axis from 1 to ∞ and specify continuity from below (but see below). This is implemented
as f15.3.1() in the package and exhibits surprisingly accurate evaluation.

Gauss also provided a continued fraction form for the hypergeometric function (implemented
as hypergeo_contfrac() in the package) which has superior convergence rates for parts of the complex
plane at the expense of more complicated convergence properties (Cuyt et al., 2008).

The hypergeo package

The hypergeo package provides some functionality for the hypergeometric function. the emphasis is
on fast vectorized R-centric code, complex z and moderate real values for the auxiliary parameters a, b, c.
Extension to complex auxiliary parameters might be possible but Michel and Stoitsov (2008) caution
that this is not straightforward. The package is released under GPL-2.

The majority of the package functionality is accessed via the hypergeo() function whose behaviour
is discussed below.

Observing the slow convergence of the series representation 15.1.1, the complex behaviour of the
continued fraction representation, and the heavy computational expense of the integral representa-
tion 15.3.1, it is clear that non-trivial numerical techniques are required for a production package.

The package implements a generalization of the method of Forrey (1997) to the complex case. It
utilizes the observation that the ratio of successive terms approaches z, and thus the strategy adopted
is to seek a transformation which reduces the modulus of z to a minimum. Abramowitz and Stegun
give the following transformations:
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Figure 1: View of the complex plane showing which of equations 15.3.4 to 15.3.9 transforms to the
value of smallest modulus. The yellow, green, and red region is the unit circle.

2F1 (a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z
z− 1

)
(15.3.4)

= (1− z)−b
2F1

(
a, c− a; c;

z
z− 1

)
(15.3.5)

=
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b) 2F1 (a, b; a + b− c + 1; 1− z)

+ (1− z)c−a−b Γ (c) Γ (a + b− c)
Γ (a) Γ (b) 2F1 (c− a, c− b; c− a− b + 1; 1− z) (15.3.6)

=
Γ (c) Γ (b− a)
Γ (b) Γ (c− a)

(−z)−a
2F1

(
a, 1− c + a; 1− b + a;

1
z

)
+

Γ (c) Γ (a− b)
Γ (a) Γ (c− b)

(−z)−b
2F1

(
b, 1− c + b; 1− a + b;

1
z

)
(15.3.7)

= (1− z)−a Γ (c) Γ (b− a)
Γ (b) Γ (c− a) 2F1

(
a, c− b; a− b + 1;

1
1− z

)
+ (1− z)−b Γ (c) Γ (a− b)

Γ (a) Γ (c− b) 2F1

(
b, c− a; b− a + 1;

1
1− z

)
(15.3.8)

=
Γ (c) Γ (c− a− b)
Γ (c− a) Γ (c− b)

z−a
2F1

(
a, a− c + 1; a + b− c + 1; 1− 1

z

)
+

Γ (c) Γ (a + b− c)
Γ (a) Γ (b)

(1− z)c−a−bza−c
2F1

(
c− a, 1− a; c− a− b + 1; 1− 1

z

)
.

(15.3.9)

The primary argument in equations 15.3.4–15.3.9 is a member of the set

M =

{
z,

z
z− 1

, 1− z,
1
z

,
1

1− z
, 1− 1

z

}
;

and, observing that M is closed under functional composition, we may apply each of the trans-
formations to the primary argument z and choose the one of smallest absolute value to evaluate
using genhypergeo_series(); see Figure 1 for a diagram showing which parts of the complex plane
use which transformation.

Given the appropriate transformation, the right hand side is evaluated using direct summation.
If |z| < 1, the series is convergent by the ratio test, but may require a large number of terms to achieve
acceptable numerical precision. Summation is dispatched to genhypergeo_series() which evaluates
the generalized hypergeometric function, Equation 1; the R implementation uses multiplication by
repeatedly incremented upper and lower indices ai, bi.

Thus for example if (1− z)−1 is small in absolute value we would use function f15.3.8():
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Figure 2: Different integration paths for evaluating 2F1 (3 + i) from a start point of i/2. The straight
line path avoids the conventional cut line (green), unlike the semicircular path, which would be
consistent with the alternative cut line (purple). The values at z = 3 + i differ because of the residue
at z = 1.

> require("hypergeo")
> f15.3.8

function(A, B, C, z, tol = 0, maxiter = 2000) {
jj <- i15.3.8(A, B, C)
jj[1] * (1-z)^(-A) * genhypergeo(U = c(A, C-B), L = A-B+1, z = 1/(1-z), tol = tol,

maxiter = maxiter) + jj[2] * (1-z)^(-B) * genhypergeo(U = c(B, C-A), L = B-A+1,
z = 1/(1-z), tol = tol, maxiter = maxiter)

}

(slightly edited in the interests of visual clarity). This is a typical internal function of the package and
like all similar functions is named for its equation number in Abramowitz and Stegun (1965). Note the
helper function i15.3.9(), which calculates the Gamma coefficients of the two hypergeometric terms
in the identity. This structure allows transparent checking of the code.

Cut lines

The hypergeometric differential equation

z(1− z)F′′(z) + [c− (a + b + 1)z] F′(z)− ab F(z) = 0, (15.5.1)

together with a known value of F(z) and F′(z) may be used to define 2F1(z). Because z = 1 and z = ∞
are in general branch points, requiring F(·) to be single valued necessitates a cut line that connects
these two points. It is usual to specify a a cut line following the real axis from 1 to ∞; but sometimes
this is inconvenient. Figure 2 shows an example of different integration paths being used to relocate
the cut line.

The package includes functionality for solving equation 15.5.1 using ode() from the deSolve
package (Soetaert et al., 2010):

> f15.5.1(
+ A = 1.1, B = 2.2, C = 3.5, z = 3+1i, startz = 0.5i,
+ u = function(u) straight(u, 0.5i, 3+1i),
+ udash = function(u) straightdash(u, 0.5i, 3+1i))

[1] -0.5354302+0.7081344i
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> f15.5.1(
+ A = 1.1, B = 2.2, C = 3.5, z = 3+1i, startz = 0.5i,
+ u = function(u) semicircle(u, 0.5i, 3+1i, FALSE),
+ udash = function(u) semidash(u, 0.5i, 3+1i, FALSE))

[1] -1.395698-0.043599i

> hypergeo(1.1, 2.2, 3.5, 3+1i)

[1] -0.5354302+0.7081338i

See how the different integration paths give different results; the straight path value matches that
of hypergeo(). The package also provides hypergeo_press(), which is somewhat more user-friendly
but less flexible, and uses the method recommended by Press et al. (1992).

Special cases

The series methods detailed above are not applicable for all values of the parameters a, b, c. If, for
example, c = a + b±m, m ∈N (a not uncommon case), then equation 15.3.6 is not useful because each
term has a pole; and it is numerically difficult to approach the limit. In this case the package dispatches
to hypergeo_cover1() which uses 15.3.4 through 15.3.9 but with 15.3.6 replaced with suitable limiting
forms such as

2F1 (a, b; a + b; z) =
Γ(a + b)
Γ(a)Γ(b)

∞

∑
n=0

(a)n(b)n

(n!)2 [2ψ(n + 1)− ψ(a + n)− ψ(b + n)− log(1− z)] (1− z)n,

π < |arg(1− z)| < π, |1− z| < 1
(15.3.10)

This equation is comparable to 15.3.6 in terms of computational complexity but requires evaluation
of the digamma function ψ. Equation 15.3.10 is evaluated in the package using an algorithm similar to
that for genhypergeo_series() but includes a runtime option which specifies whether to evaluate ψ (·)
ab initio each time it is needed, or to use the recurrence relation ψ (z + 1) = ψ (z) + 1/z at each iteration
after the first. These two options appear to be comparable in terms of both numerical accuracy and
speed of execution, but further work would be needed to specify which is preferable in this context.

A similar methodology is used for the case b = a±m, m = 0, 1, 2, . . . in which case the package
dispatches to hypergeo_cover2().

However, the case c− a = 0, 1, 2, . . . is not covered by Abramowitz and Stegun (1965) and the
package dispatches to hypergeo_cover3() which uses formulae taken from the Wolfram functions
site (Wolfram, 2014). For example w07.23.06.0026.01() gives a straightforwardly implementable
numerical expression for 2F1 as a sum of two finite series and a generalized hypergeometric function 3F2
with primary argument z−1.

In all these cases, the limiting behaviour is problematic. For example, consider a case where |1− z| �
1 and a + b− c is close to, but not exactly equal to, zero. Then equation 15.3.10 is not applicable. The
analytic value of the hypergeometric function in these circumstances is typically of moderate modulus,
but both terms of equation 15.3.6 have large modulus and the numerics are susceptible to cancellation
errors. However, in practice this issue seems to be rare as it arises only in contrived situations where
one is deliberately testing the system. If a user really was interested in exploring this part of parameter
space to high numerical precision then the package provides alternative methodologies such as the
integral form f15.3.1() or the continued fraction form genhypergeo_contfrac().

Critical points

All the above methods fail when z = 1
2 ± i

√
3

2 , because none of the transformations 15.3.6–15.3.9
change the modulus of z from 1. The function is convergent at these points but numerical evaluation
is difficult. This issue does not arise in the real case considered by Forrey (1997).

These points were considered by Buhring (1987) who presented a computational method for
these values; however, his method is not suitable for finite-precision arithmetic (a brief discussion
is presented at ?buhring) and the package employs either hypergeo_gosper() which uses iterative
scheme due to Gosper (Johansson et al., 2013), or the residue theorem if z is close to either of these
points.
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Figure 3: View of the function 2F1

(
2, 1

2 ; 2
3 ; z
)

evaluated over a part of the complex plane using the
hypergeo package. Function visualization following Thaller (1998) and the elliptic package (Hankin,
2006a); hue corresponds to argument and saturation to modulus. Solid contour lines correspond to
real function values and dotted to imaginary function values. Note the cut line along the real axis
starting at (1, 0), made visible by an abrupt change in hue.

Package testing suite

The package comes with an extensive test suite in the tests/ directory. The tests fall into two
main categories, firstly comparison with either Maple or Mathematica output following Becken and
Schmelcher (2000); and secondly, verification of identities which appear in Abramowitz and Stegun
(1965) as elementary special cases. Consider, for example,

2F1

(
a, 1− a;

3
2

; sin2 (z)
)
=

sin [(2a− 1) z]
(2a− 1) sin z

(15.1.15)

The left and right hand sides are given by eqn15.1.15a() and eqn15.1.15b() respectively which
agree to numerical precision in the test suite; but care must be taken with regard to the placing of
branch cuts. Further validation is provided by checking against known analytical results. For example,
it is known that

2F1

(
2, b;

5− b
2

;−1
2

)
= 1− b

3
(3)

so, for example,

> hypergeo(2, 1, 2, -1/2)

[1] 0.66666666666667+0i

The package in use

The hypergeo package offers direct numerical functionality to the R user on the command line.
The package is designed for use with R and Figure 3 shows the package being used to visual-

ize 2F1

(
2, 1

2 ; 2
3 ; z
)

over a region of the complex plane.

A second example is given from the author’s current work in game theory. Consider a game in
which a player is given n counters each of which she must allocate into one of two boxes, A or B.
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At times t = 1, 2, 3 . . . a box is identified at random and, if it is not empty, a counter removed from
it; box A is chosen with probability p and box B with probability 1− p. The object of the game is to
remove all counters as quickly as possible. If the player places a counters in box A and b in B, then the
probability mass function (PMF) of removing the final counter at time t = a + b + r is

pa(1− p)b
[(

a + b + r− 1
a− 1, b + r

)
(1− p)r +

(
a + b + r− 1
a + r, b− 1

)
pr
]

, r = 0, 1, 2, . . . . (4)

The two terms correspond to the final counter being removed from box A or B respectively. The PMF
for r has expectation

pa(1− p)b
[

p
(

a + b
a + 1, b− 1

)
2F1 (a + b + 1, 2; a + 2; p) +

(1− p)
(

a + b
a− 1, b + 1

)
2F1 (a + b + 1, 2; b + 2; 1− p)

]
(5)

with R idiom:

> expected <- function(a, b, p) {
+ Re(
+ choose(a+b, b) * p^a * (1-p)^b *
+ (p * b/(1+a) * hypergeo(a+b+1, 2, a+2, p) +
+ (1-p) * a/(1+b) * hypergeo(a+b+1, 2, b+2, 1-p)))
+ }

Thus if p = 0.8 and given n = 10 counters we might wonder whether it is preferable to allocate
them (8, 2) or (9, 1):

> c(expected(8, 2, 0.8), expected(9, 1, 0.8))

[1] 3.019899 1.921089

showing that the latter allocation is preferable in expectation.

Conclusions

Evaluation of the hypergeometric function is hard, as evidenced by the extensive literature concerning
its numerical evaluation (Becken and Schmelcher, 2000; Michel and Stoitsov, 2008; Forrey, 1997;
Buhring, 1987). The hypergeo package is presented as a modular, R-centric implementation with
multiple evaluation methodologies, providing reasonably accurate results over the complex plane and
covering moderate real values of the auxiliary parameters a, b, c.
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SRCS: Statistical Ranking Color Scheme
for Visualizing Parameterized Multiple
Pairwise Comparisons with R
by Pablo J. Villacorta and José A. Sáez

Abstract The problem of comparing a new solution method against existing ones to find statistically
significant differences arises very often in sciences and engineering. When the problem instance being
solved is defined by several parameters, assessing a number of methods with respect to many problem
configurations simultaneously becomes a hard task. Some visualization technique is required for
presenting a large number of statistical significance results in an easily interpretable way. Here we
review an existing color-based approach called Statistical Ranking Color Scheme (SRCS) for displaying
the results of multiple pairwise statistical comparisons between several methods assessed separately on
a number of problem configurations. We introduce an R package implementing SRCS, which performs
all the pairwise statistical tests from user data and generates customizable plots. We demonstrate
its applicability on two examples from the areas of dynamic optimization and machine learning, in
which several algorithms are compared on many problem instances, each defined by a combination of
parameters.

Introduction

When carrying out research in statistics, operational research and computer science, the problem of
comparing a novel algorithm against other state-of-the-art techniques arises very often. The same
idea can be applied to many other fields of science when introducing a new method for solving a
well-known task, with the purpose of demonstrating the superiority of the proposed approach by
numerically comparing the results with those obtained by already existing methods.

For some time now, it is widely accepted that statistical tests are required to compare several
techniques that solve one given task (Demšar, 2006; García et al., 2010). This is motivated by the
fact – also shown by Eugster et al. (2014) – that the performance of a technique for solving a task
(for example, supervised classification) heavily depends on the characteristics of the concrete task
instance (in this case, the data to which a classifier is to be fitted) and thus the experiments should
randomize over a large number of datasets. Even with the same dataset, the results may vary when
considering different subsets of training/test data (the former are used for fitting the model, and
the latter for evaluating the model once it has been learned and does not change any more). The
same applies to other very common machine learning tasks such as regression (Graczyk et al., 2010),
approximate optimization using metaheuristics (García et al., 2009), and computational intelligence
in general (Derrac et al., 2011). It should be noted that metaheuristics employed in optimization are
by themselves randomized algorithms. Therefore, multiple runs of the same algorithm on the same
optimization problem are required to assess an algorithm, as well as testing the performance over
several different functions; we will further elaborate on this later. In order to analyze the results of
these randomized trials, statistical tests are applied to draw a conclusion about the superiority of one
method over the rest. A vast amount of literature exists dealing with this specific problem, see Coffin
and Saltzman (2000); Shilane et al. (2008); García et al. (2010) and references therein, just to cite a few.

If one aims to visualize the results of statistical pairwise comparisons, the volume of data to
display grows a lot if we take into account many problem configurations at the same time. The use
of tables is very common as they summarize a lot of data in a compact way but they become hard to
interpret when the results they contain are grouped in more than two parameters. It is usually very
difficult to draw conclusions from big result tables, and for that reason, authors have developed data
visualization techniques more sophisticated than boxplots or line charts, such as the figures presented
in Demšar (2006) to distinguish between statistically different and indistinguishable algorithms, and
other approaches explained in Bartz-Beielstein et al. (2010). A tool for the same purpose that is worth
mentioning is the Model Viewer feature of the SPSS software (IBM Corp., 2012). When applied
to hypothesis testing, it displays the multiple pairwise comparisons output as a complete graph
where nodes represent the groups being compared, and arcs between them are colored differently
according to the p-value of the corresponding comparison (in orange when the p-value is below a fixed
significance threshold, and in black otherwise). Two remarkable tools are available for the R language.
The paircompviz package (Burda, 2014), closely related to ours, makes use of Hasse diagrams with
p-values in the arcs to represent the outcome of statistical tests. However, it does not use colors and it
is not well suited for representing a large number of comparisons at once (as happens when we deal
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with many different problem configurations) since the resulting Hasse diagram would be too complex.
The factorplot package recently published in this journal (Armstrong, 2013) focuses on hypothesis
testing concerning the coefficients of generalized linear models or coefficients in multinomial logistic
regression models, representing the results of the comparisons in grayscale grid plots. Our approach
is more general and is oriented mainly to simulation-based studies.

Approximate optimization and machine learning constitute two areas of knowledge in which the
problem of representing statistical results under several factors arises naturally. In both cases, we
often want to compare the algorithm performance separately on different problem setups to highlight
the conditions under which certain algorithms may work specially well. Existing studies in the field
of dynamic optimization employ up to 40 numeric tables or graphs in a paper to summarize their
results, due to the number of different experimental settings tested and the large amount of parameters
involved in each problem configuration. Obviously, interpreting such a huge amount of numeric
results becomes unfeasible. Moreover, none of the aforementioned visualization approaches deals
well with multiple factor problems.

In order to solve this problem, a novel color-based technique for multiple pairwise statistical
comparisons under several factors, called Statistical Ranking Color Scheme (SRCS), was introduced in
del Amo and Pelta (2013) for comparing the performance of several dynamic optimization algorithms
under a number of different problem configurations (del Amo et al., 2012). The method relies on
a wise use of color scales that simplifies the identification of overall trends along many different
problem settings simultaneously, thus enabling better understanding and interpretation of the results,
and providing an overview of the circumstances under which each algorithm outperforms (or is
outperformed by) the rest. However, no software package was available so far to automatically
generate this kind of graphs at once from a dataset that collects the numerical results. The code
published in del Amo and Pelta (2013) only calculates the ranking obtained by several algorithms on a
fixed problem configuration, but does not plot the results nor allows for an automatic computation
over a whole set of different problem configurations in order to obtain the images shown in del Amo
et al. (2012).

Our aim here is to present an easy-to-use R package called SRCS (Villacorta, 2015) for creating
fully customizable plots from a results file in experiments involving several factors, so that the user
can configure how the plots should be arranged in the figure and has control over all graphical details
of it, such as colors, fonts, titles, etc. Furthermore, we demonstrate the applicability of our package
in two different contexts. The first is the comparison of algorithms to solve dynamic optimization
problems (DOPs), which is the setting for which SRCS was originally conceived. The second is a novel
application to machine learning tasks, where SRCS is used to compare the performance of several
supervised classification algorithms over synthetic datasets created based on several parameters.
Examples of these are noisy and/or imbalanced data for which parameters like the severity and type
of noise, or the imbalance ratio are considered when generating the dataset from an originally clear
one.

The remainder of this contribution is structured as follows. After the introduction the foundation
of the SRCS technique and how multiple statistical significance results are displayed in color plots is
reviewed. The next section presents an R package implementing SRCS, with a detailed description of
the most important functions, their common uses and how they should be called. Then we explain two
case studies where SRCS has been applied to visualize the statistical results of comparing a number
of algorithms for two very different tasks, namely dynamic optimization and supervised classification
when the data from which the classifier is learned contain noise or are imbalanced. Finally, the last
section is devoted to conclusions and further work.

Statistical ranking color scheme

In this section we briefly review the foundations of SRCS (del Amo and Pelta, 2013). SRCS was
developed for analyzing the relative performance of algorithms on a problem, rather than the absolute
one. In other words, the outcome is a rank for each algorithm that depends on how many algorithms
are better, equal or worse than the algorithm being ranked, where the decision on each pairwise
comparison is given by a non-parametric statistical test over two sets of samples corresponding to
multiple runs of each algorithm in exactly the same conditions. No distinction is made concerning the
magnitude of the advantage or disadvantage in the performance comparison: SRCS is interested only
in whether one algorithm is statistically better or worse than another, but not in how much.

The rank assigned to an algorithm Ai on a problem configuration c (determined by at most 3
parameters) is the sum of the scores obtained by the algorithm when comparing its performance
{perfk}c

i , k = 1, . . . , K against the rest of the algorithms (all pairwise comparisons) over the same
problem configuration c. The performance is given by a sample composed by K repeated observations
obtained after K independent runs of Ai over the same problem configuration. It is assumed that
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either the nature of Ai is itself randomized and gives a different output in each run, as happens with
stochastic optimization algorithms, or the input data used by Ai are a random sample and thus differ
for each run, as happens for instance when using cross-validation (CV) for assessing a classification
algorithm with a given dataset. In the m-fold CV method (typically m = 5 or m = 10), m− 1 folds
are used for building a model and the remaining fold is used for evaluating it and collecting the
performance measure (accuracy or any other). This is repeated until every fold has been used exactly
once as the test fold, hence collecting m different performance values. If the complete m-fold CV
process is repeated r times, each time taking a different m-fold partition of the whole dataset, we
obtain K = m· r independent measurements of the classifier’s performance.

Ranks are calculated as follows. For each j 6= i, if the sample {perfk}c
i is statistically better (in the

sense of the performance measure we are using) than {perfk}c
j , then Ai adds 1 point to its rank, and

Aj subtracts 1 point; if the opposite occurs, Ai subtracts 1 point and Aj adds 1 point. Otherwise, both
algorithms are statistically equivalent so none of them modifies its rank. The initial rank of every
algorithm is 0. With this approach, when comparing N algorithms, the maximum rank attainable by
an algorithm is N − 1, which means it outperforms the rest, and the minimum is −(N − 1), meaning
it is outperformed by the rest.

The statistical test applied in pairwise comparisons could be customized by the user. In our
implementation, we abide by the original proposal of del Amo and Pelta (2013) and use the pairwise
Wilcoxon rank sum test with Holm’s correction for multiple comparisons. Whether the test should be
paired or not depends on the concrete problem we are facing, and can be set by the user. When assessing
optimization algorithms, for instance, the test will most likely be non-paired since usually there is
no relation between, say, the first execution of Ai and the first execution of Aj on the same problem
configuration. In machine learning, the test should most likely be paired because all algorithms should
be evaluated exactly with the same folds, hence the performance of the first execution of Ai is paired
with the first execution of Aj because both were done with the same training and test subsets.

The strength of SRCS lies in its capability of arranging in a single plot the ranks obtained by many
algorithms when tested separately over a lot of different problem configurations. Therefore, one can
quickly visualize which configurations are the most favorable to each algorithm. This is done by using
a grid of heatmaps. A heatmap represents three variables, namely the rank using a color scheme, and
two variables in the X and Y axis of the heatmap, which we call the inner X and Y variables. At the
same time, the whole heatmap is associated with one level of the other two variables, called the outer
X and Y variables.

Figure 1 shows a toy example1 of ranking calculation and depiction of a simulated problem
involving four algorithms that constitute the four levels of the outer Y variable. The problem involves
three more variables, namely the outer X variable (from which only the level outX1 is displayed), the
inner Y variable with four possible levels, and the inner X variable with four possible levels as well. In
Figure 1c the arrangement within the global plot is displayed for a concrete problem configuration
that is allocated in the top left-most corner (as inner X variable = 1, inner Y variable = 4) of the left-most
column of heatmaps (since outer X variable = outX1). The number of levels of all variables does not
have to be the same as in this particular case.

An R package implementing SRCS

The aim of the SRCS package is to offer a set of functions to obtain figures similar to the one above in
a straightforward manner and, at the same time, provide R users with full customization capabilities
over graphical aspects like font size, color, axes aspect and so on. This has been accomplished by
accepting tagged lists that are passed almost unchanged to some built-in graphical functions of the
base package graphics on which our code relies. This package is very flexible and can be easily
adapted so that the final plot has exactly the desired appearance. Package grid was also considered
initially, but the adaptation would require more coding since the default aspect (more elegant) is
slightly more complicated to fit our exact needs.

The general workflow can be summarized as:

1. Use function SRCSranks on the data being analyzed in order to compute the rank for each
combination of factors according to the performance exhibited by that combination, following
the rules explained in the preceding section.

2. Use function plot on the object returned by SRCSranks, indicating where each factor should
be placed in the resulting plot, in order to obtain a color plot depicting the ranks calculated
previously for all the factor combinations.

1Refer to Section Case studies for real examples.
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Figure 1: Rank calculation of the relative performance of four algorithms in a problem configuration
defined by Inner X variable = 1, Inner Y variable = 4, Outer X variable = outX1.

3. (If needed) Use function SRCScomparison on the object returned by SRCSranks, specifying
a concrete factor combination as well, to obtain a qualitative table describing the relative
performance (measured from a statistical point of view) of every pair of levels of the target
variable on the factor combination indicated. Each cell of the table contains a sign "=", ">" or
"<" comparing the level on that row with the level on that column, where "=" stands for "no
statistically significant differences found".

4. (If needed) Use function animatedplot on the object returned by SRCSranks, provided that the
user data had more than one performance column, to visualize a video in which each video
frame displays the ranks plot obtained by one performance column.

5. (If needed) Use function singleplot on the object returned by SRCSranks, specifying a factor
combination that leaves two factors free, to visualize the ranks of one square of the full grid.

Functions SRCSranks and SRCScomparison

Our package exports five functions. Note that most of the arguments have default values to allow for
a straightforward use if no customization is needed. The one that should be called first, prior to the
plotting functions, is the following:

SRCSranks(data, params, target, performance, pairing.col = NULL,
test = c("wilcoxon", "t", "tukeyHSD", "custom"), fun = NULL,
correction = p.adjust.methods, alpha = 0.05, maximize = TRUE, ncores = 1,
paired = FALSE)

We review the meaning of the arguments below. For further details please refer to the corresponding
help pages.

• data is a data frame containing the repeated performance measures together with their problem
configuration (Table 1).

• params is a vector of strings with the names of the columns that define a problem configuration
(here: c("A","B","C")).
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A B C Target Performance Fold

a1 b1 c1 Alg1 72.45 1
...

...
...

...
...

...
a1 b1 c1 Alg1 72.36 K

a1 b1 c1 Alg2 70.12 1
...

...
...

...
...

...
a1 b1 c1 Alg2 69.89 K

a1 b1 c1 Alg3 85.40 1
...

...
...

...
...

...
a1 b1 c1 Alg3 85.21 K

...
...

...
...

...
...

Table 1: A subset of the input data in a problem with a 3-level target variable, three problem-defining
parameters A, B, and C, with K observations of the performance per problem combination, and pairing
between the samples. Showing only a fixed problem configuration defined by A = a1, B = b1, C = c1. In
this case, the column called Fold acts as the pairing column as it links the performance values within a
given problem configuration for the paired statistical tests.

• target is the name of the target column whose levels are compared within each problem
configuration (here, "Target").

• performance is the name of the column containing one or more observations of the response (or
performance) variable associated to a problem configuration and a target level. It can be a string
or a vector of strings, in which case the ranking process will be done independently for each
of the performance columns indicated in the vector. This feature is used for composing videos
showing the evolution of the performance at several time instants.

• pairing.col is the name of the column that indicates which performance values (corresponding
to the same parameter configuration but different levels of the target variable) are linked with
respect to the statistical tests. This value only makes sense if we set paired = TRUE; otherwise,
it will be ignored.

• test is the statistical test (defaults to Wilcoxon) to be used for the pairwise comparisons (paired
indicates whether a paired version of the test will be used or not). "custom" means a custom
test will be applied, implemented by the function passed in the fun argument (which otherwise
will be ignored).

• fun is a function implementing a custom statistical test for two samples that should return a
tagged list with a p.values field, as occurs with pairwise.t.test and paired.wilcox.test,
containing a matrix of p-values whose rows and columns have proper names.

• correction is the p-value adjustment method for multiple pairwise comparisons (defaults to
Holm’s procedure). It must be one of those natively implemented by R (ignored when test =
"tukeyHSD").

• alpha is the significance threshold for the statistical test.

• maximize indicates whether the larger the performance, the better (default) or vice versa.

• ncores is the number of physical cores to be used in the computations. Parallelization is
achieved through the function parLapply of the parallel package.

• paired indicates whether the multiple pairwise comparison tests should be paired or not
(defaults to FALSE). When set to TRUE, the repeated performance observations are taken to be
linked according to the values of the pairing.col column. For a given combination of params,
the multiple observations associated to distinct levels of the target variable but sharing the same
value of pairing.col are linked, as shown in column Fold of Table 1. Hence, all the pairwise
comparisons between any two levels of the target variable will be paired.

The above function receives a data frame, chunks it according to all possible combinations of the
values of params, and compares the levels of the target variable within each group by applying a
statistical test to each binary comparison with the selected p-value adjustment method. When running
in parallel, each processor manages a subset of all the chunks generated, where a chunk is composed
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of all the rows corresponding to a problem configuration. Therefore the input data are distributed
among the processors by subsets of consecutive rows.

The output of the function is an object belonging to the S3 class ‘SRCS’ and extending class
‘data.frame’, which is actually a data frame containing all the params and target columns, a new rank
column, two more columns with the average and the standard deviation of the performance for each
problem combination, and additional columns summarizing the p-values of pairwise comparisons. In
case more than one performance column was passed to the function, the output data frame will not
contain the average, standard deviation and p-values columns, but just one rank column for each of
the performance columns of the input data. The resulting object has been given an S3 class name ‘SRCS’
so that function plot can be applied on it after properly implementing a specific S3 method described
below.

Function SRCScomparison receives the ‘SRCS’ object calculated by SRCSranks together with a prob-
lem configuration, and summarizes the p-values of the multiple pairwise comparisons. All the data are
already present in the data frame returned by SRCSranks but not in an easily interpretable disposition.
Therefore this function basically collects the p-values and prints them on screen in a nice way, either
as a p-value table or showing only the qualitative result of every statistical comparison, i.e., >,=,<
for a fixed α, without presenting the actual p-values. The function only works if the previous call to
SRCSranks was done with only one performance column, because otherwise no p-values or average
performances are calculated in the output data frame. The signature is the following:

SRCScomparison(rankdata, target, alpha = 0.05, pvalues = FALSE, ...)

where rankdata is the data frame produced by SRCSranks, target is the name of the target column in
rankdata, alpha is the significance threshold, pvalues indicates whether p-values or qualitative results
of the comparisons should be printed, and ... is a succession of named arguments corresponding
to columns of rankdata and their values to fully determine a problem configuration. These named
arguments are used for subsetting rankdata. The number of rows of this subset should be equal to the
number of levels of the target variable; otherwise an error is thrown.

The S3 plot method for ‘SRCS’ objects

The data frame produced by SRCSranks is usually passed on to the next function, which is the S3 plot
method for ‘SRCS’ objects and constitutes the main component of the package:

plot(x, yOuter, xOuter, yInner, xInner, zInner = "rank",
out.Y.par = list(), out.X.par = list(),
inner.X.par = list(), inner.Y.par = list(),
colorbar.par = list(), color.function = heat.colors,heatmaps.per.row = NULL,
heatmaps.titles = NULL, annotation.lab = NULL, show.colorbar = TRUE,
heat.cell.par = list(), heat.axes.par = list(), colorbar.cell.par = list(),
colorbar.axes.par = list(), annotation.text.par = list())

Below we provide a brief description of all the parameters. For further details please refer to the
package help pages. Notice only the first five arguments are mandatory.

• x is an ‘SRCS’ object usually generated by a call to SRCSranks but can also be directly composed
by the user. This way, the user can create his own ranks and use the SRCS package only to plot
them, as long as they are properly arranged in a data frame with class ‘SRCS’ as those generated
by SRCSranks.

• yOuter, xOuter, yInner, xInner, zInner are the names of the columns that will be plotted in
each of the dimensions of the plot; see Figure 1c, where the Algorithm plays the role of the outer
Y variable. The zInner variable corresponds to the rank column, which is plotted using colors
in the heatmaps: the higher the value of zInner, the better, and hence, the lighter the color
assigned to it. The location of the levels both in the outer and inner variables depends on the
factor levels for these variables when transforming them to factors, a conversion that takes place
inside the function.

• out.Y.par,out.X.par,inner.X.par,inner.Y.par are tagged lists to customize how variable
labels and level labels are displayed. Some options include hiding a label, setting the char-
acter size, color, location, orientation, whether it should be placed inside a rectangle or not,
border and background color of such a rectangle, and other parameters that will be passed di-
rectly to the text function in the graphics package. Arguments heat.cell.par, heat.axes.par,
colorbar.cell.par, colorbar.axes.par and annotation.text.par play a similar role.

• color.function is a function returning a vector of hexadecimal color codes of length (maxrank
− minrank + 1) which will be used for displaying the heatmaps. Can be either a custom
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function or one of the existing palettes such as heat.colors, terrain.colors, etc. The function
will be called with one argument, namely the number of colors to be returned, (maxrank −
minrank + 1).

• heatmaps.per.row is an integer indicating whether all the levels of the outer X variable are
shown horizontally, or broken in two or more sub-rows.

• show.colorbar is a Boolean that displays or hides a colorbar used as the legend of the figure.

• heatmaps.titles is a vector of strings with the titles of every individual heatmap, if needed.

• annotation.lab is an annotation string that will be displayed on the top left corner of the plot.
This is useful for labeling individual plots when composing videos.

The function relies on the layout function of the graphics package to automatically compose a
suitable layout, taking into account the number of levels of each variable and the user’s choices.

Functions animatedplot and singleplot

Function animatedplot enables composing videos from sequences of plots like Figure 3. This enables
the user to visualize time as a new dimension by plotting statistical pairwise comparison results at
different time moments. This can be useful, for instance, when comparing convergence speed between
many algorithms about which the best solution so far has been annotated at different moments of the
optimization process. The function relies on R’s built-in capability to automatically compose counter-
based filenames when successively generating plots to image files, and then calls ImageMagick (Still,
2005), a widely used open-source software for Windows and Linux, to join them together into a video
file. A number of image formats can be used for the images generated prior to composing the video.
Note that those files are not automatically deleted; the user will have to do it by himself. It is necessary
that the user has previously installed ImageMagick.

The function signature is the following:

animatedplot(x, filename, path.to.converter,
yOuter, xOuter, yInner, xInner, zInner,
width = 800, height = 800, res = 100, pointsize = 16,
delay = 30, type = c("png", "jpeg", "bmp", "tiff"), quality = 75,
compression = c("none", "rle", "lzw", "jpeg", "zip"),
annotations = NULL, ...)

In this case, zInner should be a vector with the names of the columns in x containing the performance
measures to be plotted successively. The video will have as many frames as elements there are in
zInner. The argument path.to.converter is a string with the full path of the converter program
that comes with ImageMagick, e.g., "C:/Program Files/ImageMagick-<version>/convert.exe". The
rest of the arguments allow setting the name of the output video file (including the file format) and
configure the size, resolution, delay between the frames (in 1/100th of a second), percentage of quality
and type of compression. The function also gives the possibility to set an independent annotation in
the upper-left corner of each frame by passing a vector of strings, where each element is the annotation
of the corresponding frame of the sequence. The ... argument accepts any subset of the optional
arguments to be passed to the S3 plot method for ‘SRCS’ objects that plots every frame.

Function singleplot creates a single heatmap focused on the problem configuration defined by
the user. It has the following signature:

singleplot(x, yInner, xInner, zInner = "rank", color.function = heat.colors,
labels.par = list(), colorbar.par = list(), heat.axes.par = list(),
colorbar.axes.par = list(), haxis = TRUE, vaxis = TRUE, title = "",
show.colorbar = TRUE, ...)

The parameters are similar to those already described. The ... argument in this case stands for a
succession of named arguments (as many as necessary) that will be used to subset the data argument.
From that subset, the values of the zInner column will be depicted in a single heatmap, in the locations
indicated the by yInner and xInner columns. If any pair of values of columns (xInner,yInner) is
found more than once after subsetting, an error is thrown.

Case studies

In this section, two examples representative of those typically faced by potential users will be presented,
with the purpose of illustrating the package capabilities and ease of use. None of them is aimed at
finding the best algorithm for the posed problems, but at showing the applicability of the package
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in different areas of knowledge when analyzing experimental results. Therefore, the details of the
experimental framework in each example (such as the tuning of the parameters, the concrete algorithms
and datasets tested and so on) are not relevant for the aforementioned purpose2.

The first example analyses the results of dynamic optimization algorithms while the second deals
with typical machine learning problems where several classification algorithms are compared under
different settings or problem configurations. Note that the package is oriented at the analysis of
experimental results, which do not necessarily come from R code or even from a computer program.
In our case, the techniques assessed in the first example have been implemented in Java and are not
available in R.

Application to dynamic optimization problems

DOPs (Branke, 2001) are a variant of classical optimization problems in which the function being
optimized has time-dependent properties, i.e., changes along the time during the execution of the
optimization algorithm itself. The changes may affect the fitness function, the constraints, the number
of variables of the function or their domain, etc. DOPs have attracted increasing attention due to their
closeness to many real-world changing problems, as explained in the aforementioned work.

Many algorithms have been proposed to solve DOPs as explained in Cruz et al. (2011), most of
them based on Evolutionary Algorithms and other population-based metaheuristics. Here we will
reproduce one of the plots published in del Amo et al. (2012) representing a broad DOP algorithm
comparison, including the R code necessary to obtain them in a straightforward way. The numerical
results represented in the plots have been included as a data frame object called MPB in the SRCS
package. Details on the algorithms compared can be found in the aforementioned work. Below
we briefly comment on the meaning of the parameters involved in a problem configuration, the
performance measure collected in the file and the fitness function we are optimizing.

In a DOP, the fitness function changes along the time. Several aspects modulate how this happens,
such as the time passed between two consecutive changes, or the severity of the change (how different
the function is with respect to the previous version). None of these parameters is known in advance by
any algorithm. The third parameter known to affect the performance is the dimension of the function,
which is user-configurable but remains invariant during the execution.

The fitness function employed, known as the Moving Peaks Benchmark (MPB, Branke 1999; see
Figure 2a), was specifically designed as a DOP benchmark. The problem consists in maximizing a con-
tinuous n-dimensional function that results from the superposition of m peaks, each one characterized
by its own height (hj ∈ R), width (wj ∈ R) and location of its centre (pj ∈ Rn):

MPB(x) =
j

max

{
hj − wj

√
n

∑
i=1

(xi − pj
i)

2

}
, j = 1, . . . , m. (1)

The global optimum is the centre of the peak with the highest parameter hj. To make this function
dynamic, the parameters of the peaks are initialized to some prefixed values, but then change every ω
function evaluations according to certain laws (refer to Branke 1999; del Amo et al. 2012 for details).
The values of the parameters used in the experiments are summarized in Figure 2b. The first three
rows can vary to define every single problem configuration, while the rest are fixed for all problem
configurations.

A lot of different performance measures have been proposed for DOPs as mentioned in Cruz et al.
(2011). Here we employ the most widely accepted one, namely the offline error (del Amo et al., 2012):

eo f f =
1

Nc

Nc

∑
i=1

1
Ne(i)

Ne(i)

∑
j=1

( f ∗i − fij), (2)

where Nc is the total number of changes in the environment during the execution, Ne(i) is the total
number of evaluations allowed in the i-th change, f ∗i is the optimum value of the i-th change, and
fij is the best value found by the algorithm since the beginning of the i-th change up to the j-th
evaluation. It is defined this way to favor those algorithms which converge to good solutions very
quickly after each change. Furthermore, since changes take place at a fixed rate in our experiments
(Ne(i1) = Ne(i2) = . . . = Ne), the formula simplifies to

eo f f =
1

Nc Ne

Nc

∑
i=1

Ne

∑
j=1

( f ∗i − fij). (3)

2This section has been expanded in the package vignette with a third case study.
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(a) The MPB function in two variables.

Parameter Values tested

Dimension (n) {5, 10, 15, 20, 25}
Change period (ω) {40, 100, 200, ..., 1000} · n
Severity (s) {2%, 4%, ..., 20%} · x range

x range [0, 100] for every variable
Correlation coef. (λ) 0.5
Number of peaks (m) 100
Peak heights (hj) U [30, 70]
Peak widths (wj) U [1, 12]
Height severity (hs) 7.0
Width severity (ws) 1.0

(b) Parameters used in the MPB experiments.

Figure 2: Experimental setup in the MPB.

As this is a maximization problem, f ∗i − fij remains always positive. For each problem configuration
{change period, severity, dimension}, every algorithm is run K = 50 independent times, thus collecting
50 offline error measurements which will be used to perform the pairwise statistical tests. In each run,
the fitness function changes Nc = 100 times along the execution, at regular time intervals.

The R code used to plot the results is the following:

> library(SRCS)
> str(MPB)
'data.frame': 220000 obs. of 5 variables:
$ Algorithm: Factor w/ 8 levels "reactive-cs",..: 7 7 7 7 7 7 7 7 7 7 ...
$ Dim : int 5 5 5 5 5 5 5 5 5 5 ...
$ CF : int 40 40 40 40 40 40 40 40 40 40 ...
$ Severity : int 2 2 2 2 2 2 2 2 2 2 ...
$ OffError : num 21.8 19.5 16.7 18.3 22.6 ...

> head(MPB)
Algorithm Dim CF Severity OffError

1 agents 5 40 2 21.81232
2 agents 5 40 2 19.53094
3 agents 5 40 2 16.73922
4 agents 5 40 2 18.32204
5 agents 5 40 2 22.61913
6 agents 5 40 2 19.17223

The above output is the first part of the 50 performance observations of algorithm agents in the problem
configuration defined by Dim = 5, CF = 40, Severity = 2. Note that the tests should be non-paired as
there is no relation between the runs of the algorithms.

> ranks <- SRCSranks(MPB, params = c("Dim", "CF", "Severity"),
+ target = "Algorithm", performance = "OffError", maximize = FALSE, ncores = 2)
> head(ranks);

Algorithm Dim CF Severity rank mean sd agents.pval independent-cs.pval
1 agents 5 40 2 0 18.16 2.698 NA 8.993e-12
2 independent-cs 5 40 2 -5 22.86 1.850 8.993e-12 NA
3 mqso 5 40 2 3 16.86 1.824 1.346e-01 1.324e-15
4 mqso-both 5 40 2 4 16.58 2.094 2.646e-02 5.349e-15
5 mqso-change 5 40 2 4 16.58 2.094 2.646e-02 5.349e-15
6 mqso-rand 5 40 2 4 16.58 2.094 2.646e-02 5.349e-15
reactive-cs.pval mqso.pval mqso-both.pval mqso-change.pval mqso-rand.pval

1 8.993e-12 1.346e-01 2.646e-02 2.646e-02 2.646e-02
2 1.000e+00 1.324e-15 5.349e-15 5.349e-15 5.349e-15
3 1.324e-15 NA 1.000e+00 1.000e+00 1.000e+00
4 5.349e-15 1.000e+00 NA 1.000e+00 1.000e+00
5 5.349e-15 1.000e+00 1.000e+00 NA 1.000e+00
6 5.349e-15 1.000e+00 1.000e+00 1.000e+00 NA
soriga.pval

1 2.812e-12
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2 1.466e-01
3 4.419e-15
4 5.349e-15
5 5.349e-15
6 5.349e-15

Note that the K rows per problem configuration present in the input data have now collapsed into
one row per problem configuration, containing the average performance of the K observations, their
standard deviation, the rank achieved by that configuration, and the corrected p-values of the multiple
pairwise statistical tests against the other levels of the target variable in the same problem configuration.
We can now plot these results with the following code:

> plot(ranks, yOuter = "Algorithm", xOuter = "Dim", yInner = "CF", xInner = "Severity",
+ ## all the remaining arguments are optional, for customizing the appearance
+ inner.Y.par = list(levels.at = c("40", "200", "400", "600", "800", "1000"),
+ lab = "Change\n period", levels.loc = "left"),
+ out.Y.par = list(levels.lab.textpar = list(cex = 1, col = "white"),
+ levels.bg = "black", levels.border = "white"),
+ out.X.par = list(lab = "Dimension", levels.bg = "gray"),
+ colorbar.par = list(levels.at = c("-7", "0", "7")),
+ colorbar.axes.par = list(cex.axis = 0.8),
+ show.colorbar = TRUE
+ )

The results are depicted in Figure 3, which should be interpreted as follows: for a given value of
Dimension, one should look at the whole column of heatmaps vertically to know how the algorithms
behave for that dimension. The arrangement of the cells within the heatmaps is analogous to Figure 1c.
From the figure, we can see that, for instance, soriga only behaves well (although it is not the best
one) when the change period is short, and this is enhanced when increasing the dimensionality of the
problem. This amounts to say that soriga is specially good at detecting a change and recovering from it
by quickly discovering promising regions after the change, although it is not so good at exploiting
these regions (it is beaten by other algorithms when the change period gets larger). On the other hand,
agents also improves its behaviour when the dimensionality grows above 15 (otherwise, mqso-rand
dominates the rest when considering a 5- or 10-variable fitness function), but also when severity
increases, becoming the best algorithm in those cases (right part of the heatmaps).

We could ask for a single heatmap as well, defined by some values of the outer Y and X variables,
for instance Algorithm = soriga and Dimension = 25, using the following call:

> singleplot(x = ranks, zInner = "rank", yInner = "CF",
xInner = "Severity", colorbar.par = list(levels.at = c("-7", "0", "7")),
labels.par = list(ylab = "Change period"), Algorithm = "soriga", Dim = "25")

The output is shown in Figure 4. To obtain a qualitative performance comparison for a given
problem configuration, for instance when Change period = 40, Dimension = 25, Severity = 20, we can use
the following call:

SRCScomparison(ranks, "Algorithm", CF = 40, Dim = 25, Severity = 20, pvalues = FALSE)

which will produce the following matrix object as a result:

agents indep-cs mqso mqso-both mqso-change mqso-rand reactive-cs soriga
agents NA "<" "<" "<" "<" "<" "<" "<"
indep-cs ">" NA "<" "<" "<" "<" "=" ">"
mqso ">" ">" NA ">" "=" ">" ">" ">"
mqso-both ">" ">" "<" NA "<" "=" ">" ">"
mqso-change ">" ">" "=" ">" NA ">" ">" ">"
mqso-rand ">" ">" "<" "=" "<" NA ">" ">"
reactive-cs ">" "=" "<" "<" "<" "<" NA ">"
soriga ">" "<" "<" "<" "<" "<" "<" NA

Composing a video file to visualize convergence In the vignette associated to this package it is
shown how to create a video to visualize an extra temporal component in the results. The data were
collected from the aforementioned executions of dynamic optimization algorithms over the MPB
problem, annotating the offline error at the instant before every change. Both the data, the R script
and the resulting video can be downloaded from the first author’s personal home page3, which is also
given as URL in the package description. Please refer to the vignette for further details.

3http://decsai.ugr.es/~pjvi/r-packages.html
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Figure 3: Results of several dynamic optimization algorithms on the MPB. This plot mirrors Figure 5
of del Amo et al. (2012).
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Figure 4: A single heatmap generated by singleplot for problem configurations where Algorithm =
soriga, Dimension = 25.

Dataset #EX #AT #CL Dataset #EX #AT #CL

automobile 159 25 (15/10) 6 glass 214 9 (9/0) 7
balance 625 4 (4/0) 3 ionosphere 351 33 (33/0) 2
cleveland 297 13 (13/0) 5 pima 768 8 (8/0) 2
ecoli 336 7 (7/0) 8 vehicle 846 18 (18/0) 4

Table 2: Description of the classification datasets.

Application to machine learning: Noisy datasets

The second case study is a machine learning experiment involving six supervised classification
algorithms tested over a number of noisy datasets with several types of noise and noise severities. The
aim is to assess how noise affects each of the classifiers and whether the behaviour changes with those
parameters. The algorithms tested were the following: (a) the k-Nearest-Neighbours classifier with three
different values of k (k = 1, k = 3 and k = 5), (b) Repeated Incremental Pruning to Produce Error Reduction
(RIPPER), (c) a Support Vector Machine (SVM), and (d) the C4.5 tree-based rule induction classifier. The
reader may refer to Cohen (1995); Bishop (2006) for a review of all these algorithms.

R implementations have been used in all cases. We coded the k-NN to incorporate the HVDM
distance (Wilson and Martinez, 1997) for heterogeneous (continuous and nominal) attributes. The
SVM was taken from the e1071 package, version 1.6-4 (Meyer et al., 2014), which contains a wrapper
for the libsvm C++ library (Chang and Lin, 2001). Algorithms C4.5 and RIPPER were taken from
RWeka, version 0.4-24 (Hornik et al., 2009), which offers an R interface to the Weka framework (Witten
and Frank, 2005). The datasets employed in the experiment (Table 2) have been taken from the UCI
repository (Lichman, 2013), and are among the most widely used in machine learning studies. For
each dataset, the number of classes (#CL), the number of examples (#EX) and the number of attributes
(#AT), along with the number of numeric and nominal attributes are presented.

In the literature, two types of noise can be distinguished in a dataset (Zhu and Wu, 2004): (i)
class noise (examples labeled with a class distinct from the true one) and attribute noise (that usually
refers to erroneous attribute values). The amount and type of noise present in real-world datasets are
usually unknown. In order to control the amount of noise in the datasets and check how it affects the
classifiers, noise is introduced into each dataset in a controlled manner. Four different noise schemes
have been used in order to introduce a noise level x% into each dataset (Zhu and Wu, 2004):

1. Introduction of class noise.

• Random class noise (CLA_RAND). x% of the examples are randomly selected and turned
corrupt. The class labels of these examples are randomly replaced by another one from
the M classes.

• Pairwise class noise (CLA_PAIR). Let X be the majority class and Y the second majority
class. An example with the label X has a probability of x/100 of being incorrectly labeled
as Y.

2. Introduction of attribute noise.

• Random attribute noise (ATT_RAND). x% of the values of each attribute in the dataset are
randomly selected and turned corrupt. To corrupt each attribute ATi, x% of the examples
in the dataset are chosen, and their ATi value is replaced by a random value from the
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domain Di of the attribute ATi. An uniform distribution is used for both numerical and
nominal attributes.

• Gaussian attribute noise (ATT_GAUS). This scheme is similar to the uniform attribute noise,
but in this case, the ATi values are corrupted, adding a random value to them following a
Gaussian distribution of mean = 0 and standard deviation = (max−min)/5, being max and
min the limits of the attribute domain (Di). Nominal attributes are treated as in the case of
the uniform attribute noise.

The four noise schemes have been considered independently and for each type of noise, the noise
levels ranging from x = 0% (base datasets) to x = 50%, by increments of 5%, have been studied. The
accuracy estimation of the classifiers in a dataset is obtained by means of a stratified 5-fold cross-
validation, which is the standard in the field. For obtaining multiple observations, the cross-validation
procedure was repeated five times, thus obtaining K = 25 performance (accuracy rate) values for each
algorithm in each problem configuration, defined by {dataset, noise type, noise severity}. These values
will later be used in pairwise statistical comparisons. For a given problem configuration, exactly the
same partitions of a dataset were used with all the algorithms, and for that reason, the observations
are paired (recall Table 1).

Performing pairwise comparisons separating the results by dataset can be particularly useful in
certain machine learning works which include a very small number of datasets. In those studies, the
conventional approach consisting in summarizing the performance of an algorithm over a dataset
with a single value and applying post-hoc pairwise comparisons between the algorithms with these
summaries does not work, because each of the samples being compared has too few elements (due to
the reduced number of datasets) to apply a statistical test. In such cases, the SRCS approach would be
more suitable and would yield a reliable comparison for each dataset separately.

The R script which runs the algorithms over the datasets mentioned and generates the results to be
analyzed can be downloaded from the first author’s home page mentioned before, together with the
datasets. The performance results obtained are already included in the package, to save time. When
SRCS is loaded, a data frame object called ML1 containing the results of this experiment is created:

> str(ML1)

'data.frame': 52800 obs. of 6 variables:
$ Algorithm : Factor w/ 6 levels "1-NN","3-NN",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Dataset : Factor w/ 8 levels "automobile","balance",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Noise type : Factor w/ 4 levels "ATT_GAUS","ATT_RAND",..: 1 1 1 1 1 1 1 1 1 1 ...
$ Noise ratio: num 0 0 0 0 0 0 0 0 0 0 ...
$ Fold : int 1 2 3 4 5 6 7 8 9 10 ...
$ Performance: num 77.4 54.5 86.7 81.2 84.8 ...

> head(ML1)

Algorithm Dataset Noise type Noise ratio Fold Performance
1 1-NN automobile ATT_GAUS 0 1 77.41935
2 1-NN automobile ATT_GAUS 0 2 54.54545
3 1-NN automobile ATT_GAUS 0 3 86.66667
4 1-NN automobile ATT_GAUS 0 4 81.25000
5 1-NN automobile ATT_GAUS 0 5 84.84848
6 1-NN automobile ATT_GAUS 0 6 84.37500

The R code to compute and plot the ranks with SRCS is the following.

> ranks <- SRCSranks(ML1, params = c("Dataset", "Noise type", "Noise ratio"),
+ target = "Algorithm", performance = "Performance", pairing.col = "Fold",
+ maximize = TRUE, ncores = 1, paired = TRUE)
> plot(ranks, yOuter = "Dataset", xOuter = "Algorithm", yInner =
+ "Noise type", xInner = "Noise ratio", zInner = "rank", out.X.par =
+ list(levels.lab.textpar = list(col = "white"), levels.bg = "black",
+ levels.border = "white"), out.Y.par = list(levels.bg = "gray"),
+ colorbar.axes.par = list(cex.axis = 0.8), show.colorbar = TRUE)

The results are summarized in Figure 5. This figure shows that higher values of k in the k-NN classifier
make the model perform better than lower values of k (with the exception of the automobile dataset,
where the opposite happens). Thus, 5-NN generally is better than 3-NN, and 3-NN is better than
1-NN for the different datasets considered. This fact is in accordance with the work of Kononenko
and Kukar (2007) that claimed that the value of k in k-NN determines a higher or lower sensitivity to
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Figure 5: Results of six supervised classification algorithms on eight noisy datasets.

noise. SVM presents variable results, depending on the dataset analyzed. For some of them, such as
automobile or glass, the results are predominantly in red colours. Other datasets, such as vehicle or
cleveland, show that SVM can work relatively well when the noise level is low, but its performance is
deteriorated when the noise level increases. These facts agree with the results of the literature that
state that SVM is usually noise-sensitive, particularly with high noise levels (Nettleton et al., 2010).
However, for other datasets considered, such as balance, SVM obtains good results. Finally, one must
note that both C4.5 and RIPPER, which are considered robust to noise (Zhu and Wu, 2004), obtain
intermediate results in the eight datasets considered.

Conclusions and further work

In this paper we have introduced an R package called SRCS, aimed at testing and plotting the results
of multiple pairwise statistical comparisons in different configurations of a problem, defined by several
parameters. The package implements a previously published visualization technique to summarize
the output of many comparisons at the same time by using a careful spatial arrangement to display
the result for each problem configuration defined by a parameter combination. As we have explained,
our code gives the user full control over all the graphical options so as to fully customize the plot.
Furthermore, we have taken this approach a step further by considering the time as another parameter.
This turns static images into videos to take into account this new dimension, but allows constructing
convergence plots for all problem configurations simultaneously. It should be noticed that, while
videos have been conceived to represent convergence, they can also be used with another variable in
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any setting in which it makes sense to watch the evolution of statistical results.

We have successfully applied our package to two very different problems, namely dynamic
optimization problems and machine learning problems. The latter represents a novel use of SRCS that
has proven very helpful for comparing classification algorithms under different circumstances of noise
type, noise levels, imbalance ratios and shape of the data. The SRCS approach enables visualizing
the results of a number of algorithms at a glance, which in turns leads to an easier interpretation and
may also reveal trends relating different problem configurations that otherwise would be harder to
uncover, such as the configurations where each algorithm (or family of algorithms) performs best.

An interesting improvement would consist in adding interactivity to the plots. The user could
manually re-arrange the plots or add/remove problem parameters and/or target levels, and visually
check whether such modifications cause a strong change in the results or not as the plot would be
automatically updated.
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An R Package for the Panel Approach
Method for Program Evaluation: pampe
by Ainhoa Vega-Bayo

Abstract The pampe package for R implements the panel data approach method for program evalua-
tion designed to estimate the causal effects of political interventions or treatments. This procedure
exploits the dependence among cross-sectional units to construct a counterfactual of the treated unit(s),
and it is an appropriate method for research events that occur at an aggregate level like countries or
regions and that affect only one or a small number of units. The implementation of the pampe package
is illustrated using data from Hong Kong and 24 other units, by examining the economic impact of the
political and economic integration of Hong Kong with mainland China in 1997 and 2004 respectively.

An introduction to the panel data approach and program evaluation
methods

Program evaluation methodologies have long been used by social scientists to measure the effect of
different economic or political interventions (treatments). The problem is, of course, that you cannot
observe the outcome both under the intervention and in the absence of the intervention simultaneously,
hence the need for program evaluation methods. Traditionally, comparative case studies have been the
preferred method by researchers in order to compare units affected by a treatment or event (dubbed
the treatment group) to one or more units not affected by this intervention (the control group). The idea
is to use the outcome of the control group to obtain an approximation of what would have been the
outcome of the treated group had it not been treated. In more recent years, synthetic control methods
(Abadie and Gardeazabal, 2003; Abadie et al., 2010) have addressed these issues by introducing a
data-driven procedure for selecting the control group. However, the synthetic control methods are not
without shortcomings: since the synthetic control is calculated as a convex combination of the units
in the donor pool, and thus it does not allow for extrapolation, it might be that a suitable synthetic
control for our treated unit does not exist. Furthermore, the synthetic control is designed to be used
with explanatory variables or covariates that help explain the variance in the outcome variable. For
the cases when the researcher finds that extrapolation is needed to obtain a suitable comparison for the
treated unit, or when the covariates available do not properly explain the outcome on which the effect
of the treatment is intended to be measured, he or she might prefer to use the panel data approach for
program evaluation by Hsiao et al. (2012). The panel data approach for constructing the counterfactual
of the unit subjected to the intervention is to use other units that are not subject to the treatment to
predict what would have happened to the treated unit had it not been subject to the policy intervention.
The basic idea behind this approach is to rely on the correlations among cross-sectional units. They
attribute the cross-sectional dependence to the presence of common factors that drive all the relevant
cross-sectional units.

As such, the aim of this article is to present the package pampe that implements the panel data
approach for program evaluation procedures in R, which is available from the Comprehensive R
Archive Network (CRAN) at http://CRAN.R-project.org/package=pampe. The main function in the
package is pampe(), which computes the counterfactual for the treated unit using the modeling strategy
outlined by Hsiao et al. (2012). The function includes an option to obtain placebo tests. There is an
additional function robustness(), which conducts a leave-one-out robustness on the results. The data
example is also from Hsiao et al. (2012), which introduced the panel data approach methodology to
study the effect of the political and economic integration of Hong Kong with mainland China using
other countries geographically and economically close to Hong Kong as possible controls.

The article is organized as follows. The following section is a brief overview of the panel data
approach as defined by Hsiao et al. (2012). The main section of the paper, titled Implementing pampe
in R, demonstrates the implementation of this method and the use of the pampe package with an
example, including how to perform inference and robustness checks.

The panel data approach method for program evaluation

The panel data approach for program evaluation exploits the dependence among cross-sectional units
to construct a counterfactual of the treated unit(s), to estimate how the affected unit would have
developed in the absence of an intervention. The estimated effect of the policy intervention is therefore
simply the difference between the actual observed outcome of the treated unit and this estimated
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counterfactual. Hsiao et al. (2012) provide a thorough description of the methodology. Here the focus
is on how this method is implemented in the pampe package and thus only a brief overview of the
procedure is provided.

Let us consider J + 1 units over t = 1, . . . , T, . . . , T′ periods. Without loss of generality, only the
first unit is affected uninterruptedly by an intervention in period T during periods T, T + 1, . . . , T′,
after an initial pre-intervention period 1, . . . , T − 1. The left over J units are the controls that form
the so-called “donor pool”, and they are not affected by the intervention. Let Yjt denote the outcome
variable – the variable for which the intervention effect is being measured – of unit j at period t. Y1

jt and

Y0
jt denote the outcome of unit j at time t under treatment and in the absence of treatment respectively.

We usually do not simultaneously observe both Y1
jt and Y0

jt, but instead we observe Yjt, which can be
written as

Yjt = djtY1
jt + (1− djt)Y0

jt;

where djt is a dummy variable that takes value 1 if unit j is under treatment at time t, and value
0 otherwise (Rubin, 1974). In this case and without loss of generality, only the first unit is under
intervention, so we have that

djt =

{
1 if j = 1 and t ≥ T,
0 otherwise.

The treatment or intervention effect for the treated unit can therefore be expressed as

α1t = Y1
1t −Y0

1t.

Of course, we do not observe Y0
1t for t ≥ T. Thus, the goal of the panel data approach is to obtain an

estimate for the effect of the intervention, α̂1t, during the post-treatment period T, . . . , T′ by attempting
to replicate the economy of the treated unit in the pre-intervention period 1, . . . , T − 1; that is, by
obtaining an estimate of the outcome variable under no treatment Y0

1t. It is assumed that there is no
treatment interference between units, i.e., the outcome of the untreated units is not affected by the
treatment of the treated unit.

The panel data approach developed by Hsiao et al. (2012) attempts to predict Y0
1t for t ≥ T and

therefore to estimate the treatment effect α1t by exploiting the dependency among cross-sectional units
in the donor pool and the treated unit, using the following modeling strategy: use R2 (or likelihood
values) in order to select the best OLS estimator for Y0

1t using j out of the J units in the donor pool,
denoted by M(j)∗ for j = 1, . . . , J; then choose M(m)∗ from M(1)∗, . . . , M(J)∗ in terms of a model
selection criterion, like AICc, AIC or BIC.1

This strategy is founded on the following underlying model. Hsiao et al. (2012) assume that Y0
it is

generated by a dynamic factor model of the form:

Y0
jt = γj + ftbj + εit, (1)

where γj denotes an individual-specific effect, ft is a (1× K) vector that denotes time varying unob-
served common factors, bj denotes a (K× 1) vector of constants that can vary across units, K is the
number of common factors, and ε jt is the time varying idiosyncratic component of individual j.

Y0
1t could be predicted using the underlying model Hsiao et al. (2012) specify and the assump-

tions they delineate. Instead, they suggest a more practical approach, i.e., using the remaining
non-intervened units in the donor pool Y−1t = (Y2t, . . . , YJt) to predict Y0

1t

Y0
1t = α + βY−1t + ε1t. (2)

Note that the panel data approach calculates OLS models of up to J + 1 parameters; so that if the length
of the pre-treatment period t = 1, 2, . . . , T′ − 1 is not of a much higher order than that, the regressions
M(J− 1)∗, M(J)∗ cannot be calculated because there are not enough degrees of freedom. To avoid this
problem, we propose the following slight modification to the previously outlined modeling strategy:
use R2 in order to select the best OLS estimator for Y0

1t using j out of the J units in the donor pool,
denoted by M(j)∗ for j = 1, . . . , T0 − 4; then choose M(m)∗ from M(1)∗, . . . , M(T0 − 4)∗ in terms of
a model selection criterion (in our case AICc). Note that the key difference is that while we allowed
models up to M(J)∗, this is now modified to allow models up to M(T0 − 4)∗, with T0 − 4 < J.2

To implement the method, the pampe package relies on the use of the regsubsets() function from
the leaps package by Lumley (2014). The main user-available function of the pampe package, also
called pampe(), calculates all OLS models for Y0

1t as dependent variable and using j out of the J units

1Hsiao et al. (2012) conduct the analysis using both AIC and AICc criteria; in the implementation of the method
in the pampe package both criteria plus BIC are included.

2T0 − 4 is to allow for at least three degrees of freedom.
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in the donor pool as explanatory variables, denoted by M(j)∗ for j = 1, . . . , J or up to order J′ < J if
specified by the user, which would override the default outlined above; then the best one is kept in
terms of a model selection criterion (AIC, AICc, or BIC) also specified by the user.

In order to perform inference on the results obtained, the package implements the so-called placebo
studies procedure outlined in Abadie and Gardeazabal (2003); Abadie et al. (2010) and Abadie et al.
(2015).3 The basic idea behind the placebo studies is to iterate the application of the panel data
approach by reassigning the treatment to other non-treated units, i.e., to the controls in the donor pool;
or by reassigning the treatment to other pre-intervention periods, when the treatment had yet to occur.
The set of placebo effects can therefore be compared to the effect that was estimated for the “real”
time and unit, in order to evaluate whether the effect estimated by the panel data approach when and
where the treatment actually occurred is large relative to the placebo effects.

Implementing pampe in R

This section expands on the implementation of the method itself as well as the placebo studies and how
they can be interpreted by the user by means of two examples: the political and economic integration
of Hong Kong with mainland China in 1997 and 2004, plus the reassignation of the treatment to other
units in the control group and different pre-treatment dates. Hsiao et al. (2012) use a combination of
other countries to construct a counterfactual for Hong Kong that resembled the economy prior to the
political and economic integration. The growth dataset, obtained from the supplemental materials of
Hsiao et al. (2012) contains information on the quarterly real GDP growth rate of 24 countries (the
donor pool) and Hong Kong from 1993 Q1 to 2008 Q1, computed as the change with respect to the
same quarter in the previous year.

> library("pampe")
> data("growth")

The data is organized in standard cross-sectional data format, with the variables (the quarterly
real GDP growth rate of the countries in the donor pool act as explanatory variables) extending across
the columns and the quarters (time-periods) extending across rows. It is important for the user to
have his or her data in this standard format to correctly apply the methodology. Naming the rows and
especially the columns is also strongly recommended though not required.

If the user does not have the data in standard wide format, the pampe package also includes an
optional pampeData function that prepares the data according to the required format. It also helps
reshape the data in case the user has it in long format. This function should be run prior to the pampe
function. For example, if we had a dataset in long format such as the Produc dataset from the plm
package:

> library("plm")
> data(Produc, package = "plm")
> long.data <- plm.data(Produc)
> head(long.data)

state year pcap hwy water util pc gsp emp unemp
1 ALABAMA 1970 15032.67 7325.80 1655.68 6051.20 35793.80 28418 1010.5 4.7
2 ALABAMA 1971 15501.94 7525.94 1721.02 6254.98 37299.91 29375 1021.9 5.2
3 ALABAMA 1972 15972.41 7765.42 1764.75 6442.23 38670.30 31303 1072.3 4.7
4 ALABAMA 1973 16406.26 7907.66 1742.41 6756.19 40084.01 33430 1135.5 3.9
5 ALABAMA 1974 16762.67 8025.52 1734.85 7002.29 42057.31 33749 1169.8 5.5
6 ALABAMA 1975 17316.26 8158.23 1752.27 7405.76 43971.71 33604 1155.4 7.7

Note that "year" is the name of the time index and "state" is the id index, and that there is data
on eight variables. If we want to keep data on the variable "pcap" and transform that into a wide
format, in which "year" spans across rows and "state" across columns, we can use the following call
to pampeData for that.

> wide.data <- pampeData(long.data, start = 1970, frequency = 1,
+ timevar = "year", idvar = "state", "yvar" = "pcap")
> wide.data[1:5, 1:5]

3The user will notice that these are not the same inference tests as the ones proposed by Hsiao et al. (2012). The
problem with those tests is that they cannot be carried out in a systematic way and therefore, they cannot be built
into the package. However, the user can still choose to use the pampe() function without placebo tests and carry
out the inference in such a way if they wish to do so, using the acf() and arima() functions from the base package
stats.
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time.pretr
The pre-treatment periods, up to the introduction of the treatment. For
example, if you have 10 pre-treatment periods and the treatment was
introduced in the 11th period, this argument could be 1:10.

time.tr
The treatment period plus the periods for which you want to check the
effect. For example, if the treatment was introduced in the 11th period
and you want results for 9 more periods, it would be 11:20.

treated
The treated unit, i.e., the unit that receives the intervention. It can be a
name or the index of the column if the columns in the data matrix are
named (which is recommended).

data The name of the data matrix to be used, e.g., growth.

Table 1: Necessary arguments for the pampe function.

ALABAMA ARIZONA ARKANSAS CALIFORNIA COLORADO
1970 15032.67 10148.42 7613.26 128545.4 11402.52
1971 15501.94 10560.54 7982.03 132263.3 11682.06
1972 15972.41 10977.53 8309.01 134451.5 12010.91
1973 16406.26 11598.26 8399.59 135988.4 12473.28
1974 16762.67 12129.06 8512.05 136827.3 12964.14

Of course, the data above is for the "pcap" variable.

Having introduced the optional data preparation, let us now continue with the main function and
example of this paper, the growth dataset and the pampe function. Observe how the wide.data above
is in an equivalent format as the growth data below after having applied the pampeData function.

> growth[1:10, 1:5]

HongKong Australia Austria Canada Denmark
1993Q1 0.062 0.040489125 -0.013083510 0.01006395 -0.012291821
1993Q2 0.059 0.037856919 -0.007580798 0.02126387 -0.003092842
1993Q3 0.058 0.022509481 0.000542671 0.01891943 -0.007764421
1993Q4 0.062 0.028746550 0.001180751 0.02531683 -0.004048589
1994Q1 0.079 0.033990391 0.025510849 0.04356715 0.031094401
1994Q2 0.068 0.037919372 0.019941313 0.05022538 0.064280003
1994Q3 0.046 0.052289413 0.017087875 0.06512183 0.045955455
1994Q4 0.052 0.031070896 0.023035197 0.06733068 0.055166411
1995Q1 0.037 0.008696091 0.025292696 0.05092120 0.048057177
1995Q2 0.029 0.006773674 0.021849955 0.03152506 0.011953605

In this example, the treated unit – Hong Kong – is in the first column, while the 24 non-treated
units are in columns 2 to 25; and the time-periods (quarters) are in rows. Note how both the rows and
the columns are named for ease of use and interpretation.

Using the function pampe()

Once the data is in the correct format, it is just a matter of applying the pampe() command to the
dataset. Note that it requires a balanced dataset, i.e., no missing values are allowed.4 As the bare
minimum, the command requires the arguments specified in Table 1.

No additional arguments are necessary, though one may choose to pass other arguments as well.
Setting the controls argument is especially recommended, otherwise the default is to use all the
remaining (non-treated) columns in the dataset as controls. For example, let us run the pampe()
functions using only the bare-bones arguments for the economic integration of Hong Kong as carried
out by Hsiao et al. (2012). We first set the pre-treatment and treatment periods; the economic integration
of Hong Kong happened in 2004Q1. The pre-treatment period therefore ranges from 1993Q1 to 2003Q4,
and the treatment and post-treatment goes from 2004Q1 to 2008Q1. It is useful to define the periods

4This might change in future versions.
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objects before calling the function so that you can use them later when processing the results, although
inputting them directly into the function call is of course an option.

> time.pretr <- c("1993Q1", "2003Q4")
> time.tr <- c("2004Q1", "2008Q1")
> ## Or if you know the row indexes use those directly, e.g.
> time.tr <- 45:61
> ## The treated unit
> treated <- "HongKong"
> ## Call the function with the bare minimum arguments specified
> econ.integ <- pampe(time.pretr = time.pretr, time.tr = time.tr,
+ treated = treated, data = growth)

Notice that the defaults, which are used in this case, are to use all the controls and the AICc
criterion. You can print out a summary of the optimal model:

> summary(econ.integ$model)

Call:
lm(formula = fmla, data = data[time.pretr, ])

Residuals:
Min 1Q Median 3Q Max

-0.016264 -0.008368 -0.001369 0.008332 0.031529

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.001940 0.003703 -0.524 0.60339
Austria -1.011560 0.168235 -6.013 6.03e-07 ***
Italy -0.317654 0.159060 -1.997 0.05321 .
Korea 0.344735 0.046899 7.351 9.72e-09 ***
Mexico 0.312858 0.051008 6.134 4.14e-07 ***
Norway 0.322183 0.053776 5.991 6.45e-07 ***
Singapore 0.184509 0.054569 3.381 0.00172 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0117 on 37 degrees of freedom
Multiple R-squared: 0.931, Adjusted R-squared: 0.9198
F-statistic: 83.16 on 6 and 37 DF, p-value: < 2.2e-16

This replicates the results obtained by Hsiao et al. (2012) for the economic integration of Hong Kong
using all 24 units as the possible controls, and the AICc selection criterion. That is, the counterfactual
for Hong Kong is built as a combination of Austria, Italy, Korea, Mexico, Norway, and Singapore;
i.e., those are the countries that best replicate the economy of Hong Kong in the period prior to the
economic integration, according to the model by Hsiao et al. (2012).

If one wishes to fine-tune the process, the arguments specified in Table 2 can be passed to the
function as well.5

For example, let us now try to replicate the results obtained by Hsiao et al. (2012) for the political
integration of Hong Kong using the AICc criterion. If one were not to specify the set of possible
controls as they do, the function would aimt to use all controls. Since those are too many given the
pre-treatment period and the user has not specified a custom nvmax, the default nvmax setting would
switch to the length of the pre-treatment period minus four to allow for at least three degrees of
freedom.

The treated unit remains the same, but the pre-treatment and treatments are different. If we call
the function with the AICc criterion, and use the default ("All") for the controls:

> treated <- "HongKong"
> time.pretr <- 1:18 # 1993Q1-1997Q2
> time.tr <- 19:44 # 1997Q3-2003Q4
> pol.integ.all <- pampe(time.pretr = time.pretr, time.tr = time.tr,
+ treated = treated, data = growth, select = "AICc")

5There is one last argument, placebos, that is not mentioned here but it will be discussed further in Sec-
tion Placebo tests.
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controls

The units used as controls to calculate the counterfactual, that have not
received the treatment. By default, all the remaining (after removing the
treated) columns in the data matrix are included as columns, but specific
controls can be specified using their column name, e.g., c("Australia",
"Austria", "Canada"), or their column index, e.g., 2:4.

nbest

The original method by Hsiao et al. (2012) specifies to keep the best
model in terms of R2 for each M(j), hence the default of this argument
is one. However the user might choose to keep the best 2, 3, . . . before
moving on to the second step of the method by changing the default of
this argument.

nvmax

Indicates how many subsets of controls should the method check in
the first step of the model. The original method by Hsiao et al. (2012)
checks all subsets up to the biggest size, M(j)∗ up to M(J)∗ and hence
the default (nvmax = J); but if the pre-treatment period is too short
such that this might not be possible, the slight modification if checking
subsets up to T0 − 4 is proposed and this is the alternative default the
method takes if J is too big for the pre-treatment period and the user has
not specified an alternative nvmax. If the user-specified nvmax is too big,
it will throw out an error indicating to change this argument or reduce
the number of controls.

select
The model selection criterion for the second step of the method. In the
original article they propose either AICc (default) or AIC. The user can
choose between those two or BIC as well.

Table 2: Other non-required arguments for the pampe function.

We will obtain the following results:

Call:
lm(formula = fmla, data = data[time.pretr, ])

Residuals:
Min 1Q Median 3Q Max

-1.330e-03 -3.293e-04 9.270e-06 1.610e-04 1.621e-03

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.121549 0.003623 33.552 6.80e-10 ***
Canada 0.448293 0.027020 16.591 1.76e-07 ***
Germany 0.193300 0.040933 4.722 0.00150 **
Italy 0.657226 0.069384 9.472 1.27e-05 ***
Japan -0.923212 0.038457 -24.007 9.66e-09 ***
Korea -1.022964 0.040920 -24.999 7.01e-09 ***
UnitedKingdom 0.856127 0.054689 15.654 2.77e-07 ***
Philippines -0.849836 0.042193 -20.142 3.85e-08 ***
Indonesia -0.118165 0.016813 -7.028 0.00011 ***
Thailand 0.221161 0.021389 10.340 6.61e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.001186 on 8 degrees of freedom
Multiple R-squared: 0.9982, Adjusted R-squared: 0.9962
F-statistic: 498.3 on 9 and 8 DF, p-value: 5.029e-10

That is, the call does not throw out an error because of the slightly modified modeling strategy
specified in the previous section, but this does not replicate the results obtained by Hsiao et al. (2012)
and might not be what the user wants.
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In this case, to replicate their results, the set of possible controls has to be specified first, and then
we call the function:

> possible.ctrls <- c("China", "Indonesia", "Japan", "Korea", "Malaysia",
+ "Philippines", "Singapore", "Taiwan", "UnitedStates", "Thailand")
> pol.integ <- pampe(time.pretr = time.pretr, time.tr = time.tr, treated = treated,
+ controls = possible.ctrls, data = growth)

Call:
lm(formula = fmla, data = data[time.pretr, ])

Residuals:
Min 1Q Median 3Q Max

-0.007304 -0.004851 0.001140 0.004367 0.007178

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.02630 0.01705 1.543 0.1469
Japan -0.67596 0.11169 -6.052 4.08e-05 ***
Korea -0.43230 0.06338 -6.821 1.22e-05 ***
UnitedStates 0.48603 0.21952 2.214 0.0453 *
Taiwan 0.79259 0.30989 2.558 0.0238 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.005775 on 13 degrees of freedom
Multiple R-squared: 0.9314, Adjusted R-squared: 0.9103
F-statistic: 44.15 on 4 and 13 DF, p-value: 1.919e-07

This replicates their results. Note that this output suggests that out of the pre-selected potential
controls (China, Indonesia, Japan, Korea, Malaysia, Philippines, Singapore, Taiwan, United States, and
Thailand) the model suggests that a combination of Japan, Korea, United States, and Taiwan is the
optimal one to replicate the economy of Hong Kong in the pre-economic integration period, while
discarding the remaining countries.

If the user wants to replicate their results with AIC:

> pol.integ.aic <- pampe(time.pretr = time.pretr, time.tr = time.tr,
+ treated = treated, controls = possible.ctrls,
+ data = growth, select = "AIC")

Call:
lm(formula = fmla, data = data[time.pretr, ])

Residuals:
Min 1Q Median 3Q Max

-0.0068954 -0.0030066 0.0009741 0.0024680 0.0078690

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.03161 0.01639 1.928 0.077815 .
Japan -0.69002 0.10560 -6.534 2.79e-05 ***
Korea -0.37668 0.06884 -5.472 0.000143 ***
UnitedStates 0.80994 0.28729 2.819 0.015480 *
Philippines -0.16237 0.09993 -1.625 0.130163
Taiwan 0.61889 0.31097 1.990 0.069850 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.005442 on 12 degrees of freedom
Multiple R-squared: 0.9438, Adjusted R-squared: 0.9204
F-statistic: 40.3 on 5 and 12 DF, p-value: 4.291e-07

Thus, the user can play around with the controls, nbest, nvmax and select arguments such that
they better suit their needs and their particular dataset. As the bare minimum, time.pretr, time.tr,
treated and data are required for the function to run.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 112

controls A named vector of the controls finally included in the model.

model
An object of class ‘lm’ with the optimal model. Usual methods such as
fitted(), residuals(), summary(), etc. can be used on it.

counterfactual
A named matrix of the actual path together with the path of the estimated
counterfactual for the time.pretr and time.tr periods.

data
The data used for the estimation, stored for later use in, for example, the
robustness function also included in the package, which is explained
later on.

Table 3: Results given by the pampe function.

Obtaining and transmitting results

Once the function has been correctly run and the user is satisfied with the model, the next step is to
process the results obtained. The pampe() function returns an object of class ‘pampe’ with the objects
specified in Table 3.6

Continuing with the example of the political integration of Hong Kong with the AICc criterion
and the set of possible controls as specified by Hsiao et al. (2012):

> ## Setup
> treated <- "HongKong"
> time.pretr <- 1:18 # 1993Q1-1997Q2
> time.tr <- 19:44 # 1997Q3-2003Q4
> possible.ctrls <- c("China", "Indonesia", "Japan", "Korea", "Malaysia",
+ "Philippines", "Singapore", "Taiwan", "UnitedStates", "Thailand")
> ## Call the function with AICc and the possible controls
> pol.integ <- pampe(time.pretr = time.pretr, time.tr = time.tr, treated = treated,
+ controls = possible.ctrls, data = growth)

Call:
lm(formula = fmla, data = data[time.pretr, ])

Residuals:
Min 1Q Median 3Q Max

-0.007304 -0.004851 0.001140 0.004367 0.007178

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.02630 0.01705 1.543 0.1469
Japan -0.67596 0.11169 -6.052 4.08e-05 ***
Korea -0.43230 0.06338 -6.821 1.22e-05 ***
UnitedStates 0.48603 0.21952 2.214 0.0453 *
Taiwan 0.79259 0.30989 2.558 0.0238 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.005775 on 13 degrees of freedom
Multiple R-squared: 0.9314, Adjusted R-squared: 0.9103
F-statistic: 44.15 on 4 and 13 DF, p-value: 1.919e-07

Let us check the additional results:

> pol.integ

$controls
[1] "Japan" "Korea" "UnitedStates" "Taiwan"

6If the placebos argument is not set to FALSE there are additional results, which will be explained in Sec-
tion Placebo tests.
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$model
Call:
lm(formula = fmla, data = data[time.pretr, ])
Coefficients:
(Intercept) Japan Korea UnitedStates Taiwan

0.0263 -0.6760 -0.4323 0.4860 0.7926

$counterfactual
1993Q1 1993Q2 1993Q3 1993Q4 1994Q1 1994Q2

0.05499950 0.06083154 0.06502118 0.06102413 0.07395480 0.06554503
1994Q3 1994Q4 1995Q1 1995Q2 1995Q3 1995Q4

...

$data
...

A summary() method is included for objects of class ‘pampe’, with useful information for the
researcher:

> summary(pol.integ)

Selected controls:
Japan, Korea, UnitedStates, and Taiwan.

Time-average estimated treatment effect:
-0.0396291

Optimal model estimation results:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.026300 0.017048 1.5427 0.14689
Japan -0.675964 0.111688 -6.0522 4.084e-05 ***
Korea -0.432298 0.063377 -6.8211 1.223e-05 ***
UnitedStates 0.486032 0.219521 2.2141 0.04531 *
Taiwan 0.792593 0.309892 2.5576 0.02385 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.0058 on 13 degrees of freedom
Multiple R-squared: 0.931, Adjusted R-squared: 0.91
F-statistic: 44.15 on 4 and 13 DF, p-value: 1.919427e-07

Although not directly printed, the summary() method for objects of class ‘pampe’ also includes the ac-
tual and counterfactual paths which can be accessed via summary(pol.integ)$res.table. We can also
manipulate pol.integ$model as we wish with the usual methods since it is an object of class ‘lm’. For
example, summary(pol.integ$model) can be used to obtain a summary, residuals(pol.integ$model)
for the residuals, or fitted(pol.integ$model) to recover the estimated values.

Another method included in the package is plot(). It works on objects of class ‘pampe’ to produce
a plot of the actual evaluation of the treated unit together with the predicted counterfactual path. A
simple plot call to our saved ‘pampe’ object, plot(pol.integ), would produce Figure 2.

If, however, we want to produce and manipulate our own plot, it is just a matter of running a
matplot() of the actual value together with the counterfactual saved in the results of the function (see
Figure 3):

> ## A plot of the actual Hong Kong together with the predicted path
> matplot(c(time.pretr, time.tr), pol.integ$counterfactual, type = "l", xlab = "",
+ ylab = "GDP growth", ylim = c(-0.15, 0 .15), col = 1, lwd = 2, xaxt = "n")
> ## Axis labels & titles
> axis(1, at = c(time.pretr, time.tr)[c(seq(2, length(c(time.pretr, time.tr)),
+ by = 2))], labels = c(rownames(growth)[c(time.pretr, time.tr)
+ [c(seq(2, length(c(time.pretr, time.tr)), by = 2))]]), las = 3)
> title(xlab = "Quarter", mgp = c(3.6, 0.5, 0))
> ## Legend
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Figure 1: Output of plot(pol.integ).
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Figure 2: Output of using matplot().

> legend("bottomright", c("Hong Kong", "predicted Hong Kong"),
+ col = 1, lty = c(1, 2), lwd = 2)
> ## Add a vertical line when the tr starts
> abline(v = time.pretr[length(time.pretr)], lty = 3, lwd = 2)

To obtain a plot of the estimated treatment effect, we first calculate the treatment effect, which is
the difference between the actual and predicted (counterfactual) path; then we plot it (see Figure 4).
Note that if the method works well to replicate the economy in the pre-treatment period, the treatment
effect should be around zero in the pre-treatment period.

> tr.effect <- pol.integ$counterfactual[, 1] - pol.integ$counterfactual[, 2]
> ## A plot of the estimated treatment effect
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Figure 3: Plot of the estimated treatment effect.

> plot(c(time.pretr, time.tr), tr.effect, type = "l", ylab = "GDP growth",
+ xlab = "", col = 1, lwd = 2, xaxt = "n")
> ## Axis labels & titles
> axis(1, at = c(time.pretr, time.tr)[c(seq(2, length(c(time.pretr, time.tr)),
+ by = 2))], labels = c(rownames(growth)[c(time.pretr, time.tr)
+ [c(seq(2, length(c(time.pretr, time.tr)), by = 2))]]), las = 3)
> title(xlab = "Quarter", mgp = c(3.6, 0.5, 0))
> ## Legend
> legend("topleft", "Treatment Effect", col = 1, lty = 1, lwd = 2)
> ## Add a vertical line when the treatment starts
> abline(v = time.pretr[length(time.pretr)], lty = 3, lwd = 2)
> ## Horizontal line on zero
> abline(h = 0, lty = 3, lwd = 2)

The user might also be interested in exporting tables that show the results of the procedure, to
be used in a LATEX document. Simply manipulating the data and using xtable from the package of
the same name xtable (Dahl, 2014) one can obtain the tables shown in Hsiao et al. (2012). An xtable
method is also included for this purpose, which requires the output of the ‘pampe’ object and the user
specifying which table type he or she wants: the table of the model or the treatment table, which
includes the actual, predicted, and treatment paths.

> library("xtable")
> xtable(pol.integ, ttype = "model")
> xtable(pol.integ, ttype = "treatment")

Placebo tests

In order to perform inference on the results obtained, the package implements the so-called placebo
studies procedure outlined in Abadie and Gardeazabal (2003); Abadie et al. (2010) and Abadie et al.
(2015). The idea is to iterate the application of the panel data approach by reassigning the treatment to
other non-treated units, i.e., to the controls in the donor pool; or by reassigning the treatment to other
pre-intervention periods, when the treatment had yet to occur. The set of placebo effects can therefore
be compared to the effect that was estimated for the “real” time and unit, in order to evaluate whether
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placebo.ctrls

A list which includes another two objects: $mspe and $tr.effect. The
first includes the mspe for the pre-treatment period (time.pretr) and the
second is the estimated treatment effect for the treated unit in the first col-
umn and for the countries in the original donor pool (possible.ctrls)
in the remaining columns.

placebo.time

The same as placebo.ctrl but with the reassignment of the treatment
in time, to periods in the pre-treatment period (the reassignment is from
half of the pre-treatment period until the period previous to the actual
treatment).

Table 4: Additional results from the pampe function.

the effect estimated by the panel data approach when and where the treatment actually occurred is
large relative to the placebo effects.

The function pampe() has both placebo studies (placebo-controls and placebos-in-time) built in.
Thus the user can obtain the results from the placebo studies and perform this type of statistical
inference simply by switching the last argument of the function pampe(), placebos, from the default
FALSE to either "controls", "time", or "Both". Continuing the previous example, the call to the
function is identical to the pol.integ one except that now we also ask for the placebos. The other
arguments are inherited from before.

> pol.integ.placebos <- pampe(time.pretr = time.pretr, time.tr = time.tr,
+ treated = treated, controls = possible.ctrls,
+ data = growth, placebos = "Both")

Now the results obtained, besides pol.integ.placebos$controls, $model, and $counterfactual like
before, include the ones in Table 4.

For example, if we take a look at the first five rows and columns of pol.integ.placebos$
placebo.time$tr.effect:

1997Q3 1995Q3 1995Q4 1996Q1 1996Q2
1993Q1 0.007000500 -0.0084630055 0.0005825015 0.0005170915 3.642217e-05
1993Q2 -0.001831535 0.0046961110 0.0036438429 0.0009914089 -6.703595e-04
1993Q3 -0.007021179 0.0005439412 -0.0035785257 -0.0003308651 -2.804963e-03
1993Q4 0.000975869 -0.0065735180 -0.0041505788 -0.0021485760 3.376669e-03
1994Q1 0.005045203 0.0081985975 0.0036386090 0.0003446360 1.552006e-04

We can see that it is a table with the estimated treatment effects (difference between actual and
predicted); the first column shows the actual treatment effect, whereas in the remaining columns we
have the estimated treatment effect after having reassigned the treatment to other periods, specified in
the column name. In this case, the second column has the treatment reassigned to 1995Q3.

Now these additional results can be used for plots and to check whether the treatment effect is
significant. When the saved ‘pampe’ object has placebo studies stored inside, a plot() call to the ‘pampe’
object will produce the placebo plot(s) as well as the initial actual/predicted path plot. The placebo
plot for the control reassignment is given in Figure 5.

Or again, the user might want to produce their own plot to adapt it to their required style:

> mspe <- pol.integ.placebos$placebo.ctrl$mspe
> linewidth <- matrix(2, 1, ncol(mspe) - 1)
> linewidth <- append(linewidth, 5, after = 0)
>
> matplot(c(time.pretr, time.tr), pol.integ.placebos$placebo.ctrl$tr.effect,
+ type = "l", xlab = "", ylab = "GDP growth gap",
+ col = c("red", matrix(1, 1, ncol(mspe) - 1)),
+ lty = c(1, matrix(2, 1, ncol(mspe) - 1)), lwd = linewidth,
+ ylim = c(-0.35, 0.2), xaxt = "n")
> ## Axis
> axis(1, at = c(time.pretr, time.tr)[c(seq(2, length(c(time.pretr, time.tr)),
+ by = 2))], labels = c(rownames(growth)[c(time.pretr, time.tr)
+ [c(seq(2, length(c(time.pretr, time.tr)), by = 2))]]), las = 3)
> title(xlab = "Quarter", mgp = c(3.6, 0.5, 0))
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Figure 4: Placebo plot.

> ## Legend
> legend("bottomleft", c("Hong Kong", "Controls"), col = c("red", 1),
+ lty = c(1, 2), lwd = c(5, 2))
> ## Horizontal & vertical lines
> abline(h = 0, lty = 3, lwd = 2)
> abline(v = time.pretr[length(time.pretr)], lty = 3, lwd = 2)

Note that, contrary to what it could appear from the large size of the estimated treatment shown
in the initial plots, the effect does not appear to be significant. This is because after re-applying the
method to all other 8 countries from the set of possible controls, the effect for Hong Kong is not an
outlier, i.e., the estimated effect for the controls – when there should be none – is similar to the result
obtained for Hong Kong. For the effect of the political integration of Hong Kong to be significant it
would have to be a true outlier, almost the only one with a non-zero gap. Also important is the fact
that while this inference method is different from the one applied by Hsiao et al. (2012), which can be
implemented by the user with R functions such as acf() and arima(), the conclusion is the same as
theirs: the political integration of Hong Kong with mainland China does not have an effect on real
GDP growth.

As an example of what a significant treatment effect would look like, we carry out the treatment-
reassignment placebo tests for the economic integration of Hong Kong, which Hsiao et al. (2012) find
to be significant.

> time.pretr <- c("1993Q1", "2003Q4")
> time.tr <- c("2004Q1", "2008Q1")
> ## Or if you know the row indexes use those directly, e.g.
> time.tr <- 45:61
> ## The treated unit
> treated <- "HongKong"
> econ.integ.placebos <- pampe(time.pretr = time.pretr, time.tr = time.tr,
+ treated = treated, data = growth,
+ placebos = "controls")
> plot(econ.integ.placebos)

The previous call will produce Figure 6. The reader will observe how, for the economic integration,
the estimated treatment effect is in fact an outlier when compared to the controls. Since it is an outlier,
together with another two or three of the units, out of 24 controls, we can say it is significant at least at
a 5% level.

Let us now check the results obtained from the placebos-in-time. This tests for the causal nature
of the effect. If by reassigning the treatment to a previous period we observe that the estimated path
(in the pre-treatment period) does not appear to have an effect, but there is still an effect in the actual
treatment, then one can assume that the estimated effect is indeed caused by the treatment (though in
this case it turns out to be non-significant).
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Figure 5: Placebo plot with control reassignment.
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Figure 6: Placebo plot with time reassignment.

A basic plot can be produced by calling plot(pol.integ), which would give Figure 7. Or the user
can produce his or her own plot:

> ## Plot of the placebos-in-time
> ## For example let's plot the first time reassignment, to 1995Q3
> ## (2nd column)
> placebo.in.time1 <- pol.integ.placebos$placebo.time$tr.effect[, 2] +
+ growth[c(time.pretr, time.tr), 1]
> matplot(c(time.pretr, time.tr), cbind(growth[c(time.pretr, time.tr), 1],
+ pol.integ.placebos$counterfactual, placebo.in.time1), type = "l",
+ ylab = "GDP growth", xlab = "", ylim = c(-0.25, 0.2), col = 1,
+ lwd = 3, xaxt = "n")
> ## Axis
> axis(1, at = c(time.pretr, time.tr)[c(seq(2, length(c(time.pretr, time.tr)),
+ by = 2))], labels = c(rownames(growth)[c(time.pretr, time.tr)
+ [c(seq(2, length(c(time.pretr, time.tr)), by = 2))]]), las = 3)
> title(xlab = "Quarter", mgp = c(3.6, 0.5, 0))
> ## Legend
> legend("bottomleft", c("actual", "predicted", paste("placebo",
+ colnames(pol.integ.placebos$placebo.time$tr.effect)[2], sep = " ")),
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Figure 7: Plot of the placebos-in-time.

+ col = 1, lty = c(1, 2, 3), lwd = 3)
> ## Two vertical lines
> abline(v = time.pretr[length(time.pretr)], lty = 2, lwd = 3)
> abline(v = which(colnames(pol.integ.placebos$placebo.time$tr.effect)[2]
+ == rownames(growth)), lty = 3, lwd = 3)
> ## We can also plot the gaps all at the same time
> mspe <- pol.integ.placebos$placebo.time$mspe
> linewidth <- matrix(2, 1, ncol(mspe) - 1)
> linewidth <- append(linewidth, 5, after = 0)
>
> matplot(c(time.pretr, time.tr), pol.integ.placebos$placebo.time$tr.effect,
+ type = "l", xlab = "", ylab = "GDP growth gap",
+ col = c("red", matrix(1, 1, ncol(mspe) - 1)),
+ lty = c(1, matrix(2, 1, ncol(mspe) - 1)), lwd = linewidth,
+ ylim = c(-0.35, 0.2), xaxt = "n")
> ## Axis
> axis(1, at = c(time.pretr, time.tr)[c(seq(2, length(c(time.pretr, time.tr)),
+ by = 2))], labels = c(rownames(growth)[c(time.pretr, time.tr)
+ [c(seq(2, length(c(time.pretr, time.tr)), by = 2))]]), las = 3)
> title(xlab = "Quarter", mgp = c(3.6, 0.5, 0))
> ## Legend
> legend("topleft", c("Hong Kong", "Controls"), col = c("red", 1),
+ lty = c(1, 2), lwd = c(5, 2))
> ## Horizontal line
> abline(h = 0, lty = 3, lwd = 2)

The first example replicates the previous time reassignment plot. The second example would
produce Figure 7.

Robustness checks

Besides placebo studies for inference tests, Abadie et al. (2015) show the importance of running
robustness checks on the results obtained. This section demonstrates how to implement the so-called
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Figure 8: Leave-one-out robustness check.

leave-one-out robustness check, which iteratively removes one of the units in the control group of the
final model, to check whether the results are driven by one unit in particular or, in contrast, the results
are robust to removing one unit.

The leave-one-out robustness check can be applied using the other user-available function included
in the package, robustness(). After applying the initial function pampe(), the user can carry out the
robustness check simply by calling the function robustness() and specifying the name of the saved
object from the pampe call.

> rob.check <- robustness(pol.integ)

This produces a matrix with the actual path, the initial predicted path, and each leave-one-out predicted
path. Its first five rows are given by:

Actual Predict w/ all w/o Japan w/o Korea w/o UnitedStates w/o Taiwan
1993Q1 0.062 0.05499950 0.05993785 0.04167956 0.058347659 0.05173061
1993Q2 0.059 0.06083154 0.05414176 0.05082512 0.064482544 0.05973967
1993Q3 0.058 0.06502118 0.05208924 0.05861153 0.068493568 0.06459402
1993Q4 0.062 0.06102413 0.05398689 0.05587109 0.063964428 0.05918035
1994Q1 0.079 0.07395480 0.05629484 0.07740008 0.071861773 0.07673810

The user can then plot this robustness check by calling the plot() method to the saved object. xtable
and summary methods are also provided.

plot(rob.check)

The following plot (Figure 8) shows that the results obtained with four countries (Japan, Korea, US and
Taiwan) are robust to the removal of one of them. That is, the results are not driven by one particular
country.

If the user would prefer to reproduce the plot and manipulate the code to his or her liking, they
should modify the following code, which replicates the above plot.

> linewidth <- matrix(1, 1, ncol(rob.check))
> linewidth <- append(linewidth, c(2, 2), after = 0)
>
> matplot(c(time.pretr, time.tr), cbind(apt.table[, 1:2], rob.check),
+ type = "l", xlab = "", ylab = "GDP growth gap",
+ col = c(1, 1, matrix("gray", 1, ncol(rob.check))),
+ lty = c(1, 2, matrix(1, 1, ncol(rob.check))), lwd = linewidth, xaxt = "n")
> ## Axis
> axis(1, at = c(time.pretr, time.tr)[c(seq(4, length(c(time.pretr, time.tr)),
+ by = 4))], labels = c(rownames(growth)[c(time.pretr, time.tr)
+ [c(seq(4, length(c(time.pretr, time.tr)), by = 4))]]), las = 3)
> title(xlab = "Quarter", mgp = c(3.6, 0.5, 0))
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> ## Legend
> legend("bottomleft", c("Hong Kong", "Predicted", "leave-one-out"),
+ col = c(1, 1, "gray"), lty = c(1, 2, 1), lwd = c(2, 2, 1))
> ## Vertical line when treatment begins
> abline(v = max(time.pretr), lty = 3, lwd = 2)
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BSGS: Bayesian Sparse Group Selection
by Kuo-Jung Lee and Ray-Bing Chen

Abstract An R package BSGS is provided for the integration of Bayesian variable and sparse group
selection separately proposed by Chen et al. (2011) and Chen et al. (in press) for variable selection
problems, even in the cases of large p and small n. This package is designed for variable selection
problems including the identification of the important groups of variables and the active variables
within the important groups. This article introduces the functions in the BSGS package that can be
used to perform sparse group selection as well as variable selection through simulation studies and
real data.

Introduction

Variable selection is a fundamental problem in regression analysis, and one that has become even more
relevant in current applications where the number of variables can be very large, but it is commonly
assumed that only a small number of variables are important for explaining the response variable.
This sparsity assumption enables us to select the important variables, even in situations where the
number of candidate variables is much greater than the number of observations.

BSGS is an R package designed to carry out a variety of Markov chain Monte Carlo (MCMC) sam-
pling approaches for variable selection problems in regression models based on a Bayesian framework.
In this package, we consider two structures of variables and create functions for the corresponding
MCMC sampling procedures. In the first case where the variables are treated individually without
grouping structure, two functions, CompWiseGibbsSimple and CompWiseGibbsSMP, are provided to
generate the samples from the corresponding posterior distribution. In the second case, it is assumed
that the variables form certain group structures or patterns, and thus the variables can be partitioned
into different disjoint groups. However, only a small number of groups are assumed to be important
for explaining the response variable, i.e. the condition of the group sparsity, and we also assume
that sparse assumption is held for the variables within the groups. This problem is thus termed a
sparse group selection problem Simon et al. (2013); Chen et al. (in press), and the goal is to select the
important groups and also identify the active variables within these important groups simultaneously.
There are two functions to handle the sparse group selection problems, BSGS.Simple and BSGS.Sample,
which are used to generate the corresponding posterior samples. Once the posterior samples are
available, we then can determine the active groups and variables, estimate the parameters of interest
and make other statistical inferences.

This paper is organized as follows. We first briefly introduce statistical models that are used
to deal with the problems of variable selection in the BSGS package. We then describe the tuning
parameters in the functions in the BSGS package. Two simulations are used to illustrate the details of
the implementations of the functions. Finally we present a real economic example to demonstrate the
BSGS package.

Framework of BSGS

We start with the introduction of individual variable selection problems, and then turn our attention
to sparse group selection. For completeness, we describe the model and priors so that one may easily
change the inputs of functions in the BSGS package for any purpose.

Variable selection

Consider a linear regression model given by

Y = Xβ + ε, (1)

where Y = (Y1, . . . , Yn)′ is the response vector of length n, X = [X1, . . . , Xp] is an n× p design matrix,
with Xi as the corresponding i-th variable (regressor) as a potential cause of the variation in the
response, β is the corresponding unknown p× 1 coefficient vector, and ε = (ε1, . . . , εn)′ is the error
term, which is assumed to have a normal distribution with a zero mean, and the covariance matrix
σ2 In, In is the n× n identity matrix. To achieve variable selection, we select a subset of X1, . . . , Xp to
explain the response Y. For this purpose, following the stochastic search variable selection method
George and McCulloch (1993), a latent binary variable γi taking the value of 0 and 1 is introduced
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to indicate whether or not the corresponding variable is selected. That is, if γi = 1, the variable Xi is
selected, and otherwise it is not selected.

In this Bayesian framework we basically follow the prior assumption in Chen et al. (2011). We
assume the prior distribution of γi is a Bernoulli distribution with probability 1− ρi, and then given
γi, we assume the prior for βi is a mixture of point mass at 0 denoted by δ0 and a normal distribution
as follows

βi|γi ∼ (1− γi)δ0 + γi N(0, τ2
i ), (2)

where τi is a pre-specified constant. Moreover, (γi, βi) are assumed to be independent for i = 1, . . . , p.
Lastly, σ2 is set to follow an inverse Gamma distribution,

σ2 ∼ IG(ν/2, νλ/2). (3)

Based on the model setting given above, there are two Gibbs samplers for this variable selection.
The first procedure is the componentwise Gibbs sampler (CGS) which was introduced by Geweke
(1996) and also mentioned in Chen et al. (2011). The other is the stochastic matching pursuit (SMP)
algorithm Chen et al. (2011) in which the variables compete to be selected.

Sparse group selection

In traditional variable selection problems, each variable Xi is treated individually; however, in some
real applications, a group of variables that behave similarly may be more meaningful in explaining the
response. In other words, a group of variables potentially plays a more important role in explaining
the response than a single variable can. The variable selection problem thus becomes a group selection
one. In group selection problems, the variables within the selected groups are all treated as important.
However, this assumption might not be held in practice such as the climate application in Chatterjee
et al. (2012). Instead of the group selection problem, we thus consider approaches to sparse group
selection, in which the sparse assumption is held for groups and the variables within groups.

Here the goal is not only to select the influential groups, but also to identify the important variables
within these. To this end, a Bayesian group variable selection approach, the Group-wise Gibbs sampler
(GWGS) Chen et al. (in press), is applied. Suppose that, in terms of expert or prior knowledge, the
explanatory variables Xi’s are partitioned into g non-overlapping groups in a regression model. Each
group l contains j = 1, . . . , pl variables with ∑

g
l=1 pl = p. Now the model is rewritten as

Y =
g

∑
l=1

Xl βl + ε, (4)

where Xl = [Xl1, · · · , Xlpl
] is the n× pl sub-matrix of X, βl = (βl1, · · · , βlpl

)′ is the pl × 1 coefficient
vector of group l. The GWGS works by introducing two nested layers of binary variables to indicate
whether a group or a variable is selected or not. At the group-selection level, we define a binary
variable ηl = 1 if group l is selected, and ηl = 0 otherwise. At the variable-selection level, we define
another binary variable γli = 1 if the variable i within group l, Xli, is selected, and γli = 0 otherwise.

We assume the group indicator, ηl , has the Bernoulli distribution with the probability 1− θl . Within
group l, the prior distribution of γli conditional on the indicator ηl is defined as

γli|ηl ∼ (1− ηl)δ0 + ηlBer(1− ρli), (5)

where δ0 is a point mass at 0 and Ber(1− ρli) is Bernoulli distributed with the probability 1− ρli.
Equation (5) implies that if the l-th group is not selected, it turns out that γli = 0 for all i. The prior
distribution of the coefficient βli given ηl and γli is given by

βli|ηl , γli ∼ (1− ηlγli)δ0 + ηlγliN (0, τ2
li),

where τli is a pre-specified value Chen et al. (2011). Finally, the variance σ2 is assumed to have an
inverse Gamma distribution, that is, σ2 ∼ IG(ν/2, νλ/2). We also assume (ηl , γl1, βl1, . . . , γlpl

, βlpl
),

l = 1, · · · , g, are a priori independent.

Two sampling procedures are proposed in Chen et al. (in press) for Bayesian sparse group selection.
The first is the GWGS. In the GWGS, simulating the indicator variable ηl from the posterior distribution
would be computationally intensive, especially when the number of variables within the group is
large. To address this issue, Chen et al. (in press) proposed a modified and approximation approach,
a sample version of GWGS. In this a Metropolis-Hastings algorithm is adopted to replace the Gibbs
sampling method in GWGS.
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Implementation

In this section, we describe the default tuning parameters and some details in the implementation of
the functions in BSGS.

Hyperparameter set-up

• The tuning parameters, ν and λ:
The parameters in the prior distribution of σ2 are suggested by George and McCulloch (1993)
setting the default values of ν = 0 and λ being any positive value. A data-driven choice for this
is proposed by Chipman et al. (1997), which sets the value of ν around 2 and the value of λ is
set up to be the 99% quantile of the prior of σ2 that is close to

√
Var(Y). In addition, George

and McCulloch (1997) simply set ν = 10 and λ =
√

Var(Y). In our experiences, a larger value
of ν tends to result in a larger estimate of σ.

• The parameter τ:
Now we consider the assignment of the value of τ, the prior variance of the regression coefficient
for the active variable. It was found that the larger the value of τ, the smaller the conditional
probability of γ = 1 is. As a result, a large value of τ favors a more parsimonious mode. In
contrast, a small value of τ would yield more complex models.

• The parameters ρ and θ:
The default of the prior inclusion probabilities of groups and variables is set equal to 0.5. In the
case when p is much greater than n and only a small number of variables are considered active,
we would assign a larger values to ρ and θ to reflect the prior belief of sparsity.

Stopping rule

The posterior distribution is not available in explicit form so we use the MCMC method, and specifically
Gibbs sampling to simulate the parameters from this distribution Brooks et al. (2011). To implement the
Gibbs sampler, the full conditional distributions of all parameters must be determined. A derivation
of the full conditional distributions is provided in Chen et al. (in press). When these have been
obtained, the parameters are then updated individually using a Gibbs sampler (where available),
or a Metropolis-Hastings sampling algorithm. An MCMC sample will converge to the stationary
distribution, i.e. the posterior distribution. We use the batch mean method to estimate the Monte Carlo
standard error (MCSE) of the estimate of σ2 and then decide to stop the simulation once the MCSE is
less than a specified value, cf. Flegal et al. (2008). The default minimum number of iterations is 1000.
If the MCSE does not achieve the prespecified value, an extra 100 iterations are run until the MCSE is
less than the prespecified value. The sample can then be used for statistical inference.

Statistical inference

• Variable and group selection criteria:
In this package, we adopt the median probability criterion proposed by Barbieri and Berger
(2004) for group and variable selections. Specifically, for the variable selection problem, we
estimate the posterior inclusion probability P(γi = 1|Y) from the posterior samples and then
the i-th variable is selected into the model if the estimated posterior probability is larger than
or equal to 1/2. Here instead of 1/2, this cut-off value is treated as a tuning parameter, α,
which can be specified by users. For the sparse group selection problem, the estimated posterior
probability of the l-th group is greater than or equal to αg, i.e. P(ηl = 1|Y) ≥ αg, we then include
Xl into the model. Suppose the l-th group is selected, then the i-th variable within this group is
selected if P(γli = 1|ηl = 1, Y) ≥ αi. Here αg and αi are two pre-specified values between 0 and
1.

• Posterior estimates of regression coefficients:
We use the Rao-Blackwell method to estimate β by

β̂ = E(β|y) ≈ 1
NM

M

∑
m=1

βm,

where βm is the sample in mth iteration, M is the number of iterations, and NM is the number of
nonzero βm.
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Evaluation of model estimation

Regarding the stability of the estimation, we compare the accuracy of selection of the variables by the
following measures in the simulation studies: the True Classification Rate (TCR), the True Positive
Rate (TPR), and the False Positive Rate (FPR). These are defined as follows

TCR =
number of correctly selected variables

number of variables
;

TPR =
number of correctly selected variables

number of active variables
;

FPR =
number of falsely selected variables

number of inactive variables
.

TCR is an overall evaluation of accuracy in the identification of the active and inactive variables. TPR
is the average rate of active variables correctly identified, and is used to measure the power of the
method. FPR is the average rate of inactive variables that are included in the regression, and it can be
considered as the type I error rate of the selection approach. In these three criteria, it is preferred to
have a larger value of TCR or TPR, or a smaller value of FPR.

We also report the mean squared error (MSE),

MSE =
n

∑
i=1

(yi − ŷi)
2/n,

where ŷi is the prediction of yi. This is used to evaluate whether the overall model estimation has a
good fit with regard to the data set.

Examples

Two simulations and a real example are provided to demonstrate the use of functions in the BSGS
package.

Simulation I

The traditional variable selection problem is illustrated in this simulation. We use an example to
illustrate the functions CompWiseGibbsSimple and CompWiseGibbsSMP corresponding to the CGS and
SMP sampling procedures to simulate the sample from the posterior distribution. Based on the
samples, we can decide which variable is important in the regression model. In this simulation, the
data Y of length n = 50 is generated from a normal distribution with a mean Xβ and σ2 = 1. We

assume β = (3,−3.5, 4,−2.8, 3.2,

p−5︷ ︸︸ ︷
0, . . . , 0), p = 100, and X is from a multivariate normal distribution

with a mean 0 and the covariance matrix Σ as the identity matrix. We then generate the responses
based on (1).

require(BSGS)
set.seed(1)

## Generate data
num.of.obs <- 50
num.of.covariates <- 100

beta.g <- matrix(c(3, -3.5, 4, -2.8, 3.2, rep(0, num.of.covariates-5)), ncol = 1)
r.true <- (beta.g != 0) * 1

pair.corr <- 0.0 ## pair correlations between covariates
Sigma <- matrix(pair.corr, num.of.covariates, num.of.covariates)
diag(Sigma) <- rep(1, num.of.covariates)
x <- mvrnorm(n = num.of.obs, rep(0, num.of.covariates), Sigma)

sigma2 <- 1
mu <- x %*% beta.g
y <- rnorm(num.of.obs, mu, sigma2)

Regarding to the hyperparameters, we simply set τ2 = 10, but one can use cross-validation to
tune the parameter Chen et al. (2011). Following George and McCulloch (1997), we let ν = 10 and
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λ =
√

Var(Y). Without any prior information on which variable is important, we let prior inclusion
probability ρi = 0.5 for each variable. We use the rigid regression estimates as the initial values of
regression coefficients βs.

## Specify the values of hyperparameters and initial values of parameters

tau2 <- 10 ## hyperparameter in Eq. (1)
nu0 <- 10 ## hyperparameter in Eq. (2)
lambda0 <- sd(y) ## hyperparameter in Eq. (2)

## Initial values for parameters
beta.initial <- t(solve(t(x) %*% x + diag(1/5, num.of.covariates)) %*% t(x) %*% y)
sigma2.initial<-1
r.initial <- rbinom(num.of.covariates, 1, 1)

Now two functions, CompWiseGibbsSimple and CompWiseGibbsSMP, are applied to simulate the
samples from the posterior distribution. The minimum number of iterations is 1000. The simulation
will stop when the MCSE of the estimate of σ2 is less than 0.1 and otherwise an extra 100 iterations are
run until the MCSE is less than this. For stability, we update num.of.inner.iter.default = 10 times
for β and γ and take the last ones as a sample before updating σ2.

num.of.iteration <- 1000
num.of.inner.iter.default <- 10
MCSE.Sigma2.Given <- 0.1

## Apply two sampling functions to generate the samples from the
## posterior distribution.

outputCGS <- CompWiseGibbsSimple(y, x, beta.initial, r.initial, tau2,
rho, sigma2.initial, nu0, lambda0, num.of.inner.iter.default,
num.of.iteration, MCSE.Sigma2.Given)

outputSMP <- CompWiseGibbsSMP(y, x, beta.initial, r.initial, tau2,
rho, sigma2.initial, nu0, lambda0, num.of.inner.iter.default,
num.of.iteration, MCSE.Sigma2.Given)

Once the simulation stops, the posterior samples are used to estimate the posterior quantities of
interest. One can then check the number of iterations and computational times for both approaches.

## Output from the component-wise Gibbs sampling procedure
outputCGS$Iteration
[1] 1000
outputCGS$TimeElapsed

user system elapsed
61.558 4.815 66.813

## Output from the component-wise Gibbs sampling procedure
outputSMP$Iteration
[1] 1000
outputSMP$TimeElapsed

user system elapsed
45.970 5.907 52.383

One can then use the function CGS.SMP.PE to identify the important variables and to estimate the
parameters. Due to the limitations of space, we do not include the estimates here. A variable i is
considered important if the posterior probability of its indicator variable γi = 1 is greater than or equal
to αi = 1/2. Once the critical point is decided, two functions TCR.TPR.FPR.CGS.SMP and MSE.CGS.SMP
are carried out to evaluate the performance on the model estimations in terms of TCP, TPR, FTP and
MSE.

## Output from the component-wise Gibbs sampling procedure
CGS.SMP.PE(outputCGS)

MSE.CGS.SMP(outputCGS, Y=y, X=x)
[1] 2.921087
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TCR.TPR.FPR.CGS.SMP(outputCGS, r.true, 0.5)
$TCR
[1] 1

$TPR
[1] 1

$FPR
[1] 0

## Output from the component-wise Gibbs sampling procedure
CGS.SMP.PE(outputSMP)

MSE.CGS.SMP(outputSMP, Y=y, X=x)
[1] 3.751427

TCR.TPR.FPR.CGS.SMP(outputSMP, r.true, 0.5)
$TCR
[1] 1

$TPR
[1] 1

$FPR
[1] 0

Simulation II

We provide another stimulation to illustrate the use of functions for sparse group selection. In the
following simulation, the data Y of length n = 50 is generated from a normal distribution with a
mean Xβ and σ2 = 1, where X is from a multivariate distribution with mean 0 and covariance Σ with
the pair correlation between variables equal to zero. There are 10 groups of variables. Each group
contains 10 variables and some of them are active. More specifically, Xl = Xl1, . . . , Xlpl

, k = 1, . . . , 10
and pl = 10 for all l. We assume the group l = 1, 2, 5, 8 are active. Variables p1 = 7, 8, 9 in the group
l = 1, p2 = 1, 2 in the group l = 2, p5 = 3 in the group l = 5, and p8 = 7 in the group l = 8 are active.
The response is generated via (4).

require(BSGS)

set.seed(1)

Num.Of.Iteration <- 1000
Num.of.Iter.Inside.CompWise <- 10
num.of.obs <- 50
num.of.covariates <- 100
num.of.group.var <- 10
Group.Index <- rep(1:10, each = 10)

nu <- 0
lambda <- 1
pair.corr <- 0.

Sigma <- matrix(pair.corr, num.of.covariates, num.of.covariates)
diag(Sigma) <- rep(1,num.of.covariates)

X <- mvrnorm(n = num.of.obs, rep(0, num.of.covariates), Sigma)

beta.true <- rep(0, num.of.covariates)
beta.true[c(7, 8, 9, 11, 12, 43, 77)] <- c(3.2, 3.2, 3.2, 1.5, 1.5, -1.5, -2)
beta.true <- cbind(beta.true)
r.true <- (beta.true != 0) * 1

sigma2.true <-1
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Y <- rnorm(num.of.obs, X %*% beta.true, sigma2.true)

Here we suppose that we have no prior information on the parameters. We let ν = 0 and λ = 1
which corresponds to the non-informative prior for σ2. Also, we let ρi = 0.5 and θ = 0.5 for prior
inclusion probabilities of groups and variables. Finally, we let τ = 1 for the variance of each regression
coefficient.

## hyperparameters
tau2.value <- rep(1, num.of.covariates)
rho.value <- rep(0.5, num.of.covariates)
theta.value <- rep(0.5, num.of.group.var)

With the reasonable assignment of the initial values of parameters, we apply two functions,
BSGS.Simple and BSGS.Sample, to estimate the posterior quantities of interest and in turn identify the
important groups and variables. For illustration, we stop the simulation when the MCSE of estimate
of σ2 is less than 0.5.

## Initial values and stopping point
r.value <- rbinom(num.of.covariates, 1, 0.5)
eta.value <- rbinom(num.of.group.var, 1, 0.5)
beta.value <- cbind(c(t(solve(t(X) %*% X +
diag(1/5, num.of.covariates)) %*% t(X) %*% Y) )) # beta.true

sigma2.value <- 1
MCSE.Sigma2.Given <- 0.5

## Apply two sampling approaches to generate samples
outputSimple <- BSGS.Simple(Y, X, Group.Index, r.value, eta.value, beta.value,
tau2.value, rho.value, theta.value, sigma2.value, nu, lambda,
Num.of.Iter.Inside.CompWise, Num.Of.Iteration, MCSE.Sigma2.Given)

outputSample <- BSGS.Sample(Y, X, Group.Index, r.value, eta.value, beta.value,
tau2.value, rho.value, theta.value, sigma2.value, nu, lambda,
Num.of.Iter.Inside.CompWise, Num.Of.Iteration, MCSE.Sigma2.Given)

One can easily use the function BSGS.PE to estimate the posterior probabilities of ηl = 1 and
γli = 1|ηl = 1 based on the samples generated from the posterior distribution. To investigate
which sampling approach provides a better model estimation, one can calculate MSE by the function
MSE.BSGS. Furthermore, the function TCR.TPR.FPR.BSGS is used to evaluate the performance on the
accuracy of selection on variables. All functions are illustrated as follows. We take αi = αg = 0.5 in
this example.

## The posterior quantities estimated by two sampling approaches respectively.

## Output from the simple version of BSGS
outputSimple$Iteration
[1] 1000
outputSimple$TimeElapsed

user system elapsed
238.755 0.007 239.037
BSGS.PE(outputSimple)$eta.est

1 2 3 4 5 6 7 8 9 10
1.000 1.000 0.115 0.200 0.926 0.099 0.108 0.991 0.053 0.171
MSE.BSGS(outputSimple, Y=Y, X=X)
[1] 0.574

TCR.TPR.FPR.BSGS(outputSimple, r.true, 0.5)
$TCR
[1] 0.97

$TPR
[1] 1

$FPR
[1] 0.0323

## Output from the sample version of BSGS
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outputSample$Iteration
[1] 3700
outputSample$TimeElapsed

user system elapsed
105.535 0.163 105.822
BSGS.PE(outputSample)$eta.est

1 2 3 4 5 6 7 8 9 10
1.00000 0.90514 0.04189 0.02459 0.88000 0.01000 0.00486 0.91135 0.00486 0.00730
MSE.BSGS(outputSample, Y=Y, X=X)
[1] 2.16
TCR.TPR.FPR.BSGS(outputSample, r.true, 0.5)
$TCR
[1] 0.97

$TPR
[1] 1

$FPR
[1] 0.0323

One may be interested in how the different stopping points would affect the computational
effort and model estimation. We thus compare the computational times and accuracy of parameter
estimation in terms of TCR, TPR, FPR, and MSE for two different sampling approaches by using
different MCSEs to stop the simulation and the results are shown in Tables 1 and 2. It has been found
that for the case of n = 50 and p = 100 the simple version would converge faster than the sample
version. However, the sample version would require less effort to produce the sample than the simple
version.

MCSE # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

0.5 1000 239 0.58 0.97 1 0.03 1.143
0.25 1000 239 0.58 0.97 1 0.03 1.143
0.1 1100 263 0.55 0.98 1 0.02 1.112

Table 1: Results based on simple version procedure for sparse group selection for different stopping
points.

MCSE # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

0.5 3700 105 2.16 0.97 1 0.03 1.418
0.25 9500 226 0.58 0.97 1 0.03 1.418

0.1 31200 4148 0.48 0.97 1 0.03 1.047

Table 2: Results based on sample version procedure for sparse group selection for different stopping
points.

We further investigate the accuracy of parameter estimations and the selection of the variables in
terms of MSE, TCR, TPR, and FPR for the two sampling approaches when the number of covariates
increases but each group has 10 variables. We consider p = 300, 500, and 1000 and the simulation
is terminated when the MCSE of the estimate of σ2 is less than 0.5 for illustration. One may use
different values of MCSE, but more computational time may be needed. Table 3 shows that the
simulation stops with the same number of iterations and the parameter estimates and accuracy of
variable selection show little difference. On the other hand, the results in Table 4 for the sample version
GWGS show that more iterations are needed, under the same stopping rule. The two approaches thus
perform equally well on the selection of variables, but by comparing MSEs it is evident that the simple
version of GWGS outperforms with regard to the predictions. Although the sample version has less
computational intensity, it needs more iterations to achieve the stopping point. If one is interested
in selecting important variables, both approaches are effective. But if one is interested in choosing a
model which fits the data well, it is thus suggested one uses the simple version approach.

Next, we compare the computational time when the number of variables in the group increases. We
perform an experiment in which there are seven groups, each containing 15 variables. The assignments
of hyperparameters are the same as those in Simulation II. Table 5 shows the computational time plus
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# of covariates # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

300 1000 212 0.56 0.95 0.86 0.05 1.94
500 1000 273 0.99 0.98 1 0.02 1.803

1000 1000 263 0.55 0.98 1 0.02 1.112

Table 3: Results based on the simple version procedure for sparse group selection for different numbers
of covariates, with pair-correlation equal to 0.

# of covariates # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

300 2100 127 1.63 0.99 1 0.01 1.819
500 14600 2258 4.73 0.97 1 0.03 1.601

1000 39900 39567 8.90 0.99 1 <0.01 2.158

Table 4: Results based on the sample version procedure for sparse group selection for different
numbers of covariates, with pair-correlation equal to 0.

the model estimations. It can be seen that the sample version is strongly recommended when the
number of variables within a group is greater than 15.

Sampling version # of iterations runtime (in sec) MSE TCR TPR FPR σ̂2

Simple 1000 8330 0.11 0.93 1 0.08 0.90
Sample 2400 71 0.75 0.99 1 0.01 1.06

Table 5: Comparison between simple and sample versions for sparse group selection when the number
of covariates within a group is 15.

A real economic example

This subsection further illustrates the functions in the BSGS based on an economic dataset from Rose
and Spiegel Rose and Spiegel (2010, 2011, 2012) which is available at http://faculty.haas.berkeley.
edu/arose The response variable is the 2008-2009 growth rate for the crisis measure. Rose and Spiegel
originally consider 119 explanatory factors for the crisis for as many as 107 countries, but there are
missing data for a number of these.

require(BSGS)
## the whole data set
data(Crisis2008)

To maintain a balanced data set, we use 51 variables for a sample of 72 countries. For more
information about the balanced data, please see the description of ‘Crisis2008’ in the BSGS. The
balanced data is then analyzed to illustrate the main sampling function BSGS.Simple to simulate the
sample from the posterior distribution. In the analysis, we demean the response so that it is not
necessary to include the intercept into the design matrix. All variables are standardized except the
dummy variables.

set.seed(1)
data(Crisis2008BalancedData)

var.names <- colnames(Crisis2008BalancedData)[-1]
country.all <- rownames(Crisis2008BalancedData)
cov.of.interest <- colnames(Crisis2008BalancedData)[-1]

Y <- Crisis2008BalancedData[, 1]
Y <- Y - mean(Y)
X <- Crisis2008BalancedData[, -1]

if (NORMALIZATION) {
dummy.variable <- cov.of.interest[lapply(apply(X, 2, unique), length) == 2]
non.dummy.X <- X[, !(colnames(X) %in% dummy.variable)]
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X.normalized <- apply(non.dummy.X, 2, function(XX) (XX - mean(XX))/sd(XX))
X[, !(colnames(X) %in% dummy.variable)] <- X.normalized

}

As discussed in Ho (in press), these variables can be classified into the nine theoretical groups of
the crisis’ origin (the number in parentheses indicates the number of variables considered in the group):
principal factors (10), financial policies (three), financial conditions (four), asset price appreciation
(two), macroeconomic policies (four), institutions (11), geography (four), financial linkages (one), and
trade linkages (12). Based on this information, we assign a group index to each variable.

Group.Index <- rep(1:9, c(10, 3, 4, 2, 4, 11, 4, 1, 12))

Since the number of covariates within the group is moderate, it is recommended that the simple
version GWGS be applied to generate the samples. In this example, we have tested different values of
τ2 and finally we set τ2 = 10 due to the minimal MSE’s. Here the stopping rule is when the MCSE of
the estimate of σ2 is less than or equal to 0.1 for the simple version. No prior information is provided
to indicate which group or variable is more important, so we let θ = 0.5 and η = 0.5. We let ν = 0
and λ = 1 resulting in a non-informative prior for σ2. In each group, we will update parameters
“Num.of.Iter.Inside.CompWise = 100” times within a group for stability.

Num.Of.Iteration <- 1000
Num.of.Iter.Inside.CompWise <- 100
num.of.obs <- nrow(X)
num.of.covariates <- ncol(X)
num.of.groups <- length(unique(Group.Index))
nu <- 0
lambda <- 1
beta.est <- lm(Y ~ X - 1)$coef
beta.est[is.na(beta.est)] <- 0
beta.value <- beta.est
tau2.value <- rep(1, num.of.covariates)

sigma2.value <- 1

r.value <- rep(0, num.of.covariates)
eta.value <- rep(0, num.of.groups)

tau2.value <- rep(10, num.of.covariates)

rho.value <- rep(0.5, num.of.covariates)
theta.value <- rep(0.5, num.of.groups)

MCSE.Sigma2.Given <- 0.5

outputCrisis2008 <- BSGS.Simple(Y, X, Group.Index, r.value, eta.value, beta.value,
tau2.value, rho.value, theta.value, sigma2.value, nu, lambda,
Num.of.Iter.Inside.CompWise, Num.Of.Iteration, MCSE.Sigma2.Given)

The posterior probabilities of ηl and γli are shown in Figure 1. Based on the median probability
criterion, the group (or variable) whose posterior probability is larger than or equal to 0.5 is selected as
an important group (or variable). It is found that only the groups, “Financial Policies” and “Trade
Linkages” are considered to have an influence on the economic crisis. Moreover, within each important
group, we also find that only some of the variables may make a contribution to explain the response.

Summary

This paper illustrated the usage of a new R package, BSGS, for identifying the important groups
of variables and important variables in linear regression models. Furthermore, BSGS can be easily
implemented with problems of a large p and small n. The grouping idea is also applicable to other
regression and classification settings, for example, the multi-response regression and multi-class
classification problems. We envision future additions to the package that will allow for extensions to
these models.

We are confident that this package can be applied to many important real-world problems by
keeping flexibility with regard to selecting variables within a group based on the hierarchical assign-
ment of two layers of indicator variables. For instance, in the gene-set selection problem, a biological
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Figure 1: The group selection results for the cross-country severity of the crisis. The orange border
indicates the posterior probability for the group selection, and the gray bar indicates the posterior
probability for variable selection in the selected groups.

pathway may be related to a certain biological process, but it may not necessarily mean all the genes
in the pathway are all related to the biological process. We may want not only to remove unimportant
pathways effectively, but also identify important genes within important pathways.
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ClustVarLV: An R Package for the
Clustering of Variables Around Latent
Variables
by Evelyne Vigneau, Mingkun Chen and El Mostafa Qannari

Abstract The clustering of variables is a strategy for deciphering the underlying structure of a data
set. Adopting an exploratory data analysis point of view, the Clustering of Variables around Latent
Variables (CLV) approach has been proposed by Vigneau and Qannari (2003). Based on a family of
optimization criteria, the CLV approach is adaptable to many situations. In particular, constraints may
be introduced in order to take account of additional information about the observations and/or the
variables. In this paper, the CLV method is depicted and the R package ClustVarLV including a set of
functions developed so far within this framework is introduced. Considering successively different
types of situations, the underlying CLV criteria are detailed and the various functions of the package
are illustrated using real case studies.

Introduction

For the clustering of observations, a large number of packages and functions are available within
the R environment. Besides the base package stats and the recommended package cluster (Maechler
et al., 2015), about one hundred R packages have been listed in the CRAN Task View: Cluster Analysis
and Finite Mixture Models (Leisch and Grün, 2015). This is representative of the huge number of
applications in which the user is interested in making groups of similar cases, instances, subjects, . . . ,
i.e., in clustering of the observations, in order to exhibit a typology within the population under study.
The number of R packages, or R functions, specifically dedicated to the clustering of variables is much
smaller.

As a matter of fact, clustering methods (e.g., hierarchical clustering or k-means clustering) are
almost always introduced in standard text books using the Euclidean distance between a set of points
or observations. Thus, it is not so easy to imagine situations in which defining clusters of variables
makes sense. Would it be interesting, in an opinion survey, to identify, a posteriori, groups of questions,
and not only clusters of people? The answer to this question is yes, particularly if the number of
questions or items is large. Indeed, by merging connected questions, it is possible to identify latent
traits, and, as a by-product, improve the interpretation of the outcomes of the subsequent analyses. In
another domain, the recent progress in biotechnology enables us to acquire high-dimensional data on
a few number of individuals. For instance, in proteomics or metabolomics, recent high-throughput
technologies can gauge the abundance of thousands of proteins or metabolites simultaneously. In this
context, identifying groups of redundant features appears to be a straightforward strategy in order to
reduce the dimensionality of the data set. Based on DNA microarray data, gene clustering is not a
new issue. It has usually been addressed using hierarchical clustering algorithms based on similarity
indices between each pair of genes defined by their linear correlation coefficient, the absolute value
or the squared value of the linear correlation coefficient (see, among others, Eisen et al. 1998; Hastie
et al. 2000; Park et al. 2007; Tolosi and Lengauer 2011). We can also mention some specific methods
for gene clustering such as the diametrical clustering algorithm of Dhillon et al. (2003) or a clustering
method based on canonical correlations proposed by Bühlmann et al. (2013). However, to the best of
our knowledge, there is no implementation of these methods in R.

We introduce the ClustVarLV package (Vigneau and Chen, 2015) for variable clustering based on
the Clustering of Variables around Latent Variables (CLV) approach (Vigneau and Qannari, 2003). The
CLV approach shares several features with the already mentioned approaches of Dhillon et al. (2003)
and Bühlmann et al. (2013), as well as with the clustering approach of Enki et al. (2013) for constructing
interpretable principal components. It is also worth mentioning that the Valuer’s procedure available
in SAS (Sarle, 1990) has some common features with the CLV functions of the ClustVarLV package. All
these methods are more or less connected to linear factor analysis. They could be viewed as empirical
descriptive methods, unlike model-based approaches such as the likelihood linkage analysis proposed
by Kojadinovic (2010) for the clustering of continuous variables. Let us note that there is a similar
R package, ClustOfVar (Chavent et al., 2013), which proposed an implementation of some of the
algorithms described in Vigneau and Qannari (2003). However the ClustOfVar package does not have
the same functionalities as the ClustVarLV package. The comparison of these two related packages
will be more detailed in a subsequent section.

Other interesting packages for clustering can also be cited: clere (Yengo and Canoui, 2014) for
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Group 1

Group 2 Group 2

Group 1

Group 3

Figure 1: The two possible situations in CLV. On the left side: directional groups (positively and
negatively highly correlated variables). On the right side: local groups (positively highly correlated
variables). Arrows indicate variables and bold arrows indicate latent components associated with the
various groups.

simultaneous variables clustering and regression; biclust (Kaiser et al., 2015) which provides several
algorithms to find biclusters in two-dimensional data; pvclust (Suzuki and Shimodaira, 2014) which
performs hierarchical cluster analysis and automatically computes p-values for all clusters in the
hierarchy. This latter package considers the clustering of the columns of a data matrix (for instance,
DNA microarray data) and computes (by default) the correlation coefficients between the columns to
be clustered. Similarly, the function varclus() in the Hmisc (Harrell Jr et al., 2015) package can be
used for performing a hierarchical cluster analysis of variables, using the Hoeffding D statistic, the
squared Pearson or Spearman correlations, or the proportion of observations for which two variables
are both positive as similarity measures. For pvclust and the function varclus() in package Hmisc,
the clustering is done by the hclust() function.

In the following sections, the objective and principle of the CLV approach will be introduced in a
comprehensive manner. The main functions of the ClustVarLV package for the implementation of the
method will be listed. Next, different situations, associated with various forms of the CLV criterion,
will be discussed and illustrated. The first setting will be the case of directional groups of variables for
data dimension reduction and the identification of simple structures. Another one will be to identify
clusters of variables taking account of an external information.

Synthetic presentation of the CLV method

In order to investigate the structure of a multivariate dataset, Principal Components Analysis (PCA) is
usually used to find the main directions of variation. This can be followed by a rotation technique
such as Varimax, Quadrimax, . . . (Jolliffe, 2002) in order to improve the interpretability to the principal
components. The CLV approach is an alternative strategy of analysis whereby the correlated variables
are lumped together and, within each cluster, a latent (synthetic) variable is exhibited. This latent
variable is defined as a linear combination of only the variables belonging to the corresponding cluster.
From this standpoint, CLV has the same objective as the Sparse Principal Component Analysis (Zou
et al., 2006) which aims at producing modified principal components with sparse loadings.

The CLV approach (Vigneau and Qannari, 2003) is based on the maximization of a set of criteria
which reflect the linear link, in each cluster, between the variables in this cluster and the associated
latent variable. These criteria are related to the types of links between the observed and the latent
variables that are of interest to the users, as illustrated in Figure 1.

• The first case (left hand panel in Figure 1) is to define directional groups, so that the observed
variables that are merged together are as much as possible related to the group latent variable,
no matter whether their correlation coefficients are positive or negative. In this case, the link
between the observed and the latent variables are evaluated by means of the squared correlation
coefficient between the variables, and the criterion considered for maximization is:

T =
K

∑
k=1

p

∑
j=1

δkj cov2 r
(

xj, ck

)
with var (ck) = 1 (1)

where xj (j = 1, . . . , p) are the p variables to be clustered. These variables are assumed to be
centered. In Equation (1), K is the number of clusters of variables, denoted G1, G2, . . . , GK ; ck
(k = 1, . . . , K) is the latent variable associated with cluster Gk and δkj reflects a crisp membership,
with δkj = 1 if the jth variable belongs to cluster Gk and δkj = 0, otherwise.
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• The second case (right hand panel in Figure 1) is to define local groups for which each variable
shows a positive correlation with their associated latent variable. This case entails that negative
correlation coefficients imply disagreement. Therefore, the CLV criterion is based on the
correlation coefficient and the criterion to be maximized is:

S =
K

∑
k=1

p

∑
j=1

δkj cov
(

xj, ck

)
with var (ck) = 1 (2)

with the same notations as for Equation (1).

Moreover, as will be illustrated in Section “Clustering of variables with external information” the
CLV criteria given in Equations (1) or (2) could be slightly modified, by introducing a constraint on the
latent variables, in order to take account of additional information on the variables to be clustered.

It is worth noting that the well known VARCLUS procedure (Sarle, 1990), implemented in the
SAS/STAT software, also offers these two options. However, in VARCLUS, no optimization criterion
for the determination of the groups of variables is clearly set up. Moreover, this method of analysis
consists of a rather complicated divisive hierarchical procedure.

From a practical standpoint, the CLV approach is based on a partitioning algorithm, described in
Vigneau and Qannari (2003), akin to the k-means algorithm. However, this partitioning algorithm
requires, on the one hand, the choice of the number K of clusters and, on the other hand, the initializa-
tion of the iterative process. To address these issues, our recommendation is to start by performing
a hierarchical cluster analysis, with aggregating rules detailed in Vigneau and Qannari (2003). The
first interest is to set up a dendrogram and a graph showing the evolution of the aggregation criterion
between two successive partitions. This should help the user choosing the appropriate number of
clusters. The second interest is that the clusters from the hierarchical analysis give reasonable initial
partitions for performing the partitioning algorithm. This process of running a partitioning algorithm
using the outcomes of the hierarchical clustering as starting point is called consolidation in the French
literature ( Lebart et al. 2000; Warms-Petit et al. 2010).

Overview of the functions in the ClustVarLV package

The list of the functions in the ClustVarLV package, that the users can call, is given in Table 1. The
two main functions for the implementation of the CLV algorithms are CLV() and CLV_kmeans().

The CLV() function performs an agglomerative hierarchical algorithm followed by a consolidation
step performed on the highest levels of the hierarchy. The number of solutions considered for the
consolidation can be chosen by the user (parameter nmax, equal to 20 by default). The consolidation
is based on an alternated optimization algorithm, i.e., a k-means partitioning procedure, which is
initialized by cutting the dendrogram at the required level. Alternatively, the user may choose to
use the CLV_kmeans() function which is typically a partitioning algorithm for clustering the variables
into a given number, K, of clusters. It involves either repeated random initializations or an initial
partition of the variables supplied by the user. This second function may be useful when the number
of variables is larger than a thousand because in this case the hierarchical procedure is likely to be
time consuming (this point will be addressed in Section “The CLV() and CLV_kmeans() functions”).
When the number of variables does not exceed several hundred, the dendrogram which can be drawn
from the output of the CLV() function provides a useful tool for choosing an appropriate number, K,
for the size of the partition of variables.

The two functions, CLV() and CLV_kmeans(), include a key parameter, which has to be provided
by the user, with the data matrix. This parameter, called method, indicates the type of groups that
are sought: method = "directional" or method = 1 for directional groups and method = "local" or
method = 2 for local groups (Figure 1). These functions make it possible to cluster the variables of
the data matrix (argument X) considered alone, or by taking account of external information available
on the observations (argument Xr) or external information available for the variables themselves
(argument Xu). A third “CLV” function has been included in the ClustVarLV package: It is the LCLV
function which can be used when external information is available for both the observations and the
variables (see Section “Clustering of variables with directional groups” for more details).

The other functions in the ClustVarLV package (version 1.4.1) are mainly utility and accessor
functions providing additional outputs useful for the interpretation of the clustering results. Their
usage will be illustrated with various case studies that will be discussed hereinafter.
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Functions Description

“Clustering” functions

CLV Hierarchical clustering of variables with consolidation
CLV_kmeans Kmeans algorithm for the clustering of variables
LCLV L-CLV for L-shaped data

Methods for ‘clv’ objects

plot Graphical representation of the CLV clustering stages
print Print the CLV results

Methods for ‘lclv’ objects

plot Graphical representation of the LCLV clustering stages
print Print the LCLV results

Utility functions for the ‘clv’ and ‘lclv’ objects

summary Method providing the description of the clusters of variables
plot_var Representation of the variables and their group membership
get_partition To get the clusters of variables
get_comp To get the latent variables associated with each cluster
get_load To get the loadings of the external variables in each cluster

Miscellaneous

stand_quali Standardization of the qualitative variables
data_biplot Biplot for the dataset

Table 1: List of the functions in the ClustVarLV package.

Clustering of variables with directional groups

As indicated above, when the user chooses method = "directional" in the CLV() or CLV_kmeans()
function, the criterion considered for optimization is the criterion T defined in Equation (1).

It can be shown (see for instance Vigneau and Qannari 2003) that when the maximum of the
criterion T is reached, the latent variable ck, in cluster Gk, is the first normalized principal component
of matrix Xk, the dataset formed of the variables belonging to Gk. Thus, the optimal value of T(K),
for a partition into K groups, is the sum of the largest eigenvalues respectively associated with the
variance-covariance matrices 1

n X′kXk, with k = 1, . . . , K. The ratio between T(K) and T(p) provides the
percentage of the total variance explained by the K CLV latent variables. Even if the K CLV latent
variables, which are not necessarily orthogonal, cannot take account of as much total variance as the K
first principal components, they may be more relevant for deciphering the underlying structure of the
variables than the first principal components. Moreover, they are likely to be more easily interpretable.
Enki et al. (2013) have also addressed the issue of identifying more interpretable principal components
and proposed a procedure which bears some similarities with the CLV method.

First illustrative example: Identification of block structure, and underlying latent com-
ponents, into a set of variables

We consider data from a French Research Project (AUPALESENS, 2010–2013) dealing with food-
behavior and nutritional status of elderly people. More precisely, we selected the psychological
behavior items, which are part of a large questionnaire submitted to 559 subjects. As a matter of
fact, the 31 psychological items were organized into five blocks, each aiming to describe a given
behavioral characteristic: emotional eating (E) with six items, external eating (X) with five items,
restricted eating (R) with five items, pleasure for food (P) with five items, and self esteem (S) with ten
items. Detailed description and analysis of the emotional, external and restricted eating items for this
study are available in Bailly et al. (2012).

The CLV() function was performed on the data matrix, X, which merges the 31 psychological items,
using the following code:

R> library("ClustVarLV")
R> data("AUPA_psycho", package = "ClustVarLV")
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Figure 2: Graphs obtained by the clustering into directional groups of the psychological variables. On
the left side, the dendrogram of the hierarchical clustering stage; on the right side, the variation of the
clustering criterion after consolidation of the partitions by means of the partitioning algorithm.

R> res.clv <- CLV(AUPA_psycho, method = "directional", sX = TRUE)
R> plot(res.clv, type = "dendrogram")
R> plot(res.clv, type = "delta", cex = 0.7)

The dendrogram and the graph showing the variation of the clustering criterion when passing
from a partition into K clusters to a partition into (K− 1) clusters (Delta = T(K) − T(K−1)) are shown
in Figure 2. From the graph of Delta, it can be observed that the criterion clearly jumps when passing
from five to four clusters. This means that the loss in homogeneity of the clusters is important with
four clusters and that a partition into five clusters should be retained. The partition into K = 5 groups,
available with get_partition(res.clv,K = 5), perfectly retrieved the five blocks of psychological
traits.

The summary method for ‘clv’ objects provides a description of the clusters:

R> summary(res.clv, K = 5)

Group.1 Group.2 Group.3 Group.4 Group.5
nb: 6 5 5 5 10
prop_within: 0.6036 0.4077 0.4653 0.388 0.3614
prop_tot: 0.4368

Group1 cor in group |cor|next group Group4 cor in group |cor|next group
E5 0.85 0.25 P1 0.72 0.18
E4 0.80 0.34 P3 0.63 0.14
E6 0.80 0.25 P2 0.61 0.10
E2 0.79 0.25 P4 0.58 0.14
E3 0.73 0.31 P5 0.57 0.19
E1 0.68 0.29

Group5 cor in group |cor|next group
Group2 cor in group |cor|next group S3 0.70 0.21
X2 0.76 0.38 S1 -0.68 0.10
X4 0.67 0.30 S6 -0.66 0.17
X5 0.65 0.19 S7 -0.65 0.17
X1 0.58 0.17 S10 0.65 0.07
X3 0.51 0.22 S5 0.55 0.12

S4 -0.53 0.10
Group3 cor in group |cor|next group S9 0.53 0.10
R5 0.77 0.25 S2 -0.51 0.14
R3 0.76 0.21 S8 0.49 0.23
R2 0.71 0.23
R4 0.66 0.11
R1 0.47 0.14

The homogeneity values within each cluster, assessed by the percentages of the total variance of
the variables belonging to the cluster explained by the associated latent variable, are 60.4%, 40.8%,
46.5%, 38.8%, 36.1% respectively (the Cronbach’s alphas are 0.87, 0.63, 0.71, 0.60, and 0.80, respectively).
Furthermore, the five group latent variables make it possible to explain 43.7% of the total variance of
all the p = 31 observed variables. For each variable in a cluster, its correlation coefficient with its own
group latent variable and its correlation coefficient with the next nearest group latent variable are also
given. Each item is highly correlated with its group latent variable.

Compared with the standardized PCA of X, five principal components (PCs) are required for
retrieving 45.1% of the total variance, whereas four PCs account for 40.5% of the total variance.
Moreover, it turned out that the interpretation of the first five PCs was rather difficult. If we consider
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all the loadings larger than 0.3, in absolute value, the first PC, PC1, seems to be associated with all the
items “E”, X2, X3, R2 and S8; PC2 is related to P1 and all the items “S” except S8, PC3 to R1 only, PC4
to X4, R3, R4, R5 and P3, and PC5 to X1 and X5. It is known that rotation (by means of orthogonal
or oblique transformations) may enhance the interpretation of the factors. In this case study, using a
Varimax transformation, the five rotated PCs can be associated with one of the predefined blocks of
items. However, the rotated principal components make it possible to retrieve the “true” structure if,
and only if, the correct number of dimensions for the subspace of rotation is selected. This may be an
impediment since the determination of the appropriate number of components is a tricky problem.
In the case study at hand, various rules (Jolliffe, 2002) led to two, four or eight PCs. By contrast, the
variation of the CLV criterion performs well for identifying the correct number of groups.

In another domain (i.e., the Health sector), Lovaglio (2011) pointed out that, within the Structural
Equation Modeling framework, the first step which consists of building the measurement models
could be based on the CLV technique. He showed that, considering a formative way, the subset of
variables obtained by means of CLV() led to a better recovery of the original configuration, followed
by VARCLUS based on PCA. This was far from being the case with the selection of variables on the basis
of the outcomes of PCA or PCA with Varimax rotation.

Second illustrative example: Clustering of quantitative and qualitative variables

Chavent et al. (2012) proposed an R package, named ClustOfVar, which aims at clustering variables,
with the benefit of allowing the introduction of quantitative variables, qualitative variables or a mix of
those variables. The approach is based on a homogeneity criterion which extends the CLV criterion
(Eq.1). More precisely, the correlation ratio (between groups variance to total variance ratio) of each
qualitative variable and the latent variable in a cluster are included in the criterion in addition to
the squared correlation coefficients used for the quantitative variables. In practice, for defining the
partition of the variables and the latent variables within each cluster, the algorithms described in
Chavent et al. (2012) are the same as those given in Vigneau and Qannari (2003) and Vigneau et al.
(2006), with a small variation: The latent variables are derived from a PCAMIX model (Saporta, 1990;
Kiers, 1991; Pagès, 2004) instead of a PCA model.

The strategy of clustering quantitative and qualitative variables raises the following question: Is
it better to cluster qualitative variables along with the quantitative variables or to break down each
qualitative variable into its categories and include these categories in a clustering approach such as
CLV?

To answer this question, let us consider the dataset ‘wine’ provided in various packages (for
instance, ClustOfVar, FactoMineR, Husson et al. (2015)). 21 french wines of Val of Loire are described
by 29 sensory descriptors scored by wine professionals. Two nominal variables are also provided: the
label of the origin (with three categories: “Saumur”, “Bourgueuil” and “Chinon”) and the nature of
the soil (with four categories: “Reference”, “Env.1”, “Env.2” and “Env.4”). The design of these two
nominal variables is however not well-balanced. Chavent et al. (2012) considered only 27 quantitative
variables (all the sensory descriptors except those regarding the global evaluation) and included
the two qualitative variables. From the dendrogram obtained with the function hclustvar(), they
retained six clusters. The summary of the partition into six clusters is shown below:

Cluster 1 : squared loading Cluster 4 : squared loading
Odour.Intensity. before.shaking 0.76 Visual.intensity 0.86
Spice. before.shaking 0.62 Nuance 0.84
Odor.Intensity 0.67 Surface.feeling 0.90
Spice 0.54 Aroma.intensity 0.75
Bitterness 0.66 Aroma.persistency 0.86
Soil 0.78 Attack.intensity 0.77

Astringency 0.79
Cluster 2 : squared loading Alcohol 0.68
Aroma.quality.before.shaking 0.78 Intensity 0.87
Fruity.before.shaking 0.85
Quality.of.odour 0.79 Cluster 5 : squared loading
Fruity 0.91 Plante 0.75

Aroma.quality 0.84
Cluster 3 : squared loading Acidity 0.22
Flower.before.shaking 0.87 Balance 0.94
Flower 0.87 Smooth 0.92

Harmony 0.87

Cluster 6 : squared loading
Phenolic 0.8
Label 0.8

The factor “Soil” was merged in the Cluster 1 with variables related to spicy sensation and the
odor intensity. Its correlation ratio with the latent variable of this cluster is 0.78 (which corresponds
to a F-ratio = 19.73 with a p-value = 9E-6). The factor “Label” was merged in the cluster 6 with the
quantitative descriptor “Phenolic”. The correlation ratio of “Label” with the latent variable of its
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Figure 3: Graph showing the evolution of the aggregation criterion after consolidation.

cluster is 0.80 (F-ratio = 36.02, p-value = 5E-7).

In the ClustVarLV package, we propose to take account of the qualitative information, in addition
to quantitative variables, by breaking down each qualitative variable into a matrix of indicators (G,
say) of size n x M, where M is the number of categories of the qualitative variable at hand. In the
same vein as Multiple Correspondence Analysis (Saporta, 1990), we propose to standardize the matrix
G. This leads us to the matrix G̃ = GD−1/2 where D is the diagonal matrix containing the relative
frequency of each category. The utility function stand_quali() in ClustVarLV allows us to get the
matrix G̃. Thereafter, the matrix submitted to the CLV() function is simply the concatenation of the
standardized matrix of the quantitative variables and all the standardized blocks associated with each
qualitative variables. The following code was used:

R> library("ClustVarLV")
R> data("wine", package = "FactoMineR")
R> X.quanti <- wine[, 3:29]
R> X.quali <- wine[, 1:2]
R> Xbig <- cbind(scale(X.quanti), stand_quali(X.quali))
R> resclv <- CLV(Xbig, method = "directional", sX = FALSE)
R> plot(resclv, "delta")

From the graph showing the evolution of the aggregation criterion (Figure 3), two, four, six or
even eight clusters could be retained.

The partition into six clusters is described as follows:

R> summary(resclv, K = 6)

Group1 cor in group |cor|next group Group4 cor in group |cor|next group
Odour.Intensity.before.shaking 0.87 0.63 Surface.feeling 0.95 0.80
Soil.Env.4 0.86 0.43 Intensity 0.94 0.82
Odour.Intensity 0.82 0.69 Visual.intensity 0.93 0.64
Spice. before.shaking 0.80 0.32 Aroma.persistency 0.93 0.76
Bitterness 0.80 0.49 Nuance 0.92 0.63
Spice 0.73 0.40 Astringency 0.89 0.70

Attack.intensity 0.88 0.74
Group2 cor in group |cor|next group Aroma.intensity 0.87 0.78
Aroma.quality 0.93 0.64 Alcohol 0.83 0.59
Balance 0.93 0.68
Smooth 0.92 0.77 Group5 cor in group |cor|next group
Quality.Odour 0.90 0.71 Phenolic 0.89 0.42
Harmony 0.90 0.87 Label.Bourgueuil -0.86 0.30
Aroma.quality.before.shaking 0.81 0.74 Label.Saumur 0.77 0.40
Plante -0.78 0.42
Fruity.before.shaking 0.77 0.58 Group6 cor in group |cor|next group
Soil.Reference 0.70 0.46 Acidity 0.89 0.30

Soil.Env.2 0.69 0.35
Group3 cor in group |cor|next group Soil.Env.1 -0.68 0.37
Flower.before.shaking 0.93 0.44 Label.Chinon 0.63 0.22
Flower 0.93 0.35

It turns out that both functions, i.e., hclustvar() in ClustOfVar (hierarchical algorithm) and CLV()
in ClustVarLV (hierarchical algorithm followed by a partitioning procedure), led to similar results for
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the sensory descriptors.

The first group (Group 1) is related to the intensity of the odor with spicy notes, to which is
associated the “Env.4” for the “Soil” factor, whereas it was globally “Soil” using hclustvar(). If we
compare the correlation ratio of the qualitative variable “Soil” with its cluster latent variable using
hclustvar() (i.e., 0.78), and the squared correlation coefficient of the category “Soil.Env.4” with its
cluster latent variable using CLV() (i.e., 0.74), we can conclude that the contribution of the three other
“Soil” categories to the correlation ratio is very small. This finding can easily be confirmed by means of
a one-way ANOVA between the latent variable in the first cluster and the factor “Soil”. Additionally,
it can be shown that the correlation ratio (R2) of a qualitative variable with respect to a quantitative
variable ( b f x, say) is equal to a weighted sum of the squared correlation coefficients of the indicators
of its categories, given in G̃, with the quantitative variable, namely:

R2 =
M

∑
m=1

(1− fm) cor2 (gm, x) , (3)

where gm is the indicator vector for the category m and fm is the relative frequency. It follows that, the
contribution of “Soil.Env.4” to the global R2 of “Soil” in the first cluster found with hclustvar() is
85.4%. Thus, it appears that it is because of the specific nature of the soil in “Env.4” that the wines
have a more intense odor and a more bitter flavor than the other wines.

The second group of attributes (Group 2) is related to the overall quality of the wines and it seems,
from the results of CLV(), that the type “Reference” of the soil is likely to favor this quality. This was
not observed with hclustvar() (see Cluster 5 in the summary of the partition into six clusters obtained
with hclustvar()) because the qualitative variable “Soil” was globally associated with the Cluster 1.

Regarding the fifth groups of attributes (Group 5), the interpretation of the Phenolic flavor of some
wines could be refined. If the “Label” was associated with the Phenolic attribute using hclustvar()
(Cluster 6), the outputs of the CLV() function show that type “Saumur” was slightly more “Phenolic”
than the type “Bourgeuil”, whereas type “Chinon” (in Group 6) seems to have acid notes (but caution
should be taken in this interpretation because of the small number of observations for “Chinon”).
Nevertheless, it could be emphasized that the soil of “Env.2” is likely to give more acidity, unlike
“Env.1”. Finally let us notice that the acidity attribute was merged in the Cluster 5 obtained with
hclustvar() but its squared loading to the latent variable of this cluster was relatively small.

Clustering of variables for local groups

In some specific situations, a negative correlation between two variables is considered as a disagree-
ment. Therefore, these variables should not be lumped together in the same group.

Consider for instance the case of preference (or acceptability) studies in which consumers are asked
to give a liking score for a set of products. For these data, the consumers play the role of variables
whereas the products are the observations. The aim is to identify segments of consumers having
similar preferences. This means positively correlated vectors of preference. In this situation, local
groups are sought (illustrated in the right side of Figure 1) and the parameter method = "local" is
to be used with the clustering functions of the ClustVarLV package. A case study developed in this
context is available in Vigneau et al. (2001).

In other contexts, as in Near-Infrared spectroscopy or 1H NMR spectroscopy, the CLV approach
with local groups can be used for a first examination of the spectral data. Jacob et al. (2013) showed
that this approach may help identifying spectral ranges and matching them with known compounds.

Technically, the identification of local groups of variables is performed in the CLV approach by the
maximization of the criterion S given in Equation (2). As a result, it is easy to show that the maximal
value is obtained, for a given number K of clusters, when each latent variable, ck, is proportional to
the centroid variable x̄k of the variables in the cluster Gk.

Third illustrative example: Application to the segmentation of a panel of consumers

In order to illustrate the use of the ClustVarLV functions for the definition of local groups, let us
consider the dataset ‘apples_sh’ available in the package (Daillant-Spinnler et al., 1996). Two types of
information were collected: On the one hand, the sensory characterization, given by a trained panel,
of 12 apple varieties from the Southern Hemisphere and, on the other hand, the liking scores, given by
60 consumers, for these varieties. We will consider the segmentation of the panel of consumers using
the CLV() function with the option method = "local":

R> library("ClustVarLV")
R> data("apples_sh", package = "ClustVarLV")
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Figure 4: Segmentation of the panel of consumers for the apples case study. On the left side, the
dendrogram of the hierarchical clustering; on the right side, the mapping of the consumers on the
basis of the two first principal components, with group membership identification.

R> res.seg <- CLV(X = apples_sh$pref, method = "local")
R> plot(res.seg, "dendrogram")
R> table(get_partition(res.seg, K = 3))
R> plot_var(res.seg, K = 3, v_symbol = TRUE)
R> comp <- get_comp(res.seg, K = 3)

The dendrogram from CLV() given in the left side of Figure 4 suggests to retain three segments.
These segments merged together 33, 11 and 16 consumers, respectively (after consolidation of the
solution obtained by cutting the dendrogram at the chosen level). The plot_var() companion function
makes it possible to show the group membership of each variable on a two dimensional subspace.
The plot produced by this function (right side of Figure 4) is grounded on a PCA loading plot. By
default, the two first principal components are considered, but the user may modify this option. In the
previous code, the option ‘v_symbol’ is set to TRUE in order to produce a figure readable in black and
white. Without this option, color graphs will be produced, with or without the labels of the variables.
In addition, the group latent variables may be extracted with the function get_comp(). They provide
the preference profiles of the 12 apple varieties in the various consumer segments.

Clustering of variables with external information

The CLV approach has also been extended to the case where external information is available. The clus-
tering of variables is achieved while constraining the group latent variables to be linear combinations
of external variables.

Clustering with external information collected on the observations

Suppose that, in addition to the variables to be clustered, the observations are described by a second
block of variables, Xr (r stands for additional information collected on the rows of the core matrix X) as
in Figure 5. Both CLV criteria (Equations 1 and 2) can be used with the additional constraint that:

ck = Xr ak with a′kak = 1 (4)

for each latent variable ck with k = 1, . . . , K.

It can be shown (Vigneau and Qannari, 2003) that the solutions of the optimization problems
are obtained when ck is the first component of a Partial Least Squares (PLS) regression of the group
matrix Xk on the external matrix Xr, in the case of directional groups, or the first component of a PLS
regression of the centroid variable x̄k on the external matrix Xr, in the case of local groups.

External preference mapping is a domain in which the CLV approach with additional information
on the observations has been successfully applied (Vigneau and Qannari, 2002). In addition to
clustering the consumers according to the similarity of their preference scores as it was illustrated
in the third illustrative example, the aim is also to segment the consumers while explaining their
preferences by means of the sensory characteristics of the products. Thus, the segmentation and the
modeling of the main directions of preference may be achieved simultaneously. If we consider again
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the ‘apples_sh’ dataset, two matrices are available: ‘apples_sh$pref’, the preference scores of the
consumers, and ‘apples_sh$senso’, the sensory characterization of the 12 apple varieties using 43
sensory attributes. The CLV() function includes parameters for taking account of such external block
of information. Namely:

R> res.segext <- CLV(X = apples_sh$pref, Xr = apples_sh$senso, method = "local",
+ sX = TRUE, sXr = TRUE)
R> table(get_partition(res.seg, K = 3), get_partition(res.segext, K = 3))
R> load3G <- get_load(res.segext, K = 3)

For a solution with three clusters, it turns out that the segments previously defined have been
rearranged in order to take account of the sensory attributes of the apples. The loadings ak (for
k = 1, 2, 3) of the sensory descriptors, which can be extracted using the utility function get_load(),
made it possible to explain the difference in preference in each segment.

Clustering with additional information on the variables

When additional information is available on the variables, the CLV approach has also been adapted in
order to take this information into account in the clustering process.

For instance, let us consider the problem of the clustering of spectral variables. Typically, a
spectrometer (Near Infrared or a Nuclear Magnetic Resonance spectrometer) makes it possible to
collect thousands of measurements at different spectral variables (wavelengths or chemical shifts).
This leads to a large amount of information with high level of redundancy since close spectral points
convey more or less the same information. Instead of trimming off close spectral points, the clustering
of variables is a more effective way of identifying automatically spectral ranges associated with the
same functional chemical groups (Vigneau et al., 2005). However, the fact that the variables correspond
to successive wavelengths was not taken into account with the previous criteria given in Equation 1,
or Equation 2. One can expect that adding information on the spectral structure of the variables can
improve the quality of the clusters of variables, in the sense that variables within the same spectral
range are more likely to be lumped together. The additional information to be considered in such a
situation is related to the spectral proximity between the variables.

We denote by Z, the matrix of the additional information on the variables. The rows in Z are
matched with the columns of the matrix X. The CLV approach is performed by combining, in each
cluster of variables, the X- and the Z-information. Namely, for a given cluster Gk, a new matrix Pk is
defined by:

Pk = Xk Zk, (5)

where Xk is the sub-matrix of X formed by the pk variables belonging to Gk, and similarly, Zk is a
sub-matrix of Z which involves only these pk variables. Thus, Pk can be viewed as a weighted version
of Xk, or as an interaction matrix between the X- and Z-information estimated within Gk. The nature
of Z, as well as the pretreatment applied, lead to one or the other point of view. The CLV criteria have
been modified so that the latent variable in a cluster is a linear combination of the associated Pk matrix.
If we denote by tk the latent variable in the cluster Gk, the objective is either to maximize

TZ =
K

∑
k=1

p

∑
j=1

δkj cov2
(

xj, tk

)
(6)

or

SZ =
K

∑
k=1

p

∑
j=1

δkj cov
(

xj, tk

)
(7)

with the constraints that:
tk = Pk uk/trace

(
P′k Pk

)
and

u′k uk = 1

The parameter Xu in the CLV() function makes it possible to take account of the external information
on the variables. A typical line of code in this case may be as:

R> resclv <- CLV(X = X, Xu = Z, method = "local", sX = FALSE)

Clustering with additional information on the observations and the variables

When external informations on observations and variables are available, X, Xr and Z are associated
either by their rows or by their columns, so that the three blocks of data may be arranged in the form
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Figure 5: L-shaped data.

of an L (Figure 5). Therefore, the acronym L-CLV has been adopted and the LCLV() function included
in the package ClustVarLV has been developed for this case.

The L-CLV approach directly stems from the previous extensions of the CLV approach. It consists
in the maximization, in each cluster k (with k = 1, . . . , K) of the covariance between a pair of latent
variables, ck and tk. ck is a linear combination of the co-variables measured on the observations, Xr,
and tk is a linear combination of the Pk variables (defined in the previous section). The criterion to be
maximized is:

T̃ =
K

∑
k=1

cov (ck, tk) with ck = Xr ak, tk = Pk uk = Xk Zk uk and a′kak = 1, u′kuk = 1 (8)

or alternatively,

T̃ =
K

∑
k=1

u′k Z′k X′k Xr ak (9)

From the expression in Equation 9, it turns out that L-CLV bears strong similarities with the
so-called L-PLS method (Martens et al., 2005). The main difference lies in the fact that L-CLV involves
a clustering process and that a specific matrix mixing the X, Xr and Z informations is considered and
updated in each cluster.

Interested readers are referred to Vigneau et al. (2011) and Vigneau et al. (2014) for further details
and an illustration of the procedure for the segmentation of a panel of consumers, according to their
likings (X), interpretable in terms of socio-demographic and behavioral parameters (given in Z) and in
relation with the sensory key-drivers (in Xr). For such case studies the LCLV() function has been used
with the following code (default options used):

R> resL <- LCLV(X = X, Xr = Xr, Xu = Z)
R> ak <- get_load(resL, K = 4)$loading_v
R> uk <- get_load(resL, K = 4)$loading_u
R> ck <- get_comp(resL, K = 4)$compc
R> tk <- get_comp(resL, K = 4)$compt
R> parti4G <- get_partition(resL, K = 4)

The function get_load() allows one to extract, for a given number of clusters K, the loadings ak and
the loadings uk. This makes it possible to interpret the results in the light of the external informations.
The latent variables ck and tk (for k = 1, . . . , K) are also available using the function get_comp() and
the cluster membership of the variables are provided with the function get_partition().

Technical considerations

The CLV() and CLV_kmeans() functions

The CLV() function was described for the clustering of variables, for local or directional groups, when
external information is taken into account or not. This function involves two stages, a hierarchical
algorithm followed by a non-hierarchical (or partitioning) algorithm. As a matter of fact, the hierarchi-
cal algorithm provides, at a given level, h, an optimal partition conditionally on the partition obtained
at the previous level, h− 1. The partitioning algorithm starts with the partition obtained by cutting
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Figure 6: Comparison of the processing time with CLV() and CLVkmeans() as a function of the number
of variables (the other parameters of the experiment being fixed).

the dendrogram at a given level (say, h) and an alternating optimization scheme is used until the
convergence of the criterion to be maximized. The number of iterations before convergence is given in
the list of the results (e.g., resclv$tabres[,"iter"]). This second stage is called consolidation stage.
By default, the consolidation is performed for the last twenty levels of the hierarchy, i.e., for K = 1 to
K = 20.

However, when the number of variables is large, the hierarchical algorithm may be time consuming.
For this reason, the CLV_kmeans() function was added to the package ClustVarLV. This function has
the same parameters and options as the CLV() function, but performs only the partitioning stage. In
this case, the number of clusters, K, should be given as an input parameter. For the initialization of the
iterative algorithm, the user may suggest a partition used as a starting point, or, may ask that random
initializations of the algorithm are repeatedly performed. The number of repetitions in case of random
initializations is stated by the user (argument nstart).

Figure 6 shows that the time required for the CLV_kmeans() function increases approximately
linearly with the number of variables. Let us notice that in this experiment, there were twenty
observations, the nstart parameter was fixed to 50, and the CLV_kmeans() function was used iteratively
twenty times, by varying the number of clusters from K = 1 to K = 20. In comparison, the relationship
between the time required for the CLV() function (consolidation done for K = 1 to K = 20) and the
number of variables looks like a power function. As can be observed (Figure 6), when the number
of variables was about 1400, the processing time was comparable for both procedures. When the
number of variables was larger, as it is often the case when dealing with -omics data, the CLV_kmeans()
function (used for partitions into one cluster until twenty clusters) provides a faster implementation.
However, for reasonable number of variables to cluster, the CLV() function appears preferable. This
is not only because CLV() is relatively fast in this case, but also because it provides a graph of the
evolution of the aggregation criterion which is helpful for choosing the number of clusters.

The ClustOfVar and ClustVarLV packages

As stated above, both packages, ClustOfVar and ClustVarLV, are devoted to the cluster analysis of
variables. They both draw from the same theoretical background (Vigneau and Qannari, 2003). We
emphasize hereinafter some differences of these two packages.

In the first place, it seems that ClustVarLV is less time consuming than ClustOfVar. To illustrate
this aspect, we considered a large dataset, named “Colon”, which is available in the plsgenomics
package (Boulesteix et al., 2015). It concerns the gene expression of 2000 genes for 62 samples from the
microarray experiments of Colon tissue samples of Alon et al. (1999). As shown below, the running
time was less than 7 minutes for the CLV() function, whereas the hclustvar() of the ClustOfVar
required more than an hour and a half. The performance of CLV() over hclustvar() can be partly
explained by the fact that ClustVarLV is interfaced with C++ blocks of code thanks to the Rcpp package
(Eddelbuettel and François, 2011; Eddelbuettel, 2013).

R> data("Colon", package = "plsgenomics")
R> library("ClustVarLV")
R> system.time(CLV(Colon$X, method = "directional", sX = TRUE, nmax = 1))
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user system elapsed
385.30 7.60 392.95

R> library("ClustOfVar")
R> system.time(hclustvar(Colon$X))

user system elapsed
4926.37 15.57 4942.44

We also indicated that the feature in ClustOfVar that is generally put forward is the possibility to
cluster both quantitative and qualitative variables. We have stressed through the ‘wine’ dataset the
limitation of clustering together quantitative and qualitative variables and we advocated breaking
down the qualitative variables into the indicator variables associated with its categories. It is also worth
mentioning that ClustVarLV covers a much wider scope than ClustOfVar as it makes it possible:

(i) to cluster variables according to local (method = "local") or directional groups (method =
"directional"), this latter option being the only possibility offered by ClustOfVar;

(ii) to perform a cluster analysis on non standardized (sX = FALSE) or standardized variables (sX =
TRUE), whereas ClustOfVar systematically standardizes the variables;

(iii) to cluster the variables taking into account external information on the observations and/or the
variables.

Concluding remarks

The R package ClustVarLV contains the functions CLV, CLV_kmeans and LCLV related to the CLV
approach, which can be used with or without external information. Additional functions have also
been included in order to extract different types of results or to enhance the interpretation of the
outcomes. A vignette is included in the package documentation (web link: ClustVarLV) and provides
some basic examples for running the main functions of the ClustVarLV package.

Several developments of the CLV approach are under investigation and will be implemented in
the forthcoming updates of the ClustVarLV package. The “cleaning up” of the variables which do not
have a clear assignment to their current cluster (noise variables, for instance) is one of the issues that
we are investigating. Another interesting topic is the clustering of variables with the aim of explaining
a given response variable as described in Chen and Vigneau (in press).
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Working with Multilabel Datasets in R:
The mldr Package
by Francisco Charte and David Charte

Abstract Most classification algorithms deal with datasets which have a set of input features, the
variables to be used as predictors, and only one output class, the variable to be predicted. However,
in late years many scenarios in which the classifier has to work with several outputs have come to
life. Automatic labeling of text documents, image annotation or protein classification are among
them. Multilabel datasets are the product of these new needs, and they have many specific traits.
The mldr package allows the user to load datasets of this kind, obtain their characteristics, produce
specialized plots, and manipulate them. The goal is to provide the exploratory tools needed to analyze
multilabel datasets, as well as the transformation and manipulation functions that will make possible
to apply binary and multiclass classification models to this data or the development of new multilabel
classifiers. Thanks to its integrated user interface, the exploratory functions will be available even to
non-specialized R users.

Introduction

Pattern classification is an important task nowadays and is in use everywhere, from our e-mail client,
which is able to separate spam from legit messages, to credit institutions, that rely on it to detect fraud
and grant or deny loans. All these cases operate with binary datasets, since a message is either spam
or legit, and multiclass datasets, the loan is safe, medium, risky or highly risky, for instance. In both
cases the user expects only one output.

The huge growth of the amount of information stored in late years on the web, such as blog posts,
pictures taken from cameras and phones, videos hosted on YouTube, and messages on social networks,
has led to more complex classification work. A blog post can be classified into several non-exclusive
categories, for instance news, economy and politics simultaneously. A picture can be assigned a set of
labels, such as landscape, sky and forest. A video can be labeled into several music genres at once, etc.
All of these are examples of problems in need of multilabel classification.

Binary and multiclass datasets can be managed in R by using data frames. Usually the last attribute
(column of the “data.frame”) is the output class, which might contain only TRUE/FALSE values or values
belonging to a finite set (a factor). Multilabel datasets (MLDs) can also be stored in an R “data.frame”,
but an additional structure to know which attributes are output labels is needed. Moreover, this kind
of datasets have many specific characteristics that do not exist in the traditional ones. The average
number of labels per instance, the imbalance ratio for each label, the number of labelsets (sets of labels
assigned to each row) and their frequencies, and the level of concurrence among imbalanced labels are
some of the traits that differentiate an MLD from the others.

Until now, most of the software to work with MLDs has been written in Java. The two best known
frameworks are MULAN (Tsoumakas et al., 2011) and MEKA (Read and Reutemann, 2012). Both
implementations rely on WEKA (Hall et al., 2009), which offers a large variety of binary and multiclass
classifiers, as well as functions needed to deal with ARFF (Attribute-Relation File Format) files. Most
of the existing MLDs are stored in ARFF format. MULAN and MEKA provide the specialized tools
needed to deal with multilabel ARFFs, and the infrastructure to build multilabel classifiers (MLCs).
Although R can access WEKA functionality through the RWeka (Hornik et al., 2009) package, handling
MLDs is far from an easy task in R. This has been the main motivation behind the development of the
mldr package. To the best of our knowledge, mldr is the first R package aimed to ease the work with
multilabel data.

The mldr package aims to provide the user with the functions needed to perform exploratory
analysis of MLDs, determining their main traits both statistically and visually. Moreover, it also brings
the proper tools to manipulate this kind of datasets, including the application of the most common
transformation methods, BR (Binary Relevance) and LP (Label Powerset), that will be described in the
following section. These would be the foundation for processing MLDs with traditional classifiers, as
well as for developing new multilabel algorithms.

The mldr package does not depend on the RWeka package, and it is not linked to MULAN nor
MEKA. It has been designed to allow reading both MULAN and MEKA MLDs, but without any
external dependencies. In fact, it would be possible to load MLDs stored in other file formats, as
well as creating them from scratch. When loaded, MLDs are wrapped in an S3 type object with class
“mldr”, which allows for the use of methods. The object will contain the data in the MLD and also
a large set of measures obtained from it. The functions provided by the package ease the access to
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Figure 1: Characterization measures taxonomy.

this information, produce some specific plots, and make possible the manipulation of its content. A
web-based graphical user interface, developed using the shiny (Chang et al., 2015) package, puts the
exploratory analysis tools of the mldr package at the fingertips of all users, even those who have little
experience using R.

In the following section the foundations related to MLDs and MLC will be briefly introduced. After
that, the structure of the mldr package, and the operations it provides will be explained. Finally, the
user interface provided by mldr to ease exploratory analysis tasks over MLDs will be shown. All code
displayed in this paper is available in a vignette, accessible by entering vignette("mldr",package =
"mldr").

Working with multilabel datasets

MLDs are generated from text documents (Klimt and Yang, 2004), sets of images (Duygulu et al., 2002),
music collections, and protein attributes (Diplaris et al., 2005), among other sources. For each sample
a set of features (input attributes) is collected, and a set of labels (the output labelset) is assigned.
Usually there are several hundreds or even thousands of attributes, and it is not rare that a MLD has
more labels than features. Some MLDs have only a few labels per instance, while others have dozens
of them. In some MLDs the number of label combinations (labelsets) is quite short, whereas in others it
can be very large. Most MLDs are imbalanced, which means that some labels are very frequent while
others are scarcely represented. The labels in an MLD can be correlated or not. Moreover, frequent
labels and rare labels can appear together in the same instances.

As can be seen, a lot of different scenarios can be found depending on the MLD characteristics.
This is the reason why several specific measures have been designed to assess MLD traits (Tsoumakas
et al., 2010), since they can have a serious impact on the MLC’s performance. The following two
subsections introduce several of these measures and some of the approaches pursued to face multilabel
classification.

Multilabel dataset traits

The most common characterization measures for MLDs can be grouped into four categories, as
depicted in Figure 1.

The most basic information that can be obtained from an MLD is the number of instances, attributes
and labels. For any MLD containing |D| instances, any instance Di, i ∈ {1.. |D|} will be the union of a
set of attributes and a set of labels (Xi, Yi), Xi ∈ X1 × X2 × · · · × X f , Yi ⊆ L, where f is the number of
input features and X j is the space of possible values for the j-th attribute, j ∈ {1.. f }. L being the full
set of labels used in D, Yi could be any subset of items in L. Therefore, theoretically the number of
potential labelsets could be 2|L|. In practice this number tends to be limited by |D|.

Each instance Di has an associated labelset, whose length (number of active labels) can be in the
range {0..|L|}. The average number of active labels per instance is the most basic measure of any MLD,
usually known as Card (standing for cardinality). It is calculated as shown in Equation 1. Dividing this
measure by the number of labels in L, as shown in Equation 2, results in a dimension-less measure,
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known as Dens (standing for label density).

Card (D) =
1
|D|

|D|
∑
i=1
|Yi| , (1)

Dens (D) =
1
|D|

|D|
∑
i=1

|Yi|
|L| . (2)

Most multilabel datasets are imbalanced, meaning that some of the labels are very frequent whereas
others are quite rare. The level of imbalance of a label can be measured by the imbalance ratio, IRLbl,
defined in Equation 3. To know how much imbalance there is in D, the MeanIR measure (Charte et al.,
2015) is calculated as the mean imbalance ratio among all labels, as shown in Equation 4. In order to
know the significance of this last measure, the standard CV (Coefficient of Variation, Equation 5) can
be used.

IRLbl (y) =

max
y′∈L

( |D|
∑
i=1

h
(
y′, Yi

))
|D|
∑
i=1

h (y, Yi)

h (y, Yi) =

{
1 y ∈ Yi

0 y /∈ Yi
, (3)

MeanIR =
1
|L| ∑

y∈L
IRLbl (y) , (4)

CV =
IRLblσ
MeanIR

IRLblσ =

√√√√∑
y∈L

(IRLbl (y)−MeanIR)2

|L| − 1
. (5)

The number of different labelsets, as well as the amount of them being unique labelsets (i.e.,
appearing only once in D), give us an idea on how sparsely the labels are distributed. The labelsets by
themselves indicate how the labels in L are related. A very frequent labelset implies that the labels in
it tend to appear jointly in D. The SCUMBLE measure, introduced in Charte et al. (2014) and shown in
Equation 7, is used to assess the concurrence level among frequent and infrequent labels.

SCUMBLEins (i) = 1− 1
IRLbli

( |L|
∏
l=1

IRLblil

)(1/|L|)

, (6)

SCUMBLE (D) =
1
|D|

|D|
∑
i=1

SCUMBLEins (i) . (7)

Besides the aforementioned insights, there are some other interesting traits that can be indirectly
obtained from the previous measures, such as the ratio between input features and output labels, the
maximum IRLbl, or the coefficient of variation in the imbalance of levels, among others.

Although the raw numbers given by these calculations describe the nature of any multilabel dataset
to a good level, in general a visualization of its characteristics is desirable to ease its interpretation by
researchers.

The information obtained from the previous measures depicts the characteristics of the dataset.
These insights, along with other factors such as the loss function used by the classifier, help in choosing
the most proper algorithm to learn from it and, in the future, make predictions on new data. Traditional
classification models, such as trees and support vector machines, are designed to give only one output
as result. Multilabel classification can mainly be faced through two different approaches discussed in
the following.

Multilabel classification

• Algorithm adaptation: The goal is to modify existing algorithms taking into account the mul-
tilabel nature of the samples, for instance hosting more than one class in the leaves of a tree
instead of only one.

• Problem transformation: This approach transforms the original data to make it suitable to
traditional classification algorithms, then combines the obtained predictions to build the labelsets
given as output result.

Although several transformation methods have been defined in the specialized literature, there
are two among them that stand out because they are the foundation for many others:
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• Binary Relevance (BR): Introduced by Godbole and Sarawagi (2004) as an adaptation of OVA
(One-vs-All) to the multilabel scenario, this method transforms the original multilabel dataset
into several binary datasets, as many as there are different labels. In this way any binary
classifier can be used by joining the individual predictions to generate the final output.

• Label Powerset (LP): Introduced by Boutell et al. (2004), this method transforms the multilabel
dataset into a multiclass dataset by using the labelset of each instance as class identifier. Any
multiclass classifier can be used, transforming back the predicted class into a labelset.

BR and LP have been used not only as a direct technique to implement multilabel classifiers, but
also as a base method to build more sophisticated algorithms. Several ensembles of binary classifiers
relying on BR have been proposed, such as CC (Classifier Chains) or ECC (Ensemble of Classifier Chains),
both by Read et al. (2011). The same is applicable to the LP transformation, the foundation of ensemble
multilabel classifiers such as RAkEL (Random k-Labelsets for Multi-Label Classification, Tsoumakas
and Vlahavas 2007) and EPS (Ensemble of Pruned Sets, Read et al. 2008).

For the readers interested in more details, a recent review on multilabel classification has been
published by Zhang and Zhou (2014).

The mldr package

R is among the most used tools when it comes to performing data mining tasks, including binary
and multiclass classification. However, the work with MLDs in R is not as easy as it is with classic
datasets. This is the main motivation behind the development of the mldr package, whose goals and
functionality are described in this section.

Main goals of the mldr package

When we planned the development of this package, our main objective was to ease the exploration
of MLDs in R. This included loading existing MLDs in different formats, as well as obtaining from
them all the available information. These functions should be accessible to everyone, even to users not
used to the R command line but to GUIs (Graphical User Interfaces) such as those provided by packages
Rcmdr (aka R Commander, Fox 2005) or rattle (Williams, 2011).

At the same time, we aimed to include the tools needed to manipulate the MLDs, to apply filters
and transformations, as well as to create MLDs from scratch. This functionality, directed to more
experienced R users, opens the doors to implement other algorithms on top of mldr, for instance
preprocessing methods or multilabel classifiers.

Installing and loading the mldr package

The mldr package is available from the Comprehensive R Archive Network (CRAN), therefore it can
be installed as any other package, by simply typing:

> install.packages("mldr")

mldr depends on three R packages: XML (Lang and the CRAN Team, 2015), circlize (Gu et al.,
2014) and shiny. The first one allows reading XML (eXtensible Markup Language) files, the second one
is used to generate a specific type of plot (described below), and the third one is the base of its user
interface.

Older releases of mldr, as well as the development version, are available at http://github.com/
fcharte/mldr. It is possible to install the development version using the install_github() function
from devtools (Wickham and Chang, 2015).

Once installed, the package has to be loaded before it can be used. This can be done through
the library() or require() functions, as usual. After loading the package three sample MLDs will
be available: birds, emotions and genbase. These are contained in the ‘birds.rda’, ‘emotions.rda’ and
‘genbase.rda’ files, which are lazily loaded along with the package.

The mldr package uses its own internal representation for MLDs, which are assigned the “mldr”
class. Inside an “mldr” object, such as the previous mentioned emotions or birds, both the data in the
MLD and all the information obtained from this data can be found.

Loading and creating MLDs

Besides the three sample MLDs included in the package, the mldr() function allows to load any MLD
stored in MULAN or MEKA file formats. Assuming that the files ‘corel5k.arff’ and ‘corel5k.xml’, which
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hold the Corel5k (Duygulu et al., 2002) MLD in MULAN format, are in the current directory, the
loading is done as follows:

> corel5k <- mldr("corel5k")

If the XML file is not available, it is possible to indicate just the number of labels in the MLD
instead. In this case, the function assumes that the labels are at the end of the list of features. For
instance:

> corel5k <- mldr("corel5k", label_amount = 374)

Loading an MLD in MEKA file format is equally easy. In this case there is no XML file with label
information used, but a special header inside the ARFF file, a fact that will be indicated to mldr() with
the use_xml argument:

> imdb <- mldr("imdb", use_xml = FALSE)

In all cases the result, as long as the MLD can be correctly loaded and parsed, will be a new “mldr”
object ready to use.

If the MLD we are interested in is not in MULAN or MEKA format, firstly it will have to be
loaded into a “data.frame”, for instance using functions such as read.csv(), read.table() or a more
specialized reader, and secondly this “data.frame” and an integer vector stating the indices of the
labels inside it are given to the mldr_from_dataframe() function. This is a general function for creating
an “mldr” object from any “data.frame”, so it can also be used to generate new MLDs on the fly, as
shown in the following example:

> df <- data.frame(matrix(rnorm(1000), ncol = 10))
> df$Label1 <- c(sample(c(0,1), 100, replace = TRUE))
> df$Label2 <- c(sample(c(0,1), 100, replace = TRUE))
> mymldr <- mldr_from_dataframe(df, labelIndices = c(11, 12), name = "testMLDR")

This will assign to mymldr an MLD, named testMLDR, with 10 input attributes and 2 labels.

Obtaining information from an MLD

After loading any MLD, a quick summary of its main characteristics can be obtained by means of the
usual summary() function, as shown below:

> summary(birds)
num.attributes num.instances num.labels num.labelsets num.single.labelsets

279 645 19 133 73
max.frequency cardinality density meanIR scumble num.inputs

294 1.013953 0.05336597 5.406996 0.03302765 260

Any of these measures can be individually obtained through the measures element of the “mldr”
class, like this:

> emotions$measures$num.attributes
[1] 78

> genbase$measures$scumble
[1] 0.0287591

Full information about the labels in the MLD, including the number of times they appear, their
IRLbl and SCUMBLE measures, can be retrieved by using the labels element of the “mldr” class:

> birds$labels
index count freq IRLbl SCUMBLE

Brown Creeper 261 14 0.021705426 7.357143 0.12484341
Pacific Wren 262 81 0.125581395 1.271605 0.05232609
Pacific-slope Flycatcher 263 46 0.071317829 2.239130 0.06361470
Red-breasted Nuthatch 264 9 0.013953488 11.444444 0.15744451
Dark-eyed Junco 265 20 0.031007752 5.150000 0.10248336
Olive-sided Flycatcher 266 14 0.021705426 7.357143 0.18493760
Hermit Thrush 267 47 0.072868217 2.191489 0.06777263
Chestnut-backed Chickadee 268 40 0.062015504 2.575000 0.06807452
Varied Thrush 269 61 0.094573643 1.688525 0.07940806
Hermit Warbler 270 53 0.082170543 1.943396 0.07999006
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Swainson's Thrush 271 103 0.159689922 1.000000 0.11214301
Hammond's Flycatcher 272 28 0.043410853 3.678571 0.06129884
Western Tanager 273 33 0.051162791 3.121212 0.07273988
Black-headed Grosbeak 274 9 0.013953488 11.444444 0.20916487
Golden Crowned Kinglet 275 37 0.057364341 2.783784 0.09509474
Warbling Vireo 276 17 0.026356589 6.058824 0.14333613
MacGillivray's Warbler 277 6 0.009302326 17.166667 0.24337605
Stellar's Jay 278 10 0.015503876 10.300000 0.12151527
Common Nighthawk 279 26 0.040310078 3.961538 0.06520272

The same is applicable for labelsets and attributes, by means of the labelsets and attributes
elements of the class.

To access the MLD content, attributes and label values, the print() function can be used, as well
as the dataset element of the “mldr” object.

Plotting functions

Exploratory analysis of MLDs can be tedious, since most of them have thousands of attributes and
hundreds of labels. The mldr package provides a plot() function specific for dealing with “mldr”
objects, allowing the generation of several specific types of plots. The first argument given to plot()
must be an “mldr” object, while the second one specifies the type of plot to be produced.

> plot(emotions, type = "LH")

There are seven different types of plots available: three histograms showing relations between
instances and labels, two bar plots with similar purpose, a circular plot indicating types of attributes
and a concurrence plot for labels. All of them are shown in Figure 2, generated by the following code:

> layout(matrix(c(1, 1, 7, 1, 1, 4, 5, 5, 4, 2, 6, 3), 4, 3, byrow = TRUE))
> plot(emotions, type = c("LC", "LH", "LSH", "LB", "LSB", "CH", "AT"))

The concurrence plot is the default one, with type "LC", and responds to the need of exploring
interactions among labels, and specifically between majority and minority ones. This plot has a circular
shape, with the circumference partitioned into several disjoint arcs representing labels. Each arc has
length proportional to the number of instances where the label is present. These arcs are in turn
divided into bands that join two of them, showing the relation between the corresponding labels. The
width of each band indicates the strength of the relation, since it is proportional to the number of
instances in which both labels appear simultaneously. In this manner, a concurrence plot can show
whether imbalanced labels appear frequently together, a situation which could limit the possible
improvement of a preprocessing technique (Charte et al., 2014).

Since drawing interactions among a lot of labels can produce a confusing result, this last type of
plot accepts more arguments: labelCount, which accepts an integer that will be used to generate the
plot with that number of labels chosen at random; and labelIndices, which allows to indicate exactly
the indices of the labels to be displayed in the plot. For example, in order to plot the first ten labels of
genbase:

> plot(genbase, labelIndices = genbase$labels$index[1:10])

The label histogram (type "LH") relates labels and instances in a way that shows how well-
represented labels are in general. The X axis represents the number of instances and the Y axis the
amount of labels. This means that if a large number of labels are appearing in very few instances, all
data will be concentrated on the left side of the plot. On the contrary, if labels are generally present
in many instances, data will tend to accumulate on the right side. This plot shows imbalance of
labels when there is data accumulated on both sides of the plot, which implies that many labels are
underrepresented, and a large amount are overrepresented as well.

The labelset histogram (named "LSH") is similar to the former. However, instead of representing
the number of instances in which each label appears, it shows the amount of labelsets. This indicates
quantitatively whether labelsets repeat consistently or not among instances.

The label and labelset bar plots display exactly the number of instances for each one of the labels
and labelsets, respectively. Their codes are "LB" for the label bar plot and "LSB" for the labelset one.

The cardinality histogram (type "CH") represents the amount of labels instances have in general.
Therefore data accumulating on the right side of the plot indicates that instances do have a notable
amount of labels, whereas data concentrating on the left side shows the opposite situation.

The attribute types plot (named "AT") is a pie chart displaying the number of labels, numeric
attributes and finite set (character) attributes, thus showing the proportions between these types of
attributes to ease the understanding of the amount of input information and that of output data.
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Figure 2: Plots generated by mldr’s plot() function. The type of plot is indicated at the top-left corner
of each rectangle.

Additionally, plot() accepts coloring arguments, col and color.function. The former can be
used on all plot types except for the label concurrence plot, and must be a vector of colors. The
latter is only used on the label concurrence plot and accepts a coloring function, such as rainbow or
heat.colors, as can be seen in the following example:

> plot(emotions, type = "LC", color.function = heat.colors)
> plot(emotions, type = "LB", col = terrain.colors(emotions$measures$num.labels))

Transforming and filtering functions

Manipulation of datasets is a crucial task in multilabel classification. Since transformation is one of the
main approaches to tackle the problem, both BR and LP transformations are implemented in package
mldr. They can be obtained using the mldr_transform function, which accepts an “mldr” object as
first argument, the type of transformation, "BR" or "LP", as second, and an optional vector of label
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indices to be included in the transformation as last argument:

> emotionsbr <- mldr_transform(emotions, type = "BR")
> emotionslp <- mldr_transform(emotions, type = "LP", emotions$labels$index[1:4])

The BR transformation will return a list of “data.frame” objects, each one of them using one of
the labels as class, whereas the LP transformation will return a single “data.frame” representing a
multiclass dataset using each labelset as a class. Both of these transformations can be directly used in
order to apply binary and multiclass classification algorithms, or even implement new ones.

> emo_lp <- mldr_transform(emotions, "LP")
> library(RWeka)
> classifier <- IBk(classLabel ~ ., data = emo_lp, control = Weka_control(K = 10))
> evaluate_Weka_classifier(classifier, numFolds = 5)

=== 5 Fold Cross Validation ===

=== Summary ===

Correctly Classified Instances 205 34.57 %
Incorrectly Classified Instances 388 65.43 %
Kappa statistic 0.2695
Mean absolute error 0.057
Root mean squared error 0.1748
Relative absolute error 83.7024 %
Root relative squared error 94.9069 %
Coverage of cases (0.95 level) 75.3794 %
Mean rel. region size (0.95 level) 19.574 %
Total Number of Instances 593

A filtering utility is included in the package as well. Using it is intuitive, since it can be called
with the square bracket operator [. This allows to partition an MLD or filter it according to a logical
condition.

> emotions$measures$num.instances
[1] 593

> emotions[emotions$dataset$.SCUMBLE > 0.01]$measures$num.instances
[1] 222

Combined with the joining operator, +, this enables users to implement new preprocessing tech-
niques that modify information in the MLD in order to improve classification results. For example, the
following would be an implementation of an algorithm disabling majority labels on instances with
highly imbalanced labels:

> mldbase <- mld[.SCUMBLE <= mld$measures$scumble]
> # Samples with coocurrence of highly imbalanced labels
> mldhigh <- mld[.SCUMBLE > mld$measures$scumble]
> majIndexes <- mld$labels[mld$labels$IRLbl < mld$measures$meanIR, "index"]
> # Deactivate majority labels
> mldhigh$dataset[, majIndexes] <- 0
> mldbase + mldhigh # Join the instances without changes with the filtered ones

In this last example, the first two commands filter the MLD, separating instances with their
SCUMBLE lower than the mean and those with it higher. Then, the third line obtains the indices of the
labels with lower IRLbl than the mean, thus these are the majority labels of the dataset. Finally, these
labels are set to 0 in the instances with high SCUMBLE, and then the two partitions are joined again.

Lastly, another useful feature included in the mldr package is the MLD comparison with the ==
operator. This indicates whether both MLDs in comparison share the same structure, which would
mean they have the same attributes, and these would have the same type.

> emotions[1:10] == emotions[20:30]
[1] TRUE

> emotions == birds
[1] FALSE
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Assessing multilabel predictive performance

Assuming that a set of predictions has been obtained for a MLD, e.g., through a set of binary classifiers,
a multiclass classifier or any other algorithm, the next step would be to evaluate the classification
performance. In the literature there exist more than 20 metrics for this task, and some of them are quite
complex to calculate. The mldr package provides the mldr_evaluate function to accomplish this task,
supplying both example based and label based metrics.

Multilabel evaluation metrics are grouped into two main categories: example based and label
based metrics. Example based metrics are computed individually for each instance, then averaged
to obtain the final value. Label based metrics are computed per label, instead of per instance. There
are two approaches called micro-averaging and macro-averaging (described below). The output of the
classifier can be a bipartition (i.e., a set of 0s and 1s denoting the predicted labels) or a ranking (i.e., a
set of real values denoting the relevance of each label). For this reason, there are bipartition based and
ranking based evaluation metrics for each one of the two previous categories.

D being the MLD, L the full set of labels used in D, Yi the subset of predicted labels for the
i-th instance, and Zi the true subset of labels, the example/bipartition based metrics returned by
mldr_evaluate are the following:

• Accuracy: It is defined (see Equation 8) as the proportion of correctly predicted labels with
respect to the total number of labels for each instance.

Accuracy =
1
|D|

|D|
∑
i=1

|Yi ∩ Zi|
|Yi ∪ Zi|

. (8)

• Precision: This metric is computed as indicated in Equation 9, giving as result the ratio of
relevant labels predicted by the classifier.

Precision =
1
|D|

|D|
∑
i=1

|Yi ∩ Zi|
|Zi|

. (9)

• Recall: It is a metric (see Equation 10) commonly used along with the previous one, measuring
the proportion of predicted labels which are relevant.

Recall =
1
|D|

|D|
∑
i=1

|Yi ∩ Zi|
|Yi|

. (10)

• F-Measure: As can be seen in Equation 11, this metric is the harmonic mean between Precision
(see Equation 9) and Recall (see Equation 10), providing a balanced assessment between precision
and sensitivity.

FMeasure = 2 ∗ Precision · Recall
Precision + Recall

. (11)

• Hamming Loss: It is the most common evaluation metric in the multilabel literature, computed
(see Equation 12) as the symmetric difference between predicted and true labels and divided by
the total number of labels in the MLD.

HammingLoss =
1
|D|

|D|
∑
i=1

|Yi4Zi|
|L| . (12)

• Subset Accuracy: This metric is also known as 0/1 Subset Accuracy and Classification Accuracy,
and it is the most strict evaluation metric. The JexprK operator (see Equation 13) returns 1 when
expr is true and 0 otherwise. In this case its value is 1 only if the predicted set of labels equals
the true one.

SubsetAccuracy =
1
|D|

|D|
∑
i=1

JYi = ZiK . (13)

Let rank (xi, y) be a function returning the position of y, a certain label, in the xi instance. The
example/ranking based evaluation metrics returned by the mldr_evaluate function are the following
ones:

• Average Precision: This metric (see Equation 14) computes the proportion of labels ranked
ahead of a certain relevant label. The goal is to establish how many positions have to be
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traversed until this label is found.

AveragePrecision =
1
|D|

|D|
∑
i=1

1
|Yi| ∑

y∈Yi

|{y′ ∈ Yi : rank (xi, y′) ≤ rank (xi, y)}|
rank (xi, y)

. (14)

• Coverage: Defined as indicated in Equation 15, this metric calculates the extent to which it is
necessary to go up in the ranking to cover all relevant labels.

Coverage =
1
|D|

|D|
∑
i=1

max
y∈Yi

rank (xi, y)− 1. (15)

• One Error: It is a metric (see Equation 16) which determines how many times the best ranked
label given by the classifier is not part of the true label set of the instance.

OneError =
1
|D|

|D|
∑
i=1

t
argmax

y∈Zi

rank (xi, y) /∈ Yi

|

. (16)

• Ranking Loss: This metric (see Equation 17) compares each pair of labels in L, computing
how many times a relevant label (member of the true labelset) appears ranked lower than a
non-relevant label. In the equation, Yi denotes L\Yi.

RankingLoss =
1
|D|

|D|
∑
i=1

1
|Yi|

∣∣Yi
∣∣ ∣∣{(ya, yb) ∈ Yi ×Yi : rank (xi, ya) > rank (xi, yb)

}∣∣ . (17)

Regarding the label based metrics, there are two different ways to aggregate the values of the labels.
The macro-averaging approach (see Equation 18) computes the metric independently for each label
and then averages the obtained values to get the final measure. On the contrary, the micro-averaging
approach (see Equation 19) first aggregates the counters for all the labels and then computes the metric
only once. In the following equations TP, FP, TN and FN stand for True Positives, False Positives, True
Negatives and False Negatives, respectively.

MacroMetric =
1
|L|

|L|
∑
l=1

evalMetric (TPl , FPl , TNl , FNl) . (18)

MicroMetric = evalMetric

( |L|
∑
l=1

TPl ,
|L|
∑
l=1

FPl ,
|L|
∑
l=1

TNl ,
|L|
∑
l=1

FNl

)
. (19)

All the bipartition based metrics, such as Precision, Recall or FMeasure, can be computed as label
based measures following these two approaches. In this category, there are as well as some ranking
based metrics, such as MacroAUC (see Equation 20) and MicroAUC (see Equation 21).

MacroAUC =
1
|L|

|L|
∑
l=1

∣∣{x′, x′′ : rank (x′, yl) ≥ rank (x′′, yl) , (x′, x′′) ∈ Xl × Xl
}∣∣

|Xl |
∣∣Xl
∣∣ ,

Xl = {xi : yl ∈ Yi} , Xl = {xi : yl /∈ Yi} .

(20)

MicroAUC =

∣∣{x′, x′′, y′, y′′ : rank (x′, y′) ≥ rank (x′′, y′′) , (x′, y′) ∈ S+, (x′′, y′′) ∈ S−
}∣∣

|S+| |S−| ,

S+ = {(xi, y) : y ∈ Yi} , S− = {(xi, y) : y /∈ Yi} .
(21)

When the partition of the MLD for which the predictions have been obtained, and the predictions
themselves are given to the mldr_evaluate function, a list of 20 measures is returned. For instance:

> # Get the true labels in emotions
> predictions <- as.matrix(emotions$dataset[, emotions$labels$index])
> # and introduce some noise
> predictions[sample(1:593, 100), sample(1:6, 100, replace = TRUE)] <-
+ sample(0:1, 100, replace = TRUE)
> # then evaluate the predictive performance
> res <- mldr_evaluate(emotions, predictions)
> str(res)
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ROC curve for emotions
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Figure 3: ROC curve plot for the data returned by mldr_evaluate.

List of 20
$ Accuracy : num 0.917
$ AUC : num 0.916
$ AveragePrecision: num 0.673
$ Coverage : num 2.71
$ FMeasure : num 0.952
$ HammingLoss : num 0.0835
$ MacroAUC : num 0.916
$ MacroFMeasure : num 0.87
$ MacroPrecision : num 0.829
$ MacroRecall : num 0.915
$ MicroAUC : num 0.916
$ MicroFMeasure : num 0.872
$ MicroPrecision : num 0.834
$ MicroRecall : num 0.914
$ OneError : num 0.116
$ Precision : num 0.938
$ RankingLoss : num 0.518
$ Recall : num 0.914
$ SubsetAccuracy : num 0.831
$ ROC :List of 15
...

> plot(res$ROC, main = "ROC curve for emotions") # Plot ROC curve

If the pROC (Robin et al., 2011) package is available, this list will include non-null AUC (Area
Under the ROC Curve) measures and also an element called ROC. The latter holds the information needed
to plot the ROC (Receiver Operating Characteristic) curve, as shown in the last line of the previous
example. The result would be a plot similar to that in Figure 3.

The mldr user interface

This package provides the user with a web-based graphical user interface on top of the shiny package,
allowing to interactively manipulate measurements and obtain graphics and other results. Once mldr
is loaded, this GUI can be launched from the R console with a single command:

> mldrGUI()

This will cause the user’s default browser to start or open a new tab in which the GUI will be
displayed, organized into a tab bar and a content pane. The tab bar allows the change of section so
that different information is shown in the pane.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=pROC


CONTRIBUTED RESEARCH ARTICLES 160

Figure 4: Main page of the shiny based graphical user interface.

The GUI will initially display the Main section, as shown in Figure 4. It contains options able to
select an MLD from those available, and to load a new one by uploading its ARFF and XML files onto
the application. On the right side, several plots are stacked. These show the amount of attributes of
each type (numeric, character or label), the amount of labels per instance, the amount of instances
corresponding to labels and the number of instances related to labelsets. Each plot can be saved as
an image on the file system. Right below these graphics, some tables containing basic measures are
shown. The first one lists generic measures related to the entire MLD, and is followed by measures
specific to labels, such as Card or Dens. The last table shows a summary of measures for labelsets.

The Labels section contains a table enumerating each label of the MLD with its relevant details
and measures: its index in the attribute list, its count and frequency, its IRLbl and its SCUMBLE. Labels
in this table can be reordered using the headers, and filtered by the Search field. Furthermore, if the
list is longer than the number specified in the Show field, it will be split into several pages. The data
shown in all tables can be exported to files in several formats. On the right side, a plot shows the
amount of instances that have each label. This is an interactive plot, and allows the range of labels to
be manipulated.

Since relations between labels can determine the behavior of new data, studying labelsets is
important in multilabel classification. Thus, the section named Labelsets provides information about
them, listing each labelset along with its count. This list can be filtered and split into pages as well,
and is accompanied by a bar plot showing the count of instances per labelset.

In order to obtain statistical measures about input attributes, the Attributes section organizes
all of them into a paged table, displaying their type and some data or measures according to it. If
the attribute is numeric, then there will be a table containing its minimum and maximum values, its
quartiles and its mean. On the contrary, if the attribute takes values from a finite set, each possible
value will be shown along with its count in the MLD.

Lastly, concurrence among labels is provenly a factor to take into account when applying pre-
processing techniques to MLDs. For this reason, the Concurrence section attempts to create an easy
way of visualizing concurrence among labels (see Figure 5), with a label concurrence plot displaying
the selected labels in the left-side table and their coocurrences represented by bands in the circle. By
default, the ten labels with highest SCUMBLE are selected. The user is able to select and deselect other
labels by clicking their corresponding row on the table.

Summary

In this paper the mldr package, aimed to provide exploratory analysis and manipulation tools for
MLDs, has been introduced. The functions supplied by this package allow both loading existing MLDs
and generating new ones. Several characterization measures and specific plots can be obtained for
any MLD, and the content of an MLD can be extracted, filtered and joined, producing new MLDs.
Any MLD can be transformed into a set of binary datasets or a multiclass dataset by means of the
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Figure 5: The plots can be customized and saved.

transformation functions of package mldr. Finally, a web-based graphical user interface eases the
access to most of this functionality for everyone.

In its current version, package mldr is a strong base to develop any preprocessing method for
MLDs, as has been shown. The development of the mldr package will continue in the near future by
including the tools needed to implement and evaluate multilabel classifiers. With this foundation, we
aim to encourage other developers to incorporate their own algorithms into mldr, as we will do in
forthcoming releases.
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PracTools: Computations for Design of
Finite Population Samples
by Richard Valliant, Jill A. Dever, and Frauke Kreuter

Abstract PracTools is an R package with functions that compute sample sizes for various types of
finite population sampling designs when totals or means are estimated. One-, two-, and three-stage
designs are covered as well as allocations for stratified sampling and probability proportional to size
sampling. Sample allocations can be computed that minimize the variance of an estimator subject to a
budget constraint or that minimize cost subject to a precision constraint. The package also contains
some specialized functions for estimating variance components and design effects. Several finite
populations are included that are useful for classroom instruction.

Introduction

Samples from finite populations are one of the mainstays of research in demographics, economics,
and public health. In the U.S., for example, the Consumer Price Index is based on samples of business
establishments and households (Bureau of Labor Statistics, 2013, chap. 17); the unemployment rate
is estimated from the Current Population Survey, which is a sample of households (Bureau of Labor
Statistics, 2013, chap. 1); and various health characteristics of the population are estimated from the
National Health Interview Survey (Center for Disease Control and Prevention, 2013b) and the National
Health and Nutrition Examination Survey (Center for Disease Control and Prevention, 2013a) both
of which are household surveys. Smaller scale academic and marketing research surveys are also
typically done using finite population samples.

Standard techniques used in sample design are stratification, clustering, and selection with varying
probabilities. Depending on the units to be surveyed (e.g., persons, schools, businesses, institutions)
and the method of data collection (e.g., telephone, personal interview, mail survey), the samples may
be selected in one or several stages. There are several packages in R that can select samples and analyze
survey data. Among the packages for sample selection are pps (Gambino, 2012), sampling (Tillé and
Matei, 2013), samplingbook (Manitz, 2013), and simFrame (Alfons et al., 2010). The survey package
(Lumley, 2010, 2014) has an extensive set of features for creating weights, generating descriptive
statistics, and fitting models to survey data.

A basic issue in sample design is how many units should be selected at each stage in order to
efficiently estimate population values. If strata are used, the number of units to allocate to each stratum
must be determined. In this article, we review some basic techniques for sample size determination in
complex samples and the package PracTools (Valliant et al., 2015) that contains specialized routines
to facilitate the calculations, most of which are not found in the packages noted above. We briefly
summarize some of selection methods and associated formulas used in designing samples and describe
the capabilities of PracTools. The penultimate section presents a few examples using the PracTools
functions and the final section is a conclusion.

Designing survey samples

Complex samples can involve any or all of stratification, clustering, multistage sampling, and sampling
with varying probabilities. This section discusses these techniques, why they are used, and formulas
that are needed for determining sample allocations. Many texts cover these topics, including Cochran
(1977), Lohr (1999), Särndal et al. (1992), and Valliant et al. (2013).

Simple random sampling

Simple random sampling without replacement (srswor) is a method of probability sampling in which
all samples of a given size n have the same probability of selection. The function sample in the base
package in R can be used to select simple random samples either with or without replacement. One
way of determining an srswor sample size is to specify that a population value θ be estimated with a
certain coefficient of variation (CV) which is defined as the ratio of the standard error of the estimator, θ̂,

to the value of the parameter: CV(θ̂) =
√

Var(θ̂)/θ. For example, suppose that yk is a value associated
with element k, U denotes the set of all elements in the universe, N is the number of elements in the
population, and the population parameter to be estimated is the mean, ȳU = ∑k∈U yk/N. With a
simple random sample, this can be estimated by the sample mean, ȳs = ∑k∈s yk/n, where s is the set
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of sample elements and n is the sample size. Setting the required CV of ȳs to some desired value CV0
in an srswor leads to a sample size of

n =

S2
U

ȳ2
U

CV2
0 +

S2
U

Nȳ2
U

, (1)

where S2
U is the population variance of the yk’s. The term S2

U/ȳ2
U is referred to as the unit relvariance .

If yk is a 0/1 variable identifying whether an element has a characteristic or not, then S2
U = N(N −

1)−1 pU(1− pU) where pU is the proportion in the population with the characteristic. The function
nCont in PracTools will make the computation in (1). In a real application, the population values in (1)
must be estimated from a sample or guessed based on prior knowledge.

Another way of determining a sample size is to set a tolerance for how close the estimate should
be to the population value. If the tolerance (sometimes called the margin of error) is e0 and the
goal is to be within e0 of the population mean with probability 1− α, this translates to requiring
Pr (|ȳs − ȳU | ≤ e0) = 1− α. This is equivalent to setting the half-width of a 100(1− α)% normal
approximation, two-sided confidence interval (CI) to e0 = z1−α/2

√
V (ȳs). The notation zε denotes

the 100ε percentile of the standard normal distribution. The sample size required to accomplish this is

n =
z2

1−α/2 S2
U

e2
0 + z2

1−α/2 S2
U /N

. (2)

One could also require that the relative absolute error, |(ȳs − ȳU)/ȳU |, be less than e0 with a speci-
fied probability. In that case, (2) is modified by replacing S2

U with the unit relvariance, S2
U/ȳ2

U . Both
calculations can be made using the function nContMoe in PracTools. When estimating a proportion,
there are options other than a normal approximation confidence interval on pU for setting a margin of
error. Two are to work with the log-odds, pU/(1− pU), or to use the method due to Wilson (1927),
which are both available in PracTools.

Another estimand in a survey might be the difference in means or proportions. The difference
could be between two disjoint groups or between the estimates for the same group at two different
time periods. The standard approach in such a case would be to find a sample size that will yield
a specified power for detecting a particular size of the difference. The functions power.t.test and
power.prop.test in the R package stats will do this for independent simple random samples.

The case of partially overlapping samples can also be handled (e.g., see Woodward 1992). For
example, persons may be surveyed at some baseline date and then followed-up at a later time. An
estimate of the difference in population means may be desired, but the samples do not overlap
completely because of dropouts, planned sample rotation, or nonresponse. Such non-overlap would
be common in panel surveys. Suppose that s1 and s2 are the sets of sample units with data collected
only at times 1 and 2, and that s12 denotes the overlap. Thus, the full samples at times 1 and 2 are
s1 ∪ s12 and s2 ∪ s12. Also, suppose that the samples at the two time periods are simple random
samples. Assume that the samples at times 1 and 2 are not necessarily the same size, so that n1 = rn2
for some positive number r. The samples might be of different sizes because of other survey goals
or because the budget for data collection is different for the two times. A case that is covered by the
analysis below is one where an initial sample of size n1 is selected, a portion of these respond at time
2, and additional units are selected to obtain a total sample of size n2 for time 2. Taking the case of
simple random sampling, the difference in means at the first and second time points can be written as

ˆ̄d = ˆ̄x− ˆ̄y =
1

n1
∑
s1

xi −
1

n2
∑
s2

yi + ∑
s12

(
xi
n1
− yi

n2

)
.

The variance can be expressed as

Var
(

ˆ̄d
)
=

σ2
x

n1
+

σ2
y

n2
− 2σxy

n12
n1n2

, (3)

where σ2
x and σ2

y are the population variances at the two time periods, σxy is the element-level
covariance, and n12 is the number of units in s12. Writing n12 = γn1 and r = n1/n2, the variance

becomes Var
(

ˆ̄d
)
= 1

n1

[
σ2

x + rσ2
y − 2γrσxy

]
. For a one-sided test of H0 : µD = 0 versus HA : µD = δ

to be done with power β, the required sample size n1 is

n1 =
1
δ2

[
σ2

x + rσ2
y − 2γrρσxσy

] (
z1−α − zβ

)2
. (4)

The value of n2 is then determined from r = n1/n2. The function nDep2sam in PracTools will perform
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this calculation. nProp2sam will do a similar calculation for testing the difference in proportions with
overlapping samples.

Probability proportional to size sampling

Probability proportional to size (pps) sampling can be very efficient if the measure of size (mos) used
for sampling is correlated with the quantities measured in a survey. For example, enrollment in
an elementary school may be related to the number of children receiving a government assistance
program. In an establishment survey, the total number of employees is often correlated with other
employment counts in the establishment, like the number who participate in a retirement plan. In a
hospital survey, the number of inpatient beds is usually related to numbers of patients discharged
in a month’s time. Household samples are often selected using several stages, the first of which is a
sample of geographic areas. An effective mos is typically the number of persons or housing units in
each geographic area.

If a variable follows a certain regression structure in the population, then an optimal measure of
size can be estimated. The key finding is due to Godambe and Joshi (1965). Isaki and Fuller (1982)
extended this to a linear model M where EM (yi) = xT

i β and VarM (yi) = vi with xi defined as a vector
of x’s (auxiliary variables), and β is a vector of regression slopes of the same dimension as xi. Assume
that a population total is estimated and a regression estimator is used that is approximately unbiased
when averaging over the model and a probability sampling design. In that case,

√
vi is the best mos for

pps sampling.

A model that may fit some establishment or institutional populations reasonably well has a
variance with the form, VarM (yi) = σ2xγ

i , where xi is a mos and γ is a power. Typical values of γ are
in the interval [0, 2]. The function gammaFit in PracTools returns an estimate of γ using an iterative
algorithm. The algorithm is based on initially running an ordinary least squares (OLS) regression of yi
on xi. The OLS residuals, ei, are then used to regress log

(
e2

i
)

on log (xi) with an intercept. The slope
in this regression is an estimate of γ. This procedure iterates by using the latest estimate of γ in a
weighted least squares regression of yi on xi. The parameter γ is then re-estimated in the logarithmic
regression. The algorithm proceeds until some user-controllable convergence criteria are met.

The variance formulas for pps without replacement sampling are difficult or impossible to use for
sample size determination because they involve joint selection probabilities of units and the sample
size is not readily accessible. One practical approach is to use a variance formula appropriate for pps
with replacement (ppswr) sampling. The simplest estimator of the mean that is usually studied with
ppswr sampling is called “p-expanded with replacement” (pwr) (Särndal et al., 1992, chap. 2) and is
defined as

ˆ̄ypwr =
1

Nn ∑
s

yi
pi

, (5)

where pi is the probability that element i would be selected in a sample of size 1. A unit is included in
the sum as many times as it is sampled. The variance of ˆ̄ypwr in ppswr sampling is

Var
(

ˆ̄ypwr
)
=

1
N2n ∑

U
pi

(
yi
pi
− tU

)2
≡ V1

N2n
, (6)

where tU is the population total of y. If the desired coefficient of variation is CV0, Equation (6) can be
solved to give the sample size as

n =
V1
N2

1
ȳ2

UCV2
0

. (7)

We later give an example of how (7) may be evaluated using PracTools.

Stratified sampling

Stratified sampling is a useful way of restricting the dispersion of a sample across groups in a
population. It can also lead to improvements in precision of overall estimates if an efficient allocation
to the strata is used. For example, establishments can be stratified by type of business (retail, wholesale,
manufacturing, etc.). Other methods of creating strata are provided by the R package stratification
(Baillargeon and Rivest, 2014). Given that strata have been created, there are various ways of efficiently
allocating a sample to strata: (i) minimize the variance of an estimator given a fixed total sample size
(Neyman allocation), (ii) minimize the variance of an estimator for a fixed total budget, (iii) minimize
the total cost for a target CV or variance of an estimator, or (iv) allocate the sample subject to several
CV or cost criteria subject to a set of constraints on stratum sample sizes or other desiderata. The last
is referred to as multicriteria optimization .
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The standard texts noted earlier give closed form solutions for (i) and (ii). For example, suppose a
mean is estimated, an srswor is to be selected within each stratum (h = 1, ..., H), and that the total cost
can be written as C = C0 + ∑H

h=1 chnh where C0 denotes fixed costs that do not vary with the sample
size, ch is the cost per-element in stratum h, and nh is the number of elements sampled from stratum
h. The allocation to strata that minimizes the variance of the estimated mean subject to a fixed total
budget C is

nh = (C− C0)
WhSh

/√
ch

∑H
h=1

(
WhSh

√
ch
) , (8)

where Wh is the proportion in the population in stratum h and Sh is the population standard deviation
in stratum h of the variable whose mean is estimated. This and the allocations for (i) and (iii) above
can be found using strAlloc in PracTools.

Multicriteria optimization and allocations with constraints are more realistic for multipurpose
surveys. In some cases, solutions to particular allocation problems are available as in Gabler et al. (2012).
More generally, the alabama (Varadhan, 2015) and Rsolnp (Ghalanos and Theussl, 2014) packages
will solve nonlinear optimization problems with constraints and can be very useful for complicated
sample allocations. Among the constraints that are used in practical work are ones on minimum and
maximum stratum sample sizes and relvariances of overall and individual stratum estimates. Theussl
and Borchers (2015) present a CRAN Task View on optimization and mathematical programming in
R. An R package that will form strata for multipurpose samples is SamplingStrata (Barcaroli, 2014).
Also, the Solver add-on to Microsoft Excelr (Fylstra et al., 1998) will handle allocation problems that
are quite complex and is easy to use. Use of these tools for sample allocation is covered in some detail
in Valliant et al. (2013, chap. 5).

Two- and three-stage sampling

Two- and three-stage sampling is commonplace in household surveys but can be also used in other
situations. For example, the U.S. National Compensation Survey selects a three-stage sample—
geographic areas, establishments, and occupations—to collect compensation data (Bureau of Labor
Statistics, 2013, chap. 8). Allocating the sample efficiently requires estimates of the contribution to the
variance of an estimate by each stage of sampling.

As an example, consider a two-stage design in which the primary sampling units (PSUs) are
selected with varying probabilities and with replacement and elements are selected at the second-stage
by srswor. As noted earlier, determining sample sizes as if the PSUs are selected with-replacement is a
standard workaround in applied sampling to deal with the fact that without-replacement variance
formulas for pps samples are too complex to use for finding allocations. (Other selection methods
along with three-stage designs are reviewed in Valliant et al. (2013, chap.9).) Let m be the number of
sample PSUs, Ni be the number of elements in the population for PSU i, and suppose that the same
number of elements, n̄, is selected from each PSU. The pwr-estimator of a total is

t̂pwr =
1
m ∑

i∈s

t̂i
pi

,

where t̂i =
Ni
n̄ ∑k∈si

yik is the estimated total for PSU i from a simple random sample and pi is the
1-draw selection probability of PSU i, i.e., the probability in a sample of size one. The variance of t̂pwr
is

V
(
t̂pwr

)
=

S2
U1(pwr)

m
+

1
mn̄ ∑

i∈U

(
1− n̄

Ni

)
N2

i S2
U2i

pi
,

where U is the universe of PSUs, S2
U1(pwr) = ∑i∈U pi

(
ti
pi
− tU

)2
, ti is the total of y for PSU i, and

S2
U2i is the population variance of y within PSU i. Dividing this by t2

U and assuming that the within-
PSU sampling fraction, n̄/Ni, is negligible, we obtain the relative variance (relvariance) of t̂pwr as,
approximately,

V
(
t̂pwr

)
t2
U

.
=

B2

m
+

W2

mn̄
=

Ṽ
mn̄

k [1 + δ (n̄− 1)] , (9)

with Ṽ = S2
U/ȳ2

U , ȳU is the population mean per element, k = (B2 + W2)/Ṽ, B2 = S2
U1(pwr)/t2

U ,

W2 = t−2
U ∑i∈U N2

i S2
U2i/pi, and δ = B2/(B2 + W2).

A simple cost function for two-stage sampling assumes that there is a cost per sample PSU and a
cost per sample element of collecting and processing data. We model the total cost as

C = C0 + C1m + C2mn̄,
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where

C0 = costs that do not depend on the number of sample PSUs and elements;

C1 = cost per sample PSU; and

C2 = cost per element within PSU.

The optimal number of units to select per PSU, i.e., the number that minimizes the approximate
relvariance, is

n̄opt =

√
C1
C2

1− δ

δ
. (10)

Only the ratio of the unit costs needs to be known in order to compute n̄opt. To find the optimal m for
a fixed total cost, we substitute n̄opt into the cost function to obtain

mopt =
C− C0

C1 + C2n̄opt
. (11)

Alternatively, to find the optimal m for a fixed relvariance, CV2
0 , n̄opt is substituted into the relvariance

formula (9). clusOpt2 in PracTools will do either of these calculations.

For three-stage sampling, suppose that m PSUs are selected with varying probabilities and with-
replacement, n̄ secondary sampling units (SSUs) are selected within each PSU by srswor, and ¯̄q elements
are sampled by srswor within each sample SSU. This design is referred to as ppswr/srs/srs below. The
relvariance of the pwr-estimator of a total in such a three-stage sample (with a negligible sampling
fraction in the second and third stages) can be written as, e.g., see Hansen et al. (1953) and Valliant
et al. (2013, chap.9):

V
(
t̂pwr

)
t2
U

.
=

B2

m
+

W2
2

mn̄
+

W2
3

mn̄ ¯̄q
(12)

=
Ṽ

mn̄ ¯̄q
{k1δ1n̄ ¯̄q + k2 [1 + δ2 ( ¯̄q− 1)]} ,

where B2 = M2S2
U1/t2

U , W2
2 = M∑i∈U N2

i S2
U2i/t2

U , and W2
3 = M∑i∈U Ni∑j∈Ui

Q2
ijS

2
U3ij/t2

U . The vari-
ance components and other terms in Equation (12) are defined as:

Ṽ = 1
Q−1 ∑i∈U ∑j∈Ui ∑k∈Uij

(yk − ȳU)2
/

ȳ2
U is the unit relvariance of y in the population with

Q being the total number of elements;

S2
U1 = ∑i∈U(ti−t̄U)

2

M−1 , the variance among the M PSU totals;

S2
U2i =

1
Ni−1 ∑j∈Ui

(
tij − t̄Ui

)2
is the unit variance of the Ni SSU totals in PSU i with tij =

∑k∈Uij
yk being the population total for PSU/SSU ij, t̄Ui = ∑j∈Ui

tij

/
Ni is the average total

per SSU in PSU i;

S2
U3ij =

1
Qij−1 ∑k∈Uij

(
yk − ȳUij

)2
is the unit variance among the Qij elements in PSU/SSU ij

with ȳUij = ∑k∈Uij
yk

/
Qij.

k1 =
(

B2 + W2) /Ṽ;

W2 = 1
t2
U

∑i∈U Q2
i S2

U3i/pi with Qi being the number of elements in PSU i,

S2
U3i =

1
Qi−1 ∑j∈Ui ∑k∈Uij

(yk − ȳUi)
2 and ȳUi = ∑j∈Ui ∑k∈Uij

yk/Qi; i.e., S2
U3i is the element-

level variance among all elements in PSU i; and

k2 =
(
W2

2 + W2
3
)

/Ṽ;

δ1 = B2/
(

B2 + W2);
δ2 = W2

2 /
(
W2

2 + W2
3
)
.

The terms δ1 and δ2 are referred to as measures of homogeneity, as is δ for two-stage sampling.
Equation (12) is useful for sample allocation because the measures of homogeneity are in [0, 1], k1 and
k2 are usually near 1, and Ṽ can usually be estimated.

To arrive at an optimal allocation, costs need to be considered. A cost function for three-stage
sampling, analogous to the one for two-stage sampling, is

C = C0 + C1m + C2mn̄ + C3mn̄ ¯̄q. (13)
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The term C0 is again costs that do not depend on the sample sizes at different stages; C1 is the cost
per PSU; C2 is the cost per SSU; and C3 is the cost per element within each SSU. Minimizing the
ppswr/srs/srs relvariance in Equation (12) subject to a fixed total cost gives the following optima:

¯̄qopt =

√
1− δ2

δ2

C2
C3

, (14)

n̄opt =
1
¯̄q

√
1− δ2

δ1

C1
C3

k2
k1

, (15)

mopt =
C− C0

C1 + C2n̄ + C3n̄ ¯̄q
. (16)

If a target relvariance is set at CV2
0 , then the equations for finding the optima ¯̄qopt and n̄opt are the

same. The optimum number of PSUs is found by substituting n̄opt and ¯̄qopt into the relvariance in
Equation (12). clusOpt3 will do these computations for three-stage samples.

Two-phase sampling

In finite population sampling, a distinction is drawn between multistage sampling and multiphase
sampling. In a multiphase sample, an initial sample is selected, some characteristics of the units are
observed, and a decision is made about how to select a subsample from the initial sample based on
what has been observed. In multistage sampling, the same design is used in later stages regardless of
what was found in the first-stage units. There is a more technical definition of the difference between
multistage and multiphase, but it is unimportant for this discussion. An example of two-phase
sampling is to select a subsample of nonrespondents to the initial phase to attempt to get them to
cooperate. This is known as a nonresponse follow-up study (NRFU).

Another type of two-phase design is double sampling for stratification . In this design, information
is collected in the first phase which is then used to stratify elements for second phase sampling. For
example, researchers working to develop a case definition for undiagnosed medical symptoms in U.S.
personnel serving in the 1991 Persian Gulf War surveyed a stratified simple random sample of Gulf
War-era veterans (Iannacchione et al., 2011). Based on survey responses in the first phase, respondents
were classified as likely having or not having a certain type of illness. Blood specimens were requested
from randomly sampled phase-1 respondents within the illness strata and analyzed using expensive
tests.

As an illustration, take the case of double sampling for stratification. Cochran (1977) and Neyman
(1938) give the two-phase variance of an estimated mean or proportion when phase-1 is a simple
random sample of n(1) elements, phase-2 is a stratified simple random sample (stsrs) of n(2) elements,
and an optimal allocation to strata is used in the second phase. The sampling fractions at both stages
are assumed to be negligible. The optimal proportion of the phase-2 sample to assign to stratum h for
estimating the population mean is n(2)h/n(2) = WhSh/ ∑h WhSh. The formula for the variance of an
estimated stratified mean with this allocation is

Vopt =
∑h Wh (ȳUh − ȳU)2

n(1)
+

(∑h WhSh)
2

n(2)
≡

V(1)

n(1)
+

V(2)

n(2)
, (17)

where ȳUh is the stratum h population mean. The phase-2 subsampling rate from the phase-1 sample
units that minimizes Equation (17) is

n(2)

n(1)
=

√√√√V(2)

V(1)

/
c(2)
c(1)

,

where c(1) and c(2) are the per-unit costs in the first and second-phases, respectively. The formulas for
the phase-1 and phase-2 sample sizes that minimize Vopt subject to a fixed total cost C are

n(1) =
C

c(1) + c(2)
√

K
, n(2) = n(1)

√
K,

where
K =

(
V(2)/V(1)

)/(
c(2)/c(1)

)
.

The function dub in PracTools will calculate the optimal second-phase sampling fraction and the
phase-1 and phase-2 sample sizes that will minimize the variance in Equation (17). The function also
computes the size of an srs that would cost the same as the two-phase sample and the ratio of the
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two-phase stratified variance to the srs variance.

Extension to nonlinear estimators and limitations

PracTools will calculate sample sizes for estimators whose variance can be written in one of the forms
given in Section Designing survey samples. This directly covers linear estimators of means and totals.
A nonlinear estimator that is a differentiable function of a vector of estimated totals is also covered.
But, a user must do some work to linearize the estimator and determine the inputs that are required
for a PracTools function. Suppose that the estimator is θ̂ = f

(
t̂1, ..., t̂p

)
where f is a differentiable

function and t̂j is a linear estimator of a population total, tj (1, 2, ..., p). The linear approximation to
θ̂ − θ is

θ̂ − θ
.
= ∑p

j=1
∂ f
∂tj

(
t̂j − tj

)
, (18)

where θ = f
(
t1, ..., tp

)
, and the partials are evaluated at the population values. The repeated sampling

variance of this approximation is then the same as the variance of ∑
p
j=1

∂ f
∂tj

t̂j since θ and tj are treated
as constants. Taking the case of two-stage sampling, suppose that the estimator of the total for variable
j is t̂j = ∑i∈s ∑k∈si

wikyik(j) where wik is a weight for element k in PSU i, yik(j) is its data value, s is
the set of sample PSUs, and si is the sample of elements within SSU i. Substituting this into (18) and
reversing the order of summation between PSUs and variables leads to the expression

ẑ = ∑i∈s ∑p
j=1

∂ f
∂tj

t̂i (j)︸ ︷︷ ︸
ẑi

. (19)

where t̂i(j) = ∑k∈si
wikyik(j). One then computes the design-variance of ẑ based on the particular

sample design used and the form of the derivatives. This general approach is known as the linear
substitute method and is described in detail in Wolter (2007).

In a two-stage sample where m PSUs are selected with replacement and with varying probabilities,
and n̄ elements are selected by simple random sampling from each PSU, (9) applies. The weight
is defined as wik = (mpi)

−1 (Ni/n̄) where pi is the 1-draw selection probability, as before. If the
estimator is the mean computed as θ̂ = t̂y/M̂ with M̂ = ∑i∈s ∑k∈si

wik, then ẑi = (Mmpi)
−1 Niei

where ei = ȳi − ȳU with yi being the sample mean of y in PSU i and ȳU the population mean.
Expression (19) becomes

ẑ =
1

Mm ∑
i∈s

t̂zi
pi

,

with t̂zi =
(

Ni/n̄ ∑k∈si
eik
)

and eik = yik − ȳU . Expression (9) would then be evaluated with eik
replacing yik. With the linear substitute method, residuals typically appear in the linear approximation
and are the basis for a variance estimator. Population quantities, like M and ȳU , are replaced by
sample estimates in a variance estimator. The Section Examples gives an illustration of this method
using one of the datasets in PracTools.

Nonetheless, there are types of estimators that our package does not cover. Quantile estimators
require a special approximation and variance formula (Francisco and Fuller, 1991) that does not come
from the standard linearization approach. The Gini coefficient, used as a measure of income inequality
(e.g., Deaton, 1997), is another example of an estimator that is too complicated to linearize using the
methods above.

The R package PracTools

PracTools is a collection of specialized functions written in R along with several example finite
populations that can be used for teaching. The package is available from the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org/package=PracTools. Because the function code is
visible, the routines can be modified (and improved) by any user. A brief description of the functions
is given in Table 1. The use of the functions, their input parameters, and the values they return are
described in the help files. The package also contains nine example populations of different types.
These are listed in Table 2.
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Function Purpose

BW2stagePPS, BW2stageSRS Variance components in two-stage samples from a population frame
BW2stagePPSe Estimated variance components in two-stage samples from a sample
BW3stagePPS Variance components in three-stage samples from a population frame
BW3stagePPSe Estimated variance components in three-stage samples from a sample
clusOpt2 Optimal allocation in a two-stage sample
clusOpt2fixedPSU Optimal second-stage sample size in a two-stage sample when the PSU

sample is fixed
clusOpt3 Optimal allocation in a three-stage sample
clusOpt3fixedPSU Optimal second and third-stage sample sizes in a three-stage sample when

the PSU sample is fixed
CVcalc2, CVcalc3 Compute the coefficient of variation of an estimated total in two- and

three-stage designs
deffH, deffK, deffS Henry, Kish, and Spencer design effects
dub Allocation of double sample for stratification
gammaFit Estimate variance power in a linear model
nCont, nContMoe Sample size to meet CV, variance, or margin of error targets (continuous

variable)
nDep2sam Sample sizes for two-sample comparison of means with overlapping sam-

ples (continuous variable)
nLogOdds Sample size calculation for a proportion using log-odds method
nProp Sample size calculation for a proportion using target CV or variance
nProp2sam Sample sizes for two-sample comparison of proportions with overlapping

samples (continuous variable)
nPropMOE Sample size calculation for a proportion using margin of error target
NRFUopt Sample sizes for two-phase nonresponse follow-up study
nWilson Sample size calculation for a proportion using Wilson method
pclass Form nonresponse adjustment classes based on propensity scores
strAlloc Sample allocation in stratified samples

Table 1: Functions in PracTools.

Population Description

HMT Generate population that follows the model in Hansen et al. (1983)
hospital Population of 393 short-stay hospitals with fewer than 1000 beds
labor Clustered population of 478 persons extracted from Sept. 1976 Current

Population Survey
MDarea.pop Artificial population of of 403,997 persons arrayed in census tracts and

block groups
nhis, nhispart Datasets of persons with demographic and socioeconomic variables
nhis.large 21,588 persons with 18 demographic and health-related variables
smho.N874 874 mental health organizations with 6 financial variables
smho98 875 mental health organizations with 8 financial and patient-count variables

Table 2: Finite populations in PracTools.

Examples

This section gives some examples for computing sample sizes for estimating proportions and differ-
ences of proportions, an allocation to strata, and the optimal numbers of PSUs, secondary units, and
elements in a three-stage sample.
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Proportions and differences in proportions

The function nProp will return the sample size required for estimating a proportion with a specified
CV or variance. For a CV target, Equation (1) is used; the formula for a variance target is similar. The
function takes the following parameters:

CV0 target value of coefficient of variation of the estimated proportion
V0 target value of variance of the estimated proportion
pU population proportion
N number of units in finite population; default is Inf

A single numeric value, the sample size, is returned. An advance guess is needed for the value of
the population proportion, pU . By default, the population is assumed to be very large (N = ∞), but
specifying a finite value of N results in a finite population correction being used in calculating the
sample size. To estimate a proportion anticipated to be pU = 0.1 with a CV0 of 0.05, the function call
and resulting output is:

> nProp(CV0 = 0.05, N = Inf, pU = 0.1)
[1] 3600

If the population has only 500 elements, then the necessary sample size is much smaller:

> nProp(CV0 = 0.05, N = 500, pU = 0.1)
[1] 439.1315

In this function and others in the package, sample sizes are not rounded in case the exact value is
of interest to a user. To obtain sample sizes for two overlapping groups, nDep2sam is the appropriate
function, which uses Equation (4). The function takes these inputs:

S2x unit variance of analysis variable x in sample 1
S2y unit variance of analysis variable y in sample 2
g proportion of sample 1 that is in the overlap with sample 2
r ratio of the size of sample 1 to that of sample 2
rho unit-level correlation between x and y
alt should the test be 1-sided or 2-sided; allowed values are "one.sided" or

"two.sided"
del size of the difference between the means to be detected
sig.level significance level of the hypothesis test
pow desired power of the test

Among other things, the user must specify the unit (or population) standard deviations in the
two populations from which the samples are selected, the proportion of the first sample that is in
the second (i.e., a measure of overlap), and the unit-level correlation between the variables being
measured in the two samples. If there is no overlap in the samples, it would be natural to set rho
= 0. The size of the difference in the means that is to be detected and the power of the test on the
difference in means must also be declared. The code below computes the sample size needed to detect
a difference of 5 in the means with a power of 0.8 when the unit variances in both groups are 200,
75 percent of the first sample is in the second, the samples from the two groups are to be the same
size, and the unit-level correlation is 0.9. This function and several others in the package use the class
‘power.htest’ as a convenient way of returning the output.

> nDep2sam(S2x = 200, S2y = 200, g = 0.75, r = 1, rho = 0.9,
+ alt = "one.sided", del = 5, sig.level = 0.05, pow = 0.80)

Two-sample comparison of means
Sample size calculation for overlapping samples

n1 = 33
n2 = 33

S2x.S2y = 200, 200
delta = 5
gamma = 0.75

r = 1
rho = 0.9
alt = one.sided

sig.level = 0.05
power = 0.8
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Figure 1: Sample size in each group for detecting a range of differences in means with several levels of
power.

nDep2sam will also accept a vector of differences as input, e.g., del <-seq(2,10,0.001). This makes
it easy to generate a plot like in Figure 1, where the sample size in each group is plotted against the
difference in means for several levels of power. This is a useful way to present options to users.

Probability proportional to size sampling

The function gammaFit will estimate the variance parameter in the model EM (yi) = xT
i β , VarM (yi) =

σ2xγ
i . The code below uses the hospital population bundled with PracTools to estimate the variance

power in the model, EM(y) = β1
√

x + β2x, VM(y) = σ2xγ, returning γ̂ = 1.612009. Using the function
UPrandomsystematic from the package sampling, a sample of size 30 is then selected with probability
proportional to

√
xγ̂, which is the optimal measure of size for estimating the population total of y.

> data("hospital")
> x <- hospital$x
> y <- hospital$y
> X <- cbind(sqrt(x), x)
> (res <- gammaFit(X = X, x = x, y = y, maxiter = 100, tol = 0.001))
Convergence attained in 47 steps.
g.hat = 1.612009
$g.hat

X
1.612009
> require(sampling)
> n <- 30
> pik <- n * sqrt(x^res$g.hat) / sum(sqrt(x^res$g.hat))
> sam <- UPrandomsystematic(pik)
> hosp.sam <- hospital[sam == 1, ]

To determine a sample size for ppswr sampling, the function nCont can be used. This function
is designed to evaluate Equation (1) for simple random samples. However, Equation (7) has the
same form if we equate V1/(N2ȳ2

U) in Equation (7) to S2/ȳ2
U in Equation (1) and set N = ∞. If

V1/(N2ȳ2
U) = 2 and the CV target is 0.05, the call to nCont is

> nCont(CV0 = 0.05, N = Inf, CVpop = sqrt(2))
[1] 800

Allocations to strata

A sample can be allocated to strata using strAlloc. The function takes a number of parameters which
are described in the help file. A standard problem in applied sampling is to find an allocation that will
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minimize the variance of an estimated mean subject to a fixed total budget. To solve this problem, the
stratum population sizes, standard deviations, stratum per-unit costs, total budget, and the type of
allocation (alloc = "totcost") are specified; partial output is:

> Nh <- c(215, 65, 252, 50, 149, 144)
> Sh <- c(267, 106, 69, 110, 98, 445)
> ch <- c(1400, 200, 300, 600, 450, 1000)
> strAlloc(Nh = Nh, Sh = Sh, cost = 100000, ch = ch, alloc = "totcost")

allocation = totcost
Nh = 215, 65, 252, 50, 149, 144
Sh = 267, 106, 69, 110, 98, 445
nh = 30.578027, 9.710196, 20.008418, 4.475183, 13.719233, 40.387433

nh/n = 0.25722085, 0.08168169, 0.16830983, 0.03764502, 0.11540551, 0.33973710

The function returns a list with the type of allocation, population stratum counts and standard
deviations, sample sizes for each stratum, the proportions of the sample allocated to each stratum, and
the anticipated standard error of the mean. Other options for the allocation types are proportional to
stratum population sizes ("prop"), Neyman ("neyman"), and minimization of the total cost subject to
a specified variance or CV target ("totvar"). The nh component of the list can then be used in, e.g.,
the strata function in sampling, to select the sample. Either the round or ceiling function could
be applied to nh to create integer sample sizes. (If non-integers are supplied to strata, they will be
truncated to the integer floor.)

Allocations in two- and three-stage samples

When designing multistage samples, decisions must be made about how many units to select at each
stage. To illustrate this, we consider a three-stage sample. A considerable amount of data is needed
to estimate realistic ingredients required for clusOpt3. The function, BW3stagePPSe, will estimate
B2, W2, W2

2 , W2
3 , δ1, and δ2 from a three-stage where the first-stage is selected ppswr and the last

two stages are selected by srswor. BW2stagePPSe does similar calculations for two-stage sampling.
Variance component estimation is, of course, a difficult area where a number of alternatives have been
developed in the model-based literature. The forms used in BW2stagePPSe and BW3stagePPSe are fairly
simple ANOVA-type estimates. These estimates have known defects, like occasionally being negative.

The following example computes a three-stage allocation that minimizes the variance of the pwr-
estimator assuming that the budget for variable cost is 100,000; the PSU, SSU, and per-element costs
are 500, 100, and 120, respectively; δ1 = 0.01, δ2 = 0.10; the unit relvariance is Ṽ = 1; and the ratios, k1
and k2, are both 1. cal.sw = 1 specifies that the optima be found for a fixed total budget. The full
description of the input parameters can be found in the help file for clusOpt3.

> clusOpt3(unit.cost = c(500, 100, 120), delta1 = 0.01, delta2 = 0.10, unit.rv = 1,
+ k1 = 1, k2 = 1, tot.cost = 100000, cal.sw = 1)

C1 = 500
C2 = 100
C3 = 120

delta1 = 0.01
delta2 = 0.1

unit relvar = 1
k1 = 1
k2 = 1

cost = 1e+05
m.opt = 28.3
n.opt = 7.1
q.opt = 2.7

CV = 0.0499

Along with the inputs, the output includes the optimal sample size for each stage and the CV that
is anticipated for the pwr-estimator given that design. The sample sizes above can be rounded and
then used in the sampling package to select units at each of the stages. For example, suppose that 28
PSUs and 7 SSUs will be selected with probabilities proportional to a mos. Within each sample SSU, a
sample of 3 elements will be selected via srswor. The PSUs can be selected using the function cluster
and the data extracted. Then, a cluster sample of 7 SSUs can be selected from each of those 28 units in
a loop, again using cluster and the data for those sample SSUs extracted. The sample of SSUs would
then be treated as strata and the strata function used to select 3 elements from each SSU using srswor.
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Double sampling for stratification

The function dub will compute the allocation to strata for a double sampling design in which phase-1
is used to assign units to strata. The function takes these input parameters:

c1 cost per unit in phase-1
c2 cost per unit in phase-2
Ctot total variable cost
Nh vector of stratum population counts or proportions
Sh vector of stratum population standard deviations
Yh.bar vector of stratum population means

The inputs, Nh, Sh, and Ȳh, will typically have to be estimated from the first-phase sample. The
example below computes the allocation to four strata assuming a total cost of 20,000 and unit costs of
c(1) = 10 and c(2) = 50. A proportion is being estimated.

> Wh <- rep(0.25, 4)
> Ph <- c(0.02, 0.12, 0.37, 0.54)
> Sh <- sqrt(Ph * (1 - Ph))
> c1 <- 10; c2 <- 50; Ctot <- 20000
> dub(c1, c2, Ctot, Nh = Wh, Sh, Yh.bar = Ph)

V1 = 0.04191875
V2 = 0.1307118
n1 = 404.1584
n2 = 319.1683

n2/n1 = 0.789711
ney.alloc = 30.89801, 71.71903, 106.55494, 109.99634

Vopt = 0.0005132573
nsrs = 400
Vsrs = 0.0004839844

Vratio = 1.06

The function also computes the size of an srs, nsrs, that would cost the same total amount,
assuming that the per-unit cost is c(2); the anticipated variances with the optimal two-phase allocation
and the srs of size nsrs; and the ratio of the two variances. Often, the two-phase design has very
little gain, and sometimes a loss as in this example, compared to simple random sampling. However,
double sampling for stratification is usually undertaken to control the sample sizes in the strata whose
members are not known in advance.

Sample size for a nonlinear estimator

To illustrate a calculation for a nonlinear estimator, consider the proportion of Hispanics with insurance
coverage in the MDarea.pop, which is part of the package. Define y2k to be 1 if a person is Hispanic and
0 if not; α1k = 1 if a person has insurance coverage. Then, y1k = α1ky2k is 1 if person k has insurance
and is Hispanic and is zero otherwise. The linear substitute is zk = y1k − θy2k where θ is the proportion
of Hispanics with insurance coverage. In this case, zk can take only three values: −θ, 0, and 1− θ. If a
simple random sample of clusters and persons within clusters is selected, BW2stageSRS can be used
to compute B2, W2, and δ using the linear substitutes as inputs. Assuming that the full population
is available, the R code is the following. We do the calculation for clusters defined as tracts (a small
geographic area with about 4000 persons defined for census-taking).

> # recode Hispanic to be 1 = Hispanic, 0 if not
> y2 <- abs(MDarea.pop$Hispanic - 2)
> y1 <- y2 * MDarea.pop$ins.cov
> # proportion of Hispanics with insurance
> p <- sum(y1) / sum(y2)
> # linear sub
> z <- y1 - p * y2
> BW2stageSRS(z, psuID = MDarea.pop$TRACT)

The result is δ = 0.00088. Thus, the effect of clustering on this estimated proportion is inconsequential—
a two-stage sample will estimate the proportion almost as precisely as an srs would. In contrast, if the
estimate is the total number of Hispanics with insurance, then we call BW2stageSRS this way:

> BW2stageSRS(y1, psuID = MDarea.pop$TRACT)

which returns δ = 0.02251.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 175

Summary

Finite population sampling is one of the more important areas in statistics since many key economic
and social measures are derived from surveys. R through its packages is gradually accumulating
capabilities for selecting and analyzing samples from finite populations. Pieces that have been missing
are sample size computations for the kinds of complex designs that are used in practice. PracTools
contributes to filling that gap by providing a suite of sample size calculation routines for one-, two-, and
three-stage samples. We also include features for stratified allocations, for probability proportional to
size sampling, and for incorporating costs into the computations. Several realistic example populations,
that should be useful for classroom instruction, are also part of the package.

The package is limited in the sense that it covers only some of the sample selection schemes that
we have found are most useful and prevalent in the practice of survey sampling. There are many
other selection algorithms that have their own, specialized variance formulas. Tillé (2006) covers
many of these. PracTools also does not select samples, but there are a number of other R packages,
mentioned in this paper that do. One of the great advantages of R is that users can readily access
different packages for specialized tasks like sample size calculation and sample selection.
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ALTopt: An R Package for Optimal
Experimental Design of Accelerated Life
Testing
by Kangwon Seo and Rong Pan

Abstract The R package ALTopt has been developed with the aim of creating and evaluating optimal
experimental designs of censored accelerated life tests (ALTs). This package takes the generalized
linear model approach to ALT planning, because this approach can easily handle censoring plans and
derive information matrices for evaluating designs. Three types of optimality criteria are considered:
D-optimality for model parameter estimation, U-optimality for reliability prediction at a single use
condition, and I-optimality for reliability prediction over a region of use conditions. The Weibull
distribution is assumed for failure time data and more than one stress factor can be specified in the
package. Several graphical evaluation tools are also provided for the comparison of different ALT test
plans.

Introduction

Accelerated life testing (ALT) is commonly used for obtaining a product’s failure time data by sub-
jecting it to elevated stress conditions, such as temperature, humidity, and voltage. As a result, the
product fails in a shorter time period than would be expected under normal stress conditions. The
failure data obtained from ALTs can then be extrapolated to the normal use stress level to estimate the
product’s lifetime distribution. Nelson (2005a,b) provides a comprehensive review of ALT papers up
to 2005.

To avoid poor experimental results and to obtain more accurate inference on the acceleration
model and on reliability prediction, it is necessary to have an effective ALT test plan. A well-designed
ALT test plan often aims to achieve some statistical optimality. However, conventional experimental
designs (e.g., factorial designs) are not effective as ALT test plans because of the following features of
ALTs:

• Extrapolation – Test stress levels are typically higher than the normal use stress levels. As failure
time data will be collected at these higher stress levels, extrapolating them to the normal use
stress level is needed for reliability prediction. Nonlinear relationships between failure time and
stress levels are expected.

• Non-normal distributions of failure times – The failure time distribution is typically positively
skewed, e.g., the Weibull distribution.

• Censoring of failure time data – Censoring occurs when the exact failure times of test units are
not observed. There are several reasons for censoring. In some cases, test units do not fail by the
end of the test period, in which case the data becomes right-censored. In other cases, test units
are periodically inspected, so the only information available is the time interval of failure, while
the exact failure time is unknown. The latter case is called interval-censoring.

In this article, we introduce an R package, ALTopt (Seo and Pan, 2015), that constructs optimal test
plans for ALTs with right- and interval-censored data. This package is based on the work done by
Monroe et al. (2011) and Yang and Pan (2013), where generalized linear models (GLMs) were used to
model censored ALT data.

Optimal designs of ALT

Optimality criteria

The ALTopt package accommodates three optimality criteria: D-optimality, U-optimality and I-
optimality. A D-optimal design minimizes the generalized variance of parameter estimates, while a
U-optimal or I-optimal design minimizes, respectively, the (average) variance of response prediction
at a single use condition or over a region of use conditions.

In the GLM context, the D-optimal design is defined by

ξ∗ := arg max
ξ

∣∣X(ξ)′WX(ξ)
∣∣ .
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Let n be the number of test units and p be the number of of model parameters. Matrix X(ξ) is the
n× p model matrix constructed by expanding a design matrix to include all regression terms in the
chosen model form, and matrix W is the n× n diagonal matrix of weights that depends on the GLM
formulation used.

Using the same notation, the U-optimal and I-optimal designs can be defined, respectively, as

ξ∗ := arg min
ξ

x′use · (X(ξ)′WX(ξ))−1 · xuse,

and

ξ∗ := arg min
ξ

∫
Ω x′use · (X(ξ)′WX(ξ))−1 · xusedxuse

SΩ
,

where xuse is the single use condition, Ω is the region of use conditions, and SΩ is the area of use region.
For GLMs, the weights W are functions of the regression coefficients in the linear predictor. Therefore,
the information matrix contains unknown model parameter values, implying that the choice of these
unknown values also affects the optimal design (see Johnson and Montgomery (2009) for more details).
In this article, we assume that these parameter values are pre-specified. They are referred to as the
planning values by Meeker and Escobar (1998).

GLMs for ALT

A function that links failure time and stress variables is needed in order to extrapolate the results
obtained in the test region to the use region. The GLM formulation for ALT is built upon the Cox’s
proportional hazard (PH) assumption. This section provides the derivation of these formulations for
right-censored and interval-censored ALT data.

The Cox’s proportional hazard model

The PH model assumes that, given the vector of explanatory variables x, the hazard function of failure
time is given by

h(t, x; β) = h0(t)ex′β, (1)

where h0(t) is called the baseline hazard function and β is a vector of regression coefficients.

Note that the baseline hazard function is a function of time only. From Eq. (1) we can derive that

H(t, x) = H0(t)ex′β, (2)

where H(t, x) is the cumulative hazard function and H0(t) is the baseline cumulative hazard function.
It is also easy to show that a reliability function is given by

R(t, x) = (R0(t))ex′β
, (3)

where R(t, x) is the reliability function and R0(t) = exp(−H0(t)) is the baseline reliability function.

The baseline hazard function of a Weibull distribution is given by h0(t) = λ0αtα−1, where λ0 is
called the intrinsic failure rate and α is the shape parameter of Weibull distribution. By Eq. (1), the
hazard function of Weibull distribution can be expressed as h(t, x; β) = λ0αtα−1ex′β and, by Eq. (2), its
cumulative hazard function is as H(t, x) = λ0tαex′β.

GLM for right-censored failure time data

With the proportional hazard assumption, the failure density function is given by

f (t) = h(t)R(t) = h0(t)ex′β(R0(t))ex′β
.

For a failure time data set that includes right-censored survival times, each observation can be
expressed as a pair (ti, ci), i = 1, 2, . . . , n, where ti is either a failure time or censoring time and ci is
an indicator variable, which is 1 if the ith unit failed and 0 if it has not failed. Thus, the likelihood
function is given by

L =
n

∏
i=1

( f (ti))
ci (R(ti))

1−ci =
n

∏
i=1

(h(ti))
ci R(ti).
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From Eqs. (1) and (3) the log-likelihood function can be written as

ln L =
n

∑
i=1

[ci ln h(ti) + ln R(ti)] =
n

∑
i=1

[
ci(ln h0(ti) + xi

′β) + exi
′β ln R0(ti)

]
.

Let µi = exp(xi
′β)(− ln R0(ti)), we have

ln L =
n

∑
i=1

[ci ln h0(ti)− ci ln(− ln R0(ti)) + ci ln µi − µi] . (4)

Note that the last two terms of sum on the right-hand side of Eq. (4) are the same as the kernel of
the log-likelihood function of n independent Poisson distributed random variables with mean µi. The
first two terms do not depend on the parameter β. Therefore, the maximum likelihood estimator β̂ of
(4) is similar to the estimator that maximizes the log-likelihood function of Poisson distributions. If the
indicator variable ci is treated as from a Poisson distribution with mean µi, then the GLM formulation
becomes

• The response variables, ci’s, are independently sampled from Poisson(µi);

• The linear predictor is ηi = xi
′β;

• The link function is given by ln µi = ηi + an offset term.

This offset term in the link function is ln H0(ti), the log transformation of the baseline cumulative
hazard function. This GLM formulation is applicable for any failure time distribution with right-
censored data, as long as the PH assumption holds.

Since the log link function is the canonical link function for the Poisson distribution, the asymptotic
variance-covariance matrix of β̂ is given by

Var(β̂) = (X(ξ)′WX(ξ))−1,

where W = diag
{

σ2
i
}

and σ2
i is the variance of Poisson distribution; i.e., σ2

i = µi = exi
′β H0(ti). We

replace ti with its expectation, which is given by

E[ti] = P(t < tc) · E[ti|t < tc] + P(t ≥ tc) · E[ti|t ≥ tc].

Monroe et al. (2011) has shown that

µi =
[
1− e−H(tc ,xi)

]
= Φ(tc, xi),

where Φ is the failure time distribution and tc is the censoring time.

For a Weibull distribution with the known shape parameter α, it follows that

µi =
[
1− exp(−λ0tα

c exi
′β)
]
=
[
1− exp(−eβ0+xi

′βtα
c )
]

,

where β0 = ln λ0 which plays a role of the intercept term in the linear predictor.

GLM for interval-censored failure time data

For interval-censored data, the whole testing period is divided into multiple time intervals such as
[0, t1), [t1, t2), · · · , [tk−1, tk), [tk, ∞), and failures are expected to occur within one of these intervals.
Define the failure probability of the ith test unit within the jth interval to be

pij = P(tj−1 ≤ Ti < tj),

and the conditional probability of surviving at the beginning of the jth interval but failing within the
jth interval as

πij = P(tj−1 ≤ Ti < tj|Ti ≥ tj−1), j = 1, 2, . . . , k + 1.

It can be shown that pi1 = πi1 and pij = (1− πi1)(1− πi2) · · · (1− πi,j−1)πij for j = 2, 3, . . . , k + 1.

Define an indicator variable, r, such that rij = 0 if the ith test unit does not fail within the jth

interval and rij = 1 if the ith test unit does fail. Suppose that there are n items, then the number of
observations is n× (k + 1). For example,

(0, t1, ri1), (t1, t2, ri2), · · · , (tk, ∞, ri,k+1), i = 1, 2, ..., n
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The likelihood function can be expressed as

L =
n

∏
i=1

k+1

∏
j=1

p
rij

ij ,

which is equivalent to

L =
n

∏
i=1

k+1

∏
j=1

π
rij

ij (1− πij)
sij , (5)

where sij = ri,j+1 + ri,j+2 + · · ·+ ri,k+1. Therefore, sij = 1 if the failure of the ith test unit occurs at a
time after the jth interval and sij = 0 if the failure of the ith test unit occurs within or before the jth

interval.

The likelihood function of Eq. (5) has the same form as the likelihood function of independent
binomial random variables. We treat rij as a binomial random variable with probability πij and sample
size mij = rij + sij. The data set can be presented as a series of quadruplets:

(0, t1, ri1, mi1), (t1, t2, ri2, mi1), · · · , (tk, ∞, ri,k+1, mi,k+1), i = 1, 2, ..., n.

Now, we examine the probability πij. Notice that

1− πij = P(Ti ≥ tj|Ti ≥ tj−1) =
R(tj)

R(tj−1)
. (6)

By Eq. (3) it becomes

1− πij =

[
R0(tj)

R0(tj−1)

]exi
′β

.

Applying the natural logarithm function twice yields

ln
[
− ln(1− πij)

]
= xi

′β + ln
[
ln R0(tj−1)/R0(tj)

]
. (7)

The second term of the right hand side of Eq. (7) does not depend on the regression coefficient
β, thus Eq. (7) is a complementary log-log link function with an offset term. We can treat rij’s as
independent random variables that follow a binomial distribution with the probability parameter πij
and sample size mij, and the GLM formulation is written as

• The response variables, rij’s, are distributed as independent Binomial(mij, πij);

• The linear predictor is ηi = xi
′β;

• The link function is given by ln
[
− ln(1− πij)

]
= ηi + an offset term.

Since the log-log link is not a canonical link for the binomial distribution, we need to introduce
∆ = diag {dθi/dηi} in the weight matrix where θi is the natural location parameter of the binomial
distribution; i.e.,

∆ = diag
{

dθi
dηi

}

= diag


d

(
ln

πij

1− πij

)
d
(

ln(− ln(1− πij))
)


= diag

{
−

ln(1− πij)

πij

}
.

Then, the asymptotic variance-covariance matrix of β̂ is given by

Var(β̂) = (X∗(ξ)′WX∗(ξ))−1

= (X∗(ξ)′∆V∆X∗(ξ))−1,

where X∗(ξ) = X(ξ)⊗ 1k+1 and V = diag{σ2
ij}. Note that, instead of using X(ξ), the original model

matrix, X∗(ξ), which is a matrix of size n(k + 1)× p, is used. Each row of X(ξ) is repeated (k + 1)
times in X∗(ξ) because each test unit has (k + 1) intervals.
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In a binomial distribution, σ2
ij = mijπij(1−πij), which includes the random variable mij. Replacing

mij with its expectation, the weight matrix becomes

W = ∆V∆

= diag

{(
−

ln(1− πij)

πij

)
E(mij)πij(1− πij)

(
−

ln(1− πij)

πij

)}

= diag

{
{ln(1− πij)}2(1− πij)

πij
E(mij)

}
. (8)

Assuming a Weibull distribution for a product’s lifetime, we have R(t, x) = exp(−H(t, x)) =

exp(−λ0tαex′β) = e−tαeβ0+x′β
. Substituting it into (6) yields

1− πij =
e−tα

j eβ0+x′β

e−tα
j−1eβ0+x′β .

Assume all time intervals have the same length, ∆t. Then,

1− πij =
e−(j∆t)αeβ0+x′β

e−((j−1)∆t)αeβ0+x′β = e((j−1)α−jα)∆tαeβ0+x′β
. (9)

We also have

E(mij) = 0× P(Ti < tj−1) + 1× P(Ti ≥ tj−1)

= P(Ti ≥ tj−1)

= R(tj−1, xi)

= e−((j−1)∆t)αeβ0+xi
′β

. (10)

Substituting Eq. (9) and Eq. (10) into Eq. (8) yields the weight matrix for the interval-censored Weibull
failure time data:

W = diag

{
{((j− 1)α − jα)∆tαeβ0+xi

′β}2e((j−1)α−jα)∆tαeβ0+x′β

1− e((j−1)α−jα)∆tαeβ0+x′β e−((j−1)∆t)αeβ0+xi
′β
}

= diag

{
((j− 1)α − jα)2∆t2αe2(β0+xi

′β)−jα∆tαeβ0+xi
′β

1− e((j−1)α−jα)∆tαeβ0+xi
′β

}
.

Introduction to the package ALTopt

The main purpose of the ALTopt package is to construct D-, U-, and I-optimal ALT test plans. Two
main functions, altopt.rc and altopt.ic, are developed respectively for the right-censoring and
interval-censoring cases. The following assumptions are required for using this package:

• Failure time data follows the Weibull distribution where the shape parameter is specified by the
user.

• Log-linear functions are used to model the relationship between a failure time distribution
parameter and the stress factors.

• For interval-censored data, all the intervals have the same length.

Lastly, the package can accommodate many stress factors, but 5 or fewer is recommended for compu-
tational efficiency.

This package also provides two functions for evaluating existing test plans – alteval.rc and
alteval.ic. These functions can be used for comparing test plans generated by this ALTopt package
or any other methods. Graphical displays of prediction variance are made available. These plotting
features enhance the usefulness of this package for comparing and selecting test plans.

Creating optimal ALT test plans

The syntax of altopt.rc and altopt.ic functions are as follows:
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altopt.rc(optType, N, tc, nf, alpha, formula, coef,
useCond, useLower, useUpper, nOpt = 1, nKM = 30, nCls = NULL)

altopt.ic(optType, N, t, k, nf, alpha, formula, coef,
useCond, useLower, useUpper, nOpt = 1, nKM = 30, nCls = NULL)

The arguments within these functions are:

• optType – Choice of "D", "U", and "I" optimality.

• N – The number of test units.

• tc (altopt.rc only) – The planned right censoring time.

• t (altopt.ic only) – The planned total testing time (i.e., the end point of the last interval).

• k (altopt.ic only) – The number of time intervals.

• nf – The number of stress factors.

• alpha – The value of the shape parameter of the Weibull distribution.

• formula – The object of class “formula” expressing the linear predictor model.

• coef – The numeric vector containing the coefficients of each term in formula.

• useCond – The numeric vector of use condition. It should be provided when optType is "U". The
length of the vector should be same as the number of stress factors.

• useLower – The numeric vector of lower bound of use region in coded units. It should be
provided when optType is "I". The length of the vector should be the same as the number of
stress factors.

• useUpper – The numeric vector of upper bound of use region in coded units. It should be
provided when optType is "I". The length of the vector should be the same as the number of
stress factors.

• nOpt – The number of repetitions of optimization processes. The default value is 1. If nOpt
is larger than 1, each optimization process starts from randomly chosen design points in the
design region and each solution may slightly differ. The output shows the best solution overall.

• nKM – The number of repetitions of k-means clustering, which is used to generate the optimal
design clustered by kmeans. The default value is 30.

• nCls – The number of clusters used for k-means clustering. If not specified, it is set as the
number of parameters in the linear predictor model.

We use the function stats::optim with the "L-BFGS-B" method to perform optimization. This
function allows box constraints on design variables. In our case, we have a cuboidal design region
where the levels of each stress factor are coded to be between 0 and 1. More details about the
"L-BFGS-B" method are available in Byrd et al. (1995).

The output of these functions are given as a list with the following components:

• call – The matched call.

• opt.design.rounded – The optimal design clustered by rounding.

• opt.value.rounded – The objective function value of opt.design.rounded.

• opt.design.kmeans – The optimal design clustered by k-means algorithm.

• opt.value.kmeans – the objective function value of opt.design.kmeans.

The procedure begins by generating an initial test plan with N design points, which are randomly
selected from possible points in the design region. For example, if we have 100 test units and 2 stress
factors the optimization process begins from 100 randomly chosen initial points, which spread out over
the design region. Throughout the optimization procedure, each of these 100 points converges to its
own optimal location. to create a practical test plan, it is sometimes necessary to enforce some clustering
procedure to reduce the number of distinct design points. Two clustering methods are implemented
in the package. When the design points are very close, the simple method of rounding (to the 3rd

decimal place) the stress values is effective and straightforward. When there are still too many design
points, the alternative is to use k-means clustering, which requires the specification of the number
of clusters, nCls. By carefully selecting the number of clusters, it is possible to reduce the number
of distinct design points without significantly affecting the value of the objective function. The final
recommended test plans are provided by the elements, opt.design.rounded, or opt.design.kmeans,
presented by a table containing each design point location and the number of test units allocated at
each design point. The corresponding values of the objective function of these plans are also stored in
opt.value.rounded and opt.value.kmeans.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 183

The design.plot function displays the recommended test plan as a bubble plot on a two-dimensional
design region of user-specified stress factors. The size of each bubble represents the relative size of the
test unit allocations. The arguments of design.plot are as follows:

design.plot(design, xAxis, yAxis)

• design – A data frame containing the coordinates and the test unit allocation at each design
point. The components, opt.design.rounded or opt.design.kmeans, of an output created by
altopt.rc or altopt.ic can be given for this argument directly and any other design with the
same form of those can also be given.

• xAxis – The name of the factor to be displayed on the x axis.

• yAxis – The name of the factor to be displayed on the y axis.

Evaluating ALT test plans

This package provides several methods to evaluate an ALT test plan. The first method is the numerical
evaluation of a given test plan using alteval.rc or alteval.ic. These functions return the value of
the objective function of the test plan. The arguments are as follows:

alteval.rc(designTable, optType, tc, nf, alpha, formula, coef,
useCond, useLower, useUpper)

alteval.ic(designTable, optType, t, k, nf, alpha, formula, coef,
useCond, useLower, useUpper)

The existing test plan is specified in the argument designTable. The other arguments of alteval.rc
and alteval.ic are similar to the arguments in altopt.rc and altopt.ic.

ALTopt also provides three different graphs for evaluating a test plan – the prediction variance
(PV) contour plot, the fraction of use space (FUS) plot, and the variance dispersion of use space
(VDUS) plot. These graphical tools are useful when visualizing the prediction variance throughout
the entire use-space region (Myers et al., 2009, chap. 8). The PV contour plot displays the contours of
the estimated prediction variance from the design region to the use region of a two-dimensional user-
specified stress factor space. Functions pv.contour.rc and pv.contour.ic generate the PV contour
plot of an ALT test plan with right and interval censoring, respectively. The FUS plot is an extension of
the fraction of design space (FDS) proposed by Zahran et al. (2003). The vertical axis of a FUS plot is
the fraction of the use space region that has prediction variance less than or equal to the given values
in the horizontal axis. Functions pv.fus.rc and pv.fus.ic create the FUS plot of right and interval
censoring ALT plans, respectively. In addition, the FUS curves of multiple designs can be overlaid on
one graph by using compare.fus, so these designs can be compared graphically. The VDUS plot is
an extension of the variance dispersion graphs (VDGs) of Giovannitti-Jensen and Myers (1989) to the
cuboidal use space region. It shows plots of minimum, average and maximum prediction variance
from the center to the boundary of the use region. The comparison of multiple VDUS is also available
through compare.vdus. The arguments of these functions are omitted here, because they are similar to
previously described functions.

An example with two stress factors and right censoring

In this section, we demonstrate the use of ALTopt using the right-censored ALT data set from Yang
and Pan (2013). In this experiment, an ALT of 100 test units is conducted with two stress factors –
temperature and humidity. The lowest and highest stress levels in the test region are (60 °C, 60 %) and
(110 °C, 90 %), respectively. The normal use condition is (30 °C, 25 %), while the typical use region
has the range from (20 °C, 20 %) to (40 °C, 30 %). The natural stress variables of these two factors are
defined by S1 = 11605/T, where T is the temperature in degrees Kelvin (i.e., temp °C+ 273.15), and
S2 = ln(h), where h is the relative humidity. These values are assigned to the following variables:

R> NuseCond <- c(11605 / (30 + 273.15), log(25))
R> NuseLow <- c(11605 / (20 + 273.15), log(20))
R> NuseHigh <- c(11605 / (40 + 273.15), log(30))
R> NdesLow <- c(11605 / (60 + 273.15), log(60))
R> NdesHigh <- c(11605 / (110 + 273.15), log(90))
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Next, we apply a coding scheme on these natural variables so that the highest stress level becomes (0,
0) and the lowest stress level becomes (1, 1).

x1 =
S1 − SH

1
SL

1 − SH
1

, x2 =
S2 − SH

2
SL

2 − SH
2

. (11)

Here, x1 and x2 are the coded stress variables of S1 and S2, respectively. The ALTopt package provides
a utility function, convert.stress.level, to convert the natural stress level to the coded stress level,
and vice versa. The use condition and the use stress region are accordingly coded as follows:

R> library(ALTopt)
R> (useCond <- as.numeric(convert.stress.level(NdesLow, NdesHigh,
+ actual = NuseCond))) # Coded use condition

[1] 1.758337 3.159172

R> (useLower <- as.numeric(convert.stress.level(NdesLow, NdesHigh,
+ actual = NuseHigh))) # Coded use region's lower bound

[1] 1.489414 2.709511

R> (useUpper <- as.numeric(convert.stress.level(NdesLow, NdesHigh,
+ actual = NuseLow))) # Coded use region's upper bound

[1] 2.045608 3.709511

We assume that the failure times follow an exponential distribution, i.e., alpha = 1, and the pre-
specified linear predictor is given by

ηi = −4.086x1 − 1.476x2 + 0.01x1x2. (12)

Suppose the total testing time is 30 time units. The D-optimal test plan is generated by the following
lines of code:

R> set.seed(10)
R> DR <- altopt.rc("D", N = 100, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01))
R> DR

$call
altopt.rc(optType = "D", N = 100, tc = 30, nf = 2, alpha = 1,

formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01))

$opt.design.rounded
x1 x2 allocation

1 0.000 0 21
2 0.835 0 28
3 0.000 1 26
4 0.639 1 25

$opt.value.rounded
[1] 27153.91

$opt.design.kmeans
x1 x2 allocation

1 0.8353075 0 28
2 0.0000000 0 21
3 0.6390136 1 25
4 0.0000000 1 26

$opt.value.kmeans
[1] 27153.92

While the formula does not include the intercept term explicitly, the value of the intercept parameter
still needs to be specified (in this case, it is 0). From the final design output, we noticed that the designs
generated by rounding and clustering are almost the same.

We can also generate the U-optimal and I-optimal designs using the following lines of code:
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Figure 1: Design plots of (a) D-optimal, (b) U-optimal and (c) I-optimal designs with right censoring
drawn by design.plot function.

R> set.seed(50)
R> UR <- altopt.rc("U", N = 100, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useCond = useCond)

R> set.seed(100)
R> IR <- altopt.rc("I", N = 100, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)

Using design.plot function, we can draw the bubble plots of these test plans.

R> design.plot(DR$opt.design.rounded, xAxis = x1, yAxis = x2)
R> design.plot(UR$opt.design.rounded, xAxis = x1, yAxis = x2)
R> design.plot(IR$opt.design.rounded, xAxis = x1, yAxis = x2)

From Figure 1, one can see that the U- and I-optimal test plans resemble each other, while the D-
optimal test plan is very different from the other two. This is expected because the objective functions
of U- and I-optimal designs involve the variance of reliability prediction, while the D-optimal design
involves the variance of parameter estimation. From the U- and I-optimal test plans, it is noticeable
that a large number of test units is allocated at the lowest stress level. This type of test unit allocation
scheme is common in ALTs (e.g., Meeker and Nelson, 1975).

To compare the D-optimal test plan and the U-optimal test plan, the pv.contour.rc function
generates the contour plot of prediction variance using the following lines of code:

R> pv.contour.rc(DR$opt.design.rounded, xAxis = x1, yAxis = x2,
+ tc = 30, nf = 2, alpha = 1, formula = ~ x1 + x2 + x1:x2,
+ coef = c(0, -4.086, -1.476, 0.01), useCond = useCond)
R> pv.contour.rc(UR$opt.design.rounded, xAxis = x1, yAxis = x2,
+ tc = 30, nf = 2, alpha = 1, formula = ~ x1 + x2 + x1:x2,
+ coef = c(0, -4.086, -1.476, 0.01), useCond = useCond)

Figure 2 shows that the U-optimal test plan has lower prediction variance than the D-optimal test
plan at the normal use condition. The FUS and VDUS plots can also be used for further comparison of
these test plans. These plots are shown in Figure 3.

R> fusDR <- pv.fus.rc(DR$opt.design.rounded, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)
R> fusUR <- pv.fus.rc(UR$opt.design.rounded, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)
R> compare.fus(fusDR, fusUR)

R> vdusDR <- pv.vdus.rc(DR$opt.design.rounded, tc = 30, nf = 2, alpha = 1,
+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)
R> vdusUR <- pv.vdus.rc(UR$opt.design.rounded, tc = 30, nf = 2, alpha = 1,
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Figure 2: Prediction variance contour plots of (a) D-optimal and (b) U-optimal designs with right
censoring drawn by pv.contour.rc function.
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Figure 3: Comparison of D-optimal and U-optimal designs with right censoring using (a) FUS plot and
(b) VDUS plot.
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+ formula = ~ x1 + x2 + x1:x2, coef = c(0, -4.086, -1.476, 0.01),
+ useLower = useLower, useUpper = useUpper)
R> compare.vdus(vdusDR, vdusUR)

Figure 3 shows that the U-optimal test plan performs better in majority of the use-space region
with respect to the prediction variance.

Finally, the convert.stress.level function is useful for converting the U-optimal test plan to the
natural stress level conditions.

R> convert.stress.level(NdesLow, NdesHigh, stand = UR$opt.design.rounded)

x1 x2 allocation
1 30.28840 4.499810 17
2 34.53414 4.499810 26
3 30.28840 4.094345 16
4 33.81136 4.094345 41

Summary

This paper describes the ALTopt package in R for constructing optimal ALT test plans for right- and
interval-censored data. The package accommodates three statistical optimality criteria – D-optimal,
U-optimal and I-optimal. It applies the GLM approach to the modeling of failure/censoring times
and the derivation of the asymptotic variance-covariance matrix of regression coefficients. Failure
times are assumed to follow a Weibull distribution. To use the package effectively, users are required
to specify the linear predictor of the GLM and the shape parameter of the Weibull distribution. An
example demonstrated the construction of optimal test plans for an ALT with two stress factors and
right-censored data. This package also provides graphical functions for evaluating and comparing
various test plans.
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abctools: An R Package for Tuning
Approximate Bayesian Computation
Analyses
by Matthew A. Nunes and Dennis Prangle

Abstract Approximate Bayesian computation (ABC) is a popular family of algorithms which perform
approximate parameter inference when numerical evaluation of the likelihood function is not possible
but data can be simulated from the model. They return a sample of parameter values which produce
simulations close to the observed dataset. A standard approach is to reduce the simulated and
observed datasets to vectors of summary statistics and accept when the difference between these is
below a specified threshold. ABC can also be adapted to perform model choice.

In this article, we present a new software package for R, abctools which provides methods for
tuning ABC algorithms. This includes recent dimension reduction algorithms to tune the choice
of summary statistics, and coverage methods to tune the choice of threshold. We provide several
illustrations of these routines on applications taken from the ABC literature.

Introduction

Approximate Bayesian computation (ABC) refers to a family of statistical techniques for inference
in cases where numerical evaluation of the likelihood is difficult or intractable, ruling out standard
maximum likelihood and Bayesian techniques. It has been successfully applied in a wide range of
scientific fields which encounter complex data and models, such as population genetics (Fagundes
et al., 2007; Beaumont, 2010), ecology (Csilléry et al., 2010), infectious disease modelling (Luciani
et al., 2009; Brooks-Pollock et al., 2014), systems biology (Ratmann et al., 2007; Toni et al., 2009) and
astronomy (Cameron and Pettitt, 2012; Weyant et al., 2013).

ABC performs inference based on simulation of datasets rather than likelihood evaluation. For
this reason it is known as a likelihood-free method. The simplest ABC algorithm is rejection-ABC. This
simulates parameter values from the prior and corresponding datasets from the model of interest.
Parameters are accepted if the distance between summary statistics of the simulated and the observed
data is below a threshold, ε. A similar approach can be used to choose between several models with
intractable likelihoods. In all cases two key tuning choices for ABC are ε and which summary statistics
are used. abctools provides various tools to assist these choices. It has been designed to complement
existing software for performing ABC algorithms, especially the abc package (Csilléry et al., 2012).
The examples in this paper use version 1.0.3 of abctools. Note that all the methods provided require
access to at least some of the datasets simulated by ABC. In this sense they are post-processing tools.

The remainder of the article is organised as follows. First a review of relevant ABC algorithms,
theory and software is given. Then two data examples are introduced which will be used for illustration
throughout the paper. The following section describes the summary statistic selection methods
provided by abctools. The final section considers choice of ε using the coverage property (Prangle
et al., 2014).

Review of ABC

The following algorithms perform ABC for parameter inference or model choice. This is done in
a Bayesian framework. Observed data is represented by xobs. One or several probability densities
p(x|θ, m) are available as models for the data. Here θ is a vector of parameters and m is a model
indicator. Prior model weights p(m) and parameter densities for each model p(θ|m) must also be
specified. (Note that there is no requirement for the length of θ to be the same in all models.) If there is
only one model of interest (the parameter inference case) the model can be written as p(x|θ) and then
only a single parameter prior p(θ) is needed.

The ABC algorithms require that it is possible to sample from the priors and models. They also
require various tuning choices: a distance function d(·, ·) (Euclidean distance is a common choice), a
threshold ε ≥ 0 and a mapping s(·) from data to a vector of summary statistics.
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Figure 1: A pictorial illustration of the rejection-ABC algorithm for inference in a single parameter
model (details omitted). The left panel shows simulated parameters and datasets. The solid horizontal
line shows the observed data, and the dashed lines show acceptance boundaries. The right panel is
a histogram and kernel density estimate of the accepted parameter values. These approximate the
posterior distribution.

Rejection-ABC for parameter inference

Initialisation: For the observed dataset xobs, compute a vector of summary statistics sobs =
s(xobs).

Main loop:

1. Draw a parameter vector θ′ ∼ p(θ) from the prior distribution;

2. Generate data from the model x′ ∼ p(x|θ′), and compute summaries s′ = s(x′);

3. If d(s′, sobs) ≤ ε, accept θ′.

Rejection-ABC for model choice

Initialisation: For the observed dataset xobs, compute a vector of summary statistics sobs =
s(xobs).

Main loop:

1. Draw a model m′ ∼ p(m) from the prior distribution on models;

2. Draw a parameter vector θ′ ∼ p(θ|m′) from the prior distribution on parameters for model m′;

3. Generate data from the model x′ ∼ p(x|θ′, m′), and compute summaries s′ = s(x′);

4. If d(s′, sobs) ≤ ε, accept (m′, θ′).

Both algorithms output a sample from an approximation to the posterior distribution. That is, for
parameter inference the output is θ1, θ2, . . . from an approximation to p(θ|xobs), and for model choice
the output is (m1, θ1), (m2, θ2), . . . from an approximation to p(θ, m|xobs).

If ε = 0 then only exact matches x′ = xobs are accepted. It can easily be shown that in this case
the output sample follows the exact posterior distribution of interest. However this is rarely practical
as the probability of an exact match is typically very low for discrete data or zero for continuous
data. Hence a tolerance ε > 0 is used, producing a sample from an approximation to the posterior
(see Figure 1). An obvious acceptance criterion is d(x′, xobs) ≤ ε, but this has been found to produce
a poor approximation unless the data is low dimensional. Intuitively this is because close matches
to the data become increasingly unlikely as the number of numerical components which must be
matched increases. This curse of dimensionality problem motivates the use of low-dimensional summary
statistics, which have greatly improved results in practice. See Beaumont (2010); Csilléry et al. (2010);
Marin et al. (2012) for a more detailed discussion of this issue, and general background on ABC.

Two crucial tuning choices in rejection-ABC are the tolerance ε and the summary statistics s(·).
Several approaches have been proposed in the literature to address these choices. abctools implements
a range of such summary statistic selection methods and a method for choosing ε based on Prangle et al.
(2014). Note that there are many other methods: for example see Blum et al. (2013) for a recent review
of ABC summary statistic selection methods and Csilléry et al. (2012) for choice of ε by cross-validation.
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Name References Stand-alone Platform Models

abc Csilléry et al. (2012) No (R package) All General
ABCreg Thornton (2009) Yes Linux, OS X General
easyABC Jabot et al. (2013) No (R package) All General
ABCtoolbox Wegmann et al. (2010) Yes Linux, Windows Genetics
Bayes-SSC Anderson et al. (2005) Yes All Genetics
DIY-ABC Cornuet et al. (2008, 2010, 2014) Yes All Genetics
msBayes Hickerson et al. (2007) Yes Linux, OS X Genetics
MTML-msBayes Huang et al. (2011) Yes Linux, OS X Genetics
onesamp Tallmon et al. (2008) Yes (web interface) All Genetics
PopABC Lopes et al. (2009) Yes All Genetics
REJECTOR Jobin and Mountain (2008) Yes All Genetics
EP-ABC Barthelmé and Chopin (2014) No (MATLAB tool-

box)
All State space models

(and related)
ABC-SDE Picchini (2013) No (MATLAB tool-

box)
All Stochastic differen-

tial equations
ABC-SysBio Liepe et al. (2010) Yes (Python scripts) All Systems biology

Table 1: Software for ABC. “All” regarding platform refers to Linux, OS X (Mac) and Windows.

There are several ABC algorithms which are more efficient than rejection-ABC. These concentrate
on simulating from models and parameter values close to previously successful values. These include
Markov chain Monte Carlo (Marjoram et al., 2003; Sisson and Fan, 2011) and sequential Monte Carlo
(SMC) techniques (Sisson et al., 2007; Toni et al., 2009; Beaumont et al., 2009; Del Moral et al., 2012). A
complementary approach is to post-process ABC output to reduce the approximation in using ε > 0 by
adjusting accepted parameter values via regression onto the observed summary statistics (Beaumont
et al., 2002; Blum and François, 2010). In both cases tuning ε and s(·) remains of crucial importance. All
of the abctools methods can be used with post-processing. Also, all of the summary statistic selection
methods can be adapted for use with other ABC algorithms and the details of this are discussed
below. However the approach to tuning ε is applicable to rejection-ABC only. The reason is that ABC
must be repeated under many different observations, and this is only computationally feasible under
rejection-ABC as the same simulations can be reused each time. Some alternative methods have been
proposed for the choice of ε in ABC-SMC algorithms, see for example Drovandi and Pettitt (2011); Del
Moral et al. (2012); Lenormand et al. (2013).

Existing software

This section details existing software available for ABC, then outlines how abctools provides previ-
ously unavailable methodology and how it can be used alongside other software. Existing software is
detailed in Table 1.

The software varies widely in which ABC algorithms are implemented. Of the two R packages,
abc implements ABC-rejection with many methods of regression post-processing, while easyABC
implements a wider suite of ABC algorithms but not post-processing. For full details of the other
software see the references in Table 1.

Some of the available software packages provide methods for selecting summary statistics. A
projection method based on partial least squares (Wegmann et al., 2009) is available in ABCtoolbox,
and one for model choice based on linear discriminant analysis (Estoup et al., 2012) in DIY-ABC.
Another category of methods is regularisation techniques, for example via ridge regression (Blum and
François, 2010; Blum et al., 2013). Ridge regression regularisation is implemented in the R package
abc; see Csilléry et al. (2012) for more details. The abc package also provide a method to choose ε by
cross-validation.

The abctools package has been designed to complement the existing software provision of ABC
algorithms by focusing on tools for tuning them. It implements many previously unavailable methods
from the literature and makes them easily available to the research community. The software has been
structured to work easily in conjunction with the abc package, but the package also has the flexibility
to be used with other ABC software. This is discussed below (under “Using other ABC algorithms
with abctools”), along with details of how the package framework can be used to implement further
emerging methodology for summary statistic selection and construction.
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Data examples

Summaries of genetic variation

The first dataset represents data generated from a commonly used model in population genetics.
Specifically, the abctools package contains the two datasets coal and coalobs. The dataset coal
is a matrix of dimension 100000 x 9, representing parameters and summaries generated from an
infinite-sites coalescent model for genetic variation (see Nordborg 2007 for more details). In particular,
the parameters of interest are the scaled mutation rate, θ̃, and the scaled recombination rate, ρ; columns
3–9 are data summaries, namely the number of segregating sites (C1); the pairwise mean number of
nucleotidic differences (C3); the mean R2 across pairs separated by < 10% of the simulated genomic
regions (C4); the number of distinct haplotypes (C5); the frequency of the most common haplotype
(C6) and the number of singleton haplotypes (C7). The summary C2 (column 4) is a spurious statistic,
namely a standard uniform random deviate.

The data coalobs is a matrix of dimension 100 x 9, representing similar instances of summary
statistics from the model and associated parameters; these can be treated as observed data. Similar
data were analysed in simulations in Joyce and Marjoram (2008) and Nunes and Balding (2010). The
datasets can be loaded with data(coal) and data(coalobs) respectively.

A bigger dataset with 106 rows of similar summaries can be loaded using the code:

> mycon <- url("http://www.maths.lancs.ac.uk/~nunes/ABC/coaloracle.rda")
> load(mycon)
> close(mycon)

g-and-k distribution

The g-and-k distribution, used in various applications such as finance and environmental modelling,
is a family of distributions which is specified by its quantile distribution, but does not have a closed
form expression for its density (Rayner and MacGillivray, 2002). Data can easily be simulated by the
inversion method. The dataset included in the abctools package is a matrix of dimension 100000 x
11 consisting of n = 100000 simulations of 4 parameters (A, B, g and k), together with 7 summary
statistics representing the octiles of 1000 independent draws given the corresponding parameters.
Such quantiles have been used for inference in an ABC context by Drovandi and Pettitt (2011) and
Fearnhead and Prangle (2012), amongst others.

The dataset can be loaded using the code:

> mycon <- url("http://www.maths.lancs.ac.uk/~nunes/ABC/gkdata.rda")
> load(mycon)
> close(mycon)

The code used to generate these simulations is available at http://www.maths.lancs.ac.uk/~nunes/
ABC/gksim.R.

Summary statistics selection

Identifying an informative and low-dimensional set of summaries to represent high dimensional
data for use in ABC methods is of high importance for meaningful posterior inference; a number
of methods to achieve this have been proposed in the statistical literature. We assume there is a
prespecified set of input statistics of the data z(x) = {z1, . . . , zk}. This may be the raw data, or some
transformations believed to be informative. Techniques for choosing ABC summary statistics fall into
several categories, including: methods that select a best subset of z (Joyce and Marjoram, 2008; Nunes
and Balding, 2010) and secondly, projection techniques that project z onto a lower dimensional space
(Wegmann et al., 2009; Blum and François, 2010; Fearnhead and Prangle, 2012). A review of methods
for choosing summary statistics, including those mentioned above, can be found in Blum et al. (2013).
This study found that when k was relatively small, best subset methods were generally preferable, and
otherwise projection techniques performed better.

In what follows we describe the implementations of a number of methods for choosing summary
statistics in the abctools package, namely the approximate sufficiency algorithm of Joyce and Marjoram
(2008); the entropy criterion and two-stage methods of Nunes and Balding (2010), and the semi-
automatic ABC projection technique of Fearnhead and Prangle (2012). For summary statistics selection
the user must simulate parameters and data and supply these to the package. The resulting summary
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statistics can then be passed to another package to perform ABC. This form of operation makes
abctools particularly suited to rejection-ABC. Note however, that many of the main routines in
this section have similar arguments, indicative of the flexible and modular nature of the package.
Indeed, the final part of this section discusses the selectsumm wrapper function which can be used to
implement any of the methods, as well as using abctools with other user-defined ABC routines.

Best subset methods

As outlined above, the principle of summary subset selection methods is to select a subset of informa-
tive statistics sA ⊆ z for use in ABC inference, such as the rejection-ABC algorithm described above.
In this section we outline the implementations of some of these “best subset” algorithms for summary
selection.

Subset selection via approximate sufficiency. Joyce and Marjoram (2008) introduced a method of
summary selection based on a measure of approximate sufficiency. The idea of the sufficiency criterion
is that, if a (sub)set of summaries is sufficient for θ, then adding an extra statistic won’t affect the
posterior distribution for θ. Motivated by this observation, the algorithm of Joyce and Marjoram (2008)
sequentially tests the potential inclusion of individual statistics into the set sA, accepting them if the
change in the corresponding posterior density approximation exceeds a threshold. The change in the
posterior is deemed sufficient if∣∣∣∣ pABC (θ|z1, . . . , zk−1, zk)

pABC (θ|z1, . . . , zk−1)
− 1
∣∣∣∣ > T(θ), (1)

where pABC denotes a histogram estimator approximation of the posterior density. See Section 5 of
Joyce and Marjoram (2008) for details of how the threshold T(θ) is defined. Note that due to the form
of the criterion (1), the test is at present only suitable for single parameter inference.

The hypothesis test is performed by the abctools function AS.test. The function has inputs x1 and
x2, representing approximate posterior samples for the density without or including the statistic being
tested, respectively. The test returns a Boolean variable (TRUE or FALSE) indicating whether the second
posterior sample (as represented by x2) is sufficiently different from the first posterior sample x1.

As an example of this, running the code

> unif.sample <- runif(10000); norm.sample <- rnorm(10000)
> AS.test(x1 = unif.sample, x2 = norm.sample)
[1] TRUE

results in a statement that the two posterior samples x1 and x2 are judged to be statistically different.

To decide on the final set of summaries, the test is performed as a sequential search, testing
candidate statistics from z in turn. The final subset sA is dependent on the order in which statistics
from z are tested for inclusion; in practice, this order is random. The sequential testing procedure is
implemented in the abctools function AS.select. The main arguments of the function are:

obs Input statistics corresponding to observed data, z(xobs). This is a matrix of dimension ndatasets
x k.

param Simulated parameters (drawn from a prior) which were used to generate simulated data under
the model; a matrix of dimension nsims x p.

sumstats Input statistics z(x) generated using the model with the parameters param; a matrix of
dimension nsims x k.

After performing the summary search procedure, the AS.select function returns the final subset
of statistics sA in the best component of the output. if the optional trace argument is set to TRUE (the
default), the function will print messages to inform the user about the summary statistics search.

An example of using the AS.select function using the coalescent data described above is shown
below.

> data(coal); data(coalobs)
> param <- coal[, 2]
> simstats <- coal[, 3:9]
> obsstats <- matrix(coalobs[1, 3:9], nrow = 1)
> set.seed(1)
> ASchoice <- AS.select(obsstats, param, simstats)
Sumstat order for testing is: 2 3 6 4 1 7 5
Current subset is: empty Test adding: 2
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Empty subset not allowed - add

Current subset is: 2 Test adding: 3
No significant change to ABC posterior - don't add

Current subset is: 2 Test adding: 6
No significant change to ABC posterior - don't add

Current subset is: 2 Test adding: 4
No significant change to ABC posterior - don't add

Current subset is: 2 Test adding: 1
No significant change to ABC posterior - don't add

Current subset is: 2 Test adding: 7
Significant change to ABC posterior - add

Consider removing previous summaries
Current subset is: 2 7 Test removing: 2
No significant change to ABC posterior - remove

Current subset is: 7 Test adding: 5
No significant change to ABC posterior - don't add

Selected summaries: 7

> ASchoice$best
[1] 7

The result of the sequential search is that out of the summary subsets tested, the single summary
subset {C7} is judged to be the most informative.

Subset selection via minimising an information criterion. Another sequential search algorithm
for summary statistics in the abctools package is the flexible minimum criterion function mincrit.
Essentially, this function cycles through each subset of summaries in turn, and computes a specified
criterion on the ABC posterior sample produced with that particular set of summaries. The best subset
sA is judged to be that which minimises the criterion over all possible subsets of statistics. The search
proposed in Nunes and Balding (2010) suggests minimising the κ-nearest neighbour entropy, E of the
posterior sample

Ê = log

[
πp/2

Γ(p/2+1)

]
− ψ(κ) + log n +

p
n

n

∑
i=1

log Ri,κ , (2)

where p is the dimension of the parameter vector θ, ψ(·) denotes the digamma function, and where
Ri,κ denotes the Euclidean distance from θi to its κ-th closest neighbour in the posterior sample (Singh
et al., 2003). Nunes and Balding (2010) follow Singh et al. (2003) in using κ = 4 for reasons of numerical
stability. Blum et al. (2013) extend this entropy expression for weighted posterior samples. This
entropy calculation in (2) is computed in abctools using the nn.ent function. For example, for the 4th
nearest neighbour entropy calculation for a posterior sample psample, one would use the command

> nn.ent(psample, k = 4)

The mincrit function has many of the same arguments as the AS.select function above, including
obs, param and sumstats, see the mincrit function documentation in the package abctools for a full
list. Other function arguments include crit, which specifies the criterion to minimise. The default for
this is nn.ent. The heuristic for this criterion as suggested by Nunes and Balding (2010) is that the
entropy measures how concentrated the posterior is, and thus how much information is contained
within the sample. However, other measures of spread or informativeness could be used in the crit
argument instead of nn.ent.

Since mincrit performs an exhaustive search of all subsets of z, which can potentially be com-
putationally intensive, the function has been designed to allow the user to decrease the number of
computations by restricting the search to particular subsets of interest. In particular, as with the
AS.select function, the user can limit the search to subsets of a maximum size, using the limit argu-
ment. Internally, this calls the function combmat to produce subsets on which to perform the criterion.
For example combmat(4) produces a matrix of all subsets of size 4, whereas the code combmat(4,limit
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= 2) computes a matrix of all 10 subsets of size 2 and below from 4 statistics, each row of the matrix
indicating which of the 4 statistics are included in the subset:

C1 C2 C3 C4
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 0 0 1 0
[4,] 0 0 0 1
[5,] 1 1 0 0
[6,] 1 0 1 0
[7,] 1 0 0 1
[8,] 0 1 1 0
[9,] 0 1 0 1
[10,] 0 0 1 1

In addition, the search can be limited by setting the argument sumsubs to a particular subset of initial
summaries. This has the effect of only considering subsets containing those statistics. Alternatively,
with the argument do.only, the user can specify certain summary subsets to consider. This can either
be in matrix format like the output from combmat, or a vector of indices indicating rows of combmat(k)
for which to compute the crit criterion.

To run the minimum criterion search algorithm, one could do:

> entchoice <- mincrit(obsstats, param, simstats, crit = nn.ent,
+ do.only = 1:30)

This would only consider the first 30 subsets as specified in combmat(ncol(obsstats)).

The mincrit function returns a list object with the following components:

critvals If do.crit = TRUE, a matrix representing the computed crit criterion values.

best A matrix representing the best subset (which minimises crit).

posssubs A matrix (or vector) of subsets considered by the search algorithm. This component reflects
the choice of input do.only.

sumsubs The index of the initial pool of statistics considered in the search. By default, this is set to
1:ncol(obsstats).

The best subset is judged to be the 20th subset in the search, {C3, C5}, as seen from the best component
of the output:

> entchoice$best
[,1] [,2]

20 3 5

Two stage procedure. As a refinement of the entropy-based summary selection procedure, Nunes
and Balding (2010) propose running a second summary search based on the best subset found by
minimum entropy. The closest simulated datasets to xobs are identified using the summaries chosen in
the first stage. The number of these close datasets is controlled by the argument dsets. The second
stage selects a subset of summaries which minimises a measure of true posterior loss when ABC
is performed on these datasets. This is done by comparing the ABC output to the true generating
parameter values by some criterion. The default is calculating relative sum of squares error (RSSE).
Since this second stage is effectively a search similar in form to that performed by mincrit, the
functionality of mincrit is exploited by calling it internally within stage2. By default, the posterior
loss minimisation is computed with the function rsse. The argument init.best specifies which subset
to use as a basis to perform the second ABC analysis, e.g., the best subset chosen by the minimum
entropy criterion. Other arguments to this function mimic those of mincrit.

An example call for this function is

> twostchoice <- stage2(obsstats, param, simstats, dsets = 25,
+ init.best = 20, do.only = 1:30)
> twostchoice$best

[,1] [,2]
21 3 6

The output object is the same as that of mincrit, with the exception that in addition, stage2 also
returns the dsets simulated datasets deemed closest to the observed data zobs.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 196

Semi-automatic ABC

When the set of input statistics z(x) = (z1, z2, . . . , zk) is large, it is computationally inefficient to search
all possible subsets. Furthermore, good summary statistics for ABC may not be individual zis but
combinations e.g., their mean. Semi-automatic ABC (Fearnhead and Prangle, 2012) is a projection
method which attempts to find linear combinations which are informative about θ by fitting a regres-
sion. This produces a low dimensional vector of summaries as there is one for each parameter, i.e.,
θ̂i(z) = βi0 + ∑k

j=1 βijzj for 1 ≤ i ≤ p where p is the dimension of θ. The summaries are estimators
of the conditional posterior parameter mean IE(θ|x). As theoretical support, Fearnhead and Prangle
prove that ABC using s(x) = IE(θ|x) (i.e., perfect estimators) and ε = 0 would minimise a posterior
loss function reflecting the quality of point estimators.

Linear regression is a crude tool to estimate IE(θ|x) so some further steps are proposed. These
require some user input, which is why the method is referred to as semi-automatic. Firstly the set of
input statistics z must be carefully chosen. For this method it should be composed of many potentially
informative data features. These could include the raw data and various non-linear transformations
for example. Secondly it is recommended to only fit the regression locally to the main posterior mass
by using the following steps.

1. Perform an ABC pilot run using summary statistics chosen subjectively or using another method.
Use this to determine the region of main posterior mass, referred to as the training region.

2. Simulate parameters θ
j
train from the prior truncated to the training region and corresponding

datasets xj
train for 1 ≤ j ≤ N.

3. Fit regressions as detailed above for various choices of z = z(x).

4. Choose the best fitting regression (e.g., using BIC) and run ABC using the corresponding
summaries. For robustness it is necessary to truncate the prior to the training region; our
experience is that without such truncation artefact posterior modes may appear outside the
training region.

Note that in rejection-ABC the same simulations can be used for the pilot ABC, training and main
ABC steps, if desired. Also, step 1 can be omitted and the entire parameter space used as the training
region. This is simpler, but empirical evidence shows that in some situations the training step is crucial
to good performance (Fearnhead and Prangle, 2012; Blum et al., 2013).

abctools provides two functions for semi-automatic ABC. To facilitate a quick analysis, semiauto.abc
performs a simple complete analysis; this uses rejection-ABC, avoids selecting a training region (i.e., it
uses the full parameter space instead), and uses a single prespecified choice of z. To allow the user to
implement the full method, saABC implements step 3 only. We describe only the former here as the
latter is a very straightforward function. The main arguments of semiauto.abc are:

obs Input statistics corresponding to observed data. This is a matrix of dimension ndatasets x k.
In fact only a subset z′(xobs) need be supplied. The full vector z(xobs) consists of deterministic
transformations of these specified by satr.

param Simulated parameters (drawn from a prior) which were used to generate simulated data under
the model; a matrix of dimension nsims x p.

sumstats Input statistics z′(x) generated using the model with the parameters param; a matrix of
dimension nsims x k.

satr A list of functions, representing the vector of transformations to perform on the features
sumstats, with which to estimate the relationship to the parameters θ. For more details, see the
examples below.

Other arguments to the function are the same as mincrit; see the saABC documentation for more
details.

To perform semi-automatic ABC using the vector of elementwise transformations (z′, z′2, z′3, z′4),
one could use the function call:

> saabc <- semiauto.abc(obsstats, param, simstats,
+ satr = list(function(x) {
+ outer(x, Y = 1:4, "^")}))

Alternatively, the same transformations could be specified by setting satr to list(function(x)
cbind( x, x^2, x^3, x^4)). This alternative way of choosing this argument uses a single function
which outputs all four transformations as a vector.

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 197

0.0

0.1

0.2

0.3

0.4

X

2.5 3.0 3.5 4.0 4.5

3.5

4.0

4.5

5.0

5.5

6.0

6.5

A

B

0.0

0.1

0.2

0.3

0.4

0.5

X

0.5 1.0 1.5 2.0

2.5

3.0

3.5

4.0

4.5

5.0

A

B

Figure 2: Joint posterior densities for two datasets for the (A, B) g-and-k distribution parameters,
based on summary statistics chosen by semi-automatic ABC. The true parameter values are indicated
by crosses.

The output from the semiauto.abc function is similar to that of mincrit, except that the output
object also has a component sainfo, containing relevant choices of arguments pertaining to the ABC
runs in steps 1 and 4 above. More specifically, the sainfo component is a list with information about
the simulations used to perform each of the ABC runs, as well as the vector of transformations satr.

An example of semiauto.abc on the g-and-k dataset is as follows. The corresponding results and
an analysis on another dataset are shown in Figure 2.

> mycon <- url("http://www.maths.lancs.ac.uk/~nunes/ABC/gkdata.rda")
> load(mycon)
> close(mycon)
> params <- gkdata[, 1:4]
> octiles <- gkdata[, 5:11]
> obs <- octiles[9, ]
> tfs <- list(function(x){cbind(x, x^2, x^3, x^4)})
> saabc <- semiauto.abc(obs = obs, param = params, sumstats = octiles,
+ satr = tfs, overlap = TRUE, saprop = 1,
+ abcprop = 1, tol = 0.001, method = "rejection",
+ final.dens = TRUE)
> dens <- kde2d(saabc$post.sample[, 1], saabc$post.sample[, 2])
> filled.contour(dens, xlab = "A", ylab = "B")

An example on the coal data is as follows. Results are shown in Figure 3.

> data(coal)
> data(coalobs)
> coalparams <- coal[, 1:2]
> coaldata <- coal[, 3:9]
> coalobs <- coal[1, 3:9]
> mytf <- list(function(x){cbind(x, x^2, x^3, x^4)})
> saabc.coal <- semiauto.abc(obs = coalobs, param = coalparams,
+ sumstats = coaldata, satr = mytf,
+ tol = 0.001, overlap = TRUE, saprop = 1,
+ abcprop = 1, method = "rejection",
+ final.dens = TRUE)
> dens.coal <- kde2d(saabc.coal$post.sample[, 1],
+ saabc.coal$post.sample[, 2])
> filled.contour(dens.coal, xlab = "theta", ylab = "rho")

The selectsumm convenience wrapper

The summary selection methods described in this section can be used with the individual functions
as described above. Alternatively, the abctools package contains a convenient generic function
selectsumm, with which any of the summary statistics choice algorithms can be performed. The
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Figure 3: Joint posterior densities for the coal example, based on summary statistics chosen by
semi-automatic ABC. The true parameter values are indicated by crosses.

argument ssmethod can be any of the functions described above, for example mincrit. Note that any
other arguments to the ssmethod function can be passed to selectsumm easily. In particular, many of
the summary selection routines have common optional arguments, for example

obspar An optional matrix of true parameters corresponding to the observed summaries obs. This is
useful if the function is used to test summary selection techniques on fake observed data (for
which you know the generating parameters).

abcmethod A function which performs an ABC algorithm, for example the abc function from the abc
R package. Other user-defined functions can also be supplied; see below for more details. By
default, the ssmethod function uses the abc rejection-ABC algorithm, with a tolerance of tol =
0.01.

limit An (optional) integer value indicating whether to limit the search to subsets of a particular
maximum size. For example, limit = 3 would only consider potential subsets of statistics sA
with |sA| = 3, see the subset selection section for more details.

do.err A logical variable indicating whether the simulation error should be computed to assess the
performance of the selection algorithm. This is only relevant if obspar is supplied.

final.dens A logical variable. If final.dens = TRUE, then the final approximate posterior sample is
returned, resulting from the ABC algorithm (abcmethod) using the final subset of summaries sA.

errfn A function used to compute the simulation error between the posterior sample and the generat-
ing parameter values obspar. An example of such a function included in the abctools package
is the relative sum of squares error (RSSE), computed using the function rsse.

Note that the selectsumm function can perform summary selection for any number of observed
summary vectors; the function implements the ssmethod on each row of the obsstats argument.
Examples of the selectsumm function call are

> ASchoice <- selectsumm(obsstats, param, simstats, ssmethod = AS.select)

or

> mycon <- url("http://www.maths.lancs.ac.uk/~nunes/ABC/gkdata.rda")
> load(mycon)
> close(mycon)
> param <- gkdata[, 1:2] # A and B parameters
> simstats <- gkdata[, 5:11]
> obsstats <- gkdata[9:10, 5:11] # treated as real data
> entchoicegk <- selectsumm(obsstats, param, simstats, ssmethod = mincrit,
+ crit = nn.ent, limit = 3, final.dens = TRUE,
+ do.err = TRUE, obspar = gkdata[9:10, 1:2])
> entchoicegk$best

S1 S2 S3 S4 S5 S6 S7
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Figure 4: Joint posterior densities for two datasets for the (A, B) g-and-k distribution parameters,
based on the {s4, s5} statistics, as chosen by the minimum entropy subset selection method. The true
parameter values are indicated by crosses.
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If do.err = TRUE, then the inference error (as compared with the truth in obspar) is computed using
the errfn function and is also returned in the err component of the function output. In addition, if
final.dens = TRUE the output list element post.sample will contain the approximate posterior sample
from the ABC inference corresponding to using sA in the abcmethod ABC inference function. For
example, for the entchoicegk object, the approximate posterior sample corresponds to the algorithm
abcmethod using the subset (of size ≤ 3) with the lowest entropy. The resulting bivariate posterior
density can then be seen by using the command kde2d from package MASS (Venables and Ripley,
2002):

> dens1 <- kde2d(entchoicegk$post.sample[, 1, 1],
+ entchoicegk$post.sample[, 2, 1])
> dens2 <- kde2d(entchoicegk$post.sample[, 1, 2],
+ entchoicegk$post.sample[, 2, 2])
> filled.contour(dens1, xlab = "A", ylab = "B")
> filled.contour(dens2, xlab = "A", ylab = "B")

The resulting posterior densities are shown in Figure 4.

Any other arguments to be passed to the function specified by the abcmethod argument can also
be included. For more details on the optional arguments for the abc function see Csilléry et al. (2012).

Using other ABC algorithms with abctools

The flexibility of the abctools package can be exploited by using user-defined ABC algorithm imple-
mentations through the abcmethod argument to all of the ABC summary choice methods, namely
AS.select, mincrit, stage2 and semiauto.abc, or the convenience wrapper selectsumm, described
above. The only constraint on the user’s code for the ABC method is that it must return an object
with a component named either adj.values or unadj.values containing the approximate posterior
sample, to (minimally) mimic a return object of class "abc". For example, if one had written a function
likefreemcmc to perform likelihood-free Markov chain Monte Carlo, one could use this in combination
with a minimal criterion computed on the resulting (MCMC) posterior samples using the code:

> mcmcabc <- mincrit(obsstats, param, simstats, abcmethod = likefreemcmc)

To use abctools within ABC inference methods implemented by generic software, simply supply an
appropriate R wrapper function to the abcmethod argument.

User-defined ABC summary selection methods can be accommodated with the abctools package.
A new projection method, projABC say, could be implemented using the wrapper selectsumm as follows:

> projchoice <- selectsumm(obsstats, param, simstats, ssmethod = projABC)
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Figure 5: Illustration of the coverage property. The crosses represent simulated θ0 values. The dotted
curves on the left graph show the posterior densities based on noisy data about θ. On the middle
graph they show approximate posterior densities which are over-precise, and the right-hand graph
shows the prior density. All graphs have the same θ0 and data values. The horizontal lines show 50%
credible intervals. In the case shown on the left roughly half of these will contain the corresponding θ0
value, which is consistent with the coverage property. For the middle graph case the proportion is
generally smaller, illustrating that the coverage property does not hold. The right-hand graph shows
that the prior credible interval also contains roughly half the θ0 values, illustrating that coverage also
holds here.

For the implementation to work, the summary choice function must have arguments named
obsstats, param, simstats for the observed data, simulated parameters and simulated summaries
respectively, as well as the logical argument final.dens indicating whether the approximate posterior
sample is to be returned. Optional arguments could also be passed to projABC through the selectsumm
wrapper.

Coverage

Theory

The abctools package can also test the accuracy of an ABC analysis, in particular to help choose the
ε tuning parameter. This is done by testing whether it satisfies the coverage property (Prangle et al.,
2014). As a simple example, consider (exact) Bayesian inference for the scalar parameter θ given data
x. A standard summary of this is an α% credible interval: an interval I such that Pr(θ ∈ I|x) = α/100.
Suppose a dataset is simulated from a parameter value θ0 drawn from the prior and an α% credible
interval is calculated. It is easy to show that the probability the interval contains θ0 is α/100. When
this is true for all α, an inference method is said to satisfy the coverage property. This is illustrated by
Figure 5. Note that the probability in question relates to a random choice of θ0. The stricter requirement
of frequentist coverage requires a similar condition holds for every θ0.

Monahan and Boos (1992) and Cook et al. (2006) showed that an equivalent condition to the
coverage property is that the distribution of p0, the posterior quantile of θ0, must be U(0, 1). This
property is much easier to test numerically, as shown in Figure 6. Prangle et al. (2014) discuss how
such a test can be implemented efficiently in a rejection-ABC context. This involves performing
ABC analyses under many data sets simulated from known θ0 values. A manageable computational
cost is achieved by reusing the same ABC simulations in each analysis and exploiting multicore
processing. Prangle et al. (2014) also show that when θ0 values are drawn from the prior, the coverage
property is a necessary condition for an inference procedure to give the correct posterior but not a
sufficient condition: the coverage property also holds for an inference procedure that always returns
the prior distribution (see Figure 5). Recommendations are given for how this problem can be avoided,
involving drawing θ0 values from a non-prior distribution, but are not discussed here for reasons of
brevity. In addition, they discuss testing the coverage property in ABC model choice analyses. The
idea is to test that amongst analyses giving modelM weight of roughly α, the proportion of being
truly from modelM is close to α. Several test statistics are proposed which can be calculated with
abctools.
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Figure 6: Illustration of testing the coverage property via the distribution of p0 values, extending
the example of Figure 5. The left-hand histogram shows the case where 200 p0 values are calculated
from the posterior distribution. On the right an over-precise estimate of the posterior is used instead.
Clearly the left-hand histogram is consistent with p0 ∼ U(0, 1) approximately and the right-hand one
is not. This is confirmed by using the Kolmogorov-Smirnov test, which gives p-values of 0.82 (left)
and 10−7 (right).

Package usage

The following code illustrates a typical analysis using the cov.pi (parameter inference) and cov.mc
(model choice) functions. For the choice of tolerance ε, the user must supply simulated parameters,
summary statistics and, for model choice, model indicators. Figure 7 shows typical output (n.b. some
code to improve the appearance of this figure has been omitted.)

> library(abctools); library(ggplot2)
> data(human)
> ## Summary statistics for bottleneck model:
> stat.italy.sim <- subset(stat.3pops.sim, subset = (models == "bott"))
> ## Interesting epsilon values:
> myeps <- exp(seq(log(0.5), log(10), length.out = 15))
> set.seed(1)
> mytestsets <- sample(1:nrow(stat.italy.sim), 200)
> covout.pi <- cov.pi(param = par.italy.sim, sumstat = stat.italy.sim,
+ testsets = mytestsets, eps = myeps,
+ multicore = TRUE, diagnostics = c("KS", "CGR"),
+ cores = 4)
> qplot(x = eps, y = pvalue, colour = test,
+ data = subset(cabc.out$diag, parameter == "Ne"), log = "y")
> mytestsets <- sample(nrow(stat.3pops.sim), 200)
> covout.mc <- cov.mc(index = models, sumstat = stat.3pops.sim,
+ testsets = mytestsets, eps = myeps,
+ diagnostics = c("freq", "loglik.binary"),
+ multicore = TRUE, cores = 4)
> qplot(x = eps, y = pvalue, colour = test, data = covout.mc$diag,
+ log = "y")

The code analyses the human dataset supplied in the abc package (Csilléry et al., 2012), which
contains simulated parameter values and summary statistics for a population genetic model. The
cov.pi function estimates 200 p0 values for each parameter. To do this, 200 of the simulated datasets
are randomly sampled to be used as pseudo-observed data in leave-one-out style ABC analyses. The
p-values of various diagnostic test statistics are returned in the diag component of the output. The
left panel of Figure 7 plots p-values of uniformity tests – Kolmogorov-Smirnov and that of Cook et al.
(2006) – as ε varies for one particular parameter. These show typical behaviour; coverage is supported
for large ε when the ABC output is approximately drawn from the prior and also for ε small enough
that ABC output is approximately drawn from the posterior. The right panel shows p-values for tests
of whether output for the bottleneck model satisfies coverage. Again, coverage holds for large and
small ε, but there is disagreement in between.
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Figure 8: Detailed coverage diagnostic plots for the human dataset example with ε = 2.2.

Prangle et al. (2014) argue that p-values of test statistics only investigate certain aspects of coverage.
A fuller investigation of interesting ε values, for example where test statistics disagree, can be found
by diagnostic plots. For parameter inference histograms of underlying p0 values are recommended,
and for model choice plots of estimated against observed model probabilities, after some aggregation.
This information is returned in the raw component of the output and can be plotted as follows, giving
Figure 8. The mc.ci command is part of abctools.

> par(mfrow = c(1, 2))
> ## nb myeps[8] is 2.2
> hist(subset(covout.pi$raw, eps == myeps[8])$Ne, xlab = "p0",
+ main = "Parameter inference")
> mc.ci(covout.mc$raw, eps = myeps[8], modname = "bott",
+ modtrue = models, main = "Model choice")

The left-hand side of Figure 8 shows that for ε = 2.2, coverage clearly does not hold for the
parameter of interest. The right-hand side shows no evidence to reject coverage for the bottleneck
model.

Summary

This article has described the R package abctools. This implements several techniques for tuning
approximate Bayesian inference algorithms. In particular, the package contains summary statistic
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selection routines for the approximate sufficiency method of Joyce and Marjoram (2008); the entropy
minimisation and two-stage error algorithm proposed by Nunes and Balding (2010); and the regression
method of Fearnhead and Prangle (2012). It also contains methods to choose the acceptance threshold
ε by assessing the coverage property of Prangle et al. (2014).
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mtk: A General-Purpose and Extensible R
Environment for Uncertainty and
Sensitivity Analyses of Numerical
Experiments
by Juhui Wang, Robert Faivre, Hervé Richard and Hervé Monod

Abstract Along with increased complexity of the models used for scientific activities and engineering
come diverse and greater uncertainties. Today, effectively quantifying the uncertainties contained
in a model appears to be more important than ever. Scientific fellows know how serious it is to
calibrate their model in a robust way, and decision-makers describe how critical it is to keep the best
effort to reduce the uncertainties about the model. Effectively accessing the uncertainties about the
model requires mastering all the tasks involved in the numerical experiments, from optimizing the
experimental design to managing the very time consuming aspect of model simulation and choosing
the adequate indicators and analysis methods.

In this paper, we present an open framework for organizing the complexity associated with
numerical model simulation and analyses. Named mtk (Mexico Toolkit), the developed system aims
at providing practitioners from different disciplines with a systematic and easy way to compare and
to find the best method to effectively uncover and quantify the uncertainties contained in the model
and further to evaluate their impact on the performance of the model. Such requirements imply that
the system must be generic, universal, homogeneous, and extensible. This paper discusses such an
implementation using the R scientific computing platform and demonstrates its functionalities with
examples from agricultural modeling.

The package mtk is of general purpose and easy to extend. Numerous methods are already
available in the actual release version, including Fast, Sobol, Morris, Basic Monte-Carlo, Regression,
LHS (Latin Hypercube Sampling), PLMM (Polynomial Linear metamodel). Most of them are compiled
from available R packages with extension tools delivered by package mtk.

Introduction

Nowadays, computational modeling has become a common practice for scientific experiments and
discoveries. Global climate models have been used for both short-term weather forecast (Lynch, 2008)
and long-term climate change (Risbey et al., 2014). Environmental models have been developed for
assessing the impact of a waste water treatment plant on a river flow (Brock et al., 1992). Epidemic
models have been elaborated to investigate the mechanism by which diseases spread and to evaluate
strategies to control their outbreaks (Papaix et al., 2014), etc. Most of them become more and more
complex, with many parameters, state-variables and non-linear relationships, etc. Overloading the
model to better mimic observed real data does not seem to be a passing practice but a continuing trend.
Along with increased complexity of the models come diverse and greater uncertainties. Although
computational modeling may improve our understanding of how an evidence emerges, and helps
to get insight into how the elements of the system come together and interplay, one is usually left
with the feeling that another model might produce different results and that some uncertainties have
still remained somewhere in the system. “Under the best circumstances, such models have many degrees of
freedom and, with judicious fiddling, can be made to produce virtually any desired behavior, often with both
plausible structure and parameter values” (Hornberger and Spear, 1981). Although we admit that such a
statement is exaggerating, it is greatly necessary to look into this issue and to try our best effort to get
insight into the sources of such doubts.

Uncertainty and sensitivity analyses, when correctly applied, may help to gain an understanding
of the impact of the various sources of uncertainties and to further assess the system performance and
set up strategies for getting better control over the behavior of the model (Helton et al., 2006; Cariboni
et al., 2007; Marino et al., 2008). Numerous methods and software have been developed (Adams et al.,
2013; Saltelli et al., 2005; Pujol et al., 2015). Most of them are context-specific, domain-specific or theory-
oriented. For example, Dakota was developed in the context of mechanics and large-scale engineering
simulation (Adams et al., 2013). It is a closed complete software package which provides an efficient
implementation of the iterative analysis model for parameter estimation, cost-based optimization, and
sensitivity analysis. Implemented as a C++ library, methods developed in the project Dakota were
widely used in a variety of large scale engineering projects relative to chemical (Salinger et al., 2004)
and mechanical industries (Weirs et al., 2012). SimLab, on the other side, is a representative theory-
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oriented package which covers the global sensitivity analysis techniques derived from Monte Carlo
analysis (Saltelli et al., 2005; Joint Research Centre, 2006). Methods developed from SimLab are widely
used in a large number of fields (Ciuffo et al., 2012). Although the software package offers a module to
link for external model simulation and allows complex models beyond mathematical functions to be
executed, such flexibility seems limited merely to the model implementation. The package obviously
suffers from the lack of generality in the sense that it is difficult to include new methods especially
those not based on Monte Carlo analysis. More ambitious, OpenTURNS (Baudin et al., 2015) builds
on the global methodology promoted by an ESREDA group (de Rocquigny et al., 2008). It provides a
great number of features for quantifying, prioritizing, and propagating uncertainties in computational
models, but its extension requires programming skills that theoreticians and domain experts might not
possess. More flexible and generic, Promethee provides a grid computing environment for numerical
engineering and an interface for integrating R packages (Richet et al., 2009, 2010). When it comes
to the software packages available for the R computing environment, there exists a great number
of packages (Pujol et al., 2015; Dupuy et al., 2015; Monod et al., 2015; Lamboni et al., 2015). We do
not aim at providing an exhaustive review of all the packages here, but we we would like to point
out package sensitivity (Pujol et al., 2015) which implements both the sampling and global analysis
methods such as Sobol, FAST and Morris (Saltelli et al., 2005), package spartan (Alden et al., 2013,
2015) which compiles four widely used techniques for numerical experiments (the consistency analysis
(Read et al., 2012), the robustness analysis (Read et al., 2012), the latin-hypercube sampling technique
(Saltelli et al., 2000) and the eFAST technique (Marino et al., 2008)) and demonstrates their effectiveness
for biological systems, and packages diceDesign (Dupuy et al., 2015) and planor (Monod et al., 2015)
which implement the space-filling sampling technique (Pronzato and Müller, 2012) and the techniques
for regular factorial designs (Monod et al., 2015), respectively.

Although these tools are very useful and greatly contribute to the development and the popularity
of uncertainty and sensitivity analyses, they present some drawbacks. Most of them offer no possibility
to evolve or to integrate methods developed in other contexts. However, uncertainty and sensitivity
analyses are intrinsically trial-and-error processes because of the lack of reliable knowledge and data
about the causes of the uncertainties contained in the model. There is no method which is universal
and suitable for all contexts. Practitioners must repeat, undertake numerous tests, and vary the
parameters and methods until finding the best one fitting to the situation. Sticking to a method which
is inappropriate for the circumstances leads inevitably to a wrong way and to misinterpret the results.
Thus, it is necessary to develop a simple to use, but powerful software package allowing practitioners
to test and compare different methods for their own data. Such an application needs to be easy to
set up, and yet unifying in its ability to include a wide range of methods and powerful to objectively
analyze and rapidly report the results.

Inspired from these issues, we tried to compile the available methods into a general purpose open
platform and make them become accessible to researchers and practitioners from different disciplines.
Named mtk (Mexico Toolkit), the package we present here builds on an object-oriented framework
using the R scientific computing platform. It provides facilities to interplay with external simulation
platforms and to share data and knowledge with external applications in a seamless manner. It is easy
to use, homogeneous, and offers a unique syntax and semantics for computing and data management.
It is extensible in the sense that it tries to cover a large variety of factor types, and can easily integrate
methods developed in the future without any major effort of reprogramming, even those developed
by researchers not involved in the mtk initiative. It is self-contained and provides efficient tools to
control all the processing tasks involved in the numerical experiments, from experimental design and
model simulation to sensitivity computing and data reporting. Moreover, it is scalable to small or big
projects, suitable for collaborative work in which the domain experts build the model and run the
simulation, and the statisticians take charge of the different tasks of analyses and reporting.

We must note here that although the mtk package is designed to study any type of numerical
simulation, one should not apply any method to any model on any occasion. How to match the
methods to the problems is a difficult issue, which should not be accounted for only by software
engineering but also by advice from domain experts and specialists on model exploration.

Methodology

Based on the computation of specific quantitative measures that allow, in particular, assessment of
variability in output variables and importance of input variables, both uncertainty and sensitivity
analyses are relevant methods for exploring numerical experiments (Saltelli et al., 2005; Faivre, 2013).
Nevertheless, uncertainty and sensitivity analyses meet with different issues. Uncertainty analysis
seeks to asses the impacts of the uncertainties contained in the inputs of the model on the outputs. It
deals with the question of what level of uncertainty might be induced by the uncertainties contained
in the inputs, and focuses on describing the probability distribution of the outputs as a function of
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Figure 1: By decomposing the activities involved in uncertainty and sensitivity analyses into elemen-
tary tasks and using filters to connect them, we can cope with the heterogeneity of the approaches
used in uncertainty and sensitivity analyses and unify them within a consistent and easily extensible
framework.

the uncertainties contained in the inputs. In the simplest case, this probability distribution might
be computed analytically from the characteristics of the uncertainties contained in the inputs. But
in practice, the models are usually too complex to allow for any analytical solutions, and modern
statistical methods must be used to estimate or approximate the probability distribution of the outputs.
Various methods are already available. Among them, simulation methods seem to be the most
representative and universal.

On the other hand, sensitivity analysis aims to identify the sources of the uncertainties and quantify
their relative contributions. It deals with the question of which inputs exhibit the most important
uncertain behaviors against the model, and allows us to focus on the ones that matter and ignore those
that are less significant. Sensitivity analysis can be used to meet various objectives and goals such as
identifying and prioritizing the most influential inputs, identifying non-influential inputs in order to
fix them to nominal values, mapping the output behavior as a function of the inputs by focusing on a
specific domain of inputs if necessary, calibrating model inputs using available information, etc. Terms
such as influence, importance, ranking by importance, and dominance are all related to sensitivity
analysis.

Sensitivity and uncertainty analyses rely on large and heterogeneous collection of approaches
and tools. In this study, we try to find a consistent framework to unify the different approaches
and tools. Our framework is a workflow-based one, which consists in decomposing the procedures
of the uncertainty and sensitivity analyses into a series of elementary and generic tasks that can
be manipulated and presented in a standard and homogeneous way. Each activity involved in the
uncertainty and sensitivity analyses can be considered either as an elementary task or a combination
of the elementary tasks. Appropriate combination and scheduling of the tasks allow to handle
situations of any complexity. This workflow-based approach results in a unified way to cope with the
heterogeneity of the activities involved in uncertainty and sensitivity analyses, and leads to a generic
and extensible design.

The resulting workflow builds on five main tasks: i) choosing the input factors and their distribu-
tion uncertainties; ii) building the experimental design by factor sampling; iii) managing the model
simulation; iv) analyzing the results obtained from the simulation; v) preparing to present and report
the results. Thus, all approaches can be considered as a partial or complete combination of the main
tasks. Moreover, filters are available and can be added to cope with atypical and complex situations.
They are often used to convert or import data in order to connect the main tasks.

Architecture and design

Building on an object-oriented framework, the mtk package follows the recommendation for S4 classes
and methods available in R (Chambers, 2008). As shown in Figure 2, it comprises three mandatory
components: the factor unit, the workflow unit, and the data import and export unit. Each unit is part
of a service mission and manages the exchange of data and services with other units via interfaces.
Thus, a unit knows other units and communicates with them only through the interfaces. This practice
promotes efficient software engineering when multiple teams are involved, and makes the long-term
software maintenance easier (Chambers, 2014).

The factor unit

The factor unit manages data and services with regard to the parameters and inputs of the model. It
also ensures efficient support to manage the uncertainty behaviors that we know about the model.
When running an uncertainty or sensitivity analysis, the first thing to do is to determine what the
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Figure 2: A general view of the system. The system is mainly composed of three components: a unit
to manage the factors and their uncertainties, a unit to manage the processes and workflow, and a unit
to manage the collaboration with external resources.

Classes Definition Nature

‘mtkFactor’ Entity used to represent a factor Instantiable
‘mtkExpFactors’ Entity used to collect all the factors involved Instantiable

in the experiment
‘mtkDomain’ Entity used to define the uncertain domain Instantiable

of a factor
‘mtkLevels’ Entity used to define a discrete probability Instantiable

distribution
‘mtkValue’ Triplet used to define a typed variable Virtual
‘mtkParameter’ Entity used to define a parameter Instantiable
‘mtkFeature’ Entity used to represent complex Instantiable

relationships among factors
‘mtkProcess’ Entity used to manage a process Virtual
‘mtkExpWorkflow’ Entity used to manage the workflow Instantiable
‘mtkExperiment’ Entity to manage a simplfied version of Instantiable

workflow
‘mtkParsor’ Entity used to parse XML files Instantiable
‘mtkReporter’ Entity responsible for advanced data reporting Virtual
‘mtkResults’ Entity used to hold results produced by a Virtual

process
‘mtkDesigner’ Entity used to manage design process Instantiable
‘mtkSystemDesigner’ Entity used to manage design method Instantiable

implemented as a system application
‘mtkNativeDesigner’ Entity used to manage methods design Instantiable

implemented as an R function
‘mtkMorrisDesigner’ Entity used to manage the process Instantiable

implementing the method Morris

Table 1: The principal classes used in the mtk package to manage the factors and the processes involved
in numerical experiments.

parameters and inputs to the model are and, among them, which parameters and inputs exhibit
uncertainties. Such kinds of parameters and inputs are referred to as factors. Since the uncertainty of
the factor is restricted within a domain, we usually set it up with a probability distribution function.
The factor unit is the component which is responsible for managing the information about the factors
and their uncertainty domains such as the arguments to the probability distribution function, whether
the factors are correlated and how they correlate, and so on. An important feature of the mtk package is
its capability to manage factors with complex characteristics. They might be qualitative or quantitative
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Figure 3: Data model used to manage the factors and their uncertainties. The model is represented
using the UML notation (Fowler, 2003), and the referred classes are presented in Table 1.

as well as continuous or discrete.

Table 1 defines the classes used in the mtk package to manage the factors and their uncertainties,
and Figure 3 shows the data model in UML notation (Fowler, 2003). It provides a consistent framework
for both representing and handling information useful for describing the factors and their uncertainty
domains precisely. We have focused on describing the relevant data and their relationships and
sought to give a consistent data framework which can be considered as general as possible and
easily extensible to integrate new methods developed in the future even by researchers not involved
in the mtk initiative (for more discussion, please refer to Section Representing the factors and their
uncertainties in an homogeneous and extensible way).

The workflow unit

This component manages and orchestrates the execution and progress of the processes involved in the
numerical experiments. In this task, a process takes much more than calling a more or less sophisticated
function within the software package. This is able to analyze information from the context, to define a
strategy taking into account the availability of data and services (which might be local or remote, and
if locally available, might be implemented as an independent system application, an R function, or
an internal element of the mtk package), and finally to select the appropriate processing to launch,
to formulate the produced results, and to make them available to other components of the system or
independent applications outside the system.

In the current version, the mtk package supports four types of processes: the parser for XML
files, the experimental design, the model simulation, and the computation of sensitivity indices. Each
process possesses descriptors to inform about its state and progress: whether the process is ready to
run or it is running or it has already run and produced the results that we expected. The workflow
manager has the control over the launching and evolution of all the processes involved. Before
invoking a process, the workflow manager makes sure that all required resources are available and
that they are coherent with the state of the process. After the execution of a process, it checks the
consistency of the results and makes them available for other processes.

As shown in Table 1 and Figure 4, processes are organized into a hierarchical structure by inher-
itance. The common components of the processes are summarized within an abstract class named
‘mtkProcess’. The child classes inherit the components from their parent classes higher in the hierarchi-
cal structure. For example, ‘mtkDesigner’ is a process which inherits the common components defined
within the ‘mtkProcess’ and adds new features specific to the experimental design. The process
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Figure 4: UML data model for organizing the processes and workflow implemented in the mtk
package. The referred classes are presented in Table 1. To make the schema readable, only the elements
related to the Morris method for experimental design are shown. The prefix Native is used to refer
to the process implemented as an R function, and the prefix System is used when the process is
implemented as an independent system application.

‘mtkMorrisDesigner’ shares common components with other methods from experimental design and
further appends new features specific to the Morris method (Saltelli et al., 2005). From Figure 4, we
can also note that each process is associated with a specific class for managing the results produced
by the process. In fact, results produced by methods from uncertainty and sensitivity analyses are
very different both in terms of contents and in terms of structures. Some methods produce data which
could be represented within a data frame, and some others produce results that can be formulated
only in the format of a list. Classic approaches require that we must always be concerned with the
structure used to hold the data, and develop bespoke functions for each type of the results (Chambers,
2014). The object-oriented approach allows us to be released from such constraints. The classes that
hold the data are not only responsible for data storage but also for the services to transform and report
the data. For example, the experimental design is no longer treated only as a function to produce
data in some specific format, but considered as a process which is an active element not only capable
of generating and reporting the data but also capable of checking their consistency and setting up
relationships with other components of the system.

The data import and export unit

Based on widely used open standards such as XML, URI (Uniform Resource Identifier), Web services,
etc., the data import and export unit allows elements of the package to communicate and to be extended
with external resources such as independent platforms or applications for model simulation, Web
services that supply data or methods for experimental design and sensitivity analysis, etc. For instance,
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the workflow for a sensitivity analysis might be generated from independent external platforms and
coded into an XML file; the mtk package can import the XML file, set up the workflow, and run it
automatically. This can be referred to as one of the methods that the mtk package uses to integrate
external platforms as a collaborative component.

The package also provides serializing functions allowing to save the internal status of the work-
flow into an XML file so that independent external applications could collect information about the
processes and data involved in the workflow, and further wrap them as an internal component (see
Section Conclusions and perspectives).

Features and functions

Representing the factors and their uncertainties in an homogeneous and extensible way

In the mtk package, we sought to provide a consistent and easily extensible framework for both
representing and handling information useful for describing the factors and their uncertainty domains
precisely. For example, the concept feature was introduced to address the issue about the diversity of
the factors in their types and relationships. Mathematically speaking, a feature is a simple triplet that can
be used to make come together a variable name, a data type and a numerical value. The feature concept
is simple but fundamental to both the scalability of the implemented methods and the extensibility of
the package. In fact, factors used in uncertainty and sensitivity analyses may have different formats
and be defined on various domains. In addition, they may be qualitative or quantitative, continuous
or discrete, ordered or unordered, etc. Furthermore, several factors may be linked by constraints in
space or time, and they may be either correlated or hierarchical as well. Therefore, we need a unified
framework to cope with such a variety of factors. The concept of a feature has accomplished this goal.
It allows to set up a universal framework for depicting the factors and their relationships and leads to
a consistent and unified schema to manage the heterogeneity of the factors: an ordered list of features
associated with a factor can be used to describe the spatial and temporal location of a factor, and one or
more features can be applied to a group of factors to catch the relationship of any complexity among
them, etc.

The factors and their uncertainties are represented with the class ‘mtkFactor’. This class has four
primary attributes and two associative attributes:

name The name of the factor used in the workflow.

id The name of the factor used in the simulation model if it is different.

type The type of the values associated with the factor.

unit A unit of measurement associated with the values of the factor if it exists.

domain An object of the class ‘mtkDomain’ to describe the uncertainty of the factor.

featureList A list of objects from the class ‘mtkFeature’ to provide additional information about the
underlying factor such as spatial or temporal location, relationships among a group of factors,
etc.

The attributes name, id, type and unit are simple strings, and the associative attributes domain and
featureList are objects of the classes ‘mtkDomain’ and ‘mtkFeature’ respectively.

There are two ways that can be used to define the factors: interactively within an R session or by
parsing an XML file. The interactive definition of the factors within an R session is implemented with
the function make.mtkFactor(), and the following examples demonstrate this function. The definition
of the factors from an XML file might be considered as a component of the data import and export unit
which will be discussed in the next section.

# Load mtk package:
library(mtk)

# Define a continuous factor:
make.mtkFactor('A', distribName = 'unif', distribPara = list(min = 0, max = 1))

# Define a new discrete factor:
make.mtkFactor('D', distribName = 'discrete',

distribPara = list(type = 'categorical',
levels = c('a', 'b', 'c'), weights = rep(1/3, 3)))

The first example shows how to define a factor named A, whose uncertainty is defined by a continuous
uniform distribution over the interval [0, 1]. The second example demonstrates the definition of a
categorical factor which is named D, and takes values from the set {a, b, c} and each with a probability
equal to 1/3.
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Formalizing the data and services for collaborative work

The language XML has been used to overcome the heterogeneity of data and services exchanged
between the mtk package and external resources. Indeed, one of the main difficulties that we met
in building the mtk package was the variety of data and services that need to be managed in the
context of uncertainty and sensitivity analyses. Data and services might be local or remote, and
implemented in R or other programming languages. They might also have different structures and
various formats. Instead of putting emphasis on the data and services themselves, we have chosen to
focus on the structure of the data and services that the package exchanges with external resources,
and to formalize them according to the XML standards. XML schemas were elaborated and used to
tackle the issue of numerical experiments in the open collaborative framework (Richard et al., 2013).
By reformalizing the elements involved in the experimental design, the model simulation control,
the workflow management and the data reuse, the XML schemas lead to a unified representation
of the data and services that an open collaborative framework needs to produce or consume. Thus,
managing the heterogeneity of data and services involved in the uncertainty and sensitivity analyses
is greatly simplified and highly standardized. From the point of view of programming, it is reduced to
the development of a class which is able to parse the XML files following the defined XML schemas.

The XML parsing has been realized with the class ‘mtkParsor’, and its use is very simple. We just
need to specify the path to access the XML file and the workflow into which the extracted information
will be directed. The following code shows how to construct a parser from an XML file, which is
delivered with the distribution package. Note that the XML file is usually produced by an external
platform, and thus the XML parsing mechanism can also be used as a way to integrate the mtk package
with external applications.

# Create a parser to parse the XML file : './WWDM.xml'.
# Note that the XML file is delivered within the package "mtk"

parser <- mtkParsor('./WWDM.xml')

Organizing the implementation of the methods hierarchically and presenting them with
a unified syntax

To collect all the available methods into a unique framework and to present them under a unified
syntax, we adopted a workflow-based approach which consists in decomposing the procedures
of sensitivity analysis into a series of elementary and generic processes, and organizing them into
a hierarchical structure. Each activity involved in sensitivity analysis can be considered either as
an elementary process or a combination of elementary processes. Appropriate combination of the
processes allows the handling of situations of any complexity.

Taking the experimental design as an example, this is part of the mission services provided by the
workflow management unit. The mtk package offers a generic and easily extensible implementation
of a Web-based open framework, and such an implementation needs to be carefully thought and
designed. In fact, the methods used to generate the experimental design might be complex and
complicated. Besides the inherent variety of the contexts where the methods were developed, they
might be implemented locally or remotely and in different programming languages and according
to various protocols. Furthermore, the experimental design might be generated on-line or off-line.
To provide the package with an architecture easy to extend and the ability to cope with different
situations, a general purpose class ‘mtkDesigner’ is derived from the abstract class ‘mtkProcess’ so
that users can extend the framework to fit to specific circumstances (please see the class organization
presented in Figure 4). The ‘mtkDesigner’ class inherits the following slots from the class ‘mtkProcess’,
which enable the Web-based computing:

protocol The protocol used to run the process. It may take on values such as "mtk", "R", "system" and
"http", where the value "mtk" indicates that the process is implemented as an internal element
of the mtk package, the value "R" that the process is implemented as a native R function, the
value "system" that the process is implemented as an independent application, and the value
"http" that the process is implemented with Web service technologies.

site The site where the processing is implemented.

service The name of service which realizes the underlying tasks.

To make importing methods implemented locally as an independent R function easier, a class
‘mtkNativeDesigner’ derived from ‘mtkDesigner’ is provided together with its constructor as follows:

mtkNativeDesigner(design = NULL, X = NULL, information = NULL)

This class can deal with two scenarios, whereby either the method of experimental design is
implemented as an independent function in R or the experimental design was generated off-line. The
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first example below shows how to construct an experimental design from a method implemented as
an independent R function, and the second shows how to import an experimental design generated
off-line.

# Set up an experimental design with a method implemented
# by an R function named 'mc04()'

sampler <- mtkNativeDesigner(design = mc04(factors,
distribution, parameters, size = 20))

# Set up an experimental design by importing the design produced
# off-line which is stored as a data.frame named 'plan'.

sampler <- mtkNativeDesigner(X = plan,
information = list(method = 'Morris', size = 20))

Note that the technical details mentioned before are just intended for importing in live external
elements into package mtk. When it comes to the elements already integrated in the package, one
does not need to care about how the methods are physically implemented (locally or remotely, as
an R function or through a Web service, etc. ). To use a method, it is only necessary to instantiate
an object from the underlying class. For instance, to set up an experimental design with the method
Morris wherever it is implemented physically, we just need to instantiate an object of the class
‘mtkMorrisDesigner’.

# Set up an experimental design with the method 'Morris' with parameters.
sampler <- mtkMorrisDesigner(listParameters = list(size = 20))

Currently, the mtk package supports three kinds of elementary processes: designer, evaluator and
analyser. Each manages one of the principal activities involved in uncertainty and sensitivity analyses,
and is associated respectively with the experimental design, the model simulation and the sensitivity
computing.

We should point out again that within the mtk package, all processes involved in the sensitivity
analysis are managed in the same way just as the designer is managed. For instance, the common
properties involved in the model simulation are put into the class ‘mtkEvaluator’ which is itself
derived from the class ‘mtkProcess’. Also, the models might be implemented locally or remotely,
written in R or in another programming language, and the simulation might be produced on-line or off-
line. If the model is implemented locally, the specific class proposed is the class ‘mtkNativeEvaluator’
with the associated constructor as follows:

mtkNativeEvaluator(model = NULL, Y = NULL, information = NULL)

This class has the same syntax as the class ‘mtkNativeDesigner’, and this is one of the biggest advan-
tages of using the mtk package. It provides a homogeneous way and mechanism to manipulate all the
methods and functions managed by the package. For example, if we want to simulate the Ishigami
model (Ishigami and Homma, 1990) which describes the dynamics of a non-linear function with three
factors, it does not take more than to set up a model evaluator (or simulator) with the code as follows:

# Simulate the 'Ishigami' model which has no parameter.
simulator <- mtkIshigamiEvaluator()

As well, to use the Morris method to compute the sensitivity indices is not harder than to write the
following code:

# Set up a process to compute the sensitivity indices with the Morris method
analyzer <- mtkMorrisAnalyser(listParameters = list(nboot = 20))

Managing efficiently the activities with a workflow-based approach

A workflow is an orchestrated and repeatable sequence of activities that are responsible to transform
data and to provide services. The mtk package organizes the activities into standardized and elemen-
tary processes. Before invoking a process, the workflow ensures that the process is ready to run and
the needed data are available and consistent with the state of the process. After running the process,
the workflow manages the results, makes them available, and ensures that they can be successfully
reused. Indeed, some processes are very time-consuming, and they require enormous computing
power to produce results. This is especially true for complex model simulations which may take days
or even weeks on a cluster before making the simulated data available. Therefore, it is important to
avoid restarting a process if no new data has been produced even if the workflow needs to be restarted
to incorporate new elements. For instance, suppose that an experiment was designed with the Monte
Carlo method and analyzed with the multiple regression method, and one wishes to analyze the same
simulated data with another method. In this case, it would be possible to reuse the experimental
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design and the simulated data already obtained. The workflow implemented in the mtk package
manages these kinds of constraints and enables to maximize the reuse of resources. An example of
this approach will be presented in Section A case study.

The workflow management has been implemented with the class ‘mtkExpWorkflow’, which can be
created in two ways: either interactively within an R session or automatically through an XML file.

The interactive method is the most common procedure used by R users, and it consists of four steps:
i) defining the factors and their uncertainties; ii) specifying the processes involved in the sensitivity
analysis; iii) forming a workflow; and iv) running the workflow and reporting the results. The example
below presents the construction and execution of a workflow to analyze the Ishigami model with
the Basic Monte Carlo method for the experimental design and the regression method for sensitivity
computing.

# Load the mtk package:
library(mtk)

# Specify the factors and their uncertainty domains:
x1 <- make.mtkFactor(name = 'x1', distribName = 'unif',

distribPara = list(min = -pi, max = pi))
x2 <- make.mtkFactor(name = 'x2', distribName = 'unif',

distribPara = list(min = -pi, max = pi))
x3 <- make.mtkFactor(name = 'x3', distribName = 'unif',

distribPara = list(min = -pi, max = pi))
ishi.factors <- mtkExpFactors(list(x1, x2, x3))

# Specify the processes involved:
designer <- mtkBasicMonteCarloDesigner(listParameters = list(size = 20))
simulator <- mtkIshigamiEvaluator()
analyser <- mtkRegressionAnalyser(listParameters = list(nboot = 20))

# Form the workflow:
experiment <- mtkExpWorkflow(expFactors = ishi.factors,

processesVector = c(design = designer,
evaluate = simulator, analyze = analyser))

# Run the workflow and report the results:
run(experiment)
summary(experiment)

The automatic method consists of controlling the workflow through an XML file in which all the
information necessary for the definition and execution of the workflow is specified. The XML files
can be created manually by users or even more often by external platforms. The latter allows to
manage the mtk workflow from an external platform and offers a way to carry out uncertainty and
sensitivity analyses without having to get out of the modeling or simulation platform. Once the XML
file is formed, the mtk package takes control over the XML file and provides facilities for information
extraction, and workflow initialization and control.

The example below shows how to build a workflow from an XML file. Note that the XML file used
here can be found in the supplementary material provided with the distributed package.

# Load the mtk package:
library(mtk)

# Create a workflow from the XML file: './WWDM.xml'
expXML <- mtkExpWorkflow(xmlFilePath = './WWDM.xml')

# Run the workflow and report the results
run(expXML)
summary(expXML)

Extending the package with new or existing methods

In order to encourage researchers to publish their methods through the mtk framework, we provide
facilities to easily import available methods directly into the system. The mtk package comes with
three tools: mtk.designerAddons(), mtk.evaluatorAddons(), and mtk.analyserAddons().

The tool mtk.designerAddons() is a function that allows users to turn new or existing methods
for experimental designs developed as R functions into classes compliant with the mtk package.

This function has the following prototype:

mtk.designerAddons(where, library, authors, name, main, summary = NULL,
print = NULL, plot = NULL)

where NULL or a string to denote the file containing the R function to convert.
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library NULL or a string to denote the name of a package containing the R function to convert if it is
provided via a package.

authors NULL or the copyright information about the authors of the R function.

name A string to name the method when used with the mtk package.

main The name of the R function implementing the method.

summary NULL or a special version of the summary method provided in the file where or in the package
library.

plot NULL or a special version of the plot method provided in the file where or in the package library.

print NULL or a special version of the print method provided in the file where or in the package library.

No constraints are imposed on the function to convert except for the format of its inputs and
outputs. The R function implementing the method must have at least the three arguments: factors,
distribNames, and distribParameters. The argument factors takes as values either a number or a list
of names for enumerating the factors to analyze. The arguments distribNames and distribParameters
are both lists, whose elements are used to specify the uncertainty domains of the factors.

The output produced by the function must be formatted as a named list with two elements: main
and information. The element main is a data.frame containing the produced experimental design
and the element information is a named list whose elements are used to provide optional information
about the method used.

If the summary(), print() and plot() methods provided within the package mtk are not concise
enough to describe the underlying experimental design, or the method developers wish to report it in
a specific way, they can replace these methods by new ones.

The example below shows how to use the function mtk.designerAddons() to convert an existing
method into mtk compliant classes so that the method can be seamlessly used with the package. In
order to demonstrate the potential of the package, we have chosen to import an existing method
implemented in an independent package: the method "Morris" of the package sensitivity (Pujol et al.,
2015). The file morris_sampler.R contains the program codes used to wrap the original function so that
the inputs and outputs meet the requirement of the tool mtk.designerAddons(). In this example, the
wrapped function is renamed sampler.morris(). In order to better outline the produced experimental
design, a new method of the function plot() for ‘morris’ objects has been provided via the function
plot.morris().

# Load the mtk package:
library(mtk)

# Convert the file 'morris_sampler.R' to a mtk compliant class 'mtkMorrisDesigner':
mtk.designerAddons(where = 'morris_sampler.R',

authors = 'G. Pujol, B. Ioos, and A. Janon',
name = 'Morris', main = 'sampler.morris', plot = 'plot.morris')

# Integrate the new class into the mtk package
source('mtkMorrisDesigner.R')

Here, the mtk.designerAddons() tool generates a file named mtkMorrisDesigner.R which can be
integrated directly into the mtk package via the R command source().

The other two tools mtk.evaluatorAddons() and mtk.analyserAddons() operate in the same
way as mtk.designerAddons() does. They can be used respectively to integrate simulation mod-
els and to integrate methods for computing the sensitivity indices. An example of using the tool
mtk.evaluatorAddons() can be found in the next section.

A case study

In this section, we present an example of a decision support model analyzed with the mtk package.
The model used in Munier-Jolain et al. (2002) is a dynamic model simulating the effect of weeds
(meadow foxtail) on the yield of a crop of wheat as a function of different agricultural practices,
including soil preparation, weeding and crop varieties. The flow is simulated at a yearly time step.
Five state variables are used, and their dynamics are modeled with a system of non-linear first order
difference equations.

The model builds both on input variables describing the agricultural practices and on parameters
describing the effect of the agricultural practices on the state variables of the model. The input variables
are supposed to be fixed, but some parameters are uncertain. We will use the mtk package: i) to
analyze the effect of the uncertainty of the parameters on the wheat yield (the state variable Y), and ii)
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State Variable Definition Initial Value

S Number of seeds of foxtail by m2 68 000
found in the cultivated plot.

d Number of foxtail plants by m2 400
found at the beginning of the season.

SSBa Number of seeds of foxtail by m2 3 350
found on the surface of the soil
after tillage.

DCSa Number of seeds of foxtail by m2 280
found under the surface of the soil
after tillage.

Y Yield of wheat on the plot —
(ton per m2)

Table 2: The state variables used in the Weed model and the initial values of the state variables
characterizing the population of foxtail at t = 0.

to determine the sensitivity of the state and output variable Y to the uncertainties contained in the
different parameters.

The model takes into account three types of input: i) the initial values of the state variables
characterizing the population of foxtail at t = 0 (see Table 2), ii) the year by year agricultural practices
(tillage, weeding, cultivated crop varieties), and iii) 16 parameters of the model (they are supposed to
be fixed, but contain some uncertainties).

Agricultural practices applied each year to the crop are described with the help of three binary
variables: Soil, Herb, and Crop. If the soil is tilled, we set Soil = 1, otherwise Soil = 0. Similarly, we
set Herb = 1 if herbicide is applied, Herb = 0 otherwise , and Crop = 1 if the cultivated plant is a
variety of winter wheat, Crop = 0 otherwise. In this paper, we explore a simplified model where only
winter wheat is supposed to be cultivated (Crop = 1) and the tillage is always realized every other
year. Also, only two scenarios of the weeding treatment are explored: i) systematic treatment each
year, and ii) systematic treatment except the third year.

Since the factors (parameters with uncertainty) are supposed to be fixed, their uncertainties can
be represented with common probability distribution functions. Table 3 shows the domains of
uncertainties associated with such parameters.

The computing code of the model is enclosed in the supplementary material provided with
the package and in Faivre et al. (2013). Note that to integrate the model into the mtk package, we
do not need to reprogram the model, but just wrap the main function WEED.simule() in the file
WeedModel_v2.R, say, so that its inputs and outputs conform with the requirement of the function
mtk.evaluatorAddons() presented in Section Extending the package with new or existing methods.

Once the model is wrapped, we append it to the mtk package so that it can be seamlessly used
with the mtk package.

# Load the package mtk:
library(mtk)

# Transform the model into a mtk compliant class:
mtk.evaluatorAddons(where = 'WeedModel_v2.R', authors = 'D.Makowski(2012)',

name = 'Weed', main = 'WEED.simule')
# Load the mtk compliant class generated before into the mtk package:

source('mtkWeedEvaluator.R')

Uncertainty analysis

Recall that realizing a numerical experiment with the mtk package is composed of four steps: i) choose
the factors and specify their uncertainties; ii) set up the processes involved in the numerical experiment;
iii) form a workflow; and iv) run the workflow and report the results.

First, the uncertain domains associated with the factors are defined with function make.mtkFactor().
Sixteen factors are considered, and each is assumed to follow a uniform distribution whose range is
fixed according to Table 3. The code below shows how we defined the uncertain domains of the factors
within R.

# "table3.data" is a file referring to the Table 3 defined in the text.
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Factors Definition Min Value Max Value

mu Annual decline rate 0.76 0.92
v Proportion of non aborted seeds 0.54 0.66
phi Loss of the fresh seeds 0.50 0.61
beta.1 Proportion of the foxtail seeds 0.86 1.05

found under the surface after tillage
beta.0 Proportion of the foxtail seeds 0.18 0.22

found under the surface without tillage
chsi.1 Proportion of the foxtail seeds 0.27 0.33

found on the surface after tillage
chsi.0 Proportion of the foxtail seeds 0.045 0.055

found on the surface without tillage
delta.new Germination rate for fresh seeds 0.14 0.17
delta.old Germination rate for old seeds 0.27 0.33
mh Efficiency of the herbicide 0.88 1.08
mc Mortality rate caused by cold weather 0 1
Smax.1 Number of the seeds harvested 400 490

per plant (winter variety)
Smax.0 Number of the seeds harvested 266 326

per plant (spring variety)
Ymax Potential yield t/ha 7.2 8.8
Rmax Parameter used to calculate the loss 0.0018 0.0022
Gamma Another parameter used to 0.0045 0.0055

calculate the loss

Table 3: The factors and their domains of uncertainties used in the Weed model. The domains of
uncertainties are all modeled with a uniform probability distribution whose range is fixed from Min
Value to Max Value.

table3 <- read.table("table3.data", header = TRUE)
facteurs <- list()
for(i in 1:16){

facteur.i <- as.character(table3$Factors)[i]
facteurs[facteur.i] <- make.mtkFactor(name = facteur.i,

distribName = "unif",
distribPara = list(min = table3$MinValue[i],

max = table3$MaxValue[i]))
}
weedFactors <- mtkExpFactors(facteurs)

Here, the Basic Monte Carlo method is used for the experimental design, and 1000 samples are
generated. The code below shows the underlying procedure:

plan <- mtkBasicMonteCarloDesigner(listParameters = list(size = 1000))

Two instantiations of the model are evaluated, and they correspond to the cases that weeding
treatment is applied every year and that the weeding treatment is not applied only for the third
year, respectively. Note that the agricultural practices are encapsulated into the argument decision:
decision = 1 represents the first scenario and decision = 2 represents the second.

weed.case1 <- mtkWeedEvaluator(listParameters = list(decision = 1, outvar = 3))
weed.case2 <- mtkWeedEvaluator(listParameters = list(decision = 2, outvar = 3))

Consequently, two workflows are built, and they will be used to manage the analyses of the two
models defined above.

exp1 <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = plan, evaluate = weed.case1))

exp2 <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = plan, evaluate = weed.case2))

set.seed(2) # to fix the seed of the random generator for exp1
run(exp1)
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set.seed(2) # to fix the seed of the random generator for exp2
run(exp2)

Sometimes, users may choose not to use the reporting tools provided with the mtk package to present
their results. The function extractData() allows them to fetch the data managed by the mtk package
as independent data structures supported by the R computing platform and to manipulate them freely.
Hereinafter, the simulated results (1000 simulations per year for 10 years) are stored in two variables:
Y1 and Y2. Notice that we are only interested in the yields of the third year (outvar = 3) since they are
the only data which can reflect the effect of weeding treatment.

Y1 <- unlist(extractData(exp1, name = 'evaluate'))
Y2 <- unlist(extractData(exp2, name = 'evaluate'))

dev.new()
par(mfrow = c(2,2))
hist(Y1, main = '',

xlab = 'Yield with herbicide systematically applied (t/ha)')
hist(Y2, main = '',

xlab = 'Yield without applying herbicide for the 3rd year (t/ha)')
hist(Y1-Y2, main = ' ', xlab = 'Loss in yield (t/ha)')
hist(100*(Y1-Y2)/Y1, main = ' ', xlab = 'Relative loss in yield (%)')

summary(Y1-Y2)

The results are illustrated in Figure 5. It shows that the average loss is 0.33 t/ha, the median loss is
0.25 t/ha, and the 1st and 3rd quartiles of the distribution are equal to 0.12 and 0.48 t/ha respectively.
The uncertainty analysis shows that the yield loss due to non-application of the weeding treatment has
a one-in-two chance of exceeding 0.25 t/ha, and has a one-in-four chance of being less than 0.12 t/ha
and a one-in-four chance of exceeding 0.48 t/ha. We can claim that the loss in yield is moderate, even
taking into account the uncertainties of the factors.

Sensitivity analysis

The uncertainty analysis described above allows the estimation of the uncertainties about the yield
losses, but it gives no information about where the uncertainties come from and which factors have
the most important impact on them. In this section, we will discuss how to use the mtk package to
calculate the sensitivity indices for the factors and how to identify the most influential factors according
to their sensitivity. Two methods will be presented: Morris (Saltelli et al., 2005) and PLMM (Polynomial
Linear metamodel; Faivre, 2013). These examples demonstrate how easy it is to use the mtk package
to compare very different methods.

The R code below shows the sensitivity analysis with the Morris method. We can note the efficiency
and effortlessness of the mtk package to fulfill such a procedure: We are neither concerned about
where the methods are implemented (locally or remotely) nor worried about how data are organized
within the processes.

# Specify the processes and form the workflows:
morris.sampler <- mtkMorrisDesigner(listParameters = list(r = 500, type = 'oat',

levels = 4 , grid.jump = 2, scale = TRUE))

weed.treated <- mtkWeedEvaluator(listParameters = list(decision = 1,
outvar = 3))

weed.no.treated <- mtkWeedEvaluator(listParameters = list(decision = 2,
outvar = 3))

morris.analyser <- mtkMorrisAnalyser()

exp.treated <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = morris.sampler,
evaluate = weed.treated, analyze = morris.analyser))

exp.no.treated <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = morris.sampler,
evaluate = weed.no.treated, analyze = morris.analyser))

# Run the workflows:
set.seed(2)
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Figure 5: Histogram presenting the yields simulated with the Weed model (1000 simulations per year
for 10 years). 1) Yields observed with applying herbicide every year (top-left) and without applying
herbicide for the 3rd year (top-right); 2) Loss in yield due to not applying herbicide for the 3rd year
expressed in t/ha (bottom-left) and in percentages (bottom-right).

run(exp.treated)
set.seed(2)
run(exp.no.treated)

# Report the results:
plot(getProcess(exp.treated, name = 'analyze'))

title("With herbicide every year")
plot(getProcess(exp.no.treated, name = 'analyze'))

title("With no herbicide the 3rd year")

Note that we make use one more time of the class ‘mtkWeedEvaluator’ to manage the model
simulation, and that only the yields of the third year (outvar = 3) are explored.
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Figure 6: Sensitivity analysis results shown in graphical form for the outputs Y with respect to the
16 parameters with uncertainty, calculated with the Morris method for the Weed models: 1) with
herbicide applied every year (top) and 2) without applying herbicide for the 3rd year (bottom). In the
Morris method, the index µ∗ (on the x-axis) is used to detect input factors with an important overall
influence on the output, and the index σ (on the y-axis) is used to detect factors involved in interaction
with other factors or whose effect is non-linear.
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Figure 6 shows the results of the sensitivity analysis obtained with the Morris method for the two
scenarios of agricultural practices. Remember that in the method Morris, the index µ∗ is used to detect
the factors with important overall influence on the output and the index σ is used to detect the factors
involved in interaction with other factors or whose effect is non-linear.

We note that most factors have sensitivity indices µ∗ and σ close to 0 either with or without
weeding treatment. This shows that such factors have little effect on the yield performance.

On the contrary, when weeding is applied, the factor Ymax (the maximum yield potentially ob-
tained with the underlying soil and the underlying cultivated wheat variety) has a sensitivity index
µ∗ larger than 1. This means that the factor Ymax has significant influence on the yield performance
and that the main part of the variability of the yield performance might be explained by the uncer-
tainties contained in the factor Ymax. Furthermore, some factors exhibit σ values slightly different
from 0 meaning that their effect may be non-linear or interacting with others factors but with low
consequences on the output.

Such a conclusion seems natural and easy to understand. In fact, when weeding treatment is
applied, almost all foxtail is eliminated; their influences are wiped out and only the potential yield
parameter Ymax becomes decisive for the yield performance.

On the other hand, when no weeding is applied the 3rd year, the index µ∗ associated with the
factor Ymax is not the only one to move away from 0, but also the factors mc, mu, mh, and beta.1.
Meanwhile, the indices σ associated with the factors mc, mu, and beta.1 are all increased significantly.
This means that when no weeding is applied, Ymax is no longer the only factor having significant
impacts on the yield and the factors mc, mu and beta.1 also imply effects on the yield performance
either in a non-linear way or in interaction with other factors.

To assess the relevance of the results, we have analyzed the same models with other methods. The
methods RandLHS (Latin Hypercube Sampling; Carnell 2012) and PLMM are used respectively for the
experimental design and the sensitivity analysis. The code below demonstrates the procedure. Note
that we reuse the two simulators of the Weed models weed.treated and weed.no.treated previously
defined.

# Specify the processes and form the workflows:
lhs.sampler <- mtkRandLHSDesigner(listParameters = list(size = 1000))
plmm.analyser <- mtkPLMMAnalyser(listParameters = list(degree.pol = 2))

exp.plmm.treated <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = lhs.sampler,
evaluate = weed.treated, analyze = plmm.analyser))

exp.plmm.no.treated <- mtkExpWorkflow(expFactors = weedFactors,
processesVector = c(design = lhs.sampler,

evaluate = weed.no.treated, analyze = plmm.analyser))
# Run the workflows:

set.seed(2)
run(exp.plmm.treated)
set.seed(2)
run(exp.plmm.no.treated)

# Report the results of the workflows:
plot(exp.plmm.treated, legend.loc = 'topleft')
plot(exp.plmm.no.treated, legend.loc = 'topleft')

Figure 7 shows the results of the sensitivity analysis obtained for the PLMM method with a
polynomial metamodel of degree 2. The results uphold the conclusions obtained with the Morris
method. The analyses were performed first with a regression modeling of the output on all the cross
products of polynomials of factors with degree 2, and then extended by proceeding to a stepwise
selection of explanatory variables. Figure 7 highlights that most of the main effects of the factors
mc, mu, mh and Ymax are linear or polynomial and that interactions between factors are mainly
between Ymax and beta.1. We can also notice that the R2, the percentage of variance explained by our
metamodel, is close to 1 (zone marked with a dashed line).

Conclusions and perspectives

There is a rapidly growing trend to utilize uncertainty and sensitivity analyses for quantifying the
uncertainties contained in a model and further assessing their impacts on the behaviors of the model.
Numerous methods and theories emanating from different fields have been put forward, but the
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Figure 7: Sensitivity indices of the output Y with respect to the 16 parameters with uncertainty,
calculated by the PLMM method with a polynomial metamodel of degree 2 for the Weed models: 1)
with herbicide applied every year (left) and 2) without applying herbicide for the 3rd year (right).
The y-axis represents the R2 value corresponding to the fraction of the total variance of the output
explained by the factors, and the dashed line shows the fraction of the total variance of the output
explained by the metamodel.

issue related to software development is still lagging behind. The tools proposed are usually bespoke,
context-specific and self-contained, and suffer from lack of generality and extensibility. Herein, we
have developed a general-purpose framework to compile the available methods into a unique software
platform which is able to provide the practitioners from different disciplines with a systematic and
easy way to compare and find the best method for uncertainty discovery and sensitivity analysis.

The mtk package should be the first generic R platform available for uncertainty and sensitivity
analyses, which allows us to collect all the methods actually available into a unique system, and
present them according to the same semantics and with the same syntax. This makes the methods
easy to use and their comparison effective since methods can be run with exactly the same data and in
the same environment.

Building on an object-oriented framework and exploring the XML standards, the mtk package
places its focus on the interoperability, and provides facilities for interplaying with other applications
and sharing data and knowledge in a seamless way.

It is fully open-source and easy to extend. It allows users to add their own methods and models
to the package easily. The power of a workflow-based approach allows researchers to organize
their computing effectively and to extend the investigation in a quick manner. By decomposing the
workflow into generic and elementary tasks, complex processing can be set up by combining the
elementary tasks and be managed easily with the package. Moreover, the Web-based technologies
and computing implemented in the package make its extension even more flexible since users have
access to different ways to realize the extension: using the inheritance mechanism provided with
the object-oriented framework, directly integrating native R functions, building the extension as an
independent application, etc. Note also that the mtk package always presents the methods and models
in the same way, wherever they are implemented (locally or remotely) and no matter how they are
implemented (as an internal element of the package or an independent external application, etc. ).

In spite of the advanced features, the mtk package is still work in progress. Future plans include
implementing support for High Performance Computing to improve the efficiency for time-consuming
processes (Leclaire and Reuillon, 2014). Further, a new version of the serialization function is also
planned so that external platforms can easily integrate the mtk package as an internal component.
Actually, state and data of the workflow managed by the package mtk can be exported into XML files,
and used by external applications or platforms. Fine-tuning with real world examples is necessary
so that an external application can use such information to wrap the mtk package as its internal
component. When it comes to the issue of efficient large data management, we are studying the
possibility to use the package ff for memory-efficient storage (Adler et al., 2014).
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treeClust: An R Package for Tree-Based
Clustering Dissimilarities
by Samuel E. Buttrey and Lyn R. Whitaker

Abstract This paper describes treeClust, an R package that produces dissimilarities useful for cluster-
ing. These dissimilarities arise from a set of classification or regression trees, one with each variable in
the data acting in turn as a the response, and all others as predictors. This use of trees produces dissim-
ilarities that are insensitive to scaling, benefit from automatic variable selection, and appear to perform
well. The software allows a number of options to be set, affecting the set of objects returned in the call;
the user can also specify a clustering algorithm and, optionally, return only the clustering vector. The
package can also generate a numeric data set whose inter-point distances relate to the treeClust ones;
such a numeric data set can be much smaller than the vector of inter-point dissimilarities, a useful
feature in big data sets.

Introduction

Clustering is the act of dividing observations into groups. One critical component of clustering is
the definition of distance or dissimilarity between two entities (two observations, or two clusters, or
a cluster and an observation). We assume the usual case of a rectangular array of data in which p
attributes are measured for each of n individuals. The common choice of the usual Euclidean distance
needs to be extended when some of the attributes are categorical. A good dissimilarity should be able
to incorporate categorical variables, impose appropriate attribute weights (in particular, be insensitive
to linear scaling of the attributes), and handle missing values and outliers gracefully. Buttrey and
Whitaker (2015) describe an approach which uses a set of classification and regression trees that
collectively determine dissimilarities that seems to perform well in both numeric and mixed data,
particularly in the presence of noise.

The next section covers the idea behind the tree-based clustering, while the following one (“The
treeClust package”) describes the software we have developed for this purpose. The software is
implemented as an R package, available under the name treeClust at the CRAN repository. The
section on software also gives some of the attributes of the procedure, like its insensitivity to missing
values, and of the software, like the ability to parallelize many of the computations. The “Dissimilarity-
preserving data” section describes a feature of the software that has not yet been explored – the
ability to generate a new numeric data set whose inter-point distances are similar to our tree-based
dissimilarities. This allows a user to handle larger data sets, since in most cases the new data set will
have many fewer entries than the vector of all pairwise dissimilarities. In the final section we provide
an example using a data set from the UC Irvine repository (Bache and Lichman, 2013); this data set,
and a script with the commands used in the example, are also available with the paper or from the
authors.

Clustering with trees

The idea of tree-based clustering stems from this premise: objects that are similar tend to land in the
same leaves of classification or regression trees. In a clustering problem there is no response variable,
so we construct a tree for each variable in turn, using it as the response and all others are potential
predictors. Trees are pruned to the “optimal” size (that is, the size for which the cross-validated
deviance is smallest). Trees pruned all the way back to the root are discarded.

The surviving set of trees are used to define four different, related measures of dissimilarity. In the
simplest, the dissimilarity between two observations i and j, say, d1(i, j), is given by the proportion
of trees in which those two observations land in different leaves. (Our dissimilarities are not strictly
distances, since we can have two distinct observations whose dissimilarity is zero.) That is, the
dissimilarity between observations associated with a particular tree t is dt

1(i, j) = 0 or 1, depending on
whether i and j do, or do not, fall into the same leaf under tree t. Then over a set of T trees, d1(i, j) =
∑t dt

1(i, j)/T.

A second dissimilarity, d2, generalizes the values of 0 and 1 used in d1. We start by defining
a measure of tree “quality,” q, given by the proportion of deviance “explained” by the tree. The
contribution to the deviance for each leaf is the usual sum of squares from the leaf mean for a numeric
response, and the multinomial log-likelihood for a categorical one. Then, for tree t, we have qt =
[(Deviance at root − Deviance in leaves) / Deviance in root]. A “good” tree should have a larger q
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Figure 1: Example tree, showing node numbers (small circles) and deviances, from Buttrey and
Whitaker (2015).

and a higher weight in the dissimilarity. So we define dt
2(i, j) to be 0 if the two observations fall in the

same leaf, and otherwise qt/ maxk(qk), where the maximum, of course, is taken over the whole set of
trees. As before, d2(i, j) = ∑t dt

2(i, j)/T.

In both of the d1 and d2 measures, each tree contributes only two values, zero and a constant that
does not depend on which two different leaves a pair of observations fell into. The d3 dissimilarity
attempts to address that. Consider the tree in figure 1, taken from Buttrey and Whitaker (2015). In
this picture, small numbers in circles label the leaves, while large numbers in ovals give the node-
specific deviance values. A pair of observations falling into leaves 14 and 15 on this tree seem closer
together than a pair falling into 2 and 15, for example. We measure the distance between two leaves
by computing the increase in deviance we would observe, if we were to minimally prune the tree
so that the two observations were in the same leaf, compared to the overall decrease in deviance for
the full tree. For example, the picture in figure 1 shows a starting deviance (node 1) of 10000 and a
final deviance (summing across leaves) of 4700. Now consider two observations landing in leaves
14 and 15. Those two observations would end up in the same leaf if we were to prune leaves 14
and 15 back to node 7. The resulting tree’s deviance would be increased to 4900, so we define the
dissimilarity between those two leaves – and between the two relevant observations – by (4900− 4700)
/ (10000− 4700) = 0.038. Observations in leaves 6 and 15 would contribute distance (6000− 4700) /
(10000− 4700) = 0.25, while observations in leaves 2 and 14, say, would have distance 1 for this tree.

The final dissimilarity measure, d4, combines the d2-style tree-specific weights with the d3 dis-
similarity, simply by multiplying each d3 dissimilarity by the tree’s qt/maxkqk. The best choice of
dissimilarity measure, and algorithm with which to use it, varies from data set to data set, but our
experience suggests that in general, distances d2 and d4 paired with with the pam() clustering algo-
rithm from the cluster (Maechler et al., 2015) package are good choices for data sets with many noise
variables.

Other tree-based approaches

Other researchers have used trees to construct dissimilarity measures. One is based on random forests,
a technique introduced in (Breiman, 2001) for regression and classification. The user manual (Breiman
and Cutler, 2003) describes how this approach might be used to produce a proximity measure for
unlabelled data. The original data is augmented with data generated at random with independent
columns whose marginal distributions match those of the original. So the original data preserves the
dependence structure among the columns, whereas the generated data’s columns are independent.
The original data is labelled with 1’s, and the generated data with 0’s; then the random forest is
generated with those labels as the response. Proximity is measured by counting the number of times
two observations fall in the same trees, dividing this number by twice the number of trees, and
setting each observation’s proximity with itself as 1. In our experiments we construct dissimilarity by
subtracting proximity from 1. The random forest dissimilarity is examined in (Shi and Horvath, 2006),
and we use it below to compare to our new approach.

Other clustering approaches based on trees includes the work of Fisher (1987), in which trees are
used to categorize items in an approach called “conceptual clustrering.” It appears to be intended for
categorical predictors in a natural hierarchy. Ooi (2002) uses trees as a way to partition the feature
space on the way to density estimation, and Smyth et al. (2006) use multivariate regression trees with
principal component and factor scores. Both of these approaches are intended for numeric data.

We thank an anonymous referee for bringing to our attention the similarity between our approach
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and the extensive literature on building phylogenetic trees. A thread in this literature is to start with a
distance matrix and end with a phylogenetic or evolutionary tree, whereas we use the trees to build the
distance. Felsenstein (2003) serves as a guide to developing phylogenetic trees, while O’Meara (2015)
gives the CRAN Task View summary of R packages for phylogenetics. In the phylogenetic literature,
methods for measuring distances and growing trees are tailored to the specific application. For
example defining distances might involve informed choices of morphological or behavioral features
or on aligning genetic material to capture dissimilarities at a molecular level. Our contribution, on
the other hand, is to use trees to automate construction of dissimilarity matrices. Our context is more
general in that we do not know a priori which variables are more important than others, which are
noise, how to scale numeric variables, or how to collapse and combine categorical ones. Methods
using application-specific knowledge might be expected to yield superior results, but it would be
interesting to see if the ideas behind tree distances can be adapted for use in growing phylogenetic
trees.

The treeClust package

Dependencies

This paper describes version 1.1.1 of the treeClust package. This package relies on the rpart package
(Therneau et al., 2015) to build the necessary classification and regression trees. This package is
“recommended” in R, meaning that users who download binary distributions of R will have this
package automatically. treeClust also requires the cluster package for some distance computations;
this, too, is “recommended.” Finally, the treeClust package allows some of the computations to
be performed in parallel, using R’s parallel package, which is one of the so-called “base” packages
that can be expected to be in every distribution of R. See “Parallel processing” for more notes on
parallelization.

Functions

In this section we describe the functions that perform most of the work in treeClust, with particular
focus on treeClust(), which is the function users would normally call, and on treeClust.control(),
which provides a mechanism to supply options to treeClust().

The treeClust() function

The treeClust() function takes several arguments. First among these, of course, is the data set, in
the form of an R “data.frame” object. This rectangular object will have one row per observation and
one column per attribute; those attributes can be categorical (including binary) or numeric. (For the
moment there is no explicit support for ordered categoricals.) The user may also supply a choice of
tree-based dissimilarity measure, indicated by an integer from 1 to 4. By default, the algorithm builds
one tree for each column, but the col.range argument specifies that only a subset of trees is to be built.
This might be useful when using parallel processing in a distributed computing architecture. Our
current support for parallelization uses multiple nodes on a single machine; see “Parallel processing”
below.

If the user plans to perform the clustering, rather than just compute the dissimilarities, he or she
may specify the algorithm to be used in the clustering as argument final.algorithm. Choices include
"kmeans" from base R, and "pam", "agnes" and "clara" from the cluster package. (The first of these
is an analog to "kmeans" using medoids, which are centrally located observations; the next two are
implementations of hierarchical clustering, respectively agglomerative and divisive.) If any of these
is specified, the number of clusters k must also be specified. By default, the entire output from the
clustering algorithm is preserved, but the user can ask for only the actual vector of cluster membership.
This allows users easy access to the most important part of the clustering and obviates the need to
store all of the intermediate objects, like the trees, that go into the clustering. This election is made
through the control argument to argument to treeClust(), which is described next.

The treeClust.control() function

The control argument allows the user to modify some of the parameters to the algorithm, and
particularly to determine which results should be returned. The value passed in this argument is
normally the output of a function named treeClust.control(), which follows the convention of R
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functions like glm.control() and rpart.control(). That is, it accepts a set of input names and values,
and returns a list of control values in which the user’s choices supersede default values.

The primary motivation for the control is to produce objects of manageable size. The user may
elect to keep the entire set of trees, but there may be dozens or even hundreds of these, so by default
the value of the treeClust.control()’s return.trees member is FALSE. Similarly, the dissimilarity
object for a data set with n observations has n(n− 1)/2 entries, so by default return.dists is FALSE.
The matrix of leaf membership is approximately the same size as the original data – it has one column
for each tree, but not every column’s tree is preserved. The return.mat entry defaults to TRUE, since
we expect our users will often want this object. The return.newdata entry describes whether the
user is asking for newdata, which is the numeric data set of observations in which the inter-point
dissimilarities are preserved. This is described in the section on “Dissimilarity-preserving data” below.
By default, this, too, is FALSE. It is also through treeClust.control() that the user may specify
cluster.only = TRUE. In this case, the return value from the function is simply the numeric n-vector
of cluster membership.

The serule argument descibes how the pruning is to be done. By default, trees are pruned to the
size for which the cross-validated deviance is minimized. When the serule argument is supplied,
trees are pruned to the smallest size for which the cross-validated deviance is no bigger than the
minimum deviance plus serule standard errors. So, for example, when serule = 1, the one-SE rule of
Breiman et al. (1984) is implemented.

An argument named DevRatThreshold implements an experimental approach to detecting and
removing redundant variables. By redundant, we mean variables that are very closely associated
with other variables in the data set, perhaps because one was constructed from the other through
transformation or binning, or perhaps because two variables describing the same measurement were
acquired from two different sources. Let the sum of deviances across a tree’s leaves be dL, and the
deviance at the root be dR. Then for each tree we can measure the proportional reduction in deviance,
(dR − dL)/dR. A tree whose deviance reduction exceeds the value of DevRatThreshold is presumed to
have arisen because of redundant variables. We exclude the predictor used at the root split from the
set of permitted predictor variables for that tree and re-fit until the trees’s deviance reduction does not
exceed the threshold, or until there are no remaining predictors. (We thank our student Yoav Shaham
for developing this idea.)

The final choice of the tree.control() is the parallelnodes argument, which allows trees to be
grown in parallel. When this number is greater than 1, a set of nodes on the local machine is created
for use in growing trees. (This set of nodes is usually referred to as a “cluster,” but we want to reserve
that word for the output of clustering.) Finally, additional arguments can be passed down to the
underlying clustering routine, if one was specified, using R’s ... mechanism.

Return value

If cluster.only has not been set to TRUE, the result of a call to treeClust() will be an object of class
“treeClust” and contain at least five entries. Two of these are a copy of the call that created the object
and the d_num argument supplied by the user. A “treeClust” object also contains a matrix named
tbl with one row for each of the trees that was kept, and two columns. These are DevRat, which
gives the tree’s strength (q above), and Size, which gives the number of leaves in that tree. Finally,
every “treeClust” object has a final.algorithm element, which may have the value "None", and a
final.clust element, which may be NULL.

Dissimilarity functions

There are two functions that are needed to compute inter-point dissimilarities. The first of these,
tcdist() (for “tree clust distance”) is called by treeClust(). However, it can also be called from
the command line if the user supplies the result of an earlier call. Unless the user has asked for
cluster.only = TRUE, the return value of a call to treeClust() is an object of class “treeClust”, and
an object of this sort can be passed to tcdist() in order to compute the dissimilarity matrix. Note
that certain elements will need to be present in the “treeClust” object, the specifics depending on the
choice of dissimilarity measure. For example, most “treeClust” objects have the leaf membership
matrix, which is required in order to compute dissimilarities d1 and d2. For d3 and d4 the set of trees is
required.

The tcdist() function makes use of another function, d3.dist(), when computing d3 or d4
distances. This function establishes all the pairwise distances among leaves in a particular tree, and
then computes the pairwise dissimilarities among all all observations by extracting the relevant leaf-
wise distances. An unweighted sum of those dissimilarities across trees produces the final d3, and a
weighted one produces d4. The d3.dist() function’s argument return.pd defaults to FALSE; when set
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to TRUE, the function returns the matrix of pairwise leaf distances. Those leaf distances are used by
the tcnewdata() function in order to produce a matrix called newdata, which has the property that
the inter-point distances in this matrix mirror the treeClust() dissimilarities. Users might create this
newdata matrix in large samples, where the vector of all pairwise distances is too large to be readily
handled. This feature is described under “Dissimilarity-preserving data” below.

Support functions

A number of support functions are also necessary. We describe them here. Two of these arise from
quirks in the way rpart() works. In a regression tree, an “rpart” object’s frame element contains a
column named dev which holds the deviance associated with each node in the tree. However, in a
classification tree, this column holds the number of misclassifications. So our function rp.deviance()
computes the deviance at each node. We declined to name this function deviance.rpart, because we
felt that users would expect it to operate analgously to the deviance method, deviance.tree(), for
objects of class “tree” in the tree package (Ripley, 2015). However, that function produces a single
number for the whole tree, whereas our function produces a vector of deviances, one for each node.

A second unexpected feature of rpart() is that there is no predict method which will name the
leaf into which an observation falls. The where element gives this information for observations used
to fit the tree, but we need it also for those that were omitted from the fitting because they were
missing the value of the response (see section “Handling missing values” below). Our function
rpart.predict.leaves() produces the leaf number (actually, the row of the “rpart” object’s frame
element) into which each observation falls. For the idea of how to do this, we are grateful to Yuji
(2015).

The support function treeClust.rpart() is not intended to be called directly by users. This
function holds the code for the building of a single tree, together with the pruning and, if necessary, the
re-building when the user has elected to exclude redundant variables (see DevRatThreshold above). It
is useful to encapsulate this code in a stand-alone function because it allows that function to be called
once for each column either serially or in parallel as desired.

The make.leaf.paths() function makes it easy to find the common ancestors of two leaves. Recall
that under the usual leaf-naming convention, the children of leaf m have numbers 2m and 2m + 1.
The make.leaf.paths() function takes an integer argument up.to giving the largest row number; the
result is a matrix with up.to rows, with row i giving the ancestors of i. For example, the ancestors of
61 are 1, 3, 7, 15, 30 and 61 itself. The number of columns in the output is j when 2j ≤ up.to < 2j+1,
and unneeded entries are set to zero.

Finally we provide a function cramer() that computes the value of Cramér’s V for a two-way
table. This helps users evaluate the quality of their clustering solutions.

Print, plot and summary methods

The objects returned from treeClust() can be large, so we supply a print() method by which they
can be displayed. For the moment, the set of trees, if present, is ignored, and the print() method
shows a couple of facts about the call, and then displays the table of deviances, with one row for each
tree that was retained. Even this output can be too large to digest easily, and subsequent releases may
try to produce a more parsimonious and informative representation. The summary() method produces
the output from the print() method, only it excludes the table of deviances, so its output is always
small.

We also supply a plot method for objects of class “treeClust”. This function produces a plot
showing the values of q (that is, the DevRat column in the tbl entry) on the vertical axis, scaled so that
the maximum value is 1. The horizontal axis simply counts the trees starting at one. Each point on the
graph is represented by a digit (or sometimes two) showing the size of the tree. For example, figure 2
shows the plot generated from a call to plot() passing a “treeClust” object generated from the splice
data from the UCI Data Repository (Bache and Lichman, 2013) (see also the example below). The data
has 60 columns (horizontal axis); this run of the function generated 59 trees (the “1” at x = 32 shows
that the tree for the 32nd variable was dropped). The “best” tree is number 30, and it had three leaves
(the digit “3” seen at coordinates (30, 1) ).

Handling missing values

The treeClust() methodology uses the attributes of rpart() to handle missing values simply and
efficiency. There are two ways a missing value can impact a tree (as part of a response or as a predictor)
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Figure 2: Example of plotting a “treeClust” object. This object contained 59 trees, the first of which
had two leaves (digit “2” at (1, 0.16)).

and two times the impact can take place (when the tree is being built, and when observations are being
assigned to leaves).

When a value is missing in a predictor, the tree-building routine simply ignored that entry,
adjusting its splitting criterion to account for sample size. This is a reasonable and automatic approach
when missing values are rare. At prediction time, an observation that is missing a value at a split is
adjudicated using a surrogate split (which is an “extra” split, highly concordant with the best split,
built for this purpose), or a default rule if no surrogate split is available. When there are large numbers
of missing values, however, this approach may be inadequate and we are considering alternatives.

When an observation is missing a value of the response, that row is omitted in the building of
the tree, but we then use the usual prediction routines to deduce the leaf into which that observation
should fall, based on its predictors.

Parallel processing

The computations required by treeClust() can be substantial for large data sets with large numbers
of columns, or with categorical variables with large numbers of levels. The current version of the
package allows the user to require paralellization explicitly, by setting the parallelnodes argument to
treeClust.control() to be greater than one. In that case, a set of nodes of that size is created using
the makePSOCKcluster() function from R’s parallel package, and the clusterApplyLB() function from
the same package invoked. The parallel nodes then execute the treeClust.rpart() tree-building
function once for each variable. The time savings is not substantial for experiments on the splice data,
experiments which we describe below, because even in serial mode the computations require only 30
seconds or so to build the trees. However, on a dataset with many more columns the savings can be
significant. For example, on the Internet Ads data (Bache and Lichman, 2013), which contains 1,559
columns, building the trees required about 57 minutes in serial on our machine, and only about 8
minutes when a set of 16 nodes was used in parallel.

Big data and efficiency considerations

Not only can our approach be computationally expensive, but, if the user elects to preserve the set
of trees and also the inter-point dissimilarities, the resulting objects can be quite large. For example,
the object built using the splice data in the example in the example below is around 60 MB in size.
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Of this, about 40 MB is devoted to the vector of dissimilarities and almost all of the rest to the set of
trees. For larger data sets the resulting “treeClust” objects can be very much larger. The d4 method,
in particular, requires that all the trees be kept, at least long enough to compute the dissimilarities,
since the necessary weightings are not known until the final tree is produced. In constrast the d3
dissimilarities can be produced using only one tree at a time. Both of these two dissimilarities require
more computation and storage than the d1 and d2 ones.

Some clustering techniques require the vector of dissimilarities be computed ahead of time when
the data contains categorical variables, and this large vector is produced by treeClust() in the normal
course of events. When the sample size is large, a more computationally efficient approach is to
produce a new data set which has the attribute that its inter-point dissimilarities are the same as, or
similar to, the treeClust() distances. That new data set can then serve as the input to a clustering
routine like, say, k-means, which does not require that all the inter-point distances be computed and
stored. The next section describes how the treeClust() function implements this idea.

Dissimilarity-preserving data

In this section we describe one more output from the treeClust() function that we believe will be
useful to researchers. As we noted above, the act of computing and storing all n(n − 1) pairwise
distances is an expensive one. The well-known k-means algorithm stays away from this requirement,
but is implemented in R only for numeric data sets. Researchers have taken various approaches to
modifying the algorithm to accept categorical data, for example, Ahmad and Dey (2007). Our approach
is to produce a data set in which the inter-point distances are similar to the ones computed by the
treeClust() function, but arrayed as a numeric data set suitable for the R implementation of k-means
or for clara(), the large-sample version of pam(). We call such a data set newdata.

As background, we remind the reader of the so-called Gower dissimilarity (Gower, 1971). Given
two vectors of observations, say xi and xj, the Gower dissimilarity between those two vectors as-
sociated with a numeric column m is gm(i, j) = |xim − xjm|/range xm, where the denominator is
the range of all the values in that column. That is, the absolute difference is scaled to fall in [0, 1].
Then, in a data set with all numeric columns, the overall Gower distance g(i, j) is a weighted sum,
g(i, j) = ∑m wmgm(i, j)/ ∑m wm, where the wm are taken to be identically 1, and therefore the Gower
dissimilarity between any two observations is also in [0, 1]. There is a straightforward extension to
handle missing values we will ignore here.

The construction of newdata is straightforward for the d1 and d2 distances. When a tree has, say, l
leaves, we construct a set of l 0-1 variables, where 1 indicates leaf membership. The resulting data set
has Manhattan (sum of absolute values) distances that are exact multiples of the Gower dissimilarities
we would have constructed from the matrix of leaf membership. (The Manhattan ones are larger
by a factor of (2 × number of trees)). However, the newdata data set can be much smaller than the
set of pairwise dissimilarities. In the splice data, the sample size n = 3,190, so the set of pairwise
dissimilarities has a little more than 5,000,000 entries. The corresponding newdata object has 3,190
rows and 279 columns, so it requires under 900,000 entries. As sample sizes get larger the tractability
of the newdata approach grows.

For d2, we replace the values of 1 that indicate leaf membership with the weights qt/ maxk(qk)
described earlier, so that a tree t with l leaves contributes l columns, and every entry in any of those
l columns is either a 0 or the value qt/ maxk(qk). In this case, as with d1, the Manhattan distance
between any two rows is a multiple of the Gower dissimilarity that we would have computed with
the leaf membership matrix, setting the weights wm = qm/maxkqk.

We note that, for d1 and d2, the newdata items preserve Gower distances, not Euclidean ones. In the
d1 case, for example, the Euclidean distances will be the square roots of the Manhattan ones, and the
square root of a constant multiple of the Gower ones. Applying the k-means algorithm to a newdata
object will apply that Euclidean-based algorithm to these data points that have been constructed
with the Gower metric. We speculate that this combination will produce good results, but research
continues in this area.

The d3 and d4 dissimilarities require some more thought. With these dissimilarities, each tree of l
leaves gives rise to a set of l(l− 1)/2 distances between pairs of leaves. We construct the l× l symmetric
matrix whose i, j-th entry is the distance between leaves i and j. Then we use multidimensional scaling,
as implemented in the built-in R function cmdscale(), to convert these distances into a l × (l − 1)
matrix of coordinates, such that the Euclidean distance between rows i and j in the matrix is exactly
the value in the (i, j)-th entry of the distance matrix. Each observation that fell into leaf i of the tree
is assigned that vector of l − 1 coordinates. In the case of the d4 dissimilarity, each element in the
distance matrix for tree t is multiplied by the scaling value qt/ maxk qk.

The use of multidimensional scaling is convenient, but it produces a slight complication. When
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d3 or d4 are used to construct a newdata object, each tree contributes a set of coordinates such that,
separately, Euclidean distances among those points match the d3 or d4 dissimilarities for that tree.
However, across all coordinates the newdata distances are not generally the same as the d3 or d4
ones. In fact the d3 distances are Manhattan-type sums of Euclidean distacnes. The properties of this
hybrid-type distance have yet to be determined.

An example

In this section we give an example of clustering with treeClust(). This code is also included in the
‘treeClustExamples.R’ script that is included with the paper. We use the splice data mentioned above
(and this data set is also included with the paper.) This data starts with 3,190 rows and 63 columns,
but after removing the class label and two useless columns, we are left with a data set named splice
that is 3,190× 60. The class label is stored in an item named splice.class. (A shorter version of the
data set and class vector, from which 16 rows with ambiguous values have been removed, is also
constructed in the script.) At the end of the section we compare the performance of the treeClust()
approach with the random forest dissimilarity approach.

Our goal in this example is to cluster the data, without using the class label, to see whether the
clusters correspond to classes. We select distance d4 and algorithm "pam", and elect to use six clusters
for this example. Then (after we seed the random seed) the “treeClust” object is produced with a
command like the one below. Here we are keeping the trees, as well as the dissimilarities, for later use:

set.seed(965)
splice.tc <- treeClust(splice, d.num = 4,

control = treeClust.control(return.trees = TRUE, return.dists = TRUE),
final.algorithm = "pam", k = 6)

This operation takes about 90 seconds on a powerful desktop running Windows; quite a lot of that
time is used in the "pam" portion (the call with no final algorithm requires about 30 seconds). The
resulting object can be plotted using plot(), and a short summary printed using summary():

plot(splice.tc); summary(splice.tc)

The splice.tc object is quite large, since it contains both the set of trees used to construct the distance
and the set of dissimilarities. Had the call to treeClust.control() included cluster.only = TRUE,
the function would have computed the clustering internally and returned only the vector of cluster
membership. As it is, since a final.algorithm was specified, splice.tc contains an object called
final.clust which is the output from the clustering algorithm – in this case, pam(). Therefore the
final cluster membership can be found as a vector named splice.tc$final.clust$clustering.

We might evaluate how well the clustering represents the underlying class structure by building
the two-way table of cluster membership versus class membership, as shown here. The outer pair of
parentheses ensures both that the assignment is performed and also that its result be displayed.

(tc.tbl <- table(splice.tc$final.clust$clustering, splice.class))
# with result as seen here

splice.class
EI IE N,

1 275 67 53
2 246 0 246
3 235 170 72
4 6 529 198
5 3 1 597
6 2 1 489

Cluster six (bottom row) is almost entirely made up of items of class “N,”. Others are more mixed, but
the treeClust() dissimilarity compares favorably in this example to some of its competitors (Buttrey
and Whitaker, 2015). For example, we compute the random forest dissimilarities in this way:

require(randomForest)
set.seed(965)
splice.rfd <- as.dist(1 - randomForest(~ ., data = splice,

proximity = TRUE)$proximity)
splice.pam.6 <- pam(splice.rfd, k = 6)
(rf.tbl <- table(splice.pam.6$cluster, splice.class))

That produces this two way-table:
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splice.class
EI IE N,

1 92 65 192
2 19 3 7
3 518 559 1035
4 59 57 216
5 75 69 195
6 4 15 10

Clearly, in this example, the treeClust() dissimilarity has out-performed the random forest one.
The cramer() function computes the value of V for these two-way tables, as shown here:

round(c(cramer(tc.tbl), cramer(rf.tbl)), 3)
[1] 0.679 0.113

If we prefer the d3 dissimilarity, it can be computed with another call to treeClust(), or, in this
case, directly from the slice.tc object, since the latter has all the necessary trees stored in it. The d3
dissimilarity would be produced by this command:

splice.tc.d3 <- tcdist(splice.tc, d.num = 3)

As a final example, we can compute the newdata object whose inter-point distances reflect the
d4 distances with a call to tcnewdist(). This object can then be used as the input to, for example,
kmeans().

splice.d4.newdata <- tcnewdata(splice.tc, d.num = 4)

In this example the splice.d4.newdata object is about 1/7 the size of the vector of d4 dissimilari-
ties.

We note that the results of a call to treeClust() are random, because random numbers are used in
the cross-validation process to prine trees. Therefore users might find slightly different results than
those shown above.

Conclusion

This paper introduces the R package treeClust, which produces inter-point dissimilarities based
on classification and regression trees. These dissimilarities can then be used in clustering. Four
dissimilarities are available; in the simplest, the dissimilarity between two points is proportional
to the number of trees in which they fall in different leaves. Exploiting the properties of trees, the
dissimilarities are resistant to missing values and outliers and unaffected by linear scaling. They also
benefit from automatic variable selection and are resistant, in some sense, to non-linear monotonic
transformations of the variables.

For large data sets, the trees can be built in parallel to save time. Furthermore the package can
generate numeric data sets in which the inter-point distances are related to the ones computed from
the trees. This last attribute, while still experimental, may hold promise for the clustering of large data
sets.
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mmpp: A Package for Calculating
Similarity and Distance Metrics for
Simple and Marked Temporal Point
Processes
by Hideitsu Hino, Ken Takano, and Noboru Murata

Abstract A simple temporal point process (SPP) is an important class of time series, where the sample
realization of the process is solely composed of the times at which events occur. Particular examples
of point process data are neuronal spike patterns or spike trains, and a large number of distance and
similarity metrics for those data have been proposed. A marked point process (MPP) is an extension
of a simple temporal point process, in which a certain vector valued mark is associated with each of
the temporal points in the SPP. Analyses of MPPs are of practical importance because instances of
MPPs include recordings of natural disasters such as earthquakes and tornadoes. In this paper, we
introduce the R package mmpp, which implements a number of distance and similarity metrics for
SPPs, and also extends those metrics for dealing with MPPs.

Introduction

A random point process is a mathematical model for describing a series of discrete events (Snyder and
Miller, 1991). Let X = {t; t0 ≤ t ≤ t0 + T} be the base space, on which an event occurs. The base space
can be quite abstract, but here we will take X to be a semi-infinite real line representing time. A set of
ordered points on X is denoted as x = {x1, x2, . . . , xn}, xi ≤ xi+1, and called a sample realization, or
simply realization of a point process.

Reflecting the importance of the analysis of point processes in a broad range of science and
engineering problems, there are already some R packages for modeling and simulating point processes
such as splancs (Rowlingson and Diggle, 1993), spatstat (Baddeley and Turner, 2005), PtProcess (Harte,
2010), and stpp (Gabriel et al., 2013). These packages support various approaches for the analysis of
both simple and marked spatial or spatio-temporal point processes, namely, estimating an intensity
function for sample points, visualizing the observed sample process, and running simulations based
on the specified models.

To complement the above mentioned packages, in mmpp (Hino et al., 2015), we focus on the simi-
larity or distance metrics between realizations of point processes. Similarity and distance metrics are
fundamental notions for multivariate analysis, machine learning and pattern recognition. For example,
with an appropriate distance metric, a simple k nearest neighbor classifier and regressor (Cover and
Hart, 1967) works in a satisfactory way. Also, kernel methods (Shawe-Taylor and Cristianini, 2004) are
a well known and widely used framework in machine learning, in which inferences are done solely
based on the values of kernel function, which is considered as a similarity metric between two objects.

As for the distance and similarity metric for point processes, vast amount of methods are developed
in the field of neuroscience (Kandel et al., 2000). In this field, neural activities are recorded as sequences
of spikes (called spike trains), which is nothing but a realization of a simple point process (SPP). By its
nature, the responses of neurons to the same stimulus can be different. To claim the repeatability and
the reliability of experimental results, a number of different distance and similarity metrics between
sequence of spikes are developed (Victor, 2005; Schreiber et al., 2003; Kreuz et al., 2007; Quian Quiroga
et al., 2002; van Rossum, 2001).

The package mmpp categorizes commonly used metrics for spike trains and offers implemen-
tations for them. Since a spike train is a realization of a simple point process, the original metrics
developed in the field of neuroscience do not consider marked point process (MPP) realizations.
mmpp extends conventional metrics for SPPs to MPPs. We have two main aims in the development of
mmpp:

1. to have a systematic and unified platform for calculating the similarities and distances between
SPPs, and

2. to support MPPs to offer a platform for performing metric-based analysis of earthquakes,
tornados, epidemics, or stock exchange data.
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Figure 1: An example of continuation by smoothing. Left: event timings are marked with ×. Right:
the corresponding continuous function vx(t).

Distances and similarities for point processes

Since realizations of temporal SPPs are ordered sets of the events, the commonly used Euclidean
distance and inner product cannot be directly defined between them. Most of the metrics for SPP
realizations first transform the realizations x = {x1, . . . , xn}, xi ≤ xi+1 and y = {y1, . . . , ym}, ; yj ≤
yj+1 to continuous functions vx(t) and vy(t), then define the distance or similarity metric between
them. Based on the transformations, we categorize conventional methods for defining metrics on SPP
realizations, and explain one by one in the following subsections.

We note that there are some attempts to directly define distances between SPP realizations. One of
the most principled and widely used methods is based on the edit distance (Victor, 2005), and this
method is extended to deal with MPP realizations by Suzuki et al. (2010). However, this approach is
computationally expensive and prohibitive for computing the distance between spike trains with even
a few dozen spikes. We exclude this class of metric from the current version of mmpp.

In the following, we often use kernel smoothers and step functions for transforming SPP realiza-
tions. For notational convenience, we denote a kernel smoother with parameter τ by hτ(t), and the
Heaviside step function by

u(t) =
{

1, t ≥ 0,
0, t < 0. (1)

Examples of smoothers include the Gaussian kernel smoother hg
τ(t) = exp(−t2/(2τ2))/

√
2πτ2 and

the Laplacian kernel smoother hl
τ(t) = exp(−|t|/τ)/(2τ).

Filtering to a continuous function

The most commonly used and intensively studied metrics for spike trains are based on the mapping
of an event sequence to a real valued continuous function as

x = {x1, . . . , xn} ⇒ vx(t) =
1
n

n

∑
i=1

hτ(t− xi) · u(t− xi). (2)

Figure 1 illustrates the transformation of an event sequence to a continuous function by the smoothing
method.

Then, the inner product of x and y is defined by the usual `2 inner product in functional space by

k(x, y) =
∫ ∞

0
dtvx(t)vy(t) ∈ [−∞, ∞], (3)

and similarly the distance is defined by

d(x, y) =
√∫ ∞

0
dt(vx(t)− vy(t))2. (4)

When we use the Laplacian smoother hl
τ(t) = exp (−|t|/τ) /(2τ), the similarity and distance are
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analytically given as

k(x, y) =
∫ ∞

0
dtvx(t)vy(t) =

1
4τnm

n

∑
i=1

m

∑
j=1

exp
(
− 1

τ
|xi − yj|

)
, (5)

and

d2(x, y) =k(x, x) + k(y, y)− 2k(x, y)

=
1

4τn2

n

∑
i=1

n

∑
j=1

exp

(
−
|xi − xj|

τ

)
+

1
4τm2

m

∑
i=1

m

∑
j=1

exp

(
−
|yi − yj|

τ

)

− 1
2τnm

n

∑
i=1

m

∑
j=1

exp

(
−
|xi − yj|

τ

)
, (6)

respectively. This distance eq. (6) is adopted by van Rossum (2001) for measuring the distance between
spike trains. On the other hand, Schreiber et al. (2003) proposed to use the correlation defined by

cor(x, y) =

∫ ∞
0 dtvx(t)vy(t)√∫ ∞

0 dtvx(t)vx(t)
√∫ ∞

0 dtvy(t)vy(t)
(7)

to measure the similarity between spike trains. This class of measures is extended to take into account
the effect of burst, i.e., the short interval in which events occur in high frequency, and refractory
period, i.e., the short interval in which events tend to be suppressed immediately after the previous
events (Houghton, 2009; Lyttle and Fellous, 2011). These two effects, namely burst and refractory
period, are commonly observed in neural activities. They are also observed in earthquake catalogues.
After a large main shock, usually we observe high frequent aftershocks. On the other hand, suppression
of events is sometimes happening, possibly because after a big event, the coda is so large that one
cannot detect smaller events under the large ongoing signal from the big event (Kagan, 2004; Iwata,
2008).

The filtering-based metric is computed by using the function fmetric in mmpp. The first two
arguments S1 and S2 are the (marked) point process realizations in the form of a ‘matrix’ object. The
first column of S1 and S2 are the event timings and the rest are the marks. The argument measure
can be either "sim" or "dist", indicating similarity or distance, respectively. By default, the function
assumes the Laplacian smoother. When the argument h of function fmetric is set to a function with
scaling parameter τ as

> fmetric(S1, S2, measure = "sim", h = function(x, tau) exp(-x^2/tau), tau = 1)

the integrals in eq. (3) and eq. (4) are numerically done using the R function integrate. The function
h should be square integrable and non-negative.

Intensity inner products

For analysis of point processes, the intensity function plays a central roll. Paiva et al. (2009) proposed
to use the intensity function for defining the inner product between SPP realizations. Let N(t) be the
number of events observed in the interval (0, t]. The intensity function of a counting process N(t) is
defined by

λx(t) = lim
ε→0

1
ε

Pr[N(t + ε)− N(t) = 1]. (8)

We note that we can also consider the conditional intensity function reflecting the history up to the
current time t, but we only explain the simplest case in this paper. Assuming that the SPP to be
analysed is well approximated by a Poisson process, the intensity function is estimated by using a
smoother hτ(t) as

λ̂x(t) =
1
n

n

∑
i=1

hτ(t− xi) (9)

in non-parametric manner (Reiss, 1993). Using the estimates of intensity functions for processes behind
x and y, Paiva et al. (2009) defined a similarity metric by

k(x, y) =
∫ ∞

−∞
dtλ̂x(t)λ̂y(t) =

1
4τ2nm

n

∑
i=1

m

∑
j=1

∫ ∞

−∞
dthτ(t− xi)hτ(t− yj). (10)

Particularly, when we use a Gaussian smoother hg
τ(t) = exp

(
−t2/(2τ2)

)
/
√

2πτ, the integral is
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analytically computed and we obtain an explicit formula

k(x, y) =
∫ ∞

−∞
dtλ̂x(t)λ̂y(t) =

1
4
√

πτnm

n

∑
i=1

m

∑
j=1

exp

(
−
(xi − yj)

2

4τ2

)
. (11)

The distance metric is also defined as

d(x, y) =
∫ ∞

−∞
dt(λ̂x(t)− λ̂y(t))2, (12)

and it is also simplified when we use the Gaussian smoother.

This class of measures is most in alignment with the statistical model of point processes. We
estimated the intensity function in a versatile non-parametric approach, but it is reasonable to use
other models such as the Hawkes model (Hawkes, 1971) when we should include the self-exciting
nature of the process.

The intensity inner product metric is computed by using the function iipmetric in mmpp. In the
current version, the function assumes the Gaussian smoother, and its scaling parameter is specified by
the argument tau as

> iipmetric(S1, S2, measure = "sim", tau = 1)

Co-occurrence metric

For comparing two SPP realizations, it is natural to count the number of events which can be considered
to be co-occurring. There are two metrics for SPP realizations based on the notion of co-occurrence.

The first one proposed by Quian Quiroga et al. (2002) directly counts near-by events. The closeness
of two events are defined by adaptively computed thresholds, making the method free from tuning
parameters. Suppose we have two SPP realizations x = {x1, . . . , xn} and y = {y1, . . . , ym}. For any
events xi ∈ x and yj ∈ y, a threshold under which the two events are considered to be synchronous
with each other is defined as half of the minimum of the four inter event intervals around these two
events:

τij =
1
2

min{xi+1 − xi, xi − xi−1, yj+1 − yj, yj − yj−1}. (13)

We note that τij in the above definition depends on x and y, though, for the sake of notational simplicity,
we simply denote it by τij. Then, the function that counts the number of events in y which is coincided
with those in x is defined by

c(x|y) =
n

∑
i=1

m

∑
j=1

Pij, (14)

Pij =


1, 0 < xi − yj < τij,
1/2, xi = yj,
0, otherwise.

(15)

Using this counting function, a similarity measure between x and y is defined as

k(x, y) =
c(x|y) + c(y|x)√

nm
, (16)

and a distance measure is obtained by the transformation (Lyttle and Fellous, 2011):

d(x, y) = 1− k(x, y). (17)

The second metric based on the counting co-occurrence is proposed by Hunter and Milton (2003),
which transforms x to a continuous function vx(t), and sums up the near-by events in proportion to
their degree of closeness. Denoting the closest event time in y from an event xi ∈ x by y(xi), we define
a function which measures degree of closeness by

dcτ(xi) = exp

(
−
|xi − y(xi)|

τ

)
. (18)

Then, a similarity metric between x and y is defined by

k(x, y) =
1
n ∑n

i=1 dcτ(xi) +
1
m ∑m

j=1 dcτ(yj)

2
, (19)
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and the distance is naturally defined by

d(x, y) = 1− k(x, y). (20)

The co-occurrence based metrics are computed by using the function coocmetric. By default, the
function assumes the counting similarity in eq. (16). The smoothed counting similarity is computed by
specifying the argument type = "smooth" as

> coocmetric(S1, S2, measure = "sim", type = "smooth", tau = 1)

Inter event interval

Assume an SPP realization x = {x1, . . . , xn}, xn < T such that for every event time xi, 0 < xi < T,
where T is the horizon of the time interval. In the inter event interval proposed by Kreuz et al. (2007),
the SPP realization x is first modified to include artificial events corresponding to the beginning and
end of the interval as

x = {x0 = 0, x1, . . . , xn, xn+1 = T}. (21)

Then each event is mapped to a function vx(t) as

vx(t) =
n+1

∑
i=0

fi(t), fi(t) =
{

0, t /∈ [xi, xi+1),
xi+1 − xi, t ∈ [xi, xi+1).

(22)

Two SPP realizations x and y are transformed to vx(t) and vy(t), then they are used to define an
intermediate function

Ixy(t) =
min{vx(t), vy(t)}
max{vx(t), vy(t)}

. (23)

This function takes value 1 when x is identical to y, and takes a smaller value when x and y are highly
dissimilar. By using this intermediate function, the similarity measure is defined by

k(x, y) =
1
T

∫ T

0
dtIxy(t), (24)

and the distance is defined by

d(x, y) =
1
T

∫ T

0
dt(1− Ixy(t)), (25)

which is originally defined in Kreuz et al. (2007). A simple example of transformation x ⇒ vx(t), y⇒
vy(t) and x, y⇒ 1− Ixy(t) is illustrated in Figure 2.

The inter event interval metrics are computed by using the function ieimetric as

> ieimetric(S1, S2, measure = "sim")

Extension to marked point processes

Sometimes events considered in point processes entail certain vector valued marks. For example,
seismic events are characterized by the time point the earthquake happens, and a set of attributes such
as magnitude, depth, longitude, and latitude of the hypo-center. To deal with marked point processes,
we extend the base spaceX toX = {t; t0 ≤ t ≤ t0 + T}×Rp, the Cartesian product of the time interval
[t0, t0 + T] and a region of the p dimensional Euclidean space corresponding to marks. Realizations of
MPPs are denoted by, for example, x = {(x1, r1), . . . , (xn, rn)} and y = {(y1, s1), . . . , (ym, sm)}.

There might be many possible ways of extension. The packages mmpp takes the simplest way to
deal with marks in a unified and computationally efficient manner, namely, the density or weight of
marks are included in the metrics for SPPs by Gaussian windowing as shown in eq. (27).

Filtering to continuous function

In the same manner as eq. (2), the marked point process realization x = {(x1, r1), . . . , (xn, rn)} is
transformed to a continuous function as

x = {(x1, ri), . . . , (xn, rn)} ⇒ vx(t, z) =
1
n

n

∑
i=1

hM(z− ri)hτ(t− xi) · u(t− xi), (26)
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Figure 2: Example of the transformation of two point process realizations x and y into the intermediate
function Ixy. The top panel shows x and corresponding continuous function vx(t). The middle panel
shows y and vy(t). The bottom panel shows the intermediate function 1− Ixy(t).

where

hM(z) = (2π)−p/2|M|1/2 exp
(
−1

2
z>Mz

)
= (2π)−p/2|M|1/2 exp

(
−1

2
‖z‖2

M

)
, M ∈ Rp×p, (27)

where |M| is the determinant of a matrix M, and ‖z‖2
M = z>Mz. Integrating with respect to both time

t and mark z, we define the inner product by

k(x, y) =
∫

Rp
dz
∫ ∞

0
dtvx(t, z)vy(t, z), (28)

and the distance by

d2(x, y) =
∫

Rp
dz
∫ ∞

0
dt(vx(t, z)− vy(t, z))2. (29)

By virtue of Gaussian windowing, the integral with respect to the mark is explicitly written as∫
Rp

dz exp
(
−1

2
‖z− ri‖2

M −
1
2
‖z− sj‖2

M

)
= (2π)

p
2

√
|2M| exp

(
−1

4
‖ri − sj‖2

M

)
. (30)

Furthermore, when we use Laplacian smoother for transforming temporal SPPs, we obtain

k(x, y) =
|M|1/2

2p+2πp/2τnm

n

∑
i=1

m

∑
j=1

exp

(
−
‖ri − sj‖2

M
4

)
exp

(
−
|xi − yj|

τ

)
. (31)

The distance metric is also calculated in the same manner.

We note that the effect of marks depend on the units used for the various marks. It is reasonable
to estimate the variance of each mark, and set the diagonal elements of M to be reciprocal of the
variances, which is adopted as the default setting for M in mmpp.

Intensity inner product

Extending kernel estimation eq. (9) to multivariate kernel estimation as

λ̂x(t, z) =
1
n

n

∑
i=1

hM(z− ri)hτ(t− xi), (32)

we obtain the estimate of the intensity function of the marked point process. We note that kernel
density estimation for multidimensional variables is inaccurate in general, and we can instead estimate
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the ground intensity function λ(t) and the density function for mark λ(z) separately. However, in
many applications, the dimension of marks is not so high, and currently we adopt the kernel based
estimator in eq. (32). The intensity inner product for MPP realizations is then defined by

k(x, y) =
∫

Rp
dz
∫ ∞

−∞
dtλ̂x(t, z)λ̂y(t, z). (33)

When we use the Gaussian smoother hg
τ(t) = exp

(
−t2/τ

)
/
√

2πτ2, the integral is explicitly computed
and we obtain

k(x, y) =
1

π(p+1)/2τ1/2|M|1/2nm

n

∑
i=1

m

∑
j=1

exp

(
−
(xi − yj)

2

2τ

)
exp

(
−
‖ri − sj‖2

M
4

)
. (34)

The distance metric is also defined by

d(x, y) =
∫

Rp
dz
∫ ∞

−∞
dt(λ̂x(t, z)− λ̂y(t, z))2. (35)

For estimating the intensity function, a simple Poisson process is assumed. This assumption is
relaxed with more flexible models such as the ETAS model (Ogata, 1988, 1998), where the intensity
function is estimated using the R packages SAPP (of Statistical Mathematics, 2014) and etasFLP
(Chiodi and Adelfio, 2015), for example. The extension of the intensity-based metric to support other
forms of intensity estimation such as the Hawkes and ETAS models remains our important future
work.

Co-occurrence metric

To extend the co-occurrence metric based on counting the synchronous events, eq. (15) is replaced
with a weighted counter

Pij = exp(−‖ri − sj‖2
M)×


1, 0 < xi − yj < τij,
1/2, xi = yj,
0, otherwise.

(36)

To extend the co-occurrence metric based on the smoothed count of the synchronous events,
eq. (18) is replaced with a weighted smoothed counter

dcτ,M(xi) = exp
(
−‖ri − s(xi)‖2

M

)
× exp

(
−
|xi − y(xi)|

τ

)
. (37)

Inter event interval

To weight the inter event interval by using marks associated with two MPP realizations x and y, we
define index extraction operators as follows. We modify an MPP realization x = {(x1, r1), . . . , (xn, rn)}
to include artificial events and marks corresponding to the beginning and end of the interval as

x = {(x0 = 0, r0 = 0), (x1, r1), . . . , (xn, rn), (xn+1 = T, rn+1 = 0)}. (38)

Then we define operators

q : [0, T]×X → R

(t, x) 7→ i, s.t. t ∈ [xi, xi+1], (39)

q : [0, T]×X → R

(t, x) 7→ i + 1, s.t. t ∈ [xi, xi+1]. (40)

The intermediate function eq.(23) is modified to take into account the dissimilarity of marks:

Ixy(t) =
min(vx(t), vy(t))
max(vx(t), vy(t))

exp(−‖rq(t,x) − sq(t,y)‖2
M) + exp(−‖rq(t,x) − sq(t,y)‖2

M)

2
. (41)

The distance and similarity are then calculated using eq. (25) and eq. (24).

The usage of the functions fmetric, iipmetric, coocmetric, and ieimetric does not change for
marked point process data, except for one additional argument M, which is the precision matrix M in
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Figure 3: An illustrative diagram of the problem setting. The horizontal axis corresponds to time,
and the vertical axis shows marks. Though the dimension of the mark is four, it is shown as one-
dimensional axis. The process is split by a three hour window, and each window is assigned an output
variable, which is the maximum magnitude in the next time window. Using the past one week data,
the output variable of the next time window is predicted by nearest neighbor regression.

eq. (27). By default, it is automatically set to the diagonal matrix with the diagonal elements equal to
the reciprocal of the variance of corresponding marks of S1 and S2. We can also specify the matrix M
manually as

> fmetric(S1, S2, measure = "sim", M = diag(3))

where the number of marks is assumed to be three.

An example with the Miyagi20030626 data set

This section illustrates the use of the package with a simple experiment. We use the Miyagi20030626
dataset contained within the package.

> library(mmpp)
> data(Miyagi20030626)

The dataset is composed of 2305 aftershocks of the 26th July 2003 earthquake of M6.2 at the northern
Miyagi-Ken Japan, which is a reparameterization of the main2006JUL26 dataset from the SAPP package.
Each record has 5 dimensions, time, longitude, latitude, depth, and magnitude of its hypo-center.
The time is recorded in seconds from the main shock.

To illustrate the use of the package, we consider a simple prediction task. We first split the original
dataset by a time-window of length 60× 60× 3, which means that the time interval of each partial
point process split by this window is three hours.

> sMiyagi <- splitMPP(Miyagi20030626, h = 60*60*3, scaleMarks = TRUE)$S

Then, the maximum magnitude in each partial point process realization is computed.

> ## target of prediction is the maximum magnitude in the window
> m <- NULL
> for (i in 1:length(sMiyagi)) {
+ m <- c(m, max(sMiyagi[[i]]$magnitude))
+ }

The task we consider is the prediction of the maximum magnitude in the next three hours using the
past one week of data. We formulate this problem as a regression problem. Let the partial point
process realization in the i-th window be oi, and let the maximum magnitude in the i + 1-th window
be mi. Then the problem is predicting mi+1 given oi+1 and the past 24× 7/3 = 56 hours of data
{(oi−`, mi−`)}55

`=0. See Figure 3 for an illustrative diagram of the problem setting.

> m <- m[-1]
> sMiyagi[[length(sMiyagi)]] <- NULL
> ## number of whole partial MPPs split by a 3-hour time window
> N <- length(sMiyagi)
> ## training samples are past one week data
> Ntr <- 24*7/3
> ## number of different prediction methods
> Nd <- 10
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For the purpose of illustrating the use of the package and to show the effect of different similarity
metrics, we adopt the nearest neighbor regression. That is, given the current realization oi, we find the
most similar realization oj ∈ {oi−l}55

l=0, and use the corresponding maximum magnitude mj as the
predictor for mi+1. We use ten different similarity metrics supported in the package, and evaluate the
mean absolute errors. The metrics used for these experiments are the filter based metric in eq. (3), the
intensity inner product metric in eq. (10), the co-occurrence with counting in eq. (16), the co-occurrence
with smoothed counting in eq. (19), and the inter event interval metric in eq. (24), and their MPP
extensions.

> err <- matrix(0, N - Ntr, Nd)
> colnames(err) <- c("f SPP","iip SPP","cooc (s) SPP","cooc (c) SPP","iei SPP",
+ "f MPP","iip MPP","cooc (s) MPP","cooc (c) MPP","iei MPP")

The following code performs the above explained experiment.

> for (t in 1:(N - Ntr)) {
+ qid <- Ntr + t
+ q <- sMiyagi[[qid]]
+ ## simple PP
+ ## fmetric with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, fmetric(q$time, sMiyagi[[qid - i]]$time))
+ }
+ err[t, 1] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## iipmetric with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, iipmetric(q$time, sMiyagi[[qid - i]]$time))
+ }
+ err[t, 2] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## coocmetric (smooth) with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, coocmetric(q$time, sMiyagi[[qid - i]]$time,
+ type = "smooth"))
+ }
+ err[t, 3] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## coocmetric (count)
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, coocmetric(q$time, sMiyagi[[qid - i]]$time,
+ type = "count"))
+ }
+ err[t, 4] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## iei metric
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, ieimetric(q$time, sMiyagi[[qid - i]]$time))
+ }
+ err[t, 5] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## marked PP with latitude, longitude, depth, and magnitude
+ ## fmetric with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, fmetric(q, sMiyagi[[qid - i]]))
+ }
+ err[t, 6] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## iipmetric with tau = 1
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, iipmetric(q, sMiyagi[[qid - i]]))
+ }
+ err[t, 7] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## coocmetric (smooth) with tau=1
+ sim2query <- NULL
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+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, coocmetric(q, sMiyagi[[qid - i]], type = "smooth"))
+ }
+ err[t, 8] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## coocmetric (count)
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query, coocmetric(q, sMiyagi[[qid - i]], type = "count"))
+ }
+ err[t, 9] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ ## iei metric
+ sim2query <- NULL
+ for (i in 1:Ntr) {
+ sim2query <- c(sim2query,ieimetric(q, sMiyagi[[qid - i]]))
+ }
+ err[t, 10] <- abs(m[qid] - m[t:(Ntr + t - 1)][which.max(sim2query)])
+ }
> colMeans(err)
f SPP iip SPP cooc (s) SPP cooc (c) SPP iei SPP
0.7002634 0.6839529 0.7263602 0.6632930 0.7905148
f MPP iip MPP cooc (s) MPP cooc (c) MPP iei MPP
0.6839529 0.6317594 0.6643804 0.6622056 0.7698548

From this simple example, we can see that the prediction accuracy is improved by taking the marks
into account.

Summary and future directions

mmpp is the first R package dedicated to the calculation of the similarity and distance metrics for
marked point process realizations. It provides the implementation of several similarity metrics
for simple point processes, originally proposed in the literature of neuroscience, and also provides
extensions of these metrics to those for marked point processes.

A simple example of a real dataset presented in this paper illustrates the importance of taking
the marks into account in addition to the event timings, and it also illustrates the possibilities of the
package mmpp with a user guide for practitioners.

The development of the mmpp package has only just begun. Currently, we are considering
supporting burst sensitive and refractory period sensitive versions of fmetric, since these properties
are commonly observed in both neural activities and seismic event recordings. In the current version
of mmpp, for treating MPPs, event timings and marks are assumed to be separable, and all the
marks are simultaneously estimated by a kernel density estimator. This is a strong assumption and
other possibilities for modeling MPPs should be considered. For example, it is popular to group
spatio-temporal events, i.e., event timings and locations, and treat marks such as magnitude in seismic
events as purely marks. Then, the separability between marks and spatio-temporal events can be
tested by using test statistics proposed in Schoenberg (2004) and Chang and Schoenberg (2011). The
separability assumption offers computational advantages, though, it would miss the intrinsic structure
and relationship between event timings and marks. In principle, the separability hypothesis should be
tested before calculating the metrics. Frameworks for flexible modeling of marked sample sequences
with statistical validation such as nonparametric tests would be implemented in future version of
mmpp. We are also considering to extend the intensity inner product metric to support other form of
intensity estimation such as Hawkes and ETAS models.

Different similarity metrics capture different aspects of the point process realizations. Our final
goal of the development of the package mmpp is to provide a systematic way to select or combine
appropriate metrics for analysing given point process realizations and certain tasks such as prediction
of magnitude or clustering similar seismic events.
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Open-Channel Computation with R
by Michael C. Koohafkan and Bassam A. Younis

Abstract The rivr package provides a computational toolset for simulating steady and unsteady one-
dimensional flows in open channels. It is designed primarily for use by instructors of undergraduate-
and graduate-level open-channel hydrodynamics courses in such diverse fields as river engineering,
physical geography and geophysics. The governing equations used to describe open-channel flows
are briefly presented, followed by example applications. These include the computation of gradually-
varied flows and two examples of unsteady flows in channels—namely, the tracking of the evolution
of a flood wave in a channel and the prediction of extreme variation in the water-surface profile
that results when a sluice gate is abruptly closed. Model results for the unsteady flow examples
are validated against standard benchmarks. The article concludes with a discussion of potential
modifications and extensions to the package.

Introduction

Hydraulic engineers routinely rely on computational models to simulate the flow and conveyance of
water for planning and designing channels and in-stream structures, managing reservoirs, and con-
ducting flood damage and risk analyses. The simulation of fluid flow is a difficult and computationally-
intensive endeavor, and simplifications are often made in order to reduce the task to one that is feasible
with regard to time management and data availability. One of the most frequently-made assumptions
is that of one-dimensional flow. This greatly simplifies the computation of a wide range of practically-
relevant flows such as e.g. the prediction of the movement of a flood wave in a waterway, or the
consequences of a sudden opening or closure of a control gate on the water level in a navigation
channel. In making this assumption, the flow velocity—which in reality can vary in all three coordinate
directions—is both depth- and laterally-averaged to produce a bulk or mean channel velocity that is a
function of only time and distance along the channel:

u =

∫ y=H

y=0

∫ z=S

z=0
u(x, y, z, t) dy dz∫∫
dy dz

= f (x, t) (1)

where u is velocity, y is the vertical dimension, z is the lateral (cross-channel) dimension, t is time and x
is the along-channel direction. The integral bounds H and S are the flow depth and span, respectively.
Treatment of bed friction is also frequently simplified in practical applications by relating the bed shear
stresses to the “friction slope”, which is derived from the Energy Grade Line (EGL) equation (Leopold,
1953) and expressed using the semi-empirical Manning’s equation

S f =

(
n u

CmR2/3

)2
(2)

where S f is the friction slope, n is the empirical Manning’s coefficient and R is the hydraulic radius.
Manning’s equation and the EGL equation are widely used in the discipline to predict steady and
gradually-varied flow conditions. The prediction of unsteady flows is somewhat more complex; in
addition to the fact that the flow area is different from the area of the conveying channel, the governing
equations are both non-linear and coupled. This complicates the task of obtaining solutions that are
both numerically stable and accurate without the need for excessive computational resources.

A wide variety of software suites are available for computing steady and unsteady flows; some
of the most well-known packages are listed in Table 1. These packages are typically accessed via a
graphical user interface and often have specialized input and output data formatting requirements.
These software suites are capable of modeling complex networks of irregular channels and are therefore
of great utility to engineers and practitioners working on large-scale projects, but they also pose high
barriers to entry in terms of cost, usability and computer hardware requirements as well as in terms
of ancillary data needs. These software suites are so complex that many developers provide training
courses for utilizing the software, with the assumption that users already possess an education or
background in river mechanics and hydraulics.

The rivr package (Koohafkan, 2015) was designed to provide rapid solutions to steady and un-
steady one-dimensional flows in open channels. The primary purpose of the package is to provide
educators with an accessible open-source toolset that can be used to supplement lectures with in-
teractive examples, and to facilitate the design of assignments that encourage students to explore
open-channel flow concepts rather than focusing on the actual implementation of solutions. The R

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859

https://CRAN.R-project.org/package=rivr


CONTRIBUTED RESEARCH ARTICLES 250

Name Developer Free for use Open source Cross-platform

HEC-RAS USACE 3 7 7
SRH 1D USBR 3 7 7
ESTRY BMT 7 7 7
Mike 11 DHI 7 7 7
SOBEK D-Flow 1D Deltares 7 7 7

Table 1: Selection of popular software packages for modeling steady and unsteady flow.

Project for Statistical Computing provides an ideal platform for providing rivr (and educational tools
in general) to students and instructors. R is both cross-platform and free and open-source software,
meaning students can run the software on personal computers and educational institutions do not
need enter expensive licensing agreements to provide it on institution-owned computers. Moreover, R
provides a large and comprehensive library of functions for data visualization, analysis and export
both through its core functionality and through a diversity of packages developed and supported by
an active global community of over 2 million users, developers and scientists. R is often referred to as a
“scripting language”, meaning that code blocks or snippets can be run either in an automated fashion
or piecewise by users; scripting languages are ideal for teaching because they support interactive
programming and exploration of data. Furthermore, support for dynamic document generation with
R via packages such as knitr (Xie, 2014) provides an excellent mechanism for instructors to develop
teaching materials that place concept and implementation side by side, as well as a promising format
for students to submit assignments and reports. Finally, R provides the potential for instructors with
virtually no web development proficiency to create interactive web-based tutorials and demonstrations
using the shiny web application framework (Chang et al., 2015).

The flow algorithms provided by rivr are implemented in C++ and integrated into the package
using Rcpp (Eddelbuettel and Francois, 2011) to leverage the speed advantage of compiled code. All
algorithms were developed from the ground up and are based on well-established, peer-reviewed
contributions to the field. Functions are provided for computing normal and critical depth, channel
geometry and conveyance, and gradually-varied flow profiles. The package also provides an advanced
function which implements two canonical formulations of unsteady flow—the Kinematic Wave Model
and the Dynamic Wave Model—which are routinely taught in graduate-level courses in hydrology and
open-channel hydraulics. The numerical schemes implemented in rivr are similarly well-established
and reflect varying degrees of sophistication that are common topics in numerical methods courses,
including implementations of iterative solutions to implicit equations; a solution scheme for nonlinear
ordinary differential equations; and numerical methods for solving sets of partial differential equations
ranging from one of the simplest formulations of an explicit finite-difference scheme to an advanced
two-step predictor-corrector scheme that illustrates the trade-offs between performance and complexity
of implementation. Detailed explanation of the theoretical foundations and numerical schemes is
provided in the form of a technical vignette, and the source code is carefully organized and commented
to facilitate modifications and extensions to the package such as new numerical schemes and alternative
formulations for steady and unsteady flow modeling.

This article provides use examples for computing both gradually-varied and unsteady flows with
rivr. In the first section, solutions to gradually-varied flow or “backwater curve” problems using the
standard-step method are discussed. In the second section, solutions to unsteady flow problems using
different theoretical formulations are described, followed by a comparison of two numerical solutions
to an unsteady flow problem with discontinuous boundary conditions. The article concludes with a
discussion of potential opportunities for extensions and contributions to the package.

Calculation of back-water curves

The water-surface profile resulting from non-uniform steady flow conditions is generally referred to as
a gradually-varied flow (GVF) profile or “backwater curve”. Backwater curves are commonly used for
floodplain delineation and assessing upstream effects of bridges, weirs and other channel structures.
The GVF concept is based on a simplified form of the St. Venant equations (discussed in the following
section) and is expressed as

dy
dx

=
S0 − S f

1− Fr2 (3)

where dy/dx is the water-surface slope, S0 is the channel slope and Fr is the Froude Number. Eq. (3)
describes steady-state conditions, i.e. the channel flow rate Q = uA is constant. When dy/dx = 0,
the flow depth is uniform and S0 = S f ; the flow depth under these conditions is referred to as the
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“normal depth” and can be calculated using Manning’s equation. The relative positioning of the
normal depth and the “critical depth”—the depth at which the flow energy is minimized—determine
the flow behavior. GVF profiles are classified based on the flow regime, the channel slope and the
nature of the divergence from the steady-flow water-surface profile at a specific location or “control
section” (Doubt, 1971). An M1 profile refers to sub-critical flows where the water depth at the control
section is greater than the normal depth. An M2 profile refers to a water-surface profile where the
water depth at the control section is below the normal depth, but above the critical depth. Other classes
include “S” (steep channels where the normal depth is shallower than the critical depth), “C” (flow
regimes where the normal depth and critical depth coincide), “H” (flat channels) and “A” (channels of
“adverse” slope, i.e. sloped against the direction of flow).

The rivr package computes the GVF profile using the standard-step method (Chaudhry, 2007). A
Newton-Raphson scheme is used where iterative methods are required to find the roots of an equation.
The following example illustrates how to use rivr to calculate the variation of the water-surface profile
with distance, and its return to the normal-depth level far upstream of a perturbation in flow depth.
Both an M1 and an M2 profile are considered for a rectangular channel with a width of 100 feet, a slope
of 0.001, a flow of 250 cubic feet per second, and a Manning’s roughness coefficient of 0.045. The water
depth y at the control section is specified as 1 foot above the normal depth yn for the M1 profile (2.71
feet) and 1.1 times the critical depth yc for the M2 profile (0.64 feet). The elevation and x-coordinate of
the control section are both specified as zero. Example code for computing the water-surface profile
using the function compute_profile is shown below.

g <- 32.2 # gravitational acceleration (ft/s^2)
Cm <- 1.486 # conversion factor for Manning's equation in US customary units
slope <- 0.001 # channel slope (vertical ft / horizontal ft)
mannings <- 0.045 # Manning's roughness
flow <- 250 # channel flow rate (ft^3/s)
width <- 100 # channel bottom width (ft)
sideslope <- 0 # channel sideslope (horizontal ft / vertical ft)

# calculate normal depth for channel, initial guess of 2 feet
yn <- normal_depth(slope, mannings, flow, 2, Cm, width, sideslope)

# calculate critical depth, initial guess of 1 ft
yc <- critical_depth(flow, 1, g, width, sideslope)

# compute the M1 profile 3000 ft upstream with a step size of 50 ft
m1 <- compute_profile(slope, mannings, flow, yn + 1, Cm, g,
width, sideslope, z0 = 0, x0 = 0, stepdist = 50, totaldist = 3000)

# compute the M2 profile under the same assumptions
m2 <- compute_profile(slope, mannings, flow, 1.1 * yc, Cm, g,
width, sideslope, z0 = 0, x0 = 0, stepdist = 50, totaldist = 3000)

The effect of model resolution on results is shown in Figure 1. For the M1 profile, the solution is
quite stable even for very coarse (> 100 feet) resolutions. In contrast, solutions to the M2 profile are
quite sensitive to model resolution owing to the steep gradient in dy/dx where y→ yc. However, the
solution to the M2 profile is not sensitive to resolutions finer than 10 feet. A step size of 10 feet is used
in subsequent analyses to ensure smooth calculations of the water-surface slope for both profiles.

Manning’s coefficient is an empirical quantity that cannot be directly measured, and engineers
often rely on tabulated values to inform their selection of a roughness value based on channel bank
material and conditions such as vegetation and compaction. It is generally necessary to investigate
the sensitivity of the solution to the choice of Manning’s roughness coefficient, or to calibrate a GVF
model based on channel depth observations. The next example considers the GVF profile of the control
section specified above for a range of Manning’s roughness values spanning 0.0225 to 0.0675. Figure 2
shows that the normal depth (apparent as the section where the water-surface slope is linear) changes
depending on the value of the roughness coefficient; this comes as no surprise, as the concept of
normal depth is itself derived from Manning’s equation. The specification of a fixed control section
depth therefore confounds analysis of the relationship between Manning’s coefficient and the nature
of the GVF profile.

In order to control for the dependence of the normal depth on Manning’s coefficient, the analysis
is repeated using a control section depth of 1.25yn for the M1 profile and 0.75yn for the M2 profile,
where yn is the normal depth associated with each roughness value. Note that the critical depth is by
definition independent of Manning’s coefficient. Figure 3 shows the water-surface elevation profile as
a percent difference from the normal depth for each roughness value; it is clear from the figure that
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Figure 1: M1 and M2 water-surface elevation profiles computed under different resolutions. When
steep gradients in the water-surface profile are present, finer spatial resolutions are needed to provide
accurate solutions.
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Figure 2: M1 and M2 water-surface elevation profiles for a range in values for Manning’s roughness
coefficient.
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Figure 3: M1 and M2 water-surface elevation profiles as percent difference from the normal depth
under different roughness conditions.

bed roughness affects the distance that a depth disturbance propagates upstream under sub-critical
flow conditions. Note that the M1 and M2 profiles are not symmetric; that is, the point at which the
water depth returns to the normal depth from a 25% increase in water depth at the control section is
further upstream compared to that for a 25% decrease in depth. This is because the velocity term in
the energy equation is non-linear (u2) and therefore the energy gradient is steeper for the M2 profile.

Computation of unsteady flows

Open-channel unsteady flows are typically described using the St. Venant equations, also known as
the shallow water equations. The St. Venant equations are derived from the Navier-Stokes equations
based on a number of simplifying assumptions, including uniform density and hydrostatic pressure
conditions. The one-dimensional St. Venant equations are written as

∂A
∂t

+
∂Q
∂x

= 0 (4)

∂Q
∂t

+
∂

∂x
(Qu + gyA)− gA

(
S0 − S f

)
= 0 (5)

where Eq. (4) is the continuity, or mass conservation, equation (assuming no infiltration or precipitation)
and Eq. (5) is the momentum equation. The terms Q, u, A and S0 and S f are as defined previously and
g is gravitational acceleration. The term y results from averaging the pressure component and refers
to the distance from the free surface to the centroid of the cross section. The rivr package provides
multiple methods for solving these equations to compute unsteady flows through a prismatic channel.
These methods are discussed in the following sections.

Simulations with the Kinematic Wave Model

The Kinematic Wave Model (KWM) provides a simplified solution to the St. Venant equations based
on a truncated momentum equation that ignores inertial terms (Lighthill and Whitham, 1955). Eq. (5)
is instead expressed through the relation

A =

(
nQP2/3

Cm
√

S0

)3/5

(6)
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Figure 4: Flood wave hydrograph specified as the initial condition of the unsteady flow examples.

where P is the wetted perimeter and S0 is substituted for S f in Manning’s equation.

The KWM engine (and other engines, as we show later) provided by rivr can be called via the
function route_wave. The behavior of the KWM is demonstrated by using it to calculate the evolution
of a flood wave down a 100-foot wide rectangular channel that is 150,000 feet long, with a slope of
0.001 and a Manning’s roughness of 0.045. The boundary.condition argument is a vector specifying
the flow at the upstream boundary for an arbitrary period of time in intervals equal to the timestep
argument, in seconds. The monitor.nodes and monitor.times arguments are used to specify the
function outputs. The hydrograph (change in flow over time) at the upstream boundary, shown in
Figure 4, is modeled as a symmetrical flood wave and is conveniently expressed as

Q(t) =

250 +
750
π

(
1− cos

πt
4500

)
if t ≤ 9000

250 if t ≥ 9000
(7)

where t is in seconds.

slope <- 0.001 # channel slope (vertical ft / horizontal ft)
extent <- 150000 # channel length (ft)
mannings <- 0.045 # Manning's roughness
width <- 100 # channel bottom width
sideslope <- 0 # channel side slope (horizontal ft / vertical ft)
Cm <- 1.486 # conversion factor for Manning's equation
g <- 32.2 # gravitational acceleration (ft/s^2)

numnodes <- 601 # number of finite-difference nodes
dx <- extent/(numnodes - 1) # distance between nodes (ft)
dt <- 100 # time interval (s)

monpoints <- c(1, 201, 401, 601) # Nodes to monitor
montimes <- seq(1, length(boundary), by = 10) # time steps to monitor

initflow <- 250 # initial flow condition (ft^3/s)
times <- seq(0, 76000, by = dt)
boundary <- ifelse(times < 9000, # upstream hyrograph (ft^3/s)
250 + (750/pi) * (1 - cos(pi * times/(4500))), 250)

route_wave(slope, mannings, Cm, g, width, sideslope, initflow, boundary,
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Figure 5: Progression of the flood wave calculated using the KWM engine with a spatial resolution of
25 feet and a temporal resolution of 12 seconds.

timestep = dt, spacestep = dx, numnodes = numnodes,
monitor.nodes = monpoints, monitor.times = montimes,
engine = "Kinematic")

While the KWM is easy to use and implement, it ignores wave damping and attenuation resulting
in unrealistic predictions of the shape of the flood wave as it progresses downstream. The truncation
of Eq. (5) results in what is known as “kinematic shock”, i.e. the shape of the flood wave becomes
increasingly asymmetrical as it progresses downstream. This effect is apparent in Figure 5, which
shows the wave front approaching a vertical line as the flood wave travels along the channel.

The rivr package implements the KWM with an explicit, first-order accurate backwards-difference
scheme. While such schemes are simple to conceptualize and implement, they are sensitive to
numerical error and can be unstable. A necessary condition for stability is that the Courant Number C
is less than unity, i.e.

C ≡ u∆t
∆x
≤ 1 (8)

where u is defined here as the initial velocity at the upstream boundary and ∆x and ∆t are the spatial
and temporal resolution of the model. Numerical error is propagated through successive calculations
and results in a systematic decrease in the accuracy of the solution as the flood wave progresses
downstream, apparent in Figure 5 as a decreasing peak flow magnitude. The sensitivity of the solution
generated by the KWM engine to model resolution is assessed by varying ∆x and ∆t while maintaining
a Courant number of 0.7 to ensure numerical stability. The effect of numerical error on model accuracy
is inferred by evaluating the shape of the hydrograph at a cross-section 50,000 feet downstream.
Figure 6 shows the shape of the flood wave at said cross-section for selected spatial resolutions. As
resolution decreases, the peak flow downstream decreases due to the effects of numerical error. In
addition, the severity of the kinematic shock decreases with decreasing resolution due to greater
numerical dispersion. Numerical error can be reduced by applying finer model resolutions at the cost
of increased computation time. Table 2 summarizes the effect of model resolution on the peak flow
value 50,000 feet downstream; for the example shown here, increasing the model resolution incurs
substantial costs in computation time with diminishing returns on accuracy for spatial resolutions
finer than 50 feet.
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Figure 6: Evolution of the flood wave hydrograph 50,000 feet downstream using the KWM engine, for
a variety of model resolutions. Note that at coarser resolutions the wave appears to attenuate, but this
is solely the result of numerical error.
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∆x (ft) ∆t (s) % error (peak flow) cost (s)

25 11.98 −1.53 221.02
50 23.97 −2.19 53.25

125 59.92 −4.04 8.48
250 119.84 −6.68 2.48
500 239.68 −10.96 0.50

1,000 479.36 −17.02 0.14
2,000 958.72 −24.69 0.05
5,000 2,396.80 −35.02 0.02

Table 2: KWM engine resolution and accuracy 50,000 feet downstream. Temporal resolution is
matched to the selected spatial resolution to maintain a Courant number of 0.7. Finer resolutions
reduce the impact of numerical error but show diminishing returns for resolutions finer than 50 feet.
Computation times are for R v3.2.2 (x64) running on an Intel i7-4500U CPU with 8GB of RAM.

Simulations with the Dynamic Wave Model

The previous example showed that the KWM gives unrealistic predictions of a flood wave routed
through a prismatic channel with mild slope. This is largely due to the exclusion of inertial forces
by truncating the momentum equation. Unsteady flow models that solve complete forms of Eq. (5),
known as Dynamic Wave Models (DWMs), can provide more realistic simulations of unsteady flow.
The rivr package provides a DWM engine accessed in a similar manner to the KWM engine. The DWM
engine uses the MacCormack predictor-corrector scheme (MacCormack, 2003) to provide solutions
that are second-order accurate in space. As shown in Figure 7, flood waves modeled with the DWM
attenuate as they travel through the channel.

The DWM engine differs from the KWM engine in that the downstream boundary condition must
be known. The rivr package employs the Method of Characteristics (MOC) to resolve fluid flow across
the upstream and downstream boundaries. By using MOC, the DWM engine can accommodate a
variety of boundary specifications; the upstream and downstream boundaries can be individually
specified in terms of either flows or water depths. The downstream boundary can alternatively
be specified as a zero-gradient condition, which allows flow to be routed out of the channel by
assuming that the flow or water depth is constant across the final (downstream) two nodes in the
model domain. This results in “smearing” of the flood wave at the downstream boundary, but in
some practical cases this may be preferable to direct specification of depth or flow. When depths are
specified at the boundaries, the characteristic equations are solved directly; when flows are specified,
a Newton-Raphson scheme is used to iteratively solve for depths and velocities simultaneously.

To illustrate use of the DWM, the example from the previous section is repeated. The channel
geometry, extent and upstream boundary condition are unchanged. A zero-gradient condition is
specified at the downstream boundary. Example code using the DWM engine is shown below.

slope <- 0.001 # channel slope (vertical ft / horizontal ft)
extent <- 150000 # channel length (ft)
mannings <- 0.045 # Manning's roughness
width <- 100 # channel bottom width
sideslope <- 0 # channel side slope (horizontal ft / vertical ft)
Cm <- 1.486 # conversion factor for Manning's equation
g <- 32.2 # gravitational acceleration (ft/s^2)

numnodes <- 601 # number of finite-difference nodes
dx <- extent/(numnodes - 1) # distance between nodes (ft)
dt <- 100 # time interval (s)

monpoints <- c(1, 201, 401, 601) # Nodes to monitor
montimes <- seq(1, length(boundary), by = 10) # time steps to monitor

initflow <- 250 # initial flow condition (ft^3/s)
times <- seq(0, 76000, by = dt)

boundary <- ifelse(times < 9000, # upstream hyrograph (ft^3/s)
250 + (750/pi) * (1 - cos(pi * times/(4500))), 250)

downstream <- rep(-1, length(boundary)) # values < 0 specify zero-gradient
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Figure 7: Progression of the flood wave simulated using the DWM engine with a spatial resolution of
50 feet and a temporal resolution of 2.1 seconds. Flow is routed out of the channel by assuming the
flow gradient is zero at the downstream boundary.

∆x (ft) ∆t (s) % error (peak flow) % error (time to peak) cost (s)

50 2.05 0.79 0.98 1,690.05
125 5.13 0.77 1.03 268.67
250 10.27 0.74 1.11 67.32
500 20.54 0.68 1.26 16.87

1,000 41.07 0.44 1.96 4.28

Table 3: DWM engine resolution and accuracy 50,000 feet downstream. Error values for peak flow
magnitude and timing are based on a standard benchmark (Sobey, 2001).

route_wave(slope, mannings, Cm, g, width, sideslope, initflow, boundary,
downstream, timestep = dt, spacestep = dx, numnodes = numnodes,
monitor.nodes = mpoints, monitor.times = mtimes, engine = "Dynamic",
boundary.type = "QQ")

The DWM engine, like the KWM engine, uses an explicit scheme and is subject to stability
constraints. In fact, the DWM engine is more prone to numerical instability compared to the KWM
engine and typically requires Courant numbers on the order of 0.06 (i.e. an order-of-magnitude increase
in the required temporal resolution compared to the KWM engine for a given spatial resolution). This
disadvantage is offset by a significant reduction in numerical error provided by the advanced finite-
differencing scheme. As shown in Figure 8, spatial resolutions of 1,000 feet provide accurate predictions
at 50,000 feet downstream, at the cost of severe instability near the downstream boundary. Resolutions
of 500 feet provide stable solutions throughout the full channel extent for a modest computation cost,
as shown in Table 3.

Simulations with discontinuous boundary conditions

The DWM engine can accommodate boundary conditions that specify zero flows (velocities) but non-
zero depths, such as can occur by the sudden closure of sluice gates. The last unsteady-flow example
illustrates use of the DWM engine to simulate unsteady flow conditions following sudden closure
of a sluice gate at the downstream end of a trapezoidal spillway. This example mimics example 14-1
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variety of model resolutions. Validation data from Sobey (2001) are shown as points. The solution
becomes unstable at very coarse resolutions but otherwise maintains a high degree of accuracy.
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Figure 9: Evolution of the water-surface profile through time following sudden closure of a control
gate. The Lax scheme produces smoother profiles, while the MacCormack scheme predicts steeper
gradients and produces small numerical instabilities.

in Chaudhry (2007). The upstream boundary condition is specified as a constant depth to represent
water level in a large reservoir. Example code for specifying discontinuous boundary conditions is
shown below.

slope <- 0.00008 # channel slope (vertical m / horizontal m)
extent <- 5000 # channel length (m)
mannings <- 0.013 # Manning's roughness
width <- 6.1 # channel width (m)
sideslope <- 1.5 # channel sideslope (horizontal m / vertical m)
g <- 9.81 # gravitational acceleration (m/s^2)
Cm <- 1.0 # conversion factor for Manning's equation (SI units)
extent <- 5000 # channel length (m)

numnodes <- 51 # number of nodes
dx <- extent/(numnodes - 1) # spatial resoution (m)
dt <- 10 # temporal resolution (s)

mp <- c(1, 16, 26, 31, 51) # monitor nodes
mt <- c(1, 61, 101, 161, 201) # monitor time steps

ic <- 126 # initial condition (m^3/s)
bctime <- 2000
bc <- rep(5.79, round(bctime/dt) + 1) # constant depth upstream (m)
dc <- rep(0, length(bc)) # flow dropped to 0 on first timestep

results <- route_wave(slope, mannings, Cm, g, width, sideslope, ic, bc, dc,
timestep = dt, spacestep = dx, numnodes = numnodes, engine = "Dynamic",
boundary.type = "yQ", monitor.nodes = mp, monitor.times = mt)

Figure 9 shows that the MacCormack scheme can produce small instabilities in the solution where
gradients are high. The rivr package provides access to an alternative DWM engine—the Lax diffusive
scheme (Lax, 1954)—which is also second-order accurate in space. Whereas the Lax scheme is less
accurate than the MacCormack scheme at coarser resolutions, it can provide smoother solutions to
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discontinuous boundary problems. The Lax scheme can be accessed with route_wave via the argument
scheme = "Lax".

Opportunities for extension

The rivr package was designed such that additional analysis capabilities could be implemented in
future versions with minimal modification to the existing code base. A wide variety of extensions could
be supported by the existing interface, both in terms of numerical methods and problem complexity.
In particular, there are many avenues for contribution to the unsteady flow analysis capabilities of
rivr.

Additional numerical schemes for unsteady flow analysis in prismatic channels—such as implicit
finite-difference schemes and finite-element methods—could be implemented with only superficial
changes to the current function interface provided by route_wave, i.e. new algorithms could be made
accessible through additional keyword options in existing arguments provided the underlying engines
followed the input template used by the KWM and DWM engines. Variable-step methods could
also be implemented with minimal changes, most simply by allowing the user to define an initial or
“default” time step and using an interpolation function to compute the upstream boundary condition
at intermediate time steps when required. The authors consider the degree of effort required to
implement such additional numerical schemes in rivr to be on par with typical expectations for an
individual project assignment in a graduate-level computational hydraulics or numerical methods
course.

Support for prismatic channels with arbitrary or compound geometry could be accomplished
with only minor restructuring of the channel geometry function, but would introduce additional
complexity to the specification of channel roughness (Yen, 2002) and the computation of normal and
critical depth (Chaudhry and Bhallamudi, 1988; Younis et al., 2009). Support for compound channels
is currently being considered for the next major version release of rivr.

Specification of variable channel geometry and slope, additional friction terms (e.g. bedform drag,
hydraulic structures) and additional source or sink terms (e.g. hillslope runoff, infiltration) would
require some modification to the current implementation but would largely consist of allowing users
to specify channel properties as vectors rather than as single values, and modifying the underlying
C++ code to access the appropriate vector elements when computing solutions at individual nodes.
These modifications would best be developed prior to, or in conjunction with, the implementation of
an implicit scheme. Such changes would, however, add considerable complexity to the formulation of
unsteady flow problems and could potentially distract from the primary purpose of the package as an
accessible tool for teaching.

Support for channel networks would likely require the development of a new function interface
that would essentially couple three or more instances of route_wave (e.g. two channels merging into
one) and provide a keyword argument for selecting different methods for resolving flow depth and
velocity at the junctions. Implementing such functionality would likely be a much larger endeavor
compared to the other extensions discussed, and could pose additional challenges in terms of obtaining
reasonably-fast solutions for moderately-large channel networks. It is important to note, however,
that discussion of channel network modeling is often neglected in open-channel hydraulics courses
due to the high complexity of problem formulation and solution algorithms; making channel network
solution algorithms demonstrable through rivr would therefore be of considerable educational value.

Concluding remarks

This article describes rivr, a first-of-its-kind R/C++ package for one-dimensional open-channel flow
computation with educational applications to hydraulic engineering degree programs and related
disciplines. The package provides a reliable and flexible toolset for modeling open-channel flows via a
simple function interface. Model outputs are formatted to facilitate analysis, tabulation, visualization
and export. Example computations of backwater curves and flood wave routing are provided to
demonstrate functionality and validate model results, and potential extensions to the package are
discussed. This article, along with the package documentation, provides information on the governing
equations and numerical implementations as well as a suite of use examples.
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Generalized Hermite Distribution
Modelling with the R Package hermite
by David Moriña, Manuel Higueras, Pedro Puig and María Oliveira

Abstract The Generalized Hermite distribution (and the Hermite distribution as a particular case) is
often used for fitting count data in the presence of overdispersion or multimodality. Despite this, to
our knowledge, no standard software packages have implemented specific functions to compute basic
probabilities and make simple statistical inference based on these distributions. We present here a set
of computational tools that allows the user to face these difficulties by modelling with the Generalized
Hermite distribution using the R package hermite. The package can also be used to generate random
deviates from a Generalized Hermite distribution and to use basic functions to compute probabilities
(density, cumulative density and quantile functions are available), to estimate parameters using the
maximum likelihood method and to perform the likelihood ratio test for Poisson assumption against a
Generalized Hermite alternative. In order to improve the density and quantile functions performance
when the parameters are large, Edgeworth and Cornish-Fisher expansions have been used. Hermite
regression is also a useful tool for modeling inflated count data, so its inclusion to a commonly used
software like R will make this tool available to a wide range of potential users. Some examples of
usage in several fields of application are also given.

Introduction

The Poisson distribution is without a doubt the most common when dealing with count data. There
are several reasons for that, including the fact that the maximum likelihood estimate of the population
mean is the sample mean and the property that this distribution is closed under convolutions (see
Johnson et al. 2005). However, it is very common in practice that data presents overdispersion or
zero inflation, cases where the Poisson assumption does not hold. In these situations it is reasonable
to consider discrete distributions with more than one parameter. The class of all two-parameter
discrete distributions closed under convolutions and satisfying that the sample mean is the maximum
likelihood estimator of the population mean are characterized in Puig (2003). One of these families is
just the Generalized Hermite distribution. Several generalizations of the Poisson distribution have
been considered in the literature (see, for instance, Gurland 1957; Lukacs 1970; Kemp and Kemp
1965, 1966), that are compound-Poisson or contagious distributions. They are families with probability
generating function (PGF) defined by

P(s) = exp(λ( f (s)− 1)) = exp(a1(s− 1) + a2(s2 − 1) + · · ·+ am(sm − 1) + · · · ), (1)

where f (s) is also a PGF and ∑m
i=1 ai = λ. Many well known discrete distributions are included

in these families, like the Negative Binomial, Polya-Aeppli or the Neyman A distributions. The
Generalized Hermite distribution was first introduced in Gupta and Jain (1974) as the situation where
am is significant compared to a1 in (1), while all the other terms ai are negligible, resulting in the PGF

P(s) = exp(a1(s− 1) + am(sm − 1)). (2)

After fixing the value of the positive integer m ≥ 2, the order or degree of the distribution, the domain
of the parameters is a1 > 0 and am > 0. Note that when am tends to zero, the distribution tends
to a Poisson. Otherwise, when a1 tends to zero it tends to m times a Poisson distribution. It is
immediate to see that the PGF in (2) is the same than the PGF of X1 + mX2, where Xi are independent
Poisson distributed random variables with population mean a1 and am respectively. From here, it
is straightforward to calculate the population mean, variance, skewness and excess kurtosis of the
Generalized Hermite distribution:

µ = a1 + mam, σ2 = a1 + m2am, (3)

γ1 =
a1 + m3am

(a1 + m2am)3/2 , γ2 =
a1 + m4am

(a1 + m2am)2 .

A useful expression for the probability mass function of the Generalized Hermite distribution in terms
of the population mean µ and the population index of dispersion d = σ2/µ is provided in Puig (2003).

P(Y = k) = P(Y = 0)
µk(m− d)k

(m− 1)k

[k/m]

∑
j=0

(d− 1)j(m− 1)(m−1)j

mjµ(m−1)j(m− d)mj(k−mj)!j!
, k = 0, 1, . . . (4)
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Figure 1: Hermite probability mass and distribution functions for the indicated parameter values.

where P(Y = 0) = exp(µ(−1+ d−1
m )) and [k/m] is the integer part of k

m . Note that m can be expressed
as m = d−1

1+log(p0)/µ
. Because the denominator is a measure of zero inflation, m can be understood as

an index of the relationship between the overdispersion and the zero inflation.

The probabilities can be also written in terms of the parameters a1, am using the identities given in
(3).

The case m = 2 in (2) is covered in detail in Kemp and Kemp (1965) and Kemp and Kemp (1966)
and the resulting distribution is simply called Hermite distribution. In that case, the probability mass
function, in terms of the parameters a1 and a2, has the expression

P(Y = k) = e−a1−a2

[k/2]

∑
j=0

ak−2j
1 aj

2
(k− 2j)!j!

, k = 0, 1, . . . (5)

The probability mass function and the distribution function for some values of a1 and a2 are shown in
Figure 1.

Gupta and Jain (1974) also develop a recurrence relation that can be used to calculate the probabili-
ties in a numerically efficient way:

pk =
µ

k(m− 1)
(pk−m(d− 1) + pk−1(m− d)) , k ≥ m, (6)

where pk = P(Y = k) and the first values can be computed as pk = p0
µk

k!

(
m−d
m−1

)k
, k = 1, . . . , m− 1.

Although overdispersion or multimodality are common situations when dealing with count data and
the Generalized Hermite distribution provides an appropriate framework to face these situations, the
use of techniques based on this distribution was not easy in practice as they were not available in any
standard statistical software. A description of the hermite package’s main functionalities will be given
in Section Package hermite. Several examples of application in different fields will be discussed in
Section Examples, and finally some conclusions will be commented in Section Conclusions.

Package hermite

Like the common distributions in R, the package hermite implements the probability mass function
(dhermite), the distribution function (phermite), the quantile function (qhermite) and a function for
random generation (rhermite) for the Generalized Hermite distribution. It also includes the function
glm.hermite, which allows to calculate, for a univariate sample of independent draws, the maximum
likelihood estimates for the parameters and to perform the likelihood ratio test for a Poisson null
hypothesis against a Generalized Hermite alternative. This function can also carry out Hermite
regression including covariates for the population mean, in a very similar way to that of the well
known R function glm.

Probability mass function

The probability mass function of the Generalized Hermite distribution is implemented in hermite
through the function dhermite. A call to this function might be

dhermite(x, a, b, m = 2)
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The description of these arguments can be summarized as follows:

• x: Vector of non-negative integer values.

• a: First parameter for the Hermite distribution.

• b: Second parameter for the Hermite distribution.

• m: Degree of the Generalized Hermite distribution. Its default value is 2, corresponding to the
classical Hermite distribution introduced in Kemp and Kemp (1965).

The recurrence relation (6) is used by dhermite for the computation of probabilities. For large
values of any parameter a or b (above 20), the probability of Y taking x counts is approximated using
an Edgeworth expansion of the distribution function (7), i.e. P(Y = x) = FH(x)− FH(x − 1). The
Edgeworth expansion does not guarantee positive values for the probabilities in the tails, so in case
this approximation returns a negative probability, the probability is calculated by using the normal
approximation P(Y = x) = Φ(x+)−Φ(x−) where Φ is the standard normal distribution function
and

x± =
x± 0.5− a−mb√

a + m2b
are the typified continuous corrections.

The normal approximation is justified taking into account the representation of any Generalized
Hermite random variable Y, as Y = X1 + mX2 where Xi are independent Poisson distributed with
population means a, b. Therefore, for large values of a or b, the Poissons are well approximated by
normal distributions.

Distribution function

The distribution function of the Generalized Hermite distribution is implemented in hermite through
the function phermite. A call to this function might be

phermite(q, a, b, m = 2, lower.tail = TRUE)

The description of these arguments can be summarized as follows:

• q: Vector of non-negative integer quantiles.

• lower.tail: Logical; if TRUE (the default value), the computed probabilities are P(Y ≤ x),
otherwise, P(Y > x).

All remaining arguments are defined as specified for dhermite.

If a and b are large enough (a or b > 20), X1 and X2 are approximated by N(a,
√

a) and N(b,
√

b)
respectively, so Y can be approximated by a normal distribution with mean a + mb and variance
a + m2b. This normal approximation is improved by means of an Edgeworth expansion (Barndorff-
Nielsen and Cox, 1989), using the following expression

FH(x) ≈ Φ(x∗)− φ(x∗) ·
(

1
6

γ1He2(x∗) +
1
24

γ2He3(x∗) +
1

72
γ2

1 He5(x∗)
)

, (7)

where Φ and φ are the typified normal distribution and density functions respectively, Hen(x) are the
nth-degree probabilists’ Hermite polynomials (Barndorff-Nielsen and Cox, 1989)

He2(x) = x2 − 1

He3(x) = x3 − 3x

He5(y) = x5 − 10x3 + 15x,

x∗ is the typified continuous correction of x considered in Pace and Salvan (1997)

x∗ = 1 +
1

24(a + m2b)
· x + 0.5− a−mb√

a + m2b
,

and γ1 and γ2 are respectively the skewness and the excess kurtosis of Y expressed in (3).

Quantile function

The quantile function of the Generalized Hermite distribution is implemented in hermite through the
function qhermite. A call to this function might be
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qhermite(p, a, b, m = 2, lower.tail = TRUE)

The description of these arguments can be summarized as follows:

• p: Vector of probabilities.

All remaining arguments are defined as specified for phermite. The quantile is right continuous:
qhermite(p,a,b,m) is the smallest integer x such that P(Y ≤ x) ≥ p, where Y follows an m-th order
Hermite distribution with parameters a and b.

When the parameters a or b are over 20, a Cornish-Fisher expansion is used (Barndorff-Nielsen
and Cox, 1989) to approximate the quantile function. The Cornish-Fisher expansion uses the following
expression

yp ≈
(

up +
1
6

γ1He2(up) +
1
24

γ2He3(up)−
1
36

γ2
1(2u3

p − 5up)

)√
a + m2b + a + mb,

where up is the p quantile of the typified normal distribution.

Random generation

The random generation function rhermite uses the relationship between Poisson and Hermite distri-
butions detailed in Sections Introduction and Probability mass function. A call to this function might
be

rhermite(n, a, b, m = 2)

The description of these arguments can be summarized as follows:

• n: Number of random values to return.

All remaining arguments are defined as specified for dhermite.

Maximum likelihood estimation and Hermite regression

Given a sample X = x1, . . . , xn of a population coming from a generalized Hermite distribution with
mean µ, index of dispersion d and order m, the log-likelihood function is

l(X; µ, d) = n · µ ·
(
−1 +

d− 1
m

)
+ log

(
µ(m− d)

m− 1

) n

∑
i=1

xi +
n

∑
i=1

log(qi(θ)), (8)

where qi(θ) = ∑
[xi/m]
j=0

θ j

(xi−mj)!j! and θ = (d−1)(m−1)(m−1)

mµ(m−1)(m−d)m .

The maximum likelihood equations do not always have a solution. This is due to the fact that
this is not a regular family of distributions because its domain of parameters is not an open set. The
following result gives a sufficient and necessary condition for the existence of such a solution (Puig,
2003):

Proposition 1 Let x1, . . . , xn be a random sample from a generalized Hermite population with fixed m. Then,

the maximum likelihood equations have a solution if and only if µ(m)

x̄m > 1, where x̄ is the sample mean and µ(m)

is the m-th order sample factorial moment, µ(m) = 1
n ·∑n

i=1 xi(xi − 1) · · · (xi −m + 1).

If the likelihood equations do not have a solution, the maximum of the likelihood function (8)
is attained at the border of the domain of parameters, that is, µ̂ = x̄, d̂ = 1 (Poisson distribution),
or µ̂ = x̄, d̂ = m (m times a Poisson distribution). The case µ̂ = x̄, d̂ = m corresponds to the very
improbable situation where all the observed values were multiples of m. Then, in general, when the
condition of Proposition 1 is not satisfied, the maximum likelihood estimators are µ̂ = x̄, d̂ = 1. This
means that the data is fitted assuming a Poisson distribution.

The package hermite allows to estimate the parameters µ and d given an univariate sample by
means of the function glm.hermite:

glm.hermite(formula, data, link = "log", start = NULL, m = NULL)

The description of the arguments can be summarized as follows:

• formula: Symbolic description of the model. A typical predictor has the form response ∼ terms
where response is the (numeric) response vector and terms is a series of terms which specifies a
linear predictor for response.
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• data: An optional data frame containing the variables in the model.

• link: Character specification of the population mean link function: "log" or "identity". By
default link = "log".

• start: A vector containing the starting values for the parameters of the specified model. Its
default value is NULL.

• m: Value for parameter m. Its default value is NULL, and in that case it will be estimated as m̂,
more details below.

The returned value is an object of class glm.hermite, which is a list including the following
components:

• coefs: The vector of coefficients.

• loglik: Log-likelihood of the fitted model.

• vcov: Covariance matrix of all coefficients in the model (derived from the Hessian returned by
the maxLik() output).

• hess: Hessian matrix, returned by the maxLik() output.

• fitted.values: The fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

• w: Likelihood ratio test statistic.

• pval: Likelihood ratio test p-value.

If the condition given in Proposition 1 is not met for a sample x, the glm.hermite function provides
the maximum likelihood estimates µ̂ = x̄ and d̂ = 1 and a warning message advising the user that the
MLE equations have no solutions.

The function glm.hermite can also be used for Hermite regression as described below and as will
be shown through practical examples in Sections Giles (2007) and DiGiorgio et al. (2004).

Covariates can be incorporated into the model in various ways (see, e.g., Giles 2007). In function
glm.hermite, the distribution is specified in terms of the dispersion index and its mean, which is then
related to explanatory variables as in linear regression or other generalized linear models. That is,
for Hermite regression, we assume Yi follows a generalized Hermite distribution of order m, where
we retain the dispersion index d (> 1) as a parameter to be estimated and let the mean µi for the i–th
observation vary as a function of the covariates for that observation, i.e., µi = h(xixixi

tβ), where xixixi is a
vector of covariates, t denotes the transpose vector, β is the corresponding vector of coefficients to be
estimated and h is a link function. Note that because the dispersion index d is taken to be constant,
this is a linear mean-variance (NB1) regression model.

The link function provides the relationship between the linear predictor and the mean of the
distribution function. Although the log is the canonical link for count data as it ensures that all the
fitted values are positive, the choice of the link function can be somewhat influenced by the context
and data to be treated. For example, the identity link is the accepted standard in biodosimetry as there
is no evidence that the increase of chromosomal aberration counts with dose is of exponential shape
(IAEA, 2011). Therefore, function glm.hermite allows both link functions.

A consequence of using the identity–link is that the maximum likelihood estimate of the parameters
obtained by maximizing the log–likelihood function of the corresponding model may lead to negative
values for the mean. Therefore, in order to avoid negative values for the mean, constraints in the
domain of the parameters must be included when the model is fitted. In function glm.hermite, this
is carried out by using the function maxLik from package maxLik (Henningsen and Toomet, 2011),
which is used internally for maximizing the corresponding log–likelihood function. This function
allows constraints which are needed when the identity–link is used.

It should also be noted that results may depend of the starting values provided to the optimization
routines. If no starting values are supplied, the starting values for the coefficients are computed/fixed
internally. Specifically, when the log–link is specified, the starting values are obtained by fitting a
standard Poisson regression model through a call to the internal function glm.fit from package stats.
If the link function is the identity and no initial values are provided by the user, the function takes 1 as
initial value for the coefficients. In both cases, the initial value for the dispersion index d̂ is taken to be
1.1.

Regarding the order of the Hermite distribution, it can be fixed by the user. If it is not provided
(default option), when the model includes covariates, the order m̂ is selected by discretized maximum
likelihood method, fitting the coefficients for each value of m̂ between 1 (Poisson) and 10, and selecting
the case that maximizes the likelihood. In addition, if no covariates are included in the model and no
initial values are supplied by the user, the naïve estimate m̂ = s2/x̄−1

1+log(p0)/x̄ , where p0 is the proportion
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of zeros in the sample is also considered. In the unlikely case the function returns m̂ = 10, we
recommend to check the likelihood of the next orders (m = 11, 12, . . .) fixing this parameter in the
function until a local minimum is found.

When dealing with the Generalized Hermite distribution it seems natural to wonder if data
could be fitted by using a Poisson distribution. Because the Poisson distribution is included in the
Generalized Hermite family, this is equivalent to test the null hypothesis H0 : d = 1 against the
alternative H1 : d > 1. To do this, an immediate solution is to use the likelihood ratio test, which
test-statistic is given by W = 2

(
l
(

X; µ̂, d̂
)
− l (X; µ̂, 1)

)
, where l is the log-likelihood function.

Under the null hypothesis W is not asymptotically χ2
1 distributed as usual, because d = 1 is on the

border of the domain of the parameters. Using the results of Self and Liang (1987) and Geyer (1994) it
can be shown that in this case the asymptotic distribution of W is a 50:50 mixture of a zero constant
and a χ2

1 distribution. The α percentile for this mixture is the same as the 2α upper tail percentile for a
χ2

1 (Puig, 2003). The likelihood ratio test is also performed through glm.hermite function, using the
maximum likelihood estimates µ̂ and d̂.

A summary method for objects of class glm.hermite is included in the hermite package, giving a
summary of relevant information, including the residuals minimum, maximum, median and first and
third quartiles, the table of coefficients including the corresponding standard errors and significance
tests based on the Normal reference distribution for regression coefficients and the likelihood ratio test
against the Poisson distribution for the dispersion index. The AIC value for the proposed model is
also reported.

Examples

Several examples of application of the package hermite in a wide range of contexts are discussed in
this section, including classical and recent real datasets and simulated data.

Hartenstein (1961)

This example by Hartenstein (1961) describes the counts of Collenbola microarthropods in 200 samples
of forest soil. The frequency distribution is shown in Table 1.

Microarthropods per sample 0 1 2 3 4 5

Frequency 122 40 14 16 6 2

Table 1: Frequency distribution of Collenbola microarthropods.

This dataset was analyzed in Puig (2003) with a Generalized Hermite distribution of order m = 3.
The maximum likelihood estimation gave a mean of µ̂ = x̄ = 0.75, and an index of dispersion of
d̂ = 1.8906.

Using glm.hermite we calculate the parameter estimates:

> library("hermite")
> data <- c(rep(0, 122), rep(1, 40), rep(2, 14), rep(3, 16), rep(4, 6), rep(5, 2))
> mle1 <- glm.hermite(data ~ 1, link = "log", start =NULL, m = 3)$coefs

(Intercept) dispersion.index order
-0.2875851 1.8905920 3.0000000

We can see that these parameter estimates are equivalent to those reported in Puig (2003).

The estimated expected frequencies are shown in Table 2.

Microarthropods per sample 0 1 2 3 4 5

Frequency 118.03 49.11 10.22 14.56 5.61 1.15

Table 2: Expected frequency distribution of Collenbola microarthropods.

The frequencies in Table 2 have been obtained running the following code and using the transfor-
mation

b =
µ(d−1)
m(m−1) ,

a = µ−mb.
(9)
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> a <- -exp(mle1$coefs[1])*(mle1$coefs[2] - mle1$coefs[3])/(mle1$coefs[3] - 1)
> b <- exp(mle1$coefs[1])*(mle1$coefs[2] - 1)/(mle1$coefs[3]*(mle1$coefs[3] - 1))
> exp <- round(dhermite(seq(0,5,1), a, b, m = 3)*200,2)

Note that the null hypothesis of Poisson distributed data is strongly rejected, with a likelihood
ratio test statistic W = 48.66494 and its corresponding p-value= 1.518232e− 12, as we can see with

> mle1$w
[1] 48.66494
> mle1$pval
[1] 1.518232e-12

Giles (2010)

In Giles (2010), the author explores an interesting application of the classical Hermite distribution
(m = 2) in an economic field. In particular, he proposes a model for the number of currency and
banking crises. The reported maximum likelihood estimates for the parameters were â = 0.936
and b̂ = 0.5355, slightly different from those obtained using glm.hermite, which are â = 0.910
and b̂ = 0.557. The actual and estimated expected counts under Hermite and Poisson distribution
assumptions are shown in Table 3.

Currency and banking crises 0 1 2 3 4 5 6 7

Observed 45 44 19 17 19 13 6 4
Expected (Hermite) 38.51 35.05 37.40 24.36 15.96 8.33 4.23 1.88
Expected (Poisson) 22.07 44.66 45.20 30.49 15.43 6.25 2.11 0.61

Table 3: Observed and expected frequency distributions of currency and banking crises.

In this example, the likelihood ratio test clearly rejects the Poisson assumption in favor of the
Hermite distribution (W = 40.08, p-value=1.22e− 10).

The expected frequencies of the Hermite distribution shown in Table 3 have been calculated
running the code,

> exp2 <- round(dhermite(seq(0, 7, 1), 0.910, 0.557, m = 2)*167, 2)
> exp2

Giles (2007)

In Giles (2007), the author proposes an application of Hermite regression to the 965 number 1 hits
on the Hot 100 chart over the period January 1955 to December 2003. The data were compiled and
treated with different approaches by Giles (see Giles 2006 for instance), and is available for download
at the author website http://web.uvic.ca/~dgiles/. For all recordings that reach the number one
spot, the number of weeks that it stays at number one was recorded. The data also allow for reentry
into the number one spot after having being relegated to a lower position in the chart. The actual and
predicted counts under Poisson and Hermite distributions are shown in Table 4.

Several dummy covariates were also recorded, including indicators of whether the recording
was by Elvis Presley or not, the artist was a solo female, the recording was purely instrumental and
whether the recording topped the charts in nonconsecutive weeks.

The estimates and corresponding standard errors are obtained through the instructions

> data(hot100)
> fit.hot100 <- glm.hermite(Weeks ~ Elvis+Female+Inst+NonCon, data = hot100,
+ start = NULL, m = 2)
> fit.hot100$coefs

(Intercept) Elvis Female Inst NonCon
0.4578140 0.9126080 0.1913968 0.3658427 0.6558621

dispersion.index order
1.5947901 2.0000000

> sqrt(diag(fit.hot100$vcov))
[1] 0.03662962 0.16208682 0.07706250 0.15787552 0.12049736 0.02533045

For instance, we can obtain the predicted value for the average number of weeks that an Elvis record
hits the number one spot. According to the model, we obtain a predicted value of 3.9370, whereas the
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Weeks Actual Poisson Hermite

0 337 166.95 317.85
1 249 292.91 203.58
2 139 256.94 214.60
3 93 150.26 109.61
4 47 65.90 67.99
5 35 23.12 29.32
6 21 6.76 13.78
7 13 1.69 5.20
8 9 0.37 2.04
9 8 0.07 0.69

10 5 0.01 0.24
11 2 0.00 0.07
12 2 0.00 0.02
13 4 0.00 0.01
14 0 0.00 0.00
15 1 0.00 0.00

Table 4: Observed and expected frequency distribution of Hot 100 data.

observed corresponding value is 3.9375. The likelihood ratio test result justifies the fitting through a
Hermite regression model instead of a Poisson model:

> fit.hot100$w; fit.hot100$pval
[1] 385.7188
[1] 3.53909e-86

DiGiorgio et al. (2004)

In diGiorgio et al. (2004) the authors perform an experimental simulation of in vitro whole body
irradiation for high-LET radiation exposure, where peripheral blood samples were exposed to 10
different doses of 1480MeV oxygen ions. For each dose, the number of dicentrics chromosomes per
blood cell were scored. The corresponding data is included in the package hermite, and can be loaded
into the R session by

> data(hi_let)

In Puig and Barquinero (2011) the authors apply Hermite regression (to contrast the Poisson assump-
tion) for fitting the dose-response curve, i.e. the yield of dicentrics per cell as a quadratic function of
the absorbed dose linked by the identity function (which is commonly used in biodosimetry). This
model can be fitted using the glm.hermite function in the following way:

> fit.hlet.id <- glm.hermite(Dic ~ Dose+Dose2-1, data = hi_let, link = "identity")

Note that the model defined in fit.hlet.id has no intercept.

A summary of the most relevant information can be obtained using the summary() method as in

> summary(fit.hlet.id)
Call:
glm.hermite(formula = Dic ~ Dose + Dose2 - 1, data = hi_let,

link = "identity")

Deviance Residuals:
Min 1Q Median 3Q Max

-0.06261842 -0.03536264 0.00000000 0.10373982 1.42251927

Coefficients:
Estimate Std. Error z value p-value

Dose 0.4620671 0.03104362 14.884450 4.158952e-50
Dose2 0.1555365 0.04079798 3.812357 1.376478e-04
dispersion.index 1.2342896 0.02597687 107.824859 1.468052e-25
order 2.0000000 NA NA NA
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Figure 2: Absorbed dose density plot.

(Likelihood ratio test against Poisson is reported by *z value* for *dispersion.index*)

AIC: 5592.422

We can see the maximum likelihood estimates and corresponding standard errors in the output
from the summary output. Note also that the likelihood ratio test rejects the Poisson assumption
(W = 107.82, p-value=1.47e− 25).

Higueras et al. (2015)

In the first example in Higueras et al. (2015) the Bayesian estimation of the absorbed dose by Cobalt-60
gamma rays after the in vitro irradiation of a sample of blood cells is given by a density proportional
to the probability mass function of a Hermite distribution taking 102 counts whose mean and variance
are functions of the dose x, respectively µ(x) = 45.939x2 + 5.661x and v(x) = 8.913x4 − 22.553x3 +
69.571x2 + 5.661x.

The reparametrization in terms of a and b as a function of the dose is given by the transformation

a(x) = 2µ(x)− v(x), b(x) =
v(x)− µ(x)

2
.

This density only makes sense when a(x) and b(x) are positive. The dose x > 0 and consequently
b(x) is always positive and a(x) is positive for x < 3.337. Therefore, the probability density outside
(0, 3.337) is 0.

The following code generates the plot of the resulting density,

> u <- function(x) 45.939*x^2 + 5.661*x
> v <- function(x) 8.913*x^4 - 22.553*x^3 + 69.571*x^2 + 5.661*x
> a <- function(x) 2*u(x) - v(x); b <- function(x) (v(x) - u(x))/2
> dm <- uniroot(function(x) a(x), c(1, 4))$root; dm
> nc <- integrate(Vectorize(function(x) dhermite(102, a(x), b(x))), 0, dm)$value
> cd <- function(x){ vapply(x, function(d) dhermite(102, a(d), b(d)), 1)/nc }
> x <- seq(0, dm, .001)
> plot(x, cd(x), type = "l", ylab = "Probability Density", xlab = "Dose, x, Gy")

Figure 2 shows this resulting density.

Random number generation

A vector of random numbers following a Generalized Hermite distribution can be obtained by means
of the function rhermite. For instance, the next code generates 1000 observations according to an
Hermite regression model, including Bernoulli and normal covariates x1 and x2:

> n <- 1000
> #### Regression coefficients
> b0 <- -2
> b1 <- 1

The R Journal Vol. 7/2, December 2015 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLES 272

0
50

10
0

15
0

20
0

25
0

30
0

Value

C
ou

nt
s

0 1 2 3 4 5 6 7 8 9 10 12 17

Figure 3: Random generated Hermite values.

> b2 <- 2
> #### Covariate values
> set.seed(111111)
> x1 <- rbinom(n, 1, .75)
> x2 <- rnorm(n, 1, .1)
> u <- exp(b0 + b1*x1 + b2*x2)
> d <- 2.5
> m <- 3
> b <- u*(d - 1)/(m*(m - 1))
> a <- u - m*b
> x <- rhermite(n, a, b, m)

This generates a multimodal distribution, as can be seen in Figure 3. The probability that this
distribution take a value under 5 can be computed using the function phermite:

> phermite(5, mean(a), mean(b), m = 3)
[1] 0.8734357

Conversely, the value that has an area on the left of 0.8734357 can be computed using the function
qhermite:

> qhermite(0.8734357, mean(a), mean(b), m = 3)
[1] 5

> mle3 <- glm.hermite(x ~ factor(x1) + x2, m = 3)
> mle3$coefs

(Intercept) factor(x1)1 x2 dispersion.index order
-1.809163 1.017805 1.839606 2.491119 3.000000

> mle3$w;mle3$pval
[1] 771.7146
[1] 3.809989e-170

In order to check the performance of the likelihood ratio test, we can simulate a Poisson sample
and run the funtion glm.hermite again:

> y <- rpois(n, u)
> mle4 <- glm.hermite(y ~ factor(x1) + x2, m = 3)
> mle4$coefs[4]
dispersion.index

1
> mle4$w; mle4$pval
[1] -5.475874e-06
[1] 0.5

We can see that in this case the maximum likelihood estimate of the dispersion index d is almost 1
and that the Poisson assumption is not rejected (p-value= 0.5). If the MLE equations have no solution,
the function glm.hermite will return a warning:
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> z <- rpois(n, 20)
> mle5 <- glm.hermite(z ~ 1, m = 4)
Warning message:
In glm.hermite(z ~ 1, m = 4) : MLE equations have no solution

In this case, we have µ(4)

z̄4 = 0.987 and therefore the condition of Proposition 1 is not met.

Conclusions

Hermite distributions can be useful for modeling count data that presents multi-modality or overdis-
persion, situations that appear commonly in practice in many fields. In this article we present the
computational tools that allow to overcome these difficulties by means of the Generalized Hermite
distribution (and the classical Hermite distribution as a particular case) compiled as an R package.
The hermite package also allows the user to perform the likelihood ratio test for Poisson assumption
and to estimate parameters using the maximum likelihood method. Hermite regression is also a
useful tool for modeling inflated count data, and it can be carried out by the hermite package in
a flexible framework and including covariates. Currently, the hermite package is also used by the
radir package (Moriña et al., 2015) that implements an innovative Bayesian method for radiation
biodosimetry introduced in Higueras et al. (2015).
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Code Profiling in R: A Review of Existing
Methods and an Introduction to Package
GUIProfiler
by Angel Rubio and Fernando de Villar

Abstract Code analysis tools are crucial to understand program behavior. Profile tools use the results
of time measurements in the execution of a program to gain this understanding and thus help in the
optimization of the code. In this paper, we review the different available packages to profile R code
and show the advantages and disadvantages of each of them. In additon, we present GUIProfiler, a
package that fulfills some unmet needs.

Package GUIProfiler generates an HTML report with the timing for each code line and the
relationships between different functions. This package mimics the behavior of the MATLAB profiler.
The HTML report includes information on the time spent on each of the lines of the profiled code
(the slowest code is highlighted). If the package is used within the RStudio environment, the user
can navigate across the bottlenecks in the code and open the editor to modify the lines of code where
more time is spent. It is also possible to edit the code using Notepad++ (a free editor for Windows) by
simply clicking on the corresponding line. The graphical user interface makes it easy to identify the
specific lines which slow down the code.

The integration in RStudio and the generation of an HTML report makes GUIProfiler a very
convenient tool to perform code optimization.

Introduction

Software profiling is the analysis of a computer program performed by measuring the time spent
on each line of code, code coverage or memory usage during its execution. Profiling is the first step
towards efficient programming. The development of efficient software depends on identification of
key bottlenecks. Focusing the optimization only on the bottlenecks is known to maximize efficiency in
both development time and program runtime (Wilson et al., 2014). In interpreted languages (including
R) a few lines can form major bottlenecks. See for example Visser et al. (2015).

With the advent of data mining, data analytics and big data analysis, code profiling is gaining
prominence. In these fields, one potential limitation to scientific advance is inefficient code. Since the
factors that affect the execution time are difficult to foresee beforehand, and the bottlenecks (if the
code is large) are especially difficult to identify, the need of a profiling tool is apparent. In addition to
that, inefficient code is also prone to have bugs. Our experience is that profiling is also an indirect way
to fix errors in software.

The base distribution of R includes a profiling tool that consists of the functions Rprof to start and
stop the profiling and summaryRprof as a parser of the output. The description of Rprof given in the
help file is: “Profiling works by writing out the call stack every interval seconds (...)”. This means that
R uses the operating system interrupts to sample and write the call-stack (by default every 20 msecs).
Therefore, lines that take more than 20 msecs appear at least once in the file written by the internal R
profiler. On the other hand, a “fast” line of code where the execution time is strictly less than 20 msecs
may or may not appear in the output file (with the probability of being included proportional to its
execution time). Therefore, the output of profiling the same code is not identical for different runs.
Overall it can be noted that statistical profiling (i.e., the one implemented in R) intrudes very little on
the executed code (i.e., it almost does not affect its execution time) and is considered to be an efficient
way to achieve proper profiling.

In previous versions of R (prior to 3.0), Rprof only worked at the function level (i.e., the profiler
only provided information on the functions in the stack). Since version 3.0, it is possible to perform
line profiling. If the line.profiling option is selected, the file generated by Rprof also includes
information on the specific line of code in the stack (not only the function). This extension made it
possible to identify the specific lines that slow down the code.

The output of Rprof is quite simple: a file that shows the name and some other characteristics of a
function every time it is found to be in the stack. Despite this simplicity, it is necessary to parse this file
to understand the content and R provides the “summaryRprof function (...) that can be used to process
the output file to produce a summary of the usage” (from its help file).

The functionality of summaryRprof falls short in some aspects. If a function is called several times,
summaryRprof fails to identify the specific function call that is slowing down the computation. As
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functions can be nested in other functions, finding the true bottleneck is not obvious. In summaryRprof,
it is not possible to track the hierarchy among the functions. summaryRprof was developed prior to the
line.profiling option and does not take full advantage of this information. This fact will be shown
in detail in the analysis of the different profile tools below.

These limitations have fostered the development of other command line functions and packages
such as proftable, aprof, proftools, profr, and lineprof. proftable (Klevtsov, 2014) is a convenient
command line function that parses the output of Rprof and shows the output in a reasonable and
intuitive way. aprof (Visser et al., 2015) displays graphically the time spent on each line of code and
provides an estimate on how optimizing a single line of code will affect the overall performance. It also
shows the output of memory profiling. proftools (Tierney and Jarjour, 2013) includes useful command
line tools to perform the profiling. Among other functionalities, it shows a graph of the different
hierarchical relationships between the called functions. lineprof (Wickham, 2014a) can be considered
an evolution of profr (Wickham, 2014b) and is developed by the same author. It is a profiling package
that provides output integrated in the RStudio environment. It shows a nice graphical output and
also includes memory profiling capabilities. In addition to these tools, the pbdPAPI package (Schmidt
et al., 2015) offers access to low-level hardware counter information and is mainly used for advanced
profiling. On the other hand, the most convenient package to test the performance of a single line of
code is microbenchmark (Mersmann, 2014). It cannot be applied, though, to profile complex code. To
our knowledge, these are all the available tools to aid in R profiling.

All these packages are, as most R packages, command line tools. Although they represent an
important advance if compared with the summaryRprof function, none of them are especially user-
friendly. In comparison, MATLABTM (The MathWorks Inc., 2015) provides a profiler that includes
a convenient user interface by means of an HTML report. Profiling MATLAB code is easy and
straightforward with the aid of its profile tool. An R profiler with this convenient front-end that
includes GUI capabilities would be highly desirable.

Fortunately, the development of this tool is not such a challenging task. Several packages such as
Nozzle.R1 (Gehlenborg, 2013) or knitr (Xie, 2014) are available on CRAN that automatically generate
HTML reports based on an easy syntax. GUIProfiler (de Villar and Rubio, 2015) is an R package that
automatically generates an HTML report that summarizes the profiling results. These reports are
generated with the aid of Nozzle.R1. Its integration in the RStudio environment makes it especially
user friendly.

The following sections show how to use package GUIProfiler as well as provide a review on the
profiling capabilities of the aforementioned tools using the same sample code for all of them.

Case study using GUIProfiler

The first lines of code are required for the installation of the package. As GUIProfiler is hosted on
CRAN, the installation is straightforward:

install.packages("GUIProfiler")
library("GUIProfiler")

If the package is properly installed, no errors should appear after calling the library command.
GUIProfiler has a practical limitation that must be taken into account: The profiled code must be
stored on an accessible file. It is therefore better to run a source command instead of writing the lines
directly in the command line. The reason of this limitation is that the report is based on the output
from Rprof and that it only includes information on the functions stored at files, not from the script
that calls them. In addition to that, it only accepts one function per file. R does allow to include several
functions in a single file. We are currently working to circumvent this limitation.

Here we present some sample code (included also in the GUIProfiler documentation) that will be
used with all the profiling tools. The HTML report generated by package GUIProfiler is shown in
Figure 1 and the code is,

temp <- tempdir()
# Definition of two functions
normal.solve <- function(A, b) {

Output <- solve(crossprod(A), t(A) %*% b)
}
chol.solve <- function(A, b) {

L <- chol(crossprod(A))
Output1 <- backsolve(L, t(A) %*% b, transpose = TRUE)
Output2 <- backsolve(L, Output1)

}
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compareMethods <- function() {
library(MASS)
# Call the functions
source(paste(temp, "/normal.solve.R", sep = ""))
source(paste(temp, "/chol.solve.R", sep = ""))
# Solving a big system of equations
nrows <- 1000
ncols <- 500
A <- matrix(rnorm(nrows * ncols), nrows, ncols)
b <- rnorm(nrows)
# Testing different possibilities
Sol1 <- qr.solve(A, b)
# Using QR factorization
Sol2 <- coefficients(lm.fit(A, b))
# lm.fit, based on QR but with some overhead
Sol3 <- ginv(A) %*% b
# Using the pseudoinverse based on SVD
Sol4 <- normal.solve(A, b)
# Using a function based on the normal equations.
Sol5 <- chol.solve(A, b)
# Using Choleski factorization.

}
# Dump these functions to three different files
dump("normal.solve", file = paste(temp, "/normal.solve.R", sep = ""))
dump("chol.solve", file = paste(temp, "/chol.solve.R", sep = ""))
dump("compareMethods", file = paste(temp, "/compareMethods.R", sep = ""))
source(paste(temp, "/compareMethods.R", sep = ""))

This code implements the minimum squares solution of a linear system of equations using different
methods: QR factorization, the lm.fit function (that internally also uses the QR factorization), compu-
tation of a generalized pseudoinverse (that internally uses the SVD factorization), using the normal
equations and, finally, using the Choleski factorization.The solutions using either of them are identical,
i.e., the vectors Sol1, Sol2, Sol3, Sol4 and Sol5 are identical up to computer precision.

The lines to profile the code are only the last ones in the example code of the RRprofReport function.
Specifically,

# Profile the code
RRprofStart()
compareMethods()
RRprofStop()
RRprofReport()

Each of these lines are self-explanatory. In the first line we activate and start the GUIProfiler. The
following line executes the function that is being profiled. Once this line finishes, the profiling is
stopped and the last line generates the report based on the output of the R profiler. In the RStudio
environment, this report is shown in the viewer pane. In addition, the markers pane indicates the
lines of code where more time was spent. It is possible to navigate through the source code by simply
clicking on the corresponding markers.

If the program is not executed in the RStudio environment, RRprofReport() opens a new browser
window. Figure 1 shows a snapshot of the generated report. The report consists of two groups of
tables: a summary of the called functions with the time spent on each of them and a group of tables
with the time spent on each line of code for each function. A convenient feature, if the browser is the
Internet Explorer and Notepad++ is installed, is that the line numbers of the functions are clickable:
Once a line number is clicked, the corresponding file is opened with the cursor on the selected line (as
shown in Figure 2). On the right panel of Figure 2, the layout of GUIProfiler is shown in the RStudio
environment. Note that RStudio version≥ 0.99 is required. We tested GUIProfiler on RStudio 0.99.467.
The navigation across the different functions can be done using the markers tab.

Comparison between different profiling tools

Using the same example, we compare the functionalities of the different profiling tools in their ability
to provide insight on the profiled code. All the profiling tools (including GUIProfiler) manipulate the
file generated by Rprof to provide a more readable and useful output. Therefore, most of the code
to profile a function is shared by the different packages: First of all there is a call to Rprof to start
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Figure 1: HTML report generated by GUIProfiler.

HTML Graphical Function Line Memory Connection
report output nesting profiling profiling with editors

GUIProfiler 3 3 3 3 7 3(*)
summaryRprof 7 7 7 3 minimal 7

proftable 7 7 3 3 7 7
aprof 7 3 3 3 3 7

proftools 7 3 3 7 7 7
profr 7 3 3 7 7 7

lineprof 3 3 3 3 3 7

MATLAB 3 3 3 3 3(**) 3

Table 1: Comparison of different profile tools for R. (*) GUIProfiler connects the results with RStudio
and with the Notepad++ editor. (**) Non-documented characteristic.

profiling, the code itself to be profiled and a second call to Rprof to stop profiling. The differences
between them are the way the output of Rprof is summarized and displayed.

Table 1 shows a comparison between the functionalities of Rprof parsers used to profile R code.
The first column indicates if the package generates an HTML report. The second column indicates
if the package generates some visual graphical output to show the results. The “Function nesting”
column shows whether the package is able to display the hierarchy across the function calls. The “Line
profiling” column states whether the package provides information related with each of the lines in
the code, not only the functions (i.e., whether it takes advantage of the line.profiling option). The
“Memory profiling” column states whether the package shows results of profiling memory usage and
finally, the “Connection with editors” column states whether the package has a direct link with an
editor to fix the potential bottlenecks.

We also included the features of the MATLAB profiler. As can be seen, it offers all these functional-
ities. One anecdotal note of the MATLAB profiler is that, even though it implements memory profiling
(in a very effective and user friendly manner), this feature is non-documented. summaryRprof, line-
prof and aprof implement memory profiling in R. lineprof and GUIProfiler provide an HTML report.
GUIProfiler is the only one that provides a connection with editors.

We include Table 2 to show the dependencies for each of the packages. As a general rule, pack-
ages with few dependencies are easier to install and to run in different conditions (i.e. on a server
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Figure 2: Layout of GUIProfiler. Left: Internet Explorer and Notepad++. Right: RStudio environment.
The report is shown in the viewer tab on the right, and the markers tab on the left can be used to
navigate across the code.

.

Tool Dependencies

GUIProfiler Nozzle.R1, Rgraphviz (Hansen et al., 2015),
graph (Gentleman et al., 2015), proftools

summaryRprof None
proftable None
aprof grDevices
proftools Rgraphviz, graph
profr stringr (Wickham, 2015), plyr (Wickham, 2011)
lineprof devtools (installation; Wickham and Chang, 2015),

environment (C compiler),
shiny (Chang et al., 2015, and its dependencies)

Table 2: Dependencies of the packages analyzed. Only packages not included in the standard
distribution are mentioned.

enviroment). The following sections describe how to profile the example using the tools shown in
Table 1.

summaryRprof

The code to perform the profiling of the example using summaryRprof is:

Rprof(tmp <- tempfile(), line.profiling = TRUE)
compareMethods()
Rprof(append = FALSE)
summaryRprof(tmp)
unlink(tmp)

and the output,

$by.self
self.time self.pct total.time total.pct
"La.svd" 0.80 40.82 0.80 40.82
".Call" 0.40 20.41 0.40 20.41
".Fortran" 0.38 19.39 0.38 19.39
"crossprod" 0.12 6.12 0.12 6.12
".External" 0.10 5.10 0.10 5.10
"%*%" 0.08 4.08 0.08 4.08
...More lines not included...

$by.total
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total.time total.pct self.time self.pct
"compareMethods" 1.96 100.00 0.00 0.00
"ginv" 0.90 45.92 0.00 0.00
"svd" 0.82 41.84 0.02 1.02
"La.svd" 0.80 40.82 0.80 40.82
".Call" 0.40 20.41 0.40 20.41
"coefficients" 0.40 20.41 0.00 0.00
"lm.fit" 0.40 20.41 0.00 0.00
".Fortran" 0.38 19.39 0.38 19.39
"qr" 0.38 19.39 0.00 0.00
...More lines not included...

$sample.interval
[1] 0.02

$sampling.time
[1] 1.96

If we focus on the "by.self" part, the information is not too useful: the .Call or .Fortran functions
can be used anywhere and depending on their argument, their behavior is completely different. On
the other hand, the crossprod function is used many times in the code and the table only shows
the overall time spent on it. Although the line.profiling option was set, line information does
not appear anywhere in the output. The latest version of R (by setting summaryRprof(tmp,lines =
"show")) provides basic information on line profiling.

The "by.total" part states that the most costly functions are ginv, svd and La.svd. However,
these functions are in fact all the same: ginv calls svd that, in turn, calls La.svd. The output does not
show this hierarchy in the calls to the function. In addition, the summaryRprof output does not show
locations of the calls to the corresponding functions within the code. The output presents therefore
serious limitations for its practical use that can be solved with other tools described below.

proftable

proftable is a convenient function that solves some of the aforementioned problems of summaryR-
prof: Each line of code is clearly identified and can be easily tracked. The function can be accessed
from GitHub. The code to run the example is:

Rprof(tmp <- tempfile(), line.profiling = TRUE)
compareMethods()
Rprof(append = FALSE)
source("https://raw.githubusercontent.com/noamross/noamtools/master/R/proftable.R")
proftable(tmp)

And the output,

PctTime Call
36.364 compareMethods > 1#15 > ginv > svd > La.svd
20.000 compareMethods > 1#14 > coefficients > lm.fit > .Call
19.091 compareMethods > 1#13 > qr.solve > qr > qr.default > .Fortran
4.545 compareMethods > 1#15 > ginv > %*%
3.636 compareMethods > 1#10 > matrix > rnorm > .External
2.727 compareMethods > 1#15 > ginv > svd > La.svd > matrix
2.727 compareMethods > 1#16 > normal.solve > 2#3 > solve > crossprod
2.727 compareMethods > 1#16 > normal.solve > 2#3 > solve > solve.default
1.818 compareMethods > 1#17 > chol.solve > 3#3 > chol > crossprod
0.909 C:\\Some directories...\\chol.solve.R > 3: > #File

#File 1: C:\Users\arubio\AppData\Local\Temp\RtmpEH6kiO/compareMethods.R
#File 2: C:\Users\arubio\AppData\Local\Temp\RtmpEH6kiO/normal.solve.R
#File 3: C:\Users\arubio\AppData\Local\Temp\RtmpEH6kiO/chol.solve.R

Parent Call: None

Total Time: 2.2 seconds
Percent of run time represented: 94.5 %
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Figure 3: Output generated by profileplot of an ‘aprof’ object. Left panel: accumulated time and
time spent on each line of code. Right: content for each line of code and the spent on each of them.

.

In this case the hierarchical relationships between ginv, svd and La.svd (as well as other ones) are
clearly stated. Each line of code may appear several times. This “excess” of information can be useful
to identify within each line of code which is the most costly part. However, it is also confusing. For
example, line 15 of the first archive appears several times in the list since svd and matrix multiplication
(both inside the ginv function) are costly operations.

proftable includes the location of each line in each file, making their analysis within a context
easier. proftable is a simple, yet very useful tool.

aprof

aprof also works with the output of Rprof and provides visual aids based on line profiling. It helps to
identify the most promising sections of code to optimize. One interesting unique functionality is that
aprof also projects the potential gains. The last version has also memory profiling included. The code
to run aprof is:

library(aprof)
Rprof(tmp <- tempfile(), line.profiling = TRUE)
compareMethods()
Rprof(append = FALSE)
fooaprof <- aprof(paste(temp, "/compareMethods.R", sep = ""), tmp)
plot(fooaprof)
profileplot(fooaprof)
summary(fooaprof)

Running the provided code in aprof generates nice plots that describe the time spent on each line
of code (and the code itself). Figure 3 shows the aprof output. The summary function estimates the
speed-up by optimizing a single line of code (or all the lines of code). The output to the console is:

Largest attainable speed-up factor for the entire program

when 1 line is sped-up with factor (S):

Speed up factor (S) of a line
1 2 4 8 16 S -> Inf**

Line*: 15 : 1.00 1.40 1.75 2.00 2.15 2.33
Line*: 13 : 1.00 1.06 1.10 1.12 1.13 1.14
Line*: 14 : 1.00 1.06 1.10 1.12 1.13 1.14
Line*: 16 : 1.00 1.03 1.05 1.06 1.06 1.07
Line*: 17 : 1.00 1.03 1.05 1.06 1.06 1.07
Line*: 10 : 1.00 1.01 1.02 1.02 1.02 1.02

Lowest attainable execution time for the entire program when

lines are sped-up with factor (S):
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Speed up factor (S) of a line
1 2 4 8 16

All lines 2.840 1.420 0.710 0.355 0.178
Line*: 15 : 2.840 2.030 1.625 1.423 1.321
Line*: 13 : 2.840 2.670 2.585 2.543 2.521
Line*: 14 : 2.840 2.670 2.585 2.543 2.521
Line*: 16 : 2.840 2.750 2.705 2.683 2.671
Line*: 17 : 2.840 2.750 2.705 2.683 2.671
Line*: 10 : 2.840 2.810 2.795 2.788 2.784

Total sampling time: 2.84 seconds
* Expected improvement at current scaling
** Asymtotic max. improvement at current scaling

The line of code ‘fooaprof <-aprof("myfile.R..."’ can be run for each of the files to get the profiling
of all the executed functions. In this case it can be done by,

compareaprof <- aprof(paste(temp, "/compareMethods.R", sep = ""), tmp)
plot(compareaprof)
profileplot(compareaprof)
compareaprof <- aprof(paste(temp, "/normal.solve.R", sep = ""), tmp)
plot(compareaprof)
profileplot(compareaprof)
compareaprof <- aprof(paste(temp, "/chol.solve.R", sep = ""), tmp)
plot(compareaprof)
profileplot(compareaprof)

Alternatively, if the user wants to go into more detail for each of the functions, targetedSummary can
be used to disentangle nested functions.

The information provided by aprof and GUIProfiler is very similar: aprof provides the output as
an image and GUIProfiler as an HTML report.

proftools

proftools provides tools for examining Rprof profile output. It shows graphically the dependencies
among the different functions and the time spent on each of them. The code to profile the example is:

library(proftools)
Rprof(tmp <- tempfile(), line.profiling = TRUE)
compareMethods()
Rprof(append = FALSE)
pd <- readProfileData(tmp)
plotProfileCallGraph(pd, style = google.style, score = "total", nodeSizeScore = "none")

The user can get this information in the console by using the function printProfileCallGraph.
The corresponding output is for this example:

Call graph
index % time % self % children name
[1] 100.00 0.00 100.00 compareMethods [1]
1.06 0.00 %*% [15]
0.00 2.13 chol.solve [19]
0.00 21.28 coefficients [8]
0.00 43.62 ginv [2]
0.00 6.38 matrix [13]
0.00 3.19 normal.solve [16]
0.00 22.34 qr.solve [6]
-----------------------------------------------
0.00 43.62 compareMethods [1]
[2] 43.62 0.00 43.62 ginv [2]
4.26 0.00 %*% [15]
0.00 39.36 svd [4]
-----------------------------------------------
39.36 0.00 svd [4]
[3] 39.36 39.36 0.00 La.svd [3]
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Figure 4: Output of proftools.

-----------------------------------------------
0.00 39.36 ginv [2]
[4] 39.36 0.00 39.36 svd [4]
39.36 0.00 La.svd [3]
-----------------------------------------------
21.28 0.00 qr.default [11]
1.06 0.00 qr.coef [23]
[5] 22.34 22.34 0.00 .Fortran [5]
-----------------------------------------------
0.00 22.34 compareMethods [1]
[6] 22.34 0.00 22.34 qr.solve [6]
0.00 21.28 qr [10]
0.00 1.06 qr.coef [23]
-----------------------------------------------
21.28 0.00 lm.fit [9]
[7] 21.28 21.28 0.00 .Call [7]
-----------------------------------------------
... Additional lines not shown here...

Figure 4 shows the dependencies between the different functions. Probably, this tool provides the
most intuitive representation of the different relationships among the functions in the code. We have
taken advantage of this in GUIProfiler and this graph is also included in the generated report.

proftools is, however, “function based” and the line.profiling option is not used at all. In fact,
if Rprof is used without the line.profiling option, the result is identical.

profr

profr is one of the oldest packages to parse the Rprof output. The first version appeared in May, 2008.
Its usage, as for the other tools described here, is straightforward:

library(profr)
profcompareMethods <- profr(compareMethods())
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Figure 5: Output of profr.

head(profcompareMethods)
plot(profcompareMethods)

The output provided by profr is the following:

level g_id t_id f start end n leaf time source
8 1 1 1 compareMethods 0.00 0.76 1 FALSE 0.76 .GlobalEnv
9 2 1 1 matrix 0.00 0.08 1 FALSE 0.08 base
10 2 2 1 qr.solve 0.08 0.20 1 FALSE 0.12 base
11 2 3 1 coefficients 0.20 0.26 1 FALSE 0.06 stats
12 2 4 1 ginv 0.26 0.66 1 FALSE 0.40 MASS
13 2 5 1 normal.solve 0.66 0.74 1 FALSE 0.08 .GlobalEnv

There is a useful plot command that shows the time spent on each function. In turn, the functions are
grouped by levels. The output is shown in Figure 5.

profr was (with summaryRprof) the first attempt to display the result of profiling R code. It
was developed before line.profiling was available and does not make use of it. The graphical
representation is much more informative than the text output. However, although the hierarchical tree
of proftools and the graph shown in profr show basically the same information, in our opinion, the
tree is more visually apparent and attracts attention directly to the bottlenecks of the code.

lineprof

lineprof can be considered as an evolution of profr (both have the same developer and maintainer).
Although it is not yet on CRAN, the installation from GitHub is straightforward.

install.packages("devtools")
library(devtools)
devtools::install_github("hadley/lineprof")

lineprof presents some characteristics that make it unique: It is integrated in the RStudio environment
using the shiny package, it provides memory profiling out of the box and finally, using the shiny
environment it is possible to navigate across the different functions to find out the bottlenecks in the
code. The application to the example is also straightforward:

library(lineprof)
x <- lineprof(compareMethods())
shine(x)

The resulting figure shows the output in the viewer pane in RStudio. The code for each function is
shown there. The blue lines of code are hyperlinks to the corresponding functions. The last column
represents the memory spent on each line of code. It can be seen that the creation of the 1000 × 500
matrix is the most expensive line of code in terms of memory use.

We experienced some minor issues when using lineprof that are worth mentioning. The represen-
tation in RStudio is a little bit buggy: The columns for each of the results (time spent, memory used,
etc) are not properly shown. The navigation across the functions, although very intuitive, does not link
directly to the RStudio editor to work on the code. Finally, when working on the shiny environment,
the console appears to be busy and the user has to break it using Ctrl-C or Esc. We expect that most of
these minor problems will be fixed in the stable release.
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Figure 6: Output of lineprof.

Discussion and conclusion

This paper describes GUIProfiler, a graphical user interface to the line profiler provided by R and
reviews, in relation to GUIProfiler, all other available profiling packages. Based on an example, we
presented how to profile this code using the different packages and compared their advantages and
disadvantages.

This review shows that, in spite of being far from the intuitiveness and user friendliness of the
MATLAB profiler, the different developed tools are getting closer to it. For example, the graphical
display of the relationship between functions in proftools is useful and intuitive and MATLAB does
not provide anything like it. lineprof allows the navigation across the different functions very much
like MATLAB’s profiler does.

Regarding the described tools, proftable, profr and proftools are comparable. proftable pro-
vides an abstract on the time spent on each line of the code that is clearer and more useful than the
one from summaryRprof. profr and proftools show graphically the relationships between the different
profiled functions and the time spent on each of them. Unfortunately, neither of them provide profiling
at the line level.

The other group is formed by aprof, lineprof and GUIProfiler. All of them provide similar
information: time spent on each line of code stating the actual code of the line. There are also
some differences among them. aprof shows these results using plots and provides estimates of the
expected improvements when speeding up the most costly lines of code. lineprof displays these
results using the shiny environment. Both lineprof and aprof provide memory profiling. GUIProfiler,
on the other hand, builds an HTML report which is interactively linked with the program code. The
preference between both tools may be a question of taste, but in our opinion, the HTML report is more
advantageous.

We would like to note that there might be other characteristics which could be taken into account
when evaluating a profiling tool such as those considered in this paper. For example, we assumed that
graphical output is something desirable. However, this is not the case if the profiled code is run on
a server with no graphical capabilities. In the case of lineprof, for example, a runtime environment
is required to compile it as well as package shiny and several other dependencies. Although these
dependencies are not of concern when R is run on a personal computer, they can be problematic if the
software is running on a server.

GUIProfiler has a convenient characteristic that is missing in the other packages: It connects the
profiling tool with an editor to fix the bottlenecks. In the RStudio environment the navigation across
the markers pane directly opens the editor on the clicked line of code. If R is used outside of the
RStudio environment, GUIProfiler opens Notepad++ when clicking on the number of the line. This
functionality is browser dependent and, at present, it is only implemented for the Internet Explorer
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(and thus the Windows OS) by using ActiveX controls. However, we assume that most of the users will
use the RStudio environment where the connection with an external editor is not necessary. Finally we
would like to emphasize that GUIProfiler is a useful tool that interactively and graphically helps the
users in the difficult task of profiling.
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The R Consortium and the R Foundation
by Martyn Plummer

Abstract The R Consortium was announced at the useR! 2015 conference in Aalborg, Denmark on 30
June. It is a non-profit organization set up to provide infrastructure for the R community. The purpose
of this article is to explain some of the background to the setting up of the Consortium and how it
interacts with the R Foundation.

One of the most striking developments in the recent history of R is the extent to which it is now
used in a commercial environment. This success has generated new demands for the R project. In
particular, there has been an ongoing conversation about how commercial organizations can make
financial contributions to the R project and support infrastructure for the R community. This is
of particular concern to companies based in the United States, who may find it difficult to make
donations to the R Foundation for Statistical Computing, as we are a non-profit organization based in
Europe. It was also clear that the interested companies wanted to play an active role in supporting
infrastructure for R. Representatives from companies based in the United States discussed these issues
with the R Foundation at the DSC 2014 meeting in July 2014, where it was decided that the best way
forward would be to create a trade association under the name “The R Consortium”. Members of a
trade association (formally, a non-profit organization under US Internal Revenue code 501(c)(6)) are
businesses that agree to work together to advance a common interest.

Once the idea of a trade association was approved by the R Foundation, representatives of the
founding members, including John Chambers representing the R Foundation, worked with the Linux
Foundation to follow the legal steps to create the Consortium. The Linux Foundation has wide
experience in setting up what they call “collaborative projects”. The R Consortium is one of many
such projects now listed at http://collabprojects.linuxfoundation.org/. Other examples include
the Core Infrastructure Initiative and the Open Virtualization Alliance.

All current members of the R Consortium, apart from the R Foundation, are commercial organiza-
tions, and their status within the R Consortium (platinum, gold, or silver) depends on their level of
financial contributions. The R Foundation has a special status in the bylaws of the R Consortium, and
has permanent membership without making any financial contributions. This membership includes a
seat on the R Consortium Board of Directors, where our representative is currently John Chambers.
In addition, the R Foundation has a representative on the Infrastructure Steering Committee (ISC),
the body that decides what projects should receive funding from the R Consortium. Our current
representative on the ISC is Luke Tierney.

In November 2015, the R Consortium announced its first funding award to Gábor Csárdi to
develop R-hub. At the time of writing the ISC also has a call for proposals set to end on 10 January
2016. Grants awarded by the R Consortium could have values up to $20–30k. Proposals are open to
everyone, not just members of the R Consortium.

The stated goals of the R Consortium emphasize that it will not influence the development of R
itself (noted in the R Consortium FAQ); this remains entirely under the control of the R Core Team and
the R Foundation remains the sole representative of the R project at the organization level.

It should also be noted that the R Consortium was set up to answer the particular needs of
companies in the United States. The R Foundation is also open to collaboration with other non-profit
organizations working to support the development of R world-wide.

Martyn Plummer
Co-president, The R Foundation
martyn.plummer@r-project.org
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Conference Report: useR! 2015
by Torben Tvedebrink

The 11th international R user conference, useR! 2015,
took place in Aalborg, Denmark, 1–3 July 2015. The
Department of Mathematical Sciences, Aalborg Uni-
versity, hosted the conference, which took place in
Aalborg Congress and Culture Centre.

We had originally hoped for 300–400 participants
and some support from sponsors. The meeting at-
tracted a total of 660 participants from 42 countries
with an almost uniform split on academia and in-
dustry. Furthermore, the industry’s generous sup-
port made it possible to provide free meals, drinks
and a well-suited venue for the conference.

Our social events included welcome reception at the waterfront in the House of Music, a
poster session with free bar and food, and a trip to Denmark’s second largest forest (Rold
Forest) where we held the conference dinner. During the conference dinner competitive
games took place such as long sawing, axe hurling and archery.

We received more than 250 abstracts of which some 220 were accepted either as posters,
lightning talks or oral presentations. The final programme consisted of six invited talks, 126
oral presentations, 14 lightning talks and 77 posters were presented at the conference.

Pre-conference tutorials

Inspired by the initiative of useR! 2014 in Los Angeles we decided to provide the tutorials
free of charge to useR! participants. This reduced the book-keeping load and allowed
people to attend tutorials without considering the additional cost per tutorial. Based on the
submitted tutorial proposal, the programme committee elected tutorials below:

• Applied Spatial Data Analysis with R (Virgilio Gómez Rubio)
• Bayesian Networks and Graphical Models with R (Søren Højsgaard and Therese Gra-

versen)
• Data Manipulation with dplyr (Hadley Wickham)
• Efficient Statistical Consulting using R Workflow for Data Analysis Projects (Peter

Baker)
• Handling Missing Values with a Special Focus on the Use of Principal Components

Methods (François Husson)
• RHadoop (Andrie de Vries and Simon Field)
• Rocker: Using R on Docker (Dirk Eddelbuettel)
• Statistical Analysis of Network Data (Gabor Csardi)
• Analysis and Visualization of Large Complex Data with Tessera (Ryan Hafen and

Stephen Elston)
• Applied Machine Learning and Efficient Model Selection with mlr (Bernd Bischl and

Michel Lang)
• Bioconductor for High-Throughput Sequence Analysis (Martin Morgan)
• Getting to Know grid Graphics (Paul Murrell)
• Introduction to Bayesian Data Analysis with R (Rasmus Bååth)
• spatstat: An R Package for Analysing Spatial Point Patterns (Adrian Baddeley and Ege

Rubak)
• Testing R Code (Richard J. Cotton)
• Using Pandoc’s Markdown with R (Gergely Daróczi)

More than 80% of the conference participants registered at Tutorial Tuesday and most of
these participated in one or two tutorials making the “open source” offer of free participation
a success.
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Invited talks

With the aim of getting the “use” of useR! in focus we invited speakers with varying
backgrounds to give the six plenary talks of useR! 2015. Most of the presented topics were
also discussed in the submitted sessions.

• Thomas Lumley: How Flexible Computing Expands What an Individual Can Do
• Adrian Baddeley: How R Has Changed Spatial Statistics
• Steffen Lauritzen: Linear Estimating Equations for Gaussian Graphical Models with

Symmetry
• Di Cook: A Survey of Two Decades of Efforts to Build Interactive Graphics Capacity in

R
• Romain François: My R Adventures
• Susan Holmes: Multitype Data Integration: Challenges from the Human Microbiome

Contributed sessions

After the selection of submitted abstracts we attempted to group the contributed talks in
sessions of similar talks. The overall headings of the five parallel sessions were:

• Ecology
• Networks
• Reproducibility
• Interfacing
• Case study
• Clustering
• Data management

• Computational
performance

• Business
• Spatial
• Databases
• Medicine
• Regression

• Commercial offerings
• Interactive graphics
• Teaching
• Statistical methodology
• Machine learning
• Visualisation

These themes were also represented in the poster session and in the six kaleidoscope
sessions. In addition to posters and presentations, there were 14 Lightning Talks, a 5-minute
presentation on any R-related topic aimed particularly at those new to R. Participants seemed
to appreciate this fast-paced introduction to a wide range of topics.

Organisers

The selection of abstracts for presentations would not have been possible without the
thorough review process of the programme committee. We are grateful to the programme
committee of useR! 2015: Peter Dalgaard, Dirk Eddelbuettel, Poul Svante Eriksen, Julie Josse,
Martin Maechler, Katharine Mullen, Helle Sørensen, Heather Turner, Hadley Wickham,
Achim Zeileis, and Søren Højsgaard (chair).

The local “green shirt” heroes making the useR! 2015 in Aalborg possible consisted of
several students and local statisticians: Mikkel Meyer Andersen, Anders Ellern Bilgrau,
Claus Dethlefsen, Mateusz ‘Matt’ Dziubinski, Poul Svante Eriksen, Søren Højsgaard, Rikke
Nørmark Mortensen, Maria Rodrigo-Domingo, Ege Rubak, and Torben Tvedebrink (chair).

Further information

The useR! 2015 website, www.R-project.org/useR-2015 provides a record of the conference.
Where authors have made them available, slides are accessible via the online conference
schedule (Oral Sessions).

A blog post summarising the planning and execution of useR! 2015 can be found at the
Revolution Analytics’ blog.

Torben Tvedebrink
Department of Mathematical Sciences, Aalborg University
Fredrik Bajers Vej 7G, DK-9220 Aalborg
Denmark
tvede@math.aau.dk
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News from the Bioconductor Project
Bioconductor Team
Biostatistics and Bioinformatics
Roswell Park Cancer Institute, Buffalo, NY, USA

The Bioconductor project provides tools for the analysis and comprehension of high-
throughput genomic data. The 1104 software packages available in Bioconductor can
be viewed at http://bioconductor.org/packages/. Navigate packages using ‘biocViews’
terms and title search. Each package has an html page with a description, links to vignettes,
reference manuals, and usage statistics. Start using Bioconductor version 3.2 by installing R
3.2.3 and evaluating the commands

source("http://bioconductor.org/biocLite.R")
biocLite()

Install additional packages and dependencies, e.g., AnnotationHub, with

source("http://bioconductor.org/biocLite.R")
biocLite("AnnotationHub")

Bioconductor 3.2 Release Highlights

Bioconductor 3.2 was released on 14 October 2015. It is compatible with R 3.2 and consists
of 1104 software packages, 257 experiment data packages, and 917 up-to-date annotation
packages. There are 80 new software packages and many updates and improvements to
existing packages. The release announcement includes descriptions of new packages and
updated NEWS files provided by package maintainers.

Our collection of microarray, transcriptome and organism-specific annotation packages
use the ‘select’ interface (keys, columns, keytypes) to access static information on gene
annotations (org.* packages) and gene models (TxDb.* packages); these augment packages
such as biomaRt for interactive querying of web-based resources. The AnnotationHub
continues to complement our traditional offerings with diverse whole genome annotations
from Ensembl, ENCODE, dbSNP, UCSC, and elsewhere; example uses are described in the
AnnotationHub How-To vignette.

Other activities

The Bioconductor project has moved from the Fred Hutchinson Cancer Research Center
to Roswell Park Cancer Institute, in Buffalo, NY. The transition has brought with it many
challenges and opportunities, including the departure of some long-term project personnel
and the addition of new team members. In particular, Marc Carlson, Sonali Arora and
Paul Shannon were instrumental in the design and implementation of AnnotationHub (and
annotations in general), tools for biological network analysis, educational material and
many other areas. The Bioconductor community is grateful to them for their many valuable
contributions.

The Bioconductor F1000 research channel is a recently-launched forum for publication
of task-oriented work flows. The channel is peer-reviewed, providing authors with a
compelling venue for dissemination of their analysis methods. Users gain fully reproducible
descriptions of tasks that cover current, genome-scale analysis problem from start to finish.

The Bioconductor support forum plays an increasing important role in providing with
timely, knowledgeable, and accurate answers to user questions. A particularly valuable
feature is the opportunity for community members to announce tutorial and other avail-
ability, such as Bioconductor for Genomic Data Science offered by long-term contributor
Kasper D. Hansen. A highlight of the Bioconductor European Developer Meeting, held in
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Cambridge, UK on 7 and 8 December, was recognition of the contributions Aaron Lun and
Michael Love make to the success of the Bioconductor support forum through their patient
and knowledgeable responses to diverse user questions.

Continued availability of Bioconductor Docker and Amazon images provides a very
effective on-ramp for power users to rapidly obtain access to standardized and scalable
computing environments. Docker images are available for release and development versions
of Bioconductor, with analysis-specific images pre-loaded with packages relevant to common
analysis scenarios, e.g., of sequencing, microarray, flow cell, or proteomic data. Both Amazon
and Docker images include Rstudio Server for easy web-browser based access.

New Bioconductor package contributors are encouraged to consult the package guide-
lines and submission sections of the Bioconductor web site, and use the BiocCheck package,
in addition to R CMD check, for guidance on conforming to Bioconductor package stan-
dards. New package submissions are automatically built across Linux, Mac, and Windows
platforms, providing an opportunity to address cross-platform issues; many new package
contributors take advantage of this facility to refine their package before it is subject to
technical preview. Keep abreast of packages added to the ‘devel’ branch and other activities
by following @Bioconductor on Twitter.

The Bioconductor web site advertises training and community events, including the
BioC 2016, the Bioconductor annual conference, to be held in Stanford, CA, immediately
before the annual useR! conference, Friday through Sunday, 24–25 June.
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Changes in R
From version 3.2.2 to version 3.2.3

by the R Core Team

CHANGES IN R 3.2.3

NEW FEATURES

• Some recently-added Windows time zone names have been added to the conversion
table used to convert these to Olson names. (Including those relating to changes for
Russia in Oct 2014, as in PR#16503.)

• (Windows) Compatibility information has been added to the manifests for ‘Rgui.exe’,
‘Rterm.exe’ and ‘Rscript.exe’. This should allow win.version() and Sys.info() to
report the actual Windows version up to Windows 10.

• Windows "wininet" FTP first tries EPSV / PASV mode rather than only using active
mode (reported by Dan Tenenbaum).

• which.min(x) and which.max(x) may be much faster for logical and integer x and
now also work for long vectors.

• The ‘emulation’ part of tools::texi2dvi() has been somewhat enhanced, including
supporting quiet = TRUE. It can be selected by texi2dvi = "emulation".

(Windows) MiKTeX removed its texi2dvi.exe command in Sept 2015:
tools::texi2dvi() tries texify.exe if it is not found.

• (Windows only) Shortcuts for printing and saving have been added to menus in
Rgui.exe. (Request of PR#16572.)

• loess(...,iterTrace=TRUE) now provides diagnostics for robustness iterations, and
the print() method for summary(<loess>) shows slightly more.

• The included version of PCRE has been updated to 8.38, a bug-fix release.

• View() now displays nested data frames in a more friendly way. (Request with patch
in PR#15915.)

INSTALLATION and INCLUDED SOFTWARE

• The included configuration code for libintl has been updated to that from gettext
version 0.19.5.1 — this should only affect how an external library is detected (and the
only known instance is under OpenBSD). (Wish of PR#16464.)

• configure has a new argument ‘--disable-java’ to disable the checks for Java.

• The configure default for MAIN_LDFLAGS has been changed for the FreeBSD, NetBSD
and Hurd OSes to one more likely to work with compilers other than gcc (FreeBSD 10
defaults to clang).

• configure now supports the OpenMP flags ‘-fopenmp=libomp’ (clang) and ‘-qopenmp’
(Intel C).

• Various macros can be set to override the default behaviour of configure when detect-
ing OpenMP: see file ‘config.site’.

• Source installation on Windows has been modified to allow for MiKTeX installations
without texi2dvi.exe. See file ‘MkRules.dist’.
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BUG FIXES

• regexpr(pat,x,perl = TRUE) with Python-style named capture did not work correctly
when x contained NA strings. (PR#16484)

• The description of dataset ToothGrowth has been improved/corrected. (PR#15953)

• model.tables(type = "means") and hence TukeyHSD() now support "aov" fits with-
out an intercept term. (PR#16437)

• close() now reports the status of a pipe() connection opened with an explicit open
argument. (PR#16481)

• Coercing a list without names to a data frame is faster if the elements are very long.
(PR#16467)

• (Unix-only) Under some rare circumstances piping the output from Rscript or R -f
could result in attempting to close the input file twice, possibly crashing the process.
(PR#16500)

• (Windows) Sys.info() was out of step with win.version() and did not report Win-
dows 8.

• topenv(baseenv()) returns baseenv() again as in R 3.1.0 and earlier. This also fixes
compilerJIT(3) when used in ‘.Rprofile’.

• detach()ing the methods package keeps .isMethodsDispatchOn() true, as long as
the methods namespace is not unloaded.

• Removed some spurious warnings from configure about the preprocessor not finding
header files. (PR#15989)

• rchisq(*,df=0,ncp=0) now returns 0 instead of NaN, and dchisq(*,df=0,ncp=*) also
no longer returns NaN in limit cases (where the limit is unique). (PR#16521)

• pchisq(*,df=0,ncp >0,log.p=TRUE) no longer underflows (for ncp > ~60).

• nchar(x,"w") returned -1 for characters it did not know about (e.g. zero-width spaces):
it now assumes 1. It now knows about most zero-width characters and a few more
double-width characters.

• Help for which.min() is now more precise about behavior with logical arguments.
(PR#16532)

• The print width of character strings marked as "latin1" or "bytes" was in some cases
computed incorrectly.

• abbreviate() did not give names to the return value if minlength was zero, unlike
when it was positive.

• (Windows only) dir.create() did not always warn when it failed to create a directory.
(PR#16537)

• When operating in a non-UTF-8 multibyte locale (e.g. an East Asian locale on Win-
dows), grep() and related functions did not handle UTF-8 strings properly. (PR#16264)

• read.dcf() sometimes misread lines longer than 8191 characters. (Reported by Hervé
Pagès with a patch.)

• within(df,..) no longer drops columns whose name start with a ".".

• The built-in HTTP server converted entire Content-Type to lowercase including param-
eters which can cause issues for multi-part form boundaries (PR#16541).
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• Modifying slots of S4 objects could fail when the methods package was not attached.
(PR#16545)

• splineDesign(*,outer.ok=TRUE) (splines) is better now (PR#16549), and
interpSpline() now allows sparse=TRUE for speedup with non-small sizes.

• If the expression in the traceback was too long, traceback() did not report the source
line number. (Patch by Kirill Müller.)

• The browser did not truncate the display of the function when exiting with
options("deparse.max.lines") set. (PR#16581)

• When bs(*,Boundary.knots=) had boundary knots inside the data range, extrapola-
tion was somewhat off. (Patch by Trevor Hastie.)

• var() and hence sd() warn about factor arguments which are deprecated now.
(PR#16564)

• loess(*,weights = *) stored wrong weights and hence gave slightly wrong predic-
tions for newdata. (PR#16587)

• aperm(a,*) now preserves names(dim(a)).

• poly(x,..) now works when either raw=TRUE or coef is specified. (PR#16597)

• data(package=*) is more careful in determining the path.

• prettyNum(*,decimal.mark,big.mark): fixed bug introduced when fixing PR#16411.

CHANGES IN R 3.2.2

SIGNIFICANT USER-VISIBLE CHANGES

• It is now easier to use secure downloads from ‘https://’ URLs on builds which
support them: no longer do non-default options need to be selected to do so. In
particular, packages can be installed from repositories which offer ‘https://’ URLs,
and those listed by setRepositories() now do so (for some of their mirrors).

Support for ‘https://’ URLs is available on Windows, and on other platforms if
support for libcurl was compiled in and if that supports the https protocol (system
installations can be expected to do). So ‘https://’ support can be expected except on
rather old OSes (an example being OS X ‘Snow Leopard’, where a non-system version
of libcurl can be used).

(Windows only) The default method for accessing URLs via download.file() and
url() has been changed to be "wininet" using Windows API calls. This changes the
way proxies need to be set and security settings made: there have been some reports
of ‘ftp:’ sites being inaccessible under the new default method (but the previous
methods remain available).

NEW FEATURES

• cmdscale() gets new option list. for increased flexibility when a list should be
returned.

• configure now supports texinfo version 6.0, which (unlike the change from 4.x to
5.0) is a minor update. (Wish of PR#16456.)

• (Non-Windows only) download.file() with default method = "auto" now chooses
"libcurl" if that is available and a ‘https://’ or ‘ftps://’ URL is used.
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• (Windows only) setInternet2(TRUE) is now the default. The command-line option
--internet2 and environment variable R_WIN_INTERNET2 are now ignored.

Thus by default the "internal" method for download.file() and url() uses the
"wininet" method: to revert to the previous default use setInternet2(FALSE).

This means that ‘https://’ URLs can be read by default by download.file() (they
have been readable by file() and url() since R 3.2.0).

There are implications for how proxies need to be set (see ?download.file).

• chooseCRANmirror() and chooseBioCmirror() now offer HTTPS mirrors in preference
to HTTP mirrors. This changes the interpretation of their ind arguments: see their
help pages.

• capture.output() gets optional arguments type and split to pass to sink(), and
hence can be used to capture messages.

C-LEVEL FACILITIES

• Header ‘Rconfig.h’ now defines HAVE_ALLOCA_H if the platform has the ‘alloca.h’ header
(it is needed to define alloca on Solaris and AIX, at least: see ‘Writing R Extensions’
for how to use it).

INSTALLATION and INCLUDED SOFTWARE

• The libtool script generated by configure has been modified to support FreeBSD >=
10 (PR#16410).

BUG FIXES

• The HTML help page links to demo code failed due to a change in R 3.2.0. (PR#16432)

• If the na.action argument was used in model.frame(), the original data could be
modified. (PR#16436)

• getGraphicsEvent() could cause a crash if a graphics window was closed while it
was in use. (PR#16438)

• matrix(x,nr,nc,byrow = TRUE) failed if x was an object of type "expression".

• strptime() could overflow the allocated storage on the C stack when the timezone
had a non-standard format much longer than the standard formats. (Part of PR#16328.)

• options(OutDec = s) now signals a warning (which will become an error in the
future) when s is not a string with exactly one character, as that has been a documented
requirement.

• prettyNum() gains a new option input.d.mark which together with other changes,
e.g., the default for decimal.mark, fixes some format()ting variants with non-default
getOption("OutDec") such as in PR#16411.

• download.packages() failed for type equal to either "both" or "binary". (Reported
by Dan Tenenbaum.)

• The dendrogram method of labels() is much more efficient for large dendrograms,
now using rapply(). (Comment #15 of PR#15215)

• The "port" algorithm of nls() could give spurious errors. (Reported by Radford
Neal.)
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• Reference classes that inherited from reference classes in another package could invali-
date methods of the inherited class. Fixing this requires adding the ability for methods
to be “external”, with the object supplied explicitly as the first argument, named .self.
See "Inter-Package Superclasses" in the documentation.

• readBin() could fail on the SPARC architecture due to alignment issues. (Reported by
Radford Neal.)

• qt(*,df=Inf,ncp=.) now uses the natural qnorm() limit instead of returning NaN.
(PR#16475)

• Auto-printing of S3 and S4 values now searches for print() in the base namespace
and show() in the methods namespace instead of searching the global environment.

• polym() gains a coefs = NULL argument and returns class "poly" just like poly()
which gets a new simple=FALSE option. They now lead to correct predict()ions, e.g.,
on subsets of the original data.

• rhyper(nn,<large>) now works correctly. (PR#16489)

• ttkimage() did not (and could not) work so was removed. Ditto for tkimage.cget()
and tkimage.configure(). Added two Ttk widgets and missing subcom-
mands for Tk’s image command: ttkscale(), ttkspinbox(), tkimage.delete(),
tkimage.height(), tkimage.inuse(), tkimage.type(), tkimage.types(),
tkimage.width(). (PR#15372, PR#16450)

• getClass("foo") now also returns a class definition when it is found in the cache
more than once.
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Changes on CRAN
2015-06-01 to 2015-11-30

by Kurt Hornik and Achim Zeileis

New packages in CRAN task views

Bayesian eco, rstan.

ChemPhys compositions.

ClinicalTrials samplesize.

Cluster BayesLCA, NbClust, dbscan, longclust.

Distributions BivarP, CompGLM, Compounding, DiscreteLaplace, DiscreteWeibull,
EMMIXskew, ExtDist, FMStable, GIGrvg, GenBinomApps, GenOrd, HAC,
JohnsonDistribution, LIHNPSD, MM, MitISEM, MixedTS, NormalLaplace, OR-
DER2PARENT, OrdNor, PerMallows, SCI, TTmoment, csn, degreenet, dirmult,
disclap, emg, fpow, frmqa, gambin, gb, gldist, kolmim, logitnorm, minimax,
mnormpow, mvprpb, nCDunnett, polyaAeppli, poweRlaw, qmap, rtdists, sfsmisc,
skellam, symmoments, vines.

Econometrics gets, midasr, sfa, spfrontier, ssfa.

Environmetrics eco, mra.

ExperimentalDesign ALTopt, Crossover, EngrExpt, LDOD, MAMS, MaxPro, OPDOE,
OptGS, OptInterim, PopED, VdgRsm, agridat, bcrm, blockTools, blocksdesign,
daewr, designGG, geospt, oapackage, pipe.design, rodd, simrel, sp23design, tox-
testD.

Finance FatTailsR, PortRisk, Rblpapi, covmat, credule.

HighPerformanceComputing flowr, future, partDSA, toaster.

MachineLearning FCNN4R, Rborist, ranger.

MetaAnalysis MetaPath, RcmdrPlugin.RMTCJags, etma, joint.Cox, meta4diag,
metaSEM, metagear, xmeta.

Multivariate cwhmisc, delt, knncat.

NaturalLanguageProcessing stringi, textreuse.

NumericalMathematics Pade, lamW, mvQuad.

OfficialStatistics hot.deck, mipfp.

Optimization ECOSolveR, NlcOptim, Rdsdp, bvls, copulaedas, kofnGA, lbfgsb3,
matchingR, nls2, nnls, onls, qap, tabuSearch.

Phylogenetics SigTree, markophylo, pmc.

Psychometrics OpenMx, pwrRasch.

ReproducibleResearch papeR.

SocialSciences Amelia, MCMCglmm∗, PAFit, PSAgraphics, RSiena, VGAM∗, VIM, arm,
betareg, biglm, catspec, demography, dispmod, elrm, ergm, influence.ME, logistf,
logmult, lsmeans∗, mi∗, mlogit, multgee, multiplex, nlstools, norm, np, simpleboot,
statnet, visreg.
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https://CRAN.R-project.org/package=Amelia
https://CRAN.R-project.org/package=MCMCglmm
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https://CRAN.R-project.org/package=PSAgraphics
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Spatial OasisR, rgrass7, spBayesSurv, spatsurv, tmap.

SpatioTemporal STMedianPolish, ctmcmove, ctmm, moveHMM, rsatscan.

Survival dynpred, glrt, parfm, survJamda.

TimeSeries EMD, LSTS, PCA4TS, Rlibeemd, TSMining, Wats, ZIM, autovarCore, bent-
cableAR, changepoint, dtwclust, ecp, fanplot, hht, imputeTS, jmotif, mlVAR, spec-
tral.methods, tseriesEntropy, wbsts.

WebTechnologies RSocrata, bigml, googlePublicData, htmltab, pxweb, rsnps.

gR BDgraph, FBFsearch, huge, ndtv, networkDynamic.

(* = core package)

New contributed packages

ACDm Tools for Autoregressive Conditional Duration Models. Author: Markus Belfrage.

ACSNMineR Gene Enrichment Analysis from ACSN Maps or Gmt Files. Authors: Paul
Deveau [aut, cre], Eric Bonnet [aut].

ACSWR A Companion Package for the Book “A Course in Statistics with R”. Author:
Prabhanjan Tattar.

AF Model-Based Estimation of Confounder-Adjusted Attributable Fractions. Authors:
Elisabeth Dahlqwist and Arvid Sjolander.

AFM Atomic Force Microscope Image Analysis. Authors: Mathieu Beauvais [aut, cre], Irma
Liascukiene [aut], Jessem Landoulsi [aut].

AHR Estimation and Testing of Average Hazard Ratios. Author: Matthias Brueckner.

ANOM Analysis of Means. Author: Philip Pallmann.

APSIM General Utility Functions for the ‘Agricultural Production Systems Simulator’.
Author: Justin Fainges.

ART Aligned Rank Transform for Nonparametric Factorial Analysis. Author: Pablo J.
Villacorta.

AdaptGauss Gaussian Mixture Models (GMM). Authors: Michael Thrun, Onno Hansen-
Goos, Rabea Griese, Catharina Lippmann, Jorn Lotsch, Alfred Ultsch.

AggregateR Aggregate Numeric, Date and Categorical Variables by an ID. Authors:
Matthias Bogaert, Michel Ballings, Dirk Van den Poel.

AlgebraicHaploPackage Haplotype Two Snips Out of a Paired Group of Patients. Author:
Jan Wolfertz.

ArgumentCheck Improved Communication to Users with Respect to Problems in Function
Arguments. Author: Benjamin Nutter.

AssocTests Genetic Association Studies. Authors: Lin Wang [aut], Wei Zhang [aut], Qizhai
Li [aut], Weicheng Zhu [ctb].

AutoModel Automated Hierarchical Multiple Regression with Assumptions Checking.
Author: Alex Lishinski.

AutoregressionMDE Minimum Distance Estimation in Autoregressive Model. Author:
Jiwoong Kim.
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AzureML Discover, Publish and Consume Web Services on Microsoft Azure Machine
Learning. Authors: Raymond Laghaeian [aut, cre], Brianna Gerads [aut], Ritika
Ravichandra [aut], Alex Wang [aut].

BCEE The Bayesian Causal Effect Estimation Algorithm. Authors: Denis Talbot, Geneviève
Lefebvre, Juli Atherton.

BEDMatrix Matrices Backed by Binary PED Files (PLINK). Authors: Alexander Grueneberg
[aut, cre], Lian Lian [ctb], Gustavo de los Campos [ctb].

BIGDAWG Case-Control Analysis of Multi-Allelic Loci. Authors: Derek Pappas, Steve
Mack, Jill Hollenbach.

BTLLasso Modelling Heterogeneity in Paired Comparison Data. Author: Gunther
Schauberger.

Bagidis BAses GIving DIStances. Author: Catherine Timmermans.

BayesBD Bayesian Boundary Detection in Images. Author: Meng Li.

BayesMAMS Designing Bayesian Multi-Arm Multi-Stage Studies. Authors: Philip Pall-
mann, Amanda Turner.

BiTrinA Binarization and Trinarization of One-Dimensional Data. Authors: Stefan Mundus,
Christoph Müssel, Florian Schmid, Ludwig Lausser, Tamara J. Blätte, Martin Hopfen-
sitz, Hans A. Kestler.

Biocomb Feature Selection and Classification with the Embedded Validation Procedures for
Biomedical Data Analysis. Authors: Natalia Novoselova, Junxi Wang, Frank Pessler,
Frank Klawonn.

Blossom Statistical Comparisons with Distance-Function Based Permutation Tests. Authors:
Marian Talbert, Jon Richards, Paul Mielke, and Brian Cade.

CALF Coarse Approximation Linear Function. Authors: Stephanie Lane [aut, cre], Clark
Jeffries [aut], Diana Perkins [aut].

CANSIM2R Directly Extracts Complete CANSIM Data Tables. Author: Marco Lugo.

COMBIA Synergy/Antagonism Analyses of Drug Combinations. Author: Muhammad
Kashif.

CTTShiny Classical Test Theory via Shiny. Authors: William Kyle Hamilton [aut, cre],
Atsushi Mizumoto [aut].

CUB A Class of Mixture Models for Ordinal Data. Authors: Maria Iannario, Domenico
Piccolo.

CUSUMdesign Compute Decision Interval and Average Run Length for CUSUM Charts.
Authors: Douglas M. Hawkins, David H. Olwell, Boxiang Wang.

Canopy Accessing Intra-Tumor Heterogeneity and Tracking Longitudinal and Spatial
Clonal Evolutionary History by Next-Generation Sequencing. Authors: Yuchao Jiang,
Nancy R. Zhang.

CensMixReg Censored Linear Mixture Regression Models. Authors: Luis Benites Sanchez,
Victor Hugo Lachos.

ChannelAttribution Markov Model for the Online Multi-Channel Attribution Problem.
Author: Davide Altomare.

CircOutlier Detecting of Outliers in Circular Regression. Authors: Azade Ghazanfarihesari,
Majid Sarmad.
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ClamR Time Series Modeling for Climate Change Proxies. Author: Jonathan M. Lees.

ClustGeo Clustering of Observations with Geographical Constraints. Authors: Amaury
Labenne, Marie Chavent, Vanessa Kuentz-Simonet and Jerome Saracco.

ClusterStability Assessment of Stability of Individual Objects or Clusters in Partitioning So-
lutions. Authors: Etienne Lord, Francois-Joseph Lapointe, and Vladimir Makarenkov.

Combine Game-Theoretic Probability Combination. Authors: Alaa Ali, Marta Padilla and
David R. Bickel.

CommT Comparative Phylogeographic Analysis using the Community Tree Framework.
Author: Michael Gruenstaeudl.

CompR Paired Comparison Data Analysis. Author: Michel Semenou.

CompareCausalNetworks Interface to Diverse Estimation Methods of Causal Networks.
Authors: Christina Heinze, Nicolai Meinshausen.

ComplexAnalysis Numerically Evaluate Integrals and Derivatives (also Higher Order) of
Vector- And Complex-Valued Functions. Author: Char Leung.

ConsRank Compute the Median Ranking(s) According to the Kemeny’s Axiomatic Ap-
proach. Authors: Antonio D’Ambrosio, Sonia Amodio.

CopyNumber450kCancer Baseline Correction for Copy Number Data from Cancer Sam-
ples. Author: Nour-al-dain Marzouka [aut, cre].

CoxPlus Cox Regression (Proportional Hazards Model) with Multiple Causes and Mixed
Effects. Author: Jing Peng.

CryptRndTest Statistical Tests for Cryptographic Randomness. Author: Haydar Demirhan.

D3M Two Sample Test with Wasserstein Metric. Author: Yusuke Matsui & Teppei Shima-
mura.

DCchoice Analyzing Dichotomous Choice Contingent Valuation Data. Authors: Tomoaki
Nakatani [aut, cph] (original developer), Hideo Aizaki [aut, cre] (code patches), Kazuo
Sato [ctb] (theoretical part of the manual).

DIFboost Detection of Differential Item Functioning (DIF) in Rasch Models by Boosting
Techniques. Author: Gunther Schauberger.

DJL Distance Measure Based Judgment and Learning. Author: Dong-Joon Lim.

DRIP Discontinuous Regression and Image Processing. Author: Yicheng Kang.

DT A Wrapper of the JavaScript Library ‘DataTables’. Authors: Yihui Xie [aut, cre], Joe
Cheng [ctb], jQuery contributors [ctb, cph] (jQuery in htmlwidgets/lib), SpryMedia
Limited [ctb, cph] (DataTables in htmlwidgets/lib), Brian Reavis [ctb, cph] (selectize.js
in htmlwidgets/lib), Leon Gersen [ctb, cph] (noUiSlider in htmlwidgets/lib), Bartek
Szopka [ctb, cph] (jquery.highlight.js in htmlwidgets/lib), RStudio Inc [cph]. In view:
ReproducibleResearch.

DTRlearn Learning Algorithms for Dynamic Treatment Regimes. Authors: Ying Liu,
Yuanjia Wang, Donglin Zeng.

DYM Did You Mean? Author: Kosei Abe.

DataLoader Import Multiple File Types. Authors: Srivenkatesh Gandhi, Kreshnaa Raam S
Bethusamy.

DiffusionRgqd Inference and Analysis for Generalized Quadratic Diffusions. Authors:
Etienne A.D. Pienaar [aut, cre], Melvin M. Varughese [ctb].
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Directional Directional Statistics. Authors: Michail Tsagris, Giorgos Athineou.

DynTxRegime Methods for Estimating Dynamic Treatment Regimes. Authors: S. T. Hol-
loway, E. B. Laber, K. A. Linn, B. Zhang, M. Davidian, and A. A. Tsiatis.

ECOSolveR Embedded Conic Solver in R. Authors: Anqi Fu [aut], Balasubramanian
Narasimhan [aut, cre]. In view: Optimization.

EDFIR Estimating Discrimination Factors. Authors: Alex Bond and Robert Robere.

EEM Read and Preprocess Fluorescence Excitation-Emission Matrix (EEM) Data. Author:
Vipavee Trivittayasil.

EGRETci Exploration and Graphics for RivEr Trends (EGRET) Confidence Intervals. Au-
thors: Robert Hirsch [aut], Laura DeCicco [aut, cre].

ELMR Extreme Machine Learning (ELM). Author: Alessio Petrozziello [aut, cre].

EMbC Expectation-Maximization Binary Clustering. Authors: Joan Garriga, John R.B.
Palmer, Aitana Oltra, Frederic Bartumeus.

EPGLM Gaussian Approximation of Bayesian Binary Regression Models. Author: James
Ridgway.

ESKNN Ensemble of Subset of K-Nearest Neighbours Classifiers for Classification and
Class Membership Probability Estimation. Authors: Asma Gul, Aris Perperoglou,
Zardad Khan, Osama Mahmoud, Werner Adler, Miftahuddin Miftahuddin, and
Berthold Lausen.

EditImputeCont Simultaneous Edit-Imputation for Continuous Microdata. Authors:
Quanli Wang, Hang J. Kim, Jerome P. Reiter, Lawrence H. Cox and Alan F. Karr.

EloChoice Preference Rating for Visual Stimuli Based on Elo Ratings. Author: Christof
Neumann.

EpiBayes Implements Hierarchical Bayesian Models for Epidemiological Applications.
Authors: Matthew Branan, Marta Remmenga, Lori Gustafson, Jennifer Hoeting.

EstHer Estimation of Heritability in High Dimensional Sparse Linear Mixed Models using
Variable Selection. Authors: Anna Bonnet and Celine Levy-Leduc.

EurosarcBayes Bayesian Single Arm Sample Size Calculation Software. Author: Peter
Dutton.

ExplainPrediction Explanation of Predictions for Classification and Regression Models.
Author: Marko Robnik-Sikonja.

FACTMLE Maximum Likelihood Factor Analysis. Authors: Koulik Khamaru, Rahul
Mazumder.

FCGR Fatigue Crack Growth in Reliability. Authors: Antonio Meneses, Salvador Naya,
Javier Tarrio-Saavedra, Ignacio Lopez-Ullibarri.

FCNN4R Fast Compressed Neural Networks for R. Author: Grzegorz Klima. In view:
MachineLearning.

FENmlm Fixed Effects Nonlinear Maximum Likelihood Models. Author: Laurent Berge.

FIACH Retrospective Noise Control for fMRI. Author: Tim Tierney.

FSA Functions for Simple Fisheries Stock Assessment Methods. Author: Derek Ogle [aut,
cre].

FSAdata Data to Support Fish Stock Assessment (FSA) Package. Author: Derek Ogle [aut,
cre].
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FastBandChol Fast Estimation of a Covariance Matrix by Banding the Cholesky Factor.
Author: Aaron Molstad.

FastGP Efficiently Using Gaussian Processes with Rcpp and RcppEigen. Authors: Giri
Gopalan, Luke Bornn.

FastKM A Fast Multiple-Kernel Method Based on a Low-Rank Approximation. Authors:
Rachel Marceau, Wenbin Lu, Michele M. Sale, Bradford B. Worrall, Stephen R. Williams,
Fang-Chi Hsu, Jung-Ying Tzeng, and Shannon T. Holloway.

Fgmutils Forest Growth Model Utilities. Authors: Clayton Vieira Fraga, Ana Paula Sim-
iqueli, Wagner Amorim da Silva Altoe.

ForecastCombinations Forecast Combinations. Author: Eran Raviv. In view: TimeSeries.

FractalParameterEstimation Estimation of Parameters p and q for Randomized Sierpinski
Carpet for [p-p-p-q]-Model. Author: Philipp Hermann.

Fragman Fragment Analysis in R. Authors: Giovanny Covarrubias-Pazaran, Luis Diaz-
Garcia, Brandon Schlautman, Walter Salazar, Juan Zalapa.

FuzzyLP Fuzzy Linear Programming. Authors: Carlos A. Rabelo [aut, cre], Pablo J. Villa-
corta [ctb].

GERGM Estimation and Fit Diagnostics for Generalized Exponential Random Graph Mod-
els. Authors: Matthew J. Denny, James D. Wilson, Skyler Cranmer, Bruce A. Desmarais,
Shankar Bhamidi.

GFD Tests for General Factorial Designs. Authors: Sarah Friedrich, Frank Konietschke,
Markus Pauly.

GSSE Genotype-Specific Survival Estimation. Authors: Baosheng Liang, Yuanjia Wang and
Donglin Zeng.

GenCAT Genetic Class Association Testing (GenCAT). Authors: Eric Reed, Sara Nuñez,
Jing Qian, Andrea Foulkes.

GeneralOaxaca Blinder-Oaxaca Decomposition for Generalized Linear Model. Authors:
Aurelien Nicosia and Simon Baillargeon-Ladouceur.

GeoBoxplot Geographic Box Plot. Author: Ao Li.

GiANT Gene Set Uncertainty in Enrichment Analysis. Authors: Florian Schmid, Christoph
Müssel, Johann M. Kraus, Hans A. Kestler.

Goslate Goslate Interface. Authors: Author: Florian Schwendinger [aut, cre], Kurt Hornik
[cbt], Zhou Qiang [cph].

Grace Graph-Constrained Estimation and Hypothesis Testing. Author: Sen Zhao.

GroupTest Multiple Testing Procedure for Grouped Hypotheses. Author: Zhigen Zhao.

GsymPoint Estimation of the Generalized Symmetry Point, an Optimal Cutpoint in Contin-
uous Diagnostic Tests. Authors: Mónica López-Ratón, Carmen Cadarso-Suárez, Elisa
M. Molanes-López, Emilio Letón.

HBglm Hierarchical Bayesian Regression for GLMs. Authors: Asad Hasan, Alireza S.
Mahani.

HDGLM Tests for High Dimensional Generalized Linear Models. Author: Bin Guo.

HMDHFDplus Read HMD and HFD Data from the Web. Authors: Tim Riffe, Carl Boe,
Josh Goldstein.
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HRM High-Dimensional Repeated Measures. Authors: Martin Happ [aut, cre], Harrar W.
Solomon [aut], Arne C. Bathke [aut].

Harvest.Tree Harvest the Classification Tree. Author: Bingyuan Liu/Yan Yuan/Qian Shi.

HiCfeat Multiple Logistic Regression for 3D Chromatin Domain Border Analysis. Author:
Raphael Mourad.

HydeNet Hybrid Bayesian Networks Using R and JAGS. Authors: Jarrod E. Dalton and
Benjamin Nutter.

ICBayes Bayesian Semiparametric Models for Interval-Censored Data. Authors: Chun Pan,
Bo Cai, Lianming Wang, and Xiaoyan Lin.

ICC.Sample.Size Calculation of Sample Size and Power for ICC. Authors: Alasdair Rath-
bone [aut, cre], Saurabh Shaw [aut], Dinesh Kumbhare [aut].

IDTurtle Identify Turtles by their Plastral Biometries. Author: Aitor Valdeon.

IRISMustangMetrics Statistics and Metrics for Seismic Data. Authors: Jonathan Callahan
[aut, cre], Rob Casey [aut], Mary Templeton [aut].

IRISSeismic Classes and Methods for Seismic Data Analysis. Authors: Jonathan Callahan
[aut, cre], Rob Casey [aut], Mary Templeton [aut].

ITEMAN Classical Item Analysis. Author: Cengiz Zopluoglu.

IalsaSynthesis Synthesizing Information Across Collaborating Research. Authors: Will
Beasley [aut, cre], Andrey Koval [aut], Integrative Analysis of Longitudinal Studies of
Aging (IALSA) [cph].

ImportExport Import and Export Data. Authors: Roger Pros, Isaac Subirana, Joan Vila.

Information Data Exploration with Information Theory (Weight-of-Evidence and Informa-
tion Value). Author: Larsen Kim [aut, cre].

InformationValue Performance Analysis and Companion Functions for Binary Classifica-
tion Models. Author: Selva Prabhakaran.

IntegratedJM Joint Modelling of the Gene-Expression and Bioassay Data, Taking Care of
the Effect Due to a Fingerprint Feature. Authors: Rudradev Sengupta, Nolen Joy
Perualila.

InterSIM Simulation of Inter-Related Genomic Datasets. Authors: Prabhakar Chalise,
Rama Raghavan, Brooke Fridley.

JGEE Joint Generalized Estimating Equation Solver. Author: Gul Inan.

JPEN Covariance and Inverse Covariance Matrix Estimation Using Joint Penalty. Author:
Ashwini Maurya.

JRF Joint Random Forest (JRF) for the Simultaneous Estimation of Multiple Related Net-
works. Authors: Francesca Petralia [aut, cre], Pei Wang [aut], Zhidong Tu [aut],
Won-min Song [aut], Adele Cutler [ctb], Leo Breiman [ctb], Andy Liaw [ctb], Matthew
Wiener [ctb].

JacobiEigen Classical Jacobi Eigensolution Algorithm. Author: Bill Venables.

KERE Expectile Regression in Reproducing Kernel Hilbert Space. Authors: Yi Yang, Teng
Zhang, Hui Zou.

KoulMde Koul’s Minimum Distance Estimation in Linear Regression and Autoregression
Model. Author: Jiwoong Kim [aut, cre].
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LANDD Liquid Association for Network Dynamics Detection. Authors: Shangzhao Qiu,
Yan Yan, Tianwei Yu.

LFDR.MLE Estimation of the Local False Discovery Rates by Type II Maximum Likelihood
Estimation. Authors: Ye Yang, Marta Padilla, Alaa Ali, Kyle Leckett, Zhenyu Yang,
Zuojing Li, Corey M. Yanofsky and David R. Bickel.

LGEWIS Tests for Genetic Association/Gene-Environment Interaction in Longitudinal
Gene-Environment-Wide Interaction Studies. Authors: Zihuai He, Seunggeun Lee,
Bhramar Mukherjee, Min Zhang.

LGRF Set-Based Tests for Genetic Association in Longitudinal Studies. Author: Zihuai He.

LOGIT Functions, Data and Code for Binary and Binomial Data. Authors: Joseph M Hilbe,
Rafael S. de Souza.

LPM Linear Parametric Models Applied to Hydrological Series. Authors: Corrado Tallerini
[aut, cre], Salvatore Grimaldi [aut].

LRcontrast Dose Response Signal Detection under Model Uncertainty. Author: Kevin
Kokot.

LSDinterface Reading LSD Results (.res) Files. Author: Marcelo C. Pereira.

LSTS Locally Stationary Time Series. Authors: Ricardo Olea, Wilfredo Palma, Pilar Rubio.
In view: TimeSeries.

Langevin Langevin Analysis in One and Two Dimensions. Authors: Philip Rinn [aut, cre],
Pedro G. Lind [aut], David Bastine [ctb].

LaplaceDeconv Laplace Deconvolution with Noisy Discrete Non-Equally Spaced Observa-
tions on a Finite Time Interval. Authors: Yves Rozenholc and Marianna Pensky.

Libra Linearized Bregman Algorithms for Generalized Linear Models. Authors: Feng Ruan,
Jiechao Xiong and Yuan Yao.

LifeHist Life History Models of Individuals. Author: Ruben H. Roa-Ureta.

LightningR Tools for Communication with Lightning-Viz Server. Author: Ermlab.

LinearRegressionMDE Minimum Distance Estimation in Linear Regression Model. Au-
thor: Jiwoong Kim [aut, cre].

LinkedMatrix Column-Linked and Row-Linked Matrices. Authors: Gustavo de los Cam-
pos [aut], Alexander Grueneberg [aut, cre].

LncMod Predicting Modulator and Functional/Survival Analysis. Authors: Yongsheng
Li,Zishan Wang,Juan Xu*,Xia Li*.

LotkasLaw Runs Lotka’s Law which is One of the Special Applications of Zipf’s Law.
Authors: Kenneth Buker [aut, cre], Dr. Alon Friedman [ctb].

MANCIE Matrix Analysis and Normalization by Concordant Information Enhancement.
Authors: Tao Wang, Chongzhi Zang.

MBTAr Access Data from the Massachusetts Bay Transit Authority (MBTA) Web API.
Author: Justin de Benedictis-Kessner [aut, cre].

MCDM Multi-Criteria Decision Making Methods. Author: Blanca A. Ceballos Martin.

MDimNormn Multi-Dimensional MA Normalization for Plate Effect. Author: Mun-Gwan
Hong.

MFAg Multiple Factor Analysis (MFA). Author: Paulo Cesar Ossani Marcelo Angelo Cirillo.
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MIXFIM Evaluation of the FIM in NLMEMs using MCMC. Authors: Marie-Karelle Riviere-
Jourdan and France Mentre.

MLCIRTwithin Latent Class Item Response Theory Models Under Within-Item Multi-
Dimensionality. Authors: Francesco Bartolucci, Silvia Bacci.

MM2S Single-Sample Classifier of Medulloblastoma Subtypes for Medulloblastoma Patient
Samples, Mouse Models, and Cell Lines. Authors: Deena M.A. Gendoo, Benjamin
Haibe-Kains.

MM2Sdata Gene Expression Datasets for the ‘MM2S’ Package. Authors: Deena M.A.
Gendoo, Benjamin Haibe-Kains.

MMWRweek Convert Dates to MMWR Day, Week, and Year. Author: Jarad Niemi.

MRQoL Minimal Clinically Important Difference and Response Shift Effect for Health-
Related Quality of Life. Author: Ahmad Ousmen.

MScombine Combine Data from Positive and Negative Ionization Mode Finding Common
Entities. Author: Monica Calderon-Santiago.

MVT Estimation and Testing for the Multivariate t-Distribution. Author: Felipe Osorio.

ManlyMix Manly Mixture Modeling and Model-Based Clustering. Authors: Xuwen Zhu
[aut, cre], Volodymyr Melnykov [aut], Michael Hutt [ctb, cph] (NM optimization in
c), Stephen Moshier [ctb, cph] (eigen calculations in c), Rouben Rostamian [ctb, cph]
(memory allocation in c).

MatchLinReg Combining Matching and Linear Regression for Causal Inference. Authors:
Alireza S. Mahani, Mansour T.A. Sharabiani.

MaxentVariableSelection Selecting the Best Set of Relevant Environmental Variables along
with the Optimal Regularization Multiplier for Maxent Niche Modeling. Author:
Alexander Jueterbock.

Mediana Clinical Trial Simulations. Authors: Gautier Paux, Alex Dmitrienko.

MethylCapSig Detection of Differentially Methylated Regions using MethylCap-Seq Data.
Authors: Deepak N. Ayyala, David E. Frankhouser, Javkhlan-Ochir Ganbat, Guido
Marcucci, Ralf Bundschuh, Pearlly Yan and Shili Lin.

MixedPoisson Mixed Poisson Models. Authors: Alicja Wolny-Dominiak and Michal Trze-
siok.

MoTBFs Learning Hybrid Bayesian Networks using Mixtures of Truncated Basis Functions.
Authors: Inmaculada Pérez-Bernabé, Antonio Salmerón.

MonoPhy Allows to Explore Monophyly (or Lack of it) of Taxonomic Groups in a Phylogeny.
Author: Orlando Schwery.

MotilityLab Quantitative Analysis of Motion. Authors: Katharina Dannenberg, Jeffrey
Berry, Johannes Textor.

MultiGHQuad Multidimensional Gauss-Hermite Quadrature. Author: Karel Kroeze.

MvBinary Modelling Multivariate Binary Data with Blocks of Specific One-Factor Distribu-
tion. Authors: Matthieu Marbac and Mohammed Sedki.

NCA Necessary Condition Analysis. Author: Jan Dul.

NEpiC Network Assisted Algorithm for Epigenetic Studies Using Mean and Variance
Combined Signals. Author: Peifeng Ruan.

NIPTeR Fast and Accurate Trisomy Prediction in Non-Invasive Prenatal Testing. Author:
Dirk de Weerd.
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NetSwan Network Strengths and Weaknesses Analysis. Author: Serge Lhomme.

NlcOptim Solve Nonlinear Optimization with Nonlinear Constraints. Authors: Xianyan
Chen, Xiangrong Yin. In view: Optimization.

NostalgiR Advanced Text-Based Plots. Author: Hien D. Nguyen.

OBsMD Objective Bayesian Model Discrimination in Follow-Up Designs. Author: Marta
Nai Ruscone based on Laura Deldossi’s code.

OECD Search and Extract Data from the OECD. Author: Eric Persson [aut, cre].

OTE Optimal Trees Ensembles for Regression, Classification and Class Membership Prob-
ability Estimation. Authors: Zardad Khan, Asma Gul, Aris Perperoglou, Osama
Mahmoud, Werner Adler, Miftahuddin and Berthold Lausen.

OasisR Outright Tool for the Analysis of Spatial Inequalities and Segregation. Author:
Mihai Tivadar. In view: Spatial.

OptGS Near-Optimal and Balanced Group-Sequential Designs for Clinical Trials with
Continuous Outcomes. Authors: James Wason [aut, cre], John Burkardt [ctb]. In view:
ExperimentalDesign.

OptiQuantR Simplifies and Automates Analyzing and Reporting OptiQuant’s log Data.
Author: Joao Pinelo Silva [aut, cre].

OriGen Fast Spatial Ancestry via Flexible Allele Frequency Surfaces. Authors: John Michael
O Ranola, John Novembre, and Kenneth Lange.

OrthoPanels Dynamic Panel Models with Orthogonal Reparameterization of Fixed Effects.
Authors: Davor Cubranic [aut, cre], Mark Pickup [aut], Paul Gustafson [aut], Geoffrey
Evans [aut].

PCA4TS Segmenting Multiple Time Series by Contemporaneous Linear Transformation.
Authors: Jinyuan Chang, Bin Guo and Qiwei Yao. In view: TimeSeries.

PKNCA Perform Pharmacokinetic Non-Compartmental Analysis. Authors: Bill Denney,
Clare Buckeridge.

PRIMsrc PRIM Survival Regression Classification. Authors: Jean-Eudes Dazard [aut, cre],
Michael Choe [ctb], Michael LeBlanc [ctb], Alberto Santana [ctb].

PabonLasso Pabon Lasso Graphs and Comparing Situations of a Unit in Two Different
Times. Authors: H Nezami and H Tabesh and AA Azarian.

Pade Padé Approximant Coefficients. Author: Avraham Adler [aut, cph, cre]. In view:
NumericalMathematics.

PanelCount Random Effects and/or Sample Selection Models for Panel Count Data. Au-
thor: Jing Peng.

ParallelPC Paralellised Versions of Constraint Based Causal Discovery Algorithms. Au-
thors: Thuc Duy Le, Tao Hoang, Shu Hu, and Liang Zhang.

Pasha Preprocessing of Aligned Sequences from HTS Analyses. Authors: Romain Fenouil,
Nicolas Descostes, Lionel Spinelli, Jean-Christophe Andrau.

Perc Using Percolation and Conductance to Find Information Flow Certainty in a Direct
Network. Authors: Kevin Fujii [aut], Jian Jin [aut, cre], Aaron Shev [aut], Brianne
Beisner [aut], Brenda McCowan [aut, cph], Hsieh Fushing [aut, cph].

PharmacoGx Analysis of Large-Scale Pharmacogenomic Data. Authors: Petr Smirnov,
Zhaleh Safikhani, Benjamin Haibe-Kains.
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Phxnlme Run Phoenix NLME and Perform Post-Processing. Authors: Chay Ngee Lim
[aut,cre], Shuang Liang [aut], Kevin Feng [aut,cre], Grygoriy Vasilinin [aut], Angela
Birnbaum [aut,ths], Jason Chittenden [aut], Bob Leary [ctb], Ana Henry [ctb], Mike
Dunlavey [ctb], Samer Mouksassi [com].

PlotPrjNetworks Useful Networking Tools for Project Management. Author: Javier
Celigueta Muñoz.

PortfolioEffectEstim High Frequency Price Estimators by PortfolioEffect. Authors: Andrey
Kostin [aut, cre], Aleksey Zemnitskiy [aut], Oleg Nechaev [aut].

PortfolioEffectHFT High Frequency Portfolio Analytics by PortfolioEffect. Authors: Alek-
sey Zemnitskiy [aut, cre], Andrey Kostin [aut], Oleg Nechaev [aut], Craig Otis and
others [ctb, cph] (OpenFAST library), Daniel Lemire, Muraoka Taro and others [ctb,
cph] (JavaFastPFOR library), Joe Walnes, Jorg Schaible and others [ctb, cph] (XStream
library), Dain Sundstrom [ctb, cph] (Snappy library), Extreme! Lab, Indiana University
[ctb, cph] (XPP3 library), The Apache Software Foundation [ctb, cph] (Apache Log4j
and Commons Lang libraries), Google, Inc. [ctb, cph] (GSON library), Free Software
Foundation [ctb, cph] (GNU Trove and GNU Crypto libraries). In view: Finance.

ProNet Biological Network Construction, Visualization and Analyses. Authors: Xiang-Yun
Wu and Xia-Yu Xia.

ProTrackR Manipulate and Play ‘ProTracker’ Modules. Author: Pepijn de Vries [aut, cre,
dtc].

PsiHat Several Local False Discovery Rate Estimators. Authors: Alaa Ali, Kyle Leckett,
Marta Padilla, David R. Bickel (contributions from Bradley Efron, Brit B. Turnbull,
Balasubramanian Narasimhan from package locfdr).

PythonInR Use Python from Within R. Author: Florian Schwendinger [aut, cre].

QPot Quasi-Potential Analysis for Stochastic Differential Equations. Authors: Christopher
Moore [aut], Christopher Stieha [aut, cre], Ben Nolting [aut], Maria Cameron [aut],
Karen Abbott [aut], James Gregson [cph] (author of expression_parser library: https:
//github.com/jamesgregson/expression_parser).

QuantumClone Clustering Mutations using High Throughput Sequencing (HTS) Data.
Author: Paul Deveau [aut, cre].

RClone Partially Clonal Populations Analysis. Authors: Sophie Arnaud-Haond [aut],
Diane Bailleul [aut, cre], CLONIX [ctb].

RCriteo Loading Criteo Data into R. Author: Johannes Burkhardt.

RFormatter R Source Code Formatter. Author: Benjamin Fischer [aut, cre].

RGoogleAnalyticsPremium Unsampled Data in R for Google Analytics Premium Ac-
counts. Author: Jalpa Joshi Dave.

RKlout Fetch Klout Scores for Twitter Users. Author: Binayak Goswami.

RMixpanel R API for Mixpanel. Author: Meinhard Ploner.

RNaviCell Visualization of High-Throughput Data on Large-Scale Biological Networks.
Authors: Eric Bonnet [aut, cre], Paul Deveau [aut].

RNeo4j Neo4j Driver for R. Author: Nicole White.

ROMIplot Plots Surfaces of Rates of Mortality Improvement. Authors: Roland Rau, Tim
Riffe.

ROptimizely R Optimizely API. Authors: Keerthi Chandra [aut, cre], Chris Johannessen
[aut], Siddharth Somayajula [ctb].
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RRNA Secondary Structure Plotting for RNA. Author: JP Bida.

RStoolbox Tools for Remote Sensing Data Analysis. Authors: Benjamin Leutner [cre, aut],
Ned Horning [aut].

RViennaCL ViennaCL C++ Header Files. Author: Charles Determan Jr.

RateDistortion Routines for Solving Rate-Distortion Problems. Author: Chris R. Sims.

Rblpapi R Interface to Bloomberg. Authors: Whit Armstrong, Dirk Eddelbuettel and John
Laing. In view: Finance.

Rcereal C++ Header Files of ‘cereal’. Authors: Wush Wu, Randolph Voorhies, and Shane
Grant.

RcppFaddeeva ‘Rcpp’ Bindings for the ‘Faddeeva’ Package. Authors: Baptiste Auguie [aut,
cre], Dirk Eddelbuettel [aut], Steven G. Johnson [aut] (Author of Faddeeva).

RcppShark R Interface to the Shark Machine Learning Library. Author: Aydin Demircioglu.

RedditExtractoR Reddit Data Extraction Toolkit. Author: Ivan Rivera.

Relatedness An Algorithm to Infer Relatedness. Author: Fabien Laporte.

RepeatABEL GWAS for Multiple Observations on Related Individuals. Author: Lars
Ronnegard.

RevEcoR Reverse Ecology Analysis on Microbiome. Authors: Yang Cao, Fei Li.

Rip46 Utils for IP4 and IP6 Addresses. Author: Neal Fultz.

RobustEM Robust Mixture Modeling Fitted via Spatial-EM Algorithm for Model-Based
Clustering and Outlier Detection. Authors: Aishat Aloba, Kai Yu, Xin Dang, Yixin
Chen, and Henry Bart Jr.

Rphylopars Phylogenetic Comparative Tools for Missing Data and Within-Species Varia-
tion. Authors: Eric W. Goolsby, Jorn Bruggeman, Cecile Ane.

Rsurrogate Robust Estimation of the Proportion of Treatment Effect Explained by Surrogate
Marker Information. Author: Layla Parast.

Rtwalk The R Implementation of the ‘t-walk’ MCMC Algorithm. Author: J Andres Chris-
ten.

RxODE Facilities for Simulating from ODE-Based Models. Authors: Melissa Hallow [aut,
cre], Wenping Wang [aut], David A. James [aut].

SACCR SA Counterparty Credit Risk under Basel III. Author: Tasos Grivas.

SACOBRA Self-Adjusting COBRA. Authors: Wolfgang Konen [aut], Samineh Bagheri [cre,
aut], Patrick Koch [aut].

SAGA Software for the Analysis of Genetic Architecture. Authors: Heath Blackmon and
Jeffery P. Demuth.

SALTSampler Efficient Sampling on the Simplex. Authors: Hannah Director, Scott Vander
Wiel, James Gattiker.

SDR Subgroup Discovery Algorithms for R. Authors: Angel M. Garcia [aut, cre], Pedro
Gonzalez [aut, cph], Cristobal J. Carmona [aut, cph], Francisco Charte [ctb].

SEHmodel Spatial Exposure-Hazard Model for Exposure and Impact Assessment on Ex-
posed Individuals. Authors: Marc Bourotte [ctb], Melen Leclerc [aut], Jean-Francois
Rey [aut, cre], Samuel Soubeyrand [ctb], Emily Walker [aut].
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SHELF Tools to Support the Sheffield Elicitation Framework (SHELF). Author: Jeremy
Oakley.

SIBER Stable Isotope Bayesian Ellipses in R. Authors: Andrew Jackson and Andrew Parnell.

SOPIE Non-Parametric Estimation of the Off-Pulse Interval of a Pulsar. Author: Willem
Daniel Schutte.

SPCALDA A New Reduced-Rank Linear Discriminant Analysis Method. Authors: Yue S.
Niu, Ning Hao, and Bin Dong.

SSRMST Sample Size Calculation using Restricted Mean Survival Time. Author: Miki
Horiguchi.

STAND Statistical Analysis of Non-Detects. Authors: E. L. Frome and D. P. Frome.

STI Calculation of the Standardized Temperature Index. Author: Marc Fasel [aut, cre].

STMedianPolish Spatio-Temporal Median Polish. Authors: William Martinez, Carlos Melo.
In view: SpatioTemporal.

SchemaOnRead Automated Schema on Read. Author: Michael North [aut, cre].

Sejong KoNLP static dictionaries and Sejong project resources. Author: Heewon Jeon.

SensMixed Analysis of Sensory and Consumer Data in a Mixed Model Framework. Au-
thors: Alexandra Kuznetsova [aut, cre], Per Bruun Brockhoff [aut, ths], Rune Haubo
Bojesen Christensen [aut].

ShapeChange Change-Point Estimation using Shape-Restricted Splines. Authors: Xiyue
Liao and Mary C Meyer.

Shrinkage Several Shrinkage Effect-Size Estimators. Authors: Corey M. Yanofsky, Zahra
Montazeri, Marta Padilla, Alaa Ali and David R. Bickel.

SimDesign Structure for Organizing Monte Carlo Simulation Designs. Author: Phil
Chalmers [aut, cre].

SimHaz Simulated Survival and Hazard Analysis for Time-Dependent Exposure. Authors:
Danyi Xiong, Teeranan Pokaprakarn, Hiroto Udagawa, Nusrat Rabbee.

SimReg Similarity Regression Functions. Author: Daniel Greene.

SocialMediaLab Tools for Collecting Social Media Data and Generating Networks for
Analysis. Author: Timothy Graham & Robert Ackland.

Sofi Interfaz interactiva con fines didacticos. Author: Jose D. Loera.

SoyNAM Soybean Nested Association Mapping Dataset. Authors: Alencar Xavier, William
Beavis, James Specht, Brian Diers, Reka Howard, William Muir, Katy Rainey.

SpaDES Develop and Run Spatially Explicit Discrete Event Simulation Models. Authors:
Alex M Chubaty [aut, cre], Eliot J B McIntire [aut], Steve Cumming [ctb], Her Majesty
the Queen in Right of Canada, as represented by the Minister of Natural Resources
Canada [cph].

SparseFactorAnalysis Scaling Count and Binary Data with Sparse Factor Analysis. Au-
thors: Marc Ratkovic, In Song Kim, John Londregan, and Yuki Shiraito.

SparseLearner Sparse Learning Algorithms Using a LASSO-Type Penalty for Coefficient
Estimation and Model Prediction. Authors: Pi Guo, Yuantao Hao.

StMoMo Stochastic Mortality Modelling. Authors: Andres Villegas, Pietro Millossovich,
Vladimir Kaishev.
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StockChina Real-Time Stock Price & Volume in China Market. Author: Xiaodong Deng.

SuperExactTest Exact Test and Visualization of Multi-Set Intersections. Authors: Minghui
Wang, Yongzhong Zhao and Bin Zhang.

SurvRank Rank Based Survival Modelling. Author: Michael Laimighofer [aut, cre, ctb].

SwarmSVM Ensemble Learning Algorithms Based on Support Vector Machines. Authors:
Tong He, Aydin Demircioglu.

SyncMove Subsample Temporal Data to Synchronal Events and Compute the MCI. Authors:
Martin Rimmler [aut, cre], Thomas Mueller [aut].

TCGA2STAT Simple TCGA Data Access for Integrated Statistical Analysis in R. Authors:
Ying-Wooi Wan, Genevera I. Allen, Matthew L. Anderson, Zhandong Liu.

TLBC Two-Level Behavior Classification. Author: Katherine Ellis.

TMB Template Model Builder: A General Random Effect Tool Inspired by ADMB. Authors:
Kasper Kristensen [aut, cre, cph], Brad Bell [cph], Hans Skaug [ctb], Arni Magnusson
[ctb], Casper Berg [ctb], Anders Nielsen [ctb], Martin Maechler [ctb], Theo Michelot
[ctb], Mollie Brooks [ctb], Cole Monnahan [ctb].

TMDb Access to TMDb API - Apiary. Author: Andrea Capozio.

TOC Total Operating Characteristic Curve and ROC Curve. Authors: Robert G. Pontius,
Alí Santacruz, Amin Tayyebi, Benoit Parmentier, Kangping Si.

TP.idm Estimation of Transition Probabilities for the Illness-Death Model. Authors: Vanesa
Balboa-Barreiro, Jacobo de Una-Alvarez and Luis Meira-Machado.

TRADER Tree Ring Analysis of Disturbance Events in R. Authors: Pavel Fibich, Jan Altman,
Tuomas Aakala, Jiri Dolezal.

TSMining Mining Univariate and Multivariate Motifs in Time-Series Data. Author: Cheng
Fan. In view: TimeSeries.

TSTr Ternary Search Tree for Auto-Completion and Spell Checking. Authors: Ricardo
Merino [aut, cre], Samantha Fernandez [ctb].

TTS Master Curve Estimates Corresponding to Time-Temperature Superposition. Authors:
Antonio Meneses, Salvador Naya, Javier Tarrio-Saavedra.

TauStar Efficient Computation of the t* Statistic of Bergsma and Dassios (2014). Authors:
Luca Weihs [aut, cre], Emin Martinian [ctb] (Created the red-black tree library included
in package.).

TestingSimilarity Bootstrap Test for Similarity of Dose Response Curves Concerning the
Maximum Absolute Deviation. Author: Kathrin Moellenhoff.

TipDatingBeast Using Tip Dates with Phylogenetic Trees in BEAST. Authors: Adrien Rieux,
Camilo Khatchikian.

Tmisc Turner Miscellaneous. Author: Stephen Turner.

Traitspace A Predictive Model for Trait Based Community Assembly of Plant Species.
Authors: Chaitanya Joshi, Xin Li, Daniel Laughlin.

TransModel Fit Linear Transformation Models for Censored Data. Authors: Jie Zhou, Jiajia
Zhang, Wenbin Lu.

TruncatedNormal Truncated Multivariate Normal. Author: Zdravko I. Botev.

UncerIn2 Implements Models of Uncertainty into the Interpolation Functions. Author:
Tomas Burian.
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UpSetR A More Scalable Alternative to Venn and Euler Diagrams for Visualizing Intersect-
ing Sets. Authors: Jake Conway [cre], Nils Gehlenborg [aut].

VTrack A Collection of Tools for the Analysis of Remote Acoustic Telemetry Data. Authors:
Ross G. Dwyer, Mathew E. Watts, Hamish A. Campbell & Craig E. Franklin.

WiSEBoot Wild Scale-Enhanced Bootstrap. Authors: Megan Heyman, Snigdhansu Chatter-
jee.

WikidataR API Client Library for ‘Wikidata’. Authors: Oliver Keyes [aut, cre], Christian
Graul [ctb].

WufooR R Wrapper for the ‘Wufoo.com’ - The Form Building Service. Author: John Malc.

XHWE X Chromosome Hardy-Weinberg Equilibrium. Authors: Xiao-Ping You, Qi-Lei Zou,
Jian-Long Li, Ji-Yuan Zhou.

XMRF Markov Random Fields for High-Throughput Genetics Data. Authors: Ying-Wooi
Wan, Genevera I. Allen, Yulia Baker, Eunho Yang, Pradeep Ravikumar, Zhandong Liu.

ZRA Dynamic Plots for Time Series Forecasting. Author: David Beiner.

aTSA Alternative Time Series Analysis. Author: Debin Qiu.

abbyyR Access to Abbyy Optical Character Recognition (OCR) API. Author: Gaurav Sood
[aut, cre].

abcrf Approximate Bayesian Computation via Random Forests. Authors: Jean-Michel
Marin [aut], Pierre Pudlo [aut, cre], Christian P. Robert [ctb].

abodOutlier Angle-Based Outlier Detection. Author: Jose Jimenez.

acmeR Implements ACME Estimator of Bird and Bat Mortality by Wind Turbines. Authors:
Robert Wolpert [aut, cre], Jacob Coleman [aut].

addhazard Fit Additive Hazards Models for Survival Analysis. Authors: Jie (Kate) Hu [aut,
cre], Norman Breslow [aut], Gary Chan [aut].

alineR Alignment of Phonetic Sequences Using the ‘ALINE’ Algorithm. Authors: Sean
Downey [aut, cre], Guowei Sun [aut].

ameco European Commission Annual Macro-Economic (AMECO) Database. Author: Eric
Persson [aut, cre].

analogsea Interface to ‘Digital Ocean’. Authors: Scott Chamberlain [aut, cre], Hadley
Wickham [aut], Winston Chang [aut], RStudio [cph].

anonymizer Anonymize Data Containing Personally Identifiable Information. Author:
Paul Hendricks [aut, cre].

aop Adverse Outcome Pathway Analysis. Author: Lyle D. Burgoon.

apaStyle Generate APA Tables for MS Word. Author: Jort de Vreeze [aut, cre]. In view:
ReproducibleResearch.

apaTables Create American Psychological Association (APA) Style Tables. Author: David
Stanley [aut, cre].

appnn Amyloid Propensity Prediction Neural Network. Authors: Carlos Família, Sarah R.
Dennison, Alexandre Quintas, David A. Phoenix.

apricom Tools for the a Priori Comparison of Regression Modelling Strategies. Authors:
Romin Pajouheshnia [aut, cre], Wiebe Pestman [aut], Rolf Groenwold [aut].

arqas Application in R for Queueing Analysis and Simulation. Author: Borja Varela.
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artfima Fit ARTFIMA Model. Authors: A. I. McLeod, Farzad Sabzikar, Mark M. Meer-
schaert.

asdreader Reading ASD Binary Files in R. Author: Pierre Roudier [aut, cre].

asht Applied Statistical Hypothesis Tests. Author: Michael P. Fay.

asremlPlus Augments the Use of ‘Asreml’ in Fitting Mixed Models. Author: Chris Brien.

assertive.base A Lightweight Core of the ‘assertive’ Package. Authors: Richard Cotton [aut,
cre], Sunkyu Choi [trl], Ivanka Skakun [trl], Gergely Daroczi [trl], Anton Antonov [trl],
Hisham Ben Hamidane [trl], Anja Billing [trl], Aditya Bhagwat [trl], Rasmus Baath
[trl], Mine Cetinkaya-Rundel [trl], Aspasia Chatziefthymiou [trl].

assertive.code Assertions to Check Properties of Code. Author: Richard Cotton [aut, cre].

assertive.data Assertions to Check Properties of Data. Author: Richard Cotton [aut, cre].

assertive.data.uk Assertions to Check Properties of Strings. Author: Richard Cotton [aut,
cre].

assertive.data.us Assertions to Check Properties of Strings. Author: Richard Cotton [aut,
cre].

assertive.datetimes Assertions to Check Properties of Dates and Times. Author: Richard
Cotton [aut, cre].

assertive.files Assertions to Check Properties of Files. Author: Richard Cotton [aut, cre].

assertive.matrices Assertions to Check Properties of Matrices. Author: Richard Cotton [aut,
cre].

assertive.models Assertions to Check Properties of Models. Author: Richard Cotton [aut,
cre].

assertive.numbers Assertions to Check Properties of Numbers. Author: Richard Cotton
[aut, cre].

assertive.properties Assertions to Check Properties of Variables. Author: Richard Cotton
[aut, cre].

assertive.reflection Assertions for Checking the State of R. Author: Richard Cotton [aut,
cre].

assertive.sets Assertions to Check Properties of Sets. Author: Richard Cotton [aut, cre].

assertive.strings Assertions to Check Properties of Strings. Author: Richard Cotton [aut,
cre].

assertive.types Assertions to Check Types of Variables. Author: Richard Cotton [aut, cre].

autovarCore Automated Vector Autoregression Models and Networks. Author: Ando
Emerencia [aut, cre]. In view: TimeSeries.

averisk Calculation of Average Population Attributable Fractions and Confidence Intervals.
Author: John Ferguson [aut, cre].

bWGR Bagging Whole-Genome Regression. Authors: Alencar Xavier, William Muir, Katy
Rainey.

backShift Learning Causal Cyclic Graphs from Unknown Shift Interventions. Author:
Christina Heinze.

backpipe Backward Pipe Operator. Authors: Christopher Brown [cre, aut], Decision Pat-
terns [cph].
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backtestGraphics Interactive Graphics for Portfolio Data. Authors: David Kane, Ziqi Lu,
Fan Zhang, Miller Zijie Zhu.

bacr Bayesian Adjustment for Confounding. Author: Chi Wang.

bapred Batch Effect Removal (in Phenotype Prediction using Gene Data). Authors: Roman
Hornung, David Causeur.

batman Convert Categorical Representations of Logicals to Actual Logicals. Authors:
Oliver Keyes [aut, cre], Ruben C. Arslan [ctb], Christopher Akiki [ctb], Mine Cetinkaya-
Rundel [ctb], Peter Meissner [ctb], Ilaria Prosdocimi [ctb], Thomas Leeper [ctb], Amy
Lee [ctb], Adolfo Álvarez [ctb].

batteryreduction An R Package for Data Reduction by Battery Reduction. Authors: Chun-
qiao Luo [aut, cre], Ralph D’Agostino [aut].

bcRep Advanced Analysis of B Cell Receptor Repertoire Data. Author: Julia Bischof.

bcrypt ‘Blowfish’ Password Hashing Algorithm. Authors: Jeroen Ooms [cre, aut], Damien
Miller [cph], Niels Provos [cph].

bdots Bootstrapped Differences of Time Series. Authors: Michael Seedorff, Jacob Oleson,
Grant Brown, Joseph Cavanaugh, and Bob McMurray.

bedr Genomic Region Processing using Tools Such as Bedtools, Bedops and Tabix. Authors:
Daryl Waggott, Syed Haider, Emilie Lalonde, Clement Fung, Paul C. Boutros.

betalink Beta-Diversity Within a Metaweb of Species Interactions. Author: Timothee Poisot.

bimixt Estimates Mixture Models for Case-Control Data. Authors: Michelle Winerip,
Garrick Wallstrom, Joshua LaBaer.

biomartr Functional Annotation and Biological Data Retrieval with R. Author: Hajk-Georg
Drost.

blavaan Bayesian Latent Variable Analysis. Authors: Edgar Merkle [aut, cre], Yves Rosseel
[aut].

bmeta A Package for Bayesian Meta-Analysis and Meta-Regression. Authors: Tao Ding,
Gianluca Baio.

bnclassify Learning Discrete Bayesian Network Classifiers from Data. Authors: Mihaljevic
Bojan [aut, cre], Bielza Concha [aut], Larranaga Pedro [aut], Wickham Hadley [ctb]
(some code extracted from memoise package). In view: MachineLearning.

bnstruct Bayesian Network Structure Learning from Data with Missing Values. Authors:
Francesco Sambo [aut, cre], Alberto Franzin [aut].

brotli A Compression Format Optimized for the Web. Authors: Jeroen Ooms [aut, cre],
Google, Inc [aut, cph] (Brotli C++ library).

brr Bayesian Inference on the Ratio of Two Poisson Rates. Author: Stéphane Laurent.

brranching Fetch Phylogenies from Many Sources. Author: Scott Chamberlain [aut, cre].

bssn Birnbaum-Saunders Model Based on Skew-Normal Distribution. Authors: Rocio
Paola Maehara and Luis Benites Sanchez.

btergm Temporal Exponential Random Graph Models by Bootstrapped Pseudolikelihood.
Authors: Philip Leifeld [aut, cre], Skyler J. Cranmer [ctb], Bruce A. Desmarais [ctb].

caRpools CRISPR AnalyzeR for Pooled CRISPR Screens. Authors: Jan Winter, Florian
Heigwer.

calACS Count All Common Subsequences. Author: Alan Gu.
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camtrapR Camera Trap Data Management and Preparation of Occupancy and Spatial
Capture-Recapture Analyses. Authors: Juergen Niedballa [aut, cre], Alexandre Cour-
tiol [aut], Rahel Sollmann [aut], John Mathai [ctb], Seth Timothy Wong [ctb], An The
Truong Nguyen [ctb], Azlan bin Mohamed [ctb], Andrew Tilker [ctb], Andreas Wilting
[ctb, ths].

captioner Numbers Figures and Creates Simple Captions. Author: Letaw Alathea [aut, cre].

captr Client for the Captricity API. Author: Gaurav Sood [aut, cre].

cardioModel Cardiovascular Safety Exposure-Response Modeling in Early-Phase Clinical
Studies. Authors: Daniela J Conrado [aut, cre], William S Denney [aut], Gregory J
Hather [aut], Danny Chen [ctb].

cartography Thematic Cartography. Authors: Timothée Giraud [cre, aut], Nicolas Lambert
[aut].

cate High Dimensional Factor Analysis and Confounder Adjusted Testing and Estimation.
Authors: Jingshu Wang [aut], Qingyuan Zhao [aut, cre].

causaldrf Tools for Estimating Causal Dose Response Functions. Authors: Douglas Gala-
gate [cre], Joseph Schafer [aut].

cdcfluview Retrieve U.S. Flu Season Data from the CDC FluView Portal. Author: Bob
Rudis.

chunked Chunkwise Text-File Processing for ‘dplyr’. Author: Edwin de Jonge.

ckanr Client for the Comprehensive Knowledge Archive Network (‘CKAN’) API. Authors:
Scott Chamberlain [aut, cre], Imanuel Costigan [ctb], Wush Wu [ctb], Florian Mayer
[ctb].

clarifai Access to Clarifai API. Author: Gaurav Sood [aut, cre].

cleangeo Cleaning Geometries from Spatial Objects. Author: Emmanuel Blondel.

climtrends Statistical Methods for Climate Sciences. Author: Jose Gama [aut, cre].

clipr Read and Write from the System Clipboard. Authors: Matthew Lincoln [aut, cre],
Louis Maddox [ctb].

clisymbols Unicode Symbols at the R Prompt. Authors: Gabor Csardi [aut, cre], Sindre
Sorhus [aut].

clogitboost Boosting Conditional Logit Model. Authors: Haolun Shi [aut, cre], Guosheng
Yin [aut].

clttools Central Limit Theorem Experiments (Theoretical and Simulation). Authors: Simiao
Ye, Jingning Mei.

cmsaf Tools for CM SAF Netcdf Data. Author: Steffen Kothe.

cnmlcd Maximum Likelihood Estimation of a Log-Concave Density Function. Authors: Yu
Liu, Yong Wang.

coala A Framework for Coalescent Simulation. Authors: Paul Staab [aut, cre, cph], Dirk
Metzler [ths].

codyn Community Dynamics Metrics. Authors: Lauren Hallett [aut], Sydney K. Jones
[aut], Andrew A. MacDonald [aut], Dan F. B. Flynn [aut], Peter Slaughter [aut], Julie
Ripplinger [aut], Scott L. Collins [aut], Corinna Gries [aut], Matthew B. Jones [aut, cre].

colorhcplot Colorful Hierarchical Clustering Dendrograms. Author: Damiano Fantini.
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cometExactTest Exact Test from the Combinations of Mutually Exclusive Alterations
(CoMEt) Algorithm. Authors: Max Leiserson [aut, cre], Hsin-Ta Wu [aut], Fabio
Vandin [ctb], Vivian Hsiao [ctb], Benjamin Raphael [ctb].

conover.test Conover-Iman Test of Multiple Comparisons Using Rank Sums. Author:
Alexis Dinno.

contoureR Contouring of Non-Regular Three-Dimensional Data. Author: Nicholas Hamil-
ton.

controlTest Median Comparison for Two-Sample Right-Censored Survival Data. Author:
Eric Kawaguchi.

convoSPAT Convolution-Based Nonstationary Spatial Modeling. Author: Mark D. Risser
[aut, cre].

cord Community Estimation in G-Models via CORD. Authors: Xi (Rossi) LUO, Florentina
Bunea, Christophe Giraud.

coreNLP Wrappers Around Stanford CoreNLP Tools. Authors: Taylor Arnold, Lauren
Tilton.

corkscrew Preprocessor for Data Modeling. Authors: Navin Loganathan [aut], Mohan
Manivannan [aut], Santhosh Sasanapuri [aut, cre], LatentView Analytics [ctb].

corregp Functions and Methods for Correspondence Regression. Author: Koen Plevoets
[aut, cre].

covBM Brownian Motion Processes for ‘nlme’ Models. Author: Oliver Stirrup [aut, cre].

covmat Covariance Matrix Estimation. Author: Rohit Arora. In view: Finance.

cowplot Streamlined Plot Theme and Plot Annotations for ‘ggplot2’. Authors: Claus O.
Wilke [aut, cre], Hadley Wickham [cph].

cowsay Messages, Warnings, Strings with Ascii Animals. Authors: Scott Chamberlain [aut,
cre], Tyler Rinker [aut], Thomas Leeper [aut], Noam Ross [aut], Rich FitzJohn [aut],
Carson Sievert [aut], Kiyoko Gotanda [aut], Andy Teucher [aut], Karl Broman [aut],
Franz-Sebastian Krah [aut].

cpgen Parallelized Genomic Prediction and GWAS. Author: Claas Heuer.

creditr Credit Default Swaps in R. Authors: Heidi Chen, Yuanchu Dang, David Kane, Yang
Lu, Skylar Smith, Kanishka Malik, and Miller Zijie Zhu.

credule Credit Default Swap Functions. Authors: Bertrand Le Nezet [cre, aut, cph], Richard
Brent [ctb, cph], John Burkardt [ctb, cph]. In view: Finance.

crmPack Object-Oriented Implementation of CRM Designs. Authors: Daniel Sabanes Bove,
Wai Yin Yeung, Giuseppe Palermo, Thomas Jaki.

crop Graphics Cropping Tool. Author: Marius Hofert [aut, cre].

crrp Penalized Variable Selection in Competing Risks Regression. Author: Zhixuan Fu.

crskdiag Diagnostics for Fine and Gray Model. Author: Jianing Li.

cruts Interface to Climatic Research Unit Time-Series Version 3.21 Data. Author: Benjamin
M. Taylor.

ctmcmove Modeling Animal Movement with Continuous-Time Discrete-Space Markov
Chains. Author: Ephraim Hanks. In view: SpatioTemporal.

ctmm Continuous-Time Movement Modeling. Authors: Chris H. Fleming and J. M. Cal-
abrese. In view: SpatioTemporal.
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ctsem Continuous Time Structural Equation Modelling. Authors: Manuel Voelkle [aut,
cph] (Original development of continuous time model specification within OpenMx,
advisor for further development), Han Oud [aut, cph] (Original development of
continuous time model specification within OpenMx), Charles Driver [aut, cre, cph]
(Further development of continuous time model specification within OpenMx, package
development, documentation and maintenance).

cvxbiclustr Convex Biclustering Algorithm. Authors: Eric C. Chi, Genevera I. Allen,
Richard G. Baraniuk.

cycleRtools Tools for Cycling Data Analysis. Author: Jordan Mackie [aut, cre].

cymruservices Query Team Cymru IP Address, Autonomous System Number (ASN), Bor-
der Gateway Protocol (BGP), Bogon and Malware Hash Data Services. Author: Bob
Rudis [aut, cre].

d3heatmap Interactive Heat Maps Using ‘htmlwidgets’ and ‘D3.js’. Authors: Joe Cheng
[aut, cre], Tal Galili [aut], RStudio, Inc. [cph], Michael Bostock [ctb, cph] (D3.js library),
Justin Palmer [ctb, cph] (d3.tip library).

dMod Dynamic Modeling and Parameter Estimation in ODE Models. Author: Daniel
Kaschek.

dad Three-Way Data Analysis Through Densities. Authors: Rachid Boumaza, Pierre San-
tagostini, Smail Yousfi, Sabine Demotes-Mainard.

datafsm Estimating Finite State Machine Models from Data. Authors: Nay John J. [cre, aut],
Gilligan Jonathan M. [aut].

dataonderivatives Easily Source Publicly Available Data on Derivatives. Author: Imanuel
Costigan [aut, cre].

datastepr An Implementation of a SAS-Style Data Step. Author: Brandon Taylor.

dbscan Density Based Clustering of Applications with Noise (DBSCAN) and Related Algo-
rithms. Authors: Michael Hahsler [aut, cre, cph], Sunil Arya [ctb, cph], David Mount
[ctb, cph]. In view: Cluster.

dc3net Inferring Disease Networks via Differential Network Inference. Author: Gokmen
Altay.

ddR Distributed Data Structures in R. Authors: Edward Ma, Indrajit Roy, Michael Lawrence.

deformula Integration of One-Dimensional Functions with Double Exponential Formulas.
Author: Hiroyuki Okamura.

dequer An R ‘Deque’ Container. Author: Drew Schmidt [aut, cre].

describer Describe Data in R Using Common Descriptive Statistics. Author: Paul Hendricks
[aut, cre].

desiR Desirability Functions for Ranking, Selecting, and Integrating Data. Author: Stanley
E. Lazic.

detector Detect Data Containing Personally Identifiable Information. Author: Paul Hen-
dricks [aut, cre].

diezeit R Interface to the ZEIT ONLINE Content API. Author: Christian Graul.

diffr Display Differences Between Two Files using Codediff Library. Author: John Muschelli
[aut, cre].

dina Bayesian Estimation of DINA Model. Author: Steven Andrew Culpepper [aut, cph,
cre].
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distcomp Computations over Distributed Data without Aggregation. Authors: Balasub-
ramanian Narasimhan [aut, cre], Marina Bendersky [aut], Sam Gross [aut], Terry M.
Therneau [ctb], Thomas Lumley [ctb].

diverse Diversity Measures for Complex Systems. Authors: Miguel R. Guevara, Dominik
Hartmann, Marcelo Mendoza.

dml Distance Metric Learning in R. Authors: Yuan Tang, Gao Tao, Xiao Nan.

docopulae Optimal Designs for Copula Models. Author: Andreas Rappold [aut, cre].

docxtractr Extract Data Tables from Microsoft Word Documents. Author: Bob Rudis [aut,
cre].

dotwhisker Dot-and-Whisker Plots of Regression Results. Authors: Frederick Solt, Yue Hu.

downscale Downscaling Species Occupancy. Author: Charles Marsh [aut, cre].

drLumi Multiplex Immunoassays Data Analysis. Authors: Hector Sanz [aut, cre], John
Aponte [aut], Jaroslaw Harezlak [aut], Yan Dong [aut], Magdalena Murawska [aut],
Clarissa Valim [aut], Aintzane Ayestaran [ctb], Ruth Aguilar [ctb], Gemma Moncunill
[ctb].

dtwSat Time-Weighted Dynamic Time Warping for Remote Sensing Time Series Analysis.
Author: Victor Maus [aut, cre].

dtwclust Time Series Clustering with Dynamic Time Warping. Author: Alexis Sarda-
Espinosa. In view: TimeSeries.

easyVerification Ensemble Forecast Verification for Large Datasets. Authors: Jonas Bhend
[aut, cre], Jacopo Ripoldi [ctb], Claudia Mignani [ctb], Irina Mahlstein [ctb], Rebecca
Hiller [ctb], Christoph Spirig [ctb], Mark Liniger [ctb], Andreas Weigel [ctb], Joaqu’in
Bedia Jimenez [ctb], Matteo De Felice [ctb].

easypower Sample Size Estimation for Experimental Designs. Author: Aaron McGarvey.

ecospace Simulating Community Assembly and Ecological Diversification Using Ecospace
Frameworks. Author: Phil Novack-Gottshall [aut, cre].

ecotoxicology Methods for Ecotoxicology. Author: Jose Gama [aut, cre, trl].

edgar Platform for EDGAR Filing Management. Authors: Gunratan Lonare, Bharat Patil.

edgebundleR Circle Plot with Bundled Edges. Authors: Garth Tarr [aut, cre], Ellis Patrick
[aut], Kent Russell [ctb].

eel Extended Empirical Likelihood. Authors: Fan Wu and Yu Zhang.

eemR Tools for Pre-Processing Emission-Excitation-Matrix (EEM). Author: Philippe Massi-
cotte [aut, cre].

efflog The Causal Effects for a Causal Loglinear Model. Author: Gloria Gheno [aut, cre].

elasso Enhanced Least Absolute Shrinkage and Selection Operator Regression Model. Au-
thor: Pi Guo.

epandist Statistical Functions for the Censored and Uncensored Epanechnikov Distribution.
Author: Mathias Borritz Milfeldt [aut, cre].

epanetReader Read Epanet Files into R. Author: Bradley J. Eck.

epiDisplay Epidemiological Data Display Package. Author: Virasakdi Chongsuvivatwong.

epifit Flexible Modelling Functions for Epidemiological Data Analysis. Authors: Kazutaka
Doi [aut,cre], Kei Sakabe [ctb], Masataka Taruri [ctb].
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erp.easy Event-Related Potential (ERP) Data Exploration Made Easy. Author: Travis Moore
[aut, cre].

etma Epistasis Test in Meta-Analysis (ETMA). Author: Chin Lin. In view: MetaAnalysis.

exreport Fast, Reliable and Elegant Reproducible Research. Authors: Jacinto Arias [aut,
cre], Javier Cozar [aut].

extremogram Estimation of Extreme Value Dependence for Time Series Data. Authors:
Nadezda Frolova, Ivor Cribben.

eyetrackingR Eye-Tracking Data Analysis. Authors: Jacob Dink [aut, cre], Brock Ferguson
[aut].

ezec Easy Interface to Effective Concentration Calculations. Authors: Zhian N. Kamvar
[cre, aut], Niklaus J. Grunwald [ths, ctb].

ezsummary Summarise Data in the Quick and Easy Way. Author: Hao Zhu [aut, cre].

fancycut A Fancy Version of ‘base::cut’. Author: Adam Rich [aut, cre].

fastdigest Fast, Low Memory-Footprint Digests of R Objects. Authors: Gabriel Becker, Bob
Jenkins (SpookyHash algorithm and C++ implementation).

fasttime Fast Utility Function for Time Parsing and Conversion. Author: Simon Urbanek.

favnums A Dataset of Favourite Numbers. Authors: Oliver Keyes [aut, cre], Alex Bellos
[cph].

filematrix File-Backed Matrix Class with Convenient Read and Write Access. Author:
Andrey Shabalin.

flacco Feature-Based Landscape Analysis of Continuous and Constraint Optimization Prob-
lems. Authors: Pascal Kerschke [aut, cre], Jan Dagefoerde [aut].

flexPM Flexible Parametric Models for Censored and Truncated Data. Author: Paolo
Frumento.

flowDiv Cytometric Diversity Indices from ‘FlowJo’ Workspaces. Authors: Bruno M.S.
Wanderley, María Victoria Quiroga, André M. Amado, Fernando Unrein.

flows Flow Selection and Analysis. Authors: Timothée Giraud [cre, aut], Laurent Beauguitte
[aut], Marianne Guérois [ctb].

forestmodel Forest Plots from Regression Models. Author: Nick Kennedy.

fourPNO Bayesian 4 Parameter Item Response Model. Author: Steven Andrew Culpepper
[aut, cre].

frailtySurv General Semiparametric Shared Frailty Model. Authors: John V. Monaco [aut,
cre], Malka Gorfine [aut], Li Hsu [aut].

franc Detect the Language of Text. Authors: Gabor Csardi, Titus Wormer, Maciej Ceglowski,
Jacob R. Rideout, and Kent S. Johnson.

freqdom Frequency Domain Analysis for Multivariate Time Series. Authors: Hormann S.,
Kidzinski L.

ftsspec Spectral Density Estimation and Comparison for Functional Time Series. Author:
Shahin Tavakoli [aut, cre].

fulltext Full Text of Scholarly Articles Across Many Data Sources. Author: Scott Chamber-
lain [aut, cre].

functools Functional Programming in R. Author: Paul Hendricks [aut, cre].
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funcy Functional Clustering Algorithms. Authors: Christina Yassouridis [aut, cre], Dominik
Ernst [ctb], Madison Giacofci [ctb], Sophie Lambert-Lacroix [ctb], Guillemette Marot
[ctb], Franck Picard [ctb], Nicoleta Serban [ctb], Huijing Jiang [ctb], Gareth James [ctb],
Catherine Sugar [ctb], Hans-Georg Mueller [ctb], Jie Peng [ctb], Chiou Jeng-Min [ctb],
Pai-Ling Li [ctb].

fungible Fungible Coefficients and Monte Carlo Functions. Authors: Niels G. Waller and
Jeff Jones.

funr Simple Utility Providing Terminal Access to all R Functions. Author: Sahil Seth [aut,
cre].

future A Future API for R. Author: Henrik Bengtsson [aut, cre, cph]. In view: HighPerfor-
manceComputing.

gamsel Fit Regularization Path for Generalized Additive Models. Authors: Alexandra
Chouldechova and Trevor Hastie.

gaston Genetic Data Manipulation (Quality Control, GRM and LD Computations, PCA),
Linear Mixed Models (AIREML Algorithm), Association Testing. Author: Hervé
Perdry & Claire Dandine-Roulland.

gdtools Utilities for Graphical Rendering. Authors: David Gohel [aut, cre], Hadley Wick-
ham [aut], Jeroen Ooms [ctb], Yixuan Qiu [ctb], RStudio [cph].

gendist Generated Probability Distribution Models. Author: Shaiful Anuar Abu Bakar.

generator Generate Data Containing Fake Personally Identifiable Information. Author:
Paul Hendricks [aut, cre].

geo Draw and Annotate Maps, Especially Charts of the North Atlantic. Authors: Hoskuldur
Bjornsson, Sigurdur Thor Jonsson, Arni Magnusson, and Bjarki Thor Elvarsson.

geoknife Web-Processing of Large Gridded Datasets. Authors: Jordan Read [aut, cre],
Jordan Walker [aut], Alison Appling [aut], David Blodgett [aut], Emily Read [aut],
Luke Winslow [aut].

geosptdb Spatio-Temporal; Inverse Distance Weighting and Radial Basis Functions with
Distance-Based Regression. Authors: Carlos Melo, Oscar Melo.

gesis R Client for GESIS Data Catalogue (DBK). Author: Eric Persson [aut, cre].

getMet Get Meteorological Data for Hydrological Modeling. Authors: Andrew Sommerlot
[aut, cre], Daniel Fuka [aut], Zachary Easton [aut].

ggfortify Data Visualization Tools for Statistical Analysis Results. Authors: Masaaki
Horikoshi and Yuan Tang.

ggplot2movies Movies Data. Authors: Hadley Wickham [aut, cre], RStudio [cph].

ggsn North Symbols and Scale Bars for Maps Created with ‘ggplot2’ or ‘ggmap’. Author:
Oswaldo Santos Baquero [aut, cre].

gimms Download and Process GIMMS NDVI3g Data. Author: Florian Detsch.

gitlabr Access to the Gitlab API. Author: Jirka Lewandowski [aut, cre].

gkmSVM Gapped-Kmer Support Vector Machine. Author: Mahmoud Ghandi.

glamlasso Lasso Penalization in Large Scale Generalized Linear Array Models. Author:
Adam Lund.

glm.ddR Distributed ‘glm’ for Big Data using ‘ddR’ API. Authors: Vishrut Gupta, Arash
Fard.
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globals Identify Global Objects in R Expressions. Author: Henrik Bengtsson [aut, cre, cph].

glycanr Tools for Analysing N-Glycan Data. Author: Ivo Ugrina [aut, cre].

gmapsdistance Distance and Travel Time Between Two Points from Google Maps. Author:
Rodrigo Azuero Melo.

gmum.r GMUM Machine Learning Group Package. Authors: Wojciech Czarnecki, Stanis-
law Jastrzebski, Marcin Data, Igor Sieradzki, Mateusz Bruno-Kaminski, Karol Jurek,
Piotr Kowenzowski, Michal Pletty, Konrad Talik, Maciej Zgliczynski.

gmwm Generalized Method of Wavelet Moments. Authors: James Balamuta [aut, cph],
Stephane Guerrier [ctb, cre, cph], Roberto Molinari [ctb, cph], Wenchao Yang [ctb].

gofCopula Goodness-of-Fit Tests for Copulae. Authors: Ostap Okhrin, Shulin Zhang, Qian
M. Zhou, Simon Trimborn.

googleAuthR Easy Authentication with Google OAuth2 APIs. Author: Mark Edmondson
[aut, cre].

googlesheets Manage Google Spreadsheets from R. Authors: Jennifer Bryan [aut, cre],
Joanna Zhao [aut].

gpuR GPU Functions for R Objects. Author: Charles Determan Jr. In view: HighPerfor-
manceComputing.

gquad G Quadruplex Motif Prediction Tool. Author: Hannah O. Ajoge.

graticule Meridional and Parallel Lines for Maps. Author: Michael D. Sumner [aut, cre].

growthcurver Simple Metrics to Summarize Growth Curves. Author: Kathleen sprouffske
[aut, cre].

grpregOverlap Penalized Regression Models with Overlapping Grouped Covariates. Au-
thors: Yaohui Zeng, Patrick Breheny.

gtrendsR R Functions to Perform and Display Google Trends Queries. Authors: Philippe
Massicotte [aut, cre], Dirk Eddelbuettel [aut].

gyriq Kinship-Adjusted Survival SNP-Set Analysis. Authors: Martin Leclerc and Lajmi
Lakhal Chaieb.

hashids Generate Short Unique YouTube-Like IDs (Hashes) from Integers. Authors: Alex
Shum [aut, cre], Ivan Akimov [aut] (original author of hashids – implemented in
javascript), David Aurelio [ctb] (implemented hashids in python 2 and 3).

hashr Hash R Objects to Integers Fast. Authors: Mark van der Loo [aut, cre], Paul Hsieh
[ctb].

hdnom Nomograms for High-Dimensional Cox Models. Authors: Miaozhu Li, Nan Xiao.

hierband Convex Banding of the Covariance Matrix. Authors: Jacob Bien, Florentina Bunea,
and Luo Xiao.

highmean Two-Sample Tests for High-Dimensional Mean Vectors. Authors: Lifeng Lin and
Wei Pan.

hindexcalculator H-Index Calculator using Data from a Web of Science (WoS) Citation
Report. Author: Sepand Alavifard [aut, cre].

hit Hierarchical Inference Testing. Author: Jonas Klasen [aut, cre].

homomorpheR Homomorphic Computations in R. Author: Balasubramanian Narasimhan
[aut, cre].
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hotspot Software Hotspot Analysis. Author: Csaba Farago.

hqreg Regularization Paths for Huber Loss Regression and Quantile Regression Penalized
by Lasso or Elastic-Net. Author: Congrui Yi.

httpcode HTTP Status Code Helper. Author: Scott Chamberlain [aut, cre].

humaniformat A Parser for Human Names. Author: Oliver Keyes.

iLaplace Improved Laplace Approximation for Integrals of Unimodal Functions. Authors:
Erlis Ruli [aut, cre], Nicola Sartori [aut], Laura Ventura [aut].

iNEXT Interpolation and Extrapolation for Species Diversity. Authors: T. C. Hsieh, K. H.
Ma and Anne Chao.

iaQCA The Irvine Robustness Assessment for Qualitative Comparative Analysis. Authors:
C. Ben Gibson [aut, cre], Burrel Vann Jr [aut].

icsw Inverse Compliance Score Weighting. Authors: Peter M. Aronow, Dean Eckles and
Kyle Peyton.

idendr0 Interactive Dendrograms. Author: Tomas Sieger.

idm Incremental Decomposition Methods. Authors: Alfonso Iodice D’ Enza [aut], Angelos
Markos [aut, cre], Davide Buttarazzi [ctb].

ifaTools Toolkit for Item Factor Analysis with OpenMx. Author: Joshua N. Pritikin [cre,
aut].

imPois Imprecise Inferential Framework for Poisson Sampling Model. Authors: Chel Hee
Lee [aut, cre, cph], Mikelis Bickis [aut, ths, cph].

imager Image Processing Library Based on CImg. Authors: Simon Barthelme [aut, cre],
Antoine Cecchi [ctb].

immer Item Response Models for Multiple Ratings. Authors: Alexander Robitzsch [aut,
cre], Jan Steinfeld [aut].

imputeMissings Impute Missing Values in a Predictive Context. Authors: Matthijs Meire,
Michel Ballings, Dirk Van den Poel.

imputeTS Time Series Missing Value Imputation. Author: Steffen Moritz. In view: Time-
Series.

inbreedR Analysing Inbreeding Based on Genetic Markers. Authors: Martin A. Stoffel [aut,
cre], Mareike Esser [aut].

inegiR Integrate INEGI’s (Mexican Stats Office) API with R. Author: Eduardo Flores.

influenceR Software Tools to Quantify Structural Importance of Nodes in a Network. Au-
thors: Jacobs Simon [aut], Khanna Aditya [aut, cre], Madduri Kamesh [ctb], Bader
David [ctb].

injectoR R Dependency Injection. Author: Lev Kuznetsov.

instaR Access to Instagram API via R. Authors: Pablo Barbera [aut, cre], Tiago Dantas [ctb],
Jonne Guyt [ctb].

interactionTest Calculates Critical Test Statistics to Control False Discovery and Familywise
Error Rates in Marginal Effects Plots. Authors: Justin Esarey and Jane Lawrence
Sumner.

interplot Plot the Effects of Variables in Interaction Terms. Authors: Frederick Solt, Yue Hu.

invLT Inversion of Laplace-Transformed Functions. Author: Christopher Barry.
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ioncopy Calling Copy Number Alterations in Amplicon Sequencing Data. Author: Jan
Budczies.

iotools I/O Tools for Streaming. Authors: Simon Urbanek, Taylor Arnold.

ipflasso Integrative Lasso with Penalty Factors. Authors: Anne-Laure Boulesteix, Mathias
Fuchs.

iptools Manipulate, Validate and Resolve IP Addresses. Authors: Bob Rudis [aut, cre],
Oliver Keyes [aut].

isoph Isotonic Proportional Hazards Model. Authors: Yunro Chung [cre], Anastasia
Ivanova, Michael G. Hudgens and Jason P. Fine.

jetset One-to-One Gene-Probeset Mapping for Affymetrix Human Microarrays. Authors:
Qiyuan Li, Aron Eklund.

jmotif Tools for Time Series Analysis Based on Symbolic Aggregate Dicretization. Author:
Pavel Senin [aut, cre]. In view: TimeSeries.

jrvFinance Basic Finance; NPV/IRR/Annuities/Bond-Pricing; Black Scholes. Author:
Jayanth Varma [aut, cre].

jug Create a Simple Web API for your R Functions. Author: Bart Smeets.

jvnVaR Value at Risk. Author: Hung Vu.

kdecopula Kernel Smoothing for Bivariate Copula Densities. Author: Thomas Nagler [aut,
cre].

kergp Gaussian Process Laboratory. Authors: Yves Deville, David Ginsbourger, Olivier
Roustant. Contributors: Nicolas Durrande.

kernDeepStackNet Kernel Deep Stacking Networks. Authors: Thomas Welchowski and
Matthias Schmid.

kerndwd Distance Weighted Discrimination (DWD) and Kernel Methods. Authors: Boxi-
ang Wang, Hui Zou.

keyplayer Locating Key Players in Social Networks. Author: Weihua An; Yu-Hsin Liu.

keypress Wait for a Key Press in a Terminal. Author: Gabor Csardi [aut, cre].

kineticF Framework for the Analysis of Kinetic Visual Field Data. Author: Dipesh E Patel
& Mario Cortina-Borja.

kmeans.ddR Distributed k-Means for Big Data using ‘ddR’ API. Authors: Vishrut Gupta,
Arash Fard.

knitLatex Knitr Helpers — Mostly Tables. Author: John Shea [aut, cre]. In view: Repro-
ducibleResearch.

ksrlive Identify Kinase Substrate Relationships Using Dynamic Data. Author: Westa
Domanova.

kwb.hantush Calculation of Groundwater Mounding Beneath an Infiltration Basin. Author:
Michael Rustler.

labelrank Predicting Rankings of Labels. Authors: Artur Aiguzhinov [cre], Carlos Soares
[aut].

landest Landmark Estimation of Survival and Treatment Effect. Author: Layla Parast.

landsat8 Landsat 8 Imagery Rescaled to Reflectance, Radiance and/or Temperature. Author:
Alexandre dos Santos.
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lasvmR A Simple Wrapper for the LASVM Solver. Author: Aydin Demircioglu.

latex2exp Use LATEX Expressions in Plots. Author: Stefano Meschiari [aut, cre]. In view:
ReproducibleResearch.

lcopula Liouville Copulas. Authors: Leo Belzile [aut, cre], Christian Genest [aut, ctb],
Alexander J. McNeil [ctb], Johanna G. Neslehova [ctb].

ldamatch Multivariate Condition Matching by Backwards Elimination Using Linear Dis-
criminant Analysis. Authors: Kyle Gorman [aut, cre], Geza Kiss [ctb].

ldatuning Tuning of the LDA Models Parameters. Author: Murzintcev Nikita [aut, cre].

leaflet Create Interactive Web Maps with the JavaScript ‘Leaflet’ Library. Authors: Joe
Cheng [aut, cre], Yihui Xie [aut], Hadley Wickham [ctb], jQuery Foundation and
contributors [ctb, cph] (jQuery library), Vladimir Agafonkin [ctb, cph] (Leaflet library),
CloudMade [cph] (Leaflet library), Leaflet contributors [ctb] (Leaflet library), Leaflet
Providers contributors [ctb, cph] (Leaflet Providers plugin), RStudio [cph].

learNN Examples of Neural Networks. Author: Bastiaan Quast [aut, cre].

lfda Local Fisher Discriminant Analysis. Author: Yuan Tang with great contributions from
Zachary Deane-Mayer.

lift Compute the Top Decile Lift and Plot the Lift Curve. Authors: Steven Hoornaert, Michel
Ballings, Dirk Van den Poel.

liftr Dockerize R Markdown Documents. Authors: Miaozhu Li [ctb], Tengfei Yin [ctb], Nan
Xiao [aut, cre].

likelihoodAsy Functions for Likelihood Asymptotics. Authors: Ruggero Bellio and Donald
Pierce.

lira LInear Regression in Astronomy. Author: Mauro Sereno.

listWithDefaults List with Defaults. Author: Russell S. Pierce.

littler R at the Command-Line via ‘r’. Author: Dirk Eddelbuettel.

logisticPCA Binary Dimensionality Reduction. Author: Andrew J. Landgraf.

longurl Expand Short URLs Using the ‘LongURL’ API. Author: Bob Rudis [aut, cre].

loo Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models. Authors:
Aki Vehtari [aut], Andrew Gelman [aut], Jonah Gabry [cre, aut], Juho Piironen [ctb],
Ben Goodrich [ctb].

lookupTable Look-Up Tables using S4. Authors: Enzo Jia [aut, cre], Marc Maier [aut].

lpbrim LP-BRIM Bipartite Modularity. Authors: Timothee Poisot, Daniel B Stouffer.

lqr Robust Linear Quantile Regression. Authors: Christian E. Galarza, Luis Benites, Victor
H. Lachos.

lrgs Linear Regression by Gibbs Sampling. Author: Adam Mantz.

lsei Solving Least Squares Problems under Equality/Inequality Constraints. Authors: Yong
Wang [aut, cre], Charles L. Lawson [aut], Richard J. Hanson [aut].

lsl Latent Structure Learning. Author: Po-Hsien Huang [aut, cre].

lucr Currency Formatting and Conversion. Author: Oliver Keyes.

lulcc Land Use Change Modelling in R. Author: Simon Moulds.

luzlogr Lightweight Logging for R Scripts. Author: Ben Bond-Lamberty [aut, cre].
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mHG Minimum-Hypergeometric Test. Author: Kobi Perl.

maGUI A Graphical User Interface for Microarray Data Analysis. Authors: Dhammapal
Bharne, Praveen Kant, Vaibhav Vindal.

magclass Data Class and Tools for Handling Spatial-Temporal Data. Authors: Jan
Philipp Dietrich, Benjamin Bodirsky, Misko Stevanovic, Lavinia Baumstark, Christoph
Bertram, Markus Bonsch, Anastasis Giannousakis, Florian Humpenoeder, David Klein,
Ina Neher, Michaja Pehl, Anselm Schultes.

marketeR Enhanced Analytics for Marketers Navigating the Ocean of Web Data. Author:
Felix Mikaelian.

markophylo Markov Chain Models for Phylogenetic Trees. Authors: Utkarsh J. Dang and
G. Brian Golding. In view: Phylogenetics.

matlabr An Interface for MATLAB using System Calls. Author: John Muschelli.

matlib Matrix Functions for Teaching and Learning Linear Algebra and Multivariate Statis-
tics. Authors: Michael Friendly [aut, cre], John Fox [ctb], Georges Monette [ctb].

mcemGLM Maximum Likelihood Estimation for Generalized Linear Mixed Models. Au-
thor: Felipe Acosta Archila.

merTools Tools for Analyzing Mixed Effect Regression Models. Authors: Jared E. Knowles
[aut, cre], Carl Frederick [aut].

meta4diag Meta-Analysis for Diagnostic Test Studies. Authors: Jingyi Guo and Andrea
Riebler. In view: MetaAnalysis.

metaSEM Meta-Analysis using Structural Equation Modeling. Author: Mike W.-L. Cheung.
In view: MetaAnalysis.

metafuse Fused Lasso Approach in Regression Coefficient Clustering. Authors: Lu Tang,
Peter X.K. Song.

metansue Meta-Analysis of Studies with Non Statistically-Significant Unreported Effects.
Author: Joaquim Radua.

meteR Fitting and Plotting Tools for the Maximum Entropy Theory of Ecology (METE).
Authors: Andy Rominger, Cory Merow.

meteo Spatio-Temporal Analysis and Mapping of Meteorological Observations. Authors:
Milan Kilibarda, Aleksandar Sekulic, Tomislav Hengl, Edzer Pebesma, Benedikt
Graeler.

metricsgraphics Create Interactive Charts with the JavaScript ‘MetricsGraphics’ Library.
Authors: Bob Rudis [aut, cre], Ali Almossawi [ctb, cph] (MetricsGraphics library),
Hamilton Ulmer [ctb, cph] (MetricsGraphics library), Mozilla [cph] (MetricsGraphics
library), jQuery Foundation and contributors [ctb, cph] (jQuery library).

mev Multivariate Extreme Value Distributions. Author: Leo Belzile [aut, cre].

mgm Estimating Mixed Graphical Models. Author: Jonas Haslbeck.

mhde Minimum Hellinger Distance Test for Normality. Authors: Paul W. Eslinger [aut, cre],
Heather Orr [aut, ctb].

midrangeMCP Multiples Comparisons Procedures Based on Studentized Midrange and
Range Distributions. Authors: Ben Deivide [cre], Daniel Furtado [aut].

missDeaths Correctly Analyse Disease Recurrence with Missing at Risk Information using
Population Mortality. Authors: Tomaz Stupnik [aut, cre], Maja Pohar Perme [aut].
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mixtox Curve Fitting and Mixture Toxicity Assessment. Author: Xiangwei Zhu.

mlVAR Multi-Level Vector Autoregression. Authors: Sacha Epskamp, Marie K. Deserno
and Laura F. Bringmann. In view: TimeSeries.

mldr.datasets R Ultimate Multilabel Dataset Repository. Authors: David Charte [cre],
Francisco Charte [aut].

mlma Multilevel Mediation Analysis. Authors: Qingzhao Yu, Bin Li.

mlsjunkgen Use the MLS Junk Generator Algorithm to Generate a Stream of Pseudo-
Random Numbers. Author: Steve Myles [aut, cre].

mmc Multivariate Measurement Error Correction. Author: Jaejoon Song.

mmtfa Model-Based Clustering and Classification with Mixtures of Modified t Factor
Analyzers. Authors: Jeffrey L. Andrews, Paul D. McNicholas, and Mathieu Chalifour.

modQR Multiple-Output Directional Quantile Regression. Authors: Miroslav Šiman [aut],
Pavel Boček [aut, cre].

modelObj A Model Object Framework for Regression Analysis. Author: Shannon T. Hol-
loway.

mogavs Multiobjective Genetic Algorithm for Variable Selection in Regression. Authors:
Tommi Pajala [aut, cre], Pekka Malo [aut], Ankur Sinha [aut], Timo Kuosmanen [ctb].

molaR Dental Surface Complexity Measurement Tools. Authors: James D. Pampush [aut,
cre, cph], Julia M. Winchester [aut, cph], Paul E. Morse [aut, cph], Alexander Q. Vining
[aut, cph].

momr Mining Metaomics Data (MetaOMineR). Authors: Edi Prifti, Emmanuelle Le Chate-
lier.

monogeneaGM Geometric Morphometric Analysis of Monogenean Anchors. Author:
Tsung Fei Khang.

monographaR Taxonomic Monographs Tools. Author: Marcelo Reginato.

moveHMM Animal Movement Modelling using Hidden Markov Models. Authors: Theo
Michelot, Roland Langrock, Toby Patterson, Eric Rexstad. In view: SpatioTemporal.

mplot Graphical Model Stability and Variable Selection Procedures. Authors: Garth Tarr
[aut, cre], Samuel Mueller [aut], Alan Welsh [aut].

mri Modified Rand Index (1 and 2.1 and 2.2) and Modified Adjusted Rand Index (1 and 2.1
and 2.2). Author: Marjan Cugmas.

ms.sev Package for Calculation of ARMSS, Local MSSS and Global MSSS. Authors: Helga
Westerlind, Ali Manouchehrinia.

multiwave Estimation of Multivariate Long-Memory Models Parameters. Authors: Sophie
Achard [aut, cre], Irene Gannaz [aut].

mvQuad Methods for Multivariate Quadrature. Author: Constantin Weiser (HHU of
Duesseldorf / Germany). In view: NumericalMathematics.

mvtboost Tree Boosting for Multivariate Outcomes. Author: Patrick Miller [aut, cre].

nbconvertR Vignette Engine Wrapping IPython Notebooks. Author: Philipp Angerer.

nhanesA NHANES Data Retrieval. Author: Christopher Endres.

nivm Noninferiority Tests with Variable Margins. Author: Michael P. Fay.
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nlnet Nonlinear Network Reconstruction and Clustering Based on DCOL (Distance Based
on Conditional Ordered List). Authors: Haodong Liu, Tianwei Yu.

nlrr Non-Linear Relative Risk Estimation and Plotting. Author: Yiqiang Zhan [aut, cre].

nomclust Hierarchical Nominal Clustering Package. Authors: Sulc Zdenek, Rezankova
Hana.

nparACT Non-Parametric Measures of Actigraphy Data. Author: Christine Blume Nayan-
tara Santhi Manuel Schabus.

npregfast Nonparametric Estimation of Regression Models with Factor-by-Curve Interac-
tions. Authors: Marta Sestelo [aut, cre], Nora M. Villanueva [aut], Javier Roca-Pardinas
[aut].

npsf Nonparametric and Stochastic Efficiency and Productivity Analysis. Authors: Oleg
Badunenko [aut, cre], Yaryna Kolomiytseva [aut], Pavlo Mozharovskyi [aut].

npsurv Non-Parametric Survival Analysis. Author: Yong Wang.

oaColors OpenAnalytics Colors Package. Author: Jason Waddell.

oaPlots OpenAnalytics Plots Package. Authors: Jason Waddell, Willem Ligtenberg.

oai General Purpose ‘Oai-PMH’ Services Client. Author: Scott Chamberlain [aut, cre].

oapackage Orthogonal Array Package. Author: Pieter Thijs Eendebak. In view: Experimen-
talDesign.

odds.converter Betting Odds Conversion. Author: Marco Blume.

oglmx Estimation of Ordered Generalized Linear Models. Author: Nathan Carroll.

olctools Open Location Code Handling in R. Author: Oliver Keyes.

onewaytests One-Way Independent Groups Design. Authors: Osman Dag, Anil Dolgun,
N. Meric Konar.

optCluster Determine Optimal Clustering Algorithm and Number of Clusters. Authors:
Michael Sekula, Somnath Datta, and Susmita Datta.

optigrab Command-Line Parsing for an R World. Author: Christopher Brown.

optismixture Optimal Mixture Weights in Multiple Importance Sampling. Authors: Hera Y.
He, Art B. Owen.

ordinalNet Penalized Ordinal Regression. Author: Mike Wurm [aut, cre].

osrm Interface Between R and the OpenStreetMap-Based Routing Service OSRM. Author:
Timothée Giraud [cre, aut].

pAnalysis Benchmarking and Rescaling R2 using Noise Percentile Analysis. Authors:
Joseph G Kreke, Sangeet Khemlani, Greg Trafton.

packagetrackr Track R Package Downloads from RStudio’s CRAN Mirror. Author: Jirka
Lewandowski.

packcircles Circle Packing. Authors: Michael Bedward [aut, cre], David Eppstein [aut]
(Original author of Python code for graph-based circle packing ported to C++ for this
package).

paco Procrustes Application to Cophylogenetic Analysis. Authors: Juan Antonio Balbuena,
Timothee Poisot, Matthew Hutchinson, Fernando Cagua.

pageviews An API Client for Wikimedia Traffic Data. Author: Oliver Keyes.
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palettetown Use Pokemon Inspired Colour Palettes. Author: Tim Lucas.

palr Colour Palettes for Data. Author: Michael D. Sumner [aut, cre].

pangaear Client for the ‘Pangaea’ Database. Authors: Scott Chamberlain [aut, cre], Kara
Woo [aut], Andrew MacDonald [aut], Naupaka Zimmerman [aut], Gavin Simpson
[aut].

parallelML A Parallel-Voting Algorithm for many Classifiers. Author: Wannes Rosiers
(InfoFarm).

params Simplify Parameters. Authors: Sahil Seth [aut, cre], Yihui Xie [ctb] (kable from knitr
R/table.R).

parsec Partial Orders in Socio-Economics. Authors: Alberto Arcagni [aut, cre], Marco
Fattore [ctb].

patPRO Visualizing Temporal Microbiome Data. Authors: Hannigan GD, Loesche MA,
Hodkinson BP, Mehta S, Grice EA.

pbdZMQ Programming with Big Data – Interface to ZeroMQ. Authors: Wei-Chen Chen
[aut, cre], Drew Schmidt [aut], Whit Armstrong [ctb] (some functions are modified
from the rzmq for backward compatibility), Brian Ripley [ctb] (C code of shellexec), R
Core team [ctb] (some functions are modified from the R source code).

pcadapt Principal Component Analysis for Outlier Detection. Authors: Keurcien Luu,
Michael G.B. Blum.

pch Piecewise Constant Hazards Models for Censored and Truncated Data. Author: Paolo
Frumento.

pco Panel Cointegration Tests. Author: Georgi Marinov.

personograph Pictographic Representation of Treatment Effects. Authors: Joel Kuiper [aut,
cre], Iain Marshall [aut].

phonenumber Convert Letters to Numbers and Back as on a Telephone Keypad. Author:
Steve Myles [aut, cre].

phyext2 An Extension (for Package ‘SigTree’) of Some of the Classes in Package ‘phylobase’.
Author: J. Conrad Stack.

phylometrics Estimating Statistical Errors of Phylogenetic Metrics. Authors: Xia Hua,
Lindell Bromham.

phylosignal Exploring the Phylogenetic Signal in Continuous Traits. Author: Francois
Keck.

phyndr Matches Tip and Trait Data. Authors: Rich FitzJohn, Matt Pennell and Will Corn-
well.

pid Process Improvement using Data. Author: Kevin Dunn [aut, cre].

piecewiseSEM Piecewise Structural Equation Modeling. Author: Jon Lefcheck.

pinnacle.API A Wrapper for the Pinnacle Sports API. Authors: Marco Blume, Nicholas
Jhirad, Amine Gassem.

pixiedust Tables so Beautifully Fine-Tuned You Will Believe It’s Magic. Author: Benjamin
Nutter [aut, cre].

pkgconfig Private Configuration for R Packages. Author: Gabor Csardi.

pla Parallel Line Assays. Author: Jens Henrik Badsberg.
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plfMA A GUI to View, Design and Export Various Graphs of Data. Authors: Dhammapal
Bharne, Vaibhav Vindal.

plotly Create Interactive Web Graphics via Plotly’s JavaScript Graphing Library. Authors:
Carson Sievert [aut, cre], Chris Parmer [aut, cph], Toby Hocking [aut], Scott Chamber-
lain [aut], Karthik Ram [aut], Marianne Corvellec [aut], Pedro Despouy [aut].

pnea Parametric Network Enrichment Analysis. Authors: Mirko Signorelli, Veronica Vin-
ciotti and Ernst C. Wit.

pnf Prime Numbers and Integer Factorization. Author: Abby Rothway.

poisson Simulating Homogenous & Non-Homogenous Poisson Processes. Authors: Kris-
tian Brock [aut], Daniel Slade [ctb].

polyfreqs Bayesian Population Genomics in Autopolyploids. Author: Paul Blischak [aut,
cre].

popEpi Functions for Epidemiological Analysis using Population Data. Authors: J Mietti-
nen, M Rantanen, K Seppa, J Pitkaniemi.

popprxl Read GenAlEx Files Directly from Excel. Author: Zhian N. Kamvar [cre, aut].

praise Praise Users. Authors: Gabor Csardi, Sindre Sorhus.

prclust Penalized Regression-Based Clustering Method. Authors: Chong Wu, Wei Pan.

prepdat Preparing Experimental Data for Statistical Analysis. Authors: Ayala S. Allon [aut,
cre], Roy Luria [aut], Jim Grange [ctb], Nachshon Meiran [ctb].

preprocomb Tools for Preprocessing Combinations. Author: Markus Vattulainen.

prettymapr Scale Bar, North Arrow, and Pretty Margins in R. Author: Dewey Dunnington.

primes Generate and Test for Prime Numbers. Author: Oliver Keyes.

prism Access Data from the Oregon State Prism Climate Project. Authors: Hart Edmund
[aut, cre], Kendon Bell [aut].

pro Point-Process Response Model for Optogenetics. Authors: Xi (Rossi) LUO with contri-
butions from Dylan Small and Vikaas Sohal.

profilr Quickly Profile Data in R. Author: Paul Hendricks [aut, cre].

progenyClust Finding the Optimal Cluster Number Using Progeny Clustering. Author:
C.W. Hu.

prop.comb.RR Analyzing Combination of Proportions and Relative Risk. Authors: Maria
Alvarez and Javier Roca-Pardinas.

proton The Proton Game. Authors: Przemysław Biecek [aut, cre], Witold Chodor [trl],
Foundation SmarterPoland.pl [cph].

prozor Minimal Protein Set Explaining Peptide Spectrum Matches. Author: Witold Wolski.

pscore Standardizing Physiological Composite Risk Endpoints. Author: Joshua F. Wiley.

ptycho Bayesian Variable Selection with Hierarchical Priors. Authors: Laurel Stell and
Chiara Sabatti.

purge Purge Training Data from Models. Authors: Marc Maier [cre], Chaoqun Jia [ctb],
MassMutual Advanced Analytics [aut].

purrr Functional Programming Tools. Authors: Hadley Wickham [aut, cre], Lionel Henry
[ctb], RStudio [cph].
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pweight P-Value Weighting. Authors: Edgar Dobriban [aut, cre], Kristen Fortney [aut].

pwrRasch Statistical Power Simulation for Testing the Rasch Model. Authors: Takuya
Yanagida [cre, aut], Jan Steinfeld [aut], Thomas Kiefer [ctb]. In view: Psychometrics.

pystr Python String Methods in R. Author: Nicole White.

qap Heuristics for the Quadratic Assignment Problem (QAP). Authors: Michael Hahsler
[aut, cre, cph], Franz Rendl [ctb, cph]. In view: Optimization.

qlcData Processing Data for Quantitative Language Comparison (QLC). Author: Michael
Cyosuw.

qlcVisualize Visualization for Quantitative Language Comparison (QLC). Author: Michael
Cysouw.

qrage Tools that Create D3 JavaScript Force Directed Graph from R. Authors: Shingo
Yamamoto [aut, cre], RStudio, Inc. [cph], Michael Bostock [ctb, cph] (D3.js library),
jQuery Foundation [cph] (jQuery library and jQuery UI library), jQuery contributors
[ctb, cph] (jQuery library), jQuery UI contributors [ctb, cph] (jQuery UI library).

qrcode QRcode Generator for R. Author: Victor Teh.

qrjoint Joint Estimation in Linear Quantile Regression. Author: Surya Tokdar.

qtlcharts Interactive Graphics for QTL Experiments. Authors: Karl W Broman [aut, cre],
Michael Bostock [ctb, cph] (d3.js library in htmlwidgets/lib), Justin Palmer [ctb, cph]
(d3.tip library in htmlwidgets/lib), Cynthia Brewer [cph] (ColorBrewer library in
htmlwidgets/lib), Mark Harrower [cph] (ColorBrewer library in htmlwidgets/lib),
The Pennsylvania State University [cph] (ColorBrewer library in htmlwidgets/lib),
jQuery Foundation [cph] (jQuery library in htmlwidgets/lib), jQuery contributors [ctb]
(jQuery library in htmlwidgets/lib), jQuery UI contributors [ctb] (jQuery UI library in
htmlwidgets/lib).

qualvar Implements Indices of Qualitative Variation Proposed by Wilcox (1973). Author:
Joel Gombin.

quantable Streamline Descriptive Analysis of Quantitative Data Matrices. Author: Witold
Wolski.

quantileDA Quantile Classifier. Authors: Christian Hennig, Cinzia Viroli.

quickmapr Quickly Map and Explore Spatial Data. Author: Jeffrey W. Hollister [aut, cre].

qut Quantile Universal Threshold. Authors: Jairo Diaz, Sylvain Sardy, Caroline Giacobino,
Nick Hengartner.

rAmCharts JavaScript Charts API Tool. Authors: Jeffery Petit [aut, cre], Antanas Marce-
lionis [aut, cph] (‘AmCharts’ library in th directory htmlwidgets/lib/amcharts),
Benoit Thieurmel [aut, ctb], DataKnowledge [ctb] (See official web site at http:
//www.datak.fr).

rGroovy Groovy Language Integration. Author: Thomas P. Fuller.

rPowerSampleSize Sample Size Computations Controlling the Type-II Generalized Family-
Wise Error Rate. Authors: Pierre Lafaye de Micheaux, Benoit Liquet and Jeremie
Riou.

radiomics Radiomic Image Processing Toolbox. Author: Joel Carlson.

rafalib Convenience Functions for Routine Data Exploration. Authors: Rafael A. Irizarry
and Michael I. Love.
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randomForest.ddR Distributed ‘randomForest’ for Big Data using ‘ddR’ API. Authors:
Vishrut Gupta, Arash Fard, Winston Li, Matthew Saltz.

randomizeR Randomization for Clinical Trials. Authors: Thi Mui Pham [ctb], David
Schindler [aut], Diane Uschner [aut, cre].

ranger A Fast Implementation of Random Forests. Author: Marvin N. Wright. In view:
MachineLearning.

rase Range Ancestral State Estimation for Phylogeography and Comparative Analyses.
Authors: Ignacio Quintero [aut, cre], Forrest W. Crawford [aut], Petr Keil [aut].

rcanvec Access and Plot CanVec and CanVec+ Data for Rapid Basemap Creation in Canada.
Author: Dewey Dunnington.

rchess Chess Move, Generation/Validation, Piece Placement/Movement, and
Check/Checkmate/Stalemate Detection. Author: Joshua Kunst.

rcrypt Symmetric File Encryption Using GPG. Author: Brett Klamer [aut, cre].

rddtools Toolbox for Regression Discontinuity Design (‘RDD’). Authors: Matthieu Stigler
[aut], Bastiaan Quast [aut, cre].

reReg Recurrent Event Regression. Author: Sy Han (Steven) Chiou.

recoder A Simple and Flexible Recoder. Author: Ali Sanaei.

reda Recurrent Event Data Analysis. Authors: Wenjie Wang [aut, cre], Haoda Fu [aut], Jun
Yan [ctb].

refund.shiny Interactive Plotting for Functional Data Analyses. Authors: Julia Wrobel [aut,
cre], Jeff Goldsmith [aut].

relen Compute Relative Entropy. Author: Soeren Braehmer.

repijson Tools for Handling EpiJSON (Epidemiology Data) Files. Authors: Andy South
[aut, cre], Thomas Finnie [aut], Ellie Sherrard-Smith [aut], Ana Bento [aut], Thibaut
Jombart [aut].

repo A Resource Manager for R Objects. Author: Francesco Napolitano.

reservoir Tools for Analysis, Design, and Operation of Water Supply Storages. Authors:
Sean Turner [aut, cre], Stefano Galelli [aut].

resumer Build Resumes with R. Author: Jared Lander [aut, cre]. In view: ReproducibleRe-
search.

rgeolocate IP Address Geolocation. Authors: Oliver Keyes [aut, cre], Drew Schmidt [aut],
David Robinson [ctb], Maxmind, Inc. [cph], Pascal Gloor [cph].

rglwidget ‘rgl’ in ‘htmlwidgets’ Framework. Author: Duncan Murdoch.

rhandsontable Interface to the ‘Handsontable.js’ Library. Authors: Jonathan Owen [aut, cre,
cph], Jeff Allen [ctb], Yihui Xie [ctb], Enzo Martoglio [ctb], Warpechowski Marcin [ctb,
cph] (Handsontable.js library), Handsoncode sp. z o.o. [ctb, cph] (Handsontable.js
library), Aisch Gregor [ctb, cph] (Chroma.js library), Wood Tim [ctb, cph] (Moment.js li-
brary), Chernev Iskren [ctb, cph] (Moment.js library), Moment.js contributors [ctb, cph]
(Moment.js library), Bushell David [ctb, cph] (Pikaday.js library), jQuery Foundation
[ctb, cph] (jQuery.js library), Splunk Inc [ctb, cph] (Sparkline.js library).

ridigbio Interface to the iDigBio Data API. Authors: Francois Michonneau [aut, cph],
Matthew Collins [aut, cre], Scott Chamberlain [ctb].

riskR Risk Management. Author: Marcelo Brutti Righi.
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rleafmap Interactive Maps with R and Leaflet. Author: Francois Keck.

rnetcarto Fast Network Modularity and Roles Computation by Simulated Annealing
(Rgraph C Library Wrapper for R). Authors: Guilhem Doulcier [aut, cre] (R bind-
ings, current implementation of the simulated annealing algorithm), Roger Guimera
[ctb] (Author of the original rgraph library), Daniel B. Stouffer [aut, ths].

rnn Recurrent Neural Network. Author: Bastiaan Quast [aut, cre].

rollply Moving-Window Add-on for ‘plyr’. Author: Alexandre Genin.

rosm Plot Raster Map Tiles from Open Street Map and Other Sources. Authors: Dewey
Dunnington [aut, cre], Timothée Giraud [ctb].

rotl Interface to the ‘Open Tree of Life’ API. Authors: Francois Michonneau [aut, cre], Joseph
Brown [aut], David Winter [aut].

rpca RobustPCA: Decompose a Matrix into Low-Rank and Sparse Components. Author:
Maciek Sykulski [aut, cre].

rpdo Pacific Decadal Oscillation Index. Authors: Joe Thorley [aut, cre], Nathan Mantua
[aut, dtc], Steven R. Hare [aut, dtc].

rpivotTable Build Powerful Pivot Tables and Dynamically Slice & Dice your Data. Authors:
Enzo Martoglio [aut, cre] (R interface), Nicolas kruchten [ctb, cph] (pivottable library).

rpnf Point and Figure Package. Author: Sascha Herrmann.

rrepast Invoke ‘Repast Simphony’ Simulation Models. Authors: Antonio Prestes Garcia
[aut, cre], Alfonso Rodriguez-Paton [aut, ths].

rscopus Scopus Database API Interface. Author: John Muschelli.

rsggm Robust Sparse Gaussian Graphical Modeling via the Gamma-Divergence. Author:
Kei Hirose.

rstan R Interface to Stan. Authors: Jiqiang Guo [aut], Daniel Lee [ctb], Krzysztof Sakrejda
[ctb], Jonah Gabry [aut], Ben Goodrich [cre, aut], Joel de Guzman [cph] (Boost), Eric
Niebler [cph] (Boost), Thomas Heller [cph] (Boost), John Fletcher [cph] (Boost). In
view: Bayesian.

rstatscn R Interface for China National Data. Author: Xuehui YANG.

rstpm2 Flexible Link-Based Survival Models. Authors: Mark Clements [aut, cre], Xing-Rong
Liu [aut], Paul Lambert [ctb].

rsvd Randomized Singular Value Decomposition. Author: N. Benjamin Erichson [aut, cre].

rtimes Client for New York Times APIs. Author: Scott Chamberlain [aut, cre].

rtkore STK++ Core Library Integration to R using Rcpp. Authors: Serge Iovleff [aut, cre],
Parmeet Bhatia [ctb].

rtson Typed JSON. Author: Alexandre Maurel.

runittotestthat Convert ‘RUnit’ Test Functions into ‘testthat’ Tests. Author: Richard Cotton
[aut, cre].

rusda Interface to USDA Databases. Author: Franz-Sebastian Krah.

rwirelesscom Basic Wireless Communications Simulation. Author: Alberto Gutierrez [aut,
cre].

rwunderground R Interface to Weather Underground API. Author: Alex Shum.
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sSDR Tools Developed for Structured Sufficient Dimension Reduction (sSDR). Authors:
Yang Liu, Francesca Chiaromonte, Bing Li.

sValues Measures of the Sturdiness of Regression Coefficients. Author: Carlos Cinelli.

satellite Various Functions for Handling and Manipulating Remote Sensing Data. Authors:
Thomas Nauss, Hanna Meyer, Florian Detsch, Tim Appelhans.

sbmSDP Semidefinite Programming for Fitting Block Models of Equal Block Sizes. Author:
Arash A. Amini.

scatterD3 D3 JavaScript Scatterplot from R. Author: Julien Barnier [aut, cre].

schumaker Schumaker Shape-Preserving Spline. Authors: Stuart Baumann [aut, cre],
Margaryta Klymak[ctb].

scmamp Statistical Comparison of Multiple Algorithms in Multiple Problems. Authors:
Borja Calvo [aut, cre], Guzman Santafe [aut].

score A Package to Score Behavioral Questionnaires. Author: Jaejoon Song.

scorer Quickly Score Models. Author: Paul Hendricks [aut, cre].

sdPrior Scale-Dependent Hyperpriors in Structured Additive Distributional Regression.
Author: Nadja Klein.

searchConsoleR Google Search Console APIv3 R Client. Authors: Mark Edmondson [aut,
cre], Jennifer Bryan [ctb].

seeclickfixr Access Data from the SeeClickFix Web API. Authors: Justin de Benedictis-
Kessner [aut, cre], Christian Lemp [ctb].

seismic Predict Information Cascade by Self-Exciting Point Process. Authors: Hera He,
Murat Erdogdu, Qingyuan Zhao.

sejmRP An Information About Deputies and Votings in Polish Diet. Authors: Piotr Smuda
[aut, cre], Przemyslaw Biecek [aut], Tomasz Mikolajczyk [ctb].

selectiveInference Tools for Selective Inference. Authors: Ryan Tibshirani, Rob Tibshirani,
Jonathan Taylor, Joshua Loftus, Stephen Reid.

sgRSEA Enrichment Analysis of CRISPR/Cas9 Knockout Screen Data. Authors: Jungsik
Noh, Beibei Chen.

shinystan Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian
Models. Authors: Jonah Gabry [aut, cre], Stan Development Team [ctb], Michael
Andreae [ctb], Michael Betancourt [ctb], Bob Carpenter [ctb], Yuanjun Gao [ctb],
Andrew Gelman [ctb], Ben Goodrich [ctb], Daniel Lee [ctb], Dongying Song [ctb], Rob
Trangucci [ctb].

signalHsmm Predict Presence of Signal Peptides. Authors: Michal Burdukiewicz [cre, aut],
Piotr Sobczyk [aut].

simest Constrained Single Index Model Estimation. Authors: Arun Kumar Kuchibhotla,
Rohit Kumar Patra.

simmer Just Let it Simmer. Authors: Bart Smeets [aut], Iñaki Ucar [aut, cre].

simmr A Stable Isotope Mixing Model. Author: Andrew Parnell.

simplr Basic Symbolic Expression Simplification. Authors: Oliver Flasch [aut, cre], Felix
Gorschlueter [aut], Leo Liberti [ctb].

simr Power Analysis for Generalised Linear Mixed Models by Simulation. Authors: Peter
Green, Catriona MacLeod.
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sinaplot An Enhanced Chart for Simple and Truthful Representation of Single Observations
over Multiple Classes. Authors: Nikos Sidiropoulos [aut, cre], Sina Hadi Sohi [aut],
Nicolas Rapin [aut], Frederik Otzen Bagger [aut].

sisal Sequential Input Selection Algorithm. Author: Mikko Korpela [aut, cre].

smallarea Fits a Fay Herriot Model. Author: Abhishek Nandy.

smerc Statistical Methods for Regional Counts. Author: Joshua French.

smint Smooth Multivariate Interpolation for Gridded and Scattered Data. Authors: Yves
Deville Yann Richet. Fortran codes by William Thacker, Manjula Iyer Jingwei Zhang,
Laynet Watson, Jeffrey Birch, Manjula Iyer, Michael Berry and Robert Renka. Fortran
codes by Alain Hebert.

snn Stabilized Nearest Neighbor Classifier. Authors: Wei Sun, Xingye Qiao, and Guang
Cheng.

sodavis SODA: Main and Interaction Effects Selection for Discriminant Analysis and Logis-
tic Regression. Authors: Yang Li, Jun S. Liu.

sodium A Modern and Easy-to-Use Crypto Library. Author: Jeroen Ooms.

solidearthtide Solid Earth Tide Computation. Authors: Jose Gama [aut, cre], Dennis Milbert
[aut, cph].

spTDyn Spatially Varying and Spatio-Temporal Dynamic Linear Models. Authors: K.
Shuvo Bakar, Philip Kokic, Huidong Jin.

spanel Spatial Panel Data Models. Author: Taha Zaghdoudi.

sparsereg Sparse Bayesian Models for Regression, Subgroup Analysis, and Panel Data.
Authors: Marc Ratkovic and Dustin Tingley.

spatialfil Application of 2D Convolution Kernel Filters to Matrices or 3D Arrays. Authors:
Nicola Dinapoli, Roberto Gatta.

spduration Split-Population Duration (Cure) Regression. Authors: Andreas Beger [aut,
cre], Daina Chiba [aut], Daniel Hill [aut], Nils Metternich [aut], Shahryar Minhas [aut],
Michael Ward [cph].

speciesgeocodeR Prepare Species Distributions for the Use in Phylogenetic Analyses. Au-
thor: Alexander Zizka [aut, cre].

specmine Metabolomics and Spectral Data Analysis and Mining. Authors: Christopher
Costa, Marcelo Maraschin, Miguel Rocha.

spectrino Spectra Visualization, Organizer and Data Preparation. Author: Teodor Krastev.

spinyReg Sparse Generative Model and Its EM Algorithm. Authors: Charles Bouveyron,
Julien Chiquet, Pierre Latouche, Pierre-Alexandre Mattei.

spm12r Wrapper Functions for SPM (Statistical Parametric Mapping) Version 12 from the
Wellcome Trust Centre for Neuroimaging. Author: John Muschelli.

spoccutils Utilities for Use with ‘spocc’. Author: Scott Chamberlain [aut, cre].

spsann Optimization of Sample Configurations using Spatial Simulated Annealing. Au-
thors: Alessandro Samuel-Rosa [aut, cre], Lucia Helena Cunha dos Anjos [ths], Gus-
tavo de Mattos Vasques [ths], Gerard B M Heuvelink [ths], Edzer Pebesma [ctb], Jon
Skoien [ctb], Joshua French [ctb], Pierre Roudier [ctb], Dick Brus [ctb], Murray Lark
[ctb].
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spsi Shape-Preserving Uni-Variate and Bi-Variate Spline Interpolation. Authors: Szymon
Sacher & Andrew Clausen. Excerpts adapted from Fortran code Copyright (C) Paolo
Costantini.

sscor Robust Correlation Estimation and Testing Based on Spatial Signs. Authors: Alexan-
der Duerre [aut, cre], Daniel Vogel [aut].

starma Modelling Space Time AutoRegressive Moving Average (STARMA) Processes. Au-
thor: Felix Cheysson.

stationaRy Get Hourly Meteorological Data from Global Stations. Author: Richard Iannone
[aut, cre].

statnetWeb A Graphical User Interface for Network Modeling with ‘Statnet’. Authors:
Emily Beylerian [cre, aut], Kirk Li [ctb], Samuel Jenness [ctb], Martina Morris [ctb].

steadyICA ICA and Tests of Independence via Multivariate Distance Covariance. Authors:
Benjamin B. Risk and Nicholas A. James and David S. Matteson.

stmBrowser Structural Topic Model Browser. Authors: Michael K. Freeman, Jason Chuang,
Margaret E. Roberts, Brandon M. Stewart and Dustin Tingley.

stplanr Sustainable Transport Planning. Authors: Robin Lovelace [aut, cre], Richard Ellison
[aut] (Author of various functions), Barry Rowlingson [aut] (Author of overline), Nick
Bearman [aut] (Co-author of gclip).

stringgaussnet PPI and Gaussian Network Construction from Transcriptomic Analysis
Results Integrating a Multilevel Factor. Authors: Emmanuel Chaplais, Henri-Jean
Garchon.

subscore SubScore Computing Functions in Classical Test Theory. Authors: Shenghai Dai
[aut, cre], Xiaolin Wang [aut], Dubravka Svetina [aut].

subspace Interface to OpenSubspace. Authors: Marwan Hassani [aut, cre], Matthias
Hansen [aut], Emmanuel Müller [ctb], Ira Assent [ctb], Stephan Günnemann [ctb],
Timm Jansen [ctb], Thomas Seidl [ctb], University of Waikato [ctb, cph].

surveyeditor Generate a Survey that can be Completed by Survey Respondents. Author:
Char Leung.

surveyplanning Survey Planning Tools. Authors: Juris Breidaks [aut, cre], Martins Liberts
[aut], Janis Jukams [aut].

svgPanZoom R ‘Htmlwidget’ to Add Pan and Zoom to Almost any R Graphic. Authors: An-
ders Riutta et. al. [aut, cph] (svg-pan-zoom.js BSD-licensed library in htmlwidgets/lib),
Jorik Tangelder [aut, cph] (hammer.js MIT-licensed touch library in htmlwidgets/lib),
Kent Russell [aut, cre] (R interface to svg-pan-zoom.js).

svs Tools for Semantic Vector Spaces. Author: Koen Plevoets [aut, cre].

swirlify A Toolbox for Writing ‘swirl’ Courses. Authors: Sean Kross [aut, cre], Nick
Carchedi [aut], Chih-Cheng Liang [ctb], Wush Wu [ctb].

switchr Installing, Managing, and Switching Between Distinct Sets of Installed Packages.
Author: Gabriel Becker[aut, cre].

switchrGist Publish Package Manifests to GitHub Gists. Author: Gabriel Becker [aut, cre].

taber Split and Recombine Your Data. Author: Seth Wenchel [aut, cre, cph].

tablaxlsx Write Formatted Tables in Excel Workbooks. Author: Jesus Maria Rodriguez
Rodriguez.
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tailloss Estimate the Probability in the Upper Tail of the Aggregate Loss Distribution.
Authors: Isabella Gollini [aut, cre], Jonathan Rougier [ctb].

textreuse Detect Text Reuse and Document Similarity. Author: Lincoln Mullen [aut, cre]. In
view: NaturalLanguageProcessing.

tgcd Thermoluminescence Glow Curve Deconvolution. Authors: Jun Peng [aut, cre], Jorge
More [ctb], Burton Garbow [ctb], Kenneth Hillstrom [ctb], John Burkardt [ctb], Linda
R. Petzold [ctb], Alan C. Hindmarsh [ctb], R. Woodrow Setzer [ctb].

tglm Binary Regressions under Independent Student-t Priors. Author: Yingbo Li.

threewords Represent Precise Coordinates in Three Words. Author: Oliver Keyes.

tigris Load Census TIGER/Line Shapefiles into R. Authors: Kyle Walker [aut, cre], Bob
Rudis [ctb].

timedelay Time Delay Estimation for Stochastic Time Series of Gravitationally Lensed
Quasars. Authors: Hyungsuk Tak, Kaisey Mandel, David A. van Dyk, Vinay L.
Kashyap, Xiao-Li Meng, and Aneta Siemiginowska.

titanic Titanic Passenger Survival Data Set. Author: Paul Hendricks [aut, cre].

tmlenet Targeted Maximum Likelihood Estimation for Network Data. Authors: Oleg
Sofrygin [aut, cre], Mark J. van der Laan [aut].

tmod Transcriptional Module Analysis. Author: January Weiner.

tmvnsim Truncated Multivariate Normal Simulation. Author: Samsiddhi Bhattacjarjee.

tnam Temporal Network Autocorrelation Models (TNAM). Authors: Philip Leifeld [aut,
cre], Skyler J. Cranmer [ctb].

tolBasis Fundamental Definitions and Utilities of the Time Oriented Language (TOL).
Author: Pedro Gea.

tracheideR Standardize Tracheidograms. Author: Filipe Campelo.

traits Species Trait Data from Around the Web. Authors: Scott Chamberlain [aut, cre],
Zachary Foster [aut], Ignasi Bartomeus [aut], David LeBauer [aut], David Harris [aut].

transcribeR Automated Transcription of Audio Files Through the HP IDOL API. Authors:
Christopher Lucas, Dean Knox, Dustin Tingley, Thomas Scanlan, Shiv Sunil, Michael
May, Angela Su.

translateSPSS2R Toolset for Translating SPSS-Syntax to R-Code. Authors: Andreas
Wygrabek [aut, cre], Bastian Wiessner [aut], eoda GmbH [cph].

translation.ko R Manuals Literally Translated in Korean. Authors: Chel Hee Lee [aut, cre],
Edward Kang [ctb], Sunyoung Kim [ctb], Heather Kim [ctb].

treescape Statistical Exploration of Landscapes of Phylogenetic Trees. Authors: Thibaut
Jombart [aut], Michelle Kendall [aut, cre], Jacob Almagro-Garcia [aut], Caroline Colijn
[aut].

trib Analysing and Visualizing Tribology Measurements. Authors: Gokce Mehmet Ay [aut,
cre], Osman Nuri Celik [ths].

trimr An Implementation of Common Response Time Trimming Methods. Author: James
Grange [aut, cre].

tsPI Improved Prediction Intervals for ARIMA Processes and Structural Time Series. Au-
thor: Jouni Helske. In view: TimeSeries.
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tseriesEntropy Entropy Based Analysis and Tests for Time Series. Author: Simone Gianner-
ini. In view: TimeSeries.

tsna Tools for Temporal Social Network Analysis. Authors: Skye Bender-deMoll [aut, cre],
Martina Morris [aut], James Moody [ctb].

tuber Client for the YouTube API. Author: Gaurav Sood [aut, cre].

tumgr Tumor Growth Rate Analysis. Author: Julia Wilkerson.

tweet2r Twitter Collector and Export to ‘postGIS’. Author: Pau Aragó.

ukgasapi API for UK Gas Market Information. Author: Timothy Wong [aut, cre].

umx Helper Functions for Structural Equation Modelling in OpenMx. Author: Timothy C
Bates [aut, cre].

unfoldr Stereological Unfolding for Spheroidal Particles. Authors: Markus Baaske [aut,
cre], Felix Ballani [ctb].

uniqueAtomMat Finding Unique or Duplicated Rows or Columns for Atomic Matrices.
Author: Long Qu [aut, cre].

unitedR Assessment and Evaluation of Formations in United. Author: David Schindler
[aut, cre].

uptimeRobot Access the UptimeRobot Ping API. Author: Gabriele Baldassarre [aut, cre].

urlshorteneR R Wrapper for the Bit.ly, Goo.gl and Is.gd URL Shortening Services. Author:
John Malc.

validate Data Validation Infrastructure. Authors: Mark van der Loo [cre, aut], Edwin de
Jonge [aut], Paul Hsieh [ctb].

valottery Results from the Virginia Lottery Draw Games. Author: Clay Ford [cre, aut].

varhandle Functions for Robust Variable Handling. Author: Mehrad Mahmoudian [aut,
cre].

varian Variability Analysis in R. Authors: Joshua F. Wiley [aut, cre], Elkhart Group Limited
[cph].

versions Query and Install Specific Versions of Packages on CRAN. Author: Nick Golding.

vertexenum Vertex Enumeration of Polytopes. Author: Robert Robere.

vipor Plot Categorical Data Using Quasirandom Noise and Density Estimates. Authors:
Scott Sherrill-Mix, Erik Clarke.

viridis Matplotlib Default Color Map. Authors: Simon Garnier [aut, cre], Noam Ross [ctb,
cph] (Continuous scale), Bob Rudis [ctb, cph] (Combined scales).

viridisLite Default Color Maps from ‘matplotlib’ (Lite Version). Authors: Simon Garnier
[aut, cre], Noam Ross [ctb, cph], Bob Rudis [ctb, cph].

visNetwork Network Visualization using ‘vis.js’ Library. Authors: Almende B.V. [aut, cph]
(vis.js library in htmlwidgets/lib), Benoit Thieurmel [aut, cre] (R interface).

vtreat Simple Variable Treatment. Authors: John Mount, Nina Zumel.

wBoot wBootstrap Routines. Author: Neil A. Weiss.

wPerm Permutation Tests. Author: Neil A. Weiss.

walkr Random Walks in the Intersection of Hyperplanes and the N-Simplex. Authors:
Andy Yao, David Kane.
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warbleR Streamline Bioacoustic Analysis. Authors: Marcelo Araya-Salas, Grace Smith
Vidaurre, Hua Zhong.

water Actual Evapotranspiration with Energy Balance Models. Authors: Guillermo Fed-
erico Olmedo [aut, cre], Samuel Ortega-Farias [aut], David Fonseca-Luengo [aut],
Daniel de la Fuente-Saiz [aut], Fernando Fuentes Peñailillo [aut].

wbsts Multiple Change-Point Detection for Nonstationary Time Series. Authors: Karolos
Korkas and Piotr Fryzlewicz. In view: TimeSeries.

weatherr Tools for Handling and Scrapping Instant Weather Forecast Feeds. Author: Stan
Yip [aut, cre].

webreadr Tools for Reading Formatted Access Log Files. Author: Oliver Keyes.

webuse Import Stata ‘webuse’ Datasets. Author: Thomas J. Leeper [aut, cre].

wec Weighted Effect Coding. Authors: Rense Nieuwenhuis, Manfred te Grotenhuis, Ben
Pelzer, Alexanter Schmidt, Ruben Konig, Rob Eisinga.

weightTAPSPACK Weight TAPS Data. Authors: David G. Carlson, Michelle Torres, and
Taeyong Park.

wellknown Convert Between ‘WKT’ and ‘GeoJSON’. Author: Scott Chamberlain [aut, cre].

whoami Username, Full Name, Email Address, ‘GitHub’ Username of the Current User.
Author: Gabor Csardi.

whoapi A ‘Whoapi’ API Client. Author: Oliver Keyes.

wingui Advanced Windows Functions. Author: Andrew Redd.

wiod World Input Output Database 1995–2011. Author: Bastiaan Quast [aut, cre].

withr Run Code With Temporarily Modified Global State. Authors: Jim Hester [aut, cre],
Kirill Müller [aut], Hadley Wickham [aut], Winston Chang [aut], RStudio [cph].

woe Computes Weight of Evidence and Information Values. Author: Sudarson Mothilal
Thoppay.

wordbankr Accessing the Wordbank Database. Authors: Mika Braginsky [aut, cre], Daniel
Yurovsky [ctb], Michael Frank [ctb].

wpp2015 World Population Prospects 2015. Authors: Population Division, Department of
Economic and Social Affairs, United Nations.

wqs Weighted Quantile Sum Regression. Authors: Jenna Czarnota, David Wheeler.

xergm.common Common Infrastructure for Extensions of Exponential Random Graph
Models. Author: Philip Leifeld [aut, cre].

xmeta A Toolbox for Multivariate Meta-Analysis. Authors: Yong Chen, Chuan Hong,
Haitao Chu. In view: MetaAnalysis.

xseq Assessing Functional Impact on Gene Expression of Mutations in Cancer. Authors:
Jiarui Ding, Sohrab Shah.

yakmoR A Simple Wrapper for the k-Means Library Yakmo. Author: Aydin Demircioglu.

yummlyr R Bindings for Yummly API. Author: Roman Tsegelskyi.

zetadiv Functions to Compute Compositional Turnover Using Zeta Diversity. Authors:
Guillaume Latombe, Melodie A. McGeoch, Cang Hui.
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Other changes

The following packages were moved to the Archive: ABCExtremes, ABCp2, AOfami-
lies, BHMSMAfMRI, Biograph, Brq, CALINE3, CARramps, CLAG, COP, CSS, Clad-
dis, DBFTest, DPw, EMJumpDiffusion, ETAS, FluOMatic, GPlab, HWxtest, LGS, LVQ-
Tools, MADAM, MFDA, MGL, MMIX, McParre, Multiclasstesting, OPE, PBC, PER-
regress, PF, PIGShift, PKfit, RHive, RMediation, RcmdrPlugin.StatisticalURV, Rhh,
SASxport, SE.IGE, SINGLE, SNPMClust, SPMS, Watersheds, WaveCD, WideLM, Your-
Cast, ZeligGAM, ascrda, bayesclust, bdoc, bear, bigrf, biopara, branchLars, clustergas,
cmprskQR, cobs99, correlate, datalist, db.r, diskmemoiser, emdatr, epi2loc, esotericR,
evora, fuzzyMM, gbs, glassomix, gooJSON, gstudio, hlr, iFes, indicoio, ivivc, lmmfit, loe,
magma, mixlow, netweavers, ngramr, nlADG, pcrcoal, permGPU, permtest, phom, phy-
loTop, phylosim, polytomous, predfinitepop, pt, qlspack, qualityTools, rJavax, radiant,
rawFasta, reccsim, repra, rgauges, ringbuffer, ringscale, rlme, rpud, rrules, rspear, sig-
nal.hsmm, spca, sqlshare, sse, stab, tdm, tslars, varSelectIP, vectoptim, waterfall, weight-
edKmeans, wombsoft.

The following packages were resurrected from the Archive: AdapEnetClass, BAS, Barnard,
DESP, MPCI, MetaPath, NHMSAR, OneArmPhaseTwoStudy, RAHRS, RBerkeley, RE-
GENT, RPPanalyzer, RSpincalc, Rcell, RcmdrPlugin.Export, Rgbp, Rgnuplot, Rlof,
SigTree, ThreeGroups, anoint, cems, cgwtools, colorscience, conicfit, cpm, cusp, delt,
dprep, dynpred, edesign, edmr, flowr, geofd, googlePublicData, highriskzone, htmltab,
imputeYn, ipw, jackknifeKME, locfdr, muRL, munsellinterpol, nordklimdata1, ocom-
position, papeR, parfm, pgnorm, pmc, rbiouml, rknn, samplesize, skellam, spec-
tral.methods, toaster, wccsom, wikipediatrend, xgboost, xml2.
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Kurt.Hornik@R-project.org
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