
The Journal
Volume 8/1, Aug. 2016

A peer-reviewed, open-access publication of the
R Foundation for Statistical Computing

Contents

Editorial . 4

Contributed Research Articles

metaplus: An R Package for the Analysis of Robust Meta-Analysis and Meta-Regression
5

Gender Prediction Methods Based on First Names with genderizeR 17

Conditional Fractional Gaussian Fields with the Package FieldSim 38

rTableICC: An R Package for Random Generation of 2×2×K and R×C Contingency
Tables. 48

Maps, Coordinate Reference Systems and Visualising Geographic Data with mapmisc 64

Variable Clustering in High-Dimensional Linear Regression: The R Package clere . . 92

Stylometry with R: A Package for Computational Text Analysis 107

quickpsy: An R Package to Fit Psychometric Functions for Multiple Groups 122

FWDselect: An R Package for Variable Selection in Regression Models 132

An Interactive Survey Application for Validating Social Network Analysis Techniques 149

Exploring Interaction Effects in Two-Factor Studies using the hiddenf Package in R. . 159

Heteroscedastic Censored and Truncated Regression with crch 173

Model Builder for Item Factor Analysis with OpenMx 182

Spatio-Temporal Interpolation using gstat . 204

SWMPr: An R Package for Retrieving, Organizing, and Analyzing Environmental
Data for Estuaries . 219

CryptRndTest: An R Package for Testing the Cryptographic Randomness 233

scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems 248

keyplayer: An R Package for Locating Key Players in Social Networks 257

SchemaOnRead: A Package for Schema-on-Read in R 269

Crowdsourced Data Preprocessing with R and Amazon Mechanical Turk 276

mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite
Mixture Models . 289

clustering.sc.dp: Optimal Clustering with Sequential Constraint by Using Dynamic
Programming . 318

progenyClust: an R package for Progeny Clustering 328

2

statmod: Probability Calculations for the Inverse Gaussian Distribution 339

Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R 352

R Packages to Aid in Handling Web Access Logs 360

Nonparametric Tests for the Interaction in Two-way Factorial Designs Using R 367

GMDH: An R Package for Short Term Forecasting via GMDH-Type Neural Network
Algorithms . 379

sbtools: A Package Connecting R to Cloud-based Data for Collaborative Online
Research . 387

News and Notes

Conference Report: useR! 2016 . 399

Changes on CRAN . 402

News from the Bioconductor Project . 404

Changes in R . 406

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

3

The R Journal is a peer-reviewed publication of the R
Foundation for Statistical Computing. Communications

regarding this publication should be addressed to the
editors. All articles are licensed under the Creative

Commons Attribution 3.0 Unported license (CC BY 3.0,
http://creativecommons.org/licenses/by/3.0/).

Prospective authors will find detailed and up-to-date
submission instructions on the Journal’s homepage.

Editor-in-Chief:
Michael Lawrence

Editorial Board:
Bettina Grün, Roger Bivand, John Verzani

R Journal Homepage:
http://journal.r-project.org/

Email of editors and editorial board:
firstname.lastname@R-project.org

The R Journal is indexed/abstracted by EBSCO, DOAJ, and
Thomson Reuters.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://creativecommons.org/licenses/by/3.0/
http://journal.r-project.org/

4

Editorial
by Michael Lawrence

On behalf of the editorial board, I am pleased to publish Volume 8, Issue 1 of the R Journal.
This issue contains 27 contributed research articles. Each of them either presents an R
package, a specific extension of an R package or applications using R packages available
from the Comprehensive R Archive Network (CRAN, http:://CRAN.R-project.org). It
thus provides a small but current cross-section of the burgeoning R ecosystem.

Interest in developing graphical user interfaces and visualization tools on top of R,
and integrating R with the web, continues to grow, as evidenced by the articles on the
Social Network Analysis Survey Framework, a Shiny interface to the OpenMX modeling
software, and the mapmisc package for visualizing geographic data. This issue also includes
articles on R interfaces to cloud-based data resources (the sbtools package), and a system for
crowd-sourcing data preprocessing chores (the MTurkR package).

True to the roots of R, the bulk of this issue presents advancements in the field of applied
statistics, including the crch package for modeling censored and truncated data, new im-
provements in the mclust package for fitting Gaussian mixture models, the scmamp package
for comparing the performance of multiple algorithms, the rTableICC for randomly gener-
ating contingency tables, the clere package for variable clustering in high dimensions, the
FWDselect package for forward model selection, the metaplus package for analyzing robust
meta-analyses, the hiddenf package for exploring interaction effects in factorial studies, the
statmod package for calculating probabilities with the inverse Gaussian distribution, the
clustering.sc.dp package for clustering with sequential constraints and a review of R-based
methods for non-parametric testing of interactions in two-way factorial designs.

The diversity of the R ecosystem is such that packages are available for many highly
focused subfields. Examples in this issue include the stylo package for performing stylom-
etry studies, the CryptRndTest package for analyzing randomness in cryptography, the
quickpsy package for function fitting in psychometrics, SWMPr for analyzing estuary data,
FieldSim for simulating Gaussian fields (e.g., in image analysis), progenyClust for progeny
clustering, keyplayer for finding key players in social networks, DECIPHER for deciphering
biological sequence data, GMDH for short term forcasting with neural networks, and gstat
for spatio-temporal interpolation of geostatistics data.

Before the user can apply these tools, the data must first be imported into R and munged
into a shape that is amenable to analysis. We present several packages for importing and
munging data, namely: SchemaOnRead, a generalized data import framework supporting
numerous common file types, multiple packages for working with web logs (webreadr,
urltools, iptools and rgeolocate), and the genderizeR package for predicting gender from
first names.

In addition the News and Notes section contains the usual updates on CRAN and the
Bioconductor project.

I hope you enjoy the issue.

Michael Lawrence
Michael.Lawrence@r-project.org

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http:://CRAN.R-project.org
mailto:Michael.Lawrence@r-project.org

CONTRIBUTED RESEARCH ARTICLES 5

metaplus: An R Package for the Analysis
of Robust Meta-Analysis and
Meta-Regression
by Ken J. Beath

Abstract The metaplus package is described with examples of its use for fitting meta-analysis and
meta-regression. For either meta-analysis or meta-regression it is possible to fit one of three models:
standard normal random effect, t-distribution random effect or mixture of normal random effects. The
latter two models allow for robustness by allowing for a random effect distribution with heavier tails
than the normal distribution, and for both robust models the presence of outliers may be tested using
the parametric bootstrap. For the mixture of normal random effects model the outlier studies may be
identified through their posterior probability of membership in the outlier component of the mixture.
Plots allow the results of the different models to be compared. The package is demonstrated on three
examples: a meta-analysis with no outliers, a meta-analysis with an outlier and a meta-regression with
an outlier.

Introduction

Meta-analysis is a method of combining the results of different studies to produce one overall result
(Sutton et al., 2000). Meta-regression is an extension to meta-analysis which allows study-specific effect
sizes to change depending on study-specific covariates. For example there may be studies comparing
a drug to placebo, with varying doses of the drug used in the different studies. It is possible that the
effectiveness of the drug will vary with dose, in a linear or nonlinear relationship, and by including
this in the model the unexplained variation is reduced.

One of the difficulties in combining studies is that the differences between studies may be greater
than would be indicated by the variation within each study. This is allowed for by the random effect
model where the effect for each study has two components: an overall effect and a random component
specific to each study, with the random component traditionally assumed to have a normal distribution.
The model without a random effect is known as the fixed effect model, which is equivalent to a random
effect model with zero variance for the random effect.

One difficulty is that the assumption of a normally distributed random effect may be unrealistic,
with a particular violation that the tails are heavier than would be expected. While it has been shown
that results are robust to moderate violations of the normality assumption (Kontopantelis and Reeves,
2012), this does not apply to more extreme cases. One solution to this is to use an alternative to
the normal distribution for the random effect, for example the t-distribution, as described in Lee
and Thompson (2008) and Baker and Jackson (2008), the Laplace distribution (Demidenko, 2013,
Section 5.1.5), a non-parametric (Branscum and Hanson, 2008) or a semi-parametric (Burr and Doss,
2005) random effect distribution. This, however, does not identify which studies are unusual. A
traditional method of identifying outliers is through residual diagnostics and this has been applied
to meta-analysis by Viechtbauer and Cheung (2010). However, the effect of the outliers on the fitted
model may cause them to be masked (Atkinson, 1986). This occurs when the outliers affect the fitted
model to the extent that the unusual observations no longer appear unusual. A method to avoid this
is deletion of residuals, used in Viechtbauer and Cheung (2010), but this is only effective for single
outliers. It can be extended to allow multiple outliers but with the need to fit a large number of models.
A method to avoid the problem of multiple outliers is described by Gumedze and Jackson (2011). They
assume that studies are either normal or are outlier studies from a random effect distribution with
a higher variance. Only one study is assumed to be an outlier, with each study tested in turn, but
multiple outliers then allowed for using order statistics. Beath (2014) noted the similarity of this model
to a mixture model, which also allows for a more general fitting algorithm and a statistical test for the
presence of outliers and indication of which studies are outliers.

The purpose of the metaplus package (Beath et al., 2016) is to fit the two robust models with
random effects based on the t-distribution and the mixture of normals, as well as the standard normal
random effects model. It is not designed to replace a more general meta-analysis package, such as
metafor (Viechtbauer, 2010) but to provide additional specialised analyses. In producing forest plots,
it builds upon the functionality of the metafor package, allowing the various models to be compared.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=metaplus
http://CRAN.R-project.org/package=metafor

CONTRIBUTED RESEARCH ARTICLES 6

Models

The random effect meta-analysis model assumes that the observed treatment effect Yi for study i is

Yi = µ + Ei + εi,

where µ is the overall mean for the studies, Ei is a random effect with mean zero, and εi is a normally
distributed error with variance σ2

i for study i, where the within study variance σ2
i is assumed to be

known.

An extension, known as meta-regression, to the random effect meta-analysis model is to include
covariates to explain the heterogeneity (Sutton et al., 2000, p. 51). Incorporating this into the meta-
analysis model we obtain

Yi = µ + XT
i β + Ei + εi,

where Xi is a vector of covariate values for study i, and β is a vector of the corresponding
parameters.

In metaplus there are three available random effect distributions:

Normal: The probability density function for study i is

f (Yi|Xi; µ, τ) =
1√

2π
(
σ2

i + τ2
) exp

(
−
(
Yi − µ− XT

i β
)2

2
(
σ2

i + τ2
))

.

Robust t-distribution: This distribution was introduced as one of a number of distributions for
robust meta-analysis by Lee and Thompson (2008) and Baker and Jackson (2008). This approach
replaces the normal random effect distribution with a t-distribution. The degrees of freedom (ν)
of the t-distribution control the heaviness of the tails, and are estimated from the data, using
ν−1 as the parameter for numerical advantages. The probability density function no longer has
a closed-form expression, requiring integration over the t-distribution random effect as

f (Yi|Xi; µ, τ, ν) =
1√

2πσ2
i

∫ ∞

−∞
exp

(
−
(
Yi − µ− XT

i β− η
)2

2σ2
i

)
g (η|τ, ν) dη,

where g (η|τ, ν) is the density function of a scaled t-distribution with ν degrees of freedom

g (η|τ, ν) =
Γ ((ν + 1) /2)
τ
√

πνΓ (ν/2)

(
1 +

η2

ντ2

)−((ν+1)/2)

.

Robust mixture: This assumes that a study can belong to one of two classes, where each class is a
standard random effect model with the same mean but different random effect variance, which
is higher for the outlier class (Beath, 2014). The robust meta-regression model takes the form

Yi|k = µ + XT
i β + Ei|k + εi,

where εi is as for the standard model, but Ei|k is now a random effect dependent on the class,
where k = 1, 2 indexes the classes, with k = 1 corresponding to standard studies and k = 2
to outlier studies, with random effect variances τ2

1 , τ2
2 respectively, with the restriction that

τ2
2 > τ2

1 , and again zero mean. The probability density function becomes the weighted sum of
the probability density function for each class, with weights equal to the proportion of studies
in each class π1, π2 for the standard and outlier studies, respectively:

f (Yi|Xi; µ, τ1, τ2, π1, π2) =
2

∑
k=1

πk
1√
2π

(
1

σ2
i + τ2

k

)1/2

exp

(
−1

2

(
Yi − µ− XT

i β
)2

σ2
i + τ2

k

)

with the constraints that π1 + π2 = 1 and 0 ≤ πi ≤ 1.

Profile likelihood based confidence intervals

A difficulty with the use of standard maximum likelihood techniques for random effect models is that
they produce biased estimates for the variance of the random effect, which results in biased estimates
of the standard errors for the parameters of interest, and therefore poor coverage using Wald-type
confidence intervals. The solution for meta-analysis has been the use of Wald-type confidence intervals

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 7

obtained from models fitted using residual maximum likelihood (REML), but this is difficult for the
robust models. However, profile likelihood based confidence intervals (Pawitan, 2001, p. 61) have
been found to be superior (Hardy and Thompson, 1996), and these are used for all fitted models. The
profile likelihood based confidence intervals are obtained from routines based on the mle2 function
in the package bbmle (Bolker and R Core Team, 2014) which provides an extended version of mle.
The p-values are calculated using the likelihood ratio test statistic so that they are consistent with the
confidence intervals.

Parametric bootstrap

Testing for the need for the robust distributions requires a test of ν = ∞, or equivalently ν−1 = 0
for the t-distribution and π2 = 0 for the robust mixture. Both tests involve a test of a parameter on
the boundary of the parameter space, so the usual asymptotic theory cannot be used. One solution
is the parametric bootstrap (McLachlan, 1987), which involves simulating data sets under the null
hypothesis and calculating the likelihood ratio test statistic for each simulated data set. The observed
test statistic is then compared to the simulated test statistics to determine the p-value.

Other computational details

For both robust models the starting values are important, as the optimisation used to obtain the
maximum likelihood may converge to a local minimum. For the t-distribution a standard normal
random effect model is first fitted. The parameter estimates from this model together with a range
of values of the t-distribution degrees of freedom are used as starting parameter values for the t-
distribution random effect model. From these fitted models the model with the maximum likelihood
is chosen as the final fitted model.

For the t-distribution random effect model numerical integration is used to obtain the marginal
likelihood, with a choice of either adaptive quadrature or adaptive Gauss-Hermite quadrature. In
general adaptive quadrature was found to be superior; however it was required to use adaptive
Gauss-Hermite quadrature when the standard errors of studies are unusually small. Another difficulty
is that the model is not identifiable when τ2 = 0 as the likelihood is no longer dependent on the
t-distribution degrees of freedom, and this causes difficulties with the optimisation. To avoid this a
model was fitted with ν−1 = 0, to allow τ2 = 0, and the likelihood from this model used if it was
equal or larger than given by the optimisation with ν unconstrained.

For the robust mixture model a generalized EM (GEM) algorithm is used. The usual method for
generating starting values for a mixture model using the EM algorithm, as described in McLachlan
and Peel (2000, p. 55), is to randomly allocate subjects to each group in the initial E step. This is
repeated for a number of random allocations and the resulting model fit with the highest maximum
likelihood used as the fitted model. For the outlier models this usually requires a large number of
random allocations, and therefore model fits, due to the small number in the outlier class.

The method used in metaplus is to systematically generate the initial outliers in the E step with an
increasing number of initial outliers, starting with no outliers. For a given number of outliers in the
selected initial set all possible initial sets are fitted with the restriction that each set of initial outliers
builds on the best set of initial outliers found for the previous number of outliers. For example if,
when considering single initial outliers, study 10 as the initial outlier produces the highest maximum
likelihood then study 10 would be included in all pairs of studies when considering models with two
initial outliers. When the maximum likelihood does not increase the process is stopped.

Using package metaplus

The main function available in metaplus is metaplus, with associated methods outlierProbs and
testOutliers specific to metaplus, with the arguments for each shown in Table 1. The function
metaplus fits a meta-analysis model to the studies, with results extracted using summary, and plotted
using plot. The plot method makes use of the forest method in metafor allowing the same cus-
tomisations of the plots. An additional argument specific to plot in metaplus is extrameta, which
allows for extra meta-analysis results to be plotted. This allows for different models (i.e. standard
and robust) to be compared, or for meta-regression to show the overall effect at different values of
the covariates. An alternative method of plotting is to use forestplot (Gordon and Lumley, 2015)
which allows some other customisations, but will require combining the data from the studies and
summaries. The method testOutliers tests for the presence of outliers for the robust models using
the parametric bootstrap. The method outlierProbs determines the posterior probability of each

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=bbmle
http://CRAN.R-project.org/package=forestplot

CONTRIBUTED RESEARCH ARTICLES 8

metaplus() arguments

yi Vector of observed effect sizes corresponding to each study.
sei Vector of observed standard errors corresponding to each study.
mods Data frame of covariates corresponding to each study (only required for a

meta-regression model).
random The type of random effect distribution. One of "normal", "t-dist",

"mixture", for standard normal, t-distribution or mixture of normals,
respectively.

label The label to be used for this model when producing the summary line on
the forest plot. This allows for identification of the model when comparing
multiple models.

plotci Should a diagnostic plot for the profile likelihood be made? See the
package bbmle documentation for further details.

justfit Should the model only be fitted? If only the model is fitted then profiling
and likelihood ratio test statistics are not calculated. This is useful for
bootstrapping to reduce computation time.

slab Vector of character strings corresponding to each study. This is used only
to label the plots.

useAGQ Should adaptive Gauss-Hermite quadrature be used with the t-
distribution random effect model. This may be used when there are
numerical problems due to small standard errors.

quadpoints Number of quadrature points for the adaptive Gauss-Hermite quadrature.
data Optional data frame in which to search for other variables.

outlierProbs() arguments

object “metaplus” object.

testOutliers() arguments

object “metaplus” object.
R Number of simulations used in the parametric bootstrap.

Table 1: Arguments for functions and methods of the metaplus package.

study being an outlier for the normal mixture model. The returned object has an associated plot
method to plot the outlier probabilities. The returned results are shown in Table 2.

Examples

In the following examples, both robust options are used to demonstrate the capabilities of the package.
In practice it will be required to choose which model to use when determining the final result. This
should be the better fitting model, which can be determined using either AIC or BIC. Where the
outliers are extreme the t-distribution will fit poorly requiring the use of the mixture distribution. In
other cases the t-distribution will be preferred as it uses one less parameter, also making it less likely
to produce unstable results which will be shown in the confidence interval profile plot. Where there is
little difference between the fits the mixture distribution may be preferred as it allows identification of
the outlier studies.

Intravenous magnesium in acute myocardial infarction

A number of studies have been performed to determine the effectiveness of intravenous magnesium
in acute myocardial infarction, and a meta-analysis is performed in Sterne et al. (2001). The studies
have caused considerable controversy, as the results of a single large study ISIS-4 (ISIS-4: Collabarative
Group, 1995) contradicts the results of a meta-analysis. Higgins and Spiegelhalter (2002) discuss some
of the history and some suggested methods from a Bayesian perspective, Woods (2002) comments
on the variability between studies due to timing of infusion, and Downing (1999) on the higher level
of dose used in ISIS-4, with a more recent meta-analysis by Li et al. (2009). Of interest is whether,

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 9

metaplus()

results Matrix containing columns for estimate, lower and upper 95% confidence
interval and p-value. If justfit = TRUE then only the parameter estimates
are returned.

yi Vector of observed effect sizes.
sei Vector of observed standard errors corresponding to each effect size.
mods Data frame of covariates corresponding to each study (only returned from

a meta-regression model).
fittedmodel Final model returned from bbmle.
justfit Value of justfit passed to metaplus.
random Type of random effect.
slab Vector of character strings corresponding to each study. This is used to

label the forest plot.

outlierProbs()

outlier.prob Vector of posterior probabilities that the study is an outlier corresponding
to each study.

slab Vector of labels for the studies.

testOutliers()

pvalue p-value obtained from the parametric bootstrap.
observed Observed value of the likelihood ratio test statistic.
sims Vector of simulated values of the test statistic under the null hypothesis.

Table 2: Results reported by functions and methods of the metaplus package.

given the heterogeneity between studies, the ISIS-4 study is unusual. The data have been obtained
in the form of log odds ratios for mortality where negative values correspond to treatment benefit,
but if raw data in the form of number of events per number of patients is available, then these can
be converted using, for example, the escalc function in the metafor package. The standard random
effect meta-analysis can be performed, and the parameter estimates obtained as follows:

> mag.meta <- metaplus(yi, sei, slab = study, data = mag)
> summary(mag.meta)

Est. 95% ci.lb 95% ci.ub pvalue
muhat -0.7463 -1.2583 -0.3428 0.000501
tau2 0.2540

logLik AIC BIC
-19.68459 43.36918 44.91436

Adding the argument plotci = TRUE will produce a plot giving details of the profile confidence
intervals, as shown in Figure 1. The basis of the plot is that the profile log likelihood in the region of
the maximum likelihood estimate should be asymptotically quadratic. As differences from a quadratic
are difficult to determine by eye, a transformation is performed to the z scale, so that the curve should
follow a straight line. Rather than plotting z, |z| is plotted so that the curve should then be in the
form of a symmetric “V” (Bolker and R Core Team, 2014). In this case, the shape is not symmetric,
so this does not hold, although the difference is not large enough to be important. This is confirmed
by the lack of symmetry of the confidence interval for muhat. An important variation from the “V”
occurs when either half of the curve may not be monotonic, indicating that the profile likelihood
is multi-modal and if this occurs in a region affecting the confidence interval then the calculated
confidence interval may be incorrect. It may also be an indication that the model used is incorrect or
that there is insufficient data for the fitted model.

The forest plot showing the studies and overall effect can be obtained using plot(mag.meta). The
metaplus package uses the forest plot capabilities of the metafor package which allows the arguments
for the forest plot in metafor to be used when plotting. As the results for the magnesium studies
are log odds ratios it is more useful to produce plots with units of odds ratios. This can be obtained
by annotating the horizontal axis with odds ratios corresponding to the log odds, and requesting

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 10

−1.4 −1.2 −1.0 −0.8 −0.6 −0.4 −0.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

muhat

z

Figure 1: Profile plot for intravenous magnesium in acute myocardial infarction using the normal
random effect model.

0.01 0.10 1.00 10.00 100.00

Odds Ratio

ISIS−4
Schechter 2
LIMIT−2
Thogersen
Golf
Schechter 1
Pereira
Singh
Bertschat
Ceremuzynski
Schechter
Feldstedt
Abraham
Smith
Rasmussen
Morton

1.06 [1.00 , 1.13]
0.21 [0.07 , 0.64]
0.74 [0.56 , 0.99]
0.45 [0.13 , 1.54]
0.43 [0.13 , 1.44]
0.13 [0.03 , 0.60]
0.11 [0.01 , 0.97]
0.50 [0.17 , 1.43]
0.30 [0.01 , 7.88]
0.28 [0.03 , 2.88]
0.09 [0.01 , 0.74]
1.25 [0.48 , 3.26]
0.96 [0.06 , 15.77]
0.28 [0.06 , 1.36]
0.35 [0.15 , 0.78]
0.44 [0.04 , 5.02]

0.47 [0.28 , 0.71]Random Normal

Figure 2: Forest plot for magnesium studies for mortality using the normal random effect model.

an exponential transformation for the coefficients, as shown in the following code, and the plot is
shown in Figure 2. The documentation for the metafor package should be investigated for further
modifications. Under some systems the characters will not be properly spaced. This can be solved by
using the extrafont (Chang, 2014) package and a fixed width font, for example ‘Courier New’.

> plot(mag.meta, atransf = exp, at = log(c(.01, .1, 1, 10, 100)),
+ xlab = "Odds Ratio", cex = 0.75)

The meta-analysis is repeated using a t-distribution for the random effect by adding the random =
"t-dist" argument. From the summary the estimate of vinv, the inverse degrees of freedom, is zero
corresponding to infinite degrees of freedom, or a normal distribution. The BIC is also a guide, with
an increase for the t-distribution model indicating that a standard normal is the correct model.

> mag.tdist <- metaplus(yi, sei, slab = study, random = "t-dist", data = mag)
> summary(mag.tdist)

Est. 95% ci.lb 95% ci.ub pvalue
muhat -0.7463 -1.2583 -0.3430 0.000501
tau2 0.2540

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=extrafont

CONTRIBUTED RESEARCH ARTICLES 11

vinv 0.0000

logLik AIC BIC
-19.68459 45.36918 47.68695

This can be confirmed with the testOutliers command, which performs a parametric bootstrap to
obtain the null distribution of the likelihood ratio test statistic for the test that ν−1 = 0, required as the
test of the parameter is on the boundary of the parameter space. Note that this may take some time for
the default of 999 simulations, of the order of one hour or longer depending on the number of studies,
so initial investigation may be performed with a smaller number of simulations, with consequently
lower accuracy.

> summary(testOutliers(mag.tdist))

Observed LRT statistic 0.0 p value 1

The analysis can be repeated using the robust mixture distribution for the random effect. The variance
of both the random effect for standard studies (tau2) and for outlier studies (tau2out) are very close
indicating that there are no outlier studies and this is confirmed by the outlier test.

> mag.mix <- metaplus(yi, sei, slab = study, random = "mixture", data = mag)
> summary(mag.mix)

Est. 95% ci.lb 95% ci.ub pvalue
muhat -0.7463147 -1.2593989 -0.3427085 0.000777
tau2 0.2539981
tau2out 0.2540892
Outlier prob. 0.0001904

logLik AIC BIC
-19.68459 47.36918 50.45954

> summary(testOutliers(mag.mix))

Observed LRT statistic 0.0 p value 1

CDP choline for cognitive and behavioural disturbances

This meta-analysis evaluates the effect of CDP choline for cognitive and behavioural disturbances
associated with chronic cerebral disorders in the elderly (Fioravanti and Yanagi, 2005) using standard-
ised mean differences of memory measures as the outcome. A study (Bonavita 1983) was previously
determined to be an outlier by Gumedze and Jackson (2011). A standard random effect meta-analysis
will be fitted first, as previously.

> cdp.meta <- metaplus(yi, sei, slab = study, data = cdp)
> summary(cdp.meta)

Est. 95% ci.lb 95% ci.ub pvalue
muhat 0.38944 0.07269 0.76634 0.0218
tau2 0.14666

logLik AIC BIC
-8.198544 20.39709 21.00226

A robust model using the t-distribution is fitted with the following code.

> cdp.tdist <- metaplus(yi, sei, slab = study, random = "t-dist", data = cdp)
> summary(cdp.tdist)

Est. 95% ci.lb 95% ci.ub pvalue
muhat 1.946e-01 5.296e-02 3.610e-01 0.00899
tau2 4.478e-05
vinv 2.024e+00

logLik AIC BIC
-4.057683 14.11537 15.02312

> summary(testOutliers(cdp.tdist))

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 12

Spiers 1996

Sinforiani 1986

Senin 2003

Piccoli 1994

Motta 1985

Cohen 2003

Capurso 1996

Bonavita 1983

Barbagallo 1988

Alvarez 1999

0.0 0.2 0.4 0.6 0.8 1.0

Outlier Probability

Figure 3: Outlier probabilities for CDP studies from the robust mixture random effect model.

Observed LRT statistic 8.3 p value 0.001

As a rough guide, the decrease in AIC and BIC demonstrates that the model is an improvement, and
this is confirmed with the outlier test. The fit is repeated using the robust mixture.

> cdp.mix <- metaplus(yi, sei, slab = study, random = "mixture", data = cdp)
> summary(cdp.mix)

Est. 95% ci.lb 95% ci.ub pvalue
muhat 0.1910 0.0563 0.3479 0.00711
tau2 0.0000
tau2out 3.1558
Outlier prob. 0.1237

logLik AIC BIC
-3.007145 14.01429 15.22463

> summary(testOutliers(cdp.mix))

Observed LRT statistic 10.4 p value 0.001

The output from the robust mixture model has an interesting feature. For standard studies the
estimated random effect variance is zero, indicating that only the outlier studies are contributing to
the heterogeneity. The posterior probability of each study being an outlier can be obtained as:

> cdp.mix.outlierProbs <- outlierProbs(cdp.mix)

and plotted using plot(cdp.mix.outlierProbs) in Figure 3. This shows clearly that Bonavita 1983
has a posterior probability of nearly 1.0 of being an outlier. The other studies have a non-zero posterior
probability of being outliers, as there is an overlap between the distribution of the standard and outlier
studies, but are relatively close to zero.

Lastly, a forest plot with the results of all three models is generated, using the extrameta parameter
to add the robust models, i.e. plot(cdp.meta,extrameta = list(cdp.tdist,cdp.mix)), and these
are shown in Figure 4, where it can be noted that Bonavita 1983 has an unusually high value. The
effect of the robust models is to down-weight the Bonavita 1983 study, which has the consequence of
both reducing the overall effect estimate and its standard error.

Exercise for depression

This example is a meta-analysis of trials of exercise in the management of depression (Lawlor and
Hopker, 2001). Higgins and Thompson (2004) used the data as an example of meta-regression using
a number of covariates, which will be limited here to a single covariate, the duration of trial. The
outcome is effect size calculated using Cohen’s method. First the meta-analysis using standard normal
random effect and the robust mixture model are performed. The data will be ordered by duration to
assist in identifying a variation from the linear relationship.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 13

−1.00 0.00 1.00 2.00 3.00 4.00

Standardised Mean Difference

Spiers 1996
Sinforiani 1986
Senin 2003
Piccoli 1994
Motta 1985
Cohen 2003
Capurso 1996
Bonavita 1983
Barbagallo 1988
Alvarez 1999

0.13 [−0.28 , 0.54]
0.50 [−0.03 , 1.03]
0.15 [−0.04 , 0.34]
0.14 [−0.33 , 0.61]
0.33 [−0.23 , 0.89]
0.34 [−0.38 , 1.06]
0.58 [−0.14 , 1.30]
2.22 [1.42 , 3.02]

0.01 [−0.40 , 0.42]
0.26 [−0.49 , 1.01]

0.39 [0.07 , 0.77]
0.19 [0.05 , 0.36]
0.19 [0.06 , 0.35]

Random Normal
Random t−distribution
Random mixture

Figure 4: Forest plot for CDP studies (standardised mean difference for memory measures) with
summaries.

> exercise <- exercise[order(exercise$duration),]
> exercise.meta <- metaplus(smd, sqrt(varsmd), mods = duration, slab = study,
+ data = exercise)
> summary(exercise.meta)

Est. 95% ci.lb 95% ci.ub pvalue
muhat -2.8994 -4.3006 -1.5222 0.000884
tau2 0.1171
duration 0.2078 0.0584 0.3632 0.011570

logLik AIC BIC
-8.133435 22.26687 23.17462

> exercise.mix <- metaplus(smd, sqrt(varsmd), mods = duration, slab = study,
+ random = "mixture", data = exercise)
> summary(exercise.mix)

Est. 95% ci.lb 95% ci.ub pvalue
muhat -2.88472 -4.11082 -1.48262 0.000649
tau2 0.00000
tau2out 0.59398
Outlier prob. 0.25169
duration 0.21086 0.07808 0.34586 0.007052

logLik AIC BIC
-7.69139 25.38278 26.8957

> exercise.testOutliers <- testOutliers(exercise.mix)
> summary(exercise.testOutliers)

Observed LRT statistic 0.9 p value 0.075

> exercise.outlierProbs <- outlierProbs(exercise.mix)

The test for outliers was close to being significant (p = 0.075); however a conservative approach seems
appropriate, by using the robust model where the presence of outliers is not conclusive but there is
a reasonable amount of evidence that there are outliers, as in this case. Note also that the p-value
is different from that obtained in Beath (2014), due to the use of randomly generated data in the
parametric bootstrap. Running the parametric bootstrap with a large number of simulations showed
that the p-value was actually near 0.04. Using plot(exercise.outlierProbs) the outlier probabilities
are shown in Figure 5 where the study by Reuter is an obvious outlier with a posterior probability
greater than 0.9. This study is a dissertation and was not published in a peer-reviewed journal, and
was not included in a later meta-analysis by Krogh et al. (2011). There is also strong evidence of the
effect of trial duration.

As metaplus does not currently have a predict method, the alternative to calculate the effect at
each of Weeks 4, 8 and 12 is to centre the data at those times and fit a meta-regression for each (Johnson

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 14

Veale

Klein

Singh

Reuter

Martinsen

Epstein

Hess−Homeier

Doyne

McNeil

Mutrie

0.0 0.2 0.4 0.6 0.8 1.0

Outlier Probability

Figure 5: Outlier probabilities for depression versus exercise from the robust mixture random effect
model.

and Huedo-Medina, 2011). The intercept for each meta-regression will then be the estimated mean
effect at that time. A model without including the covariate for study duration is also fitted. The forest
plot is shown in Figure 6. This shows that the effect of exercise decreases rapidly the longer the trial
runs, possibly indicating a placebo effect that rapidly wears off. It would also be possible to include
the results from the standard random effect models on the plot.

> exercise$duration4 <- exercise$duration - 4
> exercise$duration8 <- exercise$duration - 8
> exercise$duration12 <- exercise$duration - 12
> exercise.nodurn <- metaplus(smd, sqrt(varsmd),
+ label = "Random Mixture (No Duration)", slab = study,
+ random = "mixture", data = exercise)
> exercise.wk4 <- metaplus(smd, sqrt(varsmd),
+ mods = duration4, label = "Random Mixture (Week 4)",
+ slab = study, random = "mixture", data = exercise)
> exercise.wk8 <- metaplus(smd, sqrt(varsmd),
+ mods = duration8, label = "Random Mixture (Week 8)",
+ slab = study, random = "mixture", data = exercise)
> exercise.wk12 <- metaplus(smd, sqrt(varsmd),
+ mods = duration12, label = "Random Mixture (Week 12)",
+ slab = study, random = "mixture", data = exercise)
> plot(exercise.nodurn, extrameta = list(exercise.wk4, exercise.wk8,
+ exercise.wk12), xlab = "Effect size")

Conclusions and future developments

The capabilities of the metaplus package have been presented for fitting both standard normal random
effect and robust random effect models. Using three examples it has been shown how it can test
for the presence of outliers and compare the results of the robust and standard methods for both
meta-analysis and meta-regression. The package has also been successfully applied to meta-analyses
with larger number of studies, for example Marinho et al. (2009) with 70 studies and 3 definite outliers,
and simulated data with 200 studies. One difficulty with large number of studies is the increasing
computation time, especially for testOutliers. This will be improved by the use of parallel processing
as a future enhancement.

The design of the package allows for expansion in other areas. A planned future functionality
is to fit binary data, using likelihood methods based on the distribution of the binomial responses,
rather than the log odds ratios fitted using a normal distribution which is the method currently used.
The robust methods can then be applied in a similar way to the current models. A possible future
expansion is to allow for other robust distributions although this doesn’t seem necessary given the
similarity of the results obtained in Baker and Jackson (2008) to those using the t-distribution.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 15

−4.00 −2.00 0.00 2.00

Effect size

Veale
Klein
Singh
Reuter
Martinsen
Epstein
Hess−Homeier
Doyne
McNeil
Mutrie

−0.53 [−1.00 , −0.06]
 0.25 [−0.75 , 1.25]

−0.45 [−1.12 , 0.22]
−2.10 [−2.88 , −1.32]
−1.16 [−1.71 , −0.61]
−0.84 [−1.74 , 0.06]
−0.82 [−1.94 , 0.30]

−1.20 [−2.04 , −0.36]
−1.07 [−1.87 , −0.27]
−2.53 [−3.31 , −1.75]

−1.06 [−1.56 , −0.48]
−2.04 [−2.77 , −1.18]
−1.20 [−1.56 , −0.83]
−0.35 [−0.91 , 0.20]

Random Mixture (No Duration)
Random Mixture (Week 4)
Random Mixture (Week 8)
Random Mixture (Week 12)

Figure 6: Forest plot for exercise versus depression studies (effect size) with summaries. Studies are
sorted by increasing duration.

Acknowledgements

The author would like to thank the two anonymous reviewers for their comments and suggestions
that have greatly improved the quality of the manuscript and the metaplus package, and provided
suggestions for future enhancements.

Bibliography

A. C. Atkinson. Masking unmasked. Biometrika, 73(3):533–541, 1986. [p5]

R. Baker and D. Jackson. A new approach to outliers in meta-analysis. Health Care Management Science,
11(2):121–131, 2008. [p5, 6, 14]

K. Beath, B. Bolker, and R Core Team. metaplus: Robust Meta-Analysis and Meta-Regression, 2016. URL
https://CRAN.R-project.org/package=metaplus. R package version 0.7-7. [p5]

K. J. Beath. A finite mixture method for outlier detection and robustness in meta-analysis. Research
Synthesis Methods, 5:285–293, 2014. [p5, 6, 13]

B. Bolker and R Core Team. bbmle: Tools for General Maximum Likelihood Estimation, 2014. URL
http://CRAN.R-project.org/package=bbmle. R package version 1.0.17. [p7, 9]

A. J. Branscum and T. E. Hanson. Bayesian nonparametric meta-analysis using Polya tree mixture
models. Journal of the American Statistical Association, 64(3):825–833, 2008. [p5]

D. Burr and H. Doss. A Bayesian semiparametric model for random-effects meta-analysis. Journal of
the American Statistical Association, 100(469):242–251, 2005. [p5]

W. Chang. extrafont: Tools for Using Fonts, 2014. URL https://CRAN.R-project.org/package=
extrafont. R package version 0.17. [p10]

E. Demidenko. Mixed Models: Theory and Applications with R. Wiley, Hoboken, 2nd edition, 2013. [p5]

D. Downing. Is ISIS-4 research misconduct? Journal of Nutritional & Environmental Medicine, 9:5–13,
1999. [p8]

M. Fioravanti and M. Yanagi. Cytidinediphosphocholine (CDP choline) for cognitive and behavioural
disturbances associated with chronic cerebral disorders in the elderly (review). The Cochrane Database
of Systematic Reviews, 2005. URL http://onlinelibrary.wiley.com/store/10.1002/14651858.
CD000269.pub2/asset/CD000269.pdf. [p11]

M. Gordon and T. Lumley. forestplot: Advanced Forest Plot Using ’grid’ Graphics, 2015. URL https:
//CRAN.R-project.org/package=forestplot. R package version 1.3. [p7]

F. N. Gumedze and D. Jackson. A random effects variance shift model for detecting and accommodat-
ing outliers in meta-analysis. BMC Medical Research Methodology, 11, 2011. [p5, 11]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=metaplus
http://CRAN.R-project.org/package=bbmle
https://CRAN.R-project.org/package=extrafont
https://CRAN.R-project.org/package=extrafont
http://onlinelibrary.wiley.com/store/10.1002/14651858.CD000269.pub2/asset/CD000269.pdf
http://onlinelibrary.wiley.com/store/10.1002/14651858.CD000269.pub2/asset/CD000269.pdf
https://CRAN.R-project.org/package=forestplot
https://CRAN.R-project.org/package=forestplot

CONTRIBUTED RESEARCH ARTICLES 16

R. J. Hardy and S. G. Thompson. A likelihood approach to meta-analysis with random effects. Statistics
in Medicine, 15:619–629, 1996. [p7]

J. P. T. Higgins and D. J. Spiegelhalter. Being sceptical about meta-analyses: A Bayesian perspective on
magnesium trials in myocardial infarction. International Journal of Epidemiology, 31(1):96–104, 2002.
[p8]

J. P. T. Higgins and S. G. Thompson. Controlling the risk of spurious findings from meta-regression.
Statistics in Medicine, 23(11):1663–82, 2004. [p12]

ISIS-4: Collabarative Group. ISIS-4: A randomised factorial trial assessing early oral captopril,
oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute
myocardial infarction. The Lancet, 345(8951):669–682, 1995. [p8]

B. T. Johnson and T. B. Huedo-Medina. Depicting estimates using the intercept in meta-regression
models: The moving constant technique. Research Synthesis Methods, 2(3):204–220, 2011. [p13]

E. Kontopantelis and D. Reeves. Performance of statistical methods for meta-analysis when true study
effects are non-normally distributed: A simulation study. Statistical Methods in Medical Research, 21
(4):409–426, 2012. [p5]

J. Krogh, M. Nordentoft, J. A. C. Sterne, and D. A. Lawlor. The effect of exercise in clinically depressed
adults: Systematic review and meta-analysis of randomized controlled trials. The Journal of Clinical
Psychiatry, 72(4):529–38, 2011. [p13]

D. A. Lawlor and S. W. Hopker. The effectiveness of exercise as an intervention in the management of
depression: Systematic review and meta-regression analysis of randomised controlled trials. British
Medical Journal, 322(31 March):1–8, 2001. [p12]

K. J. Lee and S. G. Thompson. Flexible parametric models for random-effects distributions. Statistics
in Medicine, 27:418–434, 2008. [p5, 6]

J. Li, Q. Zhang, M. Zhang, and M. Egger. Intravenous magnesium for acute myocardial infarction (re-
view). The Cochrane Library, 2009. URL http://onlinelibrary.wiley.com/doi/10.1002/14651858.
CD002755.pub2/pdf. [p8]

V. C. C. Marinho, J. P. T. Higgins, S. Logan, and A. Sheiham. Fluoride toothpastes for preventing dental
caries in children and adolescents (review). The Cochrane Database of Systematic Reviews, 2009. URL
http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD002278/pdf. [p14]

G. J. McLachlan. On bootstrapping the likelihood ratio test statistic for the number of components in a
normal mixture. Applied Statistics, 36(3):318–324, 1987. [p7]

G. J. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000. [p7]

Y. Pawitan. In All Likelihood: Statistical Modelling and Inference using Likelihood. Clarendon Press, Oxford,
1st edition, 2001. [p7]

J. A. C. Sterne, M. J. Bradburn, and M. Egger. Meta-analysis in Stata. In M. Egger, G. D. Smith, and
D. G. Altman, editors, Systematic Reviews in Health Care: Meta-Analysis in Context, chapter 18, pages
347–369. BMJ Publishing Group, London, 2001. [p8]

A. J. Sutton, K. R. Abrams, D. R. Jones, T. A. Sheldon, and F. Song. Methods for Meta-Analysis in Medical
Research. Wiley, 2000. [p5, 6]

W. Viechtbauer. Conducting meta-analyses in R with the metafor package. Journal of Statistical Software,
36(3):1–48, 2010. [p5]

W. Viechtbauer and M. W.-L. Cheung. Outlier and influence diagnostics for meta-analysis. Research
Synthesis Methods, 1(2):112–125, 2010. [p5]

K. L. Woods. Commentary: Biostatistics, biological mechanisms and Bayes: Lessons from the magne-
sium trials. International Journal of Epidemiology, 31:105–106, 2002. [p8]

Ken J. Beath
Department of Statistics
Faculty of Science and Engineering
Macquarie University NSW 2109
Australia
ken.beath@mq.edu.au

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD002755.pub2/pdf
http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD002755.pub2/pdf
http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD002278/pdf
mailto:ken.beath@mq.edu.au

CONTRIBUTED RESEARCH ARTICLES 17

Gender Prediction Methods Based on
First Names with genderizeR
by Kamil Wais

Abstract In recent years, there has been increased interest in methods for gender prediction based on
first names that employ various open data sources. These methods have applications from bibliometric
studies to customizing commercial offers for web users. Analysis of gender disparities in science based
on such methods are published in the most prestigious journals, although they could be improved
by choosing the most suited prediction method with optimal parameters and performing validation
studies using the best data source for a given purpose. There is also a need to monitor and report how
well a given prediction method works in comparison to others. In this paper, the author recommends
a set of tools (including one dedicated to gender prediction, the R package called genderizeR), data
sources (including the genderize.io API), and metrics that could be fully reproduced and tested in
order to choose the optimal approach suitable for different gender analyses.

Introduction

The purpose of the genderizeR package and this paper is to provide tools and methods for accurate
classification of various types of character strings into gender categories. An increased number of
studies require gender identification, as for example, biographical research, when we want to know
what is the gender of article authors and we do not have explicit gender data (Larivière et al., 2013b;
West et al., 2013; Blevins and Mullen, 2015). Predicting gender of customers for marketing purposes
can serve as an example from outside the academia. The genderizeR package makes it possible to
predict gender related to a character string without knowing which term in the string is in fact a given
name. Moreover, the package provides convenient built-in tools for assessing different kinds of error
rates specific to gender prediction.

One of the purposes of this paper is to argue that while using informal, crowd-sourced and not
widely recognized data sources, one can achieve high gender prediction efficiency comparable to other
recognized gender data sources. Moreover, this effect can be obtained with less efforts and higher
automatization. The paper explains how we can train models for gender prediction and how we can
evaluate those models. There is also a comparison and evaluation of different approaches to gender
predictions from other studies.

There have been several approaches proposed for gender prediction based on first names. Some
of these methods were used in bibliometrics studies that were published in prestigious scientific
journals: Larivière et al. (2013b) or West et al. (2013). One of the goals of this study is to compare the
efficiency and accuracy of gender prediction methods used in the mentioned studies and consider
a new approach proposed in this paper, which is easier in implementation and usage and yields
outcomes comparable or, in some situations, even better than other methods.

For the purpose of method comparison, two methods were chosen from the studies: The Role of
Gender in Scholarly Authorship (West et al., 2013) and the Supplementary Information to Global Gender
Disparities in Science (Larivière et al., 2013a), which is the methodological appendix to Bibliometrics:
Global Gender Disparities in Science (Larivière et al., 2013b). In these studies, authors were predicting
and analysing the gender of authorships . The instance of an authorship had been defined as a person
and a paper for which the person is designated as a co-author (West et al., 2013, p. 3) or even simpler as
unique paper-author combination (Larivière et al., 2013a, p. 6). The sample of authorships also served
as a common dataset for comparison of the gender prediction methods (see Section The comparison of
methods).

Another goal of this study is to find and implement as an R package the most effective gender
prediction method that is based on first names and has the following qualities:

• is based on data sources that are available for anyone in a machine-readable format,
• is fully reproducible at any given time,
• is resource effective,
• can be used to update and improve gender predictions over time with new first name data,
• is applicable for multinational studies in various research contexts,
• outperforms other similar methods in terms of accuracy of gender prediction.

Gender prediction accuracy can be defined in different ways, which implies that different metrics
can be used to measure it. Later, the author will present a set of metrics that can be used in validation
and comparative studies.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=genderizeR

CONTRIBUTED RESEARCH ARTICLES 18

In both previously mentioned studies, the authors used open data with information on first names
with probable corresponding gender. In order to compare the effectiveness of methods and data
sources, we need to be able to reproduce those methods and reuse the same datasets. This is possible,
at least to some extent, although there are several issues with the reproducibility of the studies that
will be addressed in the following sections.

Review of methods and open data sources

US Census and other data sources

In the first analysed study (Larivière et al., 2013a) authors used both universal and country-specific first
name lists. The sources of these data were the US Census, Quebec Census, WikiName portal, multiple
Wikipedia pages, top-100-baby-names-search.com portal, and a few other webpages (Larivière et al.,
2013a). In case of some languages, a rule-based approach was used to assign gender based on the
suffix of a first name. In addition, human coders were used in the study. In the case of 12,828 Chinese
names of authors (15.17% of total) with at least 20 papers, the gender was assigned manually by two
native speakers from China. They coded the gender of each Chinese name based on their individual
knowledge of the Chinese language (Larivière et al., 2013a, p. 4).

The US Census was the primary source of data for gender prediction in the study. In cases where
the first name was used for both genders, it was only attributed to a specific gender when it was
used at least ten times more frequently for one gender than for the other (Larivière et al., 2013a, p. 2).
This rule can be converted to a probability threshold that equals 0.91 or more for the purpose of
comparative analysis in this study.

With the methods applied, the paper’s authors were able to predict gender for 86% out of 21
million authorships with full first names from the Web of Science database (Larivière et al., 2013a);
nevertheless, several major drawbacks of this approach can be identified:

• The presented analysis is difficult to reproduce. The full set of first names with corresponding
gender data used in this study is not available in machine-readable format, and some data
sources even ceased to exist. For example, the wiki.name.com portal is not accessible any more
(assessed on January 16, 2015).

• The manual coding of gender by humans is neither fast nor cost-effective. Moreover, it could
be not reliable enough, as in the paper there was no information about manual coding accuracy
and inter-coder reliability.

• The sources of the data are not in easily readable machine formats with the significant excep-
tion of the data from the US Census, which can be obtained as text files (United States Census
Bureau, 2015a) or as a data directly from the R package qdap (Rinker, 2013). In order to use other
gender data, they need to be web-scraped and parsed. Moreover, not all Wikipedia webpages
with country-specific first names have a standardised HTML structure that can be easily utilised
in parsing HTML code.

• In this mixed data source approach the confidence threshold cannot be easily changed, and
researchers are only able to use predefined name categories, such as male, female and unisex.
The category unisex is not very informative, as it means that we predict that the gender can be
either female or male with an unknown probability. Moreover, such a category can be easily
recreated when the probability of being a male or a female is known, given the first name (e.g.,
we can set the predicted category as unisex for all first names that have a 0.5 probability of being
male names). In a case when predicted gender is unisex without additional information, it is
impossible to precisely assess the effectiveness of such a gender prediction method.

On the other hand, the main advantages of the described approach are as follows:

• Usage of different techniques and country-specific sources in gender prediction could increase
the percentage of different types of items with correctly predicted gender and, above all,
decrease the percentage of items with unpredicted gender.

• There is a strong possibility that at least some of the open data sources used in the analysis will
be updated over time, for example Wikipedia webpages, and will include new first names or
infrequently used names in the future. This is not certain, however, as even the US Census
Bureau has not provided a newer first name dataset since the 2000 Census (United States Census
Bureau, 2015b).

The article by Larivière et al. (2013a) does not explicitly mention any recognised prediction
accuracy metrics that can be comparable with other gender prediction methods, although its confusion
matrix can be rebuilt from the tables with the data from the validation study (see Section The comparison
of methods).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=qdap

CONTRIBUTED RESEARCH ARTICLES 19

US Social Security Administration records

In the second analysed approach (West et al., 2013) authors used US Social Security Administration
(SSA) records with the top 1000 first names annually collected for each of the 153 million boys and 143
million girls born in the USA from 1880–2010. The authors also have decided a priori to use only those
records that have at least a 95% probability to correctly predict gender based on a first name (West
et al., 2013).

Based on this method, the authors were able to predict gender for 73% out of 3 million authorships
with full first names from the JSTOR network dataset (Efron, 1983, pp. 2–3).

The main drawbacks of this approach are:

• Non-US first names and names that do not appear in the top 1000 first names cannot be used
for gender prediction, so the first name dataset is US-specific and is not comprehensive by its
definition.

• The authors of the analysis utilised limited information of the top 1000 baby first names,
although SSA provided an extended version of this database with baby names that occur at
least five times in the years between 1880–2013. That extended dataset has information on about
92 600 unique baby names compared to 6 983 unique baby names in the top 1000 dataset.

The main advantages of this approach are:

• The US SSA baby first names database is updated every year and is available for anyone as
open data in machine, easy-readable format (Social Security Administration, 2015).

• The method is fully and easily reproducible, especially with the use of R packages like gender
(Mullen, 2014) or babynames (Wickham, 2014) where the full baby name data provided by the
SSA is included as built-in datasets.

The paper does not report any gender prediction accuracy metrics (West et al., 2013).

Social network profiles as gender data source (via the genderize.io API)

The third tested approach is our proposition of gender prediction based on first name and gender
data from the genderize.io database, which was created by Casper Strømgren (Strømgren, 2015a) in
August 2013 and has been regularly updated since. Regular incremental updates are possible due to
continuous scanning of public profiles and their gender data in major social networks. The database is
continuously growing by processing approximately from 15 000 to 20 000 social network profiles per
day.

On 24-th of May 2014, the genderize.io database contained information on 120 517 terms that at least
once had been used as a first name in about half a million social network profiles. In April 2015 there
were 212 252 unique terms gathered from about 2 million social network profiles from 79 countries in
89 languages (Strømgren, 2015a).

A quick connection to the genderize.io database is possible through its application programming
interface (API). Since February 2014, database queries via the genderize.io API have been restricted to 10
terms per request and 1000 terms per day to prevent server overload. Higher limits are easily available
through commercial access plans to the API and enable checking up to 10 000 000 names monthly
(Strømgren, 2015b).

As a query term to the database, any character string can be used if it is suspected to be a first
name (a simple example of a query: GET http://api.genderize.io?name=peter). In response to the
query, the API returns a null value when the string is not found in the genderize.io database. If the term
is found in the database, the API returns several values in JavaScript Object Notation (JSON) format: a
predicted gender for the first name (male or female) and two numeric values that can be further use to
customise the gender prediction. These values are count and probability, where count shows how many
social network profiles in the database have been recorded with this particular term as a first name
and probability shows the proportion of profiles with the first name and the predicted gender (a simple
example of API response: "name":"peter","gender":"male","probability":"1.00","count":4300)
(Strømgren, 2015a). Therefore, we not only know the gender prediction for a given term but also how
confident we can be with this particular prediction.

Using the genderizer.io database through its API for predicting gender has strong advantages:

• The genderizer.io database is continuously and incrementally growing, thus we are not only
able to reproduce classification results using previously saved API output, but we also could
improve our predictions next time using newer API output from a larger, updated, and more
comprehensive version of the first name database.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=gender
http://CRAN.R-project.org/package=babynames

CONTRIBUTED RESEARCH ARTICLES 20

Characteristics of approach Lariviere et al. 2013b West et al. 2013 genderize.io

main data source US Census US SSA public social profiles
other data sources yes no no
open data some datasets yes limited

free access
machine-readable format some datasets yes yes
API connection no no yes
easily reproducible no yes yes
resource effective no yes yes
regular data updates no yearly in real time
known probabilities
of gender prediction

available only
in the main
data source

available available

global reach country-specific country-specific yes

Table 1: Comparison of the characteristics of different approaches to gender prediction based on first
names.

• The communication with the API is fast, effective, and straightforward; additionally compre-
hensive documentation is available (Strømgren, 2015a). Communication through the API can be
further simplified with the use of dedicated functions in the genderizeR package (Wais, 2016).

The issue that can be clearly seen as disadvantage is the daily limit of free queries through the API
(1000 terms per day). Much larger limits are still available through commercial plans with reasonable
prices. This kind of commercial model behind the genderize.io API has also some advantages in
comparison with completely free access to the API. It guarantees stability of the service and constant
development of the database, covers costs of the servers, and prevents server overloads due to
unrestricted access.

The main criticism of this data source is the reliability of the data. The database behind the
genderize.io API draws on data from numerous public social media profiles, although neither the exact
number of sources nor the total number of profiles have been revealed. Even if a social media portal
has a real-name policy implemented, there is no guarantee that at a given time each profile has valid
and reliable data in its first name and gender fields. So reliability of the data from a perspective of
a single profile is very low. However, it is safe to assume that most people give true information
regarding their gender and given name, thus such crowd-sourced data aggregated from many profiles
can give reliable information due to the scale of the constantly growing database. The major drawback
of this data source is the noise in the data related to their declarative character. While creating a
profile, one can submit any character string in a given names field. Even if the user profile is corrected
later, that bogus data could already be recorded in the genderize.io database. This is the obvious
disadvantage compared to other official gender data sources, although the noise can be reduced by
setting a higher threshold for profile counts. In this way, we are able to use only those terms for given
names and gender data that were also entered in some other social media profiles and therefore seem
to be ’confirmed’ by other users.

Comparison of approach characteristics

Table 1 shows that the Larivière et al. (2013a) approach is based on a resource-consuming method
and lacks some important characteristics like reproducibility. The approach in West et al. (2013) is
fully reproducible and enhanced with other important characteristics, but the data source used is
US-specific and infrequently updated. Utilising the genderize.io database via its fast API, we gain access
to a global database of first names that is being continuously updated even at this moment.

The genderizeR package

In order to provide an effective tool for performing and evaluating gender prediction methods, the
genderizeR package for R has been built. The package enables convenient communication with the
genderize.io API and has built-in functions for evaluating the effectiveness of gender prediction with
metrics specific to this topic.

The package could be used for different tasks:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 21

• for pre-processing text vectors for future gender prediction;
• for connecting with the genderize.io database through its API;
• for genderizing character strings, which means that the gender is predicted even if we do not

indicate which term from the string is the first name. The algorithm assumes that all input terms
could be potentially gender indicators and searches for the most credible one;

• for training gender prediction algorithms (looking for the optimal combination of gender and
probability parameters from a given set in order to minimise the gender prediction accuracy
metric);

• for estimation of different gender prediction accuracy metrics.

There are four main components of the package:

• functions working with the genderize.io API (textPrepare, genderizeAPI, findGivenNames);
• functions for training and predicting gender (genderize, genderizeTrain, genderizePredict);
• functions assessing different kinds of gender prediction errors (classificationErrors,

genderizeBootstrapError);
• training datasets (authorships, givenNameDB_authorships, titles, givenNamesDB_titles).

The genderizeBootstrapError function is based on code from the sortinghat package (Ramey,
2013). The function has built-in functionality for parallel processing working directly with functions
from the genderizeR package (genderizeTrain and genderizePredict). The parallel processing
uses the parallel package and its implementation was inspired by Nathan VanHoudnos’ scripts
(http://edustatistics.org/nathanvan/setup/mclapply.hack.R).

The textPrepare function for text pre-processing helps to prepare terms for API queries. It utilizes
functions from the R packages stringr (Wickham, 2012) and tm (Feinerer and Hornik, 2014; Feinerer
et al., 2008) to perform a series of pre-processing steps (removing special characters, numbers and
punctuation; building a vector of unique terms which can be used for creating API queries).

A trivial example of basic package functions

If we use the package for the first time, we need to install it from the Comprehensive R Archive Network
(CRAN) or from the GitHub repository. The last stable version of the package is on CRAN, and the latest
development version of the package is available from the GitHub repository “kalimu/genderizeR”
(Wais, 2016).

With the findGivenNames function we can easily look for first names in the genderize.io database.
In return, we obtain a data table with the following records: the terms that appear in the database as
first names, their predicted gender, probability of such a prediction, and the count of profiles on which
the prediction is based . The outcome is alphabetically sorted by the name column, and all terms that
appear to be first names are lower-cased. Because the outcome is generated from the current state of
the genderize.io database, to reuse exactly the same outcome later, we should save it locally. This is an
important step in reproducible analysis because if we run the same function next time, our output
could be based on a larger count of social network profiles and could give us a slightly different data.
The progress = FALSE argument turns off the progress bar.

R> library('genderizeR')
R> findGivenNames(c('Marie', 'Albert', 'Iza', 'Olesia', 'Marcin', 'Andrzej', 'Kamil'),
+ progress = FALSE)

name gender probability count
1: albert male 0.99 710
2: andrzej male 0.98 49
3: iza female 1.00 28
4: kamil male 0.99 124
5: marcin male 1.00 128
6: marie female 0.99 2248
7: olesia female 1.00 4

In some cases, we might need to predict the gender of a person based on the full name. It is trivial
when we know which term is a first name (or first names) because we can manually extract it and
check its gender with the findGivenNames function. When we do not know exactly which term in a
character vector is a first name, the same function attempts to predict gender by analysing unique
terms in the vector.

This way we could predict the gender of an author of an article without explicitly extracting the
first name from the full name. For example, one biographical article from the Web of Science (WOS)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=sortinghat
http://edustatistics.org/nathanvan/setup/mclapply.hack.R
http://CRAN.R-project.org/package=stringr
http://CRAN.R-project.org/package=tm

CONTRIBUTED RESEARCH ARTICLES 22

database records is titled “Marie Sklodowska-Curie (1867–1934)”. We know that the author’s full
name of the article is recorded as “Pascual-Leone Pascual, Ana Ma” (WOS, 2014).

R> x <- 'Pascual-Leone Pascual, Ana Ma'

We can use the findGivenNames function directly on our vector. The function first calls another
function from the package, textPrepare, which builds a vector of unique terms that are used in queries
to genderize.io API. This is more effective than checking the same term many times through the API. In
the outcome of the textPrepare function, we have terms which are at least two characters long, as we
can assume that a one-character term could not be a full first name. The text pre-processed tasks that
textPrepare function can perform are:

• removing single-character terms (like initials),
• removing punctuation,
• removing special characters (like exclamation marks, question marks, hyphens, etc.),
• removing numbers,
• converting all characters to lowercase,
• striping white-spaces.

R> textPrepare(x)
[1] "ana" "leone" "ma" "pascual"

In the next step, we can check our terms in the genderize.io database and store the output for later
use.

R> (genderDB <- findGivenNames(x, progress = FALSE))

name gender probability count
1: ana female 0.99 3535
2: leone female 0.81 27
3: ma female 0.62 243
4: pascual male 1.00 25

All four unique terms occur in the genderize.io database and could be used as gender indicators,
but the count value suggests which terms are indeed true first names in our example. The term ‘Ana’
has the largest count value, so it will be used to predict gender for the given author with the genderize
function.

R> genderize(x, genderDB = genderDB, progress = FALSE)

text givenName gender genderIndicators
1: Pascual-Leone Pascual, Ana Ma ana female 4

In the final step, we used the previous output as gender information for our terms. We use an
output from the findGivenNames function, but it could also be a dataset from the US Census or US
SSA, although it should be converted to the same format with the same column names.

The genderize function output contains our original author’s full name in the text column, the
term that was assumed to be the gender indicative first name (givenName column), and the predicted
gender (gender column). There are also genderIndicators values that show how many terms in a
text were found in our gender dataset. The givenName term is the one that won the competition
between terms to be a final gender indicator. To find the winning term, we compare the counts for all
terms found and choose the one with the maximum value. It is a reasonable way to prevent prediction
based on accidental terms.

It should be noted that in cases when a person has a double first name like ‘Hans-Peter’ the terms
‘Hans’ and ‘Peter’ are looked up in the database separately and the gender prediction is still done
based on the term with more counts. This is a counter-intuitive solution as the genderize.io API can
accept queries with double first names. However it simplifies the algorithm and still gives proper
predictions even if the double name is not present in the database.

R> x <- 'Hans-Peter'
R> (genderDB <- findGivenNames(x, progress = FALSE))

name gender probability count
1: hans male 0.99 425
2: peter male 1.00 4300

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 23

R> genderize(x, genderDB = genderDB, progress = FALSE)

text givenName gender genderIndicators
1: Hans-Peter peter male 2

In the same way, we can predict gender not only from authors’ full names but also from larger
character strings, for example, titles of the biographical articles. In the next example, we have six such
titles in which some person names are mentioned. Half of the articles in this example are about Marie
Sklodowska-Curie and half are about Albert Einstein. Let us assume that we do not know which title
concerns a female and which a male, and we want to check it automatically.

R> x <- c('Marie Sklodowska-Curie (1867-1934) - A person and scientist',
+ 'Albert Einstein as a philosopher of science',
+ 'The legacy of Albert Einstein (1879-1955)',
+ 'Life and work of Marie Sklodowska-Curie and her family',
+ 'Marie Sklodowska-Curie (1867-1934)',
+ 'Albert Einstein, radical - A political profile')
R> (givenNamesDB <- findGivenNames(x, progress = FALSE))

name gender probability count
1: albert male 0.99 710
2: as male 0.89 64
3: einstein male 1.00 4
4: family male 1.00 1
5: her female 0.50 8
6: legacy male 1.00 2
7: marie female 0.99 2248
8: political male 1.00 1
9: the female 0.50 2

We should note that cases are possible where the number of females is the same as the number of
males (the probability equals 0.50, and the count is an even number). In our example, such a situation
occurs with the her term. In such situations, the API returns female as gender prediction, but in the
future it will likely be changed to the more valid unisex category.

There are some noise in the gender data obtained from the genderize.io API so we should approach
the results from the findGivenNames function critically. In the above example the terms “as”, “the”
and “her” seem to be used in some profiles even if they do not stand for a given name. We can deal
with such terms by setting the count threshold high enough (ex. count >= 100) or by using a list of
non-acceptable words (blacklist / stopwords). The second solution can be implemented to the result of
the textPrepare and before using findGivenNames function. This way we will also reduce the usage
of API requests. Using a counts threshold we need to remember that its height should be relative to
the growing number of profile data processed by genderize.io. However, in our example the noise does
not impact the accuracy of the gender predicion.

R> genderize(x, genderDB = givenNamesDB, progress = FALSE)

text
1: Marie Sklodowska-Curie (1867-1934) - A person and scientist
2: Albert Einstein as a philosopher of science
3: The legacy of Albert Einstein (1879-1955)
4: Life and work of Marie Sklodowska-Curie and her family
5: Marie Sklodowska-Curie (1867-1934)
6: Albert Einstein, radical - A political profile

givenName gender genderIndicators
1: marie female 1
2: albert male 3
3: albert male 4
4: marie female 3
5: marie female 1
6: albert male 3

We can also set the thresholds for probability or count values to exclude accidental terms or unisex
first names from being considered in a gender prediction. This method can be used to train the
prediction algorithm in order to minimise the classification error. However, we need to be careful
while setting the thresholds because, if we set them too high, we could unintentionally exclude some
true first names and the algorithm will not be able to predict gender, returning only NA values.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 24

R> genderize(x, givenNamesDB[count > 2000,], progress = FALSE)

text
1: Marie Sklodowska-Curie (1867-1934) - A person and scientist
2: Albert Einstein as a philosopher of science
3: The legacy of Albert Einstein (1879-1955)
4: Life and work of Marie Sklodowska-Curie and her family
5: Marie Sklodowska-Curie (1867-1934)
6: Albert Einstein, radical - A political profile

givenName gender genderIndicators
1: marie female 1
2: NA NA 0
3: NA NA 0
4: marie female 1
5: marie female 1
6: NA NA 0

The communication with the genderize.io API is based on UTF-8 encoding. We can also make use
of a specific locale.

R> Sys.setlocale("LC_ALL", "Polish")
R> (x <- "Róża")
[1] "Róża"

R> (xp <- textPrepare(x))
[1] "róża"

R> findGivenNames(xp, progress = FALSE)
name gender probability count
1: róża female 0.89 28

If the findGivenNames function stops due to the API free or commercial plan limits the results from
already performed queries are returned and can be saved as an object.

R> xPrepared <- textPrepare(authorships[['value']][1:1200])
R> givenNames_part1 <- findGivenNames(xPrepared)

Terms checked: 10/86. First names found: 4. | 0%
Terms checked: 20/86. First names found: 7. | 11%
Terms checked: 30/86. First names found: 12. | 22%
Terms checked: 40/86. First names found: 17. | 33%
Terms checked: 50/86. First names found: 22. | 44%
Terms checked: 60/86. First names found: 25. | 56%
|================================= | 67%

Client error: (429) Too Many Requests (RFC 6585)
Request limit reached

The API queries stopped at 57 term.

Warning messages:
1: In genderizeAPI(termsQuery, apikey = apikey, ssl.verifypeer = ssl.verifypeer) :

You have used all available requests in this subscription plan.
2: In findGivenNames(xPrepared) : The API queries stopped.

Moreover the function reports an index of the last term which has been successfully queried before
reaching the API limit. This enables us to start the API queries from that term when the API plan
resets the next day.

R> givenNames_part2 <- findGivenNames(xPrepared[57:NROW(xPrepared)])

Finally, we can bind all parts together.

R> givenNames <- rbind(givenNames_part1, givenNames_part2)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 25

Sample datasets

In the genderizeR package we have two sample datasets: authorships and titles. Both datasets
contain data from a simple random sample of biographical articles from the WOS database records
of articles of biographical-items or items-about-individual type from all fields of study, published from
1945 to 2014. The sample was drawn in December 2014. The first dataset authorships contains 2 641
authorships of 2 000 randomly sampled records of biographical articles.

Part of the authors in this dataset were successfully identified and manually coded as females or
males (genderCoded column). Human coders based their coding decisions on results from Internet
queries regarding full names of the authors and their affiliations, biographies, mentions in the press
and photos. If a full name of an author was unavailable the gender was coded as noname; if a full name
was available but the coder was not able to code the author’s gender with a high degree of certainty —
the record was coded as unknown.

R> tail(authorships[, c(4, 5)])

value genderCoded
2636 Morison, Ian male
2637 Hughes, David male
2638 Higson, Roger male
2639 CONDON, HA noname
2640 GILCHRIST, E noname
2641 Haury, LR noname

The second dataset titles contains 1 190 titles of biographical articles, which also were manually
coded as female or male.

R> tail(titles)[-3,]

title genderCoded
1: Yuri A. Chizmadzhev (to the 80th anniversary) male
2: Yurko Duda, a physicist like few ones male
3: Zhores Ivanovich Alferov (on his 80th birthday) male
4: Zongluo Luo, a Chinese Haigui in 1930s male
5: lynn seymour female

These datasets can be used to assess the efficiency and accuracy of gender prediction for different
prediction methods and related data sources.

For reproducibility purposes, in the package there are two additional datasets corresponding
to the previous two: givenNamesDB_authorships and givenNamesDB_titles. Both are outputs of the
findGivenNames function, which was used on authorship and title vectors on December 26, 2014.
These datasets can be used for gender prediction without the necessity of connecting to the genderize.io
database, and to provide reproducible outcomes. Using API queries is also possible, although it will
probably give slightly different outputs due to the first name data updates in the database.

Selecting prediction parameters

Knowing that each first name record from the genderize.io database has been assigned a probability of
predicted gender, we can utilise these pieces of information to strengthen the confidence of gender
prediction. Moreover, for each record, the number of instances of social network profiles that were used
to calculate such a probability is known. Thus, we can set our own thresholds of counts and probabilities
when we need it, and choose settings that can optimise chosen prediction efficiency metrics.

Metrics of gender prediction efficiency

To assess the efficiency of gender prediction, we need to agree on the set of efficiency indicators that
are adequate to this particular classification problem. We can calculate some of the indicators with
the help of classificationErrors function that are based on a prediction confusion matrix – as an
example below of randomly generated samples of labels and predictions.

R> set.seed(238)
R> labels <- sample(c('male', 'female', 'unknown'), size = 100, replace = TRUE)
R> predictions <- sample(c('male', 'female', NA), size = 100, replace = TRUE)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 26

R> indicators <- classificationErrors(labels, predictions)
R> indicators[['confMatrix']] # confusion matrix for the generated sample

predictions
labels female male <NA>
female 12 10 4
male 7 10 12
unknown 16 13 16
<NA> 0 0 0

For the confusion matrix, we could calculate a standard classification error rate (one minus sum of
the diagonal divided by sum of total), but this is not directly applicable in this specific classification
problem; some titles were manually coded as unknown gender if they do not contain a first name or
when we could not verify the gender of the person mentioned in a title. In this case, we should not
blame the algorithm for wrongly predicting gender, considering the human coder could not do it
either. Instead, we can calculate the coded error rate on the confusion matrix with manual female and
male codes only.

R> # errorCoded <- (7 + 10 + 4 + 12) / (12 + 10 + 4 + 7 + 10 + 12)
R> unlist(indicators['errorCoded'])

errorCoded
0.6

The advantage of such an error rate calculation is that it incorporates within itself all items with
unpredicted gender (<NA>). Therefore, if the algorithm is unable to predict gender, we treat it as a
prediction error and thus penalise our prediction efficiency metric.

Another possibility is to calculate the coded error rate but only for a matrix with automatically
predicted gender (without any NA values).

R> # errorCodedWithoutNA <- (7 + 10) / (12 + 10 + 7 + 10)
R> unlist(indicators['errorCodedWithoutNA'])

errorCodedWithoutNA
0.4358974

Such a coded error rate without NA values indicates how well the algorithm predicts gender,
provided that prediction is possible. With a high threshold of gender probability, we increase the
prediction accuracy, but we also risk that for many first names the algorithm will not be able to predict
their gender. Therefore, the cost of high prediction accuracy can be measured as the increase of the
proportion of items with unpredicted gender.

R> # naCoded <- (4 + 12) / (12 + 10 + 4 + 7 + 10 + 12)
R> unlist(indicators['naCoded'])

naCoded
0.2909091

There is another problem-specific error that we can calculate from the confusion matrix. It can be
called the gender bias error rate, and can be calculated as a difference between the number of items
manually labelled as female but automatically classified as male and the number of items manually
classified as male but automatically classified as female, and all that are divided by the number of all
items labelled or classified as female or male.

R> # errorGenderBias <- (7 - 10) / (12 + 10 + 7 + 10)
R> unlist(indicators['errorGenderBias'])

errorGenderBias
-0.07692308

We can interpret the sign of such an indicator as a direction of the bias in gender prediction.
Negative values suggest that more females are incorrectly classified as males than males as females,
hence the predicted proportion of females could be slightly overestimated. If the value is positive,
the proportion of females are underestimated. When the bias is close to 0, we have the case where
nearly the same numbers of both female and male items are classified wrongly as males and females,
respectively. Therefore, in the trivial example, if we have a sample of 10 males and 10 females and we

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 27

Prediction indicator What items are taken into account?

errorCoded:
Coded Error Rate

Items with manually coded female and male labels;
items with predicted female and male labels,
or with unpredicted gender.

naCoded:
Proportion of Items
with Unpredicted Gender

Items with manually coded female and male labels;
items with predicted female and male labels,
or with unpredicted gender.

errorCodedWithoutNA:
Coded Error Rate
without NA Values

Items with manually coded female and male labels,
and with predicted female and male labels only.

errorGenderBias:
Gender Bias Error Rate

Items with manually coded female and male labels,
and with predicted female and male labels only.

Table 2: Comparison of selected gender prediction indicators.

incorrectly classify five males as females and five females as males, we will still have a proportion of
50% of female items in the sample, and the bias error is 0.

A brief comparison of the described indicators is shown in Table 2. The table indicates that we
always focus on metrics based on manually coded gender labels with the exception of two indicators,
where we consider items with unpredicted gender as well.

Depending on the research goals, we can utilise one or more of these metrics, for example:

• in a scenario where the goal is to predict gender for as many items as possible, we can try to
minimise the coded error rate,

• in a scenario where the prediction accuracy is more important than the percentage of items with
unpredicted gender, we can try to minimise the coded error rate without NA values,

• in a scenario where we primarily want to accurately estimate the proportion of males or females,
we can try to minimise the gender bias error rate.

Different decisions can be made corresponding to different research needs. We can try to minimise
all these indicators at the same time and look for their optimal values based on our research questions.

Case study 1: Authorships

In order to establish optimal values of gender prediction indicators for the authorship sample dataset,
we can manipulate the thresholds of probability and count values. In order to do so, we can use the
genderizeTrain function with values that we prefer to be considered in the training of the algorithm as
the function arguments probs and counts. In this case, we can utilise some typical probability values
used for gender prediction together with different values of counts that will give noticeable patterns
of error rates for parameter combinations.

R> probs <- c(0.5, 0.7, 0.8, 0.9, 0.95, 0.97, 0.98, 0.99, 1)
R> counts <- c(1, 10, 100)
R> authorshipsGrid <-
+ genderizeTrain(# parallel = TRUE,
+ x = authorships$value,
+ y = authorships$genderCoded,
+ givenNamesDB = givenNamesDB_authorships,
+ probs = probs,
+ counts = counts)

The genderizeTrain function first creates the grid of parameters for all unique combinations of
probs and counts values. Then, prediction is done based on givenNamesDB data trimmed by probs
or counts parameters. As the output, we attain gender prediction defectiveness indicators for all
combinations of parameters (27 in our example below).

R> authorshipsGrid

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 28

prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias
1: 0.50 1 0.07093822 0.03791469 0.03432494 0.014218009
2: 0.70 1 0.08466819 0.03147700 0.05491991 0.007263923
3: 0.80 1 0.10983982 0.03233831 0.08009153 0.012437811
4: 0.90 1 0.11899314 0.03022670 0.09153318 0.015113350
5: 0.95 1 0.13272311 0.02820513 0.10755149 0.012820513
6: 0.97 1 0.14645309 0.02610966 0.12356979 0.010443864
7: 0.98 1 0.15560641 0.02638522 0.13272311 0.010554090
8: 0.99 1 0.18306636 0.02724796 0.16018307 0.005449591
9: 1.00 1 0.27459954 0.03353659 0.24942792 -0.003048780
10: 0.50 10 0.12128146 0.03759398 0.08695652 0.017543860
11: 0.70 10 0.13958810 0.02842377 0.11441648 0.007751938
12: 0.80 10 0.16247140 0.02917772 0.13729977 0.013262599
13: 0.90 10 0.16933638 0.02680965 0.14645309 0.016085791
14: 0.95 10 0.18535469 0.02465753 0.16475973 0.013698630
15: 0.97 10 0.19908467 0.02234637 0.18077803 0.011173184
16: 0.98 10 0.20823799 0.02259887 0.18993135 0.011299435
17: 0.99 10 0.23569794 0.02339181 0.21739130 0.005847953
18: 1.00 10 0.33180778 0.02666667 0.31350114 0.000000000
19: 0.50 100 0.27459954 0.03058104 0.25171625 0.012232416
20: 0.70 100 0.29061785 0.02821317 0.27002288 0.009404389
21: 0.80 100 0.30892449 0.02893891 0.28832952 0.016077170
22: 0.90 100 0.31350114 0.02912621 0.29290618 0.016181230
23: 0.95 100 0.32036613 0.02941176 0.29977117 0.016339869
24: 0.97 100 0.32951945 0.02657807 0.31121281 0.013289037
25: 0.98 100 0.33638444 0.02684564 0.31807780 0.013422819
26: 0.99 100 0.36613272 0.02807018 0.34782609 0.007017544
27: 1.00 100 0.45995423 0.02880658 0.44393593 0.004115226

We could also visualise the prediction effectiveness of the parameter grid on a scatterplot and look
for optimal values of indicators (Figure 1). In this case, we will use only a subset of probability values
(0.5, 0.8, 0.95, 0.98, 1) in order to keep the scatterplot clear.

If the goal is to minimise the coded error rate, we should set the threshold values as low as possible
(prob = 0.5 and count = 1).

R> authorshipsGrid[authorshipsGrid$errorCoded == min(authorshipsGrid$errorCoded),]

prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias
1: 0.5 1 0.07093822 0.03791469 0.03432494 0.01421801

However, if the goal is to have the lowest gender bias error rate, we should set the threshold
values as prob = 0.97 and count = 10. However, in this way we increase our proportion of items
with unpredicted gender from less then 4% to more than 18%.

R> authorshipsGrid[authorshipsGrid$errorGenderBias ==
+ min(abs(authorshipsGrid$errorGenderBias)),]

prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias
1: 0.97 10 0.1990847 0.02234637 0.180778 0.01117318

Case study 2: Titles of biographical articles

As in the first case study, we can train the algorithm on the second dataset with titles of biographical
articles, using a wider set of values for both probs and counts parameters. In the case of a huge
parameter grid, we can also try to run the genderizeTrain function in parallel version (see parallel
argument).

R> probs <- seq(from = 0.5, to = 0.9, by = 0.05)
R> probs <- c(probs, seq(from = 0.91, to = 1, by = 0.01))
R> counts <- seq(from = 1, to = 16, by = 1)
R> titlesGrid <-
+ genderizeTrain(# parallel = TRUE,
+ x = titles$title,
+ y = titles$genderCoded,
+ givenNamesDB = givenNamesDB_titles,

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 29

0.0

0.1

0.2

0.3

0.4

0.
50

 (1
)

0.
80

 (1
)

0.
95

 (1
)

0.
98

 (1
)

1.
00

 (1
)

0.
50

 (1
0)

0.
80

 (1
0)

0.
95

 (1
0)

0.
98

 (1
0)

1.
00

 (1
0)

0.
50

 (1
00

)
0.

80
 (1

00
)

0.
95

 (1
00

)
0.

98
 (1

00
)

1.
00

 (1
00

)

Prediction Parameters

P
re

di
ct

io
n

In
di

ca
to

rs

errorCoded errorCodedWithoutNA naCoded errorGenderBias

Figure 1: Effectiveness of gender prediction for given parameters from the authorship sample. The
optimal effectiveness, when all indicators have the lowest values possible, seems to be achievable with
probability = 0.50 and count = 1 and is marked on the plot as a dashed red line. The proportion of
items with unpredicted gender (naCoded) increases with the increase of parameter values. The lowest
gender bias error rate (errorGenderBias) can be achieved by setting the probability parameter to 1,
although it will greatly increase the proportion of unpredicted items.

+ probs = probs,
+ counts = counts)

Because the scatterplot for all parameter combinations would be very unclear, we have visualised
only a subset of count values: 1, 4, 7 (Figure 2). The trends and patterns that emerged from such a
simplified visualisation are similar to other combinations of parameters.

Parameter values prob = 0.70 and count = 1 minimised coded error rate for this dataset produced
a reasonable low gender bias error rate. We can also achieve lower gender bias error rate; however, it
comes with an increased proportion of unpredicted items.

R> titlesGrid[titlesGrid$errorCoded == min(titlesGrid$errorCoded),]

prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias
1: 0.7 1 0.1004367 0.06533575 0.03755459 0.02540835
R> titlesGrid[titlesGrid$errorGenderBias ==
+ min(abs(titlesGrid$errorGenderBias)),]

prob count errorCoded errorCodedWithoutNA naCoded errorGenderBias
1: 1 15 0.2917031 0.04023669 0.2620087 0.002366864
2: 1 16 0.2917031 0.04023669 0.2620087 0.002366864

The final decision on which set of parameter values to use can be subjective and is dependent on
the importance of each indicator in a given analysis.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 30

Further estimation of prediction accuracy

For further estimation of gender prediction accuracy we can use cross-validation or bootstrap methods
like Leave-One-Out Bootstrap (LOO) (Efron, 1983) and .632+ Rule (Efron and Tibshirani, 1997) as well as
Receiver Operating Characteristic (ROC) and Area Under Curve (AUC) (Fawcett, 2003) or finally Brier
Score (Brier, 1950) as one of the most popular performance metrics for probabilistic classifiers.

Bootstrapping

Up to this moment, we have only relied on the so called apparent error rate, which is the observed
inaccuracy of the fitted model to the original data points. However, the apparent error rate usually
underestimates the true error rate and gives a falsely optimistic picture of the model’s true accuracy
(Efron, 1986). To address this issue, we can calculate the Leave-One-Out (LOO) bootstrap error rate
proposed by Efron (1983).

In the LOO bootstrap procedure, we generate some number of bootstrap samples of the size of the
original sample. On each bootstrap sample, we can train our prediction algorithm by minimising the
classification error. Later, we can use optimal parameters to predict gender for items that have not
been sampled in this particular bootstrap sample. This way, we avoid testing a prediction model on
the items used for choosing the prediction parameters.

0.0

0.1

0.2

0.
50

 (1
)

0.
80

 (1
)

0.
91

 (1
)

0.
94

 (1
)

0.
97

 (1
)

1.
00

 (1
)

0.
60

 (4
)

0.
75

 (4
)

0.
90

 (4
)

0.
93

 (4
)

0.
96

 (4
)

0.
99

 (4
)

0.
55

 (7
)

0.
70

 (7
)

0.
85

 (7
)

0.
92

 (7
)

0.
95

 (7
)

0.
98

 (7
)

0.
70

 (1
)

Prediction Parameters

P
re

di
ct

io
n

In
di

ca
to

rs

errorCoded errorCodedWithoutNA naCoded errorGenderBias

Figure 2: Effectiveness of gender prediction for given parameters from the title sample. The lowest
errorCoded is achieved with probability = 0.70 and count = 1 (marked on the plot as a dashed red line),
which also yields resonable low values of other error rates. The proportion of items with unpredicted
gender (naCoded) increases periodically with the increase of the parameter values. The gender bias
error rate (errorGenderBias) could be minimised at the cost of increasing the proportion of items with
unpredicted gender. The final decision on which set of parameter values to use can be subjective and
is dependent on the importance of each indicator in a given analysis.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 31

As Jiang and Simon (2007) summarised, the LOO bootstrap is a smoothed version of the LOO
cross-validation. Bootstrap samples differentiate among each other more than the original LOO sets.
Moreover, for each item, the LOO bootstrap method averages the errors from the multiple predictions
made on the bootstrap samples. As a result, the LOO bootstrap estimate has a much smaller variability
than the LOO cross-validation estimate.

On the other hand, in contrast to low bias cross-validation, the LOO bootstrap in some cases
presents noticeable bias and tends to overestimate the true prediction error. The .632+ estimator was
proposed as a remedy to deal with this problem (Efron and Tibshirani, 1997).

In gender prediction, we can use these bootstrap methods, as they are implemented in genderizeR
package in the genderizeBootstrapError function.

We can still train our prediction algorithm on a large grid of parameters, or we can focus on
combinations that we suspect could yield different outcomes on different bootstrap samples. In our
titles dataset, we found that parameters prob >= 0.70 and count >= 1 give us the lowest apparent
error rate on coded items, but it is reasonable to suspect that the combination of prob >= 0.50 and
count >= 1 also could give us the lowest error rate on some random samples.

R> counts <- 1
R> probs <- c(0.5, 0.7)
R> set.seed(42)
R> bootstrapErrors <- genderizeBootstrapError(
+ # parallel = TRUE,
+ x = titles[titles$genderCoded %in% c('female', 'male')]$title,
+ y = titles[titles$genderCoded %in% c('female','male')]$genderCoded,
+ givenNamesDB = givenNamesDB_titles,
+ probs = probs,
+ counts = counts,
+ num_bootstraps = 50)
R> t(as.data.frame(bootstrapErrors))

[,1]
apparent 0.1004367
loo_boot 0.1037184
errorRate632plus 0.1025251

All bootstrap errors are calculated only on items with gender labels and predictions. The apparent
value presents the underestimated apparent error rate; the loo_boot value provides the overestimated
LOO bootstrap error rate and the errorRate632plus value gives .632+ estimator that provides the best
estimation of prediction error rate.

ROC and AUC

In order to plot the ROC curve or calculate AUC (Fawcett, 2003) for our predictions on the title
sample, we can use the R package ROCR (Sing et al., 2005), but the datasets need to be prepared first.
We need to have a data frame that shows which title has manually coded female (or male) gender
types with a column of corresponding probabilities predicting these genders. To do that, we need to
combine the original dataset with the prediction and corresponding gender data.

R> genderizedTitles_output <- genderize(x = titles[['title']],
+ genderDB = givenNamesDB_titles,
+ progress = FALSE)
R> genderizedTitles <- cbind(as.data.frame(titles),
+ as.data.frame(genderizedTitles_output))
R> genderizedTitles <-
+ left_join(x = genderizedTitles[, names(genderizedTitles) != 'gender'],
+ y = givenNamesDB_titles, by = c("givenName" = "name"))
R> example <- rownames(genderizedTitles[c(3, 9, 25, 27, 29, 37),])
R> genderizedTitles %>%
+ dplyr::select(title, genderCoded, givenName,
+ probability, count, gender) %>%
+ filter(rownames(.) %in% example)

title
1 (Jacqueline) Nancy Mary Adams, CBE, QSO 1926-2007
2 2005 R W P King Award - Robert J. Adams

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=ROCR

CONTRIBUTED RESEARCH ARTICLES 32

3 A master potter (Josiah Wedgwood)
4 A musician without retirement - Claus Bantzer ceases and makes it again
5 A pioneer in the world of advertising, Armando Testa
6 A tribute to Jean-Michel Quinodoz
genderCoded givenName probability count gender

1 female mary 1.00 54051 female
2 male robert 1.00 100216 male
3 male josiah 0.98 43 male
4 male claus 0.94 81 male
5 male armando 0.99 329 male
6 male jean 0.52 26799 male

In the next step, we can compute our vector of probabilities that we use to predict a given gender
for each item.

R> d <- genderizedTitles
R> d[is.na(d[['gender']]),][['gender']] <- 'unknown'
R> d <- d[d[['genderCoded']] %in% c('female', 'male', 'unknown'),]
R> d <- d[d[['gender']] %in% c('female', 'male', 'unknown'),]
R> d$labels <- ifelse(d[['genderCoded']] == 'female', 1, 0)
R> d$pred <- ifelse(d[['gender']] == 'female',
+ as.numeric(d[['probability']]),
+ 1-as.numeric(d[['probability']]))
R> d %>% dplyr::select(title, genderCoded, labels, pred) %>%
+ filter(rownames(.) %in% example)

title
1 (Jacqueline) Nancy Mary Adams, CBE, QSO 1926-2007
2 2005 R W P King Award - Robert J. Adams
3 A master potter (Josiah Wedgwood)
4 A musician without retirement - Claus Bantzer ceases and makes it again
5 A pioneer in the world of advertising, Armando Testa
6 A tribute to Jean-Michel Quinodoz
genderCoded labels pred

1 female 1 1.00
2 male 0 0.00
3 male 0 0.02
4 male 0 0.06
5 male 0 0.01
6 male 0 0.48

Now we can plot the ROC curve and calculate the AUC.

R> library('ROCR')
R> pred <- prediction(labels = d[['labels']], predictions = d[['pred']])
R> perf <- performance(pred, measure = 'tpr', x.measure = 'fpr')
R> # area under the curve (AUC)
R> unlist(performance(pred, measure = 'auc')@y.values)

[1] 0.9186008

The AUC value is high (0.92), so we can conclude that the gender prediction algorithm performs
well on this sample dataset. We can also treat the AUC measure as a general measure of predictiveness
(Fawcett, 2003) and use it for comparison of different prediction methods.

Brier Score

Classification errors can be misleading metrics of gender prediction effectiveness, especially in the
case when we have a great disproportion of female and male labels in the dataset. For example, in
our titles dataset we have 87% male titles. If we predict male for each item in the dataset, our
classification error will be only 13% due to small true proportion of female items.

R> titlesCoded <- titles[titles[['genderCoded']] %in% c('female', 'male'),]
R> cbind('N' = table(titlesCoded[['genderCoded']]),
+ '%' = round(prop.table(table(titlesCoded[['genderCoded']])) * 100, 0))

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 33

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

Area Under Curve (AUC) = 0.9186

Figure 3: ROC curve for predicting female gender for the titles dataset. Large AUC suggests good
prediction accuracy.

N %
female 151 13
male 994 87
R> indicators <-
+ classificationErrors(labels = titlesCoded[['genderCoded']],
+ predictions = rep('male',
+ NROW(titlesCoded[['genderCoded']])))
R> unlist(indicators['errorCoded'])

errorCoded
0.1318777

Predicting the most frequent class on every occasion in order to minimise the classification error
rate is not an appropriate scoring rule and the prediction efficiency metrics should be penalised
for such practices. That is why we use the Brier Score, which originated from a verification system
of weather forecasts (Brier, 1950) and is known as a more proper classification accuracy score for
predictions based on probabilities.

The Brier Score was defined as the sum of squared differences between labels values (ex. 1 if an
item is a female and 0 if it is not) and pred values (probability if an item is a female) divided by the
number of all items. The R package verification (NCAR – Research Applications Laboratory, 2014)
offers an implementation of the Brier Score in the brier function.

R> library('verification')
R> brier(obs = d[['labels']], pred = d[['pred']])[['bs']]

[1] 0.06577986

If an item’s gender is correctly predicted with probability equal to 1, then the Brier Score is 0, and
this is the best possible score. The worst score is 1.

We can also calculate presented and other metrics using a simulated bogus prediction algorithm.
Such algorithm predicts the majority class (male labels) for all items. Both AUC and Brier Score are
penalised since the bogus algorithm has just been guessing the gender using the most frequent class in
this sample dataset.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=verification

CONTRIBUTED RESEARCH ARTICLES 34

Characteristics of prediction methods
and prediction efficiency indicators

West et al.
(2013)

Larivière et al.
(2013)

genderizeR
package

Source of first names data US SSA US Census genderize.io
Extracted full first names Yes Yes No
Gender probability threshold 0.95 0.91 0.50
Names count threshold 5 7200 1

Classification error rates (%):
coded error rate 32.49 36.84 7.09
coded error rate without NA values 1.67 2.13 3.79
net gender bias error 1.67 2.13 1.42

Accuracy scores:
AUC 0.926 0.920 0.927
Brier Score 0.099 0.109 0.097

Unpredicted gender (%):
of all authorships 84.40 85.23 47.71
of authorships with full first names 31.56 35.22 4.65
of manually coded gender only 31.35 35.47 3.43

Table 3: Comparison of the effectiveness of gender prediction methods.

R> pred <- prediction(labels = d[['labels']],
+ predictions = rep(0, NROW(d[['labels']])))
R> unlist(performance(pred, measure = 'auc')@y.values)

[1] 0.5
R> brier(obs = d[['labels']],
+ pred = rep(0, NROW(d[['labels']])))[['bs']]

[1] 0.12119

The comparison of methods

To compare different approaches of gender prediction, we need to reproduce those methods on the
same sample that is drawn from the population of items with similar characteristics. We use an
authorships dataset as such a sample, since predicting the gender of authors of the articles was the
goal of two previously described studies.

Because the US SSA and the US Census data is available in the R packages, we can easily reproduce
methods based on such data with parameters that were chosen by the authors of the studies. However,
in the case of the method described by Larivière et al. (2013a), we can only reproduce gender prediction
utilising the US Census data. Scraping and parsing other webpages or manually coding gender are
highly resource intensive and our goal is to find a resource effective method. Nevertheless, we can
later reproduce a confusion matrix from the study and try to estimate the real error for this mixed
method.

The efficiency indicators of gender prediction for all three methods are presented in Table 3. For
the third proposed method, we had not extracted first names from the authors’ full names, and we let
the findGivenNames function try to do this automatically.

As shown in Table 3, our proposed method based on genderize.io API outperforms methods
based on the US SSA and US Census data with the parameters set by the authors of these studies.
The percentage of items with unpredicted gender and Brier Score are clearly the lowest among all
analysed methods.

It should be noted that using data sources other than the US Census with manual coding as done
by Larivière et al. (2013a) would probably improve the proportion of items with predicted gender in
our sample. However, it is difficult to assess the effectiveness of such a resource-consuming mixed
method without comparable prediction metrics. The authors did not explicitly present the confusion
matrix from their validation study, but we can recreate the matrix using materials from the analysed

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 35

female male unisex unknown initials

female 146 4 2 24 48
male 22 267 9 51 156

unknown 35 178 10 9 39

Table 4: Recreated confusion matrix from Lariviere et al.’s (2013b) study with manually coded values
(in rows) and automatically assigned values (in columns). The columns unknown, initials, and unisex
from the recreated confusion matrix could be merged to one unknown column since the gender is
unpredicted for these items.

studies, such as Table S3 Number and percentage of distinct papers and of author-papers assigned a gender
and Table S6 Percent male and female in each category from the original paper (Larivière et al., 2013a,
p. 6). From those original tables, we know the proportions of authorships classified as female, male,
unisex, unknown and initials. The authors randomly sampled five samples of 1000 authorships from
each category and manually coded whether those items were female, male, or unknown (Larivière et al.,
2013a). From those known proportions, we can recreate the confusion matrix that sums to 1000 for a
better perception (see Table 4).

Based on the recalculated data, the prediction indicators from the recreated confusion matrix are
even worse than those in our comparative study where only the US Census data were used. The coded
error rate is high and equals 43.3%, since the proportion of manually coded items with unpredicted
gender is also quite high 39.8%. Moreover, the gender bias error rate in the original study is worse than
in our comparative study based only on the US Census data, which suggests that using additional
data sources, manual coding, or unisex category will not necessarily increase the proportion of
items with predicted gender and can also contribute to the bias of gender proportion estimates.

Discussion

We cannot be sure how our method would perform on the same large datasets as in the described
studies. Those studies were based on many non-English names and the genderize.io database has
started gathering data mainly from public social profiles from the US and English-speaking countries,
although it is still growing every minute and incorporating new data from other countries and
languages.

The drawback of this data source is that people can put many different terms in their social
network profiles that are not their first names. This could generate noise in the genderize.io database
that could disturb gender prediction and introduce some bias if there are many instances of the same
non-first-name terms used. Surprisingly, such crowd-sourced data work even better in our comparison
study than very reliable and official data sources. In addition, we always can use a subset of the
database with most reliable records.

We could also search for first names of papers’ authors by taking into account the language in
which they published their papers. Such an approach could be misleading, as many scientists publish
papers in English, although it is not their native language. Another approach is to consider the
proportion of males or females for a particular first name, while considering a year of birth of the
person in question (Mullen, 2014). This historical method could improve gender predictions, but such
birth data are often not available, especially in the discussed bibliometrics studies. However, if a year
of birth is available, we could combine the two sources and use US Census data for years of birth from
1789 to 1930 and SSA data for newer ones as proposed by Mullen (2014). The particular problem with
historic data is that the gender associated with a given name can change over time and the association
can also differ geographically (Blevins and Mullen, 2015). The functions in the genderizeR package
assume that we are looking for gender prediction based on global and contemporary gender-name
associations.

The code in the genderizeR package works fast enough for many research purposes on datasets
with more than 200 000 records of articles and their authors. Checking 108 023 unique terms through
the genderize.io API took 45 minutes (2395.2 terms per minute). I have not tested and optimised the
code for really large datasets yet, and by large datasets I mean millions of papers or authorships.
However, some functions in the package are already implemented in parallel versions and can be
used on larger datasets. I have already been experimenting with more efficient solutions from several
other packages like data.table (Dowle et al., 2014), dplyr (Wickham and Francois, 2014), stringr
(Wickham, 2012), tm (Feinerer and Hornik, 2014), and others. I am aware that many improvements
could be made to the package and I am open for suggestions or contributions to the GitHub repository
(https://github.com/kalimu/genderizeR).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=data.table
http://CRAN.R-project.org/package=dplyr
https://github.com/kalimu/genderizeR

CONTRIBUTED RESEARCH ARTICLES 36

The interesting prospect that can be explored in the future is the genderizing of some larger
text corpuses. As we automatically try to ascribe gender to a title of a biographical article, we can
additionally try to find first names in a larger text corpus and count how many references there are to
females and males. It could be helpful, for example, in literature or media analysis.

Conclusion

Gender prediction is not as simple as it sometimes seems to be. In our data the gender category is not
explicitly available for the researcher as it often is from, for example, a traditional survey question.
When the name of a person in question is known, we can try to predict her or his gender based on the
first name, even if we do not know which part of the record is a first name. This has many potential
applications from big data analysis of authors of scientific papers to commercial applications where
we can customise a commercial offer based on someone’s gender without directly asking him or her
about that.

The interest in gender identification seems to be increasing as we can see it in the studies done in
recent years and in new IT tools that have emerged recently, such as genderize.io, R packages or code
extensions for Ruby or Python that utilise gender data sources like genderize.io (Strømgren, 2015a).

New tools and a variety of open data sources (from the US Census, US SSA, and others) expand the
possibilities of gender analysis, especially when they are in easy-readable machine formats. However,
there is a shortage of proper validation studies that could show how effective the methods are that
have been used for gender predictions. There is also a need to more explicitly present report prediction
efficiency metrics that can be comparable with other methods across different studies.

From comparison of the three methods in this study, we can now assume that using genderize.io
API as a gender data source is probably the best currently available approach. However, the outcomes
could vary in different contexts, so it is always recommended to perform a validation study of different
methods and compare a set of predictions metrics in order to select the most effective approach.
Moreover, one should be cautious when using combined data sources or human coders as that can
also have an adverse effect on some indicators of gender prediction efficiency.

Acknowledgements

This work is a result of many discussions with Marcin Kozak and Olesia Iefremova about different
problems in bibliometrics studies, some of which the genderizeR package is intended to resolve. It
would not exist without encouragement from Professor Kozak and his challenging questions (for which
I am really very thankful). I would also like to thank Olesia Iefremova for manually checking and
coding genders for over one thousand titles of biographical articles (which is a quite tedious and time-
consuming activity). Last but not least, Casper Strømgren should be given special acknowledgements
for practical implementation of the simple yet powerful idea of using crowd-sourced, publicly available
data for gender prediction.

Bibliography

Web of Science, 2014. URL http://apps.webofknowledge.com. [p22]

C. Blevins and L. Mullen. Jane, John ... Leslie? A historical method for algorithmic gender predic-
tion. Digital Humanities Quarterly, 9, 2015. URL http://www.digitalhumanities.org/dhq/vol/9/
3/000223/000223.html. [p17, 35]

G. W. Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78(1):
1–3, 1950. doi: 10.1175/1520-0493(1950)078. [p30, 33]

M. Dowle, T. Short, S. Lianoglou, and A. Srinivasan. data.table: Extension of data.frame, 2014. URL
http://CRAN.R-project.org/package=data.table. R package version 1.9.2, with contributions
from R. Saporta and E. Antonyan. [p35]

B. Efron. Estimating the error rate of a prediction rule: Improvement on cross-validation. Journal of the
American Statistical Association, 78(382):316–331, 1983. doi: 10.2307/2288636. [p19, 30]

B. Efron. How biased is the apparent error rate of a prediction rule? Journal of the American Statistical
Association, 81(394):461–470, 1986. doi: 10.2307/2289236. [p30]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://apps.webofknowledge.com
http://www.digitalhumanities.org/dhq/vol/9/3/000223/000223.html
http://www.digitalhumanities.org/dhq/vol/9/3/000223/000223.html
http://CRAN.R-project.org/package=data.table

CONTRIBUTED RESEARCH ARTICLES 37

B. Efron and R. Tibshirani. Improvements on cross-validation: The .632 bootstrap method. Journal of
the American Statistical Association, 92(438), June 1997. [p30, 31]

T. Fawcett. ROC graphs: Notes and practical considerations for data mining researchers. Technical
report, Intelligent Enterprise Technologies Laboratory. Hawlett-Packard Laboratories, Palo Alto,
CA, USA, 2003. [p30, 31, 32]

I. Feinerer and K. Hornik. tm: Text Mining Package, 2014. URL http://CRAN.R-project.org/package=
tm. R package version 0.6. [p21, 35]

I. Feinerer, K. Hornik, and D. Meyer. Text mining infrastructure in R. Journal of Statistical Software, 25
(5):1–54, Mar. 2008. URL http://www.jstatsoft.org/v25/i05/. [p21]

W. Jiang and R. Simon. A comparison of bootstrap methods and an adjusted bootstrap approach for
estimating the prediction error in microarray classification. Statistics in Medicine, 26(29):5320–5334,
Dec. 2007. doi: 10.1002/sim.2968. [p31]

V. Larivière, C. Ni, Y. Gingras, B. Cronin, and C. R. Sugimoto. Supplementary information to “Biblio-
metrics: Global gender disparities in science” (Comment in Nature 504, 211–213; 2013). Nature, 504,
12 2013a. [p17, 18, 20, 34, 35]

V. Larivière, C. Ni, Y. Gingras, B. Cronin, and C. R. Sugimoto. Bibliometrics: Global gender disparities
in science. Nature, 504:211–213, 12 2013b. doi: 10.1038/504211a. [p17]

L. Mullen. gender: Predict Gender From Names Using Historical Data, 2014. URL https://github.com/
ropensci/gender. [p19, 35]

NCAR – Research Applications Laboratory. verification: Weather Forecast Verification Utilities., 2014.
URL http://CRAN.R-project.org/package=verification. R package version 1.41. [p33]

J. A. Ramey. sortinghat, 2013. URL http://CRAN.R-project.org/package=sortinghat. R package
version 0.1. [p21]

T. W. Rinker. qdap: Quantitative Discourse Analysis Package. University at Buffalo/SUNY, Buffalo, New
York, 2013. URL http://github.com/trinker/qdap. Version 2.2.1. [p18]

T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer. ROCR: Visualizing classifier performance in R.
Bioinformatics, 21(20):3940–3941, 2005. URL http://rocr.bioinf.mpi-sb.mpg.de. [p31]

Social Security Administration. Official social security website, 2015. URL http://www.ssa.gov/oact/
babynames/limits.html. [p19]

C. Strømgren. genderize.io, 2015a. URL http://genderize.io. [p19, 20, 36]

C. Strømgren. store.genderize.io, 2015b. URL https://store.genderize.io. [p19]

United States Census Bureau. Frequently occurring surnames from Census 1990 – Names files,
2015a. URL http://www.census.gov/topics/population/genealogy/data/1990_census/1990_
census_namefiles.html. [p18]

United States Census Bureau. Frequently occurring surnames from the Census 2000, 2015b. URL
http://www.census.gov/topics/population/genealogy/data/2000_surnames.html. [p18]

K. Wais. genderizeR: Gender Prediction Based on First Names, 2016. URL http://CRAN.R-project.org/
package=genderizeR. R package version 2.0.0. [p20, 21]

J. D. West, J. Jacquet, M. M. King, S. J. Correll, and C. T. Bergstrom. The role of gender in scholarly
authorship. PLOS ONE, 8, 7 2013. [p17, 19, 20]

H. Wickham. stringr: Make It Easier To Work With Strings, 2012. URL http://CRAN.R-project.org/
package=stringr. R package version 0.6.2. [p21, 35]

H. Wickham. babynames: US Baby Names 1880–2013, 2014. URL http://github.com/hadley/babynames.
R package version 0.1. [p19]

H. Wickham and R. Francois. dplyr: A Grammar of Data Manipulation, 2014. URL http://CRAN.R-
project.org/package=dplyr. R package version 0.3.0.2. [p35]

Kamil Wais
University of Information Technology and Management in Rzeszow
Sucharskiego 2, 35-225 Rzeszow
Poland
kamil.wais@gmail.com

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=tm
http://CRAN.R-project.org/package=tm
http://www.jstatsoft.org/v25/i05/
https://github.com/ropensci/gender
https://github.com/ropensci/gender
http://CRAN.R-project.org/package=verification
http://CRAN.R-project.org/package=sortinghat
http://github.com/trinker/qdap
http://rocr.bioinf.mpi-sb.mpg.de
http://www.ssa.gov/oact/babynames/limits.html
http://www.ssa.gov/oact/babynames/limits.html
http://genderize.io
https://store.genderize.io
http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
http://www.census.gov/topics/population/genealogy/data/1990_census/1990_census_namefiles.html
http://www.census.gov/topics/population/genealogy/data/2000_surnames.html
http://CRAN.R-project.org/package=genderizeR
http://CRAN.R-project.org/package=genderizeR
http://CRAN.R-project.org/package=stringr
http://CRAN.R-project.org/package=stringr
http://github.com/hadley/babynames
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=dplyr
mailto:kamil.wais@gmail.com

CONTRIBUTED RESEARCH ARTICLES 38

Conditional Fractional Gaussian Fields
with the Package FieldSim
by Alexandre Brouste, Jacques Istas and Sophie Lambert-Lacroix

Abstract We propose an effective and fast method to simulate multidimensional conditional fractional
Gaussian fields with the package FieldSim. Our method is valid not only for conditional simulations
associated to fractional Brownian fields, but to any Gaussian field and on any (non regular) grid of
points.

Introduction

Rough phenomena arise in texture simulations for image processing or medical imaging, natural
scenes simulations (clouds, mountains) and geophysical morphology modeling, financial mathematics,
ethernet traffic, etc. Some are time-indexed, some others, like texture or natural scene simulations,
should be indexed by subsets of the Euclidean spacesR2 orR3. Recent data (as the Cosmic Microwave
Background or solar data) are even indexed by a manifold.

The fractional Brownian motion (fBm), introduced by Kolmogorov (1940) (and developed by
Mandelbrot and Van Ness 1968) is nowadays widely used to model this roughness. Fractional
Brownian motions have been extended in many directions: higher dimensions with fields, anisotropy,
multifractionality, etc. This paper is devoted to a simulation method for conditional Gaussian fields.
This could improve, in the future, natural scene simulations by fixing for instance the valleys.

The simulation of fractional Gaussian processes is not difficult in dimension one (see a review
of Coeurjolly 2000). Let us recall the numerical complexity of some classical methods: the Cholesky
method has a complexity of O(N3) where N is the size of the simulated sample path. For specific
stationary processes (on a regular grid) the Levinson’s algorithm has a complexity of O(N2 log N) and
the Wood and Chan algorithm (see Wood and Chan 1994) a complexity of O(N log N).

In higher dimensions, the Wood and Chan method has been extended to stationary increments
fields with the Stein’s method (Stein, 2002) ; the fractional Brownian field can therefore be simulated
on a regular grid of the plane. For general Gaussian fields on a general discrete grid, the Cholesky
method is costly and exact simulations are no longer tractable. Approximate methods have been
intensively developed (midpoint, Peitgen and Saupe 1988; turning bands, Yin 1996; truncated wavelet
decomposition) but for specific fields. On manifolds, simulation procedures based on truncated series
of eigenfunctions of the Laplace-Beltrami operator are discussed in Gelbaum and Titus (2014).

Our approach, presented in Brouste et al. (2007, 2010), is based on a 2-steps method with an exact
simulation step plus a refined fast step, that is an improvement of the midpoint method. It has been
implemented in the FieldSim package (Brouste and Lambert-Lacroix., 2015). The fieldsim simulation
method can be applied to general Gaussian processes on general simulation grids (regular and non
regular) on Euclidean spaces and even on some manifolds (see Figure 1). It is worth mentioning
that another package, RandomFields (Schlather et al., 2016), allows the simulation of a large class
of random fields such as Gaussian random fields, Poisson fields, binary fields, chi-square fields, t
fields and max-stable fields (see Schlather et al. 2015). In RandomFields, conditional random fields
(which are the purpose of the present paper) are given for a wide range of spatial and spatio-temporal
Gaussian random fields. Some of the default models of the FieldSim package cannot be simulated
with the help of default models of the RandomFields package. Nevertheless, it is still possible to
simulate them with the RMuser() and RFsimulate() commands of the RandomFields package. It may
be noted that the FieldSim package does not allow for the simulation of more than the RandomFields
package. FieldSim package is an alternative in which the underlying methods of simulation are
generic.

We propose here to adapt the FieldSim package to conditional simulations. Definitions and
notation will be introduced in the following section with the “process” class, the setProcess procedure
and the fieldsim procedure. The fieldsim procedure adapted to conditional Gaussian fields is
described in the next section. Simulations with the package FieldSim are presented in the last section.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=FieldSim
http://CRAN.R-project.org/package=RandomFields

CONTRIBUTED RESEARCH ARTICLES 39

Figure 1: On the left: fractional Brownian field (top-left), multifractional Brownian field (bottom-left),
fractional Brownian sheet (top-right) and hyperbolic fractional Brownian field (bottom-right); on the
right: fractional Brownian field on the sphere.

Notation and preliminaries

Fractional Gaussian fields

Let d be a positive integer and X(·) =
{

X(M), M ∈ Rd
}

be a real valued non stationary field with
zero mean and second order moments. It is worth emphasizing that we consider in this paper the
metric spaceRd with the Euclidean norm but the method can be generalized to a smooth and complete
Riemannian manifold equipped with its geodesic distance (Brouste et al., 2010).

The covariance function R(·, ·) is defined by:

R(M1, M2) = cov (X(M1), X(M2)) , M1, M2 ∈ Rd.

This function is nonnegative definite (n.n.d.). Conversely, for any n.n.d. function R(·, ·), there exists an
unique centered Gaussian field of second order structure given by R(·, ·).

Different classical fractional Gaussian fields have been simulated to illustrate the FieldSim package
in Brouste et al. (2007, 2010). In the sequel, M and M′ are two points ofRd and ‖ · ‖ is the usual norm
onRd, d = 1, 2. We can cite:

1. The standard fractional Brownian fields are defined through their covariance function (e.g.,
Samorodnitsky and Taqqu 1994):

R(M, M′) =
1
2

(
‖M‖2H + ‖M′‖2H − ‖M−M′‖2H

)
,

where the Hurst parameter H is real in (0, 1).

2. The standard multifractional Brownian fields are defined through their covariance function (see
Peltier and Levy-Véhel 1996; Benassi et al. 1997):

R(M, M′) = α(M, M′)
(
‖M‖H̃(M,M′) + ‖M′‖H̃(M,M′) − ‖M−M′‖H̃(M,M′)

)
,

where

H̃(M, M′) = H(M) + H(M′),

α(M, M′) =
C
(

H(M)+H(M′)
2

)2

2C (H(M))C (H(M′))
,

C(h) =

 π
d+1

2 Γ
(

h + 1
2

)
h sin (πh) Γ (2h) Γ

(
h + d

2

)

1
2

,

and the Hurst parameter is a continuous function H : Rd −→ (0, 1), where Γ is the usual
Gamma function.

3. The standard fractional Brownian sheets are defined through their covariance function (see

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 40

Kamont 1996):

R(M, M′) =
1
2d

d

∏
i=1

{
|Mi|2Hi + |M′i |

2Hi − |Mi −M′i |
2Hi
}

,

where (H1, . . . , Hd) stands for the multivariate Hurst index inRd, 0 < Hi < 1.

4. The anisotropic fractional Brownian fields are defined through their covariance function (see
Bonami and Estrade 2003):

R(M, M′) = vH(M) + vH(M′)− vH(M−M′),

where the variogram
vH(x) = 22H−1γ(H)CH,ϑ1,ϑ2 (x)‖x‖2H ,

with H ∈ (0, 1), γ(H) depends explicitly on H and CH,ϑ1,ϑ2 (.) implies incomplete Beta functions
and two constants −π

2 ≤ ϑ1 < ϑ2 ≤ π
2 .

The FieldSim package

In the new version 3.2 of the package FieldSim, new features have been added. The most important
add is the “process” class and the setProcess function.

An object of class “process” has different slots:

• The name of the process. Several names are reserved for classical fractional Gaussian processes:
see Table 1 for details. "cond" is used for all kind of conditional simulations (see further).

• The slot values stores the values of the process on the simulation (and visualization) grid.

• An object of class “manifold” which is the Riemannian manifold on which the process is lying;
an object of the class “manifold” has four slots:

– name which is the name of the manifold we consider. The name "line", "plane", "sphere"
and "hyperboloid" are taken for the eponymous manifolds.

– atlas which is the union of discretized domains that cover the manifold (must be a matrix
where the number of rows is the dimension of the space where the manifold lives).

– distance which is the distance considered on the manifold.

– origin which is the origin considered on the manifold (must be a point on the manifold).

The setter setManifold permits the user to create an object of class “manifold” with all its slots.
This class is already described in Brouste et al. (2010).

• The slot covf which contains the covariance function of the Gaussian process.

• The slot parameter which contains all the parameters associated to the covariance function of
the process. Here are the classical parameters associated to the classical process.

All the examples presented can be defined with the setProcess command (see Table 1). With the
following command, the user can set a fBm with Hurst parameter 0.7 on a regular grid of the interval
[0, 1] (of size 256).

R> linefBm <- setProcess("fBm-line", 0.7)
R> str(linefBm)

Formal class 'process' [package "FieldSim"] with 7 slots
..@ name : chr "fBm"
..@ values : num 0
..@ manifold :Formal class 'manifold' [package "FieldSim"] with 4 slots
..@ name : chr "line"
..@ atlas : num [1, 1:256] 0 0.00392 0.00784 0.01176 0.01569 ...
..@ distance:function (xi, xj)
..@ origin : num [1, 1] 0
..@ covf :function (xi, xj)
..@ parameter: num 0.7
..@ values2 : num 0
..@ manifold2:Formal class 'manifold' [package "FieldSim"] with 4 slots
..@ name : chr "line"
..@ atlas : num [1, 1:256] 0 0.00392 0.00784 0.01176 0.01569 ...
..@ distance:function (xi, xj)
..@ origin : num [1, 1] 0

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 41

It is worth mentioning that the slot values is empty since there is no simulation done. Then as usual,
the user can use the fieldsim function in order to simulate the Gaussian process associated to covf on
the manifold grid defined in manifold.

R> fieldsim(linefBm)

In the fieldsim function, we can add the quantity Ne, the number of points of the grid to be simulated
in the exact step, and nbNeighbor, the number of neighbors used in the refined step. By default, Ne is
equal to the size of the grid given in atlas. The slot values are now set with the simulated values.
There exist different visualization procedures to draw the results, for instance:

R> plot(linefbm, "default")

We recall that the discretization grids can be modified with the setAtlas command. Depending on the
manifold, there are several types of grids: "regular", "random" and "visualization". For instance,

R> setAtlas(linefBm, "regular", 1000)
R> fieldsim(linefBm)
R> plot(linefBm, "default")

The fieldsim procedure for conditional Gaussian fields

In order to build conditional fractional Gaussian fields, we consider a conditioning set N = {N1, . . . ,
Nk} , Ni ∈ Rd, i = 1, . . . , k, and the conditioning values x = (x1, . . . , xk)

T ∈ Rk. Then we will say that
X̃(·) = {X̃(M), M ∈ Rd} is the conditional Gaussian field associated to the field X(·) (of covariance
function R) and to the conditioning pair (N , x) if the finite dimensional laws of X̃(·) is the same as
the finite dimensional laws of X(·) given the event {(X(N1), . . . , X(Nk))

T =: XN = x}. We denote
by m̃(·) (resp. R̃(·, ·)) the mean (resp. covariance) function of the process X̃(·). The following lemma
allows us to determine m̃(·) and R̃(·, ·) according to R(·, ·) (sketch of proof is given in Piterbag 1996,
Section A.1).

Lemma 1. Let us consider the centered Gaussian vector
(
Y1, Y2, ZT)T ∈ R×R×Rk with the covariance

matrix

Σ2 =

 E(Y2
1) E(Y1Y2) E(Y1ZT)

E(Y1Y2) E(Y2
2) E(Y2ZT)

E(ZY1) E(ZY2) E(ZZT)

 .

Suppose that E(ZZT) is invertible. Then the conditional law of (Y1, Y2)
T given the event {Z = z ∈ Rk} is

Gaussian with mean

m̃ =

(
E(Y1ZT)
E(Y2ZT)

)
{E(ZZT)}−1z, (1)

and covariance matrix

Σ̃2 =

(
E(Y2

1) E(Y1Y2)
E(Y1Y2) E(Y2

2)

)
−
(

E(Y1ZT)
E(Y2ZT)

)
{E(ZZT)}−1 (E(ZY1) E(ZY2)

)
. (2)

In the Gaussian field context, Lemma 1 allows us to write down an explicit expression of the mean
function and the autocovariance function of the conditional Gaussian field associated to R(·, ·) and to
(N , x). Let us put Y1 = X(M1) and Y2 = X(M2) the values of the field X(·) at points M1 ∈ Rd and
M2 ∈ Rd respectively, and Z = XN ∈ Rk. Therefore, all quantities in (1) and (2) can be expressed in
terms of the autocovariance function R. Precisely,

E(YiYj) = R(Mi, Mj), (i, j) ∈ {1, 2}2,

and
E(YiZ`) = R(Mi, N`), i ∈ {1, 2}, ` = 1, . . . , k.

Consequently, the mean function of the conditional Gaussian field is given by

m̃(M) = E(X(M)XT
N){E(XNXT

N)}−1x, M ∈ Rd. (3)

Then the autocovariance function of a conditional Gaussian field (using the (1, 2)-coordinate of
Equation (2)) is given by

R̃(M1, M2) = R(M1, M2)−E(X(M1)XT
N){E(XNXT

N)}−1E(XNX(M2)). (4)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 42

For instance, for k = 1, we get

m̃(M) =
R(M, N1)

R(N1, N1)
x1,

and

R̃(M1, M2) = R(M1, M2)−
R(M1, N1)R(M2, N1)

R(N1, N1)
.

Let us recall that the goal of this paper is to give a procedure that yields discretization of the
sample path of the conditional Gaussian field over a space discretization {Se,Sr} ofRd associated to
the n.n.d. autocovariance function R and the conditioning set and values (N , x) . In the sequel, we
denote by X̃(·) this sample path. Since the mean function (3) is known, we can consider the centered
field X(·) = X̃(·)− m̃(·). The fieldsim procedure for conditional Gaussian fields proceeds as follows.

Exact simulation step. Given a space discretization Se, a sample of a centered Gaussian vector
(X(M))M∈Se with covariance matrix R̃ given by {R̃}i,j = R̃(Mi, Mj), Mi, Mj ∈ Se, is simulated. Here
R̃ is defined by (4). This simulation is obtained by an algorithm based on Cholesky decomposition of
the matrix R̃.

Refined simulation step. Let Sr be the remaining space discretization. For each new point M ∈ Sr
at which we want to simulate the field, X(M) is generated by using only a set of neighbors instead of
all the simulated components (as in the accurate simulation step). Precisely, let OM be a neighbors set
of M (for the Euclidean distance) and XOM be the space generated by the variables X(M′), M′ ∈ OM.
Let us remark that the neighbors set is defined with all the already simulated variables (in the accurate
and refined simulation step). Let XXOM

(M) be the best linear combination of variables of XOM

approximating X(M) in the sense that the variance of the innovation

εXNM
(M) = X(M)− XXOM

(M),

is minimal. The new variable X(M) is obtained by

XXOM
(M) +

√
Var(εXOM

(M))U,

where U is a centered and reduced Gaussian variable independent of the already simulated compo-
nents. Note that the variable XXOM

(M) and the variance Var(εXOM
(M)) are completely determined

by the covariance structure of the sequence X(M′), M′ ∈ OM ∪ {M}.

Adding the mean. Finally, we compute X̃(M) = X(M) + m̃(M) for all M ∈ {Se,Sr}.

For storage and computing time, the accurate simulation step must concern only a small number of
variables whereas the second step can relate to a larger number of variables. That leads to an effective
and fast method to simulate any Gaussian field.

It is worth mentioning that the setProcess command will check if {E(XNXT
N)}−1 exists for

common conditional simulations.

Some examples of conditional fractional Gaussian fields

We focus, in this paper, on the conditional Gaussian fields associated to the previously mentioned
fields but every other classical Gaussian field can be also simulated: standard bifractional Brownian
motion, space-time deformed fractional Brownian motion, etc. (see Brouste et al. 2007). We also
consider conditional simulations associated to fractional Gaussian fields on manifolds (hyperboloid
and sphere) (see Brouste et al. 2010 for the covariance function definition).

The procedure fieldsim is extended to the conditional Gaussian fields. We can find the setProcess
reference short-card in Table 1.

On the line

The fractional Gaussian processes on the line are fast to simulate.

Conditional simulations associated to fractional Brownian motion (fBm) and multifractional
Brownian motion (mBm) and to the conditioning set N = {1/2, 3/4, 1} and conditioning values

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 43

Figure 2: Conditional simulations associated to fractional Brownian motion and multifractional
Brownian motion. The real time (resp. CPU time) in seconds is equal to 8.430 (resp. 0.043) for the
fractional Brownian motion and 14.609 (resp. 0.111) for the multifractional Brownian motion.

x = {1, 1/2, 0} are illustrated on Figure 2. Here the Hurst exponent is H = 0.7 for the fBm and
H(t) = 0.3 + 0.6t, t ∈ [0, 1] for the mBm. The processes are simulated on a regular grid of 256 points
of [0, 1] with only an exact simulation step (Sr = ∅).

They can be obtained with the fieldsim procedure. For instance, the mBm in Figure 2 is obtained
with:

R> funcH <- function(x) 0.3 + x * 0.6
R> cond.mBm <- setProcess("cond-mBm-line",
+ list(Gamma = matrix(c(1/2, 1, 3/4, 0.5, 1, 0), 2, 3), par = funcH))
R> fieldsim(cond.mBm)
R> plot(cond.mBm)

In the simulation below, the points of the set N belong to the visualization grid. When this is not
the case, the plot could show a failure for the conditioning in the region of high variability. To avoid
this, it is possible to add the points of the set N to the visualization grid. For instance, in the previous
example, to add the point 1/6 to the visualization grid, we can use the following lines of code:

R> atlas.cond.mBm <- sort(c(cond.mBm@manifold@atlas[1,], 1/6))
R> cond.mBm@manifold@atlas <- matrix(atlas.mBm, nrow = 1)

Another solution is to use finer grids which contain the points of the set N .

On the plane

Conditional simulations associated to a fractional Brownian field (for H = 0.9) and multifractional
Brownian field (for H(t) = 0.3+ 0.6t1) are illustrated in Figure 3. Conditional simulations associated to
anisotropic fields (fractional Brownian sheet with H1 = 0.9, H2 = 0.3, anisotropic fractional Brownian
field with H = 0.7, ϑ1 = π

6 and ϑ2 = π
3) are presented in Figure 4. For all the fields, we consider the

following conditioning set

N =

{(
1,

k
26 + 1

)
,
(

k
26 + 1

, 1
)

, k = 0, . . . , 26 + 1
}

,

and conditioning values x = 0.

All the processes are simulated on a regular grid of 4096 points of [0, 1]2 with 100 points for the
exact simulation step and 3996 for the refined step (with 4 neighbors). For instance, the conditional
Gaussian field associated to anistropic fractional Brownian field on [0, 1]2 (see Figure 4) is given by

R> Ng <- 2^6 + 1
R> x <- seq(from = 0, to = 1, length = Ng)
R> G <- cbind(rbind(rep(1, Ng - 1), x[2:Ng], rep(0, Ng - 1)),
+ rbind(x[2:(Ng - 1)], rep(1, Ng - 2), rep(0, Ng - 2)))
R> condfBm2d <- setProcess("cond-afBf-plane",
+ list(Gamma = G, par = list(H = 0.7, theta1 = pi/6, theta2 = pi/3)))
R> setAtlas(condfBm2d, "visualization", 6)
R> fieldsim(condfBm2d, Ne = 100, nbNeighbor = 4)
R> plot(condfBm2d, theta = 120, phi = 30, expand = 0.5)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 44

Figure 3: Conditional simulations associated to a fractional Brownian field (on the left) and a multi-
fractional Brownian field (on the right). The real time (resp. CPU time) in seconds is equal to 1270.911
(resp. 6.769) for the fractional Brownian field and 1782.533 (resp. 9.953) for the multifractional Brownian
field.

Figure 4: Conditional simulations associated to a fractional Brownian sheet (on the left) and an
anisotropic fractional Brownian field. The real time (resp. CPU time) in seconds is equal to 728.605
(resp. 4.223) for the fractional Brownian sheet and 2995.644 (resp. 14.782) for the anisotropic fractional
Brownian field.

It is worth emphasizing that, for a fixed size of the simulation grid, the simulation time of the
fieldsim procedure depends on the number of conditioning points (see for instance the fractional
Brownian field on Figures 3 and 6 for 129 and 39 conditioning points respectively). But this variation
is small compared to the variation due to the size of the simulation grid.

On the hyperboloid and on the sphere

Conditional simulations can be extended to fractional Gaussian fields on manifolds associated to the
fractional Brownian field on the hyperboloid with H = 0.7,

N =
{
(0, 1,

√
2), (0, 2,

√
5)
}

, x = (5,−5),

and a conditional fractional Brownian field on the sphere with H = 0.4,

N =

{
(0, 0, 1),

(
1
2

, 0,

√
3

2

)}
, x = (5,−5).

The two processes are simulated on a regular grid of 5400 points ofR3 with 100 points for the exact
simulation step and 5300 for the refined step (with 4 neighbors).

The conditional simulations associated to the fractional Brownian field on the sphere (see Figure 5)
are obtained with

R> Gamma <- matrix(c(0, 0, 1, 5, 0.5, 0, sqrt(3)/2, -5), 4, 2)
R> sphere.cond.fBm <- setProcess("cond-fBm-sphere", list(Gamma = Gamma, par = 0.4))
R> setAtlas(sphere.cond.fBm, "visualization", 30)
R> fieldsim(sphere.cond.fBm, Ne = 100, nbNeighbor = 4)
R> plot(sphere.cond.fBm)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 45

Figure 5: Conditional simulations associated to the fractional Brownian field on the hyperboloid
and on the sphere. The real time (resp. CPU time) in seconds is equal to 54.567 (resp. 0.293) for the
hyperboloid and 188.807 (resp. 14.216) for the sphere.

Figure 6: Natural scene simulation. Here a 65× 65 regular grid fractional Brownian field of Hurst
parameter H = 0.8 with 39 conditioning points (in red) is simulated. The real time (resp. CPU time) in
seconds is equal to 563.754 (resp. 3.550).

Conclusion and perspectives

We propose a generic method to simulate multidimensional conditional fractional Gaussian fields.

Our method is valid for any Gaussian field and on any (non regular) grid of points as soon as the
covariance function is available. This method is constructed to be universal (conditional simulation,
simulation on a manifold) and is consecutively not as fast as other methods defined for specific fields.
In the near future, the FieldSim package should also possess such specific methods.

Our method is adapted to conditional simulations and, consequently, permits now to simulate
easily several natural scenes (clouds, mountains) with valleys and fixed topographic points. Such a
simulation is presented in Figure 6.

Bibliography

A. Benassi, S. Jaffard, and D. Roux. Elliptic Gaussian random processes. Revista Mathematica Iberoamer-
icana, 18:19–89, 1997. [p39]

A. Bonami and A. Estrade. Anisotropic analysis of some Gaussian models. Journal of Fourier Analysis
and Applications, 9(3):215–236, 2003. [p40]

A. Brouste and S. Lambert-Lacroix. FieldSim: Random Fields (and Bridges) Simulations, 2015. URL
https://CRAN.R-project.org/package=FieldSim. R package version 3.2.1. [p38]

A. Brouste, J. Istas, and S. Lambert-Lacroix. On fractional Gaussian random fields simulations. Journal
of Statistical Software, 23(1):1–23, 2007. doi: 10.18637/jss.v023.i01. [p38, 39, 42]

A. Brouste, J. Istas, and S. Lambert-Lacroix. On simulation of manifold indexed fractional Gaussian
fields. Journal of Statistical Software, 34(4):1–14, 2010. doi: 10.18637/jss.v034.i04. [p38, 39, 40, 42]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=FieldSim

CONTRIBUTED RESEARCH ARTICLES 46

name of the process parameter

On [0, 1]
"fBm-line" numeric
"mBm-line" function
"2pfBm-line" list(H = numeric, K = numeric)
"stdfBm-line" list(H = numeric, sigma = function, tau = function)
"cond-fBm-line" list(Gamma = matrix, par = numeric)
"cond-mBm-line" list(Gamma = matrix, par = function)
"cond-2pfBm-line" list(Gamma = matrix, par = list(H = numeric, K = numeric))

On the square [0, 1]2

"fBm-plane" numeric
"mBm-plane" function
"2pfBm-plane" list(H = numeric, K = numeric)
"afBf-plane" list(H = numeric, theta1 = numeric, theta2 = numeric)
"fBs-plane" vector
"cond-fBm-plane" list(Gamma = matrix, par = numeric)
"cond-mBm-line" list(Gamma = matrix, par = function)
"cond-afBf-plane" list(Gamma = matrix, par = list(H = numeric, theta1 = numeric,

theta2 = numeric))
"cond-fBs-line" list(Gamma = matrix, par = vector)

On the hyperboloid
"fBm-hyperboloid" numeric
"cond-fBm-hyperboloid" list(Gamma = matrix, par = numeric)

Table 1: The “process” class. "fBm" for fractional Brownian motion, "mBm" for multifractional Brownian
motion, "2pfBm" for the standard bi-fractional Brownian motion, "stdfBm" for the space-time deformed
fractional Brownian motion, "AfBf" for anisotropic fractional Brownian field and "fBs" for fractional
Brownian sheet.

J. Coeurjolly. Simulation and identification of the fractional Brownian motion: A bibliographical and
comparative study. Journal of Statistical Software, 5(7):1–53, 2000. doi: 10.18637/jss.v005.i07. [p38]

Z. Gelbaum and M. Titus. Simulation of fractional Brownian surfaces via spectral synthesis on
manifolds. IEEE Transactions on Image Processing, 23(10):4383–4388, 2014. [p38]

A. Kamont. On the fractional anisotropic Wiener fields. Journal of Probability and Mathematical Statistics,
18:85–98, 1996. [p40]

A. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum.
(German). C. R. (Doklady) Academy of Sciences URSS, 26:115–118, 1940. [p38]

B. Mandelbrot and J. Van Ness. Fractional Brownian motions, fractional noises and application. SIAM
Review, 10:422–437, 1968. [p38]

H. Peitgen and D. Saupe. The Science of Fractal Images. Springer-Verlag, 1988. [p38]

R. Peltier and J. Levy-Véhel. Multifractional Brownian motion: Definition and preliminary results.
Technical Report RR 2645, INRIA, 1996. URL http://hal.inria.fr/inria-00074045/fr/. [p39]

V. Piterbag. Asymptotic Methods in the Theory of Gaussian Processes and Fields. American Mathematical
Society, 1996. [p41]

G. Samorodnitsky and M. Taqqu. Stable non-Gaussian Random Processes: Stochastic Models with Infinite
Variance. Chapman & Hall, New York, 1994. [p39]

M. Schlather, A. Malinowski, P. Menck, M. Oesting, and K. Strokorb. Analysis, simulation and
prediction of multivariate random fields with package RandomFields. Journal of Statistical Software,
63(8):1–25, 2015. doi: 10.18637/jss.v063.i08. [p38]

M. Schlather, A. Malinowski, M. Oesting, D. Boecker, K. Strokorb, S. Engelke, J. Martini, F. Ballani,
O. Moreva, P. J. Menck, S. Gross, U. Ober, Christoph Berreth, K. Burmeister, J. Manitz, O. Morena,
P. Ribeiro, R. Singleton, B. Pfaff, and R Core Team. RandomFields: Simulation and Analysis of Random
Fields, 2016. URL http://CRAN.R-project.org/package=RandomFields. R package version 3.1.8.
[p38]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://hal.inria.fr/inria-00074045/fr/
http://CRAN.R-project.org/package=RandomFields

CONTRIBUTED RESEARCH ARTICLES 47

M. Stein. Fast and exact simulation of fractional Brownian surfaces. Journal of Computational and
Graphical Statistics, 11(3):587–599, 2002. [p38]

A. Wood and G. Chan. Simulation of stationary Gaussian processes in [0, 1]d. Journal of Computational
and Graphical Statistics, 3(4):409–432, 1994. [p38]

Z. Yin. New methods for simulation of fraction Brownian motion. Journal of Computational Physics, 127:
66–72, 1996. [p38]

Alexandre Brouste
Laboratoire Manceau de Mathématiques
Institut du Risque et de l’Assurance du Mans
Université du Maine
72000 Le Mans, France
Alexandre.Brouste@univ-lemans.fr

Jacques Istas
Laboratoire Jean Kuntzmann
Université de Grenoble
38041 Grenoble Cedex 9, France
jacques.istas@upmf-grenoble.fr

Sophie Lambert-Lacroix
UPMF Laboratoire TIMC
Faculté de Médecine
Université de Grenoble
38706 La Tronche Cedex, France
Sophie.Lambert@imag.fr

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:Alexandre.Brouste@univ-lemans.fr
mailto:jacques.istas@upmf-grenoble.fr
mailto:Sophie.Lambert@imag.fr

CONTRIBUTED RESEARCH ARTICLES 48

rTableICC: An R Package for Random
Generation of 2×2×K and R×C
Contingency Tables
by Haydar Demirhan

Abstract In this paper, we describe the R package rTableICC that provides an interface for random
generation of 2×2×K and R×C contingency tables constructed over either intraclass-correlated or
uncorrelated individuals. Intraclass correlations arise in studies where sampling units include more
than one individual and these individuals are correlated. The package implements random generation
of contingency tables over individuals with or without intraclass correlations under various sampling
plans. The package include two functions for the generation of K 2×2 tables over product-multinomial
sampling schemes and that of 2×2×K tables under Poisson or multinomial sampling plans. It also
contains two functions that generate R×C tables under product-multinomial, multinomial or Poisson
sampling plans with or without intraclass correlations. The package also includes a function for
random number generation from a given probability distribution. In addition to the contingency table
format, the package also provides raw data required for further estimation purposes.

Introduction

Random generation of contingency tables is essential for simulation studies conducted over categorical
data. The main characteristic of a contingency table is determined by the assumed sampling plan
and the correlation structure between categorical variables constituting the table. There are three
main sampling plans: Poisson, multinomial, and product multinomial. In the Poisson plan, each
cell is independently Poisson distributed and there is no restriction on the total sample size. In the
multinomial plan, total sample size is fixed while row and column totals are not fixed. When one of the
margins of the table is fixed and the rest are set free, we have a product multinomial plan (Agresti, 2002;
Bishop et al., 1975). If both margins are naturally fixed, the sampling plan becomes hypergeometric,
which is seldom used in practice (Agresti, 2002). There are numerous ways in R to generate contingency
tables of various dimensions. The function r2dtable() in the base package stats generates random
two-way tables with given marginals using Patefield’s algorithm under product-multinomial sampling
(Patefield, 1981). Alternatively, one can generate a random contingency table over log-linear models
with a predetermined association structure. However, there is no package in R for random generation
of 2×2×K tables or generation of contingency tables with intraclass-correlations.

It is highly possible to have intraclass correlations (ICCs) in surveys conducted over sampling
units with more than one observation unit if these units are correlated. Familial data also include
ICCs. In a public health survey, if data are collected over families, intraclass correlations arise due to
the within family dependence. Presence of intraclass correlations can invalidate results of classical
categorical models or chi-square tests (Demirhan, 2013). Therefore, use and further developments
of methods specific to the cases with ICCs are essential. In the literature, Cohen (1976) and Altham
(1976) introduced categorical analyzes under the presence of ICCs. Borkowf (2000) proposed an
ICC statistic for contingency tables with the empirical multivariate quantile-partitioned distributions.
Nandram and Choi (2006) proposed Bayesian analysis of R×C tables with intraclass correlated cells.
Demirhan (2013) proposed Bayesian estimation of log odds ratios over R×C contingency tables under
the presence of intraclass correlated cells. The context of ICCs is also used in applied research such as
Bi and Kuesten (2012).

Monte Carlo simulation studies are essential in the development of new statistical methods to
handle ICCs. However, there is neither a Monte Carlo approach nor an R package to implement
random generation of contingency tables under intraclass-correlated individuals. In this article, we
propose a simple approach for the generation of 2×2×K and R×C contingency tables in the presence
of ICCs between individuals under three sampling plans, and describe the R package rTableICC
(Demirhan, 2015) for the implementation of the proposed approach. In general, 2×2×K tables are
observed in multicenter studies such as clinical trials (Demirhan and Hamurkaroglu, 2008). Also,
in a genetic association study, association between existence of a disease and K single-nucleotide
polymorphisms (SNPs) can be questioned over a 2× 2×K contingency table. In the genetics context, K
would be the number of genetic loci under investigation. The assumption is that the total sample size
under each loci is mostly known. It is highly possible to have some correlation patterns between SNPs
that cause existence of ICCs. Thus, we have a 2× 2×K table over individuals with ICCs under product-
multinomial sampling plan. R×C tables provide a general framework for two-way contingency tables.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=rTableICC

CONTRIBUTED RESEARCH ARTICLES 49

Considering the areas of application, rTableICC provides a rich platform for the random generation
of contingency tables.

The package rTableICC includes four functions for random generation of 2×2×K and R×C
contingency tables with and without intraclass-correlated individuals under multinomial, product
- multinomial and Poisson sampling plans. It also has a function for random generation of data
from a given probability function. Generated tables are made available in both table and raw data
format. Additional characteristics of generated data for further estimation issues are also produced
and optionally printed out. Thus, it is possible to easily embed functions of rTableICC in other Monte
Carlo simulation codes. The latest development of rTableICC under version 1.0.3 is published on the
Comprehensive R Archive Network (CRAN).

In the following sections, the approach for the generation of random tables in the presence of ICCs
is described, details of data generation processes under considered sampling plans are mentioned,
input and output structures of rTableICC are demonstrated, and use of the package is illustrated by
several examples. We also provide a performance analysis regarding the mean running times of the
functions in the package rTableICC. Then, we conclude with a brief summary.

Data generation under ICC

Altham (1976) introduced two probabilities to deal with ICCs over an R×C contingency table. Let
nijk be the number of individuals falling in the cell (j, k) of an R×C table from the ith cluster, where
i = 1, . . . , I, j = 1, . . . , R, k = 1, . . . , C, and πjk be the related cell probability. The total number of
individuals in the ith cluster is shown by ni and the intraclass correlation coefficient for clusters
including t = ni individuals is denoted by θt for t = 2, . . . , T, where T is the greatest family size and
θ1 = 0. For the events A = {All individuals in the ith cluster fall in the same cell of an R×C table
} and B = {Individuals are in different but specified cells}, the following probabilities are given by
Altham (1976):

P(A) = θtπjk + (1− θt)(πjk)
t (1)

and

P(B) = (1− θt)
R

∏
j=1

C

∏
k=1

(πjk)
nijk , (2)

where 0 ≤ θt ≤ 1. For 2× 2×K tables, equations (1) and (2) remain the same but i, j = 1, 2.

We utilize equations (1) and (2) to incorporate ICCs into the data generation process. We work
over clusters to generate data. For all sampling plans, the total sample size either entered or obtained
over randomly generated data is distributed across the clusters. Then, for the clusters with only one
individual, because there is no ICC affecting the individual, we randomly assign it to one of the cells
of the table taking the input vector of cell probabilities into account, π. For clusters with more than
one individual, we employ the following pseudocode algorithm to generate data under the given ICCs:

Algorithm 1.

1. Input θ, π, and number of individuals in each cluster by an M× 1 vector m;

2. Set i = 1 and goto step 3;

3. Generate all possible compositions of order R× C of cluster size mi into at most mi parts;

4. Write generated compositions to an r × ` matrix N, where r is the total number of possible
compositions;

5. For each composition nj, if ∑k njk = 0, compute the probability pj by equation (1), else if
∑k njk > 0, compute the probability pj by equation (2), for j = 1, . . . , r;

6. Normalize the series of probabilities, p, obtained at step 5 to construct a probability function;

7. Randomly select one of the compositions based on the probability function obtained at step 6.

8. Write selected composition to an `× 1 vector si and set i = i + 1;

9. If i ≤ M goto step 3, else return ∑i si.

In Algorithm 1, ` = R · C for R×C tables and ` = 4 for 2 × 2×K tables. We use the function
compositions from the package partitions (Hankin, 2006) to generate all possible compositions at the
step 3 of Algorithm 1. Each composition represents one of the possible allocations of individuals in a
cluster into target cells. For example, let us have 4 cells to distribute 5 individuals in a cluster. We run
the following code to get the 56× 4 matrix N:

> N <- t(compositions(5, 4, include.zero = TRUE))

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=partitions

CONTRIBUTED RESEARCH ARTICLES 50

The resulting output looks like

[1,] 5 0 0 0 [2,] 4 1 0 0 [3,] 3 2 0 0 [4,] 2 3 0 0 ...

The vector (5, 0, 0, 0) implies that all individuals in the cluster of interest fall in the first (same) cell
and corresponds to the event A, whereas the vector (2, 3, 0, 0) implies that 2 of 5 individuals fall in
the first and the rest fall in the second cell and represents the event B. At the step 6 of Algorithm
1, we normalize the set of probabilities that consists of the probability of each possible allocation
of individuals in the cluster of interest into the cells of table. By this way, we form a probability
distribution to generate one of the possible allocation randomly. Consequently, individuals in a cluster
of size more than one are distributed into the cells of the table by Algorithm 1. After application of
Algorithm 1 for all clusters, the grand total of generated cell counts produces a randomly generated
contingency table.

Structure of the rTableICC package

The package rTableICC consists of four main functions: rTableICC.RxC, rTableICC.2x2xK, rTable.RxC
and rTable.2x2xK; and an auxiliary function rDiscrete, which is also suitable for use individually. In
the general functioning of the package, first, main inputs are checked by an initial layer according
to the presence of ICCs and used sampling plan; and then the related function is called. In addition
to general checks, specific checks are done by the related function itself. Below, we describe the
processing of each function after the general check.

Generation of R×C tables with ICC

The function rTableICC.RxC is called to generate an R×C table with ICC. Algorithm 2 describes the
functioning of rTableICC.RxC.

Algorithm 2.

1. Input sampling plan, θ, π, total number of individuals N or mean number of individuals λ, and
total number of clusters M;

2. If sampling plan is multinomial goto step 3, product-multinomial goto step 7, and Poisson goto
step 15;

3. If any of inputs π and total number of individuals is not suitable then stop;

4. Distribute N individuals across M clusters with equal probabilities by rmultinom(1,N,rep(1/M,
M));

5. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop;

6. Employ Algorithm 1 with joint probabilities for all clusters and goto step 21;

7. If any of inputs π and row (column) margins is not suitable then stop;

8. Determine the fixed margin according to input parameters col.margin or row.margin and set
i = 1;

9. Calculate conditional probabilities regarding the fixed margin;

10. If conditional probabilities calculated over entered row margins and π are not equal to each
other then stop;

11. Distribute individuals in the ith row (column) across M clusters with equal probabilities by
using the multinomial distribution;

12. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop;

13. Employ Algorithm 1 with calculated conditional probabilities for all clusters and set i = i + 1;

14. If i ≤ R(C) goto step 10, else goto step 21;

15. If input λ is not suitable then stop;

16. Generate number of individuals in each cell by rpois(R * C,t(lambda));

17. Calculate cell probabilities and total number of individuals N;

18. Distribute N individuals across M clusters with equal probabilities by rmultinom(1,N,rep(1/M,
M));

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 51

19. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop, else goto step 20;

20. Employ Algorithm 1 with probabilities calculated at step 17 for all clusters;

21. Calculate desired output forms of generated table.

Suitability checks at steps 3, 7, and 15 are made on minimum and maximum values and dimen-
sions of input vectors. Because the total sample size, which is entered by the user for multinomial
sampling, randomly generated for Poisson sampling, and entered as a fixed row (column) margin for
product-multinomial sampling, is randomly distributed into the clusters, it is coincidentally possible to
have clusters with more individuals than the allowed maximum cluster size. In this case, the following
error message is generated:

Maximum number of individuals in one of the clusters is 14,which is greater than maximum
allowed cluster size. (1) Re-run the function,(2) increase maximum allowed cluster size
by increasing the number of elements of theta,(3) increase total number of clusters,or
(4) decrease total number of individuals!

and execution is stopped at steps 5, 12, and 19 of Algorithm 2.

For the product-multinomial sampling, suppose that row totals are fixed and ni+ denotes fixed row
margins. With the counts satisfying ∑j nij = ni+, we have the following multinomial form (Agresti,
2002):

ni+!
∏j nij!

∏
j

π
nij

j|i , (3)

where i = 1, . . . , R, j = 1, . . . , C, nij is the count of cell (i, j), and given that an individual is in the ith
row, πj|i is the conditional probability of being in the jth column of the table calculated at step 9 of
Algorithm 2. When column totals are fixed the same steps as in the case of fixed row totals are applied.

Let Λ be the set of clusters in which all individuals fall in a single cell of the contingency table and
Λ′ be the complement of Λ, and T be the maximum cluster size. Outputs of rTableICC.RxC include
two arrays in addition to the generated table. The first one, gt, is an R× C × (T − 1) dimensional
array including the number of clusters of size t in Λ′ with all individuals in cell (i, j); and the second,
g̃, is a (T − 1)× 1 dimensional vector including the number of clusters of size t in Λ′, where i, j = 1, 2
and t = 2, . . . , T. These arrays are required for further modeling purposes.

Generation of 2× 2×K tables with ICC

The function rTableICC.2x2xK is called to generate a 2× 2×K table with ICC. Algorithm 3 describes
the processing of rTableICC.2x2xK. We assume that we have K centers and a 2× 2 table under each
center. To generate a 2× 2×K table, rTableICC.2x2xK generates a 2× 2 table under each center.

Algorithm 3.

1. Input sampling plan, θ, π, total number of individuals N or mean number of individuals λ, and
total number of clusters Mk for k = 1, . . . , K under each center;

2. If sampling plan is multinomial goto step 3, product-multinomial goto step 9, and Poisson goto
step 16;

3. If any of inputs π and total number of individuals is not suitable then stop;

4. Distribute N individuals across ∑k Mk clusters with equal probabilities by rmultinom(1,N,
rep(1/sum(num.cluster),sum(num.cluster))) and store the results in a K× 1 vector c;

5. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop, else set k = 1;

6. Scale joint probabilities of the 2× 2 table under the kth center to make them sum-up to one;

7. Employ Algorithm 1 with scaled joint probabilities for all clusters of center k and set k = k + 1;

8. If k ≤ K goto step 6, else goto step 22;

9. If any of inputs π and center margins is not suitable then stop;

10. Calculate conditional probabilities regarding the fixed centers and set k = 1;

11. Scale conditional probabilities of step 10 under the kth center to make them sum-up to one;

12. Distribute individuals in the kth center across Mk clusters with equal probabilities by rmultinom(1,
N[k],rep(1/num.cluster[k],num.cluster[k]));

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 52

13. If the maximum number of individuals in one of the clusters is greater than the maximum
allowed cluster size then stop;

14. Employ Algorithm 1 with scaled conditional probabilities for all clusters of center k and set
k = k + 1;

15. If k ≤ K goto step 11, else goto step 22;
16. If input λ is not suitable then stop;
17. Generate number of individuals in each cluster by rpois(num.cluster[k],lambda[k]);
18. Calculate total number of individuals N over generated clusters at step 17;
19. Scale joint probabilities of the 2× 2 table under the kth center to make them sum-up to one;
20. If the maximum number of individuals in one of the clusters is greater than the maximum

allowed cluster size then stop;
21. Employ Algorithm 1 with probabilities calculated at step 19 for all clusters;
22. Calculate desired output forms of generated table.

Suitability checks at steps 3, 9, and 16 are made on minimum and maximum values and dimensions
of input vectors. For the incompatibility between generated and allowed maximum cluster sizes, the
same situation as the R×C case also applies to the 2× 2×K case. In this case, the same error message
is displayed and execution is stopped. For all sampling plans, rTableICC.2x2xK proceeds over each
center.

For product-multinomial sampling plan, suppose that center totals are denoted by nij+, where
i, j = 1, 2. Then with the counts satisfying ∑ij nijk = nij+, the following multinomial form is used
(Agresti, 2002):

nij+!

∏ij nijk! ∏
ij

p
nijk

ij|k , (4)

where k = 1, . . . , K, nijk is the count of cell (i, j, k), and given that an individual is in the kth center, pij|k
is the conditional probability of being in the cell (i, j) of the 2× 2 table. This multinomial form is used
to generate data under each center.

Arrays gt and g̃ are also included in the outputs of rTableICC.2x2xK. Here, gt and g̃ are respectively
2K× 2× (T − 1) and (T − 1)× 1 dimensional arrays. Their definitions are the same as R×C case.

Generation of R×C tables without ICC

The function rTable.RxC is used to generate an R×C table with independent individuals in sampling
units. In this function, the classical way of generating contingency tables over the probability distribu-
tion corresponding to the sampling plan is followed. The functioning of rTable.RxC is described in
Algorithm 4.

Algorithm 4.

1. Input sampling plan, π, and total number of individuals N or mean number of individuals λ;
2. If sampling plan is multinomial goto step 3, product-multinomial goto step 5, and Poisson goto

step 11;
3. If any of inputs π and total (mean) number of individuals is not suitable then stop;
4. Distribute N individuals across R×C cells by rmultinom(1,N,pi) and goto step 12;
5. If any of inputs π and row (column) margins is not suitable then stop;
6. Determine the fixed margin according to input parameters col.margin or row.margin and set

i = 1;
7. Calculate conditional probabilities regarding the fixed margin;
8. If conditional probabilities calculated over entered row margins and π are not equal to each

other then stop;
9. Distribute individuals in the ith row (column) across R (C) cells with conditional probabilities

using the multinomial distribution;
10. If i ≤ R(C) goto step 9, else goto step 13;
11. If input λ is not suitable then stop;
12. Generate number of individuals in each cell by rpois(R * C,t(lambda));
13. Calculate desired output forms of generated table.

Suitability checks at steps 3, 5, and 11 are made on minimum and maximum values and dimensions
of input vectors. For the product-multinomial sampling plan, the multinomial form in equation (3) is
used. Raw data corresponding to each individual are also generated among outputs of rTable.RxC.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 53

Generation of 2× 2×K tables without ICC

The function rTable.2x2xK is employed to generate a 2× 2×K table with independent individuals in
sampling units. The processing of rTable.2x2xK is described in Algorithm 5. Assume that we have
K centers and a 2× 2 table under each center. Similar to rTableICC.2x2xK, rTable.2x2xK generates a
2× 2 table under each center to obtain a 2× 2×K table.

Algorithm 5.

1. Input sampling plan, π, total number of individuals N or mean number of individuals λ;

2. If sampling plan is multinomial goto step 3, product-multinomial goto step 5, and Poisson goto
step 10;

3. If any of inputs π and total number of individuals is not suitable then stop;

4. Distribute N individuals across 2× 2× K cells with input probabilities by rmultinom(1,N,pi)
and goto step 12;

5. If any of inputs π and center margins is not suitable then stop, else set k = 1;

6. Calculate conditional probabilities for center k;

7. Scale conditional probabilities of step 6 under the kth center to make them sum-up to one;

8. Distribute individuals in the kth center across 2× 2 cells with scaled probabilities at step 7 by
using multinomial distribution and set k = k + 1;

9. If k ≤ K goto step 6, else goto step 12;

10. If input λ is not suitable then stop;

11. Generate number of individuals in each cell of 2× 2×K table by rpois(2 * 2 * K,lambda);

12. Calculate desired output forms of generated table.

Suitability checks at steps 3, 9, and 16 are made on minimum and maximum values and dimensions
of input vectors.The multinomial form in equation (4) is used for product-multinomial sampling plan.
It is possible to enter a mean number of individuals for each cell under Poisson sampling plan at step
11 of Algorithm 5 by entering an array for lambda. Raw data corresponding to each individual are also
generated among outputs of rTable.2X2XK.

Generation of random values from a discrete probability distribution

The function rDiscrete is used to generate a random value from an empirical probability distribution.
This function is called by both rTableICC.RxC and rTableICC.2x2xK. Implementation of rDiscrete is
explained by Algorithm 6.

Algorithm 6.

1. Input empirical probability function (pf) with N levels and number of observations to be
generated;

2. Check whether input probabilities sum to one and number of observations n is a finite positive
scalar;

3. Calculate cumulative distribution function (cdf), F, over the input pf;

4. Set Aj = (F(j− 1), F(j)), where j = 1, . . . , N, F(0) = 0, and i = 1;

5. Generate a random value u from Uniform(0, 1) distribution;

6. If u ∈ Aj than save j as the generated value and set i = i + 1;

7. If i ≤ n goto step 5;

8. Return the generated values.

rDiscrete returns an array of generated values and calculated cdf at step 3 of Algorithm 6.

Illustrative examples

To generate random R×C and 2× 2×K contingency tables with or without ICCs or generate random
numbers from empirical probability functions, first one has to load the package rTableICC by

> library(rTableICC)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 54

Then, the relevant function is called with proper inputs.

In the first example, we illustrate two important cases that generate errors and stop execution of
functions rTableICC.RxC and rTableICC.2x2xK. In the second and third examples, we demonstrate
outputs of rTableICC.2x2xK and rTableICC.RxC. In the fourth example, we exemplify rTable.RxC,
rTable.2x2xK, and rDiscrete functions.

Example 1

In this example, we illustrate two incompatibilities between generated and allowed maximum clus-
ter sizes and total number of individuals and number of clusters for functions rTableICC.RxC and
rTableICC.2x2xK.

When a user enters the value of intraclass correlation for each cluster size, the maximum allowed
cluster size is correspondingly defined. However, because rTableICC.RxC and rTableICC.2x2xK
distribute total sample size, which is entered or generated, among the given number of clusters, we
would have clusters with number of individuals greater than the maximum allowed cluster size. This
case should be regarded while entering the values of intraclass correlations, total or mean number of
individuals, and total number of clusters.

The following code attempts to generate a 2× 2×K contingency table with 3 centers under multi-
nomial sampling plan. Number of clusters under each sample is 25 and total number of individuals is
500. The maximum cluster size (max.cluster.size) is defined to specify the size of array including
ICCs. In this setting, it is highly possible to allocate more than 4 individuals in one of the clusters.

> num.centers <- 3
> sampl <- "Multinomial"
> max.cluster.size <- 4
> num.cluster <- 25
> num.obs <- 500
> ICCs <- array(0.1, dim = max.cluster.size)
> ICCs[1] <- 0
> cell.prob <- array(1/12, dim = c(num.centers, 4))
> x <- rTableICC.2x2xK(p = cell.prob, theta = ICCs, M = num.cluster, sampling = sampl,
+ N = num.obs)

When 500 individuals are distributed across 25 clusters, the maximum cluster size is realized as 14 >
max.cluster.size, as expected. Then, execution is stopped with the following error message:

Error in rtableICC.2x2xK.main(p, theta, M, sampling, N, lambda, print.regular, :
Maximum number of individuals in one of the clusters is 14, which is greater
than maximum allowed cluster size.

(1) Re-run the function,
(2) increase maximum allowed cluster size by increasing the number of

elements of theta,
(3) increase total number of clusters, or
(4) decrease total number of individuals!

Now, we change the settings to eliminate the error. rTableICC.2x2xK generates the desired table
when the total number of observations is decreased to 50, the total number of clusters is increased to
250, or the maximum cluster size is increased to 15 with the same inputs for the rest of the arguments.

User should ensure compatibility between the number of individuals and the total number
of clusters. When we run the code given above with num.obs <-50 and zero.clusters <-FALSE,
rTableICC.2x2xK tries to distribute 50 individuals to 75 clusters; and hence, the following error
message is generated:

Error in rtableICC.2x2xK.main(p, theta, M, sampling, N, lambda, zero.clusters, :
Because number of individuals is less than the total number of clusters, it is
impossible to allocate an individual to each cluster! Set zero.clusters = TRUE
and re-run the function.

The problem is eliminated when zero.clusters is set to TRUE.

Example 2

In this example, the output structure of rTableICC.2x2xK is illustrated. We run the code in Example 1
with num.centers <-2, num.obs <-50, and zero.clusters <-TRUE and call print(x). The following
part presents the summary information on the data generation process.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 55

Call:
rTableICC.2x2xK.default(p = cell.prob, theta = ICCs, M = num.cluster,

sampling = sampl, N = num.obs, zero.clusters = TRUE, print.regular = TRUE,
print.raw = FALSE)

Process summary:

100 observations in 2 centers were successfully generated under Multinomial
sampling plan! Number of clusters for each center is as the following:
25 for Center 1
25 for Center 2

17 clusters include no individual.
21 clusters include one individual.
12 clusters include more than one individual.

Because the multinomial distribution is used to distribute the total sample size across the clusters,
there are some clusters with no individuals, as reported in the process summary. Because probabilities
used to represent intraclass correlations in equations (1) and (2) change according to cluster size, we
report the number of clusters containing one and more than one individuals in the process summary.

The following part of the output includes gt, g̃, and the generated table in two and three dimen-
sions.

The number of t sized clusters in the set of clusters in which all individuals fall
in cell (j,k) for j,k=1,2:

g.t =
, , Cluster of size 2

C- 1 C- 2
Center- 1 R- 1 0 2
Center- 1 R- 2 1 2
Center- 2 R- 1 1 0
Center- 2 R- 2 0 1
, , Cluster of size 3

C- 1 C- 2
Center- 1 R- 1 1 1
Center- 1 R- 2 0 0
Center- 2 R- 1 0 1
Center- 2 R- 2 0 0
, , Cluster of size 4

C- 1 C- 2
Center- 1 R- 1 0 0
Center- 1 R- 2 0 0
Center- 2 R- 1 0 0
Center- 2 R- 2 0 1

The number of clusters of size t outside the set of clusters in which all individuals
fall in a single cell: g.tilde = (0 1 0)

Generated random table in two dimensions :
R1C1 R1C2 R2C1 R2C2

Center- 1 4 10 7 7
Center- 2 3 5 5 9

Generated random table in three dimensions :
, , Center- 1

C- 1 C- 2
R- 1 4 10
R- 2 7 7
, , Center- 2

C- 1 C- 2
R- 1 3 5
R- 2 5 9

To illustrate the output raw data format, we run the following code:

> num.centers <- 3

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 56

> num.cluster <- 5
> num.obs <- 10
> ICCs <- array(0.1, dim = 4)
> ICCs[1] <- 0
> cell.prob <- array(1/12, dim = c(num.centers, 4))
> x <- rTableICC.2x2xK(p = cell.prob, theta = ICCs, M = num.cluster,
+ sampling = "Multinomial", N = num.obs)

The resulting raw data output given below is printed as a three dimensional array. The first dimension
includes observations, the second dimension has 2K elements simultaneously representing rows of
each 2× 2 table and each center, and the third dimension corresponds to the columns of each 2× 2
table. Elements of the second dimension correspond to cells in (row-1, center-i), (row-2, center-i), for
i = 1, . . . , K, respectively; hence, it has 2K elements. Those of the third dimension correspond to the
first and second columns of each 2× 2 table, respectively.

Generated random table in raw data format =
, , 1

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 0 0 0
[2,] 0 0 0 0 0 0
[3,] 1 0 0 0 0 0
...
[10,] 0 0 0 0 0 0
, , 2

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 0 0
[2,] 1 0 0 0 0 0
[3,] 0 0 0 0 0 0
...
[10,] 0 0 0 0 1 0

Example 3

The output structure of rTableICC.RxC is similar to that of rTableICC.2x2xK. We run the following
code to generate a 2× 3 contingency table under a product multinomial sampling plan with fixed row
margins, zero clusters being not allowed, and cell probabilities being in accordance with the entered
counts of fixed margin.

> num.cluster <- 12
> ICCs <- array(0.1, dim = 9)
> ICCs[1] <- 0
> num.obs <- 24
> zeros <- FALSE
> sampl <- "Product"
> row <- c(12, 12)
> cell.prob <- array(0, dim = c(2, 3))
> cell.prob[1, 1:2] <- 0.2
> cell.prob[1, 3] <- 0.1
> cell.prob[2, 1:2] <- 0.1
> cell.prob[2, 3] <- 0.3
> y <- rTableICC.RxC(p = cell.prob, theta = ICCs, row.margins = row, M = num.cluster,
+ sampling = sampl, zero.clusters = zeros, print.regular = TRUE,
+ print.raw = FALSE)
> print(y)

In the output of rTableICC.RxC, first the following summary table is generated. Coincidentally, there
is no cluster with more than one individual. Clusters are enforced to contain at least one individual.

Call:
rTableICC.RxC.default(p = cell.prob, theta = ICCs, M = num.cluster,

row.margins = row, sampling = sampl, zero.clusters = zeros,
print.regular = TRUE, print.raw = FALSE)

Process summary:

24 observations in 12 12 clusters were successfully generated under Product

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 57

multinomial sampling plan!
Each cluster includes at least one individual.
12 clusters include one individual.
0 clusters include more than one individual.

In the output, the vector gt is printed in R× C format for each cluster size. The vector g̃ is printed
as a vector and the generated table is printed in both R× C and row formats. Because there is no
cluster with more than one individual, gt and g̃ are both composed of zeros.

The number of t sized clusters in the set of clusters in which all individuals fall in
cell (j,k) for j=1,...,R and k=1,...,C: g.t =

, , Cluster of size 2
C- 1 C- 2 C- 3

R- 1 0 0 0
R- 2 0 0 0
...
, , Cluster of size 9

C- 1 C- 2 C- 3
R- 1 0 0 0
R- 2 0 0 0

The number of clusters of size t outside the set of clusters in which all individuals
fall in a single cell: g.tilde = (0 0 0 0 0 0 0 0)

Generated random table in row format = (5 4 3 3 3 6)

Generated random table in RxC format =
C- 1 C- 2 C- 3

R- 1 5 4 3
R- 2 3 3 6

Example 4

In this example, we run a couple of codes to illustrate random contingency table generation without
ICCs. Besides, we show outputs of the function rDiscrete.

The following code generates and prints a random 5× 7 contingency table under multinomial
sampling plan with 124 observations and equal cell probabilities.

> num.row <- 5
> num.col <- 7
> sampl <- "Multinomial"
> cell.prob <- array(1/35, dim = c(num.row, num.col))
> num.obs <- 124
> x <- rTable.RxC(p = cell.prob, sampling = sampl, N = num.obs)
> print(x)

The corresponding output of rTable.RxC is as follows. After a brief summary, the generated table is
printed.

Call:
rTable.RxC.default(p = cell.prob, sampling = sampl, N = num.obs)

Process summary:

124 observations across 5 rows and 7 columns were successfully generated under
Multinomial sampling plan!

Generated random table in RxC format =
C- 1 C- 2 C- 3 C- 4 C- 5 C- 6 C- 7

R- 1 4 2 3 4 5 4 4
R- 2 4 5 5 5 5 5 4
R- 3 4 1 5 3 3 2 3
R- 4 2 1 1 6 4 3 3
R- 5 2 1 4 5 7 2 3

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 58

The following code is run to randomly generate a 2 × 2×3 contingency table under Poisson
sampling plan with determined mean number of individuals for each cell.

> num.centers <- 3
> sampl <- "Poisson"
> cell.mean <- array(3, dim = c(2, 2, num.centers))
> z <- rTable.2x2xK(sampling = sampl, lambda = cell.mean)
> print(z)

Consequently, 31 observations were generated under 3 centers.

Call:
rTable.2x2xK.default(sampling = sampl, lambda = cell.mean)

Process summary:

31 observations in 3 centers were successfully generated under Poisson sampling plan!

Generated random table in 2x2xK format =

, , Center- 1
C- 1 C- 2

R- 1 1 0
R- 2 2 4
, , Center- 2

C- 1 C- 2
R- 1 6 3
R- 2 2 4
, , Center- 3

C- 1 C- 2
R- 1 2 3
R- 2 2 2

To generate random values from an empirical probability function, we call rDiscrete. We run the
following code to generate two random values from a given probability function:

> p <- c(0.23, 0.11, 0.05, 0.03, 0.31, 0.03, 0.22, 0.02)
> rDiscrete(n = 2, pf = p)

Consequently, the generated random values and corresponding cdf are printed.

$rDiscrete
[1] 1 7

$cdf
[1] 0.00 0.23 0.34 0.39 0.42 0.73 0.76 0.98 1.00

Performance

The package rtableICC is intended to be used in combinaion with other code that implements Monte
Carlo simulation. Therefore, the computational performance of rtableICC is of importance. We
investigate running times of functions in rtableICC under various combinations of table structure,
sample size, and sampling plan. Tables 1 and 2 show test conditions of each function of rtableICC
related with 2× 2×K and R×C contingency tables, respectively. The value of ICC is taken as 0.1 for
all cluster sizes and related functions. Each test combination was repeated 5 times and mean and
variance of the running times were recorded. Because of the obtained small variances, 5 replications
were found sufficient. The maximum number of allowed clusters was taken high enough to have the
code successfully run through. In the rTableICC.2x2xK and rTableICC.RxC functions, the argument
zero.clusters was set to TRUE to allow clusters with no individuals. Note that when zero.clusters
is set to FALSE, we get shorter mean running times. All the combinations were run on a MAC-Pro
computer equipped with 6 Intel(R) Xenon(R) CPU E5-1650 v2 at 3.5GHz, 16 GB of RAM, and Windows
8.1 operating system.

For multinomial, Poisson, and product multinomial sampling plans, scatter plots representing
the mean running times of rTableICC.2x2xK according to some of the considered factors are given in
Figure 1. Due to the small variances within repetitions, plots are drawn only for the mean running
times.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 59

Plan N. of Observations N. of Centers N. of Clusters Cell Mean Center Margins

rTableICC.2x2xK Mult. 10, 25, 50, . . . , 2 · 103 2, 4, . . . , 100 5, 6, . . . , 100 — —
rTable.2x2xK Mult. 10, 25, 50, . . . , 2 · 104 2, 4, . . . , 20 — — —

rTableICC.2x2xK Poi. — 2, 4, . . . , 20 5, 10, . . . , 100 1, 2, . . . , 10 —
rTable.2x2xK Poi. — 2, 4, . . . , 50 — 0.5, 1, . . . , 50 —

rTableICC.2x2xK Pro. — 2, 4, . . . , 20 5, 10, . . . , 100 — 5, 10, . . . , 200
rTable.2x2xK Pro. — 2, 4, . . . , 50 — — 5, 10, . . . , 500

N: Number; Mult: Multinomial; Poi: Poisson; Pro: Product Multinomial; Plan: Sampling plan.

Table 1: Test conditions for the rTableICC.2x2xK and rTable.2x2xK functions.

Plan N. of Obs. N. of Rows N. of Columns N. of Clusters Cell Mean Row Margins

rTableICC.RxC Mult. 10, 20, . . . , 200 2, 3, . . . , 5 R, R + 1, . . . , 5 5, 10, . . . , 100 — —
rTable.RxC Mult. 25, 50, . . . , 104 2, 3, . . . , 20 R, R + 1, . . . , 20 — — —

rTableICC.RxC Poi. — 2, 3, . . . , 5 R, R + 1, . . . , 20 15, 20, . . . , 100 1, 2, . . . , 7 —
rTable.RxC Poi. — 2, 3, . . . , 20 R, R + 1, . . . , 20 — 0.5, 1, . . . , 10 —

rTableICC.RxC Pro. — 2, 3, . . . , 5 R, R + 1, . . . , 5 20, 25, . . . , 40 — 20, 25, . . . , 200
rTable.RxC Pro. — 2, 3, . . . , 10 R, R + 1, . . . , 10 — — 5, 10, . . . , 2000
N: Number; Mult: Multinomial; Poi: Poisson; Pro: Product Multinomial; Obs: Observations; Plan: Sampling plan.

Table 2: Test conditions for the rTableICC.RxC and rTable.RxC functions. The number of columns
starts from number of rows denoted by R under number of columns.

For the multinomial sampling plan, the scatter plot of mean implementation time versus number
of observations colored according to number of clusters is very similar to the one given in panel (a) of
Figure 1. For the Poisson sampling plan, the scatter plot of mean running time versus mean number of
observations in each cell colored according to number of centers is very similar to the one given in
panel (b) of Figure 1. For the product multinomial sampling plan, the scatter plot of mean running
time versus fixed row totals colored according to number of centers is very similar to the one given in
panel (c) of Figure 1. Therefore, these plots are omitted here.

Under the multinomial sampling plan, the mean running time for rTableICC.2x2xK is equally
affected by number of clusters and number of centers. The number of observations has the primary
effect on mean running time. We have long mean running times even for small number of clusters
or number of centers if the number of observations is large. Smaller mean running times with high
number of centers were recorded for small number of clusters and vice versa. Due to high running
times in a small portion of test combinations, the overall distribution of times is right-skewed. The
overall median of mean running times is 0.589 seconds with overall median variance of 0.002 and 75%
of the mean running times are less than 0.945 seconds over the test combinations. Under the Poisson
sampling plan, the mean running time of rTableICC.2x2xK increases along with the mean number of
observations in each cell. We have high running times for greater number of clusters. The same case is
also seen for greater number of centers. The mean number of observations in each cell is the dominant
factor on implementation time. The overall distribution of mean running times is right-skewed. The
overall median of mean running times is 1.109 seconds with overall median variance of 0.016 and 75%
of the mean running times are less than 2.793 seconds over the test combinations. Under the product
multinomial sampling plan with fixed row margins, the mean running time for rTableICC.2x2xK
increases with increasing number of observations in each fixed margin. Also, we have longer running
times for both greater number of centers and number of clusters. Rarely, it is also possible to have
long running times for a moderate number of clusters or a moderate number of centers. The number
of observations in the fixed margins has the primary effect on the mean running time. The overall
distribution of mean running times is highly right-skewed due to the outlier value seen in panel (c) of
Figure 1. The overall median of mean running times is 0.528 seconds with overall median variance of
0.002 and 75% of the mean running times are less than 1.065 seconds over the test combinations.

When the function rTable.2x2xK was run under the multinomial sampling plan with correspond-
ing test combinations given in Table 1, all of the mean running times were less than 10−6 with overall
median variance less than 10−8. Therefore, there is no identifiable effect of the test factors on the
running time of rTable.2x2xK; and hence, no plots are provided for the mean running times of
rTable.2x2xK. It is possible to record higher running times with a greater number of observations or
number of centers. However, setting these parameters to such large values is unreasonable. For the
Poisson sampling plan, the maximum mean implementation time over all of the corresponding test
combinations in Table 1 is 0.013 seconds. The effect of the number of centers on running time is unob-
servable. The overall median of mean running times is less than 10−6 seconds and the overall average
of mean running times is 0.001 seconds with overall median variance less than 10−8. This is due to
the nature of the Poisson distribution where in some runs we have a great number of observations in
some cells. A similar situation is also seen for the product multinomial sampling plan. Overall the
maximum mean running time is 0.013 seconds, the overall average of mean running times is 0.002

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 60

(a)

(b)

(c)

Figure 1: Performance of the rTableICC.2x2xK function under multinomial, Poisson, and product
multinomial sampling plans. Panels (a) and (c) represent mean running time versus number of obser-
vations colored according to number of centers for the multinomial and product multinomial sampling
plans, respectively. Panel (c) represents mean running time versus mean number of observations in
each cell colored according to number of clusters for the Poisson sampling plan.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 61

seconds with overall median variance less than 10−8. The effect of the number of centers is negligible.

For the function rTableICC.RxC, plots of mean implementation time versus number of observa-
tions and number of clusters colored by number of rows under multinomial, Poisson, and product
multinomial samplings are given in Figure 2. Corresponding plots colored by number of columns are
very similar to those seen in Figure 2; hence, they are omitted here. For the multinomial sampling plan,
mean running times are severely affected by both increasing number of observations and increasing
number of rows. However, this is not seen for an increasing number of clusters. We have long mean
running times for moderate and small number of clusters. Number of rows (columns) and number
of observations are mainly impactful on the running time of rTableICC.RxC under the multinomial
sampling plan. For the multinomial sampling plan, the overall average of mean running times is
21.312 seconds with median variance of 0.015. The overall median of mean running times is 0.515
seconds, their distribution is highly right-skewed, and 75% of the mean running times are less than
2.999 seconds. For the Poisson sampling plan, the mean running time is mainly affected by the mean
number of observations in each cell. Because of the nature of the Poisson distribution, it is possible
to obtain long running times even for small number of rows (columns) or clusters. Therefore, we
limited the mean number of observations in each cell by 7 in test combinations. The overall average
of mean running times is 8.419 seconds with median variance less than 10−8. The overall median of
mean running times is 0.047 seconds, their distribution is highly right-skewed, and 75% of the mean
running times are less than 0.307 seconds. For the product multinomial sampling plan, the running
time is mainly affected by both fixed row counts and number of rows (columns). It is possible to have
long running times even for smaller number of clusters if row counts are high. The overall average of
mean running times is 0.198 seconds with median variance of 1.33 · 10−4. The overall median of mean
running times is 0.147 seconds, their distribution is right-skewed, and 75% of the mean running times
are less than 0.263 seconds.

For the function rTable.RxC, we have similar results than for rTable.2x2xK. Under multinomial,
Poisson, and Product multinomial sampling plans, the overall averages of mean running times are
0.00007, 0.001, and 0.001 with overall median variances less than 108, 1.92 · 10−5, and 1.86 · 10−5,
respectively. The overall medians of mean running times are all less than 10−6. Because we have
several outliers in the Poisson and product multinomial sampling plans, the overall average mean
running times are greater than 10−4. Due to these numerical results, we cannot identify a significant
effect of neither number of rows or columns nor number of observations in cells on the performance
of rTable.RxC.

In conclusion, the performance of the functions generating tables without ICC is better than those
generating tables with ICCs. Running times of both rTable.2x2xK and rTable.RxC are not notably
affected by the values of their arguments and short enough to be used in combination with other
Monte Carlo simulation algorithms. Running times of both rTableICC.2x2xK and rTableICC.RxC are
severely affected by the process carried out by the function compositions of the package partitions.
Therefore, their running times are sensitive to inputs and, in general, affected by the total number of
individuals to be generated. If generation of a table with a very large total number of individuals is
intended, a smaller number of individuals can be generated by a proper scaling on the number of
individuals in each cell.

Summary

In this article, we introduced the R package rTableICC to generate 2×2×K and R×C contingency
tables with and without intraclass-correlated individuals. We described a new approach implemented
in functions rTableICC.2x2xK and rTableICC.RxC for the generation of tables under the presence of
intraclass correlations between individuals. Also, we described the function rDiscrete for random
number generation from empirical probability functions. We provided detailed algorithms working
behind the functions and illustrated use and input-output structures of functions in rTableICC by
numerical examples. Then, we conducted a detailed performance analysis over mean running times
of functions rTableICC.2x2xK, rTable.2x2xK, rTable.RxC, and rTableICC.RxC. In the performance
analysis, we obtained very short running times for the functions rTable.2x2xK and rTable.RxC, and
reasonable running times for the functions rTableICC.2x2xK and rTableICC.RxC.

As a limitation, when there is ICCs between individuals and the number of rows or columns is
greater than 5, functions rTableICC.2x2xK and rTableICC.RxC may require long running times based
on the total number of individuals to be generated. The cause of this situation is the execution time
required by the compositions function of the package partitions. To overcome this limitation, we are
planning to decrease complexity of some inner loops of both rTableICC.2x2xK and rTableICC.RxC
functions in forthcoming versions of rTableICC.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 62

(a) (b)

(c) (d)

(e) (f)

Figure 2: Performance of the rTableICC.RxC function under considered sampling plans. Panel (a)
shows mean running time versus number of observations colored by number of rows for the multi-
nomial sampling plan. Panel (c) shows mean running time versus mean number of observations in
each cell colored by number of rows for the Poisson sampling plan. Panel (e) shows mean running
time versus fixed row counts colored by number of rows for the product multinomial sampling plan.
Panels (b), (d), and (f) represent mean running time versus number of clusters colored by number of
rows for the multinomial, Poisson, and product multinomial sampling plans, respectively.

Bibliography

A. Agresti. Categorical Data Analysis. Wiley, New York, 2nd edition, 2002. [p48, 51, 52]

P. Altham. Discrete variable analysis for individuals grouped into families. Biometrika, 63:263–269,
1976. [p48, 49]

J. Bi and C. Kuesten. Intraclass correlation coefficient (ICC): A framework for monitoring and assessing
performance of trained sensory panels and panelists. Journal of Sensory Studies, 27:352–364, 2012.
[p48]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 63

Y. Bishop, S. Fienberg, and P. Holland. Discrete Multivariate Analysis: Theory and Practice. The MIT
Press, Cambridge, 1975. [p48]

C. Borkowf. On multidimensional contingency tables with categories defined by the empirical
quantiles of the marginal data. Journal of Statistical Planning and Inference, 91:33–51, 2000. [p48]

J. Cohen. The distribution of the chi-squared statistic under clustered sampling from contingency
tables. Journal of the American Statistical Association, 71:665–670, 1976. [p48]

H. Demirhan. Bayesian estimation of log odds ratios over two way contingency tables with intraclass
correlated cells. Journal of Applied Statistics, 40:2303–2316, 2013. [p48]

H. Demirhan. rTableICC: Random Generation of Contingency Tables, 2015. URL https://CRAN.R-project.
org/package=rTableICC. R package version 1.0.3. [p48]

H. Demirhan and C. Hamurkaroglu. Bayesian estimation of log odds ratios from R× C and 2× 2× K
contingency tables. Statistica Neerlandica, 62:405–512, 2008. [p48]

R. K. S. Hankin. Additive integer partitions in R. Journal of Statistical Software, 16:1–3, May 2006. doi:
10.18637/jss.v016.c01. [p49]

B. Nandram and J. Choi. Bayesian analysis of a two way categorical table incorporating intraclass
correlation. Journal of Statistical Computation and Simulation, 76:233–249, 2006. [p48]

W. Patefield. Algorithm AS159. An efficient method of generating R× C tables with given row and
column totals. Applied Statistics, 30:91–97, 1981. [p48]

Haydar Demirhan
Hacettepe University
Department of Statistics, Beytepe 06800 Ankara
Turkey
haydarde@hacettepe.edu.tr

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=rTableICC
https://CRAN.R-project.org/package=rTableICC
mailto:haydarde@hacettepe.edu.tr

CONTRIBUTED RESEARCH ARTICLES 64

Maps, Coordinate Reference Systems and
Visualising Geographic Data with
mapmisc
by Patrick E. Brown

Abstract The mapmisc package provides functions for visualising geospatial data, including fetching
background map layers, producing colour scales and legends, and adding scale bars and orientation
arrows to plots. Background maps are returned in the coordinate reference system of the dataset
supplied, and inset maps and direction arrows reflect the map projection being plotted. This is a “light
weight” package having an emphasis on simplicity and ease of use.

Introduction

R has extensive facilities for managing, manipulating, and visualising spatial data, with the sp
(Pebesma and Bivand, 2005) and raster (Hijmans, 2015b) packages providing a set of object classes and
core functions which numerous other packages have built on. It is fairly straightforward to import
spatial data of a variety of types and from a range of sources including: images for map backgrounds;
high-resolution pixel grids of surface elevation; and polygons of administrative region boundaries.
Large volumes of such data are available for download from sites such as worldgrids.org, gadm.org,
and nhgis.org, and map images are freely available from OpenStreetMap.org and other online maps.
The first issue often encountered after downloading and importing spatial data is reconciling different
coordinate reference systems (CRS’s, or map projections). Most repositories of spatial data provide
longitude-latitude coordinates, although single-country data sources often use a country-specific
map projection (i.e. the UK’s Ordinance Survey National Grid) and online maps mostly use the Web
Mercator projection. The suitability of a particular map projection will depend on the geographic
region being considered and the specific problem at hand.

The mapmisc package (Brown, 2016) provides tools for working with projected data which cover
the following four areas:

• producing maps with projected data, including scale bars, background images, and inset maps;

• defining and using equal-area map projections for displaying the entire globe;

• creating optimal region-specific map projections where distances are preserved; and

• mapping with colour scales for continuous and categorical data.

This paper will cover each of these points in turn, working through examples and briefly describing
the operations by the functions in the mapmisc package. An emphasis is given to tidy, intuitive, and
reproducible code accessible for students and non-specialists.

Installation and related packages

The two most important packages required for using spatial data in R are the sp and raster packages,
which provide tools and classes for vector data (spatial data on a continuous domain) and raster data
(defined on a pixelated grid) respectively. Installing mapmisc with install.packages("mapmisc")
or by using a menu item on a GUI will install sp and raster if they are not already present. A third
important spatial package is rgdal (Bivand et al., 2016), which provides methods for re-projecting
coordinates and importing spatial data in various file formats. The Geographic Data Abstraction
Language (GDAL) underlies rgdal, aligning with R’s UNIX-like philosophy of combining separate
and specialised pieces of software. On most UNIX-based systems, the GDAL and proj4 software must
be installed separately prior to installing rgdal. All versions of Windows and most versions of MacOS
have binary versions of rgdal which include the GDAL and proj4 binaries, and rgdal can be installed
in the same manner as any other R package.

Additional packages used by mapmisc are: RColorBrewer (Neuwirth, 2014), classInt (Bivand,
2015), rgeos (Bivand and Rundel, 2016), and geosphere (Hijmans, 2015a). These four packages
and rgdal are not always installed automatically with mapmisc, as they are marked as “suggested”
packages with mapmisc being usable with a reduced level of functionality without them. Three
further packages necessary for reproducing the examples in this paper are dismo (Hijmans et al., 2016),
maptools (Bivand and Lewin-Koh, 2016), and R.utils (Bengtsson, 2016).

Loading the packages with

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=sp
http://CRAN.R-project.org/package=raster
http://worldgrids.org
http://gadm.org
http://nhgis.org
http://openstreetmap.org
http://CRAN.R-project.org/package=mapmisc
http://CRAN.R-project.org/package=rgdal
http://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/package=classInt
http://CRAN.R-project.org/package=rgeos
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=dismo
http://CRAN.R-project.org/package=maptools
http://CRAN.R-project.org/package=R.utils

CONTRIBUTED RESEARCH ARTICLES 65

library("rgdal")
library("mapmisc")

also makes sp and raster available. The remaining packages do not need to be loaded explicitly and
will be called by mapmisc as needed.

Getting started with spatial data in R

The getData function provided by raster is able to download a number of useful and interesting
spatial datasets. The coastline and borders of Finland can be fetched with

finland <- raster::getData("GADM", country = "FIN", level = 0)

The object finland is a “SpatialPolygonsDataFrame”, and Bivand et al. (2013) contains a wealth of
information on working with objects of this type. The command

plot(finland, axes = TRUE)

produces the plot in Figure 1a.

The choice of Finland as an example is due to its being far from the equator, and a useful contrast
on the other side of the world is New Zealand. The coastline of New Zealand, obtained with

nz <- raster::getData("GADM", country = "NZL", level = 0)

includes a number of small outlying islands. The spatial extent of the nz object,

raster::extent(nz)

class : Extent
xmin : -179
xmax : 179
ymin : -52.6
ymax : -29.2

spans the entire globe in the x-direction since New Zealand has islands on both sides of the 180◦

meridian. Finding an appropriate axis limit through trial and error brings one to

plot(nz, xlim = c(167, 178), axes = TRUE)

and the map in Figure 1b.

The outlying islands can be removed from the nz object using the crop function in the raster
package, which in turn calls rgeos. Using the locator function and a few iterations of trial and error
leads to the discovery that a region spanning 160 to 180 degrees longitude and −47 to −30 degrees
latitude boxes in the main islands of New Zealand fairly tightly. The parts of New Zealand contained
within this box can be extracted by creating an extent object and passing it to crop.

nzClip <- raster::crop(nz, extent(160, 180, -47, -30))

The finland and nzClip objects will be used in the mapping examples which follow.

Working with map projections

This section covers mapping projected data and defining customised map projections. Adding
background images, scale bars, and inset maps to plots with the map.new, openmap, scaleBar, and
insetMap functions is demonstrated in the production of Figure 2. Map projections suitable for
displaying the entire globe are constructed with the moll function, and along with the wrapPolys
function Figure 5 is made. Map projections where Euclidean distances from x-y coordinates are useful
approximations of shortest distances between points on the globe are obtained with the omerc function
and used to produce Figure 7.

Spatial data with coordinate reference systems

The spatial coordinates in Figures 1a and 1b are angles of longitudes and latitudes; coordinates
which would be equivalent to the two angles of the spherical coordinate system (ρ, θ, φ) familiar
to mathematicians were it not for the inconvenient fact that the Earth is not spherical. The Earth is
rather an oblate spheroid, slightly “squashed” or pumpkin-shaped, and the angles of orientations
of lines pointing directly “up” (with reference to the stars) and “down” (as defined by a plumb line

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 66

pulled straight by gravity) differ. As a result, various types of long-lat coordinates are in use, with the
World Geodesic System (WGS84) used by Global Positioning Systems being the most widespread. The
European Petroleum Standards Group (EPSG) catalogue of Coordinate Reference Systems (or CRS’s)
refers to this system by the code 4326, and this code can be used to create an R object of class “CRS”
corresponding to the WGS84 system using the CRS function from the sp package.

sp::CRS("+init=epsg:4326")

CRS arguments:
+init=epsg:4326 +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
+towgs84=0,0,0

The syntax of +argument=value for specifying a CRS comes from the PROJ.4 Cartographic Projec-
tions Library, with +proj=longlat indicating coordinates are angles and ellps=WGS84 specifying
that the Earth is an ellipsoid with values of the major axis length, minor axis length, and flattening
corresponding to the WGS84 specification.

The difficulty angular coordinates pose for interpreting maps or using spatial statistics is that
Euclidean distance

√
x2 + y2 is not always a useful measure of the distance separating two points.

The shortest route between two points on a sphere follows a Great Circle which divides the globe
into two equal halves. The distance between two points along this path, the Great Circle distance
(see Wikipedia, 2015a), can be computed with a trigonometric formula as implemented in the spDists
function in sp. Euclidean distance will be roughly proportional to Great Circle distance for two
points near the equator and reasonably close to one another. In Finland and New Zealand, however,
Euclidean distance will over-emphasise the east-west direction since one degree of longitude is a much
shorter distance (in kilometres) than one degree of latitude. It is for this reason that Greenland appears
larger than India on many maps even though the opposite is true. Most R packages which perform
spatial analyses rely on Euclidean distance, including this author’s geostatsp (Brown, 2015), even
though Great Circle distance would be straightforward to implement. Fitting a spatial model with
geostatsp to data in long-lat coordinates from Finland might uncover directional effects with strong
correlation in the east-west direction, which could well be an artefact arising from the over-estimation
of east-west distances. The importance of transforming spherical coordinates to a coordinate system
where the Euclidean distance is a reasonable approximation to the Great Circle distance should not be
under-estimated.

Most countries have an “official” CRS which produces accurate Euclidean distances for specific
areas of the globe, one of which is the Finland Uniform Coordinate System having EPSG code 2393.
This projection is obtained in R by CRS with

CRS("+init=epsg:2393")

CRS arguments:
+init=epsg:2393 +proj=tmerc +lat_0=0 +lon_0=27 +k=1 +x_0=3500000 +y_0=0
+ellps=intl +towgs84=-96.062,-82.428,-121.753,4.801,0.345,-1.376,1.496
+units=m +no_defs

This is a Transverse Mercator projection (+proj=tmerc) with x and y coordinates giving positions on
a cylinder containing the earth. The entry +lon_0=27 indicates that the cylinder touches the Earth
along the 27◦ meridian line. Provided two points are reasonably close to the 27◦ meridian, Euclidean
distance between their Finland Uniform Coordinates will be very close to the true distance between
them. The map of Finland can be converted to this coordinate system using spTransform from sp and
rgdal with

finlandMerc <- spTransform(finland, CRS("+init=epsg:2393"))

Figure 1c is the result of plotting this object with plot(finlandMerc,axes = TRUE). Notice the
projected map has a wider base and narrower top than the long-lat map in Figure 1a. The coordinates
in Figure 1c refer to an origin where the 27◦ meridian intersects the equator, with the +x_0= argument
above indicating that 3,500km are added to the x coordinates.

Cylindrical map projections can be constructed from any cylinder containing the Earth, and there
is no mathematical requirement to use one of the standard transverse Mercator projections with an
EPSG number. For example, a given user might consider the point (170◦E, 45◦S) to be an intuitive
location for the origin of the transformed map of New Zealand, and thus decide to define a custom
CRS with this centre. The cylinder can follow any Great Circle, it need not be a meridian line, and a
Great Circle angled 40◦ clockwise would run the length of the two islands. Cylindrical projections with
an angle are termed Oblique Mercator projections (see Snyder, 1987, page 66), and can be constructed
with the assistance of mapmisc’s omerc function. A custom projection with the (170◦E, 45◦S) origin
and a 40◦ rotation is obtained by

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://github.com/OSGeo/proj.4/wiki
https://github.com/OSGeo/proj.4/wiki
http://CRAN.R-project.org/package=geostatsp
http://spatialreference.org/ref/epsg/2393

CONTRIBUTED RESEARCH ARTICLES 67

20°E 25°E 30°E 35°

60
°N

62
°N

64
°N

66
°N

68
°N

70
°N

(a) Finland,
Longitude-Latitude

165°E 170°E 175°E 180°

50
°S

45
°S

40
°S

35
°S

30
°S

(b) New Zealand,
Longitude-Latitude

3200000 360000066
00

00
0

70
00

00
0

74
00

00
0

78
00

00
0

(c) Finland Transverse
Mercator

−6e+05 −2e+05 2e+05

−
2e

+
05

2e
+

05
6e

+
05

1e
+

06

(d) New Zealand,
Oblique Mercator

Figure 1: Basic maps of Finland and New Zealand in different Coordinate Reference Systems.

nzCrs <- omerc(c(170, -45), angle = 40)
nzCrs

CRS arguments:
+proj=omerc +lat_0=-45 +lonc=170 +alpha=40 +k=1 +x_0=0 +y_0=0 +gamma=0
+ellps=WGS84 +units=m

The difference between the above and the projection for Finland is the omerc in place of tmerc, with
the additional argument +alpha=40 specifying an angle. The New Zealand coastline can be projected
to this CRS with spTransform.

nzRot <- spTransform(nzClip, nzCrs)

Figure 1d results from executing plot(nzRot,axes = TRUE), and New Zealand has been rotated 40◦

to a vertical position.

Finding a projection

When choosing a map projection for a dataset, a simple web search of a phrase such as “map projection
finland epsg” will often give clear advice as to what the most commonly used national CRS is. A
number of tools in rgdal can be used to obtain a projection in a more systematic manner. Below
the make_EPSG function creates a table of all EPSG coded CRS’s which rgdal supports, and a grep
command used to show all those projections with “Finland” in its description. The resulting list of
projections below confirms that 2393 is a sensible choice.

allEpsg <- rgdal::make_EPSG()
allEpsg[grep("Finland", allEpsg$note), 1:2]

code note
859 2391 # KKJ / Finland zone 1
860 2392 # KKJ / Finland zone 2
861 2393 # KKJ / Finland Uniform Coordinate System
862 2394 # KKJ / Finland zone 4
1853 3386 # KKJ / Finland zone 0
1854 3387 # KKJ / Finland zone 5
4929 3901 # KKJ / Finland Uniform Coordinate System + N60 height

A second method for obtaining a CRS is to make a rough guess at a projection string and use
showEPSG to attempt to find a corresponding EPSG code. Were one to use a Universal Transverse
Mercator (or UTM) projection for a map of Finland, a web search for “UTM zone map” shows that
Finland lies in UTM zone 35. A proj4 specification of a UTM zone 35 projection will contain +proj=utm
and +zone=35, and showEPSG states that the EPSG code 32635 corresponds to an appropriate CRS.

rgdal::showEPSG("+proj=utm +zone=35")

[1] "32635"

CRS("+init=epsg:32635")

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 68

(a) Finland. Background © OpenStreetMap (b) New Zealand. Tiles courtesy of MapQuest and
© OpenStreetMap

Figure 2: Maps produced using the mapmisc package, containing background images, inset maps,
and scale bars.

CRS arguments:
+init=epsg:32635 +proj=utm +zone=35 +datum=WGS84 +units=m +no_defs
+ellps=WGS84 +towgs84=0,0,0

The definitive resource for information on national map projections is contained in the monthly
bulletins of The Imaging and Geospatial Information Society. The GridsDatums data set in rgdal gives
the year and month for each country’s entry at www.asprs.org/Grids-Datums.html. The entry for
Finland appears in the October 2006 issue.

data("GridsDatums", package = "rgdal")
GridsDatums[grep("Finland", GridsDatums$country),]

country month year ISO
100 Republic of Finland (October) 2006 FIN

Mapping projected data

The mapmisc functions openmap, map.new, scaleBar, and insetMap can be used together to improve
on the basic maps in Figure 1, and they are used here to add background images, a scale bar, and an
inset map to Figure 2.

Background map images are obtained from the openmap function, which downloads image files
from OpenStreetMap.org or a number of other sources. The images used in Figure 2 were obtained
with

nzBg <- openmap(nzRot, path = "mapquest-sat")
finlandBg <- openmap(finlandMerc, path = "landscape")

The first argument of openmap is used to set both the spatial extent of the map to be retrieved and
the CRS the map will be projected to. Any spatial object x for which extent(x) and projection(x)
are defined can be provided to openmap. The path = argument specifies the source of the map, and
sample maps from the various sources are shown in Figure 11 in the Appendix. The objects produced
by openmap are raster objects, converted from image files downloaded from web map servers. The
Finland map is an object of class “RasterLayer”.

finlandBg

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright
http://www.mapquest.com
http://openstreetmap.org/copyright
http://www.asprs.org
http://www.asprs.org/Grids-Datums.html
http://www.asprs.org/wp-content/uploads/2012/05/10-2006-finland.pdf
http://www.asprs.org/wp-content/uploads/2012/05/10-2006-finland.pdf
http://openstreetmap.org

CONTRIBUTED RESEARCH ARTICLES 69

class : RasterLayer
dimensions : 768, 376, 288768 (nrow, ncol, ncell)
resolution : 2747, 2252 (x, y)
extent : 2889952, 3922969, 6183827, 7913059 (xmin, xmax, ymin, ymax)
coord. ref. : +init=epsg:2393 +proj=tmerc +lat_0=0 +lon_0=27 +k=1 +x_0=3500000 +...
data source : in memory
names : landscape
values : 1, 1022 (min, max)

Notice that the CRS is the same as for the finlandMerc object. The New Zealand map is a “RasterStack”
with red, green and blue layers.

nzBg

class : RasterStack
dimensions : 512, 289, 147968, 3 (nrow, ncol, ncell, nlayers)
resolution : 5237, 5190 (x, y)
extent : -1e+06, 510285, -977333, 1680003 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=omerc +lat_0=-45 +lonc=170 +alpha=40 +k=1 +x_0=0 +y_0=0 +gam...
names : mapquest.satRed, mapquest.satGreen, mapquest.satBlue
min values : 0, 0, 0
max values : 248, 250, 247

The Finland map can be viewed with plot(finlandBg), whereas the three-layered New Zealand map
needs the plotRGB function for plotting its red, green and blue values as colours.

Figure 2a is produced with the four function calls below.

map.new(finlandMerc, 0.8)
plot(finlandBg, add = TRUE)
plot(finlandMerc, add = TRUE)
scaleBar(finlandMerc, "bottomright")
insetMap(finlandMerc, "right", width = 0.3, cropInset = extent(0, 180, -50, 70))

The functions run are the following:

• map.new initialises a new plot area suitable for showing finlandMerc. The second argument
set to 0.8 specifies that the left 80% of the plot will contain the map and the right 20% will be
reserved for legends or inset maps.

• plot(finlandBg,add = TRUE) adds the background map to the existing plot.

• plot(finlandMerc,add = TRUE) adds the border of Finland from the finlandMerc object.

• scaleBar produces the 200km scale and north arrow at the bottom right. The finlandMerc
object is required to inform scaleBar that the Finland Uniform Coordinate System is used, and
scaleBar(CRS("+init=epsg:2393"),"bottomright") would have achieved the same effect.

• insetMap produces the small map to the right, showing in red on the inset map the area covered
by the plot. As with scaleBar it uses finlandMerc to obtain the CRS of the map coordinates.
The width argument specifies the width of the inset map as a fraction of the plotting region. The
cropInset argument produces an inset map where New Zealand (at 170◦E and 45◦S) is in the
south-west corner, and the northern limit of Finland (roughly 70◦) is encompassed.

The New Zealand map in Figure 2b is produced with similar code.

map.new(nzRot, 0.8)
plotRGB(nzBg, add = TRUE)
rgdal::llgridlines(nzRot, col = "yellow")
plot(nzRot, add = TRUE, border = "red")
scaleBar(nzRot, "left")
insetMap(nzRot, "right", width = 0.3, cropInset = extent(0, 180, -50, 70))

The use of plotRGB in place of plot is used for the background map, and the scale bar has been placed
at the centre-left. The llgridlines function from rgdal added latitude and meridian lines in yellow.

The images in Figure 2 have dimensions of 4 by 5 inches, saved as png files with 72 pixels per inch.
Executing the code above in an interactive R session will likely produce maps with a slightly different
appearance unless the graphics window has these same dimensions. This document is produced with
knitr (Xie, 2015), and the figure dimensions are set with the fig.height = and fig.width = options
to code chunks.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=knitr

CONTRIBUTED RESEARCH ARTICLES 70

The map images in finlandBg and nzBg were retrieved from OpenStreetMap.org and MapQuest re-
spectively, and although they are free to use and reproduce they must be attributed. The openmapAttribution
function produces an attribution for an object produced by openmap or a string valid as a path = ar-
gument for openmap. An attribution for nzBg (or "mapquest-sat"), as in the caption for Figure 2, is
produced with

openmapAttribution(nzBg, short = TRUE)

mapquest.sat
"Tiles courtesy of MapQuest(www.mapquest.com)"

The Acknowledgements section of this paper has used this function without the short = TRUE
argument.

openmapAttribution(finlandBg)

landscape
"copyright OpenStreetMap.org contributors. Data by OpenStreetMap.org
available under the Open Database License (opendatacommons.org/licenses/odbl),
cartography by Thunderforest.com"

The additional argument type = "latex" is used in the source code for this paper, and type =
"markdown" is also available.

Projecting background maps

There are a number of potential pitfalls involved when using background map images with projected
data, and this section will describe some additional options to openmap and map.new which can help in
this regard.

Two undesirable features of Figure 2a are the white triangular section in the top left of the map,
and the low resolution and lack of legibility of the names of towns and cities. How this arose can be
understood by contrasting the map image retrieved from OpenStreetMap.org in Figure 3a with the
Finland Uniform Coordinate System map in Figure 3b. The map in Figure 3a uses coordinates in the
Spherical Mercator projection, where a vertically-oriented cylinder is wrapped around a spherical
Earth at the equator,1 and the rectangular area covered by the original map becomes somewhat
trapezoidal when projected to the Transverse Mercator coordinates in Figure 3b. The transformation
has distorted the text on the image, and the image does not completely cover the black rectangle
corresponding to the plotting region of Figure 2a.

The map images provided by OpenStreetMap.org and elsewhere are available at different zoom
levels or resolutions. A map at zoom level 0 is a 256 by 256 pixel image covering the entire world.
Zoom level 1 covers the world in 4 “map tiles” of 256 by 256 pixels, and zoom level N consists of
4N such tiles. The zoom level can be specified directly in openmap with the zoom = argument, or
indirectly with the maxTiles = argument. With the default value of maxTiles = 9, opemnap will find
the highest zoom level where the number of map tiles required to cover the spatial object supplied is
at most 9. The finlandBg map has a zoom level of 5 and 6 tiles, giving a 376 by 768 pixel image. This
information is contained in an attribute of finlandBg.

attributes(finlandBg)$tiles

$tiles
[1] 6
##
$zoom
[1] 5
##
$path
landscape
"http://tile.opencyclemap.org/landscape/"

dim(finlandBg)

1The Web Mercator, which originated with Google Maps, is in fact slightly different from the Spherical Mercator
assigned to map images by mapmisc. Maps in a Web Mercator projection are visually identical to a Spherical
Mercator, but the Mercator x-y coordinates are hidden and users are shown coordinates which have been con-
verted long-lat (EPSG 4326). The group managing the EPSG codes initially refused to assign a code to the Web
Mercator, reportedly saying: “We will not devalue the EPSG dataset by including such inappropriate geodesy and
cartography” (Wikipedia, 2016). The Web Mercator was later assigned EPSG code 3857.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org
http://www.mapquest.com
http://openstreetmap.org
http://openstreetmap.org

CONTRIBUTED RESEARCH ARTICLES 71

(a) Spherical Mercator (b) Finland UCS

Figure 3: Map images of Finland in the Spherical Mercator projection and the Finland Uniform
Coordinate System (UCS) projection. © OpenStreetMap.

[1] 768 376 1

When openmap projects the downloaded map tiles to the Finland CRS (using projectRaster from the
raster package), a number of pixels from the original map are lost or put out of position and the text
can become mangled.

A partial solution for improving projected images is best illustrated with the rotated CRS used for
New Zealand. Figure 4a shows a map of Auckland, New Zealand, in the Spherical Mercator projection
provided by OpenStreetMap.org, and the rotated Oblique Mercator projection used earlier is used for
the map in Figure 4b. The map images are obtained by creating a “SpatialPoints” object for the location
of Auckland in long-lat coordinates and projecting it to the CRS of the nzRot object from Figure 2b.

aucklandLL <- SpatialPoints(data.frame(x = 174.764204, y = -36.853744),
proj4string = crsLL)

auckland <- spTransform(aucklandLL, projection(nzRot))

crsLL is an object in mapmisc specifying the WGS84 projection, identical to CRS("+init=epsg:4326).
The map in Figure 4b is retrieved below.

aucklandBg <- openmap(auckland, buffer = 3000, maxTiles = 4)

The buffer = argument specifies an additional area around auckland which the map should cover
(in this case 3km), and specifying maxTiles = 4 will select the highest zoom level which is able to
cover the map region with four or fewer tiles. A map at the same zoom level in the Spherical Mercator
projection, for Figure 4a, is obtained next.

aucklandBgMerc <- openmap(auckland, zoom = attributes(aucklandBg)$tiles$zoom,
path = attributes(aucklandBg)$tiles$path, crs = crsMerc)

The crsMerc object gives the Spherical Mercator projection.

crsMerc

CRS arguments:
+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0
+k=1.0 +units=m +no_defs

Figure 4c shows only the area within 3km of the auckland object, produced by adding the buffer =
3000 argument to map.new.

map.new(auckland, buffer = 3000)
plot(aucklandBg, add = TRUE)
scaleBar(auckland, "topleft")

One problem with Figure 4b has been resolved, since the displayed area is entirely contained within
the map image. The text in Figure 4c is visibly distorted, and the distortion is reduced by increasing

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright
http://openstreetmap.org

CONTRIBUTED RESEARCH ARTICLES 72

(a) Spherical Mercator (b) Oblique Mercator

(c) Oblique, detail (d) Oblique, high resolution

Figure 4: Map images of Auckland, NZ, in Spherical Mercator and Oblique Mercator projections.
© OpenStreetMap.

the resolution of the image prior to re-projection. The fact = 4 argument to the call to openmap below
increases the resolution of the raster by a factor of 4, creating 16 times the number of pixels, yielding
the map in Figure 4d.

aucklandFine <- openmap(auckland, buffer = 3000,
zoom = attributes(aucklandBg)$tiles$zoom, fact = 4)

map.new(auckland, buffer = 3000)
plot(aucklandFine, add = TRUE)
scaleBar(auckland, "topleft")

Re-projecting rasters is computationally intensive, and openmap can require considerable running time
when the zoom level or fact argument are large.

Equal-area map projections

This section covers producing maps of the entire globe using the functions moll, wrapPoly, and
gridlinesWrap. A number of different Coordinate Reference Systems (CRS’s) are used to display
maps of the world, and Munroe (2011) is a useful introduction to some of the most popular of these.
Figure 5a shows the world in a Mollweide projection (Wikipedia, 2015b), an equal-area CRS with
the property that the sizes of polygons on the map are roughly proportional to their true surface
areas. Figures 5b, 5e and 5f use Mollweide projections with different origins and angles of orientation,
projections which are obtainable with mapmisc.

Polygons corresponding to the borders of the countries of the world are contained in the wrld_simpl
object from the maptools package, and this object will be used to produce the images in Figure 5. The
object is loaded with

data("wrld_simpl", package = "maptools")

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright

CONTRIBUTED RESEARCH ARTICLES 73

wrld_simpl

class : SpatialPolygonsDataFrame
features : 246
extent : -180, 180, -90, 83.6 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs +towgs84=0,0,0
variables : 11
names : FIPS, ISO2, ISO3, UN, NAME, AREA, POP2005, REGION, ...
min values : , AD, ABW, 10, Aaland Islands, 0, 0.00e+00, 0, ...
max values : ZI, ZW, ZWE, 96, Zimbabwe, 99545, 9.94e+04, 9, ...

and a selection of R’s named colours is assigned to the countries as follows.

colVec <- grep("gray|white|snow|ivory|turquoise|blue|[1-3]", colours(distinct = TRUE),
invert = TRUE, value = TRUE)

wrld_simpl$col <- rep_len(colVec, length(wrld_simpl))

The moll function creates “CRS” objects for Mollweide projections, which can be used with spTransform
to compute a Mollweide projection of wrld_simpl.

mollCrs <- moll()
worldMoll <- spTransform(wrld_simpl, mollCrs)

This “CRS” object is specified with a string similar to those seen earlier, with +proj=moll being the
defining feature.

mollCrs

CRS arguments:
+proj=moll +lon_wrap=0 +lon_0=0 +x_0=0 +y_0=0 +ellps=WGS84 +datum=WGS84
+units=m +no_defs +towgs84=0,0,0

The moll function adds two additional attributes to the “CRS” object produced, one of which is the
“ellipse” object containing the spatial extent of the Earth in this projection.

names(attributes(mollCrs))

[1] "projargs" "class" "crop" "ellipse"

The map.new function uses the “ellipse” attribute to define the plotting region and add the light blue
background in Figure 5a.

map.new(mollCrs, col = "lightblue")
plot(worldMoll, add = TRUE, col = worldMoll$col,

border = col2html("black", opacity = 0.2))
gridlinesWrap(worldMoll, lty = 2, col = "red")

The standard Mollweide projection is symmetric about the 0◦ Greenwich meridian line and the globe
is wrapped or split in the Pacific ocean at the 180◦ latitude line. Figure 5b is centred around a meridian
line passing through Hawaii and splits the Earth along a longitude line passing through Africa and
Europe. The CRS for this centred Mollweide projection is produced from the moll function, which
adds Hawaii’s longitude to the +lon_wrap and +lon_0 components of the CRS.

(mollHawaii <- moll(geocode("hawaii")))

CRS arguments:
+proj=moll +lon_wrap=-155.5827818 +lon_0=-155.5827818 +x_0=0 +y_0=0
+ellps=WGS84 +datum=WGS84 +units=m +no_defs +towgs84=0,0,0

A difficulty with this Hawaiian Mollweide projection is that the meridian line along which the world
is split runs through many of the polygons in wrld_simpl. The spTransform function used with
this projection produces the polygons in Figure 5c, with horizontal lines connecting the two halves
of polygons which have been split. The wrapPoly function in mapmisc addresses this problem by
splitting the affected polygons prior to their projection, using the “crop” attribute of the “CRS” object
produced by moll.

worldHawaii <- wrapPoly(wrld_simpl, mollHawaii)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 74

(a) Mollweide, Greenwich (b) Mollweide, Hawaii

(c) Hawaii with spTransform (d) Long-Lat

(e) Oblique Mollweide, Jerusalem (f) Oblique Mollweide, Pacific

Figure 5: World maps in Mollweide projections.

The red vertical line in Figure 5d is produced from attributes(mollHawaii)$crop, and the function
gDifference from rgeos is called by wrapPoly to remove the portion of each polygon intersecting with
this line.

A Mollweide projection need not have a north-south orientation, and an Oblique Mollweide
projection can be constructed by rotating the globe’s long-lat coordinates to produce different origins
and orientations. Figure 5e positions Jerusalem at the centre of the Earth (standard practice for
cartographers during the middle ages), and at Jerusalem the “up” direction is 35◦ clockwise of north.

(mollOblique <- moll(geocode("jerusalem"), angle = 35))

CRS arguments:
+proj=ob_tran +o_proj=moll +o_lon_p=-42.7134520141079
+o_lat_p=44.2305998589378 +lon_0=-17.7121046024056
+lon_wrap=-17.7121046024056 +ellps=WGS84 +datum=WGS84 +units=m +no_defs
+towgs84=0,0,0

This string specifies two projections are to be applied. First, +proj=ob_tran rotates the long-lat
coordinates to move the north pole to the coordinate (44◦N, 42◦W). Second, +o_proj=moll applies a
Mollweide projection to these rotated coordinates using 17.7◦W as the central meridian line. These
three values (44◦N, 42◦W, 17.7◦W) are obtained by numerical optimisation, attempting to move
Jerusalem as close as possible to the origin while preserving the 35◦ orientation.

Figure 5e is produced by first re-projecting the world map with wrapPoly.

worldOblique <- wrapPoly(wrld_simpl, mollOblique)

Adding red longitude and latitude grid lines with this projection cannot be done with the llgridlines
function from rgdal, as the same horizontal striping seen in Figure 5c will result. The gridlinesWrap
function from mapmisc breaks the grid lines in the same manner as wrapPoly, and adds the red
graticule lines as follows.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 75

Truth Spherical Mercator Greenwich Hawaii Jerusalem Pacific

Canada 9.98 49.72 9.74 9.79 9.61 9.66
Congo 2.35 2.36 2.34 1.95 2.34 2.34

ratio 4.26 21.08 4.17 5.03 4.11 4.13

Table 1: Surface areas (in millions of km2) of Canada and Congo, and areas computed for country
polygons in the Spherical Mercator projection and four Mollweide projections. Columns refer to the
standard Mollweide projection (Greenwich) and the Mollweide centred on Hawaii, Jerusalem, and the
north Pacific from Figures 5a, 5b, 5e and 5f.

map.new(mollOblique, col = "lightblue")
plot(worldOblique, add = TRUE, col = worldOblique$col,

border = col2html("black", 0.2))
gridlinesWrap(worldOblique, lty = 2, col = "red")

Figure 5f uses an Oblique Mollweide centred in the Pacific ocean with a 85◦ angle of rotation.

crsN <- moll(c(-140, 40), angle = 85)

Unlike the red line of the Hawaiian projection in Figure 5d, the green and blue curves showing where
the globe is wrapped for the two Oblique Mollweide projections lie in the ocean for the most part.

Table 1 computes the surface areas of Canada and the Congo by using the gArea function from
rgeos on different transformations of the wrld_simpl polygons. The first column shows the true
surface areas (according to Wikipedia) and the third row shows the ratio of Canada’s surface area to
the Congo’s. The Spherical Mercator projection vastly over-represents the size of Canada and the four
Oblique Mollweide projections are consistent in underestimating the area by a small amount. The
Congo is poorly served by the Hawaiian projection, which is unsurprising as this projection splits the
Congo through the middle.

Custom-optimised Oblique Mercator projections

This section describes the use of the omerc function for defining Oblique Mercator projections. Two
methods of optimising map projections are implemented, with the angle of rotation chosen to produce
the most compact bounding box possible or to preserve distances between a collection of points.

Ad-hoc projections for compact plotting regions

Compact representations minimising the number of void cells (i.e. those falling in the ocean) offer
computational advantages when used with statistical models or software requiring data on a grid,
such as the Markov random field based methods used in Brown (2015). Figure 6 shows New Zealand
rotated in order to produce a compact plotting area, with bounding box having the greatest possible
proportion of its area made up of land mass. This projection also minimises the number of vertical
inches which Figure 6 takes up on the page, which is the reason a clockwise rotation is used in place of
the anti-clockwise rotation from Figure 2b.

The omerc function calculates these ad-hoc projections based on the object to be re-projected and
a vector of rotation angles. The first argument below is the nzClip object containing the cropped
boundary of New Zealand, and the origin of the Oblique Mercator projection will be its centroid.
A sequence of Oblique Mercator projections using Great Circles angled between 10 and 50 degrees
from the north will be formulated, and the bounding box of New Zealand in each projection will be
computed. The projection returned by omerc uses the angle giving the smallest such box, with the
argument +alpha= showing an 18.5◦ angle in this example.

(nzRotOptCrs <- omerc(nzClip, seq(10, 50, by = 0.5), post = "wide"))

CRS arguments:
+proj=omerc +lat_0=-40.565 +lonc=172.502 +alpha=18.5 +k=1 +x_0=0 +y_0=0
+gamma=90 +ellps=WGS84 +units=m

A positive angle rotates the coordinate axes clockwise, which gives the resulting map the appearance of
being rotated anti-clockwise. An Oblique Mercator’s Great Circle becomes the y-axis of the coordinate
system, and a projection should seek to have as much of the area of interest as possible being close
to this Great Circle. An optimal projection will therefore have a tall and narrow bounding box, in

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 76

Figure 6: New Zealand in a 18.5◦ Oblique Mercator projection (—) with bounding box (—).
Background © CartoDB, © OpenStreetMap.

this instance the spine of New Zealand should run up and down the y-axis. The limits of 10 and
50 for the sequence of angles above are arbitrary estimates of the amount of anti-clockwise rotation
required to sit New Zealand upright. The argument post = "wide" in omerc specifies that a short
and wide bounding box is required, and this is accomplished by rotating the planar x-y coordinates
post-projection using the +gamma=90 element.

New Zealand is re-projected and a new background map in this projection is produced below.

nzRotOpt <- spTransform(nzClip, nzRotOptCrs)
nzBgRot <- openmap(nzRotOpt, path = "cartodb", buffer = 20000, fact = 2)

Figure 6 is produced with the following.

map.new(nzRotOpt, 0.8)
plot(nzBgRot, add = TRUE)
plot(nzRotOpt, add = TRUE, border = "red")
plot(extent(nzRotOpt), add = TRUE, col = "blue")
scaleBar(nzRotOpt, "bottomright", bty = "n")
insetMap(nzRotOpt, "topright", cropInset = extent(0, 180, -50, 70), width = 0.2)

Preservation of distances

Here we seek the parameters of an Oblique Mercator projection that would preserve at best the
Euclidean distances among a set of points on the surface of the Earth. This is particularly useful
for large countries away from the equator and we will use Canada as an example. Figure 7 shows
Canada in six different CRS’s, the first of which is an Oblique Mercator optimised to preserve distances
between 12 provincial and territorial capital cities. Unlike the New Zealand projection, however, the
x-y coordinates on the Mercator’s cylinder are inverse-rotated to preserve the north-south direction as
up-down.

Oblique Mercator projections are defined by an origin and an angle of rotation, only the latter
is optimised by the omerc function while the origin is set by the user. Here we will set the origin
somewhat arbitrarily as the town of Flin Flon, Manitoba, as an alternative to the centroid-based origin
used earlier. Residents of Toronto, this author included, affectionately refer to their city as “The Centre
of the Universe” 2, but Flin Flon is a more suitable Oblique Mercator centroid for two reasons. First,
Flin Flon’s latitude is a useful compromise between a northerly centroid able to accommodate the
Arctic islands and a centroid close to the populated areas in the south. Second, using Flin Flon as the
location where the inverse rotation will preserve the north-south direction as vertical should produce
a map with a familiar shape since a portion of the southern border following the 49th parallel will be
horizontal.

The locations of the cities required to compute this projection (Flin Flon and the provincial capitals)
can be retrieved from Google using the dismo package. A wrapper for the geocode function in
mapmisc converts the data retrieved by dismo to a “SpatialPointsDataFrame” object.

provincialCapitals <- mapmisc::geocode(c("Vancouver, BC", "Edmonton, AB", "Regina",
"Winnipeg", "Toronto, ON", "Quebec city", "Fredericton", "Charlottetown",

2Many Canadians residing outside Toronto prefer the somewhat less affectionate nickname of “Hogtown”,
claiming Torontonians are arrogant and collectively self-centred.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://cartodb.com
http://openstreetmap.org/copyright
http://www.google.com

CONTRIBUTED RESEARCH ARTICLES 77

"Halifax, NS", "St Johns, NL", "Iqaluit", "Whitehorse", "Yellowknife"),
verbose = TRUE)

flinflon <- mapmisc::geocode("Flin Flon")p

The names of the provincial capitals and the location of Flin Flon are below.

provincialCapitals$name

[1] "Vancouver" "Edmonton" "Regina" "Winnipeg"
[5] "Toronto" "Quebec City" "Fredericton" "Charlottetown"
[9] "Halifax" "St John's" "Iqaluit" "Whitehorse"
[13] "Yellowknife"

coordinates(flinflon)

longitude latitude
1 -102 54.8

The arguments given in the call to omerc below consist of: x giving flinfon as the origin of the
projection; angle giving a sequence of rotation angles to be considered; post = "north" specifying
that the planar coordinates should be inverse-rotated to preserve the north direction; and preserve
supplying the locations of the provincial capitals other than Iqaluit (the northerly capital of Nunavut)
for calculating the distances which the projections will seek to preserve.

(cproj <- omerc(x = flinflon, angle = seq(-85, 85, by = 0.25), post = "north",
preserve = provincialCapitals[provincialCapitals$name != "Iqaluit",]))

CRS arguments:
+proj=omerc +lat_0=54.766 +lonc=-101.876 +alpha=-83.5 +k=0.998 +x_0=0
+y_0=0 +gamma=-83.498 +ellps=WGS84 +units=m

The projection above uses an origin (specified by lat_0 and longc) at the coordinates of Flin Flon and
a cylinder tangent to the Earth along a Great Circle angled 83.5◦ anticlockwise (given by alpha). The k
= 0.998 component of the CRS scales the coordinates down by a small amount (0.2%). Although pairs
of points along the Great Circle will have Euclidean distances and Great Circle distances being equal,
the provincial capitals are some distance from this Great Circle and without scaling their Euclidean
distances would overestimate true distances by 0.2%. The gamma = -83.5 component appears as a
consequence of having used the post = "north" option, rotating the coordinates on the cylinder so
that a vertical line passing through the origin contains points which are directly north or south of each
other.

Two cities on Figure 7 for whom coordinates have not yet been retrieved are Kitimat, British
Columbia, and the hamlet of Grise Fiord, Canada’s most northerly civilian settlement3. These locations
are obtained below.

moreCities <- mapmisc::geocode(c("Grise Fiord", "Kitimat"))
cities <- bind(provincialCapitals, moreCities, flinflon)

Also shown is the Great Circle which forms the y-axis of the Oblique Mercator. This circle is created
using one of the many useful functions in the geosphere package.

gcircle <- SpatialPoints(geosphere::greatCircleBearing(flinflon@coords, -83.75),
proj4string = CRS("+init=epsg:4326"))

Five projections in addition to the Oblique Mercator are shown in Figure 7: a Lambert Conformal
Conic projection used by the Atlas of Canada (EPSG code 3347); a Two-Point Equidistant projection
based on the cities of Edmonton and Toronto (obtained from tpeqd); a Mollweide projection centred on
Flin Flon; the Spherical Mercator used by OpenStreetMap.org and other internet sites; and longitude-
latitude or angular coordinates. A list is created containing these four projections using mapmisc’s
tpeqd function in part.

crsList <- list("Oblique Merc" = cproj, "Lambert" = CRS("+init=epsg:3347"),
"2pt Equidist" = tpeqd(cities[cities$name %in% c("Edmonton", "Toronto"),]),
"Mollweide" = moll(flinflon, angle = 0), "Spherical Merc" = mapmisc::crsMerc,
"Long-Lat" = mapmisc::crsLL)

The cities and Great Circle are transformed to each of the projections with mapply.

3Readers should be aware that Grise Fiord resulted from a government-run resettlement program in the 1950’s,
and involved the deception and neglect of the indigenous people who were relocated to the hamlet.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 78

(a) Oblique Merc (b) Lambert

(c) 2pt Equidist (d) Mollweide

(e) Spherical Merc (f) Long-Lat

Figure 7: Canada and selected cities in five map projections, along with the Great Circle defining the
Oblique Mercator projection (· · ·). Background from Natural Resources Canada.

citiesT <- mapply(spTransform, CRSobj = crsList, MoreArgs = list(x = cities))

Code for retrieving background maps and for producing Figure 7 appears in the Appendix.

Notable features in Figure 7 are the Spherical Mercator’s overemphasis of the high Arctic regions,
the downward slope of the Lambert projection, the upward slope of the Two-Point Equidistant
map, and the “skinny” appearance of the Mollweide. The Oblique Mercator’s Great Circle, passing
through Flin Flon, Halifax and Kitimat at a nearly horizontal −83.5◦, is necessarily a straight line
in the Oblique Mercator projection and is reasonably straight in three other projections. The yellow
longitude-latitude lines and three north arrows on each plot show that only the Spherical Mercator

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.nrcan.gc.ca

CONTRIBUTED RESEARCH ARTICLES 79

Oblique Merc Lambert 2pt Equidist Mollweide Spherical Merc

south
mean −0.05 −0.23 −0.13 −6.68 54.19
sd 0.13 1.03 0.34 5.22 8.01

north
mean 1.74 −2.54 0.54 −1.10 131.43
sd 1.65 0.32 0.81 6.58 43.82

Table 2: Mean and standard deviation of the percentage by which Euclidean distance overestimates
Great Circle distance for various map projections. The bottom two rows involve distances involving at
least one of Grise Fiord, Iqaluit, Whitehorse and Yellowknife, with the top two rows including only
distances not involving any of these four northern locations.

and long-lat projections have the property that north is in the vertical direction throughout the map.

Table 2 compares Euclidean distance to true (or Great Circle) distance for each of the map pro-
jections, with the percentage by which the former overestimates the latter for each pair of cities
summarised. The first two rows give the mean and standard deviation for the percentage of overesti-
mation of distances between the southern locations (which exclude Grise Fiord, Iqaluit, Whitehorse,
and Yellowknife). The Oblique Mercator’s underestimation by 0.05% betters the other projections,
and the Mollweide’s 6.7% underestimation is excusable given the projection’s aim of preserving
areas rather than distances. The Lambert’s 0.23% underestimation appears respectable though the
comparatively large standard deviation of 1.03% indicates several city pairs with Euclidean distances
deviating several percent from their true separations. Distances involving at least one of the four
northern locations are less accurate for all projections (the Mollweide notwithstanding), and the
Oblique Mercator’s 1.7% overestimation betrays the fact that these northern points were not part of
omerc’s optimisation criteria. The Two-Point Equidistant projection is notable in its consistency and
accuracy, and the Lambert projection does not appear to be a CRS which statisticians should consider
using for points in Canada when accuracy of Euclidean distances is the primary concern.

Maps with colour scales

A separate set of facilities in mapmisc, complementing but disjoint from the tools related to map
projections, assists with the use of colour scales and legends for maps in R. The RColorBrewer package
gives R users access to the popular ColorBrewer collection of palettes, all of which are displayed in
Table 4 in the Appendix. These colours can be used with the functions in the classInt package to
create colour scales, and the venerable legend function is extremely versatile in its ability to create
map legends. The steps involved in defining and using colour scales have been streamlined and
consolidated into the colourScale, legendBreaks and legendTable functions in mapmisc. The process
of creating suitable bins, assigning colours to data points based on these bins, specifying transparency
when overlaying colours on background maps, and displaying the intervals and colours in a legend
has been simplified as much as possible in mapmisc, although at least five separate lines of R code are
required to produce a single map.

Colours with polygon data

Consider, as a motivating example, the task of visualising the spatial variation in fertility rates in Eu-
rope using data available from the statistical office of the European Union (EUROSTAT). EUROSTAT di-
vides the territory of the European Union and several adjoining nations into statistical units organised
in a hierarchical system named “nomenclature des unités territoriales statistiques” and given the memo-
rable acronym of NUTS. Social and demographic data on the statistical units are available at http://ec.
europa.eu/eurostat/data/database, and their boundaries can be obtained from http://ec.europa.
eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units. Fig-
ure 8 shows the fertility rate in 2010 for 456 units of level 2 in NUTS.

Code in the Appendix for downloading and merging the boundary files and fertility rates produces
a “SpatialPolygonsDataFrame” object euroF. Each polygon in the object is a territorial unit, and fertility
rates for each unit are provided for the years 2001 to 2012 inclusive.

euroF

class : SpatialPolygonsDataFrame

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/data/database
http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units
http://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units

CONTRIBUTED RESEARCH ARTICLES 80

features : 456
extent : -24.5, 44.8, 34.6, 71.2 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=longlat +ellps=GRS80 +no_defs
variables : 29
names : NUTS_ID, STAT_LEVL_, SHAPE_Leng, SHAPE_Area, age.geo.time, X2013, ...
min values : AT, 0, 0.134, 1.00e+00, TOTAL,AT, 0.96 , ...
max values : UKN0, 2, 9.946, 9.96e-01, TOTAL,UKN0, 3.75 , ...

The polygons are transformed to the European Terrestrial Reference System (EPSG code 3034) below.

euroF <- spTransform(euroF, CRS("+init=epsg:3034"))

Colours in Figure 8 relate to the X2010 variable in euroF (fertility in 2010), with the colours themselves
taken from the “Spectral” palette of RColorBrewer. Below the colourScale function creates eight bins
(breaks = 8) for values of euroF$X2010, reversing the colours so that blues correspond to low values
and reds are large values (rev = TRUE).

ecol <- colourScale(euroF$X2010, col = "Spectral", breaks = 8, rev = TRUE,
style = "jenks", dec = 1, opacity = 0.5)

The style argument controls how the breaks are computed, and the "jenks" option corresponds to the
“natural breaks” algorithm from Jenks and Caspall (1971) (see also Pebesma and Bivand, 2005, Section
3.5.2) implemented in the classIntervals function of the classInt package. A number of clustering
algorithms for defining break points are provided by classIntervals, and the options for the style =
argument described in the help files for classIntervals are all available using the identically named
argument in colourScale. The break points are rounded to one decimal place as a consequence of the
dec = 1 argument, and the opacity = 0.5 option gives the plotted colours 50% transparency.

The result of a call to colourScale is a list containing the break points for bins (breaks), colours
associated with the bins (col), and a vector of length 456 (plot) with one colour per region.

names(ecol)

[1] "col" "breaks" "colOpacity" "plot"

ecol$breaks

[1] 1.0 1.3 1.4 1.6 1.8 2.0 2.4 2.9 3.8

ecol$col

[1] "#3288BD" "#66C2A5" "#ABDDA4" "#E6F598" "#FEE08B" "#FDAE61" "#F46D43"
[8] "#D53E4F"

length(ecol$plot)

[1] 456

The breaks and col elements are used for displaying a legend, whereas the plot element can be passed
as a col = argument when running plot on a “SpatialPoints” or “SpatialPolygons” object. Following
the retrieval of the background map with

euroMap <- openmap(euroF, path = "osm-no-labels")

Figure 8, minus the country names, can be produced as follows.

map.new(euroF)
plot(euroMap, add = TRUE)
plot(euroF, col = ecol$plot, add = TRUE, border = "lightgrey")
legendBreaks("topright", ecol, title = "fertility", bg = "white")
scaleBar(euroF, "bottom", bty = "n")

Notice the col = ecol$plot argument specifying the colours with which each region is filled, and that
the borders of each region were given by border = "lightgrey". The legend on the right is added
with legendBreaks, which passes most of its arguments to the standard legend function from the
graphics package. The role of legendBreaks is to ensure the 9 numeric break points are printed near
the boundaries between the coloured squares (as opposed to aligned with their centres).

The country names in Figure 8 are taken from the wrld_simpl object used earlier, although all
countries smaller than Albania have been removed in order to keep the map from becoming too
crowded. Below a portion of the globe in the northern hemisphere is cropped from wrld_simpl and
subsequently re-projected to the European CRS.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 81

Azerbaijan

Albania

Armenia

Bosnia
Herzegovina Bulgaria

Denmark

Ireland

Estonia

Austria

Czech
Republic

Finland

France
Georgia

Germany

Greece

Croatia

Hungary

Iceland

Italy

Iraq

Latvia

Belarus

Lithuania

Slovakia

Belgium

Netherlands

Norway

Poland

Portugal

Romania

Republic
of

Moldova

Russia

Spain

Sweden

Syrian
Arab

Republic

Switzerland

Turkey

United
Kingdom

Ukraine

Serbia

fertility

3.8
2.9
2.4
2
1.8
1.6
1.4
1.3
1

500km

Figure 8: Fertility in Europe by NUTS. Background © OpenStreetMap, © EuroGeographics for the
administrative boundaries.

data("wrld_simpl", package = "maptools")
worldCrop <- raster::crop(wrld_simpl, extent(-20, 100, 0, 90))
worldE <- spTransform(worldCrop, projection(euroF))

The areas of the countries are computed from the map worldMoll in the Mollweide projection, merged
into the worldE object, and all countries at least as large as Albania are retained.

worldE$area <- rgeos::gArea(worldMoll, byid = TRUE)[as.character(worldE$ISO3)]
worldE <- worldE[worldE$area >= worldE@data[worldE$NAME == "Albania", "area"],]

The names are added to the plot with the text function.

text(worldE, labels = worldE$NAME, cex = 0.8)

Using the style = "jenks" argument for colourScale triggers a clustering algorithm in function
classIntervals which can be time consuming for large datasets. The "quantile" and "equal" options
for the style argument use quantiles and equally spaced break points respectively, with the latter able
to have breaks equally spaced on a transformed scale (i.e. log or square root). Some examples appear
below.

colourScale(euroF$X2010, breaks = 8, style = "quantile", dec = 1)$breaks

[1] 1.0 1.4 1.5 1.7 1.9 2.0 3.8

colourScale(euroF$X2010, breaks = 8, style = "equal")$breaks

[1] 1.04 1.43 1.82 2.21 2.60 2.99 3.38 3.77

colourScale(euroF$X2010, breaks = 8, style = "equal", transform = "log")$breaks

[1] 1.04 1.25 1.50 1.81 2.17 2.61 3.14 3.77

colourScale(euroF$X2010, breaks = 8, style = "equal", dec = 0)$breaks

[1] 1 2 3 4

The final set of break points has a dec = 0 argument, and although 8 breaks have been requested only
4 unique breaks remain after rounding to the nearest integer.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright

CONTRIBUTED RESEARCH ARTICLES 82

Rasters and colour scales

Figure 9 shows two elevation maps of New Zealand produced with the assistance of the colourScale
and legendBreaks functions. The raster package provides versions of the plot function for use with
rasters, and using colourScale with rasters is slightly different from its use in the previous section.

The elevation data is obtained using the raster package’s getData function.

nzAltFull <- raster::getData("alt", country = "NZL", keepzip = TRUE)

The nzAlt object is a list of two elements, with elevation in two disjoint areas which comprise New
Zealand. The first element includes the main island, its CRS is incomplete (at the time of writing) and
should be re-specified.

nzAlt <- nzAltFull[[1]]
projection(nzAlt) <- CRS("+init=epsg:4326")

This raster includes a number of outlying islands, and its size becomes more manageable after the
main island is extracted using the previously computed nzClip object.

dim(nzAlt)

[1] 2244 1572 1

nzAlt <- raster::crop(nzAlt, extent(nzClip))
dim(nzAlt)

[1] 1544 1458 1

This smaller raster is now re-projected to the rotated Oblique Mercator projection used earlier, with the
filename = argument allowing for the resulting data to be stored as a file in R’s working directory
rather than in memory.

nzAltRot <- projectRaster(nzAlt, crs = projection(nzRot), filename = "nzAltRot.grd")
dim(nzAltRot)

[1] 2424 3069 1

Re-projecting the raster has made it larger, as the rectangular bounding box of nzAlt becomes a
diamond when rotated and nzAltRot has a bounding box large enough to contain this diamond. The
crop function is used to pare this raster down to the same extent as the nzRot object.

(nzAltCrop <- raster::crop(nzAltRot, extent(nzRot)))

class : RasterLayer
dimensions : 1895, 1369, 2594255 (nrow, ncol, ncell)
resolution : 554, 727 (x, y)
extent : -624719, 133707, -291892, 1085773 (xmin, xmax, ymin, ymax)
coord. ref. : +proj=omerc +lat_0=-45 +lonc=170 +alpha=40 +k=1 +x_0=0 +y_0=0 +gam...
data source : in memory
names : NZL1_msk_alt
values : -11.1, 2960 (min, max)

Raster images are typically large, with nzAltCrop having over 2 million cells, and computing break
points using all of the data points would be time consuming. The raster package provide easy access
to the maximum and minimum values (−11 and 2960 above), which makes equally spaced break
points (style = "equal" below) quick to compute. All other styles of breaks are computed using a
sample of 20,000 cells taken using raster’s sampleRegular function.

nzAltCol <- colourScale(nzAltCrop, breaks = 7, col = terrain.colors, style = "equal",
dec = -2)

Here the col = argument was given the terrain.colors function, and any function accepting a
single integer argument and returning a vector with the specified number of colours would suffice.
Below a second colour scale is computed using the "OrRd" colour palette and a supplied vector of
breaks.

nzAltTrans <- colourScale(nzAltCrop, breaks = c(-20, 100, 500, 1200, 2000, 3100),
col = "OrRd", style = "fixed", opacity = c(0.2, 1))

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 83

(a) terrain.colors() (b) "OrRd" colours with opacity.
Tiles courtesy of MapQuest.

Figure 9: Elevation maps of New Zealand using colours from terrain.colors and the "OrRd" colours
from RColorBrewer.

Here the opacity argument has been given a vector of length 2, giving the opacity of the first colour
and last colour respectively with intervening colours having opacities which are linear interpolations
of these values.

Figure 9a is produced with code below.

par(bg = "lightblue1")
map.new(nzRot)
par(bg = "white")
plot(nzAltCrop, col = nzAltCol$col, breaks = nzAltCol$breaks, legend = FALSE,

add = TRUE)
plot(nzRot, add = TRUE, border = col2html("red", 0.4))
legendBreaks("bottomleft", nzAltCol, title = "metres", bg = "white")
scaleBar(nzRot, "left")

No background map is present, though the background has been set to a sea-like colour. The line
of code beginning with plot(nzAltRot,... adds the elevation data to the map. The col and breaks
elements of the colour scale nzAltCol are passed as identically named arguments of the plot method
from the raster package. The legend = FALSE argument prevents plot from adding its own legend,
which would not fit well with this map as it always appears on the right.

The code for Figure 9b is below.

map.new(nzRot)
plotRGB(nzBg, add = TRUE)
plot(nzAltCrop, col = nzAltTrans$colOpacity, breaks = nzAltTrans$breaks,

legend = FALSE, add = TRUE)
legendBreaks("bottomleft", nzAltTrans, title = "metres")
scaleBar(nzRot, "left")

Here the colOpacity element of the colour scale, which has 2-digit opacity levels appended to each
specified colour, is passed as col = argument to allow the satellite photo beneath to be viewed.

Colours with categorical data

Figure 10 maps land categories in Africa, and colourScale has been used to assign colours to 10 of the
20 land categories present. The way the raster package treats categorical data (a factor in R parlance)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.mapquest.com

CONTRIBUTED RESEARCH ARTICLES 84

requires a slightly different use of colourScale from the previous section, and legends suitable for
categorical data can be produced by legendBreaks and the related function legendTable.

The land cover data originate from the European Space Agency, and are redistributed by world-
grids.org. The file is provided in .tif format, compressed as a (.gz) file. The code below downloads,
unzips, and loads the data into R.

landUrl <- "http://www.worldgrids.org/lib/exe/fetch.php?media=glcesa1a.tif.gz"
gzfile <- "glcesa1a.tif.gz"
tiffile <- "glcesa1a.tif"
download.file(landUrl, gzfile)
R.utils::gunzip(gzfile, overwrite = file.exists(tiffile), remove = FALSE)
land <- raster(tiffile)

This land raster object spans the entire globe, and a portion of central Africa containing both Liberia
and Tanzania is extracted with the help of the wrld_simpl object used earlier.

worldSub <- wrld_simpl[grep("Liberia|Tanzania", wrld_simpl$NAME),]
worldSub <- spTransform(worldSub, projection(land))
landSub <- raster::crop(land, extend(extent(worldSub), 5))

The extend function has added an additional 5 units (in this case degrees latitude and longitude) to
the region to be extracted.

A text file containing a list of land categories and their numeric identifiers is posted at world-
grids.org, it is retrieved and loaded below.

download.file("http://www.worldgrids.org/lib/exe/fetch.php?media=glcesa.txt",
"landLevels.txt")

landTable <- read.table("landLevels.txt", header = TRUE, sep = "\t",
stringsAsFactors = FALSE)

This table can be used with colourScale to produce map colours and a legend, although the table
must first be modified as colourScale expects it to include a numeric ID column and a column called
label of descriptions. The land categories are assigned integer values in the raster

unique(landSub)

[1] 11 14 20 30 40 50 60 70 90 100 110 120 130 140 150 160 170 180 190
[20] 200 210

which correspond to the trailing digits of the DESCRIPTION column of the table.

landTable[1:2,]

COLOR NAME DESCRIPTION MINIMUM MAXIMUM
1 15790250 No data (burnt areas, clouds,) CL11 10.1 11.1
2 6619135 Rainfed croplands CL14 11.1 14.1

The codes are converted into the numeric ID variable and the NAME column tidied up with a complex
gsub statement and saved as label below.

landTable$ID <- as.numeric(gsub("^CL", "", landTable$DESCRIPTION))
landTable$label <-

gsub("Closed to open| - [[:print:]]+|\\(([[:digit:]]|[[:punct:]]|m)+\\)", "",
landTable$NAME)

landTable$label <- trimws(landTable$label)
landTable[c(1:3, 20:23), c("ID", "label")]

ID label
1 11 No data (burnt areas, clouds,)
2 14 Rainfed croplands
3 20 Mosaic cropland / vegetation (grassland/shrubland/forest)
20 200 Bare areas
21 210 Water bodies
22 220 Permanent snow and ice
23 230 No data (burnt areas, clouds,)

The labels argument is used to provide information on categories and labels to colourScale, and it
requires a data.frame with columns named ID and label giving category identifiers and descriptions
respectively.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.esa-landcover-cci.org
http://worldgrids.org
http://worldgrids.org
http://www.worldgrids.org
http://www.worldgrids.org

CONTRIBUTED RESEARCH ARTICLES 85

landLevels <- colourScale(landSub, breaks = 10, style = "unique", col = "Set3",
exclude = c(11, 210, 220, 230), labels = landTable)

Here 10 colours have been requested from the "Set3" palette, with style = "unique" specifying that
the data are categorical rather than continuous. The 10 most common land types will be assigned
colours, although the exclude = argument specifies that several categories (i.e. 11 no data, 210 water
bodies, 200 bare areas) will not be colour-coded regardless of how prevalent they are.

names(landLevels)

[1] "col" "breaks" "colOpacity" "colourtable" "colortable"
[6] "levels" "legend"

The colourtable and levels elements above were not present when colourScale was used in the
previous section, and these elements will be produced whenever a labels = argument has been
provided. The levels element is a data frame with one row per land category and columns with labels
and colours, and is compatible with the raster package’s facilities for categorical variables. A categori-
cal raster has a list of data frames, one for each raster layer, accessible by executing levels(landSub).
The land categories are the first and only layer of the landSub raster and the table produced by
colourScale is added to the first element of the levels list below.

levels(landSub)[[1]] <- landLevels$levels

The colourtable object in landLevels is a vector of colours associated with each numeric category,
with NA’s for those categories for which no colour has been assigned (ID 201, Water Bodies for example).
It will be used by raster’s plotting functions if it has been added to the legend@colortable slot of a
raster as follows.

landSub@legend@colortable <- landLevels$colourtable

The American spelling “color” is used by the majority of R packages, despite the Guidelines for Rd
files stating: “For consistency, aim to use British (rather than American) spelling.” This author, being
Canadian, requires “color” and “colour” to be interchangeable and provides landLevels$colortable
(and a colorScale function) to this effect.

Figure 10 includes the "stamen-toner" web map as a foreground (rather than background)
layer with country borders and names. The tonerToTrans function converts the white pixels in
the "stamen-toner" map to transparent (and greys to semi-transparent), allowing the map to be added
after and on top of the land category image.

landMap <- openmap(landSub, path = "stamen-toner")
landMapTrans <- tonerToTrans(landMap)

Figure 10 is produced as follows.

map.new(landSub)
plot(landSub, add = TRUE)
plot(landMapTrans, add = TRUE)
legendBreaks("bottomleft", landSub, ncol = 2, width = 25, lines = 3,

text.col = "yellow", cex = 0.8, pt.cex = 3, inset = 0, bty = "n")

The landSub raster, having had landLevels$colourtable and landLevels$levels attached to it, is the
only object required by the plot and legendBreaks functions. The legendBreaks function passes the
ncol, cex and inset arguments to the legend function, arguments specifying two columns, slightly
smaller than normal text, and a position flush to the bottom left respectively. The width = 25 argument
inserts line breaks in the legend labels after 25 characters, and the lines = 3 argument causes only
the first three lines to be displayed.

An alternative to including the legend on the plot is to create an “in-line” legend as in the caption
to Figure 10. The legendTable function assists in this task, with the code

legendTable(landSub, collapse = "; ", type = "latex")

used in this instance. Table 3 is created with the following.

Hmisc::latex(legendTable(landSub, type = "latex"), file = "", rowname = NULL,
where = "htb", caption.loc = "bottom", colheads = FALSE,
caption = "Land categories in Figure \\ref{fig:plotLand}")

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://developer.r-project.org/Rds.html
http://developer.r-project.org/Rds.html

CONTRIBUTED RESEARCH ARTICLES 86

Figure 10: Land categories in central Africa: Rainfed croplands (); Mosaic cropland / vegetation
(grassland/shrubland/forest) (); Mosaic vegetation (grassland/shrubland/forest) / cropland
(); Broadleaved evergreen or semi-deciduous forest (); Closed broadleaved deciduous
forest (); Open broadleaved deciduous forest/woodland (); Mosaic forest or shrubland
/ grassland (); (Broadleaved or needleleaved, evergreen or deciduous) shrubland ();
Herbaceous vegetation (grassland, savannas or lichens/mosses) (); Broadleaved forest regularly
flooded (semi-permanently or temporarily) (). Background © Stamen Design.

Rainfed croplands
Mosaic cropland / vegetation (grassland/shrubland/forest)
Mosaic vegetation (grassland/shrubland/forest) / cropland
Broadleaved evergreen or semi-deciduous forest
Closed broadleaved deciduous forest
Open broadleaved deciduous forest/woodland
Mosaic forest or shrubland / grassland
(Broadleaved or needleleaved, evergreen or deciduous) shrubland
Herbaceous vegetation (grassland, savannas or lichens/mosses)
Broadleaved forest regularly flooded (semi-permanently or temporarily)

Table 3: Land categories in Figure 10.

Conclusions

This paper and the mapmisc package aim to contribute to and advance the suite of tools available
to the growing community of R users performing advanced statistical analyses of spatial data. The
first objective of mapmisc is removing barriers to using a map projection which is appropriate for
the problem at hand, even when a non-standard projection optimised for a particular study region
is most appropriate. A second objective is the provision of tools which simplify the creation and
use of colour scales and legends. The way in which mapmisc seeks to accomplish these goals is by
automating many of the tasks involved, with obtaining and re-projecting map tiles or creating colour
scales with transparency being two examples. New functionality provided by mapmisc to R users
includes the creation of optimised map projections and the creation of inset maps and scale bars for
data in a rotated projection.

The scope of mapmisc has been kept deliberately narrow. Maps are static rather than interactive,
base graphics are used, all spatial data types used are from sp or raster, and functions have been kept
simple with few arguments. In contrast to spplot from package sp and ggplot2 (Wickham, 2009),
maps made with mapmisc are produced with a sequence of independent function calls with each
function performing a very specific task. This approach was originally intended to benefit students and
non-specialists, and the package grew out of code originally provided to students in an undergraduate
course. Many of the tools in mapmisc can, however, be used with ggplot2, leaflet (Cheng and Xie,
2016) or other advanced graphical packages. No new object classes have been created by mapmisc,
any package compatible with raster can use background maps from openmap and a “CRS” object

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://stamen.com
http://CRAN.R-project.org/package=ggplot2
http://CRAN.R-project.org/package=leaflet

CONTRIBUTED RESEARCH ARTICLES 87

provided by omerc or moll can be used with any package that calls rgdal for transformations. Colours
and break points from colourScale can be used with spplot, and legendBreaks can be used in any
graphics environment where the legend function operates.

Additional motivations for the framework mapmisc employs are reproducibility and consistency
when producing multiple maps. Colour scales and background maps are defined before a map is
produced, and plot areas are laid out before any graphics are added. While sometimes clumsy for
interactive use, mapmisc code fits tidily within Sweave or knitr documents and script files. Repro-
ducibility of research results is an area where R excels, and mapmisc can help to simplify the creation
of high quality maps in reproducible code scripts. For refining and manually polishing maps and
plots, R will never replace Geographical Information Systems or graphics editing software. For most
other tasks faced by a Spatial Statistician, however, the occasions when an environment other than R is
required are becoming fewer in number over time.

Acknowledgements

The author holds a Discovery Grant from the Natural Sciences and Engineering Council of Canada.

Attributions for background maps

Figures 2a, 8 and all inset maps: © OpenStreetMap contributors. Data by OpenStreetMap available
under the Open Database License, cartography is licensed as CC BY-SA.

Figure 2b, 9b: Tiles courtesy of MapQuest, portions courtesy NASA/JPL-Caltech and U.S. Depart. of
Agriculture, Farm Service Agency.

Figure 7 Cartography by The Canada Base Map – Transportation (CBMT) web mapping services of
the Earth Sciences Sector (ESS) at Natural Resources Canada (NRCan) licensed as the Open
Government Licence – Canada.

Figure 10: Map tiles by Stamen Design under CC BY 3.0. Data by OpenStreetMap available under the
CC BY-SA.

Figure 6: Map tiles by CartoDB under CC BY 3.0. Data by OpenStreetMap available under the Open
Database License.

Figure 11: The Appendix is © OpenStreetMap contributors. Data by OpenStreetMap available under
the Open Database License, cartography is licensed as CC BY-SA. with the exceptions below.

mapquest : Tiles courtesy of MapQuest. Data by OpenStreetMap available under the Open
Database License.

mapquest-sat : Tiles courtesy of MapQuest, portions courtesy NASA/JPL-Caltech and U.S.
Depart. of Agriculture, Farm Service Agency.

mapquest-labels : Tiles courtesy of MapQuest. Data by OpenStreetMap available under the
Open Database License.

maptoolkit : © Toursprung GmbH Data by OpenStreetMap available under the Open Database
License.

humanitarian : © OpenStreetMap contributors. Data by OpenStreetMap available under the
Open Database License, cartography by Humanitarian OSM team is licensed as CC BY-SA.

cartodb : Map tiles by CartoDB under CC BY 3.0. Data by OpenStreetMap available under the
Open Database License.

cartodb-dark : Map tiles by CartoDB under CC BY 3.0. Data by OpenStreetMap available
under the Open Database License.

stamen-toner : Map tiles by Stamen Design under CC BY 3.0. Data by OpenStreetMap available
under the Open Database License.

stamen-watercolor : Map tiles by Stamen Design under CC BY 3.0. Data by OpenStreetMap
available under the CC BY-SA.

Bibliography

H. Bengtsson. R.utils: Various Programming Utilities, 2016. URL https://CRAN.R-project.org/
package=R.utils. R package version 2.3.0. [p64]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://creativecommons.org/licenses/by-sa/2.0
http://www.mapquest.com
http://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/free-data-geogratis/geogratis-web-services/17216
http://www.nrcan.gc.ca/earth-sciences/geography/topographic-information/free-data-geogratis/geogratis-web-services/17216
http://open.canada.ca/en/open-government-licence-canada
http://open.canada.ca/en/open-government-licence-canada
http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://creativecommons.org/licenses/by/3.0
http://cartodb.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://opendatacommons.org/licenses/odbl
http://openstreetmap.org/copyright
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://creativecommons.org/licenses/by-sa/2.0
http://www.mapquest.com
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://opendatacommons.org/licenses/odbl
http://www.mapquest.com
http://www.mapquest.com
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://www.toursprung.com
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://opendatacommons.org/licenses/odbl
http://openstreetmap.org/copyright
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://hot.openstreetmap.org/about
http://creativecommons.org/licenses/by-sa/2.0
http://cartodb.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://cartodb.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://opendatacommons.org/licenses/odbl
http://stamen.com
http://creativecommons.org/licenses/by/3.0
http://openstreetmap.org
http://creativecommons.org/licenses/by/3.0
https://CRAN.R-project.org/package=R.utils
https://CRAN.R-project.org/package=R.utils

CONTRIBUTED RESEARCH ARTICLES 88

R. Bivand. classInt: Choose Univariate Class Intervals, 2015. URL https://CRAN.R-project.org/
package=classInt. R package version 0.1-23. [p64]

R. Bivand and N. Lewin-Koh. maptools: Tools for Reading and Handling Spatial Objects, 2016. URL
https://CRAN.R-project.org/package=maptools. R package version 0.8-39. [p64]

R. Bivand and C. Rundel. rgeos: Interface to Geometry Engine – Open Source (GEOS), 2016. URL
https://CRAN.R-project.org/package=rgeos. R package version 0.3-19. [p64]

R. Bivand, T. Keitt, and B. Rowlingson. rgdal: Bindings for the Geospatial Data Abstraction Library, 2016.
URL https://CRAN.R-project.org/package=rgdal. R package version 1.1-8. [p64]

R. S. Bivand, E. Pebesma, and V. Gomez-Rubio. Applied Spatial Data Analysis with R. Springer, New
York, 2nd edition, 2013. URL http://www.asdar-book.org/. [p65]

P. Brown. mapmisc: Utilities for Producing Maps, 2016. URL https://CRAN.R-project.org/package=
mapmisc. R package version 1.5.0. [p64]

P. E. Brown. Model-based geostatistics the easy way. Journal of Statistical Software, 63(12):1–24, 2015.
URL http://www.jstatsoft.org/v63/i12/. [p66, 75]

J. Cheng and Y. Xie. leaflet: Create Interactive Web Maps with the JavaScript “Leaflet” Library, 2016. URL
https://CRAN.R-project.org/package=leaflet. R package version 1.0.1. [p86]

R. J. Hijmans. geosphere: Spherical Trigonometry, 2015a. URL https://CRAN.R-project.org/package=
geosphere. R package version 1.5-1. [p64]

R. J. Hijmans. raster: Geographic Data Analysis and Modeling, 2015b. URL https://CRAN.R-project.
org/package=raster. R package version 2.5-2. [p64]

R. J. Hijmans, S. Phillips, J. Leathwick, and J. Elith. dismo: Species Distribution Modeling, 2016. URL
https://CRAN.R-project.org/package=dismo. R package version 1.0-15. [p64]

G. F. Jenks and F. C. Caspall. Error on choroplethic maps: Definition, measurement, reduction. The
Annals of the Association of American Geographers, 61(2):217–244, 1971. [p80]

R. Munroe. Map projections. xkcd Web Comic, 2011. URL http://xkcd.com/977. [Online; accessed
11-March-2015]. [p72]

E. Neuwirth. RColorBrewer: ColorBrewer Palettes, 2014. URL https://CRAN.R-project.org/package=
RColorBrewer. R package version 1.1-2. [p64]

E. J. Pebesma and R. S. Bivand. Classes and methods for spatial data in R. R News, 5(2):9–13, November
2005. URL http://CRAN.R-project.org/doc/Rnews/. [p64, 80]

J. P. Snyder. Map projections – A working manual. Professional Paper 1395, US Geologic Survey,
Washington, DC, 1987. URL http://pubs.usgs.gov/pp/1395/report.pdf. [p66]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2009. URL
http://ggplot2.org. [p86]

Wikipedia. Great-circle distance – Wikipedia, The Free Encyclopedia, 2015a. URL https://
en.wikipedia.org/w/index.php?title=Great-circle_distance&oldid=688488703. [Online; ac-
cessed 3-November-2015]. [p66]

Wikipedia. Mollweide projection – Wikipedia, The Free Encyclopedia, 2015b. URL https://en.
wikipedia.org/w/index.php?title=Mollweide_projection&oldid=689173007. [Online; accessed
25-November-2015]. [p72]

Wikipedia. Web Mercator – Wikipedia, The Free Encyclopedia, 2016. URL https://en.wikipedia.
org/w/index.php?title=Web_Mercator&oldid=714750105. [Online; accessed 19-May-2016]. [p70]

Y. Xie. Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition,
2015. URL http://yihui.name/knitr/. [p69]

Patrick Brown
Cancer Care Ontario
620 University Ave
Toronto, ON M5G 2L7 Canada
patrick.brown@utoronto.ca

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=classInt
https://CRAN.R-project.org/package=classInt
https://CRAN.R-project.org/package=maptools
https://CRAN.R-project.org/package=rgeos
https://CRAN.R-project.org/package=rgdal
http://www.asdar-book.org/
https://CRAN.R-project.org/package=mapmisc
https://CRAN.R-project.org/package=mapmisc
http://www.jstatsoft.org/v63/i12/
https://CRAN.R-project.org/package=leaflet
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=geosphere
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=dismo
http://xkcd.com/977
https://CRAN.R-project.org/package=RColorBrewer
https://CRAN.R-project.org/package=RColorBrewer
http://CRAN.R-project.org/doc/Rnews/
http://pubs.usgs.gov/pp/1395/report.pdf
http://ggplot2.org
https://en.wikipedia.org/w/index.php?title=Great-circle_distance&oldid=688488703
https://en.wikipedia.org/w/index.php?title=Great-circle_distance&oldid=688488703
https://en.wikipedia.org/w/index.php?title=Mollweide_projection&oldid=689173007
https://en.wikipedia.org/w/index.php?title=Mollweide_projection&oldid=689173007
https://en.wikipedia.org/w/index.php?title=Web_Mercator&oldid=714750105
https://en.wikipedia.org/w/index.php?title=Web_Mercator&oldid=714750105
http://yihui.name/knitr/
mailto:patrick.brown@utoronto.ca

CONTRIBUTED RESEARCH ARTICLES 89

Additional code

European fertility

URL’s for web sites where data are obtained:

nutsUrl <- "http://ec.europa.eu/eurostat/cache/GISCO/geodatafiles/NUTS_2010_60M_SH.zip"
nutsFile <- basename(nutsUrl)

Download and read in boundary file:

if (!file.exists(nutsFile)) {
download.file(nutsUrl, nutsFile, method = "curl")

}
unzip(nutsFile)
nutsShp <- grep("RG_60M_2010.shp$", unzip(nutsFile, list = TRUE)$Name, value = TRUE)
euroNuts <- shapefile(nutsShp)

The fertility data are retrieved as a gzipped tab-separated text file, which the R.utils package is able
to decompress. The code below will download a copy of this file from the author’s web server if the
EUROSTAT download fails.

fertUrl <- file.path("http://ec.europa.eu/eurostat/estat-navtree-portlet-prod",
"BulkDownloadListing?sort=1&file=data%2Fdemo_r_frate2.tsv.gz")

fertFileGz <- "demo_r_frate2.tsv.gz"
fertFile <- gsub(".gz$", "", fertFileGz)
if (!file.exists(fertFileGz)) {

download.file(fertUrl, fertFileGz, method = "curl")
}
R.utils::gunzip(fertFileGz, overwrite = file.exists(fertFile), remove = FALSE)
euroDat <- read.table(fertFile, header = TRUE, stringsAsFactors = FALSE, sep = "\t",

na.strings = ": ")
euroDat <- euroDat[grep("^TOTAL", euroDat[, 1]),]
euroDat$timegeo <- gsub("^TOTAL,", "", euroDat[, 1])

Merge the fertility and polygon data. Warning messages that not all rows of the fertility table can be
matched to polygons can be ignored.

euroF <- sp::merge(euroNuts, euroDat, all.x = FALSE, by.x = "NUTS_ID",
by.y = "timegeo")

Exclude some of the outlying parts of the EU:

euroF <- raster::crop(euroF, extent(-25, 180, 33, 90))

Canada

Transform the Great Circle:

gcircleT <- mapply(spTransform, CRSobj = crsList, MoreArgs = list(x = gcircle))

Obtain background maps:

mapT <- mapply(openmap, crs = crsList, MoreArgs = list(path = "nrcan", x = cities,
buffer = 3))

Create maps:

for (D in names(crsList)) {
map.new(citiesT[[D]], buffer = c(200 * 1000, 1)[1 + isLonLat(citiesT[[D]])])
plotRGB(mapT[[D]], add = TRUE)
rgdal::llgridlines(citiesT[[D]], col = "orange")
points(gcircleT[[D]], cex = 0.1, col = "blue")
points(citiesT[[D]], col = "red", pch = "+", cex = 1.5)
text(citiesT[[D]], labels = citiesT[[D]]$name, col = "red", pos = cities$pos,

offset = 0.6, cex = 1.2)
scaleBar(citiesT[[D]], "topleft", seg.len = 4, pt.cex = 0)

}

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 90

Additional tables and figures

col max palette

BrBG 11

PiYG 11

PRGn 11

PuOr 11

RdBu 11

RdGy 11

RdYlBu 11

RdYlGn 11

Spectral 11

Accent 8

Dark2 8

Paired 12

Pastel1 9

Pastel2 8

Set1 9

Set2 8

Set3 12

Blues 9

BuGn 9

BuPu 9

GnBu 9

Greens 9

Greys 9

Oranges 9

OrRd 9

PuBu 9

PuBuGn 9

PuRd 9

Purples 9

RdPu 9

Reds 9

YlGn 9

YlGnBu 9

YlOrBr 9

YlOrRd 9

Table 4: Colour palettes from RColorBrewer, with col showing the character string to provide
colourScale or brewer.pal and max giving the maximum number of colours for each palette.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 91

(a) osm,
© OpenStreetMap.

(b) osm-semitransparent,
© OpenStreetMap.

(c) osm-no-labels,
© OpenStreetMap.

(d) osm-transport,
© OpenStreetMap.

(e) bw-mapnik,
© OpenStreetMap.

(f) mapquest. Tiles
courtesy of MapQuest.

(g) mapquest-sat. Tiles
courtesy of MapQuest.

(h) osm-cyclemap,
© OpenStreetMap.

(i) landscape,
© OpenStreetMap.

(j) opentopomap,
© OpenStreetMap.

(k) maptoolkit,
© Toursprung GmbH.

(l) waze, © Waze mobile.

(m) humanitarian,
© OpenStreetMap.

(n) cartodb, © CartoDB. (o) stamen-toner,
© Stamen Design.

(p) stamen-watercolor,
© Stamen Design.

Figure 11: Selected openmap tile sets.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://www.mapquest.com
http://www.mapquest.com
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://openstreetmap.org/copyright
http://www.toursprung.com
http://www.waze.com/legal/notices
http://openstreetmap.org/copyright
http://cartodb.com
http://stamen.com
http://stamen.com

CONTRIBUTED RESEARCH ARTICLES 92

Variable Clustering in High-Dimensional
Linear Regression: The R Package clere
by Loïc Yengo, Julien Jacques, Christophe Biernacki and Mickael Canouil

Abstract Dimension reduction is one of the biggest challenges in high-dimensional regression models.
We recently introduced a new methodology based on variable clustering as a means to reduce dimen-
sionality. We present here the R package clere that implements some refinements of this methodology.
An overview of the package functionalities as well as examples to run an analysis are described.
Numerical experiments on real data were performed to illustrate the good predictive performance of
our parsimonious method compared to standard dimension reduction approaches.

Introduction

High dimensionality is increasingly ubiquitous in numerous scientific fields including genetics, eco-
nomics and physics. Reducing the dimensionality is a challenge that most statistical methodologies
must meet not only to remain interpretable but also to achieve reliable predictions. In linear regression
models, dimension reduction techniques often correspond to variable selection methods. Approaches
for variable selection are already implemented in publicly available, open-source software, e.g., the
well-known R packages glmnet (Friedman et al., 2010) and spikeslab (Ishwaran et al., 2013). The R
package glmnet implements the Elastic net methodology (Zou and Hastie, 2005), which is a general-
ization of both the LASSO (Tibshirani, 1996) and the ridge regression (RR; Hoerl and Kennard, 1970).
The R package spikeslab in turn, implements the Spike and Slab methodology (Ishwaran and Rao,
2005), which is a Bayesian approach for variable selection.

Dimension reduction cannot, however, be restricted to variable selection. Indeed, the field can
be extended to include approaches which aim at creating surrogate covariates that summarize the
information contained in initial covariates. Since the emblematic principal component regression
(PCR; Jolliffe, 1982), many other methods spread in the recent literature. As specific examples, we
may refer to the OSCAR methodology (Bondell and Reich, 2008), or the PACS methodology (Sharma
et al., 2013) which is a generalization of the latter approach. Those methods mainly proposed variable
clustering within a regression model as a way to reduce the dimensionality. Despite their theoretical
and practical appeal, implementations of those methods were often proposed only through MATLAB
(The MathWorks Inc., 2014) or R scripts, limiting thus the flexibility and the computational efficiency of
their use. The CLusterwise Effect REgression (CLERE) methodology (Yengo et al., 2014), was recently
introduced as a novel methodology for simultaneous variable clustering and regression. The CLERE
methodology is based on the assumption that each regression coefficient is an unobserved random
variable sampled from a mixture of Gaussian distributions with an arbitrary number g of components.
In addition, all components in the mixture are assumed to have different means (b1, . . . , bg) and equal
variances γ2.

In this paper, we propose two new features for the CLERE model. First, the stochastic EM (SEM)
algorithm is proposed as a more computationally efficient alternative to the Monte Carlo EM (MCEM)
algorithm previously introduced in Yengo et al. (2014). Secondly, the CLERE model is enhanced
with the possibility of constraining the first component to have its mean equal to 0, i.e. b1 = 0. This
enhancement is mainly aimed at facilitating the interpretation of the model. Indeed when b1 is set to
0, variables assigned to the cluster associated with b1 might be considered less relevant than other
variables provided γ2 is small enough. Those two new features were implemented in the R package
clere (Yengo and Canouil, 2015). The core of the package is a C++ program interfaced with R using the
R packages Rcpp (Eddelbuettel and François, 2011) and RcppEigen (Bates and Eddelbuettel, 2013).
The R package clere can be downloaded from the Comprehensive R Archive Network (CRAN) at
https://CRAN.R-project.org/package=clere.

The outline of the present paper is the following. In the next section the definition of the model
is recalled and the strategy to estimate the model parameters is explained. Afterwards, the main
functionalities of the R package clere are presented. Real data analyses are then provided, aiming at
illustrating the good predictive performances of CLERE, with noticeable parsimony ability, compared
to standard dimension reduction methods. Finally, perspectives and further potential improvements
of the package are discussed in the last section.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=glmnet
http://CRAN.R-project.org/package=spikeslab
http://CRAN.R-project.org/package=clere
http://CRAN.R-project.org/package=Rcpp
http://CRAN.R-project.org/package=RcppEigen
https://CRAN.R-project.org/package=clere

CONTRIBUTED RESEARCH ARTICLES 93

Model definition and notation

Our model is defined by the following hierarchical relationships:
lyi ∼ N

(
β0 + ∑

p
j=1 β jxij, σ2

)
,

β j|zj ∼ N
(

∑
g
k=1 bkzjk, γ2

)
,

zj =
(

zj1, . . . , zjg

)
∼M

(
1, π1, . . . , πg

)
,

(1)

where N (µ, σ2) is the normal distribution with mean µ and variance σ2,M
(
1, π1, . . . , πg

)
the one-

order multinomial distribution with parameters π =
(
π1, . . . , πg

)
, where, ∀ k = 1, . . . , g πk > 0 and

∑
g
k=1 πk = 1, and β0 is a constant term. For an individual i = 1, . . . , n, yi is the response and xij

is an observed value for the j-th covariate. β j is the regression coefficient associated with the j-th
covariate (j = 1, . . . , p), which is assumed to follow a mixture of g Gaussians. The variable zj indicates
from which mixture component β j is drawn (zjk = 1 if β j comes from component k of the mixture,
zjk = 0 otherwise). Let’s note that model (1) can be considered as a variable selection-like model by
constraining the model parameter b1 to be equal to 0. Indeed, assuming that one of the components is
centered in zero means that a cluster of regression coefficients have null expectation, and thus that the
corresponding variables are not significant for explaining the response variable. This functionality is
available in the package.

Let β =
(

β1, . . . , βp
)
, y = (y1, . . . , yn)′, X = (xij), Z = (zjk), b = (b1, . . . , bg)′ and π =

(π1, . . . , πg)′. Moreover, log p(y|X; θ) denotes the log-likelihood of model (1) assessed for the parame-
ter vector θ =

(
β0, b, π, σ2, γ2). Model (1) can be interpreted as a Bayesian approach. However, to be

fully Bayesian a prior distribution for parameter θ would have been necessary. Instead, we proposed to
estimate θ by maximizing the (marginal) log-likelihood, log p(y|X; θ). This partially Bayesian approach
is referred to as Empirical Bayes (EB; Casella, 1985). Let Z be the set of p× g-matrices partitioning p
covariates into g groups. Those matrices are defined as

Z =
(

zjk

)
1≤j≤p,1≤k≤g

∈ Z ⇔ ∀j = 1, . . . , p

{
∃! k such as zjk = 1
For all k′ 6= k zjk′ = 0.

The log-likelihood log p(y|X; θ) is defined as

log p(y|X; θ) = log

[
∑

Z∈Z

∫
Rp

p(y, β, Z|X; θ)dβ

]
.

Since it requires integrating over Z with cardinality gp, evaluating the likelihood becomes rapidly
computationally unaffordable.

Nonetheless, maximum likelihood estimation is still achievable using the expectation maximization
(EM) algorithm (Dempster et al., 1977). The latter algorithm is an iterative method which starts with
an initial estimate of the parameter and updates this estimate until convergence. Each iteration of the
algorithm consists of two steps, denoted as the E and the M steps. At each iteration d of the algorithm,
the E step consists in calculating the expectation of the log-likelihood of the complete data (observed
+ unobserved) with respect to p(β, Z|y, X; θ(d)), the conditional distribution of the unobserved data
given the observed data, and the value of the parameter at the current iteration, θ(d). This expectation,
often denoted as Q(θ|θ(d)) is then maximized with respect to θ at the M step.

In model (1), the E step is analytically intractable. A broad literature devoted to intractable E steps
recommends the use of a stochastic approximation of Q(θ|θ(d)) through Monte Carlo (MC) simulations
(Wei and Tanner, 1990; Levine and Casella, 2001). This approach is referred to as the MCEM algorithm.
Besides, mean-field-type approximations are also proposed (Govaert and Nadif, 2008; Mariadassou
et al., 2010). Despite their computational appeal, the latter approximations do not generally ensure
convergence to the maximum likelihood (Gunawardana and Byrne, 2005). Alternatively, the SEM
algorithm (Celeux et al., 1996) was introduced as a stochastic version of the EM algorithm. In this
algorithm, the E step is replaced with a simulation step (S step) that consists in generating a complete
sample by simulating the unobserved data using p(β, Z|y, X; θ(d)) providing thus a sample (β(d), Z(d)).
Note that the Monte Carlo algorithm we use to perform this simulation is the Gibbs sampler. After
the S step follows the M step which consists in maximizing p(β(d), Z(d)|y, X; θ) with respect to θ.

Alternating those two steps generates a sequence
(

θ(d)
)

, which is a Markov chain whose stationary
distribution (when it exists) concentrates around the local maxima of the likelihood.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 94

Estimation and model selection

In this section, two algorithms for model inference are presented: the Monte-Carlo Expectation
Maximization (MCEM) algorithm and the Stochastic Expectation Maximization (SEM) algorithm.
The section starts with the initialization strategy common to both algorithms and continues with the
detailed description of each algorithm. Then, model selection (for choosing g) and variable selection
are discussed.

Initialization

The two algorithms presented in this section are initialized using a primary estimate β j
(0) of each

β j. The latter can be chosen either at random, or obtained from univariate regression coefficients or
penalized approaches like LASSO and ridge regression. For large SEM or MCEM chains, initialization
is not a critical issue. The choice of the initialization strategy is therefore made to speed up the
convergence of the chains. A Gaussian mixture model with g component(s) is then fitted using

β(0) =
(

β
(0)
1 , . . . , β

(0)
p

)
as observed data to produce starting values b(0), π(0) and γ2(0) respectively

for parameters b, π and γ2. Using maximum a posteriori (MAP) clustering, an initial partition

Z(0) =
(

z(0)jk

)
∈ Z is obtained as

∀j ∈ {1, . . . , p}, z(0)jk =

1 if k = arg mink′∈{1,...,g}

(
β j

(0) − b(0)k′

)2
,

0 otherwise.

β0 and σ2 are initialized using β(0) as follows:

β
(0)
0 =

1
n

n

∑
i=1

yi −
p

∑
j=1

β
(0)
j xij

 and σ2(0) =
1
n

n

∑
i=1

yi − β
(0)
0 −

p

∑
j=1

β
(0)
j xij

2

.

MCEM algorithm

The stochastic approximation of the E step

Suppose at iteration d of the algorithm that we have
{(

β(1,d), Z(1,d)
)

, . . . ,
(

β(M,d), Z(M,d)
)}

, M sam-

ples from p
(

β, Z|y, X; θ(d)
)

. Then the MC approximation of the E step can be written as

Q
(

θ|θ(d)
)
= E

[
log p(y, β, Z|X; θ(d))|y, X; θ(d)

]
≈ 1

M

M

∑
m=1

log p(y, β(m,d), Z(m,d)|X; θ(d)).

Sampling from p
(

β, Z|y, X; θ(d)
)

is not straightforward. However, we can use a Gibbs sampling

scheme to simulate unobserved data, taking advantage of p
(

β|Z, y, X; θ(d)
)

and p
(

Z|β, y, X; θ(d)
)

from which it is easy to simulate. These distributions, i.e., Gaussian and multinomial, respectively, are
described below in Equations (2) and (3).

β|Z, y, X; θ(d) ∼ N
(

µ(d), Σ(d)
)

,

µ(d) =

[
X′X + σ2(d)

γ2(d)
Ip

]−1
X ′
(

y− β
(d)
0 1p

)
+ σ2(d)

γ2(d)

[
X′X + σ2(d)

γ2(d)
Ip

]−1
Zb(d),

Σ(d) = σ2(d)
[

X′X + σ2(d)

γ2(d)
Ip

]−1
,

(2)

and, noting that p
(

Z|β, y, X; θ(d)
)

does not depend on X nor y,

p
(

zjk = 1|β; θ(d)
)

∝ π
(d)
k exp

−
(

β j − b(d)k

)2

2γ2(d)

 . (3)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 95

In Equation (2), Ip and 1p stand for the identity matrix with dimension p and the vector of Rp where

all elements are equal to 1. To efficiently sample from p
(

β|Z, y, X; θ(d)
)

a preliminary singular vector
decomposition of matrix X is necessary. Once this decomposition is performed the overall complexity
of the approximate E step is O

[
M(p2 + pg)

]
.

The M step

Using the M draws obtained by Gibbs sampling at iteration d, the M step is straightforward as detailed
in Equations (4) to (8). The overall computational complexity of that step is O (Mpg).

π
(d+1)
k =

1
Mp

M

∑
m=1

p

∑
j=1

z(m,d)
jk , (4)

b(d+1)
k =

1

Mpπ
(d+1)
k

M

∑
m=1

p

∑
j=1

z(m,d)
jk β

(m,d)
j , (5)

γ2(d+1)
=

1
Mp

M

∑
m=1

p

∑
j=1

g

∑
k=1

z(m,d)
jk

(
β
(m,d)
j − b(d+1)

k

)2
, (6)

β
(d+1)
0 =

1
n

n

∑
i=1

yi −
p

∑
j=1

(
1
M

M

∑
m=1

β
(m,d)
j

)
xij

, (7)

σ2(d+1)
=

1
nM

M

∑
m=1

n

∑
i=1

yi − β
(d+1)
0 −

p

∑
j=1

β
(m,d)
j xij

2

. (8)

SEM algorithm

In most situations, the SEM algorithm can be considered as a special case of the MCEM algorithm
(Celeux et al., 1996), obtained by setting M = 1. In model (1), such a direct derivation leads to an
algorithm where the computational complexity remains quadratic with respect to p. To reduce that
complexity, we propose a SEM algorithm based on the integrated complete data likelihood p(y, Z|X; θ)
rather than p(y, β, Z|X; θ). A closed form of p(y, Z|X; θ) is available and given in the following.

Closed form of the integrated complete data likelihood

Let the SVD decomposition of matrix X be USV ′, where U and V are respectively n× n and p× p
orthogonal matrices, and S is a n× p rectangular diagonal matrix where the diagonal terms are the
eigenvalues

(
λ2

1, . . . , λ2
n
)

of matrix XX ′. We now define Xu = U ′X and yu = U ′y. Let M be the
n× (g + 1) matrix where the first column is made of 1’s and where the additional columns are those
of matrix XuZ. Let also t = (β0, b) ∈ R(g+1) and R be a n× n diagonal matrix where the i-th diagonal
term equals σ2 + γ2λ2

i . With these notations we can express the complete data likelihood integrated
over β as

log p (y, Z|X; θ) = −n
2

log (2π)− 1
2

n

∑
i=1

log
(

σ2 + γ2λ2
i

)
− 1

2
(yu −Mt)′ R−1 (yu −Mt)

+
p

∑
j=1

g

∑
k=1

zjk log πk. (9)

Simulation step

To sample from p (Z|y, X; θ) we use a Gibbs sampling strategy based on the conditional distributions

p
(

zj|y, Z−j, X; θ
)

, Z−j denoting the set of cluster membership indicators for all covariates but the j-th.

Let w−j =
(

w−j
1 , . . . , w−j

n

)′
, where w−j

i = yu
i − β0 −∑l 6=j ∑

g
k=1 zlkxu

ilbk. The conditional distribution

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 96

p(zjk = 1|Z−j, y, X; θ) can be written as

p(zjk = 1|Z−j, y, X; θ) ∝ πk exp

[
−

b2
k

2

(
xu

j

)′
R−1xu

j + bk

(
w−j

)′
R−1xu

j

]
, (10)

where xu
j is the j-th column of Xu. In the classical SEM algorithm, convergence to p (Z|y, X; θ) should

be reached before updating θ. However, a valid inference can still be ensured in settings when θ
is updated only after one or few Gibbs iterations. These approaches are referred to as SEM-Gibbs
algorithm (Biernacki and Jacques, 2013). The overall computational complexity of the simulation step
is O (npg), i.e., it is linear in p and not quadratic any more, in contrast to the previous MCEM.

To improve the mixing of the generated Markov chain, we start the simulation step at each
iteration by creating a random permutation of {1, . . . , p}. Then, according to the order defined by that
permutation, we update each zjk using p(zjk = 1|Z−j, y, X; θ).

Maximization step

log p (y, Z|X; θ) corresponds to the marginal log-likelihood of a linear mixed model (Searle et al.,
1992), which can be written as

yu = Mt + λv + ε (11)

where v is an unobserved random vector such as v ∼ N
(
0, γ2In

)
, ε ∼ N

(
0, σ2In

)
and λ =

diag (λ1, . . . , λn). The estimation of the parameters of model (11) can be performed using the EM
algorithm, as in Searle et al. (1992). We adapt below the EM equations defined in Searle et al. (1992),

using our notations. At iteration s of the internal EM algorithm, we define R(s) = σ2(s) In + γ2(s)λ′λ.
The detailed internal E and M steps are given below.

Internal E step

v(s)σ = E

[(
yu −Mt(s) − λv

)′ (
yu −Mt(s) − λv

)
|yu
]

= σ4(s)
(

yu −Mt(s)
)′

R(s)R(s)
(

yu −Mt(s)
)
+ n× σ2(s) − σ4(s)

n

∑
i=1

1

σ2(s) + γ2(s)λ2
i

.

v(s)γ = E
[
v′v|yu]

= γ4(s)
(

yu −Mt(s)
)′

R(s)λ′λR(s)
(

yu −Mt(s)
)
+ n× γ2(s) − γ4(s)

n

∑
i=1

λ2
i

σ2(s) + γ2(s)λ2
i

.

h(s) = E [yu − λv|yu] = Mt(s) + σ2(s){R(s)}−1
(

yu −Mt(s)
)

.

Internal M step

σ2(s+1)
= v(s)σ /n,

γ2(s+1)
= v(s)γ /n,

t(s+1) =
[
M ′M

]−1 M ′h(s).

Given a non-negative user-specified threshold δ and a maximum number Nmax of iterations, Internal E
and M steps are alternated until

| log p
(

y, Z|X; θ(s)
)
− log p

(
y, Z|X; θ(s+1)

)
| < δ or s = Nmax.

The computational complexity of the M step is O
(

g3 + ngNmax
)
, thus not involving p.

Attracting and absorbing states

• Absorbing states. The SEM algorithm described above defines a Markov chain where the sta-
tionary distribution is concentrated around values of θ corresponding to local maxima of the
likelihood function. This chain has absorbing states in values of θ such as σ2 = 0 or γ2 = 0. In
fact, the internal M step reveals that updated values for σ2 and γ2 are proportional to previous
values of those parameters.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 97

• Attracting states. We empirically observed that attraction around σ2 = 0 was quite frequent
when using the MCEM algorithm, especially when p > n and when the number M of draws
was small. We therefore advocate to use at least 5 draws (M ≥ 5 using option nsamp in the
function fitClere).

Model selection

Once the MLE θ̂ is calculated (using one of the algorithms), the maximum log-likelihood and the

posterior clustering matrix E
[

Z|y, X; θ̂
]

are approximated using MC simulations based on Equations

(9) and (10). The approximate maximum log-likelihood l̂, is then utilized to calculate AIC (Akaike,
1974) and BIC (Schwarz, 1978) for model selection. In model (1), those criteria can be written as

BIC = −2l̂ + 2(g + 1) log(n),

AIC = −2l̂ + 4(g + 1).

An additional criterion for model selection, namely the ICL criterion (Biernacki et al., 2000) is also
implemented in the R package clere. The latter criterion can be written as

ICL = BIC−
p

∑
j=1

g

∑
k=1

πjk log(πjk), (12)

where πjk = E
[
zjk|y, X; θ̂

]
.

Interpretation of the special group of variables associated with b1 = 0

The constraint b1 = 0 is mainly driven by an interpretation purpose. The meaning of this group
depends on both the total number g of groups and the estimated value of parameter γ2. In fact, when
g > 1 and γ2 is small, covariates assigned to that group are likely less relevant to explain the response.
Determining whether γ2 is small enough is not straightforward. However, when this property holds,
we may expect the groups of covariates to be separated. This would for example translate in the
posterior probabilities πj1 being larger than 0.7. In addition to the benefit in interpretation, the
constraint b1 = 0, reduces the number of parameters to be estimated and consequently the variance of
the predictions performed using the model.

Package functionalities

The R package clere mainly implements a function for parameter estimation and model selection: the
function fitClere(). Four additional methods are also implemented in the package: for graphical
representation, plot(); summarizing the results, summary(); for getting the predicted clusters of
variables, clusters(); and for making predictions from new design matrices, predict(). Examples of
calls to the functions presented in this section are given in the next section.

The main function fitClere()

The main function fitClere() has only three mandatory arguments: the vector of response y (size n),
the matrix of explanatory variables x (size n× p) and the number g of groups of regression coefficients
which is expected. The optional parameter analysis, when it takes the value "aic", "bic" or "icl",
allows to test all the possible number of groups between 1 and g. The choice between the two
proposed algorithms is possible thanks to the parameter algorithm, but we encourage the users to use
the default value, the SEM algorithm, which generally over-performs the MCEM algorithm (see the
first experiment of the next section).

Several other parameters allow to tune the different numbers of iterations of the estimation
algorithm. In general, the higher are these parameter values, the better is the quality of the estimation
but the heavier is also the computing time. What we advice is to use the default values, and to
graphically check the quality of the estimation with plots as in Figure 1: If the values of the model
parameters are quite stable for a sufficient large part of the iterations, this indicates that the results are
ok. If the stability is not reached sufficiently early before the end of the iterations, a higher number of
iterations should be chosen.

Finally, among the remaining parameters (note that the complete list can be obtained with
help("fitClere")), two are especially important: parallel allows to run parallel computations

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 98

0 500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

SEM iterations

T
he

 b
's

0 500 1000 1500 2000

0.
3

0.
4

0.
5

0.
6

0.
7

SEM iterations

T
he

 p
i's

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

SEM iterations

si
gm

a^
2

an
d

ga
m

m
a^

2

sigma2
gamma2

0 500 1000 1500 2000

−
0.

15
−

0.
05

0.
00

SEM iterations

In
te

rc
ep

t

Figure 1: Values of the model parameters in view of SEM algorithm iterations. The vertical gray
line in each of the four plots represents the number nBurn of iterations discarded before calculating
maximum likelihood estimates.

(if compatible with the user’s computer) and sparse allows to impose that one of the regression
parameters is equal to 0 and thus to introduce a cluster of not significant explanatory variables.

Methods summary(), plot(), clusters() and predict()

The summary() method for an object returned by fitClere() prints an overview of the estimated
parameters and returns the estimated likelihood and information based model selection criteria (AIC,
BIC and ICL). The corresponding plot() method produces graphs such as ones presented in Figure 1.

The clusters() method takes one argument of class “Clere” as returned by fitClere() and a
threshold argument. This function assigns each variable to the group where associated conditional
probability of membership is larger than the given threshold. If conditional probabilities of mem-
bership are larger than the specified threshold for more than one group, then the group having the
largest probability is returned and a warning is printed. If, moreover, there are several ex aequo on
that largest probability, then the group with the smallest index is returned. When threshold = NULL,
the maximum a posteriori (MAP) strategy is used to infer the clusters.

The predict() method has two arguments: a “Clere” object and a design matrix Xnew. Using that
new design matrix, the predict() method returns an approximation of E

[
Xnewβ|y, X; θ̂

]
.

Numerical experiments

This section presents two sets of numerical experiments. The first set of experiments aims at comparing
the MCEM and SEM algorithms in terms of computational time and estimation or prediction accuracy.
The second set of experiments is aimed at comparing CLERE to standard dimension reduction
techniques. The latter comparison is performed on both simulated and real data.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 99

SEM algorithm versus MCEM algorithm

Description of the simulation study

In this section, a comparison between the SEM algorithm and the MCEM algorithm is performed. This
comparison is performed using the four following performance indicators:

1. Computational time (CT) to run a pre-defined number of SEM/MCEM iterations. This number
was set to 2,000 in this simulation study.

2. Mean squared estimation error (MSEE) defined as

MSEEa = E
[
(θ− θ̂a)

′(θ− θ̂a)
]

,

where a ∈ {"SEM","MCEM"} and θ̂a is an estimated value for parameter θ obtained with algorithm
a. Since θ is only known up to a permutation of the group labels, we chose the permutation
leading to the smallest MSEE value.

3. Mean squared prediction error (MSPE) defined as

MSPEa = E
[
(yv− Xvθ̂a)

′(yv− Xvθ̂a)
]

,

where yv and Xv are respectively a vector of responses and a design matrix from a validation
data set.

4. Maximum log-likelihood (ML) reached. This quantity was approximated using 1,000 samples
from p(Z|y; θ̂).

Three versions of the MCEM algorithm were proposed for comparison with the SEM algorithm,
depending on the number M (or nsamp) of Gibbs iterations used to approximate the E step. That
number was varied between 5, 25 and 125. We chose these iterations numbers so as to cover different
situations, from a situation in which the number of iterations is too small to a situation in which that
number seems sufficient to expect having reached convergence of the simulated Markov chain. Those
versions were respectively denoted MCEM5, MCEM25 and MCEM125. The comparison was performed
using 200 simulated data sets. In order to consider high-dimensional situations with sizes allowing
to reproduce multiple simulations in a reasonable time, each training data set consisted of n = 25
individuals and p = 50 variables. Validation data sets used to calculate MSPE consisted of 1,000
individuals each. All covariates were simulated independently according to the standard Gaussian
distribution:

∀(i, j) xij ∼ N (0, 1).

Both training and validation data sets were simulated according to model (1) using β0 = 0, b =
(0, 3, 15)′, π = (0.64, 0.20, 0.16)′, σ2 = 1 and γ2 = 0. This is equivalent to simulate data according to
the standard linear regression model defined by:

yi ∼ N

 32

∑
j=1

0× xij +
42

∑
j=33

3× xij +
50

∑
j=43

15× xij, 1

 .

All algorithms were run using 10 different random starting points. Estimates yielding the largest
likelihood were then used for the comparison.

Results of the comparison

Table 1 summarizes the results of the comparison between the algorithms. The MCEM5 algorithm
was 1.3 times faster than the SEM algorithm however the latter algorithm poorly performed regarding
all other performance criteria (estimation quality, prediction error, likelihood maximization). This
observation illustrates the importance of setting a large number M of draws to improve the estimation.
Indeed, when increasing this number to 25 or 125, we observed an improvement in the estimation
accuracy but no noticeable improvement in the likelihood. In turn, the SEM algorithm was quite
efficient compared to the MCEM25 and MCEM125 algorithms. This algorithm not only ran faster
(between 3 and 13-fold faster than MCEM25 and MCEM125 – see Table 1), but also reached predictive
performances close to the oracle (i.e., using the true parameter). These good performances are mainly
explained by the fact that the SEM algorithm most of the time (66.5% of the time) reached a better
likelihood than the other algorithms.

The results of this simulation study were made available as an internal data set named algoComp
in the R package clere. More details can be obtained using the command help("algoComp").

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 100

% of times Median
Performance indicators Algorithms the algorithm was best (Std. Err.)

CT (seconds) SEM 0 2.5 (0.053)
MCEM5 100 1.9 (0.016)
MCEM25 0 7.1 (0.027)
MCEM125 0 32.8 (0.121)

MSEE SEM 58 0.31 (10.4)
MCEM5 12 20.14 (2843.3)
MCEM25 16.5 8.86 (3107.5)
MCEM125 13.5 4.02 (5664.2)

MSPE SEM 51.5 1.3 (46.1)
MCEM5 12 75.7 (64.3)
MCEM25 15.5 58.7 (55.2)
MCEM125 21 51.6 (51.1)
True parameter — 1.1 (0.013)

ML SEM 66.5 −79.3 (1.2)
MCEM5 11.5 −110.7 (2.0)
MCEM25 14.5 −111.6 (1.9)
MCEM125 7.5 −116.2 (1.7)
True parameter — −77.6 (0.34)

Table 1: Performance indicators used to compare SEM and MCEM algorithms. Computational Time
(CT) was measured on a Intel(R) Xeon(R) CPU E7- 4870 @ 2.40GHz processor. The best algorithm is
defined as the one that either reached the largest log-likelihood (ML) or the lowest CT, Mean Squared
Prediction Error (MSPE) and Mean Squared Estimation Error (MSEE).

Comparison with other methods

Description of the methods

In this section, we compare our model to standard dimension reduction approaches in terms of MSPE.
Although a more detailed comparison was suggested in Yengo et al. (2014), we propose here a quick
illustration of the relative predictive performance of our model. The comparison is achieved using
data simulated according to the scenario described above in Section SEM algorithm versus MCEM
algorithm. The methods selected for comparison are the Ridge regression (Hoerl and Kennard, 1970),
the Elastic net (Zou and Hastie, 2005), the LASSO (Tibshirani, 1996), PACS (Sharma et al., 2013),
the method of Park and colleagues (Park et al., 2007, subsequently denoted AVG) and the Spike
and Slab model (Ishwaran and Rao, 2005, subsequently denoted SS). The first three methods are
implemented in the freely available R package glmnet. With the latter package, the tuning parameter
lambda was selected using the function cv.glm (with 5 folds) aiming at minimizing the mean squared
error (option type = "mse"). In particular for the Elastic net, the second tuning parameter alpha
(measuring the amount of mixture between the L1 and L2 penalty) was jointly selected with lambda
to minimize the mean squared error. The R package glmnet proposes a procedure for automatically
selecting values for lambda. We therefore used this default procedure while we selected alpha among
{0, 0.1, 0.2, . . . , 0.9, 1}. The PACS methodology proposes to estimate the regression coefficients by
solving a penalized least squares problem. It imposes a constraint on β that is a weighted combination
of the L1 norm and the pairwise L∞ norm. Upper-bounding the pairwise L∞ norm enforces the
covariates to have close coefficients. When the constraint is strong enough, closeness translates into
equality achieving thus a grouping property. For PACS, no software was available. Only an R script
was released on Bondell’s web page1. Since this R script was running very slowly, we decided to
reimplement it in C++ and observed a 30-fold speed-up of computational time. Similarly to Bondell’s
R script, our implementation uses two parameters lambda and betawt. Our reimplementation of
Bondell’s script was included in the R package clere in the function fitPacs(). In Sharma et al. (2013),
the authors suggest assigning betawt with the coefficients obtained from a ridge regression model

1http://www4.stat.ncsu.edu/~bondell/Software/PACS/PACS.R.r

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www4.stat.ncsu.edu/~bondell/Software/PACS/PACS.R.r

CONTRIBUTED RESEARCH ARTICLES 101

after the tuning parameter was selected using AIC. In this simulation study we used the same strategy;
however the ridge parameter was selected via 5-fold cross validation. 5-fold CV was preferred to AIC
since selecting the ridge parameter using AIC always led to estimated coefficients equal to zero. Once
betawt was selected, lambda was chosen via 5-fold cross validation among the following values: 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200 and 500. All other default parameters of their script
were unchanged. The AVG method is a two-step approach. The first step uses hierarchical clustering
of covariates to create surrogate covariates by averaging the variables within each group. Those new
predictors are afterwards included in a linear regression model, replacing the primary variables. A
variable selection algorithm is then applied to select the most predictive groups of covariates. To
implement this method, we followed the algorithm described in Park et al. (2007) and programmed
it in R. The Spike and Slab model is a Bayesian approach for variable selection. It is based on the
assumption that the regression coefficients are distributed according to a mixture of two centered
Gaussian distributions with different variances. One component of the mixture (the spike) is chosen
to have a small variance, while the other component (the slab) is allowed to have a large variance.
Variables assigned to the spike are dropped from the model. We used the R package spikeslab to run
the Spike and Slab models. Especially, we used the function spikeslab from that package to detect
influential variables. The number of iterations used to run the function spikeslab was 2,000 (1,000
discarded).

When running fitClere(), the number nItEM of SEM iterations was set to 2,000. The number g of
groups for CLERE was chosen between 1 and 5 using AIC (option analysis = "aic"). Two versions
of CLERE were considered: the one with all parameters estimated and the one with b1 set to 0. The
latter approach is subsequently denoted CLERE0 (option sparse = TRUE).

Results of the comparison

Figure 2 summarizes the comparison between the methods. In this simulated scenario, CLERE
outperformed the other methods in terms of prediction error. These good performances were improved
when parameter b1 was set to 0. CLERE was also the most parsimonious approach with an averaged
number of estimated parameters equal to 7.7 (6.9 when b1 = 0). The second best approach was PACS
which also led to parsimonious models. The superiority of such methods could be expected since in the
simulation model the regression coefficients are gathered in three groups. Overall variable selection
approaches yielded the largest prediction error in this simulation. CLERE, PACS and Spike and Slab
had the largest computational times (CT). For CLERE and PACS this loss in CT was compensated by a
a strong improvement in prediction error as explained above, while Spike and Slab yielded the worst
prediction error in addition to being the slowest approach in this example.

The results of this simulation study were made available as an internal data set in the R package
clere. The object is called numExpSimData and more details can be obtained using the command
help("numExpSimData").

Real data sets analysis

Description of the data sets

We used in this section the real data sets Prostate and eyedata from the R packages lasso2 (Lokhorst
et al., 2014) and flare (Li et al., 2014) respectively. The Prostate data set comes from a study that
examined the correlation between the level of prostate specific antigen and a number of clinical
measures in n = 97 men who were about to receive a radical prostatectomy. This data set is a
benchmark data set used in multiple publications about high-dimensional regression model, including
Tibshirani (1996); Hastie et al. (2001), and was chosen here in order to illustrate the performance of
CLERE in comparison to the competing methods. We used the prostate specific antigen (variable lpsa)
as response variable and the p = 8 other measurements as covariates.

The eyedata data set is extracted from the published study of Scheetz et al. (2006). This data
set consists of gene expression levels measured at p = 200 probes in n = 120 rats. The response
variable utilized was the expression of the TRIM32 gene which is a biomarker of the Bardet-Bidel
Syndrome (BBS). We chose this data set to illustrate the performances of CLERE on a (manageable)
high-dimensional problem which is the actual context for which this method was developped (Yengo
et al., 2014).

Those two data sets were utilized to compare CLERE to the same methods used in the previous
section where the simulation study was presented. All methods were compared in terms of out-of-
sample prediction error estimated using 5-fold cross validation (CV). Those CV statistics were then
averaged and compared across the methods in Table 2.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=lasso2
http://CRAN.R-project.org/package=flare

CONTRIBUTED RESEARCH ARTICLES 102

Mean Squared Prediction Error

1 5 10 50 100 500

CLERE0
df: 6.9 (0.4)

CLERE
df: 7.7 (0.7)

PACS
df: 22.3 (8.2)

LASSO
df: 15.4 (7.1)

AVG
df: 16.9 (5.8)

Ridge
df: 50 (0)

Elastic net
df: 50 (0)

Spike and Slab
df: 2.1 (1.8)

Computational time

2.8s (0.7)
3.2s (0.9)
5.1s (1.3)
0.1s (0.02)
0.8s (0.14)
0.1s (0.01)
0.1s (0.01)
4.3s (0.22)

Figure 2: Comparison between CLERE and some standard dimension reduction approaches. The
number of estimated parameters (df: +/− standard error) is given in the right along with the name of
the method utilized. The average computational time with its corresponding standard error (given in
parenthesis) is also provided for each situation.

Running the analysis

Before presenting the results of the comparison between CLERE and its competitors, we illustrate the
commands to run the analysis of the Prostate data set. The data set is loaded by typing:

R> data("Prostate", package = "lasso2")
R> y <- Prostate[, "lpsa"]
R> x <- as.matrix(Prostate[, -which(colnames(Prostate) == "lpsa")])

Possible training (xt and yt) and validation (xv and yv) sets are generated as follows:

R> itraining <- 1:(0.8*nrow(x))
R> xt <- x[itraining,]; yt <- y[itraining]
R> xv <- x[-itraining,]; yv <- y[-itraining]

The fitClere() function is run using the AIC to select the number of groups between 1 and 5. To
lessen the impact of local minima in the model selection, 5 random starting points are used. This can
be implemented by:

R> Seed <- 1234
R> mod <- fitClere(y = yt, x = xt, g = 5, analysis = "aic", parallel = TRUE,
+ nstart = 5, sparse = TRUE, nItEM = 2000, nBurn = 1000,
+ nItMC = 10, dp = 5, nsamp = 1000, seed = Seed)
R> summary(mod)

| CLERE | Yengo et al. (2013) |

Model object 2 groups of variables (Selected using AIC criterion)

Estimated parameters using SEM algorithm are

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 103

intercept = -0.1339
b = 0.0000 0.4722
pi = 0.7153 0.2848
sigma2 = 0.395
gamma2 = 4.065e-08

Log-likelihood = -78.31
Entropy = 0.5464
AIC = 168.63
BIC = 182.69
ICL = 183.23

R> plot(mod)

Running the command plot(mod) generates the plot given in Figure 1. We can also access the
cluster memberships by running the command clusters(). For example, running the command
clusters(mod,threshold = 0.7) yields

R> clusters(mod, thresold = 0.7)
lcavol lweight age lbph svi lcp gleason pgg45

2 2 1 1 1 1 1 1

In the example above 2 variables, being the cancer volume (lcavol) and the prostate weight (lweight),
were assigned to group 2 (b2 = 0.4737). The other 6 variables were assigned to group 1 (b1 = 0).
Posterior probabilities of membership are available through the slot P in the object of class “Clere”.

R> mod@P
Group 1 Group 2

lcavol 0.000 1.000
lweight 0.000 1.000
age 1.000 0.000
lbph 1.000 0.000
svi 0.764 0.236
lcp 1.000 0.000
gleason 1.000 0.000
pgg45 1.000 0.000

The covariates were respectively assigned to their group with a probability larger than 0.7. Moreover,
given that parameter γ2 had a very small value (γ̂2 = 4.065× 10−8), we can argue that cancer volume
and prostate weight are the only relevant explanatory covariates. To assess the prediction error
associated with the model we can run the command predict() as follows:

R> error <- mean((yv - predict(mod, xv))^2)
R> error
[1] 1.543122

Results of the analysis

Table 2 summarizes the prediction errors and the number of parameters obtained for all the methods.
CLERE0 had the lowest prediction error in the analysis of the Prostate data set and the second best
performance for the eyedata data set. The AVG method was also very competitive compared to the
variable selection approaches stressing thus the relevance of creating groups of variables to reduce the
dimensionality (especially in the eyedata data set). It is worth noting that in both data sets, imposing
the constraint b1 = 0 improved the predictive performance of CLERE.

In the Prostate data set, CLERE robustly identified two groups of variables representing influential
(b2 > 0) and not relevant variables (b1 = 0). In the eyedata data set in turn, AIC led to selecting only
one group of variables. However, this did not lessen the predictive performance of the model since
CLERE0 was second best after AVG, while needing significantly less parameters. PACS performed
badly in both data sets. The Elastic net showed good predictive performances compared to the variable
selection methods like LASSO or the Spike and Slab model. Ridge regression and Elastic net had
comparable results in both data sets. In line with the results of the simulation study, we observed that
despite a larger computational time (CT), CLERE and CLERE0 had a reduced mean squared error
compared to the fastest methods. However, this improvement was less substantial than observed in
the simulation study given the differences in CT. This increased CT may be explained by the fact that
no simple stopping rule is proposed when fitting CLERE. We may therefore contemplate that a smaller

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 104

100×Averaged CV statistic Number of parameters CT (seconds)
(Std. Error) (Std. Error) (Std. Error)

Prostate data set

LASSO 90.2 (29) 5.6 (0.7) 0.064 (0.007)
RIDGE 86.8 (24) 8.0 (0) 0.065 (0.002)
Elastic net 90.3 (24) 8.0 (0) 0.065 (0.002)
STEP 442.4 (137) 8.0 (0) 0.004 (0.001)
CLERE 82.4 (25) 6.0 (0) 1.1 (0.1)
CLERE0 74.5 (26) 5.0 (0) 2.7 (0.8)
Spike and Slab 85.6 (26) 5.6 (0.7) 4.2 (0.03)
AVG 90.2 (27) 6.2 (0.4) 0.44 (0.06)
PACS 90.6 (34) 5.6 (0.4) 0.053 (0.002)

eyedata

LASSO 0.73 (0.1) 21.2 (2) 0.18 (0.01)
RIDGE 0.74 (0.1) 200.0 (0) 0.24 (0.004)
Elastic net 0.74 (0.1) 200.0 (0) 0.23 (0.003)
STEP 1142.6 (736) 95.0 (0) 0.083 (0.002)
CLERE 0.73 (0.1) 4.0 (0) 21.5 (0.2)
CLERE0 0.72 (0.1) 3.0 (0) 21.1 (0.1)
Spike and Slab 0.81 (0.2) 12.4 (0.9) 10.3 (0.1)
AVG 0.70 (0.04) 15.6 (2) 10.6 (0.4)
PACS 2.0 (0.9) 3.0 (0.3) 108.9 (28)

Table 2: Real data analysis. Out-of-sample prediction error (averaged CV statistic) was estimated
using 100-folds cross validation. The number of parameters reported for CLERE/CLERE0 was selected
using AIC. CT stands for the average Computational Time.

number of SEM iterations could have been used to yield a similar prediction error. Indeed, when
looking at Figure 1, we see that convergence was achieved almost from the first 10 iterations. Still,
the observed CT for CLERE being around 22s for the eyedata data set and around 3s for the Prostate
data set remains affordable in these examples.

The results of this analysis on real data were made available as an internal data set named
numExpRealData in the R package clere. Using the command help("numExpRealData") more details
can be obtained.

Conclusions

We presented in this paper the R package clere. This package implements two efficient algorithms
for fitting the CLusterwise Effect REgression model: the MCEM and the SEM algorithms. The
MCEM algorithm is to be preferred when p < n; the SEM algorithm is more efficient for high-
dimensional data sets (n < p). The good performance of SEM over MCEM could have been expected
regarding the computational complexities of the two algorithms that are O

(
npg + g3 + Nmaxng

)
and

O
(

M(p2 + pg)
)

respectively. In fact, as long as p > n, the SEM algorithm has a lower complexity.
However, the computational time to run our SEM algorithm is more variable compared to MCEM as
its M step does not have a closed form. We finally advocate the use of the MCEM algorithm only when
p � n. Another important feature for model interpretation is proposed by constraining the model
parameter b1 to equal 0, which leads to variable selection. Such a constraint may also lead to a reduced
prediction error. We illustrated on a real data set, how to run an analysis, based on a detailed R
script. Although our numerical experiments showed that the CLERE method tended to be slower than
variable selection methods, it still provided better or competitive predictive performance. In addition,
the CLERE model was often more parsimonious than other models and was easily interpretable since
groups of regression coefficients/variables could be summarized using a single parameter.

Our model can easily be extended to the analysis of binary responses. This extension will be made
available in a forthcoming version of the package. Another direction for future research will be to
develop an efficient stopping rule for the proposed SEM algorithm, specific to our context. Such a
criterion is expected to improve the computational performance of our estimation algorithm.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 105

Bibliography

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control,
19(6):716–723, 1974. [p97]

D. Bates and D. Eddelbuettel. Fast and elegant numerical linear algebra using the RcppEigen package.
Journal of Statistical Software, 52(5):1–24, 2013. URL http://www.jstatsoft.org/v52/i05. [p92]

C. Biernacki and J. Jacques. A generative model for rank data based on insertion sort algorithm.
Computational Statistics and Data Analysis, 58:162–176, 2013. [p96]

C. Biernacki, G. Celeux, and G. Goavert. Assessing a mixture model for clustering with the integrated
completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7):719–725,
2000. [p97]

H. D. Bondell and B. J. Reich. Simultaneous regression shrinkage, variable selection, and supervised
clustering of predictors with OSCAR. Biometrics, 64:115–123, 2008. [p92]

G. Casella. An introduction to empirical Bayes data analysis. The American Statistician, 39(2):83–87,
1985. [p93]

G. Celeux, D. Chauveau, and J. Diebolt. Some stochastic versions of the EM algorithm. Journal of
Statistical Computation and Simulation, 55:287–314, 1996. [p93, 95]

A. P. Dempster, M. N. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society B, 39:1–22, 1977. [p93]

D. Eddelbuettel and R. François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software,
40(8):1–18, 2011. URL http://www.jstatsoft.org/v40/i08/. [p92]

J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software, 33(1):1–22, 2010. URL http://www.jstatsoft.org/
v33/i01/. [p92]

G. Govaert and M. Nadif. Block clustering with Bernoulli mixture models: Comparison of different
approaches. Computational Statistics and Data Analysis, 52:3233–3245, 2008. [p93]

A. Gunawardana and W. Byrne. Convergence theorems for generalized alternating minimization
procedures. Journal of Machine Learning Research, 6:2049–2073, 2005. [p93]

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer-Verlag, New York, 2001. [p101]

A. E. Hoerl and W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems.
Technometrics, 12:55–67, 1970. [p92, 100]

H. Ishwaran and J. S. Rao. Spike and slab variable selection: Frequentist and Bayesian strategies. The
Annals of Statistics, 33(2):730–773, 2005. [p92, 100]

H. Ishwaran, J. S. Rao, and U. B. Kogalur. spikeslab: Prediction and Variable Selection Using Spike and Slab
Regression, 2013. URL https://CRAN.R-project.org/package=spikeslab. R package version 1.1.5.
[p92]

I. T. Jolliffe. A note on the use of principal components in regression. Journal of the Royal Statistical
Society C, 31(3):300–303, 1982. [p92]

R. A. Levine and G. Casella. Implementations of the Monte Carlo EM algorithm. Journal of Computational
and Graphical Statistics, 10(3):422–439, 2001. [p93]

X. Li, T. Zhao, L. Wang, X. Yuan, and H. Liu. flare: Family of Lasso Regression, 2014. URL https:
//CRAN.R-project.org/package=flare. R package version 1.5.0. [p101]

J. Lokhorst, B. Venables, and B. Turlach. lasso2: L1 Constrained Estimation aka ‘LASSO’, 2014. URL
https://CRAN.R-project.org/package=lasso2. R package version 1.2-19; port to R and tests, etc.:
Martin Maechler. [p101]

M. Mariadassou, S. Robin, and C. Vacher. Uncovering latent structure in valued graphs: A variational
approach. The Annals of Applied Statistics, 4(2):715–742, 2010. [p93]

M. Y. Park, T. Hastie, and R. Tibshirani. Averaged gene expressions for regression. Biostatistics, 8:
212–227, 2007. [p100, 101]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.jstatsoft.org/v52/i05
http://www.jstatsoft.org/v40/i08/
http://www.jstatsoft.org/v33/i01/
http://www.jstatsoft.org/v33/i01/
https://CRAN.R-project.org/package=spikeslab
https://CRAN.R-project.org/package=flare
https://CRAN.R-project.org/package=flare
https://CRAN.R-project.org/package=lasso2

CONTRIBUTED RESEARCH ARTICLES 106

T. E. Scheetz, K.-Y. A. Kim, R. E. Swiderski, A. R. Philp, T. A. Braun, K. L. Knudtson, A. M. Dorrance,
G. F. DiBona, J. Huang, T. L. Casavant, V. C. Sheffield, and E. M. Stone. Regulation of gene expression
in the mammalian eye and its relevance to eye disease. Proceedings of the National Academy of Sciences
of the United States of America, 103(39):14429–14434, 2006. [p101]

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461–464, 1978. [p97]

S. Searle, G. Casella, and C. McCulloch. Variance Components. Wiley Series in Probability and
Mathematical Statistics: Applied Probability and Statistics. Wiley, 1992. [p96]

D. B. Sharma, H. D. Bondell, and H. H. Zhang. Consistent group identification and variable selection in
regression with correlated predictors. Journal of Computational and Graphical Statistics., 22(2):319–340,
2013. [p92, 100]

The MathWorks Inc. MATLAB – The Language of Technical Computing, Version R2014b. Natick, Mas-
sachusetts, 2014. URL http://www.mathworks.com/products/matlab/. [p92]

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society B,
58:267–288, 1996. [p92, 100, 101]

C. G. Wei and M. Tanner. A Monte Carlo implementation of the EM algorithm and the poor man’s
data augmentation algorithms. Journal of the American Statistical Association, 85:699–704, 1990. [p93]

L. Yengo and M. Canouil. clere: Simultaneous Variables Clustering and Regression, 2015. URL https:
//CRAN.R-project.org/package=clere. R package version 1.1.4. [p92]

L. Yengo, J. Jacques, and C. Biernacki. Variable clustering in high dimensional linear regression models.
Journal de la Société Française de Statistique, 155(2):38–56, 2014. [p92, 100, 101]

H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal
Statistical Society B, 67:301–320, 2005. [p92, 100]

Loïc Yengo
Integrated Genomics and Metabolic Diseases Modeling
CNRS UMR 8199 - Lille Institute of Biology
E.G.I.D – FR3508 European Genomics Institute of Diabetes
1, rue du Professeur Calmette, BP 447, 59021 Lille cedex
France
loic.yengo@cnrs.fr

Julien Jacques
ERIC Laboratory
Université de Lyon - Lumière
5 avenue Pierre Mendès France, 69676 Bron cedex
France
julien.jacques@univ-lyon2.fr

Christophe Biernacki
MODAL team (Inria) & Laboratoire Paul Painlevé (UMR CNRS 8524)
University Lille I
Cité Scientifique, 59655 Villeneuve d’Ascq cedex
France
christophe.biernacki@math.univ-lille1.fr

Mickael Canouil
Integrated Genomics and Metabolic Diseases Modeling
CNRS UMR 8199 – Lille Institute of Biology
E.G.I.D – FR3508 European Genomics Institute of Diabetes
1, rue du Professeur Calmette, BP 447, 59021 Lille cedex
France
mickael.canouil@cnrs.fr

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.mathworks.com/products/matlab/
https://CRAN.R-project.org/package=clere
https://CRAN.R-project.org/package=clere
mailto:loic.yengo@cnrs.fr
mailto:julien.jacques@univ-lyon2.fr
mailto:christophe.biernacki@math.univ-lille1.fr
mailto:mickael.canouil@cnrs.fr

CONTRIBUTED RESEARCH ARTICLES 107

Stylometry with R: A Package for
Computational Text Analysis
by Maciej Eder, Jan Rybicki and Mike Kestemont

Abstract This software paper describes ‘Stylometry with R’ (stylo), a flexible R package for the high-
level analysis of writing style in stylometry. Stylometry (computational stylistics) is concerned with the
quantitative study of writing style, e.g. authorship verification, an application which has considerable
potential in forensic contexts, as well as historical research. In this paper we introduce the possibilities
of stylo for computational text analysis, via a number of dummy case studies from English and French
literature. We demonstrate how the package is particularly useful in the exploratory statistical analysis
of texts, e.g. with respect to authorial writing style. Because stylo provides an attractive graphical user
interface for high-level exploratory analyses, it is especially suited for an audience of novices, without
programming skills (e.g. from the Digital Humanities). More experienced users can benefit from our
implementation of a series of standard pipelines for text processing, as well as a number of similarity
metrics.

Introduction

Authorship is a topic which continues to attract considerable attention with the larger public. This
claim is well illustrated by a number of high-profile case studies that have recently made headlines
across the popular media, such as the attribution of a pseudonymously published work to acclaimed
Harry Potter novelist, J. K. Rowling (Juola, 2013), or the debate surrounding the publication of Harper
Lee’s original version of To Kill a Mocking Bird and the dominant role which her editor might have
played therein (Gamerman, 2015). The authorship of texts clearly matters to readers across the globe
(Love, 2002) and therefore it does not come as a surprise that computational authorship attribution
increasingly attracts attention in science, because of its valuable real-world applications, for instance,
related to forensics topics such as plagiarism detection, unmasking the author of harassment messages
or even determining the provenance of bomb letters in counter-terrorism research. Interestingly, the
methods of stylometry are also actively applied in the Humanities, where multiple historic authorship
problems in literary studies still seek a definitive solution – the notorious Shakespeare-Marlowe
controversy is perhaps the best example in this respect.

Authorship attribution plays a prominent role in the nascent field of stylometry, or the computa-
tional analysis of writing style (Juola, 2006; Stamatatos et al., 2000; Stamatatos, 2009; Koppel et al., 2009;
Van Halteren et al., 2005). While this field has important historical precursors (Holmes, 1994, 1998),
recent decades have witnessed a clear increase in the scientific attention for this problem. Because
of its emergent nature, replicability and benchmarking still pose significant challenges in the field
(Stamatatos, 2009). Publicly available benchmark data sets are hard to come across, mainly because of
copyright and privacy issues, and there are only a few stable, cross-platform software packages out
there which are widely used in the community. Fortunately, a number of recent initiatives lead the way
in this respect, such as the recent authorship tracks in the PAN competition (http://pan.webis.de),
where e.g. relevant data sets are efficiently interchanged.

In this paper we introduce ‘Stylometry with R’ (stylo), a flexible R package for the high-level
stylistic analysis of text collections. This package explicitly seeks to further contribute to the recent
development in the field towards a more advanced level of replicability and benchmarking in the field.
Stylometry is a multidisciplinary research endeavor, attracting contributions from divergent scientific
domains, which include researchers from Computer Science – with a fairly technical background – as
well as experts from the Humanities – who might lack the computational skills which would allow
them easy access to the state-of-the-art methods in the field (Schreibman et al., 2004). Importantly,
this package has the potential to help bridge the methodological gap luring between these two
communities of practice: on the one hand, stylo’s API allows to set up a complete processing pipeline
using traditional R scripting; on the other hand, stylo also offers a rich graphical user interface which
allows non-technical, even novice practitioners to interface with state-of-the-art methods without the
need for any programming experience.

Overview of stylometry

Stylometry deals with the relationship between the writing style in texts and meta-data about those
texts (such as date, genre, gender, authorship). Researchers in ‘stylochronometry’, for instance, are
interested in inferring the date of composition of texts on the basis of stylistic aspects (Stamou, 2008;

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://pan.webis.de
http://CRAN.R-project.org/package=stylo

CONTRIBUTED RESEARCH ARTICLES 108

Juola, 2007). Authorship studies are currently the most popular application of stylometry. From
the point of view of literary studies, stylometry is typically concerned with a number of recent
techniques from computational text analysis that are sometimes termed ‘distant reading’, ‘not reading’
or ‘macroanalysis’ (Jockers, 2013). Instead of the traditional practice of ‘close reading’ in literary
analysis, stylometry does not set out from a single direct reading; instead, it attempts to explore large
text collections using computational techniques (and often visualization). Thus, stylometry tries to
expand the scope of inquiry in the humanities by scaling up research resources to large text collections
in order to find relationships and patterns of similarity and difference invisible to the eye of the human
reader.

Usually, stylometric analyses involve a complex, multi-stage pipeline of (i) preprocessing, (ii)
feature extraction, (iii) statistical analysis, and finally, (iv) presentation of results, e.g. via visualization.
To this end, researchers presently have to resort to an ad hoc combination of proprietary, language-
dependent tools that cannot easily be ported across different platforms. Such solutions are difficult
to maintain and exchange across (groups of) individual researchers, preventing straightforward
replication of research results and reuse of existing code. stylo, the package presented, offers a rich,
user-friendly suite of functionality that is ideally suited for fast exploratory analysis of textual corpora
as well as classification tasks such as are needed in authorship attribution. The package offers an
implementation of the main methods currently dominant in the field. Its main advantage therefore lies
in the integration of typical (e.g. preprocessing) procedures from stylometry and statistical functionality
by other, external libraries. Written in the R language, the source code and binaries for the package
are freely available from the Comprehensive R Archive Network, guaranteeing a straightforward
installation process across different platforms (both Unix- and Windows-based operating systems).
The code is easily adaptable and extensible: the developers therefore continue to welcome user
contributions, feedback and feature requests. Our code is open source and GPL-licensed: it is being
actively developed on GitHub.1

In the rest of this paper, we will first illustrate the functionality of the package for unsupervised
multivariate analysis through the high-level function stylo(). Secondly, we will discuss a number
of graphical user interfaces which we provide for quick exploration of corpora, in particular by
novice users or students in an educational setting, as well as for scholars in the Humanities without
programming experience. Next, we move on to the function classify(), implementing a number of
supervised classification procedures from the field of Machine Learning. Finally, we concisely discuss
the oppose(), rolling.delta() and rolling.classify() functionality which allow, respectively, to
inspect differences in word usage between two subsets of a corpus, and to study the evolution of the
writing style in a text.

Overview of the package

Downloading, installing and loading stylo is straightforward. The package is available at CRAN and
at GitHub repository. The main advantages and innovative features of stylo include:

Feature extraction

Crucial in stylometry is the extraction of quantifiable features related to the writing style of texts
(Sebastiani, 2002). A wide range of features have been proposed in the literature, considerably varying
in complexity (Stamatatos, 2009). ‘Stylometry with R’ focuses on features that can be automatically
extracted from texts, i.e. without having to resort to language-dependent preprocessing tools. The
features that the package allows to extract are n-grams on token- and character level (Houvardas
and Stamatatos, 2006; Kjell, 1994). Apart from the fact that this makes the package considerably
language-independent, such shallow features have been shown to work well for a variety of tasks in
stylometry (Daelemans, 2013; Kestemont, 2014). Moreover, users need not annotate their text materials
using domain-specific tools before analyzing them with ‘Stylometry with R’. Apart from the standard
usage, however, the package does allow the users to load their own annotated corpora, provided that
this is preceded by some text pre-processing tasks. An example of such a non-standard procedure
will be shown below. Thus, stylo does not aim to supplant existing, more targeted tools and packages
from Natural Language Processing (Feinerer et al., 2008) but it can easily accommodate the output of
such tools as a part of its processing pipeline.

1https://github.com/computationalstylistics/stylo

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://github.com/computationalstylistics/stylo

CONTRIBUTED RESEARCH ARTICLES 109

Metrics

A unique feature of stylo is that it offers reference implementations for a number of established
distance metrics from multivariate statistical analysis, which are popular in stylometry, but uncommon
outside the field. Burrows’s Delta is the best example here (Burrows, 2002); it is an intuitive distance
metric which has attracted a good share of attention in the community, also from a theoretical point of
view (Hoover, 2004a,b; Argamon, 2011).

Graphical user interface

The high-level functions of the package provide a number of Graphical User Interfaces (GUIs) which
can be used to intuitively set up a number of established experimental workflows with a few clicks (e.g.
unsupervised visualization of texts based on word frequencies). These interfaces can be easily invoked
from the command line in R and provide an attractive overview of the various experimental parameters
available, allowing users to quickly explore the main stylistic structure of corpora. This feature is
especially useful in an educational setting, allowing (e.g. undergraduate) students from different
fields, typically without any programming experience, to engage in stylometric experimentation.
The said high-level functions keep the analytic procedure from corpus pre-processing to final results
presentation manageable from within a single GUI. More flexibility, however, can be achieved when
the workflow is split into particular steps, each controlled by a dedicated lower-level function from
the package, as will be showcased below.

Example workflow

An experiment in stylometry usually involves a workflow whereby, subsequently, (i) textual data is
acquired, (ii) the texts are preprocessed, (iii) stylistic features are extracted, (iv) a statistical analysis is
performed, and finally, (v) the results are outputted (e.g. visualized). We will now illustrate how such
a workflow can be performed using the package.

Corpus preparation

One of the most important features of stylo is that it allows loading textual data either from R objects,
or directly from corpus files stored in a dedicated folder. Metadata of the input texts are expected to
be included in the file names. The file name convention assumes that any string of characters followed
by an underscore becomes a class identifier (case sensitive). In final scatterplots and dendrograms,
colors of the samples are assigned according to this convention; common file extensions are dropped.
E.g. to make the samples colored according to authorial classes, files might be named as follows:

ABronte_Agnes.txt ABronte_Tenant.txt Austen_Pride.txt
Austen_Sense.txt Austen_Emma.txt CBronte_Professor.txt
CBronte_Jane.txt CBronte_Villette.txt EBronte_Wuthering.txt

All examples below can be reproduced by the user on data sets which can be downloaded from
the authors’ project website.2 For the sake of convenience, however, we will use the datasets that come
with the package itself:

data(novels)
data(galbraith)
data(lee)

Our first example uses nine prose novels by Jane Austen and the Brontë sisters, provided by the
dataset novels.

Preprocessing

stylo offers a rich set of options to load texts in various formats from a file system (preferably encoded
in UTF-8 Unicode, but it also supports other encodings, e.g. under Windows). Apart from raw text,
stylo allows to load texts encoded according to the guidelines of the Text Encoding Initiative, which is
relatively prominent in the community of text analysis researchers.3 To load all the files saved in a
directory (e.g. ‘corpus_files’), users can use the following command:

2https://sites.google.com/site/computationalstylistics/corpora
3http://www.tei-c.org/index.xml

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://sites.google.com/site/computationalstylistics/corpora
http://www.tei-c.org/index.xml

CONTRIBUTED RESEARCH ARTICLES 110

raw.corpus <- load.corpus(files = "all", corpus.dir = "corpus_files",
encoding = "UTF-8")

If the texts are annotated in e.g. XML, an additional pre-processing procedure might be needed:

corpus.no.markup <- delete.markup(raw.corpus, markup.type = "xml")

Since the dataset that we will use has no annotation, the markup deletion can be omitted. We start
the procedure with making the data visible for the user:

data(novels)
summary(novels)

To preprocess the data, stylo offers a number of tokenizers that support a representative set of
European languages, including English, Latin, German, French, Spanish, Dutch, Polish, Hungarian,
as well as basic support for non-Latin alphabets such as Korean, Chinese, Japanese, Hebrew, Arabic,
Coptic and Greek. Tokenization refers to the process of dividing a string of input texts into countable
units, such as word tokens. To tokenize the English texts, e.g. splitting items as ‘don’t’ into ‘do’ and
‘n’t’ and lowercasing all words, the next command is available:

tokenized.corpus <- txt.to.words.ext(novels, language = "English.all",
preserve.case = FALSE)

The famous first sentence of Jane Austen’s Pride and Prejudice, for instance, looks like this in its
tokenized version (the 8th to the 30th element of the corresponding vector):

tokenized.corpus$Austen_Pride[8:30]

[1] "it" "is" "a" "truth" "universally"
[6] "acknowledged" "that" "a" "single" "man"
[11] "in" "possession" "of" "a" "good"
[16] "fortune" "must" "be" "in" "want"
[21] "of" "a" "wife"

To see basic statistics of the tokenized corpus (number of texts/samples, number of tokens in
particular texts, etc.), one might type:

summary(tokenized.corpus)

For complex scripts, such as Hebrew, custom splitting rules could easily be applied:

tokenized.corpus.custom.split <- txt.to.words(tokenized.corpus,
splitting.rule = "[^A-Za-z\U05C6\U05D0-\U05EA\U05F0-\U05F2]+",
preserve.case = TRUE)

A next step might involve ‘pronoun deletion’. Personal pronouns are often removed in stylometric
studies because they tend to be too strongly correlated with the specific topic or genre of a text
(Pennebaker, 2011), which is an unwanted artefact in e.g. authorship studies (Hoover, 2004a,b). Lists
of pronouns are available in stylo for a series of languages supported. They can be accessed via for
example:

stylo.pronouns(language = "English")

[1] "he" "her" "hers" "herself" "him"
[6] "himself" "his" "i" "me" "mine"
[11] "my" "myself" "our" "ours" "ourselves"
[16] "she" "thee" "their" "them" "themselves"
[21] "they" "thou" "thy" "thyself" "us"
[26] "we" "ye" "you" "your" "yours"
[31] "yourself"

Removing pronouns from the analyses (much like stopwords are removed in Information Retrieval
analyses) is easy in stylo, using the delete.stop.words() function:

corpus.no.pronouns <- delete.stop.words(tokenized.corpus,
stop.words = stylo.pronouns(language = "English"))

The above procedure can also be used to exclude any set of words from the input corpus.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 111

Features

After these preprocessing steps, users will want to extract gaugeable features from the corpus. In a
vast majority of approaches, stylometrists rely on high-frequency items. Such features are typically
extracted in the level of (groups of) words or characters, called n-grams (Kjell, 1994). Both word-
token and character n-grams are common textual features in present-day authorship studies. Stylo
allows users to specify the size of the n-grams which they want to use. For third order character
trigrams (n = 3), for instance, an appropriate function of stylo will select partially overlapping series
of character groups of length 3 from a string of words (e.g. ‘tri’, ‘rig’, ‘igr’, ‘gra’, ‘ram’, ‘ams’). Whereas
token level features have a longer tradition in the field, character n-grams have been fairly recently
borrowed from the field of language identification in Computer Science (Stamatatos, 2009; Eder, 2011).
Both n-grams at the level of characters and words have been listed among the most effective stylistic
features in survey studies in the field. For n = 1, such text representations model texts under the
so-called ‘bag-of-words’ assumption that the order and position of items in a text is negligible stylistic
information. To convert single words into third order character chains, or trigrams:

corpus.char.3.grams <- txt.to.features(corpus.no.pronouns, ngram.size = 3,
features = "c")

Sampling

Users can study texts in their entirety, but also draw consecutive samples from texts in order to
effectively assess the internal stylistic coherence of works. The sampling settings will affect how the
relative frequencies are calculated and allow users to normalize text length in the data set. Users can
specify a sampling size (expressed in current units, e.g. words) to divide texts into consecutive slices.
The samples can partially overlap and they can be also be extracted randomly. As with all functions,
the available options are well-documented:

help(make.samples)

To split the current corpus into non-overlapping samples of 20,000 words each, one might type:

sliced.corpus <- make.samples(tokenized.corpus, sampling = "normal.sampling",
sample.size = 20000)

Counting frequent features

A crucial point of the dataset preparation is building a frequency table. In stylometry, analyses are
typically restricted to a feature space containing the n most frequent items. It is relatively easy to
extract e.g. the 3,000 most frequent features from the corpus using the following function:

frequent.features <- make.frequency.list(sliced.corpus, head = 3000)

After the relevant features have been harvested, users have to extract a vector for each text or
sample, containing the relative frequencies of these features, and combine them into a frequency table
for the corpus. Using an appropriate function from stylo, these vectors are combined in a feature
frequency table which can be fed into a statistical analysis (external tables of frequencies can be loaded
as well):

freqs <- make.table.of.frequencies(sliced.corpus, features = frequent.features)

Feature selection and sampling settings might interact: an attractive unique feature of stylo is that
it allows users to specify different ‘culling’ settings. Via culling, users can specify the percentage of
samples in which a feature should be present in the corpus in order to be included in the analysis.
Words that do not occur in at least the specified proportion of the samples in the corpus will be ignored.
For an 80% culling rate, for instance:

culled.freqs <- perform.culling(freqs, culling.level = 80)

Analysis

Stylo offers a seamless wrapper for a variety of established statistical routines available from R’s core
library or contributed by third-party developers; these include t-Distributed Stochastic Neighbor Em-
bedding (van der Maaten and Hinton, 2008), Principal Components Analysis, Hierarchical Clustering
and Bootstrap Consensus Trees (a method which will be discussed below). An experiment can be
initiated with a pre-existing frequency table with the following command:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 112

stylo(frequencies = culled.freqs, gui = FALSE)

When the input documents are loaded directly from text files, the default features are most frequent
words (MFWs), i.e. 1-grams of frequent word forms turned into lowercase. Also, by default, a standard
cluster analysis of the 100 most frequent features will be performed. To perform e.g. a Principal
Components Analysis (with correlation matrix) of the 200 most frequent words, and visualize the
samples position in the space defined by the first two principal components, users can issue the
following commands:

stylo(corpus.dir = "directory_containing_the_files", mfw.min = 200, mfw.max = 200,
analysis.type = "PCR", sampling = "normal.sampling", sample.size = 10000,
gui = FALSE)

In Fig. 1, we give an example of how Principal Components Analysis (the first two dimensions)
can be used to visualize texts in different ways, e.g. with and without feature loadings. Because
researchers are often interested in inspecting the loadings of features in the first two components
resulting from such an analysis, stylo provides a rich variety of flavours in PCA visualizations. For an
experiment in the domain of authorship studies, for instance, researchers will typically find it useful
to plot all texts/samples from the same author in the same color. The coloring of the items in plots can
be easily controlled via the titles of the texts analyzed across the different R methods that are used for
visualization – a commodity which is normally rather painful to implement across different packages
in R. Apart from exploratory, unsupervised analyses, stylo offers a number of classification routines
that will be discussed below.

The examples shown in Fig. 1 were produced using the following functions:

stylo(frequencies = culled.freqs, analysis.type = "PCR",
custom.graph.title = "Austen vs. the Bronte sisters",
pca.visual.flavour = "technical",
write.png.file = TRUE, gui = FALSE)

stylo(frequencies = culled.freqs, analysis.type = "PCR",
custom.graph.title = "Austen vs. the Bronte sisters",
write.png.file = TRUE, gui = FALSE)

stylo(frequencies = culled.freqs, analysis.type = "PCR",
custom.graph.title = "Austen vs. the Bronte sisters",
pca.visual.flavour = "symbols", colors.on.graphs = "black",
write.png.file = TRUE, gui = FALSE)

stylo(frequencies = culled.freqs, analysis.type = "PCR",
custom.graph.title = "Austen vs. the Bronte sisters",
pca.visual.flavour = "loadings",
write.png.file = TRUE, gui = FALSE)

Return value

Stylo makes it easy to further process the objects returned by an analysis. To cater for the needs of less
technical users, the results returned by an analysis are saved by default to a number of standard files
and outputted on screen. Advanced users can easily use the returned objects in subsequent processing:

stylo.results = stylo() # optional arguments might be passed

print(stylo.results)
summary(stylo.results)

The list of features created, for instance, can be easily accessed (and manipulated) subsequently,
and the same applies to tables of frequencies or other results:

stylo.results$features
stylo.results$table.with.all.freqs
stylo.results$distance.table
stylo.results$pca.coordinates

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 113

Figure 1: Illustration of different visualization options for the first two dimensions outputted by a
Principal Components Analysis (applied to 9 novels by 4 authors from our dummy corpus). Four
different visualization flavours are presented: ‘Technical’ (Fig. 1a), ‘Classic’ (Fig. 1b), ‘Symbols’ (Fig.
1c) and ‘Loadings’ (Fig. 1d). Users whose file names follow stylo’s naming conventions can easily
exploit different coloring options.

GUI mode

Apart from the various functions to perform actual stylometric tasks, the package comes with a series
of GUIs that can be used to set up typical experimental workflows in a quick and intuitive fashion.
This unique feature renders stylo especially useful in educational settings involving students and
scholars without programming experience. The cross-platform graphical user interface (automatically
installed along with the rest of the package) has been written for Tcl/Tk and can be easily invoked
from the command line. Four GUIs are currently available, which all come with extensive tooltips to
help users navigate the different options. In this section, we will illustrate the use of these GUIs via an
unsupervised stylometric experiment involving Bootstrap Consensus Trees.

The currently most widely used GUI component of ‘Stylometry with R’ is the eponymous GUI for
stylo(), which is useful for the unsupervised stylistic exploration of textual corpora. It can be easily
invoked using a single intuitive command (without the need to specify additional arguments):

stylo()

The various tabs of the stylo GUI (see Figure 2) present in a clear fashion the various parameters
which can be specified before running the analysis by clicking the OK button. Users can freely switch
between tabs and revisit them before running an experiment. Moreover, stylo will remember the
experimental settings last used, and automatically default to these when users re-launch the GUI
(which is useful for authors running a series of consecutive experiments with only small changes in
parameters).

To illustrate the GUI mode, we will now concisely discuss a sample experiment involving Bootstrap
Consensus Trees (BCT, selectable under the STATISTICS tab in the GUI). In stylometry, BCT exploits the

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 114

Figure 2: The Graphical User Interface for stylo (FEATURES tab). The high-level functions of stylo
provide Graphical User Interfaces (GUIs) to intuitively set up experimental workflows. This feature
is especially useful in an educational setting, allowing students without programming experience to
engage in stylometric exploration and experimentation.

idea that the results become stable when one divides the list of MFW in non-identical, yet potentially
overlapping frequency bands and analyzes these independently from each other (Eder, 2012). BCT
were originally borrowed by Eder from the field of Language Evolution and Genetics; since a number
of successful applications of the technique have been reported in the literature (Rybicki and Heydel,
2013; van Dalen-Oskam, 2014; Stover et al., 2016). If the user specifies that different frequency bands
should be used on the FEATURES tab, the bootstrap procedure will run different (virtual) cluster
analyses and aggregate the results into a single (unrooted) consensus tree. This visualization will
only consider nodes for which there exists a sufficiently large consensus among the individual cluster
analyses. The user in the corresponding text field (e.g. 0.5, which comes down to a majority vote for
the cluster nodes). As such, users can assess the similarities between texts across different frequency
bands.

Under the FEATURES tab, users can define the minutes of the MFW division and sampling
procedure, using the increment, the minimum and maximum parameters. For minimum = 100, maximum =
3000, and increment = 50, stylo will run subsequent analyses for the following frequency bands: 100
MFW, 50–150 MFW, 100–200 MFW, ..., 2900–2950 MFW, 2950–3000 MFW. This is an attractive feature
because it enables the assessment of similarities between texts across different bands in the frequency
spectrum. A parallel logic underpins the CULLING text fields, where experiments will be carried out
iteratively for different culling rates.

We illustrate the working of the BCT procedure in stylo using the recently covered case study
on Go Set a Watchman, the second novel by Harper Lee, written before To Kill a Mockingbird. The
novel itself attracted a reasonable attention worldwide, also because of its alleged authorship issues.
Suspicion resurfaced about the strange fact that one of the greatest bestsellers in American history
was its author’s only completed work; Lee’s childhood friendship with Truman Capote (portrayed as
Dill in To Kill A Mockingbird) and their later association on the occasion of In Cold Blood fueled more
speculations on the two Southern writers’ possible, or even just plausible, collaboration; finally, the
role of Tay Hohoff, Lee’s editor on her bestseller, was discussed.

The stylometric study on this novel, featured in Wall Street Journal (Gamerman, 2015), revealed that
the truth proved to be at once much less sensational than most of the rumors. Very strong stylometric
evidence shows clearly that Harper Lee is the author of both To Kill A Mockingbird and Go Set A
Watchman. In our replication of the experiment, the following code was used to produce the plots:

data(lee)

stylo(frequencies = lee, analysis.type = "CA",
write.png.file = TRUE, custom.graph.title = "Harper Lee",
gui = FALSE)

stylo(frequencies = lee, analysis.type = "CA",
mfw.min = 1500, mfw.max = 1500, custom.graph.title = "Harper Lee",
write.png.file = TRUE, gui = FALSE)

stylo(frequencies = lee, analysis.type = "BCT",
mfw.min = 100, mfw.max = 3000, custom.graph.title = "Harper Lee",
write.png.file = TRUE, gui = FALSE)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 115

Figure 3: Analysis of the corpus of 28 novels by Harper Lee, Truman Capote as well as a number
of comparable control authors writing in the American South. A frequency table of this corpus is
provided by the package stylo, so that all our experiments can be replicated. In all plots, Lee’s writing
style is clearly very consistent, even if for some input parameters Lee’s novels are close to Capote’s.
Figure panel 3a-3b: Traditional dendrograms outputted by cluster analyses with Burrows’s Classic
Delta Metric for 100 MFW and 1,500 MFW respectively (default settings; entire novels). Figure panel
3c: Bootstrap consensus tree for 100 MFW to 3,000 MFW (with an incremental step size of 50 words).
Unrooted tree which combines clade information from analyses such as the ones presented in Fig.
1a-1b. The tree collapses nodes which were observed in at least 50% of the underlying trees (majority
vote).

Classify

Apart from the already-discussed explanatory multivariate tests and the associated visualizations,
stylometry has borrowed a number of advanced classification methods from the domain of Machine
Learning. Some of them have simply been transferred to stylometry (e.g. Support Vector Machines or
Naïve Bayes Classifier); others have been tailored to the needs of humanities researchers. The best
example in this respect is Delta, a so-called ‘lazy’ learner developed by Burrows (Burrows, 2002). The
stylo package offers an interface to a selection of established classifiers: including Burrows’s original
Delta and other distance-based classifiers, Nearest Shrunken Centroids, Support Vector Machines and
Naïve Bayes Classifier. These are available through a single function:

classify() # optional arguments might be passed

If any non-standard text preprocessing procedures are involved, the above function can be fed
with the result of a multi-stage custom pipeline. Combining the function classify() with spreadsheet
tables of frequencies is also possible.

In a typical classification experiment, the analysis is divided in two stages. In the first stage,
representative text samples for each target category (e.g. authorial group) are collected in a training
corpus. The remaining samples form the test corpus. The first set, being a collection of texts, e.g.
written by known authors (‘candidates’), serves as a sub-corpus for fine-tuning the hyperparameters of
a classifier and model architecture selection. The second set is a pool that consists of test texts of known

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 116

authorship and anonymous texts of disputed authorial provenance. The classifier’s performance can
be measured by applying a standard evaluation metric to the classifier’s output on the test set (e.g. the
number of correct attributions to authors in the the training set). In stylo, users can divide their data
over two subdirectories (or input custom-created R objects using the low-level functions discussed
above); one directory should contain the training samples, the other the test samples. Other options
can be specified via the parameters that run parallel to those of the stylo() function, such as the
desired feature type or culling rate. Function-specific parameters for classify() include the number
of cross-validation folds or the type of classifier (e.g. Support Vector Machine).

We illustrate the performance of classification methods in stylo using the well-known case study of
the pseudonymous author Galbraith/Rowling, which recently attracted a good deal of press attention.
In July 2013, the Sunday Times (UK) revealed that J. K. Rowling, the successful author behind the
bestselling series of Harry Potter novels, had published a new detective novel (The Cuckoo’s Calling)
under the pseudonym of ‘Robert Galbraith’. (The paper had received an anonymous tip with respect
to this pen name over Twitter). For covering this case study, the Sunday Times has collaborated with
Patrick Juola, an authority in the field of authorship attribution, and Peter Millican (Juola, 2013).
They reported in a blog post on the Language Log that their stylometric analysis showed the writing
style (e.g. on the level of function words) found in The Cuckoo’s Calling to be broadly consistent with
Rowling’s writing in other works. Below, we report on a dummy attribution experiment which
illustrates a supervised procedure.

In this experiment we will confront Galbraith’s The Cuckoo’s Calling with 25 other fantasy novels
and thrillers by 4 famous novelists: H. Coben (e.g. Tell No One), C. S. Lewis (e.g. The Chronicles of
Narnia), J. R. R. Tolkien (e.g. the Lord of the Rings trilogy) and J. K. Rowling (e.g. the Harry Potter series).
Our replication experiments indeed confirm that Galbraith’s writing style is more consistent with that
of Rowling than that of any other author included. Instead of loading particular text files, we will
use a computed table of frequencies provided by the package; the table has to be split into two tables
(training set and test set). As an illustration, we specify the training set manually (with two training
texts per class):

specify a table with frequencies:
data(galbraith)
freqs <- galbraith

specify class labels:
training.texts <- c("coben_breaker", "coben_dropshot", "lewis_battle",

"lewis_caspian", "rowling_casual", "rowling_chamber",
"tolkien_lord1", "tolkien_lord2")

select the training samples:
training.set <- freqs[(rownames(freqs) %in% training.texts),]

select remaining rows as test samples:
test.set <- freqs[!(rownames(freqs) %in% training.texts),]

To perform Delta on the Rowling corpus (50 MFWs, no sampling), we type:

classify(training.frequencies = training.set, test.frequencies = test.set,
mfw.min = 50, mfw.max = 50, classification.method = "delta",
gui = FALSE)

The results are automatically outputted to a log file ‘final_results.txt’:

galbraith_cuckoos --> rowling rowling coben

50 MFW, culled @ 0%, 17 of 17 (100%)

General attributive success: 17 of 17 (100%)

MFWs from 50 to 50 @ increment 100
Culling from 0 to 0 @ increment 20
Pronouns deleted: FALSE; standard classification

The overall performance of the classifier for our dummy corpus is optimal, since 100% of the
test samples were correctly attributed to the correct authors. The experiment adds support to the
identification of the author of The Cuckoo’s Calling as Rowling. To combat model overfitting, cross-
validation on the training data can be applied. It has been shown that for linguistic datasets a standard

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 117

10-fold cross validation might overestimate the performance of models, especially if languages other
than English are assessed (Eder and Rybicki, 2013). To neutralize class imbalance, stylo therefore
provides stratified cross-validation protocols for stylometric experiments. To perform a classification
with a ‘plain vanilla’ 20-fold CV, using Nearest Shrunken Centroids classification and a series of tests
for 50, 100, 150, 200, . . . , 500 MFWs, one might type:

results <- classify(training.frequencies = training.set,
test.frequencies = test.set,
mfw.min = 50, mfw.max = 500, mfw.incr = 50,
classification.method = "nsc", cv.folds = 20, gui = FALSE)

To inspect the classification accuracy for particular cross-validation folds, the user can type:

results$cross.validation.summary

Average scores of the cross-validation outcome (note that the overall performance is now slightly
worse, ca. 95%) can be accessed via:

colMeans(results$cross.validation.summary)

Miscellaneous other functions

Apart from the above discussed functions, the package offers miscellaneous other, less established
functions to stylometrically analyze documents. With the oppose() function, users can contrast
two sets of documents and extract the most characteristic features in both sets of texts. The most
discriminative features can be visualized and fed into other components of the package as part of
a pipeline. Several metrics are implemented that can select features which display a statistically
significant difference in distributions between both sets. Craig’s Zeta, for instance, is an extension of
the Zeta metric originally proposed by Burrows (Burrows, 2007), which remains a popular choice in
the stylometric community to select discriminative stylometric features in binary classification settings
(Craig and Kinney, 2009). An example of another more widely used metric for feature selection in
corpus linguistics is the Mann-Whitney ranks test (Kilgariff, 2001). As a dummy example, we can
confront the above mentioned texts; be it the novels by Jane Austen and Anne Brontë:

data(novels)

corpus.all <- txt.to.words.ext(novels, language = "English.all",
preserve.case = TRUE)

corpus.austen <- corpus.all[grep("Austen", names(corpus.all))]
corpus.abronte <- corpus.all[grep("ABronte", names(corpus.all))]

zeta.results <- oppose(primary.corpus = corpus.austen,
secondary.corpus = corpus.abronte, gui = FALSE)

As can be seen in the results (first 20 most discriminating words), Jane Austen is an enthusiast
user of terms related to socio-cultural phenomena (e.g. situation, opinion, party, engaged, ...), whereas
Anne Brontë’s vocabulary can be characterized by a variety of auxiliary verbs with contractions, as
well as religious and light-related vocabulary (e.g. bright, dark).

zeta.results$words.preferred[1:20]

[1] "Her" "farther" "behaviour" "opinion" "party"
[6] "point" "perfectly" "afterwards" "Colonel" "directly"
[11] "spirits" "situation" "settled" "hardly" "Jane"
[16] "Emma" "equal" "family" "engaged" "They"

zeta.results$words.avoided[1:20]

[1] "don^t" "I^m" "I^ll" "beside" "Arthur"
[6] "can^t" "I^ve" "it^s" "won^t" "Huntingdon"
[11] "presence" "Helen" "face" "bright" "God"
[16] "mamma" "further" "heaven" "dark" "feet"

Of course, the above results of this simple feature selection tool can be fed into one of the package’s
classification routines:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 118

Figure 4: The Rolling Stylometry visualization. The medieval French allegoric story Roman de la Rose
assessed using Rolling SVM and 100 MFWs; window size: 5,000 words, sample overlap: 4,500 words.
Sections attributed to Guillaume de Lorris are marked red, those attributed to Jean de Meun are
green. The level of certainty of the classification is indicated by the thickness of the bottom stripe. The
commonly-accepted division into two authorial parts is marked with a vertical dashed line ‘b’.

combined.features <- c(zeta.results$words.preferred[1:20],
zeta.results$words.avoided[1:20])

stylo(parsed.corpus = corpus.all, features = combined.features, gui = FALSE)

Other functionality worth mentioning are rolling.delta() and rolling.classify(). These
functions implement a procedure meant to progressively analyze the development of a style in a
text, using e.g. one of the stylometric distance metrics discussed (Rybicki et al., 2014; Eder, 2016). In
many works, specific parts of the text are conjectured to have been plagiarized or contributed by
other authors: rolling.delta() and rolling.classify() offer an easy way to visualize local stylistic
idiosyncrasies in texts. In Fig. 4 we have plotted a rolling.classify() analysis of the well-known
French allegorical romance Roman de la Rose from the Middle Ages. It has been written by two authors:
Guillaume de Lorris is the author of the opening 4,058 lines (ca. 50,000 words), and the second part
by Jean de Meun consists of 17,724 lines (ca. 218,000 words). This knowledge is supported by the
text itself, since Jean de Meun explicitly points out the takeover point (it is marked with a dashed
vertical line ‘b’ in Fig. 4). In this example, the aim is to verify whether two authorial styles can indeed
be discerned in the text, that is, before and after the authorial takeover. First a Support Vector Machine
classifier is trained on four 5,000-word samples: two extracted from the beginning of the text and
two near the middle of the text (yet well beyond the hypothesized takeover: they are marked with
the dashed line ‘a’ and ‘c–d’, respectively). Next, we apply a windowing procedure and we extract
consecutive and partially overlapping samples from the entire text. Finally, the trained classifier is
applied to each of these ’windows.’ In Fig. 4 we plot the respective classification scores for both
authors in each sample: in this case, these scores represent the probability, estimated by a Support
Vector Machine, that a particular sample should be attributed to one of the two authors involved.
Although the result is not flawless, a clear shift in authorial style can be discerned around the position
of the takeover, as indicated verbatimly in the text by one the authors.

The dataset to replicate the test can be downloaded from this page: https://sites.google.
com/site/computationalstylistics/corpora/Roman_de_la_Rose.zip. The following code should
be typed to perform the classification:

unzipping the dataset
unzip("Roman_de_la_Rose.zip")

changing working directory
setwd("Roman_de_la_Rose")

rolling.classify(write.png.file = TRUE, classification.method = "svm", mfw = 100,
training.set.sampling = "normal.sampling", slice.size = 5000,
slice.overlap = 4500)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://sites.google.com/site/computationalstylistics/corpora/Roman_de_la_Rose.zip
https://sites.google.com/site/computationalstylistics/corpora/Roman_de_la_Rose.zip

CONTRIBUTED RESEARCH ARTICLES 119

Conclusion

‘Stylometry with R’ targets two distinct groups of users: experienced coders and beginners. Novice
users have found it useful to work with the intuitive Graphical User Interface (GUI), which makes it
easy to set and explore different parameters without programming experience. We wish to emphasize,
however, that stylo is useful beyond these high-level functions and GUIs: it also offers experienced
users a general framework that can be used to design custom processing pipelines in R, e.g. in other
text-oriented research efforts. The current version of stylo (version number 0.6.3) is available from
GitHub under a GPL 3.0 open-source licence; binary installation files are available from CRAN. stylo
has been used in a number of innovative studies in the field of computational stylistics (Kestemont
et al., 2013; van Dalen-Oskam, 2014; Lauer and Jannidis, 2014; Anand et al., 2014; Oakes and Pichler,
2013; Boot, 2013), and we encourage the future application of stylo to challenging new problems and
languages in stylometry.

Acknowledgments

We would like to thank the users of stylo for the valuable feedback and feature requests which we
have received over the past years. MK was partially founded for this research as a postdoctoral fellow
by The Research Foundation of Flanders (FWO). ME was partially supported by Poland’s National
Science Centre (grant number 2014/12/W/ST5/00592).

Bibliography

S. Anand, A. K. Dawn, and S. K. Saha. A statistical analysis approach to author identification using
latent semantic analysis. notebook for PAN at CLEF 2014. In CLEF2014 Working Notes, pages
1143–1147, Sheffield, UK, 2014. CLEF. [p119]

S. Argamon. Interpreting Burrows’s Delta: Geometric and probabilistic foundations. Literary and
Linguistic Computing, 23(2):131–147, 2011. [p109]

P. Boot. Online boekdiscussie van een afstand gelezen. TNTL. Journal of Dutch Linguistics and Literature,
129(4):215–232, 2013. [p119]

J. Burrows. ‘Delta’: A measure of stylistic difference and a guide to likely authorship. Literary and
Linguistic Computing, 17(3):267–287, 2002. [p109, 115]

J. Burrows. All the way through: testing for authorship in different frequency strata. Literary and
Linguistic Computing, 22(1):27–48, 2007. [p117]

H. Craig and A. Kinney, editors. Shakespeare, Computers, and the Mystery of Authorship. Cambridge
University Press, 2009. [p117]

W. Daelemans. Explanation in computational stylometry. In Proceedings of the 14th International
Conference on Computational Linguistics and Intelligent Text Processing – Volume 2, CICLing’13, pages
451–462, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-3-642-37255-1. [p108]

M. Eder. Style-markers in authorship attribution: a cross-language study of the authorial fingerprint.
Studies in Polish Linguistics, 6:99–114, 2011. URL http://www.wuj.pl/page,art,artid,1923.html.
[p111]

M. Eder. Computational stylistics and biblical translation: how reliable can a dendrogram be? In
T. Piotrowski and Ł. Grabowski, editors, The Translator and the Computer, pages 155–170. WSF Press,
Wrocław, 2012. [p114]

M. Eder. Rolling stylometry. Digital Scholarship in the Humanities, 31(3):457–469, 2016. [p118]

M. Eder and J. Rybicki. Do birds of a feather really flock together, or how to choose training samples
for authorship attribution. Literary and Linguistic Computing, 28(2):229–236, 2013. [p117]

I. Feinerer, K. Hornik, and D. Meyer. Text mining infrastructure in R. Journal of Statistical Software, 25
(5):1–54, 3 2008. ISSN 1548-7660. URL http://www.jstatsoft.org/v25/i05. [p108]

E. Gamerman. Data miners dig into ‘Watchman’. Wall Street Journal, page D5, July 2015. [p107, 114]

D. Holmes. Authorship attribution. Computers and the Humanities, 28(2):87–106, 1994. [p107]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.wuj.pl/page,art,artid,1923.html
http://www.jstatsoft.org/v25/i05

CONTRIBUTED RESEARCH ARTICLES 120

D. Holmes. The evolution of stylometry in Humanities scholarship. Literary and Linguistic Computing,
13(3):111–117, 1998. [p107]

D. Hoover. Testing Burrows’s Delta. Literary and Linguistic Computing, 19(4):453–475, 2004a. [p109,
110]

D. Hoover. Delta prime. Literary and Linguistic Computing, 19(4):477–495, 2004b. [p109, 110]

J. Houvardas and E. Stamatatos. N-gram feature selection for authorship identification. In J. Euzenat
and J. Domingue, editors, Proceedings of Artificial Intelligence: Methodologies, Systems, and Applications,
pages 77–86. Springer Verlag, 2006. [p108]

M. Jockers. Macroanalysis: Digital Methods and Literary History. Topics in the Digital Humanities.
University of Illinois Press, 2013. ISBN 9780252094767. [p108]

P. Juola. Authorship attribution. Foundations and Trends in Information Retrieval, 1(3):233–334, 2006.
[p107]

P. Juola. Becoming Jack London. Journal of Quantitative Linguistics, 14(2):145–147, 2007. [p108]

P. Juola. Rowling and “Galbraith”: an authorial analysis, 2013. URL http://languagelog.ldc.upenn.
edu/nll/?p=5315. [p107, 116]

M. Kestemont. Function words in authorship attribution: From black magic to theory? In Proceedings of
the 3rd Workshop on Computational Linguistics for Literature (CLFL), pages 59–66, Gothenburg, Sweden,
April 2014. Association for Computational Linguistics. URL http://www.aclweb.org/anthology/
W14-0908. [p108]

M. Kestemont, S. Moens, and J. Deploige. Collaborative authorship in the twelfth century: A stylomet-
ric study of Hildegard of Bingen and Guibert of Gembloux. Literary and Linguistic Computing, 28:
1–15, 2013. doi: doi:10.1093/llc/fqt063. [p119]

A. Kilgariff. Comparing corpora. International Journal of Corpus Linguistics, 6(1):97–133, 2001. [p117]

B. Kjell. Discrimination of authorship using visualization. Information Processing and Management, 30
(1):141–50, 1994. [p108, 111]

M. Koppel, J. Schler, and S. Argamon. Computational methods in authorship attribution. Journal of the
American Society for Information Science and Technology, 60(1):9–26, 2009. [p107]

G. Lauer and F. Jannidis. Burrows’s delta and its use in German literary history. In M. Erlin and
L. Tatlock, editors, Distant Readings. Topologies of German Culture in the Long Nineteenth Century, pages
29–54. Rochester, New York, 2014. [p119]

H. Love. Attributing authorship. An introduction. Cambridge University Press, Cambridge, 2002. [p107]

M. Oakes and A. Pichler. Computational stylometry of Wittgenstein’s ‘Diktat für Schlick’. Bergen
Language and Linguistics Studies, 3(1):221–240, 2013. [p119]

J. Pennebaker. The Secret Life of Pronouns: What our Words Say about Us. Bloomsbury Press, New York,
2011. [p110]

J. Rybicki and M. Heydel. The stylistics and stylometry of collaborative translation: Woolf’s ‘Night
and Day’ in Polish. Literary and Linguistic Computing, 28(4):708–717, 2013. [p114]

J. Rybicki, D. Hoover, and M. Kestemont. Collaborative authorship: Conrad, Ford and rolling delta.
Literary and Linguistic Computing, 29(3):422–431, 2014. [p118]

S. Schreibman, R. Siemens, and J. Unsworth, editors. A companion to Digital Humanities. Blackwell,
2004. URL http://www.digitalhumanities.org/companion/. [p107]

F. Sebastiani. Machine Learning in automated text categorization. ACM Computing Surveys, 34(1):1–47,
2002. [p108]

E. Stamatatos. A survey of modern authorship attribution methods. Journal of the American Society for
Information Science and Technology, 60(3):538–556, 2009. [p107, 108, 111]

E. Stamatatos, N. Fakotakis, and G. Kokkinakis. Automatic text categorization in terms of genre and
author. Computational Linguistics, 26(4):471–495, 2000. [p107]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://languagelog.ldc.upenn.edu/nll/?p=5315
http://languagelog.ldc.upenn.edu/nll/?p=5315
http://www.aclweb.org/anthology/W14-0908
http://www.aclweb.org/anthology/W14-0908
http://www.digitalhumanities.org/companion/

CONTRIBUTED RESEARCH ARTICLES 121

C. Stamou. Stylochronometry: stylistic development, sequence of composition, and relative dating.
Literary and Linguistic Computing, 23(2):181–199, 2008. [p107]

J. Stover, Y. Winter, M. Koppel, and M. Kestemont. Computational authorship verification method at-
tributes new work to major 2nd century African author. Journal of the American Society for Information
Science and Technology, 67(1):239–242, 2016. [p114]

K. van Dalen-Oskam. Epistolary voices: The case of Elisabeth Wolff and Agatha Deken. Literary and
Linguistic Computing, 29(3):443–451, 2014. [p114, 119]

L. van der Maaten and G. Hinton. Visualizing data using t-SNE. The Journal of Machine Learning
Research, 9(2579–2605):85, 2008. [p111]

H. Van Halteren, H. Baayen, F. Tweedie, M. Haverkort, and A. Neijt. New machine learning methods
demonstrate the existence of a human stylome. Journal of Quantitative Linguistics, 12(1):65–77, 2005.
[p107]

Maciej Eder
Institute of Polish Language
Polish Academy of Sciences
al. Mickiewicza 31, 31-120 Kraków
Poland
maciejeder@gmail.com

Jan Rybicki
Institute of English Studies
Jagiellonian University
al. Mickiewicza 9A, 31-120 Kraków
Poland
jkrybicki@gmail.com

Mike Kestemont
Department of Literature
University of Antwerp
Prinsstraat 13, B-2000 Antwerp
Belgium
mike.kestemont@uantwerp.be

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:maciejeder@gmail.com
mailto:jkrybicki@gmail.com
mailto:mike.kestemont@uantwerp.be

CONTRIBUTED RESEARCH ARTICLES 122

quickpsy: An R Package to Fit
Psychometric Functions for Multiple
Groups
by Daniel Linares and Joan López-Moliner

Abstract quickpsy is a package to parametrically fit psychometric functions. In comparison with
previous R packages, quickpsy was built to easily fit and plot data for multiple groups. Here,
we describe the standard parametric model used to fit psychometric functions and the standard
estimation of its parameters using maximum likelihood. We also provide examples of usage of
quickpsy, including how allowing the lapse rate to vary can sometimes eliminate the bias in parameter
estimation, but not in general. Finally, we describe some implementation details, such as how to avoid
the problems associated to round-off errors in the maximisation of the likelihood or the use of closures
and non-standard evaluation functions.

Introduction

Statistical model

The response of humans, other animals and neurons in a classification task with a binary response
variable and a stimulus level as explanatory variable is often binomially modelled as (Watson, 1979;
O’Regan and Humbert, 1989; Klein, 2001; Wichmann and Hill, 2001a; Macmillan and Creelman, 2004;
Gold and Shadlen, 2007; Kingdom and Prins, 2009; Knoblauch and Maloney, 2012; Lu and Dosher,
2013; Gold and Ding, 2013)

f (k; θ) =
M

∏
i=1

(
ni
ki

)
ψ(xi; θ)ki (1− ψ (xi; θ))ni−ki , (1)

where

• f is the probability mass function of the model or the likelihood when considered as a function
of the parameters;

• M is the number of stimulus levels used in the classification task;

• xi is the ith stimulus level;

• ni is the number of times that xi is presented;

• k = (k1, k2, . . . , kM) is the vector of responses with ki being the number of Yes-type (or correct)
responses when xi is presented;

• ψ(xi; θ) is the probability of responding Yes when xi is presented; it is called the psychometric
function and has the form

ψ(x; θ) = ψ(x; α, β, γ, λ) = γ + (1− γ− λ)F(x; α, β), (2)

where

– θ = (α, β, γ, λ) is the vector of parameters that define the parametric family of probability
mass functions of the model. α and β are the position and scale parameters. γ and λ are
the parameters corresponding to the leftward and rightward asymptote of ψ.

– F is a function with leftward asymptote 0 and rightward asymptote 1—typically a
cumulative probability function with a sigmoidal shape such as the cumulative normal,
logistic or Weibull functions.

The model assumes that a given classification response does not depend on previous classifications.
This is an idealisation, given the known order effects such as adaptation, fatigue, learning or serial
dependence (Kingdom and Prins, 2009; Fründ et al., 2011; Van der Burg et al., 2013; Fischer and
Whitney, 2014; Summerfield and Tsetsos, 2015).

Examples

Light detection. To measure the ability of an observer to detect light, a dim flash of light selected at
random from 5 different light intensities (xi; i = 1, . . . , M with M = 5) is presented and the observer is

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 123

asked to report Yes if she has seen it and No otherwise. After her response, another intensity, selected
at random from the 4 intensities that have not been presented yet, is presented and the observer
classifies it again as seen or not seen. Then, the observer performs 3 more classifications until the 5
intensities have been presented. After that, the whole procedure is repeated 20 times using a new
random sequence of 5 intensities each time. Using this procedure, which is called the method of
constant stimuli (Green and Swets, 1966; Gescheider, 1997; Kingdom and Prins, 2009; Knoblauch and
Maloney, 2012), the observer will perform a total of 100 classifications with ni = 20 for all i. ki will
correspond to the number of times that the observer responds Yes for each intensity. Because it is
expected that, for very low intensities, the observer will never respond Yes and for very high intensities
the observer will always respond Yes, γ and λ are often fixed to 0.

Criterion-independent light detection. In the previous procedure, k depends on how confident the
observer needs to feel to give a Yes response—conservative observers will repond Yes less often
(Green and Swets, 1966; Macmillan and Creelman, 2004; Kingdom and Prins, 2009; Knoblauch and
Maloney, 2012; Lu and Dosher, 2013). To avoid criterion-dependent responses, 2-intervals forced
choice procedures are often used (Green and Swets, 1966; Kingdom and Prins, 2009; Knoblauch
and Maloney, 2012; Lu and Dosher, 2013). These procedures are similar to the criterion-dependent
procedure described above, but the stimulus is presented at random in one interval from two intervals
presented consecutively (marked with a sound, for example) and the observer needs to decide whether
the stimulus was presented in the first or the second interval. Because it is expected that for very
low intensities the observer will respond at chance, γ is fixed at 1/2 (λ is usually fixed to 0). More
generally, γ is fixed to 1/m when the observer needs to decide in which over m intervals the stimulus
was presented.

Light detection with lapses. Sometimes, the observer will miss the flash (because of a blink, for
example) or will make an error reporting the response (pressing the wrong response button, for
example). To account for these response lapses, λ, which corresponds to (1− γ) times the lapse rate
(Kingdom and Prins, 2009), is not fixed but estimated as a parameter (Wichmann and Hill, 2001a,b).

Point estimation and confidence intervals

The point estimation of the parameters θ of the model in (1), θ̂, is sometimes obtained using Bayesian
methods (Kuss et al., 2005; Kingdom and Prins, 2009), but more often using maximum likelihood (ML;
Watson, 1979; O’Regan and Humbert, 1989; Wichmann and Hill, 2001a; Kingdom and Prins, 2009;
Knoblauch and Maloney, 2012; Lu and Dosher, 2013) . θ̂ is defined as the value of θ that maximises
the likelihood L defined as L(θ) = f (k; θ).

Maximising L is equivalent to maximising log(L), which for the model in (1) is

log L(θ) =
M

∑
i=1

(
log
(

ni
ki

)
+ ki log ψ (xi; θ) + (ni − ki) log (1− ψ (xi; θ))

)
. (3)

The confidence intervals CI for θ are usually estimated using parametric or non-parametric
bootstrap, often using the percentile method (Wichmann and Hill, 2001b; Kingdom and Prins, 2009;
Knoblauch and Maloney, 2012). For example, for the parameter α, the bootstrap percentile interval is
defined as (α∗(a/2), α∗(1−a/2)), where α∗(a/2) and α∗(1−a/2) are the a/2 and the 1− a/2 percentiles of the
bootstrapped replications of α̂. The ith bootstrap replication α∗i is obtained using ML, but this time for
a vector of simulated responses k∗. Each k∗i is simulated from a binomial distribution with parameters
ni and pi where pi is ψ(xi; θ̂) for the parametric bootstrap and ki/ni for the non-parametric bootstrap
(which is equivalent to sampling with replacement from the distribution of Yes and No responses). It
could be demonstrated that CI = (α∗

(a/2), α∗
(1−a/2)) is a well-defined confidence interval (Wasserman,

2013). That is, P(α ∈ CI) ≥ 1− a where P is a probability and a is often arbitrarily chosen as 0.05. The
confidence intervals for the other parameters are obtained similarly.

The observer’s behaviour in classification tasks is often summarised by a threshold xth (O’Regan
and Humbert, 1989; Wichmann and Hill, 2001a; Kingdom and Prins, 2009; Knoblauch and Maloney,
2012; Lu and Dosher, 2013), which corresponds to the stimulus level that predicts an arbitrarily chosen
proportion of Yes responses. If the proportion is 0.5, for example, then xth would be the x for which
ψ(x; θ̂) = 0.5. The bootstrap CIs for xth can be obtained using the percentile method for x∗th, which are
the bootstrap replications of xth calculated using the bootstrap replications of the parameters.

ML estimates of the parameters are often obtained using non-linear optimisation (Nash, 2014), a
method that might produce unsuitable estimates when the data suffer from lapses as those described
above. Future studies might elucidate the possible problems of non-linear optimisation to fit psy-
chometric functions with lapses and whether Bayesian approaches might be preferred (Kuss et al.,
2005).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 124

quickpsy and similar tools

quickpsy (Linares and López-Moliner, 2016) is a package to estimate and plot the parameters, the
thresholds, the bootstrap confidence intervals for the parameters and the thresholds, and the associated
psychometric functions for the model in (1). quickpsy also allows the comparison of the parameters
and the thresholds for different groups using the bootstrap. It is build to easily analyse data for
multiple groups, which is common in classification experiments (Gescheider, 1997; Lu and Dosher,
2013): multiple observers, for example, might be tested under different conditions, such as flashes of
different size in the light detection experiments. For that purpose, quickpsy incorporates, for example,
a function to easily create a data frame from multiple files (quickreadfiles) or uses the dimensions of
the groups in the data to produce standard plots for the parameters, the thresholds and the associated
psychometric functions.

As an alternative to quickpsy, classification data can also be analysed in R using the base function
glm for fitting generalized linear models and tools from package psyphy (Knoblauch and Maloney,
2012; Knoblauch, 2014). Fitting psychometric functions could be considered a special case of fitting
generalised linear models (GLM) (Knoblauch and Maloney, 2012; Moscatelli et al., 2012), which is
done in R using glm (Knoblauch and Maloney, 2012). With glm, one can estimate the parameters of the
linear predictor associated with the GLM and use them to estimate the parameters of the model in (1)
(Knoblauch and Maloney, 2012). Also by applying confint to the glm output (Knoblauch and Maloney,
2012), the confidence intervals can be calculated using the profile likelihood method (Venables and
Ripley, 2002). To calculate the parameters and confidence intervals for multiple groups, the user needs
to manually or automatically loop by group. Alternatively, if one is not interested in the individual
values of the parameters for each group, but on fitting a single model to the multiple groups, glm
allows to do that using advanced statistical methods (Knoblauch and Maloney, 2012; Moscatelli et al.,
2012).

To estimate the parameters in (1) using glm is straightforward when γ = 0 and λ = 0 (to see glm in
action for the HSP dataset, see Knoblauch and Maloney 2012), but becomes more complicated when γ
and λ are not 0 or need to be estimated (Knoblauch and Maloney, 2012). To facilitate the application of
glm when λ is not zero, psyphy provides specialised link functions. Furthermore, psyphy includes
the psyfun.2asym function, which by iterating glm calls, allows the estimation of γ and λ.

The specific shape of F in (1) is sometimes chosen based on some theory (Green and Swets,
1966; Quick, 1974; Kingdom and Prins, 2009). Other times, especially when one is only interested in
calculating the threshold, it is chosen arbitrarily. In those cases, one might prefer to fit a non-parametric
model to the data, which can be done in R using package modelfree (Zychaluk and Foster, 2009;
Marin-Franch et al., 2012),

In other languages, the current available tools to calculate the parameters in (1) and its confidence
intervals are psignifit (Fründ et al., 2011) for Python (free), psycophysica (Watson and Solomon, 1997)
for Mathematica (commercial) and palamedes (Kingdom and Prins, 2009) for MATLAB (commercial).
From them, palamedes can also fit models for multiple groups. Furthermore, palamedes and psignifit
can fit psychometric functions using Bayesian methods, which is something not implemented in
quickpsy.

Examples of usage

Light detection

A classic experiment on light detection (similar to the one first described in the Introduction) was
conducted by Hecht et al. (1942). The data from the experiment is available in MPDiR, a package that
includes material from the book Modeling Psychophysical Data in R (Knoblauch and Maloney, 2012).

The data is included in the data frame HSP, which has a tidy structure (Wickham, 2014), that is,
each column corresponds to a variable and each row is an observational unit. The variables in HSP
are the intensity level measured in quanta Q (what we named stimulus level xi), the number of times
that each intensity was presented N (what we named ni) and two variables identifying the groups: the
identifier of the observer Obs and the run for each observer Run. In the original dataset, the number of
Yes responses for each stimulus level ki was not given—the probability p of responding Yes was given
instead. But, calculating the number of Yes responses from p is trivial:

library(MPDiR)
library(dplyr)
library(quickpsy)
HSP <- HSP %>% mutate(k = round(p * N / 100)) # adding a column with the number of Yes

We used the round function because, curiously, there was some error in the original data set (see

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=quickpsy
http://CRAN.R-project.org/package=psyphy
http://CRAN.R-project.org/package=modelfree
http://CRAN.R-project.org/package=MPDiR

CONTRIBUTED RESEARCH ARTICLES 125

SH SS MHP

0.00

0.25

0.50

0.75

1.00

24 62 160 42024 62 160 42024 62 160 420
Q

y
Run

R1

R2

p1 p2

0

1

2

3

4

5

0.0

0.2

0.4

0.6

R1 R2 R1 R2
Run

lo
g(

Q
)

Obs

SH

SS

MHP

0

50

100

150

R1 R2
Run

Q

Obs

SH

SS

MHP

Figure 1: Psychometric functions, parameters and thresholds (including confidence intervals) resulting
from fitting the model in (1) to the HSP data.

Knoblauch and Maloney, 2012).

To fit the model in (1) to the HSP dataset, we call the quickpsy function from package quickpsy

fit <- quickpsy(HSP, Q, k, N, grouping = .(Run, Obs), B = 1000)

where B indicates the number of bootstrap samples (which can be reduced to shorten the computation
time). In this call to quickpsy, many arguments were not explicitly specified but left to the default
values: γ and λ fixed to 0: guess = 0 and lapses = 0; F set to the cumulative normal distribution:
fun = cum_normal_fun; the probability to calculate the threshold set to 0.5: prob = guess + 0.5 * (1
-guess); the confidence intervals calculated using parametric bootstrap: bootstrap = "parametric".

quickpsy returns a list with all the information from the fitting. Most elements of the list are
data frames. For example, the parameters α and β, which for the cumulative normal distribution
correspond, respectively, to the mean and the standard deviation, can be found in the data frame
fit$par (where p1 corresponds to α and p2 corresponds to β). The confidence intervals for the
parameters are located in fit$parci. The thresholds and the confidence intervals for the thresholds
are located in fit$thresholds and fit$thresholdsci.

quickpsy also returns the data frame fit$parcomparisons, which includes for each parameter,
paired comparisons between groups for all possible pairs of groups using the bootstrap (Efron and
Tibshirani, 1994). To compare two given groups, the difference between the bootstrap estimations
of the parameter is calculated for all samples and from the distribution of differences, given the
significance level set by the user (default: .95), the percentile confidence intervals are calculated. It
is considered that the parameter differs between the two groups if the confidence intervals do not
include zero. Paired comparisons for the thresholds performed using the same method are available
in fit$thresholdcomparisons.

To plot the fitted psychometric functions, we call the quickpsy function plotcurves including the
fitted model as an argument

plotcurves(fit)

To plot the parameters and the thresholds, we use functions plotpar(fit) and plotthresholds(fit)
from package quickpsy, respectively.

Hecht et al. (1942), indeed, used log Q, instead of Q as stimulus level. To easily fit and plot the

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 126

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Q

y

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Q

y

Figure 2: Psychometric function for the light detection experiment with lapses allowing λ to vary on
the left and with lapses fixing λ on the right.

model using the logarithm of the stimulus level, we can call quickpsy with log = TRUE

fit <- quickpsy(HSP, Q, k, N, grouping = .(Run, Obs), B = 1000, log = TRUE)

The plots associated to the fit above (Figure 1), using package gridExtra (Auguie, 2015) for the plot
arrangements, can be obtained as follows

library(gridExtra)
grid.arrange(plotcurves(fit), arrangeGrob(plotpar(fit), plotthresholds(fit), ncol = 2))

HSP is a data frame that contains summarised data: the counts of Yes responses. quickpsy, however,
can fit the data frames containing more raw data in which each row corresponds to the result of one
classification. In that case, the data frame should contain a response column with 1s indicating Yes
responses and 0s or -1s indicating No responses and quickpsy should be called with the name of the
response column as the k argument (without the argument n corresponding to the number of trials).

We hope that this example has illustrated that quickpsy requires little coding to perform typical
fits and plots in a classification task with multiple groups.

Criterion-independent light detection

Following the second example in the Introduction, consider some hypothetical data in which an
observer needs to decide on which from two intervals a flash of light was presented.

Q <- c(80, 160, 240, 320, 400) # luminance
n <- 100 # number of classifications per stimulus level
k <- c(59, 56, 69, 84, 96) # number of correct classifications
dat2IFC <- data.frame(Q, k, n)

To fit the model in (1) to this data, we call quickpsy with γ set to chance level (guess = 0.5)

fit <- quickpsy(dat2IFC, Q, k, n, guess = .5)

Light detection with lapses

Consider some hypothetical data from a light detection experiment, in which the observer commits a
lapse (third example of the Introduction).

Q <- seq(0, 420, 60)
n <- 20
k <- c(0, 0, 4, 18, 20, 20, 19, 20) # lapse in the second to last intensity
datLapse <- data.frame(Q, k, n)

Suppose that we suspect that the observer might have committed lapses. Accordingly, we fit the
model in (1) allowing λ to vary (lapses = TRUE).

fit <- quickpsy(datLapse, Q, k, n, lapses = TRUE, prob = .75)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=gridExtra

CONTRIBUTED RESEARCH ARTICLES 127

The fitted psychometric function obtained with plotcurves(fit) is shown in Figure 2 on the left.

Typically, we are interested in the values of α, β or the threshold, which are related to the classi-
fication mechanisms (Wichmann and Hill, 2001a,b), but not in the specific value of λ. λ is allowed
to vary, however, because fixing it when lapses occur can bias the estimation of α, β or the threshold
(Wichmann and Hill, 2001a,b). To illustrate this, we fit the previous data with λ fixed to zero.

fit <- quickpsy(datLapse, Q, k, n, lapses = 0, prob = .75)

Figure 2 on the right shows that β and the threshold are biased.

Allowing λ to vary, however, not always fixes the fit. Prins (2012) has shown that, indeed, the
simulations used by Wichmann and Hill (2001a,b) to illustrate how using variable λ eliminates the
bias do cause a bias in threshold estimation. The following code uses quickpsy to replicate the results
of Prins (2012). Wichmann and Hill created 7 sampling schemes for stimulus presentation that were
created specifying the values of ψ, which was a Weibull function with parameters 10 and 3.

parweibull <- c(10, 3)
create_xs <- function(i, f) data.frame(scheme = i, y = f,

x = inv_weibull_fun(f, parweibull))
s <- list()
s[[1]] <- create_xs(1, c(.3, .4, .48, .52, .6, .7))
s[[2]] <- create_xs(2, c(.1, .3, .4, .6, .7, .9))
s[[3]] <- create_xs(3, c(.3, .44, .7, .8, .9, .98))
s[[4]] <- create_xs(4, c(.1, .2, .3, .4, .5, .6))
s[[5]] <- create_xs(5, c(.08, .18, .28, .7, .85, .99))
s[[6]] <- create_xs(6, c(.3, .4, .5, .6, .7, .99))
s[[7]] <- create_xs(7, c(.34, .44, .54, .8, .9, .98))
s <- do.call("rbind", s)
s$scheme <- factor(s$scheme)

Next, Wichmann and Hill simulated binomial responses using the Weibull function with several
possible values for λ

create_sim_dat <- function(d) {
psychometric_fun <- create_psy_fun(weibull_fun, .5, d$lambda)
ypred <- psychometric_fun(d$x, parweibull)
k <- rbinom(length(d$x), d$n, ypred)
data.frame(x = d$x, k = k, n = d$n , y = k/d$n)

}
library(dplyr)
simdat <- merge(s, expand.grid(n = 160, sample = 1:100, lambda = seq(0,.05, .01))) %>%
group_by(scheme, n, sample, lambda) %>% do(create_sim_dat(.))

To fit the simulated data, we use quickpsy bounding the possible values of λ to [0, 0.6] as Wichmann
and Hill did

fit_lapses <- quickpsy(simdat, x, k, n, within = .(scheme, lambda, sample),
fun = weibull_fun, bootstrap = "none", guess =.5, lapses = TRUE,
parini = list(c(1, 30), c(1, 10), c(0, .06)))

Then, we average the threshold estimation across simulations

thre_lapses <- fit_lapses$thresholds %>% group_by(scheme, lambda) %>%
summarise (threshold = mean(thre))

and plot them including the non-biased threshold for comparison

real_threshold <- inv_weibull_fun((.75 - .5) / (1 - .5 - 0), parweibull)
library(ggplot2)
ggplot(thre_lapses) + geom_point(aes(x = lambda, y = threshold, color = scheme)) +
geom_hline(yintercept = real_threshold, lty = 2)

Figure 3 shows, consistent with Prins (2012), that the thresholds are biased for all of the sampling
schemes and that the bias increases with the λ used to simulate the data.

Appearance-based procedures

In the previous sections, we exemplified the use of quickpsy for performance-based procedures
(light detection), but fitting psychometric functions is also common for appearance-based procedures

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 128

9.0

9.2

9.4

0.00 0.01 0.02 0.03 0.04 0.05
lambda

th
re

sh
ol

d

scheme

1

2

3

4

5

6

7

Figure 3: Threshold estimation for several sampling schemes simulating data using different values
for λ. The horizontal dotted line shows the values of the unbiased threshold.

(Kingdom and Prins, 2009). For example, psychometric functions are often fitted to data measuring
visual illusions such as the flash-lag (e.g., López-Moliner and Linares, 2006). In those cases, γ and
λ are usually fixed to 0 and the probability summarising the behaviour of the classifier to 0.5. The
stimulus level that predicts 0.5 proportion of Yes responses is called the point of subjective equality
(PSE) .

Implementation details

Non-standard evaluation and grouping

quickpsy, the main function of quickpsy, is a non-standard evaluation NSE function and, as such, the
names of the arguments and not only their values can be accessed (Wickham, 2014). NSE functions,
which are common in R, are useful for example to label the axes of a plot using the name of the
arguments (Wickham, 2014). As calling NSE functions from other functions is difficult (Wickham,
2014), quickpsy also incorporates quickspsy_ which is the standard evaluation SE version of quickpsy.
To call SE functions, some of the arguments need to be quoted. The following code exemplifies the use
of quickspsy_ to fit the HSP dataset from the first example of usage

fit <- quickpsy_(HSP, "Q", "k", "N", grouping = c("Run", "Obs"))

The NSE high-level plotting functions of quickpsy plotcurves, plotpar and plotthresholds also
have associated SE versions: plotcurves_, plotpar_ and plotthresholds_.

One of the main features of quickpsy is the possibility of fitting multiple groups. To handle the
data analysis and plotting for multiple groups, quickpsy relies on dplyr (Wickham and Francois,
2015) and ggplot2 (Wickham, 2009) respectively. In particular, quickpsy makes extensive use of the
function do from dplyr, which splits input data frames by group, applies a function to each group
and returns an output data frame. quickpsy, for example, calls the functions curves and thresholds,
which basically contain a do function that, in turn, calls one_curve and one_threshold, which are the
functions that calculate the psychometric curve and the threshold for a group of data (this method of
function X calling function one_X, which performs the computations for a group of data, is used for
some other functions called from quickpsy).

Closures

Closures or function factories are functions written by functions (Wickham, 2014). When estimating
the maximum likelihood parameters for the model in (1), two procedures can be executed naturally

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=ggplot2

CONTRIBUTED RESEARCH ARTICLES 129

using closures. One is the creation of ψ from F (and the parameters γ and λ), which is implemented in
the create_psy_fun closure. The other is the creation of the negative log likelihood function from ψ
(and the data), which is implemented in the create_nll closure.

Round-off errors in the log likelihood

Consider that we want to manually fit a cumulative normal psychometric function to the following
data

x <- c(-0.056, 0.137, 0.331, 0.525, 0.719, 0.912, 1.100)
k <- c(0, 5, 11, 12, 12, 12, 12)
n <- c(12, 12, 12, 12, 12, 12, 12)

by direct minimisation of the negative log likelihood. In quickpsy we build the negative log likelihood
using a function similar to

nll <- function(p) {
phi <- pnorm(x, p[1], p[2])
-sum(k * log(phi) + (n - k) * log(1 - phi))

}

and use optim to find the parameters that minimise it

optim(c(0.5, 0.1), nll)

optim requires initial values for the parameters that we arbitrarily chose as c(0.5,0.1). But suppose
that we choose another set of initial parameters

optim(c(0.1, 0.1), nll)

This time optim returns an error:

Error in optim(c(0.1, 0.1), nll) :
function cannot be evaluated at initial parameters

The problem is that for the 1.100 stimulus level, pnorm(1.100,0.1,0.1) is rounded to 1 and therefore
the term log(1 - phi) in the negative log likelihood is -Inf.

To avoid this problem, the coding of the negative log likelihood in quickpsy incorporates the
following lines

phi[phi < .Machine$double.eps] <- .Machine$double.eps
phi[phi > (1 - .Machine$double.eps)] <- 1 - .Machine$double.eps

That is, values that are smaller than the machine accuracy (.Machine$double.eps) are replaced by
.Machine$double.eps and values that are larger than 1 - .Machine$double.eps are replaced by 1 -
.Machine$double.eps. We can verify that quickpsy does not produce errors when using the problematic
initial values with the following code

dat <- data.frame(x, k, n)
fit <- quickpsy(dat, x, k, n, parini = c(0.1, 0.1))

quickpsy allows to use the cumulative normal function, but also the cumulative logistic, cumulative
Weibull or any other cumulative distribution function defined by the user for modeling the probability
of responding Yes. The function nll evaluating the log likelihood was thus defined in quickpsy similar
to the way above in order to encompass all these variants. Note, however, that if the aim was to fit only
a cumulative normal function, the negative log likelihood function could be defined in the following
way in R to cover a larger range of possible values of p without problems by directly evaluating the
cumulative distribution function on the log scale

nll <- function(p) {
logPhi <- pnorm(x, p[1], p[2], log.p = TRUE)
log1mPhi <- pnorm(x, p[1], p[2], lower.tail = FALSE, log.p = TRUE)
-sum(k * logPhi + (n - k) * log1mPhi)

}

Optimisation and initial parameters

By default, quickpsy searches the minimum of the negative log likelihood using optim, which requires
initial values for the parameters. To free the user from the necessity of providing initial parameters,

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 130

quickpsy uses as initial values the parameters obtained by linear modelling of the probit-transformed
data (McKee et al., 1985; Gescheider, 1997). Linear modelling probit-transformed data is a poor
technique to estimate the parameters of the psychometric function (McKee et al., 1985), but our tests
suggest that they are good enough to be used as initial parameters.

The user can overwrite the initial parameters calculated using probit-transformed data by provid-
ing a vector of initial parameters to the argument parini of quickpsy. A list of vectors can also be fed
when the user wants to set up some bounds for the parameters (see the last example of usage).

Acknowledgments

We thank Kenneth Knoblauch for providing helpful comments on a draft version of the manuscript and
helping us with the problem associated to the rounding-off errors in the calculation of the likelihood.
The research group is supported by Grant 2014SGR79 from the Catalan government. J. López-Moliner
was supported by an ICREA Academic Distinguished Professorship award and grant PSI2013-41568-P
from MINECO.

Bibliography

B. Auguie. gridExtra: Miscellaneous Functions for ‘grid’ Graphics, 2015. URL http://CRAN.R-project.
org/package=gridExtra. R package version 2.0.0. [p126]

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. CRC Press, 1994. [p125]

J. Fischer and D. Whitney. Serial dependence in visual perception. Nature Neuroscience, 17(5):738–743,
May 2014. [p122]

I. Fründ, N. V. Haenel, and F. A. Wichmann. Inference for psychometric functions in the presence of
nonstationary behavior. Journal of Vision, 11(6), 2011. [p122, 124]

G. A. Gescheider. Psychophysics. The Fundamentals. Psychology Press, June 1997. [p123, 124, 130]

J. I. Gold and L. Ding. How mechanisms of perceptual decision-making affect the psychometric
function. Progress in Neurobiology, 103:98–114, Apr. 2013. [p122]

J. I. Gold and M. N. Shadlen. The neural basis of decision making. Annual Review of Neuroscience, 30:
535–574, 2007. [p122]

D. M. Green and J. A. Swets. Signal Detection Theory and Psychophysics. Wiley, 1966. [p123, 124]

S. Hecht, S. Shlaer, and M. H. Pirenne. Energy, quanta, and vision. Journal of General Physiology, 25(6):
819–840, July 1942. [p124, 125]

F. A. A. Kingdom and N. Prins. Psychophysics. A Practical Introduction. Academic Press, Sept. 2009.
[p122, 123, 124, 128]

S. A. Klein. Measuring, estimating, and understanding the psychometric function: A commentary.
Perception and Psychophysics, 63(8):1421–1455, Nov. 2001. [p122]

K. Knoblauch. psyphy: Functions for Analyzing Psychophysical Data in R, 2014. URL http://CRAN.R-
project.org/package=psyphy. R package version 0.1-9. [p124]

K. Knoblauch and L. T. Maloney. Modeling Psychophysical Data in R. Springer, New York, NY, Sept.
2012. [p122, 123, 124, 125]

M. Kuss, F. Jäkel, and F. A. Wichmann. Bayesian inference for psychometric functions. Journal of Vision,
5(5):478–492, 2005. [p123]

D. Linares and J. López-Moliner. quickpsy: Fits Psychometric Functions for Multiple Groups, 2016. URL
https://CRAN.R-project.org/package=quickpsy. R package version 0.1.3. [p124]

J. López-Moliner and D. Linares. The flash-lag effect is reduced when the flash is perceived as a
sensory consequence of our action. Vision Research, 46(13):2122–2129, June 2006. [p128]

Z.-L. Lu and B. Dosher. Visual Psychophysics. From Laboratory to Theory. MIT Press, Oct. 2013. [p122,
123, 124]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=gridExtra
http://CRAN.R-project.org/package=gridExtra
http://CRAN.R-project.org/package=psyphy
http://CRAN.R-project.org/package=psyphy
https://CRAN.R-project.org/package=quickpsy

CONTRIBUTED RESEARCH ARTICLES 131

N. A. Macmillan and C. D. Creelman. Detection Theory. A User’s Guide. Psychology Press, Sept. 2004.
[p122, 123]

I. Marin-Franch, K. Zychaluk, and D. H. Foster. modelfree: Model-Free Estimation of a Psychometric
Function, 2012. URL http://CRAN.R-project.org/package=modelfree. R package version 1.1-1.
[p124]

S. P. McKee, S. A. Klein, and D. Y. Teller. Statistical properties of forced-choice psychometric functions:
Implications of probit analysis. Perception and Psychophysics, 37(4):286–298, 1985. [p130]

A. Moscatelli, M. Mezzetti, and F. Lacquaniti. Modeling psychophysical data at the population-level:
The generalized linear mixed model. Journal of Vision, 12(11), 2012. [p124]

J. C. Nash. Nonlinear Parameter Optimization Using R Tools. John Wiley & Sons, New York, 2014. [p123]

J. K. O’Regan and R. Humbert. Estimating psychometric functions in forced-choice situations: Signifi-
cant biases found in threshold and slope estimations when small samples are used. Perception and
Psychophysics, 46(5):434–442, Nov. 1989. [p122, 123]

N. Prins. The psychometric function: The lapse rate revisited. Journal of Vision, 12(6), 2012. [p127]

R. F. Quick. A vector-magnitude model of contrast detection. Kybernetik, 16(2):65–67, 1974. [p124]

C. Summerfield and K. Tsetsos. Do humans make good decisions? Trends in Cognitive Sciences, 19(1):
27–34, Jan. 2015. [p122]

E. Van der Burg, D. Alais, and J. Cass. Rapid recalibration to audiovisual asynchrony. Journal of
Neuroscience, 33(37):14633–14637, Sept. 2013. [p122]

W. N. Venables and B. D. Ripley. Modern Applied Statistics with S. Statistics and Computing. Springer,
New York, NY, 2002. [p124]

L. Wasserman. All of Statistics. A Concise Course in Statistical Inference. Springer, New York, NY, Dec.
2013. [p123]

A. B. Watson. Probability summation over time. Vision Research, 19(5):515–522, 1979. [p122, 123]

A. B. Watson and J. A. Solomon. Psychophysica: Mathematica notebooks for psychophysical experi-
ments. Spatial Vision, 10(4):447–466, 1997. [p124]

F. A. Wichmann and N. J. Hill. The psychometric function: I. Fitting, sampling, and goodness of fit.
Perception and Psychophysics, 63(8):1293–1313, Nov. 2001a. [p122, 123, 127]

F. A. Wichmann and N. J. Hill. The psychometric function: II. Bootstrap-based confidence intervals
and sampling. Perception and Psychophysics, 63(8):1314–1329, Nov. 2001b. [p123, 127]

H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer, New York, 2009. URL http:
//had.co.nz/ggplot2/book. [p128]

H. Wickham. Advanced R. CRC Press, Sept. 2014. [p124, 128]

H. Wickham and R. Francois. dplyr: A Grammar of Data Manipulation, 2015. URL http://CRAN.R-
project.org/package=dplyr. R package version 0.4.3. [p128]

K. Zychaluk and D. H. Foster. Model-free estimation of the psychometric function. Attention, Perception
& Psychophysics, 71(6):1414–1425, Aug. 2009. [p124]

Daniel Linares
Vision and Control of Action Group, Departament de Psicologia Bàsica, Universitat de Barcelona
Passeig Vall d’ Hebron 171, Barcelona 08035
Spain
danilinares@gmail.com

Joan López-Moliner
Vision and Control of Action Group, Departament de Psicologia Bàsica, Universitat de Barcelona
Institute for Brain, Cognition and Behaviour (IR3C), Barcelona
Passeig Vall d’ Hebron 171, Barcelona 08035
Spain
j.lopezmoliner@ub.edu

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=modelfree
http://had.co.nz/ggplot2/book
http://had.co.nz/ggplot2/book
http://CRAN.R-project.org/package=dplyr
http://CRAN.R-project.org/package=dplyr
mailto:danilinares@gmail.com
mailto:j.lopezmoliner@ub.edu

CONTRIBUTED RESEARCH ARTICLES 132

FWDselect: An R Package for Variable
Selection in Regression Models
by Marta Sestelo, Nora M. Villanueva, Luis Meira-Machado and Javier Roca-Pardiñas

Abstract In multiple regression models, when there are a large number (p) of explanatory variables
which may or may not be relevant for predicting the response, it is useful to be able to reduce the model.
To this end, it is necessary to determine the best subset of q (q ≤ p) predictors which will establish
the model with the best prediction capacity. FWDselect package introduces a new forward stepwise-
based selection procedure to select the best model in different regression frameworks (parametric
or nonparametric). The developed methodology, which can be equally applied to linear models,
generalized linear models or generalized additive models, aims to introduce solutions to the following
two topics: i) selection of the best combination of q variables by using a step-by-step method; and,
perhaps, most importantly, ii) search for the number of covariates to be included in the model based
on bootstrap resampling techniques. The software is illustrated using real and simulated data.

Introduction

In a multivariate regression framework, the target response Y can depend on a set of p initial covariates
X1, X2, . . . , Xp but in practical situations we often would like to determine which covariates are
“relevant” to describe this response.

The question of how to choose a subset of predictors of size q (q ≤ p) has not totally been
satisfactorily solved yet. This problem is particularly important for large p and/or when there are
redundant predictors. As a general rule, an increase in the number of variables to be included in
a model provides an “apparently” better fit of the observed data; however, these estimates are not
always satisfying for different reasons. On the one hand, the inclusion of such irrelevant variables
would increase the variance of the estimates, resulting in a partial loss of the predictive capability of
the model. On the other hand, the inclusion of too many variables may lead to unnecessary complexity
in the resulting model, conducing to a difficult interpretation.

Model selection (and variable selection in regression, in particular) is a trade-off between bias and
variance. Inference based on models with few variables can be biased, however, models that take into
account too many variables may result in a lack of precision or false effects. These considerations call
for a balance between under- and over-fitted models, the so-called model-selection problem (Forster,
2000).

To solve this problem, several strategies have been proposed. One common option is to use
iterative procedures, such as the leaps and bounds algorithm (Furnival and Wilson, 1974) through
which the best subset selection is obtained. This is a full information criteria-based approach, which
compares all possible models and ranks them (Calcagno and de Mazancourt, 2010). Nevertheless, the
problem of selecting the best model from among all possible combinations of p predictors is not trivial.
In the presence of a large number of variables this selection procedure may require an excessively high
computational cost and thus, in some cases, the problem becomes intractable. In order to relax this
exhaustive search, heuristic iterative procedures such as forward- and backward-stepwise (Hocking,
1976) have been developed. This greedy algorithm produces a nested sequence of models based
on the use of some information criteria which compares the models obtained in the course of the
simplification or complexification scheme. Several criteria have been used for this purpose (Venables
and Ripley, 1997; Miller, 2002), including Mallow’s Cp (Mallows, 1973) or the Akaike Information
Criteria or AIC (Akaike, 1973). Apart from the iterative procedures, other strategies applied in the
variable selection problem are, e.g. shrinkage regression methods —such as ridge regression or the
Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996; Hastie et al., 2003)— or the
Bayesian approach (Green, 1995; Kuo and Mallick, 1998; Park and Casella, 2008; Hans, 2009).

Several R packages have been developed to carry out automatic variable selection or model
selection. For instance, the meifly package (Wickham, 2014) can be used to search through all the
different models. This type of exhaustive search can be also addressed using some other algorithm,
such as the branch-and-bound algorithm in the leaps package (Lumley and Miller, 2009) or the
leaps-and-bounds algorithm in the subselect package (Orestes Cerdeira et al., 2015). Both packages
also implement other selection methods (heuristics). The leaps package includes the forward or
backward stepwise, or sequential replacement while the subselect package provides a simulated
annealing-type search algorithm, a genetic algorithm, and a restricted local improvement algorithm.
To use the Lasso method, the user can apply, for example, the lars function implemented in the
lars package (Hastie and Efron, 2013) or the glmnet function, which fits a generalized linear model

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=meifly
http://CRAN.R-project.org/package=leaps
http://CRAN.R-project.org/package=subselect
http://CRAN.R-project.org/package=leaps
http://CRAN.R-project.org/package=subselect
http://CRAN.R-project.org/package=lars

CONTRIBUTED RESEARCH ARTICLES 133

via penalized maximum likelihood, implemented in the glmnet package (Friedman et al., 2015).
Additionally, another procedure used by the R community seems to be the model-selection-oriented
step function (Hastie and Pregibon, 1992) built into the stats package. When it comes to model
selection with generalized linear models, one option could be to use the glmulti package (Calcagno,
2013) or bestglm package (Mcleod and Xu, 2014). Finally, within the class of generalized additive
models, other algorithms have also been introduced to achieve component selection, see Lin and Zhang
(2006) and references therein, the boosting technique of Tutz and Binder (2006) or the generalization of
the approach of Belitz and Lang (2008). More recently, and widely applied by R users, the gam function
of the mgcv package (Wood, 2006, 2011) includes an argument (select = TRUE) for model selection
and fitting in a single step by adding a second penalty term in the estimation scheme of continuous
covariates (Marra and Wood, 2011).

The FWDselect package introduces an alternative to existing approaches in the form of a method-
ology whereby R users can select the best variables in different regression contexts, both parametric
and nonparametric. Unlike other existing packages, the procedure implemented in it can be equally
applied to linear models, generalized linear models or/and generalized additive models, with Gaus-
sian, binary or Poisson response. The forward selection algorithm proposed is based on a greedy
procedure which changes one variable at the time in the model — keeping the others fixed — and
does this repeatedly until none of the selected variables can be exchanged to improve model fit. This is
a greedy algorithm, which may not find the actual best solution, but is less greedy than other methods
such as step. In addition, in contrast with other packages in which the users must decide — either
previous or post selection — the number of variables that have to be included, the bootstrap test
introduced in our procedure allows them to determine the number with a significance level.

The remainder of this paper is organised as follows. First we describe the algorithm used to select
the best subset of size q, along with the bootstrap techniques that are used to determine the number of
variables to be included in the model. Then a detailed description of the package is presented, and its
usage is illustrated through the analysis of three data sets. Finally, the last section contains the main
conclusions of this work.

Methodology background

This section introduces the developed methodology and gives a description of the variable selection
algorithm. The implemented package can be used with Gaussian, binary or Poisson response, however
and based on the application data, we will explain the procedure with a nonparametric regression
model with Gaussian response.

Let X = (X1, X2, . . . , Xp) be a vector of p initial variables and Y the response. An additive
regression model can be expressed as

Y = m (X) + ε, (1)

where

m (X) = α + m1 (X1) + m2 (X2) + · · ·+ mp
(
Xp
)

,

where mj(j = 1, . . . , p) are smooth and unknown functions and ε is the zero-mean error. Additionally,
to guarantee the identification of the above model, a constant α is introduced in the model and it is
required that the partial functions satisfy

E
[
mj

(
Xj

)]
= 0, j = 1, . . . , p.

This implies that E [Y] = α.

To date, several approaches to estimating the model in (1) have been suggested in the statistical
literature, e.g., Buja et al. (1989), Härdle and Hall (1993), Mammen et al. (1999). In this package
penalized regression splines, as implemented in the mgcv package, are used.

It is important to highlight that, in situations involving a large number of variables, correct
estimation of the response will be obtained on the basis of selecting the appropriate predictors. In the
case that we have information a priori about which of the initial set of variables are relevant, it would
be possible to apply a likelihood ratio test (Neyman and Pearson, 1928) or a F-test type (Seber and
Wild, 1989; Seber, 1997) in a parametric framework, or a generalized likelihood ratio test (Fan et al.,
2001; Fan and Jiang, 2005, 2007) in a nonparametric one. However, in situations where we do not have
information in advance, it will be necessary to select the model according to a selection algorithm.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=glmnet
http://CRAN.R-project.org/package=glmulti
http://CRAN.R-project.org/package=bestglm
http://CRAN.R-project.org/package=mgcv
http://CRAN.R-project.org/package=FWDselect

CONTRIBUTED RESEARCH ARTICLES 134

According to this, we propose a procedure that includes two topics: i) selecting the best combina-
tion of q variables by using a new forward stepwise-based selection procedure; and ii) determining
the minimum number of covariates to be included in the model. Both topics are explained as below.

Selecting the best variables

The first topic of our procedure is, given a number q (q ≤ p), to select the best combination of q
variables. For this purpose, one option is to use a complete subset selection method as Roca-Pardiñas
et al. (2009), which requires all possible models to be considered. When confronted with a large number
of variables, however, the computational cost of the procedure can be very high or even prohibitive. In
view of this, we provide a new method that speeds up the process based on a heuristic search which
aims to approximate the optimal solution. There is no guarantee however that the procedure finds the
best subset of covariates — this could only be achieved based on searching through all the possible
subsets — but it has the advantage of requiring a smaller number of computations to reach the optimal
solution or, at least, close to the optimal one.

Let Xj1 , . . . , Xjk be a subset of variables of size k (k ≤ q). We define ICj1,...,jk as one possible
information criterion (such as AIC, deviance, residual variance, etc.) of the nonparametric model

Y = α + mj1

(
Xj1

)
+ mj2

(
Xj2

)
+ . . . + mjk

(
Xjk

)
+ ε′, (2)

where ε′ is the zero-mean error. Based on this information criterion, IC, the proposed automatic
forward stepwise selection method is given in Algorithm 1. Note that any criterion can be used
without correcting it to take account of the number of variables. This is possible because the models
which are compared have always the same number of variables.

Testing the number of significant variables

Previously, the best subset of q variables is selected according to an information criterion. However,
the question that arises in this procedure is to know the optimal number q. Thus, the second topic
in our methodology is to decide the number of covariates that should be included in the model, i.e,
determining the number of significant variables.

Accordingly, we propose a procedure to test the null hypothesis of q significant variables in the
model versus the alternative in which the model contains more than q variables. Based on the additive
model

Y = m (X) + ε where m (X) = α + m1 (X1) + m2 (X2) + · · ·+ mp
(
Xp
)

,

the following strategy is considered: for a subset of size q, considerations will be given to test the null
hypothesis

H0 (q) :
p

∑
j=1

I{mj 6=0} ≤ q

versus the general hypothesis

H1 (q) :
p

∑
j=1

I{mj 6=0} > q,

where I is the indicator function and considering that the mj’s are not equal to zero on a set of positive
probability.

Given a i.i.d. sample {(Xi, Yi)}n
i=1, with X =

(
X1, . . . , Xp

)
, to test the above null hypothesis we

propose the following strategy:

(i) Obtain the best subset of q predictor variables. To this end we use the selection algorithm
described in Algorithm 1. Without loss of generality, we assume that the q variables selected are
in the first q positions of the X vector.

(ii) Obtain the nonparametric estimates of the null model as

m̂0 (Xi) = α + m̂1 (Xi1) + . . . + m̂q

(
Xiq

)
.

(iii) Compute the residuals as ri = Yi − m̂0 (Xi) and obtain the nonparametric estimates of g (Xi)
according to the model

ri = g (Xi) + ε, (4)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 135

Algorithm 1: Modified forward stepwise selection method

1. Given a number q, selects the q variables Xl1 , . . . , Xlq which minimises the following
expression (

l1, l2, . . . , lq
)
= arg min

(j1,...,jq)
1≤j1≤···≤jq≤p

ICj1,...,jq . (3)

2. The elements of the vector of indices (l1, l2, . . . , lq) are selected consecutively in the following
manner:

(a) Firstly, determine the variable of the first position Xl1 where

l1 = arg min
j1

1≤j1≤p

ICj1 .

Note that all possible models of one variable must be estimated.

(b) Fix the first variable obtained previously, Xl1 , and obtain the second one, Xl2 , with

l2 = arg min
j2

1≤j2≤p, j2 6=l1

ICl1,j2 .

(c) Fix Xl1 and Xl2 , and obtain the third one, Xl3 , where

l3 = arg min
j3

1≤j3≤p, j3 /∈{l1,l2}

ICl1,l2,j3 .

(d) Fix Xl1 , Xl2 , . . . , Xlq−1
, and repeat the procedure analogously until the q-th variable, Xlq , with

lq = arg min
jq

1≤jq≤p, jq /∈{l1,...,lq−1}

ICl1,...,jq

3. Once variables Xl1 , Xl2 , . . . , Xlq have been selected, run through positions j = 1, . . . , q and
replace each lj element as follows, only if the obtained IC is less than the minimum criterion
obtained with the previous lj,

lj = arg min
jj

jj /∈{l1,...,lj−1,lj+1,...,lq}

ICl1,...,lj−1,jj ,lj+1,...,lq .

4. Step 3 is repeated until there is no change in the selected covariates, i.e., the algorithm stops
when it has gone through a complete cycle without changing any of the q positions.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 136

where g is an unknown and smooth function which is applied to a unique covariate. This covari-
ate will be chosen from Xq+1, . . . , Xp applying the selection algorithm exposed in Algorithm 1.
Without loss of generality, we assume that g (X) = α + gq+1

(
Xq+1

)
.

The purpose of this step is to assess whether there is enough structure left in the residuals that
could be modeled by the predictors not included in the null model. Note that, within these
possible predictors, we only select one of them in order to reduce the computational cost of the
algorithm. However, the ideal solution would be to estimate the model in (4) determining the
best subset of predictors within the remainder variables, instead of selecting only one of them.
Both options are implemented in the package by means of the speedup argument of the test
function. If speedup = TRUE is specified a unique predictor for the residuals is used. If speedup
= FALSE is specified the user can choose more than one predictor. With this latter option, when
the number of variables is large, the selection of the best subset of predictors for the residuals
requires a high computational burden1. Therefore, in practice, we propose a solution by using
the qmin argument which must be filled by the user. This argument corresponds to the size of
the best subset of predictors. In order to help the user select it, it is recommended to visualize
the graphical output of the plot function and to choose the number q which minimizes the curve.

(iv) Finally, we propose the following test statistic, based on the estimations of g

T =
n

∑
i=1
|ĝ (Xi)| .

It is important to stress that, if the null hypothesis holds, T should be close to zero. Thus, the test
rule for checking H0(q) with a significance level of α is that the null hypothesis is rejected if T is larger
than its (1− α)-percentile. To approximate the distributions of the test statistic resampling methods
such as the bootstrap introduced by Efron (1979) (see also Efron and Tibshirani, 1993; Härdle and
Mammen, 1993; Kauermann and Opsomer, 2003) can be applied. Here we use the wild bootstrap (Wu,
1986; Liu, 1988; Mammen, 1993) because this method is valid both for homocedastic and heteroscedastic
models where the variance of the error is a function of the covariate. The testing procedure consists of
the following steps:

Step 1: Obtain T from the sample data, as explained above.

Step 2: For i = 1, . . . , n, obtain m̂0 (Xi) and the bootstrap residuals as

ε•bi = ε̂iVi

where ε̂i = Yi − m̂0 (Xi) are the residuals of the null model and V1, . . . , Vn is an i.i.d. random
variable with mass (5+

√
5)/10 and (5−

√
5)/10 at the points (1−

√
5)/2 and (1+

√
5)/2. Note that this

distribution satisfies E (Vi) = 0, E
(
V2

i
)
= E

(
V3

i
)
= 1.

Step 3: For b = 1, . . . , B, simulate the bootstrap sample
{

Xi, Y•bi

}n

i=1
with Y•bi = m̂0 (Xi) + ε•bi ,

and compute the bootstrap estimates of T•b.

The test rule based on T is given by rejecting the null hypothesis if T > T1−α, where T1−α is the
empirical (1− α)-percentile of values T•b (b = 1, . . . , B).

Applying this test to q = 1, . . . , p− 1 could be an important issue in a covariate selection procedure.
If H0 (q) is not rejected, only the subset of the covariates Xj1 , . . . , Xjq will be retained, and the remaining
variables will be eliminated from the model. In all other cases, the test is repeated with q + 1 variables
until the null hypothesis is not rejected. For example, if H0 (1) is not rejected just one variable should
be included into the model. If this hypothesis is rejected it will be required to test H0 (2). If this new
hypothesis is again rejected, H0 (3) should be tested and so on until a certain H0 (q) is accepted.

The validation of the approach relying on the bootstrap-based test can be consulted in Sestelo (2013)
where type I error and power have been calculated for different test statistics. Also, the performance
of the test for different levels of correlation between covariates have been analyzed. All the test
statistics perform reasonably well, with the level coming relatively close to the nominal size and the
probability of rejection rising as we separate from the null hypothesis, specially with large sample sizes.
Furthermore, several simulation studies have been considered in order to compare the methodology
proposed in this paper with other procedures reported in the literature that carry out automatic
variable selection.

1The procedure for selecting the best subset of predictors for the residuals would be as follows: for each possible
v value (v = 1, . . . , p− q), it should be used the Algorithm 1 to identify the best v variables and to obtain the
ICv from the fitted model with them. Then, it should be looked at all of the resulting models, with the goal of
identifying the one that is best, i.e., the model with the minimum ICv.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 137

FWDselect in practice

This section introduces an overview of how the package is structured. FWDselect is a shortcut for
“Forward selection” and this is its major functionality: to provide a forward stepwise-based selection
procedure. This software helps the user select relevant variables and evaluate how many of these need
to be included in a regression model. In addition, it enables both numerical and graphical outputs to
be displayed.

Our package includes several functions that enable users to select the variables to be included
in linear models, generalized linear models or generalized additive models. The functions within
FWDselect are briefly described in Table 1.

Users can obtain the best combinations of q variables by means of the main function which is
selection. Additionally, if one wants to obtain the results for more than one subset size, it is possible
to apply the qselection function, which returns a summary table showing the different subsets,
selected variables and information criterion values. These values are obtained by cross-validation
with the purpose of comparing correctly the resulting models which include a different number of
variables. The object obtained with this last function is the argument required for plot, which provides
a graphical output. Finally, to determine the number of variables that should be introduced in the
model, only the test function needs to be applied. Table 2 provides a summary of the arguments of the
selection, qselection and test functions. The most computationally demanding parts of the code,
namely those that involve the estimation of the models, the cross-validation and the bootstrap, have
been parallelized by means of the parallel package via forking on Unix-alike platforms or creating a
PSOCK cluster on Windows systems.

Function Description

selection Main function for selecting a subset of q variables. Note that the
selection procedure can be used with lm, glm or gam functions.

print.selection Method of the generic print function for "selection" objects, which
returns a short summary.

qselection Function that enables users to obtain the selected variables for more
than one size of subset.

print.qselection Method of the generic print function for "qselection" objects. Re-
turns a table showing the chosen covariates to be introduced into the
models and their information criteria obtained by cross-validation.

plot.qselection Visualisation of "qselection" objects. Plots the cross-validation infor-
mation criterion for several subsets with size q chosen by users.

test Function that applies a bootstrap-based test for covariate selection.
Helps determine the precise number of variables to be included in the
model.

Table 1: Summary of functions in the FWDselect package.

Example of application

In this section we illustrate the use of FWDselect package using a real data set, the pollution data
(included in the package). The software is applied to the prediction of atmospheric SO2 pollution
incidents by means of additive models. Combustion of fuel oil or coal releases sulphur dioxide into the
atmosphere in different quantities. Current Spanish legislation governing environmetrical pollution
controls the vicinity of potential point sources of pollution, such as coal-fired power stations. It places a
limit on the mean of 24 successive determinations of SO2 concentration taken at 5-minute intervals. An
emission episode is said to occur when the series of bi-hourly means of SO2 is greater than a specific
level, r. In this framework, it is of interest for a plant, both economically and environmentally, to be
able to predict, when the legal limit will be exceeded with sufficient time for effective countermeasures
to be taken.

In previous studies (García-Jurado et al.; Prada-Sánchez et al., 2000; Prada-Sánchez and Febrero-
Bande, 1997; Roca-Pardiñas et al., 2004), semiparametric, partially linear models and generalized
additive models with unknown link functions were applied to the prediction of atmospheric SO2
pollution incidents in the vicinity of a coal/oil-fired power station. Here, we present a new approach
to this problem, whereby we try to predict a new emission episode, focusing our attention on the
importance of ascertaining the best combinations of time instants for the purpose of obtaining the
best prediction. Bearing this in mind, the selection of the optimal subset of variables could be a good
approach to this issue.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 138

selection() arguments

x A data frame containing all the covariates.
y A vector with the response values.
q An integer specifying the size of the subset of variables to be selected.
prevar A vector containing the number of the q− 1 selected variables in the previous step. By

default it is NULL.
criterion The information criterion to be used. Default is the "deviance". Other functions provided

are the coefficient of determination ("R2"), the residual variance ("variance"), the Akaike
information criterion ("aic"), AIC with a correction for finite sample sizes ("aicc") and
the Bayesian information criterion ("bic"). The deviance, coefficient of determination and
variance are calculated by cross-validation.

method A character string specifying which regression method is used, "lm", "glm" or "gam".
family This is a family object specifying the distribution and link to use in fitting.
seconds A logical value. If TRUE then, rather than returning the single best model only, the function

returns a few of the best models.
nmodels Number of secondary models to be returned.
nfolds Number of folds for the cross-validation procedure, for deviance, R2 or variance criterion.
cluster A logical value. If TRUE (default) the code is parallelized. Note that there are cases without

enough repetitions (e.g., a low number of initial variables) that R will gain in performance
through serial computation. R takes time to distribute tasks across the processors also it
will need time for binding them all together later on. Therefore, if the time for distributing
and gathering pieces together is greater than the time needed for single-thread computing,
it could be better not to parallelize.

ncores An integer value specifying the number of cores to be used in the parallelized procedure. If
NULL, the number of cores to be used is equal to the number of cores of the machine −1.

qselection() arguments

x A data frame containing all the covariates.
y A vector with the response values.
qvector A vector with more than one variable-subset size to be selected.
criterion The information criterion to be used. Default is the "deviance". Other functions provided

are the coefficient of determination ("R2"), the residual variance ("variance"), the Akaike
information criterion ("aic"), AIC with a correction for finite sample sizes ("aicc") and
the Bayesian information criterion ("bic"). The deviance, coefficient of determination and
variance are calculated by cross-validation.

method A character string specifying which regression method is used, "lm", "glm" or "gam".
family This is a family object specifying the distribution and link to use in fitting.
nfolds Number of folds for the cross-validation procedure, for deviance, R2 or variance criterion.
cluster A logical value. If TRUE (default) the code is parallelized.
ncores An integer value specifying the number of cores to be used in the parallelized procedure. If

NULL, the number of cores to be used is equal to the number of cores of the machine −1.

test() arguments

x A data frame containing all the covariates.
y A vector with the response values.
method A character string specifying which regression method is used, "lm", "glm" or "gam".
family This is a family object specifying the distribution and link to use in fitting.
nboot Number of bootstrap repeats.
speedup A logical value. If TRUE (default), the testing procedure is computationally efficient since

it considers one more variable to fit the alternative model than the number of variables
used to fit the null. If FALSE, the fit of the alternative model is based on considering the best
subset of variables of size greater than q, the one that minimizes an information criterion.
The size of this subset must be given by the user filling the argument qmin.

qmin By default NULL. If speedup is FALSE, qmin is an integer number selected by the user. To help
the selection of this argument, it is recommended to visualize the graphical output of the
plot function and choose the number q which minimizes the curve.

unique A logical value. By default FALSE. If TRUE, the test is performed only for one null hypothesis,
given by the argument q.

q By default NULL. If unique is TRUE, q is the integer number q of H0(q) to be tested.
bootseed Seed to be used in the bootstrap procedure.
cluster A logical value. If TRUE (default), the testing procedure is parallelized.
ncores An integer value specifying the number of cores to be used in the parallelized procedure. If

NULL, the number of cores to be used is equal to the number of cores of the machine − 1.

Table 2: Arguments of selection, qselection and test functions.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 139

Let t be the present time, and Xt the value obtained by the series of bi-hourly means for SO2 at
instant t (5-minute temporal instants). Setting r = 150 µg/m3N as the maximum value permitted
for the SO2 concentration, and half-an-hour (6 instants) as the prediction horizon, it is of interest
to predict Y = Xt+6, with the best vector of Xl = (Xt, Xt−1, Xt−2, . . . , Xt−17). Note that one of the
problems that arises is to decide which temporal instants (Xt, Xt−1, Xt−2, . . . , Xt−17) are relevant for
prediction purposes, since inclusion of all the times Xl may well degrade the overall performance of
the prediction model. Based on this, we demonstrate the package capabilities using these data. An
excerpt of the data frame included in the package is shown below:

> library(FWDselect)
> data(pollution)
> head(pollution)[1:2,]

In17 In16 In15 In14 In13 In12 In11 In10 In9 In8
1 3.02 3.01 3.01 3.01 3.01 3.03 3.03 3.03 3.03 3.03
2 16.49 16.55 16.42 16.35 16.56 16.75 16.74 16.72 16.63 16.53

In7 In6 In5 In4 In3 In2 In1 In0 InY
1 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3.03 10.78
2 16.32 16.08 15.77 15.47 14.81 14.30 13.70 13.35 10.65

The variables from In17 to In0 correspond to the registered values of SO2 at a specific temporal
instant. In0 denotes the zero instant (Xt), In1 corresponds to the 5-min temporal instant before (Xt−1),
In2 is the 10-min temporal instant before (Xt−2), and so on until the last variable. The last column of
the data frame (InY) refers to the response variable, Y = Xt+6, the temporal instant that we wish to
predict. For this purpose, we propose the underlying generalised additive model

Y = m0 (Xt) + m1 (Xt−1) + . . . + m17 (Xt−17) + ε (5)

where mj, with j = 0, . . . , 17, are smooth and unknown functions and ε is the error which is assumed
to have mean zero. To estimate the model in (5), FWDselect allows penalised regression splines,
implemented in the mgcv package (Wood, 2003, 2004, 2011).

It may often be of interest to determine the best subset of variables of size q needed to predict the
response. The question that naturally arises in this application is, what is the best temporal instant
for predicting an emission episode. This is easy to ascertain with the function selection and the
argument q = 1. Also, based on the model that we want to estimate here (additive model), we have to
use ”gam” on the method argument.

> x <- pollution[, -19]
> y <- pollution[, 19]
> obj1 <- selection(x, y, q = 1, method = "gam", criterion = "deviance")
> obj1

**
Best subset of size q = 1 : In0

Information Criterion Value - deviance : 278663
**

For more than one subset size, the qselection function returns a table for the different subset
sizes, with the selected variables and the information criterion value.

> obj2 <- qselection(x, y, qvector = c(1:6), method = "gam", criterion = "deviance")
[1] "Selecting subset of size 1 ..."
[1] "Selecting subset of size 2 ..."
[1] "Selecting subset of size 3 ..."
[1] "Selecting subset of size 4 ..."
[1] "Selecting subset of size 5 ..."
[1] "Selecting subset of size 6 ..."
> obj2
q deviance selection

1 1 278662.959 In0
2 2 201474.673 In0, In2
3 3 232164.509 In0, In2, In1
4 4 219941.426 In0, In3, In1, In5
5 5 184293.934 In0, In3, In1, In7, In6
6 6 200877.902 In0, In3, In1, In7, In6, In5

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 140

The above function output is a useful display that greatly helps determine the most relevant
variables. A plot of this object can easily be obtained by using the following input command:

> plot(obj2)

Figure 1 shows the deviance values (obtained by cross-validation) corresponding to the different
subsets. In each subset, q represents the number of temporal instants included in the model. Note,
however, that only the results until subset of size q = 6 are shown because, from this size onwards, the
rest of the obtained models have similar deviances.

2
0
0
0
0
0

2
2
0
0
0
0

2
4
0
0
0
0

2
6
0
0
0
0

2
8
0
0
0
0

Subset size q

D
e
v
ia

n
c
e

1 2 3 4 5 6

Figure 1: For each subset of size q, cross-validation deviance obtained by the best model for the
pollution data.

The performance of the proposed predictors was then evaluated in a new real pollution episode.
We estimate firstly each of the proposed models using the gam function of the mgcv package with the
training data set (pollution data). Then, we apply the predict.gam function to each model using, in
this case, the test data set. These data are found in the episode data, also included in this package.
The corresponding data frame is illustrated as follows:

> data(episode)
> head(episode)[1:2,]
In17 In16 In15 In14 In13 In12 In11 In10 In9 In8 In7 In6 In5

1 3.02 3.02 3.03 3.10 3.10 3.10 3.10 3.22 3.27 3.33 3.36 3.38 3.47
2 3.02 3.03 3.10 3.10 3.10 3.10 3.22 3.27 3.33 3.36 3.38 3.47 3.50

In4 In3 In2 In1 In0 InY time
1 3.50 3.56 3.61 4.28 4.60 5.45 00:00
2 3.56 3.61 4.28 4.60 4.68 6.20 00:05

The course of the incident is depicted in Figure 2. Temporal instants are plotted on the horizontal
axis and the real 2-hour mean SO2 concentration that we seek to predict (Y = Xt+6) is represented by
a grey line. The predictions obtained by applying the different models are shown in the same figure.
The code, both for the predictions as for the plot, is shown in the Appendix.

The prediction obtained with the inclusion of just one variable in the model, Xt, is far from the
optimum. However, the addition of one more variable, Xt−2, resulted in a remarkable increase in the
model predictive capability. It makes possible for predictions close to real values to be obtained. Lastly,
it can be seen that the incorporation of one more variable or temporal instant (Xt−1) in the model
does not produce any improvement in pollution-incident prediction. Numerically speaking, the same
results can be observed by taking into account the Mean Square Error for each model (Table 3).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 141

0
1

0
0

2
0

0
3

0
0

4
0

0

time

re
s
p

o
n

s
e

03:45 10:35 12:10 13:45 15:20 16:55 18:30

0
1

0
0

2
0

0
3

0
0

4
0

0

time

re
s
p

o
n

s
e

03:45 10:35 12:10 13:45 15:20 16:55 18:30

0
1

0
0

2
0

0
3

0
0

4
0

0

time

re
s
p

o
n

s
e

03:45 10:35 12:10 13:45 15:20 16:55 18:30
0

1
0

0
2

0
0

3
0

0
4

0
0

time

re
s
p

o
n

s
e

03:45 10:35 12:10 13:45 15:20 16:55 18:30

Figure 2: Example of an SO2 pollution incident that occurred on 4 July 2003. Temporal instants are
shown on the horizontal axis. The grey line represents the known response of SO2 levels in µg/m3N.
Estimation of SO2 levels with one, two and three covariates are represented by circles, squares and
diamonds respectively.

Table 3: Mean Square Error of the selected models.

Model MSE

Y = Xt 1 682.14
Y = Xt + Xt−2 366.44
Y = Xt + Xt−2 + Xt−1 556.49

The question that now arises is what is the minimum number of variables that must be used
in order to obtain the best prediction. It is possible to deduce that there is an optimal intermediate
point between the number of variables that enters the model (preferably low) and the deviance
value (preferably also low). To find this point, the test described in the previous section for the null
hypothesis H0(q) is applied for each size, q (through the input command shown below). The procedure
stops when a certain null hypothesis is accepted. The most computationally demanding parts are
those that involve the bootstrap and the cross-validation techniques. This can be parallelized using the
argument cluster = TRUE (default). This should considerably increase the performance on multi–core
/ multi–threading machines.

> test(x, y, nboot = 100, method = "gam", bootseed = 0413)
[1] "Processing IC bootstrap for H_0 (1)..."
[1] "Processing IC bootstrap for H_0 (2)..."

Hypothesis Statistic pvalue Decision

1 H_0 (1) 5779.03 0 Rejected
2 H_0 (2) 959.21 0.78 Not Rejected

The deduction to be drawn is that, for a 5% significance level, the null hypothesis is rejected with
q = 1 and accepted thereafter. From these results, it can be concluded that the best temporal instants
for prediction of an emission episode would be Xt and Xt−2.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 142

0
1
0
0

2
0
0

3
0
0

4
0
0

time

re
s
p
o
n
s
e

03:45 10:05 11:10 12:15 13:20 14:25 15:30 16:35 17:40 18:45 19:50

Figure 3: Example of an SO2 pollution incident that occurred on 4 July 2003. Temporal instants are
shown on the horizontal axis. The grey line represents the known response of SO2 levels in µg/m3N.
Estimation of SO2 levels obtained by means of the double penalty GAM is represented by circles.

Lastly, as we mention before, there are other alternatives for variable selection in additive models.
One of the best-known and used procedures is the argument select of the gam function from the
mgcv package (Marra and Wood, 2011). To illustrate and compare its usage with our procedure, we
have estimated the model in (5) by means of the cited function using the pollution data. Then, its
performance was evaluated using again the episode data. The prediction obtained using this double
penalty GAM is far from what it should be (see Figure 3), actually, the mean square error obtained (5
024.29) is the worst of all so far (see the code in Appendix). It seems that, in situations with a large
number of variables, the selection of the best subset could be a better approach.

Conclusions

This paper discusses implementation in R of a new algorithm for the problem of variable selection in a
regression framework. The FWDselect package provides R users a simple method for ascertaining the
relevant variables for prediction purposes and how many of these should be included in the model.
The proposed method is a new forward stepwise-based selection procedure that selects a model
containing a subset of variables according to an information criterion, and also takes into account
the computational cost. Bootstrap techniques have been used to determine the minimum number of
variables needed to obtain an appropriate prediction.

In some situations, several statistically equivalent optimal models of size q may exist. In such
cases, FWDselect allows the user to visualise those models and select the most interesting one. This
is obtained with the argument seconds = TRUE of the selection functions. In addition, the software
provides the user with a way of easily obtaining the best subset of variables using different types of
data in different frameworks, by applying the lm, glm and gam functions already implemented in R.
The use of these classical R functions nevertheless entails a high computational cost. Hence, a further
interesting extension would be the implementation of this package using C, C++ or Fortran as the
programming language. R users could profit from this advantage in a future version of this package.

Insofar as the validity of the method is concerned, we think that the results obtained with simulated
data are correct, and the results with the diabetes data are in accordance with other methodologies.
This suggest that the behavior of the procedure in a nonparametric framework will be also adequate.

The results in this paper were obtained using R 3.2.0. The FWDselect package (Sestelo et al., 2015)
is available from the Comprehensive R Archive Network at the URL http://cran.r-project.org/
web/packages/FWDselect/.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://cran.r-project.org/web/packages/FWDselect/
http://cran.r-project.org/web/packages/FWDselect/

CONTRIBUTED RESEARCH ARTICLES 143

Acknowledgments

This work was supported by research grant SFRH/BPD/93928/2013 of “Fundação para a Ciência e a
Tecnologia” (FCT) and by FEDER Funds through “Programa Operacional Factores de Competitividade
- COMPETE”, by Portuguese Funds through FCT, in the form of grant PEst-OE/MAT/UI0013/2014, by
grant MTM2011-23204 (FEDER support included) of the Spanish Ministry of Science and Innovation
and by grant 10PXIB300068PR from the Galician Regional Authority (Xunta de Galicia).

Bibliography

H. Akaike. Information theory and an extension of the maximum likelihood principle. In Second
International Symposium on Information Theory, pages 267–281. Akademiai Kiado, 1973. [p132]

C. Belitz and S. Lang. Simultaneous selection of variables and smoothing parameters in structured
additive regression models. Computational Statistics & Data Analysis, 53(1):61 – 81, 2008. doi: http:
//dx.doi.org/10.1016/j.csda.2008.05.032. URL http://www.sciencedirect.com/science/article/
pii/S0167947308003009. [p133]

A. Buja, T. Hastie, and R. Tibshirani. Linear smoothers and additive models. The Annals of Statistics, 17:
453–510, 1989. [p133]

V. Calcagno. glmulti: Model selection and multimodel inference made easy. R package version 1.0.7,
2013. URL http://cran.r-project.org/web/packages/glmulti/index.html. [p133]

V. Calcagno and C. de Mazancourt. glmulti: An R package for easy automated model selection with
(Generalized) Linear Models. Journal of Statistical Software, 34(12):1–29, 2010. [p132]

B. Efron. Bootstrap methods: another look at the jackknife. The Annals of Statistics, 7:1–26, 1979. [p136]

E. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman and Hall, London, 1993. [p136]

J. Fan and J. Jiang. Nonparametric inferences for additive models. Journal of the American Statistical
Association, 100:890–907, 2005. URL http://ideas.repec.org/a/bes/jnlasa/v100y2005p890-907.
html. [p133]

J. Fan and J. Jiang. Nonparametric inference with generalized likelihood ratio tests. TEST, 16(3):409–
444, 2007. doi: 10.1007/s11749-007-0080-8. URL http://dx.doi.org/10.1007/s11749-007-0080-8.
[p133]

J. Fan, C. Zhang, and J. Zhang. Generalized likelihood ratio statistics and wilks phenomenon. The
Annals of Statistics, 29(1):153–193, 2001. ISSN 00905364. doi: 10.2307/2674021. URL http://dx.doi.
org/10.2307/2674021. [p133]

M. R. Forster. Key concepts in model selection: Performance and generalizability. Journal of Mathematical
Psychology, 44(1):205–231, 2000. [p132]

J. Friedman, T. Hastie, and R. Tibshirani. glmnet: Lasso and Elastic-Net Regularized Generalized Linear
Models, 2015. URL http://CRAN.R-project.org/package=glmnet. R package version 2.0-2. [p133]

G. M. Furnival and R. W. Wilson. Regressions by leaps and bounds. Technometrics, 16(4):499–511,
1974. doi: 10.1080/00401706.1974.10489231. URL http://www.tandfonline.com/doi/abs/10.1080/
00401706.1974.10489231. [p132]

I. García-Jurado, W. González-Manteiga, J. M. Prada-Sánchez, M. Febrero-Bande, and R. Cao. Pre-
dicting using Box-Jenkins, nonparametric, and bootstrap techniques. Technometrics, (3):303–310.
[p137]

P. J. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determina-
tion. Biometrika, 82:711–732, 1995. [p132]

C. Hans. Bayesian lasso regression. Biometrika, 96(4):835–845, 2009. doi: 10.1093/biomet/asp047. URL
http://biomet.oxfordjournals.org/content/96/4/835.abstract. [p132]

W. Härdle and P. Hall. On the backfitting algorithm for additive regression models. Statistica
Neerlandica, 47(1):43–57, 1993. doi: 10.1111/j.1467-9574.1993.tb01405.x. URL http://dx.doi.org/
10.1111/j.1467-9574.1993.tb01405.x. [p133]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.sciencedirect.com/science/article/pii/S0167947308003009
http://www.sciencedirect.com/science/article/pii/S0167947308003009
http://cran.r-project.org/web/packages/glmulti/index.html
http://ideas.repec.org/a/bes/jnlasa/v100y2005p890-907.html
http://ideas.repec.org/a/bes/jnlasa/v100y2005p890-907.html
http://dx.doi.org/10.1007/s11749-007-0080-8
http://dx.doi.org/10.2307/2674021
http://dx.doi.org/10.2307/2674021
http://CRAN.R-project.org/package=glmnet
http://www.tandfonline.com/doi/abs/10.1080/00401706.1974.10489231
http://www.tandfonline.com/doi/abs/10.1080/00401706.1974.10489231
http://biomet.oxfordjournals.org/content/96/4/835.abstract
http://dx.doi.org/10.1111/j.1467-9574.1993.tb01405.x
http://dx.doi.org/10.1111/j.1467-9574.1993.tb01405.x

CONTRIBUTED RESEARCH ARTICLES 144

W. Härdle and E. Mammen. Comparing nonparametric versus parametric regression fits. The Annals
of Statistics, 21(4):1926–1947, 1993. [p136]

T. Hastie and B. Efron. lars: Least Angle Regression, Lasso and Forward Stagewise, 2013. URL http:
//CRAN.R-project.org/package=lars. R package version 1.2. [p132]

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning. Springer, 2003. [p132]

T. J. Hastie and D. Pregibon. Generalized linear models. In J. M. Chambers and T. J. Hastie, editors,
Statistical Models in S, page 335. Wadsworth & Brooks/Cole, 1992. [p133]

R. R. Hocking. A biometrics invited paper. the analysis and selection of variables in linear regression.
Biometrics, 32(1):1–49, 1976. doi: 10.2307/2529336. URL http://dx.doi.org/10.2307/2529336.
[p132]

G. Kauermann and J. Opsomer. Local likelihood estimation in generalized additive models. Scandina-
vian Journal of Statistics, 30:317–337, 2003. [p136]

L. Kuo and B. Mallick. Variable selection for regression models. The Indian Journal of Statistics (Special
Issue on Bayesian Analysis), 60(B):65–81, 1998. [p132]

Y. Lin and H. H. Zhang. Component selection and smoothing in multivariate nonparametric regression.
The Annals of Statistics, 34(5):2272–2297, 2006. doi: 10.1214/009053606000000722. URL http://dx.
doi.org/10.1214/009053606000000722. [p133]

R. Y. Liu. Bootstrap procedures under some non-i.i.d. models. The Annals of Statistics, 16(4):1696–1708,
1988. URL http://www.jstor.org/stable/2241788. [p136]

T. Lumley and A. Miller. leaps: regression subsets selection. R package version 2.9, 2009. URL
http://CRAN.R-project.org/package=leaps. [p132]

C. L. Mallows. Some comments on cp. Technometrics, 15(4), 1973. doi: 10.2307/1267380. URL
http://dx.doi.org/10.2307/1267380. [p132]

E. Mammen. Bootstrap and wild bootstrap for high dimensional linear models. The Annals of Statistics,
21(1):255–285, 1993. URL http://www.jstor.org/stable/3035590. [p136]

E. Mammen, O. Linton, and J. Nielsen. The existence and asymptotic properties of a backfitting
projection algorithm under weak conditions. The Annals of Statistics, 27:1443–1490, 1999. [p133]

G. Marra and S. N. Wood. Practical variable selection for Generalized Additive Models. Computational
Statistics & Data Analysis, 55(7):2372–2387, 2011. doi: 10.1016/j.csda.2011.02.004. URL http://dx.
doi.org/10.1016/j.csda.2011.02.004. [p133, 142]

A. I. Mcleod and C. Xu. bestglm: Best subset GLM. R package version 0.34, 2014. URL http://CRAN.R-
project.org/package=bestglm. [p133]

A. Miller. Subset Selection in Regression. Chapman and Hall/CRC, Boca Raton, FL, 2002. [p132]

J. Neyman and E. S. Pearson. On the use and interpretation of certain test criteria for purposes
of statistical inference: part II. Biometrika, 20A(3/4):263–294, 1928. doi: 10.2307/2332112. URL
http://dx.doi.org/10.2307/2332112. [p133]

J. Orestes Cerdeira, A. P. Duarte Silva, J. Cadima, and M. Minhoto. subselect: Selecting variable subsets.
R package version 0.12-5, 2015. URL http://CRAN.R-project.org/package=subselect. [p132]

T. Park and G. Casella. The Bayesian Lasso. Journal of the American Statistical Association, 103(482):
681–686, 2008. [p132]

J. M. Prada-Sánchez and M. Febrero-Bande. Parametric, non-parametric and mixed approaches to
prediction of sparsely distributed pollution incidents: a case study. Journal of Chemometrics, 11(1):
13–32, 1997. [p137]

J. M. Prada-Sánchez, M. Febrero-Bande, T. Cotos-Yáñez, W. González-Manteiga, J. L. Bermúdez-Cela,
and T. Lucas-Domínguez. Prediction of SO2 pollution incidents near a power station using partially
linear models and an historical matrix of predictor-response vectors. Environmetrics, 11(2):209–225,
2000. [p137]

J. Roca-Pardiñas, W. González-Manteiga, M. Febrero-Bande, J. M. Prada-Sánchez, and C. Cadarso-
Suárez. Predicting binary time series of SO2 using Generalized Additive Models with unknown
link function. Environmetrics, 15(7):729–742, 2004. [p137]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=lars
http://CRAN.R-project.org/package=lars
http://dx.doi.org/10.2307/2529336
http://dx.doi.org/10.1214/009053606000000722
http://dx.doi.org/10.1214/009053606000000722
http://www.jstor.org/stable/2241788
http://CRAN.R-project.org/package=leaps
http://dx.doi.org/10.2307/1267380
http://www.jstor.org/stable/3035590
http://dx.doi.org/10.1016/j.csda.2011.02.004
http://dx.doi.org/10.1016/j.csda.2011.02.004
http: //CRAN.R-project.org/package=bestglm
http: //CRAN.R-project.org/package=bestglm
http://dx.doi.org/10.2307/2332112
http://CRAN.R-project.org/package= subselect

CONTRIBUTED RESEARCH ARTICLES 145

J. Roca-Pardiñas, C. Cadarso-Suárez, P. G. Tahoces, and M. J. Lado. Selecting variables in non-
parametric regression models for binary response. An application to the computerized detection of
breast cancer. Statistics in Medicine, 28(2):240–259, 2009. [p134]

G. A. F. Seber. Linear Regression Analysis. Wiley, 1997. [p133]

G. A. F. Seber and C. Wild. Nonlinear Regression. Wiley, 1989. [p133]

M. Sestelo. Development and computational implementation of estimation and inference methods in flexible
regression models. Applications in Biology, Engineering and Environment. PhD thesis, Department of
Statistics and O.R., University of Vigo, 2013. [p136]

M. Sestelo, N. M. Villanueva, and J. Roca-Pardiñas. Fwdselect: Selecting variables in regression models.
R package version 2.1.0, 2015. URL http://cran.r-project.org/web/packages/FWDselect/index.
html. [p142]

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society
Series B, 58(1):267–288, 1996. [p132]

G. Tutz and H. Binder. Generalized additive modeling with implicit variable selection by likelihood-
based boosting. Biometrics, 62(4):961–971, 2006. doi: 10.1111/j.1541-0420.2006.00578.x. URL
http://dx.doi.org/10.1111/j.1541-0420.2006.00578.x. [p133]

W. N. Venables and B. D. Ripley. Modern applied statistics with S-Plus. Springer, second edition, 1997.
[p132]

H. Wickham. meifly: Interactive model exploration using GGobi. R package version 0.3, 2014. URL
http://CRAN.R-project.org/package=meifly. [p132]

S. N. Wood. Thin plate regression splines. Journal of the Royal Statistical Society - Series B: Statistical
Methodology, 65(1):95–114, 2003. [p139]

S. N. Wood. Stable and efficient multiple smoothing parameter estimation for Generalized Additive
Models. Journal of the American Statistical Association, 99(467):673–686, 2004. [p139]

S. N. Wood. Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC, Boca Raton,
FL, 2006. URL http://cran.r-project.org/src/contrib/Descriptions/gamair.html. ISBN 1-
584-88474-6. [p133]

S. N. Wood. Fast stable restricted maximum likelihood and marginal likelihood estimation of semi-
parametric Generalized Linear Models. Journal of the Royal Statistical Society Series B, 73(1):3–36, 2011.
[p133, 139]

C. F. J. Wu. Jackknife, bootstrap and other resampling methods in regression analysis. The Annals of
Statistics, 14(4):1261–1295, 1986. doi: 10.2307/2241454. URL http://dx.doi.org/10.2307/2241454.
[p136]

Marta Sestelo
Centre of Mathematics, University of Minho, Portugal
SiDOR Research Group and CINBIO, University of Vigo, Spain
sestelo@uvigo.es

Nora M. Villanueva
Department of Statistics and O.R., University of Vigo, Spain
nmvillanueva@uvigo.es

Luis Meira-MachadoAuthor
Centre of Mathematics, University of Minho, Portugal
lmachado@math.uminho.pt

Javier Roca-Pardiñas
Department of Statistics and O.R., University of Vigo, Spain
roca@uvigo.es

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://cran.r-project.org/web/packages/FWDselect/index.html
http://cran.r-project.org/web/packages/FWDselect/index.html
http://dx.doi.org/10.1111/j.1541-0420.2006.00578.x
http://CRAN.R-project.org/package=meifly
http://cran.r-project.org/src/contrib/Descriptions/gamair.html
http://dx.doi.org/10.2307/2241454
mailto:sestelo@uvigo.es
mailto:nmvillanueva@uvigo.es
mailto:lmachado@math.uminho.pt
mailto:roca@uvigo.es

CONTRIBUTED RESEARCH ARTICLES 146

Appendix

Here we illustrate the use of FWDselect using simulated data. The use of simulated data allows us to
ascertain the behavior of our software and to compare it with others available tools designed for the
same purpose.

Consider a vector of 10 covariates, X = (X1, . . . , X10), and a continuous response, Y, generated in
accordance with

Y = 2 X1 + 4 X5 + ε,

where ε is the error distributed in accordance with a N(0, 1) and the explanatory covariates are random
variables obtained from uniforme distribution on [−1, 1]. Note that we have a linear scenario in which
the response variable depends only on two covariates.

The following code will simulate 100 observations (n = 100) from the above model. To ensure the
reproducibility of the results reported in the paper a seed was considered (0413).

> library(glmulti)
Loading required package: rJava
> library(leaps)
> rm(list = ls())
> set.seed(0413)
> n <- 100
> x <- matrix(runif(10 * n, -1, 1), ncol = 10, nrow = n, byrow = FALSE)
> e <- rnorm(n, 0, 1)
> y <- 2 * x[, 1] + 4 * x[, 5] + e
> data <- data.frame(x, y)

Now we compare our method against other existing methodologies developed to perform auto-
mated variable selection. We choose the leaps package (regsubsets function), which selects the best
variables for each subset of size q without determining the number of variables that users have to
include in the model; the step function from the stats package which selects a formula-based model
using the AIC; and the glmulti which compares all posible models through an exhaustive screening of
the candidates, or a genetic algorithm, or a very fast exhaustive branch-and-bound algorithm .

> res1 <- regsubsets(x, y)
> summary(res1)$outmat[2,]
a b c d e f g h i j

"*" " " " " " " "*" " " " " " " " " " "

> res2 <- step(lm(y ~ ., data = data), trace = FALSE)
> res2

Call:
lm(formula = y ~ X1 + X4 + X5 + X9, data = data)

Coefficients:
(Intercept) X1 X4 X5 X9

0.1538 1.9691 0.4285 3.5774 0.2875

> res3 <- glmulti(y ~ ., data = data, level = 1, plotty = F, report = FALSE)
> summary(res3)$bestmodel
[1] "y ~ 1 + X1 + X4 + X5 + X9"

> res4aux <- test(x, y, nboot = 100)
[1] "Processing IC bootstrap for H_0 (1)..."
[1] "Processing IC bootstrap for H_0 (2)..."

Hypothesis Statistic pvalue Decision

1 H_0 (1) 90.92 0 Rejected
2 H_0 (2) 21.11 0.06 Not Rejected
> res4 <- selection(x = x, y = y, q = res4aux$nvar, cluster = FALSE)
> res4

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 147

**
Best subset of size q = 2 : 5 1

Information Criterion Value - deviance : 16.70488
**

The regsubsets function is based on all subsets or, in other words, exhaustive variable selection.
The method identifies the best subsets of linear predictors using a branch–and–bound algorithm
(Miller, 2002). Since this function returns separate best models of all sizes, we consider only the
results obtained for a subset of size two. In this case, the procedure works properly returning the
X1 and X5 variables as the best subset of size two. The model–selection oriented function step is a
widely used methodology for jointly determining the number and choice of variables. In this case, this
procedure fails returning a model which includes the effects of four covariates (X1, X4, X5 and X9).
The results obtained with the glmulti package, another option for model selection, are also mistaken.
The procedure returns the same model obtained with the previous method (step). Finally, in order
to ascertain the performance of FWDselect, we firstly apply the test function with the purpose of
determine the number of variable that have to be included in the model. Then, once this number is
obtained (saved in the returned list as $nvar), the selection function determines correctly the X1 and
X5 variables.

According to the computation time of these four methods, the fastest procedure is the implemented
in the leaps package taking only 0.001 secs. The second one is the step function which runs in 0.037
secs. The next one is the glmulti function which takes 3.149 secs. Lastly, the most computationally
demanding code is the implemented in the FWDselect package which requires 9.181 secs. All the
results have been obtained using the R’s system.time command on a 2.4 GHz Intel Core i5, with 4
cores and 4 Gb of RAM.

The previous results have been obtained using simulated data with a linear effect of the covariates.
However, in practice, the user does not know the dependence structure, i. e., how the response
variable depends on the covariates. With this in mind, we have considered and applied again the
four procedures on another scenario where the response variable depends again on the same two
covariates, but in this case, the effect of them is nonlinear. Particularly, the Y is now generated in
accordance with

Y = 2 (X1)
2 + 2 sin (2πX5) + ε,

being both ε and the explanatory covariates the same of the previous scenario. Note that we have now
a nonlinear scenario in which the response variable depends only on two covariates.

> y <- 2 * x[, 1]**2 + 2 * sin(2 * pi * x[, 5]) + e
> data <- data.frame(x, y)
> res1 <- regsubsets(x, y)
> summary(res1)$outmat[2,]
a b c d e f g h i j

" " " " " " " " "*" "*" " " " " " " " "

> res2 <- step(lm(y ~ ., data = data), trace = 0)
> res2

Call:
lm(formula = y ~ X5, data = data)

Coefficients:
(Intercept) X5

0.4764 -1.2377

> res3 <- glmulti(y ~ ., data = data, level = 1, plotty = F, report = FALSE)
> summary(res3)$bestmodel
[1] "y ~ 1 + X5"

> res4aux <- test(x, y, nboot = 100, method = "gam")
[1] "Processing IC bootstrap for H_0 (1)..."
[1] "Processing IC bootstrap for H_0 (2)..."

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 148

Hypothesis Statistic pvalue Decision

1 H_0 (1) 46.04 0 Rejected
2 H_0 (2) 20.89 0.15 Not Rejected
> res4 <- selection(x, y, q = res4aux$nvar, cluster = FALSE, method = "gam")
> res4

**
Best subset of size q = 2 : 5 1

Information Criterion Value - deviance : 18.41203
**

In this case, the performance of the methods changes. Excluding the FWDselect, all the procedures
fail to select the correct model. The leaps package returns the X5 and X6 variables whereas the others
two packages only retrieve the effect of X5.

The results presented in this appendix have been obtained with one simulated sample of n =
100. In order to evaluate the real performance of the methods, a simulation study using five hundred
independent samples with different sample sizes (n = 50, 100, 200) was carried out. Focusing on the
linear scenario, the leaps and FWDselect packages work well with 100% and close to 95% of successes,
respectively (for any sample sizes). The success rate for the other two packages is around 22%. Note
that the results of leaps have been obtained assuming a subset of size two, and thus providing an
advantage to this method over the others. In relation with the nonlinear scenario, the proportion of
failures is very high for all procedures excepting FWDselect. The latter performs correctly close to 30%
of the times for the smallest sample size, around 63% for n = 100 while it reaches 91.6% of successes
for n = 200.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 149

An Interactive Survey Application for
Validating Social Network Analysis
Techniques
by Mitchell Joblin and Wolfgang Mauerer

Abstract Social network analysis is extremely well supported by the R community and is routinely
used for studying the relationships between people engaged in collaborative activities. While there
has been rapid development of new approaches and metrics in this field, the challenging question
of validity (how well insights derived from social networks agree with reality) is often difficult to
address. We propose the use of several R packages to generate interactive surveys that are specifically
well suited for validating social network analyses. Using our web-based survey application, we were
able to validate the results of applying community-detection algorithms to infer the organizational
structure of software developers contributing to open-source projects.

Introduction

Social network analysis (SNA) is an increasingly popular approach to study the relationships between
individuals engaged in collaborative activities (Ahn et al., 2007; Mislove et al., 2007; Kumar et al.,
2010), and numerous high quality R packages support the thriving SNA community (e.g., igraph,
sna, graph, twitteR, Rfacebook, etc.; Csardi and Nepusz 2006; Butts 2014; Gentleman et al.; Gentry
2015; Barbera and Piccirilli 2015). What is often not clear is the validity of SNA approaches that
propose new metrics or apply existing metrics to a new source of data. In the literature, researchers
have questioned and criticized studies using SNA because it is unclear if the results are reflective of
reality (Donath and Boyd, 2004; Wilson et al., 2009). We developed a web-based survey application for
conducting interactive surveys that specifically addresses the unique needs of the SNA community
and successfully deployed the application to study the collaborative relationship between software
developers in open-source projects and to validate the usage of unsupervised machine learning
algorithms to infer the developers’ organizational structure (Joblin et al., 2015).

In social network analysis, the relationships between individuals are formalized as a graph
where nodes represent people and the edges between nodes represent a particularly interesting
connection. For example, Twitter data can be used to construct a retweet network where an edge
between individuals exists if one individual has retweeted another individual’s tweet. The particular
heuristic used to establish an edge between individuals is chosen based on the desired concept to
study. For example, a retweet may indicate endorsement of the message being tweeted. From this,
one could conclude that users with many retweets of their content are regarded as an influential
person within that local group of people. One of the primary challenges with this style of analysis is
validating whether the assumptions about the relationship heuristic are correct. It may, for instance,
not be clear whether a retweet always indicates a positive sentiment. Alternatively, retweets could also
stem from controversial topics and may not be ubiquitously regarded as supportive of the original
tweet’s message.

While SNA is not primarily concerned with constructing social networks, but rather to analyze
the network’s properties, the network construction heuristic influences the validity of the subsequent
analysis. In general, the goal of SNA is to identify interesting features of a social network that
capture an abstract quality of social relationships. For example, finding important or highly influential
actors in a network is one of the most well-researched areas of SNA where one considers the local
or global network topology to identify individuals that are exceptionally well-connected to other
actors. The notion of centrality, and many other network metrics, is a duality where one definition is
a mathematical formalization based on the network topology and the other definition is an abstract
social concept such as influence. The challenge we wish to address with our survey application is to
validate the claim that the mathematical formalizations provided by the field of SNA are congruent
with the abstract social concept we wish to identify.

Our survey application is designed to address the following three concerns that are fundamental to
the validity of SNA:

• Network Construction Heuristic
Example: Do edges in the network accurately represent relationships between actors in reality?

• Network Structural Property
Example: Does the community structure of a network accurately identify subgraphs of individ-

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=igraph
http://CRAN.R-project.org/package=sna
http://www.bioconductor.org/packages/release/bioc/html/graph.html
http://CRAN.R-project.org/package=twitteR
http://CRAN.R-project.org/package=Rfacebook

CONTRIBUTED RESEARCH ARTICLES 150

uals with common goals or interests in reality?

• Network Metric
Example: Do centrality metrics accurately represent the level of influence of an actor in reality?

All source code that implements our survey application is available at a supplementary site:
http://github.com/mitchell-joblin/SNA_survey_framework .

Challenges

Developing and deploying a survey for SNA purposes involves a set of unique challenges and
requirements that are not currently satisfied by existing survey templates and tools. We now introduce
the set of requirements we identified and specifically addressed with our survey application.

Requirement 1: Ease of large scale deployment and collection of responses

Modern social networks can range in size from hundreds to millions of nodes and the survey delivery
mechanism should be designed to handle deployment under large scale conditions. A web solution
enables the survey participant to easily login to the web interface and submit their responses without
the need to download or install any software to complete the survey. Any challenges experienced
while participating in a survey create a barrier to completion and likely contribute to lower return-rates
and quality responses. In additional to scalability and ease of use, a web solution also allows for
aggregation of responses into a common database for later analysis.

Requirement 2: Interactivity

Performing a survey for SNA purposes will often involve the need to display a labeled graph to the
survey participants. Research in graph layout and visualization is continually advancing; however,
the optimal visualization and layout parameters are dependent on network properties in a non-trivial
way. The network size, edge density, graph type (e.g., directed, undirected, weighted, unweighted,
one-mode, and two-mode) all influence the optimal visualization. Readability of the graph is necessary
for quality responses. To ensure graph details were not obscured by problems such as overlapping
nodes or edges, the survey participant should be able to influence a set of visual parameters so that
all necessary details of the graph are observable. The adjustable parameters also allow the visually
impaired to participate more effectively.

Requirement 3: Dynamic survey content generation

We determined that certain elements of the survey needed to be generated dynamically so that each
survey participant would be shown information that was relevant to their particular position in the
network. We identified each survey participant through a login process and then computed relevant
data such as the subgraph community they were found in and the set of people which we expected to
be influential to them. We found this to be a particularly powerful and interesting aspect of our survey
because the responses often provided insights about the network that would not have been obvious if
we had not shown the relevant network data and instead only asked general questions.

Requirement 4: Integration with existing R infrastructure

One of our primary concerns with developing the survey was the expenditure of effort to prepare our
existing SNA analysis pipeline for use in the survey instrument. A substantial amount of support for
SNA already exists in R (e.g., igraph, sna, graph etc.), therefore it is highly desirable to seamlessly and
effortlessly integrate existing R infrastructure into the survey application. By taking advantage of the
Shiny R web application framework, we could avoid a substantial amount of effort to adapt existing R
infrastructure to another language or platform for the survey deployment.

Requirement 5: Visually appealing and professional aesthetic

In a preliminary analysis of options for survey platforms, we realized that many of the existing
tools did not support a visually appealing or professional aesthetic. We felt that an unprofessional
appearance would compromise the seriousness and credibility of the organization hosting the survey
and deter survey participation. Perhaps potential survey candidates would perceive the survey poorly

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://github.com/mitchell-joblin/SNA_survey_framework

CONTRIBUTED RESEARCH ARTICLES 151

and think that the organization would mishandle the collected data for unethical reasons or via poor
execution such that the results would be useless and answering the questions would be futile.

Alternative survey tools

A number of survey tools are available online such as SurveyMonkey (www.surveymonkey.com) and
LimeSurvey (www.limesurvey.org), but we found that these tools were not capable of satisfying the
requirements for validating SNA techniques. In a canonical survey, a number of predetermined
questions are presented to the survey participants and the responses are predetermined categories or
free text fields. In the case of predominantly static and predetermined survey content, the features
offered by the above tools are more than adequate and customizable. The inadequacies of these
tools stem from the lack of features for interfacing with R infrastructure and supporting interactive
survey content. Both SurveyMonkey and LimeSurvey have convenient import features that provide
a mechanism to display precomputed survey content. Prior to developing our own application, we
considered precomputing the survey content for all the possible survey participants and then using
the import feature. The problem with this approach was that we did not have a-priori knowledge of
the required content and computing all possible variations of the survey content would be incredibly
wasteful. When conducting a survey, one typically expects roughly a 10% response rate so computing
the necessary data for all potential participants would be roughly 90% waste. This consideration is
especially important for researchers working with big data, where there may be potentially millions
of survey participants. Furthermore, using this approach would not allow the survey participant
to configure any visualization parameters. We found the reactive programming model provided by
shiny (Chang et al., 2015) to be far more powerful for creating interactive surveys compared to those
provided by the alternative survey tools. The added benefit of using shiny is that any visualization
generated by an R script can be easily converted into a dynamic survey element with just a few lines
of code. In contrast, managing a set of precomputed visualization requires potentially vast quantities
of storage space and a schema for uniquely identifying the images to be displayed correctly in the
survey.

Shiny web application framework

Shiny is a web application framework for R that allows one to easily transform their existing R code
into an interactive web application. By using Shiny, we were able to quickly implement a web-based
survey instrument without the need to significantly alter our existing R infrastructure for social
network analysis. To build a Shiny web application two main components need to be implemented,
a ‘server.R’ file which constructs the R objects to be displayed by the application and a ‘ui.R’ file to
control layout and appearance. Alternatively, one can choose to implement an interface using HTML
and CSS to achieve greater flexibility and customization. An example survey question taken from
our application is provided in Figure 1. In the following subsections, we introduce the basic elements
for implementing the example question including the creation of interactive visualizations using the
shiny and igraph packages.

Example server R script

In our particular implementation we stored the user data in a relational database, as will likely be
common in many applications. Below we illustrate the implementation to retrieve a specific person’s
ego network in the form of an edge list data frame from a MySQL database. The igraph package for
network analysis is then used to construct the graph object from the edge list data frame and then
finally plot it. Using this basic template, one can insert their own network analysis algorithms for a
specific purpose. The reactive mechanism for retrieving the interactive user input from the UI is also
illustrated for the vertex size and vertex label visualization parameters. In the next section, we will see
how the UI is implemented for these particular visualization parameters.

Shiny uses a very powerful reactive programming paradigm to couple the client and server
elements to support interactivity. Using this model, reactive values represent values that can change
over time, and reactive expressions represent operations that depend on the use of reactive values. The
reactive expressions track the state of reactive values so whenever an update occurs, the dependent
reactive expressions are re-executed. The reactive programming concept also supports the important
separation of computationally intensive processes from the interactive elements to prevent lag in
the user interface. We provide an example server script in Figure 2 to illustrate a basic example for
generating interactive survey content using the reactive programming model.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

www.surveymonkey.com
www.limesurvey.org
http://CRAN.R-project.org/package=shiny

CONTRIBUTED RESEARCH ARTICLES 152

Figure 1: Example survey question.

After first executing a connection to the MySQL database, a reactive expression (graph.data)
is defined to encapsulate the computationally intensive graph processing algorithms. The reactive
expression first retrieves an ID for a specific edge list stored in the database. In example question
shown in Figure 1, the ID corresponds to a specific user’s community network and in the login phase
description we discuss how to identify survey participants using a login process. Next, the edge
list corresponding to the ID is retrieved from the database and then any computationally intensive
processing is performed. Alternatively, if a database is unavailable, then an archive file or any type of
storage format can be loaded into R within this reactive expression.

In the next expression, a reactive endpoint is created. Inside the expression, the reactive values
that represent the vertex size (input$vertex.size) and label size (input$label.size) will cause the
reactive endpoint output$graph to be evaluated every time an update occurs to one of the visualization
parameters. A critical aspect of the implementation is the separation of the computationally intensive
SNA algorithms from the visualization parameters. Without the use of reactive conductors (e.g.,
graph.data), the computationally intensive code would be re-evaluated for every update to the
visualization parameters and would result in severe lag in the user interface. In the next section,
we demonstrate how the binding between the elements in the server script and the user interface
is established. More information about the reactive programming model used by shiny server is
available in the Shiny Package Documentation.

Example HTML UI

The user interface component of the shiny web application controls the appearance and layout of the
survey including all survey questions and response fields. We chose to implement the UI in HTML
and CSS using the open-source framework Bootstrap, alternatively one could also implement the UI
in R using shiny. The advantage to developing the UI in HTML is greater customizability of the look
and feel, but the features provided by shiny are quite sufficient for most purposes and doesn’t require
HTML knowledge. With Bootstrap, we were able to achieve a professional aesthetic and maximum
flexibility using only the basic features offered by the framework. An example survey question is
shown in Figure 3 demonstrating the UI implementation in HTML to display the survey question
text, an igraph network object with user configurable visualization parameters, and a multi-category
response section. This example illustrates all the basic elements of a survey question and all the
questions in our example application follow a similar format. Beginning at the top of Figure 3, the

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://shiny.rstudio.com/articles/reactivity-overview.html
http://getbootstrap.com

CONTRIBUTED RESEARCH ARTICLES 153

library(shiny)
library(igraph)
library(RMySQL)

shinyServer(function(input, output, session, clientData) {
Create MySQL connection object
con <- dbConnect(MySQL(),

user = 'USERNAME',
password = 'PASSWORD',
host = 'HOST',
dbname = 'DBNAME')

Query database for an edge list and perform SNA
and return a reactive conductor
graph.data <- reactive({

Get unique graph ID from database
graph.id <- get.graph.id(con)

Query MySQL database for a specific network
edge.list <- query.graph.edges(con, graph.id)

Insert any computationally intensive code for processing
the graph here to avoid being recomputed
for every visualization update})

Generate reactive endpoint
output$graph <- renderplot({

edge.df <- graph.data()

Get input from UI for graph label and node size
from reactive sources
vertex.size <- input$vertex.size
label.size <- input$label.size

Create igraph graph object and plot
g <- graph.data.frame(edge.df)
plot(g, vertex.size = vertex.size,

vertex.label.cex = label.size)})
}

Figure 2: Server R script for example survey question.

survey question is specified inside a Bootstrap “well” element. Next, the visualization parameters for
the network are specified as sliders as is shown in Figure 1. Moving further downward, the binding
between the graph object provided by the ‘server.R’ script and the UI is made. Lastly, the response
fields “agree” and “disagree” are specified as HTML form inputs. This basic example question can
easily be extended to suit the needs of a wide variety of survey questions. For example, one can easily
rewrite the question, change the visualization parameters, or introduce different response categories
(e.g., five level Likert item). From a technical standpoint, Figure 3 clearly demonstrates how the input
elements for dynamically altering the graph visualization are implemented and how the graph plot
generated by the ‘server.R’ script is integrated into the UI.

The binding between the elements of the ‘server.R’ script and the UI are achieved through the
variable identifiers. One can see that the HTML id tags match the corresponding variable identifiers
in the ‘server.R’ script. In this case, the vertex.size visualization parameter is displayed as a slider.
For categorical or other discrete parameters, drop-down menus can be used instead of a slider
when needed. The appearance of the example question rendered in a browser is shown in Figure 1
and includes the graph, the basic visualization adjustments, the categorical response input, and an
additional text input for comments.

The above serves as a starting point to construct more elaborate applications and easily integrate

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 154

<h3>Question 1</h3>
<--Survey question text-->
<div class="well">

<h4>Does the following network accurately represent collaborative relationships?</h4>
</div>

<--Display network visualization-->
<div class="row-fluid">

<div class="span2">
<!--Insert all user configurable graph visualization parameters here-->
<h5>Visual Adjustments</h5>
<div class="well">

<!-- Slider to change vertex size parameter, input id
matches variable name in server.R-->

<label class="control-label" for="vertex.size">Vertex Size:</label>
<input class="jslider"
data-format="#,##0.#####" data-from="1" data-locale="us" data-round="false"
data-skin="plastic" data-smooth="false" data-step="1" data-to="10" id="vertex.size"
name="vertex.size" type="slider" value="5">

</div>

<div class="span10">
<div class="well">

<!--Insert graph plot, id matches output variable identifier in server.R-->
<div class="shiny-plot-output" id="graph" style=
"width: 100%; height: 800px; margin-left:0px; margin-right:0px;
margin-bottom:0px; margin-top:0px">
</div>

</div>
</div>

<!--Specify response fields-->
<div>

<h5>Response</h5>
<div class="well">

<div>
<label>Select one:</label>
<table class="table table-condensed table-bordered" style=
"background-color:white;margin-bottom:0px">

<tbody>
<tr>

<td><label class="radio"><input name="q1a" type="radio" value="agree">
Agree</label></td>

</tr>
<tr>

<td><label class="radio"><input name="q1a" type="radio" value="disagree">
Disagree</label></td>

</tr>
</tbody>

</table>
</div>

</div>
</div>

</div>
</div>

Figure 3: HTML UI for example survey question.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 155

Figure 4: Event sequence and data flow for survey execution.

specific SNA results. For example, one could extend the above code to show only the vertex induced
subgraph of nodes with a particularly high centrality or show only the relationships that exist between
actors during specific temporal periods using sliders to select the time range of an evolving network.

Survey execution process

We now introduce the execution of the survey application, the data flow, and the general architectural
elements used to accomplish the goals of each phase. The survey is broken up into three main phases
discussed in detail below, namely the login phase, the survey completion phase, and the response
collection phase. The login phase is used to identify the survey participant so that the appropriate
visual elements can be generated for this specific user. Next, the shiny application server queries the
database storing user data to generate the appropriate survey content for the specific user. Finally,
the survey responses are collected and subsequently stored in a relational database so that further
analysis can be easily performed. Figure 4 illustrates the sequence of events and the data exchanged
between the main architectural elements. An example survey can be found at the following site:
http://rfhinf067.hs-regensburg.de/survey/?p.id=1&c.id=1.

To design a survey, all that is necessary is to modify the shiny server R script, the PHP script for
processing the responses, and the database schema that stores the survey responses. However, our
application provides several generic question types and a database schema that should cover most use
cases.

Login phase

The login process primarily serves to acquire the necessary user information to generate the appropriate
survey content, in most cases only a user name or email address is sufficient. We also include a Captcha
authentication to avoid problems associated with automated attempts to access the survey. The login
page is hosted on a standard Apache web server and uses basic JavaScript to generate a URL that
contains the user information as URL parameters. The login phase is shown as step 1 through
4 in Figure 4. For example, user Jane Doe accesses the login page and enters the email address
j.doe@email.com, then the URL shiny.server?username=j.doe@email.com is generated and the user
is automatically redirected to the generated shiny application after the login form has been submitted
and the Captcha has been authenticated. The URL parameters allow you to create a custom survey
for each individual survey participant. For example, you may wish to display the participant’s
ego network and ask specific question about the network’s structure or authenticity with regard to
capturing real-world relationships.

The login step does not contain security features that would prevent someone from logging into
the survey using someone elses email. If security is a primary concern, an alternative solution is to
append a unique string of characters as a URL parameter and forgo the login process entirely by
instead sending an e-mail to each survey participant containing the unique link. For example, instead
of generating the URL shown above from the login process, the participant would receive a link of the
form shiny.server?username=jvnoqk91m. Then in the shiny server application, the unique string can
be matched to the user to create the appropriate survey content.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://rfhinf067.hs-regensburg.de/survey/?p.id=1&c.id=1
shiny.server?username=j.doe@email.com
shiny.server?username=jvnoqk91m

CONTRIBUTED RESEARCH ARTICLES 156

graph <- reactive({
Parse URL for parameters into key value pairs
parseQueryString(clientData$url_search)})

Retrieve username parameter
username <- as.character(query()['username'])

Query database for subgraph containing the person
query.database(username)})

Figure 5: Example reactive expression for retrieving URL parameters.

Survey completion phase

The events of this phase are illustrated in steps 5 and 6 of Figure 4. In the survey completion phase,
the user is presented with the survey content that is automatically generated based on the individual’s
login data. This feature allows the questions, response fields, and figures to be altered to present
information that is most relevant to the particular survey participant. For example, in our survey we
asked participants about whether our community detection algorithm accurately identified meaningful
communities and what commonalities were responsible for producing the community. We used the
login parameters to select the specific community that the survey participant was found in and
displayed the specific subgraph. The URL parameters are retrieved using the code shown in Figure 5
and is located in the ‘server.R’ script. The example code can be extended to use any value to identify
the survey participant. In the login phase description, we discuss a more secure way of performing
the login by using a unique string instead of the users name and e-mail address. This code example
can easily be adapted to retrieve the unique string from the URL parameters to implement the more
secure login approach.

In Figure 5, the URL parameters containing the user login data are first parsed and stored as key
value pairs. The user name is then retrieved and used to query the database containing the user data.
Using this information we can generate the specific subgraph for each survey participant. This portion
of the script can be edited to query for any user specific data. Alternatively, if your user data is stored
in files, you can edit this component to read specific user files.

It was our experience that using auto-completion was very helpful for questions where the response
was a user name. Since many of the mentioned names should already be in the database, we were
able to take advantage of this to provide auto-completion. This allowed us to maintain consistency
of names between survey response and our database. In addition, the name consistency made the
processing of the responses much easier and yielded higher quality results. Shiny does not provide
any auto-completion feature, however, we were able to use ShinySky to achieve this functionality.

Response collection phase

The final phase is illustrated in Figure 4 in steps 7 through 9. Upon completion and submission of the
survey, the responses are sent using HTTP POST to a PHP script running on the Apache server. The
PHP script checks for errors in the responses and cleans erroneous or troublesome characters. Once
the responses have been cleaned and verified they are then saved to the database. Once the data have
been successfully saved to the database, the user is redirected to a “thank you” page to confirm that
their submission was successful. You may wish to edit the PHP script and database schema to suit
your particular needs since they relate to the specific survey questions. Alternatively, you may simply
write the survey responses to a file. Since R has sufficient support for MySQL, we found that saving
the responses to a database made the analysis of the responses relatively simple.

Discussion and future work

In our research focused on validating social network analysis techniques for the purpose of identifying
the organizational structure of open source developers (Joblin et al., 2015), we found this survey
application to be extremely valuable. Our research goal was to determine if developer networks,
constructed from operational data stored in the version control system, contain information that is
reflective of the real world. More specifically, the survey results indicated that community-detection
techniques are effective for decomposing developer networks into communities that reflect important
real-world relationships. We were able to show that the developer communities are comprised of a

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://github.com/AnalytixWare/ShinySky

CONTRIBUTED RESEARCH ARTICLES 157

collection of well coordinated individuals with common goals, interests, and shared mental models.
In the software engineering domain, this kind of information is incredibly valuable for identifying
where coordination challenges are most likely to arise and negatively impact developer productivity
or code quality (Cataldo and Herbsleb, 2013; Pinzger et al., 2008; Nagappan et al., 2008; Meneely et al.,
2008), effective coordination are becoming increasingly important. With the support of R packages,
applying unsupervised machine learning algorithms to networks is no longer a significant technical
challenge, but the challenge of evaluating the results with respect to the ground truth model of reality
still requires attention. In particular, without demonstrating that the results of applying SNA have
real-world significance and validity, our research contribution would have had only a very limited
impact. On this basis, we see that the challenge of validating the information that can be gleaned
from social networks is fundamental to developing effective network analysis methodology that is
capable of delivering valuable insights. Since the phenomenon of globally distributed collaboration
is becoming common practice in many domains, we see this survey application as an important
contribution to the general research community. In the future, we fully intend to reuse and improve
this web-based survey application with one of our primary goals being to turn the application into an
R package that is easier to setup and use.

Conclusion

Through the use of multiple R packages, we were able to successfully develop a powerful survey
instrument for validating SNA approaches. Surveys for the validation of SNA techniques demand
unique features that are not currently provided by existing tools. Our application provides the
fundamental structural elements to conduct a large scale and fully-automated social-network based
survey. Furthermore, we provide a fully-functional application that addresses the fundamental threats
to validity in the social network analysis domain. Additionally, the basic application provides a
substantial foundation to support the development of more elaborate survey instruments.

The SNA community is rapidly growing with many new and exciting techniques frequently being
proposed, however, the real power of SNA lies within its accurate representation of the real-world.
In order to achieve congruency between reality and the insights gleaned through SNA, appropriate
validation tools are a necessary requirement. In this paper, we presented an example application
that significantly lowers the barrier to entry for conducting social-network based surveys. By using
this survey application to validate SNA techniques, one is able to more easily test the reliability and
validity of SNA approaches and increase the scientific rigor of the field.

Bibliography

Y.-Y. Ahn, S. Han, H. Kwak, S. Moon, and H. Jeong. Analysis of topological characteristics of huge
online social networking services. In Proceedings of the International Conference on World Wide Web,
pages 835–844. ACM, 2007. [p149]

P. Barbera and M. Piccirilli. Rfacebook: Access to Facebook API via R, 2015. URL http://CRAN.R-
project.org/package=Rfacebook. R package version 0.6. [p149]

C. T. Butts. sna: Tools for Social Network Analysis, 2014. URL http://CRAN.R-project.org/package=sna.
R package version 2.3-2. [p149]

M. Cataldo and J. D. Herbsleb. Coordination breakdowns and their impact on development pro-
ductivity and software failures. IEEE Transactions on Software Engineering, 39(3):343–360, 2013.
[p157]

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. shiny: Web Application Framework for R, 2015.
URL http://CRAN.R-project.org/package=shiny. R package version 0.12.2. [p151]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL http://igraph.org. [p149]

J. Donath and D. Boyd. Public displays of connection. BT Technology Journal, 22(4):71–82, 2004. [p149]

R. Gentleman, E. Whalen, W. Huber, and S. Falcon. graph: A package to handle graph data structures. R
package version 1.44.1. [p149]

J. Gentry. twitteR: R Based Twitter Client, 2015. URL http://CRAN.R-project.org/package=twitteR.
R package version 1.1.9. [p149]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=Rfacebook
http://CRAN.R-project.org/package=Rfacebook
http://CRAN.R-project.org/package=sna
http://CRAN.R-project.org/package=shiny
http://igraph.org
http://CRAN.R-project.org/package=twitteR

CONTRIBUTED RESEARCH ARTICLES 158

M. Joblin, W. Mauerer, S. Apel, J. Siegmund, and D. Riehle. From developer networks to verified
communities: A fine-grained approach. In Proceedings of the International Conference on Software
Engineering, 2015. [p149, 156]

R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online social networks. In Link Mining:
Models, Algorithms, and Applications, pages 337–357. Springer, 2010. [p149]

A. Meneely, L. Williams, W. Snipes, and J. Osborne. Predicting failures with developer networks and
social network analysis. In Proceedings of the Foundations of Software Engineering, pages 13–23. ACM,
2008. [p157]

A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Measurement and analysis
of online social networks. In Proceedings of the Conference on Internet Measurement, pages 29–42. ACM,
2007. [p149]

N. Nagappan, B. Murphy, and V. Basili. The influence of organizational structure on software quality:
An empirical case study. In Proceedings of the International Conference on Software Engineering, pages
521–530. ACM, 2008. [p157]

M. Pinzger, N. Nagappan, and B. Murphy. Can developer-module networks predict failures? In
Proceedings of the International Symposium on Foundations of Software Engineering, pages 2–12. ACM,
2008. [p157]

C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao. User interactions in social networks and
their implications. In Proceedings of the European Conference on Computer Systems, pages 205–218.
ACM, 2009. [p149]

Mitchell Joblin
Siemens AG
Wladimirstraße 3
91058 Erlangen
Germany
mitchell.joblin.ext@siemens.com

Wolfgang Mauerer
Siemens AG
Technical University of Applied Science Regensburg
Universitätsstraße 31
93058 Regensburg
Germany
wolfgang.mauerer@oth-regensburg.de

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:mitchell.joblin.ext@siemens.com
mailto:wolfgang.mauerer@oth-regensburg.de

CONTRIBUTED RESEARCH ARTICLES 159

Exploring Interaction Effects in
Two-Factor Studies using the hiddenf
Package in R.
by Christopher T. Franck and Jason A. Osborne

Abstract In crossed, two-factor studies with one observation per factor-level combination, interaction
effects between factors can be hard to detect and can make the choice of a suitable statistical model
difficult. This article describes hiddenf, an R package that enables users to quantify and characterize a
certain form of interaction in two-factor layouts. When effects of one factor (a) fall into two groups
depending on the level of another factor, and (b) are constant within these groups, the interaction
pattern is deemed "hidden additivity" because within groups, the effects of the two factors are additive,
while between groups the factors are allowed to interact. The hiddenf software can be used to estimate,
test, and report an appropriate factorial effects model corresponding to hidden additivity, which is
intermediate between the unavailable full factorial model and the overly-simplistic additive model.
Further, the software also conducts five statistical tests for interaction proposed between 1949 and
2014. A collection of 17 datasets is used for illustration.

Introduction

The crossed, two-factor layout with one observation per factor-level combination is a simple and widely
used plan. These designs arise in the context of (a) completely randomized two-factor experiments,
(b) randomized complete block experiments that block on a source of nuisance variability, and (c)
observational studies with two factors. If the effects of the two factors do not interact, then this design
permits inference for both factors simultaneously. The following model is commonly used for data
collected using these designs:

yij = µ + τi + β j + εij, (1)

where i = 1, . . . , c and j = 1, . . . , r are indices for levels of the two factors C and R, µ represents the
overall mean of the outcome yij, and the τi and β j terms quantify the effects of factors C and R. The
errors are frequently assumed independent and identically normally distributed, with constant error
variance σ2. Since data from these designs are easy to display using two-way tables, frequently the
levels of factors R and C are called "rows" and "columns," respectively. In this report (and the hiddenf
manual), Factor R is referred to as the "row" or "grouped" factor, while factor C is called the "column"
factor.

Model (1) assumes that the effect of the row factor on the response yij does not depend on the level of
the column factor, and vice versa. In statistical parlance this is known as the assumption of "additivity."
This assumption is sometimes made out of necessity as the alternative of including the interaction term
from the full factorial effects model precludes statistical inference. After computing the interaction
mean square, zero degrees of freedom remain with which to estimate the error variance, σ2. Data
arising from (1) are shown in Figure 1 panel A.

If the effect of factor C varies across levels of the factor R, then there is statistical interaction. In this
case (1) is misspecified. Graphical assessment of additivity is commonly made using an interaction
plot. Figure 1 panel B is an interaction plot for the cjejuni.mtx data set included in the hiddenf
package (Qiu, 2013).

Since the data in Figure 1 panel B do not exhibit parallelism, there is graphical evidence to suggest that
(1) may not be a suitable model. This is problematic because inferences conducted under (1) will be
incorrect if (1) fails to describe the true nature of the variables under investigation. Fortunately, many
methods have been devised to assess non-additivity in these designs, including those in Tukey (1949),
Anscombe and Tukey (1963), Mandel (1961), Mandel (1971), Johnson and Graybill (1972), Hirotsu
(1982), Kharrati-Kopaei and Sadooghi-Alvandi (2007), Tusell (1990), Boik (1993a), Franck et al. (2013),
and Malik et al. (2014). Alin and Kurt (2006) provide a review of methods available up to 2006. We
return to the analysis of these and other data in subsequent sections of the paper.

Despite the wide usage of unreplicated two-way designs, computational tools to assess non-additivity

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=hiddenf

CONTRIBUTED RESEARCH ARTICLES 160

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Simulated additive data

y

A

1 2 3 4 5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Time effects across plants

year
y

B

Figure 1: Interaction plots. Lines correspond to levels of factor R and tick marks on the horizontal
axis correspond to levels of factor C. Panel A is simulated data from (1). These data do not exhibit
statistical interaction so departure from parallel lines is due to random noise. Panel B is cjejuni.mtx
data, which visually exhibit non-additivity.

are lacking, particularly for more recent methods. Currently, the additivityTests package (Simecek and
Simeckova, 2012) provides test statistics, critical thresholds, and binary reject/fail to reject decisions
for tests proposed in Tukey (1949), Mandel (1961), Boik (1993a), Tusell (1990), Johnson and Graybill
(1972), and Simecek and Simeckova (2012). The additivityTests package does not produce p-values.

The hiddenf package

This paper describes the R package hiddenf, which makes available several tools for the analysis of
non-additivity in unreplicated two-way layouts. This package contributes to available computational
resources by (a) providing statistical and graphical diagnostic tools within the context of hidden
additivity that enable the user to go beyond overall tests of additivity towards the inferential goal of
characterizing and quantifying the magnitude of interaction, and (b) providing p-value computations
for five methods to detect non-additivity. Supported tests include those proposed in Tukey (1949),
Mandel (1961), Kharrati-Kopaei and Sadooghi-Alvandi (2007), Franck et al. (2013), and Malik et al.
(2014). The latter three are newly available in an open-source repository via the hiddenf package,
which is available from the Comprehensive R Archive Network (CRAN).

Hidden additivity occurs when the levels of factor R fall into a smaller number of groups, such that
within these groups the effect of factor C is constant across levels of factor R, but there is C× group
interaction (Franck et al., 2013). Group membership of levels of R can be regarded as latent, unobserv-
able random variables. Inspection of Figure 1 panel B provides an example. If one group is formed
from the two lines (processing plants) that reach their peak in year 3, and another from the two lines
that reach their peak in year 4, then the year and plant effects are roughly additive within these groups.

The HiddenF() function accepts an r× c data matrix as input and returns an object of the HiddenF class.
Objects of this class store the p-value from the all-configurations maximum interaction F (ACMIF)
test (Franck et al., 2013) for hidden additivity, the number of configurations under consideration,
the configuration that achieves the maximum interaction F score (or maximum hidden additivity),
and the data as a list. Several generic functions, including print(), anova(), summary() and plot(),
can be applied to objects of the HiddenF class to produce output useful for the quantification and
characterization of interaction. By default, the HiddenF() function considers the row factor as the

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=additivityTests

CONTRIBUTED RESEARCH ARTICLES 161

variable to group. Submitting a transposed matrix executes the grouping on the column variable.
Deciding which factor to group is subjective, and can be approached using domain knowledge or a
trial-and-error approach. Figure 2 summarizes the functionality of the hiddenf package.

User supplies r x c

data matrix to

HiddenF()

function

Object of class

HiddenF is

created

Characterize

hidden additivity

Test for non-

additivity of

multiple forms

plot()

print()

summary()

anova()

TukeyPvalue()

MandelPvalue()

KKSAPvalue()

MalikPvalue()

HiddenF()

Figure 2: Flowchart of hiddenf functionality. The user supplies a r× c data matrix to the HiddenF()
function, which returns an object of the HiddenF class. The user can then characterize hidden additivity
and obtain p-values for tests of non-additivity.

The remainder of the paper is organized as follows. The C. jejuni data are first described as a relevant
example. The following section reviews the testing procedure for hidden additivity. Functionality
to detect hidden additivity using hiddenf is then detailed. Four other supported methods to detect
non-additivity are then reviewed. Seventeen data sets are described and explored using the methods
supported by hiddenf. The article concludes with a summary.

Example

We now return to the data from Figure 1 panel B. The vertical axis in this plot is the proportion of
disease-resistant bacteria samples of the C. jejuni strain taken from turkey processing facilities. These
data were collected over a five year period across four processing plants in North Carolina. Each line
corresponds to a plant, and the year labels correspond to 2008-2012. The matrix cjejuni.mtx contains
the fractions of bacteria that are classified as the strain C. jejuni.

> library(hiddenf)
> data(cjejuni.mtx)
> cjejuni.mtx

[,1] [,2] [,3] [,4] [,5]
[1,] 0.16 0.08 0.44 0.06 0.10
[2,] 0.21 0.10 0.16 0.55 0.25
[3,] 0.16 0.08 0.56 0.26 0.26
[4,] 0.07 0.16 0.21 0.42 0.04

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 162

Testing for hidden additivity

Hidden additivity is a useful concept for the analysis of many types of data because the structure is
easy to visualize and interpret. The ACMIF test (Franck et al., 2013) to detect hidden additivity assigns
classical significance testing-based p-values. A combined testing and plotting approach allows the
researcher to interpret the way in which column effects change across groups of the rows.

The ACMIF test works by (1) considering each placement of factor R levels into two nonempty groups,
(2) testing factor C× group interaction, and (3) considering the test that provides the most evidence of
interaction (and greatest additivity of C and R within groups) after correcting for multiplicity using a
Bonferroni adjustment. Simulation suggests that the Bonferroni correction is not overly conservative
for r ≤ 7 despite the magnitude of the correction factor 2r−1 − 1, because the Bonferroni adjusted
thresholds are remarkably similar to simulated critical thresholds for a variety of c and r values (Franck
et al., 2013). If g is an index for the latent group membership such that g = 1, 2, then the factorial
effects model corresponding to the hidden additivity structure is given by

yg
ij = µ + τi + γg + (τγ)ig + β j(g) + εijg (2)

where µ is the overall mean, τi and γg are the main effects of factor C and the grouping variable, (τγ)ig
represents factor C× group interaction, and β j(g) is the effect of factor R, nested within group. The
ACMIF test is based on the largest F-ratio corresponding to H0 : (τγ)ig = 0 among all assignments of
R factor levels into two non-empty groups.

Characterizing hidden additivity

Objects in the HiddenF class can be used to characterize hidden additivity further with application
of the generic plot(), print(), summary(), and anova() functions. The following code produces an
enhanced interaction plot to help visualize hidden additivity (Figure 3):

> cjejuni.out <-HiddenF(cjejuni.mtx)
> plot(cjejuni.out, main="Hidden Additivity of time effects across plants",
+ rfactor="plant", cfactor="year", colorvec=c("blue", "red"), lwd=3, legendx=TRUE)

The enhanced interaction plot in Figure 3 displays levels of factor C (year) on the horizontal axis,
levels of factor R (plant) using lines that are visually distinguished by line type, and the outcome
values on the vertical axis. Color is used to display which levels of factor R are assigned to which
groups based on the maximal interaction F statistic among all possible configurations and (2). Note
that the grouping colors appear whether or not the ACMIF p-value (test for C × group) to detect
hidden additivity is significant. The default colors are black and red for the two groups, but they can
be customized by supplying an argument called colorvec which is a vector of length two giving color
names. Another optional argument, legendx, may be set to TRUE in order to provide a legend whose
location will be determined according to where on the plot the user clicks.

Because of the ellipsis(. . .), arguments such as main (for a title) or lwd (for specifying line widths)
can be passed to matplot or legend. The arguments lty, type, ylab, and xlab are utilized by the
plot.HiddenF() function to produce the enhanced interaction plot and therefore are not available for
customization by the user.

The print() function returns results from the ACMIF test.

> print(cjejuni.out)
The ACMIF test for the hidden additivity form of interaction
F=8.965 p-value =0.03309 df=4,8
(Bonferroni-adjusted for all 7 possible configurations)

This output can also be obtained by typing the name of an object of class HiddenF into the console. The
p-value above has been adjusted for multiplicity using the Bonferroni multiplier of 24−1− 1 = 7. Addi-
tionally, the method argument in the print.HiddenF() function supports all of the methods supported
by the hiddenf package discussed later. To see which of these seven possible configurations of rows
in two non-empty groups leads to the greatest additivity within groups, use the generic summary()
function, which returns information useful for analysis based on (2):

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 163

0.
1

0.
2

0.
3

0.
4

0.
5

Hidden additivity − time effects across plants

year

y

plant
1
2
3
4

1 2 3 4 5

Figure 3: Hidden additivity plot for the cjejuni.mtx data. Lines are color-coded to correspond to
the configuration that achieves the maximal C × group interaction F statistic. Individual rows are
distinguished by line type to allow the user to easily identify specific contributions of rows to hidden
additivity .

> summary(cjejuni.out)
Number of configurations: 7
Minimum adjusted pvalue: 0.03308869

Rows in group 1: 1 3
Rows in group 2: 2 4

Column means for grp 1: 0.16 0.08 0.5 0.16 0.18
Column means for grp 2: 0.14 0.13 0.185 0.485 0.145

The output above includes the number of configurations under consideration, the smallest Bonferroni
adjusted p-value among these, the identity of the rows that fall into each group and the means across
levels of C for both groups. Each of these items is returned in a list (not shown). To produce an
ANOVA table:

> anova(cjejuni.out)
The ACMIF test for the hidden additivity form of interaction
Analysis of Variance Table

Response: y
Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.00000 0.000005 0.0009 0.977350
col 4 0.18753 0.046882 8.0450 0.006606
row 2 0.03673 0.018365 3.1514 0.097874
group:col 4 0.20897 0.052243 8.9648 0.004727
Residuals 8 0.04662 0.005828
C.Total 19 0.47986
(Pvalues in ANOVA table are NOT corrected for multiplicity.)

For these data, the interaction between time (col) and plant group (group) accounts for more variability
(43%) than any other term in the hidden additivity model. This partial coefficient of determination is
computed by dividing the group × column sums of squares by the total sum of squares displayed
above. The anova() function can also accommodate other tests for non-additivity by specifying the
method argument as "KKSA", "Mandel" or "Tukey" (see Other Tests for Non-additivity section).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 164

Levels of factor C can be grouped instead by transposing the input data matrix before applying the
HiddenF() function. The output below suggests no statistical evidence for hidden additivity in the
levels of factor C.

> cjejuni.trans.mtx<-t(cjejuni.mtx)
> cjejuni.trans.out<-HiddenF(cjejuni.trans.mtx)
> print(cjejuni.trans.out)
The ACMIF test for the hidden additivity form of interaction
F=3.63 p-value =0.8671 df=3,9
(Bonferroni-adjusted for all 15 possible configurations)

Note that support for more than 20 rows is not yet included due to the exponential increase in
computational demand as the number of grouped levels increases. Factors with more levels than this
will be accommodated in future versions of the software.

Centering

The center option in the plot command allows the user to graph the hidden additivity plot with data
centered at the row means to better see the concordance of rows with regard to column effects. This is
a way of de-noising the plot. Figure 4 demonstrates this feature using data from Graybill (1954). These
data will be further analyzed later. Inspection of the right panel of Figure 4 suggests that the third
genotype appears to give inferior yields for rows in the red group (relative to the performance of other
genotypes in these blocks), but does better for rows colored black. To produce this plot:

> data(Graybill.mtx)
> Graybill.out <- HiddenF(Graybill.mtx)
> par(mfrow=c(1,2))
> plot(Graybill.out)
> plot(Graybill.out, center=TRUE, main="Hidden Additivity plot\ncenter=TRUE")

10
20

30
40

50

Hidden Additivity Plot

Columns Factor

y

1 2 3 4

−
10

0
10

20

Hidden Additivity plot
 center=TRUE

Columns Factor

y

1 2 3 4

Figure 4: Hidden additivity plots for the wheat yield data (Graybill, 1954). The left and right panels
exhibit the uncentered and centered graphical options, respectively.

Other tests for non-additivity

The ACMIF approach Franck et al. (2013) to detect hidden additivity has been described above. The
subsections below include code examples and briefly review the other four supported approaches to

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 165

detect non-additivity in unreplicated studies.

One degree of freedom approach

The one degree of freedom test (Tukey, 1949) is the earliest and most widely-known approach. The
following model for non-additivity corresponds to Tukey’s procedure:

yij = µ + τi + β j + ντiβ j + εij. (3)

A hypothesis test for this approach is based on the null hypothesis H0 : ν = 0. Under the null, (3)
reduces to (1). The one degree of freedom test arises by fitting the squared fitted values from the addi-
tive model as a model term, then assessing the partial F-test for statistical significance corresponding
to this term.

The TukeyPvalue() function accepts an object of class HiddenF and returns a list that contains the
p-value for the one degree of freedom test and an lm object that contains the model that includes
the squared predictions from (1) as described above. The method argument in the anova.HiddenF()
function can be used to produce an ANOVA table for this test. Since the p-value is large, the output
below does not provide statistical evidence for non-additivity of the form suggested in (3).

> TukeyPvalue(cjejuni.out)
$pvalue
[1] 0.7077391

$singledf.out

Call:
lm(formula = y ~ rows + cols + psq, data = hfobj$tall)

Coefficients:
(Intercept) rows2 rows3 rows4 cols2 cols3

0.095454 0.029036 0.030905 0.005445 -0.026989 0.043692
cols4 cols5 psq

0.044568 0.006369 1.569601

Rows-linear approach

An extension of the one degree of freedom test is based on the following model (Mandel, 1961):

yij = µ + τi + β j + θiβ j + εij, (4)

where εij are i.i.d. N(0, σ2). The test for rows-linear non-additivity is based on the null hypothesis
H0 : θi = 0 for i = 1, . . . , t. Under this null, (4) reduces to (1).

By setting µi = µ + τi and θi = (φi − 1), the response variable yij in (4) can be represented as an inter-
cept µi and slope φi that depend on effect β j. Letting i and j index "rows" and "columns" respectively
leads to the phrase "rows-linear" model, which was established later (see Alin and Kurt, 2006).

The ANOVA table sum of squares associated with the θi term is

SSrowlin = ∑
i
(

∑j yij(ȳ.j − ȳ..)

∑j(ȳ.j − ȳ..)2 − 1)2 ∑
j
(ȳ.j − ȳ..)

2. (5)

The residual sum of squares has the following form:

SSres = ∑
i

∑
j
[(yij − ȳi.)−

∑j yij(ȳ.j − ȳ..)

∑j(ȳ.j − ȳ..)2 (ȳ.j − ȳ..)]
2. (6)

The test statistic is:

Frowlin =
SSrowlin/(a− 1)

SSres/(a− 1)(b− 2)
. (7)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 166

The statistic Frowlin has an F distribution with (a − 1) numerator and (a − 1)(b − 2) denominator
degrees of freedom under the null hypothesis. Construction of a columns-linear test is accomplished
by defining a HiddenF object on the transposed data matrix and calling the MandelPvalue() in a similar
fashion.

The MandelPvalue() function accepts an object of class HiddenF and returns a list that includes a
p-value, sums of squares, F ratio, and degrees of freedom for the rows-linear test. The output below
fails to detect interaction using Mandel’s rows-linear test:

> MandelPvalue(cjejuni.out)
$pvalue
[1] 0.9458807

$SumSq
SSRow SSCol SSMandel SSE SSTot

0.036735000 0.187530000 0.009849526 0.245740474 0.479855000

$Fratio
[1] 0.120243

$df
[1] 3 9

Error mean square subtable comparison approach

The error mean square (MSE) subtable comparison approach (Kharrati-Kopaei and Sadooghi-Alvandi,
2007) forms an F statistic that is the ratio of residual sums of squares that arise from rows being placed
into two groups, with each group containing at least two rows,

FKKSA =
(r2 − 1)SSE1
(r1 − 1)SSE2

. (8)

Under the assumptions of additivity and homogeneous variance, FKKSA has an F distribution with
(r1 − 1)(c− 1) numerator and (r2 − 1)(c− 1) denominator degrees of freedom under the null hypoth-
esis, no matter which rows are placed into which group. This approach suggests non-additivity when
error mean square values within the subtables are discrepant.

As with the ACMIF procedure, grouping is subjective and is accomplished by choosing one of the two
factors upon which to form the groups, and then placing that factor’s levels into two groups. Different
groupings result in different p-values. Groups are typically chosen based on a priori knowledge, in-
spection of an interaction plot, or by screening several candidate groupings and applying multiplicity
adjustment to the resulting p-values. The hiddenf package adopts the authors’ (Kharrati-Kopaei and
Sadooghi-Alvandi, 2007) suggestion of assessing the 2r−1 − r− 1 possible groupings for factor R and
Bonferroni adjusting the resulting p-values to achieve an α level test.

The KKSAPvalue() function accepts an object of class HiddenF and returns a list that contains the
maximal F statistic among configurations, a Bonferroni adjusted p-value, a length r vector that in-
dicates the groupings of levels of factor R that correspond to the calculated p-value, and numerator
and denominator degrees of freedom for the test statistic. Data may be transposed in order to form
subtables according to factor C. At significance level α = .05 the output below does not reject the null
hypothesis of additivity according to the MSE subtable comparison approach when grouping levels of
factor R.

> t(KKSAPvalue(cjejuni.out))
fmax pvalue grp.vector NumDf DenomDf

[1,] 1.748821 1 Numeric,4 4 4

Residual clustering approach

A recent approach (Malik et al., 2014) considers non-additivity elicited due to cell values which are
remote relative to the additive model. Not all cells are assumed to contribute to the interaction pat-
tern. The method detects non-additivity by exploiting the large residuals that arise under this structure.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 167

Execution of the residual clustering method proceeds as follows. First, residuals from (1) r̂ij(1) =
yij − ŷij(1) are placed into 3 groups using k-means clustering (MacQueen, 1967) in one dimension.
Then, a two degrees of freedom cluster effect is incorporated into the additive model:

yij = µ + τi + β j + κk(ij) + εij (9)

where κk(ij) represents the effect of the kth cluster, k = 1, 2, 3. The subscript k(ij) indicates that the
ijth residual is assigned to exactly one of the k clusters for i = 1, . . . , c and j = 1, . . . , r. Since the
cluster term is suggested by the data, the partial F test corresponding to the cluster term does not
exhibit a central F distribution under the null. Rather, the null distribution for this statistic may be
approximated via Monte Carlo simulation for the purpose of conducting statistical inference. Critical
thresholds for a variety of c and r are available (Malik et al., 2014). The hiddenf package computes p-
values and critical thresholds for user-supplied c and r using the functions MalikPvalue and MalikTab,
respectively. By default N = 500 Monte Carlo replicates are used to approximate the p-value, which
guarantees the standard error of the p-value SE(p− value) ≤ 0.023.

The MalikPvalue function accepts an object of class HiddenF and returns a Monte Carlo p-value,
observed test statistic, and Monte Carlo sample size used in the computation. The k-means approach
uses the method of Hartigan and Wong (1979) with 100 starting values per Monte Carlo iteration. The
output below suggests that the C. jejuni data do not exhibit non-additivity of the form suggested by
this method. This approach is invariant to data transposition.

> t(MalikPvalue(cjejuni.out, N=10000))
(Pvalue from Malik's test estimated with N=10000 Monte Carlo datasets)

pvalue Tc N
[1,] 0.8498 40.97983 10000

The MalikTab function accepts as input a user-specified r and c, and returns a Monte Carlo estimate
of the 90%, 95%, and 99% for the null distribution of the test statistic. A variety of such thresholds
are provided in Malik et al. (2014). The default number of Monte Carlo replicates is N = 1, 000. An
example is given below.

> Mtab.24.6<-MalikTab(r=24, c=6, N=10000)
> ls(Mtab.24.6)
[1] "q" "Tcsim"
> Mtab.24.6\$q

r c 99% 95% 90%
24.0000 6.0000 445.5725 404.3399 384.0591

The additivityPvalues function

The additivityPvalues function accepts an object of class HiddenF and returns p-values for each of
the supported methods.

> t(additivityPvalues(cjejuni.out))
(Pvalue from Malik's test estimated with N=500 Monte Carlo datasets)

Malik.pvalue Mandel.pvalue Tukey.pvalue KKSA.pvalue ACMIF.pvalue
[1,] 0.834 0.9459 0.7077 1 0.0331

Data examples

Table 1 summarizes an investigation of 17 data sets using the methods supported by hiddenf. These
examples are taken from bioinformatic, agricultural, industrial, and medical settings, and are all
publicly available. To our knowledge, this is the largest collection and description of data that has
been used to study non-additivity in the literature to date. Table 1 includes columns for references,
labels, and p-values. Note that ACMIF c, columns-linear, and KKSA c are obtained by submitting the
transposed data matrix to HiddenF(). A brief description of each data set follows.

The "Liming" data arises from an experiment that explores the utility of seven types of blast furnace
slags as liming material in agriculture on three types of soil (Carter et al., 1951). The data were
analyzed in the context of non-additivity in Johnson and Graybill (1972) and Kharrati-Kopaei and
Sadooghi-Alvandi (2007). The outcome variable is yields of corn in bushels per acre.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 168

The "Penicillin" data set (Davies and Goldsmith, 1972) assesses variability between six samples of
penicillin on 24 plates. The outcome variable is the diameter of the zone of inhibition. The data were
analyzed for non-additivity in Malik et al. (2014).

The "Osmotic" data set (Kharrati-Kopaei and Sadooghi-Alvandi, 2007) explores five varieties of saf-
flower grown in solutions with six osmotic potentials. Safflowers are an important crop due to their
oil which can be used for cooking and their flowers which can be used as a substitute for saffron. The
outcome variable is average root weight.

The "Fertilizer" example originally appeared in Ostle (1963) and was re-analyzed to detect non-
additivity in Kharrati-Kopaei and Sadooghi-Alvandi (2007). This example explores the ratio of dry to
wet wheat in four blocks for four fertilizers.

The "Bottles" example was originally analyzed in Ott and Snee (1973) and also explored in Boik
(1993b) and Kharrati-Kopaei and Sadooghi-Alvandi (2007). The study assesses the performance of a
six-headed machine on five occasions.

The "Grain Yields" data measures the yield of a grain crop in bushels per acre for five levels of fer-
tilizer on five blocks. The data come from Ostle (1963) and are re-analyzed in Kharrati-Kopaei and
Sadooghi-Alvandi (2007).

The "Absorbance" data (Mandel, 1991) measures absorbancy of wood pulp of nine polysachharide
concentrations from seven different laboratories. The data are also analyzed in Alin and Kurt (2006).

The "Permeability" example examines permeability of three sheets of building material on nine differ-
ent days. The data appear in Hald (1952) and Giesbrecht and Gumpertz (2004).

The "Wool" data (Lentner and Bishop, 1993) examines four cleaning processes for wool from five
different batches. The outcome is losses in weight in mg of the sample after cleaning.

The "Red Blood Cells" data measures the number of red blood cells counted by five doctors in ten
counting chambers. The data appear in Biggs and Macmillan (1948) and were also analyzed in Boik
(1993a).

The "Tukey" data set is an illustrative example that includes three rows and four columns from Tukey
(1949).

The "Ethyl Alcohol" data (Osborne et al., 1913) measures the density of aqueous solutions of ethyl
alcohol at six concentrations and seven temperatures. These data were also analyzed in Mandel (1971).

The "Insecticide" data (Ott and Longnecker, 2001) comes from a complete block design that measures
the impact of four plots and three insecticides on the number of string bean seedlings that emerge.

The "Rubber" data (Mandel, 1961) contains data on stress measurements in Kg/cm2 on seven types of
natural rubber vulcanizates from 11 laboratories.

The "C. jejuni" data measures the fraction of bacteria found on disease-resistant turkeys (Qiu, 2013).
These data were collected over a five year period across four turkey plants in North Carolina. These
data are displayed in Figures 1 and 3.

The "Wheat" data (Graybill, 1954) measures wheat yields in bushels per acre in four varieties in 13
locations. These data are plotted in Figure 4.

The eight Copy number variation data sets "CNV1-CNV8" compare discrepancies in the copy number
signal between normal and tumor tissue samples from a comparative genomic hybridization array.
Each data set corresponds to a separate location in the genome that is tested with the assay. Six dogs
each had two tissue samples (one normal and one tumor) upon which the assay was conducted. The
eight specific sets were selected from 5899 sets that were analyzed in a previous study and because they
showed evidence of hidden additivity (Franck et al., 2013). The hidden additivity exhibited in these
copy number responses might suggest the existence of multiple tumor sub-types for lymphoma in

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 169

dogs. The full data for this example may be accessed here: http://www.sciencedirect.com/science/
article/pii/S0167947313001618.

The results of non-additivity tests using methods supported by the hiddenf package are reported in
Table 1. The data come from 17 sources, and there are 24 total sets with the copy number variation
contributing eight individual sets. This collection is not intended as a representative sample of the
larger class of all unreplicated two-factor data, since many sets were included due to their apparent
non-additivity. This exercise is intended to show the breadth of applications for which the study of
non-additivity is important. To facilitate discussion, the standard p-value less than α = 0.05 criterion
is used to declare statistical significance without further multiplicity correction, although the reader
is invited to interpret the raw p-values however they like. The ACMIF test for hidden additivity
was significant for 16 of 24 sets when grouping levels of factor R. The test was significant for eight
of 16 sets when grouping levels of factor C. The Tukey test was significant for eight of 24 sets. The
rows-linear and columns-linear tests showed significant non-additivity for seven and six sets (out
of 16 possible), respectively. The KKSA test grouping levels of R and C revealed non-additivity for
13 of 22 and five of 13 sets, respectively. The Malik approach yielded significant non-additivity for
nine of 24 sets. Since all tests assume different restrictions on the form of interaction, no single test is
optimal for every conceivable pattern. Hence, differential performance among methods is expected
for different types of data. Each test excels at detecting different patterns of non-additivity.

Summary

This paper describes the main functionality of the hiddenf package. hiddenf provides descriptive and
inferential tools to visualize and characterize hidden additivity. Further, hiddenf includes the ability to
compute p-values for five tests for non-additivity. The package is illustrated using seventeen data sets
spanning studies in industrial applications, agriculture, and the medical sciences. Non-additivity is
evident in many of these data sets, motivating the importance of statistical interaction in unreplicated
studies across a variety of scientific domains. The hiddenf package contributes to existing software
resources specifically by making three recent tests for non-additivity available in an open-source
repository for the first time (in addition to two historical methods) and by providing visualization and
descriptive tools to further explore hidden additivity.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.sciencedirect.com/science/article/pii/S0167947313001618
http://www.sciencedirect.com/science/article/pii/S0167947313001618

C
O

N
T

R
IB

U
T

E
D

R
E

SE
A

R
C

H
A

R
T

IC
L

E
S

170

Citation Label r c ACMIF r ACMIF c Tukey row-linear col-linear KKSA r KKSA c Malik

Carter et al. (1951) Liming 7 3 0.1993 0.0110 0.9106 0.9045 0.8604 0.0068 ‡ 0.2471
Davies and Goldsmith (1972) Penicillin 6 24 0.0387 � 0.5382 0.9374 � 1.000 � 0.2231

Kharrati-Kopaei and Sadooghi-Alvandi (2007) Osmotic Bars 6 5 0.2075 0.0388 0.4450 0.5300 0.1848 0.1859 0.4155 0.7453
Ostle (1963) Fertilizer 4 4 0.0107 0.0043 0.0012 0.0146 0.0077 0.0339 0.0493 0.4373

Ott and Snee (1973) Bottles 6 5 0.0001 0.0031 0.0003 0.0025 0.0006 0.0178 0.4925 0.8839
Ostle (1963) Grain yields 5 5 0.6556 0.1485 0.1139 0.0103 0.4425 0.0528 1.0000 0.0403

Mandel (1991) Absorbance 7 9 0.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 0.9972
Hald (1952) Permeability 9 3 0.4066 0.2629 0.7844 0.7761 0.9544 0.3908 ‡ 0.8674

Lentner and Bishop (1993) Wool 4 5 0.2355 0.4087 0.0359 0.0519 0.0410 0.7155 0.1998 0.4182
Biggs and Macmillan (1948) Red blood cells 5 10 0.3291 0.0825 0.2322 0.6790 0.4903 0.0668 1.0000 0.8702

Tukey (1949) Tukey 3 4 0.2213 0.5773 0.8566 0.8743 0.9298 ‡ 0.5806 0.4769
Osborne et al. (1913) Ethyl Alcohol 6 7 <.0001 <.0001 <.0001 <.0001 <.0001 0.0002 0.0469 0.9954

Ott and Longnecker (2001) Insecticide 3 4 0.4038 0.5569 0.6875 0.3846 0.8125 ‡ 0.3000 0.7603
Mandel (1961) Rubber 11 7 <.0001 <.0001 0.3465 <.0001 0.5403 0.0021 0.0058 0.9787

Qiu (2013) C. jejuni 4 5 0.0331 0.8671 0.7077 0.9459 0.8842 1.0000 0.2862 0.8443
Graybill (1954) Wheat 13 4 <.0001 0.0070 <.0001 0.0003 <.0001 0.0320 0.0143 0.1335

Franck et al. (2013) CNV1 6 2 0.0007 ‡ 0.0138 ‡ ‡ 0.0310 ‡ 0.0009
CNV2 6 2 0.0005 ‡ 0.0659 ‡ ‡ 0.0010 ‡ 0.0164
CNV3 6 2 <.0001 ‡ 0.4674 ‡ ‡ 0.0017 ‡ 0.0018
CNV4 6 2 0.0005 ‡ 0.1659 ‡ ‡ 0.1249 ‡ 0.0182
CNV5 6 2 0.0005 ‡ 0.2388 ‡ ‡ 0.0259 ‡ 0.0173
CNV6 6 2 0.0007 ‡ 0.6187 ‡ ‡ 0.2799 ‡ 0.0224
CNV7 6 2 0.0006 ‡ 0.0277 ‡ ‡ 0.0939 ‡ 0.0193
CNV8 6 2 0.0007 ‡ 0.1391 ‡ ‡ 0.0340 ‡ 0.0216

Table 1: P-values for various tests of non-additivity supported by hiddenf. ‡: r and/or c insufficient for analysis. �: grouping on c > 20 for Penicillin not currently available in
hiddenf. The Malik p-values employ N=100,000 Monte Carlo replicates.

T
he

R
JournalVol.8/1,A

ug.2016
ISSN

2073-4859

CONTRIBUTED RESEARCH ARTICLES 171

Acknowledgements

We’d like to acknowledge Zahra Shenavari of Shiraz University for helpful comments regarding the
error mean square subtable comparison approach.

Bibliography

A. Alin and S. Kurt. Testing non-additivity (interaction) in two-way ANOVA tables with no replication.
Statistical Methods in Medical Research, 15:63–85, 2006. [p159, 165, 168]

F. Anscombe and J. Tukey. The examination and analysis of residuals. Technometrics, 5:141–160, 1963.
[p159]

R. Biggs and R. Macmillan. The error of the red cell count. Journal of Clinical Pathology, 1:288–291, 1948.
[p168, 170]

R. Boik. Testing additivity in two-way classifications with no replications: the locally best invariant
test. Journal of Applied Statistics, 20:41–55, 1993a. [p159, 160, 168]

R. Boik. A comparison of three invariant tests of additivity in two-way classifications with no
replications. Computational Statistics and Data Analysis, 15:411–424, 1993b. [p168]

O. Carter, B. Collier, and F. Davis. Blast furnace slags as agricultural liming materials. Agronomy, 43:
430–433, 1951. [p167, 170]

O. Davies and P. Goldsmith. Statistical Methods in Research and Production. Longman, 4th edition, 1972.
[p168, 170]

C. Franck, D. Nielsen, and J. Osborne. A method for detecting hidden additivity in two-factor
unreplicated experiments. Computational Statistics & Data Analysis, 67:95–104, 2013. [p159, 160, 162,
164, 168, 170]

F. Giesbrecht and M. Gumpertz. Planning, Construction, and Statistical Analysis of Comparative Experi-
ments. Probability and Statistics. Wiley, 2004. [p168]

F. Graybill. Variance heterogeneity in a randomized block design. Biometrics, 10:516–520, 1954. [p164,
168, 170]

A. Hald. Statistical Theory with Engineering Applications. Statistics. Wiley Publications, 1952. [p168, 170]

J. Hartigan and M. Wong. A k-means clustering algorithm. Applied Statistics, 28:100–108, 1979. [p167]

C. Hirotsu. An approach to defining the pattern of interaction effects in a two-way layout. Annals of
the Institute of Statistical Mathematics, 35:77–90, 1982. [p159]

D. Johnson and F. Graybill. An analysis of a two-way model with interaction and no replication.
Journal of the American Statistical Association, 67:862–868, 1972. [p159, 160, 167]

M. Kharrati-Kopaei and S. Sadooghi-Alvandi. A new method for testing interaction in unreplicated
two-way analysis of variance. Communications in Statistics-Theory and Methods, 36:2787–2803, 2007.
[p159, 160, 166, 167, 168, 170]

M. Lentner and T. Bishop. Experimental Design and Analysis. Valley Book Company, second edition,
1993. [p168, 170]

J. MacQueen. Some methods for classification and analysis of multivariate observations. Proceedings of
5th Berkeley Symposium on Mathematical Statistics and Probability, 1:281–297, 1967. [p167]

W. Malik, J. Mohring, and H. Piepho. A clustering-based test for non-additivity in an unreplicated
two-way layout. Communications in Statistics - Simulation and Computation, 1:1–24, 2014. [p159, 160,
166, 167, 168]

J. Mandel. Non-additivity in two-way analysis of variance. Journal of the American Statistical Association,
56:878–888, 1961. [p159, 160, 165, 168, 170]

J. Mandel. A new analysis of variance model for non-additive data. Technometrics, 13:1–18, 1971. [p159,
168]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 172

J. Mandel. Evaluation and Control of Measurements. Quality and Reliability Series. Marcel Dekker, 1991.
[p168, 170]

N. Osborne, E. McKelvy, and H. Bearce. Density and thermal expansion of ethyl alcohol and its
mixtures with water. Bulletin of the Bureau of Standards, 9, 1913. [p168, 170]

B. Ostle. Statistics in Research, Basic Concepts and Techniques for Research Works. The Iowa State University
Press, 2nd edition, 1963. [p168, 170]

E. Ott and R. Snee. Identifying useful differences in a multiple-head machine. JOURNAL OF QUALITY
TECHNOLOGY, 5:47–57, 1973. [p168, 170]

R. Ott and M. Longnecker. An Introduction to Statistical Methods and Data Analysis. Brooks/Cole, check
edition, 2001. [p168, 170]

Y. Qiu. Antimicrobial susceptibility and clonal population structure of multidrug resistant campylobacter
jejuni isolates from commercial turkeys in North Carolina. Master’s thesis, North Carolina State
University, 2013. [p159, 168, 170]

P. Simecek and M. Simeckova. Modification of tukey’s additivity test. Journal of Statistical Planning and
Inference, 143:1, 2012. [p160]

J. Tukey. One degree of freedom for non-additivity. Biometrics, 5:232–242, 1949. [p159, 160, 165, 168,
170]

F. Tusell. Testing for interaction in two-way ANOVA tables with no replication. Computational Statistics
and Data Analysis, 10:29–45, 1990. [p159, 160]

Christopher Franck
Virginia Tech Department of Statistics
403 E Hutcheson Hall Blacksburg, VA 24061
United States of America
chfranck@vt.edu

Jason Osborne
North Carolina State University Department of Statistics
5238 SAS Hall Raleigh, NC 27695
United States of America
jason.osborne@ncsu.edu

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:chfranck@vt.edu
mailto:jason.osborne@ncsu.edu

CONTRIBUTED RESEARCH ARTICLES 173

Heteroscedastic Censored and Truncated
Regression with crch
by Jakob W. Messner, Georg J. Mayr, and Achim Zeileis

Abstract The crch package provides functions for maximum likelihood estimation of censored
or truncated regression models with conditional heteroscedasticity along with suitable standard
methods to summarize the fitted models and compute predictions, residuals, etc. The supported
distributions include left- or right-censored or truncated Gaussian, logistic, or student-t distributions
with potentially different sets of regressors for modeling the conditional location and scale. The models
and their R implementation are introduced and illustrated by numerical weather prediction tasks
using precipitation data for Innsbruck (Austria).

Introduction

Censored or truncated response variables occur in a variety of applications. Censored data arise if
exact values are only reported in a restricted range. Data may fall outside this range but are reported
at the range limits. In contrast, if data outside this range are omitted completely we call the dataset
truncated. E.g., consider wind measurements with an instrument that needs a certain minimum wind
speed to start working. If wind speeds below this minimum are recorded as ≤ minimum the data are
censored. If only wind speeds exceeding this limit are reported and those below are omitted the data
are truncated. Even if the generating process is not as clear, censoring or truncation can be useful to
consider limited data such as precipitation observations.

The tobit (Tobin, 1958) and truncated regression (Cragg, 1971) models are common linear regression
models for censored and truncated conditionally normally distributed responses respectively. Beside
truncated data, truncated regression is also used in two-part models (Cragg, 1971) for censored type
data: a binary (e.g., probit) regression model fits the exceedance probability of the lower limit and a
truncated regression model fits the value given the lower limit is exceeded.

Usually linear models like the tobit or truncated regression models assume homoscedasticity which
means that the variance of an underlying normal distribution does not depend on covariates. However,
sometimes this assumption does not hold and models that can consider conditional heteroscedasticity
should be used. Such models have been proposed, e.g., for generalized linear models (Nelder and
Pregibon, 1987; Smyth, 1989), generalized additive models (Rigby and Stasinopoulos, 1996, 2005), or
beta regression (Cribari-Neto and Zeileis, 2010). There also exist several R packages with functions
implementing the above models, e.g., dglm (Dunn and Smyth, 2014), glmx (Zeileis et al., 2013), gamlss
(Rigby and Stasinopoulos, 2005), betareg (Grün et al., 2012) among others.

The crch package provides functions to fit censored and truncated regression models that consider
conditional heteroscedasticity. It has a convenient interface to estimate these models with maximum
likelihood and provides several methods for analysis and prediction. In addition to the typical
conditional Gaussian distribution assumptions it also allows for logistic and student-t distributions
with heavier tails.

In the following this paper presents the heteroscedastic censored and truncated regression models
and their R implementation. Furthermore these models and their implementation are illustrated with
numerical weather prediction data of precipitation in Innsbruck (Austria).

Regression models

For both, censored and truncated regression, a normalized latent response (y∗ − µ)/σ is assumed to
follow a certain distribution D

y∗ − µ

σ
∼ D (1)

The location parameter µ and a link function of the scale parameter g(σ) are assumed to relate linearly
to covariates x = (1, x1, x2, . . .)> and z = (1, z1, z2, . . .)>:

µ = x>β (2)

g(σ) = z>γ (3)

where β = (β0, β1, β2, . . .)> and γ = (γ0, γ1, γ2, . . .)> are coefficient vectors. The link function
g(·) : R+ 7→ R is a strictly increasing and twice differentiable function; e.g., the logarithm (i.e.,

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=dglm
http://CRAN.R-project.org/package=glmx
http://CRAN.R-project.org/package=gamlss
http://CRAN.R-project.org/package=betareg
http://CRAN.R-project.org/package=crch

CONTRIBUTED RESEARCH ARTICLES 174

g(σ) = log(σ)) is a well suited function. Although they only map to R+, the identity g(σ) = σ or the
quadratic function g(σ) = σ2 can be useful as well. However, problems in the numerical optimization
can occur.

Commonly D is the standard normal distribution so that y∗ is assumed to be normally distributed
with mean µ and variance σ2. D might also be assumed to be a standard logistic or a student-t
distribution if heavier tails are required. The tail weight of the student-t distribution can be controlled
by the degrees of freedom ν which can either be set to a certain value or estimated as an additional
parameter. To assure positive values, log(ν) is modeled in the latter case.

log(ν) = δ (4)

Censored regression (tobit)

The exact values of censored responses are only known in an interval defined by left and right.
Observation outside this interval are mapped to the interval limits

y =

left y∗ ≤ left
y∗ left < y∗ < right
right y∗ ≥ right

(5)

The coefficients β, γ, and δ (Equations 2–4) can be estimated by maximizing the sum over the data set
of the log-likelihood function log(fcens(y, µ, σ)), where

fcens(y, µ, σ) =

F
(

left−µ
σ

)
y ≤ left

f
(

y−µ
σ

)
left < y < right(

1− F
(

right−µ
σ

))
y ≥ right

(6)

F() and f () are the cumulative distribution function and the probability density function of D,
respectively. If D is the normal distribution this model is a heteroscedastic variant of the tobit model
(Tobin, 1958).

Truncated regression

Truncated responses occur when latent responses below or above some thresholds are omitted.

y = y∗|left < y∗ < right (7)

Then y follows a truncated distribution with probability density function

ftr(y, µ, σ) =
f
(

y−µ
σ

)
F
(

right−µ
σ

)
− F

(
left−µ

σ

) (8)

In that case the coefficients β, γ, and δ can be estimated by maximizing the sum over the data set of
the log-likelihood function

log(ftr(y, µ, σ)) (9)

R implementation

The models from the previous section can both be fitted with the crch() function provided by the crch
package. This function takes a formula and data, sets up the likelihood function, gradients and Hessian
matrix and uses optim() to maximize the likelihood. It returns an S3 object for which various standard
methods are available. We tried to build an interface as similar to glm() as possible to facilitate the
usage.

crch(formula, data, subset, na.action, weights, offset, link.scale = "log",
dist = "gaussian", df = NULL, left = -Inf, right = Inf, truncated = FALSE,
control = crch.control(...), model = TRUE, x = FALSE, y = FALSE, ...)

Here formula, data, na.action, weights, and offset have their standard model frame meanings (e.g.,
Chambers and Hastie, 1992). However, as provided in the Formula package (Zeileis and Croissant,
2010) formula can have two parts separated by ‘|’ where the first part defines the location model

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=Formula

CONTRIBUTED RESEARCH ARTICLES 175

Function Description

print() Print function call and estimated coefficients.
summary() Standard regression output (coefficient estimates, standard errors,

partial Wald tests). Returns an object of class "summary.crch" con-
taining summary statistics which has a print() method.

coef() Extract model coefficients where model specifies whether a single
vector containing all coefficients ("full") or the coefficients for the
location ("location"), scale ("scale") or degrees of freedom ("df")
are returned.

vcov() Variance-covariance matrix of the estimated coefficients.

predict() Predictions for new data where "type" controls whether lo-
cation ("response"/"location"), scale ("scale") or quantiles
("quantile") are predicted. Quantile probabilities are specified
by at.

fitted() Fitted values for observed data where "type" controls whether
location ("location") or scale ("scale") values are returned.

residuals() Extract various types of residuals where type can be
"standardized" (default), "pearson", "response", or "quantile".

terms() Extract terms of model components.
logLik() Extract fitted log-likelihood.

Table 1: Functions and methods for objects of class "crch".

and the second part the scale model. E.g., with y ~ x1 + x2 | z1 + z2 the location model is
specified by y ~ x1 + x2 and the scale model by ~ z1 + z2. Known offsets can be specified
for the location model by offset or for both, the location and scale model, inside formula, i.e.,
y ~ x1 + x2 + offset(x3) | z1 + z2 + offset(z3).

The link function g(·) for the scale model can be specified by link.scale. The default is "log",
also supported are "identity" and "quadratic". Furthermore, an arbitrary link function can be
specified by supplying an object of class "link-glm" containing linkfun, linkinv, mu.eta, and name.
Furthermore it must contain the second derivative dmu.deta if analytical Hessians are employed.

dist specifies the used distribution. Currently supported are "gaussian" (the default), "logistic",
and "student". If dist = "student" the degrees of freedom can be set by the df argument. If set to
NULL (the default) the degrees of freedom are estimated by maximum likelihood (Equation 4).

left and right define the lower and upper censoring or truncation points respectively. The logical
argument truncated defines whether a censored or truncated model is estimated. Note that also a
wrapper function trch() exists that is equivalent to crch() but with default truncated = TRUE.

The maximum likelihood estimation is carried out with the R function optim() using control
options specified in crch.control(). By default the "BFGS" method is applied. If no starting values
are supplied, coefficients from lm() are used as starting values for the location part. For the scale
model the intercept is initialized with the link function of the residual standard deviation from lm()
and the remaining scale coefficients are initialized with 0. If the degrees of freedom of a student-t
distribution are estimated they are initialized by 10. For the student-t distribution with estimated
degrees of freedom the covariance matrix estimate is derived from the numerical Hessian returned by
optim(). For fixed degrees of freedom and Gaussian and logistic distributions the covariance matrix is
derived analytically. However, by setting hessian = TRUE the numerical Hessian can be employed for
those models as well.

Finally model, y, and x specify whether the model frame, response, or model matrix are returned.

The returned model fit of class "crch" is a list similar to "glm" objects. Some components like
coefficients are lists with elements for location, scale, and degrees of freedom. The package also
provides a set of extractor methods for "crch" objects that are listed in Table 1.

Additional to the crch() function and corresponding methods the crch package also provides
probability density, cumulative distribution, random number, and quantile functions for censored
and truncated normal, logistic, and student-t distributions. Furthermore it also provides a function
hxlr() (heteroscedastic extended logistic regression) to fit heteroscedastic interval-censored regression
models (Messner et al., 2014c).

Note that alternatives to crch() heteroscedastic censored and truncated models could also be

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 176

fitted by the R package gamlss (Rigby and Stasinopoulos, 2005) with the add-on packages gamlss.cens
and gamlss.tr. However, for the special case of linear censored truncated regression models with the
Gaussian, logistic, or student-t distribution crch provides a fast and convenient interface and various
useful methods for analysis and prediction.

Example

This section shows a weather forecast example application of censored and truncated regression models
fitted with crch(). Weather forecasts are usually based on numerical weather prediction (NWP) models
that take the current state of the atmosphere and compute future weather by numerically simulating
the most important atmospheric processes. However, because of uncertain initial conditions and
unknown or unresolved processes these numerical predictions are always subject to errors. To estimate
these errors, many weather centers provide so called ensemble forecasts: several NWP runs that use
different initial conditions and model formulations. Unfortunately these ensemble forecasts cannot
consider all error sources so they are often still biased and uncalibrated. Thus they are often calibrated
and corrected for systematic errors by statistical post-processing.

One popular post-processing method is heteroscedastic linear regression where the ensemble
mean is used as regressor for the location and the ensemble standard deviation or variance is used
as regressor for the scale (e.g., Gneiting et al., 2005). Because not all meteorological variables can be
assumed to be normally distributed this idea has also been extended to other distributions including
truncated regression for wind (Thorarinsdottir and Gneiting, 2010) and censored regression for wind
power (Messner et al., 2014b) or precipitation (Messner et al., 2014a).

The following example applies heteroscedastic censored regression with a logistic distribution
assumption to precipitation data in Innsbruck (Austria). Furthermore, a two-part model tests whether
the occurrence of precipitation and the precipitation amount are driven by the same process.

First, the crch package is loaded together with an included precipitation data set with forecasts
and observations for Innsbruck (Austria)

R> library("crch")
R> data("RainIbk", package = "crch")

The data.frame RainIbk contains observed 3 day-accumulated precipitation amounts (rain) and the
corresponding 11 member ensemble forecasts of total accumulated precipitation amount between 5
and 8 days in advance (rainfc.1, rainfc.2, . . . rainfc.11). The rownames are the end date of the 3
days over which the precipitation amounts are accumulated respectively; i.e., the respective forecasts
are issued 8 days before these dates.

In previous studies it has been shown that it is of advantage to model the square root of precipita-
tion rather than precipitation itself. Thus all precipitation amounts are square rooted before ensemble
mean and standard deviation are derived. Furthermore, events with no variation in the ensemble are
omitted:

R> RainIbk <- sqrt(RainIbk)
R> RainIbk$ensmean <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, mean)
R> RainIbk$enssd <- apply(RainIbk[,grep('^rainfc',names(RainIbk))], 1, sd)
R> RainIbk <- subset(RainIbk, enssd > 0)

A scatterplot of rain against ensmean

R> plot(rain ~ ensmean, data = RainIbk, pch = 19, col = gray(0, alpha = 0.2))
R> abline(0,1, col = "red")

indicates a linear relationship that differs from a 1-to-1 relationship (Figure 1). Precipitation is clearly
non-negative with many zero observations. Thus censored regression or a two-part model are suitable
to estimate this relationship.

First we fit a logistic censored model for rain with ensmean as regressor for the location and
log(enssd) as regressor for the scale.

R> CRCH <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0,
+ dist = "logistic")
R> summary(CRCH)

Call:
crch(formula = rain ~ ensmean | log(enssd), data = RainIbk,

dist = "logistic", left = 0)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=gamlss.cens
http://CRAN.R-project.org/package=gamlss.tr

CONTRIBUTED RESEARCH ARTICLES 177

0 2 4 6 8

0
2

4
6

8
10

ensmean

ra
in

Figure 1: Square rooted precipitation amount against ensemble mean forecasts. A line with intercept 0
and slope 1 is shown in red and the censored regression fit in blue.

Standardized residuals:
Min 1Q Median 3Q Max

-3.5780 -0.6554 0.1673 1.1189 7.4990

Coefficients (location model):
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.85266 0.06903 -12.35 <2e-16 ***
ensmean 0.78686 0.01921 40.97 <2e-16 ***

Coefficients (scale model with log link):
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.11744 0.01460 8.046 8.58e-16 ***
log(enssd) 0.27055 0.03503 7.723 1.14e-14 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Distribution: logistic
Log-likelihood: -8921 on 4 Df
Number of iterations in BFGS optimization: 15

Both, ensmean and log(enssd) are highly significant according to the Wald test performed by the
summary() method. The location model is also shown in Figure 1:

R> abline(coef(CRCH)[1:2], col = "blue")

If we compare this model to a constant scale model (tobit model with logistic distribution)

R> CR <- crch(rain ~ ensmean, data = RainIbk, left = 0, dist = "logistic")
R> cbind(AIC(CR, CRCH), BIC = BIC(CR, CRCH)[,2])

df AIC BIC
CR 3 17905.69 17925.22
CRCH 4 17850.30 17876.33

we see that the scale model clearly improves the fit regarding AIC and BIC.

A comparison of the logistic model with a Gaussian and a student-t model

R> CRCHgau <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0,
+ dist = "gaussian")
R> CRCHstud <- crch(rain ~ ensmean | log(enssd), data = RainIbk, left = 0,
+ dist = "student")
R> AIC(CRCH, CRCHgau, CRCHstud)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 178

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Probability density function

de
ns

ity
student−t
scaled logistic
scaled normal

Figure 2: Probability density functions of a student-t distribution with 9.56 degrees of freedom, a
logistic, and a normal distribution. The densities of the logistic and normal distribution are scaled to
facilitate comparison.

df AIC
CRCH 4 17850.30
CRCHgau 4 17897.23
CRCHstud 5 17850.65

confirms the logistic distribution assumption. Note, that with the estimated degrees of freedom of 9.56
the student-t distribution resembles the (scaled) logistic distribution quite well (see Figure 2).

In the censored model the occurrence of precipitation and precipitation amount are assumed to be
driven by the same process. To test this assumption we compare the censored model with a two-part
model consisting of a heteroscedastic logit model and a truncated regression model with logistic
distribution assumption. For the heteroscedastic logit model we use hetglm() from the glmx package
and for the truncated model we employ the crch() function with the argument truncated = TRUE.

R> library("glmx")
R> BIN <- hetglm(I(rain > 0) ~ ensmean | log(enssd), data = RainIbk,
+ family = binomial(link = "logit"))
R> TRCH <- crch(rain~ensmean | log(enssd), data = RainIbk, subset = rain > 0,
+ left = 0, dist = "logistic", truncated = TRUE)

In the heteroscedastic logit model, the intercept of the scale model is not identified. Thus, the location
coefficients of the censored and truncated regression models have to be scaled to compare them with
the logit model.

R> cbind("CRCH" = c(coef(CRCH, "location")/exp(coef(CRCH, "scale"))[1],
+ coef(CRCH, "scale")[2]),
+ "BIN" = coef(BIN),
+ "TRCH" = c(coef(TRCH, "location")/exp(coef(TRCH, "scale"))[1],
+ coef(TRCH, "scale")[2]))

CRCH BIN TRCH
(Intercept) -0.7581811 -1.0181715 0.2635421
ensmean 0.6996699 0.7789091 0.5455966
log(enssd) 0.2705476 0.4539908 0.2326229

The different (scaled) coefficients indicate that different processes drive the occurrence of precipitation
and precipitation amount. This is also confirmed by AIC and BIC that are clearly better for the two-part
model than for the censored model:

R> loglik <- c("Censored" = logLik(CRCH), "Two-Part" = logLik(BIN) + logLik(TRCH))
R> df <- c(4, 7)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 179

R> aic <- -2 * loglik + 2 * df
R> bic <- -2 * loglik + log(nrow(RainIbk)) * df
R> cbind(df, AIC = aic, BIC = bic)

df AIC BIC
Censored 4 17850.30 17876.33
Two-Part 7 17744.82 17790.39

Finally, we can use the fitted models to predict future precipitation. Therefore assume that the current
NWP forecast of square rooted precipitation has an ensemble mean of 1.8 and an ensemble standard
deviation of 0.9. A median precipitation forecast of the censored model can then easily be computed
with

R> newdata <- data.frame(ensmean = 1.8, enssd = 0.9)
R> predict(CRCH, newdata, type = "quantile", at = 0.5)^2

1
0.3177399

Note, that the prediction has to be squared since all models fit the square root of precipitation. In the
two-part model the probability to stay below a threshold q is composed of

P(y ≤ q) = 1− P(y > 0) + P(y > 0) · P(y ≤ q|y > 0) (10)

Thus median precipitation equals the (P(y > 0)− 0.5)/P(y > 0)-quantile of the truncated distribution.

R> p <- predict(BIN, newdata)
R> predict(TRCH, newdata, type = "quantile", at = (p - 0.5)/p)^2

1.1
0.4156972

Probabilities to exceed, e.g., 5mm can be predicted with cumulative distribution functions (e.g.,
pclogis(), ptlogis()) that are also provided in the crch package.

R> mu <- predict(CRCH, newdata, type = "location")
R> sigma <- predict(CRCH, newdata, type = "scale")
R> pclogis(sqrt(5), mu, sigma, lower.tail = FALSE, left = 0)

[1] 0.177983

R> mu <- predict(TRCH, newdata, type = "location")
R> sigma <- predict(TRCH, newdata, type = "scale")
R> p * ptlogis(sqrt(5), mu, sigma, lower.tail = FALSE, left = 0)

1
0.2108671

Note, that pclogis() could also be replaced by plogis() since they are equivalent between left and
right.

Clearly, other types of model misspecification or model generalization (depending on the point of
view) for the classical tobit model are possible. In addition to heteroscedasticity, the type of response
distribution, and the presence of hurdle effects as explored in the application here, further aspects
might have to be addressed by the model. Especially in economics and the social sciences sample
selection effects might be present in the two-part model which can be addressed (in the homoscedastic
normal case) using the R packages sampleSelection (Toomet and Henningsen, 2008) or mhurdle
(Croissant et al., 2013). Furthermore, the scale link function or potential nonlinearities in the regression
functions could be assessed, e.g., using the gamlss suite of packages (Stasinopoulos and Rigby, 2007).

Summary

Censored and truncated response models are common in econometrics and other statistical applica-
tions. However, often the homoscedasticity assumption of these models is not fulfilled. This paper
presented the crch package that provides functions to fit censored or truncated regression models
with conditional heteroscedasticity. It supports Gaussian, logistic or student-t distributed censored
or truncated responses and provides various convenient methods for analysis and prediction. To
illustrate the package we showed that heteroscedastic censored and truncated regression models are
well suited to improve precipitation forecasts.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=sampleSelection
http://CRAN.R-project.org/package=mhurdle

CONTRIBUTED RESEARCH ARTICLES 180

Bibliography

J. M. Chambers and T. J. Hastie. Statistical Models in S. Chapman & Hall, London, 1992. [p174]

J. G. Cragg. Some statistical models for limited dependent variables with application to the demand
for durable goods. Econometrica, 39(5):829–844, 1971. doi: 10.2307/1909582. [p173]

F. Cribari-Neto and A. Zeileis. Beta regression in R. Journal of Statistical Software, 34(2):1–24, 2010. doi:
10.18637/jss.v034.i02. [p173]

Y. Croissant, F. Carlevaro, and S. Hoareau. mhurdle: Multiple Hurdle Tobit Models, 2013. URL http:
//CRAN.R-project.org/package=mhurdle. R package version 1.0-1. [p179]

P. K. Dunn and G. K. Smyth. dglm: Double Generalized Linear Models, 2014. URL http://CRAN.R-
project.org/package=dglm. R package version 1.8.1. [p173]

T. Gneiting, A. E. Raftery, A. H. Westveld, and T. Goldman. Calibrated probabilistic forecasting using
ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133(5):
1098–1118, 2005. doi: 10.1175/MWR2904.1. [p176]

B. Grün, I. Kosmidis, and A. Zeileis. Extended beta regression in R: Shaken, stirred, mixed, and
partitioned. Journal of Statistical Software, 48(11):1–25, 2012. doi: 10.18637/jss.v048.i11. [p173]

J. W. Messner, G. J. Mayr, D. S. Wilks, and A. Zeileis. Extending extended logistic regression: Extended
vs. separate vs. ordered vs. censored. Monthly Weather Review, 142:3003–3014, 2014a. doi: 10.1175/
MWR-D-13-00355.1. [p176]

J. W. Messner, A. Zeileis, J. Broecker, and G. J. Mayr. Probabilistic wind power forecasts with an inverse
power curve transformation and censored regression. Wind Energy, 17(11):1753–1766, 2014b. doi:
10.1002/we.1666. [p176]

J. W. Messner, A. Zeileis, G. J. Mayr, and D. S. Wilks. Heteroscedastic extended logistic regression
for post-processing of ensemble guidance. Monthly Weather Review, 142:448–456, 2014c. doi:
10.1175/MWR-D-13-00271.1. [p175]

J. A. Nelder and D. Pregibon. An extended quasi-likelihood function. Biometrika, 74(2):221–232, 1987.
doi: 10.2307/2336136. [p173]

R. A. Rigby and D. M. Stasinopoulos. Mean and dispersion additive models. In W. Härdle and M. G.
Schimek, editors, Statistical Theory and Computational Aspects of Smoothing, Contributions to Statistics,
pages 215–230. Physica-Verlag, 1996. doi: 10.1007/978-3-642-48425-4_16. [p173]

R. A. Rigby and D. M. Stasinopoulos. Generalized additive models for location, scale and shape.
Journal of the Royal Statistical Society C, 54(3):507–554, 2005. doi: 10.1111/j.1467-9876.2005.00510.x.
[p173, 176]

G. K. Smyth. Generalized linear models with varying dispersion. Journal of the Royal Statistical Society
B, 51(1):47–60, 1989. [p173]

D. Stasinopoulos and R. Rigby. Generalized additive models for location scale and shape (GAMLSS)
in R. Journal of Statistical Software, 23(7):1–46, 2007. doi: 10.18637/jss.v023.i07. [p179]

T. L. Thorarinsdottir and T. Gneiting. Probabilistic forecasts of wind speed: Ensemble model output
statistics by using heteroscedastic censored regression. Journal of the Royal Statistical Society A, 173
(2):371–388, 2010. doi: 10.1111/j.1467-985X.2009.00616.x. [p176]

J. Tobin. Estimation of relationships for limited dependent variables. Econometrica, 26(1):24–36, 1958.
doi: 10.2307/1907382. [p173, 174]

O. Toomet and A. Henningsen. Sample selection models in R: Package sampleSelection. Journal of
Statistical Software, 27(7):1–23, 2008. doi: 10.18637/jss.v027.i07. [p179]

A. Zeileis and Y. Croissant. Extended model formulas in R: Multiple parts and multiple responses.
Journal of Statistical Software, 34(1):1–13, 2010. doi: 10.18637/jss.v034.i01. [p174]

A. Zeileis, R. Koenker, and P. Doebler. glmx: Generalized Linear Models Extended, 2013. URL http:
//CRAN.R-project.org/package=glmx. R package version 0.1-0. [p173]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=mhurdle
http://CRAN.R-project.org/package=mhurdle
http://CRAN.R-project.org/package=dglm
http://CRAN.R-project.org/package=dglm
http://CRAN.R-project.org/package=glmx
http://CRAN.R-project.org/package=glmx

CONTRIBUTED RESEARCH ARTICLES 181

Jakob W. Messner
Universität Innsbruck
6020 Innsbruck, Austria
jakob.messner@uibk.ac.at

Georg J. Mayr
Universität Innsbruck
6020 Innsbruck, Austria
georg.mayr@uibk.ac.at

Achim Zeileis
Universität Innsbruck
6020 Innsbruck, Austria
achim.zeileis@uibk.ac.at

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:jakob.messner@uibk.ac.at
mailto:georg.mayr@uibk.ac.at
mailto:achim.zeileis@uibk.ac.at

CONTRIBUTED RESEARCH ARTICLES 182

Model Builder for Item Factor Analysis
with OpenMx
by Joshua N. Pritikin and Karen M. Schmidt

Abstract We introduce a shiny web application to facilitate the construction of Item Factor Analysis
(a.k.a. Item Response Theory) models using the OpenMx package. The web application assists with
importing data, outcome recoding, and model specification. However, the app does not conduct any
analysis but, rather, generates an analysis script. Generated Rmarkdown output serves dual purposes:
to analyze a data set and demonstrate good programming practices. The app can be used as a teaching
tool or as a starting point for custom analysis scripts.

An overview of OpenMx

OpenMx, a modular package originally designed for structural equation modeling (Neale et al., in
press), recently gained the ability to handle Item Factor Analysis (a.k.a. Item Response Theory, Modern
Test Theory) models (Pritikin et al., 2015). Although a goal of OpenMx is to cater to the statistical
power user and facilitate analyses that are difficult to conduct in other software, the development
team is always on the lookout for ways to ease the learning curve for novice users as well. Here
we introduce a new shiny (RStudio and Inc., 2014) web application to generate OpenMx code in
Rmarkdown format (Allaire et al., 2014). We believe this code generator substantially lowers the
barrier to entry for novice users of Item Factor Analysis (IFA) and encourages a culture of literate
programming (Knuth, 1984) and reproducible science (Peng, 2011; Nosek et al., 2015). The generated
code can be customized at many levels. This flexibility enables the production of custom analyses and
reports as users grow more sophisticated in their modeling expectations.

The statistical model

Item analysis is concerned with items that are scored correct/incorrect or on an ordinal scale. Many
psychological surveys use an ordinal scale. For example, participants may be asked to respond to an
item like, “I feel I am in charge of the situation in which I live.” on a 5-point Likert scale from agree to
disagree. Whether dichotomous or ordinal, the conditional likelihood of response xij to item j from
person i with item parameters ξ j and latent ability (a.k.a. latent trait) θi is

L(xi|ξ, θi) = ∏
j

Pr(pick = xij|ξ j, θi). (1)

One implication of Equation 1 is that items are assumed to be conditionally independent given the
latent ability θi. That is, the outcome of one item does not have any influence on another item after
controlling for ξ and θi. The unconditional likelihood is obtained by integrating over the latent
distribution θi,

L(xi|ξ) =
∫

L(xi|ξ, θi)L(θi)dθi. (2)

With an assumption that examinees are independently and identically distributed, we can sum the
individual log likelihoods,

L = ∑
i

log L(xi|ξ). (3)

Optimization consists of finding the ξ that maximizes this function. OpenMx presently offers only
one choice for optimization, an Expectation-Maximization algorithm using equal interval quadrature
to evaluate the integral in Equation 2 (Bock and Aitkin, 1981). In the future, we plan to add comple-
mentary algorithms such as Metropolis-Hastings Robbins-Monro, that is more efficient at optimizing
certain problems (Cai, 2010b).

Several models are readily available to plug in as the response probability function Pr(pick =
xij|ξ j, θi) in Equation 1. All of these response probability functions are built from the logistic function,

logistic(l) ≡ logit−1(l) ≡ 1
1 + exp(−l)

.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=OpenMx
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=Rmarkdown

CONTRIBUTED RESEARCH ARTICLES 183

Details of the parameterizations are given here. A discussion of these item models more appealing to
intuition is given in the next section.

Dichotomous model

The dichotomous response probability function can model items when there are exactly two possible
outcomes. It is defined as,

Pr(pick = 0|a, b, g, u, τ) = 1− Pr(pick = 1|a, b, g, u, τ) (4)

Pr(pick = 1|a, b, g, u, τ) = logit−1(g) + (logit−1(u)− logit−1(g))
1

1 + exp(−(aτ + b))
(5)

where a is the slope, b is the intercept, g is the pseudo-guessing lower asymptote expressed in logit
units, u is the upper asymptote expressed in logit units, and τ is the latent ability of the examinee
(Birnbaum, 1968; Loken and Rulison, 2010). A #PL naming shorthand has been developed to refer to
versions of the dichotomous model with different numbers of free parameters. Model nPL refers to
the model obtained by freeing the first n of parameters b, a, g, and u.

Graded response model

The graded response model is a response probability function for 2 or more outcomes (Samejima, 1969;
Cai, 2010b). For outcomes k in 0 to K, slope vector a, intercept vector b, and latent ability vector τ, it is
defined as,

Pr(pick = K|a, b, τ) =
1

1 + exp(−(aτ + bK))
(6)

Pr(pick = k|a, b, τ) =
1

1 + exp(−(aτ + bk))
− 1

1 + exp(−(aτ + bk+1))
(7)

Pr(pick = 0|a, b, τ) = 1− Pr(pick = 1|a, b1, τ). (8)

Nominal model

The nominal model is a response probability function for items with 3 or more outcomes (e.g., Thissen
et al., 2010). It can be defined as,

a = Taα (9)

c = Tcγ (10)

Pr(pick = k|s, ak, ck, τ) = C
1

1 + exp(−(sτak + ck))
(11)

where ak and ck are the result of multiplying two vectors of free parameters α and γ by fixed matrices
Ta and Tc, respectively; a0 and c0 are fixed to 0 for identification; s is the per-item slope; and C is a
normalizing constant to ensure that ∑k Pr(pick = k) = 1.

Item models

●●●
●●●●

●●●
●●
●●

●●
●
●●●●

●●●
●
●●●●●●●●●

●●●
●

●
●
●●●●●●

●●●●
●●

●●●●●●●●●●●●
●
●
●
●●
●
●●●

●
●●●●

●
●
●●

●●
●●●●●●●●●

●●●●
●
●●
●●●
●●●●●●

●●●●
●
●●
●●● ●

●●●●
●●●●●

●
●
●

●●
●
●
●
●
●
● ●●●●●

●
●●
●●●●●●

●
●
●●●●

●
●●●●●●

●●●●●
●
●●

●●●●
●●●

●
●
●●●●

●●●
●●●
●●●●●●●

●
●
●●●

●●
●
●
●●●●●

●●●
●
●
●●●
●
●●●

●
●
●●●●●●

●●

●

●●
●
●●
●●●●

●

●

●

●
●●
●●

●

●●

●

●

●

●●●

●●

●
●●●●●

●

●●●●

●

●
●
●●
●●●
●
●
●●●●

●

●●

●
●

●

●

●
●
●

●
●
●
●●

●

●●

●

●

●

● ●

●

●●●

●

●●●
●●●●

●●

●
●
●
●

●

●●
●

●

●●
●

●

●

●●

●
●

●
●●●●●●

●
●
●
●
●●

●●●
●
●
●
●
●●●●●●

●
●
●●

●

●

●

●
●●●●●●

●

●
●●●●
●
●●
●●●
●
●●●●●●●●●●●●●●

●●
●●●●
●
●
●●●●●●●

●●●●
●●●

●●●●
●
●●●

●
●●●●

● ●●●●● ●●●
●
●
●●●●●●

●
●●
●
●
●●
●
●
●●●
●
●●●

●●●●
●●●●●●

●
●

●
●●●
●
●●

0 0 0 0 0 0 17 29 74 88 98 10
0

10
0

FALSE

TRUE

−5.0 −2.5 0.0 2.5 5.0
skill

%
 c

or
re

ct

Figure 1: Dichotomous data converted into contin-
uous data conditional on examinee skill.

Modern test theory employs item models,
Pr(pick = xij|ξ j, θi) (from Equation 1). To better
appreciate how modern test theory works, it is
helpful to develop an intuitive understanding of
item models. The essential idea is the conversion
of ordinal (or dichotomous) data into continuous
data conditional on examinee skill. In Figure 1,
the black dots represent the dichotomous data.
Here we assume that examinee skill is known so
that we can plot the black dots at the appropriate
place on the x axis. The next step is to partition
the x axis into equal interval bins. The propor-
tion of examinees who responded correctly is displayed in blue in the middle of each bin. These
blue numbers are our new continuous data, conditional on examinee skill. While we assumed that
examinee skill was known, this assumption is actually unnecessary. The optimization algorithm can

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 184

make a rough estimate of examinee skill, proceed to improve the model, and repeat this process until
change is less than some epsilon.

To further inform your intuition about item models, it can be helpful to place yourself in the
position of the optimization algorithm. Enter the following commands to launch the model explorer
tool and browse to the output web server address. It is possible to do this without RStudio, but
RStudio makes everything easier so we recommend using RStudio. Note that the port number (3726
printed below) may be different on your computer.

> library(ifaTools)
> itemModelExplorer()

Listening on http://127.0.0.1:3726

Figure 2: Item model explorer with the dichoto-
mous model selected. The upper plot exhibits the
model predicted chance of outcomes conditional
on the latent trait (theta). The lower plot exhibits
the theoretical item information conditional on the
latent trait.

Your browser should show a screen similar
to Figure 2. Try experimenting with all the con-
trols. Early in the development of item models,
model parameters closely corresponded to the
psychological concepts of difficulty and discrim-
ination (Birnbaum, 1968). For example, difficult
items are only answered correctly by the bright-
est examinees while most examinees may cor-
rectly answer easy items. Discrimination quanti-
fies how much we learn from a given response.
Well-designed items discriminate examinee skill.
The causes of poor item discrimination are many.
An item may be hurt by awkward wording,
by asking examinees something that is some-
what off-topic, or by asking the same question
in slightly different ways.

Some item model parameters still retain a
close connection to difficulty and discrimination.
For example, the dichotomous model’s a param-
eter corresponds with discrimination and the
negative b parameter divided by a corresponds
with difficulty (Equation 5). However, as item
models have grown more flexible, the parameter
values and intuitive interpretation have become
more distant. To understand item models in gen-
eral, it is helpful to plot category curves and information by the latent trait (Figure 2). Some examples
of latent traits which can be measured in this framework are mathematical skill, vocabulary, or sleep
quality.

The way to interpret these plots is to start by picking a value for the latent trait. Suppose we know
that examinee Alice has a latent ability of 2 logit units. If we trace across the plot where the x axis is 2
then we find that Alice has a 75% chance of getting the item correct (blue curve) and a 25% chance of
getting it incorrect (red curve). In addition, we find that this item will give us 0.05 units of information
about Alice (black curve). The difficulty of the item is where the correct and incorrect curves cross at
about 0.2 logits. The discrimination of the item is given by the information plot. This item provides
more information about examinees with latent skill between −1 and 2 than elsewhere on the skill
continuum.

Much can be gleaned about item models by inspection of these plots. However, it is worth
conveying a few additional details specific to particular item models. The dichotomous model’s g and
u asymptote parameters are in logit units. To transform these values back into probabilities use R’s
plogis function. The g parameter may represent the chance of an examinee guessing the item correctly.
This parameter is also often called the pseudo-guessing parameter due to the probability of a low
ability examinee getting an item correct at a non-zero asymptote. The u parameter, or upper asymptote
parameter, may represent the chance of an examinee committing a careless mistake, reflecting high
ability examinee behavior. In this case, the upper asymptote never reaches one (Loken and Rulison,
2010).

By default, the nominal model uses trend for the T.a and T.c matrices (Equation 10). This parame-
terization is also known as the Fourier basis. The effect is that the alf and gam parameters control the
lowest frequency variation to the highest frequency variation. To develop an intuition for how this
works, set all parameters to zero then set a, alf1 and gam2 to 1. Experiment with the gam parameters
before you experiment with the alf parameters. Refer to Thissen et al. (2010) for discussion of the

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 185

Figure 3: Initial screen shown after start up.

possibilities of this item model. Custom T.a and T.c matrices are not available in the model explorer
app, but can be specified in R code.

The “Show/Edit parameters” checkbox has a special didactic purpose. Open two copies of the
item model explorer. On one copy, un-check the “Show/Edit parameters” checkbox to hide the
parameters and click the “Draw new parameters” button. On the second copy of the item model
explorer, adjust the item model parameters to try to match the plot produced on the first item model
explorer. You can check your answers by checking the “Show/Edit parameters” checkbox. When you
play this game, you are doing part of what the optimization algorithm does when it fits models to
data. Note that there is no need to practice this skill. The computer will do it for you.

The model builder

Enter the following commands to launch the model builder tool and browse to the output web server
address. As before, it is possible to do this without RStudio, but RStudio makes everything easier so
we recommend using RStudio. Note that the port number (3726 printed below) may be different on
your computer.

> library(ifaTools)
> modelBuilder()

Listening on http://127.0.0.1:3726

Figure 4: After loading the g341-19.csv data.

Your browser should show a screen similar
to Figure 3. Take care not to hit the Reload but-
ton because that will reset the app. Learn how
to save your work (detailed below) before you
experiment with the Reload button. Across the
top are tabs that organize the major functions
of the model builder app. On the left side is
a control panel for the currently selected tab
Data. Example data sets are available at the
bottom of the control panel. You are welcome
to experiment with these, but we will focus on
the process of loading an external data set. If
you prefer to follow along with a video then
browse to http://youtu.be/xHeb5_CWnCk for di-
chotomous data and http://youtu.be/iwtpleltteQ for polytomous data.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://youtu.be/xHeb5_CWnCk
http://youtu.be/iwtpleltteQ

CONTRIBUTED RESEARCH ARTICLES 186

Dichotomous data

Click on the “Choose File” button1 and select g341-19.csv, a dichotomous data set that is available in
the ifaTools package (Pritikin, 2015a). The first 6 lines will appear in the “Unparsed content” section
(see Figure 4).2 This makes it easy to see how the file is formatted. The “Parsed content” section
reports an error. By reading the error carefully, you will find mention that “duplicate ‘row.names’ are
not allowed.” Since “Row names?” is enabled in the control panel, the model builder app expects the
first column of data to be dedicated to row names. A row name is typically the examinee’s name or
numeric identifier. A glance at the unparsed content reveals that no row names have been given in
this data set.

Figure 5: A summary of the g341-19.csv data set
when parsed incorrectly as a single column.

Click the “Row names?” checkbox in the
control panel to disable row names. Immedi-
ately (without reloading the data), the error mes-
sage in the “Parsed content” section will be
replaced by some of the data organized into
a single column. The column name will read
X010111111100. A column name like that should
raise suspicion. Since the “Header?” checkbox is
enabled in the control panel, the model builder
app expects the first line of the data to contain
column names. Therefore, the first line of data is
misinterpreted.

Click the “Header?” checkbox in the control
panel to disable column names. The column
in the “Parsed content” section will now be
labeled V1. Click on the “Item summary” con-
trol as an alternate way to verify that the data
is loaded and parsed accurately. The main content area includes two elements, a selection for
the “Row frequency column” and a table of items by Outcomes and Missing (see Figure 5). The
“Row frequency column” selection is used when you have already reduced your data to unique
rows and row counts. The example data set LSAT6 is in this format. For our current data set, leave
“Row frequency column” set to −.

The information conveyed in the item table should rouse suspicion. There is only 1 row (or 1 item)
with 721 outcomes. What happened is that the parsing is still not working and all the items are treated
as a single column. For example, the first row “0 1 0 1 1 1 1 1 1 1 0 0” is not treated as 12 separate
numbers but as a single uninterpreted unit. To fix the parsing, we need to select Whitespace as the
Separator in the control panel. With this last error corrected, the table is updated with 12 items labeled
V1, V2, . . . , V12 and all with 2 outcomes. With the data correctly loaded, click on the “Outcomes” tab
on the top bar.

Figure 6: The Outcomes tab without any recoding
rules.

The control panel on the “Outcomes” tab
packs a lot of functionality (Figure 6). The first
two selectors are mutually exclusive and per-
mit working with all items having the same out-
comes or with specific items, respectively. The
outcome set “V1” is currently selected as seen in
the control panel on the left side. In these data,
all items have the same possible outcomes (0 or
1). Therefore, there is only one outcome set. The
name “V1” does not just refer to the item “V1”
but to all items, because all items have the same
outcomes.

For clarity, it is often helpful to rename out-
comes. The “Recode from” selector should have
“0” selected. Change the to selector to <Rename>,
enter “incorrect” for the “New name” value, and
click the “Add mapping” button. This will cre-
ate a recoding rule that will show up in the
“Recode Table” output (Figure 7). Similarly, re-
name the “1” outcome to “correct” and again

1It may read “Choose CSV File’.” The exact appearance may differ on your system.
2We are aware that these screenshots are illegible when printed on paper. Inspect them using magnification on

your computer.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=ifaTools

CONTRIBUTED RESEARCH ARTICLES 187

click the “Add mapping” button. At this point, you should have 2 rules in the “Recode Table” output.

Figure 7: The outcome “0” is renamed to “in-
correct” and we are poised to rename “1” to
“correct.” In a moment, we will click the “Add
mapping” button.

Figure 8: The outcome reorder tool with 1 re-
ordering rule.

Click on the “Reorder” tab. Here you will find the outcomes sorted in lexical order. Drag one of
the outcomes to reverse the order (as in Figure 8). Similar to the operation of renaming outcomes, this
reordering step is not strictly necessary but is often helpful to keep things straight in our minds. With
dichotomous outcomes, there are not that many ways that things can go wrong. However, it is good
practice to use self-explanatory labels and standardized ordering. This is especially true when there
are more than 2 outcomes to worry about.

We will not use the “Reverse” tab and other control panel elements in the present example. In
survey design, it is common for outcomes to have a canonical order with some items reverse scored.
The “Reverse” tab is used to reverse the outcome order of some subset of items without dragging the
outcomes around with the “Reorder” tool. This can save a lot of dragging when there are more than 2
outcomes. The “Add outcome” tool permits the addition of outcomes that are not represented in the
data. This might happen when a measure is in development and we are fitting a preliminary model just
to get a vague idea of how the item is working. To fit an item that lacks data on some outcomes, it is usu-
ally necessary to use the nominal response model with a less than full rank parameterization (similar to
Thissen et al., 1989). In addition to renaming, the recode mappings tool can merge or collapse outcomes.

Figure 9: Configuration of latent factors.

For example, we might have an outcome set
consisting of “Agree,” “Agree somewhat,” “Not
sure,” “Disagree somewhat,” and “Disagree.” It
is straightforward to merge “Agree somewhat”
to “Agree” and “Disagree somewhat” to “Dis-
agree,” resulting in only 3 outcomes. Of course,
it is not always obvious which outcomes to
merge. The recode tool can also recode an out-
come to <NA>, which causes that outcome to be
interpreted as missing. Finally, the “Discard”
button at the bottom of the control panel allows
us to discard any rule that we created. So feel
free to experiment.

Click on the “Model” tab on the top bar. The
first decision we need to make is how many la-
tent factors to include in our model (Figure 9).
If we are not sure, a good starting point is 1. By
default, the first latent factor is called teacup. In
case there was any doubt, “teacup” is not a very
good name for a latent trait. We deliberately
picked ridiculous factors names to encourage
users to pick names that make sense in the context of the data under analysis. For example, a good
factor name for a math test might be math. If you cannot think of a good factor name, you could use
“latent trait,” but this name only works well for a single factor model. You really should make an effort
to think of descriptive names before you start using trait1, trait2, etc. If you are not sure how many

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 188

factors to use then use 1 for now. We will revisit this question later.

The “Reorder” tab allows you to change the order of your items. This can be helpful because of the
way that item model and parameter editing works. To get familiar with how item editing works, click
on the “Parameters” tab. The main content area of the “Parameters” tab contains a lot of information.
The first thing to notice is that all of the tables have the same column labels. Each item is assigned to a
column. Using the control panel, we will focus on only a subset of items. Change the first selector
“Edit items from:” from V1 to V7. This will hide the first 6 items, making the tables in the main
content area look more manageable (Figure 10). The first two selectors facilitate item range selection.
To reveal all items again, use the “Focus all items” button. Item selection is important to understand
because the remainder of the controls in the control panel operate on only the selected (visible) items.

Figure 10: Editing the models and parameters of a
subset of items.

With only items V7 to V12 visible, just to
demonstrate how it is done, let us place an equal-
ity constraint on the slope or latent factor loading.
Type “slope” into the Label textbox and click the
“Set Label” button. The label slope should ap-
pear in all columns of the first row of the Labels
table in the main content area. Now let us switch
to the first 6 items. This can be accomplished in
a variety of ways. One way is to change the first
selector from V7 to V6 and the second selector
from V12 to V1.

With only items V1 to V6 visible, select drm
from the “Model” selector. The value drm is an
abbreviation for the 4PL dichotomous response
model (Loken and Rulison, 2010), which has four
parameters when there is one factor. The g and
u rows should appear in all of the tables in the
main content area. Parameter g is the pseudo-
guessing lower bound and u is the upper bound.
The upper bound has been used to better model
high ability examinees in a Computerized Adap-
tive Testing context (Magis, 2013). Even high
ability examinees may occasionally miss an easy
item. Here we will fix the upper bound to 1 (meaning that an examinee with sufficiently high ability
will never answer incorrectly). Since the bound parameters are expressed on a logit scale, we will use
logit(1). Select u from the “Parameter” selector and Inf from the “Free” selector (since logit(1) = inf).
The row of “Starting values” for u should change to Inf and the corresponding “Is free” row
should change from TRUE to FALSE. With this constraint, the 4PL dichotomous response model is
equivalent to the 3PL model (Birnbaum, 1968).

Figure 11: Item tables after setting up our model.

The pseudo-guessing lower bound g repre-
sents the chance that an examinee will get the
item correct by guessing. Typically, the expected
guessed-correct probability for a 3-alternative
item is 1

3 and 1
n for an n-alternative item. Es-

timating the lower bound from data without
telling the model a priori how many alternatives
were presented typically requires much more
data than is required to estimate other kinds of
parameters. This is especially true for easy items
because few participants will need to guess. It
could be argued that easy items should have the
lower bound set to a probability of zero. How-
ever, in an item set with some lower bounds
fixed to zero and some free, the items with the
lower bounds fixed to zero will provide more
information than the items that take the chance
of guessing into account. Therefore, we suggest
fixing the lower bound to 1

n for an n-alternative
item when estimation of the lower bound is not of interest.

As a compromise between fixing and freeing, a Bayesian prior can be used with the mode of
the prior set to the expected probability. While some researchers are uneasy about the use of priors
(Gelman, 2008), the practice is not new (e.g, Baker and Kim, 2004, Chapter 7). The prior ensures that
a parameter will converge even when there is not enough data to estimate it, but at the same time,

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 189

the model retains some flexibility to adapt to unexpected data. To set a prior, drag the “Prior mode”
slider and click the “Set” button. Let us imagine that these items had 4 alternatives. Select g from
the Parameter selector, move the “Prior mode” slider to 4, and click the nearby Set button. Two
tables will change. Each cell of the g row of the Labels table will be assigned a unique label. This
is necessary because Bayesian priors are associated with labels, not with particular parameters. In
addition, the “Bayesian prior mode” table will show logit(1/4) in the g row. The logit usage reflects
that the parameter is estimated on the logit scale, but it is much easier for humans to understand a
probability expressed as a fraction rather than raw logit units.

We will not use the “Nominal Tc” selector for these data. “Nominal Tc” only applies to items with
more than 2 possible outcomes when using the nominal response model (Thissen et al., 2010). Before
proceeding, go ahead and click the “Focus all items” button. Your screen should look like Figure 11,
except for different starting values. Click on the “Exclude” tab. This is an easy way to exclude some of
the items from analysis. Finally, click on the “Summary” tab. Here you will find a summary of your
model settings. Note that the number of outcomes may differ from the number of outcomes reported
in the summary table found on under the “Data” top bar page due to recoding.

Figure 12: Restoring the settings.

We are done setting up our model. Before
proceeding, it would be wise to save our model
configuration so we can come back at a later
time and make small adjustments without go-
ing through the whole exhaustive process again.
Click Settings on the top bar. In the main con-
tent area, you will find a preview of what the
settings file will look like. Click the “Download”
button and move the file to a suitable location
on your computer.

To verify that you can reliably restore the
saved settings, open a new browser tab to the
same address by pasting the URL address from
the current tab (without closing the current one).
You should get a screen like Figure 3. Again
go through the procedure of loading the data
(Figures 4 and 5). Once your data is loaded, click
Settings on the top bar and load the file that you recently saved. If all goes well, you should see a
screen similar to Figure 12. Go ahead and look back through the editors under the Outcomes and Model
sections of the top bar. You should find all your hard work faithfully preserved. Now you can close
either of the 2 browser tabs that you have open. They both have the same status.

With our model set up and saved, click Analysis on the top bar. This screen looks and functions
similarly to the Settings screen. However, the control panel offers a few options specific to code
generation. The “Functional form for dichotomous bound prior density” selector chooses the
distributional form of the Bayesian prior. Logit-normal is the more recent scheme (Cai et al., 2011).
The “Information matrix method” control is set to Oakes by default. In a simulation study included
with OpenMx, the Oakes method (Oakes, 1999) exhibited accuracy comparable to central difference
with Richardson extrapolation and time linear in the number of parameters. Click the “Download”
button and save the Rmarkdown code. The Rmarkdown file and your data need to be in the same directory.
Either move the Rmarkdown file to your data directory, or alternately, you can specify a full path in the
read.csv statement (lines 16–17). Open the file in RStudio and click the “Knit HTML” button.

1 ---
2 title: "g341 -19"
3 date: "14-Nov -2014"
4 output: html_document
5 ---
6

7 ```{r}
8 options(width = 120, scipen = 2, digits = 2)
9 suppressPackageStartupMessages(library(OpenMx))

10 suppressPackageStartupMessages(library(rpf))
11 suppressPackageStartupMessages(library(ifaTools))
12 library(xtable)
13 options(xtable.type = 'html')
14

15 # Adjust the path in the next statement to load your data
16 data <- read.csv(file = 'g341 -19. csv', header = FALSE , sep = ' ',
17 stringsAsFactors = FALSE , check.names = FALSE)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 190

18 colnames(data) <- mxMakeNames(colnames(data), unique = TRUE)
19

20 factors <- "ability"
21 numFactors <- length(factors)
22 spec <- list()
23 spec [1:6] <- rpf.drm(factors = numFactors)
24 spec [7:12] <- rpf.grm(factors = numFactors , outcomes = 2)
25 names(spec) <- c("V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10",
26 "V11", "V12")
27

28 missingColumns <- which(is.na(match(names(spec), colnames(data))))
29 if (length(missingColumns)) {
30 stop(paste('Columns missing in the data:',
31 omxQuotes(names(spec)[missingColumns])))
32 }
33

34 data[names(spec)] <- mxFactor(data[names(spec)], levels = 0:1,
35 labels = c("incorrect", "correct"))
36

37 set.seed (1) # uncomment to get the same starting values every time
38 startingValues <- mxSimplify2Array(lapply(spec , rpf.rparam))
39 rownames(startingValues) <- paste0('p', 1:nrow(startingValues))
40 rownames(startingValues)[1: numFactors] <- factors
41

42 imat <- mxMatrix(name = 'item', values = startingValues ,
43 free = !is.na(startingValues))
44 imat$free['p4' ,1:6] <- FALSE
45 imat$values['p4' ,1:6] <- Inf
46 imat$labels['ability ' ,7:12] <- 'slope '
47 imat$labels['p3' ,1:1] <- 'V1_g'
48 imat$labels['p3' ,2:2] <- 'V2_g'
49 imat$labels['p3' ,3:3] <- 'V3_g'
50 imat$labels['p3' ,4:4] <- 'V4_g'
51 imat$labels['p3' ,5:5] <- 'V5_g'
52 imat$labels['p3' ,6:6] <- 'V6_g'
53 hasLabel <- !is.na(imat$labels)
54 for (lab1 in unique(imat$labels[hasLabel])) {
55 imat$values[hasLabel & imat$labels == lab1] <-
56 sample(imat$values[hasLabel & imat$labels == lab1], 1)
57 }
58 data <- compressDataFrame(data)
59 itemModel <- mxModel(model = 'itemModel ', imat ,
60 mxData(observed = data , type = 'raw',
61 numObs = sum(data[['freq']]), sort = FALSE),
62 mxExpectationBA81(ItemSpec = spec , weightColumn = 'freq'),
63 mxFitFunctionML ())
64

65 priorLabels <- c("V1_g", "V2_g", "V3_g", "V4_g", "V5_g", "V6_g")
66 priorParam <- mxMatrix(name = 'priorParam ', nrow = 1,
67 ncol = length(priorLabels), free = TRUE , labels = priorLabels)
68 priorParam$values <- imat$values[match(priorParam$labels , imat$labels)]
69 priorMode <- c(priorParam$values)
70 priorMode [1:6] <- logit(1/4)
71 priorModel <- univariatePrior('logit -norm', priorLabels , priorMode)
72 container <- mxModel(model = 'container ', itemModel , priorModel ,
73 mxFitFunctionMultigroup(groups = c('itemModel.fitfunction ',
74 'univariatePrior.fitfunction ')))
75

76 emStep <- mxComputeEM('itemModel.expectation ', 'scores ',
77 mxComputeNewtonRaphson (), verbose = 2L,
78 information = 'oakes1999 ', infoArgs = list(fitfunction = 'fitfunction '))
79 computePlan <- mxComputeSequence(list(EM = emStep ,
80 HQ = mxComputeHessianQuality (),
81 SE = mxComputeStandardError ()))

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 191

82

83 m1Fit <- mxRun(container)
84

85 m1Grp <- as.IFAgroup(m1Fit$itemModel , minItemsPerScore = 1L)
86 ```

The details of the generated report are likely to evolve. There may be some differences between
the generated code in this article and the most recent version, but there should be a correspondence
between the basic elements. The first chunk of code builds the model and optimizes it. We adjust
the output of long lines and numbers (line 8) and load packages (lines 9–13). The data set is loaded
(Figure 5) in lines 16–17. Latent factors are configured (Figure 9) in lines 20–24. We strongly encourage
the use of informative column (item) names, but line 18 will take care of assigning syntactically valid
column names if informative names are not available. The script is crafted such that it can work on
other data sets as long as the required columns are found (line 28). mxFactor does the recoding and
reordering (Figures 6–8). mxFactor offers a number of important safety and convenience features
beyond what is available from factor or ordered (line 34). The item mxMatrix (line 43) contains most
of the information in the item tables (Figure 11). Everything goes into the container model (line 72).
The model is optimized (line 83). Since we did not disable "Show model fitting progress" (reflected
by verbose = 2L at line 77), we obtain some diagnostics upon knitting the Rmarkdown to HTML.

87 [0] ComputeEM: Welcome , tolerance =1e-09 accel=varadhan2008 info=2
88 [0] ComputeEM: msteps 2 initial fit 37185.0001
89 [0] ComputeEM [2]: msteps 11 fit 34167.9816 rel change 0.0882995805
90 [0] ComputeEM [3]: msteps 5 fit 33699.978 rel change 0.0138873556
91 [0] ComputeEM [4]: msteps 14 fit 33549.9723 rel change 0.00447111437
92 [0] ComputeEM [5]: msteps 5 fit 33455.9478 rel change 0.00281039684
93 [0] ComputeEM [6]: msteps 3 fit 33454.4705 rel change 4.41596231e-05
94 [0] ComputeEM [7]: msteps 3 fit 33453.8021 rel change 1.99793343e-05
95 [0] ComputeEM [8]: msteps 3 fit 33453.2067 rel change 1.77968988e-05
96 [0] ComputeEM [9]: msteps 2 fit 33453.2062 rel change 1.57420931e-08
97 [0] ComputeEM [10]: msteps 2 fit 33453.206 rel change 5.03007605e-09
98 [0] ComputeEM [11]: msteps 2 fit 33453.2059 rel change 2.89615064e-09
99 [0] ComputeEM [12]: msteps 2 fit 33453.2059 rel change 6.61823582e-10

100 [0] ComputeEM: cycles 12/500 total mstep 54 fit 33453.205893
101 [0] ComputeEM: Oakes1999 method=simple perturbation =0.001000
102 [0] ComputeEM: deriv of gradient for 0
103 [0] ComputeEM: deriv of gradient for 1
104 [0] ...
105 [0] ComputeEM: deriv of gradient for 24

Given that the starting values are random, the initial fit and trajectory (lines 88–99) should differ
when you try optimizing the same model but the optimum (line 100) should be the same to within
10−2. If you do not reach the same solution, try again with different starting values. At the time of
writing, optimization is faster on multicore CPUs running on operating systems other than Microsoft
Windows. As soon as Windows supports OpenMP then we expect performance differences between
operating systems to narrow.

The function as.IFAgroup (line 85) is a bridge between OpenMx and rpf (Pritikin, 2015b). The
rpf name is an acronym for response probability function and contains many IFA-specific diagnostic
functions. In addition, rpf can be used to analyze IFA models optimized by packages other than
OpenMx. This modularity facilitates the comparison of parameter estimates between packages. While
most of the code discussed so far is related to OpenMx, the remainder of this report will mostly
involve rpf.

106 An item factor model was fit with `r length(factors)`
107 factors (`r factors `), -2LL = $`r m1Fit$output$fit `$.
108 The condition number of the information
109 matrix was `r m1Fit$output$conditionNumber `.

This is a boilerplate report of model fit. It renders as, “An item factor model was fit with 1 factors
(ability), −2LL = 33453.21. The condition number of the information matrix was 70.91.” It is not really
feasible to generate a complete Results section because there are always considerations idiosyncratic
to a particular project that dictate how the Results section should best unfold. However, it is likely
that some additional boilerplate reporting will be added to the model builder app in a future release.

Although IFA models consider an examinee’s response pattern as the unit of analysis, the sum-
score is often of chief practical importance. For example, students taking the Standardized Aptitude

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=rpf

CONTRIBUTED RESEARCH ARTICLES 192

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11

V2 0.1
V3 −0.0 −2.6
V4 1.7 −0.1 1.2
V5 −0.6 −0.9 −1.3 5.1
V6 0.2 0.1 −0.3 0.3 −1.1
V7 0.1 6.4 0.6 2.4 0.3 5.0
V8 −0.5 −0.3 −0.7 −4.0 −0.2 0.1 3.9
V9 3.6 10.7 1.1 2.6 1.8 5.8 37.1 0.3

V10 −2.0 9.1 0.3 −0.3 0.1 −0.2 10.2 −0.5 16.2
V11 −1.0 −11.5 −2.6 −1.1 −0.6 −1.4 −1.9 −4.8 −0.5 −0.7
V12 −0.1 −1.7 3.9 −2.9 −1.9 −0.7 0.8 −2.0 −0.1 0.6 −7.1

Table 1: Log p-value of local dependence between item pairs.

Test for college admission only receive their sum-score and do not even know which items they
answered correctly or incorrectly (unless they earned the maximum sum-score). The observation that
the sum-score is important has lead to the development of a family of diagnostic tests that examine
how well an IFA model predicts sum-scores.

110 ```{r,fig.height =2}
111 got <- sumScoreEAPTest(m1Grp)
112 df <- data.frame(score = as.numeric(names(got[['observed ']])),
113 expected = got[['expected ']], observed = got[['observed ']])
114 df <- melt(df, id = 'score ', variable.name = 'source ',
115 value.name = 'n')
116 ggplot(df, aes(x = score , y = n, color = source)) + geom_line()
117 ```

0

100

200

300

400

0.0 2.5 5.0 7.5 10.0 12.5
score

n

source

expected

observed

Figure 13: Comparison of the predicted and ob-
served sum-scores.

The first plot provides an overview of how
all the items work together to predict sum-scores
(Figure 13). sumScoreEAPTest also conducts a
statistical test to produce a p-value, but this is
not reported here because the test is fairly new
and the meaning of the test has not yet been well
established (Li and Cai, 2012). However, it is still
worth looking at this plot because you might no-
tice something that is obviously wrong with the
model (i.e., if the curves mismatch drastically).

118 ```{r,results='asis'}
119 ct <- ChenThissen1997(m1Grp)
120 print(xtable(ct$pval ,
121 paste('Log p-value of local dependence between item pairs.')))
122 ```

A test of local dependence is important to examine, as it is an assumption of IFA (Yen, 1993).
Table 1 exhibits the log p-value of the null hypothesis that there is no local dependence between item
pairs. Since log(.01) ≈ −4.6, any absolute magnitude greater than 4.6 can be interpreted as rejecting
the null hypothesis at the .01 level. The sign of each p-value is determined by ordinal gamma, a measure
of association (Agresti, 1990). Positive numbers indicate more correlation than expected. These are
cause for concern and suggest local dependence (Chen and Thissen, 1997). Negative numbers indicate
less correlation than expected. Table 1 is also a good example of a weakness of comparing expected
and observed frequencies: all you can know is that something is suboptimal, but not specifically what.
The local dependence is most severe between item pairs V7/V9, V9/V10, and V2/V9. Item pair
V2/V11 also has a large magnitude value, but this is less of a concern because the sign is negative.
Unfortunately, this diagnostic only reveals potential deficiencies, but does not suggest how to address
them. Improvement of the model (or the items) often requires some guesswork and trial-and-error.

123 ```{r,results='asis'}
124 sfit <- SitemFit(m1Grp)
125 tbl <- t(sapply(sfit , function(r)
126 c(n = r$n, df = r$df, stat = r$statistic , pval = r$pval)))

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 193

n df statistic log p-value

V1 2844 8 6.58 −0.54
V2 2844 8 7.30 −0.68
V3 2844 8 7.17 −0.66
V4 2844 8 10.12 −1.36
V5 2844 8 19.00 −4.21
V6 2844 8 8.50 −0.95
V7 2844 9 33.45 −9.10
V8 2844 9 5.48 −0.24
V9 2844 9 34.42 −9.49

V10 2844 10 12.61 −1.40
V11 2844 8 43.06 −13.97
V12 2844 8 20.20 −4.64

Table 2: Sum-score item-wise fit.

127 print(xtable(tbl , paste0('Sum -score item -wise fit.'))
128 ```

Sum-score item fit is another tool for model assessment (Orlando and Thissen, 2000; Kang and
Chen, 2008). Each item is tested against the null hypothesis that the other items accurately predict the
outcome of the item of interest (Table 2). Again p-values are in log units so a magnitude larger than 4.6
is significant at the .01 level. In contrast to the test for local dependence, the sign of the p-value does
not mean anything special here. The column n is included for data sets with missingness. When there
is missingness, it can be advantageous to exclude the item with the most missing values to increase
the sample size of the test. Refer to the SitemFit help for details on the options for missing data.

129 ```{r,fig.height =2}
130 map1 <- itemResponseMap(m1Grp , factor = 1)
131 ggplot(map1 , aes(x = score , y = item , label = outcome)) +
132 geom_text(size = 4, position = position_jitter(h = .25))
133 ```

1 2
1 2

1 2
1 2

1 2
1 2

1 2
1 2

1 2
1 2

1 2
1 2

V12
V11
V10

V9
V8
V7
V6
V5
V4
V3
V2
V1

−1.25 −1.00 −0.75 −0.50
score

ite
m

Figure 14: Item outcome by average latent score.

An item response map is a crude tool for
diagnosing certain model misspecifications (Fig-
ure 14). Each outcome is assigned the average
latent score of all the examinees who picked that
outcome. Usually we advocate the use of the
actual outcome labels (e.g., “incorrect” and “cor-
rect”) instead of numbers. For this plot, how-
ever, we make an exception because the numbers
make it easy to inspect whether the outcomes
are in ascending order. If descending order is
observed then it is worth checking whether the
item needs to be reverse scored or to consider whether the item was misinterpreted by some examinees.
If the response data were manually collected then the data entry process should also be checked for
errors.

1 9 25 45 10
5

18
5

27
0

42
9

53
0

48
9

47
9

27
7 1 9 25 45 10
5

18
5

27
0

42
9

53
0

48
9

47
9

27
7

expected observed

0.00

0.25

0.50

0.75

1.00

0 3 6 9 0 3 6 9
sumScore

pr
ob

ab
ili

ty outcome

in
co

rr
ec

t
co

rr
ec

t

V1

Figure 15: Expected and observed outcome by
sum-score.

6 29 50 84 12
9

14
7

12
4

93 46 12 1 6 29 50 84 12
9

14
7

12
4

93 46 12 1

expected observed

0.00

0.25

0.50

0.75

1.00

−2 0 2 −2 0 2
theta

pr
ob

ab
ili

ty category

in
co

rr
ec

t
co

rr
ec

t

V1

Figure 16: Expected and observed outcome by
latent score.

134 ```{r,fig.height =3}
135 pl <- lapply(names(sfit), function(item) { SitemPlot(sfit , item) })
136 for (px in 1: length(pl)) {

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 194

137 print(pl[[px]])
138 }

0.0

0.1

0.2

0.3

0.4

0.5

−5.0 −2.5 0.0 2.5 5.0
score

in
fo

rm
at

io
n

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

Figure 17: Item information by latent score.

Two approaches are available to plot re-
sponse probability functions against a latent trait.
The same ingredients that go into the production
of Table 2 can also be plotted (Figure 15). A
similar plot can be obtained by plotting the out-
comes probabilities against the latent trait. This
is known as an item characteristic curve plot (Fig-
ure 16). The main advantage of SitemPlot over
iccPlot is that SitemPlot is one-dimensional re-
gardless of the number of latent factors. With
iccPlot, you must pick a basis vector in the la-
tent space. The tiny numbers across the proba-
bility = 1 line of Figures 15 and 16 are the sample size at that point on the x axis.

139 basis <- rep(0, length(factors))
140 basis [1] <- 1
141 plotInformation(m1Grp , width = 5, basis = basis)
142 ```

Figure 17 exhibits item information by latent score. Similar to iccPlot, this plot requires the
selection of a basis vector when there is more than 1 latent factor. Notice that items V7-V12 peak at the
same height (near 0.31). This is due to our equality constraint on the slope or factor loading on these
items. By placing this constraint, we assume a priori that each of these items contributes exactly the
same amount of information.

143 ```{r}
144 summary(m1Fit)
145 ```

Summary of container

free parameters:
name matrix row col Estimate Std.Error

1 itemModel.item[1,1] itemModel.item ability V1 1.82 0.278
2 itemModel.item[2,1] itemModel.item p2 V1 -0.51 0.230
3 V1_g itemModel.item p3 V1 -1.14 0.208
4 itemModel.item[1,2] itemModel.item ability V2 1.24 0.119
5 itemModel.item[2,2] itemModel.item p2 V2 2.58 0.140
6 V2_g itemModel.item p3 V2 -1.27 0.337
7 itemModel.item[1,3] itemModel.item ability V3 1.56 0.261
8 itemModel.item[2,3] itemModel.item p2 V3 -1.03 0.272
9 V3_g itemModel.item p3 V3 -1.16 0.192
10 itemModel.item[1,4] itemModel.item ability V4 1.36 0.161
11 itemModel.item[2,4] itemModel.item p2 V4 0.41 0.158
12 V4_g itemModel.item p3 V4 -1.10 0.277
13 itemModel.item[1,5] itemModel.item ability V5 1.41 0.196
14 itemModel.item[2,5] itemModel.item p2 V5 -0.47 0.203
15 V5_g itemModel.item p3 V5 -1.03 0.203
16 itemModel.item[1,6] itemModel.item ability V6 1.50 0.130
17 itemModel.item[2,6] itemModel.item p2 V6 1.84 0.119
18 V6_g itemModel.item p3 V6 -1.43 0.317
19 slope itemModel.item ability V7 1.12 0.037
20 itemModel.item[2,7] itemModel.item p2 V7 3.50 0.097
21 itemModel.item[2,8] itemModel.item p2 V8 1.57 0.056
22 itemModel.item[2,9] itemModel.item p2 V9 2.70 0.075
23 itemModel.item[2,10] itemModel.item p2 V10 2.27 0.066
24 itemModel.item[2,11] itemModel.item p2 V11 -0.28 0.047
25 itemModel.item[2,12] itemModel.item p2 V12 0.15 0.047

observed statistics: 720
estimated parameters: 25
degrees of freedom: 695

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 195

fit value (-2lnL units): 33453
number of observations: 2844
Information Criteria:

| df Penalty | Parameters Penalty | Sample-Size Adjusted
AIC: 32063 33503 NA
BIC: 27926 33652 33573
To get additional fit indices, see help(mxRefModels)
timestamp: 2016-02-24 10:14:59
Wall clock time (HH:MM:SS.hh): 00:00:02.72
OpenMx version number: 2.3.1.254
Need help? See help(mxSummary)

Exhibited above is the OpenMx provided summary of model fit. IFA models are exponential
family models so we obtain AIC and BIC. More fit statistics are available if we provide the saturated
and independence reference models. Reference models will be requested in our next example.

Polytomous data

Figure 18: Data with a row frequency column.

Since many things are common between dichoto-
mous and polytomous items, we will move
quickly through the process of model set up and
result interpretation. Click on the “Choose File”
button and select preschool.csv, a data set from
Thissen and Steinberg (1988) available in the ifa-
Tools package. Click the “Row names?” check-
box in the control panel to disable row names.
The format of these data are closer to what is ex-
pected by default than our first example so less
fiddling is required. Click on the “Item summary”
tab. Here it appears that there are 3 items, but
the freq column is not an item. freq indicates
how many times a row appeared in the original
data. These data are compressed; only unique
rows are provided with frequency counts. To
instruct the model builder to interpret the freq column as frequency counts, select freq from the
“Row frequency column” selector (Figure 18).

This data set is from a preschool test of numerical knowledge. Each item is actually a combination
of 2 dichotomous items. Similar questions were asked regarding the number 3 and the number 4 and
the pattern of responses mapped to an outcome code. The outcomes should be renamed with the
recoding tool under the “Outcomes” tab on the top bar (recall Figure 7). Outcomes 0, 1, 2, and 3 should
be renamed to “neither,” “3 only,” “4 only,” and “both correct,” respectively, using the “Recode” tab
under the Outcomes top bar page. After renaming, reorder the items into the correct order (Figure 19).

Click Model on the top bar. On the “Factors” tab, we will name the single latent factor “math.”
Switch to the Parameters tab. Here we select nrm from the “Model” selector. The acronym “nrm”
stands for the nominal response model (Thissen et al., 2010). This parameterization of the nominal
model can accommodate basis matrices Ta and Tc to customize the meaning of the slope and intercept
coefficients, respectively. In principle, the basis matrices can take any pattern, but the model builder
app is limited to a Fourier basis (a.k.a. trend basis) for the Ta matrix and a small number of options for
the Tc matrix.

With Ta set to the trend basis, we cannot free both math and alf1 because they have the same
effect on the model and would cause the model to be unidentified. Fix alf1 to 1. Select alf1 from the
“Parameter” selector and select 1 from the “Free” selector. Since we have worked with this data set
already, we know a few things that can give us a more parsimonious model. The alf2 parameters
can be set equal since both items exhibit poor discrimination between neither, 3 only, and 4 only
but good discrimination between these outcomes and both correct. Select alf2 with the “Parameter”
selector and set the label to eq1. Since both items are equally difficult, we can equate gam1. Select gam1
with the “Parameter” selector and set the label to eq2. To avoid overfitting with the highest frequency
basis vector, fix gam3 to 0. Select gam3 with the Parameter selector and select 0 with the Free selector.
Figure 20 exhibits the final parameter settings.

Click Analysis on the top bar. Ensure that “Fit reference models” is selected, and download
the analysis script. The Rmarkdown file and your data need to be in the same directory. Either move
the Rmarkdown file to your data directory, or alternately, you can specify a full path in the read.csv

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 196

Figure 19: Outcomes renamed and reordered. Figure 20: Item model and parameter configura-
tion with equality constraints.

statement (line 162). Open the file in RStudio and click the “Knit HTML” button. Although this is a
simple model, it can take almost 100 E-M cycles to converge. Therefore, we omit reproduction of the
diagnostic output issued during model fit.

146 ---
147 title: "preschool"
148 date: "18-Nov -2014"
149 output: html_document
150 ---
151

152 ```{r}
153 options(width = 120, scipen = 2, digits = 2)
154 suppressPackageStartupMessages(library(OpenMx))
155 suppressPackageStartupMessages(library(rpf))
156 suppressPackageStartupMessages(library(ifaTools))
157 library(xtable)
158 options(xtable.type = 'html')
159

160 # Adjust the path in the next statement to load your data
161 data <- read.csv(file = 'preschool.csv', stringsAsFactors = FALSE ,
162 check.names = FALSE)
163 colnames(data) <- mxMakeNames(colnames(data), unique = TRUE)
164 data[['freq']] <- as.numeric(data[['freq']])
165

166 factors <- "math"
167 numFactors <- length(factors)
168 spec <- list()
169 spec [1:2] <- rpf.nrm(factors = numFactors , outcomes = 4,
170 T.a = 'trend ', T.c = 'trend ')
171 names(spec) <- c("Match", "Identify")
172

173 missingColumns <- which(is.na(match(names(spec), colnames(data))))
174 if (length(missingColumns)) {
175 stop(paste('Columns missing in the data:',
176 omxQuotes(names(spec)[missingColumns])))
177 }
178

179 data[names(spec)] <- mxFactor(data[names(spec)], levels = 0:3,
180 labels = c("neither", "3 only", "4 only", "both correct"))
181

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 197

n df statistic log p-value

Match 592 7 9.46 −1.51
Identify 592 7 9.33 −1.47

Table 3: Sum-score item-wise fit.

182 set.seed (1) # uncomment to get the same starting values every time
183 startingValues <- mxSimplify2Array(lapply(spec , rpf.rparam))
184 rownames(startingValues) <- paste0('p', 1:nrow(startingValues))
185 rownames(startingValues)[1: numFactors] <- factors
186

187 imat <- mxMatrix(name = 'item', values = startingValues ,
188 free = !is.na(startingValues))
189 imat$free['p2',] <- FALSE
190 imat$values['p2' ,1:2] <- 1
191 imat$free['p7',] <- FALSE
192 imat$values['p7' ,1:2] <- 0
193 imat$labels['p3',] <- 'eq1'
194 imat$labels['p5',] <- 'eq2'
195 hasLabel <- !is.na(imat$labels)
196 for (lab1 in unique(imat$labels[hasLabel])) {
197 imat$values[hasLabel & imat$labels == lab1] <-
198 sample(imat$values[hasLabel & imat$labels == lab1], 1)
199 }
200 itemModel <- mxModel(model = 'itemModel ', imat ,
201 mxData(observed = data , type = 'raw', numObs = sum(data[['freq']]),
202 sort = FALSE),
203 mxExpectationBA81(ItemSpec = spec , weightColumn = 'freq'),
204 mxFitFunctionML ())
205

206 emStep <- mxComputeEM('itemModel.expectation ', 'scores ',
207 mxComputeNewtonRaphson (), verbose = 2L,
208 information = 'oakes1999 ',
209 infoArgs = list(fitfunction = 'fitfunction '))
210 computePlan <- mxComputeSequence(list(emStep ,
211 mxComputeHessianQuality (),
212 mxComputeStandardError ()))
213

214 m1Fit <- mxRun(mxModel(itemModel , computePlan))
215

216 m1Grp <- as.IFAgroup(m1Fit , minItemsPerScore = 1L)
217 ```

Although response pattern frequencies are typically natural numbers, fractional frequencies are
not prohibited (line 164). A Fourier basis is used for both nominal model transformation matrices
(line 170). Customization is limited in the model builder app, but you can use any matrices by editing
the generated code. Starting values must respect equality constraints (line 197). By default OpenMx,
sorts data prior to optimization. Since our data are already compressed, no benefit would be obtained
by sorting (line 202).

218 An item factor model was fit with `r length(factors)`
219 factors (`r factors `), -2LL = $`r m1Fit$output$fit `$.
220 The condition number of the information matrix was
221 `r round(m1Fit$output$conditionNumber)`.

The boilerplate renders as, “An item factor model was fit with 1 factors (math), −2LL = 2767.48.
The condition number of the information matrix was 85.07.” Since we have already seen much of the
code to generate model diagnostics, we omit it here.

222 ```{r}
223 summary(m1Fit , refModels = mxRefModels(m1Fit , run = TRUE))
224 ```

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 198

Summary of itemModel

free parameters:
name matrix row col Estimate Std.Error

1 itemModel.item[1,1] item math Match 0.82 0.37
2 eq1 item p3 Match -1.18 0.27
3 itemModel.item[4,1] item p4 Match 0.50 0.19
4 eq2 item p5 Match 0.18 0.05
5 itemModel.item[6,1] item p6 Match -0.78 0.20
6 itemModel.item[1,2] item math Identify 0.79 0.35
7 itemModel.item[4,2] item p4 Identify -0.25 0.36
8 itemModel.item[6,2] item p6 Identify -1.40 0.21

observed statistics: 15
estimated parameters: 8
degrees of freedom: 7
fit value (-2lnL units): 2767
saturated fit value (-2lnL units): 2758
number of observations: 592
chi-square: X2 (df=7) = 9.2, p = 0.24
Information Criteria:

| df Penalty | Parameters Penalty | Sample-Size Adjusted
AIC: 2753 2783 NA
BIC: 2723 2819 2793
CFI: 0.98
TLI: 0.97 (also known as NNFI)
RMSEA: 0.023 [95% CI (0, 0.064)]
Prob(RMSEA <= 0.05): 0.88
timestamp: 2016-02-24 10:15:07
Wall clock time (HH:MM:SS.hh): 00:00:04.55
OpenMx version number: 2.3.1.254
Need help? See help(mxSummary)

12 3 4

1 2 3 4

Identify

Match

−0.75 −0.50 −0.25 0.00 0.25
score

ite
m

Figure 21: Item outcome by average latent score.

Although the outcomes are not strictly or-
dered for Identify in the item outcome map
(Figure 21), other measures of model fit look rea-
sonable. The sum-score item fit tests are not
statistically significant at the 0.01 level (Table 3).
This indicates good item-level fit. Since we re-
quested a saturated and independence model
(mxRefModels; line 223), CFI (Comparative Fit
Index), TLI (Tucker Lewis Index), and RMSEA
(Root Mean Square Error of Approximation) are available in the OpenMx summary and suggest
adequate model fit. These relative indices of fit are appropriate for these data because there are
observations for all possible response patterns. However, be forewarned that as the multinomial table
becomes more sparse, these indices become inaccurate. For sparse data, a more accurate assessment
of model fit is available using other methods (Bartholomew and Tzamourani, 1999; Cai and Hansen,
2013).

Rasch diagnostics

A Rasch model is obtained when all slope parameters are constrained to be equal and the variance is
fixed to 1.0, or equivalently, all slopes are fixed to 1.0 with free variance (Rasch, 1960/1993). If your
interest is Rasch models with a single latent factor then you can take advantage of Rasch residual-based
fit statistics. Infit and outfit are available from rpf.1dim.fit.

Item factor analysis

A common problem is that we do not know how many latent factors to employ to most accurately
model our data. Fortunately, there is a method item factor analysis (Bock et al., 1988) analogous
to factor analysis of continuous indicators (Lovie and Lovie, 1996). We will employ the likelihood
ratio test for inference. The likelihood ratio test is asymptotically consistent for sparse multinomial

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 199

> container2 <- container
> container2$itemModel$item$labels['ability',] <- NA
> m3 <- addExploratoryFactors(container2, 0)
> m3 <- mxRun(m3, silent = TRUE)
> mxCompare(m3, m1)

base comparison ep minus2LL df AIC diffLL diffdf p
1 container1 <NA> 30 33369 690 31989 NA NA NA
2 container1 container1 25 33454 695 32064 85 5 7.7e-17
> m4 <- addExploratoryFactors(container2, 1)
> m4 <- mxRun(m4, silent = TRUE)
> mxCompare(m4, m2)

base comparison ep minus2LL df AIC diffLL diffdf p
1 container2 <NA> 41 33325 679 31967 NA NA NA
2 container2 container2 36 33339 684 31971 14 5 0.013
> grid.arrange(plotTwoFactors(m2$itemModel$item$values[1:2,]) +
+ labs(title = "a."), plotTwoFactors(m4$itemModel$item$values[1:2,]) +
+ labs(title = "b."), ncol = 2)

V1

V2

V3V4
V5V6

V7

V8

V9

V10

V11

V12

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ability

ex
pl

or
e1

a.

V1

V2

V3
V4
V5V6

V7

V8

V9

V10

V11
V12

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
ability

ex
pl

or
e1

b.

Figure 22: Factor loadings for items with (a) and without (b) the slope constraint. The code for
plotTwoFactors is given in the Appendix.

1 2

3

4

5

10 20 10 20
points

w
id

th

log(error)

−10.0

−7.5

−5.0

−2.5

0.0

Figure 23: Log Euclidean distance (l2-norm) of error by quadrature width and number of points for
1 factor (left) and 2 factors (right). A wider width is important to accommodate data that conform
less closely to a normal distribution. Even with clean simulated data, a width of 3 is too narrow and
interferes with accuracy (both panes). In the 1 factor case (left), at least 21 points are required for high
accuracy. For 2 factors (right), at least 23 points are required for a width of 4 and 27 points for a width
of 5. The bright strips at even numbers of point (12, 14, 16, etc) indicate that an odd number of points
obtain somewhat better accuracy than even numbers of points.

distributions (Haberman, 1977). However, in finite samples, we should not expect that the null
distribution is well calibrated. In brief, the p-values should not be taken too seriously.

> m1 <- addExploratoryFactors(container, 0)
> m1 <- mxRun(m1, silent = TRUE)
> m2 <- addExploratoryFactors(container, 1)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 200

> m2 <- mxRun(m2, silent = TRUE)
> mxCompare(m2, m1)

base comparison ep minus2LL df AIC diffLL diffdf p
1 container2 <NA> 36 33339 684 31971 NA NA NA
2 container2 container1 25 33454 695 32064 115 11 1.5e-19

Here we find that there is reasonably good support in favor of a two factor solution. However, the
slope of items 7-12 are constrained equal. Maybe this constraint was a mistake. It is possible that these
items are well modeled by a single factor when all the slopes are freed. We cannot directly compare
m2 against a single factor model without the slope constraint because these models are not nested.
However, we can make a number of similar comparisons.

We find that there is a dramatic improvement in fit whether we relax the constraint on items 7-12
or we add another factor. Without knowing more about how the data were collected, parsimony favors
a single factor model without constraints on the slopes. We can further check this idea by comparison
of two factor models with and without the slope constraint (Figure 22).

A p-value of 0.013 is statistically significant at the customary 0.05 level, but we regard this as non-
significant in comparison to the other p-values that are less than 10−16. We conclude that there is no
difference between these models. For two factor models, it can be helpful to plot item factor loadings.
A varimax rotation eliminates rotational indeterminacy. Promax axes are helpful to illustrate the rough
directions of variability (Bock et al., 1988, p. 265). In both plots, the promax axes are separated by
an angle close to π radians, suggesting a single latent factor. The slight differences between plots (a)
and (b) are probably due to overfitting. More precise p-values could be obtained using Monte Carlo
techniques.

Repercussions of the use of numerical quadrature for integration

Recall that the optimization algorithm uses equal interval quadrature to evaluate the integral in
Equation 2. It is important to understand how the quadrature grid influences model optimization
accuracy and time. Let Q be the number of quadrature points per dimension and Qwidth be the
one-sided width of the quadrature for one dimension. Points Xq are arranged as

Xq = Qwidth(1−
2q

Q− 1
) for q ∈ {0, . . . , Q− 1}. (12)

Generalization to more dimensions is accomplished by replication of the same 1 dimensional grid along
each dimension. For example, a two factor model with 31 points per dimension involve 312 = 961
grid points. Hence, optimization time is exponential in the number of general factors.

Figure 23 exhibits a simulation study of the influence of quadrature on model accuracy. All
comparisons are against a 41 point quadrature of width 5.0. Before computing the Euclidean distance
(l2-norm), the slope matrix was converted into factor loadings,

slope[
1 + rowSums(slope2)

] 1
2

. (13)

For two factor models, a varimax rotation was applied to eliminate rotational indeterminacy. The
l2-norm was applied to the resulting slope entries (ignoring intercepts). Each grid area in Figure 23
represents the average of 5 trials with different random starting values.

Item factor analysis with more than two factors requires patience and expertise. Model optimiza-
tion time becomes an uncomfortable hindrance to experimentation. An optimization algorithm better
suited to many latent factors, such as the Metropolis-Hastings Robbins-Monro algorithm (Cai, 2010b),
is not yet available in OpenMx. The model builder offers as many as five factors because additional
factors do not always increase estimation time. Suppose all items load on a general factor. In the
special case that each item loads on at most one additional factor, many additional factors will not
increase estimation time. One important use for this kind of factor structure is to account for local
dependence (DeMars, 2006). For example, a reading comprehension test might have 3-4 items that
relate to a single passage. The items within each passage will likely exhibit local dependence. One way
to account for this kind of test structure is to add passage specific latent factors. Since the passages are
disjoint, all of the passage specific factors will count as a single factor with respect to estimation time
(Cai, 2010a).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 201

Discussion

We gave detailed instructions on how to set up IFA models for analysis of both dichotomous and
polytomous data using the model builder app. We hope this will ease the learning curve for the
construction of IFA models in OpenMx. The model builder app offers limited flexibility by design
to reduce the number of options for novice users. For example, there is no facility for construction
of multiple group models. This may be construed as a disadvantage, but we argue that keeping the
app as simple as possible is important for newcomers to IFA. Learning OpenMx can be a daunting
prospect. OpenMx, rpf, and ifaTools are free software. The source code is available for everybody to
view, modify, and use. If you find this software useful, we hope you will cite us in your publications.

Appendix

Factors are plotted in a coordinate system determined by a varimax rotation (line 2). Promax axes are
superimposed (line 9).

1 plotTwoFactors <- function(slope) {
2 lvm <- varimax(toFactorLoading(slope))$loadings
3 if (any(abs(lvm[lvm < 0]) > .001)) stop("Got negative loadings")
4 lvm[lvm <0] <- 0
5 df <- as.data.frame(lvm[, 1:2])
6 df$name <- rownames(df)
7 pl <- ggplot(df, aes_string(x = rownames(slope)[1],
8 y = rownames(slope)[2], label = "name")) + geom_text(size = 3)
9 pm <- promax(lvm[, 1:2])$rotmat

10 for (dx in 1:ncol(pm)) {
11 d1 <- .5 * pm[, dx] / sqrt(sum(pm[, dx]^2))
12 pl <- pl + geom_segment(x = .5, y = .5, xend = d1[1] + .5,
13 yend = d1[2] + .5, arrow = arrow(length = unit(.5, "cm")))
14 }
15 pl + xlim(0, 1) + ylim(0, 1)
16 }

Bibliography

A. Agresti. Analysis of Categorical Data. Wiley, New York, 1990. [p192]

J. Allaire, J. McPherson, Y. Xie, H. Wickham, J. Cheng, and J. Allen. Rmarkdown: Dynamic Documents for
R, 2014. URL http://rmarkdown.rstudio.com. R package version 0.3.8. [p182]

F. B. Baker and S. H. Kim. Item Response Theory: Parameter Estimation Techniques. CRC Press, 2nd
edition, 2004. [p188]

D. J. Bartholomew and P. Tzamourani. The goodness of fit of latent trait models in attitude measure-
ment. Sociological Methods & Research, 27(4):525–546, 1999. [p198]

A. Birnbaum. Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord
and M. R. Novick, editors, Statistical Theories of Mental Test Scores, pages 397–479. Addison-Wesley,
Reading, MA, 1968. [p183, 184, 188]

R. D. Bock and M. Aitkin. Marginal maximum likelihood estimation of item parameters: Application
of an EM algorithm. Psychometrika, 46:443–459, 1981. [p182]

R. D. Bock, R. Gibbons, and E. Muraki. Full-information item factor analysis. Applied Psychological
Measurement, 12(3):261–280, 1988. [p198, 200]

L. Cai. A two-tier full-information item factor analysis model with applications. Psychometrika, 75(4):
581–612, 2010a. [p200]

L. Cai. High-dimensional exploratory item factor analysis by a Metropolis-Hastings Robbins-Monro
algorithm. Psychometrika, 75(1):33–57, 2010b. [p182, 183, 200]

L. Cai and M. Hansen. Limited-information goodness-of-fit testing of hierarchical item factor models.
British Journal of Mathematical and Statistical Psychology, 66(2):245–276, 2013. [p198]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://rmarkdown.rstudio.com

CONTRIBUTED RESEARCH ARTICLES 202

L. Cai, J. S. Yang, and M. Hansen. Generalized full-information item bifactor analysis. Psychological
Methods, 16(3):221–248, 2011. [p189]

W.-H. Chen and D. Thissen. Local dependence indexes for item pairs using Item Response Theory.
Journal of Educational and Behavioral Statistics, 22(3):265–289, 1997. [p192]

C. E. DeMars. Application of the bi-factor multidimensional Item Response Theory model to testlet-
based tests. Journal of Educational Measurement, 43(2):145–168, 2006. [p200]

A. Gelman. Objections to Bayesian statistics. Bayesian Analysis, 3(3):445–449, 2008. [p188]

S. J. Haberman. Log-linear models and frequency tables with small expected cell counts. The Annals of
Statistics, 5(6):1148–1169, 11 1977. doi: 10.1214/aos/1176344001. [p199]

T. Kang and T. T. Chen. Performance of the generalized S-X2 item fit index for polytomous IRT models.
Journal of Educational Measurement, 45(4):391–406, 2008. [p193]

D. E. Knuth. Literate programming. The Computer Journal, 27(2):97–111, 1984. [p182]

Z. Li and L. Cai. Summed score likelihood based indices for testing latent variable distribution fit in
item response theory. In Annual International Meeting of the Psychometric Society, Lincoln, NE, 2012.
[p192]

E. Loken and K. L. Rulison. Estimation of a four-parameter item response theory model. British Journal
of Mathematical and Statistical Psychology, 63(3):509–525, 2010. [p183, 184, 188]

P. Lovie and A. D. Lovie. Charles Edward Spearman, F.R.S. (1863–1945). Notes and Records of the Royal
Society, 50(1):75–88, 1996. doi: 10.1098/rsnr.1996.0007. [p198]

D. Magis. A note on the item information function of the four-parameter logistic model. Applied
Psychological Measurement, 37(4):304–315, 2013. [p188]

M. C. Neale, M. D. Hunter, J. N. Pritikin, M. Zahery, T. R. Brick, R. Kirkpatrick, R. Estabrook, T. C. Bates,
H. Maes, and S. M. Boker. OpenMx 2.0: Extended structural equation and statistical modeling.
Psychometrika, in press. doi: 10.1007/s11336-014-9435-8. [p182]

B. Nosek, G. Alter, G. Banks, D. Borsboom, S. Bowman, S. Breckler, S. Buck, C. Chambers, G. Chin,
G. Christensen, et al. Promoting an open research culture. Science, 348(6242):1422–1425, 2015. [p182]

D. Oakes. Direct calculation of the information matrix via the EM algorithm. Journal of the Royal
Statistical Society B (Statistical Methodology), 61(2):479–482, 1999. [p189]

M. Orlando and D. Thissen. Likelihood-based item-fit indices for dichotomous Item Response Theory
models. Applied Psychological Measurement, 24(1):50–64, 2000. [p193]

R. D. Peng. Reproducible research in computational science. Science, 334(6060):1226, 2011. [p182]

J. N. Pritikin. ifaTools: Toolkit for Item Factor Analysis with OpenMx, 2015a. URL https://CRAN.R-
project.org/package=ifaTools. R package version 0.8. [p186]

J. N. Pritikin. rpf: Response Probability Functions, 2015b. URL https://CRAN.R-project.org/package=
rpf. R package version 0.51. [p191]

J. N. Pritikin, M. D. Hunter, and S. M. Boker. Modular open-source software for Item Factor Analysis.
Educational and Psychological Measurement, 75(3):458–474, 2015. doi: 10.1177/0013164414554615.
[p182]

G. Rasch. Probabilistic Models for Some Intelligence and Attainment Tests. MESA Press, 1960/1993. [p198]

RStudio and Inc. shiny: Web Application Framework for R, 2014. URL http://CRAN.R-project.org/
package=shiny. R package version 0.10.2.1. [p182]

F. Samejima. Estimation of latent ability using a response pattern of graded scores. Psychometrika
Monograph Supplement, 34(4):100, 1969. [p183]

D. Thissen and L. Steinberg. Data analysis using item response theory. Psychological Bulletin, 104(3):
385–395, 1988. [p195]

D. Thissen, L. Steinberg, and J. A. Mooney. Trace lines for testlets: A use of multiple-categorical-
response models. Journal of Educational Measurement, 26(3):247–260, 1989. [p187]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=ifaTools
https://CRAN.R-project.org/package=ifaTools
https://CRAN.R-project.org/package=rpf
https://CRAN.R-project.org/package=rpf
http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=shiny

CONTRIBUTED RESEARCH ARTICLES 203

D. Thissen, L. Cai, and R. D. Bock. The Nominal Categories Item Response Model, pages 43–75. Routledge,
2010. [p183, 184, 189, 195]

W. M. Yen. Scaling performance assessments: Strategies for managing local item dependence. Journal
of Educational Measurement, 30(3):187–213, 1993. [p192]

Joshua N. Pritikin
Department Psychology
University of Virginia
Charlottesville, VA 22904 USA
jpritikin@virginia.edu

Karen M. Schmidt
Department Psychology
University of Virginia
Charlottesville, VA 22904 USA
kschmidt@virginia.edu

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:jpritikin@virginia.edu
mailto:kschmidt@virginia.edu

CONTRIBUTED RESEARCH ARTICLES 204

Spatio-Temporal Interpolation using gstat
by Benedikt Gräler, Edzer Pebesma and Gerard Heuvelink

Abstract We present new spatio-temporal geostatistical modelling and interpolation capabilities of
the R package gstat. Various spatio-temporal covariance models have been implemented, such as the
separable, product-sum, metric and sum-metric models. In a real-world application we compare spatio-
temporal interpolations using these models with a purely spatial kriging approach. The target variable
of the application is the daily mean PM10 concentration measured at rural air quality monitoring
stations across Germany in 2005. R code for variogram fitting and interpolation is presented in
this paper to illustrate the workflow of spatio-temporal interpolation using gstat. We conclude
that the system works properly and that the extension of gstat facilitates and eases spatio-temporal
geostatistical modelling and prediction for R users.

Introduction

The collection and processing of spatio-temporal data is rapidly increasing due to technological
advances and the societal need for analysis of variables that vary in space and time, such as weather
and air quality variables, and crop yields. Analysis of spatial and temporal correlations is useful
in itself to get insight into the character and causes of variability, but they are also important to
predict values at points from neighbouring observations. Spatio-temporal interpolation can potentially
provide more accurate predictions than spatial interpolation because observations taken at other times
can be included. In addition, spatio-temporal interpolation allows predictions to be made at single
locations or entire fields in between and beyond observation times. However, adding the temporal
domain implies that variability in space and time must be modelled, which is more complicated than
modelling purely spatial or purely temporal variability. The spatial, temporal and spatio-temporal
dependence structures, for instance represented as variograms, do not necessarily coincide with each
other in terms of their parameters nor in terms of their family. In the simplest case, a spatio-temporal
anisotropy parameter might be enough to deal with the different dependence structures, but this poses
strong assumptions on the process.

Interpolation of spatial random fields is a common task in geostatistics. Simple approaches like
inverse distance weighted predictions or the well known kriging procedures have routinely been ap-
plied for many years. Nowadays, modern sensors allow to monitor different variables at an increasing
temporal resolution producing rich spatio-temporal data sets. This calls as well for theory and methods
to deal with these data sets to gain a better understanding of the observed spatio-temporal processes.
While the theoretical aspects of spatio-temporal geostatistics show good progress (Cressie and Wikle,
2011), implementations lack behind. This hinders a wide application of spatio-temporal modelling,
as typically extensive scripting and thorough understanding is necessary to build spatio-temporal
models. Handling of spatio-temporal data in R is provided by the spacetime package (Pebesma, 2012).
In this paper, we present an extension of the gstat package (Pebesma, 2004) (version 1.1-3) that reuses
the spacetime classes for the estimation of spatio-temporal covariance/variogram models and to
perform spatio-temporal interpolation. Our implementation handles various types of spatio-temporal
covariance structures and facilitates spatio-temporal interpolation. The notation of functions in gstat is
extended in a way closely following the purely spatial design. This allows a researcher acquainted with
gstat to readily use spatio-temporal tools. The use of the newly implemented functions is presented
and illustrated by mapping spatio-temporal air-quality data. Another package that offers extensive
spatio-temporal geostatistical functionality is RandomFields (Schlather et al., 2014); further packages
are mentioned in the CRAN Task View on Handling and Analyzing Spatio-Temporal Data1.

The paper is organised as follows. The next section introduces the general interpolation routine
and describes the different spatio-temporal covariance models, followed by a section introducing the
German rural background data set for 2005 and performing the parameter estimation (i.e. covariance
model fitting). Cross-validation results are presented and discussed in the section thereafter. Con-
clusions are drawn in the closing section. R scripts reproducing this study are available from within
the gstat package as demos. ‘stkrige’ re-estimates the variogram models, ‘stkrige-prediction’
re-executes the prediction for a time series and a couple of stations, and ‘stkrige-crossvalidation’
re-runs the entire leave-one-out cross-validation (note that the latter takes a few hours).

1https://CRAN.R-project.org/view=SpatioTemporal

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=spacetime
http://CRAN.R-project.org/package=gstat
http://CRAN.R-project.org/package=RandomFields
https://CRAN.R-project.org/view=SpatioTemporal

CONTRIBUTED RESEARCH ARTICLES 205

Spatio-temporal dependence modelling and kriging

In the following, we will assume a Gaussian spatio-temporal random field Z defined over a spatial
domain S and temporal domain T . Typically, a sample z = (z(s1, t1), . . . , z(sn, tn)) has been observed
at a set of distinct spatio-temporal locations (s1, t1), . . . , (sn, tn) ∈ S × T ⊆ R2 ×R that may include
repeated measurements at the same location or simultaneous measurements at multiple spatial
locations. Often, one is interested in modelling Z from the sample z in order to predict at unobserved
locations in space and time or simulate from the conditional distribution.

Across our domain of interest S × T , we assume the random field Z to be stationary and spatially
isotropic. Hence, the field can be characterised through a mean µ and a covariance function Cst where
the spatio-temporal covariance only depends on the separating distances across space h ∈ R≥0 and
time u ∈ R≥0. Note that extensions beyond this set-up can easily be derived as has been done for
the pure spatial case using for instance universal kriging to overcome the stationarity of the mean.
The general spatio-temporal covariance function is given by Cst(h, u) = Cov (Z(s, t), Z(s̃, t̃)) for a
separating spatial distance h and temporal distance u and any pair of points (s, t), (s̃, t̃) ∈ S × T
with ‖s − s̃‖ = h and |t − t̃| = u. In general, this covariance function is hard to estimate but a
couple of models using simplifying assumptions will be presented in the following together with
their spatio-temporal variograms γst(h, u) = Cst(0, 0)− Cst(h, u) and encoding in gstat. Given a valid
covariance function, the covariance matrices used in the linear predictor are easily obtained and the
same algebraic operations as in the well known spatial case yield predictions of the desired random
field (Cressie and Wikle, 2011). A major difference is, however, the computational complexity of the
matrix inversion. Typically, observations are made at a rather high temporal frequency leading to a
number of spatio-temporal locations that is too large for global kriging. Hence, interpolation based on
a selected neighbourhood of a subset of all data points becomes beneficial. Additionally, this relaxes
the assumption of stationarity, as smooth variations in the mean value across the domain can be
respected. The related class of dynamic models also addresses the computational complexity resulting
in a temporal Markov structure. Implementations can be found in spTimer by Bakar and Sahu (2015),
spBayes by Finley et al. (2015), spate by Sigrist et al. (2015) or INLA by Lindgren and Rue (2015).

Covariance models

The covariance models implemented in gstat and presented in this paper are introduced in the
following. Besides further extensions we focus on the basic classes of the separable, product-sum, metric
and sum-metric spatio-temporal covariance functions. The building blocks (in the following denoted
as spatialVgm, temporalVgm or jointVgm) of the spatio-temporal covariance functions are any of the
purely spatial variogram models already available in gstat. Each one of the building blocks is created
by a call of the function gstat::vgm(). Remaining arguments such as sill (the joint sill), nug (the
joint nugget component) or stAni (the spatio-temporal anisotropy used in jointVgm) are scalars and
refer to parameters of the entire spatio-temporal covariance function:

a) The separable covariance model assumes that the spatio-temporal covariance function can be
represented as the product of a spatial and temporal term:

Csep(h, u) = Cs(h)Ct(u)

Its variogram is given by (see Appendix for details):

γsep(h, u) = sill · (γ̄s(h) + γ̄t(u)− γ̄s(h)γ̄t(u))

where γ̄s and γ̄t are standardised spatial and temporal variograms with separate nugget effects
and (joint) sill of 1. The overall sill parameter is denoted by “sill”.
The R package gstat encodes this model as:

vgmST("separable", space = spatialVgm, time = temporalVgm, sill = sill)

The separable model has a strong computational advantage in the setting where each spatial
location has an observation at each temporal instance (a “STFDF” object without ‘NA’s, Pebesma
2012). In these cases, the covariance matrix (and its inverse) can be composed using the Kronecker-
product of the purely spatial and purely temporal covariance matrices (respectively their inverse).

b) The above model extends to the product-sum covariance model that we give here in a slightly
different notation as De Cesare et al. (2001) and De Iaco et al. (2001) by

Cps(h, u) = kCs(h)Ct(u) + Cs(h) + Ct(u)

with k > 0.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=spTimer
http://CRAN.R-project.org/package=spBayes
http://CRAN.R-project.org/package=spate

CONTRIBUTED RESEARCH ARTICLES 206

The corresponding variogram can be written as

γps(h, u) = (k · sillt + 1) γs(h) + (k · sills + 1) γt(u)− kγs(h)γt(u)

where γs and γt are spatial and temporal variograms (see Appendix for details). The parameter k
needs to be positive and the following identity defines the overall sill (sillst) of the model in terms
of the model’s spatial and temporal sills:

sillst = k · sills · sillt + sills + sillt

The above equation can also be used to estimate k based on the three sill values. An alternative
formulation of the product-sum variogram can be found in De Iaco et al. (2001).
The gstat definition of this model reads:

vgmST("productSum", space = spatialVgm, time = temporalVgm, k = k)

c) Assuming identical spatial and temporal covariance functions except for spatio-temporal anisotropy,
allows to use a spatio-temporal metric covariance model where, after matching space and time by
an anisotropy correction κ (stAni), the spatial, temporal and spatio-temporal distances are treated
equally resulting in a single covariance model Cjoint:

Cm(h, u) = Cjoint

(√
h2 + (κ · u)2

)
The variogram evaluates to

γm(h, u) = γjoint

(√
h2 + (κ · u)2

)
where γjoint (jointVgm) is any known variogram that may include a nugget effect. The following
line generates the model in gstat:

vgmST("metric", joint = jointVgm, stAni = stAni)

The spatio-temporal anisotropy parameter κ (stAni) is given as spatial unit per temporal unit.
In many cases, this will be in m/second, as these are the base units in our implementation. All
temporal distances are hence internally re-scaled to an equivalent spatial distance using stAni and
treated as metric 3D-space.

d) A combination of spatial, temporal and a metric model including an anisotropy parameter κ is
found in Bilonick (1988) and revisited by Snepvangers et al. (2003) as the sum-metric covariance
model :

Csm(h, u) = Cs(h) + Ct(u) + Cjoint

(√
h2 + (κ · u)2

)
This model allows for spatial, temporal and joint nugget effects. Thus, the variogram is given by

γsm(h, u) = γs(h) + γt(u) + γjoint

(√
h2 + (κ · u)2

)
where γs, γt and γjoint are spatial, temporal and joint variograms with separate nugget-effects. This
model can be defined in gstat through:

vgmST("sumMetric", space = spatialVgm, time = temporalVgm, joint = jointVgm,
stAni = stAni)

e) A simplified version of the above model is to restrict the spatial, temporal and joint variograms to
nugget free models. Additionally, a single spatio-temporal nugget is introduced and the variogram
takes the representation:

γssm(h, u) = nug · 1h>0∨u>0 + γs(h) + γt(u) + γjoint

(√
h2 + (κ · u)2

)
The simple sum-metric covariance model can be obtained by:

vgmST("simpleSumMetric", space = spatialVgm, time = temporalVgm,
joint = jointVgm, nugget = nug, stAni = stAni)

Note that the above mentioned spatial, temporal and joint components of the spatio-temporal covari-
ance and variogram models need not necessarily exhibit the same structure. Taking for instance the
product-sum and sum-metric models that both contain single temporal and spatial variogram models:
the best fits of the respective spatio-temporal models might suggest different variogram families and

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 207

parameters for the pure spatial and temporal ones. This is due to the target of finding the best overall
variogram surface resulting in (potentially) different marginal models.

Parameter estimation

Fitting routines for the above variogram models are implemented in gstat through the function
fit.StVariogram(), which calls optim() from the R core package stats. Additional parameters to
improve the numerical optimisation can be provided to fit.StVariogram() and will be passed on to
optim() (using R’s three-dots mechanism). As some of the parameters are limited to certain ranges
(nuggets need to be non-negative, ranges must be positive), it is advised to use an optimisation routine
that allows to impose limits on the search space (i.e. "L-BFGS-B") and provide sensible limits via
lower and upper. By default, the method "L-BFGS-B" is called and the smallest lower and largest
upper bounds supported by the model are given. The estimation of the spatio-temporal variogram
models relies on a sample variogram empirically derived from the data. In contrast to the spatial
variogram line, the spatio-temporal variogram is represented by a surface for lag-classes composed of
a spatial and temporal separation distance. Different from the spatial case, a spatio-temporal sample
variogram contains lag-classes of zero spatial separation describing pure temporal dependencies.
Without duplicate observations, no estimates can be made for the lag-class with both zero spatial
and zero temporal separation. The sample variogram is calculated through the function variogram()
that dispatches the call for spatio-temporal data objects (of class “STFDF”, “STSDF”, or “STIDF”)
from spacetime. For a visual judgement of the fit between sample and fitted variograms the plot()
function can be called to show the variogram surfaces next to each other as coloured level plots.
Alternatively, a wireframe plot is obtained by setting the parameter wireframe = TRUE (Figure 3). A
further option is to plot the differences between the sample and model variogram surfaces by setting
diff = TRUE, see Figure 4. Additionally to visual comparison, fit.StVariogram() provides the output
of optim as attribute optim.out of the returned S3 class “StVariogram”. This attribute includes valuable
information to diagnose the success of the optim routine. It contains for instance the convergence
code ($convergence) or message ($message) and the optimised value ($value), which is the mean of
the (weighted) squared deviations between sample and fitted variogram surfaces. Furthermore, it
is advised to check the estimated parameters against the parameter boundaries and starting values.
Additionally, starting values might also influence the success and result of the optimisation, as local
optima may occur due to the interdependence of the parameters. Alternatively, the user might want to
start a grid search in order to better asses the sensitivity of the estimates.

The fitting approach is identical for all covariance models. However, with the flexibility of the
model also the number of parameters increases, making a numerical estimation at times cumbersome.
Starting values can in most cases be read from the sample variogram. Parameters of the spatial and
temporal variograms can be assessed from the spatio-temporal surface fixing the counterpart at 0.
The overall spatio-temporal sill including the nugget can be deducted from the plateau that a nicely
behaving sample variogram reaches for “large” spatial and temporal distances. An important issue
is the potentially different orders of magnitude of the parameters. It is at times advisable to rescale
spatial and temporal distances to ranges similar to the ones of sills and nuggets using the parameter
parscale. parscale needs to be provided via control = list(parscale = . . .) and holds a vector
of the same length as the number of parameters to be optimised (see the documentation of optim for
further details).

Currently, the implemented fitting routines are based on the (weighted) mean squared difference
between model and sample variogram surfaces. By default, all values are associated the same weight
(fit.method = 6), but other options are available that allow for different weighting schemes based
on the number of pairs, spatial, temporal and spatio-temporal distances or the variogram’s value.
Table 1 lists all currently implemented options. Depending on the target neighbourhood size of the
desired interpolation, it might be beneficial to narrow down the spatial and temporal distances and to
introduce a cutoff. This ensures that the model is fitted to the differences over space and time actually
used in the interpolation, and reduces the risk of overfitting the variogram model to large distances
not used for prediction. Please note that methods 2 and 10 (Table 1) involve weights based on the fitted
variogram that might lead to bad convergence properties of the parameter estimates. Furthermore,
the scalar stAni in methods 7 and 11 will either be the actual fitted spatio-temporal anisotropy if it is
included in the model or a fixed value that has to be passed as stAni by the user to fit.StVariogram.
The latter is advised, as the former might lead to bad convergence properties as in the case of weights
based on the fitted variogram mentioned above. As the estimation of an anisotropy scaling might be
cumbersome on a visual basis, we provide the function estiStAni that provides estimates based on
the empirical spatio-temporal variogram. Four heuristics are available based on (i) rescaling a linear
model (linear), (ii) estimating equal ranges (range), (iii) rescaling a pure spatial variogram (vgm) or
(iv) estimating a complete spatio-temporal metric variogram model and returning its spatio-temporal
anisotropy parameter (metric). The choice of the weighting scheme will influence the selected model

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 208

fit.method weights

0 no fitting
1 and 3 Nj

2 and 4 Nj/γ
(

hj, uj

)2

5 reserved for REML
6 1, no weighting
7 Nj/

(
h2

j + stAni2 · u2
j

)
8 Nj/h2

j
9 Nj/u2

j

10 1/γ
(

hj, uj

)2

11 1/
(

h2
j + stAni2 · u2

j

)
12 1/h2

j
13 1/u2

j

Table 1: List of implemented weighting schemes for variogram optimisation. Methods 3, 4, and 5 are
kept for compatibility reasons with the purely spatial fit.variogram function. The following notation
is used: Nj number of pairs, hj mean spatial distance and uj mean temporal distance for each bin j, γ
the actual proposed variogram model and stAni a spatio-temporal anisotropy scaling.

and different weightings might be further assessed in a cross-validation of the selected model. To
increase numerical stability, it is advisable to use weights that do not change with the current model
fit.

Kriging

Standard kriging (krigeST) and trans Gaussian kriging (krigeSTTg) have been implemented. As spatio-
temporal kriging based on the complete data set might be too computationally expensive, local kriging
is an attractive alternative. This poses the question of how to select the “nearest” neighbours from
the spatio-temporal space S × T . A natural choice would be to select the spatio-temporal locations
exhibiting the strongest correlation to the unobserved location. Depending on the spatio-temporal
covariance model, the relation between spatial and temporal distance in determining the strength
of correlation will vary. As a proxy, we use a spatio-temporal anisotropy parameter that relates
spatial and temporal distances in the same manner as in the metric covariance models. The k-nearest
neighbours within this metric spatio-temporal space S × T are selected using the R package FNN
(Beygelzimer et al., 2013). The interpolation performs iteratively for each spatio-temporal prediction
location with a local subset of the data set. Without neighbourhood selection, kriging uses all data.

As the metric induced by the spatial and rescaled temporal distances are only proxies to the
strength of correlation between locations (see Figure 1), we provide an option to search a larger
metric neighbourhood. Within this larger neighbourhood, the covariance function is evaluated for all
spatio-temporal locations and the neighbouring locations with the largest covariance values are then
selected for prediction. However, this approach might still suffer from a clustering of locations and
alternatives such as a staged search (find spatial neighbours first and select a set of temporal instances
for each spatial neighbour) or an octant search (select neighbours per spatial quadrant from preceding
and following time stamps separately) could be considered. However, these alternatives are not yet
available in gstat.

Application and illustration

The data set used is taken from AirBase2, the air quality data base for Europe provided by the
European Environmental Agency (EEA). We focus on a single air quality indicator, particulate matter
with a diameter less than 10 µm, measured at rural background stations for 2005 (PM10). The data
base contains data for many years. Besides rural, also urban areas are monitored and not only
at background locations (e.g. traffic stations). However, these processes are considered to be of a
different nature and should be treated separately. As a use case, we therefore limit our data set to
the rural background stations in Germany. Figure 2 shows for 8 randomly chosen days daily mean

2AirBase – The European air quality database

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=FNN
http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-quality-database-6

CONTRIBUTED RESEARCH ARTICLES 209

Figure 1: A contourplot showing how the spatio-temporal sum-metric variogram model (as estimated
in the application below) and a metric distance relate to each other. Distances are rescaled by 1/5 for
easy plotting.

Figure 2: Daily mean PM10 concentration [µg/m3] at 8 randomly selected days in 2005.

values of PM10 concentrations for the entire monitoring network over Germany in 2005 with 69 rural
background stations.

In order to fit a spatio-temporal model to the air quality data set, the empirical variogram surface
is computed and used as input for the fitting routines of the different models. The empirical variogram
is based on spatio-temporal bins that span regularly over space and time.

Regular measurements over time (i.e. hourly, daily) motivate regular binning intervals of the
same temporal resolution. Nevertheless, flexible binning boundaries can be passed for spatial and
temporal dimensions. This allows for instance to use smaller bins at small distances and larger ones
for large distances. Temporal boundaries, instead of lags, are required when the sampling of the data
is non-regular. In cases where regular temporal observations can be assumed, this is utilised in the
sample variogram calculations and any two temporal consecutive observations are assumed to have
the same temporal distance. Figure 3 shows the empirical variogram along with the proposed best
fitting model of each spatio-temporal variogram family as perspective wireframe plots. In order to
better identify structural shortcomings of the selected model, a difference plot (Figure 4) is a helpful
visual diagnostic plot.

Beyond the selection of the spatio-temporal variogram family, each component of this model
can be chosen from any implemented one-dimensional variogram. In Table 2 a selection of fitted

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 210

models in terms of their residuals compared to the sample variogram surface is shown. The best fitting
spatio-temporal model of each family is given as:

a) separable model (weighted MSE: 6.82):

partial sill model range nugget sp.-temp. sill

space 0.86 Exp 558 km 0.14 124time 1.00 Sph 5.6 days 0.00

obtained via:

separableModel <- vgmST("separable", space = vgm(0.9, "Exp", 200, 0.1),
time = vgm(0.9, "Sph", 3.5, 0.1), sill = 124)

fit.StVariogram(empVgm, separableModel, fit.method = 7, stAni = 117.3,
method = "L-BFGS-B",
control = list(parscale = c(100, 1, 10, 1, 100)),
lower = c(10, 0, 0.1, 0, 0.1), upper = c(2000, 1, 12, 1, 200))

b) product-sum model (weighted MSE: 6.91)

partial sill model range nugget k

space 6.8 Exp 542 km 1.2 1.61time 8.7 Sph 5.5 days 0.0

obtained via

prodSumModel <- vgmST("productSum", space = vgm(10, "Exp", 200, 1),
time = vgm(10, "Sph", 2, 1), k = 2)

fit.StVariogram(empVgm, prodSumModel, fit.method = 7, stAni = 117.3,
method = "L-BFGS-B", lower = rep(0.0001, 7)
control = list(parscale = c(1, 10, 1, 1, 0.1, 1, 10)))

c) metric model (weighted MSE: 10.05)

partial sill model range nugget anisotropy

joint 123.4 Matκ=0.6 453 km 17.4 189 km/day

obtained via

metricModel <- vgmST("metric", joint = vgm(60, "Mat", 150, 10, kappa = 0.6),
stAni = 60)

fit.StVariogram(empVgm, metricModel, fit.method = 7, stAni = 117.3,
method = "L-BFGS-B", control = list(parscale = c(10, 20, 5, 10)),
lower = c(80, 50, 5, 50), upper = c(200, 1500, 60, 300))

d) sum-metric model (weighted MSE: 3.31)

partial sill model range nugget anisotropy

space 16.4 Sph 67 km 0
time 9.3 Exp 0.9 days 0
joint 91.5 Sph 999 km 7.3 185 km/day

obtained via

sumMetricModel <- vgmST("sumMetric", space = vgm(20, "Sph", 150, 1),
time = vgm(10, "Exp", 2, 0.5),
joint = vgm(80, "Sph", 1500, 2.5), stAni = 120)

fit.StVariogram(empVgm, sumMetricModel, fit.method = 7, stAni = 117.3,
method = "L-BFGS-B",
control = list(parscale = c(1, 100, 1, 1, 0.5, 1, 1, 100,

1, 100),
maxit = 10000),

lower = c(sill.s = 0, range.s = 10, nugget.s = 0,
sill.t = 0, range.t = 0.1, nugget.t = 0,
sill.st = 0, range.st = 10, nugget.st = 0, anis = 40),

upper = c(sill.s = 200, range.s = 1000, nugget.s = 20,
sill.t = 200, range.t = 75, nugget.t = 20,
sill.st = 200, range.st = 5000, nugget.st = 20,
anis = 500))

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 211

model joint Exp+Exp Exp+Sph Sph+Exp Sph+Sph Matκ=0.6

separable · 9.87 6.82 10.42 7.50 ·
product-sum · 10.09 6.91 10.64 7.59 ·
metric · 10.25 · · 10.59 10.05

sum-metric Exp 4.10 3.60 3.89 3.32 ·
Sph 3.74 3.73 3.31 3.36 ·

simple sum-metric Exp 4.10 3.60 3.94 3.32 ·
Sph 3.74 3.98 3.31 3.56 ·

Table 2: Weighted MSE (fit.method = 7, see Table 1) for different spatio-temporal variogram
families and different choices for the one-dimensional variogram components. Columns denote the
spatial and temporal variogram choices. The metric model is only applicable if both domains use the
same family.

e) simple sum-metric model (weighted MSE: 3.31)

partial sill model range anisotropy sp.-temp. nugget

space 16.4 Sph 67 km }
7.3time 9.3 Exp 0.9 days

joint 91.5 Sph 999 km 185 km/day

obtained via

simpleSumMetricModel <- vgmST("simpleSumMetric", space = vgm(120, "Sph", 150),
time = vgm(120, "Exp", 10),
joint = vgm(120, "Sph", 150),
nugget = 10, stAni = 150)

fit.StVariogram(empVgm, simpleSumMetricModel, fit.method = 7,
stAni = 117.3, method = "L-BFGS-B",
control = list(parscale = c(1, 10, 1, 1, 1, 100, 1, 10))
lower = c(sill.s = 0, range.s = 10,

sill.t = 0, range.t = 0.1,
sill.st = 0, range.st = 10,
nugget = 0, anis = 40),

upper = c(sill.s = 200, range.s = 500,
sill.t = 200, range.t = 20,
sill.st = 200, range.st = 5000#,
nugget = 100, anis = 1000))

The variogram parameters are numerically optimised using the function fit.StVariogram and the
"L-BFGS-B" routine of optim. The parameter fit.method that controls the weighing of the residuals
between empirical and model surface of fit.StVariogram is set to 7 (the spatio-temporal analog to the
commonly used spatial weighting). A full list of all weighting schemes is presented in Table 1. In our
application, the residuals are multiplied by the number of pairs in the corresponding spatio-temporal
bin divided by the metric distance: Nj/(h2

j + stAni2 · u2
j). The spatio-temporal anisotropy is estimated

beforehand and fixed at 118 km/day. This weighting scheme puts higher confidence in lags filled with
many pairs of spatio-temporal locations, but respects to some degree the need of an accurate model
for short distances, as these short distances are the main source of information in the prediction step.
Note, that different weighting schemes will in general result in different model parameters generating
different interpolation values. Our selection is based on the assumption that well filled bins provide
more reliable empirical variogram estimates and the fact that short distances are the most important
ones for a local interpolation.

For comparison with classical approaches, we interpolate across Germany iteratively for each
single day using all available data for variogram estimation. The purely spatial empirical variogram
can directly be obtained from the empirical spatio-temporal variogram, by fixing the temporal lag at 0
separation. From the same set of variogram models as investigated for the spatio-temporal models,
the exponential model (partial sill: 66.5, range: 224 km, nugget: 13.5) is the best suited based on the
optimisation criterion. Alternatively, we could have fitted the spatial variogram for each day separately
using observations from that day only. However, given the small number of observation stations, this
produced unstable variograms for several days and we decided to use the single spatial variogram
derived from all spatio-temporal locations treating time slices as uncorrelated copies of the spatial
random field.

Once the best fitting spatio-temporal variogram model is identified, the interpolation can be

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 212

Figure 3: Sample and the best fitting spatio-temporal variogram of each family.

Figure 4: Differences between the sample and the best fitting spatio-temporal variogram of each
family.

executed with the help of the function krigeST. We use the sum-metric model that obtained the smallest
RMSE (compare Table 2) to produce a gridded prediction. The interpolation domain consists of daily
values for a regular grid spanning over Germany in UTM projection. The cell size is 10 km× 10 km.
Figure 5 shows the interpolated grid for the same days as Figure 2 alongside with all sampling
locations. Additionally, maps depicting the differences from a leave-one-out cross-validation are
presented in Figure 6. A time series view is presented in Figure 7 showing the observed and predicted
time series at a single location along with its 95 % prediction intervals. An animation of the entire year
of daily mean PM10 prediction maps can be viewed online.3.

The interpolated maps are generated for a set of time stamps tIDs and a grid over Germany

3http://gstat.r-forge.r-project.org/STpred.html

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://gstat.r-forge.r-project.org/STpred.html

CONTRIBUTED RESEARCH ARTICLES 213

covariance model wMSE neigh. RMSE MAE ME COR

pure Spatial 10 6.15 4.09 −0.01 0.84
separable [6.82] 10 6.08 4.04 −0.01 0.84
product-sum [6.91] 10 6.08 4.04 −0.01 0.84
metric [10.05] 10 6.11 4.07 0.03 0.84
sum-metric [3.31] 10 6.16 4.08 −0.06 0.84
simple sum-metric [3.31] 10 6.14 4.08 −0.02 0.84

pure Spatial 50 6.10 4.07 0.00 0.84
separable [6.82] 50 6.05 4.04 0.01 0.84
product-sum [6.91] 50 6.05 4.04 0.00 0.84
metric [10.05] 50 6.07 4.08 0.03 0.84
sum-metric [3.31] 50 6.14 4.09 −0.01 0.84
simple sum-metric [3.31] 50 6.14 4.08 −0.02 0.84

Table 3: Leave-one-out cross-validation results. The column wMSE refers to the optimised value from
the variogram estimation.

DE_pred by

krigeST(PM10 ~ 1, data = DE_RB_2005[, tIDS], newdata = DE_pred,
fitSumMetricModel, nmax = 50, stAni = fitMetricModel$stAni / 24 / 3600)

To further compare the different approaches, a leave-one-out cross-validation was carried out. The
spatio-temporal interpolations are done for the closest 50 and 10 neighbours assessing the impact of
the neighbourhood size. Inspection of the ranges of the variograms in the temporal domain, suggests
that any station more than at least 6 days apart does not meaningfully contribute. Furthermore, the
local estimation allows the spatio-temporal random field to have a varying mean value over space and
time. The purely spatial interpolation can be considered as the extreme temporally local case, where
only observations from the same time instance are considered.

Figure 5: Spatio-temporal interpolation of daily mean PM10 concentrations using the sum-metric
covariance model with the closest 50 neighbouring spatio-temporal locations. The crosses indicate
sampling locations. The cell size of the grid in UTM projection is 10 km× 10 km.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 214

Figure 6: Differences of spatio-temporal predictions and observed daily mean PM10 concentrations
using the sum-metric covariance model with the closest (approx. strongest correlated) 50 neighbouring
spatio-temporal locations.

Figure 7: Subset of the time series of observed and predicted PM10 at a single station in Lower Saxony
along with its 95 % prediction intervals.

Results and discussion

In terms of added value of spatio-temporal kriging measured in cross-validation results, Table 3 shows
hardly any benefit in the illustrative example. This effect can to a large degree already be explained
from the spatio-temporal variograms: a temporal lag of one or a few days leads already to a large
variability compared to spatial distances of few hundred kilometres, implying that the temporal
correlation is too weak to considerably improve the overall prediction. Nevertheless, investigating
a process with a higher temporal frequency will likely show a stronger correlation in the temporal
domain. Looking into station-wise cross-validation statistics (not shown), the four stations with
an RMSE of 10 and larger correspond to the locations with the largest annual mean concentrations
(> 22 µg/m3).

The added value of spatio-temporal kriging lies in the flexibility of the model. We are now in the
position to not only interpolate at unobserved locations in space, but also at unobserved time instances.
This makes spatio-temporal kriging a suitable tool to fill gaps in time series not only based on the
time series solely, but also including some of its spatial neighbours. A very irregular sampled data
set would as well largely benefit from a spatio-temporal approach, as spatially close but unobserved

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 215

locations in one time slice are not of any help in a purely spatial approach, but the spatio-temporal
model would benefit from the observed value nearby at another time instance. In a completely regular
data set, the distance to a spatio-temporal neighbour is at least as large as the pure spatial distance
and hence the correlation is weaker. Furthermore, being able to capture the covariance structure over
space and time might foster a better understanding of the process under study.

While we see spatio-temporal modelling as being a powerful tool, the cross-validation results in
Table 3 show that spatio-temporal kriging will not solve the problems of all poorly spatially captured
phenomena. Further preprocessing steps might be necessary to improve the modelling of this PM10
data set such as for instance a temporal AR-model followed by spatio-temporal residual kriging or
using further covariates in a preceding (linear) modelling step. Providing the best possible model of
PM10 concentrations across Germany was beyond the scope of this paper.

The selection of a spatio-temporal covariance model should not only be made based on the
(weighted) mean squared difference between the empirical and model variogram surfaces (presented
in Table 2), but also on conceptional choices and visual (Figure 3) judgement of the fits. Even though the
function fit.StVariogram provides optimisation routines to fit different spatio-temporal variogram
models, the numerical routines in the background may struggle to find the optimal parameters.
Besides the lower and upper boundaries of the parameter space, the control parameter parscale of
the optim function is a valuable option to improve the convergence of the optimisation. With passing
parscale as entry of the list control a vector of scalars must be passed that controls the different
levels of magnitude of the variogram parameters. In most applications, a change of 1 in the sills will
have a stronger influence on the variogram surface than a change of 1 in the ranges. The problem
becomes more difficult with an increasing number of parameters. In our application, using the simple
sum-metric model as starting values for the full sum-metric model improved the convergence speed of
the more complex model. In the presented application, the sum-metric model turns out to be the same
as the simple sum-metric model. While this might at first sight be due to using the simpler model to
generate starting values, different non simplified starting models converged to the same result.

Generally, it is important to keep in mind the strong interaction of the model parameters. It is
typically not easy to distinguish how much of the spatio-temporal nugget and sill is attributed to
spatial, temporal or joint components. In this paper we considered a joint numerical approach, but
step-wise approaches where the components are estimated separately could as well be considered.
The interested reader is also referred to Nash (2014). However, all optimisation approaches follow the
premise that the studied process can be approximated with the given model and available data. If this
premise fails, no optimal model can be selected.

An extension towards a restricted maximum likelihood method (REML) to fit the spatio-temporal
variogram model would be desirable, as it overcomes some of the above mentioned drawbacks of
the method of moments based approaches and would additionally provide standard errors for the
parameter estimates. A REML approach would allow to take into account that sample variogram
values are correlated. However, for large data sets (as in the spatio-temporal case), it is computationally
more feasible to use a least squares fitting. To reduce the correlation of the variogram values, some
randomisation could be implemented in large data sets, to calculate the sample variogram based on
partially overlapping or even disjoint sets of observations.

The selected anisotropy as proxy to the relation of spatial and temporal distance in determining the
strongest correlated neighbours might show a distortion for some models when only few neighbours
are used towards the true set of the most correlated locations. However, this effect vanishes as
soon as the spatio-temporal range of the model is sufficiently represented through the set of nearest
neighbours.

As mentioned by Kyriakidis and Journel (1999), an alternative to space-time kriging might be
co-kriging. However, this is only feasible if the number of time replicates is (very) small, as the number
of cross-variograms to be modelled equals the number of pairs of time replicates. Also, co-kriging can
only interpolate for these time slices, and not inbetween or beyond them. It does however provide
prediction error covariances, which can help assessing the significance of estimated change parameters
(Pebesma et al., 2005; Pebesma and Duin, 2005). Several of the space-time variograms presented here
may be approximated by sets of direct variograms and cross-variograms.

Fitting variogram models to sample space-time variograms is in our implementation done by
stats::optim. Our example script uses method "L-BFGS-B" and provides upper and lower parameter
boundaries, e.g. to make sure sill parameters do not become negative. There has been a lot of research
in optimisation since the development of the methods included in optim, some of which has been
reported in the special issue of the Journal of Statistical Software (Varadhan, 2014), and we do see
potential to improve the options in this respect.

The approximate selection of the most correlated neighbours solves the lack of a natural notion of
a joint distance across space and time. However, other sampling properties might introduce a bias in
the prediction. The prediction at an unobserved location with a cluster of observations at one side will

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 216

be biased towards this cluster and neglect the locations towards the other directions. Similar as the
quadrant search in the pure spatial case an octant wise search strategy for the local neighbourhood
would solve this limitation. A simpler stepwise approach to define an n-dimensional neighbourhood
might already be sufficient in which at first ns spatial neighbours and then from each spatial neighbour
nt time instances are selected, such that ns · nt ≈ n.

The presented example considers stationary random fields that are isotropic in space. Further
extensions towards more sophisticated variogram estimations allowing also for spatial geometric
anisotropy are desirable. One could for instance plot variogram maps for spatial separation in North
and South direction for each temporal lag. However, the current implementation does not allow to use
the anisotropy parameter anis of the pure spatial variogram definition. Nevertheless, a preliminary
rescaling of coordinates would be a possible workaround. This route has for instance been taken by
Gasch et al. (2015) performing 3D + T kriging. The soil profiles in their study show a clear difference
in horizontal and vertical variography. To correct for this, the depth dimension of the data has been
rescaled to correspond with the dimensions of the horizontal distances beforehand. In the subsequent
study, these pseudo 3D coordinates have been used to fit the spatio-temporal variograms and perform
kriging.

The code in model definitions is meant to be kept both flexible and simple. This is based on i)
re-producing the notion of the geostatistical models in the R code and in ii) reusing existing definitions
and functions of the pure spatial cases that have been available for many years in gstat. The data
handling benefits to a large degree from the implementations in the spacetime R package.

Conclusions

The spatio-temporal extensions to gstat allow to model a set of spatio-temporal covariance functions.
The implemented functionality eases estimation, visualisation and understanding of spatio-temporal
covariance functions. The extension and reuse of already available function structures and nomencla-
ture facilitates an easy translation of spatial workflows to handle spatio-temporal data. The numerical
estimation of the variogram parameters might be tricky and needs a large degree of the user’s attention.
It is advised to carefully check the outcome of the optim routine after optimisation. Spatio-temporal
kriging predictions can be made in a global and a local neighbourhood set-up, while the latter will be
the preferred solution for most spatio-temporal data sets and common computer hardware configura-
tions.

Spatio-temporal covariance structures carry valuable information, but a spatio-temporal model is
not guaranteed to outperform pure spatial predictions. The benefit in terms of prediction quality of
spatio-temporal kriging becomes only apparent if sufficiently strong correlated locations are added
with the temporal dimension (i.e. if the model permits strong correlation across time). Nevertheless,
the spatio-temporal covariance model might be of interest in itself.

Besides some publications where the authors of this paper were involved in, such as Kilibarda et al.
(2014), the software presented here has proven useful in several independent publications, examples
of which are Marek et al. (2015); Biondi (2013); Hu et al. (2015); Yoon et al. (2014).

Acknowledgements

This research has partly been funded by the German Research Foundation (DFG) under project number
PE 1632/4-1. We thank two anonymous reviewers for their valuable comments.

Bibliography

K. S. Bakar and S. K. Sahu. spTimer: Spatio-temporal Bayesian modelling using R. Journal of Statistical
Software, 63(15):1–32, 2015. doi: 10.18637/jss.v063.i15. [p205]

A. Beygelzimer, S. Kakadet, J. Langford, S. Arya, D. Mount, and S. Li. FNN: Fast Nearest Neighbor Search
Algorithms and Applications, 2013. URL https://CRAN.R-project.org/package=FNN. R package
version 1.1. [p208]

R. A. Bilonick. Monthly hydrogen ion deposition maps for the northeastern U.S. from July 1982
to September 1984. Atmospheric Environment (1967), 22(9):1909–1924, 1988. doi: 10.1016/0004-
6981(88)90080-7. [p206]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=FNN

CONTRIBUTED RESEARCH ARTICLES 217

F. Biondi. Space-time kriging extension of precipitation variability at 12 km spacing from tree-
ring chronologies and its implications for drought analysis. Hydrology and Earth System Sciences
Discussussions, 10:4301–4335, 2013. doi: 10.5194/hessd-10-4301-2013. [p216]

N. Cressie and C. K. Wikle. Statistics for Spatio-Temporal Data. Wiley, 2011. [p204, 205]

L. De Cesare, D. Myers, and D. Posa. Estimating and modeling space-time correlation structures.
Statistics & Probability Letters, 51(1):9–14, 2001. doi: 10.1016/S0167-7152(00)00131-0. [p205]

S. De Iaco, D. Myers, and D. Posa. Space-time analysis using a general product-sum model. Statistics
& Probability Letters, 52(1):21–28, 2001. doi: 10.1016/S0167-7152(00)00200-5. [p205, 206]

A. O. Finley, S. Banerjee, and A. E. Gelfand. spBayes for large univariate and multivariate point-
referenced spatio-temporal data models. Journal of Statistical Software, 63(13), 2015. doi: 10.18637/jss.
v063.i13. [p205]

C. K. Gasch, T. Hengl, B. Gräler, H. Meyer, T. S. Magney, and D. J. Brown. Spatio-temporal interpolation
of soil water, temperature, and electrical conductivity in 3D + T: The Cook agronomy farm data set.
Spatial Statistics, 14(Part A):70–90, 2015. doi: 10.1016/j.spasta.2015.04.001. [p216]

Y. Hu, R. Li, R. Bergquist, H. Lynn, F. Gao, Q. Wang, S. Zhang, L. Sun, Z. Zhang, and Q. Jiang.
Spatio-temporal transmission and environmental determinants of schistosomiasis japonica in Anhui
province, China. PLoS Neglected Tropical Diseases, 9(2), 2015. doi: 10.1371/journal.pntd.0003470.
[p216]

M. Kilibarda, T. Hengl, G. B. M. Heuvelink, B. Gräler, E. Pebesma, M. Perčec Tadić, and B. Bajat.
Spatio-temporal interpolation of daily temperatures for global land areas at 1 km resolution. Journal
of Geophysical Research: Atmospheres, 119(5):2294–2313, 2014. doi: 10.1002/2013JD020803. [p216]

P. C. Kyriakidis and A. G. Journel. Geostatistical space-time models: A review. Mathematical Geology,
31(6):651–684, 1999. doi: 10.1023/A:1007528426688. [p215]

F. Lindgren and H. Rue. Bayesian spatial modelling with R-INLA. Journal of Statistical Software, 63(19),
2015. doi: 10.18637/jss.v063.i19. [p205]

L. Marek, P. Tuc̆ek, and V. Pászto. Using geovisual analytics in Google Earth to understand disease dis-
tribution: A case study of campylobacteriosis in the Czech Republic (2008–2012). International Journal
of Health Geographics, 14(7):1–13, 2015. URL http://www.ij-healthgeographics.com/content/14/
1/7. [p216]

J. C. Nash. On best practice optimization methods in R. Journal of Statistical Software, 60(2):1–14, 2014.
doi: 10.18637/jss.v060.i02. [p215]

E. Pebesma. spacetime: Spatio-temporal data in R. Journal of Statistical Software, 51(7):1–30, 2012. doi:
10.18637/jss.v051.i07. [p204, 205]

E. J. Pebesma. Multivariable geostatistics in S: The gstat package. Computers & Geosciences, 30:683–691,
2004. doi: 10.1016/j.cageo.2004.03.012. [p204]

E. J. Pebesma and R. N. Duin. Spatio-temporal mapping of sea floor sediment pollution in the North Sea.
In P. Renard and R. Froidevaux, editors, Fifth European Conference on Geostatistics for Environmental
Applications, GeoENV2004, pages 367–378. Springer, 2005. doi: 10.1007/3-540-26535-X_31. [p215]

E. J. Pebesma, R. N. Duin, and P. A. Burrough. Mapping sea bird densities over the North Sea:
Spatially aggregated estimates and temporal changes. Environmetrics, 16(6):573–587, 2005. doi:
10.1002/env.723. [p215]

M. Schlather, A. Malinowski, P. J. Menck, M. Oesting, and K. Strokorb. Analysis, simulation and
prediction of multivariate random fields with package RandomFields. Journal of Statistical Software,
63(8):1–25, 2014. doi: 10.18637/jss.v063.i08. [p204]

F. Sigrist, H. R. Künsch, and W. A. Stahel. spate: An R package for spatio-temporal modeling
with a stochastic advection-diffusion process. Journal of Statistical Software, 63(14):1–23, 2015. doi:
10.18637/jss.v063.i14. [p205]

J. Snepvangers, G. Heuvelink, and J. Huisman. Soil water content interpolation using spatio-temporal
kriging with external drift. Geoderma, 112(3–4):253–271, 2003. doi: 10.1016/S0016-7061(02)00310-5.
[p206]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.ij-healthgeographics.com/content/14/1/7
http://www.ij-healthgeographics.com/content/14/1/7

CONTRIBUTED RESEARCH ARTICLES 218

R. Varadhan. Numerical optimization in R: Beyond optim. Journal of Statistical Software, 60(1):1–3, 9
2014. doi: 10.18637/jss.v060.i01. [p215]

S. Y. Yoon, S. K. Ravulaparthy, and K. G. Goulias. Dynamic diurnal social taxonomy of urban
environments using data from a geocoded time use activity-travel diary and point-based business
establishment inventory. Transportation Research Part A: Policy and Practice, 68:3–17, 2014. doi:
10.1016/j.tra.2014.01.004. [p216]

Benedikt Gräler
Institute for Geoinformatics, University of Münster
Heisenbergstr. 2, 48149, Münster
Germany
ben.graeler@uni-muenster.de

Edzer Pebesma
Institute for Geoinformatics, University of Münster
Heisenbergstr. 2, 48149, Münster
Germany
edzer.pebesma@uni-muenster.de

Gerard Heuvelink
Department of Environmental Sciences, Wageningen University
PO Box 47, 6700AA, Wageningen
The Netherlands
gerard.heuvelink@wur.nl

Appendix

Derivation of the separable covariance and variogram identities

The separable covariance and variogram identity is readily available through

Csep(h, u) = Cs(h)Ct(u) = sill · c̄s(h)c̄t(u)

γsep(h, u) = Csep(0, 0)− Csep(h, u)

= sill (1− c̄s(h) · c̄t(u))
= sill (1− (1− γ̄s(h)) (1− γ̄t(u)))
= sill (1− (1− γ̄s(h)− γ̄t(u) + γ̄s(h)γ̄t(u)))
= sill (γ̄s(h) + γ̄t(u)− γ̄s(h)γ̄t(u))

where c̄ and γ̄ are normalised correlation and correlogram functions respectively.

Derivation of the product-sum covariance and variogram identities

The product-sum covariance and variogram identity is readily available through:

Cps(h, u) = k · Cs(h)Ct(u) + Cs(h) + Ct(u)

γps(h, u) = Cps(0, 0)− Cps(h, u)

= k · Cs(0)Ct(0) + Cs(0) + Ct(0)

− (k · Cs(h)Ct(u) + Cs(h) + Ct(u))
= k · sills · sillt + sills + sillt
− k · [(sills − γs(h)) (sillt − γt(u))]− (sills − γs(h))− (sillt − γt(u))

= k · sills · sillt + sills + sillt
− k · [sills · sillt − sills · γt(u)− sillt · γs(h) + γs(h)γt(u)]
− sills + γs(h)− sillt + γt(u)

= k · silltγs(h) + k · sillsγt(u)− kγs(h)γt(u) + γs(h) + γt(u)
= (k · sillt + 1)γs(h) + (k · sills + 1)γt(u)− kγs(h)γt(u)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:ben.graeler@uni-muenster.de
mailto:edzer.pebesma@uni-muenster.de
mailto:gerard.heuvelink@wur.nl

CONTRIBUTED RESEARCH ARTICLES 219

SWMPr: An R Package for Retrieving,
Organizing, and Analyzing
Environmental Data for Estuaries
by Marcus W Beck

Abstract The System-Wide Monitoring Program (SWMP) was implemented in 1995 by the US National
Estuarine Research Reserve System. This program has provided two decades of continuous monitoring
data at over 140 fixed stations in 28 estuaries. However, the increasing quantity of data provided by the
monitoring network has complicated broad-scale comparisons between systems and, in some cases,
prevented simple trend analysis of water quality parameters at individual sites. This article describes
the SWMPr package that provides several functions that facilitate data retrieval, organization, and
analysis of time series data in the reserve estuaries. Previously unavailable functions for estuaries are
also provided to estimate rates of ecosystem metabolism using the open-water method. The SWMPr
package has facilitated a cross-reserve comparison of water quality trends and links quantitative
information with analysis tools that have use for more generic applications to environmental time
series.

Introduction

The development of low-cost, automated sensors that collect data in near real time has enabled a
proliferation of standardized environmental monitoring programs (Glasgow et al., 2004; Fries et al.,
2008). An invaluable source of monitoring data for coastal regions in the United States is provided
by the National Estuarine Research Reserve System (NERRS, http://www.nerrs.noaa.gov/). This
network of 28 estuary reserves was created to address long-term research, monitoring, education,
and stewardship goals in support of coastal management. The System-Wide Monitoring Program
(SWMP) was implemented in 1995 at over 140 stations across the reserves to provide a robust, long-
term monitoring system for water quality, weather, and land-use/habitat change. Environmental
researchers have expressed a need for quantitative analysis tools to evaluate trends in water quality
time series given the quantity and quality of data provided by SWMP (System-Wide Monitoring
Program Data Analysis Training, 2014).

This article describes the SWMPr package that was developed for estuary monitoring data from
the SWMP. Functions provided by SWMPr address many common issues working with large datasets
created from automated sensor networks, such as data pre-processing to remove unwanted infor-
mation, combining data from different sources, and exploratory analyses to identify parameters of
interest. Additionally, web applications derived from SWMPr and shiny illustrate potential applica-
tions using the functions in this package. The software is provided specifically for use with NERRS
data, although many of the applications are relevant for addressing common challenges working with
large environmental datasets.

Overview of the SWMP network

The SWMPr package was developed for the continuous abiotic monitoring network that represents
a majority of SWMP data and, consequently, the most challenging to evaluate. Abiotic elements
monitored at each reserve include water quality (water temperature, specific conductivity, salinity,
dissolved oxygen concentration, dissolved oxygen saturation, depth, pH, turbidity, chlorophyll
fluorescence), weather (air temperature, relative humidity, barometric pressure, wind speed, wind
direction, photosynthetically active radiation, precipitation), and nutrient data (orthophosphate,
ammonium, nitrite, nitrate, nitrite + nitrate, chlorophyll a). Each of the 28 estuary reserves has no
fewer than four water quality stations and one weather station at fixed locations. Water quality
and weather data are collected at 15 minute intervals, whereas nutrient data are collected monthly
at each water quality station. Data are made available through the Centralized Data Management
Office (CDMO) web portal (http://cdmo.baruch.sc.edu/), where quality assurance/quality control
(QAQC) measures are used to screen the information for accuracy and reliability. The final data include
timestamped observations with relevant QAQC flags.

At the time of writing, the CDMO web portal provides over 60 million water quality, weather, and
nutrient records that have been authenticated through systematic QAQC procedures. Records for
each station are identified by a seven or eight character name that specifies the reserve, station, and

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.nerrs.noaa.gov/
http://CRAN.R-project.org/package=SWMPr
http://CRAN.R-project.org/package=shiny
http://cdmo.baruch.sc.edu/

CONTRIBUTED RESEARCH ARTICLES 220

Table 1: Retrieval functions available from the SWMPr package. Full documentation for each function
is in the help file (e.g., execute ?all_params for individual functions or help.search(‘retrieve’,
package = ‘SWMPr’) for all).

Function Description

all_params Retrieve records starting with the most recent at a given sta-
tion, all parameters. Wrapper to exportAllParamsXMLNew
function on web services.

all_params_dtrng Retrieve records of all parameters within a given date
range for a station. Optional argument for a single param-
eter. Wrapper to exportAllParamsDateRangeXMLNew.

import_local Import files from a local path. The files must be in a specific
format, such as those returned from the CDMO using the
zip downloads option.

single_param Retrieve records for a single parameter starting with
the most recent at a given station. Wrapper to
exportSingleParamXMLNew function on web services.

site_codes Get metadata for all stations. Wrapper to
exportStationCodesXMLNew function on web services.

site_codes_ind Get metadata for all stations at a single site. Wrapper to
NERRFilterStationCodesXMLNew function on web services.

parameter type. For example, ‘apaebwq’ is the water quality identifier (‘wq’) for the East Bay station
(‘eb’) at the Apalachicola reserve (‘apa’). Similarly, a suffix of ‘met’ or ‘nut’ specifies the weather
(meteorological) or nutrient stations. All reserve names, stations, and date ranges for each parameter
type can be viewed on the CDMO website. Alternatively, the site_codes (all sites) or site_codes_ind
(single site) functions provided by SWMPr can be used. As noted below, an IP address must be
registered with CDMO before using the data retrieval functions in SWMPr. Web services are provided
by CDMO for direct access to SWMP data through http requests, in addition to standard graphical
user interface options for selecting data. The data retrieval functions in SWMPr are simple calls to the
existing retrieval functions on CDMO web services, as explained below.

Structure of the SWMPr package

SWMPr functions are categorized by one of three steps in the data workflow: retrieving, organizing,
and analyzing. Functions for retrieving are used to import the data into R as a "swmpr" object class.
Functions for organizing and analyzing the data provide methods for working with a "swmpr" object.
The following describes the package structure, beginning with the retrieval functions, a description of
the "swmpr" object returned after retrieval, and, finally, the organizing and analyzing functions.

Data retrieval

SWMPr can import data into R through direct download from the CDMO or by importing local data
that was previously downloaded (Table 1). The IP address for the computer making the request must
be registered if the first approach is used (see CDMO website). The site_codes or site_codes_ind
functions can be used to view site metadata.

retrieve metadata for all sites
site_codes()

retrieve metadata for a single site
site_codes_ind('apa')

Retrieval functions to import data directly into R from the CDMO include all_params, all_params_dtrng,
and single_param. Due to rate limitations on the CDMO server, the retrieval functions return a limited
number of records with each request. However, the SWMPr functions use the native CDMO web
services iteratively (i.e., within a loop) to obtain all requested records. Download time can be excessive
for longer time series.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://cdmo.baruch.sc.edu/data/qaqc.cfm

CONTRIBUTED RESEARCH ARTICLES 221

all parameters for a station, most recent
all_params('hudscwq')

get all parameters within a date range
all_params_dtrng('hudscwq', dtrng = c('09/01/2013', '10/01/2013'))

get single parameter within a date range
all_params_dtrng('hudscwq', dtrng = c('09/01/2013', '10/01/2013'),
param = 'do_mgl')

single parameter for a station, most recent
single_param('hudscwq', param = 'do_mgl')

The second approach for data retrieval is to use the import_local function to import data into
R after downloading from CDMO. This approach is most appropriate for large data requests. The
import_local function is designed for data from the zip downloads feature in the advanced query
section of the CDMO website. The zip downloads feature can be used to obtain a large number of
records from multiple stations in one request. The downloaded data will be in a compressed folder
that includes multiple .csv files by year for a given data type (e.g., apacpwq2002.csv, apacpwq2003.csv,
apacpnut2002.csv, etc.). The import_local function can be used to import files directly from the
zipped folder.

The "swmpr" object class

All data retrieval functions return a "swmpr" object that includes relevant data and several attributes
describing the dataset. The data include a datetimestamp column in the timezone for a station and
additional parameters for the data type (weather, nutrients, or water quality). Corresponding QAQC
columns for each parameter are also returned if provided by the initial data request. The following
shows an example of the raw data imported using all_params.

import all paramaters for the station
three most recent records
exdat <- all_params('apadbwq', Max = 3, trace = F)
exdat
datetimestamp temp f_temp spcond f_spcond sal f_sal do_pct
1 2015-11-03 11:15:00 26 0 45 0 29 0 78
2 2015-11-03 11:30:00 26 0 46 0 30 0 76
3 2015-11-03 11:45:00 26 0 46 0 30 0 75
f_do_pct do_mgl f_do_mgl depth f_depth ph f_ph turb f_turb chlfluor
1 0 5 0 2 0 8 0 2 0 NA
2 0 5 0 2 0 8 0 5 0 NA
3 0 5 0 2 0 8 0 5 0 NA
f_chlfluor level f_level cdepth clevel f_cdepth f_clevel
1 -2 NA -1 2 NA 3
2 -2 NA -1 2 NA 3
3 -2 NA -1 2 NA 3

The attributes of a "swmpr" object are descriptors that are appended to the raw data (Table 2).
These act as metadata that are used internally by many of the package functions and are updated as
the data are processed. The attributes are not visible with the raw data but can be viewed as follows.

import sample data from package
data(apadbwq)
dat <- apadbwq

view all attributes of dat
attributes(dat)

view a single attribute of dat
attr(dat, 'station')

The "swmpr" object class was created for use with the organizing and analyzing functions. This uses
the standard S3 object class system for R, such that specific methods for generic functions are developed
for the object class. A "swmpr" object also secondarily inherits methods from the "data.frame" class.
Available methods for the "swmpr" class are described below and can also be viewed:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://cdmo.baruch.sc.edu/aqs/zips.cfm

CONTRIBUTED RESEARCH ARTICLES 222

Table 2: Attributes of a "swmpr" object that describe characteristics of the data.

Attributes Class Description

names character Column names of the entire data set, inherited from
the data.frame object class.

row.names integer Row names of the data set, inherited from the
data.frame object class.

class character Class of the data object indicating "swmpr" and
"data.frame".

station character Station identifier used by NERRS as a string with 7 or
8 characters.

parameters character Character vector of column names for data parameters,
e.g., 'do_mgl', 'turb', etc.

qaqc_cols logical Indicates if QAQC columns are present in the raw
data.

date_rng POSIXct Start and end dates for the data.
timezone character Timezone of the station using the city/country

formata.
stamp_class character Class of the datetimestamp column, usually

"POSIXct" unless data have been aggregated.

aTime zones that do not observe daylight savings are used for "swmpr" objects and may not be cities in the United
States. For example, America/Jamaica is used for Eastern Standard Time.

view available methods for swmpr class
methods(class = 'swmpr')

Data organizing

The organize functions are used to ‘clean’ or prepare the imported data for analysis, including
viewing and removal of QAQC flags, subsetting, combining replicate nutrient observations, creating a
standardized time series, and combining data of different types (Table 3).

The qaqc function is a simple screen to retain observations from the data with specified QAQC
flags (see http://cdmo.baruch.sc.edu/data/qaqc.cfm). Each parameter in the imported "swmpr"
object will have a corresponding QAQC column of the same name with the added prefix f_ (e.g.,
f_do_mgl for do_mgl). Values in the QAQC column range from -5 to 5 to indicate the QAQC flag that
was assigned by CDMO during initial processing. The qaqc function is used to remove observations in
the raw data with given flags, with the default option to retain only values with the 0 QAQC flag (i.e.,
passed initial CDMO checks). Additionally, simple filters are used to remove obviously bad values
(e.g., wind speed values less than zero or pH values greater than 12). Erroneous data entered as -99
are also removed. The function returns the original data with the QAQC columns removed and NA
(not available) values for observations that do not meet the criteria specified in the function call.

qaqc screen for a swmpr object, retain only '0'
qaqc(dat)

retain all data regardless of flag
qaqc(dat, qaqc_keep = NULL)

retain only '0' and '-1' flags
qaqc(dat, qaqc_keep = c(0, -1))

SWMP data often contain observations above or below the detection limit for the sensor or
laboratory method used to quantify the parameters. For example, nutrient data exceeding the high
sensor range are assigned a QAQC flag of -5, whereas data below the low sensor range are assigned a
QAQC flag of -4. The presence of censored data is non-trivial and can influence the types of analyses
that are appropriate for a time series (Helsel, 2012). A detailed discussion of methods for evaluating
censored data is beyond the scope of the manuscript and existing methods for R are provided by other
packages (e.g., cents, McLeod et al., 2014). However, the functions in SWMPr can be used to identify
censored data based on the appropriate QAQC flag for a parameter. Viewing this information can be

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://cdmo.baruch.sc.edu/data/qaqc.cfm
http://CRAN.R-project.org/package=cents

CONTRIBUTED RESEARCH ARTICLES 223

Table 3: Organizing functions available from the SWMPr package. Full documentation for each
function is in the help file (e.g., execute ?comb for individual functions or help.search(‘organize’,
package = ‘SWMPr’) for all).

Function Description

comb Combines "swmpr" objects to a common time series using
setstep, such as combining the weather, nutrients, and
water quality data for a single station.

qaqc Remove QAQC columns and remove data based on QAQC
flag values for a "swmpr" object.

qaqcchk View a summary of the number of observations in a
"swmpr" object that are assigned to each QAQC flag used
by CDMO.

rem_reps Remove replicate nutrient data that occur on the same day.
The default is to average replicates.

setstep Format data from a "swmpr" object to a continuous time
series at a given timestep.

subset Subset by dates and/or columns for a "swmpr" object. This
is a method passed to the generic subset function in the
base installation.

helpful for determining how to further process the data with the qaqc function or alternative methods
outside of SWMPr. The qaqcchk function returns a data.frame of the number of observations for a
parameter that is assigned to all QAQC flags, including those for censored data. SWMP data should
not be analyzed without viewing this information to determine an appropriate method to address
data with questionable QAQC flags.

view the number of observations in each QAQC flag
qaqcchk(dat)

A subset method added to the existing generic subset function in R is available for "swmpr" objects.
This function is used to subset the data by date and/or a selected parameter. The date can be a single
value or as two dates to select records within the range. The former case requires a binary operator
as a character string passed to the operator argument, such as '>' or '<='. The subset argument for
the date(s) must also be a character string of the format YYYY-mm-dd HH:MM for each element (e.g.,
'2007-01-01 06:30').

import data
data(apaebmet)
dat <- apaebmet

select two parameters from dat
subset(dat, select = c('rh', 'bp'))

subset records greater than or equal to a date
subset(dat, subset = '2013-01-01 0:00', operator = '>=')

subset records within a date range, select two parameters
subset(dat, subset = c('2012-07-01 6:00', '2012-08-01 18:15'),
select = c('atemp', 'totsorad'))

The setstep function formats a "swmpr" object to a continuous time series at a given time step.
The function also has a default method making it useful for standardizing arbitrary time series to a
given interval. The first argument of the function, timestep, specifies the desired time step in minutes
starting from the nearest hour of the first observation. The second argument, differ, specifies the
allowable tolerance in minutes for matching existing observations to the defined time steps in cases
where the two are dissimilar. Values for differ that are greater than one half of the value of timestep
are not allowed to prevent duplication of existing data. Likewise, the default value for differ is one
half of the time step.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 224

import, qaqc removal
data(apadbwq)
dat <- qaqc(apadbwq)

convert time series to two hour invervals
tolerance of +/- 30 minutes for matching existing data
setstep(dat, timestep = 120, differ = 30)

The comb function is used to combine multiple "swmpr" objects into a single object with a continuous
time series at a given step. The setstep function is used internally such that timestep and differ
are accepted arguments for comb. Data are combined by creating a master time series that is used to
iteratively merge all "swmpr" objects. The time series for merging depends on the value passed to
the method argument. Passing 'union' to method will create a time series that is continuous from the
earliest and latest dates for all input objects, whereas 'intersect' will create a continuous time series
from the set of dates that are shared between input objects. A character string or numeric vector can
also be used to specify which of the input objects to use as the master time series for combining. As
with setstep, a default method for comb is provided to allow use with arbitrary data structures. Both
functions treat missing data as NA values, either for observations that exceed the allowable tolerance
for the differ argument of setstep or for portions of time series that do not overlap given the method
argument passed to comb.

get nut, wq, and met data as separate objects
data(apacpnut)
data(apacpwq)
data(apaebmet)
swmp1 <- apacpnut
swmp2 <- apacpwq
swmp3 <- apaebmet

combine nut and wq data by union
comb(swmp1, swmp2, method = 'union')

combine nut and met data by intersect
comb(swmp1, swmp3, method = 'intersect')

combine nut, wq, and met data by nut time series, two hour time step
comb(swmp1, swmp2, swmp3, timestep = 120, method = 'apacpnut')

Data analysis

The analysis functions range from general purpose tools for time series analysis to more specific func-
tions for working with continuous monitoring data in estuaries (Table 4). The general purpose tools
are "swmpr" methods for existing S3 generics or are slight modifications to existing functions. These
include aggreswmp to combine observations by set periods of time (e.g., weeks, months), smoother to
average time series with a moving window, and approx to substitute missing data with interpolated
values. For brevity, the general functions are not discussed. More specific functions for environmental
time series include decomposition functions, decomp and decomp_cj, and functions to estimate and
plot ecosystem metabolism from combined water quality and weather data. Several plotting methods
to facilitate analysis are also descibed below.

The disaggregation of time series into additive or multiplicative components is a common ap-
plication for trend analysis. The decomp function is a simple wrapper to decompose (Kendall and
Stuart, 1983) that separates a time series into a trend, cyclical variation (e.g., daily or annual), and the
remainder (Figure 1). An additive decomposition assumes that the cyclical component of the time
series is stationary (i.e., the variance is constant); otherwise, a multiplicative decomposition can be
used. The frequency argument describes the periodicity of the cyclical parameter in units of the native
time step. For example, the frequency for a parameter with daily periodicity would be 96 if the time
step is 15 minutes (24 hours * 60 minutes / 15 minutes). For simplicity, character strings of 'daily' or
'annual' can be supplied in place of numeric values, although any number can be used to identify an
arbitrary cyclical component. A starting value of the time series must be supplied in the latter case
that indicates the sequence in the cycle for the first observation (see ts for details).

get data
data(apadbwq)
dat <- apadbwq

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/ts.html

CONTRIBUTED RESEARCH ARTICLES 225

Table 4: Analysis functions available from the SWMPr package. Full documentation for each func-
tion is in the help file (e.g., execute ?aggreswmp for individual functions or help.search(‘analyze’,
package = ‘SWMPr’) for all).

Function Description

aggreswmp Aggregate "swmpr" objects for different time periods -
years, quarters, months, weeks, days, or hours. The aggre-
gation function defaults to the mean.

aggremetab Aggregate metabolism data from a "swmpr" object. This
is primarly used within plot_metab but may be useful for
simple summaries of daily metabolism data.

ecometab Estimate ecosystem metabolism for a combined water qual-
ity and weather dataset using the open-water method
(Odum, 1956).

decomp Decompose a "swmpr" time series into trend, seasonal,
and residual components. This is a simple wrapper to
decompose (Kendall and Stuart, 1983). Decomposition of
monthly or daily trends is possible.

decomp_cj Decompose a "swmpr" time series into grandmean, annual,
seasonal, and events components. This is a simple wrapper
to decompTs in the wq package (Jassby and Cloern, 2014).
Only monthly decomposition is possible.

hist Plot a histogram for a single variable.
lines Add lines to an existing plot created with plot.
map_reserve Create a map of all stations in a reserve using the ggmap

package (Kahle and Wickham, 2013).
na.approx Linearly interpolate missing data (NA values) in a "swmpr"

object.
overplot Plot multiple time series in a "swmpr" object on the same

y-axis.
plot Plot a univariate time series for a "swmpr" object.
plot_metab Plot ecosystem metabolism estimates after running

ecometab on a combined "swmpr" object.
plot_summary Create summary plots of seasonal/annual trends and

anomalies for a single parameter.
smoother Smooth "swmpr" objects with a moving window average,

passed to filter.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=wq
http://CRAN.R-project.org/package=ggmap

CONTRIBUTED RESEARCH ARTICLES 226

subset for daily decomposition
dat <- subset(dat, subset = c('2013-07-01 00:00', '2013-07-31 00:00'))

daily decomposition of DO and plot
dc_dat <- decomp(dat, param = 'do_mgl', frequency = 'daily')
plot(dc_dat)

2
4

6
8

ob
se

rv
ed

3.
5

4.
5

5.
5

6.
5

tr
en

d

−
0.

5
0.

0
0.

5

se
as

on
al

−
4

−
2

0
1

2
3

0 5 10 15 20 25 30

ra
nd

om

Time

Decomposition of additive time series

Figure 1: An additive decomposition of dissolved oxygen into a trend, seasonal (daily), and random
component using the decomp function.

An alternative approach for decomposition is provided by the decomp_cj function, which is a
simple wrapper to the decompTs function in the wq package (Cloern and Jassby, 2010; Jassby and
Cloern, 2014). The decomp_cj function is a monthly decomposition for characterizing relatively long-
term trends. This approach works best for nutrient data that are typically obtained on a monthly
cycle. The time series is decomposed into the grandmean, annual, seasonal, and events components
(Figure 2), as compared to trend, seasonal, and random components for the decomp function above.
For both functions, the random or events components can be considered anomalies that do not follow
the trends in the remaining categories. Additional arguments passed to decompTs can be used with
decomp_cj, such as startyr, endyr, and type. Values passed to type are mult (default) or add, referring
to multiplicative or additive decomposition.

get data
data(apacpnut)
dat <- apacpnut
dat <- qaqc(dat, qaqc_keep = NULL)

decomposition of chl
decomp_cj(dat, param = 'chla_n')

Estimates of ecosystem metabolism provide a measure of system productivity to evaluate whether
an ecosystem is a net source or sink of organic material. The open-water method (Odum, 1956) is a

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 227

original

grandmean

annual

seasonal

events

0
5

10
15
20

6
6
6
6
6

0.5

1.0

1.5

0.8
1.0
1.2
1.5

0

1

2

3

2002 2004 2006 2008 2010 2012 2014
Time

va
lu

e

Figure 2: Additive decomposition of a multi-year chlorophyll time series into the grandmean, annual,
seasonal, and events components using the decomp_cj function.

common approach to quantify metabolism using a mass balance equation that describes the change
in dissolved oxygen over time from the balance between photosynthetic and respiration processes,
corrected using an empirically constrained air-sea gas diffusion model (Ro and Hunt, 2006; Thébault
et al., 2008). A detailed discussion of the method is beyond the scope of this article, although users
are encouraged to consult references herein for additional information (see Kemp and Testa (2012);
Needoba et al. (2012); Caffrey et al. (2013), also the package help files). Methods for estuaries have
not previously been available in R, although the StreamMetabolism package provides an approach
for freshwater systems. The following is an example that shows use of ecometab with a combined
water quality and weather data set. Monthly aggregations of the raw, daily estimates are plotted using
plot_metab (Figure 3).

import water quality and weather data
data(apadbwq)
data(apaebmet)

qaqc, combine
wq <- qaqc(apadbwq)
met <- qaqc(apaebmet)
dat <- comb(wq, met)

estimate metabolism
res <- ecometab(dat, trace = FALSE)
plot_metab(res)

Exploratory graphics are also useful for evaluating general trends in observed data. Several
graphics showing seasonal and annual trends for a single SWMP parameter can be obtained using the
plot_summary function (Figure 4). The plots include monthly distributions, monthly anomalies, and
annual anomalies in multiple formats. An interactive shiny web application (Chang et al., 2015) that
uses this function is available for viewing results for all SWMP sites (see the Applications using the

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=StreamMetabolism

CONTRIBUTED RESEARCH ARTICLES 228

−300

−200

−100

0

100

200

300

2012−01 2012−07 2013−01 2013−07 2014−01

m
m

ol
 O

2
m

−2
d−1

Estimate

NEM

Pg

Rt

Figure 3: Monthly means (95% confidence) of ecosystem metabolism estimates (net ecosystem
metabolism, gross production, and total respiration) for combined water quality and weather data for
two years at Apalachicola Bay, Florida.

SWMPr package section).

import data
data(apacpnut)
dat <- qaqc(apacpnut)

plot
plot_summary(dat, param = 'chla_n', years = c(2007, 2013))

0

5

10

15

20

01 02 03 04 05 06 07 08 09 10 11 12

Monthly distributions and means

C
hl

or
op

hy
ll

(u
g/

L)

0

5

10

15

20

01 02 03 04 05 06 07 08 09 10 11 12

Monthly distributions and medians

C
hl

or
op

hy
ll

(u
g/

L)

D
ec

N
ov

O
ct

S
ep

A
ug

Ju
l

Ju
n

M
ay

A
pr

M
ar

F
eb

Ja
n

0 5 10 15 20

Chlorophyll (ug/L)

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

2007 2008 2009 2010 2011 2012 2013

M
on

th
ly

 m
ea

ns

5 10 15

Jan
Feb
Mar
Apr

May
Jun
Jul

Aug
Sep
Oct
Nov
Dec

2007 2008 2009 2010 2011 2012 2013

M
on

th
ly

 a
no

m
al

ie
s

−4 0 4

−1

0

1

2007 2008 2009 2010 2011 2012 2013

A
nn

ua
l a

no
m

al
ie

s

Figure 4: Summaries of a multi-year chlorophyll time series using the plot_summary function. Sum-
maries include monthly distributions (means on top left, quantiles on bottom left), monthly histograms
(center), monthly means by year (top right), deviation from monthly means (middle right), and annual
trends as deviations from the grand mean (bottom right)

Similarly, the overplot function provides an alternative approach to viewing observed data from
the same station. This function uses the base graphics package to plot multiple time series on the
same y-axis (Figure 5).

import data
data(apacpwq)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 229

dat <- qaqc(apacpwq)

plot
overplot(dat, select = c('depth', 'do_mgl', 'ph', 'turb'),
subset = c('2013-01-01 0:0', '2013-02-01 0:0'), lwd = 2)

0.
8

1.
2

1.
6

2.
0

de
pt

h

4
6

8
10

do
_m

gl

7.
6

7.
8

8.
0

8.
2

8.
4

ph

0
50

10
0

15
0

tu
rb

Dec 31 Jan 05 Jan 10 Jan 15 Jan 20 Jan 25 Jan 30

DateTimeStamp

depth do_mgl ph turb

Figure 5: The overplot function plots multiple variables on the same y-axis.

Finally, the map_reserve function can be used to create a map of stations at a reserve using the
ggmap package (Figure 6, Kahle and Wickham (2013)). The function uses Google maps of four types
that can be set with the map_type argument: terrain (default), satellite, roadmap, or hybrid. The zoom
argument can be chosen through trial and error depending on the spatial extent of the reserve.

plot the stations at Jacques Cousteau reserve
map_reserve('jac')

jacb5
jacb6

jacb9

jacba

jacnc
jacne

39

40

40

40

−75 −75 −74 −74 −74
Longitude

La
tit

ud
e

Figure 6: Locations of all sites at the Jacques Cousteau reserve using the map_reserve function.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 230

Applications using the SWMPr package

Two shiny web applications illustrate the improved ability to synthesize and evaluate multi-year time
series using SWMPr. The first application evaluates trends in SWMP data within and between sites
using an interactive leaflet map (Cheng and Xie (2015), Figure 7): https://beckmw.shinyapps.io/
swmp_comp. Trends between reserves can be viewed using the map, whereas trends at individual sites
can be viewed by clicking on a map location. Site-level trends are shown below the map with a simple
linear regression to show an increase or decrease in values over time, whereas trends between sites are
shown on the map for each station as circles that identify the direction and significance of the trend.
More robust methods for evaluating trends are currently not provided by the application and the use
of simple linear regression is meant for initial exploratory analysis. The second application provides
graphical summaries of water quality, weather, or nutrient station data at individual stations using
the plot_summary function: https://beckmw.shinyapps.io/swmp_summary/. The output is identical
to Figure 4 with the addition of drop down menus to select the station, date range, and parameter for
plotting.

Figure 7: Online application for comparing trends in SWMP data parameters using an interactive map.
Link: https://beckmw.shinyapps.io/swmp_comp

Conclusions

SWMPr was developed to augment existing data management programs (i.e., CDMO) by providing a
bridge betwen the raw data and the analysis software through its numerous data retrieval functions
(Table 1). Established QAQC methods and data processing techniques are also enhanced with SWMPr
by functions that filter observations for different QAQC flags (qaqc) and subset by selected dates
or variables (subset). Additionally, challenges comparing differents datasets are addressed by the
setstep and comb functions that standardize and combine time series. Finally, the analysis functions
provide numerous tools to implement common analyses for time series and more specific methods
for water quality data. Further development of the package will include modifications and addi-
tional functions to better integrate data analysis with the quality of information provided by SWMP.
Several functions include default methods to extend use beyond the "swmpr" object and additional
development will continue to focus on modifying the package to handle arbitrary data structures.
These challenges are not unique to the SWMP database such that many of the functions will facilitate
evaluations of more generic time series datasets.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://beckmw.shinyapps.io/swmp_comp
https://beckmw.shinyapps.io/swmp_comp
https://beckmw.shinyapps.io/swmp_summary/
https://beckmw.shinyapps.io/swmp_comp

CONTRIBUTED RESEARCH ARTICLES 231

Acknowledgments

I acknowledge the significant work of NERRS researchers and staff that has allowed access to high-
quality monitoring data. Thanks to Todd O’Brien for the inspiration for the online widgets. Thanks to
Mike Murrell and Jim Hagy III for assistance with the ecosystem metabolism functions. Thanks to Jeff
Hollister for providing useful comments on an earlier draft.

Bibliography

J. M. Caffrey, M. C. Murrell, K. S. Amacker, J. Harper, S. Phipps, and M. Woodrey. Seasonal and inter-
annual patterns in primary production, respiration and net ecosystem metabolism in 3 estuaries in
the northeast Gulf of Mexico. Estuaries and Coasts, 37(1):222–241, 2013. [p227]

W. Chang, J. Cheng, J. Allaire, Y. Xie, and J. McPherson. shiny: Web Application Framework for R, 2015.
URL http://CRAN.R-project.org/package=shiny. R package version 0.11.1. [p227]

J. Cheng and Y. Xie. leaflet: Create Interactive Web Maps with the JavaScript ’Leaflet’ Library, 2015. URL
http://CRAN.R-project.org/package=leaflet. R package version 1.0.0. [p230]

J. E. Cloern and A. D. Jassby. Patterns and scales of phytoplankton variability in estuarine-coastal
ecosystems. Estuaries and Coasts, 33(2):230–241, 2010. [p226]

D. P. Fries, S. Z. Ivanov, P. H. Bhanushali, J. A. Wilson, H. A. Broadbent, and A. C. Sanderson.
Broadband, low-cost, coastal sensor nets. Oceanography, 20(4):150–155, 2008. [p219]

H. B. Glasgow, J. M. Burkholder, R. E. Reed, A. J. Lewitus, and J. E. Kleinman. Real-time remote
monitoring of water quality: a review of current applications, and advancements in sensor, telemetry,
and computing technologies. Journal of Experimental Marine Biology and Ecology, 300(1-2):409–448,
2004. [p219]

D. R. Helsel. Statistics for Censored Environmental Data Using Minitab and R. John Wiley & Sons, Inc.,
Hoboken New Jersey, 2nd edition, 2012. [p222]

A. D. Jassby and J. E. Cloern. wq: Exploring water quality monitoring data, 2014. URL http://CRAN.R-
project.org/package=wq. R package version 0.4-1. [p225, 226]

D. Kahle and H. Wickham. ggmap: Spatial visualization with ggplot2. The R Journal, 5(1):144–161,
2013. URL http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf. [p225, 229]

W. M. Kemp and J. M. Testa. Metabolic balance between ecosystem production and consumption.
In E. Wolanski and D. S. McLusky, editors, Treatise on Estuarine and Coastal Science, pages 83–118.
Academic Press, New York, 2012. [p227]

M. Kendall and A. Stuart. The Advanced Theory of Statistics, volume 3. MacMillan Publishing Company,
New York, New York, 1983. [p224, 225]

A. McLeod, N. M. Mohammad, J. Veenstra, and A. El-Shaarawi. cents: Censored time series, 2014. URL
http://CRAN.R-project.org/package=cents. R package version 0.1-41. [p222]

J. A. Needoba, T. D. Peterson, and K. S. Johnson. Method for the quantification of aquatic primary
production and net ecosystem metabolism using in situ dissolved oxygen sensors. In S. M. Tiquia-
Arashiro, editor, Molecular Biological Technologies for Ocean Sensing, pages 73–101. Springer, New
York, 2012. [p227]

H. T. Odum. Primary production in flowing waters. Limnology and Oceanography, 1(2):102–117, 1956.
[p225, 226]

K. S. Ro and P. G. Hunt. A new unified equation for wind-driven surficial oxygen transfer into
stationary water bodies. Transactions of the American Society of Agricultural and Biological Engineers, 49
(5):1615–1622, 2006. [p227]

System-Wide Monitoring Program Data Analysis Training. SWMP data analysis training workshop
provided at the 2014 NERRS/NERRA annual meeting, November 17, 2014. http://copepod.org/
nerrs-swmp-workshop/. [p219]

J. Thébault, T. S. Schraga, J. E. Cloern, and E. G. Dunlavey. Primary production and carrying capacity
of former salt ponds after reconnection to San Francisco Bay. Wetlands, 28(3):841–851, 2008. [p227]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=shiny
http://CRAN.R-project.org/package=leaflet
http://CRAN.R-project.org/package=wq
http://CRAN.R-project.org/package=wq
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
http://CRAN.R-project.org/package=cents
http://copepod.org/nerrs-swmp-workshop/
http://copepod.org/nerrs-swmp-workshop/

CONTRIBUTED RESEARCH ARTICLES 232

Marcus W Beck
US Environmental Protection Agency
National Health and Environmental Effects Research Laboratory
Gulf Ecology Division
1 Sabine Island Drive, Gulf Breeze, FL 32651
USA
beck.marcus@epa.gov

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:beck.marcus@epa.gov

CONTRIBUTED RESEARCH ARTICLES 233

CryptRndTest: An R Package for Testing
the Cryptographic Randomness
by Haydar Demirhan and Nihan Bitirim

Abstract In this article, we introduce the R package CryptRndTest that performs eight statistical
randomness tests on cryptographic random number sequences. The purpose of the package is to
provide software implementing recently proposed cryptographic randomness tests utilizing goodness-
of-fit tests superior to the usual chi-square test in terms of statistical performance. Most of the tests
included in package CryptRndTest are not available in other software packages such as the R package
RDieHarder or the C library TestU01. Chi-square, Anderson-Darling, Kolmogorov-Smirnov, and
Jarque-Bera goodness-of-fit procedures are provided along with cryptographic randomness tests.
CryptRndTest utilizes multiple precision floating numbers for sequences longer than 64-bit based
on the package Rmpfr. By this way, included tests are applied precisely for higher bit-lengths. In
addition CryptRndTest provides a user friendly interface to these cryptographic randomness tests.
As an illustrative application, CryptRndTest is used to test available random number generators in R.

Introduction

Cryptographic random numbers constitute the heart of ciphering processes. Security of the transmitted
information is mostly based on the quality of random numbers used to cipher the information. Due
to efficiency considerations, pseudo random numbers that ensure some hard-to-achieve properties
are used for ciphering in practice. There are a considerable amount of pseudo random number
generators (RNG’s) in the literature of cryptography. Suitability of these RNG’s for use in cryptographic
applications is evaluated based on statistical randomness tests that are specifically designed to test
randomness at the level required for ciphering processes.

In a cryptographic randomness test, first, the empirical distribution of a test statistic is obtained
over a random number sequence by various data manipulations. Then, a statistical goodness-of-
fit test is applied to evaluate significance of the difference between the empirical distribution and
its theoretical counterpart at a predetermined level of significance. The need for a certain level of
randomness to ensure unpredictability in the cryptography context makes procedures used to check
cryptographic and classical randomness different from each other. The manipulations of random
number sequences are required to make the cryptographic randomness tests more sensitive to small
deviations from the exact randomness than their classical counterparts. The null hypothesis of the test
is “H0 : Sequences generated by the RNG of interest are random.” There are more than a hundred
alternative tests for the evaluation of cryptographic randomness available (L’Ecuyer and Hellekalek,
1998).

In the literature, some of these tests are grouped into test batteries or test suites (L’Ecuyer and
Simard, 2007; Marsaglia and Tsang, 2002). A detailed review of test batteries is given by Demirhan and
Bitirim (2016). To be qualified as suitable, an RNG should be identified as random in a predetermined
portion or all of the tests in a test battery. The basic test battery is introduced by Knuth (1998, 1981,
1969). Then, Marsaglia (1996) introduced the Diehard test battery composed of 12 randomness tests.
Disadvantages of the Diehard test battery were overcame by another test battery called Dieharder
that is introduced by Brown et al. (2014). Dieharder includes 26 cryptographic randomness tests. It is
an improvement of the Diehard battery, provides a user friendly interface and a useful open source
tool set for users of random numbers (Brown et al., 2014). The Dieharder test battery is implemented
in the R package RDieHarder prepared by Eddelbuettel and Brown (2014). At the time of writing,
Windows and OS X binaries are not available for this package. The US National Institute of Standards
and Technology developed the NIST battery composed of 16 tests (Sýs et al., 2014; Sýs and Říha, 2014;
Rukhin et al., 2010; Rukhin, 2001; Soto, 1999). The NIST battery is still used as a straightforward tool
for formal certifications and accepted as a standard test battery. Sadique et al. (2012) reviewed the tests
included in the NIST test battery. A suite of test batteries, TestU01, was introduced by L’Ecuyer and
Simard (2007, 2014). TestU01 is a C library that combines most of the available randomness tests and
RNGs in six test batteries (McCullough, 2006; L’Ecuyer and Simard, 2007). There are also smaller scale
test batteries in terms of extensiveness. ENT was proposed by Walker (2014) that contains 5 statistics
and tests. The Helsinki test battery is based on the Ising model and random walks on lattices and was
proposed by Vattulainen et al. (1995). The Crypt-X test battery, which includes 6 tests, was developed
by the Information Security Research Center at Queensland University of Technology (Sýs and Říha,
2014; Soto, 1999). The SPRNG test battery includes some tests from the battery of Knuth (Mascagni
and Srinivasan, 2000). Ruetti (2004) combined Knuth, Helsinki, Diehard, and SPRNG batteries and
proposed a test battery consisting of 37 statistical and physical tests.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=RDieHarder

CONTRIBUTED RESEARCH ARTICLES 234

In addition to the tests included in test batteries, there also exist recently proposed cryptographic
randomness tests that are not performed by test batteries. Maurer (1992) proposed a statistical test for
random bit generators. Hernandez et al. (2004) proposed a new test called Strict Avalanche Criterion
(SAC). Ryabko et al. (2004) proposed an adaptation of the well-known chi-square test. This test is
more efficient than the usual chi-square test in small samples. “Book Stack” and “Order” tests were
proposed by Ryabko and Monarev (2005) for testing binary random bit sequences. Doganaksoy
et al. (2006) proposed three randomness tests based on the random walk process. An advantage of
these tests is that it is possible to calculate exact probabilities corresponding to the test statistics. The
“Topological Binary Test” was introduced by Alcover et al. (2013) to test randomness in bit sequences.
It counts different bit patterns of pre-determined length in a sequence of random bits.

Availability of a software implementing a test battery or even that of an individual cryptographic
randomness test is a critical issue for the usefulness of the related test or battery. The library TestU01
is developed in ANSI C; hence, it is compiled by GNU tools instead of today’s C compilers. Although
TestU01 performs a wide variety of tests and their combinations, it lacks flexibility of implementation.
Because the battery Dieharder is implemented in an R package, namely RDieHarder, it is more
applicable and user-friendly than TestU01. However, unavailability of Windows and OS X binaries
can be seen as a disadvantage that decreases its accessibility. A package for the implementation
of the NIST battery is prepared for SUN workstations using ANSI C (Rukhin et al., 2010). Rukhin
et al. (2010) provides a user guide for setting up the package and running the included tests. Ease of
implementation of the NIST battery is similar with TestU01. For the implementation of individual
randomness tests, there are also numerous R packages such as randtests (Caeiro and Mateus, 2014) or
DescTools (Signorell, 2015). Although some of the tests included in these packages are also used to
evaluate cryptographic randomness, they cover neither recently proposed tests nor those developed
specifically to test cryptographic randomness.

The usual chi-square test is applied with nearly all of the cryptographic randomness tests in the
literature. The mentioned implementations including those covered by R automatically apply the
chi-square test. However, there are numerous alternatives to the chi-square goodness-of-fit test such
as the Kolmogorov-Smirnov, Anderson-Darling, or Jarque-Bera tests. It is apparent that because
statistical qualities of these tests are better than the chi-square test, there will be a gain in performance
of cryptographic randomness tests when applied with better goodness-of-fit tests. Thus, we need
software that is capable of conducting actual cryptographic randomness tests such as topological
binary, book stack, etc. with goodness-of-fit tests better than the usual chi-square test in statistical
performance. When the range and variety of cryptographic randomness tests implemented by software
and practicability of available software are considered, this software should effectively implement new
tests with various goodness-of-fit tests and has a user-friendly interface. The package CryptRndTest
(Demirhan, 2016) contributes to satisfy this need.

The aim of this article is to describe and illustrate the use of the R package CryptRndTest (currently
in version 1.2.2) that performs some of recently proposed and basic cryptographic randomness tests.
The package includes the functions adaptive.chi.square, birthday.spacings, book.stack, GCD.test,
topological.binary, and random.walk.tests to perform adaptive chi-square, birthday spacings,
book stack, greatest common divisor, topological binary tests, and three tests based on the random
walk process, respectively. To the best of our knowledge, the adaptive chi-square, topological binary,
and the tests based on the random walk process are first implemented in software with package
CryptRndTest. In addition to the chi-square procedure, these functions apply Anderson-Darling,
Kolmogorov-Smirnov, and Jarque-Bera procedures when suitable. Because statistical performances
of goodness-of-fit tests differ under various conditions, the application of different goodness-of-fit
procedures is a beneficial feature. This is another important feature of package CryptRndTest. In
addition, it has the following auxiliary functions: GCD, GCD.q, GCD.big, Strlng2, toBaseTwo, toBaseTen,
and TBT.criticalValue to compute the greatest common divisor under different conditions of inputs,
approximately calculate the Stirling number of the second kind when the inputs are large, make base
conversions precisely with large inputs, and calculate critical values for the topological binary test.

The paper is organized as follows: in the next section, methodologies of the tests included in
package CryptRndTest are briefly given. Details of algorithms used to manipulate integer and bit
sequences are mentioned, and applications of goodness-of-fit procedures performed by package
CryptRndTest are clarified. Parameter settings and limitations for each test are mentioned. Finally,
as an illustrative application of package CryptRndTest, random number generators available in R
are tested by using the proposed package under different sequence and bit-length conditions. By
this application, implementation performance of the package is analyzed, recently proposed tests are
evaluated, and usage of package CryptRndTest is illustrated.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=randtests
http://CRAN.R-project.org/package=DescTools
http://CRAN.R-project.org/package=CryptRndTest

CONTRIBUTED RESEARCH ARTICLES 235

Performed tests

Adaptive chi-square

The adaptive chi-square test was introduced by Ryabko et al. (2004). It is empirically demonstrated by
Ryabko et al. (2004) that the adaptive chi-square test is more efficient than the classical chi-square test
in the identification of non-random patterns in samples smaller than those required by the chi-square
test. For example, when we work with 64-bit numbers the length of the alphabet is 264; hence, we
need to have a sequence of length greater than 5 · 264 to apply the classical chi-square test safely. The
logic behind the test is to divide the alphabet into subsets and perform the chi-square test over subsets
instead of individual elements of the sample. By this way, subsets are considered as a new alphabet
and a new null hypothesis and its alternative are formed over the subsets. Because the number of
categories required to test new hypotheses is equal to the number of subsets, the chi-square test is
applied with much smaller samples. To conclude randomness, it is expected to observe a uniformity
in the distribution of input numbers into the subsets. Deviations from this uniformity are detected by
the adaptive chi-square test.

The function adaptive.chi.square() is called to apply the test. It implements the following
pseudo-code algorithm:

Algorithm 1.

1. Input data as a matrix of bits or a vector of integers, the number of subsets (S) that the alphabet
will be divided into, and proportion of training data set;

2. If data is represented by bits, transform data to base-10;

3. Divide whole data set into training and testing subsets with regarding input weights;

4. Identify the numbers that are seen in the sequence of interest at least once;

5. Find the frequency of occurrences for each element of the alphabet in training and testing
subsets;

6. For i = 1, . . . , S, find the frequency of elements that are seen i-times in the training and testing
subsets;

7. Apply the two-sample chi-square test with the expected and observed counts obtained at the
previous step over the training and testing subsets, respectively;

8. Return value of the test statistic, corresponding p-value, and the decision on the null hypothesis.

While working with integers, the alphabet corresponds to the range of considered numbers. For
instance, if 32-bit numbers are being tested, the alphabet in Algorithm 1 includes the numbers between
0 and 232 − 1. At step 4, we do not form the whole alphabet, instead we count the numbers (words)
that are seen at least once; and hence, the rest of the numbers have zero count. At step 7, the degrees
of freedom of the test is S− 1.

Parameters of the adaptive chi-square test are: weight of training and testing samples (r), the
length of the considered number sequence (n), and the number of subsets (S) that the alphabet is
divided into. Ryabko et al. (2004) do not give strict rules for the determination of values of these
parameters. They suggest to run some experiments to find the values of parameters that provide the
highest statistical performance such as power and specificity. Because such a study would not be
cost-effective for an individual application of the test, at least, the user may evaluate sensitivity of test
results to the values of S and r. In the function adaptive.chi.square(), we set r = 0.5 by default. The
value of S is set by the user. That of n is determined by the length of input data. Because input data is a
random sample from the RNG of interest, the value of n should be increased with increasing bit-length
to successfully represent the range of numbers that will be generated by the RNG. When bit-length is
greater than 64, we utilize the package Rmpfr (Maechler, 2015) to work with higher precision.

Algorithm complexity of the function adaptive.chi.square() is O(n2) in the worst case. Required
memory is directly related to the length of the input sequence. Due to the algorithm complexity
of the function used to identify unique numbers at step 4, implementation time of the function
adaptive.chi.square increases quadratically along with the length of the input sequence.

Birthday spacings

The Birthday Spacings test was given by Marsaglia and Tsang (2002). It focuses on the number of
duplicated values of spacings between ordered birthdays among a year of pre-determined length.
The observed duplication patterns in input numbers are compared with the patterns that should be
observed under randomness. Thus, the birthday spacings test detects deviations from randomness

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=Rmpfr

CONTRIBUTED RESEARCH ARTICLES 236

by focusing on repetition frequency of numbers to ensure uniformity. Marsaglia and Tsang (2002)
propose that the number of duplicated values is approximately distributed according to the Poisson
distribution. They also derive an expression for the mean rate of the Poisson distribution.

The function birthday.spacings() is employed to run the test. It implements the following
pseudo-code algorithm:

Algorithm 2.

1. Input data as a vector of integers of size n, the number of birthdays (m), the length of year (N),
the mean rate of the theoretical Poisson distribution (λ), and the number of classes (k) that is
constructed for goodness-of-fit tests;

2. Reshape the first m · bn/mc elements of input vector as a matrix of bn/mc rows and m columns;

3. Sort each row of the matrix of step 2 according to the values in columns;

4. For each row, find the distance between columns of the sorted matrix by extracting the values in
the columns at the previous step;

5. Count duplicated values among the distances obtained at step 4;

6. Calculate class probabilities over the Poisson distribution with mean rate λ for x = 0, . . . , k, and
assign the rest of probability mass to the (k + 1)-th class;

7. Calculate expected frequencies corresponding to the probabilities obtained at the previous step;

8. Replicate the expected counts to form the corresponding sample;

9. Apply the Anderson-Darling test to compare goodness-of-fit of the samples obtained at steps 5
and 8;

10. Apply the Kolmogorov-Smirnov test to compare goodness-of-fit of the samples obtained at
steps 5 and 8;

11. Construct frequency table of the counts obtained at step 5;

12. Apply chi-square test over the frequency tables obtained at steps 7 and 11;

13. Return the values of test statistics, corresponding p-values, and decisions on the null hypothesis.

At step 2 of Algorithm 2, each row of the reshaped matrix includes birthdays in columns. Total
number of rows determines the size of the sample that is used in goodness-of-fit tests applied at steps
9, 10, and 12. Manipulation of the input vector according to the birthday spacings test is completed at
step 5. This manipulation produces the empirical sample in testing the goodness-of-fit to the Poisson
distribution. The Anderson-Darling test at step 9 is applied by using function ad.test from the
package kSamples (Scholz and Zhu, 2016). The Kolmogorov-Smirnov test at step 10 is applied by
using function ks.test from the package stats.

Marsaglia and Tsang (2002) give some insight into the optimal values of parameters. The mean
rate is λ = m3/(4n). They state that for an RNG, it is harder to pass this test for increasing values of
either m or n. Specifically, the case with m = 4096 and n = 232 is qualified as a compelling setting for
32-bit generators. Length of the input sequence is another important parameter. Because the size of
the sample used in testing the goodness-of-fit is equal to bn/mc, the length of the input sequence (n)
should be chosen large enough to apply the goodness-of-fit tests appropriately.

Algorithm complexity of the function birthday.spacings() is O(n2) in the worst case. The
limitation of birthday.spacings() is directly related with the value of m. For all combinations of m
and n suggested by Marsaglia and Tsang (2002), λ is equal to 4. Following this logic, when n = 264 the
value of m giving λ = 4 is 6,658,043. In this case, for a reliable application of goodness-of-fit tests at
steps 9, 10, and 12, we need at least 133,160,860 integers and correspondingly 8,522,295,040 bits. For bit
lengths higher than 32, the value of λ can be taken as 2. For instance, when n = 264, the corresponding
value of m is 5,284,492. Thus, decreasing the value of λ does not overcome the need for a huge data set
for a reliable testing. Note that use of huge data set for testing is a memory consuming operation.

Book stack

The Book Stack test was proposed by Ryabko and Monarev (2005). Positions of the numbers on a stack
are taken into consideration. In this test, randomness implies that frequency of finding each number at
each position is equally likely. Departures from this equality mean that some of the words are seen
more frequently in contrast to the nature of randomness. The book stack test focuses on non-uniform
patterns and frequent repetitions of input numbers to detect deviations from randomness by means of
unexpected autocorrelation patterns and non-uniformity.

The function book.stack() implements the following pseudo-code algorithm to run the test:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=kSamples

CONTRIBUTED RESEARCH ARTICLES 237

Algorithm 3.

1. Input data as a matrix of bits or a vector of integers and the number of subsets (k) that the
alphabet will be divided into;

2. If data are represented by bits, transform data to base-10;

3. Form an array that includes the numbers from 1 to the number of unique words in the input
sequence;

4. Write each element of the input vector in place of the first element of the array formed at the
previous step, and move the other elements except the one written to the first cell of the array
one step right;

5. Record the array obtained at the previous step;

6. Go back to step 4 until all elements of the input vector are taken into account;

7. Divide the whole alphabet into k non-overlapping subsets (A1, A2, . . . , Ak);

8. For each subset of the alphabet, find the frequency of occurrences of the number corresponding
to the position of each element of input vector in the arrays formed at steps 4 and 5;

9. Apply the chi-square test with expected counts equal to n · Ai, where i = 1, . . . , k and n is the
length of input vector or number of columns of input matrix;

10. Return the value of test statistic, corresponding p-value, and decision on the null hypothesis.

In order to get an integer number of subsets, the length of input vector should be determined to get
an integer as the length of subsets. Optimal value for the length of input vector is given as n ≈ B · 2B/2,
where B is the bit-length of the considered RNG (Ryabko and Monarev, 2005; Doroshenko and Ryabko,
2006; Doroshenko et al., 2006). For an appropriate determination of number of subsets, k, Ryabko
and Monarev (2005) suggest performing an empirical study. As for an appropriate bit-length, it is
mentioned by Ryabko and Monarev (2005) that it is hard to set up a sensible test with much higher
bit-lengths.

Algorithm complexity of the function book.stack() is O(n2) in the worst case. The limitation of
the Book Stack test is based on the bit-length of the considered RNG. For example, for B = 64 the
length of the input vector is calculated as 1.37 · 1011 and we need 1 terabyte memory whereas the
memory requirement is 4 megabytes for B = 32. Due to both memory and sensibility issues, it is not
appropriate to work with high bit-lengths such as 64.

Greatest common divisor

Two tests proposed by Marsaglia and Tsang (2002) are based on the number of required iterations
(k) and the value of the greatest common divisor (GCD) obtained in the GCD operation. When
perceived as random variables, both k and GCD are independently and identically distributed and their
distributions can be obtained under randomness. Marsaglia and Tsang (2002) derived distributions
of k with an empirical study and that of GCD theoretically under the null hypothesis of randomness.
Departures from randomness imply nonconformity between empirical and theoretical distributions of
k and GCD. Thus, these tests focus on the deviations from independence and uniformity.

The function gcd.test() is called to apply the test. The following pseudo-code algorithm is
implemented by gcd.test() when all of the goodness-of-fit tests are set to TRUE:

Algorithm 4.

1. Input data as an N × 2 matrix of integers, mean and standard deviation of theoretical normal
distribution of k;

2. Constitute a pair of numbers from each row of input matrix;

3. Apply the GCD operation to each pair formed at the previous step;

4. Store values of k for N pairs;

5. If the obtained GCD is less than 3, store it as 3 and if that of GCD is greater than 35, store it as 35;

6. Generate a random sample of size N from the normal distribution with input values of mean
and standard deviation.

7. If the tests based on k will be conducted, go to the next step, otherwise go to step 13;

8. Apply the two sample Kolmogorov-Smirnov test in a two-sided setting to samples obtained at
steps 4 and 6;

9. Apply the chi-square test to samples obtained at steps 4 and 6;

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 238

10. Standardize the values of k by using its empirical mean and standard deviation;

11. Apply the Jarque-Bera test to the standardized sample of step 10;

12. Apply the Anderson-Darling test to samples obtained at steps 4 and 6;

13. If the tests based on the GCD will be conducted, go to the next step, otherwise go to step 19;

14. Construct the cumulative distribution function (cdf) of the probability function (pf) of GCD
given by Marsaglia and Tsang (2002);

15. Obtain theoretical frequencies for the GCD over the cdf of step 14. Specifically, if theoretical
frequency of the GCD is less than 3, store it as 3 and if that of the GCD is greater than 35, store it
as 35;

16. Replicate the expected counts to form the corresponding sample;

17. Apply the two sample Kolmogorov-Smirnov test in a two-sided setting to samples obtained at
steps 5 and 16;

18. Apply the chi-square test to samples obtained at steps 5 and 16;

19. Return the values of calculated test statistics, corresponding p-values, and decisions on the null
hypothesis.

Mean and standard deviation of the theoretical normal distribution for bit lengths other than 32
are not given by Marsaglia and Tsang (2002). We conducted extensive empirical studies, details of
which are mentioned in the following sections, to obtain these parameters and tabulated obtained
values in Table 3.

When bit-length is increased, corresponding value of GCD mostly becomes greater than 35; hence,
the operation at step 15 of Algorithm 4 gets unreasonable. Thus, we observe that it is not appropriate
to conduct tests based on the GCD for high bit-lengths such as 128.

The Kolmogorov-Smirnov and chi-square tests at steps 8 and 17, and 9 and 18 are applied by using
functions ks.test and chisq.test from the package stats, respectively. The Jarque-Bera test at step
11 is implemented by using the function jarque.bera.test from the package tseries (Trapletti and
Hornik, 2015). The Anderson-Darling test is applied by using the function ad.test from the package
kSamples.

Calculations of the number of required iterations and the value of the GCD are time consuming
tasks for bit-lengths greater than 64. To overcome this difficulty, we prepared three functions to
calculate GCD-related variables. The first function GCD.q computes the number of required iterations,
the value of the GCD, and the sequence of partial quotients by using the Euclidean algorithm. The
function GCD is the recursive version of the Euclidean algorithm and it only provides the number of
required iterations and the value of the GCD. The function GCD.big applies the Euclidean algorithm
over multiple precision floating point numbers using package Rmpfr and provides all three outputs
related with the GCD operation. While GCD is the fastest one, GCD.big gives the most precise results.
It is also possible to use the binary GCD algorithm to decrease the implementation time. However,
in this case it is not possible to apply tests over the number of required iterations of the Euclidean
algorithm. When the GCD operation is done recursively, the algorithm complexity of gcd.test() is
O(log(a)), where a is the maximum initial input to the recursive algorithm. Memory requirement for
GCD tests is directly related with the value of N.

Random walk tests

In the literature, binary sequences are analyzed in detail by using the random walk process. Do-
ganaksoy et al. (2006) proposed three tests based on the random walk stochastic process. In a random
walk process, magnitude or direction of each change is determined by chance; hence, a random
walk is random if increment and decrement probabilities are equal to each other. Therefore, random
walk processes provide a good basis for randomness. In a random walk, a part of the sequence
that intersects the x-axis with two successive points is called excursion, and over all excursions, the
maximum distance from the x-axis is defined as height, and the vertical distance between minimum
and maximum points over the y-axis is called expansion. Thus, we have three characteristics of the
random walk process to observe deviations from randomness. The corresponding tests are called
Random Walk Excursion, Random Walk Height, and Random Walk Expansion. If there is a trend in
the process, the input sequence fails in the excursion test. The height test focuses on the moves with
very low or high magnitude to detect non-randomness. The expansion test focuses on the anomalies in
amplitude of the walk to identify non-random patterns. Because the exact probabilities corresponding
to test statistics are calculated, the tests proposed by Doganaksoy et al. (2006) are also applicable for
small sample sizes.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=tseries

CONTRIBUTED RESEARCH ARTICLES 239

The function random.walk.tests() is called to apply three tests, selectively. The following pseudo-
code algorithm is implemented by random.walk.tests() when all of the tests are to be applied:

Algorithm 5.

1. Input data as a matrix of bits of dimension B× k, where B is the bit length and k is the length of
input sequence;

2. Transform the input values from {0, 1} to {−1, 1};
3. To apply the expansion, excursion, and height tests go to steps 4, 6, and 7, respectively;

4. For each non-overlapping set of length B, sum adjacent bits starting from the first bit and
increasing by one at each iteration (By this way, we get B summations for each number of
interest);

5. For the Expansion test, count and store the summations of the previous step equal to zero;

6. For the Excursion test, calculate the maximum summation and the absolute value of the mini-
mum summation among those of step 4 and store their sum;

7. For the Height test, store the absolute maximum of summations obtained at step 4;

8. Calculate theoretical cdf’s and pf’s for the tests regarding bit-lengths and probabilities tabulated
by Doganaksoy et al. (2006);

9. Calculate empirical cdf’s and pf’s over the counts obtained at steps 5, 6, and 7;

10. Replicate the expected and empirical pf’s to form the corresponding samples;

11. Apply the Anderson-Darling test to samples obtained at the previous step;

12. Apply the two sample Kolmogorov-Smirnov test in a two-sided setting to samples obtained at
step 10;

13. Apply the chi-square test to samples obtained at step 10;

14. Return the values of calculated test statistics, corresponding p-values, and decisions on the null
hypothesis.

The Anderson-Darling test at step 9 is applied by using function ad.test from the package
kSamples. The Kolmogorov-Smirnov test at step 10 is applied by using function ks.test from the
package stats. The chi-square test at step 11 is the classical application of the test without using a
predefined function. If one of the tests is not applied, all the results related with that test in output are
set to −1.

Algorithm complexities of expansion, excursion, and height tests are O(B), O(Bbk · Bc), and
O(Bbk · Bc), respectively. The limitation of the tests is unavailability of theoretical cdf’s for bit-lengths
other than 32, 64, 128, and 256. Therefore, using the information given by Doganaksoy et al. (2006) the
excursion is applied for bit-lengths of 16, 32, 64, 128, and 256; the height test is applied for bit-lengths
of 64, 128, 256, 512, and 1024; and the expansion test is applied for bit-lengths of 32, 64, and 128.
Although the size of required memory increases along with the length of the input sequence, it is
possible to apply the tests with reasonable sequence lengths without causing memory pressure.

Topological binary

The topological binary test was proposed by Alcover et al. (2013) to test the randomness in bit
sequences. The logic behind the test is based on the number of different fixed-length bit patterns in
a bit sequence. Frequency of distinct non-overlapping bit patterns over the sequence of interest is
influential on the test result. In case of randomness, we expect to have many different bit patterns in
the input sequence. The main strength of the topological binary test is that it focuses on the number of
bit patterns rather than frequency of occurrence of numbers. Because the exact distribution of the test
statistic is derived, it is possible to apply the test for short bit sequences.

The function topological.binary() implements the following pseudo-code algorithm to run the
test:

Algorithm 6.

1. Input data as a B× k matrix of bits, where B is the bit-length and k is the length of considered
number sequence, and the critical value;

2. Find and store non-overlapping blocks of length B;

3. Count the number of different B-bit patterns that appear across all the k blocks;

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 240

Function Call

Test GCD.test() GCD.test(x,KS = TRUE,CSQ = TRUE,AD = TRUE,JB = TRUE,
test.k = TRUE, test.g = TRUE, mu, sd, alpha = 0.05)

random.walk.tests() random.walk.tests(x,B = 64,Excursion = TRUE,
Expansion = TRUE, Height = TRUE, alpha = 0.05)

birthday.spacings() birthday.spacings(x,m = 128,n = 216,alpha = 0.05,lambda,
num.class = 10)

adaptive.chi.square() adaptive.chi.square(x,B,S,alpha = 0.05,bit = FALSE)
book.stack() book.stack(A,B,k = 2,alpha = 0.05,bit = FALSE)
topological.binary() topological.binary(x,B,alpha = 0.05,critical.value)

Auxiliary Strlng2() Strlng2(n,k,log = TRUE)
GCD() GCD(x,y)
GCD.q() GCD.q(x,y)
GCD.big() GCD.big(x,y,B)
TBT.CriticalValue() TBT.criticalValue(m,k,alpha = 0.01,cdf = FALSE,exact = TRUE)
toBaseTen() toBaseTen(x,m = 128,prec = 256,toFile = FALSE,file)
toBaseTwo() toBaseTwo(x,m = 128,prec = 512,num.CPU = 4)

Table 1: Usage of test and auxiliary functions of package CryptRndTest.

4. If the result of step 3 is less than one, then reject the null hypothesis;

5. Else if the result of step 3 is greater than min(k, 2B), then do not reject the null hypothesis;

6. Else if the result of step 3 is less than the input critical value, then reject the null hypothesis;

7. Else do not reject the null hypothesis;

8. Return the result of step 3 as the value of test statistic and the decision on the null hypothesis.

Although the exact distribution of test statistic is derived by Alcover et al. (2013), calculation of the
Stirling numbers of the second kind with large inputs is required with bit-lengths greater than 16 for
the calculation of the cdf of the test statistics. Therefore, it is hard to obtain the critical value of the
test for large bit-lengths by using available functions in R packages such as the function Stirling2 of
package copula (Hofert et al., 2015). This case is a limitation of the function topological.binary(). To
overcome this limitation of the test, we prepared the function TBT.CriticalValue to calculate required
critical values for testing. Algorithm complexity of the function topological.binary() is O(n2) in
the worst case. The required memory to run the topological binary test is related with the value of k.

Auxiliary functions

The package CryptRndTest has seven auxiliary functions, i.e., Strlng2(), GCD(), GCD.q(), GCD.big(),
toBaseTwo(), toBaseTen(), and TBT.CriticalValue(). These functions are also suitable for individual
use. Strlng2() is used to calculate critical values for the topological binary test implemented by
TBT.CriticalValue(). GCD() and GCD.q() are called to calculate the greatest common divisor in the
GCD test implemented by gcd.test(). Three possible outcomes of the greatest common divisor
operation are the number of iterations, the sequence of partial quotients, and the value of greatest
common divisor. GCD() provides all of these outcomes for any pair of integers excluding zero.
Functions toBaseTwo() and toBaseTen() are used for base conversion from base 2 to 10 and vice
versa for large integers.

The function Strlng2() is used to compute the natural logarithm of Stirling numbers of the second
kind for large values of inputs in an approximate manner by the approaches of Bleick and Wang (1974)
and Temme (1993). In this approach, Lambert W functions are employed at the log scale to overcome
memory overflows.

Due to the large factorials in the calculation of Stirling numbers of the second kind, it is nearly
impossible to compute the exact cdf of the topological binary test statistic for higher bit lengths
without memory flows in R. The function TBT.CriticalValue() implements an approach for the
calculation of the cdf and approximately computes the required critical value for the topological
binary test at a given level of α. Because TBT.CriticalValue() utilizes Strlng2(), accuracy of results
decreases with increasing bit lengths and number of words under consideration. It is also possible
to make exact calculations by TBT.CriticalValue(). In this case, the function Stirling2 from the
package gmp (Lucas et al., 2014) is employed instead of Strlng2(). Because package gmp uses
multiple precision arithmetic, implementation time of TBT.CriticalValue() considerable increases.
User should evaluate the trade off between implementation time and high precision.

Arguments of main and auxiliary functions of package CryptRndTest are summarized in Table 1.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=copula
http://CRAN.R-project.org/package=gmp

CONTRIBUTED RESEARCH ARTICLES 241

Sequence length

Bit Short (I) Medium (II) Long (III)

8 256 32768 65536
16 16384 65536 131072
32 32768 131072 262144
64 131072 262144 524288
128 131072 262144 524288

Table 2: Lengths of random number sequences for different patterns.

A numerical illustration

As a numerical illustration of the package, we employed package CryptRndTest to test the randomness
of RNG’s available in R. By this way, we aim to get results of the tests that have not been applied
to RNG’s of interest yet, figure out implementation performance of package CryptRndTest under
various scenarios, and illustrate some issues on the determination of parameters of the tests for
considered scenarios. Note that it is impossible to observe the ability to control type-I error (rejection
of randomness hypothesis while it is actually true) for the tests with an empirical study such as
conducted in this section. Additionally, a more thorough investigation would be necessary to be able
to reliably assess the algorithms, but this is out of scope of this article.

RNG’s of interest are Wichmann-Hill (WH), Marsaglia-Multicarry (MM), Super-Duper (SD),
Mersenne-Twister (MT), Knuth-TAOCP-2002 (KT02), Knuth-TAOCP (KT), and L’Ecuyer-CMRG (LE)
(see the function Random in the base package for the details of these RNG’s). Applied tests are
topological binary (TBT), adaptive chi-square (Achi), birthday spacings (BDS), random walk expansion
(RWT.Exp), random walk height (RWT.Hei), random walk excursion (RWT.Exc), book stack (BS), and
greatest common divisor (GCD). TBT, RWT.Exp, RWT.Hei, and RWT.Exc tests work with binary
numbers while the rest of the tests take integers as input. BDS and RWT tests are applied separately
with each of Anderson-Darling, Kolmogorov-Smirnov, and chi-square goodness-of-fit tests, and the
GCD test is applied separately with each of Anderson-Darling, Kolmogorov-Smirnov, Jargue-Bera,
and chi-square goodness-of-fit tests. The total number of applied randomness tests is 21. All the tests
are applied at both 0.01 and 0.05 levels of significance and 8, 16, 32, 64, and 128-bit lengths. Considered
lengths of random number sequences for each bit-length are given in Table 2.

Because we get unreasonable implementation times for longer sequences at the level of 128-bit, the
same sequence lengths as 64-bit are considered for 128-bit numbers.

To conduct the adaptive chi-square test, we need to determine the value of argument S and the
proportions of training and testing samples. The latter one is taken equal. As for the value of S, we
did not detect a significant change in the test results observed for medium sequence length for all
bit-lengths for S = 2, 3, 4 in pilot runs. The values greater than 4 increase the implementation time
whereas small values decrease resolution. Thus, it is taken as 4 for all bit-lengths to work with a
reasonable degrees of freedom in the chi-square test. Also, the adaptive chi-square test is applied for
all bit-lengths.

Arguments of the birthday spacings test are the number of birthdays (m), the length of year (n),
the mean rate of the theoretical Poisson distribution (lambda), and the number of classes (num.class),
which is used for goodness-of-fit tests. In the experiments, the argument m was taken as 8, 128, and 4096
for 8, 16, and 32-bit-lengths, respectively. The argument n was set to 2B, where B is the bit-length. The
argument lambda was calculated by the formula given by Marsaglia and Tsang (2002). The argument
num.class was set to 5 and 10 for 8 and 16-bit and higher lengths, respectively.

For the book stack test, length of the sample (n) should be determined and data should be prepared
according to the value of n. Also, the number of subsets that the alphabet will be divided into (k)
should be determined. The formula proposed by Ryabko and Monarev (2005) is used to calculate the
value of n, and we set k=n/B.

In the GCD test procedure, tests are conducted for two outputs of the GCD operation, i.e., the
number of iterations required to find GCD (k) and GCD (g) itself. The population distribution of k
is well approximated by a normal distribution and parameters of the normal distribution are given
by Marsaglia and Tsang (2002) for 32-bit integers after an extensive numerical study. We observed
that the parameters of the population distribution differ for different bit-lengths and conducted a
numerical study to figure out the values of parameters for considered bit-lengths. For this study, 106

30-bit true random numbers were obtained from the web service “www.random.org.” Then, they were
converted to 8, 16, 32, 64, and 128-bit numbers. The GCD operation was applied and mean (mu.GCD)
and standard deviation (sd.GCD) of k were obtained as given in Table 3 after checking the normality of
the empirical distribution by means of descriptive statistics and the Anderson-Darling goodness-of-fit

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 242

Bit mu.GCD sd.GCD

8 3.9991 1.6242
16 8.8784 2.3664
32 18.4023 3.4000
64 31.3269 4.3349

128 31.8390 4.3678

Table 3: Mean and standard deviation of population distribution of k.

α = 0.01 α = 0.05

Bit Short Medium Long Short Medium Long

8 153 NA NA 153 NA NA
16 14423 41268 NA 14423 41266 NA
32 32767 131066 262129 32767 131066 262129
64 131070 262113 523264 131070 262113 524264

128 131072 262144 524288 131072 262144 524288
NA: not available.

Table 4: Critical values for topological binary test.

test. The values obtained for 32-bit are very close to those obtained by Marsaglia and Tsang (2002).

As expected, the mean of k increases along with bit-length, and it approaches 35 (Marsaglia and
Tsang, 2002). The mild increase in the values of standard deviations is due to the increasing range
of the numbers that can be generated with a given bit-length. Also, the GCD test is applied for all
bit-lengths. However, nearly for all 128-bit random numbers, g > 35. Due to the operation done at
step 15 of Algorithm 4, it is unreasonable to conduct the GCD test over g for 128-bit numbers.

The topological binary test is also applied for all bit-lengths. Critical values for the topological
binary test are calculated by using the function TBT.criticalValue() for each bit and sequence length
combination and presented in Table 4. Because the length of sequence being tested cannot be longer
than 2m − 1, where m is the bit-length, critical values for medium and long sequences at 8-bit and for
long sequences at 16-bit levels are not available in Table 4.

In the application, random numbers were generated by using the same seed 283158301. Let
sim.data be an integer vector including data to be tested. It is reshaped with the following code
according to bit-length B:

if (B <= 64) {
sim.data <- matrix(data = sim.data, ncol = len, byrow = FALSE)

} else {
sim.data <- mpfrArray(sim.data, prec = B)

}

The adaptive chi-square, random walk, and topological binary tests were straightforwardly called
with the mentioned arguments. For the book stack test, the following code is employed:

n <- B * (2^(B/2))
dat.BS <- sim.data[1:round(n/B)]
BS <- book.stack(x = dat.BS, B = B, k = n/B, alpha = 0.01, bit = FALSE)
print(BS)

For the GCD tests, the input number sequence was divided into two-sequences and the tests were
applied with the following code:

if (len%%2 == 1) {
len <- len - 1

}
len2 <- len/2
if (B <= 64) {
dat.new <- array(NA, dim = c(len2,2))
dat.new[1:len2,1] <- sim.data[1:len2]
dat.new[1:len2,2] <- sim.data[(len2+1):len]

} else {
dat.new <- mpfrArray(NA, prec = m, dim = c(len2,2))
dat.new[1:len2, 1] <- sim.data[1:len2]
dat.new[1:len2, 2] <- sim.data[(len2+1):len]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 243

Tests

Bit Length TBT Achi BDS RWT.Exp RWT.Hei RWT.Exc BS GCD

8 32768 0.62 2.88 0.46 NA NA NA < 0.01 1.31
16 65536 1.70 5.70 0.46 NA NA 4.33 0.02 3.74
32 131072 6.68 10.88 2.10 NA 0.26 15.99 4253.01 12.32
64 262144 32.05 86.31 NA 84.21 88.74 64.68 NA 37.36
128 262144 77.16 10121.34 NA 221.16 196.96 149.29 NA 2657.62
TBT: topological binary, Achi: adaptive chi-square, BDS: birthday spacings, RWT: random walk, Exp: expansion,
Hei: height, BS: book stack, GCD: greatest common divisor, Length: the length of random number sequence,
NA: not available.

Table 5: Mean implementation time for each test in seconds.

}
EBOB <- GCD.test(x = dat.new, B = m, mu = mu.GCD, sd = sd.GCD, test.g = do.test.g)
print(EBOB)

where len is the length of the input sequence. Whole code snippets used to implement experiments
are given in the vignette of the package CrpytRndTest.

Random number sequences used for the performance analysis are of medium length given in
Table 2 and generated by the WH generator under each bit level. Five replications were made for each
test. Mean implementation times calculated over five replications are shown in Table 5 in seconds. All
variances of implementation times are less than 0.01. BDS, RWT, and BS tests were not applied at all
bit-lengths due to reasons explained in the relevant sections.

Implementation times of all tests from 8 to 64-bit levels are all sufficient. For 128 bits, most of
the implementation times of Achi and GCD tests are taken by finding unique values in a sequence
composed of multiple precision floating-point (mpf) numbers at step 4 of Algorithm 1 and the value
of gcd for mpf numbers at step 3 of Algorithm 4, respectively. For these operations, mpf numbers are
used via the package Rmpfr. The package Rmpfr is based on the GMP GNU library and provides
an interface from R to C (Maechler, 2011, 2015). Due to the use of mpf numbers via the package
Rmpfr, there is a considerable increase in implementation time of Achi and GCD tests at 128-bit level.
However, the gain in precision is worth the delay in implementation of these tests. Performances of the
tests working with binary numbers are all sufficient at the 128-bit level. Implementation time of the BS
test exponentially increases along with the bit-length. Although it is reasonable for 32 bits, application
of the test for higher bit-lengths requires an unreasonable amount of time for implementation.

All the tests were applied at both 0.01 and 0.05 levels of significance. The null hypothesis is “H0 :
Sequences generated by the RNG of interest are random” for all tests. For both levels of significance,
success rates of RNGs over the total number of applied tests are given in Table 6. Detailed test results
for the 0.05 level of significance are presented in the vignette of the package CrpytRndTest. The
total number of applied tests is given in the last row of Table 6 for each test scenario. For example,
because the birthday spacings test is not applied for 64 bit-length, the total number of applied tests is
17 for all sequence lengths. Note that the values given in Table 6 should not be confused with issues
related with statistical performance of the tests such as type I error or power. Table 6 represents the
proportion of RNG’s that did not fail in the given number of tests. In addition, because each test is
applied individually, the information presented by Table 6 should not be perceived as the results of
the application of a test battery.

In general, the proportion of success decreases with increasing sequence and bit-lengths. According
to the proportions of success, performance of the WH generator is satisfactory for 16 and 32-bit numbers
for all sequence lengths. The reason of getting a decreasing success rate with increasing bit-length
is that the random walk tests with all goodness-of-fit tests and the GCD test with the Jarque-Bera
goodness-of-fit test reject the randomness hypothesis while the rest of the tests mostly accept the
hypothesis for bit-lengths greater than 32. In detail, the WH generator successfully passes both of the
TBT and Achi tests nearly in all bit-sequence length combinations. Results of AD and KS goodness-
of-fit tests applied under both BDS and GCD tests (with k) are similar, and the CS test more likely
decides randomness of the WH generator. It is unsuccessful in passing the random walk tests for high
bit-lengths. The BS test concludes WH’s randomness under all of the test conditions. The GCD with
the JB goodness-of-fit test rejects the null hypothesis of randomness under all test conditions but the
first one. At the 0.01 level of significance, there is nearly no change in the results. The WH generator
passes the GCD test with CS goodness-of-fit test for k at (8, I), (8, II) and (32, I) scenarios, and the BDS
test with the AD goodness-of-fit test at (16, II).

According to the proportions of success, the SD generator mostly passes the tests for 16 and 32-bit
integers for all sequence lengths, and 8-bit integers for short and long sequences. Detailed test results

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 244

Bit-length

Level 8 16 32 64 128

of Sequence length

Significance RNG I II III I II III I II III I II III I II III

0.01 WH 0.92 0.58 0.50 0.93 1.00 0.86 0.86 0.93 0.93 0.47 0.47 0.47 0.33 0.27 0.33
SD 0.92 0.58 0.75 0.93 0.93 0.93 0.93 0.93 0.93 0.41 0.47 0.35 0.33 0.33 0.27
MT 0.92 0.58 0.58 1.00 1.00 0.93 0.93 0.93 0.93 0.47 0.41 0.47 0.33 0.33 0.33
MM 0.92 0.58 0.75 0.93 0.93 1.00 1.00 0.93 0.93 0.47 0.41 0.35 0.33 0.33 0.27
LE 0.92 0.67 0.58 0.93 0.93 0.79 1.00 0.93 0.93 0.47 0.47 0.47 0.33 0.27 0.33
KT 0.92 0.67 0.58 0.93 0.93 0.93 1.00 0.93 0.93 0.41 0.47 0.47 0.27 0.33 0.33

KT02 0.92 0.67 0.58 1.00 0.93 1.00 1.00 0.93 0.86 0.47 0.41 0.47 0.27 0.33 0.33

0.05 WH 0.83 0.50 0.50 0.93 0.93 0.86 0.79 0.93 0.93 0.47 0.47 0.47 0.33 0.27 0.33
SD 0.92 0.58 0.75 0.93 0.93 0.86 0.86 0.79 0.86 0.41 0.47 0.29 0.33 0.33 0.27
MT 0.67 0.50 0.58 0.93 0.86 0.86 0.93 0.86 0.93 0.41 0.41 0.47 0.33 0.33 0.33
MM 0.92 0.58 0.75 0.93 0.93 0.93 1.00 0.86 0.93 0.47 0.41 0.35 0.33 0.33 0.27
LE 0.92 0.67 0.58 0.93 0.93 0.79 0.93 0.86 0.93 0.47 0.41 0.47 0.33 0.27 0.33
KT 0.92 0.58 0.58 0.93 0.86 0.93 1.00 0.93 0.93 0.41 0.41 0.47 0.27 0.20 0.33

KT02 0.83 0.58 0.42 1.00 0.93 0.93 1.00 0.93 0.79 0.47 0.41 0.47 0.27 0.33 0.33

Number of tests 12 12 12 15 15 15 15 15 15 17 17 17 15 15 15

Table 6: Success rates for RNGs over the tests applied by package CryptRndTest.

for the SD generator at the 0.05 level of significance are similar to that of the WH generator for the
TBT, Achi, BDS, RWT, and BS tests. It is better in the GCD test with the JB goodness-of-fit test for k. At
the 0.01 level of significance, the CS goodness-of-fit test applied with the GCD test cannot reject the
null hypothesis for 4 scenarios.

Reaction of the tests for MT, MM, and LE generators is similar to that of the WH generator.
According to the proportions of success, success rates of the MT generator are satisfactory for 16
and 32-bit numbers for all sequence lengths; and that of the MM generator is very satisfactory for 16
and 32-bit numbers for all sequence lengths, and 8-bit numbers for short and long sequence lengths.
Success proportions of LE, KT, and KT02 generators are high for 16 and 32-bit numbers for all sequence
lengths, and 8-bit numbers for short sequences. The BS test rejects randomness of the KT02 generator
for 8-bit numbers for all sequence lengths at the 0.05 level of significance. However, it cannot reject the
null hypothesis for 8-bit numbers for all sequence lengths for α = 0.01.

For 64-bit numbers, only the random walk excursion test with AD and KS goodness-of-fit tests
cannot reject the null hypothesis for all RNG’s. None of the random walk tests decides randomness of
RNG’s for 128-bit numbers. RNG’s pass TBT, Achi, and GCD for k with AD, KS, and CS goodness-of-fit
tests for almost all sequence lengths. This situation decreases the proportion of success for 64 and
128-bit numbers. This result would be due to the conservativeness of random walk height, random
walk expansion tests, and GCD test with the Jarque-Bera goodness-of-fit test for higher bit lengths.

Summary

Statistical analysis of randomness of a cryptographic random number generator is a critical and
necessary task to make use of the generator in cryptographic applications. Many cryptographic
randomness tests are available for this task including recently proposed ones. Although there are
several alternatives, the chi-square test is frequently employed within these cryptographic randomness
tests as a goodness-of-fit test. In this regard, this article describes the package CryptRndTest that
conducts frequently used and newly proposed 8 cryptographic randomness tests along with Anderson-
Darling, Kolmogorov-Smirnov, chi-square, and Jarque-Bera goodness-of-fit tests. Totally, package
CryptRndTest runs 21 tests. It also provides auxiliary functions for the calculation of the greatest
common divisor, sequence of partial quotients resulting from the greatest common divisor operation,
the base conversion from 2 to 10 and vice versa, and the Stirling numbers of the second kind. All of
these auxiliary functions also work with long integers by the use of multi-precision floating point
numbers.

In addition to the description of package CryptRndTest, random number generators available in
R are tested by 21 cryptographic randomness tests of CryptRndTest under various combinations of
sequence and bit-lengths. Implementation performance of package CryptRndTest is also revealed by
the numerical application.

The limitations of the package are mostly related to the memory and CPU capacities of the com-
puter used to run functions of CryptRndTest. Because, increasing bit-length considerably decreases
the implementation speed of tests working over integers, this can also be seen as a limitation for high
bit-lengths.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 245

Acknowledgments

This work is fully supported by The Scientific and Technological Research Council of Turkey (TUBITAK)
under Grant No. 114F249 of ARDEB-3001 programme. Authors wish to thank three anonymous re-
viewers and the editor for constructive comments that improved the quality and clarity of the article.

Bibliography

P. Alcover, A. Guillamon, and M. Ruiz. A new randomness test for bit sequences. Informatica, 24:
339–356, 2013. [p234, 239, 240]

W. Bleick and P. Wang. Asymptotics of Stirling numbers of the second kind. Proceedings of the American
Mathematical Society, 42:575–580, 1974. [p240]

R. Brown, D. Eddelbuettel, and D. Bauer. Dieharder: A random number test suite (version 3.31.1). URL:
http://www.phy.duke.edu/ rgb/General/dieharder.php, 2014. [Online; accessed 25-February-
2014]. [p233]

F. Caeiro and A. Mateus. randtests: Testing randomness in R. https://CRAN.R-project.org/package=
randtests, 2014. Online; accessed 2016-02-25. [p234]

H. Demirhan. CryptRndTest: Statistical Tests for Cryptographic Randomness, 2016. URL https://CRAN.R-
project.org/package=CryptRndTest. R package version 1.2.1. [p234]

H. Demirhan and N. Bitirim. Statistical testing of cryptographic randomness. Journal of Statisticians:
Statistics and Actuarial Sciences, 9:1–11, 2016. [p233]

A. Doganaksoy, C. Calik, F. Sulak, and M. Turan. New randomness tests using random walk. In
Proceedings of National Cryptology Symposium II, Turkey, 2006. [p234, 238, 239]

S. Doroshenko and B. Ryabko. The experimental distinguishing attack on RC4. Cryptology ePrint
Archive, Report 2006/070, 2006. http://eprint.iacr.org/. [p237]

S. Doroshenko, A. Fionov, A. Lubkin, V. Monarev, and B. Ryabko. On ZK-crypt, book stack, and
statistical tests. Cryptology ePrint Archive, Report 2006/196, 2006. http://eprint.iacr.org/.
[p237]

D. Eddelbuettel and R. Brown. RDieHarder: An R interface to the dieharder suite of random number
generator tests. http://CRAN.R-project.org/package=RDieHarder, 2014. [Online; accessed 16-
June-2015]. [p233]

J. Hernandez, J. Sierra, and A. Seznec. The SAC test: A new randomness test, with some applications to
PRNG analysis. In:Proceedings of the International Conference Computational Science and Its Applications,
pages 960–967, 2004. [p234]

M. Hofert, I. Kojadinovic, M. Maechler, and J. Yan. copula: Multivariate Dependence with Copulas, 2015.
URL http://CRAN.R-project.org/package=copula. R package version 0.999-14. [p240]

D. Knuth. The Art of Computer Programming, Volume 2 / Seminumerical Algorithms. Addison-Wesley,
Reading, Massachusetts, 1 edition, 1969. [p233]

D. Knuth. The Art of Computer Programming, Volume 2 / Seminumerical Algorithms. Addison-Wesley,
Reading, Massachusetts, 2 edition, 1981. [p233]

D. Knuth. The Art of Computer Programming, Volume 2 / Seminumerical Algorithms. Addison-Wesley,
Reading, Massachusetts, 3 edition, 1998. [p233]

P. L’Ecuyer and P. Hellekalek. Random number generators: Selection criteria and testing. Random and
Quasi-Random Point Sets Lecture Notes in Statistics, 138:223–265, 1998. [p233]

P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random number generators.
ACM Transactions on Mathematical Software, 33:Article 22, 2007. [p233]

P. L’Ecuyer and R. Simard. TestU01: A C library for empirical testing of random number gen-
erators – user’s guide, compact version. http://www.iro.umontreal.ca/~simardr/testu01/
guideshorttestu01.pdf, 2014. [Online; accessed 24-February-2014]. [p233]

A. Lucas, I. Scholz, R. Boehme, S. Jasson, and M. Maechler. gmp: Multiple Precision Arithmetic, 2014.
URL https://CRAN.R-project.org/package=gmp. R package version 0.5-12. [p240]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=randtests
https://CRAN.R-project.org/package=randtests
https://CRAN.R-project.org/package=CryptRndTest
https://CRAN.R-project.org/package=CryptRndTest
http://eprint.iacr.org/
http://eprint.iacr.org/
http://CRAN.R-project.org/package=RDieHarder
http://CRAN.R-project.org/package=copula
http://www.iro.umontreal.ca/~simardr/testu01/guideshorttestu01.pdf
http://www.iro.umontreal.ca/~simardr/testu01/guideshorttestu01.pdf
https://CRAN.R-project.org/package=gmp

CONTRIBUTED RESEARCH ARTICLES 246

M. Maechler. Arbitrarily accurate computation with R: Package Rmpfr. https://CRAN.R-project.
org/web/packages/Rmpfr/vignettes/Rmpfr-pkg.pdf, 2011. [Online; accessed 18-December-2015].
[p243]

M. Maechler. Rmpfr: R MPFR – Multiple Precision Floating-Point Reliable, 2015. URL https://CRAN.R-
project.org/package=Rmpfr. R package version 0.6-0. [p235, 243]

G. Marsaglia. Diehard: A battery of tests of randomness. http://stat.fsu.edu/~geo/diehard.html,
1996. [Online; accessed 25-February-2014]. [p233]

G. Marsaglia and W. Tsang. Some difficult to pass tests of randomness. Journal of Statistical Software, 7
(3):1–9, 2002. [p233, 235, 236, 237, 238, 241, 242]

M. Mascagni and A. Srinivasan. Algorithm 806: SPRNG: A scalable library for pseudorandom number
generation. ACM Transactions on Mathematical Software, 26:436–461, 2000. [p233]

U. Maurer. A universal statistical test for random bit generators. Journal of Cryptology, 5:89–105, 1992.
[p234]

B. McCullough. A review of TestU01. Journal of Applied Econometrics, 21:677–682, 2006. [p233]

M. Ruetti. A Random Number Generator Test Suite for the C++ Standard-Diploma Thesis. Institute for
Theoretical Physics, ETH Zurich, 2004. [p233]

A. Rukhin. Testing randomness: A suite of statistical procedures. Theory of Probability and Its Applica-
tions, 45:111–132, 2001. [p233]

A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks,
A. Heckert, J. Dray, and S. Vo. A statistical test suite for random and pseudorandom number gener-
ators for cryptographic applications. http://csrc.nist.gov/groups/ST/toolkit/rng/documents/
SP800-22rev1a.pdf, 2010. [Online; accessed 17-June-2015]. [p233, 234]

B. Ryabko and V. Monarev. Using information theory approach to randomness testing. Journal of
Statistical Planning and Inference, 133:95–110, 2005. [p234, 236, 237, 241]

B. Ryabko, V. Stognienko, and Y. Shokin. A new test for randomness and its application to some
cryptographic problems. Journal of Statistical Planning and Inference, 123:365–376, 2004. [p234, 235]

J. Sadique, U. Zaman, and R. Ghosh. Review on fifteen statistical tests proposed by NIST. Journal of
Theoretical Physics and Cryptography, 1:18–31, November 2012. [p233]

F. Scholz and A. Zhu. kSamples: K-Sample Rank Tests and Their Combinations, 2016. URL https://CRAN.R-
project.org/package=kSamples. R package version 1.2-3. [p236]

A. Signorell. DescTools: Tools for descriptive statistics. https://CRAN.R-project.org/package=
DescTools, 2015. Online; accessed 2016-02-25. [p234]

J. Soto. Statistical testing of random number generators. In Proceedings of the 22nd National Information
Systems Security Conference, USA, 1999. National Institute of Standards and Technology. [p233]

M. Sýs and Z. Říha. Faster randomness testing with the NIST statistical test suite. In R. Chakraborty
et al., editors, Security, Privacy, and Applied Cryptography Engineering Lecture Notes in Computer Science,
pages 272–284, Portugal, 2014. Springer. [p233]

M. Sýs, P. Švenda, M. Ukrop, and V. Matyáš. Constructing empirical tests of randomness. In A. H.
Mohammad S. Obaidat and P. Samarati, editors, SECRYPT 2014 Proceedings of the 11th International
Conference on Security and Cryptography, pages 229–237, Portugal, 2014. SCITEPRESS – Science and
Technology Publications. [p233]

N. Temme. Asymptotic estimates of Stirling numbers. Studies in Applied Mathematics, 89:233–243, 1993.
[p240]

A. Trapletti and K. Hornik. tseries: Time Series Analysis and Computational Finance, 2015. URL http:
//CRAN.R-project.org/package=tseries. R package version 0.10-34. [p238]

I. Vattulainen, T. Ala-Nissila, and K. Kankaala. Physical models as tests of randomness. Physical Review
Engineering, 52:3205–3213, 1995. [p233]

J. Walker. ENT – A pseudorandom number sequence test program. https://www.fourmilab.ch/
random/, 2014. [Online; accessed 25-February-2014]. [p233]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/web/packages/Rmpfr/vignettes/Rmpfr-pkg.pdf
https://CRAN.R-project.org/web/packages/Rmpfr/vignettes/Rmpfr-pkg.pdf
https://CRAN.R-project.org/package=Rmpfr
https://CRAN.R-project.org/package=Rmpfr
http://stat.fsu.edu/~geo/diehard.html
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
http://csrc.nist.gov/groups/ST/toolkit/rng/documents/SP800-22rev1a.pdf
https://CRAN.R-project.org/package=kSamples
https://CRAN.R-project.org/package=kSamples
https://CRAN.R-project.org/package=DescTools
https://CRAN.R-project.org/package=DescTools
http://CRAN.R-project.org/package=tseries
http://CRAN.R-project.org/package=tseries
https://www.fourmilab.ch/random/
https://www.fourmilab.ch/random/

CONTRIBUTED RESEARCH ARTICLES 247

Haydar Demirhan
Hacettepe University
Department of Statistics 06800 Beytepe Ankara
Turkey
and
RMIT University
School of Science
Mathematical Sciences
3001 Melbourne Victoria
Australia
haydarde@hacettepe.edu.tr
haydar.demirhan@rmit.edu.au

Nihan Bitirim
Council of Higher Education
06800 Cankaya Ankara
Turkey

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:haydarde@hacettepe.edu.tr
mailto:haydar.demirhan@rmit.edu.au

CONTRIBUTED RESEARCH ARTICLES 248

scmamp: Statistical Comparison of
Multiple Algorithms in Multiple
Problems
by Borja Calvo and Guzmán Santafé

Abstract Comparing the results obtained by two or more algorithms in a set of problems is a central
task in areas such as machine learning or optimization. Drawing conclusions from these comparisons
may require the use of statistical tools such as hypothesis testing. There are some interesting papers
that cover this topic. In this manuscript we present scmamp, an R package aimed at being a tool
that simplifies the whole process of analyzing the results obtained when comparing algorithms, from
loading the data to the production of plots and tables.

Comparing the performance of different algorithms is an essential step in many research and
practical computational works. When new algorithms are proposed, they have to be compared with
the state of the art. Similarly, when an algorithm is used for a particular problem, its performance with
different sets of parameters has to be compared, in order to tune them for the best results.

When the differences are very clear (e.g., when an algorithm is the best in all the problems used in
the comparison), the direct comparison of the results may be enough. However, this is an unusual
situation and, thus, in most situations a direct comparison may be misleading and not enough to draw
sound conclusions; in those cases, the statistical assessment of the results is advisable.

The statistical comparison of algorithms in the context of machine learning has been covered in
several papers. In particular, the tools implemented in this package are those presented in Demšar
(2006); García and Herrera (2008); García et al. (2010). Another good review that covers, among other
aspects, the statistical assessment of the results in the context of supervised classification can be found
in Santafé et al. (2015).

Existing tools

Some of the methods presented in the referred papers are well known procedures that are included
in classical statistics tools. As an example, p-value correction methods such as Holm (Holm, 1979) or
omnibus tests such as Friedman’s (Friedman, 1937) are implemented in R’s base package. However,
other methods are neither so well known nor trivial to implement. Worth highlighting is Bergmann and
Hommel’s procedure (Bergmann and Hommel, 1988) to correct the p-values when all the algorithms
are compared pair-wise (see García and Herrera, 2008, page 2681).

There are tools that implement some of the methods included in this package. The first one is
KEEL (Alcalá-Fdez et al., 2008), a Java toolbox that includes a module for the statistical assessment of
the results obtained in a given experiment. However, although it can be used independently from
the rest of the toolbox, its GUI offers only a limited combination of methods and any other analysis
requires programming within Java.

As an alternative to the KEEL GUI, STATService 2.0 (Parejo et al., 2012) provides a web service
to perform statistical analysis of multiple algorithms using KEEL’s code. Along the same lines we
have STAC (Rodríguez-Fdez et al., 2015), a Python web service that allows running different types
of parametric and non-parametric tests using a simple interface and its own implementation of the
methods.

The goal of scmamp is to provide a simple pipeline that allows any researcher to load their
complete set of results, analyze them and produce the material needed for publication (tables and
plots).

Under some circumstances we may be interested in analyzing the results in different groups of
problems. An example of such a situation are the results presented in Blum et al. (2015), where the
behavior of a set of algorithms was tested in problems of different size and complexity1. In order to
deal with these kinds of problems, conversely to other existing tools, the package offers the possibility
of subsetting the results, which can be handy when the problems can be subdivided into different
groups (e.g., based on their size).

Another advantage of the scmamp package over other existing implementations is that the func-
tions that perform the analyses accept additional user-defined test and correction functions, increasing

1As we will show later, part of these results are available in scmamp as an example of the type of results matrix
used by the package.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=scmamp

CONTRIBUTED RESEARCH ARTICLES 249

Comparisons
among several

datasets

Wilcoxon
signed-ranks

2 algorithms

OMNIBUS TESTS

Several
algorithms +

Friedman
aligned
ranksQuade

Friedman
(Iman&Davenport)

Comparison
with a control HochbergHolm

Rom

Li

POST-HOC TESTS

HollandFinnerHommel

Shaffer's static

Comparison with
a control methods

Figure 1: Recommended statistical test for different scenarios.

the flexibility of the analysis. Moreover, all the correction methods included in the stats package
through the p.adjust function can be directly used in the scmamp package.

Finally, we mention that although KEEL and STATService generate tables to be directly used in
publications, they do not generate plots. In our package we have included two functions to graphically
represent the results of the comparison. Moreover, performing the analysis in R allows the user to
easily create his/her own plots.

Brief overview of the statistical tests and general recommendations

Several publications (Demšar, 2006; García and Herrera, 2008; García et al., 2010; Santafé et al., 2015)
have stated a basic classification of general machine learning scenarios and the associated statistical
tests which are appropriate for each situation. This package is mainly focused in the comparison of
multiple algorithms in multiple datasets. However, due to the flexibility of the implemented functions,
it can also be adapted to other situations. Figure 1 summarizes the most common situations when
evaluating machine learning algorithms.

Comparisons of two algorithms among a set of different problems are common in the literature in
order to decide between two competitors. The estimated scores for each algorithm on each problem
are independent. However, as they may be obtained from different application domains (or problems
with different characteristics), it is highly debatable whether they can be averaged over in order to
obtain a meaningful overall estimation of the algorithm’s performance. Consequently, non-parametric
methods such as Wilcoxon signed-rank are usually recommended (Demšar, 2006).

On the other hand, in order to compare multiple algorithms in multiple problems, the general
recommended methodology is as follows. First, we apply an omnibus test to detect if at least one of
the algorithms performs differently than the others. Second, if we find a significant difference, then
we apply a pair-wise test with the corresponding post-hoc correction for multiple comparisons. The
Friedman test with Iman and Davemport extension is probably the most popular omnibus test, and
it is usually a good choice when comparing more than five different algorithms. By contrast, when
comparing five or fewer different algorithms, Friedman aligned ranks and the Quade test are more
powerful alternatives (García et al., 2010).

Regarding post-hoc tests, the choice depends on the pair-wise comparisons: comparison with a
control or all pair-wise comparisons. When comparing all the algorithms with a control, Bonferroni
is the most simple but the least powerful procedure and, thus, it is not recomended in practice. By
contrast, Hommel and Rom are the two most powerful procedures but they are also more complex
than other methods. Alternatively, Finner is a simple procedure and it is the next with the highest
power (see García et al., 2010). Nevertheless, except for Bonferroni, in practice there are not very big
differences in the power of the post-hoc tests. Therefore, in general, Finner’s method is a good choice
due to its simplicity and power.

Similarly, when an all pair-wise comparison is conducted, those procedures to perform compar-
isons with a control can be used. In this case, the Nemenyi’s test is the most simple but less powerful
alternative and it is not usually recommended in practice. Alternatively, specific methods for all
pair-wise comparison have a higher power. The one with highest power is Bergmann and Hommel,
but it is a complex and computationally expensive method. The scmamp package optimizes this
method for up to nine algorithms by having some pre-computed operations. Therefore, comparing
more than nine algorithms with the Bergmann and Hommel procedure is unfeasible in practice. In
those situations, Shaffer’s static method or even other more simple procedures such as Finer and Holm
are recommended.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 250

Brief examples

In this section we will illustrate the use of the package in three different situations. For a more detailed
discussion on the use of the different functions the reader is referred to the package’s vignettes. These
may be accessed with the command browseVignettes('scmamp').

The first example of use comes from García and Herrera (2008). Actually, we will use the set
of results presented in that paper, which are included in the package in the variable data.gh.2008.
These results collect the performance of a number of supervised classification algorithms in a set
of 30 datasets. The goal of the study is comparing the different algorithms and determining which
outperforms which. For more details, the reader is referred to García and Herrera (2008).

> library('scmamp')
> head(data.gh.2008)

C4.5 k-NN(k=1) NaiveBayes Kernel CN2
Abalone* 0.219 0.202 0.249 0.165 0.261
Adult* 0.803 0.750 0.813 0.692 0.798
Australian 0.859 0.814 0.845 0.542 0.816
Autos 0.809 0.774 0.673 0.275 0.785
Balance 0.768 0.790 0.727 0.872 0.706
Breast 0.759 0.654 0.734 0.703 0.714

The goal is analyzing all the pair-wise comparisons. Therefore, the first hypothesis to test is whether
all the algorithms perform equally or, in contrast, some of them have a significantly different behavior.
Then, all the differences are tested for every pair of algorithms and the resulting p-values are corrected.
There are different ways to report the results, depending on the post-hoc analysis. A very intuitive
tool is Demsar’s critical difference plots. Although easy to interpret, these plots are based on the
Nemenyi test, which is a very conservative one. There are other alternatives that can be used with
more powerful methods (such as Bergmann and Hommel’s correction). In this example we will use the
drawAlgorithmGraph function which creates a graph based on the p-values corrected by any method.

First, we check the differences using the Iman and Davenport omnibus test.

> imanDavenportTest(data.gh.2008)

Iman Davenport's correction of Friedman's rank sum test

data: data.gh.2008
Corrected Friedman's chi-squared = 14.3087, df1 = 4, df2 = 116,
p-value = 1.593e-09

The p-value shown above denotes that there is at least one algorithm that performs differently than
the rest and, therefore, we can proceed with the post-hoc analysis of the results. There are several
alternatives to perform this analysis, but we will focus on two. The first alternative is the Nemenyi
test. Although, this test is not a recommended choice in practice since it is very conservative and has a
low power, it is shown in this example because its associated plot is quite illustrative.

> nm <- nemenyiTest(data.gh.2008)
> nm

Nemenyi test

data: data.gh.2008
Critical difference = 1.1277, k = 5, df = 145

> nm$diff.matrix

C4.5 k-NN(k=1) NaiveBayes Kernel CN2
[1,] 0.000000 -1.1500000 -0.1000000 -2.233333 -1.0166667
[2,] -1.150000 0.0000000 1.0500000 -1.083333 0.1333333
[3,] -0.100000 1.0500000 0.0000000 -2.133333 -0.9166667
[4,] -2.233333 -1.0833333 -2.1333333 0.000000 1.2166667
[5,] -1.016667 0.1333333 -0.9166667 1.216667 0.0000000

This procedure determines the critical difference. Any two algorithms whose performance difference
is greater that the critical difference are regarded as significantly different. As can be seen in the code

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 251

2 3 4 5

CD

C4.5

NaiveBayes

CN2

k−NN(k=1)

Kernel

Figure 2: Example of critical difference plot.

above, the differences between every pair of algorithms is stored in the diff.matrix element of the
result. The Nemenyi test has the advantage of having an associated plot to represent the results of the
comparison. This plot can be obtained as follows.

> plotCD(results.matrix = data.gh.2008, alpha = 0.05)

The result can be seen in Figure 2. In this plot each algorithm is placed on an axis according to its
average ranking. Then, those algorithms that show no significant differences are grouped together
using a horizontal line. The plot also shows the size of the critical difference required for considering
two algorithm as significantly different.

The second alternative shown in this example is the Friedman post-hoc test with Bergmann and
Hommel’s correction. Both steps can be carried out in a single line of code.2

> test.res <- postHocTest(data = data.gh.2008, test = 'friedman', correct = 'bergmann')
> test.res

$summary
C4.5 k-NN(k=1) NaiveBayes Kernel CN2

[1,] 0.7797 0.6791 0.7565 0.5693667 0.7285333

$raw.pval
C4.5 k-NN(k=1) NaiveBayes Kernel CN2

C4.5 NA 0.004848763 8.064959e-01 4.486991e-08 0.012763008
k-NN(k=1) 4.848763e-03 NA 1.011233e-02 7.963489e-03 0.743971478
NaiveBayes 8.064959e-01 0.010112334 NA 1.736118e-07 0.024744672
Kernel 4.486991e-08 0.007963489 1.736118e-07 NA 0.002880485
CN2 1.276301e-02 0.743971478 2.474467e-02 2.880485e-03 NA

$corrected.pval
C4.5 k-NN(k=1) NaiveBayes Kernel CN2

C4.5 NA 0.02909258 1.000000e+00 4.486991e-07 0.03828902
k-NN(k=1) 2.909258e-02 NA 3.185396e-02 3.185396e-02 1.00000000
NaiveBayes 1.000000e+00 0.03185396 NA 1.041671e-06 0.03828902
Kernel 4.486991e-07 0.03185396 1.041671e-06 NA 0.01152194
CN2 3.828902e-02 1.00000000 3.828902e-02 1.152194e-02 NA

The above code runs the post-hoc test, computing the raw p-value for each pair of algorithms. These
p-values are also corrected for multiple testing using Bergman and Hommel’s correction. Additionally,
a summary with the average values of each algorithm over all the dataset is obtained.

The package offers two ways of presenting the results obtained in the analysis. On the one hand,
we can create a LATEX table using the function writeTabular. This function includes parameters to
control several aspects of the table. For more details on its use the reader is referred to the vignette
covering the data loading and manipulation. The table generated can be seen in Table 1.

> # LaTeX formated: Significances highlighted in bold
> bold <- test.res$corrected.pval < 0.05
> bold[is.na(bold)] <- FALSE
> writeTabular(table = test.res$corrected.pval, format = 'f', bold = bold,

2These steps can be carried out independently using the functions implemented in the package. For more
information the reader is referred to the package documentation.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 252

C4.5 k-NN(k=1) NaiveBayes Kernel CN2
C4.5 n/a 0.029 1.000 0.000 0.038
k-NN(k=1) 0.029 n/a 0.032 0.032 1.000
NaiveBayes 1.000 0.032 n/a 0.000 0.038
Kernel 0.000 0.032 0.000 n/a 0.012
CN2 0.038 1.000 0.038 0.012 n/a

Table 1: Example of table generated by the package.

+ hrule = 0, vrule = 0)

\begin{tabular}{|l|lllll|}
\hline
& C4.5 & k-NN(k=1) & NaiveBayes & Kernel & CN2 \\

\hline
C4.5 & n/a & {\bf 0.029} & 1.000 & {\bf 0.000} & {\bf 0.038} \\
k-NN(k=1) & {\bf 0.029} & n/a & {\bf 0.032} & {\bf 0.032} & 1.000 \\
NaiveBayes & 1.000 & {\bf 0.032} & n/a & {\bf 0.000} & {\bf 0.038} \\
Kernel & {\bf 0.000} & {\bf 0.032} & {\bf 0.000} & n/a & {\bf 0.012} \\
CN2 & {\bf 0.038} & 1.000 & {\bf 0.038} & {\bf 0.012} & n/a \\
\hline
\end{tabular}

On the other hand, the results can be shown in a graph that represents the algorithms that show
no significant differences as connected nodes.

> average.ranking <- colMeans(rankMatrix(data.gh.2008))
> drawAlgorithmGraph(pvalue.matrix = test.res$corrected.pval,
+ mean.value = average.ranking)

In the graph, shown in Figure 3, we can see that, according to the test, there are no significant dif-
ferences within the pairs C4.5/NaiveBayes and kNN/CN2. Compared with the critical difference
plot, this method is able to detect more differences (for example, the Nemenyi test does not detect
significant differences between the kNN and kernel algorithms).

For the second example we will use a dataset where the problems can be subdivided into groups.
The dataset shows the results obtained by eight different algorithms used to find large independent
sets in graphs. The performance of the algorithms is evaluated in a number of randomly generated
graphs of different size and density. Thus the results matrix we will use contains in each row the
result obtained by each algorithms for a given problem. This dataset is part of the results in Blum et al.
(2015), and it is also included in the package.

> head(data.blum.2015)

Size Radius FruitFly Shukla Ikeda Turau Rand1 Rand2 FrogCOL FrogMIS
1 1000 0.049 223 213 214 214 214 212 246 226
2 1000 0.049 224 207 209 216 205 211 241 219
3 1000 0.049 219 206 215 214 209 213 243 221
4 1000 0.049 227 208 218 218 215 219 251 230
5 1000 0.049 231 218 210 212 211 217 243 239
6 1000 0.049 230 214 214 208 211 206 246 229

The first two columns indicate the size and the density of the random graph while the last eight
columns contain the results obtained by each algorithm. Although we could directly use the data
loaded in the package, we use this example to briefly show how data can be loaded from one or more
files.

Depending on how the experimentation is conducted, we may end up with a number of files, each
containing part of the full result. Moreover, it can happen that the information we need is not only in
the file content, but also in its name. The package includes a set of functions whose goal is simplifying
this task of combining results. Here we will show how the data can be loaded from a set of example
files distributed with the package. For further information about how data can be loaded the reader is
referred to the corresponding package vignette.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 253

C4.5
2.1

k−NN(k=1)
3.25

NaiveBayes
2.2

Kernel
4.33

CN2
3.12

Figure 3: Example of algorithm graph.

> dir <- paste(system.file('loading_tests', package = 'scmamp'),
+ 'experiment_files', sep ='/')

[1] "rgg_size_1000_r_0.049_FrogCOL.out"
[2] "rgg_size_1000_r_0.049_FrogMIS.out"
[3] "rgg_size_1000_r_0.049_FruitFly.out"
[4] "rgg_size_1000_r_0.049_Ikeda.out"
[5] "rgg_size_1000_r_0.049_Rand1.out"

> pattern <- 'rgg_size_([0-9]*)_r_(0.[0-9]*)_([a-z,A-Z,1,2]*).out'
> var.names <- c('Size', 'Radius', 'Algorithm')
> dataset <- readExperimentDir(directory = dir, names = var.names,
+ fname.pattern = pattern, alg.var.name = 'Algorithm',
+ value.col = 'Evaluation', col.names = 'Evaluation')
> head(dataset)

Size Radius FrogCOL FrogMIS FruitFly Ikeda Rand1 Rand2 Shukla Turau
1 1000 0.049 246 226 223 214 214 212 213 214
2 1000 0.049 241 219 224 209 205 211 207 216
3 1000 0.049 243 221 219 215 209 213 206 214
4 1000 0.049 251 230 227 218 215 219 208 218
5 1000 0.049 243 239 231 210 211 217 218 212
6 1000 0.049 246 229 230 214 211 206 214 208

In order to extract information from the file names, the name structure has to be defined as a regular
expression. In the above code we can see that there are three variables that are extracted from the file
names: Size, Radius and Algorithm. Note that the latter does not appear in the final dataset, as it has
been used to generate the different columns in the table.

In this dataset there are 30 problems for each combination of size and radius. For each problem
the table contains the results obtained with eight algorithms. In this case, we want to compare all the
algorithms with the reference one, FrogCOL. Thus, we will compare, using an Iman and Davenport
test, the average performance of the algorithms for each combination of size and radius. First, we
compute the mean values using the summarizeData function. Then, we run the test.

> dataset.means <- summarizeData(dataset, group.by = c('Radius', 'Size'),
+ fun = mean, na.rm = TRUE)
> imanDavenportTest(data.gh.2008)

Iman Davenport's correction of Friedman's rank sum test

data: data.gh.2008
Corrected Friedman's chi-squared = 14.3087, df1 = 4, df2 = 116,
p-value = 1.593e-09

The small p-value obtained in the test indicates that there is strong statistical evidence to state that
at least one algorithm performs differently than the rest. Thus, a post-hoc test (Friedman + Finner’s
correction) can be conducted to detect differences by pairs.

> res <- postHocTest(data = dataset.means, algorithms = 3:10, test = 'friedman'
+ correct = 'finner' , control = 'FrogCOL')

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 254

FrogCOL FrogMIS FruitFly Ikeda Rand1 Rand2 Shukla Turau
132.6 125.5 105.9∗ 116.1∗ 116.3∗ 116.6∗ 117.1∗ 116.2∗

Table 2: Rendering of a LATEX table generated with the writeTabular function.

The table with the results can be generated as follows (the result can be seen in Table 2):

> best.res <- res$summary == max(res$summary)
> stat.diff <- res$corrected.pval < 0.05
> stat.diff[is.na(stat.diff)] <- FALSE
> writeTabular(table = res$summary, format = 'f', bold = best.res, mark = stat.diff,
+ digits = 1)

Finally, for the third example we will use the same dataset from Blum et al. (2015). In this example
we want to compare the algorithms separately for every value of Radius given a fixed Size. The
functions in scmamp can be also used for these kinds of comparisons. In this case we will use the
Wilcoxon test with the p-values corrected using Finner’s method and, then, a LATEX table will be
generated. In this table the best results will be highlighted in bold font and those without significant
differences will be identified with a superscript.

First, filter the data.

> sub.dataset <- filterData(data = dataset, condition = 'Size==1000'
+ remove.cols = 'Size')

Now, run the comparison.

> res <- postHocTest(data = sub.dataset, group.by = 'Radius', test = 'wilcoxon'
+ correct = 'finner', control = 'FrogCOL')
> res$corrected.pval[1:5,1:6]

Radius FrogCOL FrogMIS FruitFly Ikeda Rand1
1 0.049 NA 6.07021e-05 0.0000607021 6.07021e-05 6.07021e-05
2 0.058 NA 6.07021e-05 0.0000607021 6.07021e-05 6.07021e-05
3 0.067 NA 6.07021e-05 0.0000607021 6.07021e-05 6.07021e-05
4 0.076 NA 6.07021e-05 0.0071920496 6.07021e-05 6.07021e-05
5 0.085 NA 6.07021e-05 0.0005028761 6.07021e-05 6.07021e-05

Finally, generate the table. The boolean matrices needed for highlighting the results can be created
manually or using the booleanMatrix function included in the package (the result is rendered in Table
3).

> tab <- res$summary
> best.res <- booleanMatrix(data = tab[, -1], find = 'max', by = 'row')
> best.res <- cbind(FALSE, best.res)
> no.diff <- booleanMatrix(data = res$corrected.pval[, -1], find = 'gt' , th = 0.05)
> no.diff <- cbind(FALSE, no.diff)
> no.diff[is.na(no.diff)] <- FALSE
> digits <- c(3, rep(1, 8))
> writeTabular(table = tab, format = 'f', bold = best.res, mark = no.diff,
+ hrule = 0, vrule = 1, print.row.names = FALSE, digits = digits)

Conclusions

The scmamp package has been designed with the goal of simplifying the statistical analysis of the
results obtained in comparisons of algorithms in multiple problems. With a few lines of code, the
users can load and analyse the data and format the result for publication. This document is a brief
introduction to the package. For further details on the use of the functions the reader is referred to the
documentation and, particularly, to the vignettes of the package.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 255

Radius FrogCOL FrogMIS FruitFly Ikeda Rand1 Rand2 Shukla Turau
0.049 247.7 227.6 226.3 213.2 212.7 214.5 212.4 211.9
0.058 189.9 176.9 174.9 162.0 161.5 163.5 162.9 162.7
0.067 151.9 140.6 142.2 130.4 129.8 129.6 130.8 129.9
0.076 122.9 114.1 117.8 104.6 105.3 104.9 105.3 105.3
0.085 102.4 94.3 99.4 85.9 86.7 87.1 87.4 86.7
0.094 85.5 79.3 85.8 72.9 72.6 72.3 74.2 72.9
0.103 74.2 68.1 75.6∗ 62.8 63.2 62.3 63.2 62.1
0.112 64.4 58.2 66.9 54.1 54.2 54.4 54.5 54.8
0.121 56.5 51.3 59.5 47.4 47.0 47.6 48.0 47.2
0.134 47.5 43.1 24.3 40.1 39.9 40.1 40.8 40.1

Table 3: Another rendering of a LATEX table generated with the writeTabular function.

Bibliography

J. Alcalá-Fdez, L. Sánchez, S. García, M. J. del Jesus, S. Ventura, J. M. Garrell, J. Otero, C. Romero,
J. Bacardit, V. M. Rivas, J. C. Fernández, and F. Herrera. KEEL: A software tool to assess evolutionary
algorithms for data mining problems. Soft Computing, 13(3):307–318, 2008. [p248]

B. Bergmann and G. Hommel. Improvements of general multiple test procedures for redundant
systems of hypotheses. In Multiple Hypotheses Testing, volume 70, pages 100–115. Springer Berlin
Heidelberg, 1988. [p248]

C. Blum, B. Calvo, and M. J. Blesa. FrogCOL and FrogMIS: New decentralized algorithms for finding
large independent sets in graphs. Swarm Intelligence, 9:205–227, 2015. [p248, 252, 254]

J. Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006. [p248, 249]

M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance.
Journal of the American Statistical Association, 32(200):675–701, 1937. [p248]

S. García, A. Fernández, J. Luengo, and F. Herrera. Advanced nonparametric tests for multiple com-
parisons in the design of experiments in computational intelligence and data mining: Experimental
analysis of power. Information Sciences, 180(10):2044–2064, 2010. [p248, 249]

S. García and F. Herrera. An extension on ‘Statistical comparisons of classifiers over multiple data sets’
for all pairwise comparisons. Journal of Machine Learning Research, 9:2677–2694, 2008. [p248, 249, 250]

S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6:
65–70, 1979. [p248]

J. A. Parejo, J. García, A. Ruiz-Cortés, and J. C. Riquelme. STATService: Herramienta de análisis
estadístico como soporte para la investigación con metaheurísticas. In Actas del VIII Congreso Expañol
sobre Metaheurísticas, Algoritmos Evolutivos y Bio-inspirados, 2012. [p248]

I. Rodríguez-Fdez, A. Canosa, M. Mucientes, and A. Bugarín. STAC: A web platform for the compari-
son of algorithms using statistical tests. In Proceedings of the 2015 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), 2015. [p248]

G. Santafé, I. Inza, and J. A. Lozano. Dealing with the evaluation of supervised classification algorithms.
Artificial Intelligence Review, 44(4):467–508, 2015. [p248, 249]

Borja Calvo
Department of Computer Science and Artificial Intelligence
University of the Basque Country (UPV/EHU)
Manuel de Lardizabal, 1
20018, Donostia (Spain)
borja.calvo@ehu.eus

Guzmán Santafé
Department of Statistics and Operations Research
Public University of Navarre

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:borja.calvo@ehu.eus

CONTRIBUTED RESEARCH ARTICLES 256

Campus de Arrosadía
31006, Pamplona (Spain)
guzman.santafe@unavarra.es

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:guzman.santafe@unavarra.es

CONTRIBUTED RESEARCH ARTICLES 257

keyplayer: An R Package for Locating
Key Players in Social Networks
by Weihua An and Yu-Hsin Liu

Abstract Interest in social network analysis has exploded in the past few years, partly thanks to
the advancements in statistical methods and computing for network analysis. A wide range of the
methods for network analysis is already covered by existent R packages. However, no comprehensive
packages are available to calculate group centrality scores and to identify key players (i.e., those players
who constitute the most central group) in a network. These functionalities are important because,
for example, many social and health interventions rely on key players to facilitate the intervention.
Identifying key players is challenging because players who are individually the most central are not
necessarily the most central as a group due to redundancy in their connections. In this paper we
develop methods and tools for computing group centrality scores and for identifying key players in
social networks. We illustrate the methods using both simulated and empirical examples. The package
keyplayer providing the presented methods is available from Comprehensive R Archive Network
(CRAN).

Introduction

Interest in social network analysis has grown rapidly in the past few years. This was due partly to the
advancements in statistical methods and computing for network analysis and partly to the increasing
availability of social network data (e.g., network data generated by social media). A wide range of
the methods for network analysis is already covered by R packages such as network (Butts, 2008b),
sna (Butts, 2008a), igraph (Csardi and Nepusz, 2006), statnet (Handcock et al., 2008), RSiena (Ripley
et al., 2013), etc. However, none of these packages provides a comprehensive toolbox to calculate
group centrality measures and to identify key players, who constitute the most central group, in a
network. Determining the key players in a network is very important because many social and health
interventions rely on key players to facilitate the intervention. For example, Kelly et al. (1991) and
Latkin (1998) trained peer leaders as educators to promote HIV prevention. Campbell et al. (2008)
and An (2015) used peer leaders to facilitate smoking prevention. Borgatti (2006) and Ressler (2006)
suggested removing key figures among terrorists to most widely disrupt terrorism. More examples
of this sort can be found in Valente and Pumpuang (2007), Banerjee et al. (2013), etc. Identifying key
players is challenging because players who are individually the most central are not necessarily the
most central as a group due to redundancy in their connections. In a seminal paper, Borgatti (2006)
pointed out the problem and proposed methods for identifying key players in social networks.

To the best of our knowledge, the keyplayer function in UCINET (Borgatti et al., 2002) is the first
implementation of the methods detailed in Borgatti (2006). It has evolved from a separate add-on to
UCINET to a built-in function UCINET. In this paper, we present the keyplayer package (An and
Liu, 2016) in R, which differs from the keyplayer function in UCINET in several aspects. (1) Unlike
the keyplayer function in UCINET which is only applicable to binary networks, keyplayer in R can
be used for both binary and weighted networks. (2) The keyplayer package includes more centrality
measures for choosing key players than what is currently available in the keyplayer function in
UCINET. (3) keyplayer provides better integration with other open-source packages in R. Overall,
the keyplayer function in UCINET is useful for researchers who are more familiar with UCINET and
would like to utilize other functionalities provided by UCINET, whereas keyplayer is designed for
users who are more familiar with R and who plan to do more computational work.

The influenceR package (Simon and Aditya, 2015) aims to provide calculations of several node
centrality measures that were previously unavailable in other packages, such as the constraint index
(Burt, 1992) and the bridging score (Valente and Fujimoto, 2010). It can also be used to identify key
players in a network. But in comparison to keyplayer, it utilizes only one centrality metric when
selecting key players whereas keyplayer includes eight different metrics. Also, influenceR currently
works only for undirected networks whereas keyplayer works for both undirected and directed
networks. Both packages provide parallel computation. influenceR relies on OpenMP for parallel
computation whereas keyplayer utilizes the base package parallel which is readily available in R.
Last, influenceR focuses on computing centrality measures at the node level whereas keyplayer is
more interested in providing centrality measures at the group level. Overall, keyplayer provides more
comprehensive functionalities for calculating group centrality measures and for selecting key players.

The algorithm for identifying key players in package keyplayer essentially consists of three steps.
First, users choose a metric to measure centrality in a network. Second, the algorithm (specifically the

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=network
http://CRAN.R-project.org/package=sna
http://CRAN.R-project.org/package=igraph
http://CRAN.R-project.org/package=statnet
http://CRAN.R-project.org/package=RSiena
http://CRAN.R-project.org/package=keyplayer
http://CRAN.R-project.org/package=influenceR

CONTRIBUTED RESEARCH ARTICLES 258

W =

0 1 3 0 0
0 0 0 4 0
1 1 0 2 0
0 0 0 0 3
0 2 0 0 0

Figure 1: An adjacency matrix (left) and the corresponding network graph (right).

kpcent function) will randomly pick a group of players and measure their group centrality. Third,
the algorithm (specifically the kpset function) will select the group of players with the highest group
centrality as the desired key players. In general, users only need to employ the kpset function by
specifying a centrality metric and the number of key players to be selected. The function will return
a set of players who are the most central as a group. We also make the auxiliary function kpcent
available. If users specify a centrality metric and the indices of a group of players, this function will
return the centrality score of the specified group. Thus the two functions can be used for two purposes:
selecting key players or measuring group centrality.

The paper proceeds as follows. First, we review centrality measures at the individual level. Then
we present methods for measuring centrality at the group level. After that, we present a greedy
search algorithm for selecting key players and outline the basic structure and the usage of the main
function kpset in package keyplayer. To illustrate the methods and the usage of the package, we use a
simulated network as well as an empirical example based on the friendship network among managers
in a company. Last, we summarize and point out directions for improving the package in the future.

Measuring individual centrality

We first review the definitions of centrality measures at the individual level. For conciseness, we
provide the definitions based on weighted networks, where the weight of a tie takes a continuous value
and usually measures the strength of the connection between two nodes. The definitions naturally
incorporate binary networks where the weight of a tie can only be one or zero, indicating the presence
or absence of a connection (Freeman, 1978; Wasserman and Faust, 1994; Butts, 2008a).

Figure 1 shows an example of a simulated network. On the left is the adjacency matrix of the
network. On the right is the network graph. Thinking of it as a friendship network, we can see that
the strength of friendship between node 1 and node 3 is conceived differently by node 1 and node 3.
The former assigns it a weight of 3 while the latter assigns it a weight of 1. We will use this example
to illustrate the centrality measures. Calculations of four centrality measures (i.e., degree, closeness,
betweenness, and eigenvector centralities) at the individual level are done using the sna package
(Butts, 2008a). Calculations of four other individual level centralities and all group level centralities
are done using our package keyplayer. We would like to clarify at this point that our package does
not depend on sna. We use sna here just for the sake of the example.

Degree centrality

Degree centrality is defined as follows (Freeman, 1978; Butts, 2008a):1

Di = ∑
j

wij + ∑
j

wji, (1)

where wij represents the tie status from node i to node j. Thus the first term indicates the outgoing
connections from node i (i.e., outdegree) and the second term the incoming connections to node i (i.e.,
indegree). Degree centrality measures a node’s direct connectedness with other nodes in a network.
After loading the adjacency matrix in R, we can type the following in R to get the degree, indegree,
and outdegree measures for the simulated network.

1It may be worth noting that Freeman (1978) distinguishes absolute and relative measures of centrality. The
definition here is based on Butts (2008a) and only considers the absolute number of connections.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 259

> W <- matrix(c(0, 1, 3, 0, 0, 0, 0, 0, 4, 0, 1, 1, 0, 2, 0, 0, 0, 0, 0, 3,
+ 0, 2, 0, 0, 0), nrow = 5, ncol = 5, byrow = TRUE)
> library(sna)
> degree(W, ignore.eval = FALSE) # For binary networks, set ignore.eval = TRUE.
[1] 5 8 7 9 5
> degree(W, ignore.eval = FALSE, cmode = "indegree")
[1] 1 4 3 6 3
> degree(W, ignore.eval = FALSE, cmode = "outdegree")
[1] 4 4 4 3 2

Closeness centrality

One version of the closeness centrality is due to Gil and Schmidt (1996):

Ci =
∑j d−1

ij

n− 1
, (2)

where dij is the shortest path (i.e., geodistance) between nodes i and j. Closeness centrality usually
reflects a node’s capability of quickly reaching other nodes. In the above example, the tie status
indicates friendship strength. The larger the value, the stronger is the friendship. To have the shortest
path correspond to the strongest friendship, we need to transform the tie status, for example, by taking
the inverse, before calculating the closeness centrality.

> A <- W
> A[W != 0] <- 1 / W[W != 0] # Inverse the non-zero tie status
> closeness(A, ignore.eval = FALSE, cmode = "suminvdir")
[1] 1.5142857 1.4285714 1.3000000 1.0500000 0.8333333
For undirected networks, set cmode = "suminvundir".

Betweenness centrality

Betweenness centrality is defined as follows (Butts, 2008a):

Bi = ∑
jk

gi
jk

gjk
, (3)

where gjk is the number of shortest paths between nodes j and k, and gi
jk is the number of those paths

that pass node i. In the case of gjk = 0, the corresponding contribution to the betweenness score is
zero. Betweenness centrality usually measures a node’s brokerage power in a network. We can get the
betweenness centrality for the simulated network as follows.

> betweenness(A, ignore.eval = FALSE, cmode = "directed")
[1] 0 1 2 3 1

Eigenvector centrality

Eigenvector centrality defines a node’s centrality as a weighted average of the centrality of its neighbors
(Bonacich, 1972; Butts, 2008a):

Ei =
1
λ ∑

j
wijEj. (4)

In matrix notations, this is equivalent to

λE = WE,

where W represents the adjacency matrix and λ the largest eigenvalue of the above equation. Eigen-
vector centrality measures the extent to which a node is connected to important alters. To get the
eigenvector centrality for the adjacency matrix A, we type the following in R:

> evcent(A, gmode = "digraph", ignore.eval = FALSE, use.eigen = TRUE)
[1] 0.5000000+0i 0.0000000+0i 0.8660254+0i 0.0000000+0i 0.0000000+0i

where gmode = "digraph" indicates that the input is a directed network and use.eigen = TRUE
requests using the robust eigen function to calculate the eigenvectors. In this example, the eigenvector

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 260

centrality includes complex numbers, which are hard to interpret. Thus, to facilitate interpretation of
the results, it is often a good idea to symmetrize the network first because symmetric matrices always
have real eigenvalues. In the following, the symmetrization process first converts W to a binary matrix
and then treats all ties as mutual ties.

> B <- symmetrize (W)
> evcent(B)
[1] 0.3505418 0.5590326 0.4699593 0.4699593 0.3505418

M-reach degree centrality

M-reach degree centrality generalizes the degree centrality by delimiting specific neighborhoods.
Suppose the set of nodes that node i can reach via M steps is F and the set of nodes that can reach
node i via M steps is H. Building on Borgatti (2006), we define the M-reach centrality as follows:

Mi = ∑
j∈F

mij + ∑
j∈H

mji, (5)

where mij is 1 if j ∈ F and mji is 1 if j ∈ H. The first term indicates the number of nodes that node i can
reach in M steps. The second term indicates the number of nodes that can reach node i in M steps. By
default, the matrix is binarized before calculating the centrality. Thus, in binary networks, the 1-reach
degree centrality is the same as the degree centrality.

Calculations of four other individual level centralities and all group level
centralities are done by our package.
> library(keyplayer)
M-reach centrality.
> mreach.degree(W, M = 1)

outdegree indegree total
[1,] 2 1 3
[2,] 1 3 4
[3,] 3 1 4
[4,] 1 2 3
[5,] 1 1 2

M-reach closeness centrality

One way to refine the M-reach degree centrality is to use (the inverse of) geodistance to measure the
tie status between nodes, just like how closeness centrality refines degree centrality. We define the
M-reach closeness centrality as below:

MCi =
∑j∈F d−1

ij

d(n− 1)
+

∑j∈H d−1
ji

d(n− 1)
, (6)

where dij is the geodistance between nodes i and j, F and H are the set of nodes reachable from or to
node i via M steps, respectively. d is the maximal of d−1

ij across all pairs of i and j. The denominator
helps normalize each of the two terms to be between zero and one. When M is infinity, M-reach
closeness centrality approximates the Gil-Schmidt power index (Gil and Schmidt, 1996) and the
cohesion centrality (Borgatti, 2006).

As before, we first take the inverse of the tie status, making it correspond to
distance.
> mreach.closeness(A)

outdegree indegree total
[1,] 0.3785714 0.0625000 0.4410714
[2,] 0.3571429 0.3250000 0.6821429
[3,] 0.3250000 0.1875000 0.5125000
[4,] 0.2625000 0.5333333 0.7958333
[5,] 0.2083333 0.4232143 0.6315476

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 261

Fragmentation centrality

Fragmentation centrality measures the extent to which a network is fragmented after a node is removed
from the network (Borgatti, 2006):

Fi = 1−
∑j,k 6=i d−1

jk

d · (n− 1)(n− 2)
, (7)

where djk is the geodistance between nodes j and k in the residual network after node i is removed and
d the maximal of d−1

jk across j and k. The second term in the above equation measures the cohesion of
the residual network. Thus fragmentation centrality is the opposite of the cohesion centrality.

> fragment(A)
fragment

[1,] 0.6365079
[2,] 0.7446429
[3,] 0.6733500
[4,] 0.8333333
[5,] 0.7250000

Diffusion centrality

Banerjee et al. (2013) proposed the diffusion centrality defined by the row sum of the following matrix:

S =
T

∑
t=1

Pt, (8)

where P is a probability matrix where Pij measures the probability that node i can reach to node j.2

Each cell in the matrix S measures the aggregate propensity that i can reach to j in T iterations. Each
row sum of the matrix S indicates the importance of a node in disseminating information to alters
(namely, the expected number of times that all alters receive the information from that node). Banerjee
et al. (2014) show that as T goes to infinity the diffusion centrality can approximate the eigenvector
centrality or the Katz-Bonacich centrality (Katz 1953; Bonacich 1987). In practice, Banerjee et al. (2013)
used the diffusion centrality to study the word-of-mouth information dissemination. Now suppose
we create a new adjacency matrix by treating non-zero elements in the original network as ones and
we also know what q is. Then we can calculate the diffusion centrality as below.

Create a new adjacency matrix.
> g <- W
> g[W != 0] <- 1
> g

[,1] [,2] [,3] [,4] [,5]
[1,] 0 1 1 0 0
[2,] 0 0 0 1 0
[3,] 1 1 0 1 0
[4,] 0 0 0 0 1
[5,] 0 1 0 0 0

Create a matrix with the passing probabilities.
> q <- matrix(c(0, .2, .6, 0, 0, .1, 0, 0, .4, 0, .1, .1, 0, .4, 0, 0, .5, 0, 0, .3,
+ 0, .4, 0, 0, 0), nrow = 5, ncol = 5, byrow = TRUE)
> q

[,1] [,2] [,3] [,4] [,5]
[1,] 0.0 0.2 0.6 0.0 0.0
[2,] 0.1 0.0 0.0 0.4 0.0
[3,] 0.1 0.1 0.0 0.4 0.0
[4,] 0.0 0.5 0.0 0.0 0.3
[5,] 0.0 0.4 0.0 0.0 0.0

Get the probability matrix and calculate diffusion centrality.

2In its original parametrization (Banerjee et al., 2013), P = q× g, where q is a measure of the passing probability
and g the adjacency matrix. For simplification and consistency with other centrality measures, our package asks
users to input the probability matrix P directly. With information on q and the adjacency matrix, the probability
matrix P can easily be calculated by their product. Below we show an example of how to accomplish this.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 262

> P <- q * g
> P

[,1] [,2] [,3] [,4] [,5]
[1,] 0.0 0.2 0.6 0.0 0.0
[2,] 0.0 0.0 0.0 0.4 0.0
[3,] 0.1 0.1 0.0 0.4 0.0
[4,] 0.0 0.0 0.0 0.0 0.3
[5,] 0.0 0.4 0.0 0.0 0.0

> diffusion(P, T = 5)
diffusion

[1,] 1.50832
[2,] 0.59296
[3,] 0.99968
[4,] 0.48816
[5,] 0.63488

Measuring group centrality

Everett and Borgatti (1999) provide one of the first studies that explored ways to measure group
centralities (mainly degree, closeness, and betweenness centralities) in undirected networks. In this
paper, we provide more group centrality measures (including the eight ones outlined above) and
extend the methods to both undirected and directed networks. The basic idea is to treat a group of
nodes as a large pseudo-node. The key problem, then, is how to measure the tie status between the
group and other outside nodes. For that purpose, we provide several criteria.

1. Minimum. According to the minimum criterion, the tie status between a group G and an outside
node j is measured as the minimum of the (nonzero) edges between nodes in the group and the
outside node.

EGj = min
g∈G

Egj.

This criterion ensures that there is a shortest path between the group and the outside node. It is
useful for calculating geodistance related measures. Hence, by default we use this criterion to
calculate the group level measures of geodistance, closeness centrality, betweenness centrality,
M-reach centralities, and fragmentation centrality.

2. Maximum. According to the maximum criterion, the tie status between a group G and an outside
node j is measured as the maximum of the (nonzero) edges between nodes in the group and the
outside node.

EGj = max
g∈G

Egj.

This criterion is useful for measuring the maximal strength (not just the presence) of the
connections between the group and the outside node. By default, we use the maximum criterion
to compute the group level degree centrality and eigenvector centrality.

3. Addition. According to the addition criterion, the tie status between a group G and an outside
node j is measured as the sum of the edges between nodes in the group and the outside node.

EGj = ∑
g∈G

Egj.

This criterion is useful for measuring the overall strength of the connections between the group
and the outside node.

4. Union. The union criterion is designed for probability matrices. The tie status between a group
G and an outside node j is measured as the probability that there is at least one path connecting
the group with the outside node.

EGj = 1− ∏
g∈G

(1− Egj).

By default, we use the union criterion to calculate the group level diffusion centrality.

In the simulated network, suppose nodes 2 and 3 are grouped together. The connection between
this group and node 4 according to the maximum criterion is EG4 = 4. Suppose we use matrix P as
a probability network. Then the union criterion gives EG4 = 1− (1− 0.4)× (1− 0.4) = 0.64. The
contract function automates these calculations and returns a reduced network matrix in which the
node index will be re-ordered with the group as the last node.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 263

Group nodes 2 and 3 and measure the connections between the group and outside nodes
using the maximum criterion.
> contract(W, c(2, 3), method = "max")

1 4 5 set
1 0 0 0 3
4 0 0 3 0
5 0 0 0 2
set 1 4 0 0

Group nodes 2 and 3 in the probability matrix and measure the connections
between the group and outside nodes using the union criterion.
> contract(P, c(2, 3), method = "union")

1 4 5 set
1 0.0 0.00 0.0 0.68
4 0.0 0.00 0.3 0.00
5 0.0 0.00 0.0 0.40
set 0.1 0.64 0.0 0.00

Once the tie status between the group and outside nodes is measured, we can use the centrality
measures outlined above to calculate group centrality based on the reduced network. The kpcent
function implements the calculations. Note that users do not need to explicitly deploy the contract
function because kpcent automatically uses it in the background.

> kpcent(W, c(2, 3), type = "degree", cmode = "total", method = "max")
[1] 10
> kpcent(W, c(2, 3), type = "degree", cmode = "total", method = "min")
[1] 6
> kpcent(W, c(2, 3), type = "degree", cmode = "total", method = "min", binary = TRUE)
[1] 4
> kpcent(W, c(2, 3), type = "mreach.degree", cmode = "total", M = 1, binary = TRUE)
[1] 4
> kpcent(W, c(2, 3), type = "mreach.closeness", cmode = "total", M = 1, binary = TRUE)
[1] 1.333333

Selecting key players

Recall that the ultimate goal is to select the most central group of nodes from a network. This goal
quickly becomes challenging as the network size grows. For example, to choose five key players out of
100 nodes, there are (100

5) = 75, 287, 520 possible combinations. To search for the optimal set of key
players, in keyplayer we employ a greedy search algorithm as originally proposed in Borgatti (2006).
We revised the algorithm in multiple ways to enhance its usability and efficiency. The basic idea of the
algorithm is to select a set of nodes as seeds and then swap the selected nodes with unselected ones if
the swap increases the group centrality. More specifically, the algorithm proceeds as follows.

Step 1. Select an initial candidate set C. The residual set is denoted as R.

Step 2. Update the candidate set C.

1) Start with the first node in C. Try to swap it with nodes in R sequentially (loop 1). Make
the swap if it improves the centrality score of the resulting C. The number of iterations in
loop 1 is defined as the number of iterations (over the nodes in the residual set).

2) Repeat loop 1 for each node in C sequentially (loop 2). The number of iterations in loop 2
is defined as the number of rounds (over the nodes in the candidate set).

3) Stop if (1) the change in C’s centrality score is smaller than a specified threshold or (2) the
process reaches a specified number of rounds (i.e., the number of iterations in loop 2).

Step 3. Return the final set C and the centrality score.

The function kpset implements the search algorithm. Its basic structure is shown below.

kpset(adj.matrix, size, type = "degree", M = Inf, T = ncol(adj.matrix),
method = "min", binary = FALSE, cmode = "total", large = TRUE,
geodist.precomp = NULL, seed = "top", parallel = FALSE, cluster = 2,
round = 10, iteration = ncol(adj.matrix))

where the arguments are defined as follows.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 264

• adj.matrix: Matrix indicating the adjacency matrix of the network or in the case of diffusion
centrality a probability matrix.

• size: Integer indicating the target size of players.

• type: String indicating the type of centrality measure to be used. Should be one of "degree"
for degree centrality, "closeness" for closeness centrality, "betweenness" for betweenness
centrality, "evcent" for eigenvector centrality, "mreach.degree" for M-reach degree centrality,
"mreach.closeness" for M-reach closeness centrality, "fragment" for fragment centrality, and
"diffusion" for diffusion centrality.

• M: Positive number indicating the maximum geodistance between two nodes, above which the
two nodes are considered disconnected. The default is Inf. The option is applicable to M-reach
degree, M-reach closeness, and fragmentation centralities.

• T: Integer indicating the maximum number of iterations in the communication process. For
diffusion centrality only. By default, T is the network size.

• method: Indication of which grouping criterion should be used. "min" indicates the “minimum”
criterion and is suggested for betweenness, closeness, fragmentation, and M-reach centrali-
ties. "max" indicates the “maximum” criterion and is suggested for degree and eigenvector
centralities. "add" indicates the “addition” criterion and is suggested for degree and eigenvector
centralities as an alternative of "max". "union" indicates the “union” criterion and is suggested
for diffusion centrality. The default is "min".

• binary: If TRUE, the input matrix is binarized. If FALSE, the edge values are considered. The
default is FALSE.

• cmode: String indicating the type of centrality being evaluated. The option is applicable to degree
and M-reach centralities. "outdegree", "indegree", and "total" refer to indegree, outdegree,
and total degree, respectively. "all" reports all the above measures. The default is to report the
total degree.

• large: Logical scalar. If TRUE (the default), the method implemented in igraph is used for
computing geodistance and related centrality measures; otherwise the method in sna is used.

• geodist.precomp: Geodistance precomputed for the network to be analyzed (optional).

• seed: String indicating the seeding method or a vector of the seeds specified by user. If "top",
players with the highest individual centrality are used as the seeds. If "random", seeds are
randomly sampled. The default is "top" for efficiency.

• parallel: Logical scalar. IF TRUE, the parallel computation is activated. The default is FALSE.

• cluster: Integer indicating the number of CPU cores to be used for parallel computation.

• round: Integer indicating the “length” of search, namely, the number of loops over the nodes in
the candidate set.

• iteration: Integer indicating the “width” of search in each round, namely, the number of loops
over the nodes in the residual set.

The greedy algorithm converges fast, but sometimes can be trapped in a local optimum. To avoid
this problem, it is recommended to run kpset several times with different seeds. To facilitate the
search in large networks, users can employ parallel computation by specifying parallel = TRUE in
kpset. During parallel computation, for each cluster and each iteration the algorithm randomly picks
a node from the candidate set and the residual set, respectively, and swaps the two if it improves the
centrality score of the candidate set. It repeats this process until exhausting the specified iterations
and rounds and then combines the results from the clusters. The following code shows how to find
two players who are the most central as a group in the simulated network.

In terms of indegree.
> kpset(W, size = 2, type = "degree", cmode = "indegree", method = "max")
$keyplayers
[1] 3 4

$centrality
[1] 7

In terms of indegree in the binarized network.
> kpset(W, size = 2, type = "degree", cmode = "indegree", binary = TRUE,
+ method = "max")
$keyplayers
[1] 2 4

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 265

V1

V2

V3

V4

V5

V6

V7

V8 V9

V10

V11V12

V13

V14

V15

V16

V17

V18

V19

V20

V21

Figure 2: The friendship network of 21 managers in a high-tech company.

$centrality
[1] 3

In terms of mreach.degree.
> kpset(W, size = 2, type = "mreach.degree", cmode = "indegree", M = 1,
+ binary = TRUE)
$keyplayers
[1] 2 4

$centrality
[1] 3

In terms of mreach.closeness.
> kpset(A, size = 2, type = "mreach.closeness", cmode = "indegree", M = 1)
$keyplayers
[1] 3 4

$centrality
[1] 0.6944444

In terms of indegree via parallel computation using 2 CPU cores.
> kpset(W, size = 2, type = "degree", cmode = "indegree", parallel = TRUE,
+ cluster = 2)
$keyplayers
[1] 3 4

$centrality
[1] 7

An empirical example

Below we use the friendship network of 21 managers in a high-tech company (Krackhardt, 1987) to
illustrate the methods. The network graph is shown in Figure 2. Each node represents one manager.
Each tie indicates a friendship nomination from one manager to the other. The nodes are colored
according to the four departments the managers belong to. The size of each node is proportional to its
degree. As it can be seen, friendships occur predominately within departments.

We first examine the individual centrality of the managers. To make a probability matrix for
calculating the diffusion centrality, we multiply the original adjacency matrix by 0.1. The results
are presented in Table 1. To facilitate reading the results, we marked the top centrality scores in red.
Apparently, the most central manager identified varies with the centrality measure used. In terms of
indegree, managers 5 and 19 each receive six friend nominations and are the most central. However,
in terms of outdegree, managers 1, 9, 11, and 12 are the most central. In terms of closeness centrality,

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 266

ID Indegree Outdegree Closeness Between Evcent 2-reach
indegree

2-reach
closeness

Fragment. Diffusion
(T=2)

1 5 5 0.44 60.83 0.32 11 0.40 0.71 0.68
2 5 4 0.39 29.58 0.17 8 0.33 0.70 0.52
3 2 2 0.34 0.00 0.14 6 0.20 0.68 0.28
4 5 3 0.38 46.25 0.25 14 0.48 0.70 0.44
5 6 4 0.40 13.00 0.28 7 0.33 0.69 0.55
6 3 3 0.43 79.75 0.26 10 0.33 0.74 0.45
7 0 0 0.00 0.00 0.00 0 0.00 0.65 0.00
8 3 4 0.41 5.67 0.29 9 0.30 0.69 0.56
9 4 5 0.45 47.08 0.31 8 0.30 0.70 0.66
10 0 0 0.00 0.00 0.00 0 0.00 0.65 0.00
11 1 5 0.48 20.50 0.32 3 0.10 0.69 0.66
12 5 5 0.47 88.42 0.34 11 0.40 0.74 0.68
13 3 3 0.37 1.17 0.23 7 0.25 0.68 0.43
14 0 0 0.00 0.00 0.00 0 0.00 0.65 0.00
15 2 3 0.37 1.17 0.23 6 0.20 0.68 0.43
16 2 2 0.33 0.00 0.13 8 0.25 0.68 0.29
17 3 3 0.39 27.83 0.17 8 0.28 0.69 0.42
18 2 2 0.30 0.00 0.07 5 0.18 0.68 0.27
19 6 4 0.42 44.17 0.26 7 0.33 0.70 0.53
20 0 0 0.00 0.00 0.00 0 0.00 0.65 0.00
21 3 3 0.35 8.58 0.11 7 0.25 0.68 0.39

Table 1: Centrality scores for the managers.

KP1 KP2 KP3 Score
Indegree 2 5 12 14.00
Outdegree 2 5 12 12.00
Closeness 1 9 21 0.72
Betweenness 2 12 19 130.17
Evcent 2 11 12 0.58
2-reach indegree 1 7 19 15.00
2-reach closeness (indegree) 2 5 12 0.78
Fragmentation 1 6 17 0.82
Diffusion (T=2) 1 9 11 1.93

Table 2: The three managers who are the most central as a group.

manager 11 is the most central. In terms of betweenness centrality and eigenvector centrality, manager
12 is the most central, etc. Which centrality measure is suitable for selecting the most central player
depends on the objectives. If the objective is to find a manager whose opinion is respected by most
peers, then indegree can be a suitable measure. But if the objective is to spread the information most
widely, then outdegree or closeness may be a better option.

Now suppose we want to find the three managers in this company who are the most central as a
group. Table 2 lists the results according to different centrality measures. If indegree is the preferred
centrality measure, then managers 2, 12, and 19 form the most central group. Together these three
managers can connect to 14 other managers. Note that the three managers with the highest individual
centrality do not constitute the most central group. The group indegree of managers 5, 19, and 1 (or 2
or 4) is no more than 10. Table 2 also shows that the most central group varies by centrality measure
employed. Researchers are required to thoroughly thinkabout which centrality measure they should
use in their specific context to select key players. In addition, sometimes there may be multiple sets
of players which are equally central as a group. In such cases, which set is to be used may not make
big difference in practice. But if examining these different sets is of interest, it is recommended to run
kpset multiple times.

Summary

In this paper, we developed a comprehensive set of methods and tools for locating key players in
social networks. In the future, the algorithms used may be improved by choosing seeds and swaps
more strategically and by utilizing alternative optimization schemes such as simulated annealing.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 267

Acknowledgments

The two authors contributed equally. Weihua An designed the study. Both authors contributed to
writing the manuscript and developing the package. The authors thank Professor Bettina Grün and
two anonymous reviewers for their helpful comments.

Bibliography

W. An. Multilevel meta network analysis with application to studying network dynamics of network
interventions. Social Networks, 43:48–56, 2015. [p257]

W. An and Y.-H. Liu. keyplayer: Locating Key Players in Social Networks, 2016. URL https://CRAN.R-
project.org/package=keyplayer. R package version 1.0.3. [p257]

A. Banerjee, A. G. Chandrasekhar, E. Duflo, and M. O. Jackson. Diffusion of microfinance. Science, 341
(6144):1–7, 2013. doi: 10.1126/science.1236498. [p257, 261]

A. Banerjee, A. G. Chandrasekhar, E. Duflo, and M. O. Jackson. Gossip: Identifying central individuals
in a social network. Working Paper, 2014. [p261]

P. Bonacich. Factoring and weighting approaches to clique identification. Journal of Mathematical
Sociology, 2(1):113–120, 1972. [p259]

P. Bonacich. Power and centrality: A family of measures. American Journal of Sociology, 5:1170–1182,
1987. [p261]

S. P. Borgatti. Identifying sets of key players in a network. Computational, Mathematical and Organiza-
tional Theory, 12:21–34, 2006. [p257, 260, 261, 263]

S. P. Borgatti, M. G. Everett, and L. C. Freeman. UCINET for Windows: Software for Social Network
Analysis. Analytic Technologies, Harvard, MA, 2002. [p257]

R. S. Burt. Structural Holes: The Social Structure of Competition. Harvard University Press, Cambridge,
MA, 1992. [p257]

C. T. Butts. Social network analysis with sna. Journal of Statistical Software, 24(6):1–51, 2008a. doi:
10.18637/jss.v024.i06. [p257, 258, 259]

C. T. Butts. network: A package for managing relational data in R. Journal of Statistical Software, 24(2):
1–36, 2008b. doi: 10.18637/jss.v024.i02. [p257]

R. Campbell, F. Starkey, J. Holliday, S. Audrey, M. Bloor, N. Parry-Langdon, R. Hughes, and L. Moore.
An informal school-based peer-led intervention for smoking prevention in adolescence (ASSIST): A
cluster randomised trial. Lancet, 371:1595–1602, 2008. [p257]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL http://igraph.org. [p257]

M. G. Everett and S. P. Borgatti. The centrality of groups and classes. Journal of Mathematical Sociology,
23(3):181–201, 1999. [p262]

L. C. Freeman. Centrality in social networks: Conceptual clarification. Social Networks, 1:215–239, 1978.
[p258]

J. Gil and S. Schmidt. The origin of the Mexican network of power. In Proceedings of the International
Social Network Conference, pages 22–25, Charleston, SC, 1996. [p259, 260]

M. S. Handcock, D. R. Hunter, C. T. Butts, S. M. Goodreau, and M. Morris. statnet: Software tools
for the representation, visualization, analysis and simulation of network data. Journal of Statistical
Software, 24(1):1–11, 2008. doi: 10.18637/jss.v024.i01. [p257]

L. Katz. A new status index derived from sociometric index. Psychometrika, 18(1):39–43, 1953. [p261]

J. A. Kelly, S. L. Janet, E. D. Yolanda, L. Y. Stevenson, A. C. Hauth, T. L. Brasfiel, S. C. Kalichman, J. E.
Smith, and M. E. Andrew. HIV risk behavior reduction following intervention with key opinion
leaders of population: An experimental analysis. American Journal of Public Health, 81:168–171, 1991.
[p257]

D. Krackhardt. Cognitive social structures. Social Networks, 9:109–134, 1987. [p265]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=keyplayer
https://CRAN.R-project.org/package=keyplayer
http://igraph.org

CONTRIBUTED RESEARCH ARTICLES 268

C. A. Latkin. Outreach in natural settings: The use of peer leaders for HIV prevention among injecting
drug users’ networks. Public Health Reports, 113:S151–S159, 1998. [p257]

S. Ressler. Social network analysis as an approach to combat terrorism: Past, present, and future
research. Homeland Security Affairs, 2(2):1–9, 2006. [p257]

R. Ripley, K. Boitmanis, and T. A. B. Snijders. RSiena: Siena – Simulation Investigation for Empirical
Network Analysis, 2013. URL https://CRAN.R-project.org/package=RSiena. R package version
1.1-232. [p257]

J. Simon and K. Aditya. influenceR: Software Tools to Quantify Structural Importance of Nodes in a Network,
2015. URL https://CRAN.R-project.org/package=influenceR. R package version 0.1.0. [p257]

T. W. Valente and K. Fujimoto. Bridging: Locating critical connectors in a network. Social Networks, 2
(3):212–220, 2010. [p257]

T. W. Valente and P. Pumpuang. Identifying opinion leaders to promote behavior change. Health
Education and Behavior, 34:881–896, 2007. [p257]

S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge University
Press, Cambridge, NY, 1994. [p258]

Weihua An
Departments of Statistics and Sociology, Indiana University
752 Ballantine Hall, 1020 East Kirkwood Avenue, Bloomington, IN 47405, USA.
weihuaan@indiana.edu

Yu-Hsin Liu
Kelley School of Business, Indiana University
Hodge Hall 329, 1309 E 10th St, Bloomington, IN 47405, USA
yuhsliu@indiana.edu

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=influenceR
mailto:weihuaan@indiana.edu
mailto:yuhsliu@indiana.edu

CONTRIBUTED RESEARCH ARTICLES 269

SchemaOnRead: A Package for
Schema-on-Read in R
by Michael J. North

Abstract SchemaOnRead is a CRAN package that provides an extensible mechanism for importing a
wide range of file types into R as well as support for the emerging schema-on-read paradigm in R. The
schema-on-read tools within the package include a single function call that recursively reads folders
with text, comma separated value, raster image, R data, HDF5, NetCDF, spreadsheet, Weka, Epi Info,
Pajek network, R network, HTML, SPSS, Systat, and Stata files. It also recursively reads folders (e.g.,
schemaOnRead("folder")), returning a nested list of the contained elements. The provided tools can
be used as-is or easily customized to implement tool chains in R. This paper’s contribution is that it
introduces and describes the SchemaOnRead package and compares it to related R packages.

Introduction

SchemaOnRead is a CRAN package that provides an extensible mechanism for importing a wide
range of file types into R as well as support for the emerging schema-on-read paradigm in R. The tools
within the package include a single function call (e.g., schemaOnRead("filename")) that reads text
(TXT), comma separated value (CSV), raster image (BMP, PNG, GIF, TIFF, and JPG)1, R data (RDS),
HDF5, NetCDF, spreadsheet (XLS, XLSX, ODS, and DIF), Weka Attribute-Relation File Format (ARFF),
Epi Info (EPIINFO), Pajek network (NET), R network (PAJ), HTML, SPSS (SAV), Systat (SYS), and Stata
(DTA) files. It also recursively reads folders (e.g., schemaOnRead("folder")), returning a nested list of
the contained elements. The provided tools can be used as-is or easily customized to implement tool
chains in R. This paper’s contribution is that it introduces and describes the SchemaOnRead package
and compares it to related R packages. In the sections that follow, this paper presents usage examples,
discusses user defined processors, reviews the related work, explains the origin of the package name,
summarizes the package contents, and then provides concluding thoughts.

Examples

A simple way to use SchemaOnRead is to conveniently load a file without needing to handle the
specifics of the file format. In this case the result is a variable containing the file contents. Individual
files can also be easily accessed without needing to known the specifics of the file format as below.
The file contents can be accessed using the xmlFile variable. All of the source code and example data
can be found at https://github.com/drmichaelnorth/SchemaOnRead.

library(SchemaOnRead)
xmlFile <- schemaOnRead("../inst/extdata/data.xml")

1Image processing applications are becoming increasingly popular for purposes such as pattern recognition
and machine vision. These applications often read large numbers of files during their training and testing phases.
Image file import has been added to SchemaOnRead to support this use case.

Figure 1: Reading a nested set of folders

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=SchemaOnRead

CONTRIBUTED RESEARCH ARTICLES 270

Another way to use SchemaOnRead is to recursively load a folder. The result is a named list of
elements for each entry in the folder’s tree as shown in Figure 1. Sub-elements (e.g., files or subfolders)
of a folder can be accessed using the R named list ($) operator followed by the sub-element name. An
example showing how to read a folder tree starting in ‘../inst/extdata’ is shown below.

library(SchemaOnRead)
results <- schemaOnRead("../inst/extdata")

In this case, the contents of the ‘dir1/Data.csv’ file within ‘../inst/extdata’ is shown by accessing
‘results$dir1$Data.csv’ as needed. The path also provides the data provenance. Files or folders with
names that do not conform to standard R variable naming requirements can be accessed using single
quote notation (e.g., results$‘Nonconforming Name’).

Figure 2: Using SchemaOnRead for convenient access to files and folders in RStudio

The resulting named list notation also provides convenient access to files and folders using
integrated development environments for R that support automatic code completion. An RStudio
(RStudio, 2015) example is shown in Figure 2.

The SchemaOnRead verbose flag can be used to trace a call’s progress or diagnose issues as shown
below.

library(SchemaOnRead)
folder <- schemaOnRead("../inst/extdata", verbose = TRUE)

Which produces the output:

schemaOnRead processing ../inst/extdata
schemaOnRead processing ../inst/extdata/arffexample.arff
schemaOnRead processing ../inst/extdata/data.xml
schemaOnRead processing ../inst/extdata/dir1
schemaOnRead processing ../inst/extdata/dir1/Data.csv
schemaOnRead processing ../inst/extdata/dir1/Data1.dif
schemaOnRead processing ../inst/extdata/dir1/Data1.xlsx
schemaOnRead processing ../inst/extdata/dir1/Data2.xls
schemaOnRead processing ../inst/extdata/dir1/dir3
schemaOnRead processing ../inst/extdata/dir1/dir3/data.xml
schemaOnRead processing ../inst/extdata/dir1/example.txt
schemaOnRead processing ../inst/extdata/dir1/spreadsheet.ods
schemaOnRead processing ../inst/extdata/dir2
schemaOnRead processing ../inst/extdata/dir2/data.xml

User Defined Processors

New processors can be defined to support user-specified processing. New processors are normally
prepended to the front of the default list to allow them to take precedence while still allowing
the standard processors to work if needed. Alternatively, a list of processors that just recursively
scans folders can be found by calling the schemaOnReadSimpleProcessors function. User-specified
processors can be added to this list to create a fully customized tool chain. An example showing how
to create a simple files processor is given below.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 271

Load the needed library.
library(SchemaOnRead)

Define a new processor.
newProcessor <- function(path, ...) {

Check the file existance and extensions.
if (!SchemaOnRead::checkExtensions(path, c("xyz"))) return(NULL)

As an example, attempt to read an XYZ file as a CSV file.
read.csv(path, header = FALSE)

}

Define a new processors list.
newProcessors <- c(newProcessor, SchemaOnRead::defaultProcessors())

Use the new processors list.
schemaOnRead(path = "../inst/extdata", processors = newProcessors)

A more detailed example of a Microsoft Excel spreadsheet processor is shown below.

Load the needed library.
library(SchemaOnRead)

Define a new processor.
newSpreadsheetProcessor <- function(filePath = ".", ...) {

Check the file existance and extensions.
if (!SchemaOnRead::checkExtensions(filePath, c("xls", "xlsx"))) return(NULL)

Read the workbook's worksheet names.
worksheets <- readxl::excel_sheets(filePath)

Read the workbook's worksheets.
workbook <- lapply(worksheets, readxl::read_excel, path = filePath)

Name the worksheets.
names(workbook) <- worksheets

Return the results.
workbook

}

Define a new processors list.
newProcessors <- c(newSpreadsheetProcessor, SchemaOnRead::defaultProcessors())

Use the new processors list.
schemaOnRead(path = "../inst/extdata", processors = newProcessors)

Related Work

Several R packages provide support for importing diverse file formats into R. Examples include rio,
readbitmap, and foreign.

The rio package (Chan et al., 2015) is the closest in functionality to SchemaOnRead. rio provides
file reading functions for a wide range of formats including text files, fixed format files, spreadsheet
files (XLS, XLSX, ODS, and DIF),Stata, JSON, SPSS, Weka, Epi Info, serialized R objects, saved R objects,
SAS, Minitab, Systat, shallow XML files, FORTRAN data files, and clipboard imports. rio supports a
few file formats not imported by SchemaOnRead such as fixed format files, FORTRAN data files, and
clipboard imports. SchemaOnRead similary offers several formats not supported by rio such as deep
XML, BMP, JPEG, and PNG files. Unlike SchemaOnRead, rio includes functions for writing as well as
reading. Unlike rio, SchemaOnRead includes functions for recursively reading directories and offers
an interface that is easily extensible by end users.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=rio
http://CRAN.R-project.org/package=readbitmap
http://CRAN.R-project.org/package=foreign

CONTRIBUTED RESEARCH ARTICLES 272

The foreign package (R Core Team et al., 2015) provides functions for reading a range of file types
including Weka, Epi Info, SPSS, Stata, Systat files. SchemaOnRead uses foreign for reading these
types of files. Unlike SchemaOnRead, foreign uses different user function calls to select the format
of the file being imported. Unlike foreign, SchemaOnRead provides recursive reading of folders,
is designed to be easily extended by end users to new file formats, and checks file extensions to
determine formats.

The readbitmap package (Jefferis, 2015) provides functions for reading BMP, JPEG, and PNG files.
SchemaOnRead uses readbitmap for reading BMP, JPEG and PNG files. Unlike SchemaOnRead,
readbitmap uses magic numbers rather than extensions to identify file formats 2. Unlike readbitmap,
SchemaOnRead provides recursive reading of folders and is designed to be easily extended by end
users to new file formats.

Why "SchemaOnRead?"

Schema-on-read (Deutsch, 2013), (Mendelevitch, 2013), (Jacobsohn and Delurey, 2014) is an agile
approach to data storage and retrieval that defers investments in data organization until production
queries need to be run by working with data directly in native form. Schema-on-read functions have
been implemented in a wide range of analytical systems including Hadoop (Hadoop Team, 2015),
(Schau, 2015), Splunk (Bitincka et al., 2012), Apache Spark (Spark Team, 2015), Apache Flink (Markl,
2014), and even relational databases (Liu and Gawlick, 2015). It is also possible to use machine learning
tools to extract schemas from source data (Yeh et al., 2013).

The R Package SchemaOnRead

The SchemaOnRead R package defines four public functions:

• schemaOnRead(path = ".",processors = defaultProcessors(),verbose = FALSE) processes
the given path using the provided lsit of processors optinally printing its progress on the console.

• defaultProcessors() returns a complete list of built-in processors in the recommended execu-
tion order.

• simpleProcessors() returns a minimal list of built-in processors in the recommended execution
order.

• checkExtensions(path = ".",extensions = NULL) returns true if the path exists and, if an
extensions list is provided, the extension of the path is in extensions list.

The schemaOnRead function is used to read source material (e.g., files and folders).

The SchemaOnRead package uses a recursive implementation. The initial user function call,
schemaOnRead iterates over the given list of processors, invoking each in turn until one returns a
non-null value. Processors are sequentially invoked in the order given by the input list, scanning from
index number one upwards. Processing continues as long as each processor returns null. The results
from the first processor to return a non-null value is stored as the content for the entry and processing
of that entry stops. All of the results are stored in a named list. The order of the resulting list is the
order given by the file system. The variable names are taken from the entry names (e.g., file or folder
names). Files or folders with names that do not conform to standard R variable naming requirements
can be accessed using single quote notation (e.g., results$‘Nonconforming Name’).

An example processor for Microsoft Excel spreadsheets is shown below. In this example, the
entry identified by the path string is checked to see if it exists as a file. If it does, then the file name is
extension is checked. If it matches then the processor attempts to read the file.

Define the XLS and XLSX spreadsheet file processor.
schemaOnReadProcessXLSandXLSXFile <- function(path = ".",

processors = schemaOnReadDefaultProcessors(), verbose = FALSE) {

Check the given path.
if ((file.exists(path)) &&

((tolower(tools::file_ext(path)) == "xls") ||

2Magic numbers (Wikipedia, 2015) are special values in files that represent the file format. Magic numbers
are commonly stored as special values encoded in file headers and footers. The first two bytes of JPEG files in
hexidecmial are FF and D8 and the last two bytes are FF and D9. The first six bytes of GIF files in hexdecimal are
47, 49, 46, 38, 37, and 61 (GIF87a in ASCII) or 47, 49, 46, 38, 39, and 61 (GIF89a in ASCII). The first eight bytes of
PNG files in hexidecmial are 89, 50, 4E, 47, 0D, 0A, 1A, and 0A) which, in part, spells PNG in ASCII.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 273

(tolower(tools::file_ext(path)) == "xlsx"))) {

Create the results holder.
results <- list()

Attempt to read the file.
workbook <- XLConnect::loadWorkbook(path)

Scan the worksheets.
for (worksheet in XLConnect::getSheets(workbook)) {

Define the variable name.
variable <- gsub("[^[:alnum:].]", "_", worksheet)
while (eval(parse(

text = paste("exists(\"results$", variable, "\")",
sep = "")))) {

variable <- paste(variable, "_A", sep = "")
}

Setup the processing command.
command <- paste("results$", variable,

" <- XLConnect::readWorksheet",
"(workbook, sheet = worksheet)", sep = "")

Evaluate the processing command.
eval(parse(text = command))

}

Return the results.
return(results)

} else {

Return the default value.
return(NULL)

}

}

The main goal of a processor is to read each acceptable entry into R in an easily usable format.
Examples include the production of lists and data frames. The main output of SchemaOnRead is
thus intended to be a nested tree of lists, with data frames in some of the leaves the tree. The first
example does this by scanning the worksheets in a given workbook and converting each into a data
frame. The result is a list of data frames with each data frame entry identified using the name of the
corresponding worksheet. Note that the worksheet names are checked to insure that they correspond
to valid R variable names for convenient user access.

The postconditions for each processor are that the processor or one of its descendants either
successfully processes the entry and returns a non-null result or fail to process the entry and return
null. If the entry is successfully processed then SchemaOnRead will perform no further processing
on the item. If the item was not successfully processed then SchemaOnRead will use its remaining
processors list to attempt to process the entry.

Several special processors are defined for SchemaOnRead. These include processors for nonexistent
entries, directories, and entries of unknown types.

The schemaOnReadProcessEntryDoesNotExist processor returns null if the given entry exists and
returns the value "Entry Does Not Exist" if not. It is meant to be the first processor in most lists
to intercept nonexistent entries before they waste execution time in other processors. Occasionally,
special processing may needed for nonexistent entries so these processors should run first.

The schemaOnReadProcessDirectory processor handles directories as previously discussed. It is
intended to be the second processor to run in normal lists.

The schemaOnReadProcessDefaultFile processor accepts all entries that exist and returns the
"File Type Unknown" string. It normally runs last to insure a value for unrecognized file types.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 274

SchemaOnRead includes predefined two processing lists. The default processing list is used
for SchemaOnRead entry processing. The simple processing list provides an easy starting point for
user-defined processor lists.

Twenty-one unit tests are defined for the SchemaOnRead package. These tests are implemented
using the testthat R package (Wickham, 2015). The current version of SchemaOnRead passes all of the
defined tests.

Summary

As we have discussed, schema-on-read is a powerful new option for data storage and retrieval.
Schema-on-read functions have been implemented in a wide range of analytical systems, most notably
Hadoop. SchemaOnRead uses R’s flexible data representations to provide transparent and convenient
support for the schema-on-read paradigm in R. This paper’s contribution is that it introduces and
describes the SchemaOnRead package and compares it to related R packages.

Acknowledgements

Argonne National Laboratory’s work was supported under U.S. Department of Energy contract
DE-AC02-06CH11357.

Bibliography

L. Bitincka, A. Ganapathi, and S. Zhang. Experiences with workload management in splunk. In
Workshop on Management of Big Data Systems, pages 25–30, 2012. [p272]

C. H. Chan, G. C. H. Chan, T. J. Leeper, and C. Gandrud. CRAN rio Package, Version 0.2. https:
//cran.r-project.org/web/packages/rio/index.html, 2015. [p271]

T. Deutsch. Why is schema on read so useful? http://www.ibmbigdatahub.com/blog/why-schema-
read-so-useful, 2013. [p272]

Hadoop Team. Apache hadoop. http://hadoop.apache.org, 2015. [p272]

M. Jacobsohn and M. Delurey. How the data lake works. https://www.boozallen.com/content/dam/
boozallen/documents/Data_Lake.pdf, 2014. [p272]

G. Jefferis. CRAN readbitmap Package, Version 0.1-4. https://cran.r-project.org/web/packages/
readbitmap/index.html, 2015. [p272]

Z. H. Liu and D. Gawlick. Management of flexible schema data in rdbmss - opportunities and
limitations for nosql. In 7th Biennial Conference on Innovative Data Systems Research, 2015. [p272]

V. Markl. Breaking the chains: On declarative data analysis and data independence in the big data era.
In Proceedings of the VLDB Endowment, volume 7, pages 1730–1733, 2014. [p272]

O. Mendelevitch. Apache hadoop and data agility. http://hortonworks.com/blog/hadoop-data-
agility/, 2013. [p272]

R Core Team, R. Bivand, V. J. Carey, S. DebRoy, S. Eglen, R. Guha, N. Lewin-Koh, M. Myatt, B. Pfaff,
B. Quistorff, F. Warmerdam, S. Weigand, and Free Software Foundation, Inc. CRAN foreign Package,
Version 0.8-66. https://cran.r-project.org/web/packages/foreign/index.html, 2015. [p272]

RStudio. RStudio. https://www.rstudio.com, 2015. [p270]

A. Schau. Schema-on-read in action. http://blog.cask.co/2015/03/schema-on-read-in-action/,
2015. [p272]

Spark Team. Apache spark. http://spark.apache.org, 2015. [p272]

H. Wickham. CRAN testthat Package, Version 0.10.0. https://cran.r-project.org/web/packages/
testthat/index.html, 2015. [p274]

Wikipedia. Magic number (programming). http://en.wikipedia.org/wiki/Magic_number_
(programming), 2015. [p272]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=testthat
https://cran.r-project.org/web/packages/rio/index.html
https://cran.r-project.org/web/packages/rio/index.html
http://www.ibmbigdatahub.com/blog/why-schema-read-so-useful
http://www.ibmbigdatahub.com/blog/why-schema-read-so-useful
http://hadoop.apache.org
https://www.boozallen.com/content/dam/boozallen/documents/Data_Lake.pdf
https://www.boozallen.com/content/dam/boozallen/documents/Data_Lake.pdf
https://cran.r-project.org/web/packages/readbitmap/index.html
https://cran.r-project.org/web/packages/readbitmap/index.html
http://hortonworks.com/blog/hadoop-data-agility/
http://hortonworks.com/blog/hadoop-data-agility/
https://cran.r-project.org/web/packages/foreign/index.html
https://www.rstudio.com
http://blog.cask.co/2015/03/schema-on-read-in-action/
http://spark.apache.org
https://cran.r-project.org/web/packages/testthat/index.html
https://cran.r-project.org/web/packages/testthat/index.html
http://en.wikipedia.org/wiki/Magic_number_(programming)
http://en.wikipedia.org/wiki/Magic_number_(programming)

CONTRIBUTED RESEARCH ARTICLES 275

E. Yeh, J. Niekrasz, and D. Freitag. Unsupervised discovery and extraction of semi-structured regions in
text via self-information. In Proceedings of the 2013 Workshop on Automated Knowledge Base Construction,
pages 103–107, 2013. [p272]

Michael J. North
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439 USA
north@anl.gov

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:north@anl.gov

CONTRIBUTED RESEARCH ARTICLES 276

Crowdsourced Data Preprocessing with R
and Amazon Mechanical Turk
by Thomas J. Leeper

Abstract This article introduces the use of the Amazon Mechanical Turk (MTurk) crowdsourcing
platform as a resource for R users to leverage crowdsourced human intelligence for preprocessing
“messy” data into a form easily analyzed within R. The article first describes MTurk and the MTurkR
package, then outlines how to use MTurkR to gather and manage crowdsourced data with MTurk
using some of the package’s core functionality. Potential applications of MTurkR include construction
of manually coded training sets, human transcription and translation, manual data scraping from
scanned documents, content analysis, image classification, and the completion of online survey
questionnaires, among others. As an example of massive data preprocessing, the article describes an
image rating task involving 225 crowdsourced workers and more than 5500 images using just three
MTurkR function calls.

Introduction

Often people use R because it is extensible, robust, and free. It can do many things, but doing those
many things generally requires data structures that can be handled computationally. Yet sometimes
R users are faced with messy data that are not “R-ready.” Examples include: when working with
handwritten survey responses, digitized texts that cannot be read by optical character recognition,
images, etc. Other times an analyst may face machine-readable data that requires human interpretation
to categorize, translate, or code the data, e.g., someone wishing to build an automated classifier needs
a human-categorized training set to test their implementation.

In such cases, making the leap from these raw data to R data structures can entail considerable
human labor. Such needs for human labor in data preprocessing has provoked interest in online
crowdsourcing platforms (Schmidt, 2010; Chen et al., 2011) to bring human intelligence to tasks that
cannot be easily accomplished through computation alone. This paper describes the use of MTurkR
(Leeper, 2016) to leverage the Amazon Mechanical Turk (MTurk) crowdsourcing platform to bring
human intelligence into R. The article begins by laying out the need for occasional human intelligence
in data preprocessing, then describes MTurk and its vocabulary, and introduces MTurkR.

The need for human intelligence

Some data cannot be computationally preprocessed. Other data can be handled computationally only
with difficulty. In these cases, data preprocessing can be a time consuming and expensive task because
of the human intelligence required. Archetypal needs for this kind of human intelligence include the
collection of data which cannot be automated (e.g., unstructured or malformed web data), transcription
of files into machine-readable data (e.g., audio, images, or handwritten documents scanned as PDFs),
tasks that are laborious to translate from an R-readable but non-computable data structure into a
format that can be readily analyzed (e.g., text answers to free-response survey questions), or massive-
scale machine readable data that require human interpretation (e.g., the data used in generating a
training set for supervised learning algorithms).

Due to the manual nature of these tasks, preprocessing such data can become challenging, espe-
cially as the size of the dataset increases. Crowdsourcing these data preprocessing needs is therefore
one way to obtain the scalable human intelligence needed to preprocess even very large “messy”
datasets. As opposed to an analyst engaged in manual preprocessing, crowdsourcing offers the possi-
bility to leverage multiple sources of human intelligence, in parallel, thereby improving reliability and
speed. Amazon Mechanical Turk (MTurk) stands out as one of the largest crowdsourcing platforms
currently available and, its powerful API is now accessible directly in R through MTurkR.

MTurk core concepts

Amazon Mechanical Turk is a crowdsourcing platform designed by Amazon as part of its suite of
Amazon Web Service (AWS) tools to provide human intelligence for tasks that cannot be readily,
affordably, or feasibly automated (Amazon.com, 2012). Because MTurk provides the web application
for recruiting, paying, and managing human workers, the effort necessary to move a data cleaning
task into the cloud is relatively effortless and, with MTurkR, can, in large part, be managed directly in

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=MTurkR

CONTRIBUTED RESEARCH ARTICLES 277

R. While many early adopters of MTurk as a data generation tool have come from computer science
(Mason and Suri, 2012; Kittur et al., 2008), more recent attention has also emerged in the social sciences
where MTurk’s pool of workers are seen as a low-cost participant pool for human subjects research
(Buhrmester et al., 2011; Berinsky et al., 2010; Paolacci et al., 2010). This article provides a sufficiently
general overview of MTurk and MTurkR to enable its use for a variety of purposes, but focuses
primarily on the uses of MTurk for data preprocessing.1

Key terms

MTurk connects requesters , who are willing to pay workers to perform a given task or set of tasks at a
specified price per task. These “Human Intelligence Tasks” (HITs), are the core element of the MTurk
platform. A HIT is a task that a requester would like one or more workers to perform. Every HIT is
automatically assigned a unique HITId to identify this HIT in the system. Performance of that HIT by
one worker is called an assignment , indexed by a unique AssignmentId, such that a given worker
can only complete one assignment per HIT but multiple workers can each complete an assignment
for each HIT. As a simple example, if a HIT is a PDF file to be transcribed, the researcher might want
three workers to complete the transcription in order to validate the effort and therefore make three
assignments available for this HIT.

In other situations, however, a researcher may want workers to complete a set of related tasks. For
example, the researcher may want to categorize 5000 text statements such as free response answers to
a survey question into a set of fixed categories. Each of these statements could be treated as a separate
HIT, grouped as a HITType with one (or more) assignment(s) available for each HIT. While a worker
could complete all 5000 assignments they might also code fewer (e.g., 50 statements), thereby leaving
4950 assignments for other workers to claim.

Workers choose which HITs to complete and how many HITs they want to complete at any given
time, depending on their own time, interests, and the payments that requesters offer in exchange
for completing an assignment for a given HIT.2 A requester can offer as low as $0.005 per assign-
ment. Similarly, requesters can pay any higher amount, but that may not be cost-effective given the
market forces in play on MTurk. Workers increasingly expect competitive wages, at a rate of at least
U.S. minimum hourly wage.

Once a worker completes a HIT, the requester can review the assignment – that is, see the responses
provided by the worker to the HIT – and the requester can either approve (and thus pay the worker
the pre-agreed “reward” amount) or reject (and not pay the worker).3 This review process can be
relatively automated or handled manually by the requester.

The MTurk system records all workers that have ever performed work for a given requester and
provides an array of functionality for tracking, organizing, paying, and corresponding with workers.
In particular, the system allows requesters to regulate who can complete HITs through the use of
QualificationRequirements (e.g., a worker’s previous HIT approval rate, their country of residence, or
a requester-defined qualification such as past performance or previously evaluated skills).

Sandbox environment

One final point is that MTurk has both a “live” website and development sandbox , where the service
can be tested without transacting any money. The sandbox can be a useful place to create and test
HITs before making them available for workers. Note, however, that the two systems – despite
operating with identical code – have separate databases of HITs, HITTypes, qualifications, workers,
and assignments so code may not directly translate between sandbox and the live server.

MTurk API and other packages

Amazon provides software development kits for Python, Ruby, etc. as well as a rudimentary command-
line utility, but no officially supported client for R. The MTurkR package fills this gap, enabling R

1Users specifically interested in social science survey and experimental applications should consult Leeper
(2013) and the MTurkR documentation.

2Workers also communicate about the quality of HITs and requesters on fora such as TurkOpticon (http:
//turkopticon.differenceengines.com/), MTurk Forum (http://mturkforum.com/), Turker Nation (http://
www.turkernation.com/), and Reddit pages (http://www.reddit.com/r/HITsWorthTurkingFor/ and http://www.
reddit.com/r/mturk).

3Note that Amazon also charges a surcharge on all worker payments. Also, if the requester thinks the work
merits additional compensation (or perhaps if workers are rewarded for completing multiple HITs of a given
HITType), the requester can also pay a bonus of any amount to the worker at any point in the future.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://turkopticon.differenceengines.com/
http://turkopticon.differenceengines.com/
http://mturkforum.com/
http://www.turkernation.com/
http://www.turkernation.com/
http://www.reddit.com/r/HITsWorthTurkingFor/
http://www.reddit.com/r/mturk
http://www.reddit.com/r/mturk

CONTRIBUTED RESEARCH ARTICLES 278

users to fully manage an MTurk workflow, from submitting “messy” data to MTurk, reviewing work
completed by workers, and retrieving completed work as an R data frame.4

The MTurkR package

Before using MTurk, a MTurk requester account is necessary. These which can be created at http:
//www.mturk.com.5 It is also helpful from a practical perspective to have a worker account, so that
you can test your own HITs interactively and have the requester-worker relationship necessary to test
some MTurk features (e.g., contacting workers or setting up qualifications). MTurkR’s access to the
MTurk API requires Amazon Access Keys, which can be setup at https://console.aws.amazon.com/
iam/home?#security_credential. The keypair is a linked Access Key ID and a Secret Access Key .

MTurkR is implemented in a functional programming style, with the core functionality enabling
the creation of HITs and retrieval of resulting assignment data. All of this functionality is described
here, as well as in detailed examples in the MTurkR package documentation (Leeper, 2016). As a
web API client, the package provides a complete wrapper for all API features using function names
closely mapped onto API endpoints, making it easy to cross-reference MTurk API documentation with
MTurkR functionality. MTurkR performs HTTP requests to the MTurk API using curl (Ooms, 2016)
and parses responses using XML (Temple Lang, 2012). In almost all cases, responses are converted
into data frames. In the event an API request fails, error reporting information is returned instead of
the standard data structure.6

A simple “hello world!” test in MTurkR can be performed by checking the balance in a requester’s
account. To do so, the AWS credentials are set as environment variables:

Sys.setenv("AWS_ACCESS_KEY_ID" = "AWSAccessKeyId")
Sys.setenv("AWS_SECRET_ACCESS_KEY" = "AWSSecretAccessKey")

Test connection to live server
AccountBalance()

Test connection to sandbox server
AccountBalance(sandbox = TRUE)

AccountBalance() returns the current balance in U.S. Dollars; for the sandbox, this is always $10,000.
The sandbox parameter can also be changed globally with options("MTurkR.sandbox" = TRUE).

Data preprocessing with MTurkR

A common workflow for using MTurk involves starting with a messy data structure and wanting
some better-structured resulting data structure (within R this is presumably a data frame). To use
MTurkR, the analyst must break down the messy data structure into a set of individual tasks (HITs),
create those HITs via MTurkR, allow time for workers to complete assignments, and then collect and
review completed assignments before proceeding with the analysis of the resulting data in R. How to
achieve this in MTurkR? I begin by demonstrating how to create a single HIT and then demonstrating
more convenient wrapper functions for creating batches of HITs in bulk.

Creating individual HITs

First, creating a HIT requires registering a HITType, which sets various worker-visible characteristics
of the HIT(s), four of which are required and three that are optional:

• Title, short title for the HIT to be displayed to workers (required).

• Description, a description of the HIT to be displayed to workers (required).

• Reward, in U.S. Dollars (required).

4MTurkR also offers a set of interactive command-line menus for performing MTurkR operations without the
need to write any code. An add-on package called MTurkRGUI (Leeper, 2015) implements an even more robust
graphical user interface using the cross-platform tcltk package. Additional details about these MTurkR features
are available in the package documentation and on the MTurkR wiki at https://www.github.com/leeper/MTurkR.

5Note that MTurk is currently only available to requesters with a United States address and a Social Security
number.

6As a convenience, by default, all API requests and responses are stored in a tab-separated-value log file in the
user’s working directory, alongside information about API requests.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.mturk.com
http://www.mturk.com
https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential
http://CRAN.R-project.org/package=curl
http://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=MTurkRGUI
http://CRAN.R-project.org/package=tcltk
https://www.github.com/leeper/MTurkR

CONTRIBUTED RESEARCH ARTICLES 279

• Duration, in seconds (required).

• Keywords, a comma-separated list of keywords used by workers to search for HITs (optional;
default is empty).

• Assignment auto-approval delay, a time in seconds which specifies when assignments will
automatically be paid if not first rejected (optional; default is 30 days).

• Qualification requirements, a complex structure which controls which workers can complete
the HIT (optional; default is none).

To register a HITType, at least the first four characteristics just described need to be defined in a
call to RegisterHITType(), for example:

hittype1 <- RegisterHITType(title = "Tell us something",
description = "Answer a single question",
reward = "0.05",
duration = seconds(days = 1, hours = 8),
keywords = "text, answer, question",
auto.approval.delay = seconds(days = 1))

MTurkR’s seconds() function provides a convenient way of converting time measurements in
days, hours, minutes, or seconds into a total number of seconds. With the HITType created, one can
begin creating individual HITs associated with that HITType using CreateHIT().

A HIT consists of a HITType and various HIT-specific attributes, the most import of which is a
“question” text specifying the contents of the task as shown to the worker via an HTML iframe on the
MTurk worker website. Questions can be specified in one of several ways:

• An HTTPS URL (or “ExternalQuestion”) for a page containing the HIT HTML.

• An “HTMLQuestion” structure, essentially the HTML to display to the worker.

• A “QuestionForm” structure, which is a proprietary markup language used by MTurk.

• A “HITLayoutID” value retrieved from the MTurk requester website7.

In addition to one of the above question specifications, the other HIT attributes are:

• Duration, the number of assignments to be created for the HIT (required; default 1).

• Expiration, a time specifying when the HIT will expire and thus be unavailable to workers, in
seconds (required; no default).

• Annotation, specifying a hidden value that describes the HIT as a reference for the requester
(optional; default is empty).

In most cases, specifying an HTMLQuestion is the easiest approach. This simply means writing a
complete, HTML5-compliant document creating a web form that will display some material to the
worker and allow them to enter and submit answer information to the server. Some examples are
installed with MTurkR, such as:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'/>
<script type='text/javascript'
src='https://s3.amazonaws.com/mturk-public/externalHIT_v1.js'></script>

</head>
<body>
<form name='mturk_form' method='post' id='mturk_form'
action='https://www.mturk.com/mturk/externalSubmit'>

<input type='hidden' value='' name='assignmentId' id='assignmentId'/>
<h1>What's up?</h1>
<p><textarea name='comment' cols='80' rows='3'></textarea></p>
<p><input type='submit' id='submitButton' value='Submit' /></p></form>
<script language='Javascript'>turkSetAssignmentID();</script>

</body>
</html>

7This is useful for creating HITs using MTurkR based on templates created on the MTurk requester website.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 280

Workers will see a rendered version of the HTMLQuestion, specifically a question – “What’s up?” –
and a multi-line text response they can complete. The JavaScript in the HTMLQuestion is essential for
the HIT to behave properly. To setup this HIT in the MTurk system, use CreateHIT() passing it the
HITTypeId created earlier, making the HIT available for 4 days and setting a private annotation field
to remind us about the HIT:

f1 <- system.file("templates/htmlquestion1.xml", package = "MTurkR")
hq <- GenerateHTMLQuestion(file = f1)
hit1 <- CreateHIT(hit.type = hittype1$HITTypeId,

question = hq$string,
expiration = seconds(days = 4),
annotation = "my first HIT")

At this point, a worker needs to submit the assignment. Once that has happened (this can be
checked using HITStatus() or GetHIT(hit = hit$HITId)), the assignment data can be retrieved
through:

Retrieve all assignments for a HIT
a1 <- GetAssignments(hit = hit1$HITId)

Retrieve all assignments for all HITs for a HITType
a2 <- GetAssignments(hit.type = hittype1$HITTypeId)

Retrieve a specific assignment
a3 <- GetAssignments(assign = a1$AssignmentId[1])

These assignments will be automatically approved after one day (according to the value specified
in auto.approval.delay when registering the HITType). Assignments can be approved manually
using ApproveAssignment():

Approve 1 assignment
ApproveAssignments(assignments = a1$AssignmentId[1],

feedback = "Well done!")

Approve multiple assignments
ApproveAssignments(assignments = a1$AssignmentId)

Approve all assignments for a HIT
ApproveAllAssignments(hit = hit1$HITId)

Approve all assignments for all HITs of a HITType
ApproveAllAssignments(hit = hittype1$HITTypeId)

Approve all assignments based on annotation
ApproveAllAssignments(annotation = "my first HIT")

Rejecting HITs works identically to the above but using RejectAssignments(). Feedback is optional
for assignment approval but required for assignment rejection.8 Feedback is passed through the
feedback argument.

Managing crowdworkers with QualificationTypes

One important consideration when creating a HIT is that, by default, every HIT is available to all
MTurk workers unless QualificationRequirements have been specified in the RegisterHITType()
operation. Furthermore, these QualificationRequirements are attached to a HITType, not an individual
HIT, so HITs directed at distinct subsets of workers need to be attached to distinct HITTypes.

There are several built-in QualificationTypes that can be used as QualificactionRequirements, in-
cluding country of residence and various measures of experience on MTurk (e.g., number of HITs com-
pleted, approval rate, etc.). To configure a HITType that will only be available to workers in the United
States who have completed more than 500 approved HITs, first use GenerateQualificationRequirement()
to setup a QualificationRequirement structure locally. This involves naming the QualificationTypes to
use in the QualificationRequirement, along with “comparators” and “values”, which are interpreted
as logical statements of the form “Locale is equal to US” and “NumberApproved is greater than 500”:

8Rejected assignments can also be converted to approved within 30 days of rejection, though the reverse
operation is not possible.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 281

Shorthand names of location and approval qualifications
q_names <- c("Locale", "NumberApproved")

Comparators ("==" for location and ">" for past approvals)
q_comparators <- c("==", ">")

Qualification values ("US" for location and "500" for past approvals)
q_values <- c("US", 500)

Convert these values into a QualificationRequirement
qreq2 <- GenerateQualificationRequirement(q_names,

q_comparators,
q_values,
preview = TRUE)

This structure is passed as the qual.req argument to RegisterHITType() to create a new HITType
with these QualificationRequirements:

Register HITType using the QualificationRequirement
hittype2 <- RegisterHITType(title = "Tell us something",

description = "Answer a single question",
reward = "0.05",
duration = seconds(days = 1, hours = 8),
keywords = "text, answer, question",
auto.approval.delay = seconds(days = 15),
qual.req = qreq2)

This attaches a QualificationRequirement to all HITs created within this new HITType, preventing
workers who fail to meet the qualifications from working on them (or in this case, given preview =
TRUE, even viewing the HITs).9

In addition to using the built-in QualificationTypes, workers can also be managed in other ways.
One way is to block workers who consistently perform inadequate work using BlockWorkers(). This
should be used sparingly, however, as workers who are repeatedly blocked will have their MTurk
accounts disabled. A data frame of previously blocked workers is return by GetBlockedWorkers().
UnblockWorkers() is provided to unblock workers. In addition, it is possible to email workers using
ContactWorkers() and supply optional bonus payments using GrantBonus(). These can be useful
for managing complex projects, incentivizing good work, and inviting well-performing workers to
complete new projects.

QualificationRequirements set for a HITType can also be used to manage workers’ access to
HITs. The built-in QualificationTypes are quite useful for this, but requesters can also create more
tailored QualificationTypes based on other criteria. A common use case is to only allow new workers
to complete a HIT. The steps to achieve this are: create a new QualificationType, assign different
values for that QualificationType to past and new workers, and then create a new HITType using this
QualificationType as a QualificationRequirement.

Create the QualificationType
thenewqual <- CreateQualificationType(name = "Prevent Retakes",

description = "Worked for me before",
status = "Active",
auto = TRUE,
auto.value = 100)

Assign qualification
AssignQualification(qual = thenewqual$QualificationTypeId,

workers = hit1$WorkerId,
value = "50")

Generate QualificationRequirement
qreq3 <-
GenerateQualificationRequirement(thenewqual$QualificationTypeId, "==", "100")

9HITTypes cannot be edited. If you attempt to create two HITTypes with identical properties, they will be
assigned the same HITTypeId. If you modify any attribute, a new HITType will be created. If you have HITs that
you would like to assign to a different HITType, use ChangeHITType().

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 282

Create HIT, implicitly generating HITType
hit2 <- CreateHIT(question = hq$string,

expiration = seconds(days = 4),
assignments = 10,
title = "Tell us something",
description = "Answer a single question",
reward = "0.05",
duration = seconds(days = 1, hours = 8),
keywords = "text, answer, question",
auto.approval.delay = seconds(days = 15),
qual.req = qreq3,
annotation = "my second HIT")

To explain what is happening here, a new QualificationType was created that workers can “request”
through the MTurk website. If they request it, they will automatically be assigned a score of 100 on
the QualificationType. This QualificationType was assigned to all of our workers from the first HIT
but at a score lower than the automatically granted value. Next, a QualificationRequirement was
created that makes a HIT only available to those with the automatically granted value, and, finally,
this was attached to a HITType that is created automatically within the call to CreateHIT(). Now 10
new workers can complete this HIT, excluding the worker(s) that completed work on the first HIT.

QualificationTypes and QualificationRequirements on HITTypes allow a requester to manage a
large pool of workers in complex ways. Workers that have been assigned scores on a QualificationType
can be retrieved using GetQualifications(), or modified using UpdateQualificationScore(). The
attributes of the QualificationType itself can be changed using UpdateQualificationType(), and the
QualificationType and all associated scores can be deleted using DisposeQualificationTypes().10

QualificationTypes can also be configured with a “qualification test” that allows workers to submit
provisional work as a measure of abilities and then qualifications can be approved/revoked manually
based on their responses or even configured with an “AnswerKey” that will automatically evaluate
the worker’s test performance and assign a score for the QualificationType. Again, the MTurkR
documentation includes extended examples and possible use cases.

When finished with a HIT and all of its assignment data, it can be deleted from the system using
DisposeHIT(). This is not a reversible action, so it should be used with caution. HITs will be deleted
automatically by Amazon after a period of inactivity, but cleaning up unneeded HITs can be useful
given that there is no particularly good way to search for HITs within the system. The SearchHITs()
operation simply returns a sorted data frame of all HITs.

Creating multiple HITs

In addition to creating single HITs, MTurkR offers functionality to manage very large projects involv-
ing many HITs. This section describes that functionality in detail.

There are four functions that have been added to MTurkR as of v0.6.5 (available on CRAN since
25 May 2015) to facilitate the bulk creation of HITs, for example for the earlier use case of creating a
training set of open-ended text responses for a classification algorithm. These functions are wrappers
for CreateHIT() designed to accept different kinds of input for the question argument and cycle
through those inputs to create multiple HITs. They are:

• BulkCreate() provides a low-level loop around CreateHIT() that takes a character vector of
question values as input.

• BulkCreateFromHITLayout() provides functionality for creating multiple HITs from a HITLay-
out created on the MTurk Requester website.

• BulkCreateFromTemplate() provides higher-level functionality that translates a HIT template
and a data frame of input values into a series of HITs.

• BulkCreateFromURLs() provides a convenient way of creating multiple HITs from a character
vector of URLs.

The last two of these are likely to be the most useful, so extended examples are provided below.

GenerateHITsFromTemplate() works from a template HTMLQuestion document containing place-
holders for input values and a data frame of values, one set of values per row. An example template is
installed with MTurkR:

10If a QualificationType is requestable but not automatically approved, qualification scores have to be granted
manually by the requester. The additional functions GetQualificationRequests(), GrantQualification(), and
RevokeQualification() can be used to manage requests.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 283

<!DOCTYPE html>
<html>
<head>
<meta http-equiv='Content-Type' content='text/html; charset=UTF-8'/>
<script type='text/javascript'
src='https://s3.amazonaws.com/mturk-public/externalHIT_v1.js'></script>

</head>
<body>
<form name='mturk_form' method='post' id='mturk_form'
action='https://www.mturk.com/mturk/externalSubmit'>

<input type='hidden' value='' name='assignmentId' id='assignmentId'/>
<h1>${hittitle}</h1>
<p>${hitvariable}</p>
<p>What do you think?</p>
<p><textarea name='comment' cols='80' rows='3'></textarea></p>
<p><input type='submit' id='submitButton' value='Submit' /></p></form>
<script language='Javascript'>turkSetAssignmentID();</script>

</body>
</html>

This template contains two placeholders ‘${hittitle}’ and ‘${hitvariable}’. These placeholders will
by replaced by GenerateHITsFromTemplate() with values specified by the hittitle and hitvariable
columns in an input data frame, creating a set of unique HITs as one batch.

Create input data frame
inputdf <- data.frame(hittitle = c("HIT title 1", "HIT title 2", "HIT title 3"),

hitvariable = c("HIT text 1", "HIT text 2", "HIT text 3"),
stringsAsFactors = FALSE)

Create HITs
bulk1 <-
BulkCreateFromTemplate(template = system.file("template.html", package = "MTurkR"),

input = inputdf,
annotation = paste("Bulk From Template", Sys.Date()),
title = "Describe a text",
description = "Describe this text",
reward = ".05",
expiration = seconds(days = 4),
duration = seconds(minutes = 5),
auto.approval.delay = seconds(days = 1),
keywords = "categorization, image, moderation, category")

The response structure for these functions is a list of single-row data frames. If all HIT creation
operations succeed, then the response can easily be converted using do.call("rbind",bulk2) to a
data frame, but users will typically only need to examine this structure if errors occurred. Details
about the individual HITs can be retrieved at any time using GetHITs() or SearchHITs().

At this point workers need to complete their assignments. Because the same value for the
annotation was supplied to all of these HITs, the results for all associated assignments can easily be
retrieved using GetAssignments():

Get assignments using annotation
a1 <- GetAssignments(annotation = paste("Bulk From Template", Sys.Date()))
Get assignments using HITTypeId
a2 <- GetAssignments(hit.type = bulk1[[1]]$HITTypeId)

Unfortunately, MTurk does not return the contents of the question parameter with the completed
assignments. However HITId is included so it is trivial to merge the input data frame with the
assignment data frame allowing the comparison of the original data (e.g., open-ended response text)
to the information supplied by workers (e.g., the classification):

Extract HITIds from `bulk1`
inputvalues$HITId <- do.call("rbind", bulk1)$HITId

Merge `inputvalues` and `assignmentresults`
merge(inputdf, a1, all = TRUE, by = "HITId")

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 284

BulkCreateFromURLs() behaves similarly but accepts a character vector of URLs to be used as
ExternalQuestion values. This function requires a frame.height argument to specify the vertical size
of the HIT as shown to workers.11

bulk2 <-
BulkCreateFromURLs(url = paste0("https://www.example.com/", 1:3, ".html"),

frame.height = 450,
annotation = paste("Bulk From URLs", Sys.Date()),
title = "Categorize an image",
description = "Categorize this image",
reward = ".05",
expiration = seconds(days = 4),
duration = seconds(minutes = 5),
auto.approval.delay = seconds(days = 1),
keywords = "categorization, image, moderation, category")

Addressing problems

Sometimes things go wrong. Perhaps the HITs contained incorrect information or the work being
performed is of low quality because of a mistake in the HIT’s instructions. When these situations
occur, it is easy to address problems using a host of HIT-management functions. To expire a HIT early,
simply call ExpireHIT() specifying a HITId, HITTypeId, or annotation value. To delay the expiration
of HIT by a specified number of seconds use ExtendHIT() with its add.seconds argument. A call to
ExtendHIT() with the add.assignments parameter increases the number of available assignments for
the HIT(s).12

One other useful set of operations provided by MTurk is a “notification” system that allows
requesters to receive messages about various HITType events either via email or to an AWS Simple
Queue Service (SQS) queue (see MTurkR documentation for examples of the latter). Notifications can
be triggered by various events and can be used as an alternative to actively monitoring the status of
a HIT vai HITStatus(). Here is an example notification to send an email whenever a HIT of a given
HITType expires:

n <- GenerateNotification("requester@example.com",
event.type = "HITExpired")

SetHITTypeNotification(hit.type = hittype1$HITTypeId,
notification = n,
active = TRUE)

An example of massive-scale photo rating

To demonstrate the ease with which MTurkR can be used to preprocess a massive amount of data, I
provide an example of a large-scale photo-rating task. Here, I was interested in obtaining a rating of
“facial competence” for U.S. politicians compared with ratings of faces from the general U.S. population.
Facial competence is said to enhance politicians’ electoral success, but previous studies have never
compared these to a general population sample. Are politicians generally more facially competent
than other individuals? While this is a modest research question, it demonstrates well the immense
human effort needed to draw even simple conclusions from messy data structures.

To provide a sampling of politicians’ faces, I scraped photos of 533 members of the 113th
U.S. Congress from the website of the Government Printing Office. I then combined these photo data
with 5000 randomly sampled images from the 10K U.S. Adult Faces Database (Bainbridge et al., 2013),
which provides a nationally representative sampling of U.S. faces, and standardized the image size
and resolution across all faces.13 To rate facial competence, I created a simple one-question HIT using
HTML (see Figure 1) that displayed one of the faces and asked for a rating of facial competence on a 0
to 10 scale.14 I include the complete HTML file in the supplemental material for this article.

11MTurk displays the page specified by the ExternalQuestion URL inside an HTML iframe on the worker site.
12Note that this number must be positive and, therefore, the number of available assignments cannot be reduced.

If it is needed to reduce the number of assignments completed for a HIT, the HIT can be expired once the desired
number of assignments have been completed.

13Complete code to perform the scraping and image processing are provided along with supplemental material
for this article at https://github.com/leeper/mturkr-article (http://dx.doi.org/10.5281/zenodo.33595).

14The HIT additionally included questions to address possible problems (i.e., a subject recognizes a face or the
image did not display properly).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://github.com/leeper/mturkr-article
http://dx.doi.org/10.5281/zenodo.33595

CONTRIBUTED RESEARCH ARTICLES 285

Figure 1: Example photo rating HIT.

After uploading all 5533 images to an Amazon Simple Storage Service (S3) bucket, which is a
simple cloud storage facility, to make the files publicly available15 and storing their filenames in a
local RDS file, it was trivial to send these images to MTurk workers for categorization. To ensure
reliability of the results, each face was rated by 5 workers. Workers were given 45 seconds to rate each
face and were paid $0.01 per face. The 27,665 images were rated by a team of 225 U.S.-based workers
over a period of 75 minutes. The entire operation cost $412.50. Achieving this required three steps in
MTurkR: (1) creating a QualificationRequirement to restrict the task to U.S.-based workers with 95%
approval ratings, (2) registering a HITType into which the HITs will be created, and (3) the creation of
a batch of HITs using BatchCreateFromURLs().

Setup QualificationRequirement
U.S.-based, 95% approval on HITs
qual <- GenerateQualificationRequirement(c("Locale", "Approved"),

c("==", ">"),
c("US", 95),
preview = TRUE)

Register HITType
desc <- "Judge the competence of a person from an image of their face.
The HIT involves only one question: a rating of the competence of the
person. You have 45 seconds to complete the HIT. There are several
thousand HITs available in this batch. If you recognize the person,
please enter their name in the space provided; your work will still be
approved even if you recognize the face."

hittype <-
RegisterHITType(title = "Rate the competence of a person",

description = desc,
reward = "0.01",
duration = seconds(seconds = 45),
auto.approval.delay = seconds(days = 1),
qual.req = qual,
keywords = "categorization, photo, image, rating, fast, easy")

All faces were loaded into Amazon S3

15Any public file host could be used, not just S3.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 286

s3url <- "https://s3.amazonaws.com/mturkfaces/"
File names were saved as a character vector locally
faces <- readRDS("faces_all.RDS")
d <- data.frame(face = paste0(s3url,faces),

stringsAsFactors = FALSE)

Create 5500 HITs
bulk <- BulkCreateFromTemplate(template = "mturk.html",

frame.height = 550,
input = d,
hit.type = hittype$HITTypeId,
expiration = seconds(days = 7),
5 assignments/face
assignments = 5,
annotation = "Face Categorization 2015-06-08")

Using the specified annotation value, GetAssignments() returns a large data frame with 27670 rows
and 25 columns:

a <- GetAssignments(annotation = "Face Categorization 2015-06-08")
dim(a)
[1] 27670 25
names(a)
[1] "AssignmentId" "WorkerId" "HITId"
[4] "AssignmentStatus" "AutoApprovalTime" "AcceptTime"
[7] "SubmitTime" "ApprovalTime" "RejectionTime"
[10] "RequesterFeedback" "ApprovalRejectionTime" "SecondsOnHIT"
[13] "competent" "recognized" "name"
[16] "face" "condition" "browser"
[19] "engine" "platform" "language"
[22] "width" "height" "resolution"
[25] "problem"

Most of the columns contain metadata for identifying each assignment (AssignmentId, WorkerId,
HITId), metadata about the completion of the assignment (AssignmentStatus, AutoAprpovalTime,
AcceptTime, SubmitTime, ApprovalTime, RejectionTime, RequesterFeedback, ApprovalRejectionTime,
SecondsOnHIT), and then several columns displaying responses to the three HIT questions displayed
to the workers: competent, recognized, and name. The names of these variables are given by the name
attribute of the radio buttons used in the HTMLQuestion form. The data frame also contains additional
variables that record metadata about the worker’s browser, which were recorded automatically via
Javascript.

As noted earlier, a limitation of the MTurk API is that it does not return information about
the values of variables replaced in the templating process, so it can be difficult to identify which
assignment(s) correspond to which input values. To circumvent this limitation, this HIT template was
designed to use the ${face} variable twice: once to actually display the image to the worker and once
to record its value in a hidden field called face in the HTMLQuestion form. As a result, this variable
becomes available to us in the results data frame.

Setup in this way, it becomes trivial to analyze facial competence ratings of politicians and those
from the general population sample. To perform the analysis, I simply conducted a Mann-Whitney-
Wilcoxon test for a difference in competence ratings between the faces of politicians and non-politicians.
(In these data, politicians’ photos were identified by a simple pattern matching file name. This would
have more easily been done with a hidden HTML variable when creating the batch.) So, I extract the
two variables from the assignment data frame, convert them to numeric, and perform the test:

competence <- as.numeric(a$competent)
politician <- as.numeric(grepl("[[:digit:]]{2}-[[:digit:]]{3}", a$face))

round(prop.table(table(politician, competence), 1), 2)
#
competence
politician 0 1 2 3 4 5 6 7 8 9 10
0 0.03 0.03 0.04 0.07 0.11 0.13 0.17 0.17 0.16 0.06 0.02
1 0.01 0.01 0.02 0.04 0.07 0.12 0.19 0.20 0.22 0.09 0.04

wilcox.test(competence ~ politician)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 287

#
Wilcoxon rank sum test with continuity correction
#
data: competence by politician
W = 26886000, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

Politicians do appear to have higher facial competence. While this is a fairly trivial analytic
conclusion, it demonstrates the ease with which crowdsourced human intelligence can be leveraged to
preprocess a massive amount of data, translating messy sources into easily analyzed data. Because
crowdsourcing is inherently massively parallel, it dramatically reduces the amount of time needed to
parse a rough data source. In this case, the MTurk workers created the completed dataset in about 75
minutes. Were a single individual to attempt this task alone and it took (as a generous estimate) only 5
seconds to categorize each face, the task would be completed in 38.4 hours, or about 31-times as long
as with MTurk.

Conclusion

This paper has described the MTurk platform and offered an introduction to the R package MTurkR
focused on preprocessing of messy data for immediate use in R. In short, MTurkR provides a stable,
well-developed R interface to one of the largest crowdsourcing sites presently available. The package
has been developed and refined for more than three years, has extensive in-package and online
documentation, and is incredibly easy to use. By providing a low-level wrapper to the Amazon
Mechanical Turk API, it also means that MTurkR could serve well as the basis for much more
sophisticated R applications that leverage human intelligence as an enhancement to the computational
features already available in R.

Bibliography

Amazon.com. Amazon Mechanical Turk getting started guide, 2012. URL http://docs.
amazonwebservices.com/AWSMechTurk/latest/AWSMechanicalTurkGettingStartedGuide/
Welcome.html?r=4925. [p276]

W. A. Bainbridge, P. Isola, and A. Oliva. The instrinsic memorability of face photographs. Journal of
Experimental Psychology: General, 142(4):1323–1334, 2013. doi: 10.1037/a0033872. [p284]

A. J. Berinsky, G. A. Huber, and G. S. Lenz. Using Mechanical Turk as a subject recruitment tool for
experimental research. Unpublished paper, 2010. [p277]

M. Buhrmester, T. Kwang, and S. D. Gosling. Amazon’s Mechanical Turk: A new source of inexpensive,
yet high-quality, data? Perspectives on Psychological Science, 6(1):3–5, Feb. 2011. doi: 10.1177/
1745691610393980. [p277]

J. J. Chen, N. J. Menezes, and A. D. Bradley. Opportunities for crowdsourcing research on Amazon
Mechanical Turk. Unpublished paper, 2011. [p276]

A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies with Mechanical Turk. In CHI 2008 –
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, page 453, New York,
New York, USA, 2008. ACM Press. doi: 10.1145/1357054.1357127. [p277]

T. J. Leeper. Crowdsourcing with R and the MTurk API. The Political Methodologist, 20(2):2–7, 2013.
[p277]

T. J. Leeper. MTurkRGUI: A Graphical User Interface for MTurkR, 2015. URL https://CRAN.R-project.
org/package=MTurkRGUI. R package version 0.1.5. [p278]

T. J. Leeper. MTurkR: R Client for the MTurk Requester API, 2016. URL https://www.github.com/
leeper/MTurkR. R package version 0.7.0. [p276, 278]

W. Mason and S. Suri. Conducting behavioral research on Amazon’s Mechanical Turk. Behavior
Research Methods, 44(1):1–23, Mar. 2012. doi: 10.3758/s13428-011-0124-6. [p277]

J. Ooms. curl: A Modern and Flexible Web Client for R, 2016. URL https://CRAN.R-project.org/
package=curl. R package version 0.9.6. [p278]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://docs.amazonwebservices.com/AWSMechTurk/latest/AWSMechanicalTurkGettingStartedGuide/Welcome.html?r=4925
http://docs.amazonwebservices.com/AWSMechTurk/latest/AWSMechanicalTurkGettingStartedGuide/Welcome.html?r=4925
http://docs.amazonwebservices.com/AWSMechTurk/latest/AWSMechanicalTurkGettingStartedGuide/Welcome.html?r=4925
https://CRAN.R-project.org/package=MTurkRGUI
https://CRAN.R-project.org/package=MTurkRGUI
https://www.github.com/leeper/MTurkR
https://www.github.com/leeper/MTurkR
https://CRAN.R-project.org/package=curl
https://CRAN.R-project.org/package=curl

CONTRIBUTED RESEARCH ARTICLES 288

G. Paolacci, J. Chandler, and L. N. Stern. Running experiments on Amazon Mechanical Turk. Judgment
and Decision Making, 5(5):411–419, 2010. [p277]

L. A. Schmidt. Crowdsourcing for human subjects research. In CrowdConf 2010, San Francisco, CA,
2010. [p276]

D. Temple Lang. XML: Tools for Parsing and Generating XML within R and S-Plus, 2012. URL http:
//CRAN.R-project.org/package=XML. R package version 3.9-4.1. [p278]

Thomas J. Leeper
Department of Government
London School of Economics and Political Science
London, United Kingdom
thosjleeper@gmail.com

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=XML
mailto:thosjleeper@gmail.com

CONTRIBUTED RESEARCH ARTICLES 289

mclust 5: Clustering, Classification and
Density Estimation Using Gaussian Finite
Mixture Models
by Luca Scrucca, Michael Fop, T. Brendan Murphy and Adrian E. Raftery

Abstract Finite mixture models are being used increasingly to model a wide variety of random
phenomena for clustering, classification and density estimation. mclust is a powerful and popular
package which allows modelling of data as a Gaussian finite mixture with different covariance
structures and different numbers of mixture components, for a variety of purposes of analysis. Recently,
version 5 of the package has been made available on CRAN. This updated version adds new covariance
structures, dimension reduction capabilities for visualisation, model selection criteria, initialisation
strategies for the EM algorithm, and bootstrap-based inference, making it a full-featured R package
for data analysis via finite mixture modelling.

Introduction

mclust (Fraley et al., 2016) is a popular R package for model-based clustering, classification, and
density estimation based on finite Gaussian mixture modelling. An integrated approach to finite
mixture models is provided, with functions that combine model-based hierarchical clustering, EM
for mixture estimation and several tools for model selection. Thus mclust provides a comprehensive
strategy for clustering, density estimation and discriminant analysis. A variety of covariance structures
obtained through eigenvalue decomposition are available. Functions for performing single E and
M steps and for simulating data for each available model are also included. Additional ways of
displaying and visualising fitted models along with clustering, classification, and density estimation
results are also provided. It has been used in a broad range of contexts including geochemistry (Templ
et al., 2008; Ellefsen et al., 2014), chemometrics (Fraley and Raftery, 2006a, 2007b), DNA sequence
analysis (Verbist et al., 2015), gene expression data (Yeung et al., 2001; Li et al., 2005; Fraley and Raftery,
2006b), hydrology (Kim et al., 2014), wind energy (Kazor and Hering, 2015), industrial engineering
(Campbell et al., 1999), epidemiology (Flynt and Daepp, 2015), food science (Kozak and Scaman,
2008), clinical psychology (Suveg et al., 2014), political science (Ahlquist and Breunig, 2012; Jang and
Hitchcock, 2012), and anthropology (Konigsberg et al., 2009).

One measure of the popularity of mclust is provided by the download logs of the RStudio
(http://www.rstudio.com) CRAN mirror (available at http://cran-logs.rstudio.com). The cran-
logs package (Csardi, 2015) makes it easy to download such logs and graph the number of downloads
over time. We used cranlogs to query the RStudio download database over the past three years. In
addition to mclust, other R packages which handle Gaussian finite mixture modelling as part of their
capabilities have been included in the comparison: Rmixmod (Lebret et al., 2015), mixture (Browne
et al., 2015), EMCluster (Chen and Maitra, 2015), mixtools (Benaglia et al., 2009), and bgmm (Biecek
et al., 2012). We also included flexmix (Leisch, 2004; Grün and Leisch, 2007, 2008) which provides a
general framework for finite mixtures of regression models using the EM algorithm, since it can be
adapted to perform Gaussian model-based clustering using a limited set of models (only the diagonal
and unconstrained covariance matrix models). Table 1 summarises the functionalities of the selected
packages.

Package Version Clustering Classification Density
estimation

Non-Gaussian
components

mclust 5.2 3 3 3 7
Rmixmod 2.0.3 3 3 7 3
mixture 1.4 3 3 7 7
EMCluster 0.2-5 3 3 7 7
mixtools 1.0.4 3 7 3 3
bgmm 1.7 3 3 7 7
flexmix 2.3-13 3 7 7 3

Table 1: Capabilities of the selected packages dealing with finite mixture models.

Figure 1 shows the trend in weekly downloads from the RStudio CRAN mirror for the selected

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=mclust
http://www.rstudio.com
http://cran-logs.rstudio.com
http://CRAN.R-project.org/package=cranlogs
http://CRAN.R-project.org/package=cranlogs
http://CRAN.R-project.org/package=Rmixmod
http://CRAN.R-project.org/package=mixture
http://CRAN.R-project.org/package=EMCluster
http://CRAN.R-project.org/package=mixtools
http://CRAN.R-project.org/package=bgmm
http://CRAN.R-project.org/package=flexmix

CONTRIBUTED RESEARCH ARTICLES 290

packages. The popularity of mclust has been increasing steadily over time with a first high peak
around mid April 2015, probably due to the release of R version 3.2 and, shortly after, the release of
version 5 of mclust. Then, successive peaks occurred in conjunction with the release of package’s
updates. Based on these logs, mclust is the most downloaded package dealing with Gaussian mixture
models, followed by flexmix which, as mentioned, is a more general package for fitting mixture
models but with limited clustering capabilities.

4.1 4.2 4.3 4.4 5.0 5.1 5.2

0

2000

4000

6000

2013 2014 2015 2016

N
um

be
r

of
 w

ee
kl

y
do

w
nl

oa
ds

mclust Rmixmod mixture EMCluster mixtools bgmm flexmix

Figure 1: Number of weekly downloads from the RStudio CRAN mirror over time for some R packages
dealing with Gaussian finite mixture modelling.

Another aspect that can be considered as a proxy for the popularity of a package is the mutual
dependencies structure between R packages1. This can be represented as a graph with packages at the
vertices and dependencies (either “Depends”, “Imports”, “LinkingTo”, “Suggests” or “Enhances”) as
directed edges, and analysed through the PageRank algorithm used by the Google search engine (Brin
and Page, 1998). For the packages considered previously, we used the page.rank function available
in the igraph package (Csardi and Nepusz, 2006) and we obtained the ranking reported in Table 2,
which approximately reproduces the results discussed above. Note that mclust is among the top 100
packages on CRAN by this ranking. Finally, its popularity is also indicated by the 55 other CRAN
packages listed as reverse dependencies, either “Depends”, “Imports” or “Suggests”.

mclust Rmixmod mixture EMCluster mixtools bgmm flexmix

75 2300 2319 2143 1698 3736 270

Table 2: Ranking obtained with the PageRank algorithm for some R packages dealing with Gaussian
finite mixture modelling. At the time of writing there are 8663 packages on CRAN.

Earlier versions of the package have been described in Fraley and Raftery (1999), Fraley and
Raftery (2003), and Fraley et al. (2012). In this paper we discuss some of the new functionalities
available in mclust version ≥ 5. In particular we describe the newly available models, dimension
reduction for visualisation, bootstrap-based inference, implementation of different model selection
criteria and initialisation strategies for the EM algorithm.

The reader should first install the latest version of the package from CRAN with

> install.packages("mclust")

1See http://piccolboni.info/2012/05/essential-r-packages.html.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=igraph
http://piccolboni.info/2012/05/essential-r-packages.html

CONTRIBUTED RESEARCH ARTICLES 291

Then the package is loaded into an R session using the command

> library(mclust)
__ ___________ __ _____________

/ |/ / ____/ / / / / / ___/_ __/
/ /|_/ / / / / / / / /__ \ / /

/ / / / /___/ /___/ /_/ /___/ // /
/_/ /_/____/_____/____//____//_/ version 5.2
Type 'citation("mclust")' for citing this R package in publications.

All the datasets used in the examples are available in mclust or in other R packages, such as gclus
(Hurley, 2012), rrcov (Todorov and Filzmoser, 2009) and tourr (Wickham et al., 2011), and can be
installed from CRAN using the above procedure, except where noted differently.

Gaussian finite mixture modelling

Let x = {x1, x2, . . . , xi, . . . , xn} be a sample of n independent identically distributed observations. The
distribution of every observation is specified by a probability density function through a finite mixture
model of G components, which takes the following form

f (xi; Ψ) =
G

∑
k=1

πk fk(xi; θk), (1)

where Ψ = {π1, . . . , πG−1, θ1, . . . , θG} are the parameters of the mixture model, fk(xi; θk) is the kth
component density for observation xi with parameter vector θk, (π1, . . . , πG−1) are the mixing weights
or probabilities (such that πk > 0, ∑G

k=1 πk = 1), and G is the number of mixture components.

Assuming that G is fixed, the mixture model parameters Ψ are usually unknown and must be
estimated. The log-likelihood function corresponding to equation (1) is given by `(Ψ; x1, . . . , xn) =
∑n

i=1 log(f (xi; Ψ)). Direct maximisation of the log-likelihood function is complicated, so the maximum
likelihood estimator (MLE) of a finite mixture model is usually obtained via the EM algorithm
(Dempster et al., 1977; McLachlan and Peel, 2000).

In the model-based approach to clustering, each component of a finite mixture density is usually
associated with a group or cluster. Most applications assume that all component densities arise from
the same parametric distribution family, although this need not be the case in general. A popular
model is the Gaussian mixture model (GMM), which assumes a (multivariate) Gaussian distribution
for each component, i.e. fk(x; θk) ∼ N(µk, Σk). Thus, clusters are ellipsoidal, centered at the mean
vector µk, and with other geometric features, such as volume, shape and orientation, determined by
the covariance matrix Σk. Parsimonious parameterisations of the covariances matrices can be obtained
by means of an eigen-decomposition of the form Σk = λkDk AkD>k , where λk is a scalar controlling
the volume of the ellipsoid, Ak is a diagonal matrix specifying the shape of the density contours with
det(Ak) = 1, and Dk is an orthogonal matrix which determines the orientation of the corresponding
ellipsoid (Banfield and Raftery, 1993; Celeux and Govaert, 1995). In one dimension, there are just two
models: E for equal variance and V for varying variance. In the multivariate setting, the volume, shape,
and orientation of the covariances can be constrained to be equal or variable across groups. Thus,
14 possible models with different geometric characteristics can be specified. Table 3 reports all such
models with the corresponding distribution structure type, volume, shape, orientation, and associated
model names. In Figure 2 the geometric characteristics are shown graphically.

Starting with version 5.0 of mclust, four additional models have been included: EVV, VEE, EVE,
VVE. Models EVV and VEE are estimated using the methods described in Celeux and Govaert (1995),
and the estimation of models EVE and VVE is carried out using the approach discussed by Browne
and McNicholas (2014). In the models VEE, EVE and VVE it is assumed that the mixture components
share the same orientation matrix. This assumption allows for a parsimonious characterisation of the
clusters, while still retaining flexibility in defining volume and shape.

Model-based clustering

To illustrate the new modelling capabilities of mclust for model-based clustering consider the wine
dataset contained in the gclus R package. This dataset provides 13 measurements obtained from a
chemical analysis of 178 wines grown in the same region in Italy but derived from three different
cultivars (Barolo, Grignolino, Barbera).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=gclus
http://CRAN.R-project.org/package=rrcov
http://CRAN.R-project.org/package=tourr

CONTRIBUTED RESEARCH ARTICLES 292

Model Σk Distribution Volume Shape Orientation

EII λI Spherical Equal Equal —
VII λk I Spherical Variable Equal —
EEI λA Diagonal Equal Equal Coordinate axes
VEI λk A Diagonal Variable Equal Coordinate axes
EVI λAk Diagonal Equal Variable Coordinate axes
VVI λk Ak Diagonal Variable Variable Coordinate axes
EEE λDAD> Ellipsoidal Equal Equal Equal
EVE λDAkD> Ellipsoidal Equal Variable Equal
VEE λkDAD> Ellipsoidal Variable Equal Equal
VVE λkDAkD> Ellipsoidal Variable Variable Equal
EEV λDk AD>k Ellipsoidal Equal Equal Variable
VEV λkDk AD>k Ellipsoidal Variable Equal Variable
EVV λDk AkD>k Ellipsoidal Equal Variable Variable
VVV λkDk AkD>k Ellipsoidal Variable Variable Variable

Table 3: Parameterisations of the within-group covariance matrix Σk for multidimensional data
available in the mclust package, and the corresponding geometric characteristics.

EII VII EEI VEI EVI

VVI EEE EVE VEE EEV

VEV EVV VVE VVV

Figure 2: Ellipses of isodensity for each of the 14 Gaussian models obtained by eigen-decomposition
in case of three groups in two dimensions.

> data(wine, package = "gclus")
> Class <- factor(wine$Class, levels = 1:3,

labels = c("Barolo", "Grignolino", "Barbera"))
> X <- data.matrix(wine[,-1])
> mod <- Mclust(X)
> summary(mod$BIC)
Best BIC values:

EVE,3 VVE,3 VVE,6
BIC -6873.257 -6896.83693 -6906.37460
BIC diff 0.000 -23.57947 -33.11714
> plot(mod, what = "BIC", ylim = range(mod$BIC[,-(1:2)], na.rm = TRUE),

legendArgs = list(x = "bottomleft"))

In the above Mclust() function call, only the data matrix is provided, and the number of mixing

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 293

−
95

00
−

90
00

−
85

00
−

80
00

−
75

00
−

70
00

Number of components

B
IC

●

●

●
● ● ● ●

● ●

●

●

●
●

●
●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

● ●
●

●

●

●

●

1 2 3 4 5 6 7 8 9

●

●

●

●

EII
VII
EEI
VEI
EVI
VVI
EEE

EVE
VEE
VVE
EEV
VEV
EVV
VVV

Figure 3: BIC plot for models fitted to the wine data.

components and the covariance parameterisation are selected using the Bayesian Information Criterion
(BIC). A summary showing the top-three models and a plot of the BIC traces (see Figure 3) for all the
models considered is then obtained. In the last plot we adjusted the range of the y-axis so to remove
those models with lower BIC values. There is a clear indication of a three-component mixture with
covariances having different shapes but the same volume and orientation (EVE). Note that all the top
three models are among the models added to the latest major release of mclust.

A summary of the selected model is obtained as:

> summary(mod)
--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust EVE (ellipsoidal, equal volume and orientation) model with 3 components:

log.likelihood n df BIC ICL
-3032.45 178 156 -6873.257 -6873.549

Clustering table:
1 2 3
63 51 64

The fitted model provides an accurate recovery of the true classes:

> table(Class, mod$classification)
Class 1 2 3
Barolo 59 0 0
Grignolino 4 3 64
Barbera 0 48 0

> adjustedRandIndex(Class, mod$classification)
[1] 0.8803998

The latter index is the adjusted Rand index (ARI; Hubert and Arabie, 1985), which can be used for
evaluating a clustering solution. The ARI is a measure of agreement between two partitions, one
estimated by a statistical procedure independent of the labelling of the groups, and one being the true
classification. It has zero expected value in the case of a random partition, and it is bounded above by
1, with higher values representing better partition accuracy.

To visualise the clustering structure and the geometric characteristics induced by an estimated
Gaussian finite mixture model we may project the data onto a suitable dimension reduction subspace.
The function MclustDR() implements the methodology introduced in Scrucca (2010). The estimated
directions which span the reduced subspace are defined as a set of linear combinations of the original
features, ordered by importance as quantified by the associated eigenvalues. By default, information on
the dimension reduction subspace is provided by both the variation on cluster means and, depending

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 294

on the estimated mixture model, on the variation on cluster covariances. This methodology has
been extended to supervised classification by Scrucca (2014). Furthermore, a tuning parameter has
been included which enables the recovery of most of the separating directions, i.e. those that show
maximal separation among groups. Other dimension reduction techniques for finding the directions of
optimum separation have been discussed in detail by Hennig (2004) and implemented in the package
fpc (Hennig, 2015).

Applying MclustDR to the wine data example, such directions are obtained as follows:

> drmod <- MclustDR(mod, lambda = 1)
> summary(drmod)

Dimension reduction for model-based clustering and classification

Mixture model type: Mclust (EVE, 3)

Clusters n
1 63
2 51
3 64

Estimated basis vectors:
Dir1 Dir2

Alcohol 0.11701058 0.2637302
Malic -0.02814821 0.0489447
Ash -0.18258917 0.5390056
Alcalinity -0.02969793 -0.0309028
Magnesium 0.00575692 0.0122642
Phenols -0.18497201 -0.0016806
Flavanoids 0.45479873 -0.2948947
Nonflavanoid 0.59278569 -0.5777586
Proanthocyanins 0.05347167 0.0508966
Intensity -0.08328239 0.0332611
Hue 0.42950365 -0.4588969
OD280 0.40563746 -0.0369229
Proline 0.00075867 0.0010457

Dir1 Dir2
Eigenvalues 1.5794 1.332
Cum. % 54.2499 100.000

By setting the optional tuning parameter lambda = 1, instead of the default value 0.5, only the
information on cluster means is used for estimating the directions. In this case, the dimension of
the subspace is d = min(p, G− 1), where p is the number of variables and G the number of mixture
components or clusters. In the data example, there are p = 13 features and G = 3 clusters, so the
dimension of the reduced subspace is d = 2. As a result, the projected data show the maximal
separation among clusters, as shown in Figure 4a, which is obtained with

> plot(drmod, what = "contour")

On the same subspace we can also plot the uncertainty boundaries corresponding to the MAP
classification:

> plot(drmod, what = "boundaries", ngrid = 200)

and then add a circle around the misclassified observations

> miscl <- classError(Class, mod$classification)$misclassified
> points(drmod$dir[miscl,], pch = 1, cex = 2)

Model selection

A central question in finite mixture modelling is how many components should be included in the
mixture. In GMMs we need also to decide which covariance parameterisation to adopt. Both questions
can be addressed by information criteria, such as the BIC (Schwartz, 1978; Fraley and Raftery, 1998)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=fpc

CONTRIBUTED RESEARCH ARTICLES 295

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Dir1

D
ir2

 0.5

 1

 1.5

 0.5

 1

 1.5

 0.5

 1

 1.5

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
● ●

●

●

●

●
●

●

(a)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

Dir1

D
ir2

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●●

●

●
● ●

●

●

●

●
●

●

● ●
● ●●

●
●

(b)

Figure 4: Contour plot of estimated mixture densities (a) and uncertainty boundaries (b) on the
projection subspace estimated with MclustDR for the wine dataset.

or the integrated complete-data likelihood criterion (ICL; Biernacki et al., 2000). The selection of the
order of the mixture, i.e. the number of mixture components or clusters, can be also performed by
formal hypothesis testing; for a recent review see McLachlan and Rathnayake (2014).

Information criteria are based on penalised forms of the log-likelihood. As the likelihood increases
with the addition of more components, a penalty term for the number of estimated parameters is
subtracted from the log-likelihood. The BIC is a popular choice in the context of GMMs, and takes the
form

BICM,G = 2`M,G(x|Ψ̂)− ν log(n),

where `M,G(x|Ψ̂) is the log-likelihood at the MLE Ψ̂ for modelM with G components, n is the sample
size, and ν is the number of estimated parameters. The pair {M, G} which maximises BICM,G is
selected. Given some necessary regularity conditions, BIC is derived as an approximation to the
model evidence using the Laplace method. Although these conditions do not hold for mixture models
in general (Aitkin and Rubin, 1985), some consistency results apply (Roeder and Wasserman, 1997;
Keribin, 2000) and the criterion has been shown to perform well in applications (Fraley and Raftery,
1998).

In the mclust package, BIC is used by default for model selection. The function mclustBIC()
allows the user to obtain a matrix of BIC values for all the available models and number of components
up to 9 (by default).

For example, consider the diabetes dataset which contains measurements on 145 non-obese adult
subjects. Recorded variables are glucose, the area under plasma glucose curve after a three hour oral
glucose tolerance test (OGTT), insulin, the area under plasma insulin curve after a three hour OGTT,
and sspg, the steady state plasma glucose level. The patients are classified clinically into three groups.

> data(diabetes)
> X <- diabetes[,2:4]
> Class <- diabetes$class
> table(Class)
Chemical Normal Overt

36 76 33

The data can be shown graphically (see Figure 5) as follows:

> clp <- clPairs(X, Class, lower.panel = NULL)
> clPairsLegend(0.1, 0.3, class = clp$class, col = clp$col, pch = clp$pch)

The following function call can be used to compute the BIC for all the covariance structures and
up to 9 components:

> BIC <- mclustBIC(X)
> BIC
Bayesian Information Criterion (BIC):

EII VII EEI VEI EVI VVI EEE EVE
1 -5863.923 -5863.923 -5530.129 -5530.129 -5530.129 -5530.129 -5136.446 -5136.446
2 -5449.518 -5327.719 -5169.399 -5019.350 -5015.884 -4988.322 -5010.994 -4875.633

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 296

100 200 300

10
0

20
0

30
0

glucose

0 500 1000 1500

●
●
●

●●●●●
●

●●
●

●
● ●

●●● ●
●
●●●
●●

●
●

●
● ●●●

●

●

●
●

0 200 400 600

10
0

20
0

30
0

●
●
●

●● ●●
●

●
●●

●
●

●●
● ●●●

●
●● ●

●●

●
●

●
● ●● ●

●

●

●
●

insulin

0
50

0
10

00
15

00

●
●●

●● ●●●
●

●
●●

●●
●

● ●
●

●

● ●●
●●●

●●

●

●

●
●

●
●

●

●

●

0 200 400 600

0
20

0
40

0
60

0

sspg● Chemical

Normal

Overt

Figure 5: Pairwise scatterplots for the diabetes data with points marked according to classification.

3 -5412.588 -5206.399 -4998.446 -4899.759 -5000.661 -4827.818 -4976.853 -4858.851
4 -5236.008 -5208.512 -4937.627 -4835.856 -4865.767 -4813.002 -4865.864 -4793.261
5 -5181.608 -5202.555 -4915.486 -4841.773 -4838.587 -4833.589 -4882.812 NA
6 -5162.164 -5135.069 -4885.752 NA -4848.623 -4810.558 -4835.226 NA
7 -5128.736 -5129.460 -4857.097 NA -4849.023 NA -4805.518 NA
8 -5135.787 -5135.053 -4858.904 NA -4873.450 NA -4820.155 NA
9 -5150.374 -5112.616 -4878.786 NA -4865.166 NA -4840.039 NA

VEE VVE EEV VEV EVV VVV
1 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446
2 -4920.301 -4877.086 -4918.500 -4834.727 -4823.779 -4825.027
3 -4851.667 -4775.537 -4917.567 -4809.225 -4817.884 -4760.091
4 -4840.034 -4794.892 -4887.406 -4823.882 -4828.796 -4802.420
5 NA NA -4908.030 -4842.077 NA NA
6 NA NA -4844.584 -4826.457 NA NA
7 NA NA -4910.155 -4852.182 NA NA
8 NA NA -4858.974 -4870.633 NA NA
9 NA NA -4930.535 -4887.206 NA NA

Top 3 models based on the BIC criterion:
VVV,3 VVE,3 EVE,4

-4760.091 -4775.537 -4793.261

In the results reported above, the NA values mean that a particular model cannot be estimated. This
happens in practice due to singularity in the covariance matrix estimate and can be avoided using
the Bayesian regularisation proposed in Fraley and Raftery (2007a) and implemented in mclust as
described in Fraley et al. (2012). Optional arguments allow finetuning, such as G for the number of
components, and modelNames for specifying the model covariances parameterisations (see Table 3 and
help(mclustModelNames) for a description of available model names). Another optional argument x
can be used to provide the output from a previous call to mclustBIC(). This is useful if the model space
needs to be enlarged by fitting more models, e.g. by increasing the number of mixture components,
without the need to recompute the BIC values for those models already fitted. Another usage of
such strategy that may be helpful to users is provided in Mclust(). For example, BIC values already
available can be provided as follows

> Mclust(X, x = BIC)

Note that by specifying the argument G and modelNames the model space can be restricted to a subset,
or enlarged to a superset. In the latter case the BIC is calculated only for the newly included models.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 297

The use of BIC for model selection was available in mclust since earlier versions. However, BIC
tends to select the number of mixture components needed to reasonably approximate the density,
rather than the number of clusters as such. For this reason, other criteria have been proposed for
model selection, like the integrated complete-data likelihood (ICL) criterion (Biernacki et al., 2000):

ICLM,G = BICM,G + 2
n

∑
i=1

G

∑
k=1

cik log(zik),

where zik is the conditional probability that xi arises from the kth mixture component, and cik = 1 if the
ith unit is assigned to cluster k and 0 otherwise. ICL penalises the BIC through an entropy term which
measures clusters overlap. Provided that clusters overlapping is not too strong, ICL has shown good
performance in selecting the number of clusters, with preference for solutions with well-separated
groups.

In mclust the ICL can be computed by means of the mclustICL() function:

> ICL <- mclustICL(X)
> ICL
Integrated Complete-data Likelihood (ICL) criterion:

EII VII EEI VEI EVI VVI EEE EVE
1 -5863.923 -5863.923 -5530.129 -5530.129 -5530.129 -5530.129 -5136.446 -5136.446
2 -5450.004 -5333.689 -5169.732 -5023.533 -5016.010 -4994.986 -5012.758 -4876.295
3 -5415.983 -5219.627 -4999.693 -4910.963 -5011.423 -4839.130 -4985.448 -4875.992
4 -5238.797 -5224.698 -4939.741 -4847.524 -4876.784 -4823.308 -4867.650 -4809.169
5 -5190.524 -5226.204 -4923.986 -4865.230 -4854.347 -4859.162 -4895.412 NA
6 -5171.561 -5158.411 -4901.823 NA -4865.106 -4820.076 -4846.827 NA
7 -5136.220 -5152.330 -4872.644 NA -4870.151 NA -4817.584 NA
8 -5146.628 -5156.135 -4871.975 NA -4897.172 NA -4834.074 NA
9 -5180.744 -5145.708 -4911.346 NA -4883.199 NA -4872.677 NA

VEE VVE EEV VEV EVV VVV
1 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446 -5136.446
2 -4927.621 -4885.421 -4920.413 -4844.590 -4826.796 -4834.539
3 -4866.976 -4793.271 -4927.563 -4821.068 -4828.535 -4776.086
4 -4869.658 -4823.020 -4956.077 -4847.034 -4839.703 -4830.658
5 NA NA -4948.787 -4869.279 NA NA
6 NA NA -4884.720 -4849.505 NA NA
7 NA NA -4947.190 -4878.445 NA NA
8 NA NA -4890.913 -4895.286 NA NA
9 NA NA -5007.250 -4919.228 NA NA

Top 3 models based on the ICL criterion:
VVV,3 VVE,3 EVE,4

-4776.086 -4793.271 -4809.169

As discussed above for mclustBIC(), the output from a previous call to mclustICL() can be provided
as input with the argument x to avoid recomputing the ICL for models already fitted.

Both criteria can be shown graphically with (see Figure 6):

> plot(BIC)
> plot(ICL)

In this case BIC and ICL selected the same final model.

Other information criteria are available in the literature. For example, members of the Generalised
Information Criteria (GIC) family (Konishi and Kitagawa, 1996) are not computed by the package, but
they can be easily obtained using the information returned by the Mclust() function.

In addition to the information criteria just mentioned, the choice of the order of a mixture model
for a specific component-covariances parameterisation can be carried out by likelihood ratio testing
(LRT). Suppose we want to test the null hypothesis H0 : G = G0 against the alternative H1 : G = G1
for some G1 > G0; usually, G1 = G0 + 1 as it is a common procedure to keep adding components
sequentially. Let Ψ̂Gj be the MLE of Ψ calculated under Hj : G = Gj (for j = 0, 1). The likelihood ratio
test statistic (LRTS) can be written as

LRTS = −2 log{L(Ψ̂G0)/L(Ψ̂G1)} = 2{`(Ψ̂G1)− `(Ψ̂G0)},

where large values of LRTS provide evidence against the null hypothesis. However, standard regularity
conditions do not hold for the null distribution of the LRTS to have its usual chi-squared distribution

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 298

−
58

00
−

56
00

−
54

00
−

52
00

−
50

00
−

48
00

Number of components

B
IC

●

●

●

●
●

●
● ●

●

●

●

●

● ●

●

●
●

●
● ● ●

● ●

●

●

● ●
●

●

1 2 3 4 5 6 7 8 9

●

●

●

●

EII
VII
EEI
VEI
EVI
VVI
EEE

EVE
VEE
VVE
EEV
VEV
EVV
VVV −

58
00

−
56

00
−

54
00

−
52

00
−

50
00

−
48

00

Number of components

IC
L

●

●

●

●
●

●
● ●

●

●

●

●

●
●

●

● ●

●
● ● ●

● ●

●

●

●
●

●

●

1 2 3 4 5 6 7 8 9

●

●

●

●

EII
VII
EEI
VEI
EVI
VVI
EEE

EVE
VEE
VVE
EEV
VEV
EVV
VVV

Figure 6: Plots of BIC and ICL model selection criteria for the diabetes data.

(McLachlan and Peel, 2000, Chap. 6). As consequence, LRT significance is often estimated by a
resampling approach in order to produce a p-value. McLachlan (1987) proposed the using of the
bootstrap to obtain the null distribution of the LRTS. The bootstrap procedure is the following:

1. a bootstrap sample x∗b is generated by simulating from the fitted model under the null hypothesis
with G0 components, i.e. from the GMM distribution with the vector of unknown parameters
replaced by MLEs obtained from the original data under H0;

2. the test statistic LRTS∗b is computed for the bootstrap sample x∗b after fitting GMMs with G0 and
G1 number of components;

3. steps 1. and 2. are replicated several times, say B = 999, to obtain the bootstrap null distribution
of LRTS∗.

A bootstrap-based approximation to the p-value may then be computed as

p-value ≈
1 + ∑B

i=1 I(LRTS∗b ≥ LRTSobs)

B + 1

where LRTSobs is the test statistic computed on the observed sample x, and I(·) denotes the indicator
function (which is equal to 1 if its argument is true and 0 otherwise).

The above bootstrap procedure is implemented in the mclustBootstrapLRT() function. We need
to specify at least the input data and the model name we want to test:

> LRT <- mclustBootstrapLRT(X, modelName = "VVV")
> LRT
Bootstrap sequential LRT for the number of mixture components

Model = VVV
Replications = 999

LRTS bootstrap p-value
1 vs 2 361.186445 0.001
2 vs 3 114.703559 0.001
3 vs 4 7.437806 0.938

The number of bootstrap resamples can be set by the optional argument nboot; if not provided,
nboot = 999 is used. The sequential bootstrap procedure terminates when a test is not significant
at the level specified by level (by default equal to 0.05). There is also the option for a user to fix
the maximum number of mixture components to test via the argument maxG. In the example above
the bootstrap p-values clearly indicate the presence of three clusters. Note that models fitted on the
original data are estimated via the EM algorithm initialised by the default model-based hierarchical
agglomerative clustering. Then, during the bootstrap procedure, models under the null and the
alternative hypotheses are fitted on bootstrap samples using again the EM algorithm. However, in
this case the algorithm starts with the E step initialised with the estimated parameters obtained at the
convergence of the EM algorithm on the original data.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 299

The bootstrap distributions of the LRTS can be shown graphically (see Figure 7) using the associated
plot method:

> plot(LRT, G = 1)
> plot(LRT, G = 2)
> plot(LRT, G = 3)

LRTS

D
en

si
ty

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Bootstrap LRT for model VVV with 1 vs 2 components

LRTS

D
en

si
ty

0 50 100

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Bootstrap LRT for model VVV with 2 vs 3 components

LRTS

D
en

si
ty

0 10 20 30 40 50 60

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

Bootstrap LRT for model VVV with 3 vs 4 components

Figure 7: Histograms of LRTS bootstrap distributions for testing the number of mixture components
in the diabetes data. The dotted vertical lines refer to the sample values of LRTS.

Bootstrap inference

There are two main approaches to likelihood-based inference in mixture models, namely information-
based and resampling methods (McLachlan and Peel, 2000). In information-based methods, the
covariance matrix of the MLE Ψ̂ is approximated by the inverse of the observed information matrix
I−1(Ψ̂), i.e.

Cov(Ψ̂) ≈ (I−1(Ψ̂)).

However, “the sample size n has to be very large before the asymptotic theory applies to mixture
models” (McLachlan and Peel, 2000, p. 42). Indeed, Basford et al. (1997) found that standard errors
obtained using the expected or the observed information matrix are unstable, unless the sample size is
very large. For these reasons, they advocate the use of a resampling approach based on the bootstrap.
For a recent review and comparison of different resampling approaches to inference in finite mixture
models see O’Hagan et al. (2015).

The bootstrap (Efron, 1979) is a general, widely applicable, powerful technique for obtaining an
approximation to the sampling distribution of a statistic of interest. The bootstrap distribution is
approximated by drawing a large number of samples (bootstrap samples) from the empirical distribution,
i.e. by resampling with replacement from the observed data (nonparametric bootstrap), or from a para-
metric distribution with unknown parameters substituted by the corresponding estimates (parametric
bootstrap).

Let Ψ̂ be the estimate of a set of GMM parameters Ψ for a given model M, i.e. covariance
parameterisation, and number of mixture components G. A bootstrap estimate of the corresponding
standard errors can be obtained using the following procedure:

• Obtain the bootstrap distribution for the parameters of interest by:

1. drawing a sample of size n with replacement from the empirical distribution (x1, . . . , xn)
to form the bootstrap sample (x∗1 , . . . , x∗n);

2. fitting a GMM (M, G) to get the bootstrap estimates Ψ̂∗;

3. replicating steps 1–2 a large number of times, say B, to obtain Ψ̂∗1 , Ψ̂∗2 , . . . , Ψ̂∗B estimates
from B resamples.

• The bootstrap covariance matrix is then approximated by

Covboot(Ψ̂) ≈ 1
B− 1

B

∑
b=1

(Ψ̂∗b − Ψ̂
∗
)(Ψ̂∗b − Ψ̂

∗
)>

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 300

where Ψ̂
∗
=

1
B

B

∑
b=1

Ψ̂∗b .

• The bootstrap standard errors for the parameter estimates Ψ̂ are computed as the square root of
the diagonal elements of the bootstrap covariance matrix, i.e.

seboot(Ψ̂) =
√

diag(Covboot(Ψ̂)).

Consider the hemophilia dataset (Habbema et al., 1974) available in the package rrcov, which
contains two measured variables on 75 women belonging to two groups: 30 of them are non-carriers
(normal group) and 45 are known hemophilia A carriers (obligatory carriers).

> data(hemophilia, package = "rrcov")
> X <- hemophilia[,1:2]
> Class <- as.factor(hemophilia$gr)
> plot(X, pch = ifelse(Class == "normal", 1, 16))
> legend("bottomright", legend = levels(Class), pch = c(16,1), inset = 0.03)

The last command plots the observed data marked by the known classification (see Figure 8a).

In analogy with the analysis of Basford et al. (1997, example II, Sec. 5), we fitted a two-components
GMM with unconstrained covariance matrices:

> mod <- Mclust(X, G = 2, modelName = "VVV")
> summary(mod, parameters = TRUE)
--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust VVV (ellipsoidal, varying volume, shape, and orientation) model with 2 components:

log.likelihood n df BIC ICL
77.02852 75 11 106.5647 92.85533

Clustering table:
1 2
39 36

Mixing probabilities:
1 2

0.5108084 0.4891916

Means:
[,1] [,2]

AHFactivity -0.11627884 -0.36656353
AHFantigen -0.02457577 -0.04534792

Variances:
[,,1]

AHFactivity AHFantigen
AHFactivity 0.01137602 0.00659927
AHFantigen 0.00659927 0.01239353
[,,2]

AHFactivity AHFantigen
AHFactivity 0.01585986 0.01505449
AHFantigen 0.01505449 0.03236079

Note that in the summary() function call we used the optional argument parameters = TRUE to retrieve
the estimated parameters.

The clustering structure identified is shown in Figure 8b and can be obtained as follows:

> plot(mod, what = "classification", main = FALSE)

Bootstrap inference for GMMs is available through the function MclustBootstrap(), which re-
quires the user to input an object returned by a call to Mclust(). Optionally, the user can also provide
the number of bootstrap resamples nboot and the type of bootstrap to perform. By default, nboot =
999 and type = "bs" for the nonparametric bootstrap. Thus, a simple call for computing the bootstrap
distribution of the GMM parameters is the following:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 301

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●

−0.6 −0.4 −0.2 0.0

−
0.

4
−

0.
2

0.
0

0.
2

AHFactivity

A
H

Fa
nt

ig
en

●

●

carrier
normal

(a)

−0.6 −0.4 −0.2 0.0

−
0.

4
−

0.
2

0.
0

0.
2

AHFactivity

A
H

Fa
nt

ig
en

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●

● ●
●

●

●

●

●

(b)

Figure 8: True class membership (a) and estimated classification using GMM (b) for the hemophilia
dataset.

> boot <- MclustBootstrap(mod, nboot = 999, type = "bs")

Note that for the sake of clarity we have included the arguments nboot and type, but they can be
omitted since they are set at their defaults.

The function MclustBootstrap() returns an object which can be plotted or summarised. For
instance, to graph the bootstrap distribution for the mixing proportions and for the component means
we may use the code:

> par(mfrow = c(1,2))
> plot(boot, what = "pro")
> par(mfrow = c(2,2))
> plot(boot, what = "mean")
> par(mfrow = c(1,1))

The resulting plots are shown, respectively, in Figures 9 and 10.

Mix. prop. for comp. 1

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

Mix. prop. for comp. 2

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

Figure 9: Bootstrap distribution for the mixture proportions. The vertical dotted lines refer to the
MLEs for the GMM fitted to the hemophilia data.

A numerical summary of the bootstrap procedure is available through the summary method, which
by default returns the standard errors of GMM parameters:

> summary(boot, what = "se")
--
Resampling standard errors
--
Model = VVV

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 302

AHFactivity mean for comp. 1

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

0
10

0
20

0
30

0
40

0
50

0
60

0

AHFactivity mean for comp. 2

−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0.0

0
10

0
20

0
30

0
40

0
50

0

AHFantigen mean for comp. 1

−0.3 −0.2 −0.1 0.0 0.1 0.2

0
50

10
0

15
0

20
0

25
0

AHFantigen mean for comp. 2

−0.3 −0.2 −0.1 0.0 0.1 0.2

0
10

0
20

0
30

0

Figure 10: Bootstrap distribution for the mixture component means. The vertical dotted lines refer to
the MLEs for the GMM fitted to the hemophilia data.

Num. of mixture components = 2
Replications = 999
Type = nonparametric bootstrap

Mixing probabilities:
1 2

0.1249357 0.1249357

Means:
1 2

AHFactivity 0.04028375 0.04137370
AHFantigen 0.03262182 0.06456482

Variances:
[,,1]

AHFactivity AHFantigen
AHFactivity 0.007018580 0.004690481
AHFantigen 0.004690481 0.003155312
[,,2]

AHFactivity AHFantigen
AHFactivity 0.005757398 0.005897374
AHFantigen 0.005897374 0.009654623

The summary method can also return bootstrap percentile confidence intervals. For the generic
GMM parameter ψ of Ψ, the percentile method yields the intervals [ψ∗α/2, ψ∗1−α/2], where ψ∗q is the qth
quantile (or the 100qth percentile) of the bootstrap distribution (ψ̂∗1 , . . . , ψ̂∗B). These can be obtained by
specifying in the summary call the argument what = "ci" and, optionally, the confidence level of the
intervals (by default, conf.level = 0.95). For instance:

> summary(boot, what = "ci")
--

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 303

Resampling confidence intervals
--
Model = VVV
Num. of mixture components = 2
Replications = 999
Type = nonparametric bootstrap
Confidence level = 0.95

Mixing probabilities:
1 2

2.5% 0.3193742 0.1785054
97.5% 0.8214946 0.6806258

Means:
[,,1]

AHFactivity AHFantigen
2.5% -0.22915526 -0.09784996
97.5% -0.07315876 0.02481681
[,,2]

AHFactivity AHFantigen
2.5% -0.4573113 -0.1571624
97.5% -0.2747451 0.1318332

Variances:
[,,1]

AHFactivity AHFantigen
2.5% 0.004743597 0.007012672
97.5% 0.032144767 0.019245540
[,,2]

AHFactivity AHFantigen
2.5% 0.003981163 0.006049076
97.5% 0.027297495 0.045854646

The function MclustBootstrap() has also the provision for using the weighted likelihood boot-
strap (Newton and Raftery, 1994). This is a generalisation of the nonparametric bootstrap which
assigns random (positive) weights to sample observations; it can be viewed as a generalized Bayesian
bootstrap. The weights are obtained from a uniform Dirichlet distribution, i.e. by sampling from
n independent standard exponential distributions and then rescaling by their average. Then, the
function me.weighted() in mclust allows one to apply a weighted EM algorithm. This approach
may yield benefits when one or more components have small mixture proportions. In that case, a
nonparametric bootstrap sample may have no representatives of them, but the weighted likelihood
bootstrap will always have representatives of all groups.

In our data example the weighted likelihood bootstrap can be easily obtained by specifying type
= "wlbs" in the MclustBootstrap() function call:

> wlboot <- MclustBootstrap(mod, nboot = 999, type = "wlbs")
> summary(wlboot, what = "se")
--
Resampling standard errors
--
Model = VVV
Num. of mixture components = 2
Replications = 999
Type = weighted likelihood bootstrap

Mixing probabilities:
1 2

0.1323612 0.1323612

Means:
1 2

AHFactivity 0.03977347 0.04192182
AHFantigen 0.02989056 0.06897928

Variances:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 304

[,,1]
AHFactivity AHFantigen

AHFactivity 0.007074450 0.004686432
AHFantigen 0.004686432 0.003254011
[,,2]

AHFactivity AHFantigen
AHFactivity 0.005511614 0.005746981
AHFantigen 0.005746981 0.009883791

In this case the differences between the nonparametric and the weighted likelihood bootstrap are
negligible. We can summarise the inference for the components means obtained under the two
approaches with the following graphs of bootstrap percentile confidence intervals:

> boot.ci <- summary(boot, what = "ci")
> wlboot.ci <- summary(wlboot, what = "ci")
> par(mfrow = c(1,2), mar = c(4,4,1,1))
> for(j in 1:mod$G)

{ plot(1:modG, modparameters$mean[j,], col = 1:mod$G, pch = 15,
ylab = colnames(X)[j], xlab = "Mixture component",
ylim = range(boot.ci$mean,wlboot.ci$mean),
xlim = c(.5,mod$G+.5), xaxt = "n")

points(1:mod$G+0.2, mod$parameters$mean[j,], col = 1:mod$G, pch = 15)
axis(side = 1, at = 1:mod$G)
with(boot.ci, errorBars(1:G, mean[1,j,], mean[2,j,], col = 1:G))
with(wlboot.ci, errorBars(1:G+0.2, mean[1,j,], mean[2,j,], col = 1:G, lty = 2))

}
> par(mfrow = c(1,1))

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

Mixture component

A
H

Fa
ct

iv
ity

1 2

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

Mixture component

A
H

Fa
nt

ig
en

1 2

Figure 11: Bootstrap percentile intervals for the means of the GMM fitted to the hemophilia dataset.
Solid lines refer to nonparametric bootstrap, dashed lines to the weighted likelihood bootstrap.

Initialisation of the EM algorithm

The EM algorithm is an easy to implement and numerically stable algorithm which has reliable global
convergence under fairly general conditions. However, the likelihood surface in mixture models tends
to have multiple modes and thus initialisation of EM is crucial because it usually produces sensible
results when started from reasonable starting values (Wu, 1983).

In mclust the EM algorithm is initialised using the partitions obtained from model-based hier-
archical agglomerative clustering (MBHAC). In this approach, hierarchical clusters are obtained by
recursively merging the two clusters that provide the smallest decrease in the classification likeli-
hood for Gaussian mixture model (Banfield and Raftery, 1993). Efficient numerical algorithms have
been discussed by Fraley (1998). Using MBHAC is particularly convenient because the underlying
probabilistic model is shared by both the initialisation step and the model fitting step. Furthermore,
MBHAC is also computationally advantageous because a single run provides the basis for initialising
the EM algorithm for any number of mixture components and component-covariances parameterisa-

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 305

tions. Although there is no guarantee that the EM initialized by MBHAC will converge to the global
optimum, it often provides reasonable starting points.

A problem with the MBHAC approach may arise in the presence of coarse data, resulting from the
discrete nature of the data or from continuous data that are rounded when measured. In this case, ties
must be broken by choosing the pair of entities that will be merged. This is often done at random, but
regardless of which method is adopted for breaking ties, this choice can have important consequences
because it changes the clustering of the remaining observations. Moreover, the final EM solution may
depend on the ordering of the variables.

Consider the Flea beetles data available in package tourr. This dataset provides six physical
measurements for a sample of 72 flea beetles from three species:

> data(flea, package = "tourr")
> X <- data.matrix(flea[,1:6])
> Class <- factor(flea$species, labels = c("Concinna","Heikertingeri","Heptapotamica"))
> table(Class)
Class

Concinna Heikertingeri Heptapotamica
21 31 22

> col <- mclust.options("classPlotColors")[1:3]
> clp <- clPairs(X, Class, lower.panel = NULL, gap = 0,

symbols = c(16,15,17), colors = adjustcolor(col, alpha.f = 0.5))
> clPairsLegend(x = 0.1, y = 0.3, class = clp$class, col = col, pch = clp$pch,

title = "Flea beatle species")

As can be seen from Figure 12, the observed values are rounded (to the nearest integer presumably)
and there is a strong overplotting of points.

120 160 200 240

12
0

16
0

20
0

24
0

tars1

110 130 45 50 55 120 140 8 10 12 14 16 60 80 100

12
0

16
0

20
0

24
0

tars2
11

0
13

0

head

45
50

55

aede1

12
0

14
0

aede2

8
10

14

60 80 100

60
80

10
0

aede3

●

Flea beatle species

Concinna

Heikertingeri

Heptapotamica

Figure 12: Scatterplot matrix for the Flea beetles data with points marked according to the true classes.

> mod1 <- Mclust(X)
> summary(mod1)
--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 5 components:

log.likelihood n df BIC ICL
-1292.308 74 55 -2821.339 -2825.769

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 306

Clustering table:
1 2 3 4 5
21 2 20 20 11
> adjustedRandIndex(Class, mod1$classification)
[1] 0.7675713

> mod2 <- Mclust(X[,6:1])
> summary(mod2)
--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 5 components:

log.likelihood n df BIC ICL
-1287.027 74 55 -2810.777 -2812.702

Clustering table:
1 2 3 4 5
22 21 22 7 2
> adjustedRandIndex(Class, mod2$classification)
[1] 0.8131206

By reversing the order of the variables in the fit of mod2, the initial partitions differ due to ties in the
data, so the EM algorithm converges to different solutions of the same EEE model with 5 components.
The second solution has a higher BIC and better accuracy.

In situations like this we may want to assess the stability of results by randomly starting the
EM algorithm. The function randomPairs() may be called to obtain a random hierarchical structure
suitable to be used as initial clustering partition:

> mod3 <- Mclust(X, initialization = list(hcPairs = randomPairs(X, seed = 123)))
> summary(mod3)
--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 4 components:

log.likelihood n df BIC ICL
-1298.211 74 48 -2803.017 -2807.713

Clustering table:
1 2 3 4
16 15 22 21
> adjustedRandIndex(Class, mod3$classification)
[1] 0.7867056

Using a random start we obtain a EEE model with 4 components, which has a higher BIC but a lower
ARI. However, a better initialisation may be found using the approach discussed in Scrucca and
Raftery (2015). The main idea is to project the data through a suitable transformation which enhances
separation among clusters before applying the MBHAC at the initialisation step. Once a reasonable
hierarchical partition is obtained, the EM algorithm is run using the data on the original scale. For
instance, a GMM started using the scaled SVD transformation is obtained with the following code:

> mod4 <- Mclust(X, initialization = list(hcPairs = hc(X, use = "SVD")))
> summary(mod4)
--
Gaussian finite mixture model fitted by EM algorithm
--

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 components:

log.likelihood n df BIC ICL
-1304.552 74 41 -2785.572 -2785.574

Clustering table:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 307

1 2 3
21 31 22
> adjustedRandIndex(Class, mod4$classification)
[1] 1

In this case we achieve both the highest BIC and a perfect classification of the fleas into the actual
species.

We conclude by noting that in the case of large datasets, i.e. having a large number of observations
or cases, a subsample of the data can be used in the MBHAC phase before applying the EM algorithm
to the full data set. This is easily done by providing an optional argument to Mclust() or mclustBIC()
(as well as many other functions) as a vector, say s, of logical values or numerical indices specifying
the subset of data to be used in the initial hierarchical clustering phase:

> Mclust(X, initialization = list(subset = s))

Density estimation

Density estimation plays an important role in applied statistical data analysis and theoretical research.
Finite mixture models provide a flexible semi-parametric model-based approach to density estimation,
which makes it possible to accurately approximate any given probability distribution. mclust provides
a simple interface to Gaussian mixture models for univariate and multivariate density estimation.

Izenman and Sommer (1988) considered the fitting of a Gaussian mixture to the distribution of the
thickness of stamps in the 1872 Hidalgo stamp issue of Mexico 2. A density estimate based on GMM
can be obtained using the function densityMclust():

> data(Hidalgo1872, package = "MMST")
> Thickness <- Hidalgo1872$thickness
> Year <- rep(c("1872", "1873-74"), c(289, 196))
> dens <- densityMclust(Thickness)
> summary(dens$BIC)
Best BIC values:

V,3 V,5 V,4
BIC 2983.791 2974.939223 2972.19349
BIC diff 0.000 -8.852019 -11.59775
> summary(dens, parameters = TRUE)

Density estimation via Gaussian finite mixture modeling

Mclust V (univariate, unequal variance) model with 3 components:

log.likelihood n df BIC ICL
1516.632 485 8 2983.791 2890.914

Clustering table:
1 2 3

128 171 186

Mixing probabilities:
1 2 3

0.2661410 0.3011217 0.4327374

Means:
1 2 3

0.07215458 0.07935341 0.09919740

Variances:
1 2 3

0.000004814927 0.000003097694 0.000188461484

2The Hidalgo stamp data is available at the home page for the book by Izenman (2008) at http://astro.temple.
edu/~alan/MMST/datasets.html, or through the package MMST. The latter has been archived on CRAN, so it
must be installed using the following code:

> install.packages("http://cran.r-project.org/src/contrib/Archive/MMST/MMST_0.6-1.1.tar.gz", repos
= NULL, type = "source")

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://astro.temple.edu/~alan/MMST/datasets.html
http://astro.temple.edu/~alan/MMST/datasets.html

CONTRIBUTED RESEARCH ARTICLES 308

The model selected is a three-component mixture with different variances. A graph of the density
estimated is shown in Figure13a and is obtained with the code:

> br <- seq(min(Thickness), max(Thickness), length = 21)
> plot(dens, what = "density", data = Thickness, breaks = br)

Here a histogram of the observed data is also drawn by providing the optional argument data and
with breakpoints between histogram cells specified in the argument breaks. From the graph, three
modes appear at the means of the mixture components: one with larger stamp thickness, and two
corresponding to thinner stamps.

Additional information can also be used. In particular, thickness measurements can be grouped
according to the year of consignment; the first 289 stamps refer to the 1872 issue, and the remaining
196 stamps to the years 1873–1874. We may draw a (suitable scaled) histogram for each year-of-
consignment and then add the estimated components densities as follows:

> h1 <- hist(Thickness[Year == "1872"], breaks = br, plot = FALSE)
> h1$density <- h1$density*prop.table(table(Year))[1]
> h2 <- hist(Thickness[Year == "1873-74"], breaks = br, plot = FALSE)
> h2$density <- h2$density*prop.table(table(Year))[2]
> x <- seq(min(Thickness)-diff(range(Thickness))/10,

max(Thickness)+diff(range(Thickness))/10, length = 200)
> cdens <- predict(dens, x, what = "cdens")
> cdens <- t(apply(cdens, 1, function(d) d*dens$parameters$pro))
> col <- adjustcolor(mclust.options("classPlotColors")[1:2], alpha = 0.3)
> plot(h1, xlab = "Thickness", freq = FALSE, main = "", border = FALSE, col = col[1],

xlim = range(x), ylim = range(h1$density, h2$density, cdens))
> plot(h2, add = TRUE, freq = FALSE, border = FALSE, col = col[2])
> matplot(x, cdens, type = "l", lwd = 1, add = TRUE, lty = 1:3, col = 1)
> box()

The result is shown in Figure 13b. Stamps from 1872 show a two-regime distribution, with one
corresponding to the component with the largest thickness, and one whose distribution essentially
overlaps with the bimodal distribution of stamps for the years 1873–1874.

Thickness

D
en

si
ty

0.06 0.08 0.10 0.12 0.14

0
20

40
60

(a)
Thickness

D
en

si
ty

0.06 0.08 0.10 0.12 0.14

0
10

20
30

40
50

60
70

(b)

Figure 13: (a) Histogram with mixture-based density estimate curve, and (b) histograms by group-year
with estimated mixture-component densities, for the Hidalgo1872 stamps dataset.

As an example of bivariate density estimation, consider the well-known ‘Old Faithful’ data set
which provides the waiting time between eruptions (waiting) and the duration of the eruptions
(eruptions) for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA. The dataset
can be read and data plotted as follows:

> data(faithful)
> plot(faithful, cex = 0.5)

A bivariate density estimate for the Faithful data is obtained with the commands:

> dens <- densityMclust(faithful)
> summary(dens)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 309

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

(a)
eruptions

w
ai

tin
g

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b)

2.0 2.5 3.0 3.5 4.0 4.5 5.0

50
60

70
80

90

eruptions

w
ai

tin
g

(c)

eruptions

w
aiting

D
ensity

(d)

Figure 14: Plot of the Old Faithful data (a), mixture-based density estimate contours (b), image plot of
density estimate (c) and perspective plot of the bivariate density estimate (d).

Density estimation via Gaussian finite mixture modeling

Mclust EEE (ellipsoidal, equal volume, shape and orientation) model with 3 components:

log.likelihood n df BIC ICL
-1126.361 272 11 -2314.386 -2360.865

Clustering table:
1 2 3

130 97 45

Model selection based on the BIC selects a three-component mixture with common covariance matrix
(EEE). One component is used to model the group of observations having both low duration and low
waiting times, whereas two components are needed to approximate the skewed distribution of the
observations with larger duration and waiting times.

Figure 14b-d shows some of the available graphs in mclust for a bivariate density estimated by
GMM. These can be obtained with the commands:

> plot(dens, what = "density", data = faithful, grid = 200, points.cex = 0.5,
drawlabels = FALSE)

> plot(dens, what = "density", type = "image", col = "steelblue", grid = 200)
> plot(dens, what = "density", type = "persp", theta = -25, phi = 20,

border = adjustcolor(grey(0.1), alpha.f = 0.3))

Note that the same procedure using the function mclustDensity() can also be used to obtain
density estimates for higher dimensional datasets.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 310

Supervised classification

In supervised classification or discriminant analysis the aim is to build a classifier (or a decision rule)
which is able to assign an observation with an unknown class membership to one of K known classes.
For building a supervised classifier, a training dataset {(x1, y1), . . . , (xn, yn)} is used for which both
the features xi and true classes yi ∈ {C1, . . . , CK} are known.

Mixture-based discriminant analysis models assume that the density for each class follows a
Gaussian mixture distribution

fk(x) =
Gk

∑
g=1

πgkφ(x; µgk, Σgk),

where πgk are the mixing probabilities for class k (πgk > 0, ∑Gk
g=1 πgk = 1), µgk the means for component

g within class k, and Σgk the covariance matrix of component g within class k. Hastie and Tibshirani
(1996) proposed Mixture Discriminant Analysis (MDA) where it is assumed that the covariance matrix
is the same for all the classes but is otherwise unconstrained, i.e. Σgk = Σ for all g and k. The number
of mixture components is assumed known for each class.

Bensmail and Celeux (1996) proposed the Eigenvalue Decomposition Discriminant Analysis
(EDDA) which assumes that the density for each class can be described by a single Gaussian component
(i.e. Gk = 1 for all k) with the component covariance structure factorised as

Σk = λkDk AkD>k .

Several models can be obtained from the above decomposition. If Σk = λDAD> (model EEE), then
EDDA is equivalent to linear discriminant analysis (LDA). If Σk = λkDk AkD>k (model VVV) then
EDDA is equivalent to quadratic discriminant analysis (QDA).

Consider the UCI Wisconsin breast cancer diagnostic data available at http://archive.ics.
uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic). This dataset provides data for 569
patients on 30 features of the cell nuclei obtained from a digitized image of a fine needle aspirate (FNA)
of a breast mass (Mangasarian et al., 1995). For each patient the cancer was diagnosed as malignant
or benign. Following Fraley and Raftery (2002) we considered only three attributes: extreme area,
extreme smoothness, and mean texture. The dataset can be downloaded from the UCI repository
using the following commands:

> data <- read.csv("http://archive.ics.uci.edu/ml/machine-learning-databases/breast-
cancer-wisconsin/wdbc.data", header = FALSE)
> X <- data[,c(4, 26, 27)]
> colnames(X) <- c("texture.mean", "area.extreme", "smoothness.extreme")
> Class <- data[,2]

Then, we may randomly assign approximately 2/3 of the observations to the training set, and the
remaining ones to the test set:

> set.seed(123)
> train <- sample(1:nrow(X), size = round(nrow(X)*2/3), replace = FALSE)
> X.train <- X[train,]
> Class.train <- Class[train]
> table(Class.train)
Class.train
B M

238 141
> X.test <- X[-train,]
> Class.test <- Class[-train]
> table(Class.test)
Class.test
B M

119 7 1

The function MclustDA() provides fitting capabilities for the EDDA model, but we must specify
the optional argument modelType = "EDDA". The function call is thus the following:

> mod1 <- MclustDA(X.train, Class.train, modelType = "EDDA")
> summary(mod1, newdata = X.test, newclass = Class.test)
--
Gaussian finite mixture model for classification
--

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

CONTRIBUTED RESEARCH ARTICLES 311

EDDA model summary:

log.likelihood n df BIC
-2989.967 379 12 -6051.185

Classes n Model G
B 238 VVI 1
M 141 VVI 1

Training classification summary:

Predicted
Class B M

B 237 1
M 19 122

Training error = 0.05277045

Test classification summary:

Predicted
Class B M

B 116 3
M 5 66

Test error = 0.04210526

The EDDA mixture model selected by BIC is the VVI model, so each group is described by a
single Gaussian component with varying volume and shape, but same orientation aligned with the
coordinate axes. Note that in the summary() function call we also provided the features and the known
classes for the test set, so both the training error and the test error are reported. A cross-validation
error can also be computed using the cvMclustDA() function, which by default use nfold = 10 for a
10-fold cross-validation:

> cv <- cvMclustDA(mod1)
> unlist(cv[c("error", "se")])

error se
0.052770449 0.007930516

EDDA imposes a single mixture component for each group. However, in certain circumstances
more complexity may improve performance. A more general approach, called MclustDA, has been
proposed by Fraley and Raftery (2002), where a finite mixture of Gaussian distributions is used within
each class, with number of components and covariance matrix structures (expressed following the
usual decomposition) being different between classes. This is the default model fitted by MclustDA:

> mod2 <- MclustDA(X.train, Class.train)
> summary(mod2, newdata = X.test, newclass = Class.test)
--
Gaussian finite mixture model for classification
--

MclustDA model summary:

log.likelihood n df BIC
-2937.586 379 29 -6047.361

Classes n Model G
B 238 EEV 2
M 141 VVI 2

Training classification summary:

Predicted
Class B M

B 236 2

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 312

M 7 134

Training error = 0.0237467

Test classification summary:

Predicted
Class B M

B 114 5
M 2 69

Test error = 0.03684211

A two-component mixture distribution is fitted to both the benign and malignant observations, but
with different covariance structures within each class. Both the training error and the test error are
slightly smaller than for EDDA, a fact also confirmed by the 10-fold cross-validation procedure:

> cv <- cvMclustDA(mod2)
> unlist(cv[c("error", "se")])

error se
0.021108179 0.007648168

A plot method which produces a variety of graphs is associated with objects returned by MclustDA.
For instance, pairwise scatterplots between the features, showing both the known classes and the
estimated mixture components, are drawn as follows (see Figure 15a–c):

> plot(mod2, what = "scatterplot", dimens = c(1,2))
> plot(mod2, what = "scatterplot", dimens = c(2,3))
> plot(mod2, what = "scatterplot", dimens = c(3,1))

Another interesting graph can be obtained by projecting the data on a dimension reduced subspace
(Scrucca, 2014) with the commands:

> drmod2 <- MclustDR(mod2)
> summary(drmod2)

Dimension reduction for model-based clustering and classification

Mixture model type: MclustDA

Classes n Model G
B 238 EEV 2
M 141 VVI 2

Estimated basis vectors:
Dir1 Dir2 Dir3

texture.mean -0.00935540 -0.044384467 -0.0006607120
area.extreme 0.00049997 0.000071676 -0.0000088494
smoothness.extreme 0.99995611 -0.999014521 0.9999997817

Dir1 Dir2 Dir3
Eigenvalues 0.67718 0.28159 0.013928
Cum. % 69.61869 98.56810 100.000000
> plot(drmod2, what = "boundaries", ngrid = 200)

The graph produced by the last command is shown in Figure 15d. The two groups are largely separated
along the first direction, with the group of malignant cases showing a higher variability.

Finally, note that the MDA model is equivalent to MclustDA with Σk = λDAD> (model EEE) and
fixed Gk ≥ 1 for each k = 1, . . . , K. For instance, a MDA with two mixture components for each class
can be fitted as:

> mod3 <- MclustDA(X.train, Class.train, G = 2, modelNames = "EEE")
> summary(mod3, newdata = X.test, newclass = Class.test)
--
Gaussian finite mixture model for classification
--

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 313

10 15 20 25 30 35 40

10
00

20
00

30
00

40
00

texture.mean

ar
ea

.e
xt

re
m

e

●

●

●
●

●

●

●

●

●

●

● ●

●
●●

● ●●●

● ●
● ●● ●

●

●

●

●
●

●●

●

●

● ●

●
●

●
● ●

●
●

●

● ●

●

●
●

●●
●

●

●

●

●

●
●

● ●
●

● ●

●
●

●
●

●
●

●

●
●

●●
●

●

●
●

●
●

● ●●
● ●

●

● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●
●

● ●
●

●

●

●

● ●
●

● ●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●

●
● ●●

●
●

●

●
● ●

● ● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●
●

(a)

1000 2000 3000 4000

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

area.extreme

sm
oo

th
ne

ss
.e

xt
re

m
e

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●

(b)

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

10
15

20
25

30
35

40

smoothness.extreme

te
xt

ur
e.

m
ea

n

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●●
●

●●

●

●

●

●

●

●

●

(c)

0.0 0.5 1.0 1.5

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Dir1

D
ir2

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●
●●

●
●

●

●

●

●

●

●

●

(d)

Figure 15: Pairwise scatterplots between variables for the Wisconsin breast cancer data (panels a–c).
Points are marked by cancer diagnosis (benign = •, malignant = �), whereas ellipses correspond to
covariances of mixture components estimated with MclustDA. Plot of data projected along the first two
estimated directions obtained with MclustDR, and uncertainty classification boundaries (d).

MclustDA model summary:

log.likelihood n df BIC
-2968.077 379 26 -6090.531

Classes n Model G
B 238 EEE 2
M 141 EEE 2

Training classification summary:

Predicted
Class B M

B 235 3
M 12 129

Training error = 0.03957784

Test classification summary:

Predicted
Class B M

B 113 6

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 314

M 2 69

Test error = 0.04210526

Summary

mclust is one of the most popular R packages for Gaussian mixture modelling. Since its early
developments (Banfield and Raftery, 1993; Fraley and Raftery, 1998, 1999), mclust has seen major
updates through the years, which expanded its capabilities and features, increasing its popularity and
widening its area of utilisation.

Here we have presented the most salient new features introduced in version ≥ 5, namely new
covariance parameterisations, subspace data visualisation, different model selection criteria, bootstrap-
based inference and EM algorithm initialisation. We showed their application on a collection of
different datasets, pointing out their utility in different contexts.

Acknowledgments

Michael Fop and T. Brendan Murphy were supported by the Science Foundation Ireland funded
Insight Research Centre (SFI/12/RC/2289). Adrian E. Raftery and Luca Scrucca were supported by
NIH grants R01 HD054511, R01 HD070936 and U54 HL127624.

Bibliography

J. S. Ahlquist and C. Breunig. Model-based clustering and typologies in the social sciences. Political
Analysis, 20(1):92–112, 2012. [p289]

M. Aitkin and D. B. Rubin. Estimation and hypothesis testing in finite mixture models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 47(1):67–75, 1985. [p295]

J. Banfield and A. E. Raftery. Model-based Gaussian and non-Gaussian clustering. Biometrics, 49:
803–821, 1993. [p291, 304, 314]

K. E. Basford, D. R. Greenway, G. J. McLachlan, and D. Peel. Standard errors of fitted component
means of normal mixtures. Computational Statistics, 12(1):1–18, 1997. [p299, 300]

T. Benaglia, D. Chauveau, D. R. Hunter, and D. Young. mixtools: An R package for analyzing finite
mixture models. Journal of Statistical Software, 32(6):1–29, 2009. URL http://www.jstatsoft.org/
v32/i06/. [p289]

H. Bensmail and G. Celeux. Regularized Gaussian discriminant analysis through eigenvalue decom-
position. Journal of the American Statistical Association, 91:1743–1748, 1996. [p310]

P. Biecek, E. Szczurek, M. Vingron, and J. Tiuryn. The R package bgmm: Mixture modeling with
uncertain knowledge. Journal of Statistical Software, 47(3):1–32, 2012. URL http://www.jstatsoft.
org/v47/i03/. [p289]

C. Biernacki, G. Celeux, and G. Govaert. Assessing a mixture model for clustering with the integrated
completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(7):719–725,
2000. [p295, 297]

S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine. In Proceedings of the
Seventh International Conference on World Wide Web, pages 107–117, 1998. [p290]

R. P. Browne and P. D. McNicholas. Estimating common principal components in high dimensions.
Advances in Data Analysis and Classification, 8(2):217–226, 2014. [p291]

R. P. Browne, A. ElSherbiny, and P. D. McNicholas. mixture: Mixture Models for Clustering and Classifica-
tion, 2015. URL https://CRAN.R-project.org/package=mixture. R package version 1.4. [p289]

J. G. Campbell, C. Fraley, D. Stanford, F. Murtagh, and A. E. Raftery. Model-based methods for textile
fault detection. International Journal of Imaging Systems and Technology, 10(4):339–346, 1999. [p289]

G. Celeux and G. Govaert. Gaussian parsimonious clustering models. Pattern Recognition, 28:781–793,
1995. [p291]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.jstatsoft.org/v32/i06/
http://www.jstatsoft.org/v32/i06/
http://www.jstatsoft.org/v47/i03/
http://www.jstatsoft.org/v47/i03/
https://CRAN.R-project.org/package=mixture

CONTRIBUTED RESEARCH ARTICLES 315

W.-C. Chen and R. Maitra. EMCluster: EM Algorithm for Model-Based Clustering of Finite Mixture
Gaussian Distribution, 2015. URL https://CRAN.R-project.org/package=EMCluster. R package
version 0.2-5. [p289]

G. Csardi. cranlogs: Download Logs from the RStudio CRAN Mirror, 2015. URL https://github.com/
metacran/cranlogs. R package version 2.0.0. [p289]

G. Csardi and T. Nepusz. The igraph software package for complex network research. InterJournal,
Complex Systems:1695, 2006. URL http://igraph.org. [p290]

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 39(1):1–38, 1977.
[p291]

B. Efron. Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7:1–26, 1979. [p299]

K. J. Ellefsen, D. B. Smith, and J. D. Horton. A modified procedure for mixture-model clustering of
regional geochemical data. Applied Geochemistry, 51:315–326, 2014. [p289]

A. Flynt and M. I. G. Daepp. Diet-related chronic disease in the northeastern United States: A
model-based clustering approach. International Journal of Health Geographics, 14(1):1–14, 2015. [p289]

C. Fraley. Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal on Scientific
Computing, 20(1):270–281, 1998. [p304]

C. Fraley and A. E. Raftery. How many clusters? Which clustering method? Answers via model-based
cluster analysis. The Computer Journal, 41:578–588, 1998. [p294, 295, 314]

C. Fraley and A. E. Raftery. MCLUST: Software for model-based cluster analysis. Journal of Classification,
16(2):297–306, 1999. [p290, 314]

C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and density estimation.
Journal of the American Statistical Association, 97(458):611–631, 2002. [p310, 311]

C. Fraley and A. E. Raftery. Enhanced model-based clustering, density estimation, and discriminant
analysis software: Mclust. Journal of Classification, 20(2):263–286, 2003. [p290]

C. Fraley and A. E. Raftery. Some applications of model-based clustering in chemistry. R News, 6(3):
17–23, 2006a. URL http://CRAN.R-project.org/doc/Rnews/Rnews_2006-3.pdf. [p289]

C. Fraley and A. E. Raftery. Model-based microarray image analysis. R News, 6(5):60–63, 2006b. URL
http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf. [p289]

C. Fraley and A. E. Raftery. Bayesian regularization for normal mixture estimation and model-based
clustering. Journal of Classification, 24(2):155–181, 2007a. [p296]

C. Fraley and A. E. Raftery. Model-based methods of classification: Using the mclust software in
chemometrics. Journal of Statistical Software, 18(6):1–13, 2007b. URL http://www.jstatsoft.org/
v018/i06/. [p289]

C. Fraley, A. E. Raftery, T. B. Murphy, and L. Scrucca. MCLUST version 4 for R: Normal mixture
modeling for model-based clustering, classification, and density estimation. Technical Report 597,
Department of Statistics, University of Washington, 2012. [p290, 296]

C. Fraley, A. E. Raftery, and L. Scrucca. mclust: Gaussian Mixture Modelling for Model-Based Clustering,
Classification, and Density Estimation, 2016. URL https://CRAN.R-project.org/package=mclust. R
package version 5.2. [p289]

B. Grün and F. Leisch. Fitting finite mixtures of generalized linear regressions in R. Computational
Statistics & Data Analysis, 51(11):5247–5252, 2007. [p289]

B. Grün and F. Leisch. FlexMix version 2: Finite mixtures with concomitant variables and varying and
constant parameters. Journal of Statistical Software, 28(4):1–35, 2008. URL http://www.jstatsoft.
org/v28/i04/. [p289]

J. D. F. Habbema, J. Hermans, and K. van den Broek. A stepwise discriminant analysis program using
density estimation. In Proceedings in Computational Statistics, pages 101–110, Vienna: Physica-Verlag,
1974. COMPSTAT. [p300]

T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 58(1):155–176, 1996. [p310]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=EMCluster
https://github.com/metacran/cranlogs
https://github.com/metacran/cranlogs
http://igraph.org
http://CRAN.R-project.org/doc/Rnews/Rnews_2006-3.pdf
http://CRAN.R-project.org/doc/Rnews/Rnews_2006-5.pdf
http://www.jstatsoft.org/v018/i06/
http://www.jstatsoft.org/v018/i06/
https://CRAN.R-project.org/package=mclust
http://www.jstatsoft.org/v28/i04/
http://www.jstatsoft.org/v28/i04/

CONTRIBUTED RESEARCH ARTICLES 316

C. Hennig. Asymmetric linear dimension reduction for classification. Journal of Computational and
Graphical Statistics, 13(4):930–945, 2004. [p294]

C. Hennig. fpc: Flexible Procedures for Clustering, 2015. URL https://CRAN.R-project.org/package=
fpc. R package version 2.1-10. [p294]

L. Hubert and P. Arabie. Comparing partitions. Journal of Classification, 2:193–218, 1985. [p293]

C. Hurley. gclus: Clustering Graphics, 2012. URL https://CRAN.R-project.org/package=gclus. R
package version 1.3.1. [p291]

A. J. Izenman. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning.
Springer-Verlag, New York, 2008. [p307]

A. J. Izenman and C. J. Sommer. Philatelic mixtures and multimodal densities. Journal of the American
Statistical Association, 83(404):941–953, 1988. [p307]

J. Jang and D. B. Hitchcock. Model-based cluster analysis of democracies. Journal of Data Science, 10(2):
297–319, 2012. [p289]

K. Kazor and A. S. Hering. Assessing the performance of model-based clustering methods in multi-
variate time series with application to identifying regional wind regimes. Journal of Agricultural,
Biological and Environmental Statistics, 20:192–217, 2015. [p289]

C. Keribin. Consistent estimation of the order of mixture models. Sankhyā: The Indian Journal of
Statistics, Series A (1961–2002), 62(1):49–66, 2000. [p295]

K. H. Kim, S. T. Yun, S. S. Park, Y. Joo, and T. S. Kim. Model-based clustering of hydrochemical data to
demarcate natural versus human impacts on bedrock groundwater quality in rural areas, South
Korea. Journal of Hydrology, 519:626–636, 2014. [p289]

L. W. Konigsberg, B. F. B. Algee-Hewitt, and D. W. Steadman. Estimation and evidence in forensic
anthropology: Sex and race. American Journal of Physical Anthropology, 139:77–90, 2009. [p289]

S. Konishi and G. Kitagawa. Generalised information criteria in model selection. Biometrika, 83(4):
875–890, 1996. [p297]

M. Kozak and C. H. Scaman. Unsupervised classification methods in food sciences: Discussion and
outlook. Journal of the Science of Food and Agriculture, 88(7):1115–1127, 2008. [p289]

R. Lebret, S. Iovleff, F. Langrognet, C. Biernacki, G. Celeux, and G. Govaert. Rmixmod: The R package
of the model-based unsupervised, supervised, and semi-supervised classification Mixmod library.
Journal of Statistical Software, 67(6):1–29, 2015. URL http://www.jstatsoft.org/v067/i06/. [p289]

F. Leisch. FlexMix: A general framework for finite mixture models and latent class regression in R.
Journal of Statistical Software, 11(8):1–18, 2004. URL http://www.jstatsoft.org/v11/i08/. [p289]

Q. Li, C. Fraley, R. E. Bumgarner, and A. E. Raftery. Donuts, scratches and blanks: Robust model-based
segmentation of microarray images. Bioinformatics, 21:2875–2882, 2005. [p289]

O. L. Mangasarian, W. N. Street, and W. H. Wolberg. Breast cancer diagnosis and prognosis via linear
programming. Operations Research, 43(4):570–577, 1995. [p310]

G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000. [p291, 298, 299]

G. J. McLachlan. On bootstrapping the likelihood ratio test statistic for the number of components in a
normal mixture. Applied Statistics, 36:318–324, 1987. [p298]

G. J. McLachlan and S. Rathnayake. On the number of components in a Gaussian mixture model.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 4(5):341–355, 2014. [p295]

M. A. Newton and A. E. Raftery. Approximate Bayesian inference with the weighted likelihood
bootstrap (with discussion). Journal of the Royal Statistical Society: Series B (Statistical Methodology),
56:3–48, 1994. [p303]

A. O’Hagan, T. Brendan Murphy, and I. C. Gormley. On estimation of parameter uncertainty in
model-based clustering. ArXiv e-prints, oct 2015. URL http://arxiv.org/abs/1510.00551. [p299]

K. Roeder and L. Wasserman. Practical bayesian density estimation using mixtures of normals. Journal
of the American Statistical Association, 92(439):894–902, 1997. [p295]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=fpc
https://CRAN.R-project.org/package=gclus
http://www.jstatsoft.org/v067/i06/
http://www.jstatsoft.org/v11/i08/
http://arxiv.org/abs/1510.00551

CONTRIBUTED RESEARCH ARTICLES 317

G. Schwartz. Estimating the dimension of a model. The Annals of Statistics, 6:31–38, 1978. [p294]

L. Scrucca. Dimension reduction for model-based clustering. Statistics and Computing, 20(4):471–484,
2010. [p293]

L. Scrucca. Graphical tools for model-based mixture discriminant analysis. Advances in Data Analysis
and Classification, 8(2):147–165, 2014. [p294, 312]

L. Scrucca and A. E. Raftery. Improved initialisation of model-based clustering using Gaussian
hierarchical partitions. Advances in Data Analysis and Classification, 4(9):447–460, 2015. [p306]

C. Suveg, M. L. Jacob, M. Whitehead, A. Jones, and J. N. Kingery. A model-based cluster analysis of
social experiences in clinically anxious youth: links to emotional functioning. Anxiety, Stress, &
Coping, 27(5):494–508, 2014. [p289]

M. Templ, P. Filzmoser, and C. Reimann. Cluster analysis applied to regional geochemical data –
problems and possibilities. Applied Geochemistry, 23:2198–2213, 2008. [p289]

V. Todorov and P. Filzmoser. An object-oriented framework for robust multivariate analysis. Journal of
Statistical Software, 32(3):1–47, 2009. URL http://www.jstatsoft.org/v32/i03/. [p291]

B. Verbist, L. Clement, J. Reumers, K. Thys, A. Vapirev, W. Talloen, Y. Wetzels, J. Meys, J. Aerssens,
L. Bijnens, and O. Thas. ViVaMBC: Estimating viral sequence variation in complex populations
from illumina deep-sequencing data using model-based clustering. BMC Bioinformatics, 16(1):1–11,
2015. [p289]

H. Wickham, D. Cook, H. Hofmann, and A. Buja. tourr: An R package for exploring multivariate data
with projections. Journal of Statistical Software, 40(2):1–18, 2011. URL http://www.jstatsoft.org/
v40/i02/. [p291]

C. J. Wu. On the convergence properties of the EM algorithm. The Annals of Statistics, 11(1):95–103,
1983. [p304]

K. Y. Yeung, C. Fraley, A. Murua, A. E. Raftery, Raftery, and W. L. Ruzzo. Model-based clustering and
data transformations for gene expression data. Bioinformatics, 17(10):977–987, 2001. [p289]

Luca Scrucca
Università degli Studi di Perugia
Via A. Pascoli 20, 06123 Perugia
Italy
luca.scrucca@unipg.it

Michael Fop
University College Dublin
Belfield, Dublin 4
Ireland
michael.fop@ucdconnect.ie

T. Brendan Murphy
University College Dublin
Belfield, Dublin 4
Ireland
brendan.murphy@ucd.ie

Adrian E. Raftery
University of Washington
Box 354320
Seattle, WA 98195-4320
raftery@u.washington.edu

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.jstatsoft.org/v32/i03/
http://www.jstatsoft.org/v40/i02/
http://www.jstatsoft.org/v40/i02/
mailto:luca.scrucca@unipg.it
mailto:michael.fop@ucdconnect.ie
mailto:brendan.murphy@ucd.ie
mailto:raftery@u.washington.edu

CONTRIBUTED RESEARCH ARTICLES 318

clustering.sc.dp: Optimal Clustering with
Sequential Constraint by Using Dynamic
Programming
by Tibor Szkaliczki

Abstract The general clustering algorithms do not guarantee optimality because of the hardness of the
problem. Polynomial-time methods can find the clustering corresponding to the exact optimum only
in special cases. For example, the dynamic programming algorithm can solve the one-dimensional
clustering problem, i.e., when the items to be clustered can be characterised by only one scalar
number. Optimal one-dimensional clustering is provided by package Ckmeans.1d.dp in R. The paper
shows a possible generalisation of the method implemented in this package to multidimensional
data: the dynamic programming method can be applied to find the optimum clustering of vectors
when only subsequent items may form a cluster. Sequential data are common in various fields
including telecommunication, bioinformatics, marketing, transportation etc. The proposed algorithm
can determine the optima for a range of cluster numbers in order to support the case when the number
of clusters is not known in advance.

Introduction

Clustering plays a key role in various areas including data mining, character recognition, informa-
tion retrieval, machine learning applied in diverse fields such as marketing, medicine, engineering,
computer science, etc. A clustering algorithm forms groups of similar items in a data set which is
a crucial step in analysing complex data. Clustering can be formulated as an optimisation problem
assigning items to clusters while minimising the distances among the cluster members. The normally
used clustering algorithms do usually not find the optimal solution because the clustering problem
is NP-complete in the general case. This paper introduces a package implementing an optimisation
method for clustering in a special case when a sequential constraint should be met, i.e., when the items
to be clustered are sorted and only subsequent items may form a cluster. This constraint is common
when clustering data streams, e.g., audio and video streams, trajectories, motion tracks, click-streams
etc. The good news is that the exact optimum can be found in polynomial time in this case.

The algorithm recommended for clustering sequential data is based on the dynamic programing
approach developed by Wang and Song (2011). They gave a polynomial-time algorithm for one-
dimensional clustering, i.e., when the items can be characterised by only one scalar number. Similarly
to the heuristic k-means algorithm, it divides data into k groups and it minimises the within-cluster
sum of squared distances (WCSS or withinss for short). The algorithm guarantees a solution minimising
the optimisation goal. The source code of the algorithm is available in the R package Ckmeans.1d.dp
(Song and Wang, 2011). The generalisation of the algorithm to the multiple dimensional space has
been open so far. We extended the dynamic programming approach from one-dimensional clustering
to multidimensional clustering with sequential constraint (i.e., only subsequent elements of the input
may form a cluster). The method finds the exact optimum in this case as well. We implemented the
algorithm in the R package clustering.sc.dp (Szkaliczki and Song, 2015).

Although the original algorithm has been developed to find the optimal solution with exactly k
clusters it can determine the optimal value for all numbers of clusters less than or equal to k in a single
run. For this reason, we implemented two variants of the algorithm. The first one finds the optimal
solution for a specific k which can be used if the number of clusters is known in advance. The second
variant returns the vector containing the minimal withinss for all cluster numbers less than or equal to
k. This extension of the algorithm is useful if the number of clusters is not known in advance which is
a common case.

The remainder of this paper is organized as follows: In the next section, a brief overview of the
related work is presented. Then the optimization problem is formally described and the developed
optimization algorithm is introduced in detail. Some evaluation results are also presented and the
usage of the implemented package is introduced. A brief summary concludes the paper.

Related work

Several clustering models and a broad variety of clustering methods are available in the literature
(Jain, 2010; Tan et al., 2006). Minimising withinss is a common optimisation goal used, e.g., in the

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=Ckmeans.1d.dp
http://CRAN.R-project.org/package=clustering.sc.dp

CONTRIBUTED RESEARCH ARTICLES 319

popular k-means method (Lloyd, 1982) to find a solution for a specific number of clusters and in
the Ward’s method (Ward, Jr., 1963) belonging to the hierarchical clustering methods. The problem
is NP-complete (Aloise et al., 2009; Dasgupta and Freund, 2009; Mahajan et al., 2009). The general
clustering methods cannot be directly applied to our problem because the produced solution usually
violates the sequential constraint.

As mentioned, one-dimensional clustering can be solved in polynomial time (Wang and Song,
2011). The problem represents a special kind of clustering with sequential constraint because a
necessary condition for the optimality in one dimension is that only subsequent items may form a
cluster if the items are considered in their scalar order. The package presented in this paper generalised
the one-dimensional clustering method to the multidimensional case. The dynamic programming
method used for optimal clustering in one dimension is essentially the same as the one first applied by
Bellman (1961) for linear curve approximation. For this reason, our package can be also considered as
an implementation of the optimal dynamic programming clustering method proposed by Bellman.

Several papers (e.g., Himberg et al. 2001, Terzi 2006, Tierney et al. 2014) are dealing with clustering
with sequential constraints because processing data sequences has a broad application area. Leiva
and Vidal (2013) gave a clustering algorithm called Warped k-means for minimising withinss while
considering the sequential constraint. The algorithm tries to reach the optimum by moving items
between subsequent clusters. It does not guarantee optimality. Their paper provides a good overview
as well on the taxonomy of the problem.

The problem specification

Clustering methods divide a dataset X = {x1, x2, . . . , xn} of d-dimensional vectors into a set Π =
{C1, C2, . . . , Ck} of disjoint clusters where n and k denote the number of items to be clustered and the
number of clusters, respectively. Throughout the paper, vectors are distinguished from scalars by a
bar over their symbol. In case of clustering with sequential constraint, the items are sorted and the

clusters are formed only by subsequent items: Cj =
{

xbj
, xbj+1, . . . , xbj+nj−1

}
where bj and nj denote

the first item and the number of items in cluster Cj, respectively. The optimisation goal is to minimise
the within-cluster sum of squared distances (withinss) also called sum of squared error (SSE), sum of
quadratic errors (SQE) or distortion which is a common measurement of quality in clustering. It is
formally defined as follows:

withinss =
k

∑
j=1

∑
xi∈Cj

∥∥∥xi − µj

∥∥∥2
, (1)

where ‖x‖ denotes the Euclidean norm of vector x and µj is the cluster mean:

µj =
1
nj

∑
xi∈Cj

xi. (2)

Now, we can formulate our problem as follows:

Input:

Items to be clustered: X = {x1, x2, . . . , xn},
Number of clusters: k.

Output:

Optimal clustering: Π = {C1, C2, . . . , Ck}.
Minimise

within-cluster sum of squared distances (withinss): Eq. (1).

Subject to

sequential constraint:(
xi1 ∈ Cj

)
∧
(

xi2 ∈ Cj

)
∧ (i1 ≤ i3 ≤ i2)⇒

(
xi3 ∈ Cj

)
. (3)

general clustering conditions:

each item is clustered:

∀xi∃Cj : xi ∈ Cj. (4)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 320

one cluster is assigned to each item(
xi ∈ Cj1

)
∧
(

xi ∈ Cj2

)
⇒ (j1 = j2) . (5)

The dynamic programming algorithm

The recursive formula used in the dynamic programming formulation is based on the fact, that if
clustering for the first i items in m clusters is optimal then after dropping the last cluster the resulting
clustering is optimal with m− 1 clusters for the remaining items. Let D[i, m] denote the value of the
minimal within-cluster sum of squared distances (withinss) of the clustering for the first i items by
using m clusters. If j denotes the first item of the mth cluster then the optimality of D[i, m] implies the
optimality of D[j− 1, m− 1] as well. D[n, k] gives the minimal withinss for clustering all items in k
clusters where n denotes the total number of items.

The recursive formula applied in the dynamic programming approach is defined as follows (Wang
and Song, 2011):

D[i, m] = min
m≤j≤i

{
D[j− 1, m− 1] + d

(
xj, . . . , xi

)}
, 1 ≤ i ≤ n, 1 ≤ m ≤ k (6)

where d
(

xj, . . . xi

)
is the sum of squared Euclidean distances from xj, . . . xi to their mean.

The optimal solution can be determined by dynamic programming in two steps. First, the recursive
formula is used to find the minimal withinss. Then backtracking finds the optimal clustering.

B[i, m] stores the index of the first item bm of the last cluster in the partial solution belonging to
D[i, m] which is used for backtracking the optimal solution after determining the minimal withinss. We
apply the dynamic programming method to solve optimal clustering for a range of cluster numbers
and k denotes the maximum number of clusters in our algorithm (1 ≤ k ≤ n). The steps of calculating
D[i, m] can be implemented as follows:

for i := 0 to n
D[i, 0] := 0 // initialisations

for i := 1 to n
for m := 1 to min(i, k)
D[i, m] := MAX_DOUBLE;
for j := i downto m // calculating the recursive formula
if D[i, m] > D[j - 1, m - 1] + d(xj, ..., xi)
D[i, m] := D[j - 1, m - 1] + d(xj, ..., xi)
B[i, m] := j

Return D[n, m] for m = 1, ..., k

D[n, m], m = 1, . . . , k gives the minimal distances for different number of clusters. If the number of
clusters is known in advance, it is enough to return D[n, k]. Otherwise, D[n, m] for all m ≤ k can be
returned for further processing by the user in order to select the proper number of clusters.

The algorithm finds the exact optimum in polynomial time. It runs O
(
n2k
)

iterations in which
D[i, m] is checked and, if necessary, updated. Each iteration can be performed in time proportional
to the dimensions of the vectors (O (d)) independently from the number of items and clusters if

d
(

xj, . . . , xi

)
is computed progressively based on d

(
xj+1, . . . , xi

)
and the average of the items. This

can be done similarly to the one-dimensional case in the following way. Let µj,i denote the mean of

the items with index between j and i. If j = i d
(

xj, . . . , xi

)
= 0, µj,i = xi. For index j from i− 1 down

to m, the algorithm iteratively computes

d
(

xj, . . . , xi

)
= d

(
xj+1, . . . , xi

)
+

i− j
i− j + 1

(
xj − µj,i−1

)2

µj,i =
xj + (i− j) µj+1,i

i− j + 1

Using the above iterative computation, the overall running time is quadratic in the number of items
and linear in the number of clusters and the dimensions of the vectors: O

(
n2kd

)
.

The optimal solution with cluster number m can be backtracked by the help of B[i, m] (Wang and
Song, 2011):

B[i, m] = argminm≤j≤i

{
D[j− 1, m− 1] + d

(
xj, . . . , xi

)}
, 1 ≤ i ≤ n, 1 ≤ m ≤ k (7)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 321

B[n, m] is equal to the first item of the last cluster in clustering with m clusters. The last cluster
contains items xB[n,m], . . . , xn. The further clusters can be determined by using backtracking as follows:
if j is the first item of the lth cluster then the preceding cluster is formed by the items xB[j,l−1], . . . , xj−1.
The steps of backtracking to the find optimal clustering using m number of clusters are as follows:

the mth cluster is B[n, m], ..., n
j := B[n, m]
for l := m to 2
the (l - 1)th cluster is B[j, l - 1], ..., j - 1
j = B[j, l - 1]

Backtracking can be performed in linear time in the number of the clusters (O (k)).
We would like to mention how to combine the dynamic programming method with methods

finding the proper number of clusters. The cluster numbers are typically determined by using a
measure of validity (e.g., withinss) indicating the goodness of clustering. The “best” k is chosen based
on the analysis of the values of the measure for each k within the range of the possible number of
clusters. A huge variety of methods are available in the literature to determine the cluster numbers
(Milligan and Cooper, 1985; Dimitriadou et al., 2002). Typically, they are applied on the output
generated by hierarchical clustering methods. Although our dynamic programming approach does
not belong to the hierarchical clustering similar methods can be used on the result of our algorithm for
finding the proper number of clusters.

Backtracking can be performed only once if the number of clusters is known in advance or it can
be selected by analysing withinss contained in the last column of matrix D. Otherwise, backtracking
should be executed for each possible cluster numbers for further analysis. The method can efficiently
determine the optimal clustering for all numbers of clusters less than or equal to k essentially because
the most time-consuming part is determining D and B which should be executed only once.

Implementation

We implemented this dynamic programming algorithm in C++. The implementation was built on
source code from the R package Ckmeans.1d.dp and we created a new R package clustering.sc.dp.
In the name of the package, sc and dp refer to sequential constraint and dynamic programming, respec-
tively. The open-source approach made it possible to reuse the code from package Ckmeans.1d.dp
but it was beneficial for the original package as well: we suggested a minor change in the code to
speed up the code which was incorporated into Ckmeans.1d.dp (≥ version 3.3.0).

Evaluation

Optimality

If the sequential constraint is considered in clustering than the optimal withinss is usually larger than
in the general case without the constraint since the constraint excludes many possible solutions. In
order to compare our algorithm with general clustering methods such as the k-means method, we
generated a dataset where the optima without and with sequential constraint are equal. For this
purpose, we created a totally ordered vector set where one vector is simultaneously larger or smaller
in each coordinate than another vector (∀i, j ∈ {1, 2, . . . , n}∀k, l ∈ {1, 2, . . . , d}xik < xjk =⇒ xil < xjl
where xyz denote the zth coordinate of item xy). We used a random walk as a totally ordered vector
set where the steps between subsequent items were generated by using the exponential distribution.
The generated dataset consisted of 10,000 two-dimensional vectors.

We compared the dynamic programming algorithm with the kmeans() function in R which pro-
vides the Hatigan and Wong (1979) implementation of k-means. We ran the algorithms with different
cluster numbers from 2 to 50. The minimal withinss found by k-means was always greater or equal to
the optimum value found by clustering.sc.dp().

We used the relative difference in withinss from the kmeans() result to the optimal value produced
by clustering.sc.dp() for measuring deviation of the k-means result from the optimum. Figure 1
shows the relative difference as a function of the cluster numbers. It can be seen that k-means is able
to find the optimum if the cluster number is at most 10. For larger cluster numbers, its error starts
increasing and the relative difference is more than 20% if the cluster number is 50.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 322

Figure 1: The relative difference in withinss from kmeans() to the optimal value returned by
clustering.sc.dp(). The input data set of size 10 000 were generated as a random walk having
a step size that varies according to an exponential distribution with rate 1.0 in each coordinate.

Figure 2: Runtime as a function of the number of the items to be clustered.

Runtime

We tested the dynamic programming algorithm on inputs with different sizes, dimensions and cluster
numbers in order to find its performance bounds and examine experimentally how the running time
depends on the input sizes. The simulations were run on a desktop computer with a Pentium Dual-
Core 2.93 GHz processor and 4 GB memory, running Windows 10 operation system. We generated
multidimensional Gaussian random walks as data sets for performance tests. The steps between
subsequent items were generated independently for each coordinate by using the Gaussian random
distribution with zero mean and standard deviation of 0.1.

In the first setting (Figure 2), runtime is obtained as a function of input data size for running
clustering.sc.dp(). The size of the input varies from 1,000 to 30,000 with a step size of 1,000. The
input data consists of two-dimensional vectors. The number of clusters is set to 2. The runtime
increases quadratically in the number of items to be clustered.

Table 1 presents some runtime data for a different magnitude of the number of items in order to

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 323

Size 1000 10,000 100,000 1,000,000

Runtime (sec) 0.03 1.19 144.00 14,479.88

Table 1: Runtime for different numbers of the items to be clustered.

Figure 3: Runtime as a function of the dimension of the items to be clustered.

find performance bounds of the method. One can see that the optimal clustering was found very
quickly if the number of items is 1,000, it took more than a second, almost two and a half minutes,
about four hours for 10,000, 100,000 and one million items, respectively.

In the second performance test we examine the dependency of the runtime on the dimensions.
All input data sets are of the same size 10,000 and the dimensions of the vectors varies from 1 to 512.
The dimensions are doubled in each run. Figure 3 shows the results. The algorithm runs less than a
second if the input contains one-dimensional vectors (i.e., scalars). The runtime increases linearly with
the dimension and it can be solved within two and a half minutes if the dimension of the processed
vectors is 512.

In the third performance test, the runtime is examined as a function of the number of clusters.
The number of clusters is between 1 and 25. The input data set consist of 10,000 two-dimensional
vectors. The black line with circles in Figure 4 shows the result. The runtime increases linearly with
the number of clusters.

Finally, we compared the runtime of different functions within the package. The input data were
the same as in the previous setting. One can see in Figure 4 that the runtime of findwithinss.sc.dp()
is slightly larger than the one of clustering.sc.dp(). The runtime of backtracking.sc.dp() remains
small even for large cluster numbers. The package has three typical ways of usage:

• clustering.sc.dp() can be called when the number of clusters is known in advance.

• findwithinss.sc.dp() can be called first and then backtracking.sc.dp() for a selected number
of clusters.

• findwithinss.sc.dp() can be called first and then backtracking.sc.dp() for all possible num-
ber of clusters.

The subsequent call of findwithinss.sc.dp() and backtracking.sc.dp() is only slightly slower than
calling clustering.sc.dp(). Furthermore, the total runtime of calling findwithinss.sc.dp() for
cluster number k and backtracking.sc.dp() for all cluster numbers less than or equal to k is less
than the double of the runtime of clustering.sc.dp() called for the same cluster number. This
is much faster than calling the clustering function k times which would be required without split-
ting clustering.sc.dp() into phases of finding the optimal withinss (findwithinss.sc.dp()) and
backtracking (backtracking.sc.dp()).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 324

Figure 4: Comparison of runtime as a function of number of clusters between different
functions provided by package clustering.sc.dp: clustering.sc.dp(), findwithinss.sc.dp(),
backtracking.sc.dp(). It also contains the total running time of backtracking.sc.dp() when it
is called for all cluster numbers less than or equal to the specific cluster number.

Introduction to the R package clustering.sc.dp

R package clustering.sc.dp offers functions to perform optimal clustering on multidimensional data
with sequential constraint. Method clustering.sc.dp() can find the optimal clustering if the number
of clusters is known. Otherwise, methods findwithinss.sc.dp() and backtracking.sc.dp() can be
used.

The following examples illustrate how to use the package. Function clustering.sc.dp() outputs
the same fields describing clustering as Ckmeans.1d.dp() does in the original package:

• cluster: a vector of cluster indices assigned to each element in x. Each cluster is indexed by an
integer from 1 to k.

• centers: a matrix whose rows represent the vectors of cluster centres (the average of the points
within the cluster).

• withinss: the within-cluster sum of squared distances for each cluster.

• size: a vector containing the number of points in each cluster.

Figure 5 visualizes the input data and the clusters created by clustering.sc.dp(). See below for
the R source code of the example.

Example1: clustering data generated from a random walk
x <- rbind(0, matrix(rnorm(99 * 2, 0, 0.1), nrow = 99, ncol = 2))
x <- apply(x, 2, cumsum)

k <- 2
result <- clustering.sc.dp(x, k)
plot(x, type = "b", col = result$cluster)
points(result$centers, pch = 24, bg = 1:k)

The next example demonstrates the usage of functions findwithinss.sc.dp() and backtracking.sc.dp().
Similarly to the previous example, it also processes data of a random walk. Function findwithinss.sc.dp()
finds optimal withinss for a range of cluster numbers. It returns a list with two components:

• withinss: a vector of total within-cluster sum of squared distances of the optimal clusterings for
each number of clusters less than or equal to k.

• backtrack: backtrack data used by backtracking.sc.dp().

In our example, the first cluster number where withinss drops below a threshold is selected as the
number of clusters. Function backtracking.sc.dp() outputs the optimal clustering for the selected

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 325

Figure 5: Clustering data representing a two-dimensional random walk into two clusters. The points
to be clustered are represented by circles. The clusters are indicated using different colours. The cluster
centres are denoted by triangles.

cluster number in the same format as clustering.sc.dp() does without running the whole clustering
process again (Figure 6).

Example2: clustering data generated from a random walk with small withinss
x <- rbind(0, matrix(rnorm(99 * 2, 0, 0.1), nrow = 99, ncol = 2))
x <- apply(x, 2, cumsum)

k <- 10
r <- findwithinss.sc.dp(x, k)

select the first cluster number where withinss drops below a threshold
k_th <- which(r$twithinss <= 5.0)[1]

backtrack
result <- backtracking.sc.dp(x, k_th, r$backtrack)
plot(x, type = "b", col = result$cluster)
points(result$centers, pch = 24, bg = 1:k_th)

Summary

Clustering data with sequential constraint is a polynomial time solvable variant of the clustering
problem. The paper introduced a package implementing a dynamic programming approach that finds
the exact optimum of the problem. The algorithm represents an extension of the one-dimensional
dynamic programming strategy of Ckmeans.1d.dp to multiple dimensional spaces which has been
an open problem in the paper of Wang and Song (2011). The package supports both cases when
the exact number of clusters is given and when the number of clusters is not known in advance. It
can also be used to evaluate approximation algorithms for clustering with sequential constraint due
to its optimality. The runtime evaluations indicate how fast the algorithm can solve problems with
different sizes and parameters. Our future plan is to use the dynamic programming method in video
summarisation.

Acknowledgements

Research is supported by the Hungarian National Development Agency under grant HUMAN_MB08-
1-2011-0010.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 326

Figure 6: Clustering data representing a two-dimensional random walk. The number of clusters was
determined by the analysis of optimal withinss for a range of cluster numbers. It uses the same notation
as Figure 5.

Bibliography

D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-of-squares clustering.
Machine Learning, 75(2):245–248, Jan. 2009. [p319]

R. Bellman. On the approximation of curves by line segments using dynamic programming. Communi-
cation of the ACM, 6(6):284, 1961. [p319]

S. Dasgupta and Y. Freund. Random projection trees for vector quantization. IEEE Transactions on
Information Theory, 55(7):3229–3242, July 2009. [p319]

E. Dimitriadou, S. Dolnicar, and A. Weingessel. An examination of indexes for determining the number
of clusters in binary data sets. Psychometrika, 67(1):137–160, 2002. [p321]

J. A. Hatigan and M. A. Wong. Algorithm AS 136: A k-means clustering algorithm. Journal of the Royal
Statistical Society C, 28(1):100–108, 1979. [p321]

J. Himberg, K. Korpiaho, H. Mannila, J. Tikanmaki, and H. Toivonen. Time series segmentation for
context recognition in mobile devices. In Proceedings of the IEEE International Conference on Data
Mining, 2001 (ICDM 2001), pages 203–210, 2001. [p319]

A. K. Jain. Data clustering: 50 years beyond k-means. Pattern Recognition Letters, 31(8):651–666, 2010.
[p318]

L. A. Leiva and E. Vidal. Warped k-means: An algorithm to cluster sequentially-distributed data.
Information Sciences, 237:196–210, July 2013. [p319]

S. Lloyd. Least squares quantization in PCM. IEEE Transations on Information Theory, 28(2):129–137,
1982. [p319]

M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means problem is NP-hard. In
Proceedings of the 3rd International Workshop on Algorithms and Computation (WALCOM ’09), pages
274–285, Berlin, Heidelberg, 2009. Springer-Verlag. [p319]

G. W. Milligan and M. C. Cooper. An examination of procedures for determining the number of
clusters in a data set. Psychometrika, 50(2):159–179, 1985. [p321]

M. Song and H. Wang. Ckmeans.1d.dp: Optimal k-means clustering for one-dimensional data. R
package version 3.02, 2011. URL http://CRAN.R-project.org/package=Ckmeans.1d.dp. [p318]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=Ckmeans.1d.dp

CONTRIBUTED RESEARCH ARTICLES 327

T. Szkaliczki and J. Song. clustering.sc.dp: Optimal distance-based clustering for multidimensional
data with sequential constraint. R package version 1.0, 2015. URL http://CRAN.R-project.org/
package=clustering.sc.dp. [p318]

P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley, 2006. [p318]

E. Terzi. Efficient algorithms for sequence segmentation. In Proceedings of the Sixth SIAM International
Conference on Data Mining, pages 314–325, 2006. [p319]

S. Tierney, J. Gao, and Y. Guo. Subspace clustering for sequential data. In Proceedings of the IEEE
Computer Conference on Computer Vision and Pattern Recognition, pages 1019–1026, 2014. [p319]

H. Wang and M. Song. Ckmeans.1d.dp: Optimal k-means clustering in one dimension by dynamic
programming. The R Journal, 3(2):29–33, 2011. [p318, 319, 320, 325]

J. H. Ward, Jr. Hierarchical grouping to optimize an objective function. Journal of the American Statistical
Association, 58(301):236–244, 1963. [p319]

Tibor Szkaliczki
eLearning Department
Institute for Computer Science and Control, Hungarian Academy of Sciences
Hungary
szkaliczki.tibor@sztaki.mta.hu

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=clustering.sc.dp
http://CRAN.R-project.org/package=clustering.sc.dp
mailto:szkaliczki.tibor@sztaki.mta.hu

CONTRIBUTED RESEARCH ARTICLES 328

progenyClust: an R package for Progeny
Clustering
by Chenyue W. Hu and Amina A. Qutub

Abstract Identifying the optimal number of clusters is a common problem faced by data scientists
in various research fields and industry applications. Though many clustering evaluation techniques
have been developed to solve this problem, the recently developed algorithm Progeny Clustering
is a much faster alternative and one that is relevant to biomedical applications. In this paper, we
introduce an R package progenyClust that implements and extends the original Progeny Clustering
algorithm for evaluating clustering stability and identifying the optimal cluster number. We illustrate
its applicability using two examples: a simulated test dataset for proof-of-concept, and a cell imaging
dataset for demonstrating its application potential in biomedical research. The progenyClust package
is versatile in that it offers great flexibility for picking methods and tuning parameters. In addition,
the default parameter setting as well as the plot and summary methods offered in the package make
the application of Progeny Clustering straightforward and coherent.

Introduction

Clustering is a classical and widely-used machine learning technique, yet the field of clustering is
constantly growing. The goal of clustering is to group objects that are similar to each other and
separate objects that are not similar to each other based on common features. Clustering can, for
example, be applied to distinguishing tumor subclasses based on gene expression data (Sørlie et al.,
2001; Budinska et al., 2013), or dividing sport fans based on their demographic information (Ross,
2007). One critical challenge in clustering is identifying the optimal number of groups. Despite some
advanced clustering algorithms that can automatically determine the cluster number (e.g. Affinity
Propagation (Frey and Dueck, 2007)), the commonly used algorithms (e.g. k-means (Hartigan and
Wong, 1979) and hierarchical clustering (Johnson, 1967)) unfortunately require users to specify the
cluster number before performing the clustering task. However, most often than not, the users do not
have prior knowledge of the number of clusters that exist in their data.

To solve this challenge of finding the optimal cluster number, quite a few clustering evaluation
techniques (Arbelaitz et al., 2013; Charrad et al., 2014a) as well as R packages (e.g. cclust (Dimitriadou
et al., 2015), clusterSim (Walesiak et al., 2015), cluster (Maechler et al., 2015), Nbclust (Charrad et al.,
2014b), fpc (Hennig, 2015)) were developed over the years to objectively assess the clustering quality.
The problem of identifying the optimal cluster number is thus transformed into the problem of
clustering evaluation. In most of these solutions, clustering is first performed on the data with each
of the candidate cluster numbers. The quality of these clustering results is then evaluated based on
properties such as cluster compactness (Tibshirani et al., 2001; Rousseeuw, 1987) or clustering stability
(Ben-Hur et al., 2001; Monti et al., 2003). In particular, stability-based methods have been well received
and greatly promoted in recent years (Meinshausen and Bühlmann, 2010). However, these methods
are generally slow to compute because of the repetitive clustering process mandated by the nature of
stability assessment. Recently, a new method Progeny Clustering was developed by Hu et al. (2015)
to assess clustering quality and to identify the optimal cluster number based on clustering stability.
Compared to other clustering evaluation methods, Progeny Clustering requires fewer samples for
clustering stability assessment, thus it is able to greatly boost computing efficiency. However, this
advantage is based on the assumption that features are independent for each cluster, thus users need
to either transform data and create independent features or consult other methods if this assumption
does not hold for the data of interest.

Here, we introduce a new R package, progenyClust, that performs Progeny Clustering for contin-
uous data. The package consists of a main function progenyClust() that requires few parameter speci-
fications to run the algorithm on any given dataset, as well as a built-in function hclust.progenyClust
to use hierarchical clustering as an alternative to using kmeans. Two example datasets test and cell,
used in the original publication of Progeny Clustering , are provided in this package for testing and
sharing purposes. In addition, the progenyClust package includes an option to invert the stability
scores, which is not considered in the original algorithm. This additional capability enables the
algorithm to produce more interpretable and easier-to-plot results. The rest of the paper is organized
as follows: We will first describe how Progeny Clustering works and then go over the implementation
of the progenyClust package. Following the description of functions and datasets provided by the
package, we will provide one proof-of-concept example of how the package works and a real world
example where the package is used to identify cell phenotypes based on imaging data.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=cclust
http://CRAN.R-project.org/package=clusterSim
http://CRAN.R-project.org/package=cluster
http://CRAN.R-project.org/package=Nbclust
http://CRAN.R-project.org/package=fpc
http://CRAN.R-project.org/package=progenyClust

CONTRIBUTED RESEARCH ARTICLES 329

Progeny Clustering

In this section, we briefly review the algorithm of Progeny Clustering (Hu et al., 2015). Progeny
Clustering is a clustering evaluation method, thus it needs to couple with a stand-alone clustering
method such as k-means . The framework of Progeny Clustering is similar to other stability based
methods, which select the optimal cluster number that renders the most stable clustering. The
evaluation of clustering stability usually starts with an initial clustering of the full or sometimes partial
dataset, followed by bootstrapping and repetitive clustering, and then uses certain criterion to assess
the stability of clustering solutions. Progeny Clustering uses the same workflow, but innovates at the
bootstrapping method and improves on the stability assessment.

Consider a finite dataset {xij}, i = 1, . . . , N, j = 1, . . . , M that contains M variables (or features)
for N independent observations (or samples). Given a number K (a positive integer) for clustering, a
clustering method partitions the dataset into K clusters. Each cluster is denoted as Ck, k = 1, . . . , K.
Inspired by biological concepts, each cluster is treated as a subpopulation and the bootstrapped
samples as progenies from that subpopulation. The uniqueness of Progeny Sampling during the
bootstrapping step is that it randomly samples feature values with replacement to construct new
samples rather than directly sampling existing samples. Let Ñ be the number of progenies we generate

from each cluster Ck. Combining these progenies, we have a validation dataset {y(k)ij }, i = 1, . . . , Ñ,

j = 1, . . . , M, k = 1, . . . , K, containing K× Ñ observations with M features. Using the same number K
and the same method for clustering, we partition the progenies {y(k)ij } into K progeny clusters, denoted
by C′k, k = 1, . . . , K. A symmetric co-occurrence matrix Q records the clustering memberships of each
progeny as follows:

Qab =

{
1, if the ath progeny and the bth progeny are in the same cluster C′k
0, otherwise

. (1)

The progenies in Q were ordered by the initial cluster (Ck) they were generated from, such that
Qa, . . . , Qa+Ñ ∈ Ck, a = (k− 1) Ñ. After repeating the above process (from generating Progenies to
obtaining Q) R times, we can get a series of co-occurrence matrices Q(r), r = 1, . . . , R. Averaging Q(r)

results in a stability probability matrix P, i.e.

Pab = ∑
r

Q(r)
ab /R . (2)

From this probability matrix P, we compute the stability score for clustering the dataset {xij} into K
clusters as

S =

∑
k

∑
a,b∈Ck ,b 6=a

Pab/
(

Ñ − 1
)

∑
k

∑
a∈Ck ,b/∈Ck

Pab/
(
KÑ − Ñ

) . (3)

A schematic for this process and the pseudocode are shown in Figure 1 and Figure 2.

Figure 1: The schematic of the core steps in Progeny Clustering , illustrated using an example of
clustering a 20× 2 matrix into two groups. Schematic reproduced from Hu et al. (2015) under a
Creative Commons License.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 330

Figure 2: The pseudo code of the Progeny Clustering algorithm, from Hu et al. (2015).

After computing the stability score for each cluster number, we can then pick the optimal number
using a ‘greatest score’ criterion or a ‘greatest gap’ criterion or both. The ‘greatest score’ criterion
selects the cluster number that produces the highest stability score compared to reference datasets,
similar to what is used in Gap Statistics (Tibshirani et al., 2001). T reference datasets are first generated
from a uniform distribution over the range of each feature using Monte Carlo simulation. Each
reference dataset is then treated as an input dataset, and stability scores are computed respectively
using the same process as in Figure 1. Let {S̃(K)(t)}, t = 1, . . . , T, be the stability score for clustering
the tth reference dataset into K clusters. The stability score difference between the original dataset and
reference datasets are obtained by

D(K) = S(K) −∑
t

S̃(K)(t)/T, (4)

where K = Kmin, . . . , Kmax. The optimal cluster number with the greatest score difference is then
selected, i.e.

Ko = arg max D(K). (5)

While the ‘greatest score’ criterion requires computing stability scores from random datasets, the
‘greatest gap’ criterion does not, due to the fact that the stability score linearly increases with an
increase in cluster number among reference datasets. The ‘greatest gap’ criterion therefore searches for
peaks in the stability score curve and selects the cluster number that has the highest stability score
compared to those of its neighboring numbers, i.e.

Ko = arg max
(

2S(K) − S(K−1) − S(K+1)
)

. (6)

Compared to other stability-based evaluation methods, the major benefits of using Progeny
Clustering include less re-use of the same samples and faster computation. The progenies sampled
from the original data resemble but are hardly the same as the original samples. Thanks to this unique
feature, a small number of progenies are sufficient to evaluate the clustering stability. The reduction of
sample size for evaluation in turn saves substantial computing time, because the complexity of most
clustering algorithms is dependent on the sample size (Andreopoulos et al., 2009). The proposal of
the ‘greatest gap’ criterion further boosts computation speed of clustering evaluation by eliminating
the step of generating reference scores. The comparison of computation speed between Progeny
Clustering and other commonly used algorithms can be found in Hu et al. (2015).

The progenyClust package

The progenyClust package was developed with the aim of enabling and promoting the usage of
the Progeny Clustering algorithm in the R community. This package implements the Progeny
Clustering algorithm with an additional feature to invert stability scores. The package includes
a main function progenyClust(), plot and summary methods for “progenyClust” objects, a function

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 331

hclust.progenyClust for hierarchical clustering, and two example datasets. To perform Progeny
Clustering using the progenyClust package, users should first run the main function progenyClust()
on their dataset, then use plot and summary methods to check the stability score curves, review the
clustering results, and check the recommended cluster number. The progenyClust() function allows
flexible plug-ins of various clustering algorithms into Progeny Clustering , and directly couples with
k-means clustering algorithm as a default as well as hierarchical clustering as an alternative. Since the
clustering memberships are returned in addition to the optimal cluster number, the package integrates
the clustering process and the cluster number selection process into one, and it saves users additional
efforts that are required to complete clustering tasks. In the following sections, we will first explain
the motivation to provide score inversion, then go over the main progenyClust() function, the “S3”
methods for “progenyClust” objects, the built-in function hclust.progenyClust(), and describe the
background of the included datasets.

Inversion of the stability scores

In the original Progeny Clustering algorithm, the optimal cluster number was chosen based on stability
scores, which capture the true classification rate over the false classification rate. The higher the score
is, the more stable the clustering is, and the more desirable the cluster number is. The computation
of stability scores works well in general, except for when the false classification rate is equal to zero.
The zero false classification rate indicates a perfectly stable clustering, that is when all progenies are
correctly clustered with progenies coming from the same initial cluster. The perfectly stable clustering
will produce a positive infinite stability score, which is not ideal for plotting or for further computing
to select the optimal cluster number. Therefore, we offer a choice of inverting the stability scores in
this package to mitigate the risk of generating an infinite score. The inverted stability scores can be
interpreted as a measure of instability, calculated by false classification rate over true classification rate.
In the case of a perfectly stable clustering, the inverted stability score is equal to zero, thus is much
easier for comparison and visualization. Meanwhile, the chances of a perfectly unstable clustering
are much rarer. If the inversion of stability score is chosen when running Progeny Clustering , users
should select the cluster number with the smallest score instead of the greatest score.

The progenyClust() function

The progenyClust() function takes in a data matrix, performs Progeny Clustering , and outputs a
“progenyClust” object. The clustering is performed on rows, thus the input data matrix needs to
be formatted accordingly. A number of input arguments were offered by progenyClust() to allow
users to specify the clustering algorithm, cluster number selection criterion and parameter values
they want to use for Progeny Clustering . The output “progenyClust” object contains information
on the clustering memberships and stability scores at each cluster number, and it can work with the
plot and summary methods. Since the default values for most of the input arguments are provided,
progenyClust() can be run without any tuning. The function is used as follows:

progenyClust(data, FUNclust = kmeans, method = 'gap', score.invert = F,
ncluster = 2:10, size = 10, iteration = 100, repeats = 1, nrandom = 10, ...)

Here, we group the input arguments into three categories, and highlight the meaning and usage of
each argument.

• Input Data: data is a matrix, the rows of which are of interest to cluster. ncluster is a sequence
of candidate cluster numbers to evaluate.

• Method: Since progenyClust() is a clustering evaluation algorithm, it needs to work together
with a clustering algorithm. FUNclust is where the clustering function is specified. The input
and output of FUNclust is required to be similar to the default kmeans() function from stat,
or the alternative hclust.progenyClust() function for hierarchical clustering as provided in
progenyClust. FUNclust should be able to accept data as its first argument, accept the number
for clustering as its second argument, and return a list containing a component cluster which
is a vector of integers denoting the clustering assignment for each sample. method is the stability
score comparison criterion being selected. score.invert can be used to flip the stability scores to
instability scores when specified to be TRUE. The values of method can be ‘gap’ which represents
the ‘greatest gap’ criterion, ‘score’ which represents the ‘greatest score’ criterion, or ‘both’ which
represents using both the ‘greatest gap’ and the ‘greatest score’ criteria. In cases when optimal
cluster numbers determined by the ‘greatest gap’ and the ‘greatest score’ do not agree, we
suggest users to either review the stability score plots from both criteria and pick the most
preferred one or use the cluster number suggested by the ‘greatest score’ criterion.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=stat

CONTRIBUTED RESEARCH ARTICLES 332

• Tuning Parameters: size specifies the number of progenies to generate from each initial cluster
for stability evaluation. iteration denotes how many times the progenies are generated for
calculating the stability score. repeats is the number of times the entire algorithm should be
repeated from the initial clustering to obtaining the stability scores. If repeats is greater than one,
the standard deviation of the stability score at each cluster number will be produced. nrandom
specifies the number of random datasets to generate when computing the reference scores, if the
‘greatest score’ method is chosen. All these tuning parameters, if specified inappropriately, can
affect the accuracy and computing efficiency of the Progeny Clustering algorithm. In general,
the greater the values of size, iteration, repeats and nrandom are, the slower the computing
will be.

The output of the progenyClust() function is an object of the “progenyClust” class, which contains
information on the clustering results, the stability scores computed and the calls that were made.
Specifically, cluster is a matrix of clustering memberships, where rows are samples and columns are
cluster numbers; mean.gap and mean.score are the scores computed at each given cluster number and
normalized based on the ‘greatest gap’ and the ‘greatest score’ criteria; score and random.score are
the initial stability scores computed before using any criteria to normalize; sd.gap and sd.score are
the standard deviations of the scores when the input argument repeats is specified to be greater than
one; call, ncluster, method and score.invert return the call that was made and input arguments
specified.

The plot and summary methods for “progenyClust” objects

To identify the optimal cluster number, we provide the S3 plot and summary methods for “progeny-
Clust” objects. The plot method enables users to visualize stability scores for cluster number selection
and to visualize the clustering results. The plot function is as follows:

plot(x, data = NULL, k = NULL, errorbar = FALSE, xlab = '', ylab = '', ...)

If data is not provided, the function will visualize the stability score at each investigated cluster
number to give users an overview of the clustering stability. When data is provided, the function will
visualize data in scatter plots and represent each cluster membership by a distinct color. data can be
the orginal data matrix used for clustering or a subset of the original data with fewer variables but
the same number of samples. Additional graphical arguments can be passed to customize the plot.
The only extra input argument we added here is errorbar, which will render error bars when plotting
stability scores if errorbar = TRUE. The errbar function from Hmisc (Harrell Jr and Harrell Jr, 2015)
was used to generate the error bars. In addition, the summary method of the “progenyClust” object
produces a quick summary of what number of clusters is the best to use for the given data.

The hclust.progenyClust() function

The hclust.progenyClust() function performs hierarchical clustering by combining three existing
R functions dist(), hclust() and cutree() from stat into one. The input and output are formatted
such that they can be directly plugged into the progenyClust() function as an option for FUNclust,
similar to the default kmeans() function. The function is as follows:

hclust.progenyClust(x, k, h.method = 'ward.D2', dist = 'euclidean', p = 2, ...)

To ensure consistency between similar R functions and allow users to easily use this function, the
input arguments are largely kept the same as the ones used in fucntions dist(), hclust(), cutree().
The function returns clustering memberships, an hclust object of the tree, and a dist object of the
distance matrix.

The test and cell datasets

A couple of datasets from the original paper on Progeny Clustering (Hu et al., 2015) were included
in the progenyClust package for testing and sharing purposes. As a proof-of-concept example, test
was a simulated dataset to help users quickly test the algorithm and see how it works. The dataset
was generated by randomly drawing 50 samples from bivariate normal distributions with a common
identity covariance matrix and a mean at (-1,2), (2,0) and (-1,-2) respectively. Thus, test is a 150 by 2
matrix that contains three clusters.

The dataset cell, generated experimentally from Slater et al. (2015), contains 444 cell samples and
the first three principal components of their morphology metrics. Since the cells were engineered into 4
distinct morphological phenotypes, this dataset in theory should contain 4 clusters. More experimental
details of this dataset can be found in Slater et al. (2015) and Hu et al. (2015).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=Hmisc

CONTRIBUTED RESEARCH ARTICLES 333

Examples

In this section, we demonstrate the use of the progenyClust package in two examples. The first
example is a proof-of-concept of how progenyClust works on a simulated test dataset. The second
example demonstrates the biomedical application of progenyClust to identify the number of cell
phenotypes based on cell imaging data.

Proof-of-concept example

To show how the progenyClust() function works, we use the dataset test included in the progeny-
Clust package as the input dataset. The goal here is to find the inherent number of clusters present in
this dataset, which is known to be three. Since most of the parameters have default values, we can run
the progenyClust() function for this dataset with the default setting. The R code is as follows:

require('progenyClust')
data(test)
set.seed(1)

run Progeny Clustering with default parameter setting
test.progenyClust <- progenyClust(test)

plot stability scores computed by Progeny Clustering
plot(test.progenyClust)

plot clustering results at the optimal cluster number (default)
plot(test.progenyClust, test)

report the optimal cluster number
summary(test.progenyClust)

output from the summary
Call:
progenyClust(data = test)

Optimal Number of Clusters:
gap criterion - 3

Figure 3: Plots of the “progenyClust” object from clustering the test dataset under the default setting.
(A) Normalized stability scores based on the ‘greatest gap’ method were shown at each cluster number.
The greater the stability score is, the closer the cluster number matches the true cluster number. (B)
The clustered test data is shown with the optimal number of clusters.

The summary of the “progenyClust” object concludes that the optimal number for clustering this
test dataset is three, which agrees with the fact that the dataset was generated from three centers. The
plot result of the “progenyClust” object alone is shown in Figure 3A, displaying a curve of normalized
stability scores for all candidate numbers of clusters except for the minimum and maximum. This
score curve can provide us with insights of clustering quality at all cluster numbers, and help us
identify the second preferred number of clusters if needed. Using the test data as input, the plot()

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 334

Figure 4: Plot of the “progenyClust” object from running progenyClust() on the test dataset three
times with both evaluation methods, ‘greatest gap’ (top) and ‘greatest score’ (bottom). The score
curves from both methods estimated that the number of three clusters is best for this dataset. The plot
was customized to display the error bars.

function visualizes the data in a scatter plot with three colors, where each corresponds to a cluster
(Figure 3B).

Though the default setting of progenyClust() function works well in this example, for the purpose
of illustrating the capabilities of the function, we will change the input argument values and tune the
algorithms slightly. For example, due to the theoretical shortage of the ‘greatest gap’ criterion, the
user might want to obtain estimation from both the ‘greatest gap’ and the ‘greatest score’ methods.
Though the ‘greatest score’ method will slow down the algorithm because of the laborious process
of generating reference scores, it can evaluate clustering stabilities at the minimum and maximum
potential cluster numbers which are ignored by the ‘greatest gap’ method. The R code for the altered
version is shown below. Here, we also change the input argument repeats to repeat the algorithm
three times instead of one time to obtain standard deviations of the stability scores.

set.seed(1)

run Progeny Clustering with both methods and repeated three times
test2.progenyClust <- progenyClust(test, method = 'both', repeats = 3)

plot with error bars and summarize the output progenyClust object
plot(test2.progenyClust, errorbar = TRUE, type = 'b')
summary(test2.progenyClust)

output from the summary
Call:
progenyClust(data = test, method = "both", repeats = 3)

Optimal Number of Clusters:
gap criterion - 3
score criterion - 3

It is clear from both the summary and the score curve plots (Figure 4) that both methods agree
on the optimal cluster number being three. Specifically, the S3 plot method automatically plots two

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 335

score curves if the “progenyClust” object was generated with method = 'both'. Using the errbar()
function from Hmisc, the S3 plot method is able to display error bars with errorbar = TRUE.

Application to identifying cell phenotypes

Clustering is a useful technique for the biomedical community, and it can be widely applied to various
data-driven research projects. As a second example, we illustrate here how the progenyClust package
can be used to identify the number of cell phenotypes based on the morphology metrics derived from
cell images. In this experiment, biomedical researches used a special technique called “Image Guided
Laser Scanning Lithography (LG-LSL)” (Slater et al., 2011) to pattern cells into four shapes. Images of
all patterned cells were taken, and morphology metrics were derived to study cytoskeletal and nuclei
features of patterned cells. Finding the cell clusters based on their imaging data is of particular interest
in this case, and Progeny Clustering can help estimate the optimal number for clustering.

Similar to the first example, applying Progeny Clustering to the cell dataset using the progeny-
Clust package is straightforward. The R code is shown below. Here, we use the built-in function
hclust.progenyClust as FUNclust to run the algorithm with hierarchical clustering instead of the de-
fault kmeans, and we select the optimal cluster number based on the ‘greatest gap’ criterion. The plot
and summary methods are used to show the output scores and the estimated optimal cluster number.
From the output result (Figure 5A), we can see that clustering the cells into four groups has the highest
stability, which matches the four patterned cell shapes included in this dataset. The clustering results
are shown in Figure 5B in a table of scatter plots for each pairing of variables. Since the cell patterns
were engineered, we are fortunate in this example to have prior knowledge of the true number of
clusters and to easily test clustering algorithms. However, in a lot of similar biological experiments
(e.g. collected tumor cells), we do not possess the knowledge of the true cluster number. In these cases,
progenyClust can come in handy to identify the optimal cluster number to divide the cells into, and
subsequent analyses are then possible for characterizing each cell cluster and discovering its biological
or clinical impact.

data(cell)
set.seed(1)

run Progeny Clustering with hierarchical clustering
cell.progenyClust <- progenyClust(cell, hclust.progenyClust)

plot stability scores, clustering results at optimal cluster number, and summarize results
plot(cell.progenyClust, type = 'b')
plot(cell.progenyClust, cell)
summary(cell.progenyClust)

output from the summary
Call:
progenyClust(data = cell, FUNclust = hclust.progenyClust)

Optimal Number of Clusters:
gap criterion - 4

Summary

This paper introduces the R package progenyClust, which identifies the optimal cluster number for
any given dataset based on the Progeny Clustering algorithm. Improving on the original algorithm,
progenyClust provides the option to invert stability scores to instability scores, thus preventing
the generation of infinite scores in a perfectly stable clustering solution. A variety of parameters
(including the clustering method, the evaluation method and the size of progenies) are offered by the
package and can be easily adjusted for Progeny Clustering . In addition, the default parameter setting
specified by the package allows users to perform the algorithm with little background knowledge and
parameter tuning. Thanks to the superior computing efficiency of Progeny Clustering , this package is
a faster alternative to traditional clustering evaluation methods, and it can benefit R communities in
biomedicine and beyond.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 336

Figure 5: Plots of the “progenyClust” object from running progenyClust() on the cell dataset with
hierarchical clustering. (A) The score curve shows that the cell data is best clustered with four clusters.
(B) The clustering results with four clusters are shown in a table of scatter plots.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 337

Bibliography

B. Andreopoulos, A. An, X. Wang, and M. Schroeder. A roadmap of clustering algorithms: finding a
match for a biomedical application. Briefings in Bioinformatics, 10(3):297–314, 2009. [p330]

O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona. An extensive comparative study
of cluster validity indices. Pattern Recognition, 46(1):243–256, 2013. [p328]

A. Ben-Hur, A. Elisseeff, and I. Guyon. A stability based method for discovering structure in clustered
data. In Pacific Symposium on Biocomputing, volume 7, pages 6–17, 2001. [p328]

E. Budinska, V. Popovici, S. Tejpar, G. D’Ario, N. Lapique, K. O. Sikora, A. F. Di Narzo, P. Yan, J. G.
Hodgson, S. Weinrich, et al. Gene expression patterns unveil a new level of molecular heterogeneity
in colorectal cancer. The Journal of Pathology, 231(1):63–76, 2013. [p328]

M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs. Nbclust: an R package for determining the
relevant number of clusters in a data set. Journal of Statistical Software, 61(6):1–36, 2014a. [p328]

M. Charrad, N. Ghazzali, V. Boiteau, A. Niknafs, and M. M. Charrad. Package ‘nbclust’. J. Stat. Soft,
61:1–36, 2014b. [p328]

E. Dimitriadou, K. Hornik, and M. K. Hornik. Package ‘cclust’. 2015. [p328]

B. J. Frey and D. Dueck. Clustering by passing messages between data points. Science, 315(5814):
972–976, 2007. [p328]

F. E. Harrell Jr and M. F. E. Harrell Jr. Package ‘hmisc’. 2015. [p332]

J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979. [p328]

C. Hennig. Package ‘fpc’. 2015. [p328]

C. W. Hu, S. M. Kornblau, J. H. Slater, and A. A. Qutub. Progeny clustering: A method to identify
biological phenotypes. Scientific reports, 5, 2015. [p328, 329, 330, 332]

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967. [p328]

M. Maechler, P. Rousseeuw, A. Struyf, M. Hubert, K. Hornik, M. Studer, and P. Roudier. Package
‘cluster’, 2015. [p328]

N. Meinshausen and P. Bühlmann. Stability selection. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 72(4):417–473, 2010. [p328]

S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: a resampling-based method for
class discovery and visualization of gene expression microarray data. Machine Learning, 52(1-2):
91–118, 2003. [p328]

S. D. Ross. Segmenting sport fans using brand associations: A cluster analysis. Sport Marketing
Quarterly, 16(1):15, 2007. [p328]

P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathematics, 20:53–65, 1987. [p328]

J. Slater, J. C. Culver, B. L. Long, C. W. Hu, J. Hu, T. F. Birk, A. A. Qutub, M. E. Dickinson, and J. L.
West. Recapitulation and modulation of the cellular architecture of a user-chosen cell-of-interest
using cell-derived, biomimetic patterning. ACS nano, 2015. [p332]

J. H. Slater, J. S. Miller, S. S. Yu, and J. L. West. Fabrication of multifaceted micropatterned surfaces
with laser scanning lithography. Advanced Functional Materials, 21(15):2876–2888, 2011. [p335]

T. Sørlie, C. M. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M. B. Eisen, M. van de
Rijn, S. S. Jeffrey, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses
with clinical implications. Proceedings of the National Academy of Sciences, 98(19):10869–10874, 2001.
[p328]

R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a data set via the gap
statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2):411–423, 2001.
[p328, 330]

M. Walesiak, A. Dudek, and M. A. Dudek. Package ‘clustersim’, 2015. [p328]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 338

Chenyue W. Hu
Rice University
Suite 610, BioScience Research Collaborative, 6500 Main St, Houston, TX 77030
U.S.A
wendyhu001@gmail.com

Amina A. Qutub
Rice University
Suite 610, BioScience Research Collaborative, 6500 Main St, Houston, TX 77030
U.S.A
aminaq@gmail.com

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:wendyhu001@gmail.com
mailto:aminaq@gmail.com

CONTRIBUTED RESEARCH ARTICLES 339

statmod: Probability Calculations for the
Inverse Gaussian Distribution
by Göknur Giner and Gordon K. Smyth

Abstract The inverse Gaussian distribution (IGD) is a well known and often used probability dis-
tribution for which fully reliable numerical algorithms have not been available. We develop fast,
reliable basic probability functions (dinvgauss, pinvgauss, qinvgauss and rinvgauss) for the IGD
that work for all possible parameter values and which achieve close to full machine accuracy. The
most challenging task is to compute quantiles for given cumulative probabilities and we develop
a simple but elegant mathematical solution to this problem. We show that Newton’s method for
finding the quantiles of a IGD always converges monotonically when started from the mode of the
distribution. Simple Taylor series expansions are used to improve accuracy on the log-scale. The
IGD probability functions provide the same options and obey the same conventions as do probability
functions provided in the stats package.

Introduction

The inverse Gaussian distribution (IGD) (Tweedie, 1957; Johnson and Kotz, 1970) is widely used in a
variety of application areas including reliability and survival analysis (Whitmore, 1975; Chhikara and
Folks, 1977; Bardsley, 1980; Chhikara, 1989; Wang and Xu, 2010; Balakrishna and Rahul, 2014). It is
more generally used for modeling non-negative positively skewed data because of its connections to
exponential families and generalized linear models (Seshadri, 1993; Blough et al., 1999; Smyth and
Verbyla, 1999; De Jong and Heller, 2008).

Basic probability functions for the IGD have been implemented previously in James Lindsey’s
R package rmutil (Lindsey, 2010) and in the CRAN packages SuppDists (Wheeler, 2009) and STAR
Pouzat (2012). We have found however that none of these IGD functions work for all parameter values
or return results to full machine accuracy. Bob Wheeler remarks in the SuppDists documentation that
the IGD “is an extremely difficult distribution to treat numerically”. The rmutil package was removed
from CRAN in 1999 but is still available from Lindsey’s webpage. SuppDists was orphaned in 2013
but is still available from CRAN. The SuppDists code is mostly implemented in C while the other
packages are pure R as far as the IGD functions are concerned.

The probability density of the IGD has a simple closed form expression and so is easy to compute.
Care is still required though to handle infinite parameter values that correspond to valid limiting
cases. The cumulative distribution function (cdf) is also available in closed form via an indirect
relationship with the normal distribution (Shuster, 1968; Chhikara and Folks, 1974). Considerable
care is nevertheless required to compute probabilities accurately on the log-scale, because the formula
involves a sum of two normal probabilities on the un-logged scale. Random variates from IGDs can
be generated using a combination of chisquare and binomial random variables (Michael et al., 1976).
Most difficult is the inverse cdf or quantile function, which must be computed by some iterative
numerical approximation.

Two strategies have been used to compute IGD quantiles. One is to solve for the quantile using
a general-purpose equation solver such as the uniroot function in R. This is the approach taken by
the qinvgauss functions in the rmutil and STAR packages. This approach can usually be relied on to
converge satisfactorily but is computationally slow and provides only limited precision. The other
approach is to use Newton’s method to solve the equation after applying an initial approximation
(Kallioras and Koutrouvelis, 2014). This approach was taken by one of the current authors when
developing inverse Gaussian code for S-PLUS (Smyth, 1998). It is also the approach taken by the
qinvGauss function in the SuppDists package. This approach is fast and accurate when it works but
can fail unpredictably when the Newton iteration diverges. Newton’s method cannot in general be
guaranteed to converge, even when the initial approximation is close to the required value, and the
parameter values for which divergence occurs are hard to predict.

We have resolved the above difficulties by developing a Newton iteration for the IGD quantiles that
has guaranteed convergence. Instead of attempting to find a starting value that is close to the required
solution, we instead use the convexity properties of the cdf function to approach the required quantiles
in a predictable fashion. We show that Newton’s method for finding the quantiles of an IGD always
converges when started from the mode of the distribution. Furthermore the convergence is monotonic,
so that backtracking is eliminated. Newton’s method is eventually quadratically convergent, meaning
that the number of decimal places corrected determined tends to double with each iteration (Press
et al., 1992). Although the starting value may be far from the required solution, the rapid convergence

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=SuppDists
http://CRAN.R-project.org/package=STAR

CONTRIBUTED RESEARCH ARTICLES 340

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

Inverse Gaussian Density with µ = 1

Quantiles

P
ro

ba
bi

lit
y

de
ns

iti
es

λ = 0.125
λ = 0.5
λ = 1
λ = 2
λ = 8
λ = 32

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

Inverse Gaussian Density with λ = 1

Quantiles

P
ro

ba
bi

lit
y

de
ns

iti
es

µ = 0.25
µ = 0.5
µ = 1
µ = 2
µ = 8
µ = 32

Figure 1: Probability density functions of inverse Gaussian distributions. The left panel shows
densities for different λ with µ = 1. The right panel shows densities for different µ for λ = 1. The
densities are unimodal with mode between 0 and µ. As µ/λ increases the distribution becomes more
right skew and the mode decreases relative to the mean. Note that λ = 1/φ.

means the starting value is quickly left behind. Convergence tends to be rapid even when the required
quantile in the extreme tails of the distribution.

The above methods have been implemented in the dinvgauss, pinvgauss, qinvgauss and rinvgauss
functions of the statmod package (Smyth, 2016). The functions give close to machine accuracy for
all possible parameter values. They obey similar conventions to the probability functions provided
in the stats package. Tests show that the functions are faster, more accurate and more reliable than
existing functions for the IGD. Every effort has to made to ensure that the functions return results for
the widest possible range of parameter values.

Density function

The inverse Gaussian distribution, denoted IG(µ,φ), has probability density function (pdf)

d(x; µ, φ) =
(

2πφx3
)−1/2

exp
{
− (x− µ)2

2φµ2x

}
(1)

for x > 0, µ > 0 and φ > 0. The mean of the distribution is µ and the variance is φµ3. In generalized
linear model theory (McCullagh and Nelder, 1989; Smyth and Verbyla, 1999), φ is called the dispersion
parameter. Another popular parametrization of the IGD uses λ = 1/φ, which we call the shape
parameter. For best accuracy, we compute d(x; µ, φ) on the log-scale and then exponentiate if an
unlogged value is required.

Note that the mean µ can be viewed as a scaling parameter: if X is distributed as IG(µ,φ), then
X/µ is also inverse Gaussian with mean 1 and dispersion φµ. The skewness of the distribution is
therefore determined by φµ, and in fact φµ is the squared coefficient of variation of the distribution.

The IGD is unimodal with mode at

m = µ

{(
1 + κ2

)1/2
− κ

}
(2)

where κ = 3φµ/2 (Johnson and Kotz, 1970, p. 142). The second factor in the mode is strictly between
0 and 1, showing that the mode is strictly between 0 and µ. Figure 1 shows the pdf of the IGD for
various choices of µ and λ.

Care needs to be taken with special cases when evaluating the pdf (Table 1). When φµ is large, a
Taylor series expansion shows that the mode becomes dependent on φ only:

m = µκ

{(
1 + κ−2

)1/2
− 1
}

= µκ

(
1

2κ2 −
1

8κ4 +
1

16κ6 − · · ·
)
≈ µκ

1
2κ2 =

1
3φ

. (3)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=statmod

CONTRIBUTED RESEARCH ARTICLES 341

Description Parameter values log-pdf pdf cdf

Left limit x < 0 −∞ 0 0
Left limit x = 0, µ > 0 and φ < ∞ −∞ 0 0
Left limit x < µ and φ = 0 −∞ 0 0
Right limit x = ∞ −∞ 0 1
Right limit x > µ and φ = 0 −∞ 0 1
Right limit x > 0 and φ = ∞ −∞ 0 1
Spike x = µ < ∞ and φ = 0 ∞ ∞ 1
Spike x = 0 and φ = ∞ ∞ ∞ 1
Inverse chisquare µ = ∞ and φ < ∞ Eqn 5 Eqn 5 Uses pchisq
Invalid µ < 0 or φ < 0 NA NA NA

Table 1: Probability density function values for special cases of the parameter values. The pdf values
for infinite parameters are theoretical limit values.

Under the same conditions, the peak value of the density can be seen to converge to φ(2π/27)−1/2

× exp(−3/2). This shows that the distribution has a spike at 0 whenever φ is very large, regardless of
µ. It is also known that

(X− µ)2

φXµ2 ∼ χ2
1 (4)

(Shuster, 1968). Amongst other things, this implies that 1/(Xφ) ∼ χ2
1 asymptotically for µ large. For

infinite µ, the density becomes

d(x; ∞, φ) =
(

2πx3φ
)−1/2

exp
(
− 1

2φx

)
. (5)

The pdf is always NA if x is NA. Missing values for φ lead to NA values for the pdf except when x < 0 or
x = ∞. Missing values for µ lead to NA values for the pdf except when x < 0, x = ∞ or φ = ∞.

Next we give some code examples. We start by loading the packages that we will compare. Note
that statmod is loaded last and is therefore first in the search path.

> library(rmutil)
> library(SuppDists)
> library(STAR)
> library(statmod)

The statmod dinvgauss function checks for out-of-range or missing values:

> options(digits = 3)
> dinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = 1.5, dispersion = 0.7)
[1] 0.000 0.000 0.440 0.162 0.000 NA

Infinite mean corresponds to an inverse-chisquare case:

> dinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = Inf, dispersion = 0.7)
[1] 0.000 0.000 0.233 0.118 0.000 NA

Infinite dispersion corresponds to a spike at 0 regardless of the mean:

> dinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = NA, dispersion = Inf)
[1] 0 Inf 0 0 0 NA

Extreme x values have zero density regardless of the mean or dispersion:

> dinvgauss(c(-1, 0, 1, Inf), mean = NA, dispersion = NA)
[1] 0 NA NA 0

All the existing functions rmutil::dinvgauss, SuppDist::dinvGauss and STAR::dinvgauss return
errors for the above calls; they do not tolerate NA values, or infinite parameter values, or x values
outside the support of the distribution.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 342

Cumulative distribution function

Let p(q; µ, φ) = P(X ≤ q) be the left tail cdf, and write p̄(q; µ, φ) for the right tail probability P(X >
q) = 1− p(q; µ, φ). The formula developed by Shuster (1968) for the cdf is

p(q; µ, φ) = pnorm((qm − 1)/r) + exp (2/φm)pnorm(−(qm + 1)/r)

where qm = q/µ, φm = φµ, r = (qφ)1/2 and pnorm is the cdf of the standard normal distribution. The
right tail probability can be written similarly:

p̄(q; µ, φ) = p̄norm((qm − 1)/r)− exp (2/φm)pnorm(−(qm + 1)/r)

where p̄norm is the right tail of the standard normal. The fact that this formula is additive on the
unlogged scale poses some numerical problems. The pnorm() evaluations are subject to floating under-
flow, the exp() evaluation is subject to overflow, and there is the danger of subtractive cancellation
when computing the right tail probability.

It is possible to derive an asymptotic expression for the right tail probability. If q is very large then:

log p̄(q; 1, φ) ≈ 1
φm
− 0.5 log π − log(2φm)− 1.5 log

(
qm

2φm
+ 1
)
− qm

2φm
.

See the Appendix for the derivation of this approximation. This approximation is very accurate when
φ−1/2

m (qm − 1) > 105, but only gives 2–3 significant figures correctly for more modest values such as
φ−1/2

m (qm − 1) = 10.

To avoid or minimize the numerical problems described above, we convert the terms in the cdf to
the log-scale and remove a common factor before combining the two term terms to get log p. Given a
quantile value q, we compute the corresponding log p as follows:

a = log pnorm((qm − 1)/r)
b = 2/φm + log pnorm(−(qm + 1)/r)

log p = a + log1p(exp(b− a))

where log pnorm() is computed by pnorm with lower.tail=TRUE and log.p=TRUE. Note also that
log1p() is an R function that computes the logarithm of one plus its argument avoiding subtrac-
tive cancellation for small arguments. The computation of the right tail probability is similar but
with

a = log p̄norm((qm − 1)/r)
log p̄ = a + log1p(− exp(b− a)).

Because of this careful computation, statmod::pinvgauss function is able to compute correct cdf
values even in the far tails of the distribution:

> options(digits = 4)
> pinvgauss(0.001, mean = 1.5, disp = 0.7)
[1] 3.368e-312
> pinvgauss(110, mean = 1.5, disp = 0.7, lower.tail = FALSE)
[1] 2.197e-18

None of the existing functions can distinguish such small left tail probabilities from zero:

> rmutil::pinvgauss(0.001, m = 1.5, s = 0.7)
[1] 0
> SuppDists::pinvGauss(0.001, nu = 1.5, lambda = 1/0.7)
[1] 0
> STAR::pinvgauss(0.001, mu = 1.5, sigma2 = 0.7)
[1] 0

rmutil::pinvgauss doesn’t compute right tail probabilities. STAR::pinvgauss does but can’t distin-
guish right tail probabilities less than 1e-17 from zero:

> STAR::pinvgauss(110, mu = 1.5, sigma2 = 0.7, lower.tail = FALSE)
[1] 0

SuppDists::pinvGauss returns non-zero right tail probabilities, but these are too large by a factor of
10:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 343

> SuppDists::pinvGauss(110, nu = 1.5, lambda = 1/0.7, lower.tail = FALSE)
[1] 2.935e-17

The use of log-scale computations means that statmod::pinvgauss can accurately compute log-
probabilities that are too small to be represented on the unlogged scale:

> pinvgauss(0.0001, mean = 1.5, disp = 0.7, log.p = TRUE)
[1] -7146.914

None of the other packages can compute log-probabilities less than about −700.

pinvgauss handles special cases similarly to dinvgauss (Table 1). Again, none of the existing
functions do this:

> pinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = 1.5, dispersion = 0.7)
[1] 0.0000 0.0000 0.5009 0.7742 1.0000 NA

Infinite mean corresponds to an inverse-chisquare case:

> pinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = Inf, dispersion = 0.7)
[1] 0.000 0.000 0.232 0.398 1.000 NA

Infinite dispersion corresponds to a spike at 0 regardless of the mean:

> pinvgauss(c(-1, 0, 1, 2, Inf, NA), mean = NA, dispersion = Inf)
[1] 0 1 1 1 1 NA

Extreme x values have cdf equal to 0 or 1 regardless of the mean or dispersion:

> pinvgauss(c(-1, 0, 1, Inf), mean = NA, dispersion = NA)
[1] 0 NA NA 1

We can test the accuracy of the cdf functions by comparing to the cdf of the χ2
1 distribution. For

any q1 < µ, let q2 > µ be that value satisfying

z =
(q1 − µ)2

φµ2q1
=

(q2 − µ)2

φµ2q2
.

From equation 4, we can conclude that the upper tail probability for the χ2
1 distribution at z should be

the sum of the IGD tail probabilities for q1 and q2, i.e.,

p̄chisq(z) = p(q1; µ, φ) + p̄(q2; µ, φ). (6)

The following code implements this process for an illustrative example with µ = 1.5, φ = 0.7 and
q1 = 0.1. First we have to solve for q2:

> options(digits = 4)
> mu <- 1.5
> phi <- 0.7
> q1 <- 0.1
> z <- (q1 - mu)^2 / (phi * mu^2 * q1)
> polycoef <- c(mu^2, -2 * mu - phi * mu^2 * z, 1)
> q <- Re(polyroot(polycoef))
> q
[1] 0.1 22.5

The chisquare cdf value corresponding to the left hand size of equation 6 is:

> options(digits = 18)
> pchisq(z, df = 1, lower.tail = FALSE)
[1] 0.00041923696954098788

Now we compute the right hand size of equation 6 using each of the IGD packages, starting with
statmod:

> pinvgauss(q[1], mean = mu, disp = phi) +
+ pinvgauss(q[2], mean = mu, disp = phi, lower.tail = FALSE)
[1] 0.00041923696954098701
> rmutil::pinvgauss(q[1], m = mu, s = phi) +
+ 1 - rmutil::pinvgauss(q[2], m = mu, s = phi)
[1] 0.00041923696954104805
> SuppDists::pinvGauss(q[1], nu = mu, lambda = 1/phi) +

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 344

+ SuppDists::pinvGauss(q[2], nu = mu, lambda = 1/phi, lower.tail = FALSE)
[1] 0.00041923696954101699
> STAR::pinvgauss(q[1], mu = mu, sigma2 = phi) +
+ STAR::pinvgauss(q[2], mu = mu, sigma2 = phi, lower.tail = FALSE)
[1] 0.00041923696954100208

It can be seen that the statmod function is the only one to agree with pchisq to 15 significant figures,
corresponding to a relative error of about 10−15. The other three packages give 12 significant figures,
corresponding to relative errors of slightly over 10−12.

More extreme tail values give even more striking results. We repeat the above process now with
q1 = 0.01:

> q1 <- 0.01
> z <- (q1 - mu)^2 / (phi * mu^2 * q1)
> polycoef <- c(mu^2, -2 * mu - phi * mu^2 * z, 1)
> q <- Re(polyroot(polycoef))

The reference chisquare cdf value is:

> pchisq(z, df = 1, lower.tail = FALSE)
[1] 1.6427313604456241e-32

This can be compared to the corresponding values from the IGD packages:

> pinvgauss(q[1], mean = mu, disp = phi) +
+ pinvgauss(q[2], mean = mu, disp = phi, lower.tail = FALSE)
[1] 1.6427313604456183e-32
> rmutil::pinvgauss(q[1], m = mu, s = phi) +
+ 1 - rmutil::pinvgauss(q[2], m = mu, s = phi)
[1] 0
> SuppDists::pinvGauss(q[1], nu = mu, lambda = 1/phi) +
+ SuppDists::pinvGauss(q[2], nu = mu, lambda = 1/phi, lower.tail = FALSE)
[1] 8.2136568022278466e-33
> STAR::pinvgauss(q[1], mu = mu, sigma2 = phi) +
+ STAR::pinvgauss(q[2], mu = mu, sigma2 = phi, lower.tail = FALSE)
[1] 1.6319986233795599e-32

It can be seen from the above that rmutil and SuppDists do not agree with pchisq to any significant
figures, meaning that the relative error is close to 100%, while STAR manages 3 significant figures.
statmod on the other hand continues to agree with pchisq to 15 significant figures.

Inverting the cdf

Now consider the problem of computing the quantile function q(p; µ, φ). The quantile function
computes q satisfying P(X ≤ q) = p.

If qn is an initial approximation to q, then Newton’s method is a natural choice for refining the
estimate. Newton’s method gives the updated estimate as

qn+1 = qn +
p− p(qn; µ, φ)

d(qn; µ, φ)
.

For right-tail probabilities, the Newton step is almost the same:

qn+1 = qn −
p− p̄(qn; µ, φ)

d(qn; µ, φ)

where now P(X > q) = p. Newton’s method is very attractive because it is quadratically convergent
if started sufficiently close to the required value. It is hard however to characterize how close the
starting value needs to be to achieve convergence and in general there is no guarantee that the Newton
iteration will not diverge or give impossible values such as q < 0 or q = ∞. Our approach is to derive
simple conditions on the starting values such that the Newton iteration always converges and does so
without any backtracking. We call this behavior monotonic convergence .

Recall that the IGD is unimodal for all parameter values with mode m given previously. It follows
that the pdf d(q; µφ) is increasing for all q < m and decreasing for all q > m and the cdf p(q; µ, φ) is
convex for q < m and concave for q > m. In other words, the cdf has a point of inflexion at the mode
of the distribution.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 345

1.6 1.8 2.0 2.2 2.4 2.6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ = 2, λ = 200

Quantiles

C
um

ul
at

iv
e

pr
ob

ab
ili

tie
s

●

●

●

Mode = 1.97

q0.01 = 1.58

q0.99 = 2.51

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ = 3, λ = 100

Quantiles

C
um

ul
at

iv
e

pr
ob

ab
ili

tie
s

●

●

●

Mode = 2.87

q0.01 = 1.98

q0.99 = 4.41

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ = 1, λ = 0.125

Quantiles

C
um

ul
at

iv
e

pr
ob

ab
ili

tie
s

●

●

●

Mode = 0.04

q0.01 = 0.02

q0.99 = 13.44

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

µ = 3, λ = 100

Quantiles

C
um

ul
at

iv
e

pr
ob

ab
ili

tie
s

●

●

●

Mode = 0.3

q0.01 = 0.12

q0.99 = 4.98

Figure 2: Monotonic Newton’s method for quantiles of inverse Gaussian distributions. The cdf has a
point of inflexion, marked by a red dot, at the mode of the distribution. Blue lines show the progress of
the iteration for the 0.01 or 0.99 quantiles. Since the cdf is convex to the left of the mode and concave to
the right, starting the iteration at the point of inflexion ensures convergence to the required quantiles
without any backtracking.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 346

Suppose that the required q satisfies q ≥ m and suppose that the working estimate satisfies
m ≤ qn ≤ q. It can be seen that the cdf is concave in the interval [qn, q], the Newton step will be
positive and the updated estimate qn+1 will still satisfy m ≤ qn+1 ≤ q (Figure 2). Suppose instead that
q < m and suppose that the working estimate satisfies q ≤ qn ≤ m. In this case it can be seen that
the cdf is convex in the interval [qn, q], the Newton step will be negative and the updated estimate qn
will still satisfy q ≤ qn+1 ≤ m (Figure 2). It follows that Newton’s method is always monotonically
convergent provided that the starting value lies between the mode m and the required value q. In
fact the mode m itself can be used as the starting value. Note that to compute the mode m accurately
without subtractive cancellation we use equation 3 when κ is large and use equation 2 otherwise.

We use q0 = m as the starting value for the Newton iteration unless the left or right tail probability
is very small. When the left tail probability is less than 10−5, we use instead

q0 =
µ

φq2
norm

where qnorm is the corresponding quantile of the standard normal distribution. When the right tail
probability is less than 10−5, we use

q0 = qgamma

where qgamma is the corresponding quantile of the gamma distribution with the same mean and
variances as the IGD. These starting values are closer to the required q than is m but still lie between m
and the required q and so are in the domain of monotonic convergence. We use the alterative starting
values only for extreme tail probabilities because in other cases the computational cost of computing
the starting value is greater than the saving enjoyed by reducing the number of Newton iterations that
are needed.

The term p− p(qn; µ, φ) in the Newton step could potentially suffer loss of floating point precision
by subtractive cancellation when p and p(qn; µ, φ) are nearly equal or if p is very close to 1. To avoid
this we work with p on the log-scale and employ a Taylor series expansion when p and p(qn; µ, φ) are
relatively close. Let δ = log p− log p(qn; µ, φ). When |δ| < 10−5, we approximate

p− p(qn; µ, φ) ≈ δ exp {log p + log1p(−δ/2)} .

Here log p(qn; µ, φ) is computed by pinvgauss with log.p=TRUE and log1p(−δ/2) is computed using
the log1p function.

We find that the statmod qinvgauss package gives 16 significant figures whereas the other pack-
ages give no more than 6–8 figures of accuracy. Precision can be demonstrated by comparing the
probability vector p with the values obtained by passing the probabilities through qinvgauss and
pinvgauss. qinvgauss and pinvgauss are inverse functions, so the final probabilities should be equal in
principle to the original values. Error is measured by comparing the original and processed probability
vectors:

> p <- c(0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5,
+ 0.9, 0.99, 0.999, 0.9999, 0.99999, 0.999999)
>
> p1 <- pinvgauss(qinvgauss(p, mean = 1, disp = 1), mean = 1, disp = 1)
> p2 <- rmutil::pinvgauss(rmutil::qinvgauss(p, m = 1, s = 1), m = 1, s = 1)
> p3 <- SuppDists::pinvGauss(SuppDists::qinvGauss(p, nu = 1, la = 1), nu = 1, la = 1)
> p4 <- STAR::pinvgauss(STAR::qinvgauss(p, mu = 1, sigma2 = 1), mu = 1, sigma2 = 1)
>
> options(digits = 4)
> summary(abs(p-p1))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 0.00e+00 0.00e+00 1.92e-17 2.20e-19 2.22e-16
> summary(abs(p-p2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 5.10e-09 8.39e-08 3.28e-07 5.92e-07 1.18e-06
> summary(abs(p-p3))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00e-12 6.00e-12 2.77e-10 1.77e-09 2.58e-09 1.03e-08
> summary(abs(p-p4))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 0.00e+00 1.20e-08 8.95e-07 2.17e-07 6.65e-06

It can be seen that the error for statmod::qinvgauss is never greater than 2e-16.

Similar results are observed if relative error is assessed in terms of the quantile q instead of the
probability p:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 347

> q <- qinvgauss(p, mean = 1, disp = 1)
> q1 <- qinvgauss(pinvgauss(q, mean = 1, disp = 1), mean = 1, disp = 1)
> q2 <- rmutil::qinvgauss(rmutil::pinvgauss(q, m = 1, s = 1), m = 1, s = 1)
> q3 <- SuppDists::qinvGauss(SuppDists::pinvGauss(q, nu = 1, la = 1), nu = 1, la = 1)
> q4 <- STAR::qinvgauss(STAR::pinvgauss(q, mu = 1, sigma2 = 1), mu = 1, sigma2 = 1)
> summary(abs(q1-q)/q)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 0.00e+00 0.00e+00 5.57e-17 0.00e+00 4.93e-16
> summary(abs(q2-q)/q)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 1.70e-06 3.30e-06 8.94e-05 8.80e-05 5.98e-04
> summary(abs(q3-q)/q)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.09e-08 3.94e-08 4.78e-08 4.67e-08 5.67e-08 8.93e-08
> summary(abs(q4-q)/q)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00e+00 3.00e-07 1.40e-06 9.20e-05 9.42e-05 5.46e-04

The relative error for statmod::qinvgauss is never worse than 5e-16.

Speed was determined by generating p as a vector of a million random uniform deviates, and
running the qinvgauss or qinvGauss functions on p with mean and dispersion both equal to one.

> set.seed(20140526)
> u <- runif(1000)
> p <- runif(1e6)
> system.time(q1 <- qinvgauss(p, mean = 1, shape = 1))

user system elapsed
4.29 0.41 4.69

> system.time(q2 <- rmutil::qinvgauss(p, m = 1, s = 1))
user system elapsed

157.39 0.03 157.90
> system.time(q3 <- SuppDists::qinvGauss(p, nu = 1, lambda = 1))

user system elapsed
13.59 0.00 13.68

> system.time(q4 <- STAR::qinvgauss(p, mu = 1, sigma2 = 1))
user system elapsed

266.41 0.06 267.25

Timings shown here are for a Windows laptop with a 2.7GHz Intel i7 processor running 64-bit R-devel
(built 31 January 2016). The statmod qinvgauss function is 40 times faster than the rmutil or STAR
functions about 3 times faster than SuppDists.

Reliability is perhaps even more crucial than precision or speed. SuppDists::qinvGauss fails
for some parameter values because Newton’s method does not converge from the starting values
provided:

> options(digits = 4)
> SuppDists::qinvGauss(0.00013, nu=1, lambda=3)
Error in SuppDists::qinvGauss(0.00013, nu = 1, lambda = 3) :
Iteration limit exceeded in NewtonRoot()

By contrast, statmod::qinvgauss runs successfully for all parameter values because divergence of the
algorithm is impossible:

> qinvgauss(0.00013, mean = 1, shape = 3)
[1] 0.1504

qinvgauss returns right tail values accurately, for example:

> qinvgauss(1e-20, mean = 1.5, disp = 0.7, lower.tail = FALSE)
[1] 126.3

The same probability can be supplied as a left tail probability on the log-scale, with the same result:

> qinvgauss(-1e-20, mean = 1.5, disp = 0.7, log.p = TRUE)
[1] 126.3

Note that qinvgauss returns the correct quantile in this case even though the left tail probability is
not distinguishable from 1 in floating point arithmetic on the unlogged scale. By contrast, the rmutil

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 348

and STAR functions do not compute right tail values and the SuppDists function fails to converge for
small right tail probabilities:

> SuppDists::qinvGauss(1e-20, nu = 1.5, lambda = 1/0.7, lower.tail = FALSE)
Error in SuppDists::qinvGauss(1e-20, nu = 1.5, lambda = 1/0.7, lower.tail = FALSE) :
Infinite value in NewtonRoot()

Similarly for log-probabilities, the rmutil and STAR functions do not accept log-probabilities and the
SuppDists function gives an error:

> SuppDists::qinvGauss(-1e-20, nu = 1.5, lambda = 1/0.7, log.p=TRUE)
Error in SuppDists::qinvGauss(-1e-20, nu = 1.5, lambda = 1/0.7, log.p = TRUE) :
Infinite value in NewtonRoot()

All the statmod IGD functions allow variability to be specified either by way of a dispersion (φ) or
shape (λ) parameter:

> args(qinvgauss)
function (p, mean = 1, shape = NULL, dispersion = 1, lower.tail = TRUE,

log.p = FALSE, maxit = 200L, tol = 1e-14, trace = FALSE)

Boundary or invalid p are detected:

> options(digits = 4)
> qinvgauss(c(0, 0.5, 1, 2, NA))
[1] 0.0000 0.6758 Inf NA NA

as are invalid values for µ or φ:

> qinvgauss(0.5, mean = c(0, 1, 2))
[1] NA 0.6758 1.0285

The statmod functions dinvgauss, pinvgauss and qinvgauss all preserve the attributes of the
first input argument provided that none of the other arguments have longer length. For example,
qinvgauss will return a matrix if p is a matrix:

> p <- matrix(c(0.1, 0.6, 0.7, 0.9), 2, 2)
> rownames(p) <- c("A", "B")
> colnames(p) <- c("X1", "X2")
> p

X1 X2
A 0.6001 0.3435
B 0.4919 0.4987
> qinvgauss(p)

X1 X2
A 0.8486 0.4759
B 0.6637 0.6739

Similarly the names of a vector are preserved on output:

> p <- c(0.1, 0.6, 0.7, 0.9)
> names(p) <- LETTERS[1:4]
> qinvgauss(p)

A B C D
0.2376 0.8483 1.0851 2.1430

Random deviates

The functions statmod::rinvgauss, SuppDists::rinvGauss and STAR::rinvgauss all use the same
algorithm to compute random deviates from the IGD. The method is to generate chisquare random
deviates corresponding to (X − µ)2/(φXµ2), and then choose between the two possible X values
leading to the same chisquare value with probabilities worked out by Michael et al. (1976). The
SuppDists function is faster than the others because of the implementation in C. Nevertheless, the
pure R statmod and STAR functions are acceptably fast. The statmod function generates a million
random deviates in about a quarter of a second of elapsed time on a standard business laptop computer
while STAR takes about half a second.

The rmutil::rinvgauss function generates random deviates by running qinvgauss on random
uniform deviates. This is far slower and less accurate than the other functions.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 349

Discussion

Basic probability calculations for the IGD have been available in various forms for some time but
the functions described here are the first to work for all parameter values and to return close to full
machine accuracy.

The statmod functions achieve good accuracy by computing probabilities on the log-scale where
possible. Care is given to handle special limiting cases, including some cases that have not been
previously described. The statmod functions trap invalid parameter values, provide all the standard
arguments for probability functions in the R and preserve argument attributes on output.

A new strategy has been described to invert the cdf using a monotonically convergent Newton
iteration. It may seem surprising that we recommend starting the iteration from the same value
regardless of the quantile required. Intuitively, a starting value that is closer to the required quantile
might have been expected to be better. However using an initial approximation runs the risk of
divergence, and convergence of Newton’s method from the mode is so rapid that the potential
advantage of a closer initial approximation is minimized. The statmod qinvgauss function is 40 times
faster than the quantile functions in the rmutil or STAR packages, despite returning 16 rather than
6 figures of accuracy. It is also 3 times faster than SuppDists, even though SuppDists::qinvGauss is
written in C, uses the same basic Newton strategy and has a less stringent stopping criterion. The
starting values for Newton’s method used by SuppDists::qinvGauss are actually closer to the final
values than those used by statmod::qinvgauss, but the latter are more carefully chosen to achieve
smooth convergence without backtracking. SuppDists::qinvGauss uses the log-normal approximation
of Whitmore and Yalovsky (1978) to start the Newton iteration and the STAR::qinvgauss uses the same
approximation to setup the interval limits for uniroot. Unfortunately the log-normal approximation
has much heavier tails than the IGD, meaning that the starting values are more extreme than the
required quantiles and are therefore outside the domain of monotonic convergence.

As well as the efficiency gained by avoiding backtracking, monotonic convergence has the advan-
tage that any change in sign of the Newton step is a symptom that the limits of floating point accuracy
have been reached. In the statmod qinvgauss function, the Newton iteration is stopped if this change
of sign occurs before the convergence criterion is achieved.

The current statmod functions could be made faster by reimplementing in C, but the pure R
versions have benefits in terms of understandability and easy maintenance, and they are only slightly
slower than comparable functions such as qchisq and qt.

This strategy used here to compute the quantile could be used for any continuous unimodal
distribution, or for continuous distribution that can be transformed to be unimodal.

> sessionInfo()
R Under development (unstable) (2016-01-31 r70055)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:
[1] LC_COLLATE=English_Australia.1252 LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C
[5] LC_TIME=English_Australia.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] statmod_1.4.24 STAR_0.3-7 codetools_0.2-14 gss_2.1-5
[5] R2HTML_2.3.1 mgcv_1.8-11 nlme_3.1-124 survival_2.38-3
[9] SuppDists_1.1-9.2 rmutil_1.0

loaded via a namespace (and not attached):
[1] Matrix_1.2-3 splines_3.3.0 grid_3.3.0 lattice_0.20-33

Bibliography

N. Balakrishna and T. Rahul. Inverse Gaussian distribution for modeling conditional durations in
finance. Communications in Statistics-Simulation and Computation, 43(3):476–486, 2014. [p339]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 350

W. Bardsley. Note on the use of the inverse Gaussian distribution for wind energy applications. Journal
of Applied Meteorology, 19(9):1126–1130, 1980. [p339]

D. K. Blough, C. W. Madden, and M. C. Hornbrook. Modeling risk using generalized linear models.
Journal of Health Economics, 18(2):153–171, 1999. [p339]

R. Chhikara and J. Folks. The inverse Gaussian distribution as a lifetime model. Technometrics, 19(4):
461–468, 1977. [p339]

R. S. Chhikara. The Inverse Gaussian Distribution. Marcel Dekker, New York, 1989. [p339]

R. S. Chhikara and J. L. Folks. Estimation of the inverse Gaussian distribution function. Journal of the
American Statistical Association, 69(345):250–254, 1974. [p339]

P. De Jong and G. Z. Heller. Generalized linear models for insurance data. Cambridge University Press,
Cambridge, 2008. [p339]

N. L. Johnson and S. Kotz. Continuous Univariate Distributions, Vol. 1. Wiley-Interscience, New York,
1970. [p339, 340]

A. G. Kallioras and I. A. Koutrouvelis. Percentile estimation in inverse Gaussian distributions.
Communications in Statistics-Simulation and Computation, 43(2):269–284, 2014. [p339]

J. Lindsey. rmutil: Utilities for Nonlinear Regression and Repeated Measurements Models, 2010. URL
http://www.commanster.eu/rcode.html. R package version 1.0, last changed 2010-02-15. [p339]

P. McCullagh and J. A. Nelder. Generalized Linear Models. Chapman & Hall/CRC, Boca Raton, Florida,
2nd edition, 1989. [p340]

J. R. Michael, W. R. Schucany, and R. W. Haas. Generating random variates using transformations
with multiple roots. The American Statistician, 30(2):88–90, 1976. [p339, 348]

C. Pouzat. STAR: Spike Train Analysis with R, 2012. URL http://CRAN.R-project.org/package=STAR.
R package version 0.3-7, dated 2012-10-08. [p339]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in Fortran. Cambridge
University Press, Cambridge, 1992. [p339]

V. Seshadri. The Inverse Gaussian Distribution: a Case Study in Exponential Families. Clarendon Press,
Oxford, 1993. [p339]

J. Shuster. On the inverse Gaussian distribution function. Journal of the American Statistical Association,
63(324):1514–1516, 1968. [p339, 341, 342]

G. Smyth and A. Verbyla. Adjusted likelihood methods for modelling dispersion in generalized linear
models. Environmetrics, 10(6):695–709, 1999. [p339, 340]

G. K. Smyth. invgauss: Inverse Gaussian Distribution, 1998. URL http://www.statsci.org/s/invgauss.
html. Functions for S-Plus. [p339]

G. K. Smyth. statmod: Statistical Modeling, 2016. URL http://CRAN.R-project.org/package=statmod.
R package version 1.4.23. [p340]

M. C. Tweedie. Statistical properties of inverse Gaussian distributions I. The Annals of Mathematical
Statistics, 28(2):362–377, 1957. [p339]

X. Wang and D. Xu. An inverse Gaussian process model for degradation data. Technometrics, 52(2):
188–197, 2010. [p339]

B. Wheeler. SuppDists: Supplementary Distributions, 2009. URL http://CRAN.R-project.org/package=
SuppDists. R package version 1.1-9.1, dated 2009-12-09. [p339]

A. Whitmore, G. The inverse Gaussian distribution as a model of hospital stay. Health Services Research,
10(3):297, 1975. [p339]

G. Whitmore and M. Yalovsky. A normalizing logarithmic transformation for inverse Gaussian random
variables. Technometrics, 20(2):207–208, 1978. [p349]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.commanster.eu/rcode.html
http://CRAN.R-project.org/package=STAR
http://www.statsci.org/s/invgauss.html
http://www.statsci.org/s/invgauss.html
http://CRAN.R-project.org/package=statmod
http://CRAN.R-project.org/package=SuppDists
http://CRAN.R-project.org/package=SuppDists

CONTRIBUTED RESEARCH ARTICLES 351

Göknur Giner
Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville Vic 3052, Australia;
and Department of Medical Biology, University of Melbourne, Parkville Vic 3010, Australia
giner.g@wehi.edu.au

Gordon K. Smyth
Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville Vic 3052, Australia;
and Department of Mathematics and Statistics, University of Melbourne, Parkville Vic 3010, Australia
smyth@wehi.edu.au

Appendix: asymptotic right tail probabilities

Here we derive an asymptotic expression for the right tail probability, p̄(q; µ, φ), when q is large.
Without loss of generality, we will assume µ = 1. First, we drop the 1/x term in the exponent of the
pdf (1), leading to:

d(x; 1, φ) ≈
(

2πφx3
)−1/2

exp
(
− x

2φ
+

1
φ

)
for x large. Integrating the pdf gives the right tail probability as:

p̄(q; 1, φ) ≈ exp
(

φ−1
)
(2πφ)−1/2

∫ ∞

q
x−3/2 exp

(
− x

2φ

)
dx

for q large. Transforming the variable of integration gives:

p̄(q; 1, φ) ≈ exp
(

φ−1
)
(2πφ)−1/2(2φ)−1/2

∫ ∞

q/(2φ)
x−3/2 exp(−x)dx.

Finally, we approximate the integral using∫ ∞

a
x−3/2 exp(−x)dx ≈ (a + 1)−3/2 exp(−a),

which gives

p̄(q; 1, φ) ≈ exp
(

φ−1
)

π−1/2 (2φ)−1
(

q
2φ

+ 1
)−3/2

exp
(
− q

2φ

)
and

log p̄(q; 1, φ) ≈ 1
φ
− 0.5 log π − log(2φ)− 1.5 log

(
q

2φ
+ 1
)
− q

2φ

for q large.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:giner.g@wehi.edu.au
mailto:smyth@wehi.edu.au

CONTRIBUTED RESEARCH ARTICLES 352

Using DECIPHER v2.0 to Analyze Big
Biological Sequence Data in R
by Erik S. Wright

Abstract In recent years, the cost of DNA sequencing has decreased at a rate that has outpaced
improvements in memory capacity. It is now common to collect or have access to many gigabytes
of biological sequences. This has created an urgent need for approaches that analyze sequences in
subsets without requiring all of the sequences to be loaded into memory at one time. It has also opened
opportunities to improve the organization and accessibility of information acquired in sequencing
projects. The DECIPHER package offers solutions to these problems by assisting in the curation of
large sets of biological sequences stored in compressed format inside a database. This approach has
many practical advantages over standard bioinformatics workflows, and enables large analyses that
would otherwise be prohibitively time consuming.

Introduction

With the advent of next-generation sequencing technologies, the cost of sequencing DNA has plum-
meted, facilitating a deluge of biological sequences (Hayden, 2014). Since the cost of computer storage
space has not kept pace with biologists’ ability to generate data, multiple compression methods
have been developed for compactly storing nucleotide sequences (Deorowicz and Grabowski, 2013).
These methods are critical for efficiently transmitting and preserving the outputs of next-generation
sequencing machines. However, far less emphasis has been placed on the organization and usability
of the massive amounts of biological sequences that are now routine in bioinformatics work. It is
still commonplace to decompress large files and load them entirely into memory before analyses are
performed. This traditional approach is quickly becoming infeasible as sequence sets swell in size,
and alternative methods for storing, organizing, and analyzing sequences are needed.

A typical bioinformatics workflow begins with a set of biological sequences in one or more text
files. These sequences are used as input to subsequent analysis steps, each of which generates text files
as output (Schloss et al., 2011). Large workflows constructed in this manner can generate a plethora
of text files, often resulting in unnecessary redundancy and disorganization. Fortunately, databases
offer an organized means for storing related data, and underlie many commonly used bioinformatics
software such as BLAST (Altschul et al., 1997). Nevertheless, biologists rarely use databases to curate
their own sequences, in large part due to the difficulties associated with creating and accessing a
database. Here I describe flexible user-friendly workflows for employing databases to efficiently
analyze large sets of sequences via the R programming language.

Although R has traditionally been viewed as a statistical software, many add-on packages are
available for analyzing biological sequence data. One representative, the Biostrings package (Pagès
et al.), offers a suite of functions for reading, writing, searching, and manipulating DNA, RNA, or
amino acid sequences. Sequences are stored in memory according to their corresponding XStringSet
class, where “X” is specific to the type of sequences (e.g., “AA” for amino acid sequences). For example,
a "DNAStringSet" can store the standard DNA bases (“A”, “C”, “G”, or “T”), as well as ambiguity
codes (e.g., “N” for any bases) and gap characters used in alignment (“-”).

The DECIPHER package also makes use of XStringSet classes. However, unlike other R packages
for biological sequence analysis, DECIPHER employs databases so that an entire sequence set does
not need to simultaneously reside in memory. This enables DECIPHER to extend many analyses to
millions of sequences without requiring extreme amounts of memory, and offers a means of handling
the even more massive biological datasets of the future. The DECIPHER package also includes
many advanced functions for oligonucleotide design (Wright et al., 2014a,b; Wright and Vetsigian,
2016), sequence alignment (Wright, 2015), and other common bioinformatics tasks. Despite its many
applications, the core database functionality underpinning DECIPHER has not been previously
described.

New users of DECIPHER are often unaccustomed to the use of a database to manage their own
sequences. The purpose of this text is to describe the merits of this approach, and outline how sequence
databases are configured by DECIPHER and can be used to improve analysis workflows. Sequences
are stored independently within the database in a compressed format, which enables the database to
be compact while maintaining fast random access to different sequences. The custom compression
algorithm implemented in DECIPHER is compared to standard compression algorithms accessible
within R. Finally, example uses of a sequence database are provided to demonstrate the power of this
alternative workflow.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.bioconductor.org/packages/release/bioc/html/Biostrings.html
http://www.bioconductor.org/packages/release/bioc/html/DECIPHER.html

CONTRIBUTED RESEARCH ARTICLES 353

Merits of databases for storing biological sequences

A database, much like a spreadsheet, is an ideal way to maintain interconnected data. The concept
of storing biological sequences in a relational database is not new (Xie et al., 2000), and underpins
many popular bioinformatics programs and online web tools. However, end-users of these tools rarely
directly employ databases for their own sequences, despite many practical advantages such as:

1. Organizational improvements:
Databases can be arranged to minimize redundancy by maintaining an association between
different columns. For example, the length of each sequence in the database can be easily added
as a separate column.

2. Random access:
Databases permit quick access to subsets of the data, without the need to seek through large
text files in order to find the desired subset. For example, it is very fast to obtain the longest
sequence in the database once a column with the length of each sequence has been added.

3. Concurrent users:
A database can be queried concurrently by multiple users without interference. For example,
one user can obtain the shortest sequence, while another simultaneously requests the longest
sequence.

4. Reliable storage:
Commands can be used that allow the database to revert changes in case of a mistake. DECI-
PHER workflows are designed to be non-destructive, so that the original sequence information
is always preserved.

Several standard add-on packages are available to interface between R and popular database
management systems (DBMSs) including MySQL, PostgreSQL, and SQLite (Ripley, 2001a). DECI-
PHER uses SQLite for a number of reasons. First, SQLite databases are flat-files that can easily be
transferred between computers, or even emailed like a standard text file. Second, SQLite requires
minimal setup on the part of the end-user, unlike some DBMSs. Third, support for the BLOB data
type from R is currently only available from the RSQLite package. The BLOB type is used to store
compressed sequences, which are raw (binary) type within R. Lastly, SQLite databases can contain an
exceedingly large number of rows, up to 264, meaning that they are typically limited in size by the
available disk space rather than the DBMS.

The use of SQLite as the sole DBMS results in a few limitations. First, users cannot be given
separate access privileges, as all users are considered database administrators. Second, concurrent
writes to the same database are not permitted, although concurrent reads are not a problem. These
drawbacks cause few practical limitations for a typical group consisting of a few database users
performing standard operations with DECIPHER. Furthermore, databases can be organized such that
each sequencing project resides in its own table, which minimizes conflicts between users.

Anatomy of a DECIPHER database

DECIPHER uses a simple relational database schema involving two tables (Fig. 1): one that is highly
“visible” to the user (named “Seqs” by default) containing information about the sequences, and a
second “hidden” table (named “_Seqs”) for storing compressed sequences and, if applicable, their
corresponding quality scores. The tables are connected by a shared primary key, named “row_names”,
that enables fast lookup between the two tables. This split table design substantially increases access
speed over using a single table, as the table being queried does not include any sequences, which are
often large in size and can slow access to other data. Use of separate tables within the same database
is provided by the argument tblName in each function.

Sequences are imported with the Seqs2DB function which supports three popular file formats
as well as in-memory XStringSet objects. The destination table is automatically populated with
appropriate text columns containing information stored in the file. For example, sequences imported
from FASTA files store each sequence’s record name in a column named “description”. FASTQ files
are imported similarly, but also store the quality information corresponding to each sequence in gzip
compressed format. For GenBank files, the “description” column is obtained from the DEFINITION
field and other fields can be imported as desired using the fields argument of Seqs2DB. By default,
the ACCESSION and ORGANISM fields are imported as additional columns named “accession” and
“rank” in the database.

All DECIPHER databases require an “identifier” to be specified during import. The identifier
column is used extensively by DECIPHER functions, and is the recommended way to delineate
groups of sequences. Common ways to identify sequences include: the file they were imported from

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=RSQLite

CONTRIBUTED RESEARCH ARTICLES 354

Figure 1: Database schema used by DECIPHER. Two tables are created when importing sequences
with Seqs2DB: one that is highly visible to the user (named “Seqs” by default) and a second (named
“_Seqs”) that is largely hidden. The tables are connected by a shared primary key (“row_names”) that
enables fast lookup between the two tables. Columns containing the sequence descriptors, compressed
sequences, and compressed quality scores (if applicable) are automatically generated. The user must
specify an “identifier” during import, which can be changed later through a variety of methods.
Additional columns of data may be added to the database using the Add2DB function.

(e.g., “file1”, “file2”, etc.), the cluster they belong to in a phylogeny (e.g., “cluster1”, “cluster2”, etc.),
or the name of the organism from which the sequence originated (e.g., “E. coli”, “Yeast”, etc.). It is
also possible to simply provide an empty character string (i.e., “”) as the identifier during import,
and then set the identifier later. DECIPHER includes several functions to help with identifying the
sequences after they are imported. For example, the IdClusters function can assign phylogenetic
cluster numbers. The IdentifyByRank function can parse the “rank” column from an imported
GenBank file to identify sequences according to a given taxonomic rank (e.g., “species”).

DECIPHER uses R’s connection interface (Ripley, 2001b) to read files incrementally during import.
Files compressed with gzip, bzip2, xz, or lzma compression are automatically detected and read
appropriately without user intervention. The user can also provide a URL instead of a file path, which
enables sequences to be imported from “http” or “ftp” sources without first needing to save the file
locally. In the case of URLs, only uncompressed text files or files with gzip compression are supported.
Notwithstanding this limitation, reading files directly from online sources, such as NCBI repositories,
is often preferable to downloading files locally before importing them into a database as it prevents
unnecessary redundancy. An example of importing a compressed GenBank file from online is shown
below:

> library(DECIPHER)
>
> # specify the input file and database location
> gbk_file <- "ftp://ftp.ncbi.nlm.nih.gov/genomes/H_sapiens/RNA/rna.gbk.gz"
> db_file <- "~/Desktop/SeqsDB.sqlite"
> dbConn <- dbConnect(SQLite(), db_file)
>
> # import the sequences from online
> Seqs2DB(seqs = gbk_file,
+ type = "GenBank",
+ dbFile = dbConn,
+ identifier = "Human_mRNA")
162916 total sequences in table Seqs.
Time difference of 176.19 secs

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 355

Figure 2: Screenshot of viewing a database table in a web browser using the BrowseDB function.
Metadata information such as accession numbers and taxonomy are automatically imported from
GenBank sequence files into separate table columns. The value in the “identifier” column controls
sequence groupings in many DECIPHER functions, and can be set during or after import by a variety
of methods. For easier viewing, the text in each field is truncated at a maximum of 50 characters by
default.

The imported file contains known and predicted human RNA sequences. At this point it is
useful to reset the values in the identifier column so that they can be referenced in downstream
analyses. In this particular example, the prefix of the accession number can be parsed into one of
four values, indicating whether the sequence is a predicted or hand-curated RNA or messenger RNA
(mRNA) sequence. This information is updated in the database using the Add2DB function, which, like
many other DECIPHER functions, displays the associated SQL commands when the input argument
verbose is TRUE. Add2DB will add or update table columns in accordance with the column names and
row names in a "data.frame" input. For example, in this case the values of identifier in the input
"data.frame" are added to the rows with corresponding “row_names” in the database. To view the
results of this modification, the database table can be displayed in a web browser with the BrowseDB
function (Fig. 2).

> # reset the 'identifier' column based on the prefix of the accession number
> x <- dbGetQuery(dbConn, "select accession from Seqs")
> id <- substring(x$accession, 1, 2)
> id <- c(`NM` = "curated mRNA",
+ `NR` = "curated RNA",
+ `XM` = "predicted mRNA",
+ `XR` = "predicted RNA")[id]
> Add2DB(data.frame(identifier = id), dbConn)
Expression:
update or replace Seqs set identifier = :identifier where row_names =
:row_names

Added to table Seqs: "identifier".
Time difference of 2.06 secs

> BrowseDB(dbConn, limit = 1000)

The nbit compression format for nucleotides

Many compression algorithms have been proposed for storing nucleotide sequences, some of which are
specific to the FASTQ file format (Deorowicz and Grabowski, 2013). The most common compression
method is gzip, owing to its reasonable compression ratio and high decompression rate. However, since
gzip is a generalized method, it may be possible to obtain better compression ratios by using algorithms
specific to DNA sequences. In particular, reference-based compression is generally preferable when
a reference sequence is available (Jones et al., 2012). In re-sequencing projects a reference genome

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 356

0.005

0.01

0.05

0.1

0.5

1

5

10

102 103 104 105 106 107

Sequence Length

C
om

pr
es

si
on

 T
im

e
(s

ec
s)

nbit
gzip
bzip2
xz

0.002

0.005

0.01

0.02

0.05

0.1

0.2

0.5

1

102 103 104 105 106 107

Sequence Length
D

ec
om

pr
es

si
on

 T
im

e
(s

ec
s)

nbit
gzip
bzip2
xz

1

2

5

10

20

102 103 104 105 106 107

Sequence Length

B
its

 p
er

 u
ni

t l
en

gt
h

nbit
gzip
bzip2
xz

Figure 3: Comparison between different lossless compression algorithms on random subsequences
of Human Chromosome II (HG18). DECIPHER’s custom nbit compression exhibited substantially
faster compression rates than the other methods. The nbit algorithm offered a better compression ratio
than any of the other methods for sequences less than about 100,000 nucleotides, beyond which xz
compression provided more compaction, albeit at a substantially slower compression rate. The average
of 100 replicates is shown for all methods, gzip (v1.2.8), bzip2 (v1.0.6), and xz (v5.0.7), computed using
a single processor.

is always available, whereas it is often unavailable for new sequencing projects. In either case,
compression of a file containing many similar sequences allows redundancy to be exploited to a
greater extent than independently compressing sequences.

Several considerations were taken into account when designing a compression method for DECI-
PHER. First, the method must work well with a wide variety in the number of sequences and their
lengths. Second, in order to allow random access and deposition, each sequence is stored indepen-
dently in the database, ruling out exploiting redundancy between sequences. Third, compression and
decompression rates were prioritized over achieving the maximal possible compression ratio. Fourth,
support for all possible characters in the DNA and RNA alphabets was desired, in particular the gap
character that is largely neglected by most DNA-specific compression formats. These considerations
led to the development of the nbit compression method for DNA or RNA sequences. Compression
with nbit uses a combination of 2-bit encoding for gapless bases (i.e., A=00, C=01, G=10, T=11), and
3-bit encoding for gappy regions. Although this encoding was inspired by prior work (Wandelt et al.,
2014), DECIPHER uses a unique implementation that is customized to the package’s goals.

In principle, the maximum achievable compression rate is 2-bits per base with this encoding,
which is the theoretical limit (i.e., Shannon entropy) for four randomly drawn characters in equal
proportions. However, DNA sequences contain appreciable information and are non-random in their
construction, which permits additional compression to be achieved. To this end, the nbit algorithm
incorporates runs of a single base or ambiguity codes (e.g., “NNN”), which are frequent in some
sequences. Furthermore, long DNA sequences often contain exact repeats or reverse complement
repeats, which can be stored compactly by referencing their prior occurrence. Finally, the nbit format
includes a variable-sized cyclic redundancy check to ensure data integrity.

The nbit compression and decompression algorithms were implemented in the DECIPHER
function Codec, which interconverts between character (uncompressed) and binary (compressed) data.
In comparison to the three generalized compression methods available in R, the nbit algorithm exhibits
a substantially faster compression rate, as shown in Figure 3. Compression sizes are generally better
than those of the other methods, except for sequences longer than about 100,000 nucleotides where xz
compression results in more compaction at the expense of substantially longer compression times. The
user may also specify to use more than one processor with nbit, in which case the Codec function will
compress/decompress sequences in parallel. Furthermore, the Codec function will automatically fall
back to gzip compression when the sequences are incompressible with nbit, as in the case of amino
acid sequences.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 357

Figure 4: Sequences returned from a database query are displayed in a web browser using the
BrowseSeqs function. The mRNA sequences shown here all match the query “transcription factor”
and are named by their accession number(s). Sequence positions are colored according to their DNA
base (A, C, G, or T) and wrapped at 100 nucleotides.

Example workflow with DECIPHER

One of the major advantages of using a sequence database is the ability to quickly access subsets of
the sequences matching certain criteria. The SearchDB function can be used to easily build flexible
queries and obtain the sequences meeting those specifications. SearchDB supports several common
SQL clauses, including ‘LIMIT’, ‘OFFSET’, ‘ORDER BY’, and ‘WHERE’. If unspecified, SearchDB can
automatically detect the type of sequences (DNA, RNA, or AA) returned from the search. In addition,
it can be used to quickly count the number of sequences matching a query, name the sequences based
on the value in a specific table column, remove gaps (“-”) from sequences, or replace characters not
present in the specified sequence alphabet. As an example, the command below will find all of the
“curated mRNA” sequences with “transcription factor” in their “description” and name the sequences
by their accession number. The sequences can then be viewed in a web browser using the BrowseSeqs
function, as shown in Figure 4.

> dna <- SearchDB(dbConn,
+ identifier = "curated mRNA",
+ nameBy = "accession",
+ clause = "description like '%transcription factor%'")
Search Expression:
select accession, _Seqs.sequence from Seqs join _Seqs on Seqs.row_names =
_Seqs.row_names where _Seqs.row_names in (select row_names from Seqs where
identifier is "curated mRNA" and description like '%transcription factor%')

DNAStringSet of length: 437
Time difference of 0.44 secs

> BrowseSeqs(dna, colWidth = 100)

Several DECIPHER functions make use of SearchDB’s limit argument to extract batches of se-
quences. The limit argument can be either a single numeric value indicating the maximum number
of sequences to return, or a character string specifying two numbers separated by a comma giving the
offset and limit. For example, the IdLengths function makes use of this feature to efficiently compute
the lengths of all of the sequences in a database table. This length information is then added to the
database in batches using the Add2DB function. A similar workflow is used by many DECIPHER
functions so that all of the sequences do not have to be kept in memory simultaneously. An example
of using the IdLengths function is shown below:

> l <- IdLengths(dbConn, add2tbl = TRUE)
|==| 100%

Lengths counted for 162916 sequences.
Added to Seqs: "bases", "nonbases", and "width".

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 358

Time difference of 26.15 secs

Rather than using offset and limit values, several DECIPHER functions make use of the user-
specified identifier to split the sequences into groups. For example, the IdConsensus function will
create a single consensus sequence for the sequences corresponding to each identifier in a table, by
accessing one identifier’s sequences at a time. It is also possible to construct more sophisticated queries
of the database using the clause argument of the SearchDB function. The clause will be appended to
the query after the keyword ‘WHERE’. Below is an example of using the clause argument to retrieve
the longest ‘curated RNA’ sequence in the table, which is 91,671 nucleotides in length.

> SearchDB(dbConn,
+ identifier = "curated RNA",
+ clause = "bases = (select max(bases) from Seqs
+ where identifier is 'curated RNA')")
Search Expression:
select row_names, sequence from _Seqs where row_names in (select row_names
from Seqs where identifier is "curated RNA" and bases = (select max(bases)
from Seqs where identifier is 'curated RNA'))

DNAStringSet of length: 1
Time difference of 0.25 secs

A DNAStringSet instance of length 1
width seq names

[1] 91671 AGGCAGAACGGTCGCCGCGTCGC...ATGAAAACTATGAAAACTGACTA 73201

As the above example demonstrates, a knowledge of basic SQL syntax is helpful to harness the
full potential of DECIPHER for analyzing big biological sequence data in R. Nevertheless, it is still
possible to automatically generate a wide variety of complex queries using only the input arguments
of DECIPHER’s database functions. For example, the DB2Seqs function can be used to export a large
number of sequences meeting certain criteria from the database. The sequences are exported in FASTA
format, or FASTQ format if corresponding quality scores are available. The code below exports a gzip
compressed FASTA file containing all of the “predicted mRNA” sequences, ordered by their length,
and with each sequence record named by its accession number.

> out_file <- "~/Desktop/seqs.fas.gz"
> DB2Seqs(out_file,
+ dbConn,
+ identifier = "predicted mRNA",
+ nameBy = "accession",
+ orderBy = "bases",
+ compress = TRUE)
|==| 100%

Wrote 61051 sequences.
Time difference of 52.22 secs

Access times vary greatly depending on where the database is stored. If the database is small
enough, very fast read and write speeds can be obtained by keeping the entire database in memory.
For moderate to large sets of sequences it is necessary to store the database on a drive, as demonstrated
in the examples above. Note that access speed can be delayed considerably when the database is
kept in a shared location, such as on a networked drive. Independently of the database’s location, it
is important to disconnect after finishing the database session. This would permanently destroy an
in-memory database, but only reversibly closes a connection to a drive-based database, as shown here:

> dbDisconnect(dbConn)
[1] TRUE

Conclusions

DECIPHER is a versatile R package for the curation of biological sequence sets. Its Seqs2DB function
constructs a database that can be used to efficiently store DNA, RNA, or amino acid sequences in
compressed format. For DNA and RNA, DECIPHER employs a custom compression algorithm, called

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 359

nbit, that enables fast compression and decompression at a reasonable compression ratio. Using a
database, it is possible to construct non-destructive workflows that handle sequences in batches so
that they do not need to be kept in memory simultaneously. The SearchDB function can be used to
automatically generate complex queries that return sequences from a database table. Collectively,
DECIPHER functions make it possible to process millions of biological sequences with relative ease.
This capability will only become more useful as improvements in sequencing power continue to
outpace growth in memory capacity.

Bibliography

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. Gapped
BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids
Research, 25(17):3389–3402, 1997. [p352]

S. Deorowicz and S. Grabowski. Data compression for sequencing data. Algorithms for Molecular
Biology, 8(1):1–13, 2013. [p352, 355]

E. C. Hayden. Technology: The $1,000 genome. Nature, 507(7492):294–295, Mar. 2014. [p352]

D. C. Jones, W. L. Ruzzo, X. Peng, and M. G. Katze. Compression of next-generation sequencing reads
aided by highly efficient de novo assembly. Nucleic Acids Research, 40(22):e171–e171, Dec. 2012.
[p355]

H. Pagès, P. Aboyoun, R. Gentleman, and S. DebRoy. Biostrings: String objects representing biological
sequences, and matching algorithms. R package version 2.38.0. [p352]

B. D. Ripley. Using Databases with R. R News, 1(1):18–20, Jan. 2001a. [p353]

B. D. Ripley. Connections. R News, 1(1):16–17, Jan. 2001b. [p354]

P. D. Schloss, D. Gevers, and S. L. Westcott. Reducing the Effects of PCR Amplification and Sequencing
Artifacts on 16S rRNA-Based Studies. PloS one, 6(12):e27310, Dec. 2011. [p352]

S. Wandelt, M. Bux, and U. Leser. Trends in genome compression. Current Bioinformatics, 2014. [p356]

E. S. Wright. DECIPHER: harnessing local sequence context to improve protein multiple sequence
alignment. BMC Bioinformatics, 16(1):1–14, Sept. 2015. [p352]

E. S. Wright and K. H. Vetsigian. DesignSignatures: a tool for designing primers that yields amplicons
with distinct signatures. Bioinformatics, Jan. 2016. [p352]

E. S. Wright, L. S. Yilmaz, A. M. Corcoran, H. E. Okten, and D. R. Noguera. Automated design of
probes for rRNA-targeted fluorescence in situ hybridization reveals the advantages of using dual
probes for accurate identification. Applied and environmental microbiology, 80(16):5124–5133, July
2014a. [p352]

E. S. Wright, L. S. Yilmaz, S. Ram, J. M. Gasser, G. W. Harrington, and D. R. Noguera. Exploiting
extension bias in polymerase chain reaction to improve primer specificity in ensembles of nearly
identical DNA templates. Environmental Microbiology, 16(5):1354–1365, May 2014b. [p352]

G. Xie, R. DeMarco, R. Blevins, and Y. Wang. Storing biological sequence databases in relational form.
Bioinformatics, 16(3):288–289, Mar. 2000. [p353]

Erik S. Wright
University of Wisconsin - Madison
330 N Orchard St, Madison WI 53715 USA
eswright@wisc.edu

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

mailto:eswright@wisc.edu

CONTRIBUTED RESEARCH ARTICLES 360

R Packages to Aid in Handling Web
Access Logs
by Oliver Keyes, Bob Rudis, Jay Jacobs

Abstract Web access logs contain information on HTTP(S) requests and form a key part of both
industry and academic explorations of human behaviour on the internet. But the preparation (reading,
parsing and manipulation) of that data is just unique enough to make generalized tools unfit for the
task, both in programming time and processing time which are compounded when dealing with large
data sets common with web access logs. In this paper we explain and demonstrate a series of packages
designed to efficiently read in, parse and munge access log data, allowing researchers to handle URLs
and IP addresses easily. These packages are substantially faster than existing R methods - from a
3-500% speedup for file reading to a 57,000% speedup in URL parsing.

Introduction

The rise of the World Wide Web has made it dramatically easier to access and transfer data, and R
boasts abundant functionality when it comes to taking data from the web. Base R itself has simple
file downloading and page reading capabilities, through the download.file and readLines functions,
and additional functionality is made available for handling web-accessible data through packages
such as httr (Wickham, 2015).

Data on the web is not, however, the only kind of web data that interests researchers; web traffic
is, in and of itself, an interesting data source. Access logs–records of connections between users and
a web server–are an asset and resource for people studying everything from user behaviour on the
internet (Halfaker et al., 2014), to website performance (Ryckbosch and Diwan, 2014), to information
security (Bhingarkar and Shah, 2015).

An example scenario for those users is the need to be able to read in access logs, parse the URLs to
extract relevant metadata about the access requests, geolocate the people making those requests to
understand how behaviour and desired content vary between populations.

As a statistically-oriented programming language, R is commonly used by these same researchers
for data analysis, testing and reporting. However, the general-purpose functions within R require
significant customization before they can handle the scenario above. Additionally, the off-the-shelf
functions are inefficient for these tasks, especially when scaling to the large data sets that are common
with web access logs. In this article we review the use cases for particular operations over web data, the
limitations in base R when it comes to performing those operations, and a suite of R packages designed
to overcome them: reading access logs in (webreadr), manipulating URLs (urltools), manipulating IP
addresses (iptools), and direct IP geolocation (rgeolocate).

Reading access logs

The first task with any data analysis is to read the data into R. With access logs this is slightly
complicated by the fact that there is no one standard for what a log should look like; instead, there
are multiple competing approaches from different software platforms and eras. These include the
Common Log Format (CLF), the confusingly-named Combined Log Format, and formats used by
individual, commonly-used software platforms - such as the custom format for the Squid internet
caching software, and the format used by Amazon Web Services (AWS).

One difference between formats can easily be shown by looking at how timestamps are represented:

Table 1: Timestamps in Common Access Log Formats

Log Type Timestamp Columns Timestamp Format

Common Log Format 1 10/Oct/2000:13:55:36 -0700
Combined Log Format 1 26/Apr/2000:00:23:48 -0400
Squid 1 1286536309.450
AWS 2 2014-05-23 01:13:11

With four log types, we have three different timestamp formats, and timestamp is only one of
the many columns that could appear. These logs also vary in whether they specify quoting fields (or
sanitising unquoted ones), the columns they contain and the data each column contains in turn.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=httr

CONTRIBUTED RESEARCH ARTICLES 361

Base R does not have a way of easily reading in any one of those formats, let alone all of them
(understandably, given its statistical orientation). There is also the ApacheLogProcessor (Mendonca,
2015) package, but (although more dedicated than base R) it is only capable of reading Common Log
Format files (although it does have novel features such as optional parallel processing for the data
cleanup tasks).

To make reading access logs into R as easy as possible we created the webreadr (Keyes, 2015)
package. This contains user-friendly equivalents to read.table for each type of log, detecting the fields
that should appear, converting the timestamps into POSIX objects, and merging fields or splitting fields
where necessary. The package contains four core functions, one for each form of log: read_clf for the
Common Log Format, read_combined for the Combined Log Format, and read_squid and read_aws
for Squid and AWS formats respectively. Each one abstracts away the complexity of specifying column
names and formats, and instead allows a researcher to read a file in with a minimal amount of work:
the only parameters that need to be specified are the path to the file, and whether the file has column
headers.

As the name suggests, it is built not on top of base R but on top of the readr (Wickham and
Francois) package, allowing us to take advantage of substantial speed improvements that package’s
base functions have over base R (ApacheLogProcessor, in contrast, relies on those same base functions).
These improvements can be seen in the visualisation below, which uses microbenchmark (Mersmann,
2014) to compare 100 reads of a 600,000-line “squid” formatted file with webreadr to the same operation
performed in base R:

Figure 1: Results of microbenchmark run: read_squid versus base-R equivalent code

As this plot shows, webreadr is consistently 3.5-6 times faster than the equivalent base R function-
ality, and, as explained above, is also far simpler to use. ApacheLogProcessor was not benchmarked
for the simple reason that it is built on the base R functionality tested, and so would be duplicative.

Decoding and parsing URLs

URLs are commonplace in access logs, describing both the web asset or page that the user requested,
and the page the user came from. These fields are usually named url and referer respectively.

Decoding

Both values can be percent-encoded, allowing them to include characters that are valid but reserved by
the URL specification as having special meanings (“reserved characters”). A ‘#’ symbol, for example,
is encoded as ‘%23’: a percentage symbol, followed by a unique numerical value for that character.

The encoding of reserved characters is useful, since it means that URL paths and queries can
contain a vast array of values - but it makes data analysis tougher to do. Examples of common data
analysis or cleaning operations that become more difficult are:

1. Aggregation. Aggregating URLs together is useful to identify, for example, the relative us-
age and popularity of particular pages in your data - but it becomes tougher if encoding is
inconsistent, because two URLs could hold the same value but look very different.

2. Value selection. With text-based data, regular expressions are a common way of filtering or
selecting entries that meet particular conditions, but things become fuzzy when you have to
look not just for particular characters (a space, say) but also the encoded values (%20).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=ApacheLogProcessor
http://CRAN.R-project.org/package=webreadr
http://CRAN.R-project.org/package=readr
http://CRAN.R-project.org/package=microbenchmark

CONTRIBUTED RESEARCH ARTICLES 362

3. Exploratory data analysis (EDA). EDA is a common initial step to investigate a data set, exam-
ining the variables and values it contains and whether they meet a researcher’s expectations -
but on a practical basis it becomes difficult when the values aren’t human-readable.

The solution is to be able to consistently decode URLs, which makes URL-based data far easier to
analyse. Base R contains the function URLdecode for this purpose, but, as it is neither vectorised nor
based on compiled code, it can be extremely slow over large datasets.

To solve this common problem in analysing request logs, the urltools (Keyes et al., 2015a) package
was created. This contains a function, url_decode, which decodes URLs and relies on vectorised,
compiled code to do so. Benchmarking the two approaches against each other shows that the urltools
implementation is approximately 60-70 times faster over large datasets. Again using microbenchmark,
if we compare the vectorised decoding of 1,000,000 URLs with urltools against a URLdecode vapply
loop, we see a 60-70 times speed improvement:

Figure 2: Results of microbenchmark run: url_decode versus base-R equivalent code

Parsing

The standard for URLs (Berners-Lee et al., 1994) divides them into a heirarchical sequence of compo-
nents - the scheme (‘http’), host (‘en.wikipedia.org’), port (‘800’), path (‘wiki/Main_Page’) and search-
part, or query string (‘action=edit’). Together, these make up a URL
(‘http://en.wikipedia.org:800/wiki/Main_Page?action=edit’).

Parsing URLs to isolate and extract these components is a useful ability when it comes to exploring
request logs; it lets a researcher pick out particular schemes, paths, hosts or other components to ag-
gregate by, identifying how users are behaving and what they are visiting. It makes anonymising data
- by removing, for example, the parameters or path, which can contain relatively unique information -
easier.

Base R does not have native code to parse URLs, but the httr package (Wickham, 2015) contains
a function, parse_url, designed to do just that. Built on R’s regular expressions, this function is
not vectorised, does not make use of compiled code internally, and produces a list rather than
data.frame, making looping over a set of URLs to parse each one a time-consuming experience. This is
understandable given the intent behind that function, which is to decompose individual URLs within
the context of making HTTP requests, rather than to analyse URLs en masse. Similarly, the XML (Lang
and the CRAN Team, 2016) package has parseURI; C-based, this time, but both dependent on the
libxml library and, similarly, not vectorised.

urltools contains url_parse - which does the same thing as the equivalent httr functionality, but in
a vectorised way, relying on compiled code, and producing a data.frame. Within the context of parsing
and processing access logs, this is far more useful, because it works efficiently over large sets: httr’s
functionality, which was never designed with vectorisation in mind, does not. Indeed, benchmarking
showed that url_parse is approximately 570 times faster than httr’s equivalent function:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=urltools
http://CRAN.R-project.org/package=httr
http://CRAN.R-project.org/package=XML

CONTRIBUTED RESEARCH ARTICLES 363

Figure 3: Results of microbenchmark run: url_parse versus httr’s equivalent code

A vector of URLs passed into url_parse produces a data.frame, with one column for each of the
IETF-supported components, and empty strings representing components that could not be found.
Additionally, influenced by the style of the lubridate package (Grolemund and Wickham, 2011),
urltools contains functions to get or set individual components:

Load urltools and construct a URL
library(urltools)
url <- "http://www.google.com/"

Get the scheme
scheme(url)

#> [1] "http"

Set the scheme and observe the modification to the resulting URL
scheme(url) <- "https"
url

#> [1] "https://www.google.com/"

As a result of this functionality, urltools makes URL manipulation faster, easier and far more
accessible, reducing the burden associated with munging access logs or similar datasets and allowing
a researcher to get to the statistical analysis faster.

IP manipulation

Access logs also contain IP addresses - unique numeric values that identify a particular computer
or network in the context of the internet. Working with these values allows an analyst to validate
their data (by checking for false or spoof addresses) and is a necessary prerequisite to the use of some
IP geolocation systems (covered later), and extract a limited amount of metadata from the values
themselves.

iptools (Rudis and Keyes, 2015), based around the Boost ASIO C++ library (boo), is a package
designed for this kind of IP manipulation (and more). Built around combined code, it is extremely fast
(for that code that does not rely on internet connections) and boasts a range of features.

One of the most crucial is ip_classify, which, when provided with a vector of IP addresses,
identifies whether they follow the IPv4 or IPv6 standard. As a side-effect of this, it can be used to
identify if IP addresses are invalid, or spoofed, prior to further work based on the assumption that
they are correct:

Load iptools and construct a vector of IPs
library(iptools)
ip_addresses <- c("192.168.0.1", "2607:f8b0:4006:80b::1004", "Chewie")
ip_classify(ip_addresses)

#> [1] "IPv4" "IPv6" "Invalid"

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=lubridate
http://CRAN.R-project.org/package=iptools

CONTRIBUTED RESEARCH ARTICLES 364

Along with this general tool there are also functions for ascertaining specific facts about IP
addresses, returning logical (TRUE or FALSE) values. These are is_valid, is_ipv4, is_ipv6, which
are built on top of ip_classify, and is_multicast, which identifies if an IP address is multicast -
designed to point to multiple machines.

iptools also contains (for similar purposes) code to identify the actual client’s IP address. Access
requests usually contain not only an IP address but a X-Forwarded-For field - a field identifying which
other IP addresses the request passed through, if the user who made the request is using some kind of
proxy. If a user has used a proxy, the contents of the IP address field won’t actually be them - it will be
the last proxy the request went through before getting to the server logging the requests. The actual IP
address of the user will instead be the earliest value of the X-Forwarded-For field.

The solution is to be able to identify the ‘real’ IP address, by checking:

1. Whether the X-Forwarded-For field contains any values;
2. Extracting the earliest non-invalid IP address in that field’s values if so, and the contents of the

IP address field if not.

With the xff_extract function, you can do just that:

ip_address <- "192.168.0.1"
x_forwarded_for <- "foo, 193.168.0.1, 230.98.107.1"
xff_extract(ip_address, x_forwarded_for)

#> [1] "192.168.0.1"

This returns the IP address field value if X-Forwarded-For is empty, and otherwise splits the
X-Forwarded-For field and returns the earliest valid IP address. It is fully vectorised and highly
useful for analysis predicated on IP addresses being valid, such as geolocation - without this kind of
resolution, what you’re actually geolocating might be your own servers.

Other operations supported by iptools include the conversion of IP addresses from their standard
dotted-decimal form to a numeric form, the extraction of IP ranges (and their contents), resolving IP
addresses to hostnames, and a series of datasets covering the IPv4 registry and port database.

The limitation of the package is that some operations do not yet support IPv6 (since they require
the storage of numbers bigger than R can currently handle).

Geolocation

As a side-effect of how IP addresses tend to be assigned - in geographic blocks, to individual machines
or to local networks - they can be used to geolocate requests, identifying where in the world the
request came from, sometimes down to the level of individual post codes or pairs of latitude/longitude
coordinates.

This is tremendously useful in industry, where the geographic reach of a service has substantial
implications for its viability and survivability, and in academia, where the locality of internet-provided
information and the breadth of internet access are active concerns and areas of study (Sen et al., 2015).

Many services and databases exist for extracting geographic metadata from IP addresses. One
of the most common is the service provided by MaxMind, which has both proprietary and openly-
licensed databases, in binary and comma-separated formats. The free databases have been used by
various web APIs, which makes the data they contain accessible from R. Unfortunately, dependence
on web APIs means that handling large numbers of IP addresses can be very slow (they tend to be
designed to only accept one IP address at a time, and may contain throttling beyond that) and has
privacy concerns, since it essentially means sending user IP addresses to a third party. And even
without these issues, there are no wrappers for those APIs available on CRAN: users have to write
their own.

With these concerns in mind, we wrote the rgeolocate (Keyes et al., 2015b) package. Through
httr this contains convenient, vectorised bindings to various web services that provide geographic
metadata about IP addresses. More importantly, using the Rcpp package to integrate C++ and R,
rgeolocate also features a direct, compiled binding to the MaxMind API. This means that local binary
databases can also be queried, which is far faster and more robust than web-based equivalents and
avoids the privacy concerns associated with transmitting users’ IP addresses externally.

The MaxMind API requires a paid or free binary database - one of which, for country-level IP
resolution, is included in rgeolocate - and allows you to retrieve the continent, country name or ISO
code, region or city name, tzdata-compatible timezone, longitude, latitude or connection type of a
particular IP address. Multiple fields can be selected (although which are available depends on the
type of database used), and results are returned in a data.frame:

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=rgeolocate
http://CRAN.R-project.org/package=Rcpp

CONTRIBUTED RESEARCH ARTICLES 365

Load rgeolocate
library(rgeolocate)

Find the rgeolocate-provided binary database
geo_file <- system.file("extdata","GeoLite2-Country.mmdb", package = "rgeolocate")

Put together some example IP addresses
ip_addresses <- c("174.62.175.82", "196.200.60.51")

Geolocate
maxmind(ip_addresses, geo_file, fields = c("continent_name", "country_code"))

#> continent_name country_code
#> 1 North America US
#> 2 Africa ML

Direct speed comparisons aren’t possible, since the functionality it provides is not, to the authors’
knowledge, replicated in other R packages, but it is certainly faster and more secure than internet-
dependent alternatives.

Conclusions and further work

In this research article we have demonstrated a set of tools for handling access logs during every stage
of the data cleaning pipeline - reading them in with webreadr, decoding, manipulating and extracting
value from URLs with urltools, and retrieving geographic metadata from IP addresses with iptools
and rgeolocate. We have also demonstrated the dramatic speed improvements in using these tools in
preference to existing methods within R.

In combination, this makes for an incredibly powerful set of tools for analysing web data, pro-
viding functionality and economies of scale not previously available in R and making R a first-class
environment for web data analysis. In the introduction, we gave an example of a common workflow
for researchers dealing with these sorts of logs: knitting the examples above together, we can see that
the tasks have gone from inefficient to efficient (in the cases of data reading and URL manipulation)
and from impossible to possible in the case of IP geolocation.

Further work - integrating more sources of geolocation information within rgeolocate, supporting
UTF-8 URL decoding within urltools, and increasing IPv6 support in iptools - would make these
packages even more useful to Human-Computer Interaction researchers and other specialists who rely
on access logs as primary data sources. Possible sources of performance improvements include Even
without that functionality, however, this suite of packages is a dramatic improvement upon the status
quo.

Acknowledgements

This paper would not have been possible without the support of Margret Wander, Adam Hyland and
Penelope Hopkins, and the copyediting and commentary by Laurent Gatto, Brandon Hurr and Hadley
Wickham. In addition, we would like to thank Toby Negrin for inspiring us to write a paper on these
packages, rather than just the packages themselves.

The code for the benchmarking included in the figures can be found in the git repository for the
paper, and is MIT-licensed.

Bibliography

Boost C++ Libraries. URL http://www.boost.org. http://www.boost.org. [p363]

T. Berners-Lee, L. Masinter, and M. McCahill. Uniform resource locators (url). RFC 1738, December
1994. URL https://tools.ietf.org/html/rfc3986. [p362]

A. S. Bhingarkar and B. D. Shah. A survey: Securing cloud infrastructure against EDoS attack. In
Proceedings of the International Conference on Grid Computing and Applications (GCA), page 16. The
Steering Committee of The World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), 2015. [p360]

G. Grolemund and H. Wickham. Dates and times made easy with lubridate. Journal of Statistical
Software, 40(3):1–25, 2011. URL http://www.jstatsoft.org/v40/i03/. [p363]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://github.com/Ironholds/webdata-paper
https://github.com/Ironholds/webdata-paper
http://www.boost.org
https://tools.ietf.org/html/rfc3986
http://www.jstatsoft.org/v40/i03/

CONTRIBUTED RESEARCH ARTICLES 366

A. Halfaker, O. Keyes, D. Kluver, J. Thebault-Spieker, T. T. Nguyen, K. Shores, A. Uduwage, and
M. Warncke-Wang. User session identification based on strong regularities in inter-activity time.
CoRR, abs/1411.2878, 2014. URL http://arxiv.org/abs/1411.2878. [p360]

O. Keyes. webreadr: Tools for Reading Formatted Access Log Files, 2015. URL http://CRAN.R-project.
org/package=webreadr. R package version 0.3.0. [p361]

O. Keyes, J. Jacobs, M. Greenaway, and B. Rudis. urltools: Vectorised Tools for URL Handling and Parsing,
2015a. URL http://CRAN.R-project.org/package=urltools. R package version 1.3.2. [p362]

O. Keyes, D. Schmidt, D. Robinson, I. Maxmind, and P. Gloor. rgeolocate: IP Address Geolocation, 2015b.
URL http://CRAN.R-project.org/package=rgeolocate. R package version 0.5.0. [p364]

D. T. Lang and the CRAN Team. XML: Tools for Parsing and Generating XML Within R and S-Plus, 2016.
URL https://CRAN.R-project.org/package=XML. R package version 3.98-1.4. [p362]

D. S. Mendonca. ApacheLogProcessor: Process the Apache Web Server Log Combined Files, 2015. URL
http://CRAN.R-project.org/package=webreadr. R package version 0.1.5. [p361]

O. Mersmann. microbenchmark: Accurate Timing Functions, 2014. URL http://CRAN.R-project.org/
package=microbenchmark. R package version 1.4-2. [p361]

B. Rudis and O. Keyes. iptools: Manipulate, Validate and Resolve IP Addresses, 2015. URL http://CRAN.R-
project.org/package=iptools. R package version 0.3.0. [p363]

F. Ryckbosch and A. Diwan. Analyzing performance traces using temporal formulas. Software: Practice
and Experience, 44(7):777–792, 2014. [p360]

S. W. Sen, H. Ford, D. R. Musicant, M. Graham, O. S. Keyes, and B. Hecht. Barriers to the localness of
volunteered geographic information. Proceedings of the 2015 ACM Conference on Human Factors in
Computing, 2015. [p364]

H. Wickham. httr: Tools for Working with URLs and HTTP, 2015. URL http://CRAN.R-project.org/
package=httr. R package version 1.0.0. [p360, 362]

H. Wickham and R. Francois. readr: Read Tabular Data. URL https://github.com/hadley/readr. R
package version 0.1.1.9000. [p361]

Oliver Keyes
Rapid7
One Main Street, Penthouse
Cambridge, MA, 02142, USA
ironholds@gmail.com

Bob Rudis
Rapid7
One Main Street, Penthouse
Cambridge, MA, 02142, USA
brudis@rapid7.com

Jay Jacobs
BitSight
Boston, MA
jay@beechplane.com

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://arxiv.org/abs/1411.2878
http://CRAN.R-project.org/package=webreadr
http://CRAN.R-project.org/package=webreadr
http://CRAN.R-project.org/package=urltools
http://CRAN.R-project.org/package=rgeolocate
https://CRAN.R-project.org/package=XML
http://CRAN.R-project.org/package=webreadr
http://CRAN.R-project.org/package=microbenchmark
http://CRAN.R-project.org/package=microbenchmark
http://CRAN.R-project.org/package=iptools
http://CRAN.R-project.org/package=iptools
http://CRAN.R-project.org/package=httr
http://CRAN.R-project.org/package=httr
https://github.com/hadley/readr
mailto:ironholds@gmail.com
mailto:brudis@rapid7.com
mailto:jay@beechplane.com

CONTRIBUTED RESEARCH ARTICLES 367

Nonparametric Tests for the Interaction in
Two-way Factorial Designs Using R
by Jos Feys

Abstract An increasing number of R packages include nonparametric tests for the interaction in
two-way factorial designs. This paper briefly describes the different methods of testing and reports
the resulting p-values of such tests on datasets for four types of designs: between, within, mixed, and
pretest-posttest designs. Potential users are advised only to apply tests they are quite familiar with
and not be guided by p-values for selecting packages and tests.

Introduction

In his book ‘Discovering Statistics Using R’ (Field et al., 2012), Andy Field remarked that, contrary to
the popular assertion, there are robust methods that can be used to test for the interaction in mixed
models. He was referring to the WRS package (early version of WRS2 by Mair et al. (2015), based on
Rand Wilcox’s book (Wilcox, 2012)). At that time, this apparently was the only R package known to
the authors for nonparametric (robust or distribution-free) tests for the interaction in factorial designs.
The nparLD package by Noguchi et al. (2012), which offers a variety of such tests, was first published
in September 2012. Since then, an increasing number of R packages have emerged with functions to
run nonparametric tests for the interaction(s) in factorial designs.

The main purpose of this paper is to familiarize researchers and potential users, who have a fair
knowledge of statistics, with R packages that include nonparametric tests (R functions for such tests)
for the interaction in two-way factorial designs. I first shortly describe the different methods for such
tests in R Packages (available at the time of writing) and then report the resulting p-values of the tests,
applied on data of two-way between, within, and mixed factorial designs. The term between refers
to a between-subjects independent factor (or variable), for which a different group of subjects (or
units of observation) is used for each level of the factor. A within-subjects factor, on the other hand,
is an independent factor that is manipulated by testing each participant at each level of the factor,
also named repeated measures . Mixed designs are a combination of between and within factors. For
the account of p-values, in R packages available nonparametric functions to test for the interaction
were run on datasets for four types of two-way designs: ‘between x between’, ‘within x within’,
‘between x within’ or ‘mixed’, and a special case, ‘(between x) pretest-posttest’ designs. The latter
design is a common mixed design with only two levels of the within factor.

In the next section, I advise potential users not to rely on p-values and to justify why they chose
the particular method of testing for each of the four types of designs. They should know what the
chosen test does. In the concluding section the main advices are summarized and I close with the
paradox Fagerland (2012) has pointed to.

Methods and R packages

The word nonparametric is used here in a general sense: to include all distribution-free methods that
do not rely on the restrictive assumptions of parametric tests, particularly about normality of the
outcome distribution and homogeneity of variances. There are some situations when it is clear that
the outcome does not follow a normal distribution. These include situations when the outcome is an
ordinal variable or a rank, when there are definite outliers or when the outcome has clear limits of
detection. (Data with limits of detection require quite advanced special methods for analyzing (see
e.g., LaFleur et al., 2011), which are not discussed here.) Tools to address assumption problems are:
simulations, nonparametric tests, robust procedures, data transformation, and re-sampling. The word
nonparametric is rather associated with rank tests, and ‘robust’ primarily refers to methods for dealing
with outliers, but I use the term nonparametric for all situations.

• An account of simulation studies would, it seems to me, not fit into the purpose of the R Journal
and therefore is not covered in this paper.

• Rank test and robust methods are the main topics of interest. The word robust can be interpreted
literally. If a test is robust, the validity of the test result will not be affected by poorly structured
data. Robust also has a more technical meaning. If the actual Type I error rate of a test is close to
the proclaimed Type I error rate (e.g., .05) the test is considered robust.

• Data transformation is not covered in this article. Erceg-Hurn and Mirosevich (2008) remarked
that transformations often fail to restore normality and homogeneity of variances, they do not

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=WRS2
http://CRAN.R-project.org/package=nparLD

CONTRIBUTED RESEARCH ARTICLES 368

deal with outliers, they can reduce power, they sometimes rearrange the order of the means
from what they were originally, and they make the interpretation of results difficult, as findings
are based on the transformed rather than the original data. Data transformation should be
replaced by more up-to-day methods.

• Re-sampling techniques such as permutation or randomization tests and bootstrap are only
very concisely described here. Permutation tests use all possible distinct permutations of the
dependent variable, holding the independent variables fixed. Unfortunately, a typical full
permutation test is too time-consuming. An alternative is often called a randomization test.
(Many authors use both terms interchangeably.) The underlying idea of randomization tests
is to compare the results from the real data against the possible results if one repeatedly (e.g.,
10,000 times) re-labels the data points, then see how extreme the results from the real data are,
when compared against the array of alternative arrangements of the data. There are a number of
R packages for randomization tests (e.g., coin, lmPerm and perm), but, to my knowledge, they
do not readily include test for the interaction in two-way factorial designs. The ezPerm function
from the ez package by Lawrence (2015) can be used for permutation tests with many types
of factorial designs. (This package also has functions for visualization of the interaction using
bootstrap: ezBoot and ezPlot2. Visualization methods are beyond the scope of this paper.)
A bootstrap is a process in which data are re-sampled repeatedly (randomly with replacement
and each time of the same size as the original data), and a statistic is calculated for each re-
sampling to form an empirical distribution for that statistic. The boot package by Canty and
Ripley (2016) provides extensive facilities for bootstrapping and related re-sampling methods.
This package has a function for confidence intervals: boot.ci.

In my opinion, nonparametric tests not only have the obvious advantage of not requiring the assump-
tion of normality or of homogeneity of variance, but also the benefit that they can be used with many
different types of scales and that, when sample size is small, there may be no alternative to use a
nonparametric test unless the population distribution is known exactly. Gibbons (1993) observed that
ordinal scale data, notably Likert-type scales, are very common in social sciences and argued these
should be analyzed with nonparametric tests.

Dealing with outliers

Rand Wilcox’s book (Wilcox, 2012) and the corresponding R package WRS2 offer robust methods
for dealing with outliers: trimmed means, bootstrap (see brief description above), median tests and
M-estimators.

Trimmed means This involves the calculation of the mean after discarding given parts of a probability
distribution or sample at the high and low end, and typically discarding an equal amount of
both. This number of points to be discarded is usually given as a percentage of the total number
of points, but may also be given as a fixed number of points. The t2way and bwtrim functions
from WRS2 are based on 20% trimmed means, respectively for between x between and mixed
(between x within) designs.

Median tests The median is a robust measure of central tendency (the mean is not), thus not influ-
enced by outliers; therefore median tests are often chosen for dealing with outliers. The med2way
function from WRS2 is such a test.

M-estimators M-estimators are a general class of robust statistics which are obtained as the minima
of sums of functions of the data, e.g., iterated re-weighted least-squares. As already men-
tioned, in the WRS2 package, the t2way function computes a between x between ANOVA for
trimmed means with interactions effects. The accompanying pbad2way performs a two-way
ANOVA using M-estimators for location. With this function, the user can choose between three
M-estimators for group comparisons: M-estimator of location using Huber’s ψ, a modified
ψ estimator, or a median. In the same package the bwtrim function computes a between x within
(mixed) subjects ANOVA on the trimmed means. Along with this function, the sppbi function
computes the interaction effect, using bootstrap. With this function, the user here too can choose
between the same three M-estimators for group comparisons.

Ordinal data and (aligned) ranks

The vast majority of nonparametric tests are rank-based tests. Many authors have proposed their own
methods of ranking to test for the interaction. A special method, the alignment of the data before
ranking, was introduced early in the 1990s (see e.g., Higgins et al., 1990). Aligning implies that some
estimate of a location (e.g., for the effect on a certain level of a given factor), such as the mean or
median of the observations, is subtracted from each observation. These data, thus aligned according

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=coin
http://CRAN.R-project.org/package=lmPerm
http://CRAN.R-project.org/package=perm
http://CRAN.R-project.org/package=ez
http://CRAN.R-project.org/package=boot

CONTRIBUTED RESEARCH ARTICLES 369

to the desired main or interaction effect, are then ranked and parametric tests are performed on the
aligned ranks. Higgins and Tashtoush (1994) offered formulas for aligning the data with completely
random (between x between) designs and for repeated measures (mixed) designs.

Aligned ranks The aligned ranks tests functions aligned.rank.transform (from the ART package
by Villacorta (2015)) and art (from the ARTool package by Kay and Wobbrock (2015)) can
be used for between x between designs. Both functions are aligned ranks tests based on the
Higgins and Tashtoush formula for completely random designs (Higgins and Tashtoush, 1994,
pp. 203-204). The art function can also be used for within x within designs and for higher
order designs. Hettmansperger also proposed a ranking method (Hettmansperger and Elmore,
2002) to test for the interaction in between x between designs which essentially corresponds
to the aligned rank transform method. To my knowledge, there is no package available (yet?)
implementing this method (which is quite complicated to accomplish with a simple calculator).
The npIntFactRep function (from the npIntFactRep package by Feys (2015)) yields aligned ranks
tests for the interaction in two-way mixed designs, based on Beasley and Zumbo (2009), and
uses the Higgins and Tashtoush formula for split-plot or repeated measures designs (Higgins
and Tashtoush, 1994, pp. 208) to align the data for the interaction. It lists ANOVA tables for
three types of ranks: regular, Friedman, and Koch ranks.

Rank-based tests For between x between designs, the raov function from the Rfit package by Kloke
and McKean (2012) is available. This package is for the rank-based analysis of linear models,
a robust alternative to least squares. This raov test is based on reduction in dispersion for
testing main effects and interaction, using an algorithm described in Hocking (1985). Gao and
Alvo (2005) developed their own ranking method to test for the interaction in such designs,
by comparing the sum of row ranks with the sum of column ranks. The interaction.test
function from the StatMethRank package by Quinglong (2015) is an application of this method.
The already mentioned nparLD package offers two functions for two-way designs: the ld.f2
function for within x within and the f1.ld.f1 function for mixed (between x within) designs. (ld
stands for longitudinal data.) The package also offers functions for three-way designs: f1.ld.f2
(between x within x within) and f2.ld.f1 (between x between x within), along with functions
for confidence intervals and to help researchers choose the correct function. The functions in
this package are based on studies by Akritas and Brunner (see e.g., Akritas et al., 1997). The
testing method defines relative treatment effects in reference to the distributions of the variables
measured in the experiment. These are estimated on mean ranks. In one sense, therefore, one
can think of a relative treatment effect as a generalized expectation or mean (see e.g., Shah and
Madden, 2004, for an introduction to the basic concepts underlying these tests).

Resulting p-values

In this section, the resulting p-values are reported for various designs with concrete datasets, obtained
with the appropriate R packages tests.

Between x Between

Two-way between subjects designs are dealt with first, using the ‘Box-Cox’ and the ‘Ants-eating-lizards’
data.

Box-Cox data

The Rfit package uses the data from Box and Cox (1964) on the survival times (10hr units) of animals
in a 3 x 4 factorial experiment (n = 4 observations per cell). (The authors, Box and Cox, gave no
further details about the study than that it was a biological experiment using a 3 x 4 factorial design,
the factors being (a) three poisons and (b) four treatments). The distribution of the Box-Cox data is
displayed in the left panel of Figure 1. The response (dependent variable) is the log survival (logSurv)
time of the animal.

For these data, the Fligner-Killeen (median) test for the homogeneity of variances is significant
(α = .05), with a p-value = .0011, as is the Shapiro-Wilk normality test, with p = .0001. (The Shapiro-Wilk
test is known to be biased by sample size. With large samples, small deviations from normality yield
significant results. Thus e.g., a Q–Q plot might be required for verification in addition to the test, if
one really wants to address the normality issue, which is not the case here.)

As illustrated in the left panel of Figure 1, the spreading of the data in the poisons I and especially
in the poisons II condition is quite larger than in the poisons III condition (which illustrates the
significance of the Fligner-Killeen test), and in the B and D treatments, survival is higher than in the
other two treatments.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=ART
http://CRAN.R-project.org/package=ARTool
http://CRAN.R-project.org/package=npIntFactRep
http://CRAN.R-project.org/package=Rfit
http://CRAN.R-project.org/package=StatMethRank

CONTRIBUTED RESEARCH ARTICLES 370

Figure 1: Distributions of the dependent variables by Between conditions for the Box-Cox (left) and
Ants-eating-lizards (right) data.

In Table 1, the parametric ANOVA (ezANOVA, from the ez) on these data shows no significant
interaction between treatments and poisons; neither does its permutation version ezPerm. The t2way
function from WRS2 shows no significant interaction. pbad2way does not run here because the
covariance matrix is singular. The med2way function returns a significant p-value. The rank tests
aligned.rank.transform (from the ART), art (from the ARTool) and the raov robust ANOVA test (from
the Rfit package) all bring about equal and significant values, whereas the p-value for the ranks
interaction.test (from the StatMethRank) is not significant. In the package manual, the example for the
use of this function is on the Box-Cox data in matrix format.

Function Package Box-Cox Ants-eating-lizards

Parametric
ezANOVA ez .1123 .0617

Permutation
ezPerm ez .1430 .0820

Robust
t2way WRS2 .0560 .3310
pbad2way WRS2 NA .5373
med2way WRS2 .0000 .0000

Rank
raov Rfit .0144 .0115
aligned.rank.transform ART .0168 .0688
art ARTool .0168 .0688
interaction.test StatMethRank .4913 .3959

Table 1: Resulting p-values of the various tests for the interaction on the Box-Cox and Ants-eating-
lizards data.

Ants-eating-lizards

In the web pages material accompanying his book, in the folder on permutation tests, David Howell
(Howell, 2013) illustrates the use of R scripts for permutation tests in factorial designs. He took an
example from Manly (2007, p. 144). In this study, the number of ants consumed by two sizes of lizards
over each of four months were observed. The distributions of milligrams of ants consumed by 24
lizards (categorized as large or small in sizes; n = 3 lizards per cell) during four months are displayed

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 371

in the right panel of Figure 1. It is obvious that in August, lizards – especially the large sized ones –
eat most ants.

Effect Parametric Manly Edgington Still-White ter Braak

Size .0506 .0485 .0400 .0400 .0480
Months .0000 .0000 .0000 .0000 .0000
S x M .0617 .0480 .0480 .0512 .0488

Table 2: Summary of results in p-values from Howell (2013).

For these data, the Fligner-Killeen median test for the homogeneity of variances is not significant.
Yet, the Shapiro-Wilk normality test is significant, with a p-value = 5.2E–06.

Howell performed several permutation tests with different approaches. The resulting p-values are
summarized in Table 2 (as in Howell’s table, p-values are reported only up to 4 digits after the decimal
point). With the parametric test and with the Still-White approach, the p-values for the interaction (S x
M) are ‘almost’ significant. (I know I should not use such terms, yet researchers typically do; this is
discussed further below in the ‘Choosing methods’ section.) With the other approaches, the p-values
are significant. Using the Hettmansperger method (Hettmansperger and Elmore, 2002), I calculated a
very small p-value: 5.9E–157.

In Table 1, the resulting p-values for the interaction (sizes x months) with the Ants-eating-lizards
data are on the right side. The parametric value using ezANOVA is not significant and equal to the
parametric value in Table 2 (p = .0617). The ezPerm value is about the same. The t2way value, based on
trimmed means, is not significant. The pbad2way function also returns a non-significant value (about
.5400, depending on the ad hoc bootstrap). The med2way however, as for the Box-Cox data, yields a
very small p-value. (This function only gives up to 4 digits after the decimal point.) The raov robust
test value reveals to be significant. The aligned ranks aligned.rank.transform and art values are the
same and not significant, and the p-value for the interaction.test is not significant.

Within x Within

Figure 2: Distributions of the Amylase concentrations by Within conditions for the Amylase data.

Amylase data

For a two-way within (doubly repeated) subjects designs, the ‘Amylase’ data form the nparLD package
were used. The data are from a longitudinal study on the concentration of α-amylase (a protein most
prominent in pancreatic juice and saliva) levels (in U/ml) of the saliva from a group of 14 volunteers.
Measurements were taken on 8 occasions, four times per day (8 a.m., 12 p.m., 5 p.m., 9 p.m.) and on

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 372

two days (Monday, Thursday). The distribution of the amylase concentrations in Figure 2 suggests
that, on Monday, these are higher than on Thursday and that there might be an interaction between
time 1 (days) and time 2 (hours). The spreading of concentrations is high at noon, and highest in the
afternoon.

The Shapiro-Wilk test for normality (on the data in ‘long’ format) is significant with a p-value close
to zero: 1.41E–12. Mauchly’s sphericity test on the 8 repeated measures also reveals a significant value
p = .0135. In Table 3, all p-values are significant. (The H-F value is for the Huynh-Feldt correction due

Function Package Amylase

Parametric
ezANOVA ez .0112

– H-F corrected .0221

Permutation
ezPerm ez .0180

Rank
art ARTool .0127
ld.f2 nparLD

– Walt-type .0025
– Anova-type .0042

Table 3: Resulting p-values of the various tests for the interaction on the Amylase data.

to lack of sphericity.) Both values of the ld.f2 (from nparLD) function are somewhat smaller than the
other.

Mixed (between x within)

Three datasets were chosen for the nonparametric tests for the interaction in mixed designs: the
‘Hangover’, the ‘Higgins’, and the ‘Bonate’ data. The latter dataset is for a pretest-posttest mixed
design, which is reviewed in the ‘Pretest-Posttest’ subsection.

Hangover data

Figure 3: Distributions of the dependent variables by the Mixed conditions for the Hangover (left)
and the Higgins (right) data.

The data on hangover symptoms are from Wilcox (2012, p.411). These data, also used in the WRS2
package, come from a study on the effect of consuming alcohol, in which the number of hangover

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 373

symptoms were measured for two independent groups (N = 40, 2 x n = 20, 3 repeated measures), with
each subject consuming alcohol and being measured on three different occasions. One group consisted
of sons of alcoholics and the other was a control group. The distribution of this dataset is presented in
the left panel of Figure 3.

The Shapiro-Wilk normality test is significant, the p-value is about zero: 4.78E–14. Mauchly’s test
for sphericity is not significant.

Function Package Hangover Higgins

Parametric
ezANOVA ez .3823 .0003

Permutation
ezPerm ez .3800 .0020

Robust
bwtrim(20%) WRS2 .5790 NA
sppbi WRS2 .8607 .0000

Rank
npIntFactRep npIntFactRep

– regular .6424 .0007
– Friedman .7289 .0019
– Koch .6502 .0037

art ARTool .3743 .0006

f1.ld.f1 nparLD
– Walt-type .6165 .0000
– Anova-type .6812 .0466

Table 4: Resulting p-values of the various tests for the interaction on the Hangover and Higgins data.

None of the p-values for the interaction in the Hangover data, in the left column in Table 4, are
significant.

Higgins data

The Higgins data are the Table 5 data in Higgins et al. (1990). They came from an experiment by
Milliken and Johnson (1984) in which 4 peat pots, with a different (within) level of fertilizer randomly
assigned to each, were placed in a tray (unit of observation). Each tray was treated with one of four
different (between) moisture levels (N = 12, 4 x n = 3 trays, 4 repeated measures). The distribution of
this set is displayed in the right panel of Figure 3.

Both the Shapiro-Wilk normality test and Mauchly’s test for sphericity are not significant. (This
implies that nonparametric tests are not really required here, but this is not an issue. Higgins et al.
(1990) used these data to illustrate the aligned rank transform procedure.)

The p-values for the interaction in the Higgins data are reported in the right column of Table 4; all
of them are significant. The bwtrim function does not run on these data because the covariance matrix
is singular. f1.ld.f1 gives the same warning; its resulting values might not be valid here.

Pretest-Posttest

This type of design is a special case of mixed designs, with only 2 within levels. Bonate (2000)
thoroughly discussed the data he presented in his Table 5.4. They resulted from a study with two
between groups (control and treatment; n = 10 and n = 9, respectively) and two repeated measures:
pre- and posttest. In the treatment group, there was an outlier on the posttest: a value of 19 between
values quite larger than 60 in the whole table. (Bonate did not give any more details about these data.)

According to Bonate, pretest-posttest data can be analyzed in several ways: (1) ANOVA on final
scores alone, (2) on difference scores, (3) on percentages change scores, (4) by means of an analysis of
covariance (ANCOVA) with the pre-test as covariate for the predicting group factor and the posttest
as outcome variable, (5) blocking by initial scores (stratification), and (6) as repeated measures. For
this design, I only review the ANCOVA, because most statisticians would agree that this should be the
preferred method for analysis of pretest-posttest data (see e.g., Dimitrov and Rumrill, 2003). To test for
the interaction in such a design boils down to the test for the between effect (predictor) on the posttest
(criterion) after the pretest has been included in the regression model as a covariate.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 374

Figure 4: Distribution of the dependent variable by the Pretest-Posttest and Group conditions (left
panel) and Pretest-Posttest regression plots by Group (right panel) for the Bonate data.

The Shapiro-Wilk test (on the data in ‘long’ format) is significant, p = .0003. Grubb’s test
(grubb.test) for one outlier (from the outliers package by Komsta (2011)) spots the value 19, with p =
.0007.

It seems evident from Figure 4 (in the right panel) that the regression slopes are not equal between
groups. (Different scales for the pre- vs. posttest were used for the plot to fit in the whole figure,
despite the outlier. The shaded areas correspond to the 95% confidence intervals.) So, one of the
assumptions for an ANCOVA, that of homogeneity of regression slopes, seems to be violated, most
probably due to the outlier. Yet, the robust onecova function (from the npsm package by Kloke and
McKean (2015), based on the their book (Kloke and McKean, 2011)), shows that the interaction group
x pretest is not significant, p = .7457. Furthermore, when comparing the Pearson correlations between
pre- and posttest in the two groups (r = .2683 in the control group and –.0756 in the treatment group)
with the cocor.indep.groups function (from the cocor package by Diedenhofen and Musch (2015)),
the resulting p-value is not significant: p = .5284. Based upon these reassuring results a nonparametric
ANCOVA on these data seems justified.

Robust and rank (R)ANCOVA

Except for the outlier, in Figure 4 (left panel), all posttest values are clearly much higher in the treatment
group (green dots) than in the control group (red dots). Yet, a parametric ANCOVA on these data
yields a non-significant group effect (which corresponds to the interaction group x pre-posttest), with
a p-value = .0576.

Bonate (2000, pp.103-106) proposed two ways for dealing with an outlier: simply removing the
outlier or applying a method to minimize the influence of an observation on parameter estimations,
namely the iterative re-weighted least-squares (IRWLS). He used two weight functions for the iter-
ations: the Huber function and the bisquare. Removing the outlier from the data in this example
resulted in a p-value (for the group effect) close to zero (<.0001), as did both weight functions.

Quade (1967) introduced the RANCOVA, the rank analysis of covariance. It is an ANOVA for the
between effect on the residuals from the regression of the ranked posttest (criterion) on the ranked
pretest (covariate). This test is quite significant here: p = .0048. A regression analysis of the ranked
posttest (criterion) on ranked pretest and treatment (covariate and predictor) is another way to run a
RANCOVA. It yields a comparable p-value = .0031. These values confirm Bonate’s results.

The WRS2 package offers several robust alternative for the ANCOVA: ancov, ancboot, etc. .
Unfortunately, these functions fail when the number of degrees of freedom is smaller than or equal
to 2, as is the case here. The onecovahomog function from npsm, which is a robust ANCOVA under
homogeneous slopes, yields a p-value = .0001.

As another alternative for ANCOVA, one can run any of the many (in WRS2 as well as in many

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=outliers
http://CRAN.R-project.org/package=npsm
http://CRAN.R-project.org/package=cocor

CONTRIBUTED RESEARCH ARTICLES 375

other packages) nonparametric or robust tests for one-way designs on variables, i.c. the residuals
from the regression analysis of the posttest on the pretest. For example, the yuen function yields a
p-value = .0001, with a trimmed mean difference between residuals of –27.24 and a 95% confidence
interval: –36.10 to –18.37. The Kruskal-Wallis rank sum test returns a p-value = .0043. The Exact
Wilcoxon-Mann-Whitney test yields a p-value = .0030. These tests can also be run on gain or difference
scores, but many statisticians would not recommend (to say the least) analyzing such scores (see e.g.,
Senn, 2006).

Choosing between methods

Many statisticians (see e.g., Gardner and Altman, 1986), have warned researchers against using the
accept/reject philosophy of hypothesis testing. Researchers tend to express joy on achieving a p-value
of .049 and despair on finding one of ‘only’ .051. They seem to internalize between these values as
‘right’ versus ‘wrong’, or even of ‘renewal of grants’ versus ‘termination of a research career’. This
philosophy has led to the publication bias in journals (see e.g., Easterbrook et al., 1991), because
research with statistically significant results is potentially more likely to be submitted than studies
with non-significant results, with this bias of over-representation of positive results as a consequence.

The alternative, according to Gardner and Altman (1986), is to estimate the magnitude of the
difference of a measured outcome between treatment groups, along with some interval that includes
the population value of the difference with some specified probability: the confidence interval.

In this respect, I would advise researchers who face a choice between the increasing number of
nonparametric R packages with functions for testing the interaction in factorial designs, not to compare
the resulting p-values as reported in the previous section. They should certainly not go shopping for a
test with the smallest p-values. Instead, they should be guided by the reason why a nonparametric
test was indicated and their knowledge about how the chosen test deals with this reason why.

The above reported resulting p-values sometimes are quite different for the same datasets, depend-
ing upon the in R packages available types of tests. Since the number of available packages varies
with the type of design, I discuss this choice issue for each of these separately.

Between x Between

The resulting p-values for the interaction in the between design data, summarized in Table 1, are quite
divergent. With the publication strategy in mind, a researcher might very well be tempted to go for
the robust median test med2way from WRS2. Yet, this test is intended to deal with outliers. If a plot of
the data, e.g., a box-plot does not show any evidence of outliers, then this would not be an acceptable
choice. The relevant aspect of the median test is that it only considers the position of each observation
relative to the overall median, i.e., the number of times (frequency) the observation is above or below
the overall median. This might not be what the researcher wants. Freidlin and Gastwirth (2000) argued
the median test should be retired from general use.

For ordinal data, the researcher has a choice between the raov, aligned.rank.transform, art and,
interaction.test functions; they yield comparable results. His/her choice should be inspired by the
degree of knowledge he/she has or wants to invest in the rationale behind these tests. A researcher
who is familiar with regression models might prefer the raov function; a researcher who is more
acquainted with traditional ANOVA-type tests might choose one of two the aligned rank test functions.
They essentially do the same thing; the aligned.rank.transform function has a somewhat more
detailed output than art. The interaction.test yields puzzling results, because for both datasets,
its p-values are quite different compared to all the other values in Table 1. Personally, I do not quite
understand what this test does and therefore would not use it. Note that the permutation test ezPerm
yields p-values not too much different from its parametric equivalent ezANOVA.

Within x Within

For the within x within design, all the resulting p-values in Table 3 are about equal (p < .0200). They
all are quite significant. The two ld.f2 type tests from nparLD yield the lowest values. The art
function does not allow to specify the model for the covariance structure of the repeated measures.
For doubly repeated measures designs, this might be a shortcoming. In the literature, I could not find
any discussion about how to apply the aligned rank transform for doubly repeated measures. Since
the art function uses the formula for between x between design, this might not be the right one for
within x within designs. I would advise the use the ld.f2 function here; it is better documented and
was developed especially for such designs.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 376

Mixed (between x within)

The resulting p-values in the mixed designs, displayed in Table 4, are not much dissimilar, but there are
some peculiarities. For the Hangover data, the parametric test value is p = .3823. The nonparametric
(robust and rank) p-values all are about or above .60, except for the art value. For the Higgins data, the
anova-type value from f1.ld.f1 seems a little odd, because it is only just under the α-level, whereas
all the other values clearly are significant. As noted above, f1.ld.f1 gave a warning; one should not
choose this function here.

It is somewhat puzzling that the art function does not yield the same p-values as the regular
aligned ranks test from npIntFactRep, because they supposedly both use the same procedure to align
the data for the interaction, i.e. the formula for split-plot or repeated measures designs from Higgins
and Tashtoush (1994, p. 208). Especially for the Hangover data the values are quite different (.6424 vs.
.3743).). For the Higgins dataset, I calculated the Pearson correlation between the data aligned for the
interaction with the art function from ARTool and those same data aligned for the interaction with
the Higgins and Tashtoush formula for split-plot designs: this was (only) r = .80. When applying the
Higgins and Tashtoush formula for two-way completely random designs (Higgins and Tashtoush,
1994, p. 203–204) to align the data for the interaction and then running a repeated measures ANOVA
on the rank aligned data, with the compound symmetry options for the covariance structure (with the
SAS mixed procedure described in Littell et al. (1996)), I found exactly the same value as for art in
Table 4: p = .3743. This indicates that the art function from ARTool uses the wrong Higgins and
Tashtoush formula for aligning the data in mixed designs. It uses the formula for between x between
designs, instead of using the formula for mixed (In Higgins’s terms: split-plot or repeated measures)
designs. I therefore would recommend not to use the art function for such designs. Data with outliers
should be analyzed with a robust function (or both), ordinal data can be analyzed either with f1.ld.f1
(if it does not give a warning) or with npIntFactRep. Researcher’s choice should be guide be his/here
knowledge of these tests.

Pretest-Posttest

The parametric and permutation tests p-values for the group effect (indication the interaction) are
not significant. Yet, the onecovahomog (robust ANCOVA) function is significant: p = .0001. The
RANCOVAs and the nonparametric tests on residuals also all are quite significant. The p-values from
the R package functions thus corroborate Bonate’s results. In this context, researchers again should be
guided by their knowledge about the particular tests/functions.

Conclusions

For all types of designs, the randomization (or permutation) and the parametric version of the tests
yield comparable p-values. Therefore, I would not advise to use randomization tests as an genuine
nonparametric alternative.

Given the sometimes quite divergent resulting p-values, potential users of nonparametric R
functions to apply tests for the interaction in two-way factorials designs should be careful in their
choices. They should not go shopping for the test function with the smallest p-value. Instead, a close
examination and justification of the chosen function is recommended. They should know exactly what
the chosen test does.

Finally, I would like to mention the paradox Fagerland (2012) has pointed to, namely that as
sample sizes of research studies have increased, the use of nonparametric tests has also escalated at
the expense of parametric tests. This is a paradox because parametric tests, like t-tests, are quite robust
when samples sizes are large. Fagerland has shown that using nonparametric tests in large studies
may provide answers to the wrong question. He stated that nonparametric tests are most useful for
small-sized studies.

Bibliography

M. G. Akritas, S. F. Arnold, and E. Brunner. A unified approach to rank tests for mixed models. Journal
of Statistical Planning and Inference, 61(2):249–277, 1997. [p369]

T. M. Beasley and B. D. Zumbo. Aligned rank tests for interactions in split-plot designs: Distribu-
tional assumptions and stochastic homogeneity. Journal of Modern Applied Statistical Methods, 8
(1):16–50, 2009. URL http://www.soph.uab.edu/Statgenetics/People/MBeasley/Beasley-Zumbo-
AlignedRanks-JMASM-2009.pdf. [p369]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.soph.uab.edu/Statgenetics/People/MBeasley/Beasley-Zumbo-AlignedRanks-JMASM-2009.pdf
http://www.soph.uab.edu/Statgenetics/People/MBeasley/Beasley-Zumbo-AlignedRanks-JMASM-2009.pdf

CONTRIBUTED RESEARCH ARTICLES 377

P. L. Bonate. Analysis of Pretest-Posttest Designs. Chapman-Hall, 2000. [p373, 374]

G. Box and D. Cox. An analysis of transformations. Journal of the Royal Statistical Society. Series B (Method-
ological), 26(2):211–252, 1964. URL http://fisher.osu.edu/~schroeder.9/AMIS900/Box1964.pdf.
[p369]

A. Canty and B. D. Ripley. boot: Bootstrap R (S-Plus) Functions, 2016. R package version 1.3-18. [p368]

B. Diedenhofen and J. Musch. cocor: A comprehensive solution for the statistical comparison of
correlations. PloS ONE, 10(4):1–12, 2015. URL http://dx.doi.org/10.1371/journal.pone.0121945.
[p374]

D. M. Dimitrov and P. D. Rumrill. Pretest-posttest designs and measurement of change. Work, 20(2):
159–165, 2003. URL http://www.ncbi.nlm.nih.gov/pubmed/12671209. [p373]

P. J. Easterbrook, J. A. Berlin, R. Gopalan, and D. R. Matthews. Publication bias in clinical research.
Lancet, 337(8746):867–872, 1991. [p375]

D. M. Erceg-Hurn and V. M. Mirosevich. Modern robust statistical methods: an easy way to maximize
the accuracy and power of your research. American Psychologist, 63(7):591–601, 2008. [p367]

M. W. Fagerland. t-tests, non-parametric tests, and large studies – a paradox of statistical practice?
BMC Medical Research Methodology, 12:78, 2012. URL http://bmcmedresmethodol.biomedcentral.
com/articles/10.1186/1471-2288-12-78. [p367, 376]

J. Feys. npIntFactRep: Nonparametric Interaction Tests for Factorial Designs with Repeated Measures, 2015.
URL https://cran.r-project.org/web/packages/npIntFactRep. R package version 1.5. [p369]

A. Field, J. Miles, and Z. Field. Discovering Statistics Using R. SAGE, 2012. [p367]

B. Freidlin and J. L. Gastwirth. Should the median test be retired from general use? The American
Statistician, 54(3):161–164, 2000. URL http://www.jstor.org/stable/2685584. [p375]

X. Gao and M. Alvo. A nonparametric test for interaction in two-way layout. The Canadian Jour-
nal of Statistics, 33(4):529–543, 2005. URL http://onlinelibrary.wiley.com/doi/10.1002/cjs.
5550330405/pdf. [p369]

M. J. Gardner and D. G. Altman. Confidence intervals rather than p-values: Estimation rather than
hypothesis testing. British Medical Journal, 292:746–750, 1986. [p375]

J. D. Gibbons. Nonparametric Statistics: An Introduction. SAGE, 1993. [p368]

T. P. Hettmansperger and R. Elmore. Tests for interaction in a two-way layout: Should they be included
in a nonparametrics course? In ICOTS, editor, Conference Proceedings, volume 6, Cape Town, South
Africa, 2002. International Association for Statistical Education. [p369, 371]

J. J. Higgins and S. Tashtoush. An aligned rank transform test for interaction. Nonlinear World, 1(2):
201–211, 1994. [p369, 376]

J. J. Higgins, R. C. Blair, and S. Tashtoush. The aligned rank transform procedure. In Proceedings of the
1990 Kansas State University Conference on Applied Statistics in Agriculture, pages 185–195, Manhattan,
Kansas, 1990. Kansas State University. URL http://newprairiepress.org/agstatconference/
1990/proceedings/18. [p368, 373]

R. R. Hocking. The Analysis of Linear Models. Brooks/Cole, 1985. [p369]

D. C. Howell. Statistical Methods for Psychology. Wadsworth, 8th edition, 2013. URL https://www.uvm.
edu/~dhowell/. [p370, 371]

M. Kay and J. O. Wobbrock. ARTool: Aligned Rank Transform for Nonparametric Factorial ANOVAs, 2015.
URL https://cran.r-project.org/web/packages/ARTool. R package version 0.9.5. [p369]

J. D. Kloke and J. W. McKean. Nonparametric Statistical Methods using R. Chapman-Hall, 2011. [p374]

J. D. Kloke and J. W. McKean. Rfit: Rank-based estimation for linear models. The R Journal, 4(2):57–64,
2012. URL https://journal.r-project.org/archive/2012-2/RJournal_2012-2_Kloke+McKean.
pdf. [p369]

J. D. Kloke and J. W. McKean. npsm: Package for Nonparametric Statistical Methods using R, 2015. URL
https://cran.r-project.org/web/packages/npsm. R package version 0.5. [p374]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://fisher.osu.edu/~schroeder.9/AMIS900/Box1964.pdf
http://dx.doi.org/10.1371/journal.pone.0121945
http://www.ncbi.nlm.nih.gov/pubmed/12671209
http://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-78
http://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-12-78
https://cran.r-project.org/web/packages/npIntFactRep
http://www.jstor.org/stable/2685584
http://onlinelibrary.wiley.com/doi/10.1002/cjs.5550330405/pdf
http://onlinelibrary.wiley.com/doi/10.1002/cjs.5550330405/pdf
http://newprairiepress.org/agstatconference/1990/proceedings/18
http://newprairiepress.org/agstatconference/1990/proceedings/18
https://www.uvm.edu/~dhowell/
https://www.uvm.edu/~dhowell/
https://cran.r-project.org/web/packages/ARTool
https://journal.r-project.org/archive/2012-2/RJournal_2012-2_Kloke+McKean.pdf
https://journal.r-project.org/archive/2012-2/RJournal_2012-2_Kloke+McKean.pdf
https://cran.r-project.org/web/packages/npsm

CONTRIBUTED RESEARCH ARTICLES 378

L. Komsta. outliers: Tests for outliers, 2011. URL https://cran.r-project.org/web/packages/
outliers. R package version 0.14. [p374]

B. LaFleur, W. Lee, D. Billhiemer, C. Lockhart, J. Liu, and N. Merchant. Statistical methods for assays
with limits of detection: Serum bile acid as a differentiator between patients with normal colons,
adenomas, and colorectal cancer. Journal of Carcinogenesis, 10(12), 2011. [p367]

M. A. Lawrence. ez: Easy Analysis and Visualization of Factorial Experiments, 2015. URL https://cran.r-
project.org/web/packages/ez. R package version 4.3. [p368]

R. C. Littell, G. A. Milliken, W. W. Stroup, and R. D. Wolfinger. SAS® System for Mixed Models. SAS
Institute, Cary, NC, 1996. [p376]

P. Mair, R. Wilcox, and F. Schoenbrodt. WRS2: A Collection of Robust Statistical Methods, 2015. URL
https://cran.r-project.org/web/packages/WRS2. R package version 0.4-0. [p367]

B. F. Manly. Randomization, Bootstrap, and Monte Carlo Methods in Biology. Chapman-Hall, 3rd edition,
2007. [p370]

G. A. Milliken and D. E. Johnson. Analysis of Messy Data Vol I: Designed Experiments. Van Nostrand
Reinhold Company, 1984. [p373]

K. Noguchi, M. Latif, K. Thangavelu, F. Konietschke, Y. R. Gel, and E. Brunner. nparLD: Nonparametric
Analysis of Longitudinal Data in Factorial Experiments, 2012. URL https://cran.r-project.org/web/
packages/nparLD. R package version 2.1. [p367]

D. Quade. Rank analysis of covariance. Journal of the American Statistical Association, 62(320):1187–1200,
1967. [p374]

L. Quinglong. StatMethRank: Statistical Methods for Ranking Data, 2015. URL https://cran.r-project.
org/web/packages/StatMethRank. R package version 1.3. [p369]

S. Senn. Change from baseline and analysis of covariance revisited. Statistics in Medicine, 25(24):
4334–4344, 2006. URL http://www.ncbi.nlm.nih.gov/pubmed/16921578. [p375]

D. A. Shah and L. V. Madden. Nonparametric analysis of ordinal data in designed factorial experiments.
Phytopathology, 94(1):33–43, 2004. URL http://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO.
2004.94.1.33. [p369]

P. J. Villacorta. ART: Aligned Rank Transform for Nonparametric Factorial Analysis, 2015. URL https:
//cran.r-project.org/web/packages/ART. R package version 1.0. [p369]

R. R. Wilcox. Introduction to Robust Estimation and Hypothesis Testing. Elsevier, 3rd edition, 2012. [p367,
368, 372]

Jos Feys
Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven
Tervuursevest 101 - box 1500
3001 Leuven, Belgium
jos.feys@kuleuven.be

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://cran.r-project.org/web/packages/outliers
https://cran.r-project.org/web/packages/outliers
https://cran.r-project.org/web/packages/ez
https://cran.r-project.org/web/packages/ez
https://cran.r-project.org/web/packages/WRS2
https://cran.r-project.org/web/packages/nparLD
https://cran.r-project.org/web/packages/nparLD
https://cran.r-project.org/web/packages/StatMethRank
https://cran.r-project.org/web/packages/StatMethRank
http://www.ncbi.nlm.nih.gov/pubmed/16921578
http://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO.2004.94.1.33
http://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO.2004.94.1.33
https://cran.r-project.org/web/packages/ART
https://cran.r-project.org/web/packages/ART
mailto:jos.feys@kuleuven.be

CONTRIBUTED RESEARCH ARTICLES 379

GMDH: An R Package for Short Term
Forecasting via GMDH-Type Neural
Network Algorithms
by Osman Dag and Ceylan Yozgatligil

Abstract Group Method of Data Handling (GMDH)-type neural network algorithms are the heuristic
self organization method for the modelling of complex systems. GMDH algorithms are utilized
for a variety of purposes, examples include identification of physical laws, the extrapolation of
physical fields, pattern recognition, clustering, the approximation of multidimensional processes,
forecasting without models, etc. In this study, the R package GMDH is presented to make short term
forecasting through GMDH-type neural network algorithms. The GMDH package has options to use
different transfer functions (sigmoid, radial basis, polynomial, and tangent functions) simultaneously
or separately. Data on cancer death rate of Pennsylvania from 1930 to 2000 are used to illustrate the
features of the GMDH package. The results based on ARIMA models and exponential smoothing
methods are included for comparison.

Introduction

Time series data are ordered successive observations which are measured in equally or unequally
spaced time. Time series data may include dependency among successive observations. Hence, the
order of the data is important. Time series data appear in various areas and disciplines such as medical
studies, economics, the energy industry, agriculture, meteorology, and so on. Modelling time series
data utilizes the history of the data and makes forecasting using this history. At times, statistical
models are not sufficient to solve some problems. Examples include pattern recognition, forecasting,
identification, etc. Extracting the information from the measurements has advantages while modelling
complex systems when there is not enough prior information and/or no theory is defined to model
the complex systems. Selecting a model automatically is a powerful way for the researchers who are
interested in the result and do not have sufficient statistical knowledge and sufficient time (Mueller
et al., 1998) for an analysis.

The objective of this study is to develop an R package for forecasting of time series data. Some of
recent softwares developed for time series are glarma, ftsa, MARSS, ensembleBMA, ProbForecast-
GOP, and forecast (Dunsmuir and Scott, 2015; Shang, 2013; Holmes et al., 2012; Fraley et al., 2011;
Hyndman and Khandakar, 2008). In this study, we focused on the development of an R package
for short term forecasting via Group Method of Data Handling (GMDH) algorithms. The history of
GMDH-type neural network is based on works from the end of the 1960s and the beginning of the
1970s. First, Ivakhnenko (1966) introduced a polynomial, which is the basic algorithm of GMDH, to
construct higher order polynomials. Also, Ivakhnenko (1970) introduced heuristic self-organization
methods which constructed the main working system of GMDH algorithm. Heuristic self-organization
method defines the way that the algorithm evolves, following rules such as external criteria. The
GMDH method, convenient for complex and unstructured systems, has benefits over high order
regression (Farlow, 1981).

Kondo (1998) proposed GMDH-type neural network in which the algorithm works according
to the heuristic self-organization method. Kondo and Ueno (2006a,b) proposed a GMDH algorithm
which has a feedback loop. According to this algorithm, the output obtained from the last layer is set
as a new input variable, provided a threshold is not satisfied in the previous layer. The system of the
algorithm is organized by a heuristic self-organization method where a sigmoid transfer function is
integrated. Kondo and Ueno (2007) proposed a logistic GMDH-type neural network. The difference
from a conventional GMDH algorithm was that the new one would take linear functions of all inputs
at the last layer. Kondo and Ueno (2012) included three transfer functions (sigmoid, radial basis and
polynomial functions) in the feedback GMDH algorithm. Srinivasan (2008) used a GMDH-type neural
network and traditional time series models to forecast predicted energy demand. It was shown that
a GMDH-type neural network was superior in forecasting energy demand compared to traditional
time series models with respect to mean absolute percentage error (MAPE). In another study, Xu et al.
(2012) applied a GMDH algorithm and ARIMA models to forecast the daily power load. According to
their results, GMDH-based results were superior to the results of ARIMA models in terms of MAPE
for forecasting performance.

There are some difficulties when applying a GMDH-type neural network. For example, there is no
freely available software for researchers implementing the GMDH algorithms in the literature. We

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=glarma
http://CRAN.R-project.org/package=ftsa
http://CRAN.R-project.org/package=MARSS
http://CRAN.R-project.org/package=ensembleBMA
http://CRAN.R-project.org/package=ProbForecastGOP
http://CRAN.R-project.org/package=ProbForecastGOP
http://CRAN.R-project.org/package=forecast

CONTRIBUTED RESEARCH ARTICLES 380

present the R package GMDH to make short term forecasting through GMDH-type neural network
algorithms. The package includes two types of GMDH structures; namely, GMDH structure and
revised GMDH (RGMDH) structure. Also, it includes a variety of options to use different transfer
functions (sigmoid, radial basis, polynomial, and tangent functions) simultaneously or separately. Data
on the cancer death rate of Pennsylvania from 1930 to 2000 are used to illustrate the implementation of
GMDH package. We compare the results to those based on ARIMA models and exponential smoothing
(ES) methods.

Methodology

In this section, data preparation, two types of GMDH-type neural network structures, and estimation
of a regularization parameter in regularized least square estimation (RLSE) are given.

Data preparation

Data preparation has an important role in GMDH-type neural network algorithms. To get rid of very
big numbers in calculations and to be able to use all transfer functions in the algorithm, it is necessary
for range of the data to be in the interval of (0, 1). If αt is the actual time series dataset at hand, this
necessity is guaranteed by the following transformation,

wt =
αt + δ1

δ2
(1)

with

δ1 =

{
|αt|+ 1 if min(αt) ≤ 0

0 if min(αt) > 0

and

δ2 = max(αt + δ1) + 1.

During the estimation and forecasting process in GMDH-type neural network algorithms, all calcu-
lations are done using the scaled data set, wt. After all processes are ended–i.e, all predictions and
forecasts are obtained–we apply the inverse transformation as follows,

α̂t = ŵt × δ2 − δ1. (2)

Let’s assume a time series dataset for t time points, and p inputs. An illustration of time series
data structure in GMDH algorithms is presented in Table 1. Since we construct the model for the data
with time lags, the number of observations, presented under the subject column in the table, is equal
to t− p; and the number of inputs, lagged time series, is p. In this table, the variable called z is put in
the models as a response variable, and the rest of the variables are taken into models as lagged time
series xi, where i = 1, 2, ..., p. The notations in Table 1 are followed throughout this paper.

Table 1: An illustration of time series data structure in GMDH algorithms

Subject z x1 x2 . . . xp
1 wt wt−1 wt−2 . . . wt−p
2 wt−1 wt−2 wt−3 . . . wt−p−1
3 wt−2 wt−3 wt−4 . . . wt−p−2
...

...
...

...
. . .

...
t− p wp+1 wp wp−1 . . . w1

A better model which explains the relation between response and lagged time series is captured
via transfer functions. The sigmoid, radial basis, polynomial, and tangent functions, presented in Table
2, are mainly used to explain the relation between inputs and output in GMDH-type neural network
algorithms (Kondo and Ueno, 2012). We use all transfer functions, stated in Table 2, simultaneously in
each neuron. In other words, we construct four models at each neuron, and then the model which
gives the smallest prediction mean square error (PMSE) is selected as the current transfer function at
the corresponding neuron.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 381

Table 2: Transfer functions

Sigmoid Function z = 1/(1 + e−y)

Radial Basis Function z = e−y2

Polynomial Function z = y
Tangent Function z = tan(y)

GMDH algorithm

GMDH-type neural network algorithms are modeling techniques which learn the relations among the
variables. In the perspective of time series, the algorithm learns the relationship among the lags. After
learning the relations, it automatically selects the way to follow in algorithm. First, GMDH was used
by Ivakhnenko (1966) to construct a high order polynomial. The following equation is known as the
Ivakhnenko polynomial given by

y = a +
m

∑
i=1

bi · xi +
m

∑
i=1

m

∑
j=1

cij · xi · xj +
m

∑
i=1

m

∑
j=1

m

∑
k=1

dijk · xi · xj · xk + . . . (3)

where m is the number of variables and a, b, c, d, . . . are coeffients of variables in the polynomial, also
named as weights. Here, y is a response variable, xi and xj are the lagged time series to be regressed.
In general, the terms are used in calculation up to square terms as presented below,

y = a +
m

∑
i=1

bi · xi +
m

∑
i=1

m

∑
j=1

cij · xi · xj (4)

The GMDH algorithm considers all pairwise combinations of p lagged time series. Therefore,
each combination enters each neuron. Using these two inputs, a model is constructed to estimate the
desired output. In other words, two input variables go in a neuron, one result goes out as an output.
The structure of the model is specified by Ivakhnenko polynomial in equation 4 where m = 2. This
specification requires that six coefficients in each model are to be estimated.

The GMDH algorithm is a system of layers in which there exist neurons. The number of neurons
in a layer is defined by the number of input variables. To illustrate, assume that the number of input
variables is equal to p, since we include all pairwise combinations of input variables, the number of
neurons is equal to h = (p

2). The architecture of GMDH algorithm is illustrated in Figure 1 when there
are three layers and four inputs.

Figure 1: Architecture of GMDH algorithm

In the GMDH architecture shown in Figure 1, since the number of inputs is equal to four, the
number of nodes in a layer is determined to be six. This is just a starting layer to the algorithm. The
coefficients of equation 4 are estimated in each neuron. By using the estimated coefficients and input
variables in each neuron, the desired output is predicted. According to a chosen external criteria, p

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 382

neurons are selected and h− p neurons are eliminated from the network. In this study, prediction
mean square error (PMSE) is used as the external criteria. In Figure 1, four neurons are selected while
two neurons are eliminated from the network. The outputs obtained from selected neurons become
the inputs for the next layer. This process continues until the last layer. At the last layer, only one
neuron is selected. The obtained output from the last layer is the predicted value for the time series at
hand. The flowchart of the algorithm is depicted in Figure 2.

Figure 2: Flowchart of GMDH algorithms

In a GMDH algorithm, there exist six coefficients to be estimated in each model. Coefficients are
estimated via RLSE.

RGMDH algorithm

A GMDH-type neural network constructs the algorithm by investigating the relation between two
inputs and the desired output. Architecture of a revised GMDH (RGMDH)-type neural network does
not only consider this relation, but it also considers the individual effects on the desired output (Kondo
and Ueno, 2006b). There are two different types of neurons in an RGMDH-type neural network. In the
first type of neuron, it is same as in GMDH-type neural network, given as in equation 4. That is, two
inputs enter the neuron, one output goes out. In the second type of neuron, r inputs enter the neuron,
one output goes out. This second type neuron is given by

y = a +
r

∑
i=1

bi · xi , r ≤ p, (5)

where r is the number of inputs in the corresponding second type neuron.

As mentioned above, there exist h = (p
2) neurons in one layer in a GMDH-type neural network.

In addition to this, with the p neurons from the second type of neuron, the number of neurons in
one layer becomes η = (p

2) + p in an RGMDH-type algorithm. The architecture of an RGMDH-type
algorithm is shown in Figure 3 for the case when there are three layers and three inputs. In this
architecture, since the number of inputs is three, the number of nodes in a layer is determined to be six.
Here, three of six nodes are the first type of neurons in which all pairwise combinations of lagged time
series are already used as in the GMDH algorithm. The rest of the three nodes are the second type
of neurons where the individual effects of the lagged time series are sequentially added to the layer
starting from lag 1. In each neuron, coefficients of models are calculated by using the corresponding
models in equations 4 and 5. For instance, in Figure 3, there are six coefficients to be estimated as given
by equation 4 for the first type of neurons, and two, three and four coefficients are estimated as given
in equation 5 for the the second type of neurons when r equals to 1, 2 and 3, respectively. The desired
output is predicted by utilizing estimated coefficients and input variables in each neuron. Here, p
neurons are selected as living cells and η − p death cells are eliminated from the network according to
the external criteria. The rest of the algorithm is same with GMDH.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 383

Figure 3: Architecture of an RGMDH algorithm

Estimation of regularization parameter in RLSE

In each estimation step, there exist the coefficients to be estimated. While we are estimating these
coefficients, we use the regularized least square estimation method. It is stated that regularized least
square estimation is utilized when there is the possibility of a multi-collinearity problem by integrating
a regularization parameter, λ, into the estimation step. It is important to note that regularized least
square estimation differs from the least square estimation when the regularization parameter is not
zero.

We integrate the estimation of a regularization parameter (penalizing term) via validation in
GMDH algorithms. For this purpose, we divide the data into two parts: a learning set and a testing set.
In the GMDH package, 70% of the time series, by default, is taken for the learning set. Since the data
set is time dependent, the order of data is saved in this division process. In other words, by default,
the first 70% of the data is used for learning set and the last 30% of the data is utilized as a testing
set. This whole process is applied for each model constructed in each neuron. The algorithm for the
regularization parameter estimation is as follows:

i) Clarify the possible regularization parameter, λ = 0, 0.01, 0.02, 0.04, 0.08, . . . , 10.24. Note that,
when λ = 0, RLSE is converted to LSE.

ii) For each possible λ value, coefficients are estimated via RLSE by using the learning set.

iii) After the calculation of coefficients, calculate the predicted values by utilizing the test set to obtain
the MSE for each regularization parameter.

iv) Select the regularization parameter which gives the minimum MSE value.

Implementation of GMDH package

The data used in this application of the GMDH package are the yearly cancer death rate (per 100,000
population) in the Pennsylvania between 1930 and 2000. The data were documented in Pennsylvania
Vital Statistics Annual Report by the Pennsylvania Department of Health in 2000 (Wei, 2006). This
dataset is also available as a dataset in the package GMDH. After installing the GMDH package, it
can be loaded into an R workspace by

R> library("GMDH")
R> data("cancer") # load cancer data

After the cancer death rate data set is loaded, one may use fcast function in GMDH package for
short-term forecasting. To utilize the GMDH structure for forecasting, method is set to "GMDH". One
should set the method to "RGMDH" to use the RGMDH structure.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 384

R> out = fcast(cancer[1:66], method = "GMDH", input = 15, layer = 1, f.number = 5,
level = 95, tf = "all", weight = 0.70, lambda = c(0, 0.01, 0.02, 0.04, 0.08, 0.16,
0.32, 0.64, 1.28, 2.56, 5.12, 10.24))

Point Forecast Lo 95 Hi 95
67 249.5317 244.9798 254.0836
68 249.6316 244.4891 254.7741
69 248.9278 243.0318 254.8239
70 247.0385 240.7038 253.3731
71 244.7211 237.1255 252.3168

display fitted values
R> out$fitted

return residuals
R> out$residuals

show forecasts
R> out$mean

In this part, we divided the data into two parts for the aim of observing the ability of methods
on prediction (n = 66) and forecasting (n = 5). We include ARIMA models and ES methods for
comparison purpose. For the determination of the best order of ARIMA models and the best method
of ES techniques, there are two functions in the R package forecast. These functions, auto.arima and
ets, which use grid search, select the best model according to the criteria of either AIC, AICc or BIC.
For this data set, the functions suggested the model ARIMA (1, 1, 0) with intercept and an ES method
with multiplicative errors, additive damped trend and no seasonality (M, Ad, N), respectively. We
also added the model ARIMA (0, 1, 0) with intercept for this data set suggested by Wei (2006). For all
models, prediction mean square error (PMSE) and forecasting mean square error (FMSE) are stated in
Table 3.

Figure 4: Yearly cancer death rate (per 100,000 population) in Pennsylvania between 1941 and 2000
with predictions and forecasts obtained via RGMDH and ES(M,Ad,N)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 385

Table 3: Comparison of the GMDH algorithms with other models on cancer death rate in terms of
prediction mean square error (PMSE) and forecasting mean square error (FMSE)

PMSE FMSE

GMDH 4.985 4.575
RGMDH 4.287 4.102
ARIMA(1, 1, 0) with intercept 5.995 81.874
ARIMA(0, 1, 0) with intercept 6.324 73.756
ES (M, Ad, N) 6.153 17.508

The best forecasting performance belongs to the RGMDH algorithm and its prediction accuracy
also yields better results as compared to the GMDH, ARIMA and ES models. Moreover, the GMDH
algorithm outperforms the ARIMA and ES models in prediction and forecasting. To avoid visual
pollution in Figure 4, we include only the predictions and forecasts of RGMDH algorithm and ES (M,
Ad, N).

Conclusion

In this study, we used GMDH-type neural network algorithms, the heuristic self-organization method
for the modelling of complex systems, to make forecasts for time series data sets. Our primary focus
was to develop a free software implementation. Concretely, we developed an R package GMDH to
make forecasting in the short term via GMDH-type neural network algorithms. Also, we included
different transfer functions (sigmoid, radial basis, polynomial, and tangent functions) into the GMDH
package. Our R package allows that these functions can be used simultaneously or separately, as
desired.

In the estimation of coefficients, since we construct the model for the data with lags, there exists a
high possibility of there occurring a multi-collinearity problem. Therefore, we utilized regularized least
square estimation to handle such occurences. It is important to note that estimation of a regularization
parameter is the question of interest. Validation was applied in order to estimate the regularization
term. After selection of a regularization term, coefficients were estimated by the help of all observations
and the regularization parameter.

Application of the algorithms on a real life dataset suggests improved performance of GMDH-type
neural network algorithms over ARIMA and ES models in prediction and short term forecasting.
Researchers are able to use GMDH algorithms easily since our R package GMDH is available on
Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org/package=GMDH.

Future studies are planned in the direction of transfer functions. In this study, we used four
different transfer functions - sigmoid, radial basis, polynomial, and tangent functions - into GMDH
algorithms. We plan to integrate the Box-Cox transformation into GMDH algorithms. GMDH
algorithms with four transfer functions and GMDH algorithms with Box-Cox transformation are going
to be performed on real data applications to compare the prediction and short term forecasting. After
being documented, the related GMDH algorithms with the Box-Cox transformation are going to be
implemented in the R package GMDH.

Acknowledgment

We thank the anonymous reviewers for their constructive comments and suggestions which helped us
to improve the quality of our paper.

Bibliography

W. T. M. Dunsmuir and D. J. Scott. The glarma package for observation-driven time series regression
of counts. Journal of Statistical Software, 67(7):1–36, 2015. doi: 10.18637/jss.v067.i07. [p379]

S. J. Farlow. The GMDH algorithm of Ivakhnenko. The American Statistician, 35(4):210–215, 1981. [p379]

C. Fraley, A. E. Raftery, T. Gneiting, J. Sloughter, and V. J. Berrocal. Probabilistic weather forecasting in
R. The R Journal, 3(1):55–63, 2011. [p379]

E. E. Holmes, E. J. Ward, and K. Wills. MARSS: Multivariate autoregressive state-space models for
analyzing time-series data. The R Journal, 4(1):30, 2012. [p379]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/package=GMDH

CONTRIBUTED RESEARCH ARTICLES 386

R. Hyndman and Y. Khandakar. Automatic time series forecasting: The forecast package for R. Journal
of Statistical Software, 27(3):1–22, 2008. [p379]

A. Ivakhnenko. The group method of data handling–a rival of the method of stochastic approximation.
Soviet Automatic Control, 13(3):43–55, 1966. [p379, 381]

A. Ivakhnenko. Heuristic self-organization in problems of engineering cybernetics. Automatica, 6(2):
207–219, 1970. [p379]

T. Kondo. GMDH neural network algorithm using the heuristic self-organization method and its
application to the pattern identification problem. In SICE’98. Proceedings of the 37th SICE Annual
Conference. International Session Papers, pages 1143–1148. IEEE, 1998. [p379]

T. Kondo and J. Ueno. Medical image recognition of the brain by revised GMDH-type neural network
algorithm with a feedback loop. International Journal of Innovative Computing, Information and Control,
2(5):1039–1052, 2006a. [p379]

T. Kondo and J. Ueno. Revised gmdh-type neural network algorithm with a feedback loop identifying
sigmoid function neural network. International Journal of Innovative Computing, Information and
Control, 2(5):985–996, 2006b. [p379, 382]

T. Kondo and J. Ueno. Logistic GMDH-type neural network and its application to identification of
X-ray film characteristic curve. JACIII, 11(3):312–318, 2007. [p379]

T. Kondo and J. Ueno. Feedback GMDH-type neural network and its application to medical image
analysis of liver cancer. In 42th ISCIE international symposium on stochastic systems theory and its
applications, pages 81–82, 2012. [p379, 380]

J. A. Mueller, A. Ivachnenko, and F. Lemke. GMDH algorithms for complex systems modelling.
Mathematical and Computer Modelling of Dynamical Systems, 4(4):275–316, 1998. [p379]

H. L. Shang. ftsa: An R package for analyzing functional time series. The R Journal, 5(1):64–72, 2013.
URL http://journal.r-project.org/archive/2013-1/shang.pdf. [p379]

D. Srinivasan. Energy demand prediction using GMDH networks. Neurocomputing, 72(1):625–629,
2008. [p379]

W. W. S. Wei. Time series analysis: univariate and multivariate methods. Addison-Wesley publ, 2006. [p383,
384]

H. Xu, Y. Dong, J. Wu, and W. Zhao. Application of GMDH to short-term load forecasting. In Advances
in Intelligent Systems, pages 27–32. Springer-Verlag, 2012. [p379]

Osman Dag
Department of Biostatistics
Faculty of Medicine
Hacettepe University
06100 Ankara, Turkey
osman.dag@hacettepe.edu.tr

Ceylan Yozgatligil
Department of Statistics
Faculty of Arts and Sciences
Middle East Technical University
06531 Ankara, Turkey
ceylan@metu.edu.tr

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://journal.r-project.org/archive/2013-1/shang.pdf
mailto:osman.dag@hacettepe.edu.tr
mailto:ceylan@metu.edu.tr

CONTRIBUTED RESEARCH ARTICLES 387

sbtools: A Package Connecting R to
Cloud-based Data for Collaborative
Online Research
by Luke A Winslow, Scott Chamberlain, Alison P Appling and Jordan S Read

Abstract The adoption of high-quality tools for collaboration and reproducibile research such as R
and Github is becoming more common in many research fields. While Github and other version
management systems are excellent resources, they were originally designed to handle code and scale
poorly to large text-based or binary datasets. A number of scientific data repositories are coming
online and are often focused on dataset archival and publication. To handle collaborative workflows
using large scientific datasets, there is increasing need to connect cloud-based online data storage to
R. In this article, we describe how the new R package sbtools enables direct access to the advanced
online data functionality provided by ScienceBase, the U.S. Geological Survey’s online scientific data
storage platform.

Introduction

Cloud data storage platforms can be a powerful tool for research collaboration, distributed computing,
and data publication. However, while browser-based graphical interfaces make these platforms
accessible to a wide audience, there is also a need for scripted data access and manipulation so that
researchers can capture data provenance and create reproducible analyses. For example, Figshare
(Singh, 2011), DataOne (Michener et al., 2012), Dataverse (King, 2007) and CKAN (Winn, 2013) are
all research data sharing platforms that are gaining use in different research fields. For each of these
platforms, the community has released (Boettiger et al.; Leeper, 2013; Chamberlain) or is developing
(Jones et al., 2013) R packages to streamline the storage and access to archived data.

These existing projects primarily focus on creating more useful, open, and accessible end products
of research, but data- and code-intensive collaborative projects increasingly need collaborative solu-
tions for data storage, sharing, and updating not just at the end of the project, but throughout the full
project lifecycle. Github is increasingly used to collaborate around data products (Gandrud, 2013b),
but does not scale well to the distribution of large datasets (Delcambre, 2013) and does not include
metadata or queries beyond free-text search. Furthermore, most data archive platforms like DataOne
and Dataverse focus on academic research projects and do not support some of the unique needs of
federal research. For example, many government institutions require an archived copy of released
data to be stored and available through federally operated websites. Third party storage providers are
insufficient.

To address future scientific data sharing and archival challenges, the U.S. Geological Survey
(USGS) created ScienceBase (https://www.sciencebase.gov/). This platform is designed to support
the full project data lifecycle and has seen rapid adoption with USGS researchers and collaborators.
ScienceBase supports the storage and access of large files and datasets. It allows data to be stored
with a user-configurable mixture of public and authenticated access and has been designed from the
beginning with first-class RESTful web interfaces to support robust API access. Items on ScienceBase
can have hierarchical relationships, facilitating the organization of complex or related data. It also
supports a seamless transition from project development to data publication, focusing on searchable,
accessible, well described datasets for public use and citation.

To expand the usefulness of the ScienceBase platform directly to R workflows, we have designed
and implemented an R interface to ScienceBase called sbtools. This interface provides scripted R
access to ScienceBase to manage metadata and data files, to search the catalog of datasets, and to view
and modify data in formats familiar to R users. Here we describe several features of ScienceBase, and
how we have implemented the R interface to make them accessible and useful from R.

USGS ScienceBase

To facilitate and encourage data sharing and dissemination, the U.S. Geological Survey has created
ScienceBase, an online collaborative scientific data platform (Figure 1). ScienceBase is targeted for
use by USGS researchers, their collaborators, and the end users of reviewed and released USGS data
products. ScienceBase has four key elements to support collaborative data workflows: 1) Data and
metadata cataloging and hosting with options for private, controlled access and fully public sharing

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://www.sciencebase.gov/

CONTRIBUTED RESEARCH ARTICLES 388

of data and metadata. 2) Central search and data discovery for both data hosted on ScienceBase and
externally hosted data. 3) Full web-service support for all core functionality, including standards-based
access to specific data types (e.g. geospatial datasets). 4) Research community catalogs to enable the
organization of data along collaborative group and organizational boundaries.

Figure 1: The ScienceBase platform logo

ScienceBase users store data in ’items’, where each item is a flexible representation of a dataset
and its metadata. The dataset component of an item can be one or more data files in any format or
simply an item with descriptive metadata linking a dataset hosted on an external repository. This
supports indexing of legacy datasets that are hosted in well known locations (for example, the USGS
National Hydrography Dataset). Items are organized into a tree hierarchy (much like the structure
of files and folders on a hard drive). This allows data to be intuitively organized by the institution,
collaborative group, and/or individual to whom the data belong. At the same time, items can also be
assigned identifying tags for rapid search and data discovery across the full ScienceBase catalog.

Search and management of ScienceBase data items can be accomplished through both graphical
and scripted interfaces. Manual search, data upload/download, and metadata editing are possible
through the ScienceBase website. Automated access to all of these functions is supported by robust
RESTful web services and a documented API. The ScienceBase code and infrastructure setup is
available upon request from the ScienceBase team <sciencebase@usgs.gov>. Further information and
details can be found in the online ScienceBase Documentation.

The sbtools package

In creating sbtools, our goal was to allow complete access to the ScienceBase web service API in
a flexible, lightweight R package. The package imports a minimal number of external packages to
support core functionality. More advanced data access (e.g. geospatial web services) is supported
through suggested packages to keep the basic installation requirements minimal for all platforms.
Within R, sbtools is designed to keep end-user interactions simple despite the underlying complexity
of many of the web service calls (e.g. authentication).

Below, we describe briefly the core functions available in sbtools and discuss the unique features
of ScienceBase that sbtools provides R users.

Data access API

The data access functionality of sbtools makes it easy to access any public item. Every item in
ScienceBase has a unique identifier that can be used for direct access to the item and its associated
data and metadata. A lightweight representation of this information is created in R with the item_get
function.

> test_item = item_get("4f4e4b24e4b07f02db6aea14")
> test_item
<ScienceBase Item>
Title: Coastal-change and glaciological maps of Antarctica
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2010-10-06T04:25:43Z / 2014-07-21T17:45:42Z
Children: FALSE
Item ID: 4f4e4b24e4b07f02db6aea14
Parent ID: 4f4e4771e4b07f02db47e1e4

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://www.sciencebase.gov/about/using-sciencebase

CONTRIBUTED RESEARCH ARTICLES 389

This representation is defined by sbtools as an “sbitem” object, which contains many fields and
can be further inspected in the same way as a named list.

> names(test_item)
[1] "link" "relatedItems" "id"
[4] "identifiers" "title" "citation"
[7] "provenance" "hasChildren" "parentId"
[10] "contacts" "webLinks" "browseCategories"
[13] "browseTypes" "tags" "dates"
[16] "facets" "files" "distributionLinks"
[19] "previewImage"

> test_item$citation
[1] "Geological Survey (U.S.), 1999-08-05, Coastal-change
and glaciological maps of Antarctica: Fact SheetCoastal-change and
glaciological maps of Antarctica."

On ScienceBase, the hierarchical item tree dictates relationships between items; each item has one
parent and potentially many children. sbtools allows the user to easily traverse this tree structure.
Because ScienceBase allows users to define their internal organization, this heirarchy can take on
different meanings for different projects, including conveying data provenance or spatial grouping.

#parent ID always available as item attribute
> parent = item_get(test_item$parentId)
> parent
Title: USGS Publications Warehouse
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2012-02-29T15:42:41Z / 2014-07-08T21:42:20Z
Children: TRUE
Item ID: 4f4e4771e4b07f02db47e1e4
Parent ID: 4f4e4771e4b07f02db47e1da

#getting sibling items
> item_list_children(parent)
[1] "55b98fbee4b08f6647be5179" "541d45a4e4b0f68901ec30ef"
[3] "55b361b3e4b09a3b01b5daad" "53516ef9e4b05569d8059f34"
[5] "4f4e4ab2e4b07f02db66f5e3" "5351704ee4b05569d805a2e4"

ScienceBase items may have data or metadata files attached to them. You can list and download
attached files directly using sbtools.

#returns names of files attached to item
> item_list_files(test_item)

fname size url
1 metadata6644450227216673613.xml 1742 https://www.sciencebase.gov/[truncated]

#returns local path to downloaded files
> item_file_download(test_item, dest_dir = tempdir())
[1] "\\path\\to\\file\\RtmpgBV2fn/metadata6644450227216673613.xml"

ScienceBase has special functionality for certain data types. One example is spatial data. When
spatial data are uploaded to ScienceBase and appropriate metadata is included, they can be accessed
using Open Geospatial Consortium (OGC) web services. sbtools includes functionality to access
Web Feature Service (WFS) when available. Once retrieved, spatial data are stored as sp spatial
objects, which are easily manipulated and visualized (Figure 2). Note: Some figure formatting details
omitted from code below for simplicity. See demo('figure_map_code',package='sbtools') for the
full example.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://www.opengeospatial.org/

CONTRIBUTED RESEARCH ARTICLES 390

#Load non-sbtools-required but useful mapping packages
library(maps)
library(sp)
#an item with an included OGC WFS service
layer = item_get_wfs('55e372b9e4b05561fa208212')
map('state', regions = 'iowa')
plot(layer, add = TRUE)

Figure 2: An example spatial dataset from ScienceBase. Shows high priority regions in Iowa containing
shallow lakes and marshes to create management emphasis areas for migratory water fowl habitat.

Search API

To support advanced and powerful data discovery, all datasets in ScienceBase are indexed and made
available through a flexible search interface. sbtools offers several query functions with different
levels of search specificity, from cross-metadata simple text search to low-level, metadata specific
search functionality.

In sbtools, query functions are included to support the most common query types. Included
functions are available to search based on free-text, project folder, date-time range, geospatial bounding
box, Digital Object Identifier (DOI), and data type. To save space in the examples below, we use the
limit parameter to limit all queries to the first one or two results. Further details for each query type
are available in the package documentation.

The ScienceBase free-text search is simple to use and generic as it searches across all of an item’s
text-based metadata fields. Free-text search can find specific text strings in almost all metadata
fields, including but not limited to filenames, summary fields, citation, contacts, and authors. Spatial
reference metadata is an example of a field not searched through the free-text search. Using sbtools, a
free-text search can be run with the query_sb_text function.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 391

> query_sb_text('Antarctica', limit=1)
[[1]]
<ScienceBase Item>
Title: Antarctica. Erratic near camp 13. December 12, 1977.
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2013-07-09T15:38:45Z / 2016-03-02T23:55:43Z
Children: FALSE
Item ID: 51dc2e85e4b0f81004b79cf0
Parent ID: 519ba0a3e4b0e4e151ef5dd9

Items can also be queried according to their position in the hierarchical item tree. For example,
projects funded by USGS Climate Science Centers each have sections on ScienceBase where project
information is stored. Using the web interface (and some user knowledge), we first found the
ScienceBase ID of the Northeast Climate Science Center community folder. Then, sbtools was used to
look for specific items in that commuinty. Below is an example of looking for items containing any
reference to "Lake Superior" under the Northeast Climate Science Center community.

#Look for items referencing "Lake Superior" under the NE Climate Science Center projects
> query_item_in_folder("Lake Superior", folder="4f8c648de4b0546c0c397b43", limit=2)
[[1]]
<ScienceBase Item>
Title: The Role of Lake-Dotted Landscapes in Regional Climate Change [...]
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2013-12-31T17:46:16Z / 2013-12-31T17:46:16Z
Children: FALSE
Item ID: 52c302e8e4b040b25da9d35a
Parent ID: 51db0ebce4b010c7f6a814bf

[[2]]
<ScienceBase Item>
Title: The influence of land use and [...] in Lake Superior tributaries
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2013-12-31T17:45:51Z / 2013-12-31T17:45:51Z
Children: FALSE
Item ID: 52c302cfe4b040b25da9ce3c
Parent ID: 51db0ebce4b010c7f6a814bf

There are a several more useful query types that can be performed simply with sbtools. A few ex-
amples include date-time range, (query_sb_date()), data type (sb_datatypes() and query_sb_datatype),
and Digial Object Identifier (DOI; query_sb_doi()).

#Query recently updated items
> query_sb_date(Sys.time()-as.difftime(7, units="days"), Sys.time(),
+ date_type='lastUpdated', limit=1)
[[1]]
<ScienceBase Item>
Title: US Topo
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2012-03-05T22:46:14Z / 2016-02-01T12:11:58Z
Children: TRUE
Item ID: 4f554236e4b018de15819c85
Parent ID: 4f552e93e4b018de15819c51

#Query for USGS Reports
> query_sb_datatype('Report', limit = 1)
[[1]]
<ScienceBase Item>
Title: Final Memo for Structured decision-making to facilitate multi-stakeholder
coastal conservation and restoration under climate change uncertainties: case study
on barrier islands of the northern Gulf of Mexico

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 392

Creator/LastUpdatedBy: /
Provenance (Created / Updated): /
Children:
Item ID: 565e07b3e4b071e7ea5435d0
Parent ID: 5224e64fe4b0e4746d62af85

#Query for DOI
> query_sb_doi('10.5066/F7M043G7')
[[1]]
<ScienceBase Item>
Title: 2013 Raw Ground Penetrating Radar Data on Alaska's Glaciers
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2015-06-15T16:55:03Z / 2015-12-15T20:39:06Z
Children: TRUE
Item ID: 557f0367e4b023124e8ef621
Parent ID: 5474ec49e4b04d7459a7eab2

Items with a geospatial component to their data or metadata can be queried using a Lat/Lon
bounding box with the function query_sb_spatial(). The bounding box may be directly specified
with coordinates or indirectly specified by supplying another spatial object whose bounding box
should be used. Because spatial functionality requires packages beyond those imported by sbtools by
default, the xml2, sp and rgdal packages must be installed to use these functions.

#specify the latitude and longitude points to define the bounding box range.
This is simply bottom left and top right points
> query_sb_spatial(long=c(-104.4, -95.1), lat=c(37.5, 41.0), limit=1)
[[1]]
<ScienceBase Item>
Title: National Fish Habitat Partnership Data System
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2012-02-29T15:42:43Z / 2015-11-12T20:19:30Z
Children: TRUE
Item ID: 4f4e4773e4b07f02db47e241
Parent ID: 4f4e4760e4b07f02db47df9c

##You can also use the bounding box of an sp spatial data object
#grab an sp object from a pre-determined ScienceBase Item
> layer = item_get_wfs('55e372b9e4b05561fa208212')

#get items in that bounding box
> query_sb_spatial(layer, limit = 1)

[[1]]
<ScienceBase Item>
Title: USGS Denver Library Photographic Collection
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2013-05-21T16:28:19Z / 2016-01-04T15:44:20Z
Children: TRUE
Item ID: 519ba0a3e4b0e4e151ef5dd9
Parent ID: 4f4e4771e4b07f02db47e1da

Lastly, sbtools offers advanced access to all query capabilities through the query_sb() function.
query_sb() provides a convenient wrapper that allows the user to supply a list of query parameters
(options described in the documentation), submits that query to ScienceBase and parses the output
into a list of “sbitem” objects. When necessary, query_sb() also does proper result paging when the
requested return length (limit) is over 1000 items. All advanced search options can be experimented
with via the online advanced search interface.

query_sb can be used for combined search criteria
> query_sb(list(q = "water", folderId = '504216b9e4b04b508bfd337d',

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://www.sciencebase.gov/catalog/items/queryForm

CONTRIBUTED RESEARCH ARTICLES 393

browserCategory = 'Image'), limit=1)
[[1]]
<ScienceBase Item>
Title: Encyclopedia of Water Science
Creator/LastUpdatedBy: /
Provenance (Created / Updated): 2013-04-18T15:06:38Z / 2013-04-18T15:06:38Z
Children: FALSE
Item ID: 51700bfee4b05024ef3cd4ef
Parent ID: 504216b9e4b04b508bfd337d

Combining both the query functionality and direct spatial data access through WFS web services,
we can quickly discover and explore available datasets on ScienceBase. For example, if we wanted to
discover what faultline spatial data are available on ScienceBase, we can combine sbtools query and
data access functionality. In the below example, we query for items with the word "faults" in their
description which also expose data through an OGC WFS web service. We plot all datasets together to
general geographic locations and data type/completeness (Figure 3). We see datasets covering much
of the western United States and off the west coast. Small datasets are scattered around the gulf coast
and other areas of the U.S., but none expose the raw faultline data so more discovery may be required.

Note: Some formatting details of code omitted from code below for simplicity. See
demo('figure_fault_code',package='sbtools') for full example.

#Source non-sbtools-required but useful mapping packages
library(sp)
library(maps)

faults = query_sb(list(q = "faults", browseType = "OGC WFS Layer"), limit = 20)

map('usa')
for(i in 1:length(faults)){

layer = item_get_wfs(faults[[i]]$id)
layer = spTransform(layer, CRS('+proj=longlat +datum=WGS84'))
plot(layer, add=TRUE, col='red')

}
map.axes()

ScienceBase authentication

In addition to the large collection of open, reusable datasets and useful metadata ScienceBase has to
offer, it is also a platform for sharing and collaboration on private, in-progress data available only
through authenticated access. To enable private data contribution and access, sbtools has built-in
support for persistent authentication of R sessions.

In sbtools, users can log into ScienceBase with their ScienceBase username and password using the
function authenticate_sb(). To prevent plain-text passwords from being saved in the R command
history, when using RStudio, the password can be typed into a pop-up window. The core R envi-
ronment displays a terminal input interface for the password. sbtools only stores the authenticated
session, thereby maintaining the confidentiality of the user’s credentials. ScienceBase sessions remain
active for roughly one hour and are renewed each time a request is made. sbtools makes a best effort
to supply the user with meaningful error messages when a session may have expired.

#to start an authenticated session
> authenticate_sb('username@usgs.gov') #password entered into pop-up window
> is_logged_in()
[1] TRUE
> session_logout()
> is_logged_in()
[1] FALSE

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 394

Figure 3: An example of querying and discovering multiple spatial datasets on ScienceBase. In
this case, faultlines across the U.S. The variability in data formats (some lines, some polygons) is
intentionally included to show both data variability, and quick discovery of different data types across
various regions.

Most functions in sbtools can be used both anonymously and when authenticated. This includes
all data retrieval and query functions. The behavior of these functions depends on the user’s au-
thentication status and access permissions. For example, when trying to access a private item using
item_get(), you must be authenticated or you will receive an error that the item is missing. To
maintain privacy, ScienceBase does not differentiate between a missing item and an item you lack
permission to access. Search is also dependent on authentication status. When querying items with
query_sb(), public items are always visible while private items are invisible unless authenticated.

#Attempt to get a private item without authentication
> item_get('55de0027e4b0518e354dfcf0')
Error: Item not found for ID=55de0027e4b0518e354dfcf0. Either the
item does not exist or the item is secured and requires authentication to access.

#Get private item while authenticated
> authenticate_sb('username@usgs.gov')
> item_get('55de0027e4b0518e354dfcf0')
<ScienceBase Item>
Title: Example Private Item
Creator/LastUpdatedBy: username@usgs.gov / username@usgs.gov
Provenance (Created / Updated): 2015-08-26T18:06:31Z / 2015-12-30T14:59:27Z
Children: FALSE
Item ID: 55de0027e4b0518e354dfcf0
Parent ID: 54257d8fe4b0e641df8b50af

#Search results include user's private items when authenticated
> query_sb(list(q = 'username@usgs.gov'))
<ScienceBase Item>
Title: Example Private Item
Creator/LastUpdatedBy: username@usgs.gov / username@usgs.gov
Provenance (Created / Updated): 2015-08-26T18:06:31Z / 2015-12-30T14:59:27Z
Children: FALSE
Item ID: 55de0027e4b0518e354dfcf0
Parent ID: 54257d8fe4b0e641df8b50af

#Search results hide private items when not authenticated
> session_logout()

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 395

> query_sb(list(q = 'username@usgs.gov'))
list()

The authentication status can be quickly checked and updated with a few helper functions.

#See if user is authenticated to SB
> is_logged_in()
[1] TRUE

#Get details of authenticated session
> session_details()
$fullDisplayName
[1] "User McUseface [username@usgs.gov]"
$isLoggedIn
[1] TRUE
$displayName
[1] "User McUseface"
$email
[1] "username@usgs.gov"
$username
[1] "username@usgs.gov"

#Renew a session to prevent expiration after 1 hour
> session_renew()

Data editing and upload API

For authenticated users, sbtools can support the full data lifecycle. This includes the creation, edit-
ing and removal of items. Because item editing and creation cannot be done anonymously, this
functionality only works while authenticated.

To create new items, the only required input to item_create is "title". The "Parent Item" may also
be specified. New items, by default, inherit the privacy settings of their parent item. All users have a
personal home folder (called "My Items" on the ScienceBase website) that serves as the default parent
item for new items. The unique identifier of a user‘s home folder can be retrieved with the function
user_id().

#create new item, by default under "My Items" parent
> new_item = item_create(title = 'new test item')
> new_item
<ScienceBase Item>
Title: new test item
Creator/LastUpdatedBy: username@usgs.gov / username@usgs.gov
Provenance (Created / Updated): 2016-01-27T19:48:28Z / 2016-01-27T19:48:28Z
Children: FALSE
Item ID: 56a91f0ce4b0b28f1184dda8
Parent ID: 54257d8fe4b0e641df8b50af

Once an item is created, an authenticated user can edit the metadata or attach data files to that
item.

#give the item a new title
> edited_item = item_update(new_item, list(title = 'new updated item'))
> edited_item
<ScienceBase Item>
Title: new updated item
Creator/LastUpdatedBy: lwinslow@usgs.gov / lwinslow@usgs.gov
Provenance (Created / Updated): 2016-01-27T19:48:28Z / 2016-01-27T19:50:21Z

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 396

Children: FALSE
Item ID: 56a91f0ce4b0b28f1184dda8
Parent ID: 54257d8fe4b0e641df8b50af

#append files to the item
> item_list_files(new_item)
data frame with 0 columns and 0 rows

> item_append_files(edited_item, 'test.dat')
> item_list_files(edited_item)

fname size url
1 README.md 1282 https://www.sciencebase.gov/[long URL truncated]

Functions are also provided to modify and delete attached files and to delete entire items.

#list currently attached files
> item_list_files(edited_item)

fname size url
1 README.md 1282 https://www.sciencebase.gov/[long URL truncated]

#selectively replace files. all = FALSE replaces files one by one;
#otherwise all files are removed before uploading the new files
> item_replace_files(new_item, 'README.md', all = FALSE)
> item_list_files(edited_item)

fname size url
1 README.md 608 https://www.sciencebase.gov/[long URL truncated]

#delete item. use with caution; there is no confirmation check
> item_rm(edited_item)
> item_get(edited_item)
Error: Item not found for ID=56a91f0ce4b0b28f1184dda8. Either the item does
not exist or the item is secured and requires authentication to access.

SB item identifiers

One advanced feature of ScienceBase is the ability to assign any number of custom item identifiers to
items. The custom identifiers are made up of three parts: Scheme, Type and Key. Combined, these
create a unique identifier. There are some standard Schemes used in ScienceBase. For example, DOIs
(Digital Object Identifiers) are stored as item identifiers with the Scheme
"https://www.sciencebase.gov/vocab/category/item/identifier" and Type "DOI".

sbtools can edit and query custom item identifiers using item_update_identifier and
query_item_identifier, respectively.

#create two items and assign custom identifiers
> ident_item = item_create(title = 'test data')
> item_update_identifier(ident_item, scheme = 'proj2', type = 'data', key = 'dataset1')
> ident_item = item_create(title = 'test publication')
> item_update_identifier(ident_item, scheme = 'proj2', type = 'publication', key = 'pdf1')

#query for created item
> query_item_identifier(scheme = 'proj2', type = 'publication', key = 'pdf1')

title id
1 test publication 56a9371ee4b012c193aa3d65

The three-part identifier can be especially useful as a way to organize and access project data. For
example, all items within the same project could be created with the same scheme and differing types
or keys, allowing users to query items within the project using custom tags that are meaningful to that
project.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

CONTRIBUTED RESEARCH ARTICLES 397

#query all items in 'proj2'
> query_item_identifier(scheme = 'proj2')

title id
1 test publication 56a9371ee4b012c193aa3d65
2 test data 56a93777e4b012c193aa3d68

#query just data items for a project
> query_item_identifier(scheme = 'proj2', type = 'data')

title id
1 test data 56a93777e4b012c193aa3d68

Summary

As many real-world projects have demonstrated, R is an excellent tool for collaborative and repro-
ducible research projects (Gandrud, 2013a). New packages are frequently opening up access to large,
open datasets (Bowman and Lees, 2015; Bowman, 2014). Flexible and powerful ways to share and
collectively work with common datasets could enable new modes of collaboration and diverse data
discovery. To help fill this gap, we have created sbtools. The sbtools package gives the user pro-
grammatic access to the cloud-based data and metadata storage of USGS ScienceBase and allows all
researchers direct query and download capabilities to free, public data on ScienceBase. sbtools enables
rapid and reproducible access to one of the single largest repositories of Earth-science data and an
advanced cloud-based data collaboration platform.

Acknowledgments

This work was supported by the U.S. Geological Survey (USGS), Office of Water Information and by
funding from the USGS Community for Data Integration (funding title: sbtools: An R package for
ScienceBase). We would like to thank Drew Ignizio, Marian Talbert and the two journal reviewers for
their careful reviews and feedback on the manuscript and package. Any use of trade, firm, or product
names is for descriptive purposes only and does not imply endorsement by the U.S. Government. (

Bibliography

C. Boettiger, S. Chamberlain, K. Ram, and E. Hart. rfigshare: An R Interface to ’figshare’. URL https:
//github.com/ropensci/rfigshare. R package version 0.3.7.99. [p387]

D. C. Bowman. rFDSN: Get Seismic Data from the International Federation of Digital Seismograph Networks,
2014. URL https://CRAN.R-project.org/package=rFDSN. R package version 0.0.0. [p397]

D. C. Bowman and J. M. Lees. Near real time weather and ocean model data access with rNOMADS.
Computers & Geosciences, 78:88–95, 2015. doi: 10.1016/j.cageo.2015.02.013. [p397]

S. Chamberlain. ckanr: Client for the Comprehensive Knowledge Archive Network (’CKAN’) ’API’. URL
https://github.com/ropensci/ckanr. R package version 0.1.0. [p387]

A. Delcambre. Github - New File Size Limits, 2013. URL https://github.com/blog/1533-new-file-
size-limits. [p387]

C. Gandrud. Reproducible Research with R and RStudio. Chapman and Hall/CRC, Boca Raton, FL, USA,
2013a. ISBN 9781466572843. [p397]

C. Gandrud. GitHub: A tool for social data set development and verification in the
cloud. SSRN Electronic Journal, 20:1–10, 2013b. ISSN 1556-5068. doi: 10.2139/ssrn.2199367.
URL http://www.ssrn.com/abstract=2199367$\delimiter"026E30F$nhttp://papers.ssrn.com/
abstract=2199367. [p387]

M. Jones, R. Nahf, C. Jones, C. Boettiger, L. Walker, S. Chamberlain, E. Hart, J. Read, and P. Slaughter.
dataone: R interface to the DataONE REST API, 2013. URL https://CRAN.R-project.org/package=
dataone. R package version 1.1.0.9008. [p387]

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://github.com/ropensci/rfigshare
https://github.com/ropensci/rfigshare
https://CRAN.R-project.org/package=rFDSN
https://github.com/ropensci/ckanr
https://github.com/blog/1533-new-file-size-limits
https://github.com/blog/1533-new-file-size-limits
http://www.ssrn.com/abstract=2199367$\delimiter "026E30F $nhttp://papers.ssrn.com/abstract=2199367
http://www.ssrn.com/abstract=2199367$\delimiter "026E30F $nhttp://papers.ssrn.com/abstract=2199367
https://CRAN.R-project.org/package=dataone
https://CRAN.R-project.org/package=dataone

CONTRIBUTED RESEARCH ARTICLES 398

G. King. An Introduction to the Dataverse Network as an Infrastructure for Data Sharing. Sociological
Methods & Research, 36(2):173–199, 2007. ISSN 0049-1241. doi: 10.1177/0049124107306660. [p387]

T. J. Leeper. dvn: Access to The Dataverse Network APIs, 2013. R package version 0.3.3. [p387]

W. K. Michener, S. Allard, A. Budden, R. B. Cook, K. Douglass, M. Frame, S. Kelling, R. Koskela,
C. Tenopir, and D. A. Vieglais. Participatory design of DataONE-Enabling cyberinfrastructure for
the biological and environmental sciences. Ecological Informatics, 11:5–15, 2012. ISSN 15749541. doi:
10.1016/j.ecoinf.2011.08.007. URL http://dx.doi.org/10.1016/j.ecoinf.2011.08.007. [p387]

J. Singh. FigShare. Journal of Pharmacology and Pharmacotherapeutics, 2(2):138, 2011. ISSN 0976-500X.
doi: 10.4103/0976-500X.81919. URL http://www.jpharmacol.com/text.asp?2011/2/2/138/81919.
[p387]

J. Winn. Open data and the academy: An evaluation of CKAN for research data management. In
IASSIST 2013, Cologne, 2013. URL http://eprints.lincoln.ac.uk/9778/. [p387]

Luke A Winslow
U.S. Geological Survey, Office of Water Information
Middleton, Wisconsin
USA
lwinslow@usgs.gov

Scott Chamberlain
rOpenSci / University of California, Berkeley
Berkeley, California
USA
scott@ropensci.org

Alison P Appling
U.S. Geological Survey, Office of Water Information
Middleton, Wisconsin
USA
aappling@usgs.gov

Jordan S Read
U.S. Geological Survey, Office of Water Information
Middleton, Wisconsin
USA
jread@usgs.gov

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://dx.doi.org/10.1016/j.ecoinf.2011.08.007
http://www.jpharmacol.com/text.asp?2011/2/2/138/81919
http://eprints.lincoln.ac.uk/9778/
mailto:lwinslow@usgs.gov
mailto:scott@ropensci.org
mailto:aappling@usgs.gov
mailto:jread@usgs.gov

NEWS AND NOTES 399

Conference Report: useR! 2016
by Joseph Rickert

Overview

The 12th international R user conference, useR! 2016, took place at Stanford University,
Stanford CA from June 27 through June 30th. Hosted by the Stanford University Department
of Statistics and the Stanford Libraries, the conference took place at the Frances Arrillaga
Alumni Center, on the surrounding lawns and in several adjacent buildings. The floor to
ceiling windows of the larger conference rooms, the garden locations for coffee and meals
and the beautiful weather contributed to making the event a classic California experience.

Originally planned for 750 people, a slight increase over the 660 attendee total for last
year’s conference in Denmark, useR! 2016 sold out completely during the first few weeks.
Although the final attendee list eventually topped out at just over 900 people, it nevertheless
excluded many from both academia and industry who were seeking tickets. To mitigate the
disappointment, the conference organizers arranged to “live stream” the keynote sessions
over the internet and to record many of the contributed talks. Many thanks to Microsoft
Corporation which provided the expertise and financing for the video recording, and to
many other corporate sponsors who made possible student scholarships, daily free lunches,
a continuous flow of coffee and fruit juices, and a social program that included a cocktail
reception and a Hornblower Yacht cruise on the San Francisco Bay.

The Gordon and Betty Moore foundation helped fund 17 Diversity Scholarship awards
overseen by a committee consisting of Scott Chamberlain, Amy Lee, Gabriela de Queiroz
and Karthik Ram (chair). In addition, the American Statistical Association provided funds to
award $2,500 each to two outstanding young useRs, Helen Ogden (University of Warwick)
and Tong He (Simon Fraser University) chosen by the Program Committee.

The program consisted of 18 pre-conference tutorials, 6 invited talks, 146 oral presenta-
tions, 45 lightning talks and 60 poster sessions.

Pre-conference Tutorials

The pre-conference tutorials were free and open to all attendees.

• Regression Modeling Strategies and the rms Package - Frank Harrell

• Using Git and GitHub with R, RStudio, and R Markdown - Jennifer Bryan

• Effective Shiny Programming - Joe Cheng

• Missing Value Imputation with R - Julie Josse

• Extracting data from the web APIs and beyond - Scott Chamberlain, Garrett Grole-
mund and Karthik Ram

• Ninja Moves with data.table - Learn by Doing in a Cookbook Style Workshop - Matt
Dowle and Arun Srinivasan

• Never Tell Me the Odds! Machine Learning with Class Imbalances - Max Kuhn

• MoRe than woRds, Text and Context: Language Analytics in Finance with R - Sanjiv
Das and Karthik Mokashi

• Handling and Analyzing Spatial, Spatiotemporal and Movement Data - Edzer Pebesma

• Machine Learning Algorithmic Deep Dive- Erin LeDell

• Introduction to SparkR- Hossein Falaki and Shivaram Venkataraman

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

NEWS AND NOTES 400

• Using R with Jupyter Notebooks for Reproducible Research - Andrie de Vries and
Micheleen Harris

• Understanding and Creating Interactive Graphics - Claus Thorn Ekstrøm and Toby
Dylan Hocking

• Genome-Wide Association Analysis and Post-Analytic Interrogation with R - Andrea
S. Foulkes

• An Introduction to Bayesian Inference using R Interfaces to Stan - Ben Goodrich

• Small Area Estimation with R - Virgilio Gómez Rubio

• Dynamic Documents with R Markdown- Yihui Xie

Invited talks

The invited, plenary talks began with a retrospective look at the development of the S and R
languages, discussed topics concerned with good programming practice and touched on
topics essential to the developing field of Data Science.

• Forty years of S - Richard Becker

• Literate Programming - Donald Knuth

• Towards a grammar of interactive graphics - Hadley Wickham

• Flexible and Interpretable Regression Using Convex Penalties - Daniela Witten

• Statistical Thinking in a Data Science Course - Deborah Nolan

• RCloud - Collaborative Environment for Visualization and Big Data Analytics - Simon
Urbanek

Contributed Sessions

The contributed talks were organized into 5 parallel tracks with sessions devoted to:
Bayesian Statistics, Bioinformatics, Case Studies, Databases, Generalized Mixed Models,
Graphics, Packages and Development, Performance, R in Business, R and Other Languages,
Regression, Reproducible Research, Spatial Statistics, Statistical Methods, Statistics and Big
Data, Teaching and sessions devoted to our sponsors, miscellaneous talks organized under
Kaleidoscope sessions and lightning talks.

Conference Organizers

The strong, diverse technical program was the work of program committee members Jenny
Bryan, Dianne Cook, Peter Dalgaard, Dirk Eddelbuettel, Susan Holmes, Torsten Hothorn,
Julie Josse (Chair), Patrick Mair, Jeroen Ooms, Hilary Parker, Hana Ševčíková, Torben
Tvedebrink and Heather Turner.

The conference would not have been possible without the tireless work of Balasubra-
manian Narasimhan who led the organizing committee: John Chambers, Sandrine Dudoit,
Trevor Hastie, Susan Holmes, Simon Jackman, Olivia Lau, Nicholas Lewin-Koh, Norman
Matloff, Jacqueline Meulman, Balasubramanian Narasimhan, Karthik Ram, Joseph Rickert
and Duncan Temple Lang. The cheerful presence and help provided by student volunteers
chosen from the R community helped make the conference a pleasant experience for all
attendees.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

NEWS AND NOTES 401

Additional Information

useR!2106 website http://user2016.org/

Video recordings https://channel9.msdn.com/Events/useR-international-R-User-
conference/useR2016

Corporate sponsors http://user2016.org/#sponsors

Tutorial perspective http://blog.revolutionanalytics.com/2016/06/the-user-2016-
tutorials.html

Package perspective http://blog.revolutionanalytics.com/2016/06/the-r-packages-
of-user-2016.html

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://user2016.org/
https://channel9.msdn.com/Events/useR-international-R-User-conference/useR2016
https://channel9.msdn.com/Events/useR-international-R-User-conference/useR2016
http://user2016.org/#sponsors
http://blog.revolutionanalytics.com/2016/06/the-user-2016-tutorials.html
http://blog.revolutionanalytics.com/2016/06/the-user-2016-tutorials.html
http://blog.revolutionanalytics.com/2016/06/the-r-packages-of-user-2016.html
http://blog.revolutionanalytics.com/2016/06/the-r-packages-of-user-2016.html

NEWS AND NOTES 402

Changes on CRAN
2015-12-01 to 2016-07-31

by Kurt Hornik and Achim Zeileis

In the past 8 months, 1322 new packages were added to the CRAN package repository. 43
packages were unarchived, 48 archived, 1 package had to be removed. The following shows
the growth of the number of active packages in the CRAN package repository:

●●●
●●●

●●
●●●

●●
●●●

●●
●●●

●●
●●●

●●●
●●

●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●
●●●
●●●
●●
●●●
●●
●●●
●●
●●

2000 2005 2010 2015

0
20

00
40

00
60

00
80

00

Number of CRAN Packages

●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●
●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●
●●
●●
●●●
●●
●●●
●●●
●●
●●
●●●
●●
●●
●●●
●●●
●●●
●●
●●
●●
●●
●●●
●●
●●
●●
●●
●●●
●●●
●●●
●●
●●●
●●●
●●●
●●●
●●●
●●
●●●
●●
●●
●●
●●
●●
●●●
●●
●●●
●●●
●●●

2000 2005 2010 2015

50
10

0
20

0
50

0
10

00
20

00
50

00
10

00
0

Number of CRAN Packages (Log−Scale)

At the R Foundation’s General Assembly after UseR! 2016 in Stanford, the CRAN team
asked for help, in particular for processing package submissions. Dirk Eddelbüttel, Duncan
Murdoch, Deepayan Sarkar, and Duncan Temple Lang volunteered. Duncan Murdoch is
already actively processing incoming CRAN submissions; expect other changes over the
coming months.

New packages in CRAN task views

ChemPhys EEM, titrationCurves, webchem.

Cluster evclust, genie, treeClust.

Distributions EnvStats, KScorrect, bridgedist, extraDistr, extremefit, marg, mclust.

Econometrics rUnemploymentData, wbstats.

Finance FRAPO, XBRL, bootTimeInference, derivmkts, finreportr, obAnalytics.

HighPerformanceComputing LaF, RcppParallel, doFuture, future.BatchJobs, gpuR, h2o,
randomForestSRC, sprint.

MachineLearning OneR, SIS, SuperLearner, evclass, h2o, hdm.

MetaAnalysis altmeta, bayesmeta, bmeta, gmeta, hetmeta, metansue, weightr.

NumericalMathematics conicfit, madness, matrixcalc, permutations.

OfficialStatistics convey, icarus.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/view=ChemPhys
http://CRAN.R-project.org/package=EEM
http://CRAN.R-project.org/package=titrationCurves
http://CRAN.R-project.org/package=webchem
http://CRAN.R-project.org/view=Cluster
http://CRAN.R-project.org/package=evclust
http://CRAN.R-project.org/package=genie
http://CRAN.R-project.org/package=treeClust
http://CRAN.R-project.org/view=Distributions
http://CRAN.R-project.org/package=EnvStats
http://CRAN.R-project.org/package=KScorrect
http://CRAN.R-project.org/package=bridgedist
http://CRAN.R-project.org/package=extraDistr
http://CRAN.R-project.org/package=extremefit
http://CRAN.R-project.org/package=marg
http://CRAN.R-project.org/package=mclust
http://CRAN.R-project.org/view=Econometrics
http://CRAN.R-project.org/package=rUnemploymentData
http://CRAN.R-project.org/package=wbstats
http://CRAN.R-project.org/view=Finance
http://CRAN.R-project.org/package=FRAPO
http://CRAN.R-project.org/package=XBRL
http://CRAN.R-project.org/package=bootTimeInference
http://CRAN.R-project.org/package=derivmkts
http://CRAN.R-project.org/package=finreportr
http://CRAN.R-project.org/package=obAnalytics
http://CRAN.R-project.org/view=HighPerformanceComputing
http://CRAN.R-project.org/package=LaF
http://CRAN.R-project.org/package=RcppParallel
http://CRAN.R-project.org/package=doFuture
http://CRAN.R-project.org/package=future.BatchJobs
http://CRAN.R-project.org/package=gpuR
http://CRAN.R-project.org/package=h2o
http://CRAN.R-project.org/package=randomForestSRC
http://CRAN.R-project.org/package=sprint
http://CRAN.R-project.org/view=MachineLearning
http://CRAN.R-project.org/package=OneR
http://CRAN.R-project.org/package=SIS
http://CRAN.R-project.org/package=SuperLearner
http://CRAN.R-project.org/package=evclass
http://CRAN.R-project.org/package=h2o
http://CRAN.R-project.org/package=hdm
http://CRAN.R-project.org/view=MetaAnalysis
http://CRAN.R-project.org/package=altmeta
http://CRAN.R-project.org/package=bayesmeta
http://CRAN.R-project.org/package=bmeta
http://CRAN.R-project.org/package=gmeta
http://CRAN.R-project.org/package=hetmeta
http://CRAN.R-project.org/package=metansue
http://CRAN.R-project.org/package=weightr
http://CRAN.R-project.org/view=NumericalMathematics
http://CRAN.R-project.org/package=conicfit
http://CRAN.R-project.org/package=madness
http://CRAN.R-project.org/package=matrixcalc
http://CRAN.R-project.org/package=permutations
http://CRAN.R-project.org/view=OfficialStatistics
http://CRAN.R-project.org/package=convey
http://CRAN.R-project.org/package=icarus

NEWS AND NOTES 403

Optimization cmaesr, nlmrt, parma, psoptim, rCMA, rLindo, scs, smoof.

Psychometrics ShinyItemAnalysis, blavaan∗, bpca, difNLR, dualScale, metaSEM,
quickpsy, wCorr.

ReproducibleResearch DT, HTMLUtils, Kmisc, RefManageR, ReporteRs, Sortable-
HTMLTables, apaStyle, archivist, checkpoint, compareGroups, connect3, formatR,
formattable, highlight, highr, htmlTable, htmltools, humanFormat, kfigr, knitLa-
tex, knitcitations, latex2exp, lazyWeave, lubridate, miniCRAN, packrat, prettyu-
nits, rbundler, resumer, rmarkdown, rprintf, tufterhandout, ztable.

Robust roahd.

Spatial HSAR, ProbitSpatial, RNetCDF, S2sls, SpatialPosition, Watersheds, cartogra-
phy, cleangeo, diseasemapping, gdalUtils, geoaxe, geostatsp, igraph, ipdw, lawn,
lctools, magclass, mapmisc, mapview, ncdf4, quickmapr, recmap, shp2graph,
spanel, statebins, stplanr.

SpatioTemporal VTrack, trackeR.

TimeSeries ForecastCombinations, M4comp, VARsignR, ZRA, carx, sleekts, stlplus, tsPI.

WebTechnologies ApacheLogProcessor, AzureML, FastRWeb, GAR, RAdwords, RGoogl-
eFit, ROpenWeatherMap, RSclient, RYandexTranslate, RZabbix, Rblpapi, Rex-
perigen, Rmonkey, Rserve, V8, WikiSocio, WikidataR, WufooR, abbyyR,
aws.signature, backblazer, bigrquery, boxr, captr, clarifai, curlconverter, cymruser-
vices, ddeploy, discgolf, fbRads, fitbitScraper, fitcoach, genderizeR, geocodeHERE,
git2r, gitlabr, googlesheets, graphTweets, gsheet, httpcache, httping, instaR, jug,
livechatR, longurl, lucr, mime, oai, osrm, pdftables, rLTP, randNames, rdatacite,
request, restimizeapi, rgeolocate, rio, rorcid, rrefine, rvest, searchConsoleR, send-
mailR, soql, telegram, threewords, tidyjson, transcribeR, tweet2r, urlshorteneR,
webreadr, webshot, wikipediatrend, xml2, yummlyr.

(* = core package)

Kurt Hornik
WU Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Achim Zeileis
Universität Innsbruck, Austria
Achim.Zeileis@R-project.org

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://CRAN.R-project.org/view=Optimization
http://CRAN.R-project.org/package=cmaesr
http://CRAN.R-project.org/package=nlmrt
http://CRAN.R-project.org/package=parma
http://CRAN.R-project.org/package=psoptim
http://CRAN.R-project.org/package=rCMA
http://CRAN.R-project.org/package=rLindo
http://CRAN.R-project.org/package=scs
http://CRAN.R-project.org/package=smoof
http://CRAN.R-project.org/view=Psychometrics
http://CRAN.R-project.org/package=ShinyItemAnalysis
http://CRAN.R-project.org/package=blavaan
http://CRAN.R-project.org/package=bpca
http://CRAN.R-project.org/package=difNLR
http://CRAN.R-project.org/package=dualScale
http://CRAN.R-project.org/package=metaSEM
http://CRAN.R-project.org/package=quickpsy
http://CRAN.R-project.org/package=wCorr
http://CRAN.R-project.org/view=ReproducibleResearch
http://CRAN.R-project.org/package=DT
http://CRAN.R-project.org/package=HTMLUtils
http://CRAN.R-project.org/package=Kmisc
http://CRAN.R-project.org/package=RefManageR
http://CRAN.R-project.org/package=ReporteRs
http://CRAN.R-project.org/package=SortableHTMLTables
http://CRAN.R-project.org/package=SortableHTMLTables
http://CRAN.R-project.org/package=apaStyle
http://CRAN.R-project.org/package=archivist
http://CRAN.R-project.org/package=checkpoint
http://CRAN.R-project.org/package=compareGroups
http://CRAN.R-project.org/package=connect3
http://CRAN.R-project.org/package=formatR
http://CRAN.R-project.org/package=formattable
http://CRAN.R-project.org/package=highlight
http://CRAN.R-project.org/package=highr
http://CRAN.R-project.org/package=htmlTable
http://CRAN.R-project.org/package=htmltools
http://CRAN.R-project.org/package=humanFormat
http://CRAN.R-project.org/package=kfigr
http://CRAN.R-project.org/package=knitLatex
http://CRAN.R-project.org/package=knitLatex
http://CRAN.R-project.org/package=knitcitations
http://CRAN.R-project.org/package=latex2exp
http://CRAN.R-project.org/package=lazyWeave
http://CRAN.R-project.org/package=lubridate
http://CRAN.R-project.org/package=miniCRAN
http://CRAN.R-project.org/package=packrat
http://CRAN.R-project.org/package=prettyunits
http://CRAN.R-project.org/package=prettyunits
http://CRAN.R-project.org/package=rbundler
http://CRAN.R-project.org/package=resumer
http://CRAN.R-project.org/package=rmarkdown
http://CRAN.R-project.org/package=rprintf
http://CRAN.R-project.org/package=tufterhandout
http://CRAN.R-project.org/package=ztable
http://CRAN.R-project.org/view=Robust
http://CRAN.R-project.org/package=roahd
http://CRAN.R-project.org/view=Spatial
http://CRAN.R-project.org/package=HSAR
http://CRAN.R-project.org/package=ProbitSpatial
http://CRAN.R-project.org/package=RNetCDF
http://CRAN.R-project.org/package=S2sls
http://CRAN.R-project.org/package=SpatialPosition
http://CRAN.R-project.org/package=Watersheds
http://CRAN.R-project.org/package=cartography
http://CRAN.R-project.org/package=cartography
http://CRAN.R-project.org/package=cleangeo
http://CRAN.R-project.org/package=diseasemapping
http://CRAN.R-project.org/package=gdalUtils
http://CRAN.R-project.org/package=geoaxe
http://CRAN.R-project.org/package=geostatsp
http://CRAN.R-project.org/package=igraph
http://CRAN.R-project.org/package=ipdw
http://CRAN.R-project.org/package=lawn
http://CRAN.R-project.org/package=lctools
http://CRAN.R-project.org/package=magclass
http://CRAN.R-project.org/package=mapmisc
http://CRAN.R-project.org/package=mapview
http://CRAN.R-project.org/package=ncdf4
http://CRAN.R-project.org/package=quickmapr
http://CRAN.R-project.org/package=recmap
http://CRAN.R-project.org/package=shp2graph
http://CRAN.R-project.org/package=spanel
http://CRAN.R-project.org/package=statebins
http://CRAN.R-project.org/package=stplanr
http://CRAN.R-project.org/view=SpatioTemporal
http://CRAN.R-project.org/package=VTrack
http://CRAN.R-project.org/package=trackeR
http://CRAN.R-project.org/view=TimeSeries
http://CRAN.R-project.org/package=ForecastCombinations
http://CRAN.R-project.org/package=M4comp
http://CRAN.R-project.org/package=VARsignR
http://CRAN.R-project.org/package=ZRA
http://CRAN.R-project.org/package=carx
http://CRAN.R-project.org/package=sleekts
http://CRAN.R-project.org/package=stlplus
http://CRAN.R-project.org/package=tsPI
http://CRAN.R-project.org/view=WebTechnologies
http://CRAN.R-project.org/package=ApacheLogProcessor
http://CRAN.R-project.org/package=AzureML
http://CRAN.R-project.org/package=FastRWeb
http://CRAN.R-project.org/package=GAR
http://CRAN.R-project.org/package=RAdwords
http://CRAN.R-project.org/package=RGoogleFit
http://CRAN.R-project.org/package=RGoogleFit
http://CRAN.R-project.org/package=ROpenWeatherMap
http://CRAN.R-project.org/package=RSclient
http://CRAN.R-project.org/package=RYandexTranslate
http://CRAN.R-project.org/package=RZabbix
http://CRAN.R-project.org/package=Rblpapi
http://CRAN.R-project.org/package=Rexperigen
http://CRAN.R-project.org/package=Rexperigen
http://CRAN.R-project.org/package=Rmonkey
http://CRAN.R-project.org/package=Rserve
http://CRAN.R-project.org/package=V8
http://CRAN.R-project.org/package=WikiSocio
http://CRAN.R-project.org/package=WikidataR
http://CRAN.R-project.org/package=WufooR
http://CRAN.R-project.org/package=abbyyR
http://CRAN.R-project.org/package=aws.signature
http://CRAN.R-project.org/package=backblazer
http://CRAN.R-project.org/package=bigrquery
http://CRAN.R-project.org/package=boxr
http://CRAN.R-project.org/package=captr
http://CRAN.R-project.org/package=clarifai
http://CRAN.R-project.org/package=curlconverter
http://CRAN.R-project.org/package=cymruservices
http://CRAN.R-project.org/package=cymruservices
http://CRAN.R-project.org/package=ddeploy
http://CRAN.R-project.org/package=discgolf
http://CRAN.R-project.org/package=fbRads
http://CRAN.R-project.org/package=fitbitScraper
http://CRAN.R-project.org/package=fitcoach
http://CRAN.R-project.org/package=genderizeR
http://CRAN.R-project.org/package=geocodeHERE
http://CRAN.R-project.org/package=git2r
http://CRAN.R-project.org/package=gitlabr
http://CRAN.R-project.org/package=googlesheets
http://CRAN.R-project.org/package=graphTweets
http://CRAN.R-project.org/package=gsheet
http://CRAN.R-project.org/package=httpcache
http://CRAN.R-project.org/package=httping
http://CRAN.R-project.org/package=instaR
http://CRAN.R-project.org/package=jug
http://CRAN.R-project.org/package=livechatR
http://CRAN.R-project.org/package=longurl
http://CRAN.R-project.org/package=lucr
http://CRAN.R-project.org/package=mime
http://CRAN.R-project.org/package=oai
http://CRAN.R-project.org/package=osrm
http://CRAN.R-project.org/package=pdftables
http://CRAN.R-project.org/package=rLTP
http://CRAN.R-project.org/package=randNames
http://CRAN.R-project.org/package=rdatacite
http://CRAN.R-project.org/package=request
http://CRAN.R-project.org/package=restimizeapi
http://CRAN.R-project.org/package=rgeolocate
http://CRAN.R-project.org/package=rio
http://CRAN.R-project.org/package=rorcid
http://CRAN.R-project.org/package=rrefine
http://CRAN.R-project.org/package=rvest
http://CRAN.R-project.org/package=searchConsoleR
http://CRAN.R-project.org/package=sendmailR
http://CRAN.R-project.org/package=sendmailR
http://CRAN.R-project.org/package=soql
http://CRAN.R-project.org/package=telegram
http://CRAN.R-project.org/package=threewords
http://CRAN.R-project.org/package=tidyjson
http://CRAN.R-project.org/package=transcribeR
http://CRAN.R-project.org/package=tweet2r
http://CRAN.R-project.org/package=urlshorteneR
http://CRAN.R-project.org/package=webreadr
http://CRAN.R-project.org/package=webshot
http://CRAN.R-project.org/package=wikipediatrend
http://CRAN.R-project.org/package=xml2
http://CRAN.R-project.org/package=yummlyr
mailto:Kurt.Hornik@R-project.org
mailto:Achim.Zeileis@R-project.org

NEWS AND NOTES 404

News from the Bioconductor Project
by Bioconductor Core Team

The Bioconductor project provides tools for the analysis and comprehension of high-
throughput genomic data. The 1211 software packages available in Bioconductor can
be viewed at http://bioconductor.org/packages/. Navigate packages using ‘biocViews’
terms and title search. Each package has an html page with a description, links to vignettes,
reference manuals, and usage statistics. Start using Bioconductor version 3.3 by installing R
3.3.1 and evaluating the commands

source("https://bioconductor.org/biocLite.R")
biocLite()

Install additional packages and dependencies, e.g., AnnotationHub, with

source("https://bioconductor.org/biocLite.R")
biocLite("AnnotationHub")

Continued availability of Bioconductor Docker and Amazon images provides a very effective
on-ramp for power users to rapidly obtain access to standardized and scalable computing
environments.

Bioconductor 3.3 Release Highlights

Bioconductor 3.3 was released on 4 April, 2016. It is compatible with R 3.3 and consists
of 1211 software packages, 293 experiment data packages, and 916 up-to-date annotation
packages. There are 107 new software packages and many updates and improvements to
existing packages. The release announcement includes descriptions of new packages and
updated NEWS files provided by package maintainers.

Our collection of microarray, transcriptome and organism-specific annotation packages
use the ‘select’ interface (keys, columns, keytypes) to access static information on gene
annotations (org.* packages) and gene models (TxDb.* packages); these augment packages
for querying web-based resources. The AnnotationHub continues to complement our
traditional offerings with diverse whole genome annotations from Ensembl, ENCODE,
dbSNP, UCSC, and elsewhere; example uses are described in the AnnotationHub How-To
vignette.

User support

The Bioconductor project web site helps orient users and developers to the project. It includes
essential information for software installation, detailed landing pages for each package (e.g.,
https://bioconductor.org/packages/GenomicRanges) including links to current manuals
and vignettes, extensive training material, and links to the current literature. A recent
innovation has been the development of the Bioconductor F1000 publishing channel for
academic publication of work flows and other extended software use cases.

The project support site is a question-and-answer forum where users can easily search
for existing solutions or pose specific questions about use of Bioconductor packages. The
support site is quite active, with expert responses often within a matter of hours. It is
very helpful, when asking about error messages, to ensure that your Bioconductor instal-
lation is correct (using BiocInstaller::biocValid()) and current (include the output of
sessionInfo() in your question), that the question includes code chunks that someone else
can evaluate to reproduce the problem (e.g., using code or data from example pages of
package manuals), and that the error message and traceback() output are included.

Bioconductor holds an annual user conference each summer, this year in conjunction
with UseR! 2016. Conference resources (talks and workshops) are available.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://bioconductor.org
http://bioconductor.org/packages/
http://www.bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://www.bioconductor.org/help/docker/
http://www.bioconductor.org/help/bioconductor-cloud-ami/
http://bioconductor.org/news/bioc_3_3_release/
http://www.bioconductor.org/packages/release/bioc/html/AnnotationHub.html
http://bioconductor.org/packages/devel/bioc/vignettes/AnnotationHub/inst/doc/AnnotationHub-HOWTO.html
https://bioconductor.org
http://bioconductor.org/install/
https://bioconductor.org/packages/GenomicRanges
http://bioconductor.org/help/course-materials/
http://bioconductor.org/help/publications/
http://f1000research.com/channels/bioconductor
https://support.bioconductor.org
http://bioconductor.org/help/course-materials/2016/BioC2016/

NEWS AND NOTES 405

Developer support

A very natural progression in the R and Bioconductor community is from user to package
developer, transforming your knowledge and domain expertise into software that others
can use. The Bioconductor web site includes developer resources to help this transition.
The Bioconductor developer mailing list provides a forum dedicated to developer-related
questions.

New packages are now submitted to Bioconductor using an open review model. Prospec-
tive authors develop their package and, when ready, open an issue on the public Contri-
butions github repository. Packages are then built and checked across Linux, Mac, and
Windows platforms for conformance to R (R CMD check) and Bioconductor (using the
BiocCheck package) standards. Once the package is in good shape, a member of the Bio-
conductor core team performs a preview of the package. The preview identifies technical
issues that are not easy to detect automatically.

A key strength of the Bioconductor project is the use of well-defined objects (especially
from the GenomicRanges infrastructure) to represent data; this encourages software re-use
and enables end-user interoperability between packages. For this reason, the technical re-
view often leads to suggestions for data representations and interfaces that use Bioconductor
objects rather than general-purpose containers such as a data.frame.

Forthcoming activities

Forthcoming Bioconductor events include an Asian workshop workshop and developer
meeting (3-4 November, Brisbane, Australia) and European developer conference (6-7 De-
cember, Basel, Switzerland) developer conferences, as well as global training opportunities.

The next Bioconductor release will occur in October, 2016.

Bioconductor Core Team
Biostatistics and Bioinformatics
Roswell Park Cancer Institute, Buffalo, NY
USA maintainer@bioconductor.org

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

http://bioconductor.org/developers/
https://stat.ethz.ch/mailman/listinfo/bioc-devel
https://github.com/Bioconductor/Contributions
https://github.com/Bioconductor/Contributions
http://www.bioconductor.org/packages/release/bioc/html/BiocCheck.html
http://www.bioconductor.org/packages/release/bioc/html/GenomicRanges.html
http://bioconductor.org/help/events/
http://www.abacbs.org/biocasia2016workshop
http://www.abacbs.org/biocasia2016
http://scicore.ch/events/eurobioc2016/
mailto:maintainer@bioconductor.org

NEWS AND NOTES 406

Changes in R
From version 3.2.4 to version 3.3.1 patched

by the R Core Team

CHANGES IN R 3.3.1 patched

NEW FEATURES

• extSoftVersion() now reports the version (if any) of the readline library in use.

• Convenience function hasName() has been added; it is intended to replace the common
idiom !is.null(x$name) without the usually unintended partial name matching.

• The version of LAPACK included in the sources has been updated to 3.6.1, a bug-fix
release including a speedup for the non-symmetric case of eigen().

• Use options(deparse.max.lines) to limit the number of lines recorded in .Traceback
and other deparsing activities.

INSTALLATION and INCLUDED SOFTWARE

• Versions of the readline library >= 6.3 had been changed so that terminal window
resizes were not signalled to readline: code has been added using a explicit signal
handler to work around that (when R is compiled against readline >= 6.3). (PR#16604)

• configure works better with Oracle Developer Studio 12.5.

UTILITIES

• R CMD check reports more dubious flags in files ‘src/Makevars[.in]’, including ‘-w’ and
‘-g’.

• R CMD check has been set up to filter important warnings from recent versions of
gfortran with ‘-Wall -pedantic’: this now reports non-portable GNU extensions
such as out-of-order declarations.

BUG FIXES

• The check for non-portable flags in R CMD check could be stymied by ‘src/Makevars’
files which contained targets.

• (Windows only) When using certain desktop themes in Windows 7 or higher, Alt-Tab
could cause Rterm to stop accepting input. (PR#14406; patch submitted by Jan
Gleixner.)

• pretty(d,..) behaves better for date-time d (PR#16923).

• When a class name matches multiple classes in the cache, perform a dynamic search
in order to obey namespace imports. This should eliminate annoying messages about
multiple hits in the class cache. Also, pass along the package from the ClassExtends
object when looking up superclasses in the cache.

• sample(NA_real_) now works.

• Packages using non-ASCII encodings in their code did not install data properly on
systems using different encodings.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16604
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=14406
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16923

NEWS AND NOTES 407

• merge(df1,df2) now also works for data frames with column names "na.last",
"decreasing", or "method". (PR#17119)

• contour() caused a segfault if the labels argument had length zero. (Reported by Bill
Dunlap.)

• unique(warnings()) works more correctly, thanks to a new duplicated.warnings()
method.

• findInterval(x,vec = numeric(),all.inside = TRUE) now returns 0s as docu-
mented. (Reported by Bill Dunlap.)

• (Windows only) R CMD SHLIB failed when a symbol in the resulting library had the
same name as a keyword in the ‘.def’ file. (PR#17130)

• pmax() and pmin() now work with (more ?) classed objects, such as "Matrix" from
the Matrix package, as documented for a long time.

• axis(side,x = D) and hence Axis() and plot() now work correctly for "Date" and
time objects D, even when “time goes backward”, e.g., with decreasing xlim. (Reported
by William May).

CHANGES IN R 3.3.1

BUG FIXES

• R CMD INSTALL and hence install.packages() gave an internal error installing a
package called description from a tarball on a case-insensitive file system.

• match(x,t) (and hence x %in% t) failed when x was of length one, and either
character and x and t only differed in their Encoding or when x and t where complex
with NAs or NaNs. (PR#16885.)

• unloadNamespace(ns) also works again when ns is a ‘namespace’, as from
getNamespace().

• rgamma(1,Inf) or rgamma(1,0,0) no longer give NaN but the correct limit.

• length(baseenv()) is correct now.

• pretty(d,..) for date-time d rarely failed when "halfmonth" time steps were tried
(PR#16923) and on ‘inaccurate’ platforms such as 32-bit Windows or a configuration
with --disable-long-double; see comment #15 of PR#16761.

• In text.default(x,y,labels), the rarely(?) used default for labels is now correct
also for the case of a 2-column matrix x and missing y.

• as.factor(c(a = 1L)) preserves names() again as in R < 3.1.0.

• strtrim(""[0],0[0]) now works.

• Use of Ctrl-C to terminate a reverse incremental search started by Ctrl-R in the
readline-based Unix terminal interface is now supported when R was compiled
against readline >= 6.0 (Ctrl-G always worked). (PR#16603)

• diff(<difftime>) now keeps the "units" attribute, as subtraction already did,
PR#16940.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17119
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=17130
https://CRAN.R-project.org/package=Matrix
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16885
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16923
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16761
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16603
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16940

NEWS AND NOTES 408

CHANGES IN R 3.3.0

SIGNIFICANT USER-VISIBLE CHANGES

• nchar(x,*)’s argument keepNA governing how the result for NAs in x is determined,
gets a new default keepNA = NA which returns NA where x is NA, except for type =
"width" which still returns 2, the formatting / printing width of NA.

• All builds have support for ‘https:’ URLs in the default methods for download.file(),
url() and code making use of them.

Unfortunately that cannot guarantee that any particular ‘https:’ URL can be accessed.
For example, server and client have to successfully negotiate a cryptographic protocol
(TLS/SSL, . . .) and the server’s identity has to be verifiable via the available certificates.
Different access methods may allow different protocols or use private certificate
bundles: we encountered a ‘https:’ CRAN mirror which could be accessed by one
browser but not by another nor by download.file() on the same Linux machine.

NEW FEATURES

• The print method for methods() gains a byclass argument.

• New functions validEnc() and validUTF8() to give access to the validity checks for
inputs used by grep() and friends.

• Experimental new functionality for S3 method checking, notably isS3method().

Also, the names of the R ‘language elements’ are exported as character vector
tools::langElts.

• str(x) now displays "Time-Series" also for matrix (multivariate) time-series, i.e.
when is.ts(x) is true.

• (Windows only) The GUI menu item to install local packages now accepts ‘*.tar.gz’
files as well as ‘*.zip’ files (but defaults to the latter).

• New programmeR’s utility function chkDots().

• D() now signals an error when given invalid input, rather than silently returning NA.
(Request of John Nash.)

• formula objects are slightly more “first class”: e.g., formula() or new("formula",y ~
x) are now valid. Similarly, for "table", "ordered" and "summary.table". Packages
defining S4 classes with the above S3/S4 classes as slots should be reinstalled.

• New function strrep() for repeating the elements of a character vector.

• rapply() preserves attributes on the list when how = "replace".

• New S3 generic function sigma() with methods for extracting the estimated standard
deviation aka “residual standard deviation” from a fitted model.

• news() now displays R and package news files within the HTML help system if it is
available. If no news file is found, a visible NULL is returned to the console.

• as.raster(x) now also accepts raw arrays x assuming values in 0:255.

• Subscripting of matrix/array objects of type "expression" is now supported.

• type.convert("i") now returns a factor instead of a complex value with zero real
part and missing imaginary part.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

NEWS AND NOTES 409

• Graphics devices cairo_pdf() and cairo_ps() now allow non-default values of the
cairographics ‘fallback resolution’ to be set.

This now defaults to 300 on all platforms: that is the default documented by cairo-
graphics, but apparently was not used by all system installations.

• file() gains an explicit method argument rather than implicitly using
getOption("url.method","default").

• Thanks to a patch from Tomas Kalibera, x[x != 0] is now typically faster than
x[which(x != 0)] (in the case where x has no NAs, the two are equivalent).

• read.table() now always uses the names for a named colClasses argument (pre-
viously names were only used when colClasses was too short). (In part, wish of
PR#16478.)

• (Windows only) download.file() with default method = "auto" and a ‘ftps://’ URL
chooses "libcurl" if that is available.

• The out-of-the box Bioconductor mirror has been changed to one using ‘https://’:
use chooseBioCmirror() to choose a ‘http://’ mirror if required.

• The data frame and formula methods for aggregate() gain a drop argument.

• available.packages() gains a repos argument.

• The undocumented switching of methods for url() on ‘https:’ and ‘ftps:’ URLs is
confined to method = "default" (and documented).

• smoothScatter() gains a ret.selection argument.

• qr() no longer has a ... argument to pass additional arguments to methods.

• [has a method for class "table".

• It is now possible (again) to replayPlot() a display list snapshot that was created by
recordPlot() in a different R session.

It is still not a good idea to use snapshots as a persistent storage format for R plots,
but it is now not completely silly to use a snapshot as a format for transferring an R
plot between two R sessions.

The underlying changes mean that packages providing graphics devices (e.g., Cairo,
RSvgDevice, cairoDevice, tikzDevice) will need to be reinstalled.

Code for restoring snapshots was contributed by Jeroen Ooms and JJ Allaire.

Some testing code is available at https://github.com/pmur002/R-display-list.

• tools::undoc(dir = D) and codoc(dir = D) now also work when D is a directory
whose normalizePath()ed version does not end in the package name, e.g. from a
symlink.

• abbreviate() has more support for multi-byte character sets – it no longer removes
bytes within characters and knows about Latin vowels with accents. It is still only
really suitable for (most) European languages, and still warns on non-ASCII input.

abbreviate(use.classes = FALSE) is now implemented, and that is more suitable
for non-European languages.

• match(x,table) is faster (sometimes by an order of magnitude) when x is of length
one and incomparables is unchanged, thanks to Peter Haverty (PR#16491).

• More consistent, partly not back-compatible behavior of NA and NaN coercion to com-
plex numbers, operations less often resulting in complex NA (NA_complex_).

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16478
https://CRAN.R-project.org/package=Cairo
https://CRAN.R-project.org/package=RSvgDevice
https://CRAN.R-project.org/package=cairoDevice
https://CRAN.R-project.org/package=tikzDevice
https://github.com/pmur002/R-display-list
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16491

NEWS AND NOTES 410

• lengths() considers methods for length and [[on x, so it should work automatically
on any objects for which appropriate methods on those generics are defined.

• The logic for selecting the default screen device on OS X has been simplified: it is now
quartz() if that is available even if environment variable DISPLAY has been set by the
user.

The choice can easily be overridden via environment variable R_INTERACTIVE_DEVICE.

• On Unix-like platforms which support the getline C library function,
system(*,intern = TRUE) no longer truncates (output) lines longer than 8192
characters, thanks to Karl Millar. (PR#16544)

• rank() gains a ties.method = "last" option, for convenience (and symmetry).

• regmatches(invert = NA) can now be used to extract both non-matched and matched
substrings.

• data.frame() gains argument fix.empty.names; as.data.frame.list() gets new
cut.names, col.names and fix.empty.names.

• plot(x ~ x,*) now warns that it is the same as plot(x ~ 1,*).

• recordPlot() has new arguments load and attach to allow package names to be
stored as part of a recorded plot. replayPlot() has new argument reloadPkgs to
load/attach any package names that were stored as part of a recorded plot.

• S4 dispatch works within calls to .Internal(). This means explicit S4 generics are no
longer needed for unlist() and as.vector().

• Only font family names starting with ‘"Hershey"’ (and not ‘"Her"’ as before) are given
special treatment by the graphics engine.

• S4 values are automatically coerced to vector (via as.vector) when subassigned into
atomic vectors.

• findInterval() gets a left.open option.

• The version of LAPACK included in the sources has been updated to 3.6.0, including
those ‘deprecated’ routines which were previously included. Ca 40 double-complex
routines have been added at the request of a package maintainer.

As before, the details of what is included are in ‘src/modules/lapack/README’ and this
now gives information on earlier additions.

• tapply() has been made considerably more efficient without changing functionality,
thanks to proposals from Peter Haverty and Suharto Anggono. (PR#16640)

• match.arg(arg) (the one-argument case) is faster; so is sort.int(). (PR#16640)

• The format method for object_size objects now also accepts “binary” units such as
"KiB" and e.g., "Tb". (Partly from PR#16649.)

• Profiling now records calls of the form foo::bar and some similar cases directly rather
than as calls to <Anonymous>. Contributed by Winston Chang.

• New string utilities startsWith(x,prefix) and endsWith(x,suffix). Also provide
speedups for some grepl("^...",*) uses (related to proposals in PR#16490).

• Reference class finalizers run at exit, as well as on garbage collection.

• Avoid parallel dependency on stats for port choice and random number seeds.
(PR#16668)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16544
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16640
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16640
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16649
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16490
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16668

NEWS AND NOTES 411

• The radix sort algorithm and implementation from data.table (forder) replaces the
previous radix (counting) sort and adds a new method for order(). Contributed by
Matt Dowle and Arun Srinivasan, the new algorithm supports logical, integer (even
with large values), real, and character vectors. It outperforms all other methods, but
there are some caveats (see ?sort).

• The order() function gains a method argument for choosing between "shell" and
"radix".

• New function grouping() returns a permutation that stably rearranges data so that
identical values are adjacent. The return value includes extra partitioning information
on the groups. The implementation came included with the new radix sort.

• rhyper(nn,m,n,k) no longer returns NA when one of the three parameters exceeds the
maximal integer.

• switch() now warns when no alternatives are provided.

• parallel::detectCores() now has default logical = TRUE on all platforms – as this
was the default on Windows, this change only affects Sparc Solaris.

Option logical = FALSE is now supported on Linux and recent versions of OS X (for
the latter, thanks to a suggestion of Kyaw Sint).

• hist() for "Date" or "POSIXt" objects would sometimes give misleading labels on
the breaks, as they were set to the day before the start of the period being displayed.
The display format has been changed, and the shift of the start day has been made
conditional on right = TRUE (the default). (PR#16679)

• R now uses a new version of the logo (donated to the R Foundation by RStudio).
It is defined in ‘.svg’ format, so will resize without unnecessary degradation when
displayed on HTML pages—there is also a vector PDF version. Thanks to Dirk
Eddelbuettel for producing the corresponding X11 icon.

• New function .traceback() returns the stack trace which traceback() prints.

• lengths() dispatches internally.

• dotchart() gains a pt.cex argument to control the size of points separately from the
size of plot labels. Thanks to Michael Friendly and Milan Bouchet-Valat for ideas and
patches.

• as.roman(ch) now correctly deals with more diverse character vectors ch; also arith-
metic with the resulting roman numbers works in more cases. (PR#16779)

• prcomp() gains a new option rank. allowing to directly aim for less than min(n,p)
PC’s. The summary() and its print() method have been amended, notably for this
case.

• gzcon() gains a new option text, which marks the connection as text-oriented (so
e.g. pushBack() works). It is still always opened in binary mode.

• The import() namespace directive now accepts an argument except which names
symbols to exclude from the imports. The except expression should evaluate to a
character vector (after substituting symbols for strings). See Writing R Extensions.

• New convenience function Rcmd() in package tools for invoking R CMD tools from
within R.

• New functions makevars_user() and makevars_site() in package tools to determine
the location of the user and site specific ‘Makevars’ files for customizing package
compilation.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=data.table
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16679
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16779

NEWS AND NOTES 412

UTILITIES

• R CMD check has a new option ‘--ignore-vignettes’ for use with non-Sweave vi-
gnettes whose ‘VignetteBuilder’ package is not available.

• R CMD check now by default checks code usage (via codetools) with only the base
package attached. Functions from default packages other than base which are used in
the package code but not imported are reported as undefined globals, with a suggested
addition to the NAMESPACE file.

• R CMD check --as-cran now also checks DOIs in package ‘CITATION’ and Rd files.

• R CMD Rdconv and R CMD Rd2pdf each have a new option ‘--RdMacros=pkglist’ which
allows Rd macros to be specified before processing.

DEPRECATED AND DEFUNCT

• The previously included versions of zlib, bzip2, xz and PCRE have been removed, so
suitable external (usually system) versions are required (see the ‘R Installation and
Administration’ manual).

• The unexported and undocumented Windows-only devices cairo_bmp(), cairo_png()
and cairo_tiff() have been removed. (These devices should be used as e.g. bmp(type
= "cairo").)

• (Windows only) Function setInternet2() has no effect and will be removed in due
course. The choice between methods "internal" and "wininet" is now made by the
method arguments of url() and download.file() and their defaults can be set via
options. The out-of-the-box default remains "wininet" (as it has been since R 3.2.2).

• [<- with an S4 value into a list currently embeds the S4 object into its own list such
that the end result is roughly equivalent to using [[<-. That behavior is deprecated.
In the future, the S4 value will be coerced to a list with as.list().

• Package tools’ functions package.dependencies(), pkgDepends(), etc are deprecated
now, mostly in favor of package_dependencies() which is both more flexible and
efficient.

INSTALLATION and INCLUDED SOFTWARE

• Support for very old versions of valgrind (e.g., 3.3.0) has been removed.

• The included libtool script (generated by configure) has been updated to version
2.4.6 (from 2.2.6a).

• libcurl version 7.28.0 or later with support for the https protocol is required for
installation (except on Windows).

• BSD networking is now required (except on Windows) and so
capabilities("http/ftp") is always true.

• configure uses pkg-config for PNG, TIFF and JPEG where this is available. This
should work better with multiple installs and with those using static libraries.

• The minimum supported version of OS X is 10.6 (‘Snow Leopard’): even that has been
unsupported by Apple since 2012.

• The configure default on OS X is ‘--disable-R-framework’: enable this if you intend
to install under ‘/Library/Frameworks’ and use with R.app.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://CRAN.R-project.org/package=codetools

NEWS AND NOTES 413

• The minimum preferred version of PCRE has since R 3.0.0 been 8.32 (released in Nov
2012). Versions 8.10 to 8.31 are now deprecated (with warnings from configure), but
will still be accepted until R 3.4.0.

• configure looks for C functions __cospi, __sinpi and __tanpi and uses these if cospi
etc are not found. (OS X is the main instance.)

• (Windows) R is now built using gcc 4.9.3. This build will require recompilation of at
least those packages that include C++ code, and possibly others. A build of R-devel
using the older toolchain will be temporarily available for comparison purposes.

During the transition, the environment variable R_COMPILED_BY has been defined to
indicate which toolchain was used to compile R (and hence, which should be used
to compile code in packages). The COMPILED_BY variable described below will be a
permanent replacement for this.

• (Windows) A make and R CMD config variable named COMPILED_BY has been added.
This indicates which toolchain was used to compile R (and hence, which should be
used to compile code in packages).

PACKAGE INSTALLATION

• The make macro AWK which used to be made available to files such as ‘src/Makefile’ is
no longer set.

C-LEVEL FACILITIES

• The API call logspace_sum introduced in R 3.2.0 is now remapped as an entry point to
Rf_logspace_sum, and its first argument has gained a const qualifier. (PR#16470)

Code using it will need to be reinstalled.

Similarly, entry point log1pexp also defined in ‘Rmath.h’ is remapped there to
Rf_log1pexp

• R_GE_version has been increased to 11.

• New API call R_orderVector1, a faster one-argument version of R_orderVector.

• When R headers such as ‘R.h’ and ‘Rmath.h’ are called from C++ code in packages
they include the C++ versions of system headers such as ‘<cmath>’ rather than the
legacy headers such as ‘<math.h>’. (Headers ‘Rinternals.h’ and ‘Rinterface.h’ already did,
and inclusion of system headers can still be circumvented by defining NO_C_HEADERS,
including as from this version for those two headers.)

The manual has long said that R headers should not be included within an extern
"C" block, and almost all the packages affected by this change were doing so.

• Including header ‘S.h’ from C++ code would fail on some platforms, and so gives a
compilation error on all.

• The deprecated header ‘Rdefines.h’ is now compatible with defining R_NO_REMAP.

• The connections API now includes a function R_GetConnection() which allows pack-
ages implementing connections to convert R connection objects to Rconnection
handles used in the API. Code which previously used the low-level R-internal
getConnection() entry point should switch to the official API.

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16470

NEWS AND NOTES 414

BUG FIXES

• C-level asChar(x) is fixed for when x is not a vector, and it returns "TRUE"/"FALSE"
instead of "T"/"F" for logical vectors.

• The first arguments of .colSums() etc (with an initial dot) are now named x rather
than X (matching colSums()): thus error messages are corrected.

• A coef() method for class "maov" has been added to allow vcov() to work with
multivariate results. (PR#16380)

• method = "libcurl" connections signal errors rather than retrieving HTTP error pages
(where the ISP reports the error).

• xpdrows.data.frame() was not checking for unique row names; in particular, this
affected assignment to non-existing rows via numerical indexing. (PR#16570)

• tail.matrix() did not work for zero rows matrices, and could produce row “labels”
such as "[1e+05,]".

• Data frames with a column named "stringsAsFactors" now format and print cor-
rectly. (PR#16580)

• cor() is now guaranteed to return a value with absolute value less than or equal to 1.
(PR#16638)

• Array subsetting now keeps names(dim(.)).

• Blocking socket connection selection recovers more gracefully on signal interrupts.

• The data.frame method of rbind() construction row.names works better in borderline
integer cases, but may change the names assigned. (PR#16666)

• (X11 only) getGraphicsEvent() miscoded buttons and missed mouse motion events.
(PR#16700)

• methods(round) now also lists round.POSIXt.

• tar() now works with the default files = NULL. (PR#16716)

• Jumps to outer contexts, for example in error recovery, now make intermediate
jumps to contexts where on.exit() actions are established instead of trying to run
all on.exit() actions before jumping to the final target. This unwinds the stack
gradually, releases resources held on the stack, and significantly reduces the chance
of a segfault when running out of C stack space. Error handlers established using
withCallingHandlers() and options("error") specifications are ignored when han-
dling a C stack overflow error as attempting one of these would trigger a cascade of C
stack overflow errors. (These changes resolve PR#16753.)

• The spacing could be wrong when printing a complex array. (Report and patch by
Lukas Stadler.)

• pretty(d,n,min.n,*) for date-time objects d works again in border cases with large
min.n, returns a labels attribute also for small-range dates and in such cases its
returned length is closer to the desired n. (PR#16761) Additionally, it finally does cover
the range of d, as it always claimed.

• tsp(x) <-NULL did not handle correctly objects inheriting from both "ts" and "mts".
(PR#16769)

• install.packages() could give false errors when options("pkgType") was "binary".
(Reported by Jose Claudio Faria.)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16380
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16570
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16580
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16638
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16666
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16700
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16716
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16753
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16761
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16769

NEWS AND NOTES 415

• A bug fix in R 3.0.2 fixed problems with locator() in X11, but introduced problems in
Windows. Now both should be fixed. (PR#15700)

• download.file() with method = "wininet" incorrectly warned of download file
length difference when reported length was unknown. (PR#16805)

• diag(NULL,1) crashed because of missed type checking. (PR#16853)

The R Journal Vol. 8/1, Aug. 2016 ISSN 2073-4859

https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=15700
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16805
https://bugs.R-project.org/bugzilla3/show_bug.cgi?id=16853

	Editorial
	metaplus: An R Package for the Analysis of Robust Meta-Analysis and Meta-Regression
	Introduction
	Models
	Profile likelihood based confidence intervals
	Parametric bootstrap
	Other computational details

	Using package metaplus
	Examples
	Intravenous magnesium in acute myocardial infarction
	CDP choline for cognitive and behavioural disturbances
	Exercise for depression

	Conclusions and future developments
	Acknowledgements

	Gender Prediction Methods Based on First Names with genderizeR
	Introduction
	Review of methods and open data sources
	US Census and other data sources
	US Social Security Administration records
	Social network profiles as gender data source (via the genderize.io API)
	Comparison of approach characteristics

	The genderizeR package
	A trivial example of basic package functions
	Sample datasets

	Selecting prediction parameters
	Metrics of gender prediction efficiency
	Case study 1: Authorships
	Case study 2: Titles of biographical articles

	Further estimation of prediction accuracy
	Bootstrapping
	ROC and AUC
	Brier Score

	The comparison of methods
	Discussion
	Conclusion
	Acknowledgements

	Conditional Fractional Gaussian Fields with the Package FieldSim
	Introduction
	Notation and preliminaries
	Fractional Gaussian fields
	The FieldSim package

	The ````fieldsim procedure for conditional Gaussian fields
	Some examples of conditional fractional Gaussian fields
	On the line
	On the plane
	On the hyperboloid and on the sphere

	Conclusion and perspectives

	rTableICC: An R Package for Random Generation of 22K and RC Contingency Tables
	Introduction
	Data generation under ICC
	Structure of the rTableICC package
	Generation of RC tables with ICC
	Generation of 22K tables with ICC
	Generation of RC tables without ICC
	Generation of 22K tables without ICC
	Generation of random values from a discrete probability distribution

	Illustrative examples
	Example 1
	Example 2
	Example 3
	Example 4

	Performance
	Summary

	Maps, Coordinate Reference Systems and Visualising Geographic Data with mapmisc
	Introduction
	Installation and related packages
	Getting started with spatial data in R

	Working with map projections
	Spatial data with coordinate reference systems
	Finding a projection
	Mapping projected data
	Projecting background maps
	Equal-area map projections
	Custom-optimised Oblique Mercator projections

	Maps with colour scales
	Colours with polygon data
	Rasters and colour scales
	Colours with categorical data

	Conclusions
	Additional code
	European fertility
	Canada
	Additional tables and figures
	Variable Clustering in High-Dimensional Linear Regression: The R Package clere
	Introduction
	Model definition and notation
	Estimation and model selection
	Initialization
	MCEM algorithm
	SEM algorithm
	Model selection
	Interpretation of the special group of variables associated with b1=0
	Package functionalities
	The function fitClere()
	Methods summary(), plot(), clusters() and predict()

	Numerical experiments
	SEM algorithm versus MCEM algorithm
	Comparison with other methods
	Real data sets analysis

	Conclusions
	Stylometry with R: A Package for Computational Text Analysis
	Introduction
	Overview of stylometry
	Overview of the package
	Feature extraction
	Metrics
	Graphical user interface

	Example workflow
	Corpus preparation
	Preprocessing
	Features
	Sampling
	Counting frequent features
	Analysis
	Return value

	GUI mode
	Classify
	Miscellaneous other functions
	Conclusion
	Acknowledgments

	quickpsy: An R Package to Fit Psychometric Functions for Multiple Groups
	Introduction
	Statistical model
	Examples
	Point estimation and confidence intervals
	quickpsy and similar tools

	Examples of usage
	Light detection
	Criterion-independent light detection
	Light detection with lapses
	Appearance-based procedures

	Implementation details
	Non-standard evaluation and grouping
	Closures
	Round-off errors in the log likelihood
	Optimisation and initial parameters

	Acknowledgments

	FWDselect: An R Package for Variable Selection in Regression Models
	Introduction
	Methodology background
	Selecting the best variables
	Testing the number of significant variables
	FWDselect in practice
	Example of application

	Conclusions
	Acknowledgments
	Appendix
	An Interactive Survey Application for Validating Social Network Analysis Techniques
	Introduction
	Challenges
	Requirement 1: Ease of large scale deployment and collection of responses
	Requirement 2: Interactivity
	Requirement 3: Dynamic survey content generation
	Requirement 4: Integration with existing R infrastructure
	Requirement 5: Visually appealing and professional aesthetic

	Alternative survey tools
	Shiny web application framework
	Example server R script
	Example HTML UI

	Survey execution process
	Login phase
	Survey completion phase
	Response collection phase

	Discussion and future work
	Conclusion

	Exploring Interaction Effects in Two-Factor Studies using the hiddenf Package in R.
	Introduction
	The hiddenf package
	Example
	Testing for hidden additivity
	Characterizing hidden additivity
	Centering
	Other tests for non-additivity
	One degree of freedom approach
	Rows-linear approach
	Error mean square subtable comparison approach
	Residual clustering approach
	The ````additivityPvalues function

	data
	Summary
	Acknowledgements

	Heteroscedastic Censored and Truncated Regression with crch
	Introduction
	Regression models
	Censored regression (tobit)
	Truncated regression

	R implementation
	Example
	Summary

	Model Builder for Item Factor Analysis with OpenMx
	An overview of OpenMx
	The statistical model
	Dichotomous model
	Graded response model
	Nominal model

	Item models
	The model builder
	Dichotomous data
	Polytomous data
	Rasch diagnostics

	Item factor analysis
	Repercussions of the use of numerical quadrature for integration
	Discussion
	Appendix
	Spatio-Temporal Interpolation using gstat
	Introduction
	Spatio-temporal dependence modelling and kriging
	Covariance models
	Parameter estimation
	Kriging

	Application and illustration
	Results and discussion
	Conclusions
	Acknowledgements
	Appendix
	Derivation of the separable covariance and variogram identities
	Derivation of the product-sum covariance and variogram identities
	SWMPr: An R Package for Retrieving, Organizing, and Analyzing Environmental Data for Estuaries
	Introduction
	Overview of the SWMP network
	Structure of the SWMPr package
	Data retrieval
	The ````"swmpr" object class
	Data organizing
	Data analysis
	Applications using the SWMPr package
	Conclusions
	Acknowledgments
	CryptRndTest: An R Package for Testing the Cryptographic Randomness
	Introduction
	Performed tests
	Adaptive chi-square
	Birthday spacings
	Book stack
	Greatest common divisor
	Random walk tests
	Topological binary
	Auxiliary functions

	A numerical illustration
	Summary
	Acknowledgments
	scmamp: Statistical Comparison of Multiple Algorithms in Multiple Problems
	Existing tools
	Brief overview of the statistical tests and general recommendations
	Brief examples
	Conclusions
	keyplayer: An R Package for Locating Key Players in Social Networks
	Introduction
	Measuring individual centrality
	Degree centrality
	Closeness centrality
	Betweenness centrality
	Eigenvector centrality
	M-reach degree centrality
	M-reach closeness centrality
	Fragmentation centrality
	Diffusion centrality
	Measuring group centrality
	Selecting key players

	An empirical example

	Summary
	Acknowledgments
	SchemaOnRead: A Package for Schema-on-Read in R
	Introduction
	Examples
	User Defined Processors
	Related Work
	Why "SchemaOnRead?"
	The R Package SchemaOnRead
	Summary
	Acknowledgements

	Crowdsourced Data Preprocessing with R and Amazon Mechanical Turk
	Introduction
	The need for human intelligence
	MTurk core concepts
	Key terms
	Sandbox environment
	MTurk API and other packages

	The MTurkR package
	Data preprocessing with MTurkR
	Creating individual HITs
	Managing crowdworkers with QualificationTypes
	Creating multiple HITs
	Addressing problems
	An example of massive-scale photo rating
	Conclusion
	mclust 5: Clustering, Classification and Density Estimation Using Gaussian Finite Mixture Models
	Introduction
	Gaussian finite mixture modelling
	Model-based clustering
	Model selection

	Bootstrap inference
	Initialisation of the EM algorithm
	Density estimation
	Supervised classification
	Summary
	Acknowledgments
	clustering.sc.dp: Optimal Clustering with Sequential Constraint by Using Dynamic Programming
	Introduction
	Related work
	The problem specification
	The dynamic programming algorithm
	Implementation

	Evaluation
	Optimality
	Runtime

	Introduction to the R package clustering.sc.dp
	Summary
	Acknowledgements
	progenyClust: an R package for Progeny Clustering
	Introduction
	Progeny Clustering
	The progenyClust package
	Inversion of the stability scores
	The ````progenyClust() function
	The ````plot and ````summary methods for ``progenyClust'' objects
	The ````hclust.progenyClust() function
	The ````test and ````cell datasets

	Examples
	Proof-of-concept example
	Application to identifying cell phenotypes

	Summary

	statmod: Probability Calculations for the Inverse Gaussian Distribution
	Introduction
	Density function
	Cumulative distribution function
	Inverting the cdf
	Random deviates
	Discussion
	Appendix: asymptotic right tail probabilities

	Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R
	Introduction
	Merits of databases for storing biological sequences
	Anatomy of a DECIPHER database
	The nbit compression format for nucleotides
	Example workflow with DECIPHER
	Conclusions

	R Packages to Aid in Handling Web Access Logs
	Introduction
	Reading access logs
	Decoding and parsing URLs
	IP manipulation
	Geolocation
	Conclusions and further work
	Acknowledgements

	Nonparametric Tests for the Interaction in Two-way Factorial Designs Using R
	Introduction
	Methods and R packages
	Dealing with outliers
	Ordinal data and (aligned) ranks

	Resulting p-values
	Between x Between
	Within x Within
	Mixed (between x within)
	Pretest-Posttest
	Robust and rank (R)ANCOVA

	Choosing between methods
	Between x Between
	Within x Within
	Mixed (between x within)
	Pretest-Posttest

	Conclusions

	GMDH: An R Package for Short Term Forecasting via GMDH-Type Neural Network Algorithms
	Introduction
	Methodology
	Data preparation
	GMDH algorithm
	RGMDH algorithm
	Estimation of regularization parameter in RLSE

	Implementation of GMDH package
	Conclusion
	Acknowledgment

	sbtools: A Package Connecting R to Cloud-based Data for Collaborative Online Research
	Introduction
	USGS ScienceBase
	The sbtools package
	Data access API
	Search API
	ScienceBase authentication
	Data editing and upload API
	SB item identifiers

	Summary
	Acknowledgments

	Conference Report: useR! 2016
	Overview
	Pre-conference Tutorials
	Invited talks
	Contributed Sessions
	Conference Organizers
	Additional Information

	Changes on CRAN
	New packages in CRAN task views

	News from the Bioconductor Project
	Bioconductor 3.3 Release Highlights
	User support
	Developer support
	Forthcoming activities

	Changes in R
	 CHANGES IN R 3.3.1 patched
	NEW FEATURES
	INSTALLATION and INCLUDED SOFTWARE
	UTILITIES
	BUG FIXES

	 CHANGES IN R 3.3.1
	BUG FIXES

	 CHANGES IN R 3.3.0
	SIGNIFICANT USER-VISIBLE CHANGES
	NEW FEATURES
	UTILITIES
	DEPRECATED AND DEFUNCT
	INSTALLATION and INCLUDED SOFTWARE
	PACKAGE INSTALLATION
	C-LEVEL FACILITIES
	BUG FIXES

